mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-01-28 00:18:25 -05:00
feat(chat): add automatic LLM continuation after long-running tool completes
When a background tool (like agent-generator) completes, automatically call the LLM to generate a follow-up response and save it to the database. This way users see the result AND the LLM's response when they poll/refresh.
This commit is contained in:
@@ -1590,6 +1590,9 @@ async def _execute_long_running_tool(
|
||||
|
||||
logger.info(f"Background tool {tool_name} completed for session {session_id}")
|
||||
|
||||
# Generate LLM continuation so user sees response when they poll/refresh
|
||||
await _generate_llm_continuation(session_id=session_id, user_id=user_id)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Background tool {tool_name} failed: {e}", exc_info=True)
|
||||
error_response = ErrorResponse(
|
||||
@@ -1640,3 +1643,86 @@ async def _update_pending_operation(
|
||||
f"Failed to update pending operation for tool_call_id {tool_call_id} "
|
||||
f"in session {session_id}"
|
||||
)
|
||||
|
||||
|
||||
async def _generate_llm_continuation(
|
||||
session_id: str,
|
||||
user_id: str | None,
|
||||
) -> None:
|
||||
"""Generate an LLM response after a long-running tool completes.
|
||||
|
||||
This is called by background tasks to continue the conversation
|
||||
after a tool result is saved. The response is saved to the database
|
||||
so users see it when they refresh or poll.
|
||||
"""
|
||||
try:
|
||||
# Load fresh session from DB (bypass cache to get the updated tool result)
|
||||
await invalidate_session_cache(session_id)
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
if not session:
|
||||
logger.error(f"Session {session_id} not found for LLM continuation")
|
||||
return
|
||||
|
||||
# Build system prompt
|
||||
system_prompt, _ = await _build_system_prompt(user_id)
|
||||
|
||||
# Build messages in OpenAI format
|
||||
messages = session.to_openai_messages()
|
||||
if system_prompt:
|
||||
from openai.types.chat import ChatCompletionSystemMessageParam
|
||||
|
||||
system_message = ChatCompletionSystemMessageParam(
|
||||
role="system",
|
||||
content=system_prompt,
|
||||
)
|
||||
messages = [system_message] + messages
|
||||
|
||||
# Build extra_body for tracing
|
||||
extra_body: dict[str, Any] = {
|
||||
"posthogProperties": {
|
||||
"environment": settings.config.app_env.value,
|
||||
},
|
||||
}
|
||||
if user_id:
|
||||
extra_body["user"] = user_id[:128]
|
||||
extra_body["posthogDistinctId"] = user_id
|
||||
if session_id:
|
||||
extra_body["session_id"] = session_id[:128]
|
||||
|
||||
# Make non-streaming LLM call (no tools - just text response)
|
||||
from typing import cast
|
||||
|
||||
from openai.types.chat import ChatCompletionMessageParam
|
||||
|
||||
response = await client.chat.completions.create(
|
||||
model=config.model,
|
||||
messages=cast(list[ChatCompletionMessageParam], messages),
|
||||
tools=None, # No tools for continuation - just text response
|
||||
extra_body=extra_body,
|
||||
)
|
||||
|
||||
if response.choices and response.choices[0].message.content:
|
||||
assistant_content = response.choices[0].message.content
|
||||
|
||||
# Save assistant message to database
|
||||
assistant_message = ChatMessage(
|
||||
role="assistant",
|
||||
content=assistant_content,
|
||||
)
|
||||
session.messages.append(assistant_message)
|
||||
|
||||
# Save to database (not cache) to persist the response
|
||||
await upsert_chat_session(session)
|
||||
|
||||
# Invalidate cache so next poll/refresh gets fresh data
|
||||
await invalidate_session_cache(session_id)
|
||||
|
||||
logger.info(
|
||||
f"Generated LLM continuation for session {session_id}, "
|
||||
f"response length: {len(assistant_content)}"
|
||||
)
|
||||
else:
|
||||
logger.warning(f"LLM continuation returned empty response for {session_id}")
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)
|
||||
|
||||
Reference in New Issue
Block a user