mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-01-10 07:38:04 -05:00
Merge branch 'dev' into ntindle/systemallquietalerts
This commit is contained in:
6
.github/workflows/claude.yml
vendored
6
.github/workflows/claude.yml
vendored
@@ -44,6 +44,12 @@ jobs:
|
||||
with:
|
||||
fetch-depth: 1
|
||||
|
||||
- name: Free Disk Space (Ubuntu)
|
||||
uses: jlumbroso/free-disk-space@v1.3.1
|
||||
with:
|
||||
large-packages: false # slow
|
||||
docker-images: false # limited benefit
|
||||
|
||||
# Backend Python/Poetry setup (mirrors platform-backend-ci.yml)
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
|
||||
4
.github/workflows/platform-frontend-ci.yml
vendored
4
.github/workflows/platform-frontend-ci.yml
vendored
@@ -12,6 +12,10 @@ on:
|
||||
- "autogpt_platform/frontend/**"
|
||||
merge_group:
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event_name == 'merge_group' && format('merge-queue-{0}', github.ref) || format('{0}-{1}', github.ref, github.event.pull_request.number || github.sha) }}
|
||||
cancel-in-progress: ${{ github.event_name == 'pull_request' }}
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
4
.github/workflows/platform-fullstack-ci.yml
vendored
4
.github/workflows/platform-fullstack-ci.yml
vendored
@@ -12,6 +12,10 @@ on:
|
||||
- "autogpt_platform/**"
|
||||
merge_group:
|
||||
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.event_name == 'merge_group' && format('merge-queue-{0}', github.ref) || github.head_ref && format('pr-{0}', github.event.pull_request.number) || github.sha }}
|
||||
cancel-in-progress: ${{ github.event_name == 'pull_request' }}
|
||||
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
|
||||
@@ -11,7 +11,7 @@ jobs:
|
||||
stale:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/stale@v9
|
||||
- uses: actions/stale@v10
|
||||
with:
|
||||
# operations-per-run: 5000
|
||||
stale-issue-message: >
|
||||
|
||||
2
.github/workflows/repo-pr-label.yml
vendored
2
.github/workflows/repo-pr-label.yml
vendored
@@ -61,6 +61,6 @@ jobs:
|
||||
pull-requests: write
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/labeler@v5
|
||||
- uses: actions/labeler@v6
|
||||
with:
|
||||
sync-labels: true
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
.PHONY: start-core stop-core logs-core format lint migrate run-backend run-frontend
|
||||
.PHONY: start-core stop-core logs-core format lint migrate run-backend run-frontend load-store-agents
|
||||
|
||||
# Run just Supabase + Redis + RabbitMQ
|
||||
start-core:
|
||||
@@ -42,7 +42,10 @@ run-frontend:
|
||||
|
||||
test-data:
|
||||
cd backend && poetry run python test/test_data_creator.py
|
||||
|
||||
|
||||
load-store-agents:
|
||||
cd backend && poetry run load-store-agents
|
||||
|
||||
help:
|
||||
@echo "Usage: make <target>"
|
||||
@echo "Targets:"
|
||||
@@ -54,4 +57,5 @@ help:
|
||||
@echo " migrate - Run backend database migrations"
|
||||
@echo " run-backend - Run the backend FastAPI server"
|
||||
@echo " run-frontend - Run the frontend Next.js development server"
|
||||
@echo " test-data - Run the test data creator"
|
||||
@echo " test-data - Run the test data creator"
|
||||
@echo " load-store-agents - Load store agents from agents/ folder into test database"
|
||||
242
autogpt_platform/backend/agents/StoreAgent_rows.csv
Normal file
242
autogpt_platform/backend/agents/StoreAgent_rows.csv
Normal file
@@ -0,0 +1,242 @@
|
||||
listing_id,storeListingVersionId,slug,agent_name,agent_video,agent_image,featured,sub_heading,description,categories,useForOnboarding,is_available
|
||||
6e60a900-9d7d-490e-9af2-a194827ed632,d85882b8-633f-44ce-a315-c20a8c123d19,flux-ai-image-generator,Flux AI Image Generator,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/ca154dd1-140e-454c-91bd-2d8a00de3f08.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/577d995d-bc38-40a9-a23f-1f30f5774bdb.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/415db1b7-115c-43ab-bd6c-4e9f7ef95be1.jpg""]",false,Transform ideas into breathtaking images,"Transform ideas into breathtaking images with this AI-powered Image Generator. Using cutting-edge Flux AI technology, the tool crafts highly detailed, photorealistic visuals from simple text prompts. Perfect for artists, marketers, and content creators, this generator produces unique images tailored to user specifications. From fantastical scenes to lifelike portraits, users can unleash creativity with professional-quality results in seconds. Easy to use and endlessly versatile, bring imagination to life with the AI Image Generator today!","[""creative""]",false,true
|
||||
f11fc6e9-6166-4676-ac5d-f07127b270c1,c775f60d-b99f-418b-8fe0-53172258c3ce,youtube-transcription-scraper,YouTube Transcription Scraper,https://youtu.be/H8S3pU68lGE,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/65bce54b-0124-4b0d-9e3e-f9b89d0dc99e.jpg""]",false,Fetch the transcriptions from the most popular YouTube videos in your chosen topic,"Effortlessly gather transcriptions from multiple YouTube videos with this agent. It scrapes and compiles video transcripts into a clean, organized list, making it easy to extract insights, quotes, or content from various sources in one go. Ideal for researchers, content creators, and marketers looking to quickly analyze or repurpose video content.","[""writing""]",false,true
|
||||
17908889-b599-4010-8e4f-bed19b8f3446,6e16e65a-ad34-4108-b4fd-4a23fced5ea2,business-ownerceo-finder,Decision Maker Lead Finder,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/1020d94e-b6a2-4fa7-bbdf-2c218b0de563.jpg""]",false,Contact CEOs today,"Find the key decision-makers you need, fast.
|
||||
|
||||
This agent identifies business owners or CEOs of local companies in any area you choose. Simply enter what kind of businesses you’re looking for and where, and it will:
|
||||
|
||||
* Search the area and gather public information
|
||||
* Return names, roles, and contact details when available
|
||||
* Provide smart Google search suggestions if details aren’t found
|
||||
|
||||
Perfect for:
|
||||
|
||||
* B2B sales teams seeking verified leads
|
||||
* Recruiters sourcing local talent
|
||||
* Researchers looking to connect with business leaders
|
||||
|
||||
Save hours of manual searching and get straight to the people who matter most.","[""business""]",true,true
|
||||
72beca1d-45ea-4403-a7ce-e2af168ee428,415b7352-0dc6-4214-9d87-0ad3751b711d,smart-meeting-brief,Smart Meeting Prep,https://youtu.be/9ydZR2hkxaY,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2f116ce1-63ae-4d39-a5cd-f514defc2b97.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/0a71a60a-2263-4f12-9836-9c76ab49f155.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/95327695-9184-403c-907a-a9d3bdafa6a5.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2bc77788-790b-47d4-8a61-ce97b695e9f5.png""]",true,Business meeting briefings delivered daily,"Never walk into a meeting unprepared again. Every day at 4 pm, the Smart Meeting Prep Agent scans your calendar for tomorrow's external meetings. It reviews your past email exchanges, researches each participant's background and role, and compiles the insights into a concise briefing, so you can close your workday ready for tomorrow's calls.
|
||||
|
||||
How It Works
|
||||
1. At 4 pm, the agent scans your calendar and identifies external meetings scheduled for the next day.
|
||||
2. It reviews recent email threads with each participant to surface key relationship history and communication context.
|
||||
3. It conducts online research to gather publicly available information on roles, company backgrounds, and relevant professional data.
|
||||
4. It produces a unified briefing for each participant, including past exchange highlights, profile notes, and strategic conversation points.","[""personal""]",true,true
|
||||
9fa5697a-617b-4fae-aea0-7dbbed279976,b8ceb480-a7a2-4c90-8513-181a49f7071f,automated-support-ai,Automated Support Agent,https://youtu.be/nBMfu_5sgDA,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/ed56febc-2205-4179-9e7e-505d8500b66c.png""]",true,Automate up to 80 percent of inbound support emails,"Overview:
|
||||
Support teams spend countless hours on basic tickets. This agent automates repetitive customer support tasks. It reads incoming requests, researches your knowledge base, and responds automatically when confident. When unsure, it escalates to a human for final resolution.
|
||||
|
||||
How it Works:
|
||||
New support emails are routed to the agent.
|
||||
The agent checks internal documentation for answers.
|
||||
It measures confidence in the answer found and either replies directly or escalates to a human.
|
||||
|
||||
Business Value:
|
||||
Automating the easy 80 percent of support tickets allows your team to focus on high-value, complex customer issues, improving efficiency and response times.","[""business""]",false,true
|
||||
2bdac92b-a12c-4131-bb46-0e3b89f61413,31daf49d-31d3-476b-aa4c-099abc59b458,unspirational-poster-maker,Unspirational Poster Maker,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/6a490dac-27e5-405f-a4c4-8d1c55b85060.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/d343fbb5-478c-4e38-94df-4337293b61f1.jpg""]",false,Because adulting is hard,"This witty AI agent generates hilariously relatable ""motivational"" posters that tackle the everyday struggles of procrastination, overthinking, and workplace chaos with a blend of absurdity and sarcasm. From goldfish facing impossible tasks to cats in existential crises, The Unspirational Poster Maker designs tongue-in-cheek graphics and captions that mock productivity clichés and embrace our collective struggles to ""get it together."" Perfect for adding a touch of humour to the workday, these posters remind us that sometimes, all we can do is laugh at the chaos.","[""creative""]",false,true
|
||||
9adf005e-2854-4cc7-98cf-f7103b92a7b7,a03b0d8c-4751-43d6-a54e-c3b7856ba4e3,ai-shortform-video-generator-create-viral-ready-content,AI Video Generator,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/8d2670b9-fea5-4966-a597-0a4511bffdc3.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/aabe8aec-0110-4ce7-a259-4f86fe8fe07d.png""]",false,Create Viral-Ready Shorts Content in Seconds,"OVERVIEW
|
||||
Transform any trending headline or broad topic into a polished, vertical short-form video in a single run.
|
||||
The agent automates research, scriptwriting, metadata creation, and Revid.ai rendering, returning one ready-to-publish MP4 plus its title, script and hashtags.
|
||||
|
||||
HOW IT WORKS
|
||||
1. Input a topic or an exact news headline.
|
||||
2. The agent fetches live search results and selects the most engaging related story.
|
||||
3. Key facts are summarised into concise research notes.
|
||||
4. Claude writes a 30–35 second script with visual cues, a three-second hook, tension loops, and a call-to-action.
|
||||
5. GPT-4o generates an eye-catching title and one or two discoverability hashtags.
|
||||
6. The script is sent to a state-of-the-art AI video generator to render a single 9:16 MP4 (default: 720 p, 30 fps, voice “Brian”, style “movingImage”, music “Bladerunner 2049”).
|
||||
– All voice, style and resolution settings can be adjusted in the Builder before you press ""Run"".
|
||||
7. Output delivered: Title, Script, Hashtags, Video URL.
|
||||
|
||||
KEY USE CASES
|
||||
- Broad-topic explainers (e.g. “Artificial Intelligence” or “Climate Tech”).
|
||||
- Real-time newsjacking with a specific breaking headline.
|
||||
- Product-launch spotlights and quick event recaps while interest is high.
|
||||
|
||||
BUSINESS VALUE
|
||||
- One-click speed: from idea to finished video in minutes.
|
||||
- Consistent brand look: Revid presets keep voice, style and aspect ratio on spec.
|
||||
- No-code workflow: marketers create social video without design or development queues.
|
||||
- Cloud convenience: Auto-GPT Cloud users are pre-configured with all required keys.
|
||||
Self-hosted users simply add OpenAI, Anthropic, Perplexity (OpenRouter/Jina) and Revid keys once.
|
||||
|
||||
IMPORTANT NOTES
|
||||
- The agent outputs exactly one video per execution. Run it again for additional shorts.
|
||||
- Video rendering time varies; AI-generated footage may take several minutes.","[""writing""]",false,true
|
||||
864e48ef-fee5-42c1-b6a4-2ae139db9fc1,55d40473-0f31-4ada-9e40-d3a7139fcbd4,automated-blog-writer,Automated SEO Blog Writer,https://youtu.be/nKcDCbDVobs,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2dd5f95b-5b30-4bf8-a11b-bac776c5141a.jpg""]",true,"Automate research, writing, and publishing for high-ranking blog posts","Scale your blog with a fully automated content engine. The Automated SEO Blog Writer learns your brand voice, finds high-demand keywords, and creates SEO-optimized articles that attract organic traffic and boost visibility.
|
||||
|
||||
How it works:
|
||||
|
||||
1. Share your pitch, website, and values.
|
||||
2. The agent studies your site and uncovers proven SEO opportunities.
|
||||
3. It spends two hours researching and drafting each post.
|
||||
4. You set the cadence—publishing runs on autopilot.
|
||||
|
||||
Business value: Consistently publish research-backed, optimized posts that build domain authority, rankings, and thought leadership while you focus on what matters most.
|
||||
|
||||
Use cases:
|
||||
• Founders: Keep your blog active with no time drain.
|
||||
• Agencies: Deliver scalable SEO content for clients.
|
||||
• Strategists: Automate execution, focus on strategy.
|
||||
• Marketers: Drive steady organic growth.
|
||||
• Local businesses: Capture nearby search traffic.","[""writing""]",false,true
|
||||
6046f42e-eb84-406f-bae0-8e052064a4fa,a548e507-09a7-4b30-909c-f63fcda10fff,lead-finder-local-businesses,Lead Finder,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/abd6605f-d5f8-426b-af36-052e8ba5044f.webp""]",false,Auto-Prospect Like a Pro,"Turbo-charge your local lead generation with the AutoGPT Marketplace’s top Google Maps prospecting agent. “Lead Finder: Local Businesses” delivers verified, ready-to-contact prospects in any niche and city—so you can focus on closing, not searching.
|
||||
|
||||
**WHAT IT DOES**
|
||||
• Searches Google Maps via the official API (no scraping)
|
||||
• Prompts like “dentists in Chicago” or “coffee shops near me”
|
||||
• Returns: Name, Website, Rating, Reviews, **Phone & Address**
|
||||
• Exports instantly to your CRM, sheet, or outreach workflow
|
||||
|
||||
**WHY YOU’LL LOVE IT**
|
||||
✓ Hyper-targeted leads in minutes
|
||||
✓ Unlimited searches & locations
|
||||
✓ Zero CAPTCHAs or IP blocks
|
||||
✓ Works on AutoGPT Cloud or self-hosted (with your API key)
|
||||
✓ Cut prospecting time by 90%
|
||||
|
||||
**PERFECT FOR**
|
||||
— Marketers & PPC agencies
|
||||
— SEO consultants & designers
|
||||
— SaaS founders & sales teams
|
||||
|
||||
Stop scrolling directories—start filling your pipeline. Start now and let AI prospect while you profit.
|
||||
|
||||
→ Click *Add to Library* and own your market today.","[""business""]",true,true
|
||||
f623c862-24e9-44fc-8ce8-d8282bb51ad2,eafa21d3-bf14-4f63-a97f-a5ee41df83b3,linkedin-post-generator,LinkedIn Post Generator,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/297f6a8e-81a8-43e2-b106-c7ad4a5662df.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/fceebdc1-aef6-4000-97fc-4ef587f56bda.png""]",false,Auto‑craft LinkedIn gold,"Create research‑driven, high‑impact LinkedIn posts in minutes. This agent searches YouTube for the best videos on your chosen topic, pulls their transcripts, and distils the most valuable insights into a polished post ready for your company page or personal feed.
|
||||
|
||||
FEATURES
|
||||
• Automated YouTube research – discovers and analyses top‑ranked videos so you don’t have to
|
||||
• AI‑curated synthesis – combines multiple transcripts into one authoritative narrative
|
||||
• Full creative control – adjust style, tone, objective, opinion, clarity, target word count and number of videos
|
||||
• LinkedIn‑optimised output – hook, 2‑3 key points, CTA, strategic line breaks, 3‑5 hashtags, no markdown
|
||||
• One‑click publish – returns a ready‑to‑post text block (≤1 300 characters)
|
||||
|
||||
HOW IT WORKS
|
||||
1. Enter a topic and your preferred writing parameters.
|
||||
2. The agent builds a YouTube search, fetches the page, and extracts the top N video URLs.
|
||||
3. It pulls each transcript, then feeds them—plus your settings—into Claude 3.5 Sonnet.
|
||||
4. The model writes a concise, engaging post designed for maximum LinkedIn engagement.
|
||||
|
||||
USE CASES
|
||||
• Thought‑leadership updates backed by fresh video research
|
||||
• Rapid industry summaries after major events, webinars, or conferences
|
||||
• Consistent LinkedIn content for busy founders, marketers, and creators
|
||||
|
||||
WHY YOU’LL LOVE IT
|
||||
Save hours of manual research, avoid surface‑level hot‑takes, and publish posts that showcase real expertise—without the heavy lift.","[""writing""]",true,true
|
||||
7d4120ad-b6b3-4419-8bdb-7dd7d350ef32,e7bb29a1-23c7-4fee-aa3b-5426174b8c52,youtube-to-linkedin-post-converter,YouTube to LinkedIn Post Converter,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/f084b326-a708-4396-be51-7ba59ad2ef32.png""]",false,Transform Your YouTube Videos into Engaging LinkedIn Posts with AI,"WHAT IT DOES:
|
||||
This agent converts YouTube video content into a LinkedIn post by analyzing the video's transcript. It provides you with a tailored post that reflects the core ideas, key takeaways, and tone of the original video, optimizing it for engagement on LinkedIn.
|
||||
|
||||
HOW IT WORKS:
|
||||
- You provide the URL to the YouTube video (required)
|
||||
- You can choose the structure for the LinkedIn post (e.g., Personal Achievement Story, Lesson Learned, Thought Leadership, etc.)
|
||||
- You can also select the tone (e.g., Inspirational, Analytical, Conversational, etc.)
|
||||
- The transcript of the video is analyzed by the GPT-4 model and the Claude 3.5 Sonnet model
|
||||
- The models extract key insights, memorable quotes, and the main points from the video
|
||||
- You’ll receive a LinkedIn post, formatted according to your chosen structure and tone, optimized for professional engagement
|
||||
|
||||
INPUTS:
|
||||
- Source YouTube Video – Provide the URL to the YouTube video
|
||||
- Structure – Choose the post format (e.g., Personal Achievement Story, Thought Leadership, etc.)
|
||||
- Content – Specify the main message or idea of the post (e.g., Hot Take, Key Takeaways, etc.)
|
||||
- Tone – Select the tone for the post (e.g., Conversational, Inspirational, etc.)
|
||||
|
||||
OUTPUT:
|
||||
- LinkedIn Post – A well-crafted, AI-generated LinkedIn post with a professional tone, based on the video content and your specified preferences
|
||||
|
||||
Perfect for content creators, marketers, and professionals who want to repurpose YouTube videos for LinkedIn and boost their professional branding.","[""writing""]",false,true
|
||||
c61d6a83-ea48-4df8-b447-3da2d9fe5814,00fdd42c-a14c-4d19-a567-65374ea0e87f,personalized-morning-coffee-newsletter,Personal Newsletter,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/f4b38e4c-8166-4caf-9411-96c9c4c82d4c.png""]",false,Start your day with personalized AI newsletters that deliver credibility and context for every interest or mood.,"This Personal Newsletter Agent provides a bespoke daily digest on your favorite topics and tone. Whether you prefer industry insights, lighthearted reads, or breaking news, this agent crafts your own unique newsletter to keep you informed and entertained.
|
||||
|
||||
|
||||
How It Works
|
||||
1. Enter your favorite topics, industries, or areas of interest.
|
||||
2. Choose your tone—professional, casual, or humorous.
|
||||
3. Set your preferred delivery cadence: daily or weekly.
|
||||
4. The agent scans top sources and compiles 3–5 engaging stories, insights, and fun facts into a conversational newsletter.
|
||||
|
||||
Skip the morning scroll and enjoy a thoughtfully curated newsletter designed just for you. Stay ahead of trends, spark creative ideas, and enjoy an effortless, informed start to your day.
|
||||
|
||||
|
||||
Use Cases
|
||||
• Executives: Get a daily digest of market updates and leadership insights.
|
||||
• Marketers: Receive curated creative trends and campaign inspiration.
|
||||
• Entrepreneurs: Stay updated on your industry without information overload.","[""research""]",true,true
|
||||
e2e49cfc-4a39-4d62-a6b3-c095f6d025ff,fc2c9976-0962-4625-a27b-d316573a9e7f,email-address-finder,Email Scout - Contact Finder Assistant,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/da8a690a-7a8b-4c1d-b6f8-e2f840c0205d.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/6a2ac25c-1609-4881-8140-e6da2421afb3.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/26179263-fe06-45bd-b6a0-0754660a0a46.jpg""]",false,Find contact details from name and location using AI search,"Finding someone's professional email address can be time-consuming and frustrating. Manual searching across multiple websites, social profiles, and business directories often leads to dead ends or outdated information.
|
||||
|
||||
Email Scout automates this process by intelligently searching across publicly available sources when you provide a person's name and location. Simply input basic information like ""Tim Cook, USA"" or ""Sarah Smith, London"" and let the AI assistant do the work of finding potential contact details.
|
||||
|
||||
Key Features:
|
||||
- Quick search from just name and location
|
||||
- Scans multiple public sources
|
||||
- Automated AI-powered search process
|
||||
- Easy to use with simple inputs
|
||||
|
||||
Perfect for recruiters, business development professionals, researchers, and anyone needing to establish professional contact.
|
||||
|
||||
Note: This tool searches only publicly available information. Search results depend on what contact information people have made public. Some searches may not yield results if the information isn't publicly accessible.","[""""]",false,true
|
||||
81bcc372-0922-4a36-bc35-f7b1e51d6939,e437cc95-e671-489d-b915-76561fba8c7f,ai-youtube-to-blog-converter,YouTube Video to SEO Blog Writer,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/239e5a41-2515-4e1c-96ef-31d0d37ecbeb.webp"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/c7d96966-786f-4be6-ad7d-3a51c84efc0e.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/0275a74c-e2c2-4e29-a6e4-3a616c3c35dd.png""]",false,One link. One click. One powerful blog post.,"Effortlessly transform your YouTube videos into high-quality, SEO-optimized blog posts.
|
||||
|
||||
Your videos deserve a second life—in writing.
|
||||
Make your content work twice as hard by repurposing it into engaging, searchable articles.
|
||||
|
||||
Perfect for content creators, marketers, and bloggers, this tool analyzes video content and generates well-structured blog posts tailored to your tone, audience, and word count. Just paste a YouTube URL and let the AI handle the rest.
|
||||
|
||||
FEATURES
|
||||
|
||||
• CONTENT ANALYSIS
|
||||
Extracts key points from the video while preserving your message and intent.
|
||||
|
||||
• CUSTOMIZABLE OUTPUT
|
||||
Select a tone that fits your audience: casual, professional, educational, or formal.
|
||||
|
||||
• SEO OPTIMIZATION
|
||||
Automatically creates engaging titles and structured subheadings for better search visibility.
|
||||
|
||||
• USER-FRIENDLY
|
||||
Repurpose your videos into written content to expand your reach and improve accessibility.
|
||||
|
||||
Whether you're looking to grow your blog, boost SEO, or simply get more out of your content, the AI YouTube-to-Blog Converter makes it effortless.
|
||||
","[""writing""]",true,true
|
||||
5c3510d2-fc8b-4053-8e19-67f53c86eb1a,f2cc74bb-f43f-4395-9c35-ecb30b5b4fc9,ai-webpage-copy-improver,AI Webpage Copy Improver,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/d562d26f-5891-4b09-8859-fbb205972313.jpg""]",false,Boost Your Website's Search Engine Performance,"Elevate your web content with this powerful AI Webpage Copy Improver. Designed for marketers, SEO specialists, and web developers, this tool analyses and enhances website copy for maximum impact. Using advanced language models, it optimizes text for better clarity, SEO performance, and increased conversion rates. The AI examines your existing content, identifies areas for improvement, and generates refined copy that maintains your brand voice while boosting engagement. From homepage headlines to product descriptions, transform your web presence with AI-driven insights. Improve readability, incorporate targeted keywords, and craft compelling calls-to-action - all with the click of a button. Take your digital marketing to the next level with the AI Webpage Copy Improver.","[""marketing""]",true,true
|
||||
94d03bd3-7d44-4d47-b60c-edb2f89508d6,b6f6f0d3-49f4-4e3b-8155-ffe9141b32c0,domain-name-finder,Domain Name Finder,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/28545e09-b2b8-4916-b4c6-67f982510a78.jpeg""]",false,Instantly generate brand-ready domain names that are actually available,"Overview:
|
||||
Finding a domain name that fits your brand shouldn’t take hours of searching and failed checks. The Domain Name Finder Agent turns your pitch into hundreds of creative, brand-ready domain ideas—filtered by live availability so every result is actionable.
|
||||
|
||||
How It Works
|
||||
1. Input your product pitch, company name, or core keywords.
|
||||
2. The agent analyzes brand tone, audience, and industry context.
|
||||
3. It generates a list of unique, memorable domains that match your criteria.
|
||||
4. All names are pre-filtered for real-time availability, so you can register immediately.
|
||||
|
||||
|
||||
Business Value
|
||||
Save hours of guesswork and eliminate dead ends. Accelerate brand launches, startup naming, and campaign creation with ready-to-claim domains.
|
||||
|
||||
|
||||
Key Use Cases
|
||||
• Startup Founders: Quickly find brand-ready domains for MVP launches or rebrands.
|
||||
• Marketers: Test name options across campaigns with instant availability data.
|
||||
• Entrepreneurs: Validate ideas faster with instant domain options.","[""business""]",false,true
|
||||
7a831906-daab-426f-9d66-bcf98d869426,516d813b-d1bc-470f-add7-c63a4b2c2bad,ai-function,AI Function,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/620e8117-2ee1-4384-89e6-c2ef4ec3d9c9.webp"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/476259e2-5a79-4a7b-8e70-deeebfca70d7.png""]",false,Never Code Again,"AI FUNCTION MAGIC
|
||||
Your AI‑powered assistant for turning plain‑English descriptions into working Python functions.
|
||||
|
||||
HOW IT WORKS
|
||||
1. Describe what the function should do.
|
||||
2. Specify the inputs it needs.
|
||||
3. Receive the generated Python code.
|
||||
|
||||
FEATURES
|
||||
- Effortless Function Generation: convert natural‑language specs into complete functions.
|
||||
- Customizable Inputs: define the parameters that matter to you.
|
||||
- Versatile Use Cases: simulate data, automate tasks, prototype ideas.
|
||||
- Seamless Integration: add the generated function directly to your codebase.
|
||||
|
||||
EXAMPLE
|
||||
Request: “Create a function that generates 20 examples of fake people, each with a name, date of birth, job title, and age.”
|
||||
Input parameter: number_of_people (default 20)
|
||||
Result: a list of dictionaries such as
|
||||
[
|
||||
{ ""name"": ""Emma Martinez"", ""date_of_birth"": ""1992‑11‑03"", ""job_title"": ""Data Analyst"", ""age"": 32 },
|
||||
{ ""name"": ""Liam O’Connor"", ""date_of_birth"": ""1985‑07‑19"", ""job_title"": ""Marketing Manager"", ""age"": 39 },
|
||||
…18 more entries…
|
||||
]","[""development""]",false,true
|
||||
|
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,590 @@
|
||||
{
|
||||
"id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
|
||||
"version": 29,
|
||||
"is_active": false,
|
||||
"name": "Unspirational Poster Maker",
|
||||
"description": "This witty AI agent generates hilariously relatable \"motivational\" posters that tackle the everyday struggles of procrastination, overthinking, and workplace chaos with a blend of absurdity and sarcasm. From goldfish facing impossible tasks to cats in existential crises, The Unspirational Poster Maker designs tongue-in-cheek graphics and captions that mock productivity clich\u00e9s and embrace our collective struggles to \"get it together.\" Perfect for adding a touch of humour to the workday, these posters remind us that sometimes, all we can do is laugh at the chaos.",
|
||||
"instructions": null,
|
||||
"recommended_schedule_cron": null,
|
||||
"nodes": [
|
||||
{
|
||||
"id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
|
||||
"input_default": {
|
||||
"name": "Generated Image",
|
||||
"description": "The resulting generated image ready for you to review and post."
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 2329.937006807125,
|
||||
"y": 80.49068076698347
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "c6c511e8-e6a4-4969-9bc8-f67d60c1e229",
|
||||
"source_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "20845dda-91de-4508-8077-0504b1a5ae03",
|
||||
"source_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "6524c611-774b-45e9-899d-9a6aa80c549c",
|
||||
"source_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "714a0821-e5ba-4af7-9432-50491adda7b1",
|
||||
"source_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [],
|
||||
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
|
||||
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
|
||||
"input_default": {
|
||||
"name": "Theme",
|
||||
"value": "Cooking"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": -1219.5966324967521,
|
||||
"y": 80.50339731789956
|
||||
}
|
||||
},
|
||||
"input_links": [],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "8c2bd1f7-b17b-4835-81b6-bb336097aa7a",
|
||||
"source_id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
|
||||
"sink_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_THEME",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "28bda769-b88b-44c9-be5c-52c2667f137e",
|
||||
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
|
||||
"input_default": {
|
||||
"upscale": "No Upscale"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 1132.373897280427,
|
||||
"y": 88.44610377514573
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "54588c74-e090-4e49-89e4-844b9952a585",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "20845dda-91de-4508-8077-0504b1a5ae03",
|
||||
"source_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
|
||||
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
|
||||
"input_default": {
|
||||
"upscale": "No Upscale"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 590.7543882245375,
|
||||
"y": 85.69546832466654
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "66646786-3006-4417-a6b7-0158f2603d1d",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "6524c611-774b-45e9-899d-9a6aa80c549c",
|
||||
"source_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "576c5677-9050-4d1c-aad4-36b820c04fef",
|
||||
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
|
||||
"input_default": {
|
||||
"upscale": "No Upscale"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 60.48904654237981,
|
||||
"y": 86.06183359510214
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "201d3e03-bc06-4cee-846d-4c3c804d8857",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "714a0821-e5ba-4af7-9432-50491adda7b1",
|
||||
"source_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
|
||||
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
|
||||
"input_default": {
|
||||
"prompt": "A cat sprawled dramatically across an important-looking document during a work-from-home meeting, making direct eye contact with the camera while knocking over a coffee mug in slow motion. Text Overlay: \"Chaos is a career path. Be the obstacle everyone has to work around.\"",
|
||||
"upscale": "No Upscale"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 1668.3572666956795,
|
||||
"y": 89.69665262457966
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "509b7587-1940-4a06-808d-edde9a74f400",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "c6c511e8-e6a4-4969-9bc8-f67d60c1e229",
|
||||
"source_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
|
||||
"input_default": {
|
||||
"model": "gpt-4o",
|
||||
"prompt": "<example_output>\nA photo of a sloth lounging on a desk, with its head resting on a keyboard. The keyboard is on top of a laptop with a blank spreadsheet open. A to-do list is placed beside the laptop, with the top item written as \"Do literally anything\". There is a text overlay that says \"If you can't outwork them, outnap them.\".\n</example_output>\n\nCreate a relatable satirical, snarky, user-deprecating motivational style image based on the theme: \"{{THEME}}\".\n\nOutput only the image description and caption, without any additional commentary or formatting.",
|
||||
"prompt_values": {}
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": -561.1139207164056,
|
||||
"y": 78.60434452403524
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "8c2bd1f7-b17b-4835-81b6-bb336097aa7a",
|
||||
"source_id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
|
||||
"sink_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_THEME",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "54588c74-e090-4e49-89e4-844b9952a585",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "201d3e03-bc06-4cee-846d-4c3c804d8857",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "509b7587-1940-4a06-808d-edde9a74f400",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "66646786-3006-4417-a6b7-0158f2603d1d",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
{
|
||||
"id": "66646786-3006-4417-a6b7-0158f2603d1d",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "c6c511e8-e6a4-4969-9bc8-f67d60c1e229",
|
||||
"source_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "6524c611-774b-45e9-899d-9a6aa80c549c",
|
||||
"source_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "20845dda-91de-4508-8077-0504b1a5ae03",
|
||||
"source_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "8c2bd1f7-b17b-4835-81b6-bb336097aa7a",
|
||||
"source_id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
|
||||
"sink_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_THEME",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "201d3e03-bc06-4cee-846d-4c3c804d8857",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "714a0821-e5ba-4af7-9432-50491adda7b1",
|
||||
"source_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
|
||||
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "54588c74-e090-4e49-89e4-844b9952a585",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "509b7587-1940-4a06-808d-edde9a74f400",
|
||||
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
|
||||
"sink_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"forked_from_id": null,
|
||||
"forked_from_version": null,
|
||||
"sub_graphs": [],
|
||||
"user_id": "",
|
||||
"created_at": "2024-12-20T19:58:34.390Z",
|
||||
"input_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"Theme": {
|
||||
"advanced": false,
|
||||
"secret": false,
|
||||
"title": "Theme",
|
||||
"default": "Cooking"
|
||||
}
|
||||
},
|
||||
"required": []
|
||||
},
|
||||
"output_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"Generated Image": {
|
||||
"advanced": false,
|
||||
"secret": false,
|
||||
"title": "Generated Image",
|
||||
"description": "The resulting generated image ready for you to review and post."
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"Generated Image"
|
||||
]
|
||||
},
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"trigger_setup_info": null,
|
||||
"credentials_input_schema": {
|
||||
"properties": {
|
||||
"ideogram_api_key_credentials": {
|
||||
"credentials_provider": [
|
||||
"ideogram"
|
||||
],
|
||||
"credentials_types": [
|
||||
"api_key"
|
||||
],
|
||||
"properties": {
|
||||
"id": {
|
||||
"title": "Id",
|
||||
"type": "string"
|
||||
},
|
||||
"title": {
|
||||
"anyOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"default": null,
|
||||
"title": "Title"
|
||||
},
|
||||
"provider": {
|
||||
"const": "ideogram",
|
||||
"title": "Provider",
|
||||
"type": "string"
|
||||
},
|
||||
"type": {
|
||||
"const": "api_key",
|
||||
"title": "Type",
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"id",
|
||||
"provider",
|
||||
"type"
|
||||
],
|
||||
"title": "CredentialsMetaInput[Literal[<ProviderName.IDEOGRAM: 'ideogram'>], Literal['api_key']]",
|
||||
"type": "object",
|
||||
"discriminator_values": []
|
||||
},
|
||||
"openai_api_key_credentials": {
|
||||
"credentials_provider": [
|
||||
"openai"
|
||||
],
|
||||
"credentials_types": [
|
||||
"api_key"
|
||||
],
|
||||
"properties": {
|
||||
"id": {
|
||||
"title": "Id",
|
||||
"type": "string"
|
||||
},
|
||||
"title": {
|
||||
"anyOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"default": null,
|
||||
"title": "Title"
|
||||
},
|
||||
"provider": {
|
||||
"const": "openai",
|
||||
"title": "Provider",
|
||||
"type": "string"
|
||||
},
|
||||
"type": {
|
||||
"const": "api_key",
|
||||
"title": "Type",
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"id",
|
||||
"provider",
|
||||
"type"
|
||||
],
|
||||
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
|
||||
"type": "object",
|
||||
"discriminator": "model",
|
||||
"discriminator_mapping": {
|
||||
"Llama-3.3-70B-Instruct": "llama_api",
|
||||
"Llama-3.3-8B-Instruct": "llama_api",
|
||||
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
|
||||
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
|
||||
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
|
||||
"amazon/nova-lite-v1": "open_router",
|
||||
"amazon/nova-micro-v1": "open_router",
|
||||
"amazon/nova-pro-v1": "open_router",
|
||||
"claude-3-7-sonnet-20250219": "anthropic",
|
||||
"claude-3-haiku-20240307": "anthropic",
|
||||
"claude-haiku-4-5-20251001": "anthropic",
|
||||
"claude-opus-4-1-20250805": "anthropic",
|
||||
"claude-opus-4-20250514": "anthropic",
|
||||
"claude-opus-4-5-20251101": "anthropic",
|
||||
"claude-sonnet-4-20250514": "anthropic",
|
||||
"claude-sonnet-4-5-20250929": "anthropic",
|
||||
"cohere/command-r-08-2024": "open_router",
|
||||
"cohere/command-r-plus-08-2024": "open_router",
|
||||
"deepseek/deepseek-chat": "open_router",
|
||||
"deepseek/deepseek-r1-0528": "open_router",
|
||||
"dolphin-mistral:latest": "ollama",
|
||||
"google/gemini-2.0-flash-001": "open_router",
|
||||
"google/gemini-2.0-flash-lite-001": "open_router",
|
||||
"google/gemini-2.5-flash": "open_router",
|
||||
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
|
||||
"google/gemini-2.5-pro-preview-03-25": "open_router",
|
||||
"google/gemini-3-pro-preview": "open_router",
|
||||
"gpt-3.5-turbo": "openai",
|
||||
"gpt-4-turbo": "openai",
|
||||
"gpt-4.1-2025-04-14": "openai",
|
||||
"gpt-4.1-mini-2025-04-14": "openai",
|
||||
"gpt-4o": "openai",
|
||||
"gpt-4o-mini": "openai",
|
||||
"gpt-5-2025-08-07": "openai",
|
||||
"gpt-5-chat-latest": "openai",
|
||||
"gpt-5-mini-2025-08-07": "openai",
|
||||
"gpt-5-nano-2025-08-07": "openai",
|
||||
"gpt-5.1-2025-11-13": "openai",
|
||||
"gryphe/mythomax-l2-13b": "open_router",
|
||||
"llama-3.1-8b-instant": "groq",
|
||||
"llama-3.3-70b-versatile": "groq",
|
||||
"llama3": "ollama",
|
||||
"llama3.1:405b": "ollama",
|
||||
"llama3.2": "ollama",
|
||||
"llama3.3": "ollama",
|
||||
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/llama-4-maverick": "open_router",
|
||||
"meta-llama/llama-4-scout": "open_router",
|
||||
"microsoft/wizardlm-2-8x22b": "open_router",
|
||||
"mistralai/mistral-nemo": "open_router",
|
||||
"moonshotai/kimi-k2": "open_router",
|
||||
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
|
||||
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
|
||||
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
|
||||
"o1": "openai",
|
||||
"o1-mini": "openai",
|
||||
"o3-2025-04-16": "openai",
|
||||
"o3-mini": "openai",
|
||||
"openai/gpt-oss-120b": "open_router",
|
||||
"openai/gpt-oss-20b": "open_router",
|
||||
"perplexity/sonar": "open_router",
|
||||
"perplexity/sonar-deep-research": "open_router",
|
||||
"perplexity/sonar-pro": "open_router",
|
||||
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
|
||||
"qwen/qwen3-coder": "open_router",
|
||||
"v0-1.0-md": "v0",
|
||||
"v0-1.5-lg": "v0",
|
||||
"v0-1.5-md": "v0",
|
||||
"x-ai/grok-4": "open_router",
|
||||
"x-ai/grok-4-fast": "open_router",
|
||||
"x-ai/grok-4.1-fast": "open_router",
|
||||
"x-ai/grok-code-fast-1": "open_router"
|
||||
},
|
||||
"discriminator_values": [
|
||||
"gpt-4o"
|
||||
]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"ideogram_api_key_credentials",
|
||||
"openai_api_key_credentials"
|
||||
],
|
||||
"title": "UnspirationalPosterMakerCredentialsInputSchema",
|
||||
"type": "object"
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,447 @@
|
||||
{
|
||||
"id": "622849a7-5848-4838-894d-01f8f07e3fad",
|
||||
"version": 18,
|
||||
"is_active": true,
|
||||
"name": "AI Function",
|
||||
"description": "## AI-Powered Function Magic: Never code again!\nProvide a description of a python function and your inputs and AI will provide the results.",
|
||||
"instructions": null,
|
||||
"recommended_schedule_cron": null,
|
||||
"nodes": [
|
||||
{
|
||||
"id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
|
||||
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
|
||||
"input_default": {
|
||||
"name": "return",
|
||||
"title": null,
|
||||
"value": null,
|
||||
"format": "",
|
||||
"secret": false,
|
||||
"advanced": false,
|
||||
"description": "The value returned by the function"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 1598.8622921127233,
|
||||
"y": 291.59140862204725
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "caecc1de-fdbc-4fd9-9570-074057bb15f9",
|
||||
"source_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"sink_id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
|
||||
"source_name": "response",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [],
|
||||
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
|
||||
"graph_version": 18,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
|
||||
"input_default": {
|
||||
"model": "o3-mini",
|
||||
"retry": 3,
|
||||
"prompt": "{{ARGS}}",
|
||||
"sys_prompt": "You are now the following python function:\n\n```\n# {{DESCRIPTION}}\n{{FUNCTION}}\n```\n\nThe user will provide your input arguments.\nOnly respond with your `return` value.\nDo not include any commentary or additional text in your response. \nDo not include ``` backticks or any other decorators.",
|
||||
"ollama_host": "localhost:11434",
|
||||
"prompt_values": {}
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 995,
|
||||
"y": 290.50000000000006
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "dc7cb15f-76cc-4533-b96c-dd9e3f7f75ed",
|
||||
"source_id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
|
||||
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_FUNCTION",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "093bdca5-9f44-42f9-8e1c-276dd2971675",
|
||||
"source_id": "844530de-2354-46d8-b748-67306b7bbca1",
|
||||
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_ARGS",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "6c63d8ee-b63d-4ff6-bae0-7db8f99bb7af",
|
||||
"source_id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
|
||||
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_DESCRIPTION",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "caecc1de-fdbc-4fd9-9570-074057bb15f9",
|
||||
"source_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"sink_id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
|
||||
"source_name": "response",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
|
||||
"graph_version": 18,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
|
||||
"block_id": "7fcd3bcb-8e1b-4e69-903d-32d3d4a92158",
|
||||
"input_default": {
|
||||
"name": "Function Definition",
|
||||
"title": null,
|
||||
"value": "def fake_people(n: int) -> list[dict]:",
|
||||
"secret": false,
|
||||
"advanced": false,
|
||||
"description": "The function definition (text). This is what you would type on the first line of the function when programming.\n\ne.g \"def fake_people(n: int) -> list[dict]:\"",
|
||||
"placeholder_values": []
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": -672.6908629664215,
|
||||
"y": 302.42044359789116
|
||||
}
|
||||
},
|
||||
"input_links": [],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "dc7cb15f-76cc-4533-b96c-dd9e3f7f75ed",
|
||||
"source_id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
|
||||
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_FUNCTION",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
|
||||
"graph_version": 18,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "844530de-2354-46d8-b748-67306b7bbca1",
|
||||
"block_id": "7fcd3bcb-8e1b-4e69-903d-32d3d4a92158",
|
||||
"input_default": {
|
||||
"name": "Arguments",
|
||||
"title": null,
|
||||
"value": "20",
|
||||
"secret": false,
|
||||
"advanced": false,
|
||||
"description": "The function's inputs\n\ne.g \"20\"",
|
||||
"placeholder_values": []
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": -158.1623599617334,
|
||||
"y": 295.410856928333
|
||||
}
|
||||
},
|
||||
"input_links": [],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "093bdca5-9f44-42f9-8e1c-276dd2971675",
|
||||
"source_id": "844530de-2354-46d8-b748-67306b7bbca1",
|
||||
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_ARGS",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
|
||||
"graph_version": 18,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
|
||||
"block_id": "90a56ffb-7024-4b2b-ab50-e26c5e5ab8ba",
|
||||
"input_default": {
|
||||
"name": "Description",
|
||||
"title": null,
|
||||
"value": "Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age.",
|
||||
"secret": false,
|
||||
"advanced": false,
|
||||
"description": "Describe what the function does.\n\ne.g \"Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age.\"",
|
||||
"placeholder_values": []
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 374.4548658057796,
|
||||
"y": 290.3779121974126
|
||||
}
|
||||
},
|
||||
"input_links": [],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "6c63d8ee-b63d-4ff6-bae0-7db8f99bb7af",
|
||||
"source_id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
|
||||
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_DESCRIPTION",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
|
||||
"graph_version": 18,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
{
|
||||
"id": "caecc1de-fdbc-4fd9-9570-074057bb15f9",
|
||||
"source_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"sink_id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
|
||||
"source_name": "response",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "6c63d8ee-b63d-4ff6-bae0-7db8f99bb7af",
|
||||
"source_id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
|
||||
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_DESCRIPTION",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "093bdca5-9f44-42f9-8e1c-276dd2971675",
|
||||
"source_id": "844530de-2354-46d8-b748-67306b7bbca1",
|
||||
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_ARGS",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "dc7cb15f-76cc-4533-b96c-dd9e3f7f75ed",
|
||||
"source_id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
|
||||
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_FUNCTION",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"forked_from_id": null,
|
||||
"forked_from_version": null,
|
||||
"sub_graphs": [],
|
||||
"user_id": "",
|
||||
"created_at": "2025-04-19T17:10:48.857Z",
|
||||
"input_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"Function Definition": {
|
||||
"advanced": false,
|
||||
"anyOf": [
|
||||
{
|
||||
"format": "short-text",
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"secret": false,
|
||||
"title": "Function Definition",
|
||||
"description": "The function definition (text). This is what you would type on the first line of the function when programming.\n\ne.g \"def fake_people(n: int) -> list[dict]:\"",
|
||||
"default": "def fake_people(n: int) -> list[dict]:"
|
||||
},
|
||||
"Arguments": {
|
||||
"advanced": false,
|
||||
"anyOf": [
|
||||
{
|
||||
"format": "short-text",
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"secret": false,
|
||||
"title": "Arguments",
|
||||
"description": "The function's inputs\n\ne.g \"20\"",
|
||||
"default": "20"
|
||||
},
|
||||
"Description": {
|
||||
"advanced": false,
|
||||
"anyOf": [
|
||||
{
|
||||
"format": "long-text",
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"secret": false,
|
||||
"title": "Description",
|
||||
"description": "Describe what the function does.\n\ne.g \"Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age.\"",
|
||||
"default": "Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age."
|
||||
}
|
||||
},
|
||||
"required": []
|
||||
},
|
||||
"output_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"return": {
|
||||
"advanced": false,
|
||||
"secret": false,
|
||||
"title": "return",
|
||||
"description": "The value returned by the function"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"return"
|
||||
]
|
||||
},
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"trigger_setup_info": null,
|
||||
"credentials_input_schema": {
|
||||
"properties": {
|
||||
"openai_api_key_credentials": {
|
||||
"credentials_provider": [
|
||||
"openai"
|
||||
],
|
||||
"credentials_types": [
|
||||
"api_key"
|
||||
],
|
||||
"properties": {
|
||||
"id": {
|
||||
"title": "Id",
|
||||
"type": "string"
|
||||
},
|
||||
"title": {
|
||||
"anyOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"default": null,
|
||||
"title": "Title"
|
||||
},
|
||||
"provider": {
|
||||
"const": "openai",
|
||||
"title": "Provider",
|
||||
"type": "string"
|
||||
},
|
||||
"type": {
|
||||
"const": "api_key",
|
||||
"title": "Type",
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"id",
|
||||
"provider",
|
||||
"type"
|
||||
],
|
||||
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
|
||||
"type": "object",
|
||||
"discriminator": "model",
|
||||
"discriminator_mapping": {
|
||||
"Llama-3.3-70B-Instruct": "llama_api",
|
||||
"Llama-3.3-8B-Instruct": "llama_api",
|
||||
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
|
||||
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
|
||||
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
|
||||
"amazon/nova-lite-v1": "open_router",
|
||||
"amazon/nova-micro-v1": "open_router",
|
||||
"amazon/nova-pro-v1": "open_router",
|
||||
"claude-3-7-sonnet-20250219": "anthropic",
|
||||
"claude-3-haiku-20240307": "anthropic",
|
||||
"claude-haiku-4-5-20251001": "anthropic",
|
||||
"claude-opus-4-1-20250805": "anthropic",
|
||||
"claude-opus-4-20250514": "anthropic",
|
||||
"claude-opus-4-5-20251101": "anthropic",
|
||||
"claude-sonnet-4-20250514": "anthropic",
|
||||
"claude-sonnet-4-5-20250929": "anthropic",
|
||||
"cohere/command-r-08-2024": "open_router",
|
||||
"cohere/command-r-plus-08-2024": "open_router",
|
||||
"deepseek/deepseek-chat": "open_router",
|
||||
"deepseek/deepseek-r1-0528": "open_router",
|
||||
"dolphin-mistral:latest": "ollama",
|
||||
"google/gemini-2.0-flash-001": "open_router",
|
||||
"google/gemini-2.0-flash-lite-001": "open_router",
|
||||
"google/gemini-2.5-flash": "open_router",
|
||||
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
|
||||
"google/gemini-2.5-pro-preview-03-25": "open_router",
|
||||
"google/gemini-3-pro-preview": "open_router",
|
||||
"gpt-3.5-turbo": "openai",
|
||||
"gpt-4-turbo": "openai",
|
||||
"gpt-4.1-2025-04-14": "openai",
|
||||
"gpt-4.1-mini-2025-04-14": "openai",
|
||||
"gpt-4o": "openai",
|
||||
"gpt-4o-mini": "openai",
|
||||
"gpt-5-2025-08-07": "openai",
|
||||
"gpt-5-chat-latest": "openai",
|
||||
"gpt-5-mini-2025-08-07": "openai",
|
||||
"gpt-5-nano-2025-08-07": "openai",
|
||||
"gpt-5.1-2025-11-13": "openai",
|
||||
"gryphe/mythomax-l2-13b": "open_router",
|
||||
"llama-3.1-8b-instant": "groq",
|
||||
"llama-3.3-70b-versatile": "groq",
|
||||
"llama3": "ollama",
|
||||
"llama3.1:405b": "ollama",
|
||||
"llama3.2": "ollama",
|
||||
"llama3.3": "ollama",
|
||||
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/llama-4-maverick": "open_router",
|
||||
"meta-llama/llama-4-scout": "open_router",
|
||||
"microsoft/wizardlm-2-8x22b": "open_router",
|
||||
"mistralai/mistral-nemo": "open_router",
|
||||
"moonshotai/kimi-k2": "open_router",
|
||||
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
|
||||
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
|
||||
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
|
||||
"o1": "openai",
|
||||
"o1-mini": "openai",
|
||||
"o3-2025-04-16": "openai",
|
||||
"o3-mini": "openai",
|
||||
"openai/gpt-oss-120b": "open_router",
|
||||
"openai/gpt-oss-20b": "open_router",
|
||||
"perplexity/sonar": "open_router",
|
||||
"perplexity/sonar-deep-research": "open_router",
|
||||
"perplexity/sonar-pro": "open_router",
|
||||
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
|
||||
"qwen/qwen3-coder": "open_router",
|
||||
"v0-1.0-md": "v0",
|
||||
"v0-1.5-lg": "v0",
|
||||
"v0-1.5-md": "v0",
|
||||
"x-ai/grok-4": "open_router",
|
||||
"x-ai/grok-4-fast": "open_router",
|
||||
"x-ai/grok-4.1-fast": "open_router",
|
||||
"x-ai/grok-code-fast-1": "open_router"
|
||||
},
|
||||
"discriminator_values": [
|
||||
"o3-mini"
|
||||
]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"openai_api_key_credentials"
|
||||
],
|
||||
"title": "AIFunctionCredentialsInputSchema",
|
||||
"type": "object"
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
File diff suppressed because one or more lines are too long
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,403 @@
|
||||
{
|
||||
"id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
|
||||
"version": 12,
|
||||
"is_active": true,
|
||||
"name": "Flux AI Image Generator",
|
||||
"description": "Transform ideas into breathtaking images with this AI-powered Image Generator. Using cutting-edge Flux AI technology, the tool crafts highly detailed, photorealistic visuals from simple text prompts. Perfect for artists, marketers, and content creators, this generator produces unique images tailored to user specifications. From fantastical scenes to lifelike portraits, users can unleash creativity with professional-quality results in seconds. Easy to use and endlessly versatile, bring imagination to life with the AI Image Generator today!",
|
||||
"instructions": null,
|
||||
"recommended_schedule_cron": null,
|
||||
"nodes": [
|
||||
{
|
||||
"id": "7482c59d-725f-4686-82b9-0dfdc4e92316",
|
||||
"block_id": "cc10ff7b-7753-4ff2-9af6-9399b1a7eddc",
|
||||
"input_default": {
|
||||
"text": "Press the \"Advanced\" toggle and input your replicate API key.\n\nYou can get one here:\nhttps://replicate.com/account/api-tokens\n"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 872.8268131538296,
|
||||
"y": 614.9436919065381
|
||||
}
|
||||
},
|
||||
"input_links": [],
|
||||
"output_links": [],
|
||||
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
|
||||
"graph_version": 12,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
|
||||
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
|
||||
"input_default": {
|
||||
"name": "Generated Image"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 1453.6844137728922,
|
||||
"y": 963.2466395125115
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "06665d23-2f3d-4445-8f22-573446fcff5b",
|
||||
"source_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
|
||||
"sink_id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [],
|
||||
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
|
||||
"graph_version": 12,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
|
||||
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
|
||||
"input_default": {
|
||||
"name": "Image Subject",
|
||||
"value": "Otto the friendly, purple \"Chief Automation Octopus\" helping people automate their tedious tasks.",
|
||||
"description": "The subject of the image"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": -314.43009631839783,
|
||||
"y": 962.935949165938
|
||||
}
|
||||
},
|
||||
"input_links": [],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "1077c61a-a32a-4ed7-becf-11bcf835b914",
|
||||
"source_id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
|
||||
"sink_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_TOPIC",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
|
||||
"graph_version": 12,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
|
||||
"block_id": "90f8c45e-e983-4644-aa0b-b4ebe2f531bc",
|
||||
"input_default": {
|
||||
"prompt": "dog",
|
||||
"output_format": "png",
|
||||
"replicate_model_name": "Flux Pro 1.1"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 873.0119949791526,
|
||||
"y": 966.1604399052493
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "a17ec505-9377-4700-8fe0-124ca81d43a9",
|
||||
"source_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
|
||||
"sink_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "06665d23-2f3d-4445-8f22-573446fcff5b",
|
||||
"source_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
|
||||
"sink_id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
|
||||
"graph_version": 12,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
|
||||
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
|
||||
"input_default": {
|
||||
"model": "gpt-4o-mini",
|
||||
"prompt": "Generate an incredibly detailed, photorealistic image prompt about {{TOPIC}}, describing the camera it's taken with and prompting the diffusion model to use all the best quality techniques.\n\nOutput only the prompt with no additional commentary.",
|
||||
"prompt_values": {}
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 277.3057034159709,
|
||||
"y": 962.8382498113764
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "1077c61a-a32a-4ed7-becf-11bcf835b914",
|
||||
"source_id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
|
||||
"sink_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_TOPIC",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "a17ec505-9377-4700-8fe0-124ca81d43a9",
|
||||
"source_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
|
||||
"sink_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
|
||||
"graph_version": 12,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
{
|
||||
"id": "1077c61a-a32a-4ed7-becf-11bcf835b914",
|
||||
"source_id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
|
||||
"sink_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_TOPIC",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "06665d23-2f3d-4445-8f22-573446fcff5b",
|
||||
"source_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
|
||||
"sink_id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "a17ec505-9377-4700-8fe0-124ca81d43a9",
|
||||
"source_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
|
||||
"sink_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"forked_from_id": null,
|
||||
"forked_from_version": null,
|
||||
"sub_graphs": [],
|
||||
"user_id": "",
|
||||
"created_at": "2024-12-20T18:46:11.492Z",
|
||||
"input_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"Image Subject": {
|
||||
"advanced": false,
|
||||
"secret": false,
|
||||
"title": "Image Subject",
|
||||
"description": "The subject of the image",
|
||||
"default": "Otto the friendly, purple \"Chief Automation Octopus\" helping people automate their tedious tasks."
|
||||
}
|
||||
},
|
||||
"required": []
|
||||
},
|
||||
"output_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"Generated Image": {
|
||||
"advanced": false,
|
||||
"secret": false,
|
||||
"title": "Generated Image"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"Generated Image"
|
||||
]
|
||||
},
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"trigger_setup_info": null,
|
||||
"credentials_input_schema": {
|
||||
"properties": {
|
||||
"replicate_api_key_credentials": {
|
||||
"credentials_provider": [
|
||||
"replicate"
|
||||
],
|
||||
"credentials_types": [
|
||||
"api_key"
|
||||
],
|
||||
"properties": {
|
||||
"id": {
|
||||
"title": "Id",
|
||||
"type": "string"
|
||||
},
|
||||
"title": {
|
||||
"anyOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"default": null,
|
||||
"title": "Title"
|
||||
},
|
||||
"provider": {
|
||||
"const": "replicate",
|
||||
"title": "Provider",
|
||||
"type": "string"
|
||||
},
|
||||
"type": {
|
||||
"const": "api_key",
|
||||
"title": "Type",
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"id",
|
||||
"provider",
|
||||
"type"
|
||||
],
|
||||
"title": "CredentialsMetaInput[Literal[<ProviderName.REPLICATE: 'replicate'>], Literal['api_key']]",
|
||||
"type": "object",
|
||||
"discriminator_values": []
|
||||
},
|
||||
"openai_api_key_credentials": {
|
||||
"credentials_provider": [
|
||||
"openai"
|
||||
],
|
||||
"credentials_types": [
|
||||
"api_key"
|
||||
],
|
||||
"properties": {
|
||||
"id": {
|
||||
"title": "Id",
|
||||
"type": "string"
|
||||
},
|
||||
"title": {
|
||||
"anyOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"default": null,
|
||||
"title": "Title"
|
||||
},
|
||||
"provider": {
|
||||
"const": "openai",
|
||||
"title": "Provider",
|
||||
"type": "string"
|
||||
},
|
||||
"type": {
|
||||
"const": "api_key",
|
||||
"title": "Type",
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"id",
|
||||
"provider",
|
||||
"type"
|
||||
],
|
||||
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
|
||||
"type": "object",
|
||||
"discriminator": "model",
|
||||
"discriminator_mapping": {
|
||||
"Llama-3.3-70B-Instruct": "llama_api",
|
||||
"Llama-3.3-8B-Instruct": "llama_api",
|
||||
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
|
||||
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
|
||||
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
|
||||
"amazon/nova-lite-v1": "open_router",
|
||||
"amazon/nova-micro-v1": "open_router",
|
||||
"amazon/nova-pro-v1": "open_router",
|
||||
"claude-3-7-sonnet-20250219": "anthropic",
|
||||
"claude-3-haiku-20240307": "anthropic",
|
||||
"claude-haiku-4-5-20251001": "anthropic",
|
||||
"claude-opus-4-1-20250805": "anthropic",
|
||||
"claude-opus-4-20250514": "anthropic",
|
||||
"claude-opus-4-5-20251101": "anthropic",
|
||||
"claude-sonnet-4-20250514": "anthropic",
|
||||
"claude-sonnet-4-5-20250929": "anthropic",
|
||||
"cohere/command-r-08-2024": "open_router",
|
||||
"cohere/command-r-plus-08-2024": "open_router",
|
||||
"deepseek/deepseek-chat": "open_router",
|
||||
"deepseek/deepseek-r1-0528": "open_router",
|
||||
"dolphin-mistral:latest": "ollama",
|
||||
"google/gemini-2.0-flash-001": "open_router",
|
||||
"google/gemini-2.0-flash-lite-001": "open_router",
|
||||
"google/gemini-2.5-flash": "open_router",
|
||||
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
|
||||
"google/gemini-2.5-pro-preview-03-25": "open_router",
|
||||
"google/gemini-3-pro-preview": "open_router",
|
||||
"gpt-3.5-turbo": "openai",
|
||||
"gpt-4-turbo": "openai",
|
||||
"gpt-4.1-2025-04-14": "openai",
|
||||
"gpt-4.1-mini-2025-04-14": "openai",
|
||||
"gpt-4o": "openai",
|
||||
"gpt-4o-mini": "openai",
|
||||
"gpt-5-2025-08-07": "openai",
|
||||
"gpt-5-chat-latest": "openai",
|
||||
"gpt-5-mini-2025-08-07": "openai",
|
||||
"gpt-5-nano-2025-08-07": "openai",
|
||||
"gpt-5.1-2025-11-13": "openai",
|
||||
"gryphe/mythomax-l2-13b": "open_router",
|
||||
"llama-3.1-8b-instant": "groq",
|
||||
"llama-3.3-70b-versatile": "groq",
|
||||
"llama3": "ollama",
|
||||
"llama3.1:405b": "ollama",
|
||||
"llama3.2": "ollama",
|
||||
"llama3.3": "ollama",
|
||||
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/llama-4-maverick": "open_router",
|
||||
"meta-llama/llama-4-scout": "open_router",
|
||||
"microsoft/wizardlm-2-8x22b": "open_router",
|
||||
"mistralai/mistral-nemo": "open_router",
|
||||
"moonshotai/kimi-k2": "open_router",
|
||||
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
|
||||
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
|
||||
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
|
||||
"o1": "openai",
|
||||
"o1-mini": "openai",
|
||||
"o3-2025-04-16": "openai",
|
||||
"o3-mini": "openai",
|
||||
"openai/gpt-oss-120b": "open_router",
|
||||
"openai/gpt-oss-20b": "open_router",
|
||||
"perplexity/sonar": "open_router",
|
||||
"perplexity/sonar-deep-research": "open_router",
|
||||
"perplexity/sonar-pro": "open_router",
|
||||
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
|
||||
"qwen/qwen3-coder": "open_router",
|
||||
"v0-1.0-md": "v0",
|
||||
"v0-1.5-lg": "v0",
|
||||
"v0-1.5-md": "v0",
|
||||
"x-ai/grok-4": "open_router",
|
||||
"x-ai/grok-4-fast": "open_router",
|
||||
"x-ai/grok-4.1-fast": "open_router",
|
||||
"x-ai/grok-code-fast-1": "open_router"
|
||||
},
|
||||
"discriminator_values": [
|
||||
"gpt-4o-mini"
|
||||
]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"replicate_api_key_credentials",
|
||||
"openai_api_key_credentials"
|
||||
],
|
||||
"title": "FluxAIImageGeneratorCredentialsInputSchema",
|
||||
"type": "object"
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,505 @@
|
||||
{
|
||||
"id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
|
||||
"version": 12,
|
||||
"is_active": true,
|
||||
"name": "AI Webpage Copy Improver",
|
||||
"description": "Elevate your web content with this powerful AI Webpage Copy Improver. Designed for marketers, SEO specialists, and web developers, this tool analyses and enhances website copy for maximum impact. Using advanced language models, it optimizes text for better clarity, SEO performance, and increased conversion rates. The AI examines your existing content, identifies areas for improvement, and generates refined copy that maintains your brand voice while boosting engagement. From homepage headlines to product descriptions, transform your web presence with AI-driven insights. Improve readability, incorporate targeted keywords, and craft compelling calls-to-action - all with the click of a button. Take your digital marketing to the next level with the AI Webpage Copy Improver.",
|
||||
"instructions": null,
|
||||
"recommended_schedule_cron": null,
|
||||
"nodes": [
|
||||
{
|
||||
"id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
|
||||
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
|
||||
"input_default": {
|
||||
"name": "Improved Webpage Copy"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 1039.5884372540172,
|
||||
"y": -0.8359099621230968
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "d4334477-3616-454f-a430-614ca27f5b36",
|
||||
"source_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
|
||||
"sink_id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
|
||||
"source_name": "response",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [],
|
||||
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
|
||||
"graph_version": 12,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
|
||||
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
|
||||
"input_default": {
|
||||
"name": "Original Page Analysis",
|
||||
"description": "Analysis of the webpage as it currently stands."
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 1037.7724103954706,
|
||||
"y": -606.5934325506903
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "f979ab78-0903-4f19-a7c2-a419d5d81aef",
|
||||
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
|
||||
"sink_id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
|
||||
"source_name": "response",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [],
|
||||
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
|
||||
"graph_version": 12,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
|
||||
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
|
||||
"input_default": {
|
||||
"name": "Homepage URL",
|
||||
"value": "https://agpt.co",
|
||||
"description": "Enter the URL of the homepage you want to improve"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": -1195.1455674454749,
|
||||
"y": 0
|
||||
}
|
||||
},
|
||||
"input_links": [],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "cbb12335-fefd-4560-9fff-98675130fbad",
|
||||
"source_id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
|
||||
"sink_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
|
||||
"source_name": "result",
|
||||
"sink_name": "url",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
|
||||
"graph_version": 12,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "b40595c6-dba3-4779-a129-cd4f01fff103",
|
||||
"block_id": "436c3984-57fd-4b85-8e9a-459b356883bd",
|
||||
"input_default": {
|
||||
"raw_content": false
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": -631.7330786555249,
|
||||
"y": 1.9638396496230826
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "cbb12335-fefd-4560-9fff-98675130fbad",
|
||||
"source_id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
|
||||
"sink_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
|
||||
"source_name": "result",
|
||||
"sink_name": "url",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "adfa6113-77b3-4e32-b136-3e694b87553e",
|
||||
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
|
||||
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
|
||||
"source_name": "content",
|
||||
"sink_name": "prompt_values_#_CONTENT",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "5d5656fd-4208-4296-bc70-e39cc31caada",
|
||||
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
|
||||
"sink_id": "08612ce2-625b-4c17-accd-3acace7b6477",
|
||||
"source_name": "content",
|
||||
"sink_name": "prompt_values_#_CONTENT",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
|
||||
"graph_version": 12,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
|
||||
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
|
||||
"input_default": {
|
||||
"model": "gpt-4o",
|
||||
"prompt": "Current Webpage Content:\n```\n{{CONTENT}}\n```\n\nBased on the following analysis of the webpage content:\n\n```\n{{ANALYSIS}}\n```\n\nRewrite and improve the content to address the identified issues. Focus on:\n1. Enhancing clarity and readability\n2. Optimizing for SEO (suggest and incorporate relevant keywords)\n3. Improving calls-to-action for better conversion rates\n4. Refining the structure and organization\n5. Maintaining brand consistency while improving the overall tone\n\nProvide the improved content in HTML format inside a code-block with \"```\" backticks, preserving the original structure where appropriate. Also, include a brief summary of the changes made and their potential impact.",
|
||||
"prompt_values": {}
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 488.37278423303917,
|
||||
"y": 0
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "adfa6113-77b3-4e32-b136-3e694b87553e",
|
||||
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
|
||||
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
|
||||
"source_name": "content",
|
||||
"sink_name": "prompt_values_#_CONTENT",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "6bcca45d-c9d5-439e-ac43-e4a1264d8f57",
|
||||
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
|
||||
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt_values_#_ANALYSIS",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "d4334477-3616-454f-a430-614ca27f5b36",
|
||||
"source_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
|
||||
"sink_id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
|
||||
"source_name": "response",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
|
||||
"graph_version": 12,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "08612ce2-625b-4c17-accd-3acace7b6477",
|
||||
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
|
||||
"input_default": {
|
||||
"model": "gpt-4o",
|
||||
"prompt": "Analyze the following webpage content and provide a detailed report on its current state, including strengths and weaknesses in terms of clarity, SEO optimization, and potential for conversion:\n\n{{CONTENT}}\n\nInclude observations on:\n1. Overall readability and clarity\n2. Use of keywords and SEO-friendly language\n3. Effectiveness of calls-to-action\n4. Structure and organization of content\n5. Tone and brand consistency",
|
||||
"prompt_values": {}
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": -72.66206703605442,
|
||||
"y": -0.58403945075381
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "5d5656fd-4208-4296-bc70-e39cc31caada",
|
||||
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
|
||||
"sink_id": "08612ce2-625b-4c17-accd-3acace7b6477",
|
||||
"source_name": "content",
|
||||
"sink_name": "prompt_values_#_CONTENT",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "f979ab78-0903-4f19-a7c2-a419d5d81aef",
|
||||
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
|
||||
"sink_id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
|
||||
"source_name": "response",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "6bcca45d-c9d5-439e-ac43-e4a1264d8f57",
|
||||
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
|
||||
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt_values_#_ANALYSIS",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
|
||||
"graph_version": 12,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
{
|
||||
"id": "adfa6113-77b3-4e32-b136-3e694b87553e",
|
||||
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
|
||||
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
|
||||
"source_name": "content",
|
||||
"sink_name": "prompt_values_#_CONTENT",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "d4334477-3616-454f-a430-614ca27f5b36",
|
||||
"source_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
|
||||
"sink_id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
|
||||
"source_name": "response",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "5d5656fd-4208-4296-bc70-e39cc31caada",
|
||||
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
|
||||
"sink_id": "08612ce2-625b-4c17-accd-3acace7b6477",
|
||||
"source_name": "content",
|
||||
"sink_name": "prompt_values_#_CONTENT",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "f979ab78-0903-4f19-a7c2-a419d5d81aef",
|
||||
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
|
||||
"sink_id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
|
||||
"source_name": "response",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "6bcca45d-c9d5-439e-ac43-e4a1264d8f57",
|
||||
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
|
||||
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
|
||||
"source_name": "response",
|
||||
"sink_name": "prompt_values_#_ANALYSIS",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "cbb12335-fefd-4560-9fff-98675130fbad",
|
||||
"source_id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
|
||||
"sink_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
|
||||
"source_name": "result",
|
||||
"sink_name": "url",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"forked_from_id": null,
|
||||
"forked_from_version": null,
|
||||
"sub_graphs": [],
|
||||
"user_id": "",
|
||||
"created_at": "2024-12-20T19:47:22.036Z",
|
||||
"input_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"Homepage URL": {
|
||||
"advanced": false,
|
||||
"secret": false,
|
||||
"title": "Homepage URL",
|
||||
"description": "Enter the URL of the homepage you want to improve",
|
||||
"default": "https://agpt.co"
|
||||
}
|
||||
},
|
||||
"required": []
|
||||
},
|
||||
"output_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"Improved Webpage Copy": {
|
||||
"advanced": false,
|
||||
"secret": false,
|
||||
"title": "Improved Webpage Copy"
|
||||
},
|
||||
"Original Page Analysis": {
|
||||
"advanced": false,
|
||||
"secret": false,
|
||||
"title": "Original Page Analysis",
|
||||
"description": "Analysis of the webpage as it currently stands."
