mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-01-31 18:08:05 -05:00
fix(copilot): include tools schema in LLM continuation after long-running tools
When _generate_llm_continuation() is called after long-running tools (like create_agent) complete, it was making LLM calls without the tools schema. Some providers (especially Anthropic via OpenRouter) require the tools schema when conversation history contains tool_use/tool_result blocks, causing validation errors and unresponsive chats. Changes: - Add tools=tools with tool_choice="none" to allow providers to validate tool interactions without making new tool calls - Add retry logic with exponential backoff (matching _stream_chat_chunks) - Improve error logging for retry exhaustion Fixes chat becoming unresponsive after create_agent tool execution.
This commit is contained in:
@@ -1883,84 +1883,125 @@ async def _generate_llm_continuation(
|
||||
This is called by background tasks to continue the conversation
|
||||
after a tool result is saved. The response is saved to the database
|
||||
so users see it when they refresh or poll.
|
||||
|
||||
Includes retry logic with exponential backoff for transient API errors.
|
||||
"""
|
||||
try:
|
||||
# Load fresh session from DB (bypass cache to get the updated tool result)
|
||||
await invalidate_session_cache(session_id)
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
if not session:
|
||||
logger.error(f"Session {session_id} not found for LLM continuation")
|
||||
return
|
||||
retry_count = 0
|
||||
max_retries = 3
|
||||
last_error: Exception | None = None
|
||||
|
||||
# Build system prompt
|
||||
system_prompt, _ = await _build_system_prompt(user_id)
|
||||
|
||||
# Build messages in OpenAI format
|
||||
messages = session.to_openai_messages()
|
||||
if system_prompt:
|
||||
from openai.types.chat import ChatCompletionSystemMessageParam
|
||||
|
||||
system_message = ChatCompletionSystemMessageParam(
|
||||
role="system",
|
||||
content=system_prompt,
|
||||
)
|
||||
messages = [system_message] + messages
|
||||
|
||||
# Build extra_body for tracing
|
||||
extra_body: dict[str, Any] = {
|
||||
"posthogProperties": {
|
||||
"environment": settings.config.app_env.value,
|
||||
},
|
||||
}
|
||||
if user_id:
|
||||
extra_body["user"] = user_id[:128]
|
||||
extra_body["posthogDistinctId"] = user_id
|
||||
if session_id:
|
||||
extra_body["session_id"] = session_id[:128]
|
||||
|
||||
# Make non-streaming LLM call (no tools - just text response)
|
||||
from typing import cast
|
||||
|
||||
from openai.types.chat import ChatCompletionMessageParam
|
||||
|
||||
# No tools parameter = text-only response (no tool calls)
|
||||
response = await client.chat.completions.create(
|
||||
model=config.model,
|
||||
messages=cast(list[ChatCompletionMessageParam], messages),
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
if response.choices and response.choices[0].message.content:
|
||||
assistant_content = response.choices[0].message.content
|
||||
|
||||
# Reload session from DB to avoid race condition with user messages
|
||||
# that may have been sent while we were generating the LLM response
|
||||
fresh_session = await get_chat_session(session_id, user_id)
|
||||
if not fresh_session:
|
||||
logger.error(
|
||||
f"Session {session_id} disappeared during LLM continuation"
|
||||
)
|
||||
while retry_count <= max_retries:
|
||||
try:
|
||||
# Load fresh session from DB (bypass cache to get the updated tool result)
|
||||
await invalidate_session_cache(session_id)
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
if not session:
|
||||
logger.error(f"Session {session_id} not found for LLM continuation")
|
||||
return
|
||||
|
||||
# Save assistant message to database
|
||||
assistant_message = ChatMessage(
|
||||
role="assistant",
|
||||
content=assistant_content,
|
||||
# Build system prompt
|
||||
system_prompt, _ = await _build_system_prompt(user_id)
|
||||
|
||||
# Build messages in OpenAI format
|
||||
messages = session.to_openai_messages()
|
||||
if system_prompt:
|
||||
from openai.types.chat import ChatCompletionSystemMessageParam
|
||||
|
||||
system_message = ChatCompletionSystemMessageParam(
|
||||
role="system",
|
||||
content=system_prompt,
|
||||
)
|
||||
messages = [system_message] + messages
|
||||
|
||||
# Build extra_body for tracing
|
||||
extra_body: dict[str, Any] = {
|
||||
"posthogProperties": {
|
||||
"environment": settings.config.app_env.value,
|
||||
},
|
||||
}
|
||||
if user_id:
|
||||
extra_body["user"] = user_id[:128]
|
||||
extra_body["posthogDistinctId"] = user_id
|
||||
if session_id:
|
||||
extra_body["session_id"] = session_id[:128]
