mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-01-20 20:48:11 -05:00
Merge branch 'dev' into zamilmajdy/fix-iteration-and-timer-block
This commit is contained in:
@@ -58,7 +58,6 @@ def AICredentialsField() -> AICredentials:
|
||||
class ModelMetadata(NamedTuple):
|
||||
provider: str
|
||||
context_window: int
|
||||
cost_factor: int
|
||||
|
||||
|
||||
class LlmModelMeta(EnumMeta):
|
||||
@@ -117,31 +116,27 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
def context_window(self) -> int:
|
||||
return self.metadata.context_window
|
||||
|
||||
@property
|
||||
def cost_factor(self) -> int:
|
||||
return self.metadata.cost_factor
|
||||
|
||||
|
||||
MODEL_METADATA = {
|
||||
LlmModel.O1_PREVIEW: ModelMetadata("openai", 32000, cost_factor=16),
|
||||
LlmModel.O1_MINI: ModelMetadata("openai", 62000, cost_factor=4),
|
||||
LlmModel.GPT4O_MINI: ModelMetadata("openai", 128000, cost_factor=1),
|
||||
LlmModel.GPT4O: ModelMetadata("openai", 128000, cost_factor=3),
|
||||
LlmModel.GPT4_TURBO: ModelMetadata("openai", 128000, cost_factor=10),
|
||||
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, cost_factor=1),
|
||||
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata("anthropic", 200000, cost_factor=4),
|
||||
LlmModel.CLAUDE_3_HAIKU: ModelMetadata("anthropic", 200000, cost_factor=1),
|
||||
LlmModel.LLAMA3_8B: ModelMetadata("groq", 8192, cost_factor=1),
|
||||
LlmModel.LLAMA3_70B: ModelMetadata("groq", 8192, cost_factor=1),
|
||||
LlmModel.MIXTRAL_8X7B: ModelMetadata("groq", 32768, cost_factor=1),
|
||||
LlmModel.GEMMA_7B: ModelMetadata("groq", 8192, cost_factor=1),
|
||||
LlmModel.GEMMA2_9B: ModelMetadata("groq", 8192, cost_factor=1),
|
||||
LlmModel.LLAMA3_1_405B: ModelMetadata("groq", 8192, cost_factor=1),
|
||||
LlmModel.O1_PREVIEW: ModelMetadata("openai", 32000),
|
||||
LlmModel.O1_MINI: ModelMetadata("openai", 62000),
|
||||
LlmModel.GPT4O_MINI: ModelMetadata("openai", 128000),
|
||||
LlmModel.GPT4O: ModelMetadata("openai", 128000),
|
||||
LlmModel.GPT4_TURBO: ModelMetadata("openai", 128000),
|
||||
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385),
|
||||
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata("anthropic", 200000),
|
||||
LlmModel.CLAUDE_3_HAIKU: ModelMetadata("anthropic", 200000),
|
||||
LlmModel.LLAMA3_8B: ModelMetadata("groq", 8192),
|
||||
LlmModel.LLAMA3_70B: ModelMetadata("groq", 8192),
|
||||
LlmModel.MIXTRAL_8X7B: ModelMetadata("groq", 32768),
|
||||
LlmModel.GEMMA_7B: ModelMetadata("groq", 8192),
|
||||
LlmModel.GEMMA2_9B: ModelMetadata("groq", 8192),
|
||||
LlmModel.LLAMA3_1_405B: ModelMetadata("groq", 8192),
|
||||
# Limited to 16k during preview
|
||||
LlmModel.LLAMA3_1_70B: ModelMetadata("groq", 131072, cost_factor=1),
|
||||
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 131072, cost_factor=1),
|
||||
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, cost_factor=1),
|
||||
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, cost_factor=1),
|
||||
LlmModel.LLAMA3_1_70B: ModelMetadata("groq", 131072),
|
||||
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 131072),
|
||||
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192),
|
||||
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192),
|
||||
}
|
||||
|
||||
for model in LlmModel:
|
||||
|
||||
194
autogpt_platform/backend/backend/data/block_cost_config.py
Normal file
194
autogpt_platform/backend/backend/data/block_cost_config.py
Normal file
@@ -0,0 +1,194 @@
|
||||
from typing import Type
|
||||
|
||||
from autogpt_libs.supabase_integration_credentials_store.store import (
|
||||
anthropic_credentials,
|
||||
did_credentials,
|
||||
groq_credentials,
|
||||
ideogram_credentials,
|
||||
jina_credentials,
|
||||
openai_credentials,
|
||||
replicate_credentials,
|
||||
revid_credentials,
|
||||
)
|
||||
|
||||
from backend.blocks.ai_shortform_video_block import AIShortformVideoCreatorBlock
|
||||
from backend.blocks.ideogram import IdeogramModelBlock
