debug(backend/db): Add diagnostic logging for vector type errors (#12024)

Adds diagnostic logging when the `type vector does not exist` error
occurs in raw SQL queries.

## Problem

We're seeing intermittent "type vector does not exist" errors on
dev-behave ([Sentry
issue](https://significant-gravitas.sentry.io/issues/7205929979/)). The
pgvector extension should be in the search_path, but occasionally
queries fail to resolve the vector type.

## Solution

When a query fails with this specific error, we now log:
- `SHOW search_path` - what schemas are being searched
- `SELECT current_schema()` - the active schema
- `SELECT current_user, session_user, current_database()` - connection
context

This diagnostic info will help identify why the vector extension isn't
visible in certain cases.

## Changes

- Added `_log_vector_error_diagnostics()` helper function in
`backend/data/db.py`
- Wrapped SQL execution in try/except to catch and diagnose vector type
errors
- Original exception is re-raised after logging (no behavior change)

## Testing

This is observational/diagnostic code. It will be validated by waiting
for the error to occur naturally on dev and checking the logs.

## Rollout

Once we've captured diagnostic logs and identified the root cause, this
logging can be removed or reduced in verbosity.
This commit is contained in:
Otto
2026-02-10 07:35:13 +00:00
committed by GitHub
parent 6467f6734f
commit 81f8290f01

View File

@@ -8,6 +8,7 @@ Includes BM25 reranking for improved lexical relevance.
import logging
import re
import time
from dataclasses import dataclass
from typing import Any, Literal
@@ -362,7 +363,11 @@ async def unified_hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(sql_query, *params)
try:
results = await query_raw_with_schema(sql_query, *params)
except Exception as e:
await _log_vector_error_diagnostics(e)
raise
total = results[0]["total_count"] if results else 0
# Apply BM25 reranking
@@ -686,7 +691,11 @@ async def hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(sql_query, *params)
try:
results = await query_raw_with_schema(sql_query, *params)
except Exception as e:
await _log_vector_error_diagnostics(e)
raise
total = results[0]["total_count"] if results else 0
@@ -718,6 +727,87 @@ async def hybrid_search_simple(
return await hybrid_search(query=query, page=page, page_size=page_size)
# ============================================================================
# Diagnostics
# ============================================================================
# Rate limit: only log vector error diagnostics once per this interval
_VECTOR_DIAG_INTERVAL_SECONDS = 60
_last_vector_diag_time: float = 0
async def _log_vector_error_diagnostics(error: Exception) -> None:
"""Log diagnostic info when 'type vector does not exist' error occurs.
Note: Diagnostic queries use query_raw_with_schema which may run on a different
pooled connection than the one that failed. Session-level search_path can differ,
so these diagnostics show cluster-wide state, not necessarily the failed session.
Includes rate limiting to avoid log spam - only logs once per minute.
Caller should re-raise the error after calling this function.
"""
global _last_vector_diag_time
# Check if this is the vector type error
error_str = str(error).lower()
if not (
"type" in error_str and "vector" in error_str and "does not exist" in error_str
):
return
# Rate limit: only log once per interval
now = time.time()
if now - _last_vector_diag_time < _VECTOR_DIAG_INTERVAL_SECONDS:
return
_last_vector_diag_time = now
try:
diagnostics: dict[str, object] = {}
try:
search_path_result = await query_raw_with_schema("SHOW search_path")
diagnostics["search_path"] = search_path_result
except Exception as e:
diagnostics["search_path"] = f"Error: {e}"
try:
schema_result = await query_raw_with_schema("SELECT current_schema()")
diagnostics["current_schema"] = schema_result
except Exception as e:
diagnostics["current_schema"] = f"Error: {e}"
try:
user_result = await query_raw_with_schema(
"SELECT current_user, session_user, current_database()"
)
diagnostics["user_info"] = user_result
except Exception as e:
diagnostics["user_info"] = f"Error: {e}"
try:
# Check pgvector extension installation (cluster-wide, stable info)
ext_result = await query_raw_with_schema(
"SELECT extname, extversion, nspname as schema "
"FROM pg_extension e "
"JOIN pg_namespace n ON e.extnamespace = n.oid "
"WHERE extname = 'vector'"
)
diagnostics["pgvector_extension"] = ext_result
except Exception as e:
diagnostics["pgvector_extension"] = f"Error: {e}"
logger.error(
f"Vector type error diagnostics:\n"
f" Error: {error}\n"
f" search_path: {diagnostics.get('search_path')}\n"
f" current_schema: {diagnostics.get('current_schema')}\n"
f" user_info: {diagnostics.get('user_info')}\n"
f" pgvector_extension: {diagnostics.get('pgvector_extension')}"
)
except Exception as diag_error:
logger.error(f"Failed to collect vector error diagnostics: {diag_error}")
# Backward compatibility alias - HybridSearchWeights maps to StoreAgentSearchWeights
# for existing code that expects the popularity parameter
HybridSearchWeights = StoreAgentSearchWeights