|
||||
|
||||
from typing import cast
|
||||
|
||||
from openai.types.chat import ChatCompletionMessageParam
|
||||
|
||||
# Include tools with tool_choice="none" to allow the provider to validate
|
||||
# tool interactions in the message history without allowing new tool calls.
|
||||
# Some providers (especially Anthropic via OpenRouter) require the tools
|
||||
# schema to be present when the conversation contains tool_use/tool_result.
|
||||
response = await client.chat.completions.create(
|
||||
model=config.model,
|
||||
messages=cast(list[ChatCompletionMessageParam], messages),
|
||||
tools=tools,
|
||||
tool_choice="none",
|
||||
extra_body=extra_body,
|
||||
)
|
||||
fresh_session.messages.append(assistant_message)
|
||||
|
||||
# Save to database (not cache) to persist the response
|
||||
await upsert_chat_session(fresh_session)
|
||||
if response.choices and response.choices[0].message.content:
|
||||
assistant_content = response.choices[0].message.content
|
||||
|
||||
# Invalidate cache so next poll/refresh gets fresh data
|
||||
await invalidate_session_cache(session_id)
|
||||
# Reload session from DB to avoid race condition with user messages
|
||||
# that may have been sent while we were generating the LLM response
|
||||
fresh_session = await get_chat_session(session_id, user_id)
|
||||
if not fresh_session:
|
||||
logger.error(
|
||||
f"Session {session_id} disappeared during LLM continuation"
|
||||
)
|
||||
return
|
||||
|
||||
logger.info(
|
||||
f"Generated LLM continuation for session {session_id}, "
|
||||
f"response length: {len(assistant_content)}"
|
||||
)
|
||||
else:
|
||||
logger.warning(f"LLM continuation returned empty response for {session_id}")
|
||||
# Save assistant message to database
|
||||
assistant_message = ChatMessage(
|
||||
role="assistant",
|
||||
content=assistant_content,
|
||||
)
|
||||
fresh_session.messages.append(assistant_message)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)
|
||||
# Save to database (not cache) to persist the response
|
||||
await upsert_chat_session(fresh_session)
|
||||
|
||||
# Invalidate cache so next poll/refresh gets fresh data
|
||||
await invalidate_session_cache(session_id)
|
||||
|
||||
logger.info(
|
||||
f"Generated LLM continuation for session {session_id}, "
|
||||
f"response length: {len(assistant_content)}"
|
||||
)
|
||||
return # Success - exit the retry loop
|
||||
else:
|
||||
logger.warning(
|
||||
f"LLM continuation returned empty response for {session_id}"
|
||||
)
|
||||
return # Empty response is not retryable
|
||||
|
||||
except Exception as e:
|
||||
last_error = e
|
||||
if _is_retryable_error(e) and retry_count < max_retries:
|
||||
retry_count += 1
|
||||
delay = min(
|
||||
BASE_DELAY_SECONDS * (2 ** (retry_count - 1)),
|
||||
MAX_DELAY_SECONDS,
|
||||
)
|
||||
logger.warning(
|
||||
f"Retryable error in LLM continuation for {session_id}: {e!s}. "
|
||||
f"Retrying in {delay:.1f}s (attempt {retry_count}/{max_retries})"
|
||||
)
|
||||
await asyncio.sleep(delay)
|
||||
continue
|
||||
else:
|
||||
# Non-retryable error or max retries exceeded
|
||||
logger.error(
|
||||
f"Failed to generate LLM continuation for {session_id}: {e!s}",
|
||||
exc_info=True,
|
||||
)
|
||||
break
|
||||
|
||||
# If we get here, all retries failed
|
||||
if last_error:
|
||||
logger.error(
|
||||
f"LLM continuation failed after {retry_count} retries for {session_id}. "
|
||||
f"Last error: {last_error!s}"
|
||||
)
|
||||
|
||||
Reference in New Issue
Block a user