|
||||
from backend.blocks.jina.search import SearchTheWebBlock
|
||||
from backend.blocks.llm import (
|
||||
MODEL_METADATA,
|
||||
AIConversationBlock,
|
||||
AIStructuredResponseGeneratorBlock,
|
||||
AITextGeneratorBlock,
|
||||
AITextSummarizerBlock,
|
||||
LlmModel,
|
||||
)
|
||||
from backend.blocks.replicate_flux_advanced import ReplicateFluxAdvancedModelBlock
|
||||
from backend.blocks.search import ExtractWebsiteContentBlock
|
||||
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
|
||||
from backend.data.block import Block
|
||||
from backend.data.cost import BlockCost, BlockCostType
|
||||
|
||||
# =============== Configure the cost for each LLM Model call =============== #
|
||||
|
||||
MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.O1_PREVIEW: 16,
|
||||
LlmModel.O1_MINI: 4,
|
||||
LlmModel.GPT4O_MINI: 1,
|
||||
LlmModel.GPT4O: 3,
|
||||
LlmModel.GPT4_TURBO: 10,
|
||||
LlmModel.GPT3_5_TURBO: 1,
|
||||
LlmModel.CLAUDE_3_5_SONNET: 4,
|
||||
LlmModel.CLAUDE_3_HAIKU: 1,
|
||||
LlmModel.LLAMA3_8B: 1,
|
||||
LlmModel.LLAMA3_70B: 1,
|
||||
LlmModel.MIXTRAL_8X7B: 1,
|
||||
LlmModel.GEMMA_7B: 1,
|
||||
LlmModel.GEMMA2_9B: 1,
|
||||
LlmModel.LLAMA3_1_405B: 1,
|
||||
LlmModel.LLAMA3_1_70B: 1,
|
||||
LlmModel.LLAMA3_1_8B: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_8B: 1,
|
||||
LlmModel.OLLAMA_LLAMA3_405B: 1,
|
||||
}
|
||||
|
||||
for model in LlmModel:
|
||||
if model not in MODEL_COST:
|
||||
raise ValueError(f"Missing MODEL_COST for model: {model}")
|
||||
|
||||
|
||||
LLM_COST = (
|
||||
[
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"api_key": None, # Running LLM with user own API key is free.
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
]
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": anthropic_credentials.id,
|
||||
"provider": anthropic_credentials.provider,
|
||||
"type": anthropic_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "anthropic"
|
||||
]
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": openai_credentials.id,
|
||||
"provider": openai_credentials.provider,
|
||||
"type": openai_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "openai"
|
||||
]
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {"id": groq_credentials.id},
|
||||
},
|
||||
cost_amount=cost,
|
||||
)
|
||||
for model, cost in MODEL_COST.items()
|
||||
if MODEL_METADATA[model].provider == "groq"
|
||||
]
|
||||
+ [
|
||||
BlockCost(
|
||||
# Default cost is running LlmModel.GPT4O.
|
||||
cost_amount=MODEL_COST[LlmModel.GPT4O],
|
||||
cost_filter={"api_key": None},
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
# =============== This is the exhaustive list of cost for each Block =============== #
|
||||
|
||||
BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
|
||||
AIConversationBlock: LLM_COST,
|
||||
AITextGeneratorBlock: LLM_COST,
|
||||
AIStructuredResponseGeneratorBlock: LLM_COST,
|
||||
AITextSummarizerBlock: LLM_COST,
|
||||
CreateTalkingAvatarVideoBlock: [
|
||||
BlockCost(
|
||||
cost_amount=15,
|
||||
cost_filter={
|
||||
"credentials": {
|
||||
"id": did_credentials.id,
|
||||
"provider": did_credentials.provider,
|
||||
"type": did_credentials.type,
|
||||
}
|
||||
},
|
||||
)
|
||||
],
|
||||
SearchTheWebBlock: [
|
||||
BlockCost(
|
||||
cost_amount=1,
|
||||
cost_filter={
|
||||
"credentials": {
|
||||
"id": jina_credentials.id,
|
||||
"provider": jina_credentials.provider,
|
||||
"type": jina_credentials.type,
|
||||
}
|
||||
},
|
||||
)
|
||||
],
|
||||
ExtractWebsiteContentBlock: [
|
||||
BlockCost(cost_amount=1, cost_filter={"raw_content": False})
|
||||
],
|
||||
IdeogramModelBlock: [
|
||||
BlockCost(
|
||||
cost_amount=1,
|
||||
cost_filter={
|
||||
"credentials": {
|
||||
"id": ideogram_credentials.id,
|
||||
"provider": ideogram_credentials.provider,
|
||||
"type": ideogram_credentials.type,
|
||||
}
|
||||
},
|
||||
)
|
||||
],
|
||||
AIShortformVideoCreatorBlock: [
|
||||