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"Improved Webpage Copy",
|
||||
"Original Page Analysis"
|
||||
]
|
||||
},
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"trigger_setup_info": null,
|
||||
"credentials_input_schema": {
|
||||
"properties": {
|
||||
"jina_api_key_credentials": {
|
||||
"credentials_provider": [
|
||||
"jina"
|
||||
],
|
||||
"credentials_types": [
|
||||
"api_key"
|
||||
],
|
||||
"properties": {
|
||||
"id": {
|
||||
"title": "Id",
|
||||
"type": "string"
|
||||
},
|
||||
"title": {
|
||||
"anyOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"default": null,
|
||||
"title": "Title"
|
||||
},
|
||||
"provider": {
|
||||
"const": "jina",
|
||||
"title": "Provider",
|
||||
"type": "string"
|
||||
},
|
||||
"type": {
|
||||
"const": "api_key",
|
||||
"title": "Type",
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"id",
|
||||
"provider",
|
||||
"type"
|
||||
],
|
||||
"title": "CredentialsMetaInput[Literal[<ProviderName.JINA: 'jina'>], Literal['api_key']]",
|
||||
"type": "object",
|
||||
"discriminator_values": []
|
||||
},
|
||||
"openai_api_key_credentials": {
|
||||
"credentials_provider": [
|
||||
"openai"
|
||||
],
|
||||
"credentials_types": [
|
||||
"api_key"
|
||||
],
|
||||
"properties": {
|
||||
"id": {
|
||||
"title": "Id",
|
||||
"type": "string"
|
||||
},
|
||||
"title": {
|
||||
"anyOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"default": null,
|
||||
"title": "Title"
|
||||
},
|
||||
"provider": {
|
||||
"const": "openai",
|
||||
"title": "Provider",
|
||||
"type": "string"
|
||||
},
|
||||
"type": {
|
||||
"const": "api_key",
|
||||
"title": "Type",
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"id",
|
||||
"provider",
|
||||
"type"
|
||||
],
|
||||
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
|
||||
"type": "object",
|
||||
"discriminator": "model",
|
||||
"discriminator_mapping": {
|
||||
"Llama-3.3-70B-Instruct": "llama_api",
|
||||
"Llama-3.3-8B-Instruct": "llama_api",
|
||||
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
|
||||
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
|
||||
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
|
||||
"amazon/nova-lite-v1": "open_router",
|
||||
"amazon/nova-micro-v1": "open_router",
|
||||
"amazon/nova-pro-v1": "open_router",
|
||||
"claude-3-7-sonnet-20250219": "anthropic",
|
||||
"claude-3-haiku-20240307": "anthropic",
|
||||
"claude-haiku-4-5-20251001": "anthropic",
|
||||
"claude-opus-4-1-20250805": "anthropic",
|
||||
"claude-opus-4-20250514": "anthropic",
|
||||
"claude-opus-4-5-20251101": "anthropic",
|
||||
"claude-sonnet-4-20250514": "anthropic",
|
||||
"claude-sonnet-4-5-20250929": "anthropic",
|
||||
"cohere/command-r-08-2024": "open_router",
|
||||
"cohere/command-r-plus-08-2024": "open_router",
|
||||
"deepseek/deepseek-chat": "open_router",
|
||||
"deepseek/deepseek-r1-0528": "open_router",
|
||||
"dolphin-mistral:latest": "ollama",
|
||||
"google/gemini-2.0-flash-001": "open_router",
|
||||
"google/gemini-2.0-flash-lite-001": "open_router",
|
||||
"google/gemini-2.5-flash": "open_router",
|
||||
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
|
||||
"google/gemini-2.5-pro-preview-03-25": "open_router",
|
||||
"google/gemini-3-pro-preview": "open_router",
|
||||
"gpt-3.5-turbo": "openai",
|
||||
"gpt-4-turbo": "openai",
|
||||
"gpt-4.1-2025-04-14": "openai",
|
||||
"gpt-4.1-mini-2025-04-14": "openai",
|
||||
"gpt-4o": "openai",
|
||||
"gpt-4o-mini": "openai",
|
||||
"gpt-5-2025-08-07": "openai",
|
||||
"gpt-5-chat-latest": "openai",
|
||||
"gpt-5-mini-2025-08-07": "openai",
|
||||
"gpt-5-nano-2025-08-07": "openai",
|
||||
"gpt-5.1-2025-11-13": "openai",
|
||||
"gryphe/mythomax-l2-13b": "open_router",
|
||||
"llama-3.1-8b-instant": "groq",
|
||||
"llama-3.3-70b-versatile": "groq",
|
||||
"llama3": "ollama",
|
||||
"llama3.1:405b": "ollama",
|
||||
"llama3.2": "ollama",
|
||||
"llama3.3": "ollama",
|
||||
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/llama-4-maverick": "open_router",
|
||||
"meta-llama/llama-4-scout": "open_router",
|
||||
"microsoft/wizardlm-2-8x22b": "open_router",
|
||||
"mistralai/mistral-nemo": "open_router",
|
||||
"moonshotai/kimi-k2": "open_router",
|
||||
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
|
||||
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
|
||||
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
|
||||
"o1": "openai",
|
||||
"o1-mini": "openai",
|
||||
"o3-2025-04-16": "openai",
|
||||
"o3-mini": "openai",
|
||||
"openai/gpt-oss-120b": "open_router",
|
||||
"openai/gpt-oss-20b": "open_router",
|
||||
"perplexity/sonar": "open_router",
|
||||
"perplexity/sonar-deep-research": "open_router",
|
||||
"perplexity/sonar-pro": "open_router",
|
||||
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
|
||||
"qwen/qwen3-coder": "open_router",
|
||||
"v0-1.0-md": "v0",
|
||||
"v0-1.5-lg": "v0",
|
||||
"v0-1.5-md": "v0",
|
||||
"x-ai/grok-4": "open_router",
|
||||
"x-ai/grok-4-fast": "open_router",
|
||||
"x-ai/grok-4.1-fast": "open_router",
|
||||
"x-ai/grok-code-fast-1": "open_router"
|
||||
},
|
||||
"discriminator_values": [
|
||||
"gpt-4o"
|
||||
]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"jina_api_key_credentials",
|
||||
"openai_api_key_credentials"
|
||||
],
|
||||
"title": "AIWebpageCopyImproverCredentialsInputSchema",
|
||||
"type": "object"
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,615 @@
|
||||
{
|
||||
"id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
|
||||
"version": 29,
|
||||
"is_active": true,
|
||||
"name": "Email Address Finder",
|
||||
"description": "Input information of a business and find their email address",
|
||||
"instructions": null,
|
||||
"recommended_schedule_cron": null,
|
||||
"nodes": [
|
||||
{
|
||||
"id": "04cad535-9f1a-4876-8b07-af5897d8c282",
|
||||
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
|
||||
"input_default": {
|
||||
"name": "Address",
|
||||
"value": "USA"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 1047.9357219838776,
|
||||
"y": 1067.9123910370954
|
||||
}
|
||||
},
|
||||
"input_links": [],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "aac29f7b-3cd1-4c91-9a2a-72a8301c0957",
|
||||
"source_id": "04cad535-9f1a-4876-8b07-af5897d8c282",
|
||||
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
|
||||
"source_name": "result",
|
||||
"sink_name": "values_#_ADDRESS",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
|
||||
"block_id": "3146e4fe-2cdd-4f29-bd12-0c9d5bb4deb0",
|
||||
"input_default": {
|
||||
"group": 1,
|
||||
"pattern": "<email>(.*?)<\\/email>"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 3381.2821481740634,
|
||||
"y": 246.091098184158
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "9f8188ce-1f3d-46fb-acda-b2a57c0e5da6",
|
||||
"source_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
|
||||
"sink_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
|
||||
"source_name": "response",
|
||||
"sink_name": "text",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "b15b5143-27b7-486e-a166-4095e72e5235",
|
||||
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
|
||||
"sink_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
|
||||
"source_name": "negative",
|
||||
"sink_name": "values_#_Result",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "23591872-3c6b-4562-87d3-5b6ade698e48",
|
||||
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
|
||||
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
|
||||
"source_name": "positive",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
|
||||
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
|
||||
"input_default": {
|
||||
"name": "Email"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 4525.4246310882,
|
||||
"y": 246.36913665010354
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "d87b07ea-dcec-4d38-a644-2c1d741ea3cb",
|
||||
"source_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
|
||||
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
|
||||
"source_name": "output",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "23591872-3c6b-4562-87d3-5b6ade698e48",
|
||||
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
|
||||
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
|
||||
"source_name": "positive",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [],
|
||||
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "4a41df99-ffe2-4c12-b528-632979c9c030",
|
||||
"block_id": "87840993-2053-44b7-8da4-187ad4ee518c",
|
||||
"input_default": {},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 2182.7499999999995,
|
||||
"y": 242.00001144409185
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "2e411d3d-79ba-4958-9c1c-b76a45a2e649",
|
||||
"source_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
|
||||
"sink_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
|
||||
"source_name": "output",
|
||||
"sink_name": "query",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "899cc7d8-a96b-4107-b3c6-4c78edcf0c6b",
|
||||
"source_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
|
||||
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
|
||||
"source_name": "results",
|
||||
"sink_name": "prompt_values_#_WEBSITE_CONTENT",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
|
||||
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
|
||||
"input_default": {
|
||||
"name": "Business Name",
|
||||
"value": "Tim Cook"
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 1049.9704155272595,
|
||||
"y": 244.49931152418344
|
||||
}
|
||||
},
|
||||
"input_links": [],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "946b522c-365f-4ee0-96f9-28863d9882ea",
|
||||
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
|
||||
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
|
||||
"source_name": "result",
|
||||
"sink_name": "values_#_NAME",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "43e920a7-0bb4-4fae-9a22-91df95c7342a",
|
||||
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
|
||||
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_BUSINESS_NAME",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
|
||||
"block_id": "db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
|
||||
"input_default": {
|
||||
"format": "Email Address of {{NAME}}, {{ADDRESS}}",
|
||||
"values": {}
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 1625.25,
|
||||
"y": 243.25001144409185
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "946b522c-365f-4ee0-96f9-28863d9882ea",
|
||||
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
|
||||
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
|
||||
"source_name": "result",
|
||||
"sink_name": "values_#_NAME",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "aac29f7b-3cd1-4c91-9a2a-72a8301c0957",
|
||||
"source_id": "04cad535-9f1a-4876-8b07-af5897d8c282",
|
||||
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
|
||||
"source_name": "result",
|
||||
"sink_name": "values_#_ADDRESS",
|
||||
"is_static": true
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "2e411d3d-79ba-4958-9c1c-b76a45a2e649",
|
||||
"source_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
|
||||
"sink_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
|
||||
"source_name": "output",
|
||||
"sink_name": "query",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "266b7255-11c4-4b88-99e2-85db31a2e865",
|
||||
"block_id": "db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
|
||||
"input_default": {
|
||||
"format": "Failed to find email. \nResult:\n{{RESULT}}",
|
||||
"values": {}
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 3949.7493830805934,
|
||||
"y": 705.209819698647
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "b15b5143-27b7-486e-a166-4095e72e5235",
|
||||
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
|
||||
"sink_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
|
||||
"source_name": "negative",
|
||||
"sink_name": "values_#_Result",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "d87b07ea-dcec-4d38-a644-2c1d741ea3cb",
|
||||
"source_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
|
||||
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
|
||||
"source_name": "output",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
},
|
||||
{
|
||||
"id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
|
||||
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
|
||||
"input_default": {
|
||||
"model": "claude-sonnet-4-5-20250929",
|
||||
"prompt": "<business_website>\n{{WEBSITE_CONTENT}}\n</business_website>\n\nExtract the Contact Email of {{BUSINESS_NAME}}.\n\nIf no email that can be used to contact {{BUSINESS_NAME}} is present, output `N/A`.\nDo not share any emails other than the email for this specific entity.\n\nIf multiple present pick the likely best one.\n\nRespond with the email (or N/A) inside <email></email> tags.\n\nExample Response:\n\n<thoughts_or_comments>\nThere were many emails present, but luckily one was for {{BUSINESS_NAME}} which I have included below.\n</thoughts_or_comments>\n<email>\nexample@email.com\n</email>",
|
||||
"prompt_values": {}
|
||||
},
|
||||
"metadata": {
|
||||
"position": {
|
||||
"x": 2774.879259081777,
|
||||
"y": 243.3102035752969
|
||||
}
|
||||
},
|
||||
"input_links": [
|
||||
{
|
||||
"id": "43e920a7-0bb4-4fae-9a22-91df95c7342a",
|
||||
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
|
||||
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_BUSINESS_NAME",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "899cc7d8-a96b-4107-b3c6-4c78edcf0c6b",
|
||||
"source_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
|
||||
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
|
||||
"source_name": "results",
|
||||
"sink_name": "prompt_values_#_WEBSITE_CONTENT",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"output_links": [
|
||||
{
|
||||
"id": "9f8188ce-1f3d-46fb-acda-b2a57c0e5da6",
|
||||
"source_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
|
||||
"sink_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
|
||||
"source_name": "response",
|
||||
"sink_name": "text",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
|
||||
"graph_version": 29,
|
||||
"webhook_id": null,
|
||||
"webhook": null
|
||||
}
|
||||
],
|
||||
"links": [
|
||||
{
|
||||
"id": "9f8188ce-1f3d-46fb-acda-b2a57c0e5da6",
|
||||
"source_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
|
||||
"sink_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
|
||||
"source_name": "response",
|
||||
"sink_name": "text",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "b15b5143-27b7-486e-a166-4095e72e5235",
|
||||
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
|
||||
"sink_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
|
||||
"source_name": "negative",
|
||||
"sink_name": "values_#_Result",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "d87b07ea-dcec-4d38-a644-2c1d741ea3cb",
|
||||
"source_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
|
||||
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
|
||||
"source_name": "output",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "946b522c-365f-4ee0-96f9-28863d9882ea",
|
||||
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
|
||||
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
|
||||
"source_name": "result",
|
||||
"sink_name": "values_#_NAME",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "23591872-3c6b-4562-87d3-5b6ade698e48",
|
||||
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
|
||||
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
|
||||
"source_name": "positive",
|
||||
"sink_name": "value",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "43e920a7-0bb4-4fae-9a22-91df95c7342a",
|
||||
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
|
||||
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
|
||||
"source_name": "result",
|
||||
"sink_name": "prompt_values_#_BUSINESS_NAME",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "2e411d3d-79ba-4958-9c1c-b76a45a2e649",
|
||||
"source_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
|
||||
"sink_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
|
||||
"source_name": "output",
|
||||
"sink_name": "query",
|
||||
"is_static": false
|
||||
},
|
||||
{
|
||||
"id": "aac29f7b-3cd1-4c91-9a2a-72a8301c0957",
|
||||
"source_id": "04cad535-9f1a-4876-8b07-af5897d8c282",
|
||||
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
|
||||
"source_name": "result",
|
||||
"sink_name": "values_#_ADDRESS",
|
||||
"is_static": true
|
||||
},
|
||||
{
|
||||
"id": "899cc7d8-a96b-4107-b3c6-4c78edcf0c6b",
|
||||
"source_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
|
||||
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
|
||||
"source_name": "results",
|
||||
"sink_name": "prompt_values_#_WEBSITE_CONTENT",
|
||||
"is_static": false
|
||||
}
|
||||
],
|
||||
"forked_from_id": null,
|
||||
"forked_from_version": null,
|
||||
"sub_graphs": [],
|
||||
"user_id": "",
|
||||
"created_at": "2025-01-03T00:46:30.244Z",
|
||||
"input_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"Address": {
|
||||
"advanced": false,
|
||||
"secret": false,
|
||||
"title": "Address",
|
||||
"default": "USA"
|
||||
},
|
||||
"Business Name": {
|
||||
"advanced": false,
|
||||
"secret": false,
|
||||
"title": "Business Name",
|
||||
"default": "Tim Cook"
|
||||
}
|
||||
},
|
||||
"required": []
|
||||
},
|
||||
"output_schema": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"Email": {
|
||||
"advanced": false,
|
||||
"secret": false,
|
||||
"title": "Email"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"Email"
|
||||
]
|
||||
},
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"trigger_setup_info": null,
|
||||
"credentials_input_schema": {
|
||||
"properties": {
|
||||
"jina_api_key_credentials": {
|
||||
"credentials_provider": [
|
||||
"jina"
|
||||
],
|
||||
"credentials_types": [
|
||||
"api_key"
|
||||
],
|
||||
"properties": {
|
||||
"id": {
|
||||
"title": "Id",
|
||||
"type": "string"
|
||||
},
|
||||
"title": {
|
||||
"anyOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"default": null,
|
||||
"title": "Title"
|
||||
},
|
||||
"provider": {
|
||||
"const": "jina",
|
||||
"title": "Provider",
|
||||
"type": "string"
|
||||
},
|
||||
"type": {
|
||||
"const": "api_key",
|
||||
"title": "Type",
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"id",
|
||||
"provider",
|
||||
"type"
|
||||
],
|
||||
"title": "CredentialsMetaInput[Literal[<ProviderName.JINA: 'jina'>], Literal['api_key']]",
|
||||
"type": "object",
|
||||
"discriminator_values": []
|
||||
},
|
||||
"anthropic_api_key_credentials": {
|
||||
"credentials_provider": [
|
||||
"anthropic"
|
||||
],
|
||||
"credentials_types": [
|
||||
"api_key"
|
||||
],
|
||||
"properties": {
|
||||
"id": {
|
||||
"title": "Id",
|
||||
"type": "string"
|
||||
},
|
||||
"title": {
|
||||
"anyOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "null"
|
||||
}
|
||||
],
|
||||
"default": null,
|
||||
"title": "Title"
|
||||
},
|
||||
"provider": {
|
||||
"const": "anthropic",
|
||||
"title": "Provider",
|
||||
"type": "string"
|
||||
},
|
||||
"type": {
|
||||
"const": "api_key",
|
||||
"title": "Type",
|
||||
"type": "string"
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"id",
|
||||
"provider",
|
||||
"type"
|
||||
],
|
||||
"title": "CredentialsMetaInput[Literal[<ProviderName.ANTHROPIC: 'anthropic'>], Literal['api_key']]",
|
||||
"type": "object",
|
||||
"discriminator": "model",
|
||||
"discriminator_mapping": {
|
||||
"Llama-3.3-70B-Instruct": "llama_api",
|
||||
"Llama-3.3-8B-Instruct": "llama_api",
|
||||
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
|
||||
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
|
||||
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
|
||||
"amazon/nova-lite-v1": "open_router",
|
||||
"amazon/nova-micro-v1": "open_router",
|
||||
"amazon/nova-pro-v1": "open_router",
|
||||
"claude-3-7-sonnet-20250219": "anthropic",
|
||||
"claude-3-haiku-20240307": "anthropic",
|
||||
"claude-haiku-4-5-20251001": "anthropic",
|
||||
"claude-opus-4-1-20250805": "anthropic",
|
||||
"claude-opus-4-20250514": "anthropic",
|
||||
"claude-opus-4-5-20251101": "anthropic",
|
||||
"claude-sonnet-4-20250514": "anthropic",
|
||||
"claude-sonnet-4-5-20250929": "anthropic",
|
||||
"cohere/command-r-08-2024": "open_router",
|
||||
"cohere/command-r-plus-08-2024": "open_router",
|
||||
"deepseek/deepseek-chat": "open_router",
|
||||
"deepseek/deepseek-r1-0528": "open_router",
|
||||
"dolphin-mistral:latest": "ollama",
|
||||
"google/gemini-2.0-flash-001": "open_router",
|
||||
"google/gemini-2.0-flash-lite-001": "open_router",
|
||||
"google/gemini-2.5-flash": "open_router",
|
||||
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
|
||||
"google/gemini-2.5-pro-preview-03-25": "open_router",
|
||||
"google/gemini-3-pro-preview": "open_router",
|
||||
"gpt-3.5-turbo": "openai",
|
||||
"gpt-4-turbo": "openai",
|
||||
"gpt-4.1-2025-04-14": "openai",
|
||||
"gpt-4.1-mini-2025-04-14": "openai",
|
||||
"gpt-4o": "openai",
|
||||
"gpt-4o-mini": "openai",
|
||||
"gpt-5-2025-08-07": "openai",
|
||||
"gpt-5-chat-latest": "openai",
|
||||
"gpt-5-mini-2025-08-07": "openai",
|
||||
"gpt-5-nano-2025-08-07": "openai",
|
||||
"gpt-5.1-2025-11-13": "openai",
|
||||
"gryphe/mythomax-l2-13b": "open_router",
|
||||
"llama-3.1-8b-instant": "groq",
|
||||
"llama-3.3-70b-versatile": "groq",
|
||||
"llama3": "ollama",
|
||||
"llama3.1:405b": "ollama",
|
||||
"llama3.2": "ollama",
|
||||
"llama3.3": "ollama",
|
||||
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
|
||||
"meta-llama/llama-4-maverick": "open_router",
|
||||
"meta-llama/llama-4-scout": "open_router",
|
||||
"microsoft/wizardlm-2-8x22b": "open_router",
|
||||
"mistralai/mistral-nemo": "open_router",
|
||||
"moonshotai/kimi-k2": "open_router",
|
||||
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
|
||||
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
|
||||
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
|
||||
"o1": "openai",
|
||||
"o1-mini": "openai",
|
||||
"o3-2025-04-16": "openai",
|
||||
"o3-mini": "openai",
|
||||
"openai/gpt-oss-120b": "open_router",
|
||||
"openai/gpt-oss-20b": "open_router",
|
||||
"perplexity/sonar": "open_router",
|
||||
"perplexity/sonar-deep-research": "open_router",
|
||||
"perplexity/sonar-pro": "open_router",
|
||||
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
|
||||
"qwen/qwen3-coder": "open_router",
|
||||
"v0-1.0-md": "v0",
|
||||
"v0-1.5-lg": "v0",
|
||||
"v0-1.5-md": "v0",
|
||||
"x-ai/grok-4": "open_router",
|
||||
"x-ai/grok-4-fast": "open_router",
|
||||
"x-ai/grok-4.1-fast": "open_router",
|
||||
"x-ai/grok-code-fast-1": "open_router"
|
||||
},
|
||||
"discriminator_values": [
|
||||
"claude-sonnet-4-5-20250929"
|
||||
]
|
||||
}
|
||||
},
|
||||
"required": [
|
||||
"jina_api_key_credentials",
|
||||
"anthropic_api_key_credentials"
|
||||
],
|
||||
"title": "EmailAddressFinderCredentialsInputSchema",
|
||||
"type": "object"
|
||||
}
|
||||
}
|
||||
@@ -11,7 +11,7 @@ from backend.data.block import (
|
||||
BlockType,
|
||||
get_block,
|
||||
)
|
||||
from backend.data.execution import ExecutionStatus, NodesInputMasks
|
||||
from backend.data.execution import ExecutionContext, ExecutionStatus, NodesInputMasks
|
||||
from backend.data.model import NodeExecutionStats, SchemaField
|
||||
from backend.util.json import validate_with_jsonschema
|
||||
from backend.util.retry import func_retry
|
||||
@@ -72,9 +72,9 @@ class AgentExecutorBlock(Block):
|
||||
input_data: Input,
|
||||
*,
|
||||
graph_exec_id: str,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
|
||||
from backend.executor import utils as execution_utils
|
||||
|
||||
graph_exec = await execution_utils.add_graph_execution(
|
||||
@@ -83,8 +83,9 @@ class AgentExecutorBlock(Block):
|
||||
user_id=input_data.user_id,
|
||||
inputs=input_data.inputs,
|
||||
nodes_input_masks=input_data.nodes_input_masks,
|
||||
parent_graph_exec_id=graph_exec_id,
|
||||
is_sub_graph=True, # AgentExecutorBlock executions are always sub-graphs
|
||||
execution_context=execution_context.model_copy(
|
||||
update={"parent_execution_id": graph_exec_id},
|
||||
),
|
||||
)
|
||||
|
||||
logger = execution_utils.LogMetadata(
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import asyncio
|
||||
from enum import Enum
|
||||
from typing import Literal
|
||||
|
||||
@@ -19,7 +20,7 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.file import MediaFileType
|
||||
from backend.util.file import MediaFileType, store_media_file
|
||||
|
||||
|
||||
class GeminiImageModel(str, Enum):
|
||||
@@ -27,6 +28,20 @@ class GeminiImageModel(str, Enum):
|
||||
NANO_BANANA_PRO = "google/nano-banana-pro"
|
||||
|
||||
|
||||
class AspectRatio(str, Enum):
|
||||
MATCH_INPUT_IMAGE = "match_input_image"
|
||||
ASPECT_1_1 = "1:1"
|
||||
ASPECT_2_3 = "2:3"
|
||||
ASPECT_3_2 = "3:2"
|
||||
ASPECT_3_4 = "3:4"
|
||||
ASPECT_4_3 = "4:3"
|
||||
ASPECT_4_5 = "4:5"
|
||||
ASPECT_5_4 = "5:4"
|
||||
ASPECT_9_16 = "9:16"
|
||||
ASPECT_16_9 = "16:9"
|
||||
ASPECT_21_9 = "21:9"
|
||||
|
||||
|
||||
class OutputFormat(str, Enum):
|
||||
JPG = "jpg"
|
||||
PNG = "png"
|
||||
@@ -69,6 +84,11 @@ class AIImageCustomizerBlock(Block):
|
||||
default=[],
|
||||
title="Input Images",
|
||||
)
|
||||
aspect_ratio: AspectRatio = SchemaField(
|
||||
description="Aspect ratio of the generated image",
|
||||
default=AspectRatio.MATCH_INPUT_IMAGE,
|
||||
title="Aspect Ratio",
|
||||
)
|
||||
output_format: OutputFormat = SchemaField(
|
||||
description="Format of the output image",
|
||||
default=OutputFormat.PNG,
|
||||
@@ -92,6 +112,7 @@ class AIImageCustomizerBlock(Block):
|
||||
"prompt": "Make the scene more vibrant and colorful",
|
||||
"model": GeminiImageModel.NANO_BANANA,
|
||||
"images": [],
|
||||
"aspect_ratio": AspectRatio.MATCH_INPUT_IMAGE,
|
||||
"output_format": OutputFormat.JPG,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
@@ -116,11 +137,25 @@ class AIImageCustomizerBlock(Block):
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
# Convert local file paths to Data URIs (base64) so Replicate can access them
|
||||
processed_images = await asyncio.gather(
|
||||
*(
|
||||
store_media_file(
|
||||
graph_exec_id=graph_exec_id,
|
||||
file=img,
|
||||
user_id=user_id,
|
||||
return_content=True,
|
||||
)
|
||||
for img in input_data.images
|
||||
)
|
||||
)
|
||||
|
||||
result = await self.run_model(
|
||||
api_key=credentials.api_key,
|
||||
model_name=input_data.model.value,
|
||||
prompt=input_data.prompt,
|
||||
images=input_data.images,
|
||||
images=processed_images,
|
||||
aspect_ratio=input_data.aspect_ratio.value,
|
||||
output_format=input_data.output_format.value,
|
||||
)
|
||||
yield "image_url", result
|
||||
@@ -133,12 +168,14 @@ class AIImageCustomizerBlock(Block):
|
||||
model_name: str,
|
||||
prompt: str,
|
||||
images: list[MediaFileType],
|
||||
aspect_ratio: str,
|
||||
output_format: str,
|
||||
) -> MediaFileType:
|
||||
client = ReplicateClient(api_token=api_key.get_secret_value())
|
||||
|
||||
input_params: dict = {
|
||||
"prompt": prompt,
|
||||
"aspect_ratio": aspect_ratio,
|
||||
"output_format": output_format,
|
||||
}
|
||||
|
||||
|
||||
@@ -1371,7 +1371,7 @@ async def create_base(
|
||||
if tables:
|
||||
params["tables"] = tables
|
||||
|
||||
print(params)
|
||||
logger.debug(f"Creating Airtable base with params: {params}")
|
||||
|
||||
response = await Requests().post(
|
||||
"https://api.airtable.com/v0/meta/bases",
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import base64
|
||||
import io
|
||||
import mimetypes
|
||||
from enum import Enum
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
from typing import Any, Literal, cast
|
||||
|
||||
import discord
|
||||
from pydantic import SecretStr
|
||||
@@ -33,6 +34,19 @@ TEST_CREDENTIALS = TEST_BOT_CREDENTIALS
|
||||
TEST_CREDENTIALS_INPUT = TEST_BOT_CREDENTIALS_INPUT
|
||||
|
||||
|
||||
class ThreadArchiveDuration(str, Enum):
|
||||
"""Discord thread auto-archive duration options"""
|
||||
|
||||
ONE_HOUR = "60"
|
||||
ONE_DAY = "1440"
|
||||
THREE_DAYS = "4320"
|
||||
ONE_WEEK = "10080"
|
||||
|
||||
def to_minutes(self) -> int:
|
||||
"""Convert the duration string to minutes for Discord API"""
|
||||
return int(self.value)
|
||||
|
||||
|
||||
class ReadDiscordMessagesBlock(Block):
|
||||
class Input(BlockSchemaInput):
|
||||
credentials: DiscordCredentials = DiscordCredentialsField()
|
||||
@@ -1166,3 +1180,211 @@ class DiscordChannelInfoBlock(Block):
|
||||
raise ValueError(f"Login error occurred: {login_err}")
|
||||
except Exception as e:
|
||||
raise ValueError(f"An error occurred: {e}")
|
||||
|
||||
|
||||
class CreateDiscordThreadBlock(Block):
|
||||
class Input(BlockSchemaInput):
|
||||
credentials: DiscordCredentials = DiscordCredentialsField()
|
||||
channel_name: str = SchemaField(
|
||||
description="Channel ID or channel name to create the thread in"
|
||||
)
|
||||
server_name: str = SchemaField(
|
||||
description="Server name (only needed if using channel name)",
|
||||
advanced=True,
|
||||
default="",
|
||||
)
|
||||
thread_name: str = SchemaField(description="The name of the thread to create")
|
||||
is_private: bool = SchemaField(
|
||||
description="Whether to create a private thread (requires Boost Level 2+) or public thread",
|
||||
default=False,
|
||||
)
|
||||
auto_archive_duration: ThreadArchiveDuration = SchemaField(
|
||||
description="Duration before the thread is automatically archived",
|
||||
advanced=True,
|
||||
default=ThreadArchiveDuration.ONE_WEEK,
|
||||
)
|
||||
message_content: str = SchemaField(
|
||||
description="Optional initial message to send in the thread",
|
||||
advanced=True,
|
||||
default="",
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
status: str = SchemaField(description="Operation status")
|
||||
thread_id: str = SchemaField(description="ID of the created thread")
|
||||
thread_name: str = SchemaField(description="Name of the created thread")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="e8f3c9a2-7b5d-4f1e-9c6a-3d8e2b4f7a1c",
|
||||
input_schema=CreateDiscordThreadBlock.Input,
|
||||
output_schema=CreateDiscordThreadBlock.Output,
|
||||
description="Creates a new thread in a Discord channel.",
|
||||
categories={BlockCategory.SOCIAL},
|
||||
test_input={
|
||||
"channel_name": "general",
|
||||
"thread_name": "Test Thread",
|
||||
"is_private": False,
|
||||
"auto_archive_duration": ThreadArchiveDuration.ONE_HOUR,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("status", "Thread created successfully"),
|
||||
("thread_id", "123456789012345678"),
|
||||
("thread_name", "Test Thread"),
|
||||
],
|
||||
test_mock={
|
||||
"create_thread": lambda *args, **kwargs: {
|
||||
"status": "Thread created successfully",
|
||||
"thread_id": "123456789012345678",
|
||||
"thread_name": "Test Thread",
|
||||
}
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
)
|
||||
|
||||
async def create_thread(
|
||||
self,
|
||||
token: str,
|
||||
channel_name: str,
|
||||
server_name: str | None,
|
||||
thread_name: str,
|
||||
is_private: bool,
|
||||
auto_archive_duration: ThreadArchiveDuration,
|
||||
message_content: str,
|
||||
) -> dict:
|
||||
intents = discord.Intents.default()
|
||||
intents.guilds = True
|
||||
intents.message_content = True # Required for sending messages in threads
|
||||
client = discord.Client(intents=intents)
|
||||
|
||||
result = {}
|
||||
|
||||
@client.event
|
||||
async def on_ready():
|
||||
channel = None
|
||||
|
||||
# Try to parse as channel ID first
|
||||
try:
|
||||
channel_id = int(channel_name)
|
||||
try:
|
||||
channel = await client.fetch_channel(channel_id)
|
||||
except discord.errors.NotFound:
|
||||
result["status"] = f"Channel with ID {channel_id} not found"
|
||||
await client.close()
|
||||
return
|
||||
except discord.errors.Forbidden:
|
||||
result["status"] = (
|
||||
f"Bot does not have permission to view channel {channel_id}"
|
||||
)
|
||||
await client.close()
|
||||
return
|
||||
except ValueError:
|
||||
# Not an ID, treat as channel name
|
||||
# Collect all matching channels to detect duplicates
|
||||
matching_channels = []
|
||||
for guild in client.guilds:
|
||||
# Skip guilds if server_name is provided and doesn't match
|
||||
if (
|
||||
server_name
|
||||
and server_name.strip()
|
||||
and guild.name != server_name
|
||||
):
|
||||
continue
|
||||
for ch in guild.text_channels:
|
||||
if ch.name == channel_name:
|
||||
matching_channels.append(ch)
|
||||
|
||||
if not matching_channels:
|
||||
result["status"] = f"Channel not found: {channel_name}"
|
||||
await client.close()
|
||||
return
|
||||
elif len(matching_channels) > 1:
|
||||
result["status"] = (
|
||||
f"Multiple channels named '{channel_name}' found. "
|
||||
"Please specify server_name to disambiguate."
|
||||
)
|
||||
await client.close()
|
||||
return
|
||||
else:
|
||||
channel = matching_channels[0]
|
||||
|
||||
if not channel:
|
||||
result["status"] = "Failed to resolve channel"
|
||||
await client.close()
|
||||
return
|
||||
|
||||
# Type check - ensure it's a text channel that can create threads
|
||||
if not hasattr(channel, "create_thread"):
|
||||
result["status"] = (
|
||||
f"Channel {channel_name} cannot create threads (not a text channel)"
|
||||
)
|
||||
await client.close()
|
||||
return
|
||||
|
||||
# After the hasattr check, we know channel is a TextChannel
|
||||
channel = cast(discord.TextChannel, channel)
|
||||
|
||||
try:
|
||||
# Create the thread using discord.py 2.0+ API
|
||||
thread_type = (
|
||||
discord.ChannelType.private_thread
|
||||
if is_private
|
||||
else discord.ChannelType.public_thread
|
||||
)
|
||||
|
||||
# Cast to the specific Literal type that discord.py expects
|
||||
duration_minutes = cast(
|
||||
Literal[60, 1440, 4320, 10080], auto_archive_duration.to_minutes()
|
||||
)
|
||||
|
||||
# The 'type' parameter exists in discord.py 2.0+ but isn't in type stubs yet
|
||||
# pyright: ignore[reportCallIssue]
|
||||
thread = await channel.create_thread(
|
||||
name=thread_name,
|
||||
type=thread_type,
|
||||
auto_archive_duration=duration_minutes,
|
||||
)
|
||||
|
||||
# Send initial message if provided
|
||||
if message_content:
|
||||
await thread.send(message_content)
|
||||
|
||||
result["status"] = "Thread created successfully"
|
||||
result["thread_id"] = str(thread.id)
|
||||
result["thread_name"] = thread.name
|
||||
|
||||
except discord.errors.Forbidden as e:
|
||||
result["status"] = (
|
||||
f"Bot does not have permission to create threads in this channel. {str(e)}"
|
||||
)
|
||||
except Exception as e:
|
||||
result["status"] = f"Error creating thread: {str(e)}"
|
||||
finally:
|
||||
await client.close()
|
||||
|
||||
await client.start(token)
|
||||
return result
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
result = await self.create_thread(
|
||||
token=credentials.api_key.get_secret_value(),
|
||||
channel_name=input_data.channel_name,
|
||||
server_name=input_data.server_name or None,
|
||||
thread_name=input_data.thread_name,
|
||||
is_private=input_data.is_private,
|
||||
auto_archive_duration=input_data.auto_archive_duration,
|
||||
message_content=input_data.message_content,
|
||||
)
|
||||
|
||||
yield "status", result.get("status", "Unknown error")
|
||||
if "thread_id" in result:
|
||||
yield "thread_id", result["thread_id"]
|
||||
if "thread_name" in result:
|
||||
yield "thread_name", result["thread_name"]
|
||||
|
||||
except discord.errors.LoginFailure as login_err:
|
||||
raise ValueError(f"Login error occurred: {login_err}")
|
||||
|
||||
@@ -0,0 +1,108 @@
|
||||
{
|
||||
"action": "created",
|
||||
"discussion": {
|
||||
"repository_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
|
||||
"category": {
|
||||
"id": 12345678,
|
||||
"node_id": "DIC_kwDOJKSTjM4CXXXX",
|
||||
"repository_id": 614765452,
|
||||
"emoji": ":pray:",
|
||||
"name": "Q&A",
|
||||
"description": "Ask the community for help",
|
||||
"created_at": "2023-03-16T09:21:07Z",
|
||||
"updated_at": "2023-03-16T09:21:07Z",
|
||||
"slug": "q-a",
|
||||
"is_answerable": true
|
||||
},
|
||||
"answer_html_url": null,
|
||||
"answer_chosen_at": null,
|
||||
"answer_chosen_by": null,
|
||||
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/discussions/9999",
|
||||
"id": 5000000001,
|
||||
"node_id": "D_kwDOJKSTjM4AYYYY",
|
||||
"number": 9999,
|
||||
"title": "How do I configure custom blocks?",
|
||||
"user": {
|
||||
"login": "curious-user",
|
||||
"id": 22222222,
|
||||
"node_id": "MDQ6VXNlcjIyMjIyMjIy",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/22222222?v=4",
|
||||
"url": "https://api.github.com/users/curious-user",
|
||||
"html_url": "https://github.com/curious-user",
|
||||
"type": "User",
|
||||
"site_admin": false
|
||||
},
|
||||
"state": "open",
|
||||
"state_reason": null,
|
||||
"locked": false,
|
||||
"comments": 0,
|
||||
"created_at": "2024-12-01T17:00:00Z",
|
||||
"updated_at": "2024-12-01T17:00:00Z",
|
||||
"author_association": "NONE",
|
||||
"active_lock_reason": null,
|
||||
"body": "## Question\n\nI'm trying to create a custom block for my specific use case. I've read the documentation but I'm not sure how to:\n\n1. Define the input/output schema\n2. Handle authentication\n3. Test my block locally\n\nCan someone point me to examples or provide guidance?\n\n## Environment\n\n- AutoGPT Platform version: latest\n- Python: 3.11",
|
||||
"reactions": {
|
||||
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/discussions/9999/reactions",
|
||||
"total_count": 0,
|
||||
"+1": 0,
|
||||
"-1": 0,
|
||||
"laugh": 0,
|
||||
"hooray": 0,
|
||||
"confused": 0,
|
||||
"heart": 0,
|
||||
"rocket": 0,
|
||||
"eyes": 0
|
||||
},
|
||||
"timeline_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/discussions/9999/timeline"
|
||||
},
|
||||
"repository": {
|
||||
"id": 614765452,
|
||||
"node_id": "R_kgDOJKSTjA",
|
||||
"name": "AutoGPT",
|
||||
"full_name": "Significant-Gravitas/AutoGPT",
|
||||
"private": false,
|
||||
"owner": {
|
||||
"login": "Significant-Gravitas",
|
||||
"id": 130738209,
|
||||
"node_id": "O_kgDOB8roIQ",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
|
||||
"url": "https://api.github.com/users/Significant-Gravitas",
|
||||
"html_url": "https://github.com/Significant-Gravitas",
|
||||
"type": "Organization",
|
||||
"site_admin": false
|
||||
},
|
||||
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
|
||||
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
|
||||
"fork": false,
|
||||
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
|
||||
"created_at": "2023-03-16T09:21:07Z",
|
||||
"updated_at": "2024-12-01T17:00:00Z",
|
||||
"pushed_at": "2024-12-01T12:00:00Z",
|
||||
"stargazers_count": 170000,
|
||||
"watchers_count": 170000,
|
||||
"language": "Python",
|
||||
"has_discussions": true,
|
||||
"forks_count": 45000,
|
||||
"visibility": "public",
|
||||
"default_branch": "master"
|
||||
},
|
||||
"organization": {
|
||||
"login": "Significant-Gravitas",
|
||||
"id": 130738209,
|
||||
"node_id": "O_kgDOB8roIQ",
|
||||
"url": "https://api.github.com/orgs/Significant-Gravitas",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
|
||||
"description": ""
|
||||
},
|
||||
"sender": {
|
||||
"login": "curious-user",
|
||||
"id": 22222222,
|
||||
"node_id": "MDQ6VXNlcjIyMjIyMjIy",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/22222222?v=4",
|
||||
"gravatar_id": "",
|
||||
"url": "https://api.github.com/users/curious-user",
|
||||
"html_url": "https://github.com/curious-user",
|
||||
"type": "User",
|
||||
"site_admin": false
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,112 @@
|
||||
{
|
||||
"action": "opened",
|
||||
"issue": {
|
||||
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345",
|
||||
"repository_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
|
||||
"labels_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/labels{/name}",
|
||||
"comments_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/comments",
|
||||
"events_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/events",
|
||||
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/issues/12345",
|
||||
"id": 2000000001,
|
||||
"node_id": "I_kwDOJKSTjM5wXXXX",
|
||||
"number": 12345,
|
||||
"title": "Bug: Application crashes when processing large files",
|
||||
"user": {
|
||||
"login": "bug-reporter",
|
||||
"id": 11111111,
|
||||
"node_id": "MDQ6VXNlcjExMTExMTEx",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/11111111?v=4",
|
||||
"url": "https://api.github.com/users/bug-reporter",
|
||||
"html_url": "https://github.com/bug-reporter",
|
||||
"type": "User",
|
||||
"site_admin": false
|
||||
},
|
||||
"labels": [
|
||||
{
|
||||
"id": 5272676214,
|
||||
"node_id": "LA_kwDOJKSTjM8AAAABOkandg",
|
||||
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/labels/bug",
|
||||
"name": "bug",
|
||||
"color": "d73a4a",
|
||||
"default": true,
|
||||
"description": "Something isn't working"
|
||||
}
|
||||
],
|
||||
"state": "open",
|
||||
"locked": false,
|
||||
"assignee": null,
|
||||
"assignees": [],
|
||||
"milestone": null,
|
||||
"comments": 0,
|
||||
"created_at": "2024-12-01T16:00:00Z",
|
||||
"updated_at": "2024-12-01T16:00:00Z",
|
||||
"closed_at": null,
|
||||
"author_association": "NONE",
|
||||
"active_lock_reason": null,
|
||||
"body": "## Description\n\nWhen I try to process a file larger than 100MB, the application crashes with an out of memory error.\n\n## Steps to Reproduce\n\n1. Open the application\n2. Select a file larger than 100MB\n3. Click 'Process'\n4. Application crashes\n\n## Expected Behavior\n\nThe application should handle large files gracefully.\n\n## Environment\n\n- OS: Ubuntu 22.04\n- Python: 3.11\n- AutoGPT Version: 1.0.0",
|
||||
"reactions": {
|
||||
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/reactions",
|
||||
"total_count": 0,
|
||||
"+1": 0,
|
||||
"-1": 0,
|
||||
"laugh": 0,
|
||||
"hooray": 0,
|
||||
"confused": 0,
|
||||
"heart": 0,
|
||||
"rocket": 0,
|
||||
"eyes": 0
|
||||
},
|
||||
"timeline_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/timeline",
|
||||
"state_reason": null
|
||||
},
|
||||
"repository": {
|
||||
"id": 614765452,
|
||||
"node_id": "R_kgDOJKSTjA",
|
||||
"name": "AutoGPT",
|
||||
"full_name": "Significant-Gravitas/AutoGPT",
|
||||
"private": false,
|
||||
"owner": {
|
||||
"login": "Significant-Gravitas",
|
||||
"id": 130738209,
|
||||
"node_id": "O_kgDOB8roIQ",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
|
||||
"url": "https://api.github.com/users/Significant-Gravitas",
|
||||
"html_url": "https://github.com/Significant-Gravitas",
|
||||
"type": "Organization",
|
||||
"site_admin": false
|
||||
},
|
||||
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
|
||||
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
|
||||
"fork": false,
|
||||
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
|
||||
"created_at": "2023-03-16T09:21:07Z",
|
||||
"updated_at": "2024-12-01T16:00:00Z",
|
||||
"pushed_at": "2024-12-01T12:00:00Z",
|
||||
"stargazers_count": 170000,
|
||||
"watchers_count": 170000,
|
||||
"language": "Python",
|
||||
"forks_count": 45000,
|
||||
"open_issues_count": 190,
|
||||
"visibility": "public",
|
||||
"default_branch": "master"
|
||||
},
|
||||
"organization": {
|
||||
"login": "Significant-Gravitas",
|
||||
"id": 130738209,
|
||||
"node_id": "O_kgDOB8roIQ",
|
||||
"url": "https://api.github.com/orgs/Significant-Gravitas",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
|
||||
"description": ""
|
||||
},
|
||||
"sender": {
|
||||
"login": "bug-reporter",
|
||||
"id": 11111111,
|
||||
"node_id": "MDQ6VXNlcjExMTExMTEx",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/11111111?v=4",
|
||||
"gravatar_id": "",
|
||||
"url": "https://api.github.com/users/bug-reporter",
|
||||
"html_url": "https://github.com/bug-reporter",
|
||||
"type": "User",
|
||||
"site_admin": false
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,97 @@
|
||||
{
|
||||
"action": "published",
|
||||
"release": {
|
||||
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789",
|
||||
"assets_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789/assets",
|
||||
"upload_url": "https://uploads.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789/assets{?name,label}",
|
||||
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/releases/tag/v1.0.0",
|
||||
"id": 123456789,
|
||||
"author": {
|
||||
"login": "ntindle",
|
||||
"id": 12345678,
|
||||
"node_id": "MDQ6VXNlcjEyMzQ1Njc4",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/12345678?v=4",
|
||||
"gravatar_id": "",
|
||||
"url": "https://api.github.com/users/ntindle",
|
||||
"html_url": "https://github.com/ntindle",
|
||||
"type": "User",
|
||||
"site_admin": false
|
||||
},
|
||||
"node_id": "RE_kwDOJKSTjM4HWwAA",
|
||||
"tag_name": "v1.0.0",
|
||||
"target_commitish": "master",
|
||||
"name": "AutoGPT Platform v1.0.0",
|
||||
"draft": false,
|
||||
"prerelease": false,
|
||||
"created_at": "2024-12-01T10:00:00Z",
|
||||
"published_at": "2024-12-01T12:00:00Z",
|
||||
"assets": [
|
||||
{
|
||||
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/assets/987654321",
|
||||
"id": 987654321,
|
||||
"node_id": "RA_kwDOJKSTjM4HWwBB",
|
||||
"name": "autogpt-v1.0.0.zip",
|
||||
"label": "Release Package",
|
||||
"content_type": "application/zip",
|
||||
"state": "uploaded",
|
||||
"size": 52428800,
|
||||
"download_count": 0,
|
||||
"created_at": "2024-12-01T11:30:00Z",
|
||||
"updated_at": "2024-12-01T11:35:00Z",
|
||||
"browser_download_url": "https://github.com/Significant-Gravitas/AutoGPT/releases/download/v1.0.0/autogpt-v1.0.0.zip"
|
||||
}
|
||||
],
|
||||
"tarball_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/tarball/v1.0.0",
|
||||
"zipball_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/zipball/v1.0.0",
|
||||
"body": "## What's New\n\n- Feature 1: Amazing new capability\n- Feature 2: Performance improvements\n- Bug fixes and stability improvements\n\n## Breaking Changes\n\nNone\n\n## Contributors\n\nThanks to all our contributors!"
|
||||
},
|
||||
"repository": {
|
||||
"id": 614765452,
|
||||
"node_id": "R_kgDOJKSTjA",
|
||||
"name": "AutoGPT",
|
||||
"full_name": "Significant-Gravitas/AutoGPT",
|
||||
"private": false,
|
||||
"owner": {
|
||||
"login": "Significant-Gravitas",
|
||||
"id": 130738209,
|
||||
"node_id": "O_kgDOB8roIQ",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
|
||||
"url": "https://api.github.com/users/Significant-Gravitas",
|
||||
"html_url": "https://github.com/Significant-Gravitas",
|
||||
"type": "Organization",
|
||||
"site_admin": false
|
||||
},
|
||||
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
|
||||
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
|
||||
"fork": false,
|
||||
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
|
||||
"created_at": "2023-03-16T09:21:07Z",
|
||||
"updated_at": "2024-12-01T12:00:00Z",
|
||||
"pushed_at": "2024-12-01T12:00:00Z",
|
||||
"stargazers_count": 170000,
|
||||
"watchers_count": 170000,
|
||||
"language": "Python",
|
||||
"forks_count": 45000,
|
||||
"visibility": "public",
|
||||
"default_branch": "master"
|
||||
},
|
||||
"organization": {
|
||||
"login": "Significant-Gravitas",
|
||||
"id": 130738209,
|
||||
"node_id": "O_kgDOB8roIQ",
|
||||
"url": "https://api.github.com/orgs/Significant-Gravitas",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
|
||||
"description": ""
|
||||
},
|
||||
"sender": {
|
||||
"login": "ntindle",
|
||||
"id": 12345678,
|
||||
"node_id": "MDQ6VXNlcjEyMzQ1Njc4",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/12345678?v=4",
|
||||
"gravatar_id": "",
|
||||
"url": "https://api.github.com/users/ntindle",
|
||||
"html_url": "https://github.com/ntindle",
|
||||
"type": "User",
|
||||
"site_admin": false
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,53 @@
|
||||
{
|
||||
"action": "created",
|
||||
"starred_at": "2024-12-01T15:30:00Z",
|
||||
"repository": {
|
||||
"id": 614765452,
|
||||
"node_id": "R_kgDOJKSTjA",
|
||||
"name": "AutoGPT",
|
||||
"full_name": "Significant-Gravitas/AutoGPT",
|
||||
"private": false,
|
||||
"owner": {
|
||||
"login": "Significant-Gravitas",
|
||||
"id": 130738209,
|
||||
"node_id": "O_kgDOB8roIQ",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
|
||||
"url": "https://api.github.com/users/Significant-Gravitas",
|
||||
"html_url": "https://github.com/Significant-Gravitas",
|
||||
"type": "Organization",
|
||||
"site_admin": false
|
||||
},
|
||||
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
|
||||
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
|
||||
"fork": false,
|
||||
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
|
||||
"created_at": "2023-03-16T09:21:07Z",
|
||||
"updated_at": "2024-12-01T15:30:00Z",
|
||||
"pushed_at": "2024-12-01T12:00:00Z",
|
||||
"stargazers_count": 170001,
|
||||
"watchers_count": 170001,
|
||||
"language": "Python",
|
||||
"forks_count": 45000,
|
||||
"visibility": "public",
|
||||
"default_branch": "master"
|
||||
},
|
||||
"organization": {
|
||||
"login": "Significant-Gravitas",
|
||||
"id": 130738209,
|
||||
"node_id": "O_kgDOB8roIQ",
|
||||
"url": "https://api.github.com/orgs/Significant-Gravitas",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
|
||||
"description": ""
|
||||
},
|
||||
"sender": {
|
||||
"login": "awesome-contributor",
|
||||
"id": 98765432,
|
||||
"node_id": "MDQ6VXNlcjk4NzY1NDMy",
|
||||
"avatar_url": "https://avatars.githubusercontent.com/u/98765432?v=4",
|
||||
"gravatar_id": "",
|
||||
"url": "https://api.github.com/users/awesome-contributor",
|
||||
"html_url": "https://github.com/awesome-contributor",
|
||||
"type": "User",
|
||||
"site_admin": false
|
||||
}
|
||||
}
|
||||
@@ -159,3 +159,391 @@ class GithubPullRequestTriggerBlock(GitHubTriggerBase, Block):
|
||||
|
||||
|
||||
# --8<-- [end:GithubTriggerExample]
|
||||
|
||||
|
||||
class GithubStarTriggerBlock(GitHubTriggerBase, Block):
|
||||
"""Trigger block for GitHub star events - useful for milestone celebrations."""
|
||||
|
||||
EXAMPLE_PAYLOAD_FILE = (
|
||||
Path(__file__).parent / "example_payloads" / "star.created.json"
|
||||
)
|
||||
|
||||
class Input(GitHubTriggerBase.Input):
|
||||
class EventsFilter(BaseModel):
|
||||
"""
|
||||
https://docs.github.com/en/webhooks/webhook-events-and-payloads#star
|
||||
"""
|
||||
|
||||
created: bool = False
|
||||
deleted: bool = False
|
||||
|
||||
events: EventsFilter = SchemaField(
|
||||
title="Events", description="The star events to subscribe to"
|
||||
)
|
||||
|
||||
class Output(GitHubTriggerBase.Output):
|
||||
event: str = SchemaField(
|
||||
description="The star event that triggered the webhook ('created' or 'deleted')"
|
||||
)
|
||||
starred_at: str = SchemaField(
|
||||
description="ISO timestamp when the repo was starred (empty if deleted)"
|
||||
)
|
||||
stargazers_count: int = SchemaField(
|
||||
description="Current number of stars on the repository"
|
||||
)
|
||||
repository_name: str = SchemaField(
|
||||
description="Full name of the repository (owner/repo)"
|
||||
)
|
||||
repository_url: str = SchemaField(description="URL to the repository")
|
||||
|
||||
def __init__(self):
|
||||
from backend.integrations.webhooks.github import GithubWebhookType
|
||||
|
||||
example_payload = json.loads(
|
||||
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
id="551e0a35-100b-49b7-89b8-3031322239b6",
|
||||
description="This block triggers on GitHub star events. "
|
||||
"Useful for celebrating milestones (e.g., 1k, 10k stars) or tracking engagement.",
|
||||
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
|
||||
input_schema=GithubStarTriggerBlock.Input,
|
||||
output_schema=GithubStarTriggerBlock.Output,
|
||||
webhook_config=BlockWebhookConfig(
|
||||
provider=ProviderName.GITHUB,
|
||||
webhook_type=GithubWebhookType.REPO,
|
||||
resource_format="{repo}",
|
||||
event_filter_input="events",
|
||||
event_format="star.{event}",
|
||||
),
|
||||
test_input={
|
||||
"repo": "Significant-Gravitas/AutoGPT",
|
||||
"events": {"created": True},
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"payload": example_payload,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[
|
||||
("payload", example_payload),
|
||||
("triggered_by_user", example_payload["sender"]),
|
||||
("event", example_payload["action"]),
|
||||
("starred_at", example_payload.get("starred_at", "")),
|
||||
("stargazers_count", example_payload["repository"]["stargazers_count"]),
|
||||
("repository_name", example_payload["repository"]["full_name"]),
|
||||
("repository_url", example_payload["repository"]["html_url"]),
|
||||
],
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
|
||||
async for name, value in super().run(input_data, **kwargs):
|
||||
yield name, value
|
||||
yield "event", input_data.payload["action"]
|
||||
yield "starred_at", input_data.payload.get("starred_at", "")
|
||||
yield "stargazers_count", input_data.payload["repository"]["stargazers_count"]
|
||||
yield "repository_name", input_data.payload["repository"]["full_name"]
|
||||
yield "repository_url", input_data.payload["repository"]["html_url"]
|
||||
|
||||
|
||||
class GithubReleaseTriggerBlock(GitHubTriggerBase, Block):
|
||||
"""Trigger block for GitHub release events - ideal for announcing new versions."""
|
||||
|
||||
EXAMPLE_PAYLOAD_FILE = (
|
||||
Path(__file__).parent / "example_payloads" / "release.published.json"
|
||||
)
|
||||
|
||||
class Input(GitHubTriggerBase.Input):
|
||||
class EventsFilter(BaseModel):
|
||||
"""
|
||||
https://docs.github.com/en/webhooks/webhook-events-and-payloads#release
|
||||
"""
|
||||
|
||||
published: bool = False
|
||||
unpublished: bool = False
|
||||
created: bool = False
|
||||
edited: bool = False
|
||||
deleted: bool = False
|
||||
prereleased: bool = False
|
||||
released: bool = False
|
||||
|
||||
events: EventsFilter = SchemaField(
|
||||
title="Events", description="The release events to subscribe to"
|
||||
)
|
||||
|
||||
class Output(GitHubTriggerBase.Output):
|
||||
event: str = SchemaField(
|
||||
description="The release event that triggered the webhook (e.g., 'published')"
|
||||
)
|
||||
release: dict = SchemaField(description="The full release object")
|
||||
release_url: str = SchemaField(description="URL to the release page")
|
||||
tag_name: str = SchemaField(description="The release tag name (e.g., 'v1.0.0')")
|
||||
release_name: str = SchemaField(description="Human-readable release name")
|
||||
body: str = SchemaField(description="Release notes/description")
|
||||
prerelease: bool = SchemaField(description="Whether this is a prerelease")
|
||||
draft: bool = SchemaField(description="Whether this is a draft release")
|
||||
assets: list = SchemaField(description="List of release assets/files")
|
||||
|
||||
def __init__(self):
|
||||
from backend.integrations.webhooks.github import GithubWebhookType
|
||||
|
||||
example_payload = json.loads(
|
||||
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
id="2052dd1b-74e1-46ac-9c87-c7a0e057b60b",
|
||||
description="This block triggers on GitHub release events. "
|
||||
"Perfect for automating announcements to Discord, Twitter, or other platforms.",
|
||||
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
|
||||
input_schema=GithubReleaseTriggerBlock.Input,
|
||||
output_schema=GithubReleaseTriggerBlock.Output,
|
||||
webhook_config=BlockWebhookConfig(
|
||||
provider=ProviderName.GITHUB,
|
||||
webhook_type=GithubWebhookType.REPO,
|
||||
resource_format="{repo}",
|
||||
event_filter_input="events",
|
||||
event_format="release.{event}",
|
||||
),
|
||||
test_input={
|
||||
"repo": "Significant-Gravitas/AutoGPT",
|
||||
"events": {"published": True},
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"payload": example_payload,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[
|
||||
("payload", example_payload),
|
||||
("triggered_by_user", example_payload["sender"]),
|
||||
("event", example_payload["action"]),
|
||||
("release", example_payload["release"]),
|
||||
("release_url", example_payload["release"]["html_url"]),
|
||||
("tag_name", example_payload["release"]["tag_name"]),
|
||||
("release_name", example_payload["release"]["name"]),
|
||||
("body", example_payload["release"]["body"]),
|
||||
("prerelease", example_payload["release"]["prerelease"]),
|
||||
("draft", example_payload["release"]["draft"]),
|
||||
("assets", example_payload["release"]["assets"]),
|
||||
],
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
|
||||
async for name, value in super().run(input_data, **kwargs):
|
||||
yield name, value
|
||||
release = input_data.payload["release"]
|
||||
yield "event", input_data.payload["action"]
|
||||
yield "release", release
|
||||
yield "release_url", release["html_url"]
|
||||
yield "tag_name", release["tag_name"]
|
||||
yield "release_name", release.get("name", "")
|
||||
yield "body", release.get("body", "")
|
||||
yield "prerelease", release["prerelease"]
|
||||
yield "draft", release["draft"]
|
||||
yield "assets", release["assets"]
|
||||
|
||||
|
||||
class GithubIssuesTriggerBlock(GitHubTriggerBase, Block):
|
||||
"""Trigger block for GitHub issues events - great for triage and notifications."""
|
||||
|
||||
EXAMPLE_PAYLOAD_FILE = (
|
||||
Path(__file__).parent / "example_payloads" / "issues.opened.json"
|
||||
)
|
||||
|
||||
class Input(GitHubTriggerBase.Input):
|
||||
class EventsFilter(BaseModel):
|
||||
"""
|
||||
https://docs.github.com/en/webhooks/webhook-events-and-payloads#issues
|
||||
"""
|
||||
|
||||
opened: bool = False
|
||||
edited: bool = False
|
||||
deleted: bool = False
|
||||
closed: bool = False
|
||||
reopened: bool = False
|
||||
assigned: bool = False
|
||||
unassigned: bool = False
|
||||
labeled: bool = False
|
||||
unlabeled: bool = False
|
||||
locked: bool = False
|
||||
unlocked: bool = False
|
||||
transferred: bool = False
|
||||
milestoned: bool = False
|
||||
demilestoned: bool = False
|
||||
pinned: bool = False
|
||||
unpinned: bool = False
|
||||
|
||||
events: EventsFilter = SchemaField(
|
||||
title="Events", description="The issue events to subscribe to"
|
||||
)
|
||||
|
||||
class Output(GitHubTriggerBase.Output):
|
||||
event: str = SchemaField(
|
||||
description="The issue event that triggered the webhook (e.g., 'opened')"
|
||||
)
|
||||
number: int = SchemaField(description="The issue number")
|
||||
issue: dict = SchemaField(description="The full issue object")
|
||||
issue_url: str = SchemaField(description="URL to the issue")
|
||||
issue_title: str = SchemaField(description="The issue title")
|
||||
issue_body: str = SchemaField(description="The issue body/description")
|
||||
labels: list = SchemaField(description="List of labels on the issue")
|
||||
assignees: list = SchemaField(description="List of assignees")
|
||||
state: str = SchemaField(description="Issue state ('open' or 'closed')")
|
||||
|
||||
def __init__(self):
|
||||
from backend.integrations.webhooks.github import GithubWebhookType
|
||||
|
||||
example_payload = json.loads(
|
||||
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
id="b2605464-e486-4bf4-aad3-d8a213c8a48a",
|
||||
description="This block triggers on GitHub issues events. "
|
||||
"Useful for automated triage, notifications, and welcoming first-time contributors.",
|
||||
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
|
||||
input_schema=GithubIssuesTriggerBlock.Input,
|
||||
output_schema=GithubIssuesTriggerBlock.Output,
|
||||
webhook_config=BlockWebhookConfig(
|
||||
provider=ProviderName.GITHUB,
|
||||
webhook_type=GithubWebhookType.REPO,
|
||||
resource_format="{repo}",
|
||||
event_filter_input="events",
|
||||
event_format="issues.{event}",
|
||||
),
|
||||
test_input={
|
||||
"repo": "Significant-Gravitas/AutoGPT",
|
||||
"events": {"opened": True},
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"payload": example_payload,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[
|
||||
("payload", example_payload),
|
||||
("triggered_by_user", example_payload["sender"]),
|
||||
("event", example_payload["action"]),
|
||||
("number", example_payload["issue"]["number"]),
|
||||
("issue", example_payload["issue"]),
|
||||
("issue_url", example_payload["issue"]["html_url"]),
|
||||
("issue_title", example_payload["issue"]["title"]),
|
||||
("issue_body", example_payload["issue"]["body"]),
|
||||
("labels", example_payload["issue"]["labels"]),
|
||||
("assignees", example_payload["issue"]["assignees"]),
|
||||
("state", example_payload["issue"]["state"]),
|
||||
],
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
|
||||
async for name, value in super().run(input_data, **kwargs):
|
||||
yield name, value
|
||||
issue = input_data.payload["issue"]
|
||||
yield "event", input_data.payload["action"]
|
||||
yield "number", issue["number"]
|
||||
yield "issue", issue
|
||||
yield "issue_url", issue["html_url"]
|
||||
yield "issue_title", issue["title"]
|
||||
yield "issue_body", issue.get("body") or ""
|
||||
yield "labels", issue["labels"]
|
||||
yield "assignees", issue["assignees"]
|
||||
yield "state", issue["state"]
|
||||
|
||||
|
||||
class GithubDiscussionTriggerBlock(GitHubTriggerBase, Block):
|
||||
"""Trigger block for GitHub discussion events - perfect for community Q&A sync."""
