Merge branch 'master' into bently/secrt-881-find-local-businesses-using-google-maps-list-building

This commit is contained in:
Bently
2024-09-30 20:06:45 +01:00
committed by GitHub
5 changed files with 586 additions and 29 deletions

View File

@@ -0,0 +1,307 @@
import logging
import time
from enum import Enum
from typing import Optional
import requests
from pydantic import Field
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import BlockSecret, SchemaField, SecretField
class AudioTrack(str, Enum):
OBSERVER = ("Observer",)
FUTURISTIC_BEAT = ("Futuristic Beat",)
SCIENCE_DOCUMENTARY = ("Science Documentary",)
HOTLINE = ("Hotline",)
BLADERUNNER_2049 = ("Bladerunner 2049",)
A_FUTURE = ("A Future",)
ELYSIAN_EMBERS = ("Elysian Embers",)
INSPIRING_CINEMATIC = ("Inspiring Cinematic",)
BLADERUNNER_REMIX = ("Bladerunner Remix",)
IZZAMUZZIC = ("Izzamuzzic",)
NAS = ("Nas",)
PARIS_ELSE = ("Paris - Else",)
SNOWFALL = ("Snowfall",)
BURLESQUE = ("Burlesque",)
CORNY_CANDY = ("Corny Candy",)
HIGHWAY_NOCTURNE = ("Highway Nocturne",)
I_DONT_THINK_SO = ("I Don't Think So",)
LOSING_YOUR_MARBLES = ("Losing Your Marbles",)
REFRESHER = ("Refresher",)
TOURIST = ("Tourist",)
TWIN_TYCHES = ("Twin Tyches",)
@property
def audio_url(self):
audio_urls = {
AudioTrack.OBSERVER: "https://cdn.tfrv.xyz/audio/observer.mp3",
AudioTrack.FUTURISTIC_BEAT: "https://cdn.tfrv.xyz/audio/_futuristic-beat.mp3",
AudioTrack.SCIENCE_DOCUMENTARY: "https://cdn.tfrv.xyz/audio/_science-documentary.mp3",
AudioTrack.HOTLINE: "https://cdn.tfrv.xyz/audio/_hotline.mp3",
AudioTrack.BLADERUNNER_2049: "https://cdn.tfrv.xyz/audio/_bladerunner-2049.mp3",
AudioTrack.A_FUTURE: "https://cdn.tfrv.xyz/audio/a-future.mp3",
AudioTrack.ELYSIAN_EMBERS: "https://cdn.tfrv.xyz/audio/elysian-embers.mp3",
AudioTrack.INSPIRING_CINEMATIC: "https://cdn.tfrv.xyz/audio/inspiring-cinematic-ambient.mp3",
AudioTrack.BLADERUNNER_REMIX: "https://cdn.tfrv.xyz/audio/bladerunner-remix.mp3",
AudioTrack.IZZAMUZZIC: "https://cdn.tfrv.xyz/audio/_izzamuzzic.mp3",
AudioTrack.NAS: "https://cdn.tfrv.xyz/audio/_nas.mp3",
AudioTrack.PARIS_ELSE: "https://cdn.tfrv.xyz/audio/_paris-else.mp3",
AudioTrack.SNOWFALL: "https://cdn.tfrv.xyz/audio/_snowfall.mp3",
AudioTrack.BURLESQUE: "https://cdn.tfrv.xyz/audio/burlesque.mp3",
AudioTrack.CORNY_CANDY: "https://cdn.tfrv.xyz/audio/corny-candy.mp3",
AudioTrack.HIGHWAY_NOCTURNE: "https://cdn.tfrv.xyz/audio/highway-nocturne.mp3",
AudioTrack.I_DONT_THINK_SO: "https://cdn.tfrv.xyz/audio/i-dont-think-so.mp3",
AudioTrack.LOSING_YOUR_MARBLES: "https://cdn.tfrv.xyz/audio/losing-your-marbles.mp3",
AudioTrack.REFRESHER: "https://cdn.tfrv.xyz/audio/refresher.mp3",
AudioTrack.TOURIST: "https://cdn.tfrv.xyz/audio/tourist.mp3",
AudioTrack.TWIN_TYCHES: "https://cdn.tfrv.xyz/audio/twin-tynches.mp3",
}
return audio_urls[self]
class GenerationPreset(str, Enum):
LEONARDO = ("Default",)
ANIME = ("Anime",)
REALISM = ("Realist",)
ILLUSTRATION = ("Illustration",)
SKETCH_COLOR = ("Sketch Color",)
SKETCH_BW = ("Sketch B&W",)
PIXAR = ("Pixar",)
INK = ("Japanese Ink",)
RENDER_3D = ("3D Render",)
LEGO = ("Lego",)
SCIFI = ("Sci-Fi",)
RECRO_CARTOON = ("Retro Cartoon",)
PIXEL_ART = ("Pixel Art",)
CREATIVE = ("Creative",)
PHOTOGRAPHY = ("Photography",)
RAYTRACED = ("Raytraced",)
ENVIRONMENT = ("Environment",)
FANTASY = ("Fantasy",)