BlockCost(
|
||||
cost_amount=10,
|
||||
cost_filter={
|
||||
"credentials": {
|
||||
"id": revid_credentials.id,
|
||||
"provider": revid_credentials.provider,
|
||||
"type": revid_credentials.type,
|
||||
}
|
||||
},
|
||||
)
|
||||
],
|
||||
ReplicateFluxAdvancedModelBlock: [
|
||||
BlockCost(
|
||||
cost_amount=10,
|
||||
cost_filter={
|
||||
"credentials": {
|
||||
"id": replicate_credentials.id,
|
||||
"provider": replicate_credentials.provider,
|
||||
"type": replicate_credentials.type,
|
||||
}
|
||||
},
|
||||
)
|
||||
],
|
||||
}
|
||||
32
autogpt_platform/backend/backend/data/cost.py
Normal file
32
autogpt_platform/backend/backend/data/cost.py
Normal file
@@ -0,0 +1,32 @@
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.block import BlockInput
|
||||
|
||||
|
||||
class BlockCostType(str, Enum):
|
||||
RUN = "run" # cost X credits per run
|
||||
BYTE = "byte" # cost X credits per byte
|
||||
SECOND = "second" # cost X credits per second
|
||||
|
||||
|
||||
class BlockCost(BaseModel):
|
||||
cost_amount: int
|
||||
cost_filter: BlockInput
|
||||
cost_type: BlockCostType
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cost_amount: int,
|
||||
cost_type: BlockCostType = BlockCostType.RUN,
|
||||
cost_filter: Optional[BlockInput] = None,
|
||||
**data: Any,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
cost_amount=cost_amount,
|
||||
cost_filter=cost_filter or {},
|
||||
cost_type=cost_type,
|
||||
**data,
|
||||
)
|
||||
@@ -1,204 +1,17 @@
|
||||
from abc import ABC, abstractmethod
|
||||
from datetime import datetime, timezone
|
||||
from enum import Enum
|
||||
from typing import Any, Optional, Type
|
||||
|
||||
import prisma.errors
|
||||
from autogpt_libs.supabase_integration_credentials_store.store import (
|
||||
anthropic_credentials,
|
||||
did_credentials,
|
||||
groq_credentials,
|
||||
ideogram_credentials,
|
||||
jina_credentials,
|
||||
openai_credentials,
|
||||
replicate_credentials,
|
||||
revid_credentials,
|
||||
)
|
||||
from prisma import Json
|
||||
from prisma.enums import UserBlockCreditType
|
||||
from prisma.errors import UniqueViolationError
|
||||
from prisma.models import UserBlockCredit
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.blocks.ai_shortform_video_block import AIShortformVideoCreatorBlock
|
||||
from backend.blocks.ideogram import IdeogramModelBlock
|
||||
from backend.blocks.jina.search import SearchTheWebBlock
|
||||
from backend.blocks.llm import (
|
||||
MODEL_METADATA,
|
||||
AIConversationBlock,
|
||||
AIStructuredResponseGeneratorBlock,
|
||||
AITextGeneratorBlock,
|
||||
AITextSummarizerBlock,
|
||||
LlmModel,
|
||||
)
|
||||
from backend.blocks.replicate_flux_advanced import ReplicateFluxAdvancedModelBlock
|
||||
from backend.blocks.search import ExtractWebsiteContentBlock
|
||||
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
|
||||
from backend.data.block import Block, BlockInput, get_block
|
||||
from backend.data.block_cost_config import BLOCK_COSTS
|
||||
from backend.data.cost import BlockCost, BlockCostType
|
||||
from backend.util.settings import Config
|
||||
|
||||
|
||||
class BlockCostType(str, Enum):
|
||||
RUN = "run" # cost X credits per run
|
||||
BYTE = "byte" # cost X credits per byte
|
||||
SECOND = "second" # cost X credits per second
|
||||
|
||||
|
||||
class BlockCost(BaseModel):
|
||||
cost_amount: int
|
||||
cost_filter: BlockInput
|
||||
cost_type: BlockCostType
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
cost_amount: int,
|
||||
cost_type: BlockCostType = BlockCostType.RUN,
|
||||
cost_filter: Optional[BlockInput] = None,
|
||||
**data: Any,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
cost_amount=cost_amount,
|
||||
cost_filter=cost_filter or {},
|
||||
cost_type=cost_type,
|
||||
**data,
|
||||
)
|
||||
|
||||
|
||||
llm_cost = (
|
||||
[
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"api_key": None, # Running LLM with user own API key is free.