|
||||
|
||||
EXAMPLE_PAYLOAD_FILE = (
|
||||
Path(__file__).parent / "example_payloads" / "discussion.created.json"
|
||||
)
|
||||
|
||||
class Input(GitHubTriggerBase.Input):
|
||||
class EventsFilter(BaseModel):
|
||||
"""
|
||||
https://docs.github.com/en/webhooks/webhook-events-and-payloads#discussion
|
||||
"""
|
||||
|
||||
created: bool = False
|
||||
edited: bool = False
|
||||
deleted: bool = False
|
||||
answered: bool = False
|
||||
unanswered: bool = False
|
||||
labeled: bool = False
|
||||
unlabeled: bool = False
|
||||
locked: bool = False
|
||||
unlocked: bool = False
|
||||
category_changed: bool = False
|
||||
transferred: bool = False
|
||||
pinned: bool = False
|
||||
unpinned: bool = False
|
||||
|
||||
events: EventsFilter = SchemaField(
|
||||
title="Events", description="The discussion events to subscribe to"
|
||||
)
|
||||
|
||||
class Output(GitHubTriggerBase.Output):
|
||||
event: str = SchemaField(
|
||||
description="The discussion event that triggered the webhook"
|
||||
)
|
||||
number: int = SchemaField(description="The discussion number")
|
||||
discussion: dict = SchemaField(description="The full discussion object")
|
||||
discussion_url: str = SchemaField(description="URL to the discussion")
|
||||
title: str = SchemaField(description="The discussion title")
|
||||
body: str = SchemaField(description="The discussion body")
|
||||
category: dict = SchemaField(description="The discussion category object")
|
||||
category_name: str = SchemaField(description="Name of the category")
|
||||
state: str = SchemaField(description="Discussion state")
|
||||
|
||||
def __init__(self):
|
||||
from backend.integrations.webhooks.github import GithubWebhookType
|
||||
|
||||
example_payload = json.loads(
|
||||
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
id="87f847b3-d81a-424e-8e89-acadb5c9d52b",
|
||||
description="This block triggers on GitHub Discussions events. "
|
||||
"Great for syncing Q&A to Discord or auto-responding to common questions. "
|
||||
"Note: Discussions must be enabled on the repository.",
|
||||
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
|
||||
input_schema=GithubDiscussionTriggerBlock.Input,
|
||||
output_schema=GithubDiscussionTriggerBlock.Output,
|
||||
webhook_config=BlockWebhookConfig(
|
||||
provider=ProviderName.GITHUB,
|
||||
webhook_type=GithubWebhookType.REPO,
|
||||
resource_format="{repo}",
|
||||
event_filter_input="events",
|
||||
event_format="discussion.{event}",
|
||||
),
|
||||
test_input={
|
||||
"repo": "Significant-Gravitas/AutoGPT",
|
||||
"events": {"created": True},
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
"payload": example_payload,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[
|
||||
("payload", example_payload),
|
||||
("triggered_by_user", example_payload["sender"]),
|
||||
("event", example_payload["action"]),
|
||||
("number", example_payload["discussion"]["number"]),
|
||||
("discussion", example_payload["discussion"]),
|
||||
("discussion_url", example_payload["discussion"]["html_url"]),
|
||||
("title", example_payload["discussion"]["title"]),
|
||||
("body", example_payload["discussion"]["body"]),
|
||||
("category", example_payload["discussion"]["category"]),
|
||||
("category_name", example_payload["discussion"]["category"]["name"]),
|
||||
("state", example_payload["discussion"]["state"]),
|
||||
],
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
|
||||
async for name, value in super().run(input_data, **kwargs):
|
||||
yield name, value
|
||||
discussion = input_data.payload["discussion"]
|
||||
yield "event", input_data.payload["action"]
|
||||
yield "number", discussion["number"]
|
||||
yield "discussion", discussion
|
||||
yield "discussion_url", discussion["html_url"]
|
||||
yield "title", discussion["title"]
|
||||
yield "body", discussion.get("body") or ""
|
||||
yield "category", discussion["category"]
|
||||
yield "category_name", discussion["category"]["name"]
|
||||
yield "state", discussion["state"]
|
||||
|
||||
155
autogpt_platform/backend/backend/blocks/google/_drive.py
Normal file
155
autogpt_platform/backend/backend/blocks/google/_drive.py
Normal file
@@ -0,0 +1,155 @@
|
||||
from typing import Any, Literal, Optional
|
||||
|
||||
from pydantic import BaseModel, ConfigDict, Field
|
||||
|
||||
from backend.data.model import SchemaField
|
||||
|
||||
AttachmentView = Literal[
|
||||
"DOCS",
|
||||
"DOCUMENTS",
|
||||
"SPREADSHEETS",
|
||||
"PRESENTATIONS",
|
||||
"DOCS_IMAGES",
|
||||
"FOLDERS",
|
||||
]
|
||||
ATTACHMENT_VIEWS: tuple[AttachmentView, ...] = (
|
||||
"DOCS",
|
||||
"DOCUMENTS",
|
||||
"SPREADSHEETS",
|
||||
"PRESENTATIONS",
|
||||
"DOCS_IMAGES",
|
||||
"FOLDERS",
|
||||
)
|
||||
|
||||
|
||||
class _GoogleDriveFileBase(BaseModel):
|
||||
"""Internal base class for Google Drive file representation."""
|
||||
|
||||
model_config = ConfigDict(populate_by_name=True)
|
||||
|
||||
id: str = Field(description="Google Drive file/folder ID")
|
||||
name: Optional[str] = Field(None, description="File/folder name")
|
||||
mime_type: Optional[str] = Field(
|
||||
None,
|
||||
alias="mimeType",
|
||||
description="MIME type (e.g., application/vnd.google-apps.document)",
|
||||
)
|
||||
url: Optional[str] = Field(None, description="URL to open the file")
|
||||
icon_url: Optional[str] = Field(None, alias="iconUrl", description="Icon URL")
|
||||
is_folder: Optional[bool] = Field(
|
||||
None, alias="isFolder", description="Whether this is a folder"
|
||||
)
|
||||
|
||||
|
||||
class GoogleDriveFile(_GoogleDriveFileBase):
|
||||
"""
|
||||
Represents a Google Drive file/folder with optional credentials for chaining.
|
||||
|
||||
Used for both inputs and outputs in Google Drive blocks. The `_credentials_id`
|
||||
field enables chaining between blocks - when one block outputs a file, the
|
||||
next block can use the same credentials to access it.
|
||||
|
||||
When used with GoogleDriveFileField(), the frontend renders a combined
|
||||
auth + file picker UI that automatically populates `_credentials_id`.
|
||||
"""
|
||||
|
||||
# Hidden field for credential ID - populated by frontend, preserved in outputs
|
||||
credentials_id: Optional[str] = Field(
|
||||
None,
|
||||
alias="_credentials_id",
|
||||
description="Internal: credential ID for authentication",
|
||||
)
|
||||
|
||||
|
||||
def GoogleDriveFileField(
|
||||
*,
|
||||
title: str,
|
||||
description: str | None = None,
|
||||
credentials_kwarg: str = "credentials",
|
||||
credentials_scopes: list[str] | None = None,
|
||||
allowed_views: list[AttachmentView] | None = None,
|
||||
allowed_mime_types: list[str] | None = None,
|
||||
placeholder: str | None = None,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
"""
|
||||
Creates a Google Drive file input field with auto-generated credentials.
|
||||
|
||||
This field type produces a single UI element that handles both:
|
||||
1. Google OAuth authentication
|
||||
2. File selection via Google Drive Picker
|
||||
|
||||
The system automatically generates a credentials field, and the credentials
|
||||
are passed to the run() method using the specified kwarg name.
|
||||
|
||||
Args:
|
||||
title: Field title shown in UI
|
||||
description: Field description/help text
|
||||
credentials_kwarg: Name of the kwarg that will receive GoogleCredentials
|
||||
in the run() method (default: "credentials")
|
||||
credentials_scopes: OAuth scopes required (default: drive.file)
|
||||
allowed_views: List of view types to show in picker (default: ["DOCS"])
|
||||
allowed_mime_types: Filter by MIME types
|
||||
placeholder: Placeholder text for the button
|
||||
**kwargs: Additional SchemaField arguments
|
||||
|
||||
Returns:
|
||||
Field definition that produces GoogleDriveFile
|
||||
|
||||
Example:
|
||||
>>> class MyBlock(Block):
|
||||
... class Input(BlockSchemaInput):
|
||||
... spreadsheet: GoogleDriveFile = GoogleDriveFileField(
|
||||
... title="Select Spreadsheet",
|
||||
... credentials_kwarg="creds",
|
||||
... allowed_views=["SPREADSHEETS"],
|
||||
... )
|
||||
...
|
||||
... async def run(
|
||||
... self, input_data: Input, *, creds: GoogleCredentials, **kwargs
|
||||
... ):
|
||||
... # creds is automatically populated
|
||||
... file = input_data.spreadsheet
|
||||
"""
|
||||
|
||||
# Determine scopes - drive.file is sufficient for picker-selected files
|
||||
scopes = credentials_scopes or ["https://www.googleapis.com/auth/drive.file"]
|
||||
|
||||
# Build picker configuration with auto_credentials embedded
|
||||
picker_config = {
|
||||
"multiselect": False,
|
||||
"allow_folder_selection": False,
|
||||
"allowed_views": list(allowed_views) if allowed_views else ["DOCS"],
|
||||
"scopes": scopes,
|
||||
# Auto-credentials config tells frontend to include _credentials_id in output
|
||||
"auto_credentials": {
|
||||
"provider": "google",
|
||||
"type": "oauth2",
|
||||
"scopes": scopes,
|
||||
"kwarg_name": credentials_kwarg,
|
||||
},
|
||||
}
|
||||
|
||||
if allowed_mime_types:
|
||||
picker_config["allowed_mime_types"] = list(allowed_mime_types)
|
||||
|
||||
return SchemaField(
|
||||
default=None,
|
||||
title=title,
|
||||
description=description,
|
||||
placeholder=placeholder or "Select from Google Drive",
|
||||
# Use google-drive-picker format so frontend renders existing component
|
||||
format="google-drive-picker",
|
||||
advanced=False,
|
||||
json_schema_extra={
|
||||
"google_drive_picker_config": picker_config,
|
||||
# Also keep auto_credentials at top level for backend detection
|
||||
"auto_credentials": {
|
||||
"provider": "google",
|
||||
"type": "oauth2",
|
||||
"scopes": scopes,
|
||||
"kwarg_name": credentials_kwarg,
|
||||
},
|
||||
**kwargs,
|
||||
},
|
||||
)
|
||||
File diff suppressed because it is too large
Load Diff
@@ -184,7 +184,13 @@ class SendWebRequestBlock(Block):
|
||||
)
|
||||
|
||||
# ─── Execute request ─────────────────────────────────────────
|
||||
response = await Requests().request(
|
||||
# Use raise_for_status=False so HTTP errors (4xx, 5xx) are returned
|
||||
# as response objects instead of raising exceptions, allowing proper
|
||||
# handling via client_error and server_error outputs
|
||||
response = await Requests(
|
||||
raise_for_status=False,
|
||||
retry_max_attempts=1, # allow callers to handle HTTP errors immediately
|
||||
).request(
|
||||
input_data.method.value,
|
||||
input_data.url,
|
||||
headers=input_data.headers,
|
||||
|
||||
166
autogpt_platform/backend/backend/blocks/human_in_the_loop.py
Normal file
166
autogpt_platform/backend/backend/blocks/human_in_the_loop.py
Normal file
@@ -0,0 +1,166 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from prisma.enums import ReviewStatus
|
||||
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
BlockOutput,
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext, ExecutionStatus
|
||||
from backend.data.human_review import ReviewResult
|
||||
from backend.data.model import SchemaField
|
||||
from backend.executor.manager import async_update_node_execution_status
|
||||
from backend.util.clients import get_database_manager_async_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HumanInTheLoopBlock(Block):
|
||||
"""
|
||||
This block pauses execution and waits for human approval or modification of the data.
|
||||
|
||||
When executed, it creates a pending review entry and sets the node execution status
|
||||
to REVIEW. The execution will remain paused until a human user either:
|
||||
- Approves the data (with or without modifications)
|
||||
- Rejects the data
|
||||
|
||||
This is useful for workflows that require human validation or intervention before
|
||||
proceeding to the next steps.
|
||||
"""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
data: Any = SchemaField(description="The data to be reviewed by a human user")
|
||||
name: str = SchemaField(
|
||||
description="A descriptive name for what this data represents",
|
||||
)
|
||||
editable: bool = SchemaField(
|
||||
description="Whether the human reviewer can edit the data",
|
||||
default=True,
|
||||
advanced=True,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
approved_data: Any = SchemaField(
|
||||
description="The data when approved (may be modified by reviewer)"
|
||||
)
|
||||
rejected_data: Any = SchemaField(
|
||||
description="The data when rejected (may be modified by reviewer)"
|
||||
)
|
||||
review_message: str = SchemaField(
|
||||
description="Any message provided by the reviewer", default=""
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="8b2a7b3c-6e9d-4a5f-8c1b-2e3f4a5b6c7d",
|
||||
description="Pause execution and wait for human approval or modification of data",
|
||||
categories={BlockCategory.BASIC},
|
||||
input_schema=HumanInTheLoopBlock.Input,
|
||||
output_schema=HumanInTheLoopBlock.Output,
|
||||
block_type=BlockType.HUMAN_IN_THE_LOOP,
|
||||
test_input={
|
||||
"data": {"name": "John Doe", "age": 30},
|
||||
"name": "User profile data",
|
||||
"editable": True,
|
||||
},
|
||||
test_output=[
|
||||
("approved_data", {"name": "John Doe", "age": 30}),
|
||||
],
|
||||
test_mock={
|
||||
"get_or_create_human_review": lambda *_args, **_kwargs: ReviewResult(
|
||||
data={"name": "John Doe", "age": 30},
|
||||
status=ReviewStatus.APPROVED,
|
||||
message="",
|
||||
processed=False,
|
||||
node_exec_id="test-node-exec-id",
|
||||
),
|
||||
"update_node_execution_status": lambda *_args, **_kwargs: None,
|
||||
"update_review_processed_status": lambda *_args, **_kwargs: None,
|
||||
},
|
||||
)
|
||||
|
||||
async def get_or_create_human_review(self, **kwargs):
|
||||
return await get_database_manager_async_client().get_or_create_human_review(
|
||||
**kwargs
|
||||
)
|
||||
|
||||
async def update_node_execution_status(self, **kwargs):
|
||||
return await async_update_node_execution_status(
|
||||
db_client=get_database_manager_async_client(), **kwargs
|
||||
)
|
||||
|
||||
async def update_review_processed_status(self, node_exec_id: str, processed: bool):
|
||||
return await get_database_manager_async_client().update_review_processed_status(
|
||||
node_exec_id, processed
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
if not execution_context.safe_mode:
|
||||
logger.info(
|
||||
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
|
||||
)
|
||||
yield "approved_data", input_data.data
|
||||
yield "review_message", "Auto-approved (safe mode disabled)"
|
||||
return
|
||||
|
||||
try:
|
||||
result = await self.get_or_create_human_review(
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
input_data=input_data.data,
|
||||
message=input_data.name,
|
||||
editable=input_data.editable,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in HITL block for node {node_exec_id}: {str(e)}")
|
||||
raise
|
||||
|
||||
if result is None:
|
||||
logger.info(
|
||||
f"HITL block pausing execution for node {node_exec_id} - awaiting human review"
|
||||
)
|
||||
try:
|
||||
await self.update_node_execution_status(
|
||||
exec_id=node_exec_id,
|
||||
status=ExecutionStatus.REVIEW,
|
||||
)
|
||||
return
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to update node status for HITL block {node_exec_id}: {str(e)}"
|
||||
)
|
||||
raise
|
||||
|
||||
if not result.processed:
|
||||
await self.update_review_processed_status(
|
||||
node_exec_id=node_exec_id, processed=True
|
||||
)
|
||||
|
||||
if result.status == ReviewStatus.APPROVED:
|
||||
yield "approved_data", result.data
|
||||
if result.message:
|
||||
yield "review_message", result.message
|
||||
|
||||
elif result.status == ReviewStatus.REJECTED:
|
||||
yield "rejected_data", result.data
|
||||
if result.message:
|
||||
yield "review_message", result.message
|
||||
@@ -2,6 +2,8 @@ import copy
|
||||
from datetime import date, time
|
||||
from typing import Any, Optional
|
||||
|
||||
# Import for Google Drive file input block
|
||||
from backend.blocks.google._drive import AttachmentView, GoogleDriveFile
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
@@ -646,6 +648,119 @@ class AgentTableInputBlock(AgentInputBlock):
|
||||
yield "result", input_data.value if input_data.value is not None else []
|
||||
|
||||
|
||||
class AgentGoogleDriveFileInputBlock(AgentInputBlock):
|
||||
"""
|
||||
This block allows users to select a file from Google Drive.
|
||||
|
||||
It provides a Google Drive file picker UI that handles both authentication
|
||||
and file selection. The selected file information (ID, name, URL, etc.)
|
||||
is output for use by other blocks like Google Sheets Read.
|
||||
"""
|
||||
|
||||
class Input(AgentInputBlock.Input):
|
||||
value: Optional[GoogleDriveFile] = SchemaField(
|
||||
description="The selected Google Drive file.",
|
||||
default=None,
|
||||
advanced=False,
|
||||
title="Selected File",
|
||||
)
|
||||
allowed_views: list[AttachmentView] = SchemaField(
|
||||
description="Which views to show in the file picker (DOCS, SPREADSHEETS, PRESENTATIONS, etc.).",
|
||||
default_factory=lambda: ["DOCS", "SPREADSHEETS", "PRESENTATIONS"],
|
||||
advanced=False,
|
||||
title="Allowed Views",
|
||||
)
|
||||
allow_folder_selection: bool = SchemaField(
|
||||
description="Whether to allow selecting folders.",
|
||||
default=False,
|
||||
advanced=True,
|
||||
title="Allow Folder Selection",
|
||||
)
|
||||
|
||||
def generate_schema(self):
|
||||
"""Generate schema for the value field with Google Drive picker format."""
|
||||
schema = super().generate_schema()
|
||||
|
||||
# Default scopes for drive.file access
|
||||
scopes = ["https://www.googleapis.com/auth/drive.file"]
|
||||
|
||||
# Build picker configuration
|
||||
picker_config = {
|
||||
"multiselect": False, # Single file selection only for now
|
||||
"allow_folder_selection": self.allow_folder_selection,
|
||||
"allowed_views": (
|
||||
list(self.allowed_views) if self.allowed_views else ["DOCS"]
|
||||
),
|
||||
"scopes": scopes,
|
||||
# Auto-credentials config tells frontend to include _credentials_id in output
|
||||
"auto_credentials": {
|
||||
"provider": "google",
|
||||
"type": "oauth2",
|
||||
"scopes": scopes,
|
||||
"kwarg_name": "credentials",
|
||||
},
|
||||
}
|
||||
|
||||
# Set format and config for frontend to render Google Drive picker
|
||||
schema["format"] = "google-drive-picker"
|
||||
schema["google_drive_picker_config"] = picker_config
|
||||
# Also keep auto_credentials at top level for backend detection
|
||||
schema["auto_credentials"] = {
|
||||
"provider": "google",
|
||||
"type": "oauth2",
|
||||
"scopes": scopes,
|
||||
"kwarg_name": "credentials",
|
||||
}
|
||||
|
||||
if self.value is not None:
|
||||
schema["default"] = self.value.model_dump()
|
||||
|
||||
return schema
|
||||
|
||||
class Output(AgentInputBlock.Output):
|
||||
result: GoogleDriveFile = SchemaField(
|
||||
description="The selected Google Drive file with ID, name, URL, and other metadata."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
test_file = GoogleDriveFile.model_validate(
|
||||
{
|
||||
"id": "test-file-id",
|
||||
"name": "Test Spreadsheet",
|
||||
"mimeType": "application/vnd.google-apps.spreadsheet",
|
||||
"url": "https://docs.google.com/spreadsheets/d/test-file-id",
|
||||
}
|
||||
)
|
||||
super().__init__(
|
||||
id="d3b32f15-6fd7-40e3-be52-e083f51b19a2",
|
||||
description="Block for selecting a file from Google Drive.",
|
||||
disabled=not config.enable_agent_input_subtype_blocks,
|
||||
input_schema=AgentGoogleDriveFileInputBlock.Input,
|
||||
output_schema=AgentGoogleDriveFileInputBlock.Output,
|
||||
test_input=[
|
||||
{
|
||||
"name": "spreadsheet_input",
|
||||
"description": "Select a spreadsheet from Google Drive",
|
||||
"allowed_views": ["SPREADSHEETS"],
|
||||
"value": {
|
||||
"id": "test-file-id",
|
||||
"name": "Test Spreadsheet",
|
||||
"mimeType": "application/vnd.google-apps.spreadsheet",
|
||||
"url": "https://docs.google.com/spreadsheets/d/test-file-id",
|
||||
},
|
||||
}
|
||||
],
|
||||
test_output=[("result", test_file)],
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, *args, **kwargs) -> BlockOutput:
|
||||
"""
|
||||
Yields the selected Google Drive file.
|
||||
"""
|
||||
if input_data.value is not None:
|
||||
yield "result", input_data.value
|
||||
|
||||
|
||||
IO_BLOCK_IDs = [
|
||||
AgentInputBlock().id,
|
||||
AgentOutputBlock().id,
|
||||
@@ -658,4 +773,5 @@ IO_BLOCK_IDs = [
|
||||
AgentDropdownInputBlock().id,
|
||||
AgentToggleInputBlock().id,
|
||||
AgentTableInputBlock().id,
|
||||
AgentGoogleDriveFileInputBlock().id,
|
||||
]
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Iterator, Literal
|
||||
|
||||
@@ -64,6 +65,7 @@ class RedditComment(BaseModel):
|
||||
|
||||
|
||||
settings = Settings()
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_praw(creds: RedditCredentials) -> praw.Reddit:
|
||||
@@ -77,7 +79,7 @@ def get_praw(creds: RedditCredentials) -> praw.Reddit:
|
||||
me = client.user.me()
|
||||
if not me:
|
||||
raise ValueError("Invalid Reddit credentials.")
|
||||
print(f"Logged in as Reddit user: {me.name}")
|
||||
logger.info(f"Logged in as Reddit user: {me.name}")
|
||||
return client
|
||||
|
||||
|
||||
|
||||
@@ -1,8 +1,11 @@
|
||||
import logging
|
||||
import re
|
||||
from collections import Counter
|
||||
from concurrent.futures import Future
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
import backend.blocks.llm as llm
|
||||
from backend.blocks.agent import AgentExecutorBlock
|
||||
from backend.data.block import (
|
||||
@@ -20,16 +23,41 @@ from backend.data.dynamic_fields import (
|
||||
is_dynamic_field,
|
||||
is_tool_pin,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import NodeExecutionStats, SchemaField
|
||||
from backend.util import json
|
||||
from backend.util.clients import get_database_manager_async_client
|
||||
from backend.util.prompt import MAIN_OBJECTIVE_PREFIX
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.data.graph import Link, Node
|
||||
from backend.executor.manager import ExecutionProcessor
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ToolInfo(BaseModel):
|
||||
"""Processed tool call information."""
|
||||
|
||||
tool_call: Any # The original tool call object from LLM response
|
||||
tool_name: str # The function name
|
||||
tool_def: dict[str, Any] # The tool definition from tool_functions
|
||||
input_data: dict[str, Any] # Processed input data ready for tool execution
|
||||
field_mapping: dict[str, str] # Field name mapping for the tool
|
||||
|
||||
|
||||
class ExecutionParams(BaseModel):
|
||||
"""Tool execution parameters."""
|
||||
|
||||
user_id: str
|
||||
graph_id: str
|
||||
node_id: str
|
||||
graph_version: int
|
||||
graph_exec_id: str
|
||||
node_exec_id: str
|
||||
execution_context: "ExecutionContext"
|
||||
|
||||
|
||||
def _get_tool_requests(entry: dict[str, Any]) -> list[str]:
|
||||
"""
|
||||
Return a list of tool_call_ids if the entry is a tool request.
|
||||
@@ -105,6 +133,50 @@ def _create_tool_response(call_id: str, output: Any) -> dict[str, Any]:
|
||||
return {"role": "tool", "tool_call_id": call_id, "content": content}
|
||||
|
||||
|
||||
def _combine_tool_responses(tool_outputs: list[dict[str, Any]]) -> list[dict[str, Any]]:
|
||||
"""
|
||||
Combine multiple Anthropic tool responses into a single user message.
|
||||
For non-Anthropic formats, returns the original list unchanged.
|
||||
"""
|
||||
if len(tool_outputs) <= 1:
|
||||
return tool_outputs
|
||||
|
||||
# Anthropic responses have role="user", type="message", and content is a list with tool_result items
|
||||
anthropic_responses = [
|
||||
output
|
||||
for output in tool_outputs
|
||||
if (
|
||||
output.get("role") == "user"
|
||||
and output.get("type") == "message"
|
||||
and isinstance(output.get("content"), list)
|
||||
and any(
|
||||
item.get("type") == "tool_result"
|
||||
for item in output.get("content", [])
|
||||
if isinstance(item, dict)
|
||||
)
|
||||
)
|
||||
]
|
||||
|
||||
if len(anthropic_responses) > 1:
|
||||
combined_content = [
|
||||
item for response in anthropic_responses for item in response["content"]
|
||||
]
|
||||
|
||||
combined_response = {
|
||||
"role": "user",
|
||||
"type": "message",
|
||||
"content": combined_content,
|
||||
}
|
||||
|
||||
non_anthropic_responses = [
|
||||
output for output in tool_outputs if output not in anthropic_responses
|
||||
]
|
||||
|
||||
return [combined_response] + non_anthropic_responses
|
||||
|
||||
return tool_outputs
|
||||
|
||||
|
||||
def _convert_raw_response_to_dict(raw_response: Any) -> dict[str, Any]:
|
||||
"""
|
||||
Safely convert raw_response to dictionary format for conversation history.
|
||||
@@ -204,6 +276,17 @@ class SmartDecisionMakerBlock(Block):
|
||||
default="localhost:11434",
|
||||
description="Ollama host for local models",
|
||||
)
|
||||
agent_mode_max_iterations: int = SchemaField(
|
||||
title="Agent Mode Max Iterations",
|
||||
description="Maximum iterations for agent mode. 0 = traditional mode (single LLM call, yield tool calls for external execution), -1 = infinite agent mode (loop until finished), 1+ = agent mode with max iterations limit.",
|
||||
advanced=True,
|
||||
default=0,
|
||||
)
|
||||
conversation_compaction: bool = SchemaField(
|
||||
default=True,
|
||||
title="Context window auto-compaction",
|
||||
description="Automatically compact the context window once it hits the limit",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def get_missing_links(cls, data: BlockInput, links: list["Link"]) -> set[str]:
|
||||
@@ -506,6 +589,7 @@ class SmartDecisionMakerBlock(Block):
|
||||
Returns the response if successful, raises ValueError if validation fails.
|
||||
"""
|
||||
resp = await llm.llm_call(
|
||||
compress_prompt_to_fit=input_data.conversation_compaction,
|
||||
credentials=credentials,
|
||||
llm_model=input_data.model,
|
||||
prompt=current_prompt,
|
||||
@@ -593,6 +677,291 @@ class SmartDecisionMakerBlock(Block):
|
||||
|
||||
return resp
|
||||
|
||||
def _process_tool_calls(
|
||||
self, response, tool_functions: list[dict[str, Any]]
|
||||
) -> list[ToolInfo]:
|
||||
"""Process tool calls and extract tool definitions, arguments, and input data.
|
||||
|
||||
Returns a list of tool info dicts with:
|
||||
- tool_call: The original tool call object
|
||||
- tool_name: The function name
|
||||
- tool_def: The tool definition from tool_functions
|
||||
- input_data: Processed input data dict (includes None values)
|
||||
- field_mapping: Field name mapping for the tool
|
||||
"""
|
||||
if not response.tool_calls:
|
||||
return []
|
||||
|
||||
processed_tools = []
|
||||
for tool_call in response.tool_calls:
|
||||
tool_name = tool_call.function.name
|
||||
tool_args = json.loads(tool_call.function.arguments)
|
||||
|
||||
tool_def = next(
|
||||
(
|
||||
tool
|
||||
for tool in tool_functions
|
||||
if tool["function"]["name"] == tool_name
|
||||
),
|
||||
None,
|
||||
)
|
||||
if not tool_def:
|
||||
if len(tool_functions) == 1:
|
||||
tool_def = tool_functions[0]
|
||||
else:
|
||||
continue
|
||||
|
||||
# Build input data for the tool
|
||||
input_data = {}
|
||||
field_mapping = tool_def["function"].get("_field_mapping", {})
|
||||
if "function" in tool_def and "parameters" in tool_def["function"]:
|
||||
expected_args = tool_def["function"]["parameters"].get("properties", {})
|
||||
for clean_arg_name in expected_args:
|
||||
original_field_name = field_mapping.get(
|
||||
clean_arg_name, clean_arg_name
|
||||
)
|
||||
arg_value = tool_args.get(clean_arg_name)
|
||||
# Include all expected parameters, even if None (for backward compatibility with tests)
|
||||
input_data[original_field_name] = arg_value
|
||||
|
||||
processed_tools.append(
|
||||
ToolInfo(
|
||||
tool_call=tool_call,
|
||||
tool_name=tool_name,
|
||||
tool_def=tool_def,
|
||||
input_data=input_data,
|
||||
field_mapping=field_mapping,
|
||||
)
|
||||
)
|
||||
|
||||
return processed_tools
|
||||
|
||||
def _update_conversation(
|
||||
self, prompt: list[dict], response, tool_outputs: list | None = None
|
||||
):
|
||||
"""Update conversation history with response and tool outputs."""
|
||||
# Don't add separate reasoning message with tool calls (breaks Anthropic's tool_use->tool_result pairing)
|
||||
assistant_message = _convert_raw_response_to_dict(response.raw_response)
|
||||
has_tool_calls = isinstance(assistant_message.get("content"), list) and any(
|
||||
item.get("type") == "tool_use"
|
||||
for item in assistant_message.get("content", [])
|
||||
)
|
||||
|
||||
if response.reasoning and not has_tool_calls:
|
||||
prompt.append(
|
||||
{"role": "assistant", "content": f"[Reasoning]: {response.reasoning}"}
|
||||
)
|
||||
|
||||
prompt.append(assistant_message)
|
||||
|
||||
if tool_outputs:
|
||||
prompt.extend(tool_outputs)
|
||||
|
||||
async def _execute_single_tool_with_manager(
|
||||
self,
|
||||
tool_info: ToolInfo,
|
||||
execution_params: ExecutionParams,
|
||||
execution_processor: "ExecutionProcessor",
|
||||
) -> dict:
|
||||
"""Execute a single tool using the execution manager for proper integration."""
|
||||
# Lazy imports to avoid circular dependencies
|
||||
from backend.data.execution import NodeExecutionEntry
|
||||
|
||||
tool_call = tool_info.tool_call
|
||||
tool_def = tool_info.tool_def
|
||||
raw_input_data = tool_info.input_data
|
||||
|
||||
# Get sink node and field mapping
|
||||
sink_node_id = tool_def["function"]["_sink_node_id"]
|
||||
|
||||
# Use proper database operations for tool execution
|
||||
db_client = get_database_manager_async_client()
|
||||
|
||||
# Get target node
|
||||
target_node = await db_client.get_node(sink_node_id)
|
||||
if not target_node:
|
||||
raise ValueError(f"Target node {sink_node_id} not found")
|
||||
|
||||
# Create proper node execution using upsert_execution_input
|
||||
node_exec_result = None
|
||||
final_input_data = None
|
||||
|
||||
# Add all inputs to the execution
|
||||
if not raw_input_data:
|
||||
raise ValueError(f"Tool call has no input data: {tool_call}")
|
||||
|
||||
for input_name, input_value in raw_input_data.items():
|
||||
node_exec_result, final_input_data = await db_client.upsert_execution_input(
|
||||
node_id=sink_node_id,
|
||||
graph_exec_id=execution_params.graph_exec_id,
|
||||
input_name=input_name,
|
||||
input_data=input_value,
|
||||
)
|
||||
|
||||
assert node_exec_result is not None, "node_exec_result should not be None"
|
||||
|
||||
# Create NodeExecutionEntry for execution manager
|
||||
node_exec_entry = NodeExecutionEntry(
|
||||
user_id=execution_params.user_id,
|
||||
graph_exec_id=execution_params.graph_exec_id,
|
||||
graph_id=execution_params.graph_id,
|
||||
graph_version=execution_params.graph_version,
|
||||
node_exec_id=node_exec_result.node_exec_id,
|
||||
node_id=sink_node_id,
|
||||
block_id=target_node.block_id,
|
||||
inputs=final_input_data or {},
|
||||
execution_context=execution_params.execution_context,
|
||||
)
|
||||
|
||||
# Use the execution manager to execute the tool node
|
||||
try:
|
||||
# Get NodeExecutionProgress from the execution manager's running nodes
|
||||
node_exec_progress = execution_processor.running_node_execution[
|
||||
sink_node_id
|
||||
]
|
||||
|
||||
# Use the execution manager's own graph stats
|
||||
graph_stats_pair = (
|
||||
execution_processor.execution_stats,
|
||||
execution_processor.execution_stats_lock,
|
||||
)
|
||||
|
||||
# Create a completed future for the task tracking system
|
||||
node_exec_future = Future()
|
||||
node_exec_progress.add_task(
|
||||
node_exec_id=node_exec_result.node_exec_id,
|
||||
task=node_exec_future,
|
||||
)
|
||||
|
||||
# Execute the node directly since we're in the SmartDecisionMaker context
|
||||
node_exec_future.set_result(
|
||||
await execution_processor.on_node_execution(
|
||||
node_exec=node_exec_entry,
|
||||
node_exec_progress=node_exec_progress,
|
||||
nodes_input_masks=None,
|
||||
graph_stats_pair=graph_stats_pair,
|
||||
)
|
||||
)
|
||||
|
||||
# Get outputs from database after execution completes using database manager client
|
||||
node_outputs = await db_client.get_execution_outputs_by_node_exec_id(
|
||||
node_exec_result.node_exec_id
|
||||
)
|
||||
|
||||
# Create tool response
|
||||
tool_response_content = (
|
||||
json.dumps(node_outputs)
|
||||
if node_outputs
|
||||
else "Tool executed successfully"
|
||||
)
|
||||
return _create_tool_response(tool_call.id, tool_response_content)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Tool execution with manager failed: {e}")
|
||||
# Return error response
|
||||
return _create_tool_response(
|
||||
tool_call.id, f"Tool execution failed: {str(e)}"
|
||||
)
|
||||
|
||||
async def _execute_tools_agent_mode(
|
||||
self,
|
||||
input_data,
|
||||
credentials,
|
||||
tool_functions: list[dict[str, Any]],
|
||||
prompt: list[dict],
|
||||
graph_exec_id: str,
|
||||
node_id: str,
|
||||
node_exec_id: str,
|
||||
user_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
execution_processor: "ExecutionProcessor",
|
||||
):
|
||||
"""Execute tools in agent mode with a loop until finished."""
|
||||
max_iterations = input_data.agent_mode_max_iterations
|
||||
iteration = 0
|
||||
|
||||
# Execution parameters for tool execution
|
||||
execution_params = ExecutionParams(
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
node_id=node_id,
|
||||
graph_version=graph_version,
|
||||
graph_exec_id=graph_exec_id,
|
||||
node_exec_id=node_exec_id,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
|
||||
current_prompt = list(prompt)
|
||||
|
||||
while max_iterations < 0 or iteration < max_iterations:
|
||||
iteration += 1
|
||||
logger.debug(f"Agent mode iteration {iteration}")
|
||||
|
||||
# Prepare prompt for this iteration
|
||||
iteration_prompt = list(current_prompt)
|
||||
|
||||
# On the last iteration, add a special system message to encourage completion
|
||||
if max_iterations > 0 and iteration == max_iterations:
|
||||
last_iteration_message = {
|
||||
"role": "system",
|
||||
"content": f"{MAIN_OBJECTIVE_PREFIX}This is your last iteration ({iteration}/{max_iterations}). "
|
||||
"Try to complete the task with the information you have. If you cannot fully complete it, "
|
||||
"provide a summary of what you've accomplished and what remains to be done. "
|
||||
"Prefer finishing with a clear response rather than making additional tool calls.",
|
||||
}
|
||||
iteration_prompt.append(last_iteration_message)
|
||||
|
||||
# Get LLM response
|
||||
try:
|
||||
response = await self._attempt_llm_call_with_validation(
|
||||
credentials, input_data, iteration_prompt, tool_functions
|
||||
)
|
||||
except Exception as e:
|
||||
yield "error", f"LLM call failed in agent mode iteration {iteration}: {str(e)}"
|
||||
return
|
||||
|
||||
# Process tool calls
|
||||
processed_tools = self._process_tool_calls(response, tool_functions)
|
||||
|
||||
# If no tool calls, we're done
|
||||
if not processed_tools:
|
||||
yield "finished", response.response
|
||||
self._update_conversation(current_prompt, response)
|
||||
yield "conversations", current_prompt
|
||||
return
|
||||
|
||||
# Execute tools and collect responses
|
||||
tool_outputs = []
|
||||
for tool_info in processed_tools:
|
||||
try:
|
||||
tool_response = await self._execute_single_tool_with_manager(
|
||||
tool_info, execution_params, execution_processor
|
||||
)
|
||||
tool_outputs.append(tool_response)
|
||||
except Exception as e:
|
||||
logger.error(f"Tool execution failed: {e}")
|
||||
# Create error response for the tool
|
||||
error_response = _create_tool_response(
|
||||
tool_info.tool_call.id, f"Error: {str(e)}"
|
||||
)
|
||||
tool_outputs.append(error_response)
|
||||
|
||||
tool_outputs = _combine_tool_responses(tool_outputs)
|
||||
|
||||
self._update_conversation(current_prompt, response, tool_outputs)
|
||||
|
||||
# Yield intermediate conversation state
|
||||
yield "conversations", current_prompt
|
||||
|
||||
# If we reach max iterations, yield the current state
|
||||
if max_iterations < 0:
|
||||
yield "finished", f"Agent mode completed after {iteration} iterations"
|
||||
else:
|
||||
yield "finished", f"Agent mode completed after {max_iterations} iterations (limit reached)"
|
||||
yield "conversations", current_prompt
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
@@ -603,8 +972,12 @@ class SmartDecisionMakerBlock(Block):
|
||||
graph_exec_id: str,
|
||||
node_exec_id: str,
|
||||
user_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
execution_processor: "ExecutionProcessor",
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
|
||||
tool_functions = await self._create_tool_node_signatures(node_id)
|
||||
yield "tool_functions", json.dumps(tool_functions)
|
||||
|
||||
@@ -648,24 +1021,52 @@ class SmartDecisionMakerBlock(Block):
|
||||
input_data.prompt = llm.fmt.format_string(input_data.prompt, values)
|
||||
input_data.sys_prompt = llm.fmt.format_string(input_data.sys_prompt, values)
|
||||
|
||||
prefix = "[Main Objective Prompt]: "
|
||||
|
||||
if input_data.sys_prompt and not any(
|
||||
p["role"] == "system" and p["content"].startswith(prefix) for p in prompt
|
||||
p["role"] == "system" and p["content"].startswith(MAIN_OBJECTIVE_PREFIX)
|
||||
for p in prompt
|
||||
):
|
||||
prompt.append({"role": "system", "content": prefix + input_data.sys_prompt})
|
||||
prompt.append(
|
||||
{
|
||||
"role": "system",
|
||||
"content": MAIN_OBJECTIVE_PREFIX + input_data.sys_prompt,
|
||||
}
|
||||
)
|
||||
|
||||
if input_data.prompt and not any(
|
||||
p["role"] == "user" and p["content"].startswith(prefix) for p in prompt
|
||||
p["role"] == "user" and p["content"].startswith(MAIN_OBJECTIVE_PREFIX)
|
||||
for p in prompt
|
||||
):
|
||||
prompt.append({"role": "user", "content": prefix + input_data.prompt})
|
||||
prompt.append(
|
||||
{"role": "user", "content": MAIN_OBJECTIVE_PREFIX + input_data.prompt}
|
||||
)
|
||||
|
||||
# Execute tools based on the selected mode
|
||||
if input_data.agent_mode_max_iterations != 0:
|
||||
# In agent mode, execute tools directly in a loop until finished
|
||||
async for result in self._execute_tools_agent_mode(
|
||||
input_data=input_data,
|
||||
credentials=credentials,
|
||||
tool_functions=tool_functions,
|
||||
prompt=prompt,
|
||||
graph_exec_id=graph_exec_id,
|
||||
node_id=node_id,
|
||||
node_exec_id=node_exec_id,
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
execution_processor=execution_processor,
|
||||
):
|
||||
yield result
|
||||
return
|
||||
|
||||
# One-off mode: single LLM call and yield tool calls for external execution
|
||||
current_prompt = list(prompt)
|
||||
max_attempts = max(1, int(input_data.retry))
|
||||
response = None
|
||||
|
||||
last_error = None
|
||||
for attempt in range(max_attempts):
|
||||
for _ in range(max_attempts):
|
||||
try:
|
||||
response = await self._attempt_llm_call_with_validation(
|
||||
credentials, input_data, current_prompt, tool_functions
|
||||
|
||||
@@ -1,14 +1,24 @@
|
||||
from typing import Type
|
||||
from typing import Any, Type
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.data.block import Block, get_blocks
|
||||
from backend.data.block import Block, BlockSchemaInput, get_blocks
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util.test import execute_block_test
|
||||
|
||||
SKIP_BLOCK_TESTS = {
|
||||
"HumanInTheLoopBlock",
|
||||
}
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block", get_blocks().values(), ids=lambda b: b().name)
|
||||
async def test_available_blocks(block: Type[Block]):
|
||||
await execute_block_test(block())
|
||||
block_instance = block()
|
||||
if block_instance.__class__.__name__ in SKIP_BLOCK_TESTS:
|
||||
pytest.skip(
|
||||
f"Skipping {block_instance.__class__.__name__} - requires external service"
|
||||
)
|
||||
await execute_block_test(block_instance)
|
||||
|
||||
|
||||
@pytest.mark.parametrize("block", get_blocks().values(), ids=lambda b: b().name)
|
||||
@@ -123,3 +133,148 @@ async def test_block_ids_valid(block: Type[Block]):
|
||||
), f"Block {block.name} ID is UUID version {parsed_uuid.version}, expected version 4"
|
||||
except ValueError:
|
||||
pytest.fail(f"Block {block.name} has invalid UUID format: {block_instance.id}")
|
||||
|
||||
|
||||
class TestAutoCredentialsFieldsValidation:
|
||||
"""Tests for auto_credentials field validation in BlockSchema."""
|
||||
|
||||
def test_duplicate_auto_credentials_kwarg_name_raises_error(self):
|
||||
"""Test that duplicate kwarg_name in auto_credentials raises ValueError."""
|
||||
|
||||
class DuplicateKwargSchema(BlockSchemaInput):
|
||||
"""Schema with duplicate auto_credentials kwarg_name."""
|
||||
|
||||
# Both fields explicitly use the same kwarg_name "credentials"
|
||||
file1: dict[str, Any] | None = SchemaField(
|
||||
description="First file input",
|
||||
default=None,
|
||||
json_schema_extra={
|
||||
"auto_credentials": {
|
||||
"provider": "google",
|
||||
"type": "oauth2",
|
||||
"scopes": ["https://www.googleapis.com/auth/drive.file"],
|
||||
"kwarg_name": "credentials",
|
||||
}
|
||||
},
|
||||
)
|
||||
file2: dict[str, Any] | None = SchemaField(
|
||||
description="Second file input",
|
||||
default=None,
|
||||
json_schema_extra={
|
||||
"auto_credentials": {
|
||||
"provider": "google",
|
||||
"type": "oauth2",
|
||||
"scopes": ["https://www.googleapis.com/auth/drive.file"],
|
||||
"kwarg_name": "credentials", # Duplicate kwarg_name!
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
DuplicateKwargSchema.get_auto_credentials_fields()
|
||||
|
||||
error_message = str(exc_info.value)
|
||||
assert "Duplicate auto_credentials kwarg_name 'credentials'" in error_message
|
||||
assert "file1" in error_message
|
||||
assert "file2" in error_message
|
||||
|
||||
def test_unique_auto_credentials_kwarg_names_succeed(self):
|
||||
"""Test that unique kwarg_name values work correctly."""
|
||||
|
||||
class UniqueKwargSchema(BlockSchemaInput):
|
||||
"""Schema with unique auto_credentials kwarg_name values."""
|
||||
|
||||
file1: dict[str, Any] | None = SchemaField(
|
||||
description="First file input",
|
||||
default=None,
|
||||
json_schema_extra={
|
||||
"auto_credentials": {
|
||||
"provider": "google",
|
||||
"type": "oauth2",
|
||||
"scopes": ["https://www.googleapis.com/auth/drive.file"],
|
||||
"kwarg_name": "file1_credentials",
|
||||
}
|
||||
},
|
||||
)
|
||||
file2: dict[str, Any] | None = SchemaField(
|
||||
description="Second file input",
|
||||
default=None,
|
||||
json_schema_extra={
|
||||
"auto_credentials": {
|
||||
"provider": "google",
|
||||
"type": "oauth2",
|
||||
"scopes": ["https://www.googleapis.com/auth/drive.file"],
|
||||
"kwarg_name": "file2_credentials", # Different kwarg_name
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# Should not raise
|
||||
result = UniqueKwargSchema.get_auto_credentials_fields()
|
||||
|
||||
assert "file1_credentials" in result
|
||||
assert "file2_credentials" in result
|
||||
assert result["file1_credentials"]["field_name"] == "file1"
|
||||
assert result["file2_credentials"]["field_name"] == "file2"
|
||||
|
||||
def test_default_kwarg_name_is_credentials(self):
|
||||
"""Test that missing kwarg_name defaults to 'credentials'."""
|
||||
|
||||
class DefaultKwargSchema(BlockSchemaInput):
|
||||
"""Schema with auto_credentials missing kwarg_name."""
|
||||
|
||||
file: dict[str, Any] | None = SchemaField(
|
||||
description="File input",
|
||||
default=None,
|
||||
json_schema_extra={
|
||||
"auto_credentials": {
|
||||
"provider": "google",
|
||||
"type": "oauth2",
|
||||
"scopes": ["https://www.googleapis.com/auth/drive.file"],
|
||||
# No kwarg_name specified - should default to "credentials"
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
result = DefaultKwargSchema.get_auto_credentials_fields()
|
||||
|
||||
assert "credentials" in result
|
||||
assert result["credentials"]["field_name"] == "file"
|
||||
|
||||
def test_duplicate_default_kwarg_name_raises_error(self):
|
||||
"""Test that two fields with default kwarg_name raises ValueError."""
|
||||
|
||||
class DefaultDuplicateSchema(BlockSchemaInput):
|
||||
"""Schema where both fields omit kwarg_name, defaulting to 'credentials'."""
|
||||
|
||||
file1: dict[str, Any] | None = SchemaField(
|
||||
description="First file input",
|
||||
default=None,
|
||||
json_schema_extra={
|
||||
"auto_credentials": {
|
||||
"provider": "google",
|
||||
"type": "oauth2",
|
||||
"scopes": ["https://www.googleapis.com/auth/drive.file"],
|
||||
# No kwarg_name - defaults to "credentials"
|
||||
}
|
||||
},
|
||||
)
|
||||
file2: dict[str, Any] | None = SchemaField(
|
||||
description="Second file input",
|
||||
default=None,
|
||||
json_schema_extra={
|
||||
"auto_credentials": {
|
||||
"provider": "google",
|
||||
"type": "oauth2",
|
||||
"scopes": ["https://www.googleapis.com/auth/drive.file"],
|
||||
# No kwarg_name - also defaults to "credentials"
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
DefaultDuplicateSchema.get_auto_credentials_fields()
|
||||
|
||||
assert "Duplicate auto_credentials kwarg_name 'credentials'" in str(
|
||||
exc_info.value
|
||||
)
|
||||
|
||||
@@ -1,7 +1,11 @@
|
||||
import logging
|
||||
import threading
|
||||
from collections import defaultdict
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import ProviderName, User
|
||||
from backend.server.model import CreateGraph
|
||||
from backend.server.rest_api import AgentServer
|
||||
@@ -17,10 +21,10 @@ async def create_graph(s: SpinTestServer, g, u: User):
|
||||
|
||||
|
||||
async def create_credentials(s: SpinTestServer, u: User):
|
||||
import backend.blocks.llm as llm
|
||||
import backend.blocks.llm as llm_module
|
||||
|
||||
provider = ProviderName.OPENAI
|
||||
credentials = llm.TEST_CREDENTIALS
|
||||
credentials = llm_module.TEST_CREDENTIALS
|
||||
return await s.agent_server.test_create_credentials(u.id, provider, credentials)
|
||||
|
||||
|
||||
@@ -196,8 +200,6 @@ async def test_smart_decision_maker_function_signature(server: SpinTestServer):
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_tracks_llm_stats():
|
||||
"""Test that SmartDecisionMakerBlock correctly tracks LLM usage stats."""
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import backend.blocks.llm as llm_module
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
|
||||
@@ -216,7 +218,6 @@ async def test_smart_decision_maker_tracks_llm_stats():
|
||||
}
|
||||
|
||||
# Mock the _create_tool_node_signatures method to avoid database calls
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
@@ -234,10 +235,19 @@ async def test_smart_decision_maker_tracks_llm_stats():
|
||||
prompt="Should I continue with this task?",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
agent_mode_max_iterations=0,
|
||||
)
|
||||
|
||||
# Execute the block
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
@@ -246,6 +256,9 @@ async def test_smart_decision_maker_tracks_llm_stats():
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
@@ -263,8 +276,6 @@ async def test_smart_decision_maker_tracks_llm_stats():
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_parameter_validation():
|
||||
"""Test that SmartDecisionMakerBlock correctly validates tool call parameters."""
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import backend.blocks.llm as llm_module
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
|
||||
@@ -311,8 +322,6 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
mock_response_with_typo.reasoning = None
|
||||
mock_response_with_typo.raw_response = {"role": "assistant", "content": None}
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
@@ -329,8 +338,17 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
retry=2, # Set retry to 2 for testing
|
||||
agent_mode_max_iterations=0,
|
||||
)
|
||||
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
# Should raise ValueError after retries due to typo'd parameter name
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
outputs = {}
|
||||
@@ -342,6 +360,9 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
@@ -368,8 +389,6 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
mock_response_missing_required.reasoning = None
|
||||
mock_response_missing_required.raw_response = {"role": "assistant", "content": None}
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
@@ -385,8 +404,17 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
prompt="Search for keywords",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
agent_mode_max_iterations=0,
|
||||
)
|
||||
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
# Should raise ValueError due to missing required parameter
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
outputs = {}
|
||||
@@ -398,6 +426,9 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
@@ -418,8 +449,6 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
mock_response_valid.reasoning = None
|
||||
mock_response_valid.raw_response = {"role": "assistant", "content": None}
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
@@ -435,10 +464,19 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
prompt="Search for keywords",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
agent_mode_max_iterations=0,
|
||||
)
|
||||
|
||||
# Should succeed - optional parameter missing is OK
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
@@ -447,6 +485,9 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
@@ -472,8 +513,6 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
mock_response_all_params.reasoning = None
|
||||
mock_response_all_params.raw_response = {"role": "assistant", "content": None}
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
@@ -489,10 +528,19 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
prompt="Search for keywords",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
agent_mode_max_iterations=0,
|
||||
)
|
||||
|
||||
# Should succeed with all parameters
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
@@ -501,6 +549,9 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
@@ -513,8 +564,6 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_raw_response_conversion():
|
||||
"""Test that SmartDecisionMaker correctly handles different raw_response types with retry mechanism."""
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import backend.blocks.llm as llm_module
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
|
||||
@@ -584,7 +633,6 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
)
|
||||
|
||||
# Mock llm_call to return different responses on different calls
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call", new_callable=AsyncMock
|
||||
@@ -603,10 +651,19 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
retry=2,
|
||||
agent_mode_max_iterations=0,
|
||||
)
|
||||
|
||||
# Should succeed after retry, demonstrating our helper function works
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
@@ -615,6 +672,9 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
@@ -650,8 +710,6 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
"I'll help you with that." # Ollama returns string
|
||||
)
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
@@ -666,9 +724,18 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
prompt="Simple prompt",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
agent_mode_max_iterations=0,
|
||||
)
|
||||
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
@@ -677,6 +744,9 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
@@ -696,8 +766,6 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
"content": "Test response",
|
||||
} # Dict format
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
@@ -712,6 +780,160 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
prompt="Another test",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
agent_mode_max_iterations=0,
|
||||
)
|
||||
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
graph_id="test-graph-id",
|
||||
node_id="test-node-id",
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
assert "finished" in outputs
|
||||
assert outputs["finished"] == "Test response"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_agent_mode():
|
||||
"""Test that agent mode executes tools directly and loops until finished."""
|
||||
import backend.blocks.llm as llm_module
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
|
||||
block = SmartDecisionMakerBlock()
|
||||
|
||||
# Mock tool call that requires multiple iterations
|
||||
mock_tool_call_1 = MagicMock()
|
||||
mock_tool_call_1.id = "call_1"
|
||||
mock_tool_call_1.function.name = "search_keywords"
|
||||
mock_tool_call_1.function.arguments = (
|
||||
'{"query": "test", "max_keyword_difficulty": 50}'
|
||||
)
|
||||
|
||||
mock_response_1 = MagicMock()
|
||||
mock_response_1.response = None
|
||||
mock_response_1.tool_calls = [mock_tool_call_1]
|
||||
mock_response_1.prompt_tokens = 50
|
||||
mock_response_1.completion_tokens = 25
|
||||
mock_response_1.reasoning = "Using search tool"
|
||||
mock_response_1.raw_response = {
|
||||
"role": "assistant",
|
||||
"content": None,
|
||||
"tool_calls": [{"id": "call_1", "type": "function"}],
|
||||
}
|
||||
|
||||
# Final response with no tool calls (finished)
|
||||
mock_response_2 = MagicMock()
|
||||
mock_response_2.response = "Task completed successfully"
|
||||
mock_response_2.tool_calls = []
|
||||
mock_response_2.prompt_tokens = 30
|
||||
mock_response_2.completion_tokens = 15
|
||||
mock_response_2.reasoning = None
|
||||
mock_response_2.raw_response = {
|
||||
"role": "assistant",
|
||||
"content": "Task completed successfully",
|
||||
}
|
||||
|
||||
# Mock the LLM call to return different responses on each iteration
|
||||
llm_call_mock = AsyncMock()
|
||||
llm_call_mock.side_effect = [mock_response_1, mock_response_2]
|
||||
|
||||
# Mock tool node signatures
|
||||
mock_tool_signatures = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "search_keywords",
|
||||
"_sink_node_id": "test-sink-node-id",
|
||||
"_field_mapping": {},
|
||||
"parameters": {
|
||||
"properties": {
|
||||
"query": {"type": "string"},
|
||||
"max_keyword_difficulty": {"type": "integer"},
|
||||
},
|
||||
"required": ["query", "max_keyword_difficulty"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
# Mock database and execution components
|
||||
mock_db_client = AsyncMock()
|
||||
mock_node = MagicMock()
|
||||
mock_node.block_id = "test-block-id"
|
||||
mock_db_client.get_node.return_value = mock_node
|
||||
|
||||
# Mock upsert_execution_input to return proper NodeExecutionResult and input data
|
||||
mock_node_exec_result = MagicMock()
|
||||
mock_node_exec_result.node_exec_id = "test-tool-exec-id"
|
||||
mock_input_data = {"query": "test", "max_keyword_difficulty": 50}
|
||||
mock_db_client.upsert_execution_input.return_value = (
|
||||
mock_node_exec_result,
|
||||
mock_input_data,
|
||||
)
|
||||
|
||||
# No longer need mock_execute_node since we use execution_processor.on_node_execution
|
||||
|
||||
with patch("backend.blocks.llm.llm_call", llm_call_mock), patch.object(
|
||||
block, "_create_tool_node_signatures", return_value=mock_tool_signatures
|
||||
), patch(
|
||||
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
|
||||
return_value=mock_db_client,
|
||||
), patch(
|
||||
"backend.executor.manager.async_update_node_execution_status",
|
||||
new_callable=AsyncMock,
|
||||
), patch(
|
||||
"backend.integrations.creds_manager.IntegrationCredentialsManager"
|
||||
):
|
||||
|
||||
# Create a mock execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(
|
||||
safe_mode=False,
|
||||
)
|
||||
|
||||
# Create a mock execution processor for agent mode tests
|
||||
|
||||
mock_execution_processor = AsyncMock()
|
||||
# Configure the execution processor mock with required attributes
|
||||
mock_execution_processor.running_node_execution = defaultdict(MagicMock)
|
||||
mock_execution_processor.execution_stats = MagicMock()
|
||||
mock_execution_processor.execution_stats_lock = threading.Lock()
|
||||
|
||||
# Mock the on_node_execution method to return successful stats
|
||||
mock_node_stats = MagicMock()
|
||||
mock_node_stats.error = None # No error
|
||||
mock_execution_processor.on_node_execution = AsyncMock(
|
||||
return_value=mock_node_stats
|
||||
)
|
||||
|
||||
# Mock the get_execution_outputs_by_node_exec_id method
|
||||
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = {
|
||||
"result": {"status": "success", "data": "search completed"}
|
||||
}
|
||||
|
||||
# Test agent mode with max_iterations = 3
|
||||
input_data = SmartDecisionMakerBlock.Input(
|
||||
prompt="Complete this task using tools",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
agent_mode_max_iterations=3, # Enable agent mode with 3 max iterations
|
||||
)
|
||||
|
||||
outputs = {}
|
||||
@@ -723,8 +945,115 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
# Verify agent mode behavior
|
||||
assert "tool_functions" in outputs # tool_functions is yielded in both modes
|
||||
assert "finished" in outputs
|
||||
assert outputs["finished"] == "Test response"
|
||||
assert outputs["finished"] == "Task completed successfully"
|
||||
assert "conversations" in outputs
|
||||
|
||||
# Verify the conversation includes tool responses
|
||||
conversations = outputs["conversations"]
|
||||
assert len(conversations) > 2 # Should have multiple conversation entries
|
||||
|
||||
# Verify LLM was called twice (once for tool call, once for finish)
|
||||
assert llm_call_mock.call_count == 2
|
||||
|
||||
# Verify tool was executed via execution processor
|
||||
assert mock_execution_processor.on_node_execution.call_count == 1
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_traditional_mode_default():
|
||||
"""Test that default behavior (agent_mode_max_iterations=0) works as traditional mode."""
|
||||
import backend.blocks.llm as llm_module
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
|
||||
block = SmartDecisionMakerBlock()
|
||||
|
||||
# Mock tool call
|
||||
mock_tool_call = MagicMock()
|
||||
mock_tool_call.function.name = "search_keywords"
|
||||
mock_tool_call.function.arguments = (
|
||||
'{"query": "test", "max_keyword_difficulty": 50}'
|
||||
)
|
||||
|
||||
mock_response = MagicMock()
|
||||
mock_response.response = None
|
||||
mock_response.tool_calls = [mock_tool_call]
|
||||
mock_response.prompt_tokens = 50
|
||||
mock_response.completion_tokens = 25
|
||||
mock_response.reasoning = None
|
||||
mock_response.raw_response = {"role": "assistant", "content": None}
|
||||
|
||||
mock_tool_signatures = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "search_keywords",
|
||||
"_sink_node_id": "test-sink-node-id",
|
||||
"_field_mapping": {},
|
||||
"parameters": {
|
||||
"properties": {
|
||||
"query": {"type": "string"},
|
||||
"max_keyword_difficulty": {"type": "integer"},
|
||||
},
|
||||
"required": ["query", "max_keyword_difficulty"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_response,
|
||||
), patch.object(
|
||||
block, "_create_tool_node_signatures", return_value=mock_tool_signatures
|
||||
):
|
||||
|
||||
# Test default behavior (traditional mode)
|
||||
input_data = SmartDecisionMakerBlock.Input(
|
||||
prompt="Test prompt",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
agent_mode_max_iterations=0, # Traditional mode
|
||||
)
|
||||
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
outputs = {}
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
graph_id="test-graph-id",
|
||||
node_id="test-node-id",
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
# Verify traditional mode behavior
|
||||
assert (
|
||||
"tool_functions" in outputs
|
||||
) # Should yield tool_functions in traditional mode
|
||||
assert (
|
||||
"tools_^_test-sink-node-id_~_query" in outputs
|
||||
) # Should yield individual tool parameters
|
||||
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
|
||||
assert "conversations" in outputs
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
"""Comprehensive tests for SmartDecisionMakerBlock dynamic field handling."""
|
||||
|
||||
import json
|
||||
from unittest.mock import AsyncMock, Mock, patch
|
||||
from unittest.mock import AsyncMock, MagicMock, Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
@@ -308,10 +308,47 @@ async def test_output_yielding_with_dynamic_fields():
|
||||
) as mock_llm:
|
||||
mock_llm.return_value = mock_response
|
||||
|
||||
# Mock the function signature creation
|
||||
with patch.object(
|
||||
# Mock the database manager to avoid HTTP calls during tool execution
|
||||
with patch(
|
||||
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
|
||||
) as mock_db_manager, patch.object(
|
||||
block, "_create_tool_node_signatures", new_callable=AsyncMock
|
||||
) as mock_sig:
|
||||
# Set up the mock database manager
|
||||
mock_db_client = AsyncMock()
|
||||
mock_db_manager.return_value = mock_db_client
|
||||
|
||||
# Mock the node retrieval
|
||||
mock_target_node = Mock()
|
||||
mock_target_node.id = "test-sink-node-id"
|
||||
mock_target_node.block_id = "CreateDictionaryBlock"
|
||||
mock_target_node.block = Mock()
|
||||
mock_target_node.block.name = "Create Dictionary"
|
||||
mock_db_client.get_node.return_value = mock_target_node
|
||||
|
||||
# Mock the execution result creation
|
||||
mock_node_exec_result = Mock()
|
||||
mock_node_exec_result.node_exec_id = "mock-node-exec-id"
|
||||
mock_final_input_data = {
|
||||
"values_#_name": "Alice",
|
||||
"values_#_age": 30,
|
||||
"values_#_email": "alice@example.com",
|
||||
}
|
||||
mock_db_client.upsert_execution_input.return_value = (
|
||||
mock_node_exec_result,
|
||||
mock_final_input_data,
|
||||
)
|
||||
|
||||
# Mock the output retrieval
|
||||
mock_outputs = {
|
||||
"values_#_name": "Alice",
|
||||
"values_#_age": 30,
|
||||
"values_#_email": "alice@example.com",
|
||||
}
|
||||
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = (
|
||||
mock_outputs
|
||||
)
|
||||
|
||||
mock_sig.return_value = [
|
||||
{
|
||||
"type": "function",
|
||||
@@ -337,10 +374,16 @@ async def test_output_yielding_with_dynamic_fields():
|
||||
prompt="Create a user dictionary",
|
||||
credentials=llm.TEST_CREDENTIALS_INPUT,
|
||||
model=llm.LlmModel.GPT4O,
|
||||
agent_mode_max_iterations=0, # Use traditional mode to test output yielding
|
||||
)
|
||||
|
||||
# Run the block
|
||||
outputs = {}
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
async for output_name, output_value in block.run(
|
||||
input_data,
|
||||
credentials=llm.TEST_CREDENTIALS,
|
||||
@@ -349,6 +392,9 @@ async def test_output_yielding_with_dynamic_fields():
|
||||
graph_exec_id="test_exec",
|
||||
node_exec_id="test_node_exec",
|
||||
user_id="test_user",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_value
|
||||
|
||||
@@ -511,45 +557,108 @@ async def test_validation_errors_dont_pollute_conversation():
|
||||
}
|
||||
]
|
||||
|
||||
# Create input data
|
||||
from backend.blocks import llm
|
||||
# Mock the database manager to avoid HTTP calls during tool execution
|
||||
with patch(
|
||||
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
|
||||
) as mock_db_manager:
|
||||
# Set up the mock database manager for agent mode
|
||||
mock_db_client = AsyncMock()
|
||||
mock_db_manager.return_value = mock_db_client
|
||||
|
||||
input_data = block.input_schema(
|
||||
prompt="Test prompt",
|
||||
credentials=llm.TEST_CREDENTIALS_INPUT,
|
||||
model=llm.LlmModel.GPT4O,
|
||||
retry=3, # Allow retries
|
||||
)
|
||||
# Mock the node retrieval
|
||||
mock_target_node = Mock()
|
||||
mock_target_node.id = "test-sink-node-id"
|
||||
mock_target_node.block_id = "TestBlock"
|
||||
mock_target_node.block = Mock()
|
||||
mock_target_node.block.name = "Test Block"
|
||||
mock_db_client.get_node.return_value = mock_target_node
|
||||
|
||||
# Run the block
|
||||
outputs = {}
|
||||
async for output_name, output_value in block.run(
|
||||
input_data,
|
||||
credentials=llm.TEST_CREDENTIALS,
|
||||
graph_id="test_graph",
|
||||
node_id="test_node",
|
||||
graph_exec_id="test_exec",
|
||||
node_exec_id="test_node_exec",
|
||||
user_id="test_user",
|
||||
):
|
||||
outputs[output_name] = output_value
|
||||
# Mock the execution result creation
|
||||
mock_node_exec_result = Mock()
|
||||
mock_node_exec_result.node_exec_id = "mock-node-exec-id"
|
||||
mock_final_input_data = {"correct_param": "value"}
|
||||
mock_db_client.upsert_execution_input.return_value = (
|
||||
mock_node_exec_result,
|
||||
mock_final_input_data,
|
||||
)
|
||||
|
||||
# Verify we had 2 LLM calls (initial + retry)
|
||||
assert call_count == 2
|
||||
# Mock the output retrieval
|
||||
mock_outputs = {"correct_param": "value"}
|
||||
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = (
|
||||
mock_outputs
|
||||
)
|
||||
|
||||
# Check the final conversation output
|
||||
final_conversation = outputs.get("conversations", [])
|
||||
# Create input data
|
||||
from backend.blocks import llm
|
||||
|
||||
# The final conversation should NOT contain the validation error message
|
||||
error_messages = [
|
||||
msg
|
||||
for msg in final_conversation
|
||||
if msg.get("role") == "user"
|
||||
and "parameter errors" in msg.get("content", "")
|
||||
]
|
||||
assert (
|
||||
len(error_messages) == 0
|
||||
), "Validation error leaked into final conversation"
|
||||
input_data = block.input_schema(
|
||||
prompt="Test prompt",
|
||||
credentials=llm.TEST_CREDENTIALS_INPUT,
|
||||
model=llm.LlmModel.GPT4O,
|
||||
retry=3, # Allow retries
|
||||
agent_mode_max_iterations=1,
|
||||
)
|
||||
|
||||
# The final conversation should only have the successful response
|
||||
assert final_conversation[-1]["content"] == "valid"
|
||||
# Run the block
|
||||
outputs = {}
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
|
||||
# Create a proper mock execution processor for agent mode
|
||||
from collections import defaultdict
|
||||
|
||||
mock_execution_processor = AsyncMock()
|
||||
mock_execution_processor.execution_stats = MagicMock()
|
||||
mock_execution_processor.execution_stats_lock = MagicMock()
|
||||
|
||||
# Create a mock NodeExecutionProgress for the sink node
|
||||
mock_node_exec_progress = MagicMock()
|
||||
mock_node_exec_progress.add_task = MagicMock()
|
||||
mock_node_exec_progress.pop_output = MagicMock(
|
||||
return_value=None
|
||||
) # No outputs to process
|
||||
|
||||
# Set up running_node_execution as a defaultdict that returns our mock for any key
|
||||
mock_execution_processor.running_node_execution = defaultdict(
|
||||
lambda: mock_node_exec_progress
|
||||
)
|
||||
|
||||
# Mock the on_node_execution method that gets called during tool execution
|
||||
mock_node_stats = MagicMock()
|
||||
mock_node_stats.error = None
|
||||
mock_execution_processor.on_node_execution.return_value = (
|
||||
mock_node_stats
|
||||
)
|
||||
|
||||
async for output_name, output_value in block.run(
|
||||
input_data,
|
||||
credentials=llm.TEST_CREDENTIALS,
|
||||
graph_id="test_graph",
|
||||
node_id="test_node",
|
||||
graph_exec_id="test_exec",
|
||||
node_exec_id="test_node_exec",
|
||||
user_id="test_user",
|
||||
graph_version=1,
|
||||
execution_context=mock_execution_context,
|
||||
execution_processor=mock_execution_processor,
|
||||
):
|
||||
outputs[output_name] = output_value
|
||||
|
||||
# Verify we had at least 1 LLM call
|
||||
assert call_count >= 1
|
||||
|
||||
# Check the final conversation output
|
||||
final_conversation = outputs.get("conversations", [])
|
||||
|
||||
# The final conversation should NOT contain validation error messages
|
||||
# Even if retries don't happen in agent mode, we should not leak errors
|
||||
error_messages = [
|
||||
msg
|
||||
for msg in final_conversation
|
||||
if msg.get("role") == "user"
|
||||
and "parameter errors" in msg.get("content", "")
|
||||
]
|
||||
assert (
|
||||
len(error_messages) == 0
|
||||
), "Validation error leaked into final conversation"
|
||||
|
||||
@@ -14,7 +14,7 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.execution import UserContext
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import SchemaField
|
||||
|
||||
# Shared timezone literal type for all time/date blocks
|
||||
@@ -188,10 +188,9 @@ class GetCurrentTimeBlock(Block):
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, user_context: UserContext, **kwargs
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
|
||||
) -> BlockOutput:
|
||||
# Extract timezone from user_context (always present)
|
||||
effective_timezone = user_context.timezone
|
||||
effective_timezone = execution_context.user_timezone
|
||||
|
||||
# Get the appropriate timezone
|
||||
tz = _get_timezone(input_data.format_type, effective_timezone)
|
||||
@@ -298,10 +297,10 @@ class GetCurrentDateBlock(Block):
|
||||
],
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
# Extract timezone from user_context (required keyword argument)
|
||||
user_context: UserContext = kwargs["user_context"]
|
||||
effective_timezone = user_context.timezone
|
||||
async def run(
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
|
||||
) -> BlockOutput:
|
||||
effective_timezone = execution_context.user_timezone
|
||||
|
||||
try:
|
||||
offset = int(input_data.offset)
|
||||
@@ -404,10 +403,10 @@ class GetCurrentDateAndTimeBlock(Block):
|
||||
],
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
# Extract timezone from user_context (required keyword argument)
|
||||
user_context: UserContext = kwargs["user_context"]
|
||||
effective_timezone = user_context.timezone
|
||||
async def run(
|
||||
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
|
||||
) -> BlockOutput:
|
||||
effective_timezone = execution_context.user_timezone
|
||||
|
||||
# Get the appropriate timezone
|
||||
tz = _get_timezone(input_data.format_type, effective_timezone)
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from datetime import datetime
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any, Dict
|
||||
|
||||
from backend.blocks.twitter._mappers import (
|
||||
@@ -237,6 +237,12 @@ class TweetDurationBuilder:
|
||||
|
||||
def add_start_time(self, start_time: datetime | None):
|
||||
if start_time:
|
||||
# Twitter API requires start_time to be at least 10 seconds before now
|
||||
max_start_time = datetime.now(timezone.utc) - timedelta(seconds=10)
|
||||
if start_time.tzinfo is None:
|
||||
start_time = start_time.replace(tzinfo=timezone.utc)
|
||||
if start_time > max_start_time:
|
||||
start_time = max_start_time
|
||||
self.params["start_time"] = start_time
|
||||
return self
|
||||
|
||||
|
||||
@@ -51,8 +51,10 @@ class ResponseDataSerializer(BaseSerializer):
|
||||
return serialized_item
|
||||
|
||||
@classmethod
|
||||
def serialize_list(cls, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
||||
def serialize_list(cls, data: List[Dict[str, Any]] | None) -> List[Dict[str, Any]]:
|
||||
"""Serializes a list of dictionary items"""
|
||||
if not data:
|
||||
return []
|
||||
return [cls.serialize_dict(item) for item in data]
|
||||
|
||||
|
||||
|
||||
@@ -408,7 +408,7 @@ class ListExpansionInputs(BlockSchemaInput):
|
||||
|
||||
class TweetTimeWindowInputs(BlockSchemaInput):
|
||||
start_time: datetime | None = SchemaField(
|
||||
description="Start time in YYYY-MM-DDTHH:mm:ssZ format",
|
||||
description="Start time in YYYY-MM-DDTHH:mm:ssZ format. If set to a time less than 10 seconds ago, it will be automatically adjusted to 10 seconds ago (Twitter API requirement).",
|
||||
placeholder="Enter start time",
|
||||
default=None,
|
||||
advanced=False,
|
||||
|
||||
@@ -1,9 +1,13 @@
|
||||
import logging
|
||||
from typing import Literal
|
||||
from urllib.parse import parse_qs, urlparse
|
||||
|
||||
from pydantic import SecretStr
|
||||
from youtube_transcript_api._api import YouTubeTranscriptApi
|
||||
from youtube_transcript_api._errors import NoTranscriptFound
|
||||
from youtube_transcript_api._transcripts import FetchedTranscript
|
||||
from youtube_transcript_api.formatters import TextFormatter
|
||||
from youtube_transcript_api.proxies import WebshareProxyConfig
|
||||
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
@@ -12,7 +16,42 @@ from backend.data.block import (
|
||||
BlockSchemaInput,
|
||||
BlockSchemaOutput,
|
||||
)
|
||||
from backend.data.model import SchemaField
|
||||
from backend.data.model import (
|
||||
CredentialsField,
|
||||
CredentialsMetaInput,
|
||||
SchemaField,
|
||||
UserPasswordCredentials,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
TEST_CREDENTIALS = UserPasswordCredentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
provider="webshare_proxy",
|
||||
username=SecretStr("mock-webshare-username"),
|
||||
password=SecretStr("mock-webshare-password"),
|
||||
title="Mock Webshare Proxy credentials",
|
||||
)
|
||||
|
||||
TEST_CREDENTIALS_INPUT = {
|
||||
"provider": TEST_CREDENTIALS.provider,
|
||||
"id": TEST_CREDENTIALS.id,
|
||||
"type": TEST_CREDENTIALS.type,
|
||||
"title": TEST_CREDENTIALS.title,
|
||||
}
|
||||
|
||||
WebshareProxyCredentials = UserPasswordCredentials
|
||||
WebshareProxyCredentialsInput = CredentialsMetaInput[
|
||||
Literal[ProviderName.WEBSHARE_PROXY],
|
||||
Literal["user_password"],
|
||||
]
|
||||
|
||||
|
||||
def WebshareProxyCredentialsField() -> WebshareProxyCredentialsInput:
|
||||
return CredentialsField(
|
||||
description="Webshare proxy credentials for fetching YouTube transcripts",
|
||||
)
|
||||
|
||||
|
||||
class TranscribeYoutubeVideoBlock(Block):
|
||||
@@ -22,6 +61,7 @@ class TranscribeYoutubeVideoBlock(Block):
|
||||
description="The URL of the YouTube video to transcribe",
|
||||
placeholder="https://www.youtube.com/watch?v=dQw4w9WgXcQ",
|
||||
)
|
||||
credentials: WebshareProxyCredentialsInput = WebshareProxyCredentialsField()
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
video_id: str = SchemaField(description="The extracted YouTube video ID")
|
||||
@@ -35,9 +75,12 @@ class TranscribeYoutubeVideoBlock(Block):
|
||||
id="f3a8f7e1-4b1d-4e5f-9f2a-7c3d5a2e6b4c",
|
||||
input_schema=TranscribeYoutubeVideoBlock.Input,
|
||||
output_schema=TranscribeYoutubeVideoBlock.Output,
|
||||
description="Transcribes a YouTube video.",
|
||||
description="Transcribes a YouTube video using a proxy.",
|
||||
categories={BlockCategory.SOCIAL},
|
||||
test_input={"youtube_url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ"},
|
||||
test_input={
|
||||
"youtube_url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("video_id", "dQw4w9WgXcQ"),
|
||||
(
|
||||
@@ -45,8 +88,9 @@ class TranscribeYoutubeVideoBlock(Block):
|
||||
"Never gonna give you up\nNever gonna let you down",
|
||||
),
|
||||
],
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_mock={
|
||||
"get_transcript": lambda video_id: [
|
||||
"get_transcript": lambda video_id, credentials: [
|
||||
{"text": "Never gonna give you up"},
|
||||
{"text": "Never gonna let you down"},
|
||||
],
|
||||
@@ -69,16 +113,27 @@ class TranscribeYoutubeVideoBlock(Block):
|
||||
return parsed_url.path.split("/")[2]
|
||||
raise ValueError(f"Invalid YouTube URL: {url}")
|
||||
|
||||
@staticmethod
|
||||
def get_transcript(video_id: str) -> FetchedTranscript:
|
||||
def get_transcript(
|
||||
self, video_id: str, credentials: WebshareProxyCredentials
|
||||
) -> FetchedTranscript:
|
||||
"""
|
||||
Get transcript for a video, preferring English but falling back to any available language.