ANIME_SR = ("Anime Realism",)
MOVIE = ("Movie",)
STYLIZED_ILLUSTRATION = ("Stylized Illustration",)
MANGA = ("Manga",)
class Voice(str, Enum):
LILY = "Lily"
DANIEL = "Daniel"
BRIAN = "Brian"
JESSICA = "Jessica"
CHARLOTTE = "Charlotte"
CALLUM = "Callum"
@property
def voice_id(self):
voice_id_map = {
Voice.LILY: "pFZP5JQG7iQjIQuC4Bku",
Voice.DANIEL: "onwK4e9ZLuTAKqWW03F9",
Voice.BRIAN: "nPczCjzI2devNBz1zQrb",
Voice.JESSICA: "cgSgspJ2msm6clMCkdW9",
Voice.CHARLOTTE: "XB0fDUnXU5powFXDhCwa",
Voice.CALLUM: "N2lVS1w4EtoT3dr4eOWO",
}
return voice_id_map[self]
def __str__(self):
return self.value
class VisualMediaType(str, Enum):
STOCK_VIDEOS = ("stockVideo",)
MOVING_AI_IMAGES = ("movingImage",)
AI_VIDEO = ("aiVideo",)
logger = logging.getLogger(__name__)
class AIShortformVideoCreatorBlock(Block):
class Input(BlockSchema):
api_key: BlockSecret = SecretField(
key="revid_api_key",
description="Your revid.ai API key",
placeholder="Enter your revid.ai API key",
)
script: str = SchemaField(
description="""1. Use short and punctuated sentences\n\n2. Use linebreaks to create a new clip\n\n3. Text outside of brackets is spoken by the AI, and [text between brackets] will be used to guide the visual generation. For example, [close-up of a cat] will show a close-up of a cat.""",
placeholder="[close-up of a cat] Meow!",
)
ratio: str = Field(description="Aspect ratio of the video", default="9 / 16")
resolution: str = Field(description="Resolution of the video", default="720p")
frame_rate: int = Field(description="Frame rate of the video", default=60)
generation_preset: GenerationPreset = SchemaField(
description="Generation preset for visual style - only effects AI generated visuals",
default=GenerationPreset.LEONARDO,
placeholder=GenerationPreset.LEONARDO,
)
background_music: AudioTrack = SchemaField(
description="Background music track",
default=AudioTrack.HIGHWAY_NOCTURNE,
placeholder=AudioTrack.HIGHWAY_NOCTURNE,
)
voice: Voice = SchemaField(
description="AI voice to use for narration",
default=Voice.LILY,
placeholder=Voice.LILY,
)
video_style: VisualMediaType = SchemaField(
description="Type of visual media to use for the video",
default=VisualMediaType.STOCK_VIDEOS,
placeholder=VisualMediaType.STOCK_VIDEOS,
)
class Output(BlockSchema):
video_url: str = Field(description="The URL of the created video")
error: Optional[str] = Field(description="Error message if the request failed")
def __init__(self):
super().__init__(
id="361697fb-0c4f-4feb-aed3-8320c88c771b",
description="Creates a shortform video using revid.ai",
categories={BlockCategory.SOCIAL, BlockCategory.AI},
input_schema=AIShortformVideoCreatorBlock.Input,
output_schema=AIShortformVideoCreatorBlock.Output,
test_input={
"api_key": "test_api_key",
"script": "[close-up of a cat] Meow!",
"ratio": "9 / 16",
"resolution": "720p",
"frame_rate": 60,
"generation_preset": GenerationPreset.LEONARDO,
"background_music": AudioTrack.HIGHWAY_NOCTURNE,
"voice": Voice.LILY,
"video_style": VisualMediaType.STOCK_VIDEOS,
},
test_output=(
"video_url",
"https://example.com/video.mp4",
),
test_mock={
"create_webhook": lambda: (
"test_uuid",
"https://webhook.site/test_uuid",
),
"create_video": lambda api_key, payload: {"pid": "test_pid"},
"wait_for_video": lambda api_key, pid, webhook_token, max_wait_time=1000: "https://example.com/video.mp4",
