fix(copilot): ensure tool_call/tool_response pairs stay intact during context compaction (#11863)

## Summary

Fixes context compaction breaking tool_call/tool_response pairs, causing
API validation errors.

## Problem

When context compaction slices messages with `messages[-KEEP_RECENT:]`,
a naive slice can separate an assistant message containing `tool_calls`
from its corresponding tool response messages. This causes API
validation errors like:

```
messages.0.content.1: unexpected 'tool_use_id' found in 'tool_result' blocks: orphan_12345.
Each 'tool_result' block must have a corresponding 'tool_use' block in the previous message.
```

## Solution

Added `_ensure_tool_pairs_intact()` helper function that:
1. Detects orphan tool responses in a slice (tool messages whose
`tool_call_id` has no matching assistant message)
2. Extends the slice backwards to include the missing assistant messages
3. Falls back to removing orphan tool responses if the assistant cannot
be found (edge case)

Applied this safeguard to:
- The initial `KEEP_RECENT` slice (line ~990)
- The progressive fallback slices when still over token limit (line
~1079)

## Testing

- Syntax validated with `python -m py_compile`
- Logic reviewed for correctness

## Linear

Fixes SECRT-1839

---
*Debugged by Toran & Orion in #agpt Discord*
This commit is contained in:
Bently
2026-01-28 01:21:54 +01:00
committed by GitHub
parent 171ff6e776
commit 67405f7eb9

View File

@@ -800,6 +800,114 @@ async def _summarize_messages(
return summary or "No summary available."
def _ensure_tool_pairs_intact(
recent_messages: list[dict],
all_messages: list[dict],
start_index: int,
) -> list[dict]:
"""
Ensure tool_call/tool_response pairs stay together after slicing.
When slicing messages for context compaction, a naive slice can separate
an assistant message containing tool_calls from its corresponding tool
response messages. This causes API validation errors (e.g., Anthropic's
"unexpected tool_use_id found in tool_result blocks").
This function checks for orphan tool responses in the slice and extends
backwards to include their corresponding assistant messages.
Args:
recent_messages: The sliced messages to validate
all_messages: The complete message list (for looking up missing assistants)
start_index: The index in all_messages where recent_messages begins
Returns:
A potentially extended list of messages with tool pairs intact
"""
if not recent_messages:
return recent_messages
# Collect all tool_call_ids from assistant messages in the slice
available_tool_call_ids: set[str] = set()
for msg in recent_messages:
if msg.get("role") == "assistant" and msg.get("tool_calls"):
for tc in msg["tool_calls"]:
tc_id = tc.get("id")
if tc_id:
available_tool_call_ids.add(tc_id)
# Find orphan tool responses (tool messages whose tool_call_id is missing)
orphan_tool_call_ids: set[str] = set()
for msg in recent_messages:
if msg.get("role") == "tool":
tc_id = msg.get("tool_call_id")
if tc_id and tc_id not in available_tool_call_ids:
orphan_tool_call_ids.add(tc_id)
if not orphan_tool_call_ids:
# No orphans, slice is valid
return recent_messages
# Find the assistant messages that contain the orphan tool_call_ids
# Search backwards from start_index in all_messages
messages_to_prepend: list[dict] = []
for i in range(start_index - 1, -1, -1):
msg = all_messages[i]
if msg.get("role") == "assistant" and msg.get("tool_calls"):
msg_tool_ids = {tc.get("id") for tc in msg["tool_calls"] if tc.get("id")}
if msg_tool_ids & orphan_tool_call_ids:
# This assistant message has tool_calls we need
# Also collect its contiguous tool responses that follow it
assistant_and_responses: list[dict] = [msg]
# Scan forward from this assistant to collect tool responses
for j in range(i + 1, start_index):
following_msg = all_messages[j]
if following_msg.get("role") == "tool":
tool_id = following_msg.get("tool_call_id")
if tool_id and tool_id in msg_tool_ids:
assistant_and_responses.append(following_msg)
else:
# Stop at first non-tool message
break
# Prepend the assistant and its tool responses (maintain order)
messages_to_prepend = assistant_and_responses + messages_to_prepend
# Mark these as found
orphan_tool_call_ids -= msg_tool_ids
# Also add this assistant's tool_call_ids to available set
available_tool_call_ids |= msg_tool_ids
if not orphan_tool_call_ids:
# Found all missing assistants
break
if orphan_tool_call_ids:
# Some tool_call_ids couldn't be resolved - remove those tool responses
# This shouldn't happen in normal operation but handles edge cases
logger.warning(
f"Could not find assistant messages for tool_call_ids: {orphan_tool_call_ids}. "
"Removing orphan tool responses."
)
recent_messages = [
msg
for msg in recent_messages
if not (
msg.get("role") == "tool"
and msg.get("tool_call_id") in orphan_tool_call_ids
)
]
if messages_to_prepend:
logger.info(
f"Extended recent messages by {len(messages_to_prepend)} to preserve "
f"tool_call/tool_response pairs"
)
return messages_to_prepend + recent_messages
return recent_messages
async def _stream_chat_chunks(
session: ChatSession,
tools: list[ChatCompletionToolParam],
@@ -891,7 +999,15 @@ async def _stream_chat_chunks(
# Always attempt mitigation when over limit, even with few messages
if messages:
# Split messages based on whether system prompt exists
recent_messages = messages[-KEEP_RECENT:]
# Calculate start index for the slice
slice_start = max(0, len(messages_dict) - KEEP_RECENT)
recent_messages = messages_dict[-KEEP_RECENT:]
# Ensure tool_call/tool_response pairs stay together
# This prevents API errors from orphan tool responses
recent_messages = _ensure_tool_pairs_intact(
recent_messages, messages_dict, slice_start
)
if has_system_prompt:
# Keep system prompt separate, summarize everything between system and recent
@@ -978,6 +1094,13 @@ async def _stream_chat_chunks(
if len(recent_messages) >= keep_count
else recent_messages
)
# Ensure tool pairs stay intact in the reduced slice
reduced_slice_start = max(
0, len(recent_messages) - keep_count
)
reduced_recent = _ensure_tool_pairs_intact(
reduced_recent, recent_messages, reduced_slice_start
)
if has_system_prompt:
messages = [
system_msg,
@@ -1036,7 +1159,10 @@ async def _stream_chat_chunks(
# Create a base list excluding system prompt to avoid duplication
# This is the pool of messages we'll slice from in the loop
base_msgs = messages[1:] if has_system_prompt else messages
# Use messages_dict for type consistency with _ensure_tool_pairs_intact
base_msgs = (
messages_dict[1:] if has_system_prompt else messages_dict
)
# Try progressively smaller keep counts
new_token_count = token_count # Initialize with current count
@@ -1059,6 +1185,12 @@ async def _stream_chat_chunks(
# Slice from base_msgs to get recent messages (without system prompt)
recent_messages = base_msgs[-keep_count:]
# Ensure tool pairs stay intact in the reduced slice
reduced_slice_start = max(0, len(base_msgs) - keep_count)
recent_messages = _ensure_tool_pairs_intact(
recent_messages, base_msgs, reduced_slice_start
)
if has_system_prompt:
messages = [system_msg] + recent_messages
else: