mirror of
https://github.com/nod-ai/AMD-SHARK-Studio.git
synced 2026-02-19 11:56:43 -05:00
105 lines
3.1 KiB
Python
105 lines
3.1 KiB
Python
from shark.shark_inference import SharkInference
|
|
from shark.parser import shark_args
|
|
|
|
import torch
|
|
import numpy as np
|
|
import sys
|
|
|
|
torch.manual_seed(0)
|
|
|
|
vision_models = [
|
|
"alexnet",
|
|
"resnet101",
|
|
"resnet18",
|
|
"resnet50",
|
|
"squeezenet1_0",
|
|
"wide_resnet50_2",
|
|
"mobilenet_v3_small",
|
|
]
|
|
|
|
|
|
def get_torch_model(modelname):
|
|
if modelname in vision_models:
|
|
return get_vision_model(modelname)
|
|
else:
|
|
return get_hf_model(modelname)
|
|
|
|
|
|
##################### Hugging Face LM Models ###################################
|
|
|
|
|
|
class HuggingFaceLanguage(torch.nn.Module):
|
|
def __init__(self, hf_model_name):
|
|
super().__init__()
|
|
from transformers import AutoModelForSequenceClassification
|
|
import transformers as trf
|
|
|
|
transformers_path = trf.__path__[0]
|
|
hf_model_path = f"{transformers_path}/models/{hf_model_name}"
|
|
self.model = AutoModelForSequenceClassification.from_pretrained(
|
|
hf_model_name, # The pretrained model.
|
|
num_labels=2, # The number of output labels--2 for binary classification.
|
|
output_attentions=False, # Whether the model returns attentions weights.
|
|
output_hidden_states=False, # Whether the model returns all hidden-states.
|
|
torchscript=True,
|
|
)
|
|
|
|
def forward(self, tokens):
|
|
return self.model.forward(tokens)[0]
|
|
|
|
|
|
def get_hf_model(name):
|
|
from transformers import (
|
|
BertTokenizer,
|
|
TFBertModel,
|
|
)
|
|
|
|
model = HuggingFaceLanguage(name)
|
|
# TODO: Currently the test input is set to (1,128)
|
|
test_input = torch.randint(2, (1, 128))
|
|
actual_out = model(test_input)
|
|
return model, test_input, actual_out
|
|
|
|
|
|
################################################################################
|
|
|
|
##################### Torch Vision Models ###################################
|
|
|
|
|
|
class VisionModule(torch.nn.Module):
|
|
def __init__(self, model):
|
|
super().__init__()
|
|
self.model = model
|
|
self.train(False)
|
|
|
|
def forward(self, input):
|
|
return self.model.forward(input)
|
|
|
|
|
|
def get_vision_model(torch_model):
|
|
import torchvision.models as models
|
|
|
|
vision_models_dict = {
|
|
"alexnet": models.alexnet(pretrained=True),
|
|
"resnet18": models.resnet18(pretrained=True),
|
|
"resnet50": models.resnet50(pretrained=True),
|
|
"resnet101": models.resnet101(pretrained=True),
|
|
"squeezenet1_0": models.squeezenet1_0(pretrained=True),
|
|
"wide_resnet50_2": models.wide_resnet50_2(pretrained=True),
|
|
"mobilenet_v3_small": models.mobilenet_v3_small(pretrained=True),
|
|
}
|
|
if isinstance(torch_model, str):
|
|
torch_model = vision_models_dict[torch_model]
|
|
model = VisionModule(torch_model)
|
|
test_input = torch.randn(1, 3, 224, 224)
|
|
actual_out = model(test_input)
|
|
return model, test_input, actual_out
|
|
|
|
|
|
################################################################################
|
|
|
|
# Utility function for comparing two tensors (torch).
|
|
def compare_tensors(torch_tensor, numpy_tensor, rtol=1e-02, atol=1e-03):
|
|
# torch_to_numpy = torch_tensor.detach().numpy()
|
|
return np.allclose(torch_tensor, numpy_tensor, rtol, atol)
|