},
)
def create_webhook(self):
url = "https://webhook.site/token"
headers = {"Accept": "application/json", "Content-Type": "application/json"}
response = requests.post(url, headers=headers)
response.raise_for_status()
webhook_data = response.json()
return webhook_data["uuid"], f"https://webhook.site/{webhook_data['uuid']}"
def create_video(self, api_key: str, payload: dict) -> dict:
url = "https://www.revid.ai/api/public/v2/render"
headers = {"key": api_key}
response = requests.post(url, json=payload, headers=headers)
logger.debug(
f"API Response Status Code: {response.status_code}, Content: {response.text}"
)
response.raise_for_status()
return response.json()
def check_video_status(self, api_key: str, pid: str) -> dict:
url = f"https://www.revid.ai/api/public/v2/status?pid={pid}"
headers = {"key": api_key}
response = requests.get(url, headers=headers)
response.raise_for_status()
return response.json()
def wait_for_video(
self, api_key: str, pid: str, webhook_token: str, max_wait_time: int = 1000
) -> str:
start_time = time.time()
while time.time() - start_time < max_wait_time:
status = self.check_video_status(api_key, pid)
logger.debug(f"Video status: {status}")
if status.get("status") == "ready" and "videoUrl" in status:
return status["videoUrl"]
elif status.get("status") == "error":
error_message = status.get("error", "Unknown error occurred")
logger.error(f"Video creation failed: {error_message}")
raise ValueError(f"Video creation failed: {error_message}")
elif status.get("status") in ["FAILED", "CANCELED"]:
logger.error(f"Video creation failed: {status.get('message')}")
raise ValueError(f"Video creation failed: {status.get('message')}")
time.sleep(10)
logger.error("Video creation timed out")
raise TimeoutError("Video creation timed out")
def run(self, input_data: Input, **kwargs) -> BlockOutput:
try:
# Create a new Webhook.site URL
webhook_token, webhook_url = self.create_webhook()
logger.debug(f"Webhook URL: {webhook_url}")
audio_url = input_data.background_music.audio_url
payload = {
"frameRate": input_data.frame_rate,
"resolution": input_data.resolution,
"frameDurationMultiplier": 18,
"webhook": webhook_url,
"creationParams": {
"mediaType": input_data.video_style,
"captionPresetName": "Wrap 1",
"selectedVoice": input_data.voice.voice_id,
"hasEnhancedGeneration": True,
"generationPreset": input_data.generation_preset.name,
"selectedAudio": input_data.background_music,
"origin": "/create",
"inputText": input_data.script,
"flowType": "text-to-video",
"slug": "create-tiktok-video",
"hasToGenerateVoice": True,
"hasToTranscript": False,
"hasToSearchMedia": True,
"hasAvatar": False,
"hasWebsiteRecorder": False,
"hasTextSmallAtBottom": False,
"ratio": input_data.ratio,
"sourceType": "contentScraping",
"selectedStoryStyle": {"value": "custom", "label": "Custom"},
"hasToGenerateVideos": input_data.video_style
!= VisualMediaType.STOCK_VIDEOS,
"audioUrl": audio_url,
},
}
logger.debug("Creating video...")
response = self.create_video(input_data.api_key.get_secret_value(), payload)
pid = response.get("pid")
if not pid:
logger.error(
f"Failed to create video: No project ID returned. API Response: {response}"
)
yield "error", "Failed to create video: No project ID returned"
else:
logger.debug(
f"Video created with project ID: {pid}. Waiting for completion..."