|
||||
|
||||
:param video_id: The YouTube video ID
|
||||
:param credentials: The Webshare proxy credentials
|
||||
:return: The fetched transcript
|
||||
:raises: Any exception except NoTranscriptFound for requested languages
|
||||
"""
|
||||
api = YouTubeTranscriptApi()
|
||||
logger.warning(
|
||||
"Using Webshare proxy for YouTube transcript fetch (video_id=%s)",
|
||||
video_id,
|
||||
)
|
||||
proxy_config = WebshareProxyConfig(
|
||||
proxy_username=credentials.username.get_secret_value(),
|
||||
proxy_password=credentials.password.get_secret_value(),
|
||||
)
|
||||
|
||||
api = YouTubeTranscriptApi(proxy_config=proxy_config)
|
||||
try:
|
||||
# Try to get English transcript first (default behavior)
|
||||
return api.fetch(video_id=video_id)
|
||||
@@ -101,11 +156,17 @@ class TranscribeYoutubeVideoBlock(Block):
|
||||
transcript_text = formatter.format_transcript(transcript)
|
||||
return transcript_text
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: WebshareProxyCredentials,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
video_id = self.extract_video_id(input_data.youtube_url)
|
||||
yield "video_id", video_id
|
||||
|
||||
transcript = self.get_transcript(video_id)
|
||||
transcript = self.get_transcript(video_id, credentials)
|
||||
transcript_text = self.format_transcript(transcript=transcript)
|
||||
|
||||
yield "transcript", transcript_text
|
||||
|
||||
@@ -5,6 +5,8 @@ from datetime import datetime
|
||||
from faker import Faker
|
||||
from prisma import Prisma
|
||||
|
||||
from backend.data.db import query_raw_with_schema
|
||||
|
||||
faker = Faker()
|
||||
|
||||
|
||||
@@ -15,9 +17,9 @@ async def check_cron_job(db):
|
||||
|
||||
try:
|
||||
# Check if pg_cron extension exists
|
||||
extension_check = await db.query_raw("CREATE EXTENSION pg_cron;")
|
||||
extension_check = await query_raw_with_schema("CREATE EXTENSION pg_cron;")
|
||||
print(extension_check)
|
||||
extension_check = await db.query_raw(
|
||||
extension_check = await query_raw_with_schema(
|
||||
"SELECT COUNT(*) as count FROM pg_extension WHERE extname = 'pg_cron'"
|
||||
)
|
||||
if extension_check[0]["count"] == 0:
|
||||
@@ -25,7 +27,7 @@ async def check_cron_job(db):
|
||||
return False
|
||||
|
||||
# Check if the refresh job exists
|
||||
job_check = await db.query_raw(
|
||||
job_check = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT jobname, schedule, command
|
||||
FROM cron.job
|
||||
@@ -55,33 +57,33 @@ async def get_materialized_view_counts(db):
|
||||
print("-" * 40)
|
||||
|
||||
# Get counts from mv_agent_run_counts
|
||||
agent_runs = await db.query_raw(
|
||||
agent_runs = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT COUNT(*) as total_agents,
|
||||
SUM(run_count) as total_runs,
|
||||
MAX(run_count) as max_runs,
|
||||
MIN(run_count) as min_runs
|
||||
FROM mv_agent_run_counts
|
||||
FROM {schema_prefix}mv_agent_run_counts
|
||||
"""
|
||||
)
|
||||
|
||||
# Get counts from mv_review_stats
|
||||
review_stats = await db.query_raw(
|
||||
review_stats = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT COUNT(*) as total_listings,
|
||||
SUM(review_count) as total_reviews,
|
||||
AVG(avg_rating) as overall_avg_rating
|
||||
FROM mv_review_stats
|
||||
FROM {schema_prefix}mv_review_stats
|
||||
"""
|
||||
)
|
||||
|
||||
# Get sample data from StoreAgent view
|
||||
store_agents = await db.query_raw(
|
||||
store_agents = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT COUNT(*) as total_store_agents,
|
||||
AVG(runs) as avg_runs,
|
||||
AVG(rating) as avg_rating
|
||||
FROM "StoreAgent"
|
||||
FROM {schema_prefix}"StoreAgent"
|
||||
"""
|
||||
)
|
||||
|
||||
|
||||
@@ -5,6 +5,8 @@ import asyncio
|
||||
|
||||
from prisma import Prisma
|
||||
|
||||
from backend.data.db import query_raw_with_schema
|
||||
|
||||
|
||||
async def check_store_data(db):
|
||||
"""Check what store data exists in the database."""
|
||||
@@ -89,11 +91,11 @@ async def check_store_data(db):
|
||||
sa.creator_username,
|
||||
sa.categories,
|
||||
sa.updated_at
|
||||
FROM "StoreAgent" sa
|
||||
FROM {schema_prefix}"StoreAgent" sa
|
||||
LIMIT 10;
|
||||
"""
|
||||
|
||||
store_agents = await db.query_raw(query)
|
||||
store_agents = await query_raw_with_schema(query)
|
||||
print(f"Total store agents in view: {len(store_agents)}")
|
||||
|
||||
if store_agents:
|
||||
@@ -111,22 +113,22 @@ async def check_store_data(db):
|
||||
# Check for any APPROVED store listing versions
|
||||
query = """
|
||||
SELECT COUNT(*) as count
|
||||
FROM "StoreListingVersion"
|
||||
FROM {schema_prefix}"StoreListingVersion"
|
||||
WHERE "submissionStatus" = 'APPROVED'
|
||||
"""
|
||||
|
||||
result = await db.query_raw(query)
|
||||
result = await query_raw_with_schema(query)
|
||||
approved_count = result[0]["count"] if result else 0
|
||||
print(f"Approved store listing versions: {approved_count}")
|
||||
|
||||
# Check for store listings with hasApprovedVersion = true
|
||||
query = """
|
||||
SELECT COUNT(*) as count
|
||||
FROM "StoreListing"
|
||||
FROM {schema_prefix}"StoreListing"
|
||||
WHERE "hasApprovedVersion" = true AND "isDeleted" = false
|
||||
"""
|
||||
|
||||
result = await db.query_raw(query)
|
||||
result = await query_raw_with_schema(query)
|
||||
has_approved_count = result[0]["count"] if result else 0
|
||||
print(f"Store listings with approved versions: {has_approved_count}")
|
||||
|
||||
@@ -134,10 +136,10 @@ async def check_store_data(db):
|
||||
query = """
|
||||
SELECT COUNT(DISTINCT "agentGraphId") as unique_agents,
|
||||
COUNT(*) as total_executions
|
||||
FROM "AgentGraphExecution"
|
||||
FROM {schema_prefix}"AgentGraphExecution"
|
||||
"""
|
||||
|
||||
result = await db.query_raw(query)
|
||||
result = await query_raw_with_schema(query)
|
||||
if result:
|
||||
print("\nAgent Graph Executions:")
|
||||
print(f" Unique agents with executions: {result[0]['unique_agents']}")
|
||||
|
||||
@@ -1,12 +1,45 @@
|
||||
import logging
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Optional
|
||||
|
||||
import prisma.types
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.db import query_raw_with_schema
|
||||
from backend.util.json import SafeJson
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AccuracyAlertData(BaseModel):
|
||||
"""Alert data when accuracy drops significantly."""
|
||||
|
||||
graph_id: str
|
||||
user_id: Optional[str]
|
||||
drop_percent: float
|
||||
three_day_avg: float
|
||||
seven_day_avg: float
|
||||
detected_at: datetime
|
||||
|
||||
|
||||
class AccuracyLatestData(BaseModel):
|
||||
"""Latest execution accuracy data point."""
|
||||
|
||||
date: datetime
|
||||
daily_score: Optional[float]
|
||||
three_day_avg: Optional[float]
|
||||
seven_day_avg: Optional[float]
|
||||
fourteen_day_avg: Optional[float]
|
||||
|
||||
|
||||
class AccuracyTrendsResponse(BaseModel):
|
||||
"""Response model for accuracy trends and alerts."""
|
||||
|
||||
latest_data: AccuracyLatestData
|
||||
alert: Optional[AccuracyAlertData]
|
||||
historical_data: Optional[list[AccuracyLatestData]] = None
|
||||
|
||||
|
||||
async def log_raw_analytics(
|
||||
user_id: str,
|
||||
type: str,
|
||||
@@ -43,3 +76,217 @@ async def log_raw_metric(
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
async def get_accuracy_trends_and_alerts(
|
||||
graph_id: str,
|
||||
days_back: int = 30,
|
||||
user_id: Optional[str] = None,
|
||||
drop_threshold: float = 10.0,
|
||||
include_historical: bool = False,
|
||||
) -> AccuracyTrendsResponse:
|
||||
"""Get accuracy trends and detect alerts for a specific graph."""
|
||||
query_template = """
|
||||
WITH daily_scores AS (
|
||||
SELECT
|
||||
DATE(e."createdAt") as execution_date,
|
||||
AVG(CASE
|
||||
WHEN e.stats IS NOT NULL
|
||||
AND e.stats::json->>'correctness_score' IS NOT NULL
|
||||
AND e.stats::json->>'correctness_score' != 'null'
|
||||
THEN (e.stats::json->>'correctness_score')::float * 100
|
||||
ELSE NULL
|
||||
END) as daily_score
|
||||
FROM {schema_prefix}"AgentGraphExecution" e
|
||||
WHERE e."agentGraphId" = $1::text
|
||||
AND e."isDeleted" = false
|
||||
AND e."createdAt" >= $2::timestamp
|
||||
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
|
||||
{user_filter}
|
||||
GROUP BY DATE(e."createdAt")
|
||||
HAVING COUNT(*) >= 3 -- Need at least 3 executions per day
|
||||
),
|
||||
trends AS (
|
||||
SELECT
|
||||
execution_date,
|
||||
daily_score,
|
||||
AVG(daily_score) OVER (
|
||||
ORDER BY execution_date
|
||||
ROWS BETWEEN 2 PRECEDING AND CURRENT ROW
|
||||
) as three_day_avg,
|
||||
AVG(daily_score) OVER (
|
||||
ORDER BY execution_date
|
||||
ROWS BETWEEN 6 PRECEDING AND CURRENT ROW
|
||||
) as seven_day_avg,
|
||||
AVG(daily_score) OVER (
|
||||
ORDER BY execution_date
|
||||
ROWS BETWEEN 13 PRECEDING AND CURRENT ROW
|
||||
) as fourteen_day_avg
|
||||
FROM daily_scores
|
||||
)
|
||||
SELECT *,
|
||||
CASE
|
||||
WHEN three_day_avg IS NOT NULL AND seven_day_avg IS NOT NULL AND seven_day_avg > 0
|
||||
THEN ((seven_day_avg - three_day_avg) / seven_day_avg * 100)
|
||||
ELSE NULL
|
||||
END as drop_percent
|
||||
FROM trends
|
||||
ORDER BY execution_date DESC
|
||||
{limit_clause}
|
||||
"""
|
||||
|
||||
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
|
||||
params = [graph_id, start_date]
|
||||
user_filter = ""
|
||||
if user_id:
|
||||
user_filter = 'AND e."userId" = $3::text'
|
||||
params.append(user_id)
|
||||
|
||||
# Determine limit clause
|
||||
limit_clause = "" if include_historical else "LIMIT 1"
|
||||
|
||||
final_query = query_template.format(
|
||||
schema_prefix="{schema_prefix}",
|
||||
user_filter=user_filter,
|
||||
limit_clause=limit_clause,
|
||||
)
|
||||
|
||||
result = await query_raw_with_schema(final_query, *params)
|
||||
|
||||
if not result:
|
||||
return AccuracyTrendsResponse(
|
||||
latest_data=AccuracyLatestData(
|
||||
date=datetime.now(timezone.utc),
|
||||
daily_score=None,
|
||||
three_day_avg=None,
|
||||
seven_day_avg=None,
|
||||
fourteen_day_avg=None,
|
||||
),
|
||||
alert=None,
|
||||
)
|
||||
|
||||
latest = result[0]
|
||||
|
||||
alert = None
|
||||
if (
|
||||
latest["drop_percent"] is not None
|
||||
and latest["drop_percent"] >= drop_threshold
|
||||
and latest["three_day_avg"] is not None
|
||||
and latest["seven_day_avg"] is not None
|
||||
):
|
||||
alert = AccuracyAlertData(
|
||||
graph_id=graph_id,
|
||||
user_id=user_id,
|
||||
drop_percent=float(latest["drop_percent"]),
|
||||
three_day_avg=float(latest["three_day_avg"]),
|
||||
seven_day_avg=float(latest["seven_day_avg"]),
|
||||
detected_at=datetime.now(timezone.utc),
|
||||
)
|
||||
|
||||
# Prepare historical data if requested
|
||||
historical_data = None
|
||||
if include_historical:
|
||||
historical_data = []
|
||||
for row in result:
|
||||
historical_data.append(
|
||||
AccuracyLatestData(
|
||||
date=row["execution_date"],
|
||||
daily_score=(
|
||||
float(row["daily_score"])
|
||||
if row["daily_score"] is not None
|
||||
else None
|
||||
),
|
||||
three_day_avg=(
|
||||
float(row["three_day_avg"])
|
||||
if row["three_day_avg"] is not None
|
||||
else None
|
||||
),
|
||||
seven_day_avg=(
|
||||
float(row["seven_day_avg"])
|
||||
if row["seven_day_avg"] is not None
|
||||
else None
|
||||
),
|
||||
fourteen_day_avg=(
|
||||
float(row["fourteen_day_avg"])
|
||||
if row["fourteen_day_avg"] is not None
|
||||
else None
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
return AccuracyTrendsResponse(
|
||||
latest_data=AccuracyLatestData(
|
||||
date=latest["execution_date"],
|
||||
daily_score=(
|
||||
float(latest["daily_score"])
|
||||
if latest["daily_score"] is not None
|
||||
else None
|
||||
),
|
||||
three_day_avg=(
|
||||
float(latest["three_day_avg"])
|
||||
if latest["three_day_avg"] is not None
|
||||
else None
|
||||
),
|
||||
seven_day_avg=(
|
||||
float(latest["seven_day_avg"])
|
||||
if latest["seven_day_avg"] is not None
|
||||
else None
|
||||
),
|
||||
fourteen_day_avg=(
|
||||
float(latest["fourteen_day_avg"])
|
||||
if latest["fourteen_day_avg"] is not None
|
||||
else None
|
||||
),
|
||||
),
|
||||
alert=alert,
|
||||
historical_data=historical_data,
|
||||
)
|
||||
|
||||
|
||||
class MarketplaceGraphData(BaseModel):
|
||||
"""Data structure for marketplace graph monitoring."""
|
||||
|
||||
graph_id: str
|
||||
user_id: Optional[str]
|
||||
execution_count: int
|
||||
|
||||
|
||||
async def get_marketplace_graphs_for_monitoring(
|
||||
days_back: int = 30,
|
||||
min_executions: int = 10,
|
||||
) -> list[MarketplaceGraphData]:
|
||||
"""Get published marketplace graphs with recent executions for monitoring."""
|
||||
query_template = """
|
||||
WITH marketplace_graphs AS (
|
||||
SELECT DISTINCT
|
||||
slv."agentGraphId" as graph_id,
|
||||
slv."agentGraphVersion" as graph_version
|
||||
FROM {schema_prefix}"StoreListing" sl
|
||||
JOIN {schema_prefix}"StoreListingVersion" slv ON sl."activeVersionId" = slv."id"
|
||||
WHERE sl."hasApprovedVersion" = true
|
||||
AND sl."isDeleted" = false
|
||||
)
|
||||
SELECT DISTINCT
|
||||
mg.graph_id,
|
||||
NULL as user_id, -- Marketplace graphs don't have a specific user_id for monitoring
|
||||
COUNT(*) as execution_count
|
||||
FROM marketplace_graphs mg
|
||||
JOIN {schema_prefix}"AgentGraphExecution" e ON e."agentGraphId" = mg.graph_id
|
||||
WHERE e."createdAt" >= $1::timestamp
|
||||
AND e."isDeleted" = false
|
||||
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
|
||||
GROUP BY mg.graph_id
|
||||
HAVING COUNT(*) >= $2
|
||||
ORDER BY execution_count DESC
|
||||
"""
|
||||
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
|
||||
result = await query_raw_with_schema(query_template, start_date, min_executions)
|
||||
|
||||
return [
|
||||
MarketplaceGraphData(
|
||||
graph_id=row["graph_id"],
|
||||
user_id=row["user_id"],
|
||||
execution_count=int(row["execution_count"]),
|
||||
)
|
||||
for row in result
|
||||
]
|
||||
|
||||
@@ -71,6 +71,7 @@ class BlockType(Enum):
|
||||
AGENT = "Agent"
|
||||
AI = "AI"
|
||||
AYRSHARE = "Ayrshare"
|
||||
HUMAN_IN_THE_LOOP = "Human In The Loop"
|
||||
|
||||
|
||||
class BlockCategory(Enum):
|
||||
@@ -265,14 +266,61 @@ class BlockSchema(BaseModel):
|
||||
)
|
||||
}
|
||||
|
||||
@classmethod
|
||||
def get_auto_credentials_fields(cls) -> dict[str, dict[str, Any]]:
|
||||
"""
|
||||
Get fields that have auto_credentials metadata (e.g., GoogleDriveFileInput).
|
||||
|
||||
Returns a dict mapping kwarg_name -> {field_name, auto_credentials_config}
|
||||
|
||||
Raises:
|
||||
ValueError: If multiple fields have the same kwarg_name, as this would
|
||||
cause silent overwriting and only the last field would be processed.
|
||||
"""
|
||||
result: dict[str, dict[str, Any]] = {}
|
||||
schema = cls.jsonschema()
|
||||
properties = schema.get("properties", {})
|
||||
|
||||
for field_name, field_schema in properties.items():
|
||||
auto_creds = field_schema.get("auto_credentials")
|
||||
if auto_creds:
|
||||
kwarg_name = auto_creds.get("kwarg_name", "credentials")
|
||||
if kwarg_name in result:
|
||||
raise ValueError(
|
||||
f"Duplicate auto_credentials kwarg_name '{kwarg_name}' "
|
||||
f"in fields '{result[kwarg_name]['field_name']}' and "
|
||||
f"'{field_name}' on {cls.__qualname__}"
|
||||
)
|
||||
result[kwarg_name] = {
|
||||
"field_name": field_name,
|
||||
"config": auto_creds,
|
||||
}
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def get_credentials_fields_info(cls) -> dict[str, CredentialsFieldInfo]:
|
||||
return {
|
||||
field_name: CredentialsFieldInfo.model_validate(
|
||||
result = {}
|
||||
|
||||
# Regular credentials fields
|
||||
for field_name in cls.get_credentials_fields().keys():
|
||||
result[field_name] = CredentialsFieldInfo.model_validate(
|
||||
cls.get_field_schema(field_name), by_alias=True
|
||||
)
|
||||
for field_name in cls.get_credentials_fields().keys()
|
||||
}
|
||||
|
||||
# Auto-generated credentials fields (from GoogleDriveFileInput etc.)
|
||||
for kwarg_name, info in cls.get_auto_credentials_fields().items():
|
||||
config = info["config"]
|
||||
# Build a schema-like dict that CredentialsFieldInfo can parse
|
||||
auto_schema = {
|
||||
"credentials_provider": [config.get("provider", "google")],
|
||||
"credentials_types": [config.get("type", "oauth2")],
|
||||
"credentials_scopes": config.get("scopes"),
|
||||
}
|
||||
result[kwarg_name] = CredentialsFieldInfo.model_validate(
|
||||
auto_schema, by_alias=True
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
@classmethod
|
||||
def get_input_defaults(cls, data: BlockInput) -> BlockInput:
|
||||
@@ -553,14 +601,18 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
async for output_name, output_data in self._execute(input_data, **kwargs):
|
||||
yield output_name, output_data
|
||||
except Exception as ex:
|
||||
if not isinstance(ex, BlockError):
|
||||
raise BlockUnknownError(
|
||||
if isinstance(ex, BlockError):
|
||||
raise ex
|
||||
else:
|
||||
raise (
|
||||
BlockExecutionError
|
||||
if isinstance(ex, ValueError)
|
||||
else BlockUnknownError
|
||||
)(
|
||||
message=str(ex),
|
||||
block_name=self.name,
|
||||
block_id=self.id,
|
||||
) from ex
|
||||
else:
|
||||
raise ex
|
||||
|
||||
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
|
||||
if error := self.input_schema.validate_data(input_data):
|
||||
@@ -796,3 +848,12 @@ def get_io_block_ids() -> Sequence[str]:
|
||||
for id, B in get_blocks().items()
|
||||
if B().block_type in (BlockType.INPUT, BlockType.OUTPUT)
|
||||
]
|
||||
|
||||
|
||||
@cached(ttl_seconds=3600)
|
||||
def get_human_in_the_loop_block_ids() -> Sequence[str]:
|
||||
return [
|
||||
id
|
||||
for id, B in get_blocks().items()
|
||||
if B().block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
]
|
||||
|
||||
@@ -7,7 +7,7 @@ from prisma.models import CreditTransaction, UserBalance
|
||||
from backend.blocks.llm import AITextGeneratorBlock
|
||||
from backend.data.block import get_block
|
||||
from backend.data.credit import BetaUserCredit, UsageTransactionMetadata
|
||||
from backend.data.execution import NodeExecutionEntry, UserContext
|
||||
from backend.data.execution import ExecutionContext, NodeExecutionEntry
|
||||
from backend.data.user import DEFAULT_USER_ID
|
||||
from backend.executor.utils import block_usage_cost
|
||||
from backend.integrations.credentials_store import openai_credentials
|
||||
@@ -73,6 +73,7 @@ async def test_block_credit_usage(server: SpinTestServer):
|
||||
NodeExecutionEntry(
|
||||
user_id=DEFAULT_USER_ID,
|
||||
graph_id="test_graph",
|
||||
graph_version=1,
|
||||
node_id="test_node",
|
||||
graph_exec_id="test_graph_exec",
|
||||
node_exec_id="test_node_exec",
|
||||
@@ -85,7 +86,7 @@ async def test_block_credit_usage(server: SpinTestServer):
|
||||
"type": openai_credentials.type,
|
||||
},
|
||||
},
|
||||
user_context=UserContext(timezone="UTC"),
|
||||
execution_context=ExecutionContext(user_timezone="UTC"),
|
||||
),
|
||||
)
|
||||
assert spending_amount_1 > 0
|
||||
@@ -94,12 +95,13 @@ async def test_block_credit_usage(server: SpinTestServer):
|
||||
NodeExecutionEntry(
|
||||
user_id=DEFAULT_USER_ID,
|
||||
graph_id="test_graph",
|
||||
graph_version=1,
|
||||
node_id="test_node",
|
||||
graph_exec_id="test_graph_exec",
|
||||
node_exec_id="test_node_exec",
|
||||
block_id=AITextGeneratorBlock().id,
|
||||
inputs={"model": "gpt-4-turbo", "api_key": "owned_api_key"},
|
||||
user_context=UserContext(timezone="UTC"),
|
||||
execution_context=ExecutionContext(user_timezone="UTC"),
|
||||
),
|
||||
)
|
||||
assert spending_amount_2 == 0
|
||||
|
||||
@@ -5,6 +5,7 @@ from enum import Enum
|
||||
from multiprocessing import Manager
|
||||
from queue import Empty
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Annotated,
|
||||
Any,
|
||||
AsyncGenerator,
|
||||
@@ -34,6 +35,7 @@ from prisma.types import (
|
||||
AgentNodeExecutionKeyValueDataCreateInput,
|
||||
AgentNodeExecutionUpdateInput,
|
||||
AgentNodeExecutionWhereInput,
|
||||
AgentNodeExecutionWhereUniqueInput,
|
||||
)
|
||||
from pydantic import BaseModel, ConfigDict, JsonValue, ValidationError
|
||||
from pydantic.fields import Field
|
||||
@@ -64,12 +66,27 @@ from .includes import (
|
||||
)
|
||||
from .model import CredentialsMetaInput, GraphExecutionStats, NodeExecutionStats
|
||||
|
||||
if TYPE_CHECKING:
|
||||
pass
|
||||
|
||||
T = TypeVar("T")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
config = Config()
|
||||
|
||||
|
||||
class ExecutionContext(BaseModel):
|
||||
"""
|
||||
Unified context that carries execution-level data throughout the entire execution flow.
|
||||
This includes information needed by blocks, sub-graphs, and execution management.
|
||||
"""
|
||||
|
||||
safe_mode: bool = True
|
||||
user_timezone: str = "UTC"
|
||||
root_execution_id: Optional[str] = None
|
||||
parent_execution_id: Optional[str] = None
|
||||
|
||||
|
||||
# -------------------------- Models -------------------------- #
|
||||
|
||||
|
||||
@@ -96,11 +113,14 @@ NodesInputMasks = Mapping[str, NodeInputMask]
|
||||
VALID_STATUS_TRANSITIONS = {
|
||||
ExecutionStatus.QUEUED: [
|
||||
ExecutionStatus.INCOMPLETE,
|
||||
ExecutionStatus.TERMINATED, # For resuming halted execution
|
||||
ExecutionStatus.REVIEW, # For resuming after review
|
||||
],
|
||||
ExecutionStatus.RUNNING: [
|
||||
ExecutionStatus.INCOMPLETE,
|
||||
ExecutionStatus.QUEUED,
|
||||
ExecutionStatus.TERMINATED, # For resuming halted execution
|
||||
ExecutionStatus.REVIEW, # For resuming after review
|
||||
],
|
||||
ExecutionStatus.COMPLETED: [
|
||||
ExecutionStatus.RUNNING,
|
||||
@@ -109,11 +129,16 @@ VALID_STATUS_TRANSITIONS = {
|
||||
ExecutionStatus.INCOMPLETE,
|
||||
ExecutionStatus.QUEUED,
|
||||
ExecutionStatus.RUNNING,
|
||||
ExecutionStatus.REVIEW,
|
||||
],
|
||||
ExecutionStatus.TERMINATED: [
|
||||
ExecutionStatus.INCOMPLETE,
|
||||
ExecutionStatus.QUEUED,
|
||||
ExecutionStatus.RUNNING,
|
||||
ExecutionStatus.REVIEW,
|
||||
],
|
||||
ExecutionStatus.REVIEW: [
|
||||
ExecutionStatus.RUNNING,
|
||||
],
|
||||
}
|
||||
|
||||
@@ -356,9 +381,8 @@ class GraphExecutionWithNodes(GraphExecution):
|
||||
|
||||
def to_graph_execution_entry(
|
||||
self,
|
||||
user_context: "UserContext",
|
||||
execution_context: ExecutionContext,
|
||||
compiled_nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
parent_graph_exec_id: Optional[str] = None,
|
||||
):
|
||||
return GraphExecutionEntry(
|
||||
user_id=self.user_id,
|
||||
@@ -366,8 +390,7 @@ class GraphExecutionWithNodes(GraphExecution):
|
||||
graph_version=self.graph_version or 0,
|
||||
graph_exec_id=self.id,
|
||||
nodes_input_masks=compiled_nodes_input_masks,
|
||||
user_context=user_context,
|
||||
parent_graph_exec_id=parent_graph_exec_id,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
|
||||
|
||||
@@ -440,17 +463,18 @@ class NodeExecutionResult(BaseModel):
|
||||
)
|
||||
|
||||
def to_node_execution_entry(
|
||||
self, user_context: "UserContext"
|
||||
self, execution_context: ExecutionContext
|
||||
) -> "NodeExecutionEntry":
|
||||
return NodeExecutionEntry(
|
||||
user_id=self.user_id,
|
||||
graph_exec_id=self.graph_exec_id,
|
||||
graph_id=self.graph_id,
|
||||
graph_version=self.graph_version,
|
||||
node_exec_id=self.node_exec_id,
|
||||
node_id=self.node_id,
|
||||
block_id=self.block_id,
|
||||
inputs=self.input_data,
|
||||
user_context=user_context,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
|
||||
|
||||
@@ -728,7 +752,7 @@ async def upsert_execution_input(
|
||||
input_name: str,
|
||||
input_data: JsonValue,
|
||||
node_exec_id: str | None = None,
|
||||
) -> tuple[str, BlockInput]:
|
||||
) -> tuple[NodeExecutionResult, BlockInput]:
|
||||
"""
|
||||
Insert AgentNodeExecutionInputOutput record for as one of AgentNodeExecution.Input.
|
||||
If there is no AgentNodeExecution that has no `input_name` as input, create new one.
|
||||
@@ -761,7 +785,7 @@ async def upsert_execution_input(
|
||||
existing_execution = await AgentNodeExecution.prisma().find_first(
|
||||
where=existing_exec_query_filter,
|
||||
order={"addedTime": "asc"},
|
||||
include={"Input": True},
|
||||
include={"Input": True, "GraphExecution": True},
|
||||
)
|
||||
json_input_data = SafeJson(input_data)
|
||||
|
||||
@@ -773,7 +797,7 @@ async def upsert_execution_input(
|
||||
referencedByInputExecId=existing_execution.id,
|
||||
)
|
||||
)
|
||||
return existing_execution.id, {
|
||||
return NodeExecutionResult.from_db(existing_execution), {
|
||||
**{
|
||||
input_data.name: type_utils.convert(input_data.data, JsonValue)
|
||||
for input_data in existing_execution.Input or []
|
||||
@@ -788,9 +812,10 @@ async def upsert_execution_input(
|
||||
agentGraphExecutionId=graph_exec_id,
|
||||
executionStatus=ExecutionStatus.INCOMPLETE,
|
||||
Input={"create": {"name": input_name, "data": json_input_data}},
|
||||
)
|
||||
),
|
||||
include={"GraphExecution": True},
|
||||
)
|
||||
return result.id, {input_name: input_data}
|
||||
return NodeExecutionResult.from_db(result), {input_name: input_data}
|
||||
|
||||
else:
|
||||
raise ValueError(
|
||||
@@ -815,6 +840,30 @@ async def upsert_execution_output(
|
||||
await AgentNodeExecutionInputOutput.prisma().create(data=data)
|
||||
|
||||
|
||||
async def get_execution_outputs_by_node_exec_id(
|
||||
node_exec_id: str,
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Get all execution outputs for a specific node execution ID.
|
||||
|
||||
Args:
|
||||
node_exec_id: The node execution ID to get outputs for
|
||||
|
||||
Returns:
|
||||
Dictionary mapping output names to their data values
|
||||
"""
|
||||
outputs = await AgentNodeExecutionInputOutput.prisma().find_many(
|
||||
where={"referencedByOutputExecId": node_exec_id}
|
||||
)
|
||||
|
||||
result = {}
|
||||
for output in outputs:
|
||||
if output.data is not None:
|
||||
result[output.name] = type_utils.convert(output.data, JsonValue)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
async def update_graph_execution_start_time(
|
||||
graph_exec_id: str,
|
||||
) -> GraphExecution | None:
|
||||
@@ -886,9 +935,25 @@ async def update_node_execution_status_batch(
|
||||
node_exec_ids: list[str],
|
||||
status: ExecutionStatus,
|
||||
stats: dict[str, Any] | None = None,
|
||||
):
|
||||
await AgentNodeExecution.prisma().update_many(
|
||||
where={"id": {"in": node_exec_ids}},
|
||||
) -> int:
|
||||
# Validate status transitions - allowed_from should never be empty for valid statuses
|
||||
allowed_from = VALID_STATUS_TRANSITIONS.get(status, [])
|
||||
if not allowed_from:
|
||||
raise ValueError(
|
||||
f"Invalid status transition: {status} has no valid source statuses"
|
||||
)
|
||||
|
||||
# For batch updates, we filter to only update nodes with valid current statuses
|
||||
where_clause = cast(
|
||||
AgentNodeExecutionWhereInput,
|
||||
{
|
||||
"id": {"in": node_exec_ids},
|
||||
"executionStatus": {"in": [s.value for s in allowed_from]},
|
||||
},
|
||||
)
|
||||
|
||||
return await AgentNodeExecution.prisma().update_many(
|
||||
where=where_clause,
|
||||
data=_get_update_status_data(status, None, stats),
|
||||
)
|
||||
|
||||
@@ -902,15 +967,32 @@ async def update_node_execution_status(
|
||||
if status == ExecutionStatus.QUEUED and execution_data is None:
|
||||
raise ValueError("Execution data must be provided when queuing an execution.")
|
||||
|
||||
res = await AgentNodeExecution.prisma().update(
|
||||
where={"id": node_exec_id},
|
||||
# Validate status transitions - allowed_from should never be empty for valid statuses
|
||||
allowed_from = VALID_STATUS_TRANSITIONS.get(status, [])
|
||||
if not allowed_from:
|
||||
raise ValueError(
|
||||
f"Invalid status transition: {status} has no valid source statuses"
|
||||
)
|
||||
|
||||
if res := await AgentNodeExecution.prisma().update(
|
||||
where=cast(
|
||||
AgentNodeExecutionWhereUniqueInput,
|
||||
{
|
||||
"id": node_exec_id,
|
||||
"executionStatus": {"in": [s.value for s in allowed_from]},
|
||||
},
|
||||
),
|
||||
data=_get_update_status_data(status, execution_data, stats),
|
||||
include=EXECUTION_RESULT_INCLUDE,
|
||||
)
|
||||
if not res:
|
||||
raise ValueError(f"Execution {node_exec_id} not found.")
|
||||
):
|
||||
return NodeExecutionResult.from_db(res)
|
||||
|
||||
return NodeExecutionResult.from_db(res)
|
||||
if res := await AgentNodeExecution.prisma().find_unique(
|
||||
where={"id": node_exec_id}, include=EXECUTION_RESULT_INCLUDE
|
||||
):
|
||||
return NodeExecutionResult.from_db(res)
|
||||
|
||||
raise ValueError(f"Execution {node_exec_id} not found.")
|
||||
|
||||
|
||||
def _get_update_status_data(
|
||||
@@ -964,17 +1046,17 @@ async def get_node_execution(node_exec_id: str) -> NodeExecutionResult | None:
|
||||
return NodeExecutionResult.from_db(execution)
|
||||
|
||||
|
||||
async def get_node_executions(
|
||||
def _build_node_execution_where_clause(
|
||||
graph_exec_id: str | None = None,
|
||||
node_id: str | None = None,
|
||||
block_ids: list[str] | None = None,
|
||||
statuses: list[ExecutionStatus] | None = None,
|
||||
limit: int | None = None,
|
||||
created_time_gte: datetime | None = None,
|
||||
created_time_lte: datetime | None = None,
|
||||
include_exec_data: bool = True,
|
||||
) -> list[NodeExecutionResult]:
|
||||
"""⚠️ No `user_id` check: DO NOT USE without check in user-facing endpoints."""
|
||||
) -> AgentNodeExecutionWhereInput:
|
||||
"""
|
||||
Build where clause for node execution queries.
|
||||
"""
|
||||
where_clause: AgentNodeExecutionWhereInput = {}
|
||||
if graph_exec_id:
|
||||
where_clause["agentGraphExecutionId"] = graph_exec_id
|
||||
@@ -991,6 +1073,29 @@ async def get_node_executions(
|
||||
"lte": created_time_lte or datetime.max.replace(tzinfo=timezone.utc),
|
||||
}
|
||||
|
||||
return where_clause
|
||||
|
||||
|
||||
async def get_node_executions(
|
||||
graph_exec_id: str | None = None,
|
||||
node_id: str | None = None,
|
||||
block_ids: list[str] | None = None,
|
||||
statuses: list[ExecutionStatus] | None = None,
|
||||
limit: int | None = None,
|
||||
created_time_gte: datetime | None = None,
|
||||
created_time_lte: datetime | None = None,
|
||||
include_exec_data: bool = True,
|
||||
) -> list[NodeExecutionResult]:
|
||||
"""⚠️ No `user_id` check: DO NOT USE without check in user-facing endpoints."""
|
||||
where_clause = _build_node_execution_where_clause(
|
||||
graph_exec_id=graph_exec_id,
|
||||
node_id=node_id,
|
||||
block_ids=block_ids,
|
||||
statuses=statuses,
|
||||
created_time_gte=created_time_gte,
|
||||
created_time_lte=created_time_lte,
|
||||
)
|
||||
|
||||
executions = await AgentNodeExecution.prisma().find_many(
|
||||
where=where_clause,
|
||||
include=(
|
||||
@@ -1032,31 +1137,29 @@ async def get_latest_node_execution(
|
||||
# ----------------- Execution Infrastructure ----------------- #
|
||||
|
||||
|
||||
class UserContext(BaseModel):
|
||||
"""Generic user context for graph execution containing user-specific settings."""
|
||||
|
||||
timezone: str
|
||||
|
||||
|
||||
class GraphExecutionEntry(BaseModel):
|
||||
model_config = {"extra": "ignore"}
|
||||
|
||||
user_id: str
|
||||
graph_exec_id: str
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None
|
||||
user_context: UserContext
|
||||
parent_graph_exec_id: Optional[str] = None
|
||||
execution_context: ExecutionContext = Field(default_factory=ExecutionContext)
|
||||
|
||||
|
||||
class NodeExecutionEntry(BaseModel):
|
||||
model_config = {"extra": "ignore"}
|
||||
|
||||
user_id: str
|
||||
graph_exec_id: str
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
node_exec_id: str
|
||||
node_id: str
|
||||
block_id: str
|
||||
inputs: BlockInput
|
||||
user_context: UserContext
|
||||
execution_context: ExecutionContext = Field(default_factory=ExecutionContext)
|
||||
|
||||
|
||||
class ExecutionQueue(Generic[T]):
|
||||
@@ -1390,3 +1493,35 @@ async def get_graph_execution_by_share_token(
|
||||
created_at=execution.createdAt,
|
||||
outputs=outputs,
|
||||
)
|
||||
|
||||
|
||||
async def get_frequently_executed_graphs(
|
||||
days_back: int = 30,
|
||||
min_executions: int = 10,
|
||||
) -> list[dict]:
|
||||
"""Get graphs that have been frequently executed for monitoring."""
|
||||
query_template = """
|
||||
SELECT DISTINCT
|
||||
e."agentGraphId" as graph_id,
|
||||
e."userId" as user_id,
|
||||
COUNT(*) as execution_count
|
||||
FROM {schema_prefix}"AgentGraphExecution" e
|
||||
WHERE e."createdAt" >= $1::timestamp
|
||||
AND e."isDeleted" = false
|
||||
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
|
||||
GROUP BY e."agentGraphId", e."userId"
|
||||
HAVING COUNT(*) >= $2
|
||||
ORDER BY execution_count DESC
|
||||
"""
|
||||
|
||||
start_date = datetime.now(timezone.utc) - timedelta(days=days_back)
|
||||
result = await query_raw_with_schema(query_template, start_date, min_executions)
|
||||
|
||||
return [
|
||||
{
|
||||
"graph_id": row["graph_id"],
|
||||
"user_id": row["user_id"],
|
||||
"execution_count": int(row["execution_count"]),
|
||||
}
|
||||
for row in result
|
||||
]
|
||||
|
||||
@@ -61,6 +61,10 @@ if TYPE_CHECKING:
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class GraphSettings(BaseModel):
|
||||
human_in_the_loop_safe_mode: bool | None = None
|
||||
|
||||
|
||||
class Link(BaseDbModel):
|
||||
source_id: str
|
||||
sink_id: str
|
||||
@@ -225,6 +229,15 @@ class BaseGraph(BaseDbModel):
|
||||
def has_external_trigger(self) -> bool:
|
||||
return self.webhook_input_node is not None
|
||||
|
||||
@computed_field
|
||||
@property
|
||||
def has_human_in_the_loop(self) -> bool:
|
||||
return any(
|
||||
node.block_id
|
||||
for node in self.nodes
|
||||
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
)
|
||||
|
||||
@property
|
||||
def webhook_input_node(self) -> Node | None:
|
||||
return next(
|
||||
@@ -1105,6 +1118,28 @@ async def delete_graph(graph_id: str, user_id: str) -> int:
|
||||
return entries_count
|
||||
|
||||
|
||||
async def get_graph_settings(user_id: str, graph_id: str) -> GraphSettings:
|
||||
lib = await LibraryAgent.prisma().find_first(
|
||||
where={
|
||||
"userId": user_id,
|
||||
"agentGraphId": graph_id,
|
||||
"isDeleted": False,
|
||||
"isArchived": False,
|
||||
},
|
||||
order={"agentGraphVersion": "desc"},
|
||||
)
|
||||
if not lib or not lib.settings:
|
||||
return GraphSettings()
|
||||
|
||||
try:
|
||||
return GraphSettings.model_validate(lib.settings)
|
||||
except Exception:
|
||||
logger.warning(
|
||||
f"Malformed settings for LibraryAgent user={user_id} graph={graph_id}"
|
||||
)
|
||||
return GraphSettings()
|
||||
|
||||
|
||||
async def validate_graph_execution_permissions(
|
||||
user_id: str, graph_id: str, graph_version: int, is_sub_graph: bool = False
|
||||
) -> None:
|
||||
|
||||
258
autogpt_platform/backend/backend/data/human_review.py
Normal file
258
autogpt_platform/backend/backend/data/human_review.py
Normal file
@@ -0,0 +1,258 @@
|
||||
"""
|
||||
Data layer for Human In The Loop (HITL) review operations.
|
||||
Handles all database operations for pending human reviews.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Optional
|
||||
|
||||
from prisma.enums import ReviewStatus
|
||||
from prisma.models import PendingHumanReview
|
||||
from prisma.types import PendingHumanReviewUpdateInput
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.server.v2.executions.review.model import (
|
||||
PendingHumanReviewModel,
|
||||
SafeJsonData,
|
||||
)
|
||||
from backend.util.json import SafeJson
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ReviewResult(BaseModel):
|
||||
"""Result of a review operation."""
|
||||
|
||||
data: Optional[SafeJsonData] = None
|
||||
status: ReviewStatus
|
||||
message: str = ""
|
||||
processed: bool
|
||||
node_exec_id: str
|
||||
|
||||
|
||||
async def get_or_create_human_review(
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
input_data: SafeJsonData,
|
||||
message: str,
|
||||
editable: bool,
|
||||
) -> Optional[ReviewResult]:
|
||||
"""
|
||||
Get existing review or create a new pending review entry.
|
||||
|
||||
Uses upsert with empty update to get existing or create new review in a single operation.
|
||||
|
||||
Args:
|
||||
user_id: ID of the user who owns this review
|
||||
node_exec_id: ID of the node execution
|
||||
graph_exec_id: ID of the graph execution
|
||||
graph_id: ID of the graph template
|
||||
graph_version: Version of the graph template
|
||||
input_data: The data to be reviewed
|
||||
message: Instructions for the reviewer
|
||||
editable: Whether the data can be edited
|
||||
|
||||
Returns:
|
||||
ReviewResult if the review is complete, None if waiting for human input
|
||||
"""
|
||||
try:
|
||||
logger.debug(f"Getting or creating review for node {node_exec_id}")
|
||||
|
||||
# Upsert - get existing or create new review
|
||||
review = await PendingHumanReview.prisma().upsert(
|
||||
where={"nodeExecId": node_exec_id},
|
||||
data={
|
||||
"create": {
|
||||
"userId": user_id,
|
||||
"nodeExecId": node_exec_id,
|
||||
"graphExecId": graph_exec_id,
|
||||
"graphId": graph_id,
|
||||
"graphVersion": graph_version,
|
||||
"payload": SafeJson(input_data),
|
||||
"instructions": message,
|
||||
"editable": editable,
|
||||
"status": ReviewStatus.WAITING,
|
||||
},
|
||||
"update": {}, # Do nothing on update - keep existing review as is
|
||||
},
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Review {'created' if review.createdAt == review.updatedAt else 'retrieved'} for node {node_exec_id} with status {review.status}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Database error in get_or_create_human_review for node {node_exec_id}: {str(e)}"
|
||||
)
|
||||
raise
|
||||
|
||||
# Early return if already processed
|
||||
if review.processed:
|
||||
return None
|
||||
|
||||
# If pending, return None to continue waiting, otherwise return the review result
|
||||
if review.status == ReviewStatus.WAITING:
|
||||
return None
|
||||
else:
|
||||
return ReviewResult(
|
||||
data=review.payload,
|
||||
status=review.status,
|
||||
message=review.reviewMessage or "",
|
||||
processed=review.processed,
|
||||
node_exec_id=review.nodeExecId,
|
||||
)
|
||||
|
||||
|
||||
async def has_pending_reviews_for_graph_exec(graph_exec_id: str) -> bool:
|
||||
"""
|
||||
Check if a graph execution has any pending reviews.
|
||||
|
||||
Args:
|
||||
graph_exec_id: The graph execution ID to check
|
||||
|
||||
Returns:
|
||||
True if there are reviews waiting for human input, False otherwise
|
||||
"""
|
||||
# Check if there are any reviews waiting for human input
|
||||
count = await PendingHumanReview.prisma().count(
|
||||
where={"graphExecId": graph_exec_id, "status": ReviewStatus.WAITING}
|
||||
)
|
||||
return count > 0
|
||||
|
||||
|
||||
async def get_pending_reviews_for_user(
|
||||
user_id: str, page: int = 1, page_size: int = 25
|
||||
) -> list["PendingHumanReviewModel"]:
|
||||
"""
|
||||
Get all pending reviews for a user with pagination.
|
||||
|
||||
Args:
|
||||
user_id: User ID to get reviews for
|
||||
page: Page number (1-indexed)
|
||||
page_size: Number of reviews per page
|
||||
|
||||
Returns:
|
||||
List of pending review models
|
||||
"""
|
||||
# Calculate offset for pagination
|
||||
offset = (page - 1) * page_size
|
||||
|
||||
reviews = await PendingHumanReview.prisma().find_many(
|
||||
where={"userId": user_id, "status": ReviewStatus.WAITING},
|
||||
order={"createdAt": "desc"},
|
||||
skip=offset,
|
||||
take=page_size,
|
||||
)
|
||||
|
||||
return [PendingHumanReviewModel.from_db(review) for review in reviews]
|
||||
|
||||
|
||||
async def get_pending_reviews_for_execution(
|
||||
graph_exec_id: str, user_id: str
|
||||
) -> list["PendingHumanReviewModel"]:
|
||||
"""
|
||||
Get all pending reviews for a specific graph execution.
|
||||
|
||||
Args:
|
||||
graph_exec_id: Graph execution ID
|
||||
user_id: User ID for security validation
|
||||
|
||||
Returns:
|
||||
List of pending review models
|
||||
"""
|
||||
reviews = await PendingHumanReview.prisma().find_many(
|
||||
where={
|
||||
"userId": user_id,
|
||||
"graphExecId": graph_exec_id,
|
||||
"status": ReviewStatus.WAITING,
|
||||
},
|
||||
order={"createdAt": "asc"},
|
||||
)
|
||||
|
||||
return [PendingHumanReviewModel.from_db(review) for review in reviews]
|
||||
|
||||
|
||||
async def process_all_reviews_for_execution(
|
||||
user_id: str,
|
||||
review_decisions: dict[str, tuple[ReviewStatus, SafeJsonData | None, str | None]],
|
||||
) -> dict[str, PendingHumanReviewModel]:
|
||||
"""Process all pending reviews for an execution with approve/reject decisions.
|
||||
|
||||
Args:
|
||||
user_id: User ID for ownership validation
|
||||
review_decisions: Map of node_exec_id -> (status, reviewed_data, message)
|
||||
|
||||
Returns:
|
||||
Dict of node_exec_id -> updated review model
|
||||
"""
|
||||
if not review_decisions:
|
||||
return {}
|
||||
|
||||
node_exec_ids = list(review_decisions.keys())
|
||||
|
||||
# Get all reviews for validation
|
||||
reviews = await PendingHumanReview.prisma().find_many(
|
||||
where={
|
||||
"nodeExecId": {"in": node_exec_ids},
|
||||
"userId": user_id,
|
||||
"status": ReviewStatus.WAITING,
|
||||
},
|
||||
)
|
||||
|
||||
# Validate all reviews can be processed
|
||||
if len(reviews) != len(node_exec_ids):
|
||||
missing_ids = set(node_exec_ids) - {review.nodeExecId for review in reviews}
|
||||
raise ValueError(
|
||||
f"Reviews not found, access denied, or not in WAITING status: {', '.join(missing_ids)}"
|
||||
)
|
||||
|
||||
# Create parallel update tasks
|
||||
update_tasks = []
|
||||
|
||||
for review in reviews:
|
||||
new_status, reviewed_data, message = review_decisions[review.nodeExecId]
|
||||
has_data_changes = reviewed_data is not None and reviewed_data != review.payload
|
||||
|
||||
# Check edit permissions for actual data modifications
|
||||
if has_data_changes and not review.editable:
|
||||
raise ValueError(f"Review {review.nodeExecId} is not editable")
|
||||
|
||||
update_data: PendingHumanReviewUpdateInput = {
|
||||
"status": new_status,
|
||||
"reviewMessage": message,
|
||||
"wasEdited": has_data_changes,
|
||||
"reviewedAt": datetime.now(timezone.utc),
|
||||
}
|
||||
|
||||
if has_data_changes:
|
||||
update_data["payload"] = SafeJson(reviewed_data)
|
||||
|
||||
task = PendingHumanReview.prisma().update(
|
||||
where={"nodeExecId": review.nodeExecId},
|
||||
data=update_data,
|
||||
)
|
||||
update_tasks.append(task)
|
||||
|
||||
# Execute all updates in parallel and get updated reviews
|
||||
updated_reviews = await asyncio.gather(*update_tasks)
|
||||
|
||||
# Note: Execution resumption is now handled at the API layer after ALL reviews
|
||||
# for an execution are processed (both approved and rejected)
|
||||
|
||||
# Return as dict for easy access
|
||||
return {
|
||||
review.nodeExecId: PendingHumanReviewModel.from_db(review)
|
||||
for review in updated_reviews
|
||||
}
|
||||
|
||||
|
||||
async def update_review_processed_status(node_exec_id: str, processed: bool) -> None:
|
||||
"""Update the processed status of a review."""
|
||||
await PendingHumanReview.prisma().update(
|
||||
where={"nodeExecId": node_exec_id}, data={"processed": processed}
|
||||
)
|
||||
342
autogpt_platform/backend/backend/data/human_review_test.py
Normal file
342
autogpt_platform/backend/backend/data/human_review_test.py
Normal file
@@ -0,0 +1,342 @@
|
||||
import datetime
|
||||
from unittest.mock import AsyncMock, Mock
|
||||
|
||||
import pytest
|
||||
import pytest_mock
|
||||
from prisma.enums import ReviewStatus
|
||||
|
||||
from backend.data.human_review import (
|
||||
get_or_create_human_review,
|
||||
get_pending_reviews_for_execution,
|
||||
get_pending_reviews_for_user,
|
||||
has_pending_reviews_for_graph_exec,
|
||||
process_all_reviews_for_execution,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_db_review():
|
||||
"""Create a sample database review object"""
|
||||
mock_review = Mock()
|
||||
mock_review.nodeExecId = "test_node_123"
|
||||
mock_review.userId = "test-user-123"
|
||||
mock_review.graphExecId = "test_graph_exec_456"
|
||||
mock_review.graphId = "test_graph_789"
|
||||
mock_review.graphVersion = 1
|
||||
mock_review.payload = {"data": "test payload"}
|
||||
mock_review.instructions = "Please review"
|
||||
mock_review.editable = True
|
||||
mock_review.status = ReviewStatus.WAITING
|
||||
mock_review.reviewMessage = None
|
||||
mock_review.wasEdited = False
|
||||
mock_review.processed = False
|
||||
mock_review.createdAt = datetime.datetime.now(datetime.timezone.utc)
|
||||
mock_review.updatedAt = None
|
||||
mock_review.reviewedAt = None
|
||||
return mock_review
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_or_create_human_review_new(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
):
|
||||
"""Test creating a new human review"""
|
||||
# Mock the upsert to return a new review (created_at == updated_at)
|
||||
sample_db_review.status = ReviewStatus.WAITING
|
||||
sample_db_review.processed = False
|
||||
|
||||
mock_upsert = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_upsert.return_value.upsert = AsyncMock(return_value=sample_db_review)
|
||||
|
||||
result = await get_or_create_human_review(
|
||||
user_id="test-user-123",
|
||||
node_exec_id="test_node_123",
|
||||
graph_exec_id="test_graph_exec_456",
|
||||
graph_id="test_graph_789",
|
||||
graph_version=1,
|
||||
input_data={"data": "test payload"},
|
||||
message="Please review",
|
||||
editable=True,
|
||||
)
|
||||
|
||||
# Should return None for pending reviews (waiting for human input)
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_or_create_human_review_approved(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
):
|
||||
"""Test retrieving an already approved review"""
|
||||
# Set up review as already approved
|
||||
sample_db_review.status = ReviewStatus.APPROVED
|
||||
sample_db_review.processed = False
|
||||
sample_db_review.reviewMessage = "Looks good"
|
||||
|
||||
mock_upsert = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_upsert.return_value.upsert = AsyncMock(return_value=sample_db_review)
|
||||
|
||||
result = await get_or_create_human_review(
|
||||
user_id="test-user-123",
|
||||
node_exec_id="test_node_123",
|
||||
graph_exec_id="test_graph_exec_456",
|
||||
graph_id="test_graph_789",
|
||||
graph_version=1,
|
||||
input_data={"data": "test payload"},
|
||||
message="Please review",
|
||||
editable=True,
|
||||
)
|
||||
|
||||
# Should return the approved result
|
||||
assert result is not None
|
||||
assert result.status == ReviewStatus.APPROVED
|
||||
assert result.data == {"data": "test payload"}
|
||||
assert result.message == "Looks good"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_has_pending_reviews_for_graph_exec_true(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
):
|
||||
"""Test when there are pending reviews"""
|
||||
mock_count = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_count.return_value.count = AsyncMock(return_value=2)
|
||||
|
||||
result = await has_pending_reviews_for_graph_exec("test_graph_exec")
|
||||
|
||||
assert result is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_has_pending_reviews_for_graph_exec_false(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
):
|
||||
"""Test when there are no pending reviews"""
|
||||
mock_count = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_count.return_value.count = AsyncMock(return_value=0)
|
||||
|
||||
result = await has_pending_reviews_for_graph_exec("test_graph_exec")
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_pending_reviews_for_user(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
):
|
||||
"""Test getting pending reviews for a user with pagination"""
|
||||
mock_find_many = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_find_many.return_value.find_many = AsyncMock(return_value=[sample_db_review])
|
||||
|
||||
result = await get_pending_reviews_for_user("test_user", page=2, page_size=10)
|
||||
|
||||
assert len(result) == 1
|
||||
assert result[0].node_exec_id == "test_node_123"
|
||||
|
||||
# Verify pagination parameters
|
||||
call_args = mock_find_many.return_value.find_many.call_args
|
||||
assert call_args.kwargs["skip"] == 10 # (page-1) * page_size = (2-1) * 10
|
||||
assert call_args.kwargs["take"] == 10
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_pending_reviews_for_execution(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
):
|
||||
"""Test getting pending reviews for specific execution"""
|
||||
mock_find_many = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_find_many.return_value.find_many = AsyncMock(return_value=[sample_db_review])
|
||||
|
||||
result = await get_pending_reviews_for_execution(
|
||||
"test_graph_exec_456", "test-user-123"
|
||||
)
|
||||
|
||||
assert len(result) == 1
|
||||
assert result[0].graph_exec_id == "test_graph_exec_456"
|
||||
|
||||
# Verify it filters by execution and user
|
||||
call_args = mock_find_many.return_value.find_many.call_args
|
||||
where_clause = call_args.kwargs["where"]
|
||||
assert where_clause["userId"] == "test-user-123"
|
||||
assert where_clause["graphExecId"] == "test_graph_exec_456"
|
||||
assert where_clause["status"] == ReviewStatus.WAITING
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_all_reviews_for_execution_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
):
|
||||
"""Test successful processing of reviews for an execution"""
|
||||
# Mock finding reviews
|
||||
mock_prisma = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_prisma.return_value.find_many = AsyncMock(return_value=[sample_db_review])
|
||||
|
||||
# Mock updating reviews
|
||||
updated_review = Mock()
|
||||
updated_review.nodeExecId = "test_node_123"
|
||||
updated_review.userId = "test-user-123"
|
||||
updated_review.graphExecId = "test_graph_exec_456"
|
||||
updated_review.graphId = "test_graph_789"
|
||||
updated_review.graphVersion = 1
|
||||
updated_review.payload = {"data": "modified"}
|
||||
updated_review.instructions = "Please review"
|
||||
updated_review.editable = True
|
||||
updated_review.status = ReviewStatus.APPROVED
|
||||
updated_review.reviewMessage = "Approved"
|
||||
updated_review.wasEdited = True
|
||||
updated_review.processed = False
|
||||
updated_review.createdAt = datetime.datetime.now(datetime.timezone.utc)
|
||||
updated_review.updatedAt = datetime.datetime.now(datetime.timezone.utc)
|
||||
updated_review.reviewedAt = datetime.datetime.now(datetime.timezone.utc)
|
||||
mock_prisma.return_value.update = AsyncMock(return_value=updated_review)
|
||||
|
||||
# Mock gather to simulate parallel updates
|
||||
mocker.patch(
|
||||
"backend.data.human_review.asyncio.gather",
|
||||
new=AsyncMock(return_value=[updated_review]),
|
||||
)
|
||||
|
||||
result = await process_all_reviews_for_execution(
|
||||
user_id="test-user-123",
|
||||
review_decisions={
|
||||
"test_node_123": (ReviewStatus.APPROVED, {"data": "modified"}, "Approved")
|
||||
},
|
||||
)
|
||||
|
||||
assert len(result) == 1
|
||||
assert "test_node_123" in result
|
||||
assert result["test_node_123"].status == ReviewStatus.APPROVED
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_all_reviews_for_execution_validation_errors(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
):
|
||||
"""Test validation errors in process_all_reviews_for_execution"""
|
||||
# Mock finding fewer reviews than requested (some not found)
|
||||
mock_find_many = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_find_many.return_value.find_many = AsyncMock(
|
||||
return_value=[]
|
||||
) # No reviews found
|
||||
|
||||
with pytest.raises(ValueError, match="Reviews not found"):
|
||||
await process_all_reviews_for_execution(
|
||||
user_id="test-user-123",
|
||||
review_decisions={
|
||||
"nonexistent_node": (ReviewStatus.APPROVED, {"data": "test"}, "message")
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_all_reviews_edit_permission_error(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
):
|
||||
"""Test editing non-editable review"""
|
||||
# Set review as non-editable
|
||||
sample_db_review.editable = False
|
||||
|
||||
# Mock finding reviews
|
||||
mock_find_many = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_find_many.return_value.find_many = AsyncMock(return_value=[sample_db_review])
|
||||
|
||||
with pytest.raises(ValueError, match="not editable"):
|
||||
await process_all_reviews_for_execution(
|
||||
user_id="test-user-123",
|
||||
review_decisions={
|
||||
"test_node_123": (
|
||||
ReviewStatus.APPROVED,
|
||||
{"data": "modified"},
|
||||
"message",
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_all_reviews_mixed_approval_rejection(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_db_review,
|
||||
):
|
||||
"""Test processing mixed approval and rejection decisions"""
|
||||
# Create second review for rejection
|
||||
second_review = Mock()
|
||||
second_review.nodeExecId = "test_node_456"
|
||||
second_review.userId = "test-user-123"
|
||||
second_review.graphExecId = "test_graph_exec_456"
|
||||
second_review.graphId = "test_graph_789"
|
||||
second_review.graphVersion = 1
|
||||
second_review.payload = {"data": "original"}
|
||||
second_review.instructions = "Second review"
|
||||
second_review.editable = True
|
||||
second_review.status = ReviewStatus.WAITING
|
||||
second_review.reviewMessage = None
|
||||
second_review.wasEdited = False
|
||||
second_review.processed = False
|
||||
second_review.createdAt = datetime.datetime.now(datetime.timezone.utc)
|
||||
second_review.updatedAt = None
|
||||
second_review.reviewedAt = None
|
||||
|
||||
# Mock finding reviews
|
||||
mock_find_many = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
|
||||
mock_find_many.return_value.find_many = AsyncMock(
|
||||
return_value=[sample_db_review, second_review]
|
||||
)
|
||||
|
||||
# Mock updating reviews
|
||||
approved_review = Mock()
|
||||
approved_review.nodeExecId = "test_node_123"
|
||||
approved_review.userId = "test-user-123"
|
||||
approved_review.graphExecId = "test_graph_exec_456"
|
||||
approved_review.graphId = "test_graph_789"
|
||||
approved_review.graphVersion = 1
|
||||
approved_review.payload = {"data": "modified"}
|
||||
approved_review.instructions = "Please review"
|
||||
approved_review.editable = True
|
||||
approved_review.status = ReviewStatus.APPROVED
|
||||
approved_review.reviewMessage = "Approved"
|
||||
approved_review.wasEdited = True
|
||||
approved_review.processed = False
|
||||
approved_review.createdAt = datetime.datetime.now(datetime.timezone.utc)
|
||||
approved_review.updatedAt = datetime.datetime.now(datetime.timezone.utc)
|
||||
approved_review.reviewedAt = datetime.datetime.now(datetime.timezone.utc)
|
||||
|
||||
rejected_review = Mock()
|
||||
rejected_review.nodeExecId = "test_node_456"
|
||||
rejected_review.userId = "test-user-123"
|
||||
rejected_review.graphExecId = "test_graph_exec_456"
|
||||
rejected_review.graphId = "test_graph_789"
|
||||
rejected_review.graphVersion = 1
|
||||
rejected_review.payload = {"data": "original"}
|
||||
rejected_review.instructions = "Please review"
|
||||
rejected_review.editable = True
|
||||
rejected_review.status = ReviewStatus.REJECTED
|
||||
rejected_review.reviewMessage = "Rejected"
|
||||
rejected_review.wasEdited = False
|
||||
rejected_review.processed = False
|
||||
rejected_review.createdAt = datetime.datetime.now(datetime.timezone.utc)
|
||||
rejected_review.updatedAt = datetime.datetime.now(datetime.timezone.utc)
|
||||
rejected_review.reviewedAt = datetime.datetime.now(datetime.timezone.utc)
|
||||
|
||||
mocker.patch(
|
||||
"backend.data.human_review.asyncio.gather",
|
||||
new=AsyncMock(return_value=[approved_review, rejected_review]),
|
||||
)
|
||||
|
||||
result = await process_all_reviews_for_execution(
|
||||
user_id="test-user-123",
|
||||
review_decisions={
|
||||
"test_node_123": (ReviewStatus.APPROVED, {"data": "modified"}, "Approved"),
|
||||
"test_node_456": (ReviewStatus.REJECTED, None, "Rejected"),
|
||||
},
|
||||
)
|
||||
|
||||
assert len(result) == 2
|
||||
assert "test_node_123" in result
|
||||
assert "test_node_456" in result
|
||||
@@ -1,5 +1,5 @@
|
||||
import logging
|
||||
from typing import AsyncGenerator, Literal, Optional, overload
|
||||
from typing import TYPE_CHECKING, AsyncGenerator, Literal, Optional, overload
|
||||
|
||||
from prisma.models import AgentNode, AgentPreset, IntegrationWebhook
|
||||
from prisma.types import (
|
||||
@@ -19,10 +19,12 @@ from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.integrations.webhooks import get_webhook_manager
|
||||
from backend.integrations.webhooks.utils import webhook_ingress_url
|
||||
from backend.server.v2.library.model import LibraryAgentPreset
|
||||
from backend.util.exceptions import NotFoundError
|
||||
from backend.util.json import SafeJson
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.server.v2.library.model import LibraryAgentPreset
|
||||
|
||||
from .db import BaseDbModel
|
||||
from .graph import NodeModel
|
||||
|
||||
@@ -64,7 +66,7 @@ class Webhook(BaseDbModel):
|
||||
|
||||
class WebhookWithRelations(Webhook):
|
||||
triggered_nodes: list[NodeModel]
|
||||
triggered_presets: list[LibraryAgentPreset]
|
||||
triggered_presets: list["LibraryAgentPreset"]
|
||||
|
||||
@staticmethod
|
||||
def from_db(webhook: IntegrationWebhook):
|
||||
@@ -73,6 +75,12 @@ class WebhookWithRelations(Webhook):
|
||||
"AgentNodes and AgentPresets must be included in "
|
||||
"IntegrationWebhook query with relations"
|
||||
)
|
||||
# LibraryAgentPreset import is moved to TYPE_CHECKING to avoid circular import:
|
||||
# integrations.py → library/model.py → integrations.py (for Webhook)
|
||||
# Runtime import is used in WebhookWithRelations.from_db() method instead
|
||||
# Import at runtime to avoid circular dependency
|
||||
from backend.server.v2.library.model import LibraryAgentPreset
|
||||
|
||||
return WebhookWithRelations(
|
||||
**Webhook.from_db(webhook).model_dump(),
|
||||
triggered_nodes=[NodeModel.from_db(node) for node in webhook.AgentNodes],
|
||||
|
||||
@@ -22,7 +22,7 @@ from typing import (
|
||||
from urllib.parse import urlparse
|
||||
from uuid import uuid4
|
||||
|
||||
from prisma.enums import CreditTransactionType
|
||||
from prisma.enums import CreditTransactionType, OnboardingStep
|
||||
from pydantic import (
|
||||
BaseModel,
|
||||
ConfigDict,
|
||||
@@ -46,6 +46,7 @@ from backend.util.settings import Secrets
|
||||
|
||||
# Type alias for any provider name (including custom ones)
|
||||
AnyProviderName = str # Will be validated as ProviderName at runtime
|
||||
USER_TIMEZONE_NOT_SET = "not-set"
|
||||
|
||||
|
||||
class User(BaseModel):
|
||||
@@ -98,7 +99,7 @@ class User(BaseModel):
|
||||
|
||||
# User timezone for scheduling and time display
|
||||
timezone: str = Field(
|
||||
default="not-set",
|
||||
default=USER_TIMEZONE_NOT_SET,
|
||||
description="User timezone (IANA timezone identifier or 'not-set')",
|
||||
)
|
||||
|
||||
@@ -155,7 +156,7 @@ class User(BaseModel):
|
||||
notify_on_daily_summary=prisma_user.notifyOnDailySummary or True,
|
||||
notify_on_weekly_summary=prisma_user.notifyOnWeeklySummary or True,
|
||||
notify_on_monthly_summary=prisma_user.notifyOnMonthlySummary or True,
|
||||
timezone=prisma_user.timezone or "not-set",
|
||||
timezone=prisma_user.timezone or USER_TIMEZONE_NOT_SET,
|
||||
)
|
||||
|
||||
|
||||
@@ -433,6 +434,18 @@ class OAuthState(BaseModel):
|
||||
code_verifier: Optional[str] = None
|
||||
"""Unix timestamp (seconds) indicating when this OAuth state expires"""
|
||||
scopes: list[str]
|
||||
# Fields for external API OAuth flows
|
||||
callback_url: Optional[str] = None
|
||||
"""External app's callback URL for OAuth redirect"""
|
||||
state_metadata: dict[str, Any] = Field(default_factory=dict)
|
||||
"""Metadata to echo back to external app on completion"""
|
||||
initiated_by_api_key_id: Optional[str] = None
|
||||
"""ID of the API key that initiated this OAuth flow"""
|
||||
|
||||
@property
|
||||
def is_external(self) -> bool:
|
||||
"""Whether this OAuth flow was initiated via external API."""
