Merge branch 'dev' into zamilmajdy/fix-iteration-and-timer-block

This commit is contained in:
Zamil Majdy
2024-11-12 21:15:19 +07:00
committed by GitHub
4 changed files with 248 additions and 214 deletions

View File

@@ -58,7 +58,6 @@ def AICredentialsField() -> AICredentials:
class ModelMetadata(NamedTuple):
provider: str
context_window: int
cost_factor: int
class LlmModelMeta(EnumMeta):
@@ -117,31 +116,27 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
def context_window(self) -> int:
return self.metadata.context_window
@property
def cost_factor(self) -> int:
return self.metadata.cost_factor
MODEL_METADATA = {
LlmModel.O1_PREVIEW: ModelMetadata("openai", 32000, cost_factor=16),
LlmModel.O1_MINI: ModelMetadata("openai", 62000, cost_factor=4),
LlmModel.GPT4O_MINI: ModelMetadata("openai", 128000, cost_factor=1),
LlmModel.GPT4O: ModelMetadata("openai", 128000, cost_factor=3),
LlmModel.GPT4_TURBO: ModelMetadata("openai", 128000, cost_factor=10),
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, cost_factor=1),
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata("anthropic", 200000, cost_factor=4),
LlmModel.CLAUDE_3_HAIKU: ModelMetadata("anthropic", 200000, cost_factor=1),
LlmModel.LLAMA3_8B: ModelMetadata("groq", 8192, cost_factor=1),
LlmModel.LLAMA3_70B: ModelMetadata("groq", 8192, cost_factor=1),
LlmModel.MIXTRAL_8X7B: ModelMetadata("groq", 32768, cost_factor=1),
LlmModel.GEMMA_7B: ModelMetadata("groq", 8192, cost_factor=1),
LlmModel.GEMMA2_9B: ModelMetadata("groq", 8192, cost_factor=1),
LlmModel.LLAMA3_1_405B: ModelMetadata("groq", 8192, cost_factor=1),
LlmModel.O1_PREVIEW: ModelMetadata("openai", 32000),
LlmModel.O1_MINI: ModelMetadata("openai", 62000),
LlmModel.GPT4O_MINI: ModelMetadata("openai", 128000),
LlmModel.GPT4O: ModelMetadata("openai", 128000),
LlmModel.GPT4_TURBO: ModelMetadata("openai", 128000),
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385),
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata("anthropic", 200000),
LlmModel.CLAUDE_3_HAIKU: ModelMetadata("anthropic", 200000),
LlmModel.LLAMA3_8B: ModelMetadata("groq", 8192),
LlmModel.LLAMA3_70B: ModelMetadata("groq", 8192),
LlmModel.MIXTRAL_8X7B: ModelMetadata("groq", 32768),
LlmModel.GEMMA_7B: ModelMetadata("groq", 8192),
LlmModel.GEMMA2_9B: ModelMetadata("groq", 8192),
LlmModel.LLAMA3_1_405B: ModelMetadata("groq", 8192),
# Limited to 16k during preview
LlmModel.LLAMA3_1_70B: ModelMetadata("groq", 131072, cost_factor=1),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 131072, cost_factor=1),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, cost_factor=1),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, cost_factor=1),
LlmModel.LLAMA3_1_70B: ModelMetadata("groq", 131072),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 131072),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192),
}
for model in LlmModel:

View File

@@ -0,0 +1,194 @@
from typing import Type
from autogpt_libs.supabase_integration_credentials_store.store import (
anthropic_credentials,
did_credentials,
groq_credentials,
ideogram_credentials,
jina_credentials,
openai_credentials,
replicate_credentials,
revid_credentials,
)
from backend.blocks.ai_shortform_video_block import AIShortformVideoCreatorBlock
from backend.blocks.ideogram import IdeogramModelBlock
from backend.blocks.jina.search import SearchTheWebBlock
from backend.blocks.llm import (
MODEL_METADATA,
AIConversationBlock,
AIStructuredResponseGeneratorBlock,
AITextGeneratorBlock,
AITextSummarizerBlock,
LlmModel,
)
from backend.blocks.replicate_flux_advanced import ReplicateFluxAdvancedModelBlock
from backend.blocks.search import ExtractWebsiteContentBlock
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.data.block import Block
from backend.data.cost import BlockCost, BlockCostType
# =============== Configure the cost for each LLM Model call =============== #
MODEL_COST: dict[LlmModel, int] = {
LlmModel.O1_PREVIEW: 16,
LlmModel.O1_MINI: 4,
LlmModel.GPT4O_MINI: 1,
LlmModel.GPT4O: 3,
LlmModel.GPT4_TURBO: 10,
LlmModel.GPT3_5_TURBO: 1,
LlmModel.CLAUDE_3_5_SONNET: 4,
LlmModel.CLAUDE_3_HAIKU: 1,
LlmModel.LLAMA3_8B: 1,
LlmModel.LLAMA3_70B: 1,
LlmModel.MIXTRAL_8X7B: 1,
LlmModel.GEMMA_7B: 1,
LlmModel.GEMMA2_9B: 1,
LlmModel.LLAMA3_1_405B: 1,
LlmModel.LLAMA3_1_70B: 1,
LlmModel.LLAMA3_1_8B: 1,
LlmModel.OLLAMA_LLAMA3_8B: 1,
LlmModel.OLLAMA_LLAMA3_405B: 1,
}
for model in LlmModel:
if model not in MODEL_COST:
raise ValueError(f"Missing MODEL_COST for model: {model}")
LLM_COST = (
[
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"api_key": None, # Running LLM with user own API key is free.
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
]
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": anthropic_credentials.id,
"provider": anthropic_credentials.provider,
"type": anthropic_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "anthropic"
]
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": openai_credentials.id,
"provider": openai_credentials.provider,
"type": openai_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "openai"
]
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {"id": groq_credentials.id},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "groq"
]
+ [
BlockCost(
# Default cost is running LlmModel.GPT4O.
cost_amount=MODEL_COST[LlmModel.GPT4O],
cost_filter={"api_key": None},
),
]
)
# =============== This is the exhaustive list of cost for each Block =============== #
BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
AIConversationBlock: LLM_COST,
AITextGeneratorBlock: LLM_COST,
AIStructuredResponseGeneratorBlock: LLM_COST,
AITextSummarizerBlock: LLM_COST,
CreateTalkingAvatarVideoBlock: [
BlockCost(
cost_amount=15,
cost_filter={
"credentials": {
"id": did_credentials.id,
"provider": did_credentials.provider,
"type": did_credentials.type,
}
},
)
],
SearchTheWebBlock: [
BlockCost(
cost_amount=1,
cost_filter={
"credentials": {
"id": jina_credentials.id,
"provider": jina_credentials.provider,
"type": jina_credentials.type,
}
},
)
],
ExtractWebsiteContentBlock: [
BlockCost(cost_amount=1, cost_filter={"raw_content": False})
],
IdeogramModelBlock: [
BlockCost(
cost_amount=1,
cost_filter={
"credentials": {
"id": ideogram_credentials.id,
"provider": ideogram_credentials.provider,
"type": ideogram_credentials.type,
}
},
)
],
AIShortformVideoCreatorBlock: [
BlockCost(
cost_amount=10,
cost_filter={
"credentials": {
"id": revid_credentials.id,
"provider": revid_credentials.provider,
"type": revid_credentials.type,
}
},
)
],
ReplicateFluxAdvancedModelBlock: [
BlockCost(
cost_amount=10,
cost_filter={
"credentials": {
"id": replicate_credentials.id,
"provider": replicate_credentials.provider,
"type": replicate_credentials.type,
}
},
)
],
}

View File

@@ -0,0 +1,32 @@
from enum import Enum
from typing import Any, Optional
from pydantic import BaseModel
from backend.data.block import BlockInput
class BlockCostType(str, Enum):
RUN = "run" # cost X credits per run
BYTE = "byte" # cost X credits per byte
SECOND = "second" # cost X credits per second
class BlockCost(BaseModel):
cost_amount: int
cost_filter: BlockInput
cost_type: BlockCostType
def __init__(
self,
cost_amount: int,
cost_type: BlockCostType = BlockCostType.RUN,
cost_filter: Optional[BlockInput] = None,
**data: Any,
) -> None:
super().__init__(
cost_amount=cost_amount,
cost_filter=cost_filter or {},
cost_type=cost_type,
**data,
)