)
video_url = self.wait_for_video(
input_data.api_key.get_secret_value(), pid, webhook_token
)
logger.debug(f"Video ready: {video_url}")
yield "video_url", video_url
except requests.RequestException as e:
logger.exception("Error creating video")
yield "error", f"Error creating video: {str(e)}"
except ValueError as e:
logger.exception("Error in video creation process")
yield "error", str(e)
except TimeoutError as e:
logger.exception("Video creation timed out")
yield "error", str(e)

View File

@@ -1,37 +1,52 @@
from typing import Any, List, Tuple
from typing import Any
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class ListIteratorBlock(Block):
class StepThroughItemsBlock(Block):
class Input(BlockSchema):
items: List[Any] = SchemaField(
description="The list of items to iterate over",
placeholder="[1, 2, 3, 4, 5]",
items: list | dict = SchemaField(
description="The list or dictionary of items to iterate over",
placeholder="[1, 2, 3, 4, 5] or {'key1': 'value1', 'key2': 'value2'}",
)
class Output(BlockSchema):
item: Tuple[int, Any] = SchemaField(
description="A tuple with the index and current item in the iteration"
item: Any = SchemaField(description="The current item in the iteration")
key: Any = SchemaField(
description="The key or index of the current item in the iteration",
)
def __init__(self):
super().__init__(
id="f8e7d6c5-b4a3-2c1d-0e9f-8g7h6i5j4k3l",
input_schema=ListIteratorBlock.Input,
output_schema=ListIteratorBlock.Output,
description="Iterates over a list of items and outputs each item with its index.",
input_schema=StepThroughItemsBlock.Input,
output_schema=StepThroughItemsBlock.Output,
categories={BlockCategory.LOGIC},
test_input={"items": [1, "two", {"three": 3}, [4, 5]]},
description="Iterates over a list or dictionary and outputs each item.",
test_input={"items": [1, 2, 3, {"key1": "value1", "key2": "value2"}]},
test_output=[
("item", (0, 1)),
("item", (1, "two")),
("item", (2, {"three": 3})),
("item", (3, [4, 5])),
("item", 1),
("key", 0),
("item", 2),
("key", 1),
("item", 3),
("key", 2),
("item", {"key1": "value1", "key2": "value2"}),
("key", 3),
],
test_mock={},
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
for index, item in enumerate(input_data.items):
yield "item", (index, item)
items = input_data.items
if isinstance(items, dict):
# If items is a dictionary, iterate over its values
for item in items.values():
yield "item", item
yield "key", item
else:
# If items is a list, iterate over the list
for index, item in enumerate(items):
yield "item", item
yield "key", index

View File

@@ -1,3 +1,4 @@
import ast
import logging
from enum import Enum
from json import JSONDecodeError
@@ -209,6 +210,7 @@ class AIStructuredResponseGeneratorBlock(Block):
raise ValueError(f"Unsupported LLM provider: {provider}")
def run(self, input_data: Input, **kwargs) -> BlockOutput:
logger.debug(f"Calling LLM with input data: {input_data}")
prompt = []
def trim_prompt(s: str) -> str:
@@ -622,3 +624,232 @@ class AIConversationBlock(Block):
yield "response", response
except Exception as e:
yield "error", f"Error calling LLM: {str(e)}"
class AIListGeneratorBlock(Block):
class Input(BlockSchema):
focus: str | None = SchemaField(
description="The focus of the list to generate.",
placeholder="The top 5 most interesting news stories in the data.",
default=None,
advanced=False,
)
source_data: str | None = SchemaField(
description="The data to generate the list from.",
placeholder="News Today: Humans land on Mars: Today humans landed on mars. -- AI wins Nobel Prize: AI wins Nobel Prize for solving world hunger. -- New AI Model: A new AI model has been released.",
default=None,
advanced=False,
)
model: LlmModel = SchemaField(
title="LLM Model",
default=LlmModel.GPT4_TURBO,
description="The language model to use for generating the list.",
advanced=True,
)
api_key: BlockSecret = SecretField(value="")
max_retries: int = SchemaField(
default=3,
description="Maximum number of retries for generating a valid list.",
ge=1,
le=5,
)
class Output(BlockSchema):
generated_list: List[str] = SchemaField(description="The generated list.")
list_item: str = SchemaField(
description="Each individual item in the list.",
)
error: str = SchemaField(
description="Error message if the list generation failed."