|
||||
return self.callback_url is not None
|
||||
|
||||
|
||||
class UserMetadata(BaseModel):
|
||||
@@ -855,3 +868,20 @@ class UserExecutionSummaryStats(BaseModel):
|
||||
total_execution_time: float = Field(default=0)
|
||||
average_execution_time: float = Field(default=0)
|
||||
cost_breakdown: dict[str, float] = Field(default_factory=dict)
|
||||
|
||||
|
||||
class UserOnboarding(BaseModel):
|
||||
userId: str
|
||||
completedSteps: list[OnboardingStep]
|
||||
walletShown: bool
|
||||
notified: list[OnboardingStep]
|
||||
rewardedFor: list[OnboardingStep]
|
||||
usageReason: Optional[str]
|
||||
integrations: list[str]
|
||||
otherIntegrations: Optional[str]
|
||||
selectedStoreListingVersionId: Optional[str]
|
||||
agentInput: Optional[dict[str, Any]]
|
||||
onboardingAgentExecutionId: Optional[str]
|
||||
agentRuns: int
|
||||
lastRunAt: Optional[datetime]
|
||||
consecutiveRunDays: int
|
||||
|
||||
@@ -2,7 +2,7 @@ from __future__ import annotations
|
||||
|
||||
from typing import AsyncGenerator
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, field_serializer
|
||||
|
||||
from backend.data.event_bus import AsyncRedisEventBus
|
||||
from backend.server.model import NotificationPayload
|
||||
@@ -15,6 +15,11 @@ class NotificationEvent(BaseModel):
|
||||
user_id: str
|
||||
payload: NotificationPayload
|
||||
|
||||
@field_serializer("payload")
|
||||
def serialize_payload(self, payload: NotificationPayload):
|
||||
"""Ensure extra fields survive Redis serialization."""
|
||||
return payload.model_dump()
|
||||
|
||||
|
||||
class AsyncRedisNotificationEventBus(AsyncRedisEventBus[NotificationEvent]):
|
||||
Model = NotificationEvent # type: ignore
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import Any, Optional
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any, Literal, Optional
|
||||
from zoneinfo import ZoneInfo
|
||||
|
||||
import prisma
|
||||
import pydantic
|
||||
@@ -8,17 +9,18 @@ from prisma.enums import OnboardingStep
|
||||
from prisma.models import UserOnboarding
|
||||
from prisma.types import UserOnboardingCreateInput, UserOnboardingUpdateInput
|
||||
|
||||
from backend.data.block import get_blocks
|
||||
from backend.data import execution as execution_db
|
||||
from backend.data.credit import get_user_credit_model
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.notification_bus import (
|
||||
AsyncRedisNotificationEventBus,
|
||||
NotificationEvent,
|
||||
)
|
||||
from backend.data.user import get_user_by_id
|
||||
from backend.server.model import OnboardingNotificationPayload
|
||||
from backend.server.v2.store.model import StoreAgentDetails
|
||||
from backend.util.cache import cached
|
||||
from backend.util.json import SafeJson
|
||||
from backend.util.timezone_utils import get_user_timezone_or_utc
|
||||
|
||||
# Mapping from user reason id to categories to search for when choosing agent to show
|
||||
REASON_MAPPING: dict[str, list[str]] = {
|
||||
@@ -31,9 +33,20 @@ REASON_MAPPING: dict[str, list[str]] = {
|
||||
POINTS_AGENT_COUNT = 50 # Number of agents to calculate points for
|
||||
MIN_AGENT_COUNT = 2 # Minimum number of marketplace agents to enable onboarding
|
||||
|
||||
FrontendOnboardingStep = Literal[
|
||||
OnboardingStep.WELCOME,
|
||||
OnboardingStep.USAGE_REASON,
|
||||
OnboardingStep.INTEGRATIONS,
|
||||
OnboardingStep.AGENT_CHOICE,
|
||||
OnboardingStep.AGENT_NEW_RUN,
|
||||
OnboardingStep.AGENT_INPUT,
|
||||
OnboardingStep.CONGRATS,
|
||||
OnboardingStep.MARKETPLACE_VISIT,
|
||||
OnboardingStep.BUILDER_OPEN,
|
||||
]
|
||||
|
||||
|
||||
class UserOnboardingUpdate(pydantic.BaseModel):
|
||||
completedSteps: Optional[list[OnboardingStep]] = None
|
||||
walletShown: Optional[bool] = None
|
||||
notified: Optional[list[OnboardingStep]] = None
|
||||
usageReason: Optional[str] = None
|
||||
@@ -42,9 +55,6 @@ class UserOnboardingUpdate(pydantic.BaseModel):
|
||||
selectedStoreListingVersionId: Optional[str] = None
|
||||
agentInput: Optional[dict[str, Any]] = None
|
||||
onboardingAgentExecutionId: Optional[str] = None
|
||||
agentRuns: Optional[int] = None
|
||||
lastRunAt: Optional[datetime] = None
|
||||
consecutiveRunDays: Optional[int] = None
|
||||
|
||||
|
||||
async def get_user_onboarding(user_id: str):
|
||||
@@ -83,14 +93,6 @@ async def reset_user_onboarding(user_id: str):
|
||||
async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
|
||||
update: UserOnboardingUpdateInput = {}
|
||||
onboarding = await get_user_onboarding(user_id)
|
||||
if data.completedSteps is not None:
|
||||
update["completedSteps"] = list(
|
||||
set(data.completedSteps + onboarding.completedSteps)
|
||||
)
|
||||
for step in data.completedSteps:
|
||||
if step not in onboarding.completedSteps:
|
||||
await _reward_user(user_id, onboarding, step)
|
||||
await _send_onboarding_notification(user_id, step)
|
||||
if data.walletShown:
|
||||
update["walletShown"] = data.walletShown
|
||||
if data.notified is not None:
|
||||
@@ -107,12 +109,6 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
|
||||
update["agentInput"] = SafeJson(data.agentInput)
|
||||
if data.onboardingAgentExecutionId is not None:
|
||||
update["onboardingAgentExecutionId"] = data.onboardingAgentExecutionId
|
||||
if data.agentRuns is not None and data.agentRuns > onboarding.agentRuns:
|
||||
update["agentRuns"] = data.agentRuns
|
||||
if data.lastRunAt is not None:
|
||||
update["lastRunAt"] = data.lastRunAt
|
||||
if data.consecutiveRunDays is not None:
|
||||
update["consecutiveRunDays"] = data.consecutiveRunDays
|
||||
|
||||
return await UserOnboarding.prisma().upsert(
|
||||
where={"userId": user_id},
|
||||
@@ -161,14 +157,12 @@ async def _reward_user(user_id: str, onboarding: UserOnboarding, step: Onboardin
|
||||
if step in onboarding.rewardedFor:
|
||||
return
|
||||
|
||||
onboarding.rewardedFor.append(step)
|
||||
user_credit_model = await get_user_credit_model(user_id)
|
||||
await user_credit_model.onboarding_reward(user_id, reward, step)
|
||||
await UserOnboarding.prisma().update(
|
||||
where={"userId": user_id},
|
||||
data={
|
||||
"completedSteps": list(set(onboarding.completedSteps + [step])),
|
||||
"rewardedFor": onboarding.rewardedFor,
|
||||
"rewardedFor": list(set(onboarding.rewardedFor + [step])),
|
||||
},
|
||||
)
|
||||
|
||||
@@ -177,31 +171,52 @@ async def complete_onboarding_step(user_id: str, step: OnboardingStep):
|
||||
"""
|
||||
Completes the specified onboarding step for the user if not already completed.
|
||||
"""
|
||||
|
||||
onboarding = await get_user_onboarding(user_id)
|
||||
if step not in onboarding.completedSteps:
|
||||
await update_user_onboarding(
|
||||
user_id,
|
||||
UserOnboardingUpdate(completedSteps=onboarding.completedSteps + [step]),
|
||||
await UserOnboarding.prisma().update(
|
||||
where={"userId": user_id},
|
||||
data={
|
||||
"completedSteps": list(set(onboarding.completedSteps + [step])),
|
||||
},
|
||||
)
|
||||
await _reward_user(user_id, onboarding, step)
|
||||
await _send_onboarding_notification(user_id, step)
|
||||
|
||||
|
||||
async def _send_onboarding_notification(user_id: str, step: OnboardingStep):
|
||||
async def _send_onboarding_notification(
|
||||
user_id: str, step: OnboardingStep | None, event: str = "step_completed"
|
||||
):
|
||||
"""
|
||||
Sends an onboarding notification to the user for the specified step.
|
||||
Sends an onboarding notification to the user.
|
||||
"""
|
||||
payload = OnboardingNotificationPayload(
|
||||
type="onboarding",
|
||||
event="step_completed",
|
||||
step=step.value,
|
||||
event=event,
|
||||
step=step,
|
||||
)
|
||||
await AsyncRedisNotificationEventBus().publish(
|
||||
NotificationEvent(user_id=user_id, payload=payload)
|
||||
)
|
||||
|
||||
|
||||
def clean_and_split(text: str) -> list[str]:
|
||||
async def complete_re_run_agent(user_id: str, graph_id: str) -> None:
|
||||
"""
|
||||
Complete RE_RUN_AGENT step when a user runs a graph they've run before.
|
||||
Keeps overhead low by only counting executions if the step is still pending.
|
||||
"""
|
||||
onboarding = await get_user_onboarding(user_id)
|
||||
if OnboardingStep.RE_RUN_AGENT in onboarding.completedSteps:
|
||||
return
|
||||
|
||||
# Includes current execution, so count > 1 means there was at least one prior run.
|
||||
previous_exec_count = await execution_db.get_graph_executions_count(
|
||||
user_id=user_id, graph_id=graph_id
|
||||
)
|
||||
if previous_exec_count > 1:
|
||||
await complete_onboarding_step(user_id, OnboardingStep.RE_RUN_AGENT)
|
||||
|
||||
|
||||
def _clean_and_split(text: str) -> list[str]:
|
||||
"""
|
||||
Removes all special characters from a string, truncates it to 100 characters,
|
||||
and splits it by whitespace and commas.
|
||||
@@ -224,7 +239,7 @@ def clean_and_split(text: str) -> list[str]:
|
||||
return words
|
||||
|
||||
|
||||
def calculate_points(
|
||||
def _calculate_points(
|
||||
agent, categories: list[str], custom: list[str], integrations: list[str]
|
||||
) -> int:
|
||||
"""
|
||||
@@ -268,18 +283,85 @@ def calculate_points(
|
||||
return int(points)
|
||||
|
||||
|
||||
def get_credentials_blocks() -> dict[str, str]:
|
||||
# Returns a dictionary of block id to credentials field name
|
||||
creds: dict[str, str] = {}
|
||||
blocks = get_blocks()
|
||||
for id, block in blocks.items():
|
||||
for field_name, field_info in block().input_schema.model_fields.items():
|
||||
if field_info.annotation == CredentialsMetaInput:
|
||||
creds[id] = field_name
|
||||
return creds
|
||||
def _normalize_datetime(value: datetime | None) -> datetime | None:
|
||||
if value is None:
|
||||
return None
|
||||
if value.tzinfo is None:
|
||||
return value.replace(tzinfo=timezone.utc)
|
||||
return value.astimezone(timezone.utc)
|
||||
|
||||
|
||||
CREDENTIALS_FIELDS: dict[str, str] = get_credentials_blocks()
|
||||
def _calculate_consecutive_run_days(
|
||||
last_run_at: datetime | None, current_consecutive_days: int, user_timezone: str
|
||||
) -> tuple[datetime, int]:
|
||||
tz = ZoneInfo(user_timezone)
|
||||
local_now = datetime.now(tz)
|
||||
normalized_last_run = _normalize_datetime(last_run_at)
|
||||
|
||||
if normalized_last_run is None:
|
||||
return local_now.astimezone(timezone.utc), 1
|
||||
|
||||
last_run_local = normalized_last_run.astimezone(tz)
|
||||
last_run_date = last_run_local.date()
|
||||
today = local_now.date()
|
||||
|
||||
if last_run_date == today:
|
||||
return local_now.astimezone(timezone.utc), current_consecutive_days
|
||||
|
||||
if last_run_date == today - timedelta(days=1):
|
||||
return local_now.astimezone(timezone.utc), current_consecutive_days + 1
|
||||
|
||||
return local_now.astimezone(timezone.utc), 1
|
||||
|
||||
|
||||
def _get_run_milestone_steps(
|
||||
new_run_count: int, consecutive_days: int
|
||||
) -> list[OnboardingStep]:
|
||||
milestones: list[OnboardingStep] = []
|
||||
if new_run_count >= 10:
|
||||
milestones.append(OnboardingStep.RUN_AGENTS)
|
||||
if new_run_count >= 100:
|
||||
milestones.append(OnboardingStep.RUN_AGENTS_100)
|
||||
if consecutive_days >= 3:
|
||||
milestones.append(OnboardingStep.RUN_3_DAYS)
|
||||
if consecutive_days >= 14:
|
||||
milestones.append(OnboardingStep.RUN_14_DAYS)
|
||||
return milestones
|
||||
|
||||
|
||||
async def _get_user_timezone(user_id: str) -> str:
|
||||
user = await get_user_by_id(user_id)
|
||||
return get_user_timezone_or_utc(user.timezone if user else None)
|
||||
|
||||
|
||||
async def increment_runs(user_id: str):
|
||||
"""
|
||||
Increment a user's run counters and trigger any onboarding milestones.
|
||||
"""
|
||||
user_timezone = await _get_user_timezone(user_id)
|
||||
onboarding = await get_user_onboarding(user_id)
|
||||
new_run_count = onboarding.agentRuns + 1
|
||||
last_run_at, consecutive_run_days = _calculate_consecutive_run_days(
|
||||
onboarding.lastRunAt, onboarding.consecutiveRunDays, user_timezone
|
||||
)
|
||||
|
||||
await UserOnboarding.prisma().update(
|
||||
where={"userId": user_id},
|
||||
data={
|
||||
"agentRuns": {"increment": 1},
|
||||
"lastRunAt": last_run_at,
|
||||
"consecutiveRunDays": consecutive_run_days,
|
||||
},
|
||||
)
|
||||
|
||||
milestones = _get_run_milestone_steps(new_run_count, consecutive_run_days)
|
||||
new_steps = [step for step in milestones if step not in onboarding.completedSteps]
|
||||
|
||||
for step in new_steps:
|
||||
await complete_onboarding_step(user_id, step)
|
||||
# Send progress notification if no steps were completed, so client refetches onboarding state
|
||||
if not new_steps:
|
||||
await _send_onboarding_notification(user_id, None, event="increment_runs")
|
||||
|
||||
|
||||
async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
|
||||
@@ -288,7 +370,7 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
|
||||
|
||||
where_clause: dict[str, Any] = {}
|
||||
|
||||
custom = clean_and_split((user_onboarding.usageReason or "").lower())
|
||||
custom = _clean_and_split((user_onboarding.usageReason or "").lower())
|
||||
|
||||
if categories:
|
||||
where_clause["OR"] = [
|
||||
@@ -336,7 +418,7 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
|
||||
# Calculate points for the first X agents and choose the top 2
|
||||
agent_points = []
|
||||
for agent in storeAgents[:POINTS_AGENT_COUNT]:
|
||||
points = calculate_points(
|
||||
points = _calculate_points(
|
||||
agent, categories, custom, user_onboarding.integrations
|
||||
)
|
||||
agent_points.append((agent, points))
|
||||
@@ -350,6 +432,7 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
|
||||
slug=agent.slug,
|
||||
agent_name=agent.agent_name,
|
||||
agent_video=agent.agent_video or "",
|
||||
agent_output_demo=agent.agent_output_demo or "",
|
||||
agent_image=agent.agent_image,
|
||||
creator=agent.creator_username,
|
||||
creator_avatar=agent.creator_avatar,
|
||||
|
||||
@@ -3,12 +3,18 @@ from contextlib import asynccontextmanager
|
||||
from typing import TYPE_CHECKING, Callable, Concatenate, ParamSpec, TypeVar, cast
|
||||
|
||||
from backend.data import db
|
||||
from backend.data.analytics import (
|
||||
get_accuracy_trends_and_alerts,
|
||||
get_marketplace_graphs_for_monitoring,
|
||||
)
|
||||
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model
|
||||
from backend.data.execution import (
|
||||
create_graph_execution,
|
||||
get_block_error_stats,
|
||||
get_child_graph_executions,
|
||||
get_execution_kv_data,
|
||||
get_execution_outputs_by_node_exec_id,
|
||||
get_frequently_executed_graphs,
|
||||
get_graph_execution_meta,
|
||||
get_graph_executions,
|
||||
get_graph_executions_count,
|
||||
@@ -28,9 +34,15 @@ from backend.data.graph import (
|
||||
get_connected_output_nodes,
|
||||
get_graph,
|
||||
get_graph_metadata,
|
||||
get_graph_settings,
|
||||
get_node,
|
||||
validate_graph_execution_permissions,
|
||||
)
|
||||
from backend.data.human_review import (
|
||||
get_or_create_human_review,
|
||||
has_pending_reviews_for_graph_exec,
|
||||
update_review_processed_status,
|
||||
)
|
||||
from backend.data.notifications import (
|
||||
clear_all_user_notification_batches,
|
||||
create_or_add_to_user_notification_batch,
|
||||
@@ -136,15 +148,20 @@ class DatabaseManager(AppService):
|
||||
update_graph_execution_stats = _(update_graph_execution_stats)
|
||||
upsert_execution_input = _(upsert_execution_input)
|
||||
upsert_execution_output = _(upsert_execution_output)
|
||||
get_execution_outputs_by_node_exec_id = _(get_execution_outputs_by_node_exec_id)
|
||||
get_execution_kv_data = _(get_execution_kv_data)
|
||||
set_execution_kv_data = _(set_execution_kv_data)
|
||||
get_block_error_stats = _(get_block_error_stats)
|
||||
get_accuracy_trends_and_alerts = _(get_accuracy_trends_and_alerts)
|
||||
get_frequently_executed_graphs = _(get_frequently_executed_graphs)
|
||||
get_marketplace_graphs_for_monitoring = _(get_marketplace_graphs_for_monitoring)
|
||||
|
||||
# Graphs
|
||||
get_node = _(get_node)
|
||||
get_graph = _(get_graph)
|
||||
get_connected_output_nodes = _(get_connected_output_nodes)
|
||||
get_graph_metadata = _(get_graph_metadata)
|
||||
get_graph_settings = _(get_graph_settings)
|
||||
|
||||
# Credits
|
||||
spend_credits = _(_spend_credits, name="spend_credits")
|
||||
@@ -161,6 +178,11 @@ class DatabaseManager(AppService):
|
||||
get_user_email_verification = _(get_user_email_verification)
|
||||
get_user_notification_preference = _(get_user_notification_preference)
|
||||
|
||||
# Human In The Loop
|
||||
get_or_create_human_review = _(get_or_create_human_review)
|
||||
has_pending_reviews_for_graph_exec = _(has_pending_reviews_for_graph_exec)
|
||||
update_review_processed_status = _(update_review_processed_status)
|
||||
|
||||
# Notifications - async
|
||||
clear_all_user_notification_batches = _(clear_all_user_notification_batches)
|
||||
create_or_add_to_user_notification_batch = _(
|
||||
@@ -214,6 +236,13 @@ class DatabaseManagerClient(AppServiceClient):
|
||||
|
||||
# Block error monitoring
|
||||
get_block_error_stats = _(d.get_block_error_stats)
|
||||
# Execution accuracy monitoring
|
||||
get_accuracy_trends_and_alerts = _(d.get_accuracy_trends_and_alerts)
|
||||
get_frequently_executed_graphs = _(d.get_frequently_executed_graphs)
|
||||
get_marketplace_graphs_for_monitoring = _(d.get_marketplace_graphs_for_monitoring)
|
||||
|
||||
# Human In The Loop
|
||||
has_pending_reviews_for_graph_exec = _(d.has_pending_reviews_for_graph_exec)
|
||||
|
||||
# User Emails
|
||||
get_user_email_by_id = _(d.get_user_email_by_id)
|
||||
@@ -241,6 +270,7 @@ class DatabaseManagerAsyncClient(AppServiceClient):
|
||||
get_latest_node_execution = d.get_latest_node_execution
|
||||
get_graph = d.get_graph
|
||||
get_graph_metadata = d.get_graph_metadata
|
||||
get_graph_settings = d.get_graph_settings
|
||||
get_graph_execution_meta = d.get_graph_execution_meta
|
||||
get_node = d.get_node
|
||||
get_node_execution = d.get_node_execution
|
||||
@@ -249,6 +279,7 @@ class DatabaseManagerAsyncClient(AppServiceClient):
|
||||
get_user_integrations = d.get_user_integrations
|
||||
upsert_execution_input = d.upsert_execution_input
|
||||
upsert_execution_output = d.upsert_execution_output
|
||||
get_execution_outputs_by_node_exec_id = d.get_execution_outputs_by_node_exec_id
|
||||
update_graph_execution_stats = d.update_graph_execution_stats
|
||||
update_node_execution_status = d.update_node_execution_status
|
||||
update_node_execution_status_batch = d.update_node_execution_status_batch
|
||||
@@ -256,6 +287,10 @@ class DatabaseManagerAsyncClient(AppServiceClient):
|
||||
get_execution_kv_data = d.get_execution_kv_data
|
||||
set_execution_kv_data = d.set_execution_kv_data
|
||||
|
||||
# Human In The Loop
|
||||
get_or_create_human_review = d.get_or_create_human_review
|
||||
update_review_processed_status = d.update_review_processed_status
|
||||
|
||||
# User Comms
|
||||
get_active_user_ids_in_timerange = d.get_active_user_ids_in_timerange
|
||||
get_user_email_by_id = d.get_user_email_by_id
|
||||
|
||||
@@ -29,6 +29,7 @@ from backend.data.block import (
|
||||
from backend.data.credit import UsageTransactionMetadata
|
||||
from backend.data.dynamic_fields import parse_execution_output
|
||||
from backend.data.execution import (
|
||||
ExecutionContext,
|
||||
ExecutionQueue,
|
||||
ExecutionStatus,
|
||||
GraphExecution,
|
||||
@@ -36,7 +37,6 @@ from backend.data.execution import (
|
||||
NodeExecutionEntry,
|
||||
NodeExecutionResult,
|
||||
NodesInputMasks,
|
||||
UserContext,
|
||||
)
|
||||
from backend.data.graph import Link, Node
|
||||
from backend.data.model import GraphExecutionStats, NodeExecutionStats
|
||||
@@ -133,9 +133,8 @@ def execute_graph(
|
||||
cluster_lock: ClusterLock,
|
||||
):
|
||||
"""Execute graph using thread-local ExecutionProcessor instance"""
|
||||
return _tls.processor.on_graph_execution(
|
||||
graph_exec_entry, cancel_event, cluster_lock
|
||||
)
|
||||
processor: ExecutionProcessor = _tls.processor
|
||||
return processor.on_graph_execution(graph_exec_entry, cancel_event, cluster_lock)
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
@@ -143,8 +142,8 @@ T = TypeVar("T")
|
||||
|
||||
async def execute_node(
|
||||
node: Node,
|
||||
creds_manager: IntegrationCredentialsManager,
|
||||
data: NodeExecutionEntry,
|
||||
execution_processor: "ExecutionProcessor",
|
||||
execution_stats: NodeExecutionStats | None = None,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
) -> BlockOutput:
|
||||
@@ -164,9 +163,12 @@ async def execute_node(
|
||||
user_id = data.user_id
|
||||
graph_exec_id = data.graph_exec_id
|
||||
graph_id = data.graph_id
|
||||
graph_version = data.graph_version
|
||||
node_exec_id = data.node_exec_id
|
||||
node_id = data.node_id
|
||||
node_block = node.block
|
||||
execution_context = data.execution_context
|
||||
creds_manager = execution_processor.creds_manager
|
||||
|
||||
log_metadata = LogMetadata(
|
||||
logger=_logger,
|
||||
@@ -204,28 +206,66 @@ async def execute_node(
|
||||
# Inject extra execution arguments for the blocks via kwargs
|
||||
extra_exec_kwargs: dict = {
|
||||
"graph_id": graph_id,
|
||||
"graph_version": graph_version,
|
||||
"node_id": node_id,
|
||||
"graph_exec_id": graph_exec_id,
|
||||
"node_exec_id": node_exec_id,
|
||||
"user_id": user_id,
|
||||
"execution_context": execution_context,
|
||||
"execution_processor": execution_processor,
|
||||
}
|
||||
|
||||
# Add user context from NodeExecutionEntry
|
||||
extra_exec_kwargs["user_context"] = data.user_context
|
||||
|
||||
# Last-minute fetch credentials + acquire a system-wide read-write lock to prevent
|
||||
# changes during execution. ⚠️ This means a set of credentials can only be used by
|
||||
# one (running) block at a time; simultaneous execution of blocks using same
|
||||
# credentials is not supported.
|
||||
creds_lock = None
|
||||
creds_locks: list[AsyncRedisLock] = []
|
||||
input_model = cast(type[BlockSchema], node_block.input_schema)
|
||||
|
||||
# Handle regular credentials fields
|
||||
for field_name, input_type in input_model.get_credentials_fields().items():
|
||||
credentials_meta = input_type(**input_data[field_name])
|
||||
credentials, creds_lock = await creds_manager.acquire(
|
||||
user_id, credentials_meta.id
|
||||
)
|
||||
credentials, lock = await creds_manager.acquire(user_id, credentials_meta.id)
|
||||
creds_locks.append(lock)
|
||||
extra_exec_kwargs[field_name] = credentials
|
||||
|
||||
# Handle auto-generated credentials (e.g., from GoogleDriveFileInput)
|
||||
for kwarg_name, info in input_model.get_auto_credentials_fields().items():
|
||||
field_name = info["field_name"]
|
||||
field_data = input_data.get(field_name)
|
||||
if field_data and isinstance(field_data, dict):
|
||||
# Check if _credentials_id key exists in the field data
|
||||
if "_credentials_id" in field_data:
|
||||
cred_id = field_data["_credentials_id"]
|
||||
if cred_id:
|
||||
# Credential ID provided - acquire credentials
|
||||
provider = info.get("config", {}).get(
|
||||
"provider", "external service"
|
||||
)
|
||||
file_name = field_data.get("name", "selected file")
|
||||
try:
|
||||
credentials, lock = await creds_manager.acquire(
|
||||
user_id, cred_id
|
||||
)
|
||||
creds_locks.append(lock)
|
||||
extra_exec_kwargs[kwarg_name] = credentials
|
||||
except ValueError:
|
||||
# Credential was deleted or doesn't exist
|
||||
raise ValueError(
|
||||
f"Authentication expired for '{file_name}' in field '{field_name}'. "
|
||||
f"The saved {provider.capitalize()} credentials no longer exist. "
|
||||
f"Please re-select the file to re-authenticate."
|
||||
)
|
||||
# else: _credentials_id is explicitly None, skip credentials (for chained data)
|
||||
else:
|
||||
# _credentials_id key missing entirely - this is an error
|
||||
provider = info.get("config", {}).get("provider", "external service")
|
||||
file_name = field_data.get("name", "selected file")
|
||||
raise ValueError(
|
||||
f"Authentication missing for '{file_name}' in field '{field_name}'. "
|
||||
f"Please re-select the file to authenticate with {provider.capitalize()}."
|
||||
)
|
||||
|
||||
output_size = 0
|
||||
|
||||
# sentry tracking nonsense to get user counts for blocks because isolation scopes don't work :(
|
||||
@@ -241,8 +281,8 @@ async def execute_node(
|
||||
scope.set_tag("node_id", node_id)
|
||||
scope.set_tag("block_name", node_block.name)
|
||||
scope.set_tag("block_id", node_block.id)
|
||||
for k, v in (data.user_context or UserContext(timezone="UTC")).model_dump().items():
|
||||
scope.set_tag(f"user_context.{k}", v)
|
||||
for k, v in execution_context.model_dump().items():
|
||||
scope.set_tag(f"execution_context.{k}", v)
|
||||
|
||||
try:
|
||||
async for output_name, output_data in node_block.execute(
|
||||
@@ -259,12 +299,17 @@ async def execute_node(
|
||||
# Re-raise to maintain normal error flow
|
||||
raise
|
||||
finally:
|
||||
# Ensure credentials are released even if execution fails
|
||||
if creds_lock and (await creds_lock.locked()) and (await creds_lock.owned()):
|
||||
try:
|
||||
await creds_lock.release()
|
||||
except Exception as e:
|
||||
log_metadata.error(f"Failed to release credentials lock: {e}")
|
||||
# Ensure all credentials are released even if execution fails
|
||||
for creds_lock in creds_locks:
|
||||
if (
|
||||
creds_lock
|
||||
and (await creds_lock.locked())
|
||||
and (await creds_lock.owned())
|
||||
):
|
||||
try:
|
||||
await creds_lock.release()
|
||||
except Exception as e:
|
||||
log_metadata.error(f"Failed to release credentials lock: {e}")
|
||||
|
||||
# Update execution stats
|
||||
if execution_stats is not None:
|
||||
@@ -284,9 +329,10 @@ async def _enqueue_next_nodes(
|
||||
user_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
log_metadata: LogMetadata,
|
||||
nodes_input_masks: Optional[NodesInputMasks],
|
||||
user_context: UserContext,
|
||||
execution_context: ExecutionContext,
|
||||
) -> list[NodeExecutionEntry]:
|
||||
async def add_enqueued_execution(
|
||||
node_exec_id: str, node_id: str, block_id: str, data: BlockInput
|
||||
@@ -301,11 +347,12 @@ async def _enqueue_next_nodes(
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
node_exec_id=node_exec_id,
|
||||
node_id=node_id,
|
||||
block_id=block_id,
|
||||
inputs=data,
|
||||
user_context=user_context,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
|
||||
async def register_next_executions(node_link: Link) -> list[NodeExecutionEntry]:
|
||||
@@ -334,17 +381,14 @@ async def _enqueue_next_nodes(
|
||||
# Or the same input to be consumed multiple times.
|
||||
async with synchronized(f"upsert_input-{next_node_id}-{graph_exec_id}"):
|
||||
# Add output data to the earliest incomplete execution, or create a new one.
|
||||
next_node_exec_id, next_node_input = await db_client.upsert_execution_input(
|
||||
next_node_exec, next_node_input = await db_client.upsert_execution_input(
|
||||
node_id=next_node_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
input_name=next_input_name,
|
||||
input_data=next_data,
|
||||
)
|
||||
await async_update_node_execution_status(
|
||||
db_client=db_client,
|
||||
exec_id=next_node_exec_id,
|
||||
status=ExecutionStatus.INCOMPLETE,
|
||||
)
|
||||
next_node_exec_id = next_node_exec.node_exec_id
|
||||
await send_async_execution_update(next_node_exec)
|
||||
|
||||
# Complete missing static input pins data using the last execution input.
|
||||
static_link_names = {
|
||||
@@ -565,8 +609,8 @@ class ExecutionProcessor:
|
||||
|
||||
async for output_name, output_data in execute_node(
|
||||
node=node,
|
||||
creds_manager=self.creds_manager,
|
||||
data=node_exec,
|
||||
execution_processor=self,
|
||||
execution_stats=stats,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
):
|
||||
@@ -660,6 +704,16 @@ class ExecutionProcessor:
|
||||
log_metadata.info(
|
||||
f"⚙️ Graph execution #{graph_exec.graph_exec_id} is already running, continuing where it left off."
|
||||
)
|
||||
elif exec_meta.status == ExecutionStatus.REVIEW:
|
||||
exec_meta.status = ExecutionStatus.RUNNING
|
||||
log_metadata.info(
|
||||
f"⚙️ Graph execution #{graph_exec.graph_exec_id} was waiting for review, resuming execution."
|
||||
)
|
||||
update_graph_execution_state(
|
||||
db_client=db_client,
|
||||
graph_exec_id=graph_exec.graph_exec_id,
|
||||
status=ExecutionStatus.RUNNING,
|
||||
)
|
||||
elif exec_meta.status == ExecutionStatus.FAILED:
|
||||
exec_meta.status = ExecutionStatus.RUNNING
|
||||
log_metadata.info(
|
||||
@@ -697,19 +751,21 @@ class ExecutionProcessor:
|
||||
raise status
|
||||
exec_meta.status = status
|
||||
|
||||
# Activity status handling
|
||||
activity_response = asyncio.run_coroutine_threadsafe(
|
||||
generate_activity_status_for_execution(
|
||||
graph_exec_id=graph_exec.graph_exec_id,
|
||||
graph_id=graph_exec.graph_id,
|
||||
graph_version=graph_exec.graph_version,
|
||||
execution_stats=exec_stats,
|
||||
db_client=get_db_async_client(),
|
||||
user_id=graph_exec.user_id,
|
||||
execution_status=status,
|
||||
),
|
||||
self.node_execution_loop,
|
||||
).result(timeout=60.0)
|
||||
if status in [ExecutionStatus.COMPLETED, ExecutionStatus.FAILED]:
|
||||
activity_response = asyncio.run_coroutine_threadsafe(
|
||||
generate_activity_status_for_execution(
|
||||
graph_exec_id=graph_exec.graph_exec_id,
|
||||
graph_id=graph_exec.graph_id,
|
||||
graph_version=graph_exec.graph_version,
|
||||
execution_stats=exec_stats,
|
||||
db_client=get_db_async_client(),
|
||||
user_id=graph_exec.user_id,
|
||||
execution_status=status,
|
||||
),
|
||||
self.node_execution_loop,
|
||||
).result(timeout=60.0)
|
||||
else:
|
||||
activity_response = None
|
||||
if activity_response is not None:
|
||||
exec_stats.activity_status = activity_response["activity_status"]
|
||||
exec_stats.correctness_score = activity_response["correctness_score"]
|
||||
@@ -805,12 +861,17 @@ class ExecutionProcessor:
|
||||
execution_stats_lock = threading.Lock()
|
||||
|
||||
# State holders ----------------------------------------------------
|
||||
running_node_execution: dict[str, NodeExecutionProgress] = defaultdict(
|
||||
self.running_node_execution: dict[str, NodeExecutionProgress] = defaultdict(
|
||||
NodeExecutionProgress
|
||||
)
|
||||
running_node_evaluation: dict[str, Future] = {}
|
||||
self.running_node_evaluation: dict[str, Future] = {}
|
||||
self.execution_stats = execution_stats
|
||||
self.execution_stats_lock = execution_stats_lock
|
||||
execution_queue = ExecutionQueue[NodeExecutionEntry]()
|
||||
|
||||
running_node_execution = self.running_node_execution
|
||||
running_node_evaluation = self.running_node_evaluation
|
||||
|
||||
try:
|
||||
if db_client.get_credits(graph_exec.user_id) <= 0:
|
||||
raise InsufficientBalanceError(
|
||||
@@ -845,14 +906,18 @@ class ExecutionProcessor:
|
||||
ExecutionStatus.RUNNING,
|
||||
ExecutionStatus.QUEUED,
|
||||
ExecutionStatus.TERMINATED,
|
||||
ExecutionStatus.REVIEW,
|
||||
],
|
||||
):
|
||||
node_entry = node_exec.to_node_execution_entry(graph_exec.user_context)
|
||||
node_entry = node_exec.to_node_execution_entry(
|
||||
graph_exec.execution_context
|
||||
)
|
||||
execution_queue.add(node_entry)
|
||||
|
||||
# ------------------------------------------------------------
|
||||
# Main dispatch / polling loop -----------------------------
|
||||
# ------------------------------------------------------------
|
||||
|
||||
while not execution_queue.empty():
|
||||
if cancel.is_set():
|
||||
break
|
||||
@@ -1006,7 +1071,12 @@ class ExecutionProcessor:
|
||||
elif error is not None:
|
||||
execution_status = ExecutionStatus.FAILED
|
||||
else:
|
||||
execution_status = ExecutionStatus.COMPLETED
|
||||
if db_client.has_pending_reviews_for_graph_exec(
|
||||
graph_exec.graph_exec_id
|
||||
):
|
||||
execution_status = ExecutionStatus.REVIEW
|
||||
else:
|
||||
execution_status = ExecutionStatus.COMPLETED
|
||||
|
||||
if error:
|
||||
execution_stats.error = str(error) or type(error).__name__
|
||||
@@ -1142,9 +1212,10 @@ class ExecutionProcessor:
|
||||
user_id=graph_exec.user_id,
|
||||
graph_exec_id=graph_exec.graph_exec_id,
|
||||
graph_id=graph_exec.graph_id,
|
||||
graph_version=graph_exec.graph_version,
|
||||
log_metadata=log_metadata,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
user_context=graph_exec.user_context,
|
||||
execution_context=graph_exec.execution_context,
|
||||
):
|
||||
execution_queue.add(next_execution)
|
||||
|
||||
@@ -1563,36 +1634,32 @@ class ExecutionManager(AppProcess):
|
||||
graph_exec_id = graph_exec_entry.graph_exec_id
|
||||
user_id = graph_exec_entry.user_id
|
||||
graph_id = graph_exec_entry.graph_id
|
||||
parent_graph_exec_id = graph_exec_entry.parent_graph_exec_id
|
||||
root_exec_id = graph_exec_entry.execution_context.root_execution_id
|
||||
parent_exec_id = graph_exec_entry.execution_context.parent_execution_id
|
||||
|
||||
logger.info(
|
||||
f"[{self.service_name}] Received RUN for graph_exec_id={graph_exec_id}, user_id={user_id}, executor_id={self.executor_id}"
|
||||
+ (f", parent={parent_graph_exec_id}" if parent_graph_exec_id else "")
|
||||
+ (f", root={root_exec_id}" if root_exec_id else "")
|
||||
+ (f", parent={parent_exec_id}" if parent_exec_id else "")
|
||||
)
|
||||
|
||||
# Check if parent execution is already terminated (prevents orphaned child executions)
|
||||
if parent_graph_exec_id:
|
||||
try:
|
||||
parent_exec = get_db_client().get_graph_execution_meta(
|
||||
execution_id=parent_graph_exec_id,
|
||||
user_id=user_id,
|
||||
# Check if root execution is already terminated (prevents orphaned child executions)
|
||||
if root_exec_id and root_exec_id != graph_exec_id:
|
||||
parent_exec = get_db_client().get_graph_execution_meta(
|
||||
execution_id=root_exec_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
if parent_exec and parent_exec.status == ExecutionStatus.TERMINATED:
|
||||
logger.info(
|
||||
f"[{self.service_name}] Skipping execution {graph_exec_id} - parent {root_exec_id} is TERMINATED"
|
||||
)
|
||||
if parent_exec and parent_exec.status == ExecutionStatus.TERMINATED:
|
||||
logger.info(
|
||||
f"[{self.service_name}] Skipping execution {graph_exec_id} - parent {parent_graph_exec_id} is TERMINATED"
|
||||
)
|
||||
# Mark this child as terminated since parent was stopped
|
||||
get_db_client().update_graph_execution_stats(
|
||||
graph_exec_id=graph_exec_id,
|
||||
status=ExecutionStatus.TERMINATED,
|
||||
)
|
||||
_ack_message(reject=False, requeue=False)
|
||||
return
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"[{self.service_name}] Could not check parent status for {graph_exec_id}: {e}"
|
||||
# Mark this child as terminated since parent was stopped
|
||||
get_db_client().update_graph_execution_stats(
|
||||
graph_exec_id=graph_exec_id,
|
||||
status=ExecutionStatus.TERMINATED,
|
||||
)
|
||||
# Continue execution if parent check fails (don't block on errors)
|
||||
_ack_message(reject=False, requeue=False)
|
||||
return
|
||||
|
||||
# Check user rate limit before processing
|
||||
try:
|
||||
|
||||
@@ -26,12 +26,14 @@ from sqlalchemy import MetaData, create_engine
|
||||
from backend.data.block import BlockInput
|
||||
from backend.data.execution import GraphExecutionWithNodes
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.onboarding import increment_runs
|
||||
from backend.executor import utils as execution_utils
|
||||
from backend.monitoring import (
|
||||
NotificationJobArgs,
|
||||
process_existing_batches,
|
||||
process_weekly_summary,
|
||||
report_block_error_rates,
|
||||
report_execution_accuracy_alerts,
|
||||
report_late_executions,
|
||||
)
|
||||
from backend.util.clients import get_scheduler_client
|
||||
@@ -153,6 +155,7 @@ async def _execute_graph(**kwargs):
|
||||
inputs=args.input_data,
|
||||
graph_credentials_inputs=args.input_credentials,
|
||||
)
|
||||
await increment_runs(args.user_id)
|
||||
elapsed = asyncio.get_event_loop().time() - start_time
|
||||
logger.info(
|
||||
f"Graph execution started with ID {graph_exec.id} for graph {args.graph_id} "
|
||||
@@ -239,6 +242,11 @@ def cleanup_expired_files():
|
||||
run_async(cleanup_expired_files_async())
|
||||
|
||||
|
||||
def execution_accuracy_alerts():
|
||||
"""Check execution accuracy and send alerts if drops are detected."""
|
||||
return report_execution_accuracy_alerts()
|
||||
|
||||
|
||||
# Monitoring functions are now imported from monitoring module
|
||||
|
||||
|
||||
@@ -438,6 +446,17 @@ class Scheduler(AppService):
|
||||
jobstore=Jobstores.EXECUTION.value,
|
||||
)
|
||||
|
||||
# Execution Accuracy Monitoring - configurable interval
|
||||
self.scheduler.add_job(
|
||||
execution_accuracy_alerts,
|
||||
id="report_execution_accuracy_alerts",
|
||||
trigger="interval",
|
||||
replace_existing=True,
|
||||
seconds=config.execution_accuracy_check_interval_hours
|
||||
* 3600, # Convert hours to seconds
|
||||
jobstore=Jobstores.EXECUTION.value,
|
||||
)
|
||||
|
||||
self.scheduler.add_listener(job_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
|
||||
self.scheduler.add_listener(job_missed_listener, EVENT_JOB_MISSED)
|
||||
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
|
||||
@@ -585,6 +604,11 @@ class Scheduler(AppService):
|
||||
"""Manually trigger cleanup of expired cloud storage files."""
|
||||
return cleanup_expired_files()
|
||||
|
||||
@expose
|
||||
def execute_report_execution_accuracy_alerts(self):
|
||||
"""Manually trigger execution accuracy alert checking."""
|
||||
return execution_accuracy_alerts()
|
||||
|
||||
|
||||
class SchedulerClient(AppServiceClient):
|
||||
@classmethod
|
||||
|
||||
@@ -10,6 +10,7 @@ from pydantic import BaseModel, JsonValue, ValidationError
|
||||
|
||||
from backend.data import execution as execution_db
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data import user as user_db
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCostType,
|
||||
@@ -24,18 +25,17 @@ from backend.data.db import prisma
|
||||
# Import dynamic field utilities from centralized location
|
||||
from backend.data.dynamic_fields import merge_execution_input
|
||||
from backend.data.execution import (
|
||||
ExecutionContext,
|
||||
ExecutionStatus,
|
||||
GraphExecutionMeta,
|
||||
GraphExecutionStats,
|
||||
GraphExecutionWithNodes,
|
||||
NodesInputMasks,
|
||||
UserContext,
|
||||
get_graph_execution,
|
||||
)
|
||||
from backend.data.graph import GraphModel, Node
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.model import USER_TIMEZONE_NOT_SET, CredentialsMetaInput
|
||||
from backend.data.rabbitmq import Exchange, ExchangeType, Queue, RabbitMQConfig
|
||||
from backend.data.user import get_user_by_id
|
||||
from backend.util.cache import cached
|
||||
from backend.util.clients import (
|
||||
get_async_execution_event_bus,
|
||||
get_async_execution_queue,
|
||||
@@ -51,32 +51,6 @@ from backend.util.logging import TruncatedLogger, is_structured_logging_enabled
|
||||
from backend.util.settings import Config
|
||||
from backend.util.type import convert
|
||||
|
||||
|
||||
@cached(maxsize=1000, ttl_seconds=3600)
|
||||
async def get_user_context(user_id: str) -> UserContext:
|
||||
"""
|
||||
Get UserContext for a user, always returns a valid context with timezone.
|
||||
Defaults to UTC if user has no timezone set.
|
||||
"""
|
||||
user_context = UserContext(timezone="UTC") # Default to UTC
|
||||
try:
|
||||
if prisma.is_connected():
|
||||
user = await get_user_by_id(user_id)
|
||||
else:
|
||||
user = await get_database_manager_async_client().get_user_by_id(user_id)
|
||||
|
||||
if user and user.timezone and user.timezone != "not-set":
|
||||
user_context.timezone = user.timezone
|
||||
logger.debug(f"Retrieved user context: timezone={user.timezone}")
|
||||
else:
|
||||
logger.debug("User has no timezone set, using UTC")
|
||||
except Exception as e:
|
||||
logger.warning(f"Could not fetch user timezone: {e}")
|
||||
# Continue with UTC as default
|
||||
|
||||
return user_context
|
||||
|
||||
|
||||
config = Config()
|
||||
logger = TruncatedLogger(logging.getLogger(__name__), prefix="[GraphExecutorUtil]")
|
||||
|
||||
@@ -494,7 +468,6 @@ async def validate_and_construct_node_execution_input(
|
||||
graph_version: The version of the graph to use.
|
||||
graph_credentials_inputs: Credentials inputs to use.
|
||||
nodes_input_masks: Node inputs to use.
|
||||
is_sub_graph: Whether this is a sub-graph execution.
|
||||
|
||||
Returns:
|
||||
GraphModel: Full graph object for the given `graph_id`.
|
||||
@@ -762,8 +735,8 @@ async def add_graph_execution(
|
||||
graph_version: Optional[int] = None,
|
||||
graph_credentials_inputs: Optional[Mapping[str, CredentialsMetaInput]] = None,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
parent_graph_exec_id: Optional[str] = None,
|
||||
is_sub_graph: bool = False,
|
||||
execution_context: Optional[ExecutionContext] = None,
|
||||
graph_exec_id: Optional[str] = None,
|
||||
) -> GraphExecutionWithNodes:
|
||||
"""
|
||||
Adds a graph execution to the queue and returns the execution entry.
|
||||
@@ -778,33 +751,54 @@ async def add_graph_execution(
|
||||
Keys should map to the keys generated by `GraphModel.aggregate_credentials_inputs`.
|
||||
nodes_input_masks: Node inputs to use in the execution.
|
||||
parent_graph_exec_id: The ID of the parent graph execution (for nested executions).
|
||||
is_sub_graph: Whether this is a sub-graph execution.
|
||||
graph_exec_id: If provided, resume this existing execution instead of creating a new one.
|
||||
Returns:
|
||||
GraphExecutionEntry: The entry for the graph execution.
|
||||
Raises:
|
||||
ValueError: If the graph is not found or if there are validation errors.
|
||||
NotFoundError: If graph_exec_id is provided but execution is not found.
|
||||
"""
|
||||
if prisma.is_connected():
|
||||
edb = execution_db
|
||||
udb = user_db
|
||||
gdb = graph_db
|
||||
else:
|
||||
edb = get_database_manager_async_client()
|
||||
edb = udb = gdb = get_database_manager_async_client()
|
||||
|
||||
graph, starting_nodes_input, compiled_nodes_input_masks = (
|
||||
await validate_and_construct_node_execution_input(
|
||||
graph_id=graph_id,
|
||||
# Get or create the graph execution
|
||||
if graph_exec_id:
|
||||
# Resume existing execution
|
||||
graph_exec = await get_graph_execution(
|
||||
user_id=user_id,
|
||||
graph_inputs=inputs or {},
|
||||
graph_version=graph_version,
|
||||
graph_credentials_inputs=graph_credentials_inputs,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
is_sub_graph=is_sub_graph,
|
||||
execution_id=graph_exec_id,
|
||||
include_node_executions=True,
|
||||
)
|
||||
|
||||
if not graph_exec:
|
||||
raise NotFoundError(f"Graph execution #{graph_exec_id} not found.")
|
||||
|
||||
# Use existing execution's compiled input masks
|
||||
compiled_nodes_input_masks = graph_exec.nodes_input_masks or {}
|
||||
|
||||
logger.info(f"Resuming graph execution #{graph_exec.id} for graph #{graph_id}")
|
||||
else:
|
||||
parent_exec_id = (
|
||||
execution_context.parent_execution_id if execution_context else None
|
||||
)
|
||||
|
||||
# Create new execution
|
||||
graph, starting_nodes_input, compiled_nodes_input_masks = (
|
||||
await validate_and_construct_node_execution_input(
|
||||
graph_id=graph_id,
|
||||
user_id=user_id,
|
||||
graph_inputs=inputs or {},
|
||||
graph_version=graph_version,
|
||||
graph_credentials_inputs=graph_credentials_inputs,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
is_sub_graph=parent_exec_id is not None,
|
||||
)
|
||||
)
|
||||
)
|
||||
graph_exec = None
|
||||
|
||||
try:
|
||||
# Sanity check: running add_graph_execution with the properties of
|
||||
# the graph_exec created here should create the same execution again.
|
||||
graph_exec = await edb.create_graph_execution(
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
@@ -814,20 +808,38 @@ async def add_graph_execution(
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
starting_nodes_input=starting_nodes_input,
|
||||
preset_id=preset_id,
|
||||
parent_graph_exec_id=parent_graph_exec_id,
|
||||
parent_graph_exec_id=parent_exec_id,
|
||||
)
|
||||
|
||||
graph_exec_entry = graph_exec.to_graph_execution_entry(
|
||||
user_context=await get_user_context(user_id),
|
||||
compiled_nodes_input_masks=compiled_nodes_input_masks,
|
||||
parent_graph_exec_id=parent_graph_exec_id,
|
||||
)
|
||||
logger.info(
|
||||
f"Created graph execution #{graph_exec.id} for graph "
|
||||
f"#{graph_id} with {len(starting_nodes_input)} starting nodes. "
|
||||
f"Now publishing to execution queue."
|
||||
f"#{graph_id} with {len(starting_nodes_input)} starting nodes"
|
||||
)
|
||||
|
||||
# Generate execution context if it's not provided
|
||||
if execution_context is None:
|
||||
user = await udb.get_user_by_id(user_id)
|
||||
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
|
||||
|
||||
execution_context = ExecutionContext(
|
||||
safe_mode=(
|
||||
settings.human_in_the_loop_safe_mode
|
||||
if settings.human_in_the_loop_safe_mode is not None
|
||||
else True
|
||||
),
|
||||
user_timezone=(
|
||||
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
|
||||
),
|
||||
root_execution_id=graph_exec.id,
|
||||
)
|
||||
|
||||
try:
|
||||
graph_exec_entry = graph_exec.to_graph_execution_entry(
|
||||
compiled_nodes_input_masks=compiled_nodes_input_masks,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
logger.info(f"Publishing execution {graph_exec.id} to execution queue")
|
||||
|
||||
exec_queue = await get_async_execution_queue()
|
||||
await exec_queue.publish_message(
|
||||
routing_key=GRAPH_EXECUTION_ROUTING_KEY,
|
||||
|
||||
@@ -348,9 +348,6 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
mock_graph_exec.node_executions = [] # Add this to avoid AttributeError
|
||||
mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock()
|
||||
|
||||
# Mock user context
|
||||
mock_user_context = {"user_id": user_id, "context": "test_context"}
|
||||
|
||||
# Mock the queue and event bus
|
||||
mock_queue = mocker.AsyncMock()
|
||||
mock_event_bus = mocker.MagicMock()
|
||||
@@ -362,7 +359,8 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
)
|
||||
mock_edb = mocker.patch("backend.executor.utils.execution_db")
|
||||
mock_prisma = mocker.patch("backend.executor.utils.prisma")
|
||||
mock_get_user_context = mocker.patch("backend.executor.utils.get_user_context")
|
||||
mock_udb = mocker.patch("backend.executor.utils.user_db")
|
||||
mock_gdb = mocker.patch("backend.executor.utils.graph_db")
|
||||
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
|
||||
mock_get_event_bus = mocker.patch(
|
||||
"backend.executor.utils.get_async_execution_event_bus"
|
||||
@@ -380,7 +378,14 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
return_value=mock_graph_exec
|
||||
)
|
||||
mock_edb.update_node_execution_status_batch = mocker.AsyncMock()
|
||||
mock_get_user_context.return_value = mock_user_context
|
||||
# Mock user and settings data
|
||||
mock_user = mocker.MagicMock()
|
||||
mock_user.timezone = "UTC"
|
||||
mock_settings = mocker.MagicMock()
|
||||
mock_settings.human_in_the_loop_safe_mode = True
|
||||
|
||||
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
|
||||
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
|
||||
mock_get_queue.return_value = mock_queue
|
||||
mock_get_event_bus.return_value = mock_event_bus
|
||||
|
||||
|
||||
@@ -15,6 +15,7 @@ from backend.data.model import (
|
||||
OAuth2Credentials,
|
||||
OAuthState,
|
||||
UserIntegrations,
|
||||
UserPasswordCredentials,
|
||||
)
|
||||
from backend.data.redis_client import get_redis_async
|
||||
from backend.util.settings import Settings
|
||||
@@ -207,6 +208,14 @@ v0_credentials = APIKeyCredentials(
|
||||
expires_at=None,
|
||||
)
|
||||
|
||||
webshare_proxy_credentials = UserPasswordCredentials(
|
||||
id="a5b3c7d9-2e4f-4a6b-8c1d-9e0f1a2b3c4d",
|
||||
provider="webshare_proxy",
|
||||
username=SecretStr(settings.secrets.webshare_proxy_username),
|
||||
password=SecretStr(settings.secrets.webshare_proxy_password),
|
||||
title="Use Credits for Webshare Proxy",
|
||||
)
|
||||
|
||||
DEFAULT_CREDENTIALS = [
|
||||
ollama_credentials,
|
||||
revid_credentials,
|
||||
@@ -233,6 +242,7 @@ DEFAULT_CREDENTIALS = [
|
||||
google_maps_credentials,
|
||||
llama_api_credentials,
|
||||
v0_credentials,
|
||||
webshare_proxy_credentials,
|
||||
]
|
||||
|
||||
|
||||
@@ -321,6 +331,11 @@ class IntegrationCredentialsStore:
|
||||
all_credentials.append(zerobounce_credentials)
|
||||
if settings.secrets.google_maps_api_key:
|
||||
all_credentials.append(google_maps_credentials)
|
||||
if (
|
||||
settings.secrets.webshare_proxy_username
|
||||
and settings.secrets.webshare_proxy_password
|
||||
):
|
||||
all_credentials.append(webshare_proxy_credentials)
|
||||
return all_credentials
|
||||
|
||||
async def get_creds_by_id(
|
||||
@@ -399,7 +414,15 @@ class IntegrationCredentialsStore:
|
||||
# ===================== OAUTH STATES ===================== #
|
||||
|
||||
async def store_state_token(
|
||||
self, user_id: str, provider: str, scopes: list[str], use_pkce: bool = False
|
||||
self,
|
||||
user_id: str,
|
||||
provider: str,
|
||||
scopes: list[str],
|
||||
use_pkce: bool = False,
|
||||
# New parameters for external API OAuth flows
|
||||
callback_url: Optional[str] = None,
|
||||
state_metadata: Optional[dict] = None,
|
||||
initiated_by_api_key_id: Optional[str] = None,
|
||||
) -> tuple[str, str]:
|
||||
token = secrets.token_urlsafe(32)
|
||||
expires_at = datetime.now(timezone.utc) + timedelta(minutes=10)
|
||||
@@ -412,6 +435,10 @@ class IntegrationCredentialsStore:
|
||||
code_verifier=code_verifier,
|
||||
expires_at=int(expires_at.timestamp()),
|
||||
scopes=scopes,
|
||||
# External API OAuth flow fields
|
||||
callback_url=callback_url,
|
||||
state_metadata=state_metadata or {},
|
||||
initiated_by_api_key_id=initiated_by_api_key_id,
|
||||
)
|
||||
|
||||
async with self.edit_user_integrations(user_id) as user_integrations:
|
||||
|
||||
@@ -49,6 +49,7 @@ class ProviderName(str, Enum):
|
||||
TODOIST = "todoist"
|
||||
UNREAL_SPEECH = "unreal_speech"
|
||||
V0 = "v0"
|
||||
WEBSHARE_PROXY = "webshare_proxy"
|
||||
ZEROBOUNCE = "zerobounce"
|
||||
|
||||
@classmethod
|
||||
|
||||
@@ -18,7 +18,9 @@ class ManualWebhookManagerBase(BaseWebhooksManager[WT]):
|
||||
ingress_url: str,
|
||||
secret: str,
|
||||
) -> tuple[str, dict]:
|
||||
print(ingress_url) # FIXME: pass URL to user in front end
|
||||
# TODO: pass ingress_url to user in frontend
|
||||
# See: https://github.com/Significant-Gravitas/AutoGPT/issues/8537
|
||||
logger.debug(f"Manual webhook registered with ingress URL: {ingress_url}")
|
||||
|
||||
return "", {}
|
||||
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
"""Monitoring module for platform health and alerting."""
|
||||
|
||||
from .accuracy_monitor import AccuracyMonitor, report_execution_accuracy_alerts
|
||||
from .block_error_monitor import BlockErrorMonitor, report_block_error_rates
|
||||
from .late_execution_monitor import (
|
||||
LateExecutionException,
|
||||
@@ -13,10 +14,12 @@ from .notification_monitor import (
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"AccuracyMonitor",
|
||||
"BlockErrorMonitor",
|
||||
"LateExecutionMonitor",
|
||||
"LateExecutionException",
|
||||
"NotificationJobArgs",
|
||||
"report_execution_accuracy_alerts",
|
||||
"report_block_error_rates",
|
||||
"report_late_executions",
|
||||
"process_existing_batches",
|
||||
|
||||
107
autogpt_platform/backend/backend/monitoring/accuracy_monitor.py
Normal file
107
autogpt_platform/backend/backend/monitoring/accuracy_monitor.py
Normal file
@@ -0,0 +1,107 @@
|
||||
"""Execution accuracy monitoring module."""
|
||||
|
||||
import logging
|
||||
|
||||
from backend.util.clients import (
|
||||
get_database_manager_client,
|
||||
get_notification_manager_client,
|
||||
)
|
||||
from backend.util.metrics import DiscordChannel, sentry_capture_error
|
||||
from backend.util.settings import Config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
config = Config()
|
||||
|
||||
|
||||
class AccuracyMonitor:
|
||||
"""Monitor execution accuracy trends and send alerts for drops."""
|
||||
|
||||
def __init__(self, drop_threshold: float = 10.0):
|
||||
self.config = config
|
||||
self.notification_client = get_notification_manager_client()
|
||||
self.database_client = get_database_manager_client()
|
||||
self.drop_threshold = drop_threshold
|
||||
|
||||
def check_execution_accuracy_alerts(self) -> str:
|
||||
"""Check marketplace agents for accuracy drops and send alerts."""
|
||||
try:
|
||||
logger.info("Checking execution accuracy for marketplace agents")
|
||||
|
||||
# Get marketplace graphs using database client
|
||||
graphs = self.database_client.get_marketplace_graphs_for_monitoring(
|
||||
days_back=30, min_executions=10
|
||||
)
|
||||
|
||||
alerts_found = 0
|
||||
|
||||
for graph_data in graphs:
|
||||
result = self.database_client.get_accuracy_trends_and_alerts(
|
||||
graph_id=graph_data.graph_id,
|
||||
user_id=graph_data.user_id,
|
||||
days_back=21, # 3 weeks
|
||||
drop_threshold=self.drop_threshold,
|
||||
)
|
||||
|
||||
if result.alert:
|
||||
alert = result.alert
|
||||
|
||||
# Get graph details for better alert info
|
||||
try:
|
||||
graph_info = self.database_client.get_graph_metadata(
|
||||
graph_id=alert.graph_id
|
||||
)
|
||||
graph_name = graph_info.name if graph_info else "Unknown Agent"
|
||||
except Exception:
|
||||
graph_name = "Unknown Agent"
|
||||
|
||||
# Create detailed alert message
|
||||
alert_msg = (
|
||||
f"🚨 **AGENT ACCURACY DROP DETECTED**\n\n"
|
||||
f"**Agent:** {graph_name}\n"
|
||||
f"**Graph ID:** `{alert.graph_id}`\n"
|
||||
f"**Accuracy Drop:** {alert.drop_percent:.1f}%\n"
|
||||
f"**Recent Performance:**\n"
|
||||
f" • 3-day average: {alert.three_day_avg:.1f}%\n"
|
||||
f" • 7-day average: {alert.seven_day_avg:.1f}%\n"
|
||||
)
|
||||
|
||||
if alert.user_id:
|
||||
alert_msg += f"**Owner:** {alert.user_id}\n"
|
||||
|
||||
# Send individual alert for each agent (not batched)
|
||||
self.notification_client.discord_system_alert(
|
||||
alert_msg, DiscordChannel.PRODUCT
|
||||
)
|
||||
alerts_found += 1
|
||||
logger.warning(
|
||||
f"Sent accuracy alert for agent: {graph_name} ({alert.graph_id})"
|
||||
)
|
||||
|
||||
if alerts_found > 0:
|
||||
return f"Alert sent for {alerts_found} agents with accuracy drops"
|
||||
|
||||
logger.info("No execution accuracy alerts detected")
|
||||
return "No accuracy alerts detected"
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"Error checking execution accuracy alerts: {e}")
|
||||
|
||||
error = Exception(f"Error checking execution accuracy alerts: {e}")
|
||||
msg = str(error)
|
||||
sentry_capture_error(error)
|
||||
self.notification_client.discord_system_alert(msg, DiscordChannel.PRODUCT)
|
||||
return msg
|
||||
|
||||
|
||||
def report_execution_accuracy_alerts(drop_threshold: float = 10.0) -> str:
|
||||
"""
|
||||
Check execution accuracy and send alerts if drops are detected.
