feat(platform/copilot): add SuggestedGoalResponse for vague/unachievable goals

- Add SUGGESTED_GOAL response type and SuggestedGoalResponse model to backend
- Return SuggestedGoalResponse instead of ErrorResponse for vague/unachievable goals
- Update system prompt with guidance for suggested_goal and clarifying_questions feedback loops
- Add SuggestedGoalCard frontend component with amber styling and "Use this goal" button
- Add error recovery buttons ("Try again", "Simplify goal") to error output
- Update openapi.json and frontend helpers/type guards for the new response type
- Add create_agent_test.py covering all decomposition result types
This commit is contained in:
Zamil Majdy
2026-02-17 11:57:36 +04:00
parent e2d3c8a217
commit 2f37aeec12
8 changed files with 6862 additions and 1494 deletions

View File

@@ -120,6 +120,8 @@ Adapt flexibly to the conversation context. Not every interaction requires all s
- Find reusable components with `find_block`
- Create custom solutions with `create_agent` if nothing suitable exists
- Modify existing library agents with `edit_agent`
- **When `create_agent` returns `suggested_goal`**: Present the suggestion to the user and ask "Would you like me to proceed with this refined goal?" If they accept, call `create_agent` again with the suggested goal.
- **When `create_agent` returns `clarifying_questions`**: After the user answers, call `create_agent` again with the original description AND the answers in the `context` parameter.
5. **Execute**: Run automations immediately, schedule them, or set up webhooks using `run_agent`. Test specific components with `run_block`.
@@ -166,6 +168,11 @@ Adapt flexibly to the conversation context. Not every interaction requires all s
- Use `add_understanding` to capture valuable business context
- When tool calls fail, try alternative approaches
**Handle Feedback Loops:**
- When a tool returns a suggested alternative (like a refined goal), present it clearly and ask the user for confirmation before proceeding
- When clarifying questions are answered, immediately re-call the tool with the accumulated context
- Don't ask redundant questions if the user has already provided context in the conversation
## CRITICAL REMINDER
You are NOT a chatbot. You are NOT documentation. You are a partner who helps busy business owners get value quickly by showing proof through working automations. Bias toward action over explanation."""

View File

@@ -22,6 +22,7 @@ from .models import (
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
SuggestedGoalResponse,
ToolResponseBase,
)
@@ -186,26 +187,25 @@ class CreateAgentTool(BaseTool):
if decomposition_result.get("type") == "unachievable_goal":
suggested = decomposition_result.get("suggested_goal", "")
reason = decomposition_result.get("reason", "")
return ErrorResponse(
return SuggestedGoalResponse(
message=(
f"This goal cannot be accomplished with the available blocks. "
f"{reason} "
f"Suggestion: {suggested}"
f"This goal cannot be accomplished with the available blocks. {reason}"
),
error="unachievable_goal",
details={"suggested_goal": suggested, "reason": reason},
suggested_goal=suggested,
reason=reason,
original_goal=description,
goal_type="unachievable",
session_id=session_id,
)
if decomposition_result.get("type") == "vague_goal":
suggested = decomposition_result.get("suggested_goal", "")
return ErrorResponse(
message=(
f"The goal is too vague to create a specific workflow. "
f"Suggestion: {suggested}"
),
error="vague_goal",
details={"suggested_goal": suggested},
return SuggestedGoalResponse(
message="The goal is too vague to create a specific workflow.",
suggested_goal=suggested,
reason="The goal needs more specific details",
original_goal=description,
goal_type="vague",
session_id=session_id,
)