)
def __init__(self):
super().__init__(
id="9c0b0450-d199-458b-a731-072189dd6593",
description="Generate a Python list based on the given prompt using a Large Language Model (LLM).",
categories={BlockCategory.AI, BlockCategory.TEXT},
input_schema=AIListGeneratorBlock.Input,
output_schema=AIListGeneratorBlock.Output,
test_input={
"focus": "planets",
"source_data": (
"Zylora Prime is a glowing jungle world with bioluminescent plants, "
"while Kharon-9 is a harsh desert planet with underground cities. "
"Vortexia's constant storms power floating cities, and Oceara is a water-covered world home to "
"intelligent marine life. On icy Draknos, ancient ruins lie buried beneath its frozen landscape, "
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
"fictional worlds."
),
"model": LlmModel.GPT4_TURBO,
"api_key": "test_api_key",
"max_retries": 3,
},
test_output=[
(
"generated_list",
["Zylora Prime", "Kharon-9", "Vortexia", "Oceara", "Draknos"],
),
("list_item", "Zylora Prime"),
("list_item", "Kharon-9"),
("list_item", "Vortexia"),
("list_item", "Oceara"),
("list_item", "Draknos"),
],
test_mock={
"llm_call": lambda input_data: {
"response": "['Zylora Prime', 'Kharon-9', 'Vortexia', 'Oceara', 'Draknos']"
},
},
)
@staticmethod
def llm_call(
input_data: AIStructuredResponseGeneratorBlock.Input,
) -> dict[str, str]:
llm_block = AIStructuredResponseGeneratorBlock()
for output_name, output_data in llm_block.run(input_data):
if output_name == "response":
logger.debug(f"Received response from LLM: {output_data}")
return output_data
raise ValueError("Failed to get a response from the LLM.")
@staticmethod
def string_to_list(string):
"""
Converts a string representation of a list into an actual Python list object.
"""
logger.debug(f"Converting string to list. Input string: {string}")
try:
# Use ast.literal_eval to safely evaluate the string
python_list = ast.literal_eval(string)
if isinstance(python_list, list):
logger.debug(f"Successfully converted string to list: {python_list}")
return python_list
else:
logger.error(f"The provided string '{string}' is not a valid list")
raise ValueError(f"The provided string '{string}' is not a valid list.")
except (SyntaxError, ValueError) as e:
logger.error(f"Failed to convert string to list: {e}")
raise ValueError("Invalid list format. Could not convert to list.")
def run(self, input_data: Input, **kwargs) -> BlockOutput:
logger.debug(f"Starting AIListGeneratorBlock.run with input data: {input_data}")
# Check for API key
api_key_check = (
input_data.api_key.get_secret_value()
or LlmApiKeys[input_data.model.metadata.provider].get_secret_value()
)
if not api_key_check:
logger.error("No LLM API key provided.")
yield "error", "No LLM API key provided."
return
# Prepare the system prompt
sys_prompt = """You are a Python list generator. Your task is to generate a Python list based on the user's prompt.
|Respond ONLY with a valid python list.
|The list can contain strings, numbers, or nested lists as appropriate.
|Do not include any explanations or additional text.
|Valid Example string formats:
|Example 1:
|```
|['1', '2', '3', '4']
|```
|Example 2:
|```
|[['1', '2'], ['3', '4'], ['5', '6']]
|```
|Example 3:
|```
|['1', ['2', '3'], ['4', ['5', '6']]]
|```
|Example 4:
|```
|['a', 'b', 'c']
|```
|Example 5:
|```
|['1', '2.5', 'string', 'True', ['False', 'None']]
|```
|Do not include any explanations or additional text, just respond with the list in the format specified above.