|
||||
|
||||
Args:
|
||||
drop_threshold: Percentage drop threshold to trigger alerts (default 10.0%)
|
||||
|
||||
Returns:
|
||||
Status message indicating results of the check
|
||||
"""
|
||||
monitor = AccuracyMonitor(drop_threshold=drop_threshold)
|
||||
return monitor.check_execution_accuracy_alerts()
|
||||
@@ -143,6 +143,9 @@ def instrument_fastapi(
|
||||
)
|
||||
|
||||
# Create instrumentator with default metrics
|
||||
# Use service-specific inprogress_name to avoid duplicate registration
|
||||
# when multiple FastAPI apps are instrumented in the same process
|
||||
service_subsystem = service_name.replace("-", "_")
|
||||
instrumentator = Instrumentator(
|
||||
should_group_status_codes=True,
|
||||
should_ignore_untemplated=True,
|
||||
@@ -150,7 +153,7 @@ def instrument_fastapi(
|
||||
should_instrument_requests_inprogress=True,
|
||||
excluded_handlers=excluded_handlers or ["/health", "/readiness"],
|
||||
env_var_name="ENABLE_METRICS",
|
||||
inprogress_name="autogpt_http_requests_inprogress",
|
||||
inprogress_name=f"autogpt_{service_subsystem}_http_requests_inprogress",
|
||||
inprogress_labels=True,
|
||||
)
|
||||
|
||||
|
||||
@@ -3,6 +3,8 @@ from fastapi import FastAPI
|
||||
from backend.monitoring.instrumentation import instrument_fastapi
|
||||
from backend.server.middleware.security import SecurityHeadersMiddleware
|
||||
|
||||
from .routes.integrations import integrations_router
|
||||
from .routes.tools import tools_router
|
||||
from .routes.v1 import v1_router
|
||||
|
||||
external_app = FastAPI(
|
||||
@@ -14,6 +16,8 @@ external_app = FastAPI(
|
||||
|
||||
external_app.add_middleware(SecurityHeadersMiddleware)
|
||||
external_app.include_router(v1_router, prefix="/v1")
|
||||
external_app.include_router(tools_router, prefix="/v1")
|
||||
external_app.include_router(integrations_router, prefix="/v1")
|
||||
|
||||
# Add Prometheus instrumentation
|
||||
instrument_fastapi(
|
||||
|
||||
650
autogpt_platform/backend/backend/server/external/routes/integrations.py
vendored
Normal file
650
autogpt_platform/backend/backend/server/external/routes/integrations.py
vendored
Normal file
@@ -0,0 +1,650 @@
|
||||
"""
|
||||
External API endpoints for integrations and credentials.
|
||||
|
||||
This module provides endpoints for external applications (like Autopilot) to:
|
||||
- Initiate OAuth flows with custom callback URLs
|
||||
- Complete OAuth flows by exchanging authorization codes
|
||||
- Create API key, user/password, and host-scoped credentials
|
||||
- List and manage user credentials
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, Union
|
||||
from urllib.parse import urlparse
|
||||
|
||||
from fastapi import APIRouter, Body, HTTPException, Path, Security, status
|
||||
from prisma.enums import APIKeyPermission
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
|
||||
from backend.data.api_key import APIKeyInfo
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
Credentials,
|
||||
CredentialsType,
|
||||
HostScopedCredentials,
|
||||
OAuth2Credentials,
|
||||
UserPasswordCredentials,
|
||||
)
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.oauth import CREDENTIALS_BY_PROVIDER, HANDLERS_BY_NAME
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.server.external.middleware import require_permission
|
||||
from backend.server.integrations.models import get_all_provider_names
|
||||
from backend.util.settings import Settings
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.integrations.oauth import BaseOAuthHandler
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
settings = Settings()
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
|
||||
integrations_router = APIRouter(prefix="/integrations", tags=["integrations"])
|
||||
|
||||
|
||||
# ==================== Request/Response Models ==================== #
|
||||
|
||||
|
||||
class OAuthInitiateRequest(BaseModel):
|
||||
"""Request model for initiating an OAuth flow."""
|
||||
|
||||
callback_url: str = Field(
|
||||
..., description="The external app's callback URL for OAuth redirect"
|
||||
)
|
||||
scopes: list[str] = Field(
|
||||
default_factory=list, description="OAuth scopes to request"
|
||||
)
|
||||
state_metadata: dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Arbitrary metadata to echo back on completion",
|
||||
)
|
||||
|
||||
|
||||
class OAuthInitiateResponse(BaseModel):
|
||||
"""Response model for OAuth initiation."""
|
||||
|
||||
login_url: str = Field(..., description="URL to redirect user for OAuth consent")
|
||||
state_token: str = Field(..., description="State token for CSRF protection")
|
||||
expires_at: int = Field(
|
||||
..., description="Unix timestamp when the state token expires"
|
||||
)
|
||||
|
||||
|
||||
class OAuthCompleteRequest(BaseModel):
|
||||
"""Request model for completing an OAuth flow."""
|
||||
|
||||
code: str = Field(..., description="Authorization code from OAuth provider")
|
||||
state_token: str = Field(..., description="State token from initiate request")
|
||||
|
||||
|
||||
class OAuthCompleteResponse(BaseModel):
|
||||
"""Response model for OAuth completion."""
|
||||
|
||||
credentials_id: str = Field(..., description="ID of the stored credentials")
|
||||
provider: str = Field(..., description="Provider name")
|
||||
type: str = Field(..., description="Credential type (oauth2)")
|
||||
title: Optional[str] = Field(None, description="Credential title")
|
||||
scopes: list[str] = Field(default_factory=list, description="Granted scopes")
|
||||
username: Optional[str] = Field(None, description="Username from provider")
|
||||
state_metadata: dict[str, Any] = Field(
|
||||
default_factory=dict, description="Echoed metadata from initiate request"
|
||||
)
|
||||
|
||||
|
||||
class CredentialSummary(BaseModel):
|
||||
"""Summary of a credential without sensitive data."""
|
||||
|
||||
id: str
|
||||
provider: str
|
||||
type: CredentialsType
|
||||
title: Optional[str] = None
|
||||
scopes: Optional[list[str]] = None
|
||||
username: Optional[str] = None
|
||||
host: Optional[str] = None
|
||||
|
||||
|
||||
class ProviderInfo(BaseModel):
|
||||
"""Information about an integration provider."""
|
||||
|
||||
name: str
|
||||
supports_oauth: bool = False
|
||||
supports_api_key: bool = False
|
||||
supports_user_password: bool = False
|
||||
supports_host_scoped: bool = False
|
||||
default_scopes: list[str] = Field(default_factory=list)
|
||||
|
||||
|
||||
# ==================== Credential Creation Models ==================== #
|
||||
|
||||
|
||||
class CreateAPIKeyCredentialRequest(BaseModel):
|
||||
"""Request model for creating API key credentials."""
|
||||
|
||||
type: Literal["api_key"] = "api_key"
|
||||
api_key: str = Field(..., description="The API key")
|
||||
title: str = Field(..., description="A name for this credential")
|
||||
expires_at: Optional[int] = Field(
|
||||
None, description="Unix timestamp when the API key expires"
|
||||
)
|
||||
|
||||
|
||||
class CreateUserPasswordCredentialRequest(BaseModel):
|
||||
"""Request model for creating username/password credentials."""
|
||||
|
||||
type: Literal["user_password"] = "user_password"
|
||||
username: str = Field(..., description="Username")
|
||||
password: str = Field(..., description="Password")
|
||||
title: str = Field(..., description="A name for this credential")
|
||||
|
||||
|
||||
class CreateHostScopedCredentialRequest(BaseModel):
|
||||
"""Request model for creating host-scoped credentials."""
|
||||
|
||||
type: Literal["host_scoped"] = "host_scoped"
|
||||
host: str = Field(..., description="Host/domain pattern to match")
|
||||
headers: dict[str, str] = Field(..., description="Headers to include in requests")
|
||||
title: str = Field(..., description="A name for this credential")
|
||||
|
||||
|
||||
# Union type for credential creation
|
||||
CreateCredentialRequest = Annotated[
|
||||
CreateAPIKeyCredentialRequest
|
||||
| CreateUserPasswordCredentialRequest
|
||||
| CreateHostScopedCredentialRequest,
|
||||
Field(discriminator="type"),
|
||||
]
|
||||
|
||||
|
||||
class CreateCredentialResponse(BaseModel):
|
||||
"""Response model for credential creation."""
|
||||
|
||||
id: str
|
||||
provider: str
|
||||
type: CredentialsType
|
||||
title: Optional[str] = None
|
||||
|
||||
|
||||
# ==================== Helper Functions ==================== #
|
||||
|
||||
|
||||
def validate_callback_url(callback_url: str) -> bool:
|
||||
"""Validate that the callback URL is from an allowed origin."""
|
||||
allowed_origins = settings.config.external_oauth_callback_origins
|
||||
|
||||
try:
|
||||
parsed = urlparse(callback_url)
|
||||
callback_origin = f"{parsed.scheme}://{parsed.netloc}"
|
||||
|
||||
for allowed in allowed_origins:
|
||||
# Simple origin matching
|
||||
if callback_origin == allowed:
|
||||
return True
|
||||
|
||||
# Allow localhost with any port in development (proper hostname check)
|
||||
if parsed.hostname == "localhost":
|
||||
for allowed in allowed_origins:
|
||||
allowed_parsed = urlparse(allowed)
|
||||
if allowed_parsed.hostname == "localhost":
|
||||
return True
|
||||
|
||||
return False
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
||||
def _get_oauth_handler_for_external(
|
||||
provider_name: str, redirect_uri: str
|
||||
) -> "BaseOAuthHandler":
|
||||
"""Get an OAuth handler configured with an external redirect URI."""
|
||||
# Ensure blocks are loaded so SDK providers are available
|
||||
try:
|
||||
from backend.blocks import load_all_blocks
|
||||
|
||||
load_all_blocks()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load blocks: {e}")
|
||||
|
||||
if provider_name not in HANDLERS_BY_NAME:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=f"Provider '{provider_name}' does not support OAuth",
|
||||
)
|
||||
|
||||
# Check if this provider has custom OAuth credentials
|
||||
oauth_credentials = CREDENTIALS_BY_PROVIDER.get(provider_name)
|
||||
|
||||
if oauth_credentials and not oauth_credentials.use_secrets:
|
||||
import os
|
||||
|
||||
client_id = (
|
||||
os.getenv(oauth_credentials.client_id_env_var)
|
||||
if oauth_credentials.client_id_env_var
|
||||
else None
|
||||
)
|
||||
client_secret = (
|
||||
os.getenv(oauth_credentials.client_secret_env_var)
|
||||
if oauth_credentials.client_secret_env_var
|
||||
else None
|
||||
)
|
||||
else:
|
||||
client_id = getattr(settings.secrets, f"{provider_name}_client_id", None)
|
||||
client_secret = getattr(
|
||||
settings.secrets, f"{provider_name}_client_secret", None
|
||||
)
|
||||
|
||||
if not (client_id and client_secret):
|
||||
logger.error(f"Attempt to use unconfigured {provider_name} OAuth integration")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_501_NOT_IMPLEMENTED,
|
||||
detail={
|
||||
"message": f"Integration with provider '{provider_name}' is not configured.",
|
||||
"hint": "Set client ID and secret in the application's deployment environment",
|
||||
},
|
||||
)
|
||||
|
||||
handler_class = HANDLERS_BY_NAME[provider_name]
|
||||
return handler_class(
|
||||
client_id=client_id,
|
||||
client_secret=client_secret,
|
||||
redirect_uri=redirect_uri,
|
||||
)
|
||||
|
||||
|
||||
# ==================== Endpoints ==================== #
|
||||
|
||||
|
||||
@integrations_router.get("/providers", response_model=list[ProviderInfo])
|
||||
async def list_providers(
|
||||
api_key: APIKeyInfo = Security(
|
||||
require_permission(APIKeyPermission.READ_INTEGRATIONS)
|
||||
),
|
||||
) -> list[ProviderInfo]:
|
||||
"""
|
||||
List all available integration providers.
|
||||
|
||||
Returns a list of all providers with their supported credential types.
|
||||
Most providers support API key credentials, and some also support OAuth.
|
||||
"""
|
||||
# Ensure blocks are loaded
|
||||
try:
|
||||
from backend.blocks import load_all_blocks
|
||||
|
||||
load_all_blocks()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to load blocks: {e}")
|
||||
|
||||
from backend.sdk.registry import AutoRegistry
|
||||
|
||||
providers = []
|
||||
for name in get_all_provider_names():
|
||||
supports_oauth = name in HANDLERS_BY_NAME
|
||||
handler_class = HANDLERS_BY_NAME.get(name)
|
||||
default_scopes = (
|
||||
getattr(handler_class, "DEFAULT_SCOPES", []) if handler_class else []
|
||||
)
|
||||
|
||||
# Check if provider has specific auth types from SDK registration
|
||||
sdk_provider = AutoRegistry.get_provider(name)
|
||||
if sdk_provider and sdk_provider.supported_auth_types:
|
||||
supports_api_key = "api_key" in sdk_provider.supported_auth_types
|
||||
supports_user_password = (
|
||||
"user_password" in sdk_provider.supported_auth_types
|
||||
)
|
||||
supports_host_scoped = "host_scoped" in sdk_provider.supported_auth_types
|
||||
else:
|
||||
# Fallback for legacy providers
|
||||
supports_api_key = True # All providers can accept API keys
|
||||
supports_user_password = name in ("smtp",)
|
||||
supports_host_scoped = name == "http"
|
||||
|
||||
providers.append(
|
||||
ProviderInfo(
|
||||
name=name,
|
||||
supports_oauth=supports_oauth,
|
||||
supports_api_key=supports_api_key,
|
||||
supports_user_password=supports_user_password,
|
||||
supports_host_scoped=supports_host_scoped,
|
||||
default_scopes=default_scopes,
|
||||
)
|
||||
)
|
||||
|
||||
return providers
|
||||
|
||||
|
||||
@integrations_router.post(
|
||||
"/{provider}/oauth/initiate",
|
||||
response_model=OAuthInitiateResponse,
|
||||
summary="Initiate OAuth flow",
|
||||
)
|
||||
async def initiate_oauth(
|
||||
provider: Annotated[str, Path(title="The OAuth provider")],
|
||||
request: OAuthInitiateRequest,
|
||||
api_key: APIKeyInfo = Security(
|
||||
require_permission(APIKeyPermission.MANAGE_INTEGRATIONS)
|
||||
),
|
||||
) -> OAuthInitiateResponse:
|
||||
"""
|
||||
Initiate an OAuth flow for an external application.
|
||||
|
||||
This endpoint allows external apps to start an OAuth flow with a custom
|
||||
callback URL. The callback URL must be from an allowed origin configured
|
||||
in the platform settings.
|
||||
|
||||
Returns a login URL to redirect the user to, along with a state token
|
||||
for CSRF protection.
|
||||
"""
|
||||
# Validate callback URL
|
||||
if not validate_callback_url(request.callback_url):
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail=f"Callback URL origin is not allowed. Allowed origins: {settings.config.external_oauth_callback_origins}",
|
||||
)
|
||||
|
||||
# Validate provider
|
||||
try:
|
||||
provider_name = ProviderName(provider)
|
||||
except ValueError:
|
||||
# Check if it's a dynamically registered provider
|
||||
if provider not in HANDLERS_BY_NAME:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=f"Provider '{provider}' not found",
|
||||
)
|
||||
provider_name = provider
|
||||
|
||||
# Get OAuth handler with external callback URL
|
||||
handler = _get_oauth_handler_for_external(
|
||||
provider if isinstance(provider_name, str) else provider_name.value,
|
||||
request.callback_url,
|
||||
)
|
||||
|
||||
# Store state token with external flow metadata
|
||||
state_token, code_challenge = await creds_manager.store.store_state_token(
|
||||
user_id=api_key.user_id,
|
||||
provider=provider if isinstance(provider_name, str) else provider_name.value,
|
||||
scopes=request.scopes,
|
||||
callback_url=request.callback_url,
|
||||
state_metadata=request.state_metadata,
|
||||
initiated_by_api_key_id=api_key.id,
|
||||
)
|
||||
|
||||
# Build login URL
|
||||
login_url = handler.get_login_url(
|
||||
request.scopes, state_token, code_challenge=code_challenge
|
||||
)
|
||||
|
||||
# Calculate expiration (10 minutes from now)
|
||||
from datetime import datetime, timedelta, timezone
|
||||
|
||||
expires_at = int((datetime.now(timezone.utc) + timedelta(minutes=10)).timestamp())
|
||||
|
||||
return OAuthInitiateResponse(
|
||||
login_url=login_url,
|
||||
state_token=state_token,
|
||||
expires_at=expires_at,
|
||||
)
|
||||
|
||||
|
||||
@integrations_router.post(
|
||||
"/{provider}/oauth/complete",
|
||||
response_model=OAuthCompleteResponse,
|
||||
summary="Complete OAuth flow",
|
||||
)
|
||||
async def complete_oauth(
|
||||
provider: Annotated[str, Path(title="The OAuth provider")],
|
||||
request: OAuthCompleteRequest,
|
||||
api_key: APIKeyInfo = Security(
|
||||
require_permission(APIKeyPermission.MANAGE_INTEGRATIONS)
|
||||
),
|
||||
) -> OAuthCompleteResponse:
|
||||
"""
|
||||
Complete an OAuth flow by exchanging the authorization code for tokens.
|
||||
|
||||
This endpoint should be called after the user has authorized the application
|
||||
and been redirected back to the external app's callback URL with an
|
||||
authorization code.
|
||||
"""
|
||||
# Verify state token
|
||||
valid_state = await creds_manager.store.verify_state_token(
|
||||
api_key.user_id, request.state_token, provider
|
||||
)
|
||||
|
||||
if not valid_state:
|
||||
logger.warning(f"Invalid or expired state token for provider {provider}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail="Invalid or expired state token",
|
||||
)
|
||||
|
||||
# Verify this is an external flow (callback_url must be set)
|
||||
if not valid_state.callback_url:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail="State token was not created for external OAuth flow",
|
||||
)
|
||||
|
||||
# Get OAuth handler with the original callback URL
|
||||
handler = _get_oauth_handler_for_external(provider, valid_state.callback_url)
|
||||
|
||||
try:
|
||||
scopes = valid_state.scopes
|
||||
scopes = handler.handle_default_scopes(scopes)
|
||||
|
||||
credentials = await handler.exchange_code_for_tokens(
|
||||
request.code, scopes, valid_state.code_verifier
|
||||
)
|
||||
|
||||
# Handle Linear's space-separated scopes
|
||||
if len(credentials.scopes) == 1 and " " in credentials.scopes[0]:
|
||||
credentials.scopes = credentials.scopes[0].split(" ")
|
||||
|
||||
# Check scope mismatch
|
||||
if not set(scopes).issubset(set(credentials.scopes)):
|
||||
logger.warning(
|
||||
f"Granted scopes {credentials.scopes} for provider {provider} "
|
||||
f"do not include all requested scopes {scopes}"
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"OAuth2 Code->Token exchange failed for provider {provider}: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail=f"OAuth2 callback failed to exchange code for tokens: {str(e)}",
|
||||
)
|
||||
|
||||
# Store credentials
|
||||
await creds_manager.create(api_key.user_id, credentials)
|
||||
|
||||
logger.info(f"Successfully completed external OAuth for provider {provider}")
|
||||
|
||||
return OAuthCompleteResponse(
|
||||
credentials_id=credentials.id,
|
||||
provider=credentials.provider,
|
||||
type=credentials.type,
|
||||
title=credentials.title,
|
||||
scopes=credentials.scopes,
|
||||
username=credentials.username,
|
||||
state_metadata=valid_state.state_metadata,
|
||||
)
|
||||
|
||||
|
||||
@integrations_router.get("/credentials", response_model=list[CredentialSummary])
|
||||
async def list_credentials(
|
||||
api_key: APIKeyInfo = Security(
|
||||
require_permission(APIKeyPermission.READ_INTEGRATIONS)
|
||||
),
|
||||
) -> list[CredentialSummary]:
|
||||
"""
|
||||
List all credentials for the authenticated user.
|
||||
|
||||
Returns metadata about each credential without exposing sensitive tokens.
|
||||
"""
|
||||
credentials = await creds_manager.store.get_all_creds(api_key.user_id)
|
||||
return [
|
||||
CredentialSummary(
|
||||
id=cred.id,
|
||||
provider=cred.provider,
|
||||
type=cred.type,
|
||||
title=cred.title,
|
||||
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
|
||||
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
|
||||
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
|
||||
)
|
||||
for cred in credentials
|
||||
]
|
||||
|
||||
|
||||
@integrations_router.get(
|
||||
"/{provider}/credentials", response_model=list[CredentialSummary]
|
||||
)
|
||||
async def list_credentials_by_provider(
|
||||
provider: Annotated[str, Path(title="The provider to list credentials for")],
|
||||
api_key: APIKeyInfo = Security(
|
||||
require_permission(APIKeyPermission.READ_INTEGRATIONS)
|
||||
),
|
||||
) -> list[CredentialSummary]:
|
||||
"""
|
||||
List credentials for a specific provider.
|
||||
"""
|
||||
credentials = await creds_manager.store.get_creds_by_provider(
|
||||
api_key.user_id, provider
|
||||
)
|
||||
return [
|
||||
CredentialSummary(
|
||||
id=cred.id,
|
||||
provider=cred.provider,
|
||||
type=cred.type,
|
||||
title=cred.title,
|
||||
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
|
||||
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
|
||||
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
|
||||
)
|
||||
for cred in credentials
|
||||
]
|
||||
|
||||
|
||||
@integrations_router.post(
|
||||
"/{provider}/credentials",
|
||||
response_model=CreateCredentialResponse,
|
||||
status_code=status.HTTP_201_CREATED,
|
||||
summary="Create credentials",
|
||||
)
|
||||
async def create_credential(
|
||||
provider: Annotated[str, Path(title="The provider to create credentials for")],
|
||||
request: Union[
|
||||
CreateAPIKeyCredentialRequest,
|
||||
CreateUserPasswordCredentialRequest,
|
||||
CreateHostScopedCredentialRequest,
|
||||
] = Body(..., discriminator="type"),
|
||||
api_key: APIKeyInfo = Security(
|
||||
require_permission(APIKeyPermission.MANAGE_INTEGRATIONS)
|
||||
),
|
||||
) -> CreateCredentialResponse:
|
||||
"""
|
||||
Create non-OAuth credentials for a provider.
|
||||
|
||||
Supports creating:
|
||||
- API key credentials (type: "api_key")
|
||||
- Username/password credentials (type: "user_password")
|
||||
- Host-scoped credentials (type: "host_scoped")
|
||||
|
||||
For OAuth credentials, use the OAuth initiate/complete flow instead.
|
||||
"""
|
||||
# Validate provider exists
|
||||
all_providers = get_all_provider_names()
|
||||
if provider not in all_providers:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=f"Provider '{provider}' not found",
|
||||
)
|
||||
|
||||
# Create the appropriate credential type
|
||||
credentials: Credentials
|
||||
if request.type == "api_key":
|
||||
credentials = APIKeyCredentials(
|
||||
provider=provider,
|
||||
api_key=SecretStr(request.api_key),
|
||||
title=request.title,
|
||||
expires_at=request.expires_at,
|
||||
)
|
||||
elif request.type == "user_password":
|
||||
credentials = UserPasswordCredentials(
|
||||
provider=provider,
|
||||
username=SecretStr(request.username),
|
||||
password=SecretStr(request.password),
|
||||
title=request.title,
|
||||
)
|
||||
elif request.type == "host_scoped":
|
||||
# Convert string headers to SecretStr
|
||||
secret_headers = {k: SecretStr(v) for k, v in request.headers.items()}
|
||||
credentials = HostScopedCredentials(
|
||||
provider=provider,
|
||||
host=request.host,
|
||||
headers=secret_headers,
|
||||
title=request.title,
|
||||
)
|
||||
else:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail=f"Unsupported credential type: {request.type}",
|
||||
)
|
||||
|
||||
# Store credentials
|
||||
try:
|
||||
await creds_manager.create(api_key.user_id, credentials)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to store credentials: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=f"Failed to store credentials: {str(e)}",
|
||||
)
|
||||
|
||||
logger.info(f"Created {request.type} credentials for provider {provider}")
|
||||
|
||||
return CreateCredentialResponse(
|
||||
id=credentials.id,
|
||||
provider=provider,
|
||||
type=credentials.type,
|
||||
title=credentials.title,
|
||||
)
|
||||
|
||||
|
||||
class DeleteCredentialResponse(BaseModel):
|
||||
"""Response model for deleting a credential."""
|
||||
|
||||
deleted: bool = Field(..., description="Whether the credential was deleted")
|
||||
credentials_id: str = Field(..., description="ID of the deleted credential")
|
||||
|
||||
|
||||
@integrations_router.delete(
|
||||
"/{provider}/credentials/{cred_id}",
|
||||
response_model=DeleteCredentialResponse,
|
||||
)
|
||||
async def delete_credential(
|
||||
provider: Annotated[str, Path(title="The provider")],
|
||||
cred_id: Annotated[str, Path(title="The credential ID to delete")],
|
||||
api_key: APIKeyInfo = Security(
|
||||
require_permission(APIKeyPermission.DELETE_INTEGRATIONS)
|
||||
),
|
||||
) -> DeleteCredentialResponse:
|
||||
"""
|
||||
Delete a credential.
|
||||
|
||||
Note: This does not revoke the tokens with the provider. For full cleanup,
|
||||
use the main API's delete endpoint which handles webhook cleanup and
|
||||
token revocation.
|
||||
"""
|
||||
creds = await creds_manager.store.get_creds_by_id(api_key.user_id, cred_id)
|
||||
if not creds:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND, detail="Credentials not found"
|
||||
)
|
||||
if creds.provider != provider:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail="Credentials do not match the specified provider",
|
||||
)
|
||||
|
||||
await creds_manager.delete(api_key.user_id, cred_id)
|
||||
|
||||
return DeleteCredentialResponse(deleted=True, credentials_id=cred_id)
|
||||
148
autogpt_platform/backend/backend/server/external/routes/tools.py
vendored
Normal file
148
autogpt_platform/backend/backend/server/external/routes/tools.py
vendored
Normal file
@@ -0,0 +1,148 @@
|
||||
"""External API routes for chat tools - stateless HTTP endpoints.
|
||||
|
||||
Note: These endpoints use ephemeral sessions that are not persisted to Redis.
|
||||
As a result, session-based rate limiting (max_agent_runs, max_agent_schedules)
|
||||
is not enforced for external API calls. Each request creates a fresh session
|
||||
with zeroed counters. Rate limiting for external API consumers should be
|
||||
handled separately (e.g., via API key quotas).
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from fastapi import APIRouter, Security
|
||||
from prisma.enums import APIKeyPermission
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from backend.data.api_key import APIKeyInfo
|
||||
from backend.server.external.middleware import require_permission
|
||||
from backend.server.v2.chat.model import ChatSession
|
||||
from backend.server.v2.chat.tools import find_agent_tool, run_agent_tool
|
||||
from backend.server.v2.chat.tools.models import ToolResponseBase
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
tools_router = APIRouter(prefix="/tools", tags=["tools"])
|
||||
|
||||
# Note: We use Security() as a function parameter dependency (api_key: APIKeyInfo = Security(...))
|
||||
# rather than in the decorator's dependencies= list. This avoids duplicate permission checks
|
||||
# while still enforcing auth AND giving us access to the api_key for extracting user_id.
|
||||
|
||||
|
||||
# Request models
|
||||
class FindAgentRequest(BaseModel):
|
||||
query: str = Field(..., description="Search query for finding agents")
|
||||
|
||||
|
||||
class RunAgentRequest(BaseModel):
|
||||
"""Request to run or schedule an agent.
|
||||
|
||||
The tool automatically handles the setup flow:
|
||||
- First call returns available inputs so user can decide what values to use
|
||||
- Returns missing credentials if user needs to configure them
|
||||
- Executes when inputs are provided OR use_defaults=true
|
||||
- Schedules execution if schedule_name and cron are provided
|
||||
"""
|
||||
|
||||
username_agent_slug: str = Field(
|
||||
...,
|
||||
description="The marketplace agent slug (e.g., 'username/agent-name')",
|
||||
)
|
||||
inputs: dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Dictionary of input values for the agent",
|
||||
)
|
||||
use_defaults: bool = Field(
|
||||
default=False,
|
||||
description="Set to true to run with default values (user must confirm)",
|
||||
)
|
||||
schedule_name: str | None = Field(
|
||||
None,
|
||||
description="Name for scheduled execution (triggers scheduling mode)",
|
||||
)
|
||||
cron: str | None = Field(
|
||||
None,
|
||||
description="Cron expression (5 fields: minute hour day month weekday)",
|
||||
)
|
||||
timezone: str = Field(
|
||||
default="UTC",
|
||||
description="IANA timezone (e.g., 'America/New_York', 'UTC')",
|
||||
)
|
||||
|
||||
|
||||
def _create_ephemeral_session(user_id: str | None) -> ChatSession:
|
||||
"""Create an ephemeral session for stateless API requests."""
|
||||
return ChatSession.new(user_id)
|
||||
|
||||
|
||||
@tools_router.post(
|
||||
path="/find-agent",
|
||||
)
|
||||
async def find_agent(
|
||||
request: FindAgentRequest,
|
||||
api_key: APIKeyInfo = Security(require_permission(APIKeyPermission.USE_TOOLS)),
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Search for agents in the marketplace based on capabilities and user needs.
|
||||
|
||||
Args:
|
||||
request: Search query for finding agents
|
||||
|
||||
Returns:
|
||||
List of matching agents or no results response
|
||||
"""
|
||||
session = _create_ephemeral_session(api_key.user_id)
|
||||
result = await find_agent_tool._execute(
|
||||
user_id=api_key.user_id,
|
||||
session=session,
|
||||
query=request.query,
|
||||
)
|
||||
return _response_to_dict(result)
|
||||
|
||||
|
||||
@tools_router.post(
|
||||
path="/run-agent",
|
||||
)
|
||||
async def run_agent(
|
||||
request: RunAgentRequest,
|
||||
api_key: APIKeyInfo = Security(require_permission(APIKeyPermission.USE_TOOLS)),
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
Run or schedule an agent from the marketplace.
|
||||
|
||||
The endpoint automatically handles the setup flow:
|
||||
- Returns missing inputs if required fields are not provided
|
||||
- Returns missing credentials if user needs to configure them
|
||||
- Executes immediately if all requirements are met
|
||||
- Schedules execution if schedule_name and cron are provided
|
||||
|
||||
For scheduled execution:
|
||||
- Cron format: "minute hour day month weekday"
|
||||
- Examples: "0 9 * * 1-5" (9am weekdays), "0 0 * * *" (daily at midnight)
|
||||
- Timezone: Use IANA timezone names like "America/New_York"
|
||||
|
||||
Args:
|
||||
request: Agent slug, inputs, and optional schedule config
|
||||
|
||||
Returns:
|
||||
- setup_requirements: If inputs or credentials are missing
|
||||
- execution_started: If agent was run or scheduled successfully
|
||||
- error: If something went wrong
|
||||
"""
|
||||
session = _create_ephemeral_session(api_key.user_id)
|
||||
result = await run_agent_tool._execute(
|
||||
user_id=api_key.user_id,
|
||||
session=session,
|
||||
username_agent_slug=request.username_agent_slug,
|
||||
inputs=request.inputs,
|
||||
use_defaults=request.use_defaults,
|
||||
schedule_name=request.schedule_name or "",
|
||||
cron=request.cron or "",
|
||||
timezone=request.timezone,
|
||||
)
|
||||
return _response_to_dict(result)
|
||||
|
||||
|
||||
def _response_to_dict(result: ToolResponseBase) -> dict[str, Any]:
|
||||
"""Convert a tool response to a dictionary for JSON serialization."""
|
||||
return result.model_dump()
|
||||
@@ -1,12 +1,15 @@
|
||||
import logging
|
||||
import urllib.parse
|
||||
from collections import defaultdict
|
||||
from typing import Annotated, Any, Optional, Sequence
|
||||
from typing import Annotated, Any, Literal, Optional, Sequence
|
||||
|
||||
from fastapi import APIRouter, Body, HTTPException, Security
|
||||
from prisma.enums import AgentExecutionStatus, APIKeyPermission
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
import backend.data.block
|
||||
import backend.server.v2.store.cache as store_cache
|
||||
import backend.server.v2.store.model as store_model
|
||||
from backend.data import execution as execution_db
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data.api_key import APIKeyInfo
|
||||
@@ -144,3 +147,149 @@ async def get_graph_execution_results(
|
||||
else None
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
##############################################
|
||||
############### Store Endpoints ##############
|
||||
##############################################
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
path="/store/agents",
|
||||
tags=["store"],
|
||||
dependencies=[Security(require_permission(APIKeyPermission.READ_STORE))],
|
||||
response_model=store_model.StoreAgentsResponse,
|
||||
)
|
||||
async def get_store_agents(
|
||||
featured: bool = False,
|
||||
creator: str | None = None,
|
||||
sorted_by: Literal["rating", "runs", "name", "updated_at"] | None = None,
|
||||
search_query: str | None = None,
|
||||
category: str | None = None,
|
||||
page: int = 1,
|
||||
page_size: int = 20,
|
||||
) -> store_model.StoreAgentsResponse:
|
||||
"""
|
||||
Get a paginated list of agents from the store with optional filtering and sorting.
|
||||
|
||||
Args:
|
||||
featured: Filter to only show featured agents
|
||||
creator: Filter agents by creator username
|
||||
sorted_by: Sort agents by "runs", "rating", "name", or "updated_at"
|
||||
search_query: Search agents by name, subheading and description
|
||||
category: Filter agents by category
|
||||
page: Page number for pagination (default 1)
|
||||
page_size: Number of agents per page (default 20)
|
||||
|
||||
Returns:
|
||||
StoreAgentsResponse: Paginated list of agents matching the filters
|
||||
"""
|
||||
if page < 1:
|
||||
raise HTTPException(status_code=422, detail="Page must be greater than 0")
|
||||
|
||||
if page_size < 1:
|
||||
raise HTTPException(status_code=422, detail="Page size must be greater than 0")
|
||||
|
||||
agents = await store_cache._get_cached_store_agents(
|
||||
featured=featured,
|
||||
creator=creator,
|
||||
sorted_by=sorted_by,
|
||||
search_query=search_query,
|
||||
category=category,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
return agents
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
path="/store/agents/{username}/{agent_name}",
|
||||
tags=["store"],
|
||||
dependencies=[Security(require_permission(APIKeyPermission.READ_STORE))],
|
||||
response_model=store_model.StoreAgentDetails,
|
||||
)
|
||||
async def get_store_agent(
|
||||
username: str,
|
||||
agent_name: str,
|
||||
) -> store_model.StoreAgentDetails:
|
||||
"""
|
||||
Get details of a specific store agent by username and agent name.
|
||||
|
||||
Args:
|
||||
username: Creator's username
|
||||
agent_name: Name/slug of the agent
|
||||
|
||||
Returns:
|
||||
StoreAgentDetails: Detailed information about the agent
|
||||
"""
|
||||
username = urllib.parse.unquote(username).lower()
|
||||
agent_name = urllib.parse.unquote(agent_name).lower()
|
||||
agent = await store_cache._get_cached_agent_details(
|
||||
username=username, agent_name=agent_name
|
||||
)
|
||||
return agent
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
path="/store/creators",
|
||||
tags=["store"],
|
||||
dependencies=[Security(require_permission(APIKeyPermission.READ_STORE))],
|
||||
response_model=store_model.CreatorsResponse,
|
||||
)
|
||||
async def get_store_creators(
|
||||
featured: bool = False,
|
||||
search_query: str | None = None,
|
||||
sorted_by: Literal["agent_rating", "agent_runs", "num_agents"] | None = None,
|
||||
page: int = 1,
|
||||
page_size: int = 20,
|
||||
) -> store_model.CreatorsResponse:
|
||||
"""
|
||||
Get a paginated list of store creators with optional filtering and sorting.
|
||||
|
||||
Args:
|
||||
featured: Filter to only show featured creators
|
||||
search_query: Search creators by profile description
|
||||
sorted_by: Sort by "agent_rating", "agent_runs", or "num_agents"
|
||||
page: Page number for pagination (default 1)
|
||||
page_size: Number of creators per page (default 20)
|
||||
|
||||
Returns:
|
||||
CreatorsResponse: Paginated list of creators matching the filters
|
||||
"""
|
||||
if page < 1:
|
||||
raise HTTPException(status_code=422, detail="Page must be greater than 0")
|
||||
|
||||
if page_size < 1:
|
||||
raise HTTPException(status_code=422, detail="Page size must be greater than 0")
|
||||
|
||||
creators = await store_cache._get_cached_store_creators(
|
||||
featured=featured,
|
||||
search_query=search_query,
|
||||
sorted_by=sorted_by,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
return creators
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
path="/store/creators/{username}",
|
||||
tags=["store"],
|
||||
dependencies=[Security(require_permission(APIKeyPermission.READ_STORE))],
|
||||
response_model=store_model.CreatorDetails,
|
||||
)
|
||||
async def get_store_creator(
|
||||
username: str,
|
||||
) -> store_model.CreatorDetails:
|
||||
"""
|
||||
Get details of a specific store creator by username.
|
||||
|
||||
Args:
|
||||
username: Creator's username
|
||||
|
||||
Returns:
|
||||
CreatorDetails: Detailed information about the creator
|
||||
"""
|
||||
username = urllib.parse.unquote(username).lower()
|
||||
creator = await store_cache._get_cached_creator_details(username=username)
|
||||
return creator
|
||||
|
||||
@@ -33,7 +33,11 @@ from backend.data.model import (
|
||||
OAuth2Credentials,
|
||||
UserIntegrations,
|
||||
)
|
||||
from backend.data.onboarding import OnboardingStep, complete_onboarding_step
|
||||
from backend.data.onboarding import (
|
||||
OnboardingStep,
|
||||
complete_onboarding_step,
|
||||
increment_runs,
|
||||
)
|
||||
from backend.data.user import get_user_integrations
|
||||
from backend.executor.utils import add_graph_execution
|
||||
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
|
||||
@@ -377,6 +381,7 @@ async def webhook_ingress_generic(
|
||||
return
|
||||
|
||||
await complete_onboarding_step(user_id, OnboardingStep.TRIGGER_WEBHOOK)
|
||||
await increment_runs(user_id)
|
||||
|
||||
# Execute all triggers concurrently for better performance
|
||||
tasks = []
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
import enum
|
||||
from typing import Any, Optional
|
||||
from typing import Any, Literal, Optional
|
||||
|
||||
import pydantic
|
||||
from prisma.enums import OnboardingStep
|
||||
|
||||
from backend.data.api_key import APIKeyInfo, APIKeyPermission
|
||||
from backend.data.graph import Graph
|
||||
@@ -35,8 +36,13 @@ class WSSubscribeGraphExecutionsRequest(pydantic.BaseModel):
|
||||
graph_id: str
|
||||
|
||||
|
||||
GraphCreationSource = Literal["builder", "upload"]
|
||||
GraphExecutionSource = Literal["builder", "library", "onboarding"]
|
||||
|
||||
|
||||
class CreateGraph(pydantic.BaseModel):
|
||||
graph: Graph
|
||||
source: GraphCreationSource | None = None
|
||||
|
||||
|
||||
class CreateAPIKeyRequest(pydantic.BaseModel):
|
||||
@@ -83,6 +89,8 @@ class NotificationPayload(pydantic.BaseModel):
|
||||
type: str
|
||||
event: str
|
||||
|
||||
model_config = pydantic.ConfigDict(extra="allow")
|
||||
|
||||
|
||||
class OnboardingNotificationPayload(NotificationPayload):
|
||||
step: str
|
||||
step: OnboardingStep | None
|
||||
|
||||
@@ -29,6 +29,7 @@ import backend.server.v2.admin.store_admin_routes
|
||||
import backend.server.v2.builder
|
||||
import backend.server.v2.builder.routes
|
||||
import backend.server.v2.chat.routes as chat_routes
|
||||
import backend.server.v2.executions.review.routes
|
||||
import backend.server.v2.library.db
|
||||
import backend.server.v2.library.model
|
||||
import backend.server.v2.library.routes
|
||||
@@ -274,6 +275,11 @@ app.include_router(
|
||||
tags=["v2", "admin"],
|
||||
prefix="/api/executions",
|
||||
)
|
||||
app.include_router(
|
||||
backend.server.v2.executions.review.routes.router,
|
||||
tags=["v2", "executions", "review"],
|
||||
prefix="/api/review",
|
||||
)
|
||||
app.include_router(
|
||||
backend.server.v2.library.routes.router, tags=["v2"], prefix="/api/library"
|
||||
)
|
||||
|
||||
@@ -5,7 +5,7 @@ import time
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timezone
|
||||
from typing import Annotated, Any, Sequence
|
||||
from typing import Annotated, Any, Sequence, get_args
|
||||
|
||||
import pydantic
|
||||
import stripe
|
||||
@@ -44,13 +44,18 @@ from backend.data.credit import (
|
||||
get_user_credit_model,
|
||||
set_auto_top_up,
|
||||
)
|
||||
from backend.data.execution import UserContext
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.graph import GraphSettings
|
||||
from backend.data.model import CredentialsMetaInput, UserOnboarding
|
||||
from backend.data.notifications import NotificationPreference, NotificationPreferenceDTO
|
||||
from backend.data.onboarding import (
|
||||
FrontendOnboardingStep,
|
||||
OnboardingStep,
|
||||
UserOnboardingUpdate,
|
||||
complete_onboarding_step,
|
||||
complete_re_run_agent,
|
||||
get_recommended_agents,
|
||||
get_user_onboarding,
|
||||
increment_runs,
|
||||
onboarding_enabled,
|
||||
reset_user_onboarding,
|
||||
update_user_onboarding,
|
||||
@@ -78,6 +83,7 @@ from backend.server.model import (
|
||||
CreateAPIKeyRequest,
|
||||
CreateAPIKeyResponse,
|
||||
CreateGraph,
|
||||
GraphExecutionSource,
|
||||
RequestTopUp,
|
||||
SetGraphActiveVersion,
|
||||
TimezoneResponse,
|
||||
@@ -85,6 +91,7 @@ from backend.server.model import (
|
||||
UpdateTimezoneRequest,
|
||||
UploadFileResponse,
|
||||
)
|
||||
from backend.server.v2.store.model import StoreAgentDetails
|
||||
from backend.util.cache import cached
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.cloud_storage import get_cloud_storage_handler
|
||||
@@ -143,6 +150,28 @@ async def hide_activity_summary_if_disabled(
|
||||
return execution
|
||||
|
||||
|
||||
async def _update_library_agent_version_and_settings(
|
||||
user_id: str, agent_graph: graph_db.GraphModel
|
||||
) -> library_db.library_model.LibraryAgent:
|
||||
# Keep the library agent up to date with the new active version
|
||||
library = await library_db.update_agent_version_in_library(
|
||||
user_id, agent_graph.id, agent_graph.version
|
||||
)
|
||||
# If the graph has HITL node, initialize the setting if it's not already set.
|
||||
if (
|
||||
agent_graph.has_human_in_the_loop
|
||||
and library.settings.human_in_the_loop_safe_mode is None
|
||||
):
|
||||
await library_db.update_library_agent_settings(
|
||||
user_id=user_id,
|
||||
agent_id=library.id,
|
||||
settings=library.settings.model_copy(
|
||||
update={"human_in_the_loop_safe_mode": True}
|
||||
),
|
||||
)
|
||||
return library
|
||||
|
||||
|
||||
# Define the API routes
|
||||
v1_router = APIRouter()
|
||||
|
||||
@@ -252,9 +281,10 @@ async def update_preferences(
|
||||
|
||||
@v1_router.get(
|
||||
"/onboarding",
|
||||
summary="Get onboarding status",
|
||||
summary="Onboarding state",
|
||||
tags=["onboarding"],
|
||||
dependencies=[Security(requires_user)],
|
||||
response_model=UserOnboarding,
|
||||
)
|
||||
async def get_onboarding(user_id: Annotated[str, Security(get_user_id)]):
|
||||
return await get_user_onboarding(user_id)
|
||||
@@ -262,9 +292,10 @@ async def get_onboarding(user_id: Annotated[str, Security(get_user_id)]):
|
||||
|
||||
@v1_router.patch(
|
||||
"/onboarding",
|
||||
summary="Update onboarding progress",
|
||||
summary="Update onboarding state",
|
||||
tags=["onboarding"],
|
||||
dependencies=[Security(requires_user)],
|
||||
response_model=UserOnboarding,
|
||||
)
|
||||
async def update_onboarding(
|
||||
user_id: Annotated[str, Security(get_user_id)], data: UserOnboardingUpdate
|
||||
@@ -272,25 +303,39 @@ async def update_onboarding(
|
||||
return await update_user_onboarding(user_id, data)
|
||||
|
||||
|
||||
@v1_router.post(
|
||||
"/onboarding/step",
|
||||
summary="Complete onboarding step",
|
||||
tags=["onboarding"],
|
||||
dependencies=[Security(requires_user)],
|
||||
)
|
||||
async def onboarding_complete_step(
|
||||
user_id: Annotated[str, Security(get_user_id)], step: FrontendOnboardingStep
|
||||
):
|
||||
if step not in get_args(FrontendOnboardingStep):
|
||||
raise HTTPException(status_code=400, detail="Invalid onboarding step")
|
||||
return await complete_onboarding_step(user_id, step)
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
"/onboarding/agents",
|
||||
summary="Get recommended agents",
|
||||
summary="Recommended onboarding agents",
|
||||
tags=["onboarding"],
|
||||
dependencies=[Security(requires_user)],
|
||||
)
|
||||
async def get_onboarding_agents(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
):
|
||||
) -> list[StoreAgentDetails]:
|
||||
return await get_recommended_agents(user_id)
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
"/onboarding/enabled",
|
||||
summary="Check onboarding enabled",
|
||||
summary="Is onboarding enabled",
|
||||
tags=["onboarding", "public"],
|
||||
dependencies=[Security(requires_user)],
|
||||
)
|
||||
async def is_onboarding_enabled():
|
||||
async def is_onboarding_enabled() -> bool:
|
||||
return await onboarding_enabled()
|
||||
|
||||
|
||||
@@ -299,6 +344,7 @@ async def is_onboarding_enabled():
|
||||
summary="Reset onboarding progress",
|
||||
tags=["onboarding"],
|
||||
dependencies=[Security(requires_user)],
|
||||
response_model=UserOnboarding,
|
||||
)
|
||||
async def reset_onboarding(user_id: Annotated[str, Security(get_user_id)]):
|
||||
return await reset_user_onboarding(user_id)
|
||||
@@ -387,19 +433,15 @@ async def execute_graph_block(
|
||||
if not obj:
|
||||
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
|
||||
|
||||
# Get user context for block execution
|
||||
user = await get_user_by_id(user_id)
|
||||
if not user:
|
||||
raise HTTPException(status_code=404, detail="User not found.")
|
||||
|
||||
user_context = UserContext(timezone=user.timezone)
|
||||
|
||||
start_time = time.time()
|
||||
try:
|
||||
output = defaultdict(list)
|
||||
async for name, data in obj.execute(
|
||||
data,
|
||||
user_context=user_context,
|
||||
user_id=user_id,
|
||||
# Note: graph_exec_id and graph_id are not available for direct block execution
|
||||
):
|
||||
@@ -791,7 +833,12 @@ async def create_new_graph(
|
||||
# as the graph already valid and no sub-graphs are returned back.
|
||||
await graph_db.create_graph(graph, user_id=user_id)
|
||||
await library_db.create_library_agent(graph, user_id=user_id)
|
||||
return await on_graph_activate(graph, user_id=user_id)
|
||||
activated_graph = await on_graph_activate(graph, user_id=user_id)
|
||||
|
||||
if create_graph.source == "builder":
|
||||
await complete_onboarding_step(user_id, OnboardingStep.BUILDER_SAVE_AGENT)
|
||||
|
||||
return activated_graph
|
||||
|
||||
|
||||
@v1_router.delete(
|
||||
@@ -842,9 +889,7 @@ async def update_graph(
|
||||
|
||||
if new_graph_version.is_active:
|
||||
# Keep the library agent up to date with the new active version
|
||||
await library_db.update_agent_version_in_library(
|
||||
user_id, graph.id, graph.version
|
||||
)
|
||||
await _update_library_agent_version_and_settings(user_id, new_graph_version)
|
||||
|
||||
# Handle activation of the new graph first to ensure continuity
|
||||
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
|
||||
@@ -901,15 +946,43 @@ async def set_graph_active_version(
|
||||
)
|
||||
|
||||
# Keep the library agent up to date with the new active version
|
||||
await library_db.update_agent_version_in_library(
|
||||
user_id, new_active_graph.id, new_active_graph.version
|
||||
)
|
||||
await _update_library_agent_version_and_settings(user_id, new_active_graph)
|
||||
|
||||
if current_active_graph and current_active_graph.version != new_active_version:
|
||||
# Handle deactivation of the previously active version
|
||||
await on_graph_deactivate(current_active_graph, user_id=user_id)
|
||||
|
||||
|
||||
@v1_router.patch(
|
||||
path="/graphs/{graph_id}/settings",
|
||||
summary="Update graph settings",
|
||||
tags=["graphs"],
|
||||
dependencies=[Security(requires_user)],
|
||||
)
|
||||
async def update_graph_settings(
|
||||
graph_id: str,
|
||||
settings: GraphSettings,
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> GraphSettings:
|
||||
"""Update graph settings for the user's library agent."""
|
||||
# Get the library agent for this graph
|
||||
library_agent = await library_db.get_library_agent_by_graph_id(
|
||||
graph_id=graph_id, user_id=user_id
|
||||
)
|
||||
if not library_agent:
|
||||
raise HTTPException(404, f"Graph #{graph_id} not found in user's library")
|
||||
|
||||
# Update the library agent settings
|
||||
updated_agent = await library_db.update_library_agent_settings(
|
||||
user_id=user_id,
|
||||
agent_id=library_agent.id,
|
||||
settings=settings,
|
||||
)
|
||||
|
||||
# Return the updated settings
|
||||
return GraphSettings.model_validate(updated_agent.settings)
|
||||
|
||||
|
||||
@v1_router.post(
|
||||
path="/graphs/{graph_id}/execute/{graph_version}",
|
||||
summary="Execute graph agent",
|
||||
@@ -923,6 +996,7 @@ async def execute_graph(
|
||||
credentials_inputs: Annotated[
|
||||
dict[str, CredentialsMetaInput], Body(..., embed=True, default_factory=dict)
|
||||
],
|
||||
source: Annotated[GraphExecutionSource | None, Body(embed=True)] = None,
|
||||
graph_version: Optional[int] = None,
|
||||
preset_id: Optional[str] = None,
|
||||
) -> execution_db.GraphExecutionMeta:
|
||||
@@ -946,6 +1020,14 @@ async def execute_graph(
|
||||
# Record successful graph execution
|
||||
record_graph_execution(graph_id=graph_id, status="success", user_id=user_id)
|
||||
record_graph_operation(operation="execute", status="success")
|
||||
await increment_runs(user_id)
|
||||
await complete_re_run_agent(user_id, graph_id)
|
||||
if source == "library":
|
||||
await complete_onboarding_step(
|
||||
user_id, OnboardingStep.MARKETPLACE_RUN_AGENT
|
||||
)
|
||||
elif source == "builder":
|
||||
await complete_onboarding_step(user_id, OnboardingStep.BUILDER_RUN_AGENT)
|
||||
return result
|
||||
except GraphValidationError as e:
|
||||
# Record failed graph execution
|
||||
@@ -1059,6 +1141,15 @@ async def list_graph_executions(
|
||||
filtered_executions = await hide_activity_summaries_if_disabled(
|
||||
paginated_result.executions, user_id
|
||||
)
|
||||
onboarding = await get_user_onboarding(user_id)
|
||||
if (
|
||||
onboarding.onboardingAgentExecutionId
|
||||
and onboarding.onboardingAgentExecutionId
|
||||
in [exec.id for exec in filtered_executions]
|
||||
and OnboardingStep.GET_RESULTS not in onboarding.completedSteps
|
||||
):
|
||||
await complete_onboarding_step(user_id, OnboardingStep.GET_RESULTS)
|
||||
|
||||
return execution_db.GraphExecutionsPaginated(
|
||||
executions=filtered_executions, pagination=paginated_result.pagination
|
||||
)
|
||||
@@ -1096,6 +1187,12 @@ async def get_graph_execution(
|
||||
|
||||
# Apply feature flags to filter out disabled features
|
||||
result = await hide_activity_summary_if_disabled(result, user_id)
|
||||
onboarding = await get_user_onboarding(user_id)
|
||||
if (
|
||||
onboarding.onboardingAgentExecutionId == graph_exec_id
|
||||
and OnboardingStep.GET_RESULTS not in onboarding.completedSteps
|
||||
):
|
||||
await complete_onboarding_step(user_id, OnboardingStep.GET_RESULTS)
|
||||
|
||||
return result
|
||||
|
||||
@@ -1272,6 +1369,8 @@ async def create_graph_execution_schedule(
|
||||
result.next_run_time, user_timezone
|
||||
)
|
||||
|
||||
await complete_onboarding_step(user_id, OnboardingStep.SCHEDULE_AGENT)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
|
||||
@@ -8,6 +8,10 @@ from fastapi import APIRouter, HTTPException, Security
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from backend.blocks.llm import LlmModel
|
||||
from backend.data.analytics import (
|
||||
AccuracyTrendsResponse,
|
||||
get_accuracy_trends_and_alerts,
|
||||
)
|
||||
from backend.data.execution import (
|
||||
ExecutionStatus,
|
||||
GraphExecutionMeta,
|
||||
@@ -83,6 +87,18 @@ class ExecutionAnalyticsConfig(BaseModel):
|
||||
recommended_model: str
|
||||
|
||||
|
||||
class AccuracyTrendsRequest(BaseModel):
|
||||
graph_id: str = Field(..., description="Graph ID to analyze", min_length=1)
|
||||
user_id: Optional[str] = Field(None, description="Optional user ID filter")
|
||||
days_back: int = Field(30, description="Number of days to look back", ge=7, le=90)
|
||||
drop_threshold: float = Field(
|
||||
10.0, description="Alert threshold percentage", ge=1.0, le=50.0
|
||||
)
|
||||
include_historical: bool = Field(
|
||||
False, description="Include historical data for charts"
|
||||
)
|
||||
|
||||
|
||||
router = APIRouter(
|
||||
prefix="/admin",
|
||||
tags=["admin", "execution_analytics"],
|
||||
@@ -419,3 +435,40 @@ async def _process_batch(
|
||||
return await asyncio.gather(
|
||||
*[process_single_execution(execution) for execution in executions]
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/execution_accuracy_trends",
|
||||
response_model=AccuracyTrendsResponse,
|
||||
summary="Get Execution Accuracy Trends and Alerts",
|
||||
)
|
||||
async def get_execution_accuracy_trends(
|
||||
graph_id: str,
|
||||
user_id: Optional[str] = None,
|
||||
days_back: int = 30,
|
||||
drop_threshold: float = 10.0,
|
||||
include_historical: bool = False,
|
||||
admin_user_id: str = Security(get_user_id),
|
||||
) -> AccuracyTrendsResponse:
|
||||
"""
|
||||
Get execution accuracy trends with moving averages and alert detection.
|
||||
Simple single-query approach.
|
||||
"""
|
||||
logger.info(
|
||||
f"Admin user {admin_user_id} requesting accuracy trends for graph {graph_id}"
|
||||
)
|
||||
|
||||
try:
|
||||
result = await get_accuracy_trends_and_alerts(
|
||||
graph_id=graph_id,
|
||||
days_back=days_back,
|
||||
user_id=user_id,
|
||||
drop_threshold=drop_threshold,
|
||||
include_historical=include_historical,
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(f"Error getting accuracy trends for graph {graph_id}: {e}")
|
||||
raise HTTPException(status_code=500, detail=str(e))
|
||||
|
||||
@@ -1,29 +1,56 @@
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from difflib import SequenceMatcher
|
||||
from typing import Sequence
|
||||
|
||||
import prisma
|
||||
|
||||
import backend.data.block
|
||||
import backend.server.v2.library.db as library_db
|
||||
import backend.server.v2.library.model as library_model
|
||||
import backend.server.v2.store.db as store_db
|
||||
import backend.server.v2.store.model as store_model
|
||||
from backend.blocks import load_all_blocks
|
||||
from backend.blocks.llm import LlmModel
|
||||
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
|
||||
from backend.data.db import query_raw_with_schema
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.server.v2.builder.model import (
|
||||
BlockCategoryResponse,
|
||||
BlockResponse,
|
||||
BlockType,
|
||||
CountResponse,
|
||||
FilterType,
|
||||
Provider,
|
||||
ProviderResponse,
|
||||
SearchBlocksResponse,
|
||||
SearchEntry,
|
||||
)
|
||||
from backend.util.cache import cached
|
||||
from backend.util.models import Pagination
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
|
||||
_static_counts_cache: dict | None = None
|
||||
_suggested_blocks: list[BlockInfo] | None = None
|
||||
|
||||
MAX_LIBRARY_AGENT_RESULTS = 100
|
||||
MAX_MARKETPLACE_AGENT_RESULTS = 100
|
||||
MIN_SCORE_FOR_FILTERED_RESULTS = 10.0
|
||||
|
||||
SearchResultItem = BlockInfo | library_model.LibraryAgent | store_model.StoreAgent
|
||||
|
||||
|
||||
@dataclass
|
||||
class _ScoredItem:
|
||||
item: SearchResultItem
|
||||
filter_type: FilterType
|
||||
score: float
|
||||
sort_key: str
|
||||
|
||||
|
||||
@dataclass
|
||||
class _SearchCacheEntry:
|
||||
items: list[SearchResultItem]
|
||||
total_items: dict[FilterType, int]
|
||||
|
||||
|
||||
def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse]:
|
||||
@@ -129,71 +156,244 @@ def get_block_by_id(block_id: str) -> BlockInfo | None:
|
||||
return None
|
||||
|
||||
|
||||
def search_blocks(
|
||||
include_blocks: bool = True,
|
||||
include_integrations: bool = True,
|
||||
query: str = "",
|
||||
page: int = 1,
|
||||
page_size: int = 50,
|
||||
) -> SearchBlocksResponse:
|
||||
async def update_search(user_id: str, search: SearchEntry) -> str:
|
||||
"""
|
||||
Get blocks based on the filter and query.
|
||||
`providers` only applies for `integrations` filter.
|
||||
Upsert a search request for the user and return the search ID.
|
||||
"""
|
||||
blocks: list[AnyBlockSchema] = []
|
||||
query = query.lower()
|
||||
if search.search_id:
|
||||
# Update existing search
|
||||
await prisma.models.BuilderSearchHistory.prisma().update(
|
||||
where={
|
||||
"id": search.search_id,
|
||||
},
|
||||
data={
|
||||
"searchQuery": search.search_query or "",
|
||||
"filter": search.filter or [], # type: ignore
|
||||
"byCreator": search.by_creator or [],
|
||||
},
|
||||
)
|
||||
return search.search_id
|
||||
else:
|
||||
# Create new search
|
||||
new_search = await prisma.models.BuilderSearchHistory.prisma().create(
|
||||
data={
|
||||
"userId": user_id,
|
||||
"searchQuery": search.search_query or "",
|
||||
"filter": search.filter or [], # type: ignore
|
||||
"byCreator": search.by_creator or [],
|
||||
}
|
||||
)
|
||||
return new_search.id
|
||||
|
||||
total = 0
|
||||
skip = (page - 1) * page_size
|
||||
take = page_size
|
||||
|
||||
async def get_recent_searches(user_id: str, limit: int = 5) -> list[SearchEntry]:
|
||||
"""
|
||||
Get the user's most recent search requests.
|
||||
"""
|
||||
searches = await prisma.models.BuilderSearchHistory.prisma().find_many(
|
||||
where={
|
||||
"userId": user_id,
|
||||
},
|
||||
order={
|
||||
"updatedAt": "desc",
|
||||
},
|
||||
take=limit,
|
||||
)
|
||||
return [
|
||||
SearchEntry(
|
||||
search_query=s.searchQuery,
|
||||
filter=s.filter, # type: ignore
|
||||
by_creator=s.byCreator,
|
||||
search_id=s.id,
|
||||
)
|
||||
for s in searches
|
||||
]
|
||||
|
||||
|
||||
async def get_sorted_search_results(
|
||||
*,
|
||||
user_id: str,
|
||||
search_query: str | None,
|
||||
filters: Sequence[FilterType],
|
||||
by_creator: Sequence[str] | None = None,
|
||||
) -> _SearchCacheEntry:
|
||||
normalized_filters: tuple[FilterType, ...] = tuple(sorted(set(filters or [])))
|
||||
normalized_creators: tuple[str, ...] = tuple(sorted(set(by_creator or [])))
|
||||
return await _build_cached_search_results(
|
||||
user_id=user_id,
|
||||
search_query=search_query or "",
|
||||
filters=normalized_filters,
|
||||
by_creator=normalized_creators,
|
||||
)
|
||||
|
||||
|
||||
@cached(ttl_seconds=300, shared_cache=True)
|
||||
async def _build_cached_search_results(
|
||||
user_id: str,
|
||||
search_query: str,
|
||||
filters: tuple[FilterType, ...],
|
||||
by_creator: tuple[str, ...],
|
||||
) -> _SearchCacheEntry:
|
||||
normalized_query = (search_query or "").strip().lower()
|
||||
|
||||
include_blocks = "blocks" in filters
|
||||
include_integrations = "integrations" in filters
|
||||
include_library_agents = "my_agents" in filters
|
||||
include_marketplace_agents = "marketplace_agents" in filters
|
||||
|
||||
scored_items: list[_ScoredItem] = []
|
||||
total_items: dict[FilterType, int] = {
|
||||
"blocks": 0,
|
||||
"integrations": 0,
|
||||
"marketplace_agents": 0,
|
||||
"my_agents": 0,
|
||||
}
|
||||
|
||||
block_results, block_total, integration_total = _collect_block_results(
|
||||
normalized_query=normalized_query,
|
||||
include_blocks=include_blocks,
|
||||
include_integrations=include_integrations,
|
||||
)
|
||||
scored_items.extend(block_results)
|
||||
total_items["blocks"] = block_total
|
||||
total_items["integrations"] = integration_total
|
||||
|
||||
if include_library_agents:
|
||||
library_response = await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=search_query or None,
|
||||
page=1,
|
||||
page_size=MAX_LIBRARY_AGENT_RESULTS,
|
||||
)
|
||||
total_items["my_agents"] = library_response.pagination.total_items
|
||||
scored_items.extend(
|
||||
_build_library_items(
|
||||
agents=library_response.agents,
|
||||
normalized_query=normalized_query,
|
||||
)
|
||||
)
|
||||
|
||||
if include_marketplace_agents:
|
||||
marketplace_response = await store_db.get_store_agents(
|
||||
creators=list(by_creator) or None,
|
||||
search_query=search_query or None,
|
||||
page=1,
|
||||
page_size=MAX_MARKETPLACE_AGENT_RESULTS,
|
||||
)
|
||||
total_items["marketplace_agents"] = marketplace_response.pagination.total_items
|
||||
scored_items.extend(
|
||||
_build_marketplace_items(
|
||||
agents=marketplace_response.agents,
|
||||
normalized_query=normalized_query,
|
||||
)
|
||||
)
|
||||
|
||||
sorted_items = sorted(
|
||||
scored_items,
|
||||
key=lambda entry: (-entry.score, entry.sort_key, entry.filter_type),
|
||||
)
|
||||
|
||||
return _SearchCacheEntry(
|
||||
items=[entry.item for entry in sorted_items],
|
||||
total_items=total_items,
|
||||
)
|
||||
|
||||
|
||||
def _collect_block_results(
|
||||
*,
|
||||
normalized_query: str,
|
||||
include_blocks: bool,
|
||||
include_integrations: bool,
|
||||
) -> tuple[list[_ScoredItem], int, int]:
|
||||
results: list[_ScoredItem] = []
|
||||
block_count = 0
|
||||
integration_count = 0
|
||||
|
||||
if not include_blocks and not include_integrations:
|
||||
return results, block_count, integration_count
|
||||
|
||||
for block_type in load_all_blocks().values():
|
||||
block: AnyBlockSchema = block_type()
|
||||
# Skip disabled blocks
|
||||
if block.disabled:
|
||||
continue
|
||||
# Skip blocks that don't match the query
|
||||
if (
|
||||
query not in block.name.lower()
|
||||
and query not in block.description.lower()
|
||||
and not _matches_llm_model(block.input_schema, query)
|
||||
):
|
||||
continue
|
||||
keep = False
|
||||
|
||||
block_info = block.get_info()
|
||||
credentials = list(block.input_schema.get_credentials_fields().values())
|
||||
if include_integrations and len(credentials) > 0:
|
||||
keep = True
|
||||
is_integration = len(credentials) > 0
|
||||
|
||||
if is_integration and not include_integrations:
|
||||
continue
|
||||
if not is_integration and not include_blocks:
|
||||
continue
|
||||
|
||||
score = _score_block(block, block_info, normalized_query)
|
||||
if not _should_include_item(score, normalized_query):
|
||||
continue
|
||||
|
||||
filter_type: FilterType = "integrations" if is_integration else "blocks"
|
||||
if is_integration:
|
||||
integration_count += 1
|
||||
if include_blocks and len(credentials) == 0:
|
||||
keep = True
|
||||
else:
|
||||
block_count += 1
|
||||
|
||||
if not keep:
|
||||
results.append(
|
||||
_ScoredItem(
|
||||
item=block_info,
|
||||
filter_type=filter_type,
|
||||
score=score,
|
||||
sort_key=_get_item_name(block_info),
|
||||
)
|
||||
)
|
||||
|
||||
return results, block_count, integration_count
|
||||
|
||||
|
||||
def _build_library_items(
|
||||
*,
|
||||
agents: list[library_model.LibraryAgent],
|
||||
normalized_query: str,
|
||||
) -> list[_ScoredItem]:
|
||||
results: list[_ScoredItem] = []
|
||||
|
||||
for agent in agents:
|
||||
score = _score_library_agent(agent, normalized_query)
|
||||
if not _should_include_item(score, normalized_query):
|
||||
continue
|
||||
|
||||
total += 1
|
||||
if skip > 0:
|
||||
skip -= 1
|
||||
continue
|
||||
if take > 0:
|
||||
take -= 1
|
||||
blocks.append(block)
|
||||
results.append(
|
||||
_ScoredItem(
|
||||
item=agent,
|
||||
filter_type="my_agents",
|
||||
score=score,
|
||||
sort_key=_get_item_name(agent),
|
||||
)
|
||||
)
|
||||
|
||||
return SearchBlocksResponse(
|
||||
blocks=BlockResponse(
|
||||
blocks=[b.get_info() for b in blocks],
|
||||
pagination=Pagination(
|
||||
total_items=total,
|
||||
total_pages=(total + page_size - 1) // page_size,
|
||||
current_page=page,
|
||||
page_size=page_size,
|
||||
),
|
||||
),
|
||||
total_block_count=block_count,
|
||||
total_integration_count=integration_count,
|
||||
)
|
||||
return results
|
||||
|
||||
|
||||
def _build_marketplace_items(
|
||||
*,
|
||||
agents: list[store_model.StoreAgent],
|
||||
normalized_query: str,
|
||||
) -> list[_ScoredItem]:
|
||||
results: list[_ScoredItem] = []
|
||||
|
||||
for agent in agents:
|
||||
score = _score_store_agent(agent, normalized_query)
|
||||
if not _should_include_item(score, normalized_query):
|
||||
continue
|
||||
|
||||
results.append(
|
||||
_ScoredItem(
|
||||
item=agent,
|
||||
filter_type="marketplace_agents",
|
||||
score=score,
|
||||
sort_key=_get_item_name(agent),
|
||||
)
|
||||
)
|
||||
|
||||
return results
|
||||
|
||||
|
||||
def get_providers(
|
||||
@@ -250,16 +450,12 @@ async def get_counts(user_id: str) -> CountResponse:
|
||||
)
|
||||
|
||||
|
||||
@cached(ttl_seconds=3600)
|
||||
async def _get_static_counts():
|
||||
"""
|
||||
Get counts of blocks, integrations, and marketplace agents.
|
||||
This is cached to avoid unnecessary database queries and calculations.