View File

@@ -1,204 +1,17 @@
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from enum import Enum
from typing import Any, Optional, Type
import prisma.errors
from autogpt_libs.supabase_integration_credentials_store.store import (
anthropic_credentials,
did_credentials,
groq_credentials,
ideogram_credentials,
jina_credentials,
openai_credentials,
replicate_credentials,
revid_credentials,
)
from prisma import Json
from prisma.enums import UserBlockCreditType
from prisma.errors import UniqueViolationError
from prisma.models import UserBlockCredit
from pydantic import BaseModel
from backend.blocks.ai_shortform_video_block import AIShortformVideoCreatorBlock
from backend.blocks.ideogram import IdeogramModelBlock
from backend.blocks.jina.search import SearchTheWebBlock
from backend.blocks.llm import (
MODEL_METADATA,
AIConversationBlock,
AIStructuredResponseGeneratorBlock,
AITextGeneratorBlock,
AITextSummarizerBlock,
LlmModel,
)
from backend.blocks.replicate_flux_advanced import ReplicateFluxAdvancedModelBlock
from backend.blocks.search import ExtractWebsiteContentBlock
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.data.block import Block, BlockInput, get_block
from backend.data.block_cost_config import BLOCK_COSTS
from backend.data.cost import BlockCost, BlockCostType
from backend.util.settings import Config
class BlockCostType(str, Enum):
RUN = "run" # cost X credits per run
BYTE = "byte" # cost X credits per byte
SECOND = "second" # cost X credits per second
class BlockCost(BaseModel):
cost_amount: int
cost_filter: BlockInput
cost_type: BlockCostType
def __init__(
self,
cost_amount: int,
cost_type: BlockCostType = BlockCostType.RUN,
cost_filter: Optional[BlockInput] = None,
**data: Any,
) -> None:
super().__init__(
cost_amount=cost_amount,
cost_filter=cost_filter or {},
cost_type=cost_type,
**data,
)
llm_cost = (
[
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"api_key": None, # Running LLM with user own API key is free.
},
cost_amount=metadata.cost_factor,
)
for model, metadata in MODEL_METADATA.items()
]
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": anthropic_credentials.id,
"provider": anthropic_credentials.provider,
"type": anthropic_credentials.type,
},
},
cost_amount=metadata.cost_factor,
)
for model, metadata in MODEL_METADATA.items()
if metadata.provider == "anthropic"
]
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": openai_credentials.id,
"provider": openai_credentials.provider,
"type": openai_credentials.type,
},
},
cost_amount=metadata.cost_factor,
)
for model, metadata in MODEL_METADATA.items()
if metadata.provider == "openai"
]
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {"id": groq_credentials.id},
},
cost_amount=metadata.cost_factor,
)
for model, metadata in MODEL_METADATA.items()
if metadata.provider == "groq"
]
+ [
BlockCost(
# Default cost is running LlmModel.GPT4O.
cost_amount=MODEL_METADATA[LlmModel.GPT4O].cost_factor,
cost_filter={"api_key": None},
),
]
)
BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
AIConversationBlock: llm_cost,
AITextGeneratorBlock: llm_cost,
AIStructuredResponseGeneratorBlock: llm_cost,
AITextSummarizerBlock: llm_cost,
CreateTalkingAvatarVideoBlock: [
BlockCost(
cost_amount=15,
cost_filter={
"credentials": {
"id": did_credentials.id,
"provider": did_credentials.provider,
"type": did_credentials.type,
}
},
)
],
SearchTheWebBlock: [
BlockCost(
cost_amount=1,
cost_filter={
"credentials": {
"id": jina_credentials.id,
"provider": jina_credentials.provider,
"type": jina_credentials.type,
}
},
)
],
ExtractWebsiteContentBlock: [
BlockCost(cost_amount=1, cost_filter={"raw_content": False})
],
IdeogramModelBlock: [
BlockCost(
cost_amount=1,
cost_filter={
"credentials": {
"id": ideogram_credentials.id,
"provider": ideogram_credentials.provider,
"type": ideogram_credentials.type,
}
},
)
],
AIShortformVideoCreatorBlock: [
BlockCost(
cost_amount=10,
cost_filter={
"credentials": {
"id": revid_credentials.id,
"provider": revid_credentials.provider,
"type": revid_credentials.type,
}
},
)
],
ReplicateFluxAdvancedModelBlock: [
BlockCost(
cost_amount=10,
cost_filter={
"credentials": {
"id": replicate_credentials.id,
"provider": replicate_credentials.provider,
"type": replicate_credentials.type,
}
},
)
],
}
class UserCreditBase(ABC):
def __init__(self, num_user_credits_refill: int):
self.num_user_credits_refill = num_user_credits_refill
@@ -283,7 +96,7 @@ class UserCredit(UserCreditBase):
"createdAt": self.time_now(),
}
)
except prisma.errors.UniqueViolationError:
except UniqueViolationError:
pass # Already refilled this month
return self.num_user_credits_refill