"""
# If a focus is provided, add it to the prompt
if input_data.focus:
prompt = f"Generate a list with the following focus:\n<focus>\n\n{input_data.focus}</focus>"
else:
# If there's source data
if input_data.source_data:
prompt = "Extract the main focus of the source data to a list.\ni.e if the source data is a news website, the focus would be the news stories rather than the social links in the footer."
else:
# No focus or source data provided, generat a random list
prompt = "Generate a random list."
# If the source data is provided, add it to the prompt
if input_data.source_data:
prompt += f"\n\nUse the following source data to generate the list from:\n\n<source_data>\n\n{input_data.source_data}</source_data>\n\nDo not invent fictional data that is not present in the source data."
# Else, tell the LLM to synthesize the data
else:
prompt += "\n\nInvent the data to generate the list from."
for attempt in range(input_data.max_retries):
try:
logger.debug("Calling LLM")
llm_response = self.llm_call(
AIStructuredResponseGeneratorBlock.Input(
sys_prompt=sys_prompt,
prompt=prompt,
api_key=input_data.api_key,
model=input_data.model,
expected_format={}, # Do not use structured response
)
)
logger.debug(f"LLM response: {llm_response}")
# Extract Response string
response_string = llm_response["response"]
logger.debug(f"Response string: {response_string}")
# Convert the string to a Python list
logger.debug("Converting string to Python list")
parsed_list = self.string_to_list(response_string)
logger.debug(f"Parsed list: {parsed_list}")
# If we reach here, we have a valid Python list
logger.debug("Successfully generated a valid Python list")
yield "generated_list", parsed_list
# Yield each item in the list
for item in parsed_list:
yield "list_item", item
return
except Exception as e:
logger.error(f"Error in attempt {attempt + 1}: {str(e)}")
if attempt == input_data.max_retries - 1:
logger.error(
f"Failed to generate a valid Python list after {input_data.max_retries} attempts"
)
yield "error", f"Failed to generate a valid Python list after {input_data.max_retries} attempts. Last error: {str(e)}"
else:
# Add a retry prompt
logger.debug("Preparing retry prompt")
prompt = f"""
The previous attempt failed due to `{e}`
Generate a valid Python list based on the original prompt.
Remember to respond ONLY with a valid Python list as per the format specified earlier.
Original prompt:
```{prompt}```
Respond only with the list in the format specified with no commentary or apologies.
"""
logger.debug(f"Retry prompt: {prompt}")
logger.debug("AIListGeneratorBlock.run completed")

View File

@@ -4,7 +4,7 @@ from urllib.parse import quote
import requests
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import BlockSecret, SecretField
from backend.data.model import BlockSecret, SchemaField, SecretField
class GetRequest:
@@ -96,6 +96,12 @@ class SearchTheWebBlock(Block, GetRequest):
class ExtractWebsiteContentBlock(Block, GetRequest):
class Input(BlockSchema):
url: str # The URL to scrape
raw_content: bool = SchemaField(
default=False,
title="Raw Content",
description="Whether to do a raw scrape of the content or use Jina-ai Reader to scrape the content",
advanced=True,
)
class Output(BlockSchema):
content: str # The scraped content from the URL
@@ -114,21 +120,18 @@ class ExtractWebsiteContentBlock(Block, GetRequest):
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
if input_data.raw_content:
url = input_data.url
else:
url = f"https://r.jina.ai/{input_data.url}"
try:
# Prepend the Jina-ai Reader URL to the input URL
jina_url = f"https://r.jina.ai/{input_data.url}"
# Make the request to Jina-ai Reader
response = self.get_request(jina_url, json=False)
# Output the scraped content
yield "content", response
content = self.get_request(url, json=False)
yield "content", content
except requests.exceptions.HTTPError as http_err:
yield "error", f"HTTP error occurred: {http_err}"
except requests.RequestException as e:
yield "error", f"Request to Jina-ai Reader failed: {e}"
yield "error", f"Request to URL failed: {e}"
class GetWeatherInformationBlock(Block, GetRequest):

View File

@@ -206,6 +206,7 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
medium_api_key: str = Field(default="", description="Medium API key")
medium_author_id: str = Field(default="", description="Medium author ID")
did_api_key: str = Field(default="", description="D-ID API Key")
revid_api_key: str = Field(default="", description="revid.ai API key")
discord_bot_token: str = Field(default="", description="Discord bot token")