View File

@@ -0,0 +1,142 @@
"""Tests for CreateAgentTool response types."""
from unittest.mock import AsyncMock, patch
import pytest
from backend.api.features.chat.tools.create_agent import CreateAgentTool
from backend.api.features.chat.tools.models import (
ClarificationNeededResponse,
ErrorResponse,
SuggestedGoalResponse,
)
from ._test_data import make_session
_TEST_USER_ID = "test-user-create-agent"
@pytest.fixture
def tool():
return CreateAgentTool()
@pytest.fixture
def session():
return make_session(_TEST_USER_ID)
@pytest.mark.asyncio
async def test_missing_description_returns_error(tool, session):
"""Missing description returns ErrorResponse."""
result = await tool._execute(user_id=_TEST_USER_ID, session=session, description="")
assert isinstance(result, ErrorResponse)
assert result.error == "Missing description parameter"
@pytest.mark.asyncio
async def test_vague_goal_returns_suggested_goal_response(tool, session):
"""vague_goal decomposition result returns SuggestedGoalResponse, not ErrorResponse."""
vague_result = {
"type": "vague_goal",
"suggested_goal": "Monitor Twitter mentions for a specific keyword and send a daily digest email",
}
with (
patch(
"backend.api.features.chat.tools.create_agent.get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=[],
),
patch(
"backend.api.features.chat.tools.create_agent.decompose_goal",
new_callable=AsyncMock,
return_value=vague_result,
),
):
result = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
description="monitor social media",
)
assert isinstance(result, SuggestedGoalResponse)
assert result.goal_type == "vague"
assert result.suggested_goal == vague_result["suggested_goal"]
assert result.original_goal == "monitor social media"
assert result.reason == "The goal needs more specific details"
assert not isinstance(result, ErrorResponse)
@pytest.mark.asyncio
async def test_unachievable_goal_returns_suggested_goal_response(tool, session):
"""unachievable_goal decomposition result returns SuggestedGoalResponse, not ErrorResponse."""
unachievable_result = {
"type": "unachievable_goal",
"suggested_goal": "Summarize the latest news articles on a topic and send them by email",
"reason": "There are no blocks for mind-reading.",
}
with (
patch(
"backend.api.features.chat.tools.create_agent.get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=[],
),
patch(
"backend.api.features.chat.tools.create_agent.decompose_goal",
new_callable=AsyncMock,
return_value=unachievable_result,
),
):
result = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
description="read my mind",
)
assert isinstance(result, SuggestedGoalResponse)
assert result.goal_type == "unachievable"
assert result.suggested_goal == unachievable_result["suggested_goal"]
assert result.original_goal == "read my mind"
assert result.reason == unachievable_result["reason"]
assert not isinstance(result, ErrorResponse)
@pytest.mark.asyncio
async def test_clarifying_questions_returns_clarification_needed_response(
tool, session
):
"""clarifying_questions decomposition result returns ClarificationNeededResponse."""
clarifying_result = {
"type": "clarifying_questions",
"questions": [
{
"question": "What platform should be monitored?",
"keyword": "platform",
"example": "Twitter, Reddit",
}
],
}
with (
patch(
"backend.api.features.chat.tools.create_agent.get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=[],
),
patch(
"backend.api.features.chat.tools.create_agent.decompose_goal",
new_callable=AsyncMock,
return_value=clarifying_result,
),
):
result = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
description="monitor social media and alert me",
)
assert isinstance(result, ClarificationNeededResponse)
assert len(result.questions) == 1
assert result.questions[0].keyword == "platform"

View File

@@ -50,6 +50,8 @@ class ResponseType(str, Enum):
# Feature request types
FEATURE_REQUEST_SEARCH = "feature_request_search"
FEATURE_REQUEST_CREATED = "feature_request_created"
# Goal refinement
SUGGESTED_GOAL = "suggested_goal"
# Base response model
@@ -296,6 +298,22 @@ class ClarificationNeededResponse(ToolResponseBase):
questions: list[ClarifyingQuestion] = Field(default_factory=list)
class SuggestedGoalResponse(ToolResponseBase):
"""Response when the goal needs refinement with a suggested alternative."""
type: ResponseType = ResponseType.SUGGESTED_GOAL
suggested_goal: str = Field(description="The suggested alternative goal")
reason: str = Field(
default="", description="Why the original goal needs refinement"
)
original_goal: str = Field(
default="", description="The user's original goal for context"
)
goal_type: str = Field(
default="vague", description="Type: 'vague' or 'unachievable'"
)
# Documentation search models
class DocSearchResult(BaseModel):
"""A single documentation search result."""

View File

@@ -25,6 +25,7 @@ import {
ClarifyingQuestion,
} from "./components/ClarificationQuestionsCard";
import { MiniGame } from "./components/MiniGame/MiniGame";
import { SuggestedGoalCard } from "./components/SuggestedGoalCard";
import {
AccordionIcon,
formatMaybeJson,
@@ -37,6 +38,7 @@ import {
isOperationInProgressOutput,
isOperationPendingOutput,
isOperationStartedOutput,
isSuggestedGoalOutput,
ToolIcon,
truncateText,
type CreateAgentToolOutput,
@@ -76,6 +78,13 @@ function getAccordionMeta(output: CreateAgentToolOutput) {
expanded: true,
};
}
if (isSuggestedGoalOutput(output)) {
return {
icon,
title: "Goal needs refinement",
expanded: true,
};
}
if (
isOperationStartedOutput(output) ||
isOperationPendingOutput(output) ||
@@ -123,8 +132,13 @@ export function CreateAgentTool({ part }: Props) {
isAgentPreviewOutput(output) ||
isAgentSavedOutput(output) ||
isClarificationNeededOutput(output) ||
isSuggestedGoalOutput(output) ||
isErrorOutput(output));
function handleUseSuggestedGoal(goal: string) {
onSend(`Please create an agent with this goal: ${goal}`);
}
function handleClarificationAnswers(answers: Record<string, string>) {
const questions =
output && isClarificationNeededOutput(output)
@@ -239,6 +253,15 @@ export function CreateAgentTool({ part }: Props) {
/>
)}
{isSuggestedGoalOutput(output) && (
<SuggestedGoalCard
message={output.message}
suggestedGoal={output.suggested_goal}
goalType={output.goal_type ?? "vague"}
onUseSuggestedGoal={handleUseSuggestedGoal}
/>
)}
{isErrorOutput(output) && (
<ContentGrid>
<ContentMessage>{output.message}</ContentMessage>
@@ -252,6 +275,22 @@ export function CreateAgentTool({ part }: Props) {
{formatMaybeJson(output.details)}
</ContentCodeBlock>
)}
<div className="flex gap-2">
<Button
variant="outline"
size="small"
onClick={() => onSend("Please try creating the agent again.")}
>
Try again
</Button>
<Button
variant="outline"
size="small"
onClick={() => onSend("Can you help me simplify this goal?")}
>
Simplify goal
</Button>
</div>
</ContentGrid>
)}
</ToolAccordion>