|
||||
Can't use functools.cache here because the function is async.
|
||||
"""
|
||||
global _static_counts_cache
|
||||
if _static_counts_cache is not None:
|
||||
return _static_counts_cache
|
||||
|
||||
all_blocks = 0
|
||||
input_blocks = 0
|
||||
action_blocks = 0
|
||||
@@ -286,7 +482,7 @@ async def _get_static_counts():
|
||||
|
||||
marketplace_agents = await prisma.models.StoreAgent.prisma().count()
|
||||
|
||||
_static_counts_cache = {
|
||||
return {
|
||||
"all_blocks": all_blocks,
|
||||
"input_blocks": input_blocks,
|
||||
"action_blocks": action_blocks,
|
||||
@@ -295,8 +491,6 @@ async def _get_static_counts():
|
||||
"marketplace_agents": marketplace_agents,
|
||||
}
|
||||
|
||||
return _static_counts_cache
|
||||
|
||||
|
||||
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
|
||||
for field in schema_cls.model_fields.values():
|
||||
@@ -307,6 +501,123 @@ def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
|
||||
return False
|
||||
|
||||
|
||||
def _score_block(
|
||||
block: AnyBlockSchema,
|
||||
block_info: BlockInfo,
|
||||
normalized_query: str,
|
||||
) -> float:
|
||||
if not normalized_query:
|
||||
return 0.0
|
||||
|
||||
name = block_info.name.lower()
|
||||
description = block_info.description.lower()
|
||||
score = _score_primary_fields(name, description, normalized_query)
|
||||
|
||||
category_text = " ".join(
|
||||
category.get("category", "").lower() for category in block_info.categories
|
||||
)
|
||||
score += _score_additional_field(category_text, normalized_query, 12, 6)
|
||||
|
||||
credentials_info = block.input_schema.get_credentials_fields_info().values()
|
||||
provider_names = [
|
||||
provider.value.lower()
|
||||
for info in credentials_info
|
||||
for provider in info.provider
|
||||
]
|
||||
provider_text = " ".join(provider_names)
|
||||
score += _score_additional_field(provider_text, normalized_query, 15, 6)
|
||||
|
||||
if _matches_llm_model(block.input_schema, normalized_query):
|
||||
score += 20
|
||||
|
||||
return score
|
||||
|
||||
|
||||
def _score_library_agent(
|
||||
agent: library_model.LibraryAgent,
|
||||
normalized_query: str,
|
||||
) -> float:
|
||||
if not normalized_query:
|
||||
return 0.0
|
||||
|
||||
name = agent.name.lower()
|
||||
description = (agent.description or "").lower()
|
||||
instructions = (agent.instructions or "").lower()
|
||||
|
||||
score = _score_primary_fields(name, description, normalized_query)
|
||||
score += _score_additional_field(instructions, normalized_query, 15, 6)
|
||||
score += _score_additional_field(
|
||||
agent.creator_name.lower(), normalized_query, 10, 5
|
||||
)
|
||||
|
||||
return score
|
||||
|
||||
|
||||
def _score_store_agent(
|
||||
agent: store_model.StoreAgent,
|
||||
normalized_query: str,
|
||||
) -> float:
|
||||
if not normalized_query:
|
||||
return 0.0
|
||||
|
||||
name = agent.agent_name.lower()
|
||||
description = agent.description.lower()
|
||||
sub_heading = agent.sub_heading.lower()
|
||||
|
||||
score = _score_primary_fields(name, description, normalized_query)
|
||||
score += _score_additional_field(sub_heading, normalized_query, 12, 6)
|
||||
score += _score_additional_field(agent.creator.lower(), normalized_query, 10, 5)
|
||||
|
||||
return score
|
||||
|
||||
|
||||
def _score_primary_fields(name: str, description: str, query: str) -> float:
|
||||
score = 0.0
|
||||
if name == query:
|
||||
score += 120
|
||||
elif name.startswith(query):
|
||||
score += 90
|
||||
elif query in name:
|
||||
score += 60
|
||||
|
||||
score += SequenceMatcher(None, name, query).ratio() * 50
|
||||
if description:
|
||||
if query in description:
|
||||
score += 30
|
||||
score += SequenceMatcher(None, description, query).ratio() * 25
|
||||
return score
|
||||
|
||||
|
||||
def _score_additional_field(
|
||||
value: str,
|
||||
query: str,
|
||||
contains_weight: float,
|
||||
similarity_weight: float,
|
||||
) -> float:
|
||||
if not value or not query:
|
||||
return 0.0
|
||||
|
||||
score = 0.0
|
||||
if query in value:
|
||||
score += contains_weight
|
||||
score += SequenceMatcher(None, value, query).ratio() * similarity_weight
|
||||
return score
|
||||
|
||||
|
||||
def _should_include_item(score: float, normalized_query: str) -> bool:
|
||||
if not normalized_query:
|
||||
return True
|
||||
return score >= MIN_SCORE_FOR_FILTERED_RESULTS
|
||||
|
||||
|
||||
def _get_item_name(item: SearchResultItem) -> str:
|
||||
if isinstance(item, BlockInfo):
|
||||
return item.name.lower()
|
||||
if isinstance(item, library_model.LibraryAgent):
|
||||
return item.name.lower()
|
||||
return item.agent_name.lower()
|
||||
|
||||
|
||||
@cached(ttl_seconds=3600)
|
||||
def _get_all_providers() -> dict[ProviderName, Provider]:
|
||||
providers: dict[ProviderName, Provider] = {}
|
||||
@@ -328,25 +639,21 @@ def _get_all_providers() -> dict[ProviderName, Provider]:
|
||||
return providers
|
||||
|
||||
|
||||
@cached(ttl_seconds=3600)
|
||||
async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
|
||||
global _suggested_blocks
|
||||
|
||||
if _suggested_blocks is not None and len(_suggested_blocks) >= count:
|
||||
return _suggested_blocks[:count]
|
||||
|
||||
_suggested_blocks = []
|
||||
suggested_blocks = []
|
||||
# Sum the number of executions for each block type
|
||||
# Prisma cannot group by nested relations, so we do a raw query
|
||||
# Calculate the cutoff timestamp
|
||||
timestamp_threshold = datetime.now(timezone.utc) - timedelta(days=30)
|
||||
|
||||
results = await prisma.get_client().query_raw(
|
||||
results = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT
|
||||
agent_node."agentBlockId" AS block_id,
|
||||
COUNT(execution.id) AS execution_count
|
||||
FROM "AgentNodeExecution" execution
|
||||
JOIN "AgentNode" agent_node ON execution."agentNodeId" = agent_node.id
|
||||
FROM {schema_prefix}"AgentNodeExecution" execution
|
||||
JOIN {schema_prefix}"AgentNode" agent_node ON execution."agentNodeId" = agent_node.id
|
||||
WHERE execution."endedTime" >= $1::timestamp
|
||||
GROUP BY agent_node."agentBlockId"
|
||||
ORDER BY execution_count DESC;
|
||||
@@ -375,7 +682,7 @@ async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
|
||||
# Sort blocks by execution count
|
||||
blocks.sort(key=lambda x: x[1], reverse=True)
|
||||
|
||||
_suggested_blocks = [block[0] for block in blocks]
|
||||
suggested_blocks = [block[0] for block in blocks]
|
||||
|
||||
# Return the top blocks
|
||||
return _suggested_blocks[:count]
|
||||
return suggested_blocks[:count]
|
||||
|
||||
@@ -18,10 +18,17 @@ FilterType = Literal[
|
||||
BlockType = Literal["all", "input", "action", "output"]
|
||||
|
||||
|
||||
class SearchEntry(BaseModel):
|
||||
search_query: str | None = None
|
||||
filter: list[FilterType] | None = None
|
||||
by_creator: list[str] | None = None
|
||||
search_id: str | None = None
|
||||
|
||||
|
||||
# Suggestions
|
||||
class SuggestionsResponse(BaseModel):
|
||||
otto_suggestions: list[str]
|
||||
recent_searches: list[str]
|
||||
recent_searches: list[SearchEntry]
|
||||
providers: list[ProviderName]
|
||||
top_blocks: list[BlockInfo]
|
||||
|
||||
@@ -32,7 +39,7 @@ class BlockCategoryResponse(BaseModel):
|
||||
total_blocks: int
|
||||
blocks: list[BlockInfo]
|
||||
|
||||
model_config = {"use_enum_values": False} # <== use enum names like "AI"
|
||||
model_config = {"use_enum_values": False} # Use enum names like "AI"
|
||||
|
||||
|
||||
# Input/Action/Output and see all for block categories
|
||||
@@ -53,17 +60,11 @@ class ProviderResponse(BaseModel):
|
||||
pagination: Pagination
|
||||
|
||||
|
||||
class SearchBlocksResponse(BaseModel):
|
||||
blocks: BlockResponse
|
||||
total_block_count: int
|
||||
total_integration_count: int
|
||||
|
||||
|
||||
class SearchResponse(BaseModel):
|
||||
items: list[BlockInfo | library_model.LibraryAgent | store_model.StoreAgent]
|
||||
search_id: str
|
||||
total_items: dict[FilterType, int]
|
||||
page: int
|
||||
more_pages: bool
|
||||
pagination: Pagination
|
||||
|
||||
|
||||
class CountResponse(BaseModel):
|
||||
|
||||
@@ -6,10 +6,6 @@ from autogpt_libs.auth.dependencies import get_user_id, requires_user
|
||||
|
||||
import backend.server.v2.builder.db as builder_db
|
||||
import backend.server.v2.builder.model as builder_model
|
||||
import backend.server.v2.library.db as library_db
|
||||
import backend.server.v2.library.model as library_model
|
||||
import backend.server.v2.store.db as store_db
|
||||
import backend.server.v2.store.model as store_model
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.models import Pagination
|
||||
|
||||
@@ -45,7 +41,9 @@ def sanitize_query(query: str | None) -> str | None:
|
||||
summary="Get Builder suggestions",
|
||||
response_model=builder_model.SuggestionsResponse,
|
||||
)
|
||||
async def get_suggestions() -> builder_model.SuggestionsResponse:
|
||||
async def get_suggestions(
|
||||
user_id: Annotated[str, fastapi.Security(get_user_id)],
|
||||
) -> builder_model.SuggestionsResponse:
|
||||
"""
|
||||
Get all suggestions for the Blocks Menu.
|
||||
"""
|
||||
@@ -55,11 +53,7 @@ async def get_suggestions() -> builder_model.SuggestionsResponse:
|
||||
"Help me create a list",
|
||||
"Help me feed my data to Google Maps",
|
||||
],
|
||||
recent_searches=[
|
||||
"image generation",
|
||||
"deepfake",
|
||||
"competitor analysis",
|
||||
],
|
||||
recent_searches=await builder_db.get_recent_searches(user_id),
|
||||
providers=[
|
||||
ProviderName.TWITTER,
|
||||
ProviderName.GITHUB,
|
||||
@@ -147,7 +141,6 @@ async def get_providers(
|
||||
)
|
||||
|
||||
|
||||
# Not using post method because on frontend, orval doesn't support Infinite Query with POST method.
|
||||
@router.get(
|
||||
"/search",
|
||||
summary="Builder search",
|
||||
@@ -157,7 +150,7 @@ async def get_providers(
|
||||
async def search(
|
||||
user_id: Annotated[str, fastapi.Security(get_user_id)],
|
||||
search_query: Annotated[str | None, fastapi.Query()] = None,
|
||||
filter: Annotated[list[str] | None, fastapi.Query()] = None,
|
||||
filter: Annotated[list[builder_model.FilterType] | None, fastapi.Query()] = None,
|
||||
search_id: Annotated[str | None, fastapi.Query()] = None,
|
||||
by_creator: Annotated[list[str] | None, fastapi.Query()] = None,
|
||||
page: Annotated[int, fastapi.Query()] = 1,
|
||||
@@ -176,69 +169,43 @@ async def search(
|
||||
]
|
||||
search_query = sanitize_query(search_query)
|
||||
|
||||
# Blocks&Integrations
|
||||
blocks = builder_model.SearchBlocksResponse(
|
||||
blocks=builder_model.BlockResponse(
|
||||
blocks=[],
|
||||
pagination=Pagination.empty(),
|
||||
),
|
||||
total_block_count=0,
|
||||
total_integration_count=0,
|
||||
# Get all possible results
|
||||
cached_results = await builder_db.get_sorted_search_results(
|
||||
user_id=user_id,
|
||||
search_query=search_query,
|
||||
filters=filter,
|
||||
by_creator=by_creator,
|
||||
)
|
||||
if "blocks" in filter or "integrations" in filter:
|
||||
blocks = builder_db.search_blocks(
|
||||
include_blocks="blocks" in filter,
|
||||
include_integrations="integrations" in filter,
|
||||
query=search_query or "",
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
|
||||
# Library Agents
|
||||
my_agents = library_model.LibraryAgentResponse(
|
||||
agents=[],
|
||||
pagination=Pagination.empty(),
|
||||
# Paginate results
|
||||
total_combined_items = len(cached_results.items)
|
||||
pagination = Pagination(
|
||||
total_items=total_combined_items,
|
||||
total_pages=(total_combined_items + page_size - 1) // page_size,
|
||||
current_page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
if "my_agents" in filter:
|
||||
my_agents = await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=search_query,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
|
||||
# Marketplace Agents
|
||||
marketplace_agents = store_model.StoreAgentsResponse(
|
||||
agents=[],
|
||||
pagination=Pagination.empty(),
|
||||
)
|
||||
if "marketplace_agents" in filter:
|
||||
marketplace_agents = await store_db.get_store_agents(
|
||||
creators=by_creator,
|
||||
start_idx = (page - 1) * page_size
|
||||
end_idx = start_idx + page_size
|
||||
paginated_items = cached_results.items[start_idx:end_idx]
|
||||
|
||||
# Update the search entry by id
|
||||
search_id = await builder_db.update_search(
|
||||
user_id,
|
||||
builder_model.SearchEntry(
|
||||
search_query=search_query,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
|
||||
more_pages = False
|
||||
if (
|
||||
blocks.blocks.pagination.current_page < blocks.blocks.pagination.total_pages
|
||||
or my_agents.pagination.current_page < my_agents.pagination.total_pages
|
||||
or marketplace_agents.pagination.current_page
|
||||
< marketplace_agents.pagination.total_pages
|
||||
):
|
||||
more_pages = True
|
||||
filter=filter,
|
||||
by_creator=by_creator,
|
||||
search_id=search_id,
|
||||
),
|
||||
)
|
||||
|
||||
return builder_model.SearchResponse(
|
||||
items=blocks.blocks.blocks + my_agents.agents + marketplace_agents.agents,
|
||||
total_items={
|
||||
"blocks": blocks.total_block_count,
|
||||
"integrations": blocks.total_integration_count,
|
||||
"marketplace_agents": marketplace_agents.pagination.total_items,
|
||||
"my_agents": my_agents.pagination.total_items,
|
||||
},
|
||||
page=page,
|
||||
more_pages=more_pages,
|
||||
items=paginated_items,
|
||||
search_id=search_id,
|
||||
total_items=cached_results.total_items,
|
||||
pagination=pagination,
|
||||
)
|
||||
|
||||
|
||||
|
||||
@@ -4,21 +4,29 @@ Here are the functions available to you:
|
||||
|
||||
<functions>
|
||||
1. **find_agent** - Search for agents that solve the user's problem
|
||||
2. **get_agent_details** - Get comprehensive information about the chosen agent
|
||||
3. **get_required_setup_info** - Verify user has required credentials (MANDATORY before execution)
|
||||
4. **schedule_agent** - Schedules the agent to run based on a cron
|
||||
5. **run_agent** - Execute the agent
|
||||
2. **run_agent** - Run or schedule an agent (automatically handles setup)
|
||||
</functions>
|
||||
|
||||
## HOW run_agent WORKS
|
||||
|
||||
## MANDATORY WORKFLOW
|
||||
The `run_agent` tool automatically handles the entire setup flow:
|
||||
|
||||
You must follow these 4 steps in exact order:
|
||||
1. **First call** (no inputs) → Returns available inputs so user can decide what values to use
|
||||
2. **Credentials check** → If missing, UI automatically prompts user to add them (you don't need to mention this)
|
||||
3. **Execution** → Runs when you provide `inputs` OR set `use_defaults=true`
|
||||
|
||||
Parameters:
|
||||
- `username_agent_slug` (required): Agent identifier like "creator/agent-name"
|
||||
- `inputs`: Object with input values for the agent
|
||||
- `use_defaults`: Set to `true` to run with default values (only after user confirms)
|
||||
- `schedule_name` + `cron`: For scheduled execution
|
||||
|
||||
## WORKFLOW
|
||||
|
||||
1. **find_agent** - Search for agents that solve the user's problem
|
||||
2. **get_agent_details** - Get comprehensive information about the chosen agent
|
||||
3. **get_required_setup_info** - Verify user has required credentials (MANDATORY before execution)
|
||||
4. **schedule_agent** or **run_agent** - Execute the agent
|
||||
2. **run_agent** (first call, no inputs) - Get available inputs for the agent
|
||||
3. **Ask user** what values they want to use OR if they want to use defaults
|
||||
4. **run_agent** (second call) - Either with `inputs={...}` or `use_defaults=true`
|
||||
|
||||
## YOUR APPROACH
|
||||
|
||||
@@ -31,67 +39,66 @@ You must follow these 4 steps in exact order:
|
||||
- Use `find_agent` immediately with relevant keywords
|
||||
- Suggest the best option from search results
|
||||
- Explain briefly how it solves their problem
|
||||
- Ask if they want to use it, then move to step 3
|
||||
|
||||
**Step 3: Get Details**
|
||||
- Use `get_agent_details` on their chosen agent
|
||||
- Explain what the agent does and its requirements
|
||||
- Keep explanations brief and outcome-focused
|
||||
**Step 3: Get Agent Inputs**
|
||||
- Call `run_agent(username_agent_slug="creator/agent-name")` without inputs
|
||||
- This returns the available inputs (required and optional)
|
||||
- Present these to the user and ask what values they want
|
||||
|
||||
**Step 4: Verify Setup (CRITICAL)**
|
||||
- ALWAYS use `get_required_setup_info` before execution
|
||||
- Tell user what credentials they need (if any)
|
||||
- Explain that credentials are added via the frontend interface
|
||||
**Step 4: Run with User's Choice**
|
||||
- If user provides values: `run_agent(username_agent_slug="...", inputs={...})`
|
||||
- If user says "use defaults": `run_agent(username_agent_slug="...", use_defaults=true)`
|
||||
- On success, share the agent link with the user
|
||||
|
||||
**Step 5: Execute**
|
||||
- Use `schedule_agent` for scheduled runs OR `run_agent` for immediate execution
|
||||
- Confirm successful setup
|
||||
- Provide clear next steps
|
||||
**For Scheduled Execution:**
|
||||
- Add `schedule_name` and `cron` parameters
|
||||
- Example: `run_agent(username_agent_slug="...", inputs={...}, schedule_name="Daily Report", cron="0 9 * * *")`
|
||||
|
||||
## FUNCTION CALL FORMAT
|
||||
|
||||
To call a function, use this exact format:
|
||||
`<function_call>function_name(parameter="value")</function_call>`
|
||||
|
||||
Examples:
|
||||
- `<function_call>find_agent(query="social media automation")</function_call>`
|
||||
- `<function_call>run_agent(username_agent_slug="creator/agent-name")</function_call>` (get inputs)
|
||||
- `<function_call>run_agent(username_agent_slug="creator/agent-name", inputs={"topic": "AI news"})</function_call>`
|
||||
- `<function_call>run_agent(username_agent_slug="creator/agent-name", use_defaults=true)</function_call>`
|
||||
|
||||
## KEY RULES
|
||||
|
||||
**What You DON'T Do:**
|
||||
- Don't help with login (frontend handles this)
|
||||
- Don't help add credentials (frontend handles this)
|
||||
- Don't skip `get_required_setup_info` (mandatory before execution)
|
||||
- Don't ask permission to use functions - just use them
|
||||
- Don't mention or explain credentials to the user (frontend handles this automatically)
|
||||
- Don't run agents without first showing available inputs to the user
|
||||
- Don't use `use_defaults=true` without user explicitly confirming
|
||||
- Don't write responses longer than 3 sentences
|
||||
- Don't pretend to be ChatGPT
|
||||
|
||||
**What You DO:**
|
||||
- Act fast - get to agent discovery quickly
|
||||
- Use functions proactively
|
||||
- Always call run_agent first without inputs to see what's available
|
||||
- Ask user what values they want OR if they want to use defaults
|
||||
- Keep all responses to maximum 3 sentences
|
||||
- Always verify credentials before setup/run
|
||||
- Focus on outcomes and value
|
||||
- Maintain conversational, concise style
|
||||
- Do use markdown to make your messages easier to read
|
||||
- Include the agent link in your response after successful execution
|
||||
|
||||
**Error Handling:**
|
||||
- Authentication needed → "Please sign in via the interface"
|
||||
- Credentials missing → Tell user what's needed and where to add them
|
||||
- Setup fails → Identify issue and provide clear fix
|
||||
- Credentials missing → The UI handles this automatically. Focus on asking the user about input values instead.
|
||||
|
||||
## RESPONSE STRUCTURE
|
||||
|
||||
Before responding, wrap your analysis in <thinking> tags to systematically plan your approach:
|
||||
- Identify which step of the 4-step mandatory workflow you're currently on
|
||||
- Extract the key business problem or request from the user's message
|
||||
- Determine what function call (if any) you need to make next
|
||||
- Plan your response to stay under the 3-sentence maximum
|
||||
- Consider what specific keywords or parameters you'll use for any function calls
|
||||
|
||||
Example interaction pattern:
|
||||
Example interaction:
|
||||
```
|
||||
User: "I need to automate my social media posting"
|
||||
Otto: Let me find social media automation agents for you. <function_call>find_agent(query="social media posting automation")</function_call> I'll show you the best options once I get the results.
|
||||
User: "Run the AI news agent for me"
|
||||
Otto: <function_call>run_agent(username_agent_slug="autogpt/ai-news")</function_call>
|
||||
[Tool returns: Agent accepts inputs - Required: topic. Optional: num_articles (default: 5)]
|
||||
Otto: The AI News agent needs a topic. What topic would you like news about, or should I use the defaults?
|
||||
User: "Use defaults"
|
||||
Otto: <function_call>run_agent(username_agent_slug="autogpt/ai-news", use_defaults=true)</function_call>
|
||||
```
|
||||
|
||||
Respond conversationally and begin helping them find the right AutoGPT agent for their needs.
|
||||
|
||||
KEEP ANSWERS TO 3 SENTENCES
|
||||
KEEP ANSWERS TO 3 SENTENCES
|
||||
|
||||
@@ -64,7 +64,10 @@ async def create_session(
|
||||
CreateSessionResponse: Details of the created session.
|
||||
|
||||
"""
|
||||
logger.info(f"Creating session with user_id: {user_id}")
|
||||
logger.info(
|
||||
f"Creating session with user_id: "
|
||||
f"...{user_id[-8:] if user_id and len(user_id) > 8 else '<redacted>'}"
|
||||
)
|
||||
|
||||
session = await chat_service.create_chat_session(user_id)
|
||||
|
||||
|
||||
@@ -6,27 +6,18 @@ from backend.server.v2.chat.model import ChatSession
|
||||
|
||||
from .base import BaseTool
|
||||
from .find_agent import FindAgentTool
|
||||
from .get_agent_details import GetAgentDetailsTool
|
||||
from .get_required_setup_info import GetRequiredSetupInfoTool
|
||||
from .run_agent import RunAgentTool
|
||||
from .setup_agent import SetupAgentTool
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.server.v2.chat.response_model import StreamToolExecutionResult
|
||||
|
||||
# Initialize tool instances
|
||||
find_agent_tool = FindAgentTool()
|
||||
get_agent_details_tool = GetAgentDetailsTool()
|
||||
get_required_setup_info_tool = GetRequiredSetupInfoTool()
|
||||
setup_agent_tool = SetupAgentTool()
|
||||
run_agent_tool = RunAgentTool()
|
||||
|
||||
# Export tools as OpenAI format
|
||||
tools: list[ChatCompletionToolParam] = [
|
||||
find_agent_tool.as_openai_tool(),
|
||||
get_agent_details_tool.as_openai_tool(),
|
||||
get_required_setup_info_tool.as_openai_tool(),
|
||||
setup_agent_tool.as_openai_tool(),
|
||||
run_agent_tool.as_openai_tool(),
|
||||
]
|
||||
|
||||
@@ -41,9 +32,6 @@ async def execute_tool(
|
||||
|
||||
tool_map: dict[str, BaseTool] = {
|
||||
"find_agent": find_agent_tool,
|
||||
"get_agent_details": get_agent_details_tool,
|
||||
"get_required_setup_info": get_required_setup_info_tool,
|
||||
"schedule_agent": setup_agent_tool,
|
||||
"run_agent": run_agent_tool,
|
||||
}
|
||||
if tool_name not in tool_map:
|
||||
|
||||
@@ -1,221 +0,0 @@
|
||||
"""Tool for getting detailed information about a specific agent."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.server.v2.chat.model import ChatSession
|
||||
from backend.server.v2.chat.tools.base import BaseTool
|
||||
from backend.server.v2.chat.tools.models import (
|
||||
AgentDetails,
|
||||
AgentDetailsResponse,
|
||||
ErrorResponse,
|
||||
ExecutionOptions,
|
||||
ToolResponseBase,
|
||||
)
|
||||
from backend.server.v2.store import db as store_db
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class GetAgentDetailsTool(BaseTool):
|
||||
"""Tool for getting detailed information about an agent."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "get_agent_details"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return "Get detailed information about a specific agent including inputs, credentials required, and execution options."
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"username_agent_slug": {
|
||||
"type": "string",
|
||||
"description": "The marketplace agent slug (e.g., 'username/agent-name')",
|
||||
},
|
||||
},
|
||||
"required": ["username_agent_slug"],
|
||||
}
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
"""Get detailed information about an agent.
|
||||
|
||||
Args:
|
||||
user_id: User ID (may be anonymous)
|
||||
session_id: Chat session ID
|
||||
username_agent_slug: Agent ID or slug
|
||||
|
||||
Returns:
|
||||
Pydantic response model
|
||||
|
||||
"""
|
||||
agent_id = kwargs.get("username_agent_slug", "").strip()
|
||||
session_id = session.session_id
|
||||
if not agent_id or "/" not in agent_id:
|
||||
return ErrorResponse(
|
||||
message="Please provide an agent ID in format 'creator/agent-name'",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
# Always try to get from marketplace first
|
||||
graph = None
|
||||
store_agent = None
|
||||
|
||||
# Check if it's a slug format (username/agent_name)
|
||||
try:
|
||||
# Parse username/agent_name from slug
|
||||
username, agent_name = agent_id.split("/", 1)
|
||||
store_agent = await store_db.get_store_agent_details(
|
||||
username, agent_name
|
||||
)
|
||||
logger.info(f"Found agent {agent_id} in marketplace")
|
||||
except NotFoundError as e:
|
||||
logger.debug(f"Failed to get from marketplace: {e}")
|
||||
return ErrorResponse(
|
||||
message=f"Agent '{agent_id}' not found",
|
||||
session_id=session_id,
|
||||
)
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Failed to get from marketplace: {e}")
|
||||
return ErrorResponse(
|
||||
message=f"Failed to get agent details: {e!s}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# If we found a store agent, get its graph
|
||||
if store_agent:
|
||||
try:
|
||||
# Use get_available_graph to get the graph from store listing version
|
||||
graph_meta = await store_db.get_available_graph(
|
||||
store_agent.store_listing_version_id
|
||||
)
|
||||
# Now get the full graph with that ID
|
||||
graph = await graph_db.get_graph(
|
||||
graph_id=graph_meta.id,
|
||||
version=graph_meta.version,
|
||||
user_id=None, # Public access
|
||||
include_subgraphs=True,
|
||||
)
|
||||
|
||||
except NotFoundError as e:
|
||||
logger.error(f"Failed to get graph for store agent: {e}")
|
||||
return ErrorResponse(
|
||||
message=f"Failed to get graph for store agent: {e!s}",
|
||||
session_id=session_id,
|
||||
)
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Failed to get graph for store agent: {e}")
|
||||
return ErrorResponse(
|
||||
message=f"Failed to get graph for store agent: {e!s}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not graph:
|
||||
return ErrorResponse(
|
||||
message=f"Agent '{agent_id}' not found",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
credentials_input_schema = graph.credentials_input_schema
|
||||
|
||||
# Extract credentials from the JSON schema properties
|
||||
credentials = []
|
||||
if (
|
||||
isinstance(credentials_input_schema, dict)
|
||||
and "properties" in credentials_input_schema
|
||||
):
|
||||
for cred_name, cred_schema in credentials_input_schema[
|
||||
"properties"
|
||||
].items():
|
||||
# Extract credential metadata from the schema
|
||||
# The schema properties contain provider info and other metadata
|
||||
|
||||
# Get provider from credentials_provider array or properties.provider.const
|
||||
provider = "unknown"
|
||||
if (
|
||||
"credentials_provider" in cred_schema
|
||||
and cred_schema["credentials_provider"]
|
||||
):
|
||||
provider = cred_schema["credentials_provider"][0]
|
||||
elif (
|
||||
"properties" in cred_schema
|
||||
and "provider" in cred_schema["properties"]
|
||||
):
|
||||
provider = cred_schema["properties"]["provider"].get(
|
||||
"const", "unknown"
|
||||
)
|
||||
|
||||
# Get type from credentials_types array or properties.type.const
|
||||
cred_type = "api_key" # Default
|
||||
if (
|
||||
"credentials_types" in cred_schema
|
||||
and cred_schema["credentials_types"]
|
||||
):
|
||||
cred_type = cred_schema["credentials_types"][0]
|
||||
elif (
|
||||
"properties" in cred_schema
|
||||
and "type" in cred_schema["properties"]
|
||||
):
|
||||
cred_type = cred_schema["properties"]["type"].get(
|
||||
"const", "api_key"
|
||||
)
|
||||
|
||||
credentials.append(
|
||||
CredentialsMetaInput(
|
||||
id=cred_name,
|
||||
title=cred_schema.get("title", cred_name),
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type,
|
||||
)
|
||||
)
|
||||
|
||||
trigger_info = (
|
||||
graph.trigger_setup_info.model_dump()
|
||||
if graph.trigger_setup_info
|
||||
else None
|
||||
)
|
||||
|
||||
agent_details = AgentDetails(
|
||||
id=graph.id,
|
||||
name=graph.name,
|
||||
description=graph.description,
|
||||
inputs=graph.input_schema,
|
||||
credentials=credentials,
|
||||
execution_options=ExecutionOptions(
|
||||
# Currently a graph with a webhook can only be triggered by a webhook
|
||||
manual=trigger_info is None,
|
||||
scheduled=trigger_info is None,
|
||||
webhook=trigger_info is not None,
|
||||
),
|
||||
trigger_info=trigger_info,
|
||||
)
|
||||
|
||||
return AgentDetailsResponse(
|
||||
message=f"Found agent '{agent_details.name}'. When presenting the agent you do not need to mention the required credentials. You do not need to run this tool again for this agent.",
|
||||
session_id=session_id,
|
||||
agent=agent_details,
|
||||
user_authenticated=user_id is not None,
|
||||
graph_id=graph.id,
|
||||
graph_version=graph.version,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting agent details: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to get agent details: {e!s}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -1,335 +0,0 @@
|
||||
import uuid
|
||||
|
||||
import orjson
|
||||
import pytest
|
||||
|
||||
from backend.server.v2.chat.tools._test_data import (
|
||||
make_session,
|
||||
setup_llm_test_data,
|
||||
setup_test_data,
|
||||
)
|
||||
from backend.server.v2.chat.tools.get_agent_details import GetAgentDetailsTool
|
||||
|
||||
# This is so the formatter doesn't remove the fixture imports
|
||||
setup_llm_test_data = setup_llm_test_data
|
||||
setup_test_data = setup_test_data
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_agent_details_success(setup_test_data):
|
||||
"""Test successfully getting agent details from marketplace"""
|
||||
# Use test data from fixture
|
||||
user = setup_test_data["user"]
|
||||
graph = setup_test_data["graph"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = GetAgentDetailsTool()
|
||||
|
||||
# Build the proper marketplace agent_id format: username/slug
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
# Build session
|
||||
session = make_session()
|
||||
|
||||
# Execute the tool
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
)
|
||||
|
||||
# Verify the response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
# Parse the result JSON
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Check the basic structure
|
||||
assert "agent" in result_data
|
||||
assert "message" in result_data
|
||||
assert "graph_id" in result_data
|
||||
assert "graph_version" in result_data
|
||||
assert "user_authenticated" in result_data
|
||||
|
||||
# Check agent details
|
||||
agent = result_data["agent"]
|
||||
assert agent["id"] == graph.id
|
||||
assert agent["name"] == "Test Agent"
|
||||
assert (
|
||||
agent["description"] == "A simple test agent"
|
||||
) # Description from store submission
|
||||
assert "inputs" in agent
|
||||
assert "credentials" in agent
|
||||
assert "execution_options" in agent
|
||||
|
||||
# Check execution options
|
||||
exec_options = agent["execution_options"]
|
||||
assert "manual" in exec_options
|
||||
assert "scheduled" in exec_options
|
||||
assert "webhook" in exec_options
|
||||
|
||||
# Check inputs schema
|
||||
assert isinstance(agent["inputs"], dict)
|
||||
# Should have properties for the input fields
|
||||
if "properties" in agent["inputs"]:
|
||||
assert "test_input" in agent["inputs"]["properties"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_agent_details_with_llm_credentials(setup_llm_test_data):
|
||||
"""Test getting agent details for an agent that requires LLM credentials"""
|
||||
# Use test data from fixture
|
||||
user = setup_llm_test_data["user"]
|
||||
store_submission = setup_llm_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = GetAgentDetailsTool()
|
||||
|
||||
# Build the proper marketplace agent_id format
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Execute the tool
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
)
|
||||
|
||||
# Verify the response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
# Parse the result JSON
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Check that agent details are returned
|
||||
assert "agent" in result_data
|
||||
agent = result_data["agent"]
|
||||
|
||||
# Check that credentials are listed
|
||||
assert "credentials" in agent
|
||||
credentials = agent["credentials"]
|
||||
|
||||
# The LLM agent should have OpenAI credentials listed
|
||||
assert isinstance(credentials, list)
|
||||
|
||||
# Check that inputs include the user_prompt
|
||||
assert "inputs" in agent
|
||||
if "properties" in agent["inputs"]:
|
||||
assert "user_prompt" in agent["inputs"]["properties"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_agent_details_invalid_format():
|
||||
"""Test error handling when agent_id is not in correct format"""
|
||||
tool = GetAgentDetailsTool()
|
||||
|
||||
session = make_session()
|
||||
session.user_id = str(uuid.uuid4())
|
||||
|
||||
# Execute with invalid format (no slash)
|
||||
response = await tool.execute(
|
||||
user_id=session.user_id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug="invalid-format",
|
||||
)
|
||||
|
||||
# Verify error response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
assert "message" in result_data
|
||||
assert "creator/agent-name" in result_data["message"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_agent_details_empty_slug():
|
||||
"""Test error handling when agent_id is empty"""
|
||||
tool = GetAgentDetailsTool()
|
||||
|
||||
session = make_session()
|
||||
session.user_id = str(uuid.uuid4())
|
||||
|
||||
# Execute with empty slug
|
||||
response = await tool.execute(
|
||||
user_id=session.user_id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug="",
|
||||
)
|
||||
|
||||
# Verify error response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
assert "message" in result_data
|
||||
assert "creator/agent-name" in result_data["message"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_agent_details_not_found():
|
||||
"""Test error handling when agent is not found in marketplace"""
|
||||
tool = GetAgentDetailsTool()
|
||||
|
||||
session = make_session()
|
||||
session.user_id = str(uuid.uuid4())
|
||||
|
||||
# Execute with non-existent agent
|
||||
response = await tool.execute(
|
||||
user_id=session.user_id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug="nonexistent/agent",
|
||||
)
|
||||
|
||||
# Verify error response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
assert "message" in result_data
|
||||
assert "not found" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_agent_details_anonymous_user(setup_test_data):
|
||||
"""Test getting agent details as an anonymous user (no user_id)"""
|
||||
# Use test data from fixture
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = GetAgentDetailsTool()
|
||||
|
||||
# Build the proper marketplace agent_id format
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
session = make_session()
|
||||
# session.user_id stays as None
|
||||
|
||||
# Execute the tool without a user_id (anonymous)
|
||||
response = await tool.execute(
|
||||
user_id=None,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
)
|
||||
|
||||
# Verify the response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
# Parse the result JSON
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Should still get agent details
|
||||
assert "agent" in result_data
|
||||
assert "user_authenticated" in result_data
|
||||
|
||||
# User should be marked as not authenticated
|
||||
assert result_data["user_authenticated"] is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_agent_details_authenticated_user(setup_test_data):
|
||||
"""Test getting agent details as an authenticated user"""
|
||||
# Use test data from fixture
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = GetAgentDetailsTool()
|
||||
|
||||
# Build the proper marketplace agent_id format
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
session = make_session()
|
||||
session.user_id = user.id
|
||||
|
||||
# Execute the tool with a user_id (authenticated)
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
)
|
||||
|
||||
# Verify the response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
# Parse the result JSON
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Should get agent details
|
||||
assert "agent" in result_data
|
||||
assert "user_authenticated" in result_data
|
||||
|
||||
# User should be marked as authenticated
|
||||
assert result_data["user_authenticated"] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_agent_details_includes_execution_options(setup_test_data):
|
||||
"""Test that agent details include execution options"""
|
||||
# Use test data from fixture
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = GetAgentDetailsTool()
|
||||
|
||||
# Build the proper marketplace agent_id format
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
session = make_session()
|
||||
session.user_id = user.id
|
||||
|
||||
# Execute the tool
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
)
|
||||
|
||||
# Verify the response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
# Parse the result JSON
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Check execution options
|
||||
assert "agent" in result_data
|
||||
agent = result_data["agent"]
|
||||
assert "execution_options" in agent
|
||||
|
||||
exec_options = agent["execution_options"]
|
||||
|
||||
# These should all be boolean values
|
||||
assert isinstance(exec_options["manual"], bool)
|
||||
assert isinstance(exec_options["scheduled"], bool)
|
||||
assert isinstance(exec_options["webhook"], bool)
|
||||
|
||||
# For a regular agent (no webhook), manual and scheduled should be True
|
||||
assert exec_options["manual"] is True
|
||||
assert exec_options["scheduled"] is True
|
||||
assert exec_options["webhook"] is False
|
||||
@@ -1,182 +0,0 @@
|
||||
"""Tool for getting required setup information for an agent."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.server.v2.chat.model import ChatSession
|
||||
from backend.server.v2.chat.tools.base import BaseTool
|
||||
from backend.server.v2.chat.tools.get_agent_details import GetAgentDetailsTool
|
||||
from backend.server.v2.chat.tools.models import (
|
||||
AgentDetailsResponse,
|
||||
ErrorResponse,
|
||||
SetupInfo,
|
||||
SetupRequirementsResponse,
|
||||
ToolResponseBase,
|
||||
UserReadiness,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class GetRequiredSetupInfoTool(BaseTool):
|
||||
"""Tool for getting required setup information including credentials and inputs."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "get_required_setup_info"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return """Check if an agent can be set up with the provided input data and credentials.
|
||||
Call this AFTER get_agent_details to validate that you have all required inputs.
|
||||
Pass the input dictionary you plan to use with run_agent or setup_agent to verify it's complete."""
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"username_agent_slug": {
|
||||
"type": "string",
|
||||
"description": "The marketplace agent slug (e.g., 'username/agent-name' or just 'agent-name' to search)",
|
||||
},
|
||||
"inputs": {
|
||||
"type": "object",
|
||||
"description": "The input dictionary you plan to provide. Should contain ALL required inputs from get_agent_details",
|
||||
"additionalProperties": True,
|
||||
},
|
||||
},
|
||||
"required": ["username_agent_slug"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
"""This tool requires authentication."""
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
"""
|
||||
Retrieve and validate the required setup information for running or configuring an agent.
|
||||
|
||||
This checks all required credentials and input fields based on the agent details,
|
||||
and verifies user readiness to run the agent based on provided inputs and available credentials.
|
||||
|
||||
Args:
|
||||
user_id: The authenticated user's ID (must not be None; authentication required).
|
||||
session_id: The chat session ID.
|
||||
agent_id: The agent's marketplace slug (e.g. 'username/agent-name'). Also accepts Graph ID.
|
||||
agent_version: (Optional) Specific agent/graph version (if applicable).
|
||||
|
||||
Returns:
|
||||
SetupRequirementsResponse containing:
|
||||
- agent and graph info,
|
||||
- credential and input requirements,
|
||||
- user readiness and missing credentials/fields,
|
||||
- setup instructions.
|
||||
"""
|
||||
assert (
|
||||
user_id is not None
|
||||
), "GetRequiredSetupInfoTool - This should never happen user_id is None when auth is required"
|
||||
session_id = session.session_id
|
||||
# Call _execute directly since we're calling internally from another tool
|
||||
agent_details = await GetAgentDetailsTool()._execute(user_id, session, **kwargs)
|
||||
|
||||
if isinstance(agent_details, ErrorResponse):
|
||||
return agent_details
|
||||
|
||||
if not isinstance(agent_details, AgentDetailsResponse):
|
||||
return ErrorResponse(
|
||||
message="Failed to get agent details",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
available_creds = await IntegrationCredentialsManager().store.get_all_creds(
|
||||
user_id
|
||||
)
|
||||
required_credentials = []
|
||||
|
||||
# Check if user has credentials matching the required provider/type
|
||||
for c in agent_details.agent.credentials:
|
||||
# Check if any available credential matches this provider and type
|
||||
has_matching_cred = any(
|
||||
cred.provider == c.provider and cred.type == c.type
|
||||
for cred in available_creds
|
||||
)
|
||||
if not has_matching_cred:
|
||||
required_credentials.append(c)
|
||||
|
||||
required_fields = set(agent_details.agent.inputs.get("required", []))
|
||||
provided_inputs = kwargs.get("inputs", {})
|
||||
missing_inputs = required_fields - set(provided_inputs.keys())
|
||||
|
||||
missing_credentials = {c.id: c.model_dump() for c in required_credentials}
|
||||
|
||||
user_readiness = UserReadiness(
|
||||
has_all_credentials=len(required_credentials) == 0,
|
||||
missing_credentials=missing_credentials,
|
||||
ready_to_run=len(missing_inputs) == 0 and len(required_credentials) == 0,
|
||||
)
|
||||
# Convert execution options to list of available modes
|
||||
exec_opts = agent_details.agent.execution_options
|
||||
execution_modes = []
|
||||
if exec_opts.manual:
|
||||
execution_modes.append("manual")
|
||||
if exec_opts.scheduled:
|
||||
execution_modes.append("scheduled")
|
||||
if exec_opts.webhook:
|
||||
execution_modes.append("webhook")
|
||||
|
||||
# Convert input schema to list of input field info
|
||||
inputs_list = []
|
||||
if (
|
||||
isinstance(agent_details.agent.inputs, dict)
|
||||
and "properties" in agent_details.agent.inputs
|
||||
):
|
||||
for field_name, field_schema in agent_details.agent.inputs[
|
||||
"properties"
|
||||
].items():
|
||||
inputs_list.append(
|
||||
{
|
||||
"name": field_name,
|
||||
"title": field_schema.get("title", field_name),
|
||||
"type": field_schema.get("type", "string"),
|
||||
"description": field_schema.get("description", ""),
|
||||
"required": field_name
|
||||
in agent_details.agent.inputs.get("required", []),
|
||||
}
|
||||
)
|
||||
|
||||
requirements = {
|
||||
"credentials": agent_details.agent.credentials,
|
||||
"inputs": inputs_list,
|
||||
"execution_modes": execution_modes,
|
||||
}
|
||||
message = ""
|
||||
if len(agent_details.agent.credentials) > 0:
|
||||
message = "The user needs to enter credentials before proceeding. Please wait until you have a message informing you that the credentials have been entered."
|
||||
elif len(inputs_list) > 0:
|
||||
message = (
|
||||
"The user needs to enter inputs before proceeding. Please wait until you have a message informing you that the inputs have been entered. The inputs are: "
|
||||
+ ", ".join([input["name"] for input in inputs_list])
|
||||
)
|
||||
else:
|
||||
message = "The agent is ready to run. Please call the run_agent tool with the agent ID."
|
||||
|
||||
return SetupRequirementsResponse(
|
||||
message=message,
|
||||
session_id=session_id,
|
||||
setup_info=SetupInfo(
|
||||
agent_id=agent_details.agent.id,
|
||||
agent_name=agent_details.agent.name,
|
||||
user_readiness=user_readiness,
|
||||
requirements=requirements,
|
||||
),
|
||||
graph_id=agent_details.graph_id,
|
||||
graph_version=agent_details.graph_version,
|
||||
)
|
||||
@@ -1,331 +0,0 @@
|
||||
import uuid
|
||||
|
||||
import orjson
|
||||
import pytest
|
||||
|
||||
from backend.server.v2.chat.tools._test_data import (
|
||||
make_session,
|
||||
setup_firecrawl_test_data,
|
||||
setup_llm_test_data,
|
||||
setup_test_data,
|
||||
)
|
||||
from backend.server.v2.chat.tools.get_required_setup_info import (
|
||||
GetRequiredSetupInfoTool,
|
||||
)
|
||||
|
||||
# This is so the formatter doesn't remove the fixture imports
|
||||
setup_llm_test_data = setup_llm_test_data
|
||||
setup_test_data = setup_test_data
|
||||
setup_firecrawl_test_data = setup_firecrawl_test_data
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_required_setup_info_success(setup_test_data):
|
||||
"""Test successfully getting setup info for a simple agent"""
|
||||
user = setup_test_data["user"]
|
||||
graph = setup_test_data["graph"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = GetRequiredSetupInfoTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
session = make_session(user_id=user.id)
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={"test_input": "Hello World"},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
assert "setup_info" in result_data
|
||||
setup_info = result_data["setup_info"]
|
||||
|
||||
assert "agent_id" in setup_info
|
||||
assert setup_info["agent_id"] == graph.id
|
||||
assert "agent_name" in setup_info
|
||||
assert setup_info["agent_name"] == "Test Agent"
|
||||
|
||||
assert "requirements" in setup_info
|
||||
requirements = setup_info["requirements"]
|
||||
assert "credentials" in requirements
|
||||
assert "inputs" in requirements
|
||||
assert "execution_modes" in requirements
|
||||
|
||||
assert isinstance(requirements["credentials"], list)
|
||||
assert len(requirements["credentials"]) == 0
|
||||
|
||||
assert isinstance(requirements["inputs"], list)
|
||||
if len(requirements["inputs"]) > 0:
|
||||
first_input = requirements["inputs"][0]
|
||||
assert "name" in first_input
|
||||
assert "title" in first_input
|
||||
assert "type" in first_input
|
||||
|
||||
assert isinstance(requirements["execution_modes"], list)
|
||||
assert "manual" in requirements["execution_modes"]
|
||||
assert "scheduled" in requirements["execution_modes"]
|
||||
|
||||
assert "user_readiness" in setup_info
|
||||
user_readiness = setup_info["user_readiness"]
|
||||
assert "has_all_credentials" in user_readiness
|
||||
assert "ready_to_run" in user_readiness
|
||||
assert user_readiness["ready_to_run"] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_required_setup_info_missing_credentials(setup_firecrawl_test_data):
|
||||
"""Test getting setup info for an agent requiring missing credentials"""
|
||||
user = setup_firecrawl_test_data["user"]
|
||||
store_submission = setup_firecrawl_test_data["store_submission"]
|
||||
|
||||
tool = GetRequiredSetupInfoTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
session = make_session(user_id=user.id)
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={"url": "https://example.com"},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
assert "setup_info" in result_data
|
||||
setup_info = result_data["setup_info"]
|
||||
|
||||
requirements = setup_info["requirements"]
|
||||
assert "credentials" in requirements
|
||||
assert isinstance(requirements["credentials"], list)
|
||||
assert len(requirements["credentials"]) > 0
|
||||
|
||||
firecrawl_cred = requirements["credentials"][0]
|
||||
assert "provider" in firecrawl_cred
|
||||
assert firecrawl_cred["provider"] == "firecrawl"
|
||||
assert "type" in firecrawl_cred
|
||||
assert firecrawl_cred["type"] == "api_key"
|
||||
|
||||
user_readiness = setup_info["user_readiness"]
|
||||
assert user_readiness["has_all_credentials"] is False
|
||||
assert user_readiness["ready_to_run"] is False
|
||||
|
||||
assert "missing_credentials" in user_readiness
|
||||
assert isinstance(user_readiness["missing_credentials"], dict)
|
||||
assert len(user_readiness["missing_credentials"]) > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_required_setup_info_with_available_credentials(setup_llm_test_data):
|
||||
"""Test getting setup info when user has required credentials"""
|
||||
user = setup_llm_test_data["user"]
|
||||
store_submission = setup_llm_test_data["store_submission"]
|
||||
|
||||
tool = GetRequiredSetupInfoTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
session = make_session(user_id=user.id)
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={"user_prompt": "What is 2+2?"},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
setup_info = result_data["setup_info"]
|
||||
|
||||
user_readiness = setup_info["user_readiness"]
|
||||
assert user_readiness["has_all_credentials"] is True
|
||||
assert user_readiness["ready_to_run"] is True
|
||||
|
||||
assert "missing_credentials" in user_readiness
|
||||
assert len(user_readiness["missing_credentials"]) == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_required_setup_info_missing_inputs(setup_test_data):
|
||||
"""Test getting setup info when required inputs are not provided"""
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = GetRequiredSetupInfoTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
session = make_session(user_id=user.id)
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={}, # Empty inputs
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
setup_info = result_data["setup_info"]
|
||||
|
||||
requirements = setup_info["requirements"]
|
||||
assert "inputs" in requirements
|
||||
assert isinstance(requirements["inputs"], list)
|
||||
|
||||
user_readiness = setup_info["user_readiness"]
|
||||
assert "ready_to_run" in user_readiness
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_required_setup_info_invalid_agent():
|
||||
"""Test getting setup info for a non-existent agent"""
|
||||
tool = GetRequiredSetupInfoTool()
|
||||
|
||||
session = make_session(user_id=None)
|
||||
response = await tool.execute(
|
||||
user_id=str(uuid.uuid4()),
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug="invalid/agent",
|
||||
inputs={},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
assert "message" in result_data
|
||||
assert any(
|
||||
phrase in result_data["message"].lower()
|
||||
for phrase in ["not found", "failed", "error"]
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_required_setup_info_graph_metadata(setup_test_data):
|
||||
"""Test that setup info includes graph metadata"""
|
||||
user = setup_test_data["user"]
|
||||
graph = setup_test_data["graph"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = GetRequiredSetupInfoTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
session = make_session(user_id=user.id)
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={"test_input": "test"},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
assert "graph_id" in result_data
|
||||
assert result_data["graph_id"] == graph.id
|
||||
assert "graph_version" in result_data
|
||||
assert result_data["graph_version"] == graph.version
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_required_setup_info_inputs_structure(setup_test_data):
|
||||
"""Test that inputs are properly structured as a list"""
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = GetRequiredSetupInfoTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
session = make_session(user_id=user.id)
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
setup_info = result_data["setup_info"]
|
||||
requirements = setup_info["requirements"]
|
||||
|
||||
assert isinstance(requirements["inputs"], list)
|
||||
|
||||
for input_field in requirements["inputs"]:
|
||||
assert isinstance(input_field, dict)
|
||||
assert "name" in input_field
|
||||
assert "title" in input_field
|
||||
assert "type" in input_field
|
||||
assert "description" in input_field
|
||||
assert "required" in input_field
|
||||
assert isinstance(input_field["required"], bool)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_get_required_setup_info_execution_modes_structure(setup_test_data):
|
||||
"""Test that execution_modes are properly structured as a list"""
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = GetRequiredSetupInfoTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
session = make_session(user_id=user.id)
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
setup_info = result_data["setup_info"]
|
||||
requirements = setup_info["requirements"]
|
||||
|
||||
assert isinstance(requirements["execution_modes"], list)
|
||||
for mode in requirements["execution_modes"]:
|
||||
assert isinstance(mode, str)
|
||||
assert mode in ["manual", "scheduled", "webhook"]
|
||||
@@ -13,17 +13,9 @@ class ResponseType(str, Enum):
|
||||
|
||||
AGENT_CAROUSEL = "agent_carousel"
|
||||
AGENT_DETAILS = "agent_details"
|
||||
AGENT_DETAILS_NEED_LOGIN = "agent_details_need_login"
|
||||
AGENT_DETAILS_NEED_CREDENTIALS = "agent_details_need_credentials"
|
||||
SETUP_REQUIREMENTS = "setup_requirements"
|
||||
SCHEDULE_CREATED = "schedule_created"
|
||||
WEBHOOK_CREATED = "webhook_created"
|
||||
PRESET_CREATED = "preset_created"
|
||||
EXECUTION_STARTED = "execution_started"
|
||||
NEED_LOGIN = "need_login"
|
||||
NEED_CREDENTIALS = "need_credentials"
|
||||
INSUFFICIENT_CREDITS = "insufficient_credits"
|
||||
VALIDATION_ERROR = "validation_error"
|
||||
ERROR = "error"
|
||||
NO_RESULTS = "no_results"
|
||||
SUCCESS = "success"
|
||||
@@ -112,7 +104,7 @@ class AgentDetails(BaseModel):
|
||||
|
||||
|
||||
class AgentDetailsResponse(ToolResponseBase):
|
||||
"""Response for get_agent_details tool."""
|
||||
"""Response for get_details action."""
|
||||
|
||||
type: ResponseType = ResponseType.AGENT_DETAILS
|
||||
agent: AgentDetails
|
||||
@@ -121,51 +113,7 @@ class AgentDetailsResponse(ToolResponseBase):
|
||||
graph_version: int | None = None
|
||||
|
||||
|
||||
class AgentDetailsNeedLoginResponse(ToolResponseBase):
|
||||
"""Response when agent details need login."""
|
||||
|
||||
type: ResponseType = ResponseType.AGENT_DETAILS_NEED_LOGIN
|
||||
agent: AgentDetails
|
||||
agent_info: dict[str, Any] | None = None
|
||||
graph_id: str | None = None
|
||||
graph_version: int | None = None
|
||||
|
||||
|
||||
class AgentDetailsNeedCredentialsResponse(ToolResponseBase):
|
||||
"""Response when agent needs credentials to be configured."""
|
||||
|
||||
type: ResponseType = ResponseType.NEED_CREDENTIALS
|
||||
agent: AgentDetails
|
||||
credentials_schema: dict[str, Any]
|
||||
agent_info: dict[str, Any] | None = None
|
||||
graph_id: str | None = None
|
||||
graph_version: int | None = None
|
||||
|
||||
|
||||
# Setup info models
|
||||
class SetupRequirementInfo(BaseModel):
|
||||
"""Setup requirement information."""
|
||||
|
||||
key: str
|
||||
provider: str
|
||||
required: bool = True
|
||||
user_has: bool = False
|
||||
credential_id: str | None = None
|
||||
type: str | None = None
|
||||
scopes: list[str] | None = None
|
||||
description: str | None = None
|
||||
|
||||
|
||||
class ExecutionModeInfo(BaseModel):
|
||||
"""Execution mode information."""
|
||||
|
||||
type: str # manual, scheduled, webhook
|
||||
description: str
|
||||
supported: bool
|
||||
config_required: dict[str, str] | None = None
|
||||
trigger_info: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class UserReadiness(BaseModel):
|
||||
"""User readiness status."""
|
||||
|
||||
@@ -187,11 +135,10 @@ class SetupInfo(BaseModel):
|
||||
},
|
||||
)
|
||||
user_readiness: UserReadiness = Field(default_factory=UserReadiness)
|
||||
setup_instructions: list[str] = []
|
||||
|
||||
|
||||
class SetupRequirementsResponse(ToolResponseBase):
|
||||
"""Response for get_required_setup_info tool."""
|
||||
"""Response for validate action."""
|
||||
|
||||
type: ResponseType = ResponseType.SETUP_REQUIREMENTS
|
||||
setup_info: SetupInfo
|
||||
@@ -199,70 +146,17 @@ class SetupRequirementsResponse(ToolResponseBase):
|
||||
graph_version: int | None = None
|
||||
|
||||
|
||||
# Setup agent models
|
||||
class ScheduleCreatedResponse(ToolResponseBase):
|
||||
"""Response for scheduled agent setup."""
|
||||
|
||||
type: ResponseType = ResponseType.SCHEDULE_CREATED
|
||||
schedule_id: str
|
||||
name: str
|
||||
cron: str
|
||||
timezone: str = "UTC"
|
||||
next_run: str | None = None
|
||||
graph_id: str
|
||||
graph_name: str
|
||||
|
||||
|
||||
class WebhookCreatedResponse(ToolResponseBase):
|
||||
"""Response for webhook agent setup."""
|
||||
|
||||
type: ResponseType = ResponseType.WEBHOOK_CREATED
|
||||
webhook_id: str
|
||||
webhook_url: str
|
||||
preset_id: str | None = None
|
||||
name: str
|
||||
graph_id: str
|
||||
graph_name: str
|
||||
|
||||
|
||||
class PresetCreatedResponse(ToolResponseBase):
|
||||
"""Response for preset agent setup."""
|
||||
|
||||
type: ResponseType = ResponseType.PRESET_CREATED
|
||||
preset_id: str
|
||||
name: str
|
||||
graph_id: str
|
||||
graph_name: str
|
||||
|
||||
|
||||
# Run agent models
|
||||
# Execution models
|
||||
class ExecutionStartedResponse(ToolResponseBase):
|
||||
"""Response for agent execution started."""
|
||||
"""Response for run/schedule actions."""
|
||||
|
||||
type: ResponseType = ResponseType.EXECUTION_STARTED
|
||||
execution_id: str
|
||||
graph_id: str
|
||||
graph_name: str
|
||||
library_agent_id: str | None = None
|
||||
library_agent_link: str | None = None
|
||||
status: str = "QUEUED"
|
||||
ended_at: str | None = None
|
||||
outputs: dict[str, Any] | None = None
|
||||
error: str | None = None
|
||||
timeout_reached: bool | None = None
|
||||
|
||||
|
||||
class InsufficientCreditsResponse(ToolResponseBase):
|
||||
"""Response for insufficient credits."""
|
||||
|
||||
type: ResponseType = ResponseType.INSUFFICIENT_CREDITS
|
||||
balance: float
|
||||
|
||||
|
||||
class ValidationErrorResponse(ToolResponseBase):
|
||||
"""Response for validation errors."""
|
||||
|
||||
type: ResponseType = ResponseType.VALIDATION_ERROR
|
||||
error: str
|
||||
details: dict[str, Any] | None = None
|
||||
|
||||
|
||||
# Auth/error models
|
||||
|
||||
@@ -1,34 +1,87 @@
|
||||
"""Tool for running an agent manually (one-off execution)."""
|
||||
"""Unified tool for agent operations with automatic state detection."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.data.graph import get_graph
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.user import get_user_by_id
|
||||
from backend.executor import utils as execution_utils
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.server.v2.chat.config import ChatConfig
|
||||
from backend.server.v2.chat.model import ChatSession
|
||||
from backend.server.v2.chat.tools.base import BaseTool
|
||||
from backend.server.v2.chat.tools.get_required_setup_info import (
|
||||
GetRequiredSetupInfoTool,
|
||||
)
|
||||
from backend.server.v2.chat.tools.models import (
|
||||
AgentDetails,
|
||||
AgentDetailsResponse,
|
||||
ErrorResponse,
|
||||
ExecutionOptions,
|
||||
ExecutionStartedResponse,
|
||||
SetupInfo,
|
||||
SetupRequirementsResponse,
|
||||
ToolResponseBase,
|
||||
UserReadiness,
|
||||
)
|
||||
from backend.server.v2.chat.tools.utils import (
|
||||
check_user_has_required_credentials,
|
||||
extract_credentials_from_schema,
|
||||
fetch_graph_from_store_slug,
|
||||
get_or_create_library_agent,
|
||||
match_user_credentials_to_graph,
|
||||
)
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
from backend.util.timezone_utils import (
|
||||
convert_utc_time_to_user_timezone,
|
||||
get_user_timezone_or_utc,
|
||||
)
|
||||
from backend.server.v2.library import db as library_db
|
||||
from backend.server.v2.library import model as library_model
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
config = ChatConfig()
|
||||
|
||||
# Constants for response messages
|
||||
MSG_DO_NOT_RUN_AGAIN = "Do not run again unless explicitly requested."
|
||||
MSG_DO_NOT_SCHEDULE_AGAIN = "Do not schedule again unless explicitly requested."
|
||||
MSG_ASK_USER_FOR_VALUES = (
|
||||
"Ask the user what values to use, or call again with use_defaults=true "
|
||||
"to run with default values."
|
||||
)
|
||||
MSG_WHAT_VALUES_TO_USE = (
|
||||
"What values would you like to use, or would you like to run with defaults?"
|
||||
)
|
||||
|
||||
|
||||
class RunAgentInput(BaseModel):
|
||||
"""Input parameters for the run_agent tool."""
|
||||
|
||||
username_agent_slug: str = ""
|
||||
inputs: dict[str, Any] = Field(default_factory=dict)
|
||||
use_defaults: bool = False
|
||||
schedule_name: str = ""
|
||||
cron: str = ""
|
||||
timezone: str = "UTC"
|
||||
|
||||
@field_validator(
|
||||
"username_agent_slug", "schedule_name", "cron", "timezone", mode="before"
|
||||
)
|
||||
@classmethod
|
||||
def strip_strings(cls, v: Any) -> Any:
|
||||
"""Strip whitespace from string fields."""
|
||||
return v.strip() if isinstance(v, str) else v
|
||||
|
||||
|
||||
class RunAgentTool(BaseTool):
|
||||
"""Tool for executing an agent manually with immediate results."""
|
||||
"""Unified tool for agent operations with automatic state detection.
|
||||
|
||||
The tool automatically determines what to do based on provided parameters:
|
||||
1. Fetches agent details (always, silently)
|
||||
2. Checks if required inputs are provided
|
||||
3. Checks if user has required credentials
|
||||
4. Runs immediately OR schedules (if cron is provided)
|
||||
|
||||
The response tells the caller what's missing or confirms execution.
|
||||
"""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
@@ -36,11 +89,15 @@ class RunAgentTool(BaseTool):
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return """Run an agent immediately (one-off manual execution).
|
||||
IMPORTANT: Before calling this tool, you MUST first call get_agent_details to determine what inputs are required.
|
||||
The 'inputs' parameter must be a dictionary containing ALL required input values identified by get_agent_details.
|
||||
Example: If get_agent_details shows required inputs 'search_query' and 'max_results', you must pass:
|
||||
inputs={"search_query": "user's query", "max_results": 10}"""
|
||||
return """Run or schedule an agent from the marketplace.
|
||||
|
||||
The tool automatically handles the setup flow:
|
||||
- Returns missing inputs if required fields are not provided
|
||||
- Returns missing credentials if user needs to configure them
|
||||
- Executes immediately if all requirements are met
|
||||
- Schedules execution if cron expression is provided
|
||||
|
||||
For scheduled execution, provide: schedule_name, cron, and optionally timezone."""
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
@@ -49,20 +106,36 @@ class RunAgentTool(BaseTool):
|
||||
"properties": {
|
||||
"username_agent_slug": {
|
||||
"type": "string",
|
||||
"description": "The ID of the agent to run (graph ID or marketplace slug)",
|
||||
"description": "Agent identifier in format 'username/agent-name'",
|
||||
},
|
||||
"inputs": {
|
||||
"type": "object",
|
||||
"description": 'REQUIRED: Dictionary of input values. Must include ALL required inputs from get_agent_details. Format: {"input_name": value}',
|
||||
"description": "Input values for the agent",
|
||||
"additionalProperties": True,
|
||||
},
|
||||
"use_defaults": {
|
||||
"type": "boolean",
|
||||
"description": "Set to true to run with default values (user must confirm)",
|
||||
},
|
||||
"schedule_name": {
|
||||
"type": "string",
|
||||
"description": "Name for scheduled execution (triggers scheduling mode)",
|
||||
},
|
||||
"cron": {
|
||||
"type": "string",
|
||||
"description": "Cron expression (5 fields: min hour day month weekday)",
|
||||
},
|
||||
"timezone": {
|
||||
"type": "string",
|
||||
"description": "IANA timezone for schedule (default: UTC)",
|
||||
},
|
||||
},
|
||||
"required": ["username_agent_slug"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
"""This tool requires authentication."""
|
||||
"""All operations require authentication."""