|
||||
},
|
||||
cost_amount=metadata.cost_factor,
|
||||
)
|
||||
for model, metadata in MODEL_METADATA.items()
|
||||
]
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": anthropic_credentials.id,
|
||||
"provider": anthropic_credentials.provider,
|
||||
"type": anthropic_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=metadata.cost_factor,
|
||||
)
|
||||
for model, metadata in MODEL_METADATA.items()
|
||||
if metadata.provider == "anthropic"
|
||||
]
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {
|
||||
"id": openai_credentials.id,
|
||||
"provider": openai_credentials.provider,
|
||||
"type": openai_credentials.type,
|
||||
},
|
||||
},
|
||||
cost_amount=metadata.cost_factor,
|
||||
)
|
||||
for model, metadata in MODEL_METADATA.items()
|
||||
if metadata.provider == "openai"
|
||||
]
|
||||
+ [
|
||||
BlockCost(
|
||||
cost_type=BlockCostType.RUN,
|
||||
cost_filter={
|
||||
"model": model,
|
||||
"credentials": {"id": groq_credentials.id},
|
||||
},
|
||||
cost_amount=metadata.cost_factor,
|
||||
)
|
||||
for model, metadata in MODEL_METADATA.items()
|
||||
if metadata.provider == "groq"
|
||||
]
|
||||
+ [
|
||||
BlockCost(
|
||||
# Default cost is running LlmModel.GPT4O.
|
||||
cost_amount=MODEL_METADATA[LlmModel.GPT4O].cost_factor,
|
||||
cost_filter={"api_key": None},
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
|
||||
AIConversationBlock: llm_cost,
|
||||
AITextGeneratorBlock: llm_cost,
|
||||
AIStructuredResponseGeneratorBlock: llm_cost,
|
||||
AITextSummarizerBlock: llm_cost,
|
||||
CreateTalkingAvatarVideoBlock: [
|
||||
BlockCost(
|
||||
cost_amount=15,
|
||||
cost_filter={
|
||||
"credentials": {
|
||||
"id": did_credentials.id,
|
||||
"provider": did_credentials.provider,
|
||||
"type": did_credentials.type,
|
||||
}
|
||||
},
|
||||
)
|
||||
],
|
||||
SearchTheWebBlock: [
|
||||
BlockCost(
|
||||
cost_amount=1,
|
||||
cost_filter={
|
||||
"credentials": {
|
||||
"id": jina_credentials.id,
|
||||
"provider": jina_credentials.provider,
|
||||
"type": jina_credentials.type,
|
||||
}
|
||||
},
|
||||
)
|
||||
],
|
||||
ExtractWebsiteContentBlock: [
|
||||
BlockCost(cost_amount=1, cost_filter={"raw_content": False})
|
||||
],
|
||||
IdeogramModelBlock: [
|
||||
BlockCost(
|
||||
cost_amount=1,
|
||||
cost_filter={
|
||||
"credentials": {
|
||||
"id": ideogram_credentials.id,
|
||||
"provider": ideogram_credentials.provider,
|
||||
"type": ideogram_credentials.type,
|
||||
}
|
||||
},
|
||||
)
|
||||
],
|
||||
AIShortformVideoCreatorBlock: [
|
||||
BlockCost(
|
||||
cost_amount=10,
|
||||
cost_filter={
|
||||
"credentials": {
|
||||
"id": revid_credentials.id,
|
||||
"provider": revid_credentials.provider,
|
||||
"type": revid_credentials.type,
|
||||
}
|
||||
},
|
||||
)
|
||||
],
|
||||
ReplicateFluxAdvancedModelBlock: [
|
||||
BlockCost(
|
||||
cost_amount=10,
|
||||
cost_filter={
|
||||
"credentials": {
|
||||
"id": replicate_credentials.id,
|
||||
"provider": replicate_credentials.provider,
|
||||
"type": replicate_credentials.type,
|
||||
}
|
||||
},
|
||||
)
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
class UserCreditBase(ABC):
|
||||
def __init__(self, num_user_credits_refill: int):
|
||||
self.num_user_credits_refill = num_user_credits_refill
|
||||
@@ -283,7 +96,7 @@ class UserCredit(UserCreditBase):
|
||||
"createdAt": self.time_now(),
|
||||
}
|
||||
)
|
||||
except prisma.errors.UniqueViolationError:
|
||||
except UniqueViolationError:
|
||||
pass # Already refilled this month
|
||||
|
||||
return self.num_user_credits_refill
|
||||
|
||||
Reference in New Issue
Block a user