View File

@@ -0,0 +1,61 @@
"use client";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { ArrowRightIcon, LightbulbIcon } from "@phosphor-icons/react";
interface Props {
message: string;
suggestedGoal: string;
goalType: string;
onUseSuggestedGoal: (goal: string) => void;
}
export function SuggestedGoalCard({
message,
suggestedGoal,
goalType,
onUseSuggestedGoal,
}: Props) {
return (
<div className="rounded-xl border border-amber-200 bg-amber-50/50 p-4">
<div className="flex items-start gap-3">
<LightbulbIcon
size={20}
weight="fill"
className="mt-0.5 text-amber-600"
/>
<div className="flex-1 space-y-3">
<div>
<Text variant="body-medium" className="font-medium text-slate-900">
{goalType === "unachievable"
? "Goal cannot be accomplished"
: "Goal needs more detail"}
</Text>
<Text variant="small" className="text-slate-600">
{message}
</Text>
</div>
<div className="rounded-lg border border-amber-300 bg-white p-3">
<Text variant="small" className="mb-1 font-semibold text-amber-800">
Suggested alternative:
</Text>
<Text variant="body-medium" className="text-slate-900">
{suggestedGoal}
</Text>
</div>
<Button
onClick={() => onUseSuggestedGoal(suggestedGoal)}
variant="primary"
>
<span className="inline-flex items-center gap-1.5">
Use this goal <ArrowRightIcon size={14} weight="bold" />
</span>
</Button>
</div>
</div>
</div>
);
}

View File

@@ -6,6 +6,7 @@ import type { OperationInProgressResponse } from "@/app/api/__generated__/models
import type { OperationPendingResponse } from "@/app/api/__generated__/models/operationPendingResponse";
import type { OperationStartedResponse } from "@/app/api/__generated__/models/operationStartedResponse";
import { ResponseType } from "@/app/api/__generated__/models/responseType";
import type { SuggestedGoalResponse } from "@/app/api/__generated__/models/suggestedGoalResponse";
import {
PlusCircleIcon,
PlusIcon,
@@ -21,6 +22,7 @@ export type CreateAgentToolOutput =
| AgentPreviewResponse
| AgentSavedResponse
| ClarificationNeededResponse
| SuggestedGoalResponse
| ErrorResponse;
function parseOutput(output: unknown): CreateAgentToolOutput | null {
@@ -43,6 +45,7 @@ function parseOutput(output: unknown): CreateAgentToolOutput | null {
type === ResponseType.agent_preview ||
type === ResponseType.agent_saved ||
type === ResponseType.clarification_needed ||
type === ResponseType.suggested_goal ||
type === ResponseType.error
) {
return output as CreateAgentToolOutput;
@@ -55,6 +58,7 @@ function parseOutput(output: unknown): CreateAgentToolOutput | null {
if ("agent_id" in output && "library_agent_id" in output)
return output as AgentSavedResponse;
if ("questions" in output) return output as ClarificationNeededResponse;
if ("suggested_goal" in output) return output as SuggestedGoalResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
}
@@ -114,6 +118,14 @@ export function isClarificationNeededOutput(
);
}
export function isSuggestedGoalOutput(
output: CreateAgentToolOutput,
): output is SuggestedGoalResponse {
return (
output.type === ResponseType.suggested_goal || "suggested_goal" in output
);
}
export function isErrorOutput(
output: CreateAgentToolOutput,
): output is ErrorResponse {
@@ -139,6 +151,7 @@ export function getAnimationText(part: {
if (isAgentSavedOutput(output)) return `Saved "${output.agent_name}"`;
if (isAgentPreviewOutput(output)) return `Preview "${output.agent_name}"`;
if (isClarificationNeededOutput(output)) return "Needs clarification";
if (isSuggestedGoalOutput(output)) return "Goal needs refinement";
return "Error creating agent";
}
case "output-error":

File diff suppressed because it is too large Load Diff