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
@@ -71,186 +144,357 @@ class RunAgentTool(BaseTool):
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
"""Execute an agent manually.
|
||||
|
||||
Args:
|
||||
user_id: Authenticated user ID
|
||||
session_id: Chat session ID
|
||||
**kwargs: Execution parameters
|
||||
|
||||
Returns:
|
||||
JSON formatted execution result
|
||||
|
||||
"""
|
||||
|
||||
assert (
|
||||
user_id is not None
|
||||
), "User ID is required to run an agent. Superclass enforces authentication."
|
||||
|
||||
"""Execute the tool with automatic state detection."""
|
||||
params = RunAgentInput(**kwargs)
|
||||
session_id = session.session_id
|
||||
username_agent_slug = kwargs.get("username_agent_slug", "").strip()
|
||||
inputs = kwargs.get("inputs", {})
|
||||
|
||||
# Call _execute directly since we're calling internally from another tool
|
||||
response = await GetRequiredSetupInfoTool()._execute(user_id, session, **kwargs)
|
||||
|
||||
if not isinstance(response, SetupRequirementsResponse):
|
||||
# Validate agent slug format
|
||||
if not params.username_agent_slug or "/" not in params.username_agent_slug:
|
||||
return ErrorResponse(
|
||||
message="Failed to get required setup information",
|
||||
message="Please provide an agent slug in format 'username/agent-name'",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
setup_info = SetupInfo.model_validate(response.setup_info)
|
||||
|
||||
if not setup_info.user_readiness.ready_to_run:
|
||||
# Auth is required
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message=f"User is not ready to run the agent. User Readiness: {setup_info.user_readiness.model_dump_json()} Requirments: {setup_info.requirements}",
|
||||
message="Authentication required. Please sign in to use this tool.",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Get the graph using the graph_id and graph_version from the setup response
|
||||
if not response.graph_id or not response.graph_version:
|
||||
return ErrorResponse(
|
||||
message=f"Graph information not available for {username_agent_slug}",
|
||||
session_id=session_id,
|
||||
)
|
||||
# Determine if this is a schedule request
|
||||
is_schedule = bool(params.schedule_name or params.cron)
|
||||
|
||||
graph = await get_graph(
|
||||
graph_id=response.graph_id,
|
||||
version=response.graph_version,
|
||||
user_id=None, # Public access for store graphs
|
||||
include_subgraphs=True,
|
||||
)
|
||||
try:
|
||||
# Step 1: Fetch agent details (always happens first)
|
||||
username, agent_name = params.username_agent_slug.split("/", 1)
|
||||
graph, store_agent = await fetch_graph_from_store_slug(username, agent_name)
|
||||
|
||||
if not graph:
|
||||
return ErrorResponse(
|
||||
message=f"Graph {username_agent_slug} ({response.graph_id}v{response.graph_version}) not found",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if graph and (
|
||||
session.successful_agent_runs.get(graph.id, 0) >= config.max_agent_runs
|
||||
):
|
||||
return ErrorResponse(
|
||||
message="Maximum number of agent schedules reached. You can't schedule this agent again in this chat session.",
|
||||
session_id=session.session_id,
|
||||
)
|
||||
|
||||
# Check if we already have a library agent for this graph
|
||||
existing_library_agent = await library_db.get_library_agent_by_graph_id(
|
||||
graph_id=graph.id, user_id=user_id
|
||||
)
|
||||
if not existing_library_agent:
|
||||
# Now we need to add the graph to the users library
|
||||
library_agents: list[library_model.LibraryAgent] = (
|
||||
await library_db.create_library_agent(
|
||||
graph=graph,
|
||||
user_id=user_id,
|
||||
create_library_agents_for_sub_graphs=False,
|
||||
)
|
||||
)
|
||||
assert len(library_agents) == 1, "Expected 1 library agent to be created"
|
||||
library_agent = library_agents[0]
|
||||
else:
|
||||
library_agent = existing_library_agent
|
||||
|
||||
# Build credentials mapping for the graph
|
||||
graph_credentials_inputs: dict[str, CredentialsMetaInput] = {}
|
||||
|
||||
# Get aggregated credentials requirements from the graph
|
||||
aggregated_creds = graph.aggregate_credentials_inputs()
|
||||
logger.debug(
|
||||
f"Matching credentials for graph {graph.id}: {len(aggregated_creds)} required"
|
||||
)
|
||||
|
||||
if aggregated_creds:
|
||||
# Get all available credentials for the user
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
available_creds = await creds_manager.store.get_all_creds(user_id)
|
||||
|
||||
# Track unmatched credentials for error reporting
|
||||
missing_creds: list[str] = []
|
||||
|
||||
# For each required credential field, find a matching user credential
|
||||
# field_info.provider is a frozenset because aggregate_credentials_inputs()
|
||||
# combines requirements from multiple nodes. A credential matches if its
|
||||
# provider is in the set of acceptable providers.
|
||||
for credential_field_name, (
|
||||
credential_requirements,
|
||||
_node_fields,
|
||||
) in aggregated_creds.items():
|
||||
# Find first matching credential by provider and type
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
for cred in available_creds
|
||||
if cred.provider in credential_requirements.provider
|
||||
and cred.type in credential_requirements.supported_types
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
if matching_cred:
|
||||
# Use Pydantic validation to ensure type safety
|
||||
try:
|
||||
graph_credentials_inputs[credential_field_name] = (
|
||||
CredentialsMetaInput(
|
||||
id=matching_cred.id,
|
||||
provider=matching_cred.provider, # type: ignore
|
||||
type=matching_cred.type,
|
||||
title=matching_cred.title,
|
||||
)
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to create CredentialsMetaInput for field '{credential_field_name}': "
|
||||
f"provider={matching_cred.provider}, type={matching_cred.type}, "
|
||||
f"credential_id={matching_cred.id}",
|
||||
exc_info=True,
|
||||
)
|
||||
missing_creds.append(
|
||||
f"{credential_field_name} (validation failed: {e})"
|
||||
)
|
||||
else:
|
||||
missing_creds.append(
|
||||
f"{credential_field_name} "
|
||||
f"(requires provider in {list(credential_requirements.provider)}, "
|
||||
f"type in {list(credential_requirements.supported_types)})"
|
||||
)
|
||||
|
||||
# Fail fast if any required credentials are missing
|
||||
if missing_creds:
|
||||
logger.warning(
|
||||
f"Cannot execute agent - missing credentials: {missing_creds}"
|
||||
)
|
||||
if not graph:
|
||||
return ErrorResponse(
|
||||
message=f"Cannot execute agent: missing {len(missing_creds)} required credential(s). You need to call the get_required_setup_info tool to setup the credentials."
|
||||
f"Please set up the following credentials: {', '.join(missing_creds)}",
|
||||
message=f"Agent '{params.username_agent_slug}' not found in marketplace",
|
||||
session_id=session_id,
|
||||
details={"missing_credentials": missing_creds},
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Credential matching complete: {len(graph_credentials_inputs)}/{len(aggregated_creds)} matched"
|
||||
# Step 2: Check credentials
|
||||
graph_credentials, missing_creds = await match_user_credentials_to_graph(
|
||||
user_id, graph
|
||||
)
|
||||
|
||||
# At this point we know the user is ready to run the agent
|
||||
# So we can execute the agent
|
||||
if missing_creds:
|
||||
# Return credentials needed response with input data info
|
||||
# The UI handles credential setup automatically, so the message
|
||||
# focuses on asking about input data
|
||||
credentials = extract_credentials_from_schema(
|
||||
graph.credentials_input_schema
|
||||
)
|
||||
missing_creds_check = await check_user_has_required_credentials(
|
||||
user_id, credentials
|
||||
)
|
||||
missing_credentials_dict = {
|
||||
c.id: c.model_dump() for c in missing_creds_check
|
||||
}
|
||||
|
||||
return SetupRequirementsResponse(
|
||||
message=self._build_inputs_message(graph, MSG_WHAT_VALUES_TO_USE),
|
||||
session_id=session_id,
|
||||
setup_info=SetupInfo(
|
||||
agent_id=graph.id,
|
||||
agent_name=graph.name,
|
||||
user_readiness=UserReadiness(
|
||||
has_all_credentials=False,
|
||||
missing_credentials=missing_credentials_dict,
|
||||
ready_to_run=False,
|
||||
),
|
||||
requirements={
|
||||
"credentials": [c.model_dump() for c in credentials],
|
||||
"inputs": self._get_inputs_list(graph.input_schema),
|
||||
"execution_modes": self._get_execution_modes(graph),
|
||||
},
|
||||
),
|
||||
graph_id=graph.id,
|
||||
graph_version=graph.version,
|
||||
)
|
||||
|
||||
# Step 3: Check inputs
|
||||
# Get all available input fields from schema
|
||||
input_properties = graph.input_schema.get("properties", {})
|
||||
required_fields = set(graph.input_schema.get("required", []))
|
||||
provided_inputs = set(params.inputs.keys())
|
||||
|
||||
# If agent has inputs but none were provided AND use_defaults is not set,
|
||||
# always show what's available first so user can decide
|
||||
if input_properties and not provided_inputs and not params.use_defaults:
|
||||
credentials = extract_credentials_from_schema(
|
||||
graph.credentials_input_schema
|
||||
)
|
||||
return AgentDetailsResponse(
|
||||
message=self._build_inputs_message(graph, MSG_ASK_USER_FOR_VALUES),
|
||||
session_id=session_id,
|
||||
agent=self._build_agent_details(graph, credentials),
|
||||
user_authenticated=True,
|
||||
graph_id=graph.id,
|
||||
graph_version=graph.version,
|
||||
)
|
||||
|
||||
# Check if required inputs are missing (and not using defaults)
|
||||
missing_inputs = required_fields - provided_inputs
|
||||
|
||||
if missing_inputs and not params.use_defaults:
|
||||
# Return agent details with missing inputs info
|
||||
credentials = extract_credentials_from_schema(
|
||||
graph.credentials_input_schema
|
||||
)
|
||||
return AgentDetailsResponse(
|
||||
message=(
|
||||
f"Agent '{graph.name}' is missing required inputs: "
|
||||
f"{', '.join(missing_inputs)}. "
|
||||
"Please provide these values to run the agent."
|
||||
),
|
||||
session_id=session_id,
|
||||
agent=self._build_agent_details(graph, credentials),
|
||||
user_authenticated=True,
|
||||
graph_id=graph.id,
|
||||
graph_version=graph.version,
|
||||
)
|
||||
|
||||
# Step 4: Execute or Schedule
|
||||
if is_schedule:
|
||||
return await self._schedule_agent(
|
||||
user_id=user_id,
|
||||
session=session,
|
||||
graph=graph,
|
||||
graph_credentials=graph_credentials,
|
||||
inputs=params.inputs,
|
||||
schedule_name=params.schedule_name,
|
||||
cron=params.cron,
|
||||
timezone=params.timezone,
|
||||
)
|
||||
else:
|
||||
return await self._run_agent(
|
||||
user_id=user_id,
|
||||
session=session,
|
||||
graph=graph,
|
||||
graph_credentials=graph_credentials,
|
||||
inputs=params.inputs,
|
||||
)
|
||||
|
||||
except NotFoundError as e:
|
||||
return ErrorResponse(
|
||||
message=f"Agent '{params.username_agent_slug}' not found",
|
||||
error=str(e) if str(e) else "not_found",
|
||||
session_id=session_id,
|
||||
)
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Database error: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to process request: {e!s}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing agent request: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to process request: {e!s}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
def _get_inputs_list(self, input_schema: dict[str, Any]) -> list[dict[str, Any]]:
|
||||
"""Extract inputs list from schema."""
|
||||
inputs_list = []
|
||||
if isinstance(input_schema, dict) and "properties" in input_schema:
|
||||
for field_name, field_schema in input_schema["properties"].items():
|
||||
inputs_list.append(
|
||||
{
|
||||
"name": field_name,
|
||||
"title": field_schema.get("title", field_name),
|
||||
"type": field_schema.get("type", "string"),
|
||||
"description": field_schema.get("description", ""),
|
||||
"required": field_name in input_schema.get("required", []),
|
||||
}
|
||||
)
|
||||
return inputs_list
|
||||
|
||||
def _get_execution_modes(self, graph: GraphModel) -> list[str]:
|
||||
"""Get available execution modes for the graph."""
|
||||
trigger_info = graph.trigger_setup_info
|
||||
if trigger_info is None:
|
||||
return ["manual", "scheduled"]
|
||||
return ["webhook"]
|
||||
|
||||
def _build_inputs_message(
|
||||
self,
|
||||
graph: GraphModel,
|
||||
suffix: str,
|
||||
) -> str:
|
||||
"""Build a message describing available inputs for an agent."""
|
||||
inputs_list = self._get_inputs_list(graph.input_schema)
|
||||
required_names = [i["name"] for i in inputs_list if i["required"]]
|
||||
optional_names = [i["name"] for i in inputs_list if not i["required"]]
|
||||
|
||||
message_parts = [f"Agent '{graph.name}' accepts the following inputs:"]
|
||||
if required_names:
|
||||
message_parts.append(f"Required: {', '.join(required_names)}.")
|
||||
if optional_names:
|
||||
message_parts.append(
|
||||
f"Optional (have defaults): {', '.join(optional_names)}."
|
||||
)
|
||||
if not inputs_list:
|
||||
message_parts = [f"Agent '{graph.name}' has no required inputs."]
|
||||
message_parts.append(suffix)
|
||||
|
||||
return " ".join(message_parts)
|
||||
|
||||
def _build_agent_details(
|
||||
self,
|
||||
graph: GraphModel,
|
||||
credentials: list[CredentialsMetaInput],
|
||||
) -> AgentDetails:
|
||||
"""Build AgentDetails from a graph."""
|
||||
trigger_info = (
|
||||
graph.trigger_setup_info.model_dump() if graph.trigger_setup_info else None
|
||||
)
|
||||
return AgentDetails(
|
||||
id=graph.id,
|
||||
name=graph.name,
|
||||
description=graph.description,
|
||||
inputs=graph.input_schema,
|
||||
credentials=credentials,
|
||||
execution_options=ExecutionOptions(
|
||||
manual=trigger_info is None,
|
||||
scheduled=trigger_info is None,
|
||||
webhook=trigger_info is not None,
|
||||
),
|
||||
trigger_info=trigger_info,
|
||||
)
|
||||
|
||||
async def _run_agent(
|
||||
self,
|
||||
user_id: str,
|
||||
session: ChatSession,
|
||||
graph: GraphModel,
|
||||
graph_credentials: dict[str, CredentialsMetaInput],
|
||||
inputs: dict[str, Any],
|
||||
) -> ToolResponseBase:
|
||||
"""Execute an agent immediately."""
|
||||
session_id = session.session_id
|
||||
|
||||
# Check rate limits
|
||||
if session.successful_agent_runs.get(graph.id, 0) >= config.max_agent_runs:
|
||||
return ErrorResponse(
|
||||
message="Maximum agent runs reached for this session. Please try again later.",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Get or create library agent
|
||||
library_agent = await get_or_create_library_agent(graph, user_id)
|
||||
|
||||
# Execute
|
||||
execution = await execution_utils.add_graph_execution(
|
||||
graph_id=library_agent.graph_id,
|
||||
user_id=user_id,
|
||||
inputs=inputs,
|
||||
graph_credentials_inputs=graph_credentials_inputs,
|
||||
graph_credentials_inputs=graph_credentials,
|
||||
)
|
||||
|
||||
# Track successful run
|
||||
session.successful_agent_runs[library_agent.graph_id] = (
|
||||
session.successful_agent_runs.get(library_agent.graph_id, 0) + 1
|
||||
)
|
||||
|
||||
library_agent_link = f"/library/agents/{library_agent.id}"
|
||||
return ExecutionStartedResponse(
|
||||
message=f"Agent execution successfully started. You can add a link to the agent at: /library/agents/{library_agent.id}. Do not run this tool again unless specifically asked to run the agent again.",
|
||||
message=(
|
||||
f"Agent '{library_agent.name}' execution started successfully. "
|
||||
f"View at {library_agent_link}. "
|
||||
f"{MSG_DO_NOT_RUN_AGAIN}"
|
||||
),
|
||||
session_id=session_id,
|
||||
execution_id=execution.id,
|
||||
graph_id=library_agent.graph_id,
|
||||
graph_name=library_agent.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=library_agent_link,
|
||||
)
|
||||
|
||||
async def _schedule_agent(
|
||||
self,
|
||||
user_id: str,
|
||||
session: ChatSession,
|
||||
graph: GraphModel,
|
||||
graph_credentials: dict[str, CredentialsMetaInput],
|
||||
inputs: dict[str, Any],
|
||||
schedule_name: str,
|
||||
cron: str,
|
||||
timezone: str,
|
||||
) -> ToolResponseBase:
|
||||
"""Set up scheduled execution for an agent."""
|
||||
session_id = session.session_id
|
||||
|
||||
# Validate schedule params
|
||||
if not schedule_name:
|
||||
return ErrorResponse(
|
||||
message="schedule_name is required for scheduled execution",
|
||||
session_id=session_id,
|
||||
)
|
||||
if not cron:
|
||||
return ErrorResponse(
|
||||
message="cron expression is required for scheduled execution",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check rate limits
|
||||
if (
|
||||
session.successful_agent_schedules.get(graph.id, 0)
|
||||
>= config.max_agent_schedules
|
||||
):
|
||||
return ErrorResponse(
|
||||
message="Maximum agent schedules reached for this session.",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Get or create library agent
|
||||
library_agent = await get_or_create_library_agent(graph, user_id)
|
||||
|
||||
# Get user timezone
|
||||
user = await get_user_by_id(user_id)
|
||||
user_timezone = get_user_timezone_or_utc(user.timezone if user else timezone)
|
||||
|
||||
# Create schedule
|
||||
result = await get_scheduler_client().add_execution_schedule(
|
||||
user_id=user_id,
|
||||
graph_id=library_agent.graph_id,
|
||||
graph_version=library_agent.graph_version,
|
||||
name=schedule_name,
|
||||
cron=cron,
|
||||
input_data=inputs,
|
||||
input_credentials=graph_credentials,
|
||||
user_timezone=user_timezone,
|
||||
)
|
||||
|
||||
# Convert next_run_time to user timezone for display
|
||||
if result.next_run_time:
|
||||
result.next_run_time = convert_utc_time_to_user_timezone(
|
||||
result.next_run_time, user_timezone
|
||||
)
|
||||
|
||||
# Track successful schedule
|
||||
session.successful_agent_schedules[library_agent.graph_id] = (
|
||||
session.successful_agent_schedules.get(library_agent.graph_id, 0) + 1
|
||||
)
|
||||
|
||||
library_agent_link = f"/library/agents/{library_agent.id}"
|
||||
return ExecutionStartedResponse(
|
||||
message=(
|
||||
f"Agent '{library_agent.name}' scheduled successfully as '{schedule_name}'. "
|
||||
f"View at {library_agent_link}. "
|
||||
f"{MSG_DO_NOT_SCHEDULE_AGAIN}"
|
||||
),
|
||||
session_id=session_id,
|
||||
execution_id=result.id,
|
||||
graph_id=library_agent.graph_id,
|
||||
graph_name=library_agent.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=library_agent_link,
|
||||
)
|
||||
|
||||
@@ -5,6 +5,7 @@ import pytest
|
||||
|
||||
from backend.server.v2.chat.tools._test_data import (
|
||||
make_session,
|
||||
setup_firecrawl_test_data,
|
||||
setup_llm_test_data,
|
||||
setup_test_data,
|
||||
)
|
||||
@@ -13,6 +14,7 @@ from backend.server.v2.chat.tools.run_agent import RunAgentTool
|
||||
# This is so the formatter doesn't remove the fixture imports
|
||||
setup_llm_test_data = setup_llm_test_data
|
||||
setup_test_data = setup_test_data
|
||||
setup_firecrawl_test_data = setup_firecrawl_test_data
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
@@ -169,3 +171,221 @@ async def test_run_agent_with_llm_credentials(setup_llm_test_data):
|
||||
assert result_data["graph_id"] == graph.id
|
||||
assert "graph_name" in result_data
|
||||
assert result_data["graph_name"] == "LLM Test Agent"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_data):
|
||||
"""Test that run_agent returns available inputs when called without inputs or use_defaults."""
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = RunAgentTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Execute without inputs and without use_defaults
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={},
|
||||
use_defaults=False,
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Should return agent_details type showing available inputs
|
||||
assert result_data.get("type") == "agent_details"
|
||||
assert "agent" in result_data
|
||||
assert "message" in result_data
|
||||
# Message should mention inputs
|
||||
assert "inputs" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_with_use_defaults(setup_test_data):
|
||||
"""Test that run_agent executes successfully with use_defaults=True."""
|
||||
user = setup_test_data["user"]
|
||||
graph = setup_test_data["graph"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = RunAgentTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Execute with use_defaults=True (no explicit inputs)
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={},
|
||||
use_defaults=True,
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Should execute successfully
|
||||
assert "execution_id" in result_data
|
||||
assert result_data["graph_id"] == graph.id
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
|
||||
"""Test that run_agent returns setup_requirements when credentials are missing."""
|
||||
user = setup_firecrawl_test_data["user"]
|
||||
store_submission = setup_firecrawl_test_data["store_submission"]
|
||||
|
||||
tool = RunAgentTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Execute - user doesn't have firecrawl credentials
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={"url": "https://example.com"},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Should return setup_requirements type with missing credentials
|
||||
assert result_data.get("type") == "setup_requirements"
|
||||
assert "setup_info" in result_data
|
||||
setup_info = result_data["setup_info"]
|
||||
assert "user_readiness" in setup_info
|
||||
assert setup_info["user_readiness"]["has_all_credentials"] is False
|
||||
assert len(setup_info["user_readiness"]["missing_credentials"]) > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_invalid_slug_format(setup_test_data):
|
||||
"""Test that run_agent returns error for invalid slug format (no slash)."""
|
||||
user = setup_test_data["user"]
|
||||
|
||||
tool = RunAgentTool()
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Execute with invalid slug format
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug="no-slash-here",
|
||||
inputs={},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Should return error
|
||||
assert result_data.get("type") == "error"
|
||||
assert "username/agent-name" in result_data["message"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_unauthenticated():
|
||||
"""Test that run_agent returns need_login for unauthenticated users."""
|
||||
tool = RunAgentTool()
|
||||
session = make_session(user_id=None)
|
||||
|
||||
# Execute without user_id
|
||||
response = await tool.execute(
|
||||
user_id=None,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug="test/test-agent",
|
||||
inputs={},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Base tool returns need_login type for unauthenticated users
|
||||
assert result_data.get("type") == "need_login"
|
||||
assert "sign in" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_schedule_without_cron(setup_test_data):
|
||||
"""Test that run_agent returns error when scheduling without cron expression."""
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = RunAgentTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Try to schedule without cron
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={"test_input": "test"},
|
||||
schedule_name="My Schedule",
|
||||
cron="", # Empty cron
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Should return error about missing cron
|
||||
assert result_data.get("type") == "error"
|
||||
assert "cron" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_schedule_without_name(setup_test_data):
|
||||
"""Test that run_agent returns error when scheduling without schedule_name."""
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = RunAgentTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Try to schedule without schedule_name
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={"test_input": "test"},
|
||||
schedule_name="", # Empty name
|
||||
cron="0 9 * * *",
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Should return error about missing schedule_name
|
||||
assert result_data.get("type") == "error"
|
||||
assert "schedule_name" in result_data["message"].lower()
|
||||
|
||||
@@ -1,395 +0,0 @@
|
||||
"""Tool for setting up an agent with credentials and configuration."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.graph import get_graph
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.user import get_user_by_id
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.server.v2.chat.config import ChatConfig
|
||||
from backend.server.v2.chat.model import ChatSession
|
||||
from backend.server.v2.chat.tools.get_required_setup_info import (
|
||||
GetRequiredSetupInfoTool,
|
||||
)
|
||||
from backend.server.v2.chat.tools.models import (
|
||||
ExecutionStartedResponse,
|
||||
SetupInfo,
|
||||
SetupRequirementsResponse,
|
||||
)
|
||||
from backend.server.v2.library import db as library_db
|
||||
from backend.server.v2.library import model as library_model
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.timezone_utils import (
|
||||
convert_utc_time_to_user_timezone,
|
||||
get_user_timezone_or_utc,
|
||||
)
|
||||
|
||||
from .base import BaseTool
|
||||
from .models import ErrorResponse, ToolResponseBase
|
||||
|
||||
config = ChatConfig()
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentDetails(BaseModel):
|
||||
graph_name: str
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
recommended_schedule_cron: str | None
|
||||
required_credentials: dict[str, CredentialsMetaInput]
|
||||
|
||||
|
||||
class SetupAgentTool(BaseTool):
|
||||
"""Tool for setting up an agent with scheduled execution or webhook triggers."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "schedule_agent"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return """Set up an agent with credentials and configure it for scheduled execution or webhook triggers.
|
||||
IMPORTANT: Before calling this tool, you MUST first call get_agent_details to determine what inputs are required.
|
||||
|
||||
For SCHEDULED execution:
|
||||
- Cron format: "minute hour day month weekday" (e.g., "0 9 * * 1-5" = 9am weekdays)
|
||||
- Common patterns: "0 * * * *" (hourly), "0 0 * * *" (daily at midnight), "0 9 * * 1" (Mondays at 9am)
|
||||
- Timezone: Use IANA timezone names like "America/New_York", "Europe/London", "Asia/Tokyo"
|
||||
- The 'inputs' parameter must contain ALL required inputs from get_agent_details as a dictionary
|
||||
|
||||
For WEBHOOK triggers:
|
||||
- The agent will be triggered by external events
|
||||
- Still requires all input values from get_agent_details"""
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"username_agent_slug": {
|
||||
"type": "string",
|
||||
"description": "The marketplace agent slug (e.g., 'username/agent-name')",
|
||||
},
|
||||
"setup_type": {
|
||||
"type": "string",
|
||||
"enum": ["schedule", "webhook"],
|
||||
"description": "Type of setup: 'schedule' for cron, 'webhook' for triggers.",
|
||||
},
|
||||
"name": {
|
||||
"type": "string",
|
||||
"description": "Name for this setup/schedule (e.g., 'Daily Report', 'Weekly Summary')",
|
||||
},
|
||||
"description": {
|
||||
"type": "string",
|
||||
"description": "Description of this setup",
|
||||
},
|
||||
"cron": {
|
||||
"type": "string",
|
||||
"description": "Cron expression (5 fields: minute hour day month weekday). Examples: '0 9 * * 1-5' (9am weekdays), '*/30 * * * *' (every 30 min)",
|
||||
},
|
||||
"timezone": {
|
||||
"type": "string",
|
||||
"description": "IANA timezone (e.g., 'America/New_York', 'Europe/London', 'UTC'). Defaults to UTC if not specified.",
|
||||
},
|
||||
"inputs": {
|
||||
"type": "object",
|
||||
"description": 'REQUIRED: Dictionary with ALL required inputs from get_agent_details. Format: {"input_name": value}',
|
||||
"additionalProperties": True,
|
||||
},
|
||||
"webhook_config": {
|
||||
"type": "object",
|
||||
"description": "Webhook configuration (required if setup_type is 'webhook')",
|
||||
"additionalProperties": True,
|
||||
},
|
||||
},
|
||||
"required": ["username_agent_slug", "setup_type"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
"""This tool requires authentication."""
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
"""Set up an agent with configuration.
|
||||
|
||||
Args:
|
||||
user_id: Authenticated user ID
|
||||
session_id: Chat session ID
|
||||
**kwargs: Setup parameters
|
||||
|
||||
Returns:
|
||||
JSON formatted setup result
|
||||
|
||||
"""
|
||||
assert (
|
||||
user_id is not None
|
||||
), "User ID is required to run an agent. Superclass enforces authentication."
|
||||
|
||||
session_id = session.session_id
|
||||
setup_type = kwargs.get("setup_type", "schedule").strip()
|
||||
if setup_type != "schedule":
|
||||
return ErrorResponse(
|
||||
message="Only schedule setup is supported at this time",
|
||||
session_id=session_id,
|
||||
)
|
||||
else:
|
||||
cron = kwargs.get("cron", "").strip()
|
||||
cron_name = kwargs.get("name", "").strip()
|
||||
if not cron or not cron_name:
|
||||
return ErrorResponse(
|
||||
message="Cron and name are required for schedule setup",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
username_agent_slug = kwargs.get("username_agent_slug", "").strip()
|
||||
inputs = kwargs.get("inputs", {})
|
||||
|
||||
library_agent = await self._get_or_add_library_agent(
|
||||
username_agent_slug, user_id, session, **kwargs
|
||||
)
|
||||
|
||||
if not isinstance(library_agent, AgentDetails):
|
||||
# library agent is an ErrorResponse
|
||||
return library_agent
|
||||
|
||||
if library_agent and (
|
||||
session.successful_agent_schedules.get(library_agent.graph_id, 0)
|
||||
if isinstance(library_agent, AgentDetails)
|
||||
else 0 >= config.max_agent_schedules
|
||||
):
|
||||
return ErrorResponse(
|
||||
message="Maximum number of agent schedules reached. You can't schedule this agent again in this chat session.",
|
||||
session_id=session.session_id,
|
||||
)
|
||||
# At this point we know the user is ready to run the agent
|
||||
# Create the schedule for the agent
|
||||
from backend.server.v2.library import db as library_db
|
||||
|
||||
# Get the library agent model for scheduling
|
||||
lib_agent = await library_db.get_library_agent_by_graph_id(
|
||||
graph_id=library_agent.graph_id, user_id=user_id
|
||||
)
|
||||
if not lib_agent:
|
||||
return ErrorResponse(
|
||||
message=f"Library agent not found for graph {library_agent.graph_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
return await self._add_graph_execution_schedule(
|
||||
library_agent=lib_agent,
|
||||
user_id=user_id,
|
||||
cron=cron,
|
||||
name=cron_name,
|
||||
inputs=inputs,
|
||||
credentials=library_agent.required_credentials,
|
||||
session=session,
|
||||
)
|
||||
|
||||
async def _add_graph_execution_schedule(
|
||||
self,
|
||||
library_agent: library_model.LibraryAgent,
|
||||
user_id: str,
|
||||
cron: str,
|
||||
name: str,
|
||||
inputs: dict[str, Any],
|
||||
credentials: dict[str, CredentialsMetaInput],
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ExecutionStartedResponse | ErrorResponse:
|
||||
# Use timezone from request if provided, otherwise fetch from user profile
|
||||
user = await get_user_by_id(user_id)
|
||||
user_timezone = get_user_timezone_or_utc(user.timezone if user else None)
|
||||
session_id = session.session_id
|
||||
# Map required credentials (schema field names) to actual user credential IDs
|
||||
# credentials param contains CredentialsMetaInput with schema field names as keys
|
||||
# We need to find the user's actual credentials that match the provider/type
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
user_credentials = await creds_manager.store.get_all_creds(user_id)
|
||||
|
||||
# Build a mapping from schema field name -> actual credential ID
|
||||
resolved_credentials: dict[str, CredentialsMetaInput] = {}
|
||||
missing_credentials: list[str] = []
|
||||
|
||||
for field_name, cred_meta in credentials.items():
|
||||
# Find a matching credential from the user's credentials
|
||||
matching_cred = next(
|
||||
(
|
||||
c
|
||||
for c in user_credentials
|
||||
if c.provider == cred_meta.provider and c.type == cred_meta.type
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
if matching_cred:
|
||||
# Use the actual credential ID instead of the schema field name
|
||||
# Create a new CredentialsMetaInput with the actual credential ID
|
||||
# but keep the same provider/type from the original meta
|
||||
resolved_credentials[field_name] = CredentialsMetaInput(
|
||||
id=matching_cred.id,
|
||||
provider=cred_meta.provider,
|
||||
type=cred_meta.type,
|
||||
title=cred_meta.title,
|
||||
)
|
||||
else:
|
||||
missing_credentials.append(
|
||||
f"{cred_meta.title} ({cred_meta.provider}/{cred_meta.type})"
|
||||
)
|
||||
|
||||
if missing_credentials:
|
||||
return ErrorResponse(
|
||||
message=f"Cannot execute agent: missing {len(missing_credentials)} required credential(s). You need to call the get_required_setup_info tool to setup the credentials.",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
result = await get_scheduler_client().add_execution_schedule(
|
||||
user_id=user_id,
|
||||
graph_id=library_agent.graph_id,
|
||||
graph_version=library_agent.graph_version,
|
||||
name=name,
|
||||
cron=cron,
|
||||
input_data=inputs,
|
||||
input_credentials=resolved_credentials,
|
||||
user_timezone=user_timezone,
|
||||
)
|
||||
|
||||
# Convert the next_run_time back to user timezone for display
|
||||
if result.next_run_time:
|
||||
result.next_run_time = convert_utc_time_to_user_timezone(
|
||||
result.next_run_time, user_timezone
|
||||
)
|
||||
|
||||
session.successful_agent_schedules[library_agent.graph_id] = (
|
||||
session.successful_agent_schedules.get(library_agent.graph_id, 0) + 1
|
||||
)
|
||||
|
||||
return ExecutionStartedResponse(
|
||||
message=f"Agent execution successfully scheduled. You can add a link to the agent at: /library/agents/{library_agent.id}. Do not run this tool again unless specifically asked to run the agent again.",
|
||||
session_id=session_id,
|
||||
execution_id=result.id,
|
||||
graph_id=library_agent.graph_id,
|
||||
graph_name=library_agent.name,
|
||||
)
|
||||
|
||||
async def _get_or_add_library_agent(
|
||||
self, agent_id: str, user_id: str, session: ChatSession, **kwargs
|
||||
) -> AgentDetails | ErrorResponse:
|
||||
# Call _execute directly since we're calling internally from another tool
|
||||
session_id = session.session_id
|
||||
response = await GetRequiredSetupInfoTool()._execute(user_id, session, **kwargs)
|
||||
|
||||
if not isinstance(response, SetupRequirementsResponse):
|
||||
return ErrorResponse(
|
||||
message="Failed to get required setup information",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
setup_info = SetupInfo.model_validate(response.setup_info)
|
||||
|
||||
if not setup_info.user_readiness.ready_to_run:
|
||||
return ErrorResponse(
|
||||
message=f"User is not ready to run the agent. User Readiness: {setup_info.user_readiness.model_dump_json()} Requirments: {setup_info.requirements}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Get the graph using the graph_id and graph_version from the setup response
|
||||
if not response.graph_id or not response.graph_version:
|
||||
return ErrorResponse(
|
||||
message=f"Graph information not available for {agent_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
graph = await get_graph(
|
||||
graph_id=response.graph_id,
|
||||
version=response.graph_version,
|
||||
user_id=None, # Public access for store graphs
|
||||
include_subgraphs=True,
|
||||
)
|
||||
if not graph:
|
||||
return ErrorResponse(
|
||||
message=f"Graph {agent_id} ({response.graph_id}v{response.graph_version}) not found",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
recommended_schedule_cron = graph.recommended_schedule_cron
|
||||
|
||||
# Extract credentials from the JSON schema properties
|
||||
credentials_input_schema = graph.credentials_input_schema
|
||||
required_credentials: dict[str, CredentialsMetaInput] = {}
|
||||
if (
|
||||
isinstance(credentials_input_schema, dict)
|
||||
and "properties" in credentials_input_schema
|
||||
):
|
||||
for cred_name, cred_schema in credentials_input_schema[
|
||||
"properties"
|
||||
].items():
|
||||
# Get provider from credentials_provider array or properties.provider.const
|
||||
provider = "unknown"
|
||||
if (
|
||||
"credentials_provider" in cred_schema
|
||||
and cred_schema["credentials_provider"]
|
||||
):
|
||||
provider = cred_schema["credentials_provider"][0]
|
||||
elif (
|
||||
"properties" in cred_schema
|
||||
and "provider" in cred_schema["properties"]
|
||||
):
|
||||
provider = cred_schema["properties"]["provider"].get(
|
||||
"const", "unknown"
|
||||
)
|
||||
|
||||
# Get type from credentials_types array or properties.type.const
|
||||
cred_type = "api_key" # Default
|
||||
if (
|
||||
"credentials_types" in cred_schema
|
||||
and cred_schema["credentials_types"]
|
||||
):
|
||||
cred_type = cred_schema["credentials_types"][0]
|
||||
elif (
|
||||
"properties" in cred_schema and "type" in cred_schema["properties"]
|
||||
):
|
||||
cred_type = cred_schema["properties"]["type"].get(
|
||||
"const", "api_key"
|
||||
)
|
||||
|
||||
required_credentials[cred_name] = CredentialsMetaInput(
|
||||
id=cred_name,
|
||||
title=cred_schema.get("title", cred_name),
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type,
|
||||
)
|
||||
|
||||
# Check if we already have a library agent for this graph
|
||||
existing_library_agent = await library_db.get_library_agent_by_graph_id(
|
||||
graph_id=graph.id, user_id=user_id
|
||||
)
|
||||
if not existing_library_agent:
|
||||
# Now we need to add the graph to the users library
|
||||
library_agents: list[library_model.LibraryAgent] = (
|
||||
await library_db.create_library_agent(
|
||||
graph=graph,
|
||||
user_id=user_id,
|
||||
create_library_agents_for_sub_graphs=False,
|
||||
)
|
||||
)
|
||||
assert len(library_agents) == 1, "Expected 1 library agent to be created"
|
||||
library_agent = library_agents[0]
|
||||
else:
|
||||
library_agent = existing_library_agent
|
||||
|
||||
return AgentDetails(
|
||||
graph_name=graph.name,
|
||||
graph_id=library_agent.graph_id,
|
||||
graph_version=library_agent.graph_version,
|
||||
recommended_schedule_cron=recommended_schedule_cron,
|
||||
required_credentials=required_credentials,
|
||||
)
|
||||
@@ -1,422 +0,0 @@
|
||||
import uuid
|
||||
|
||||
import orjson
|
||||
import pytest
|
||||
|
||||
from backend.server.v2.chat.tools._test_data import (
|
||||
make_session,
|
||||
setup_llm_test_data,
|
||||
setup_test_data,
|
||||
)
|
||||
from backend.server.v2.chat.tools.setup_agent import SetupAgentTool
|
||||
from backend.util.clients import get_scheduler_client
|
||||
|
||||
# This is so the formatter doesn't remove the fixture imports
|
||||
setup_llm_test_data = setup_llm_test_data
|
||||
setup_test_data = setup_test_data
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_setup_agent_missing_cron(setup_test_data):
|
||||
"""Test error when cron is missing for schedule setup"""
|
||||
# Use test data from fixture
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = SetupAgentTool()
|
||||
|
||||
# Build the session
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Build the proper marketplace agent_id format
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
# Execute without cron
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
setup_type="schedule",
|
||||
inputs={"test_input": "Hello World"},
|
||||
# Missing: cron and name
|
||||
)
|
||||
|
||||
# Verify error response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
assert "message" in result_data
|
||||
assert (
|
||||
"cron" in result_data["message"].lower()
|
||||
or "name" in result_data["message"].lower()
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_setup_agent_webhook_not_supported(setup_test_data):
|
||||
"""Test error when webhook setup is attempted"""
|
||||
# Use test data from fixture
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = SetupAgentTool()
|
||||
|
||||
# Build the session
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Build the proper marketplace agent_id format
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
# Execute with webhook setup_type
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
setup_type="webhook",
|
||||
inputs={"test_input": "Hello World"},
|
||||
)
|
||||
|
||||
# Verify error response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
assert "message" in result_data
|
||||
message_lower = result_data["message"].lower()
|
||||
assert "schedule" in message_lower and "supported" in message_lower
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
@pytest.mark.skip(reason="Requires scheduler service to be running")
|
||||
async def test_setup_agent_schedule_success(setup_test_data):
|
||||
"""Test successfully setting up an agent with a schedule"""
|
||||
# Use test data from fixture
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = SetupAgentTool()
|
||||
|
||||
# Build the session
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Build the proper marketplace agent_id format
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
# Execute with schedule setup
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
setup_type="schedule",
|
||||
name="Test Schedule",
|
||||
description="Test schedule description",
|
||||
cron="0 9 * * *", # Daily at 9am
|
||||
timezone="UTC",
|
||||
inputs={"test_input": "Hello World"},
|
||||
)
|
||||
|
||||
# Verify the response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
# Parse the result JSON
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Check for execution started
|
||||
assert "message" in result_data
|
||||
assert "execution_id" in result_data
|
||||
assert "graph_id" in result_data
|
||||
assert "graph_name" in result_data
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
@pytest.mark.skip(reason="Requires scheduler service to be running")
|
||||
async def test_setup_agent_with_credentials(setup_llm_test_data):
|
||||
"""Test setting up an agent that requires credentials"""
|
||||
# Use test data from fixture (includes OpenAI credentials)
|
||||
user = setup_llm_test_data["user"]
|
||||
store_submission = setup_llm_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = SetupAgentTool()
|
||||
|
||||
# Build the session
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Build the proper marketplace agent_id format
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
# Execute with schedule setup
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
setup_type="schedule",
|
||||
name="LLM Schedule",
|
||||
description="LLM schedule with credentials",
|
||||
cron="*/30 * * * *", # Every 30 minutes
|
||||
timezone="America/New_York",
|
||||
inputs={"user_prompt": "What is 2+2?"},
|
||||
)
|
||||
|
||||
# Verify the response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
# Parse the result JSON
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
|
||||
# Should succeed since user has OpenAI credentials
|
||||
assert "execution_id" in result_data
|
||||
assert "graph_id" in result_data
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_setup_agent_invalid_agent(setup_test_data):
|
||||
"""Test error when agent doesn't exist"""
|
||||
# Use test data from fixture
|
||||
user = setup_test_data["user"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = SetupAgentTool()
|
||||
|
||||
# Build the session
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Execute with non-existent agent
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug="nonexistent/agent",
|
||||
setup_type="schedule",
|
||||
name="Test Schedule",
|
||||
cron="0 9 * * *",
|
||||
inputs={},
|
||||
)
|
||||
|
||||
# Verify error response
|
||||
assert response is not None
|
||||
assert hasattr(response, "result")
|
||||
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
assert "message" in result_data
|
||||
# Should fail to find the agent
|
||||
assert any(
|
||||
phrase in result_data["message"].lower()
|
||||
for phrase in ["not found", "failed", "error"]
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
@pytest.mark.skip(reason="Requires scheduler service to be running")
|
||||
async def test_setup_agent_schedule_created_in_scheduler(setup_test_data):
|
||||
"""Test that the schedule is actually created in the scheduler service"""
|
||||
# Use test data from fixture
|
||||
user = setup_test_data["user"]
|
||||
graph = setup_test_data["graph"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = SetupAgentTool()
|
||||
|
||||
# Build the session
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Build the proper marketplace agent_id format
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
# Create a unique schedule name to identify this test
|
||||
schedule_name = f"Test Schedule {uuid.uuid4()}"
|
||||
|
||||
# Execute with schedule setup
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
setup_type="schedule",
|
||||
name=schedule_name,
|
||||
description="Test schedule to verify credentials",
|
||||
cron="0 0 * * *", # Daily at midnight
|
||||
timezone="UTC",
|
||||
inputs={"test_input": "Scheduled execution"},
|
||||
)
|
||||
|
||||
# Verify the response
|
||||
assert response is not None
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
assert "execution_id" in result_data
|
||||
|
||||
# Now verify the schedule was created in the scheduler service
|
||||
scheduler = get_scheduler_client()
|
||||
schedules = await scheduler.get_execution_schedules(graph.id, user.id)
|
||||
|
||||
# Find our schedule
|
||||
our_schedule = None
|
||||
for schedule in schedules:
|
||||
if schedule.name == schedule_name:
|
||||
our_schedule = schedule
|
||||
break
|
||||
|
||||
assert (
|
||||
our_schedule is not None
|
||||
), f"Schedule '{schedule_name}' not found in scheduler"
|
||||
assert our_schedule.cron == "0 0 * * *"
|
||||
assert our_schedule.graph_id == graph.id
|
||||
|
||||
# Clean up: delete the schedule
|
||||
await scheduler.delete_schedule(our_schedule.id, user_id=user.id)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
@pytest.mark.skip(reason="Requires scheduler service to be running")
|
||||
async def test_setup_agent_schedule_with_credentials_triggered(setup_llm_test_data):
|
||||
"""Test that credentials are properly passed when a schedule is triggered"""
|
||||
# Use test data from fixture (includes OpenAI credentials)
|
||||
user = setup_llm_test_data["user"]
|
||||
graph = setup_llm_test_data["graph"]
|
||||
store_submission = setup_llm_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = SetupAgentTool()
|
||||
|
||||
# Build the session
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Build the proper marketplace agent_id format
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
# Create a unique schedule name
|
||||
schedule_name = f"LLM Test Schedule {uuid.uuid4()}"
|
||||
|
||||
# Execute with schedule setup
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
setup_type="schedule",
|
||||
name=schedule_name,
|
||||
description="Test LLM schedule with credentials",
|
||||
cron="* * * * *", # Every minute (for testing)
|
||||
timezone="UTC",
|
||||
inputs={"user_prompt": "Test prompt for credentials"},
|
||||
)
|
||||
|
||||
# Verify the response
|
||||
assert response is not None
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
assert "execution_id" in result_data
|
||||
|
||||
# Get the schedule from the scheduler
|
||||
scheduler = get_scheduler_client()
|
||||
schedules = await scheduler.get_execution_schedules(graph.id, user.id)
|
||||
|
||||
# Find our schedule
|
||||
our_schedule = None
|
||||
for schedule in schedules:
|
||||
if schedule.name == schedule_name:
|
||||
our_schedule = schedule
|
||||
break
|
||||
|
||||
assert our_schedule is not None, f"Schedule '{schedule_name}' not found"
|
||||
|
||||
# Verify the schedule has the correct input data
|
||||
assert our_schedule.input_data is not None
|
||||
assert "user_prompt" in our_schedule.input_data
|
||||
assert our_schedule.input_data["user_prompt"] == "Test prompt for credentials"
|
||||
|
||||
# Verify credentials are stored in the schedule
|
||||
# The credentials should be stored as input_credentials
|
||||
assert our_schedule.input_credentials is not None
|
||||
|
||||
# The credentials should contain the OpenAI provider credential
|
||||
# Note: The exact structure depends on how credentials are serialized
|
||||
# We're checking that credentials data exists and has the right provider
|
||||
if our_schedule.input_credentials:
|
||||
# Convert to dict if needed
|
||||
creds_dict = (
|
||||
our_schedule.input_credentials
|
||||
if isinstance(our_schedule.input_credentials, dict)
|
||||
else {}
|
||||
)
|
||||
|
||||
# Check if any credential has openai provider
|
||||
has_openai_cred = False
|
||||
for cred_key, cred_value in creds_dict.items():
|
||||
if isinstance(cred_value, dict):
|
||||
if cred_value.get("provider") == "openai":
|
||||
has_openai_cred = True
|
||||
# Verify the credential has the expected structure
|
||||
assert "id" in cred_value or "api_key" in cred_value
|
||||
break
|
||||
|
||||
# If we have LLM block, we should have stored credentials
|
||||
assert has_openai_cred, "OpenAI credentials not found in schedule"
|
||||
|
||||
# Clean up: delete the schedule
|
||||
await scheduler.delete_schedule(our_schedule.id, user_id=user.id)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
@pytest.mark.skip(reason="Requires scheduler service to be running")
|
||||
async def test_setup_agent_creates_library_agent(setup_test_data):
|
||||
"""Test that setup creates a library agent for the user"""
|
||||
# Use test data from fixture
|
||||
user = setup_test_data["user"]
|
||||
graph = setup_test_data["graph"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
# Create the tool instance
|
||||
tool = SetupAgentTool()
|
||||
|
||||
# Build the session
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Build the proper marketplace agent_id format
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
|
||||
# Execute with schedule setup
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session=session,
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
setup_type="schedule",
|
||||
name="Library Test Schedule",
|
||||
cron="0 12 * * *", # Daily at noon
|
||||
inputs={"test_input": "Library test"},
|
||||
)
|
||||
|
||||
# Verify the response
|
||||
assert response is not None
|
||||
assert isinstance(response.result, str)
|
||||
result_data = orjson.loads(response.result)
|
||||
assert "graph_id" in result_data
|
||||
assert result_data["graph_id"] == graph.id
|
||||
|
||||
# Verify library agent was created
|
||||
from backend.server.v2.library import db as library_db
|
||||
|
||||
library_agent = await library_db.get_library_agent_by_graph_id(
|
||||
graph_id=graph.id, user_id=user.id
|
||||
)
|
||||
assert library_agent is not None
|
||||
assert library_agent.graph_id == graph.id
|
||||
assert library_agent.name == "Test Agent"
|
||||
288
autogpt_platform/backend/backend/server/v2/chat/tools/utils.py
Normal file
288
autogpt_platform/backend/backend/server/v2/chat/tools/utils.py
Normal file
@@ -0,0 +1,288 @@
|
||||
"""Shared utilities for chat tools."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.server.v2.library import db as library_db
|
||||
from backend.server.v2.library import model as library_model
|
||||
from backend.server.v2.store import db as store_db
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def fetch_graph_from_store_slug(
|
||||
username: str,
|
||||
agent_name: str,
|
||||
) -> tuple[GraphModel | None, Any | None]:
|
||||
"""
|
||||
Fetch graph from store by username/agent_name slug.
|
||||
|
||||
Args:
|
||||
username: Creator's username
|
||||
agent_name: Agent name/slug
|
||||
|
||||
Returns:
|
||||
tuple[Graph | None, StoreAgentDetails | None]: The graph and store agent details,
|
||||
or (None, None) if not found.
|
||||
|
||||
Raises:
|
||||
DatabaseError: If there's a database error during lookup.
|
||||
"""
|
||||
try:
|
||||
store_agent = await store_db.get_store_agent_details(username, agent_name)
|
||||
except NotFoundError:
|
||||
return None, None
|
||||
|
||||
# Get the graph from store listing version
|
||||
graph_meta = await store_db.get_available_graph(
|
||||
store_agent.store_listing_version_id
|
||||
)
|
||||
graph = await graph_db.get_graph(
|
||||
graph_id=graph_meta.id,
|
||||
version=graph_meta.version,
|
||||
user_id=None, # Public access
|
||||
include_subgraphs=True,
|
||||
)
|
||||
return graph, store_agent
|
||||
|
||||
|
||||
def extract_credentials_from_schema(
|
||||
credentials_input_schema: dict[str, Any] | None,
|
||||
) -> list[CredentialsMetaInput]:
|
||||
"""
|
||||
Extract credential requirements from graph's credentials_input_schema.
|
||||
|
||||
This consolidates duplicated logic from get_agent_details.py and setup_agent.py.
|
||||
|
||||
Args:
|
||||
credentials_input_schema: The credentials_input_schema from a Graph object
|
||||
|
||||
Returns:
|
||||
List of CredentialsMetaInput with provider and type info
|
||||
"""
|
||||
credentials: list[CredentialsMetaInput] = []
|
||||
|
||||
if (
|
||||
not isinstance(credentials_input_schema, dict)
|
||||
or "properties" not in credentials_input_schema
|
||||
):
|
||||
return credentials
|
||||
|
||||
for cred_name, cred_schema in credentials_input_schema["properties"].items():
|
||||
provider = _extract_provider_from_schema(cred_schema)
|
||||
cred_type = _extract_credential_type_from_schema(cred_schema)
|
||||
|
||||
credentials.append(
|
||||
CredentialsMetaInput(
|
||||
id=cred_name,
|
||||
title=cred_schema.get("title", cred_name),
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type, # type: ignore
|
||||
)
|
||||
)
|
||||
|
||||
return credentials
|
||||
|
||||
|
||||
def extract_credentials_as_dict(
|
||||
credentials_input_schema: dict[str, Any] | None,
|
||||
) -> dict[str, CredentialsMetaInput]:
|
||||
"""
|
||||
Extract credential requirements as a dict keyed by field name.
|
||||
|
||||
Args:
|
||||
credentials_input_schema: The credentials_input_schema from a Graph object
|
||||
|
||||
Returns:
|
||||
Dict mapping field name to CredentialsMetaInput
|
||||
"""
|
||||
credentials: dict[str, CredentialsMetaInput] = {}
|
||||
|
||||
if (
|
||||
not isinstance(credentials_input_schema, dict)
|
||||
or "properties" not in credentials_input_schema
|
||||
):
|
||||
return credentials
|
||||
|
||||
for cred_name, cred_schema in credentials_input_schema["properties"].items():
|
||||
provider = _extract_provider_from_schema(cred_schema)
|
||||
cred_type = _extract_credential_type_from_schema(cred_schema)
|
||||
|
||||
credentials[cred_name] = CredentialsMetaInput(
|
||||
id=cred_name,
|
||||
title=cred_schema.get("title", cred_name),
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type, # type: ignore
|
||||
)
|
||||
|
||||
return credentials
|
||||
|
||||
|
||||
def _extract_provider_from_schema(cred_schema: dict[str, Any]) -> str:
|
||||
"""Extract provider from credential schema."""
|
||||
if "credentials_provider" in cred_schema and cred_schema["credentials_provider"]:
|
||||
return cred_schema["credentials_provider"][0]
|
||||
if "properties" in cred_schema and "provider" in cred_schema["properties"]:
|
||||
return cred_schema["properties"]["provider"].get("const", "unknown")
|
||||
return "unknown"
|
||||
|
||||
|
||||
def _extract_credential_type_from_schema(cred_schema: dict[str, Any]) -> str:
|
||||
"""Extract credential type from credential schema."""
|
||||
if "credentials_types" in cred_schema and cred_schema["credentials_types"]:
|
||||
return cred_schema["credentials_types"][0]
|
||||
if "properties" in cred_schema and "type" in cred_schema["properties"]:
|
||||
return cred_schema["properties"]["type"].get("const", "api_key")
|
||||
return "api_key"
|
||||
|
||||
|
||||
async def get_or_create_library_agent(
|
||||
graph: GraphModel,
|
||||
user_id: str,
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Get existing library agent or create new one.
|
||||
|
||||
This consolidates duplicated logic from run_agent.py and setup_agent.py.
|
||||
|
||||
Args:
|
||||
graph: The Graph to add to library
|
||||
user_id: The user's ID
|
||||
|
||||
Returns:
|
||||
LibraryAgent instance
|
||||
"""
|
||||
existing = await library_db.get_library_agent_by_graph_id(
|
||||
graph_id=graph.id, user_id=user_id
|
||||
)
|
||||
if existing:
|
||||
return existing
|
||||
|
||||
library_agents = await library_db.create_library_agent(
|
||||
graph=graph,
|
||||
user_id=user_id,
|
||||
create_library_agents_for_sub_graphs=False,
|
||||
)
|
||||
assert len(library_agents) == 1, "Expected 1 library agent to be created"
|
||||
return library_agents[0]
|
||||
|
||||
|
||||
async def match_user_credentials_to_graph(
|
||||
user_id: str,
|
||||
graph: GraphModel,
|
||||
) -> tuple[dict[str, CredentialsMetaInput], list[str]]:
|
||||
"""
|
||||
Match user's available credentials against graph's required credentials.
|
||||
|
||||
Uses graph.aggregate_credentials_inputs() which handles credentials from
|
||||
multiple nodes and uses frozensets for provider matching.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
graph: The Graph with credential requirements
|
||||
|
||||
Returns:
|
||||
tuple[matched_credentials dict, missing_credential_descriptions list]
|
||||
"""
|
||||
graph_credentials_inputs: dict[str, CredentialsMetaInput] = {}
|
||||
missing_creds: list[str] = []
|
||||
|
||||
# Get aggregated credentials requirements from the graph
|
||||
aggregated_creds = graph.aggregate_credentials_inputs()
|
||||
logger.debug(
|
||||
f"Matching credentials for graph {graph.id}: {len(aggregated_creds)} required"
|
||||
)
|
||||
|
||||
if not aggregated_creds:
|
||||
return graph_credentials_inputs, missing_creds
|
||||
|
||||
# Get all available credentials for the user
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
available_creds = await creds_manager.store.get_all_creds(user_id)
|
||||
|
||||
# For each required credential field, find a matching user credential
|
||||
# field_info.provider is a frozenset because aggregate_credentials_inputs()
|
||||
# combines requirements from multiple nodes. A credential matches if its
|
||||
# provider is in the set of acceptable providers.
|
||||
for credential_field_name, (
|
||||
credential_requirements,
|
||||
_node_fields,
|
||||
) in aggregated_creds.items():
|
||||
# Find first matching credential by provider and type
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
for cred in available_creds
|
||||
if cred.provider in credential_requirements.provider
|
||||
and cred.type in credential_requirements.supported_types
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
if matching_cred:
|
||||
try:
|
||||
graph_credentials_inputs[credential_field_name] = CredentialsMetaInput(
|
||||
id=matching_cred.id,
|
||||
provider=matching_cred.provider, # type: ignore
|
||||
type=matching_cred.type,
|
||||
title=matching_cred.title,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to create CredentialsMetaInput for field '{credential_field_name}': "
|
||||
f"provider={matching_cred.provider}, type={matching_cred.type}, "
|
||||
f"credential_id={matching_cred.id}",
|
||||
exc_info=True,
|
||||
)
|
||||
missing_creds.append(
|
||||
f"{credential_field_name} (validation failed: {e})"
|
||||
)
|
||||
else:
|
||||
missing_creds.append(
|
||||
f"{credential_field_name} "
|
||||
f"(requires provider in {list(credential_requirements.provider)}, "
|
||||
f"type in {list(credential_requirements.supported_types)})"
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Credential matching complete: {len(graph_credentials_inputs)}/{len(aggregated_creds)} matched"
|
||||
)
|
||||
|
||||
return graph_credentials_inputs, missing_creds
|
||||
|
||||
|
||||
async def check_user_has_required_credentials(
|
||||
user_id: str,
|
||||
required_credentials: list[CredentialsMetaInput],
|
||||
) -> list[CredentialsMetaInput]:
|
||||
"""
|
||||
Check which required credentials the user is missing.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
required_credentials: List of required credentials
|
||||
|
||||
Returns:
|
||||
List of missing credentials (empty if user has all)
|
||||
"""
|
||||
if not required_credentials:
|
||||
return []
|
||||
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
available_creds = await creds_manager.store.get_all_creds(user_id)
|
||||
|
||||
missing: list[CredentialsMetaInput] = []
|
||||
for required in required_credentials:
|
||||
has_matching = any(
|
||||
cred.provider == required.provider and cred.type == required.type
|
||||
for cred in available_creds
|
||||
)
|
||||
if not has_matching:
|
||||
missing.append(required)
|
||||
|
||||
return missing
|
||||
@@ -0,0 +1,204 @@
|
||||
import json
|
||||
from datetime import datetime
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Union
|
||||
|
||||
from prisma.enums import ReviewStatus
|
||||
from pydantic import BaseModel, Field, field_validator, model_validator
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from prisma.models import PendingHumanReview
|
||||
|
||||
# SafeJson-compatible type alias for review data
|
||||
SafeJsonData = Union[Dict[str, Any], List[Any], str, int, float, bool, None]
|
||||
|
||||
|
||||
class PendingHumanReviewModel(BaseModel):
|
||||
"""Response model for pending human review data.
|
||||
|
||||
Represents a human review request that is awaiting user action.
|
||||
Contains all necessary information for a user to review and approve
|
||||
or reject data from a Human-in-the-Loop block execution.
|
||||
|
||||
Attributes:
|
||||
id: Unique identifier for the review record
|
||||
user_id: ID of the user who must perform the review
|
||||
node_exec_id: ID of the node execution that created this review
|
||||
graph_exec_id: ID of the graph execution containing the node
|
||||
graph_id: ID of the graph template being executed
|
||||
graph_version: Version number of the graph template
|
||||
payload: The actual data payload awaiting review
|
||||
instructions: Instructions or message for the reviewer
|
||||
editable: Whether the reviewer can edit the data
|
||||
status: Current review status (WAITING, APPROVED, or REJECTED)
|
||||
review_message: Optional message from the reviewer
|
||||
created_at: Timestamp when review was created
|
||||
updated_at: Timestamp when review was last modified
|
||||
reviewed_at: Timestamp when review was completed (if applicable)
|
||||
"""
|
||||
|
||||
node_exec_id: str = Field(description="Node execution ID (primary key)")
|
||||
user_id: str = Field(description="User ID associated with the review")
|
||||
graph_exec_id: str = Field(description="Graph execution ID")
|
||||
graph_id: str = Field(description="Graph ID")
|
||||
graph_version: int = Field(description="Graph version")
|
||||
payload: SafeJsonData = Field(description="The actual data payload awaiting review")
|
||||
instructions: str | None = Field(
|
||||
description="Instructions or message for the reviewer", default=None
|
||||
)
|
||||
editable: bool = Field(description="Whether the reviewer can edit the data")
|
||||
status: ReviewStatus = Field(description="Review status")
|
||||
review_message: str | None = Field(
|
||||
description="Optional message from the reviewer", default=None
|
||||
)
|
||||
was_edited: bool | None = Field(
|
||||
description="Whether the data was modified during review", default=None
|
||||
)
|
||||
processed: bool = Field(
|
||||
description="Whether the review result has been processed by the execution engine",
|
||||
default=False,
|
||||
)
|
||||
created_at: datetime = Field(description="When the review was created")
|
||||
updated_at: datetime | None = Field(
|
||||
description="When the review was last updated", default=None
|
||||
)
|
||||
reviewed_at: datetime | None = Field(
|
||||
description="When the review was completed", default=None
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_db(cls, review: "PendingHumanReview") -> "PendingHumanReviewModel":
|
||||
"""
|
||||
Convert a database model to a response model.
|
||||
|
||||
Uses the new flat database structure with separate columns for
|
||||
payload, instructions, and editable flag.
|
||||
|
||||
Handles invalid data gracefully by using safe defaults.
|
||||
"""
|
||||
return cls(
|
||||
node_exec_id=review.nodeExecId,
|
||||
user_id=review.userId,
|
||||
graph_exec_id=review.graphExecId,
|
||||
graph_id=review.graphId,
|
||||
graph_version=review.graphVersion,
|
||||
payload=review.payload,
|
||||
instructions=review.instructions,
|
||||
editable=review.editable,
|
||||
status=review.status,
|
||||
review_message=review.reviewMessage,
|
||||
was_edited=review.wasEdited,
|
||||
processed=review.processed,
|
||||
created_at=review.createdAt,
|
||||
updated_at=review.updatedAt,
|
||||
reviewed_at=review.reviewedAt,
|
||||
)
|
||||
|
||||
|
||||
class ReviewItem(BaseModel):
|
||||
"""Single review item for processing."""
|
||||
|
||||
node_exec_id: str = Field(description="Node execution ID to review")
|
||||
approved: bool = Field(
|
||||
description="Whether this review is approved (True) or rejected (False)"
|
||||
)
|
||||
message: str | None = Field(
|
||||
None, description="Optional review message", max_length=2000
|
||||
)
|
||||
reviewed_data: SafeJsonData | None = Field(
|
||||
None, description="Optional edited data (ignored if approved=False)"
|
||||
)
|
||||
|
||||
@field_validator("reviewed_data")
|
||||
@classmethod
|
||||
def validate_reviewed_data(cls, v):
|
||||
"""Validate that reviewed_data is safe and properly structured."""
|
||||
if v is None:
|
||||
return v
|
||||
|
||||
# Validate SafeJson compatibility
|
||||
def validate_safejson_type(obj):
|
||||
"""Ensure object only contains SafeJson compatible types."""
|
||||
if obj is None:
|
||||
return True
|
||||
elif isinstance(obj, (str, int, float, bool)):
|
||||
return True
|
||||
elif isinstance(obj, dict):
|
||||
return all(
|
||||
isinstance(k, str) and validate_safejson_type(v)
|
||||
for k, v in obj.items()
|
||||
)
|
||||
elif isinstance(obj, list):
|
||||
return all(validate_safejson_type(item) for item in obj)
|
||||
else:
|
||||
return False
|
||||
|
||||
if not validate_safejson_type(v):
|
||||
raise ValueError("reviewed_data contains non-SafeJson compatible types")
|
||||
|
||||
# Validate data size to prevent DoS attacks
|
||||
try:
|
||||
json_str = json.dumps(v)
|
||||
if len(json_str) > 1000000: # 1MB limit
|
||||
raise ValueError("reviewed_data is too large (max 1MB)")
|
||||
except (TypeError, ValueError) as e:
|
||||
raise ValueError(f"reviewed_data must be JSON serializable: {str(e)}")
|
||||
|
||||
# Ensure no dangerous nested structures (prevent infinite recursion)
|
||||
def check_depth(obj, max_depth=10, current_depth=0):
|
||||
"""Recursively check object nesting depth to prevent stack overflow attacks."""
|
||||
if current_depth > max_depth:
|
||||
raise ValueError("reviewed_data has excessive nesting depth")
|
||||
|
||||
if isinstance(obj, dict):
|
||||
for value in obj.values():
|
||||
check_depth(value, max_depth, current_depth + 1)
|
||||
elif isinstance(obj, list):
|
||||
for item in obj:
|
||||
check_depth(item, max_depth, current_depth + 1)
|
||||
|
||||
check_depth(v)
|
||||
return v
|
||||
|
||||
@field_validator("message")
|
||||
@classmethod
|
||||
def validate_message(cls, v):
|
||||
"""Validate and sanitize review message."""
|
||||
if v is not None and len(v.strip()) == 0:
|
||||
return None
|
||||
return v
|
||||
|
||||
|
||||
class ReviewRequest(BaseModel):
|
||||
"""Request model for processing ALL pending reviews for an execution.
|
||||
|
||||
This request must include ALL pending reviews for a graph execution.
|
||||
Each review will be either approved (with optional data modifications)
|
||||
or rejected (data ignored). The execution will resume only after ALL reviews are processed.
|
||||
"""
|
||||
|
||||
reviews: List[ReviewItem] = Field(
|
||||
description="All reviews with their approval status, data, and messages"
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_review_completeness(self):
|
||||
"""Validate that we have at least one review to process and no duplicates."""
|
||||
if not self.reviews:
|
||||
raise ValueError("At least one review must be provided")
|
||||
|
||||
# Ensure no duplicate node_exec_ids
|
||||
node_ids = [review.node_exec_id for review in self.reviews]
|
||||
if len(node_ids) != len(set(node_ids)):
|
||||
duplicates = [nid for nid in set(node_ids) if node_ids.count(nid) > 1]
|
||||
raise ValueError(f"Duplicate review IDs found: {', '.join(duplicates)}")
|
||||
|
||||
return self
|
||||
|
||||
|
||||
class ReviewResponse(BaseModel):
|
||||
"""Response from review endpoint."""
|
||||
|
||||
approved_count: int = Field(description="Number of reviews successfully approved")
|
||||
rejected_count: int = Field(description="Number of reviews successfully rejected")
|
||||
failed_count: int = Field(description="Number of reviews that failed processing")
|
||||
error: str | None = Field(None, description="Error message if operation failed")
|
||||
@@ -0,0 +1,492 @@
|
||||
import datetime
|
||||
|
||||
import fastapi
|
||||
import fastapi.testclient
|
||||
import pytest
|
||||
import pytest_mock
|
||||
from prisma.enums import ReviewStatus
|
||||
from pytest_snapshot.plugin import Snapshot
|
||||
|
||||
from backend.server.rest_api import handle_internal_http_error
|
||||
from backend.server.v2.executions.review.model import PendingHumanReviewModel
|
||||
from backend.server.v2.executions.review.routes import router
|
||||
|
||||
# Using a fixed timestamp for reproducible tests
|
||||
FIXED_NOW = datetime.datetime(2023, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc)
|
||||
|
||||
app = fastapi.FastAPI()
|
||||
app.include_router(router, prefix="/api/review")
|
||||
app.add_exception_handler(ValueError, handle_internal_http_error(400))
|
||||
|
||||
client = fastapi.testclient.TestClient(app)
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def setup_app_auth(mock_jwt_user):
|
||||
"""Setup auth overrides for all tests in this module"""
|
||||
from autogpt_libs.auth.jwt_utils import get_jwt_payload
|
||||
|
||||
app.dependency_overrides[get_jwt_payload] = mock_jwt_user["get_jwt_payload"]
|
||||
yield
|
||||
app.dependency_overrides.clear()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_pending_review(test_user_id: str) -> PendingHumanReviewModel:
|
||||
"""Create a sample pending review for testing"""
|
||||
return PendingHumanReviewModel(
|
||||
node_exec_id="test_node_123",
|
||||
user_id=test_user_id,
|
||||
graph_exec_id="test_graph_exec_456",
|
||||
graph_id="test_graph_789",
|
||||
graph_version=1,
|
||||
payload={"data": "test payload", "value": 42},
|
||||
instructions="Please review this data",
|
||||
editable=True,
|
||||
status=ReviewStatus.WAITING,
|
||||
review_message=None,
|
||||
was_edited=None,
|
||||
processed=False,
|
||||
created_at=FIXED_NOW,
|
||||
updated_at=None,
|
||||
reviewed_at=None,
|
||||
)
|
||||
|
||||
|
||||
def test_get_pending_reviews_empty(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
snapshot: Snapshot,
|
||||
test_user_id: str,
|
||||
) -> None:
|
||||
"""Test getting pending reviews when none exist"""
|
||||
mock_get_reviews = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.get_pending_reviews_for_user"
|
||||
)
|
||||
mock_get_reviews.return_value = []
|
||||
|
||||
response = client.get("/api/review/pending")
|
||||
|
||||
assert response.status_code == 200
|
||||
assert response.json() == []
|
||||
mock_get_reviews.assert_called_once_with(test_user_id, 1, 25)
|
||||
|
||||
|
||||
def test_get_pending_reviews_with_data(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_pending_review: PendingHumanReviewModel,
|
||||
snapshot: Snapshot,
|
||||
test_user_id: str,
|
||||
) -> None:
|
||||
"""Test getting pending reviews with data"""
|
||||
mock_get_reviews = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.get_pending_reviews_for_user"
|
||||
)
|
||||
mock_get_reviews.return_value = [sample_pending_review]
|
||||
|
||||
response = client.get("/api/review/pending?page=2&page_size=10")
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert len(data) == 1
|
||||
assert data[0]["node_exec_id"] == "test_node_123"
|
||||
assert data[0]["status"] == "WAITING"
|
||||
mock_get_reviews.assert_called_once_with(test_user_id, 2, 10)
|
||||
|
||||
|
||||
def test_get_pending_reviews_for_execution_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_pending_review: PendingHumanReviewModel,
|
||||
snapshot: Snapshot,
|
||||
test_user_id: str,
|
||||
) -> None:
|
||||
"""Test getting pending reviews for specific execution"""
|
||||
mock_get_graph_execution = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.get_graph_execution_meta"
|
||||
)
|
||||
mock_get_graph_execution.return_value = {
|
||||
"id": "test_graph_exec_456",
|
||||
"user_id": test_user_id,
|
||||
}
|
||||
|
||||
mock_get_reviews = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.get_pending_reviews_for_execution"
|
||||
)
|
||||
mock_get_reviews.return_value = [sample_pending_review]
|
||||
|
||||
response = client.get("/api/review/execution/test_graph_exec_456")
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert len(data) == 1
|
||||
assert data[0]["graph_exec_id"] == "test_graph_exec_456"
|
||||
|
||||
|
||||
def test_get_pending_reviews_for_execution_access_denied(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
test_user_id: str,
|
||||
) -> None:
|
||||
"""Test access denied when user doesn't own the execution"""
|
||||
mock_get_graph_execution = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.get_graph_execution_meta"
|
||||
)
|
||||
mock_get_graph_execution.return_value = None
|
||||
|
||||
response = client.get("/api/review/execution/test_graph_exec_456")
|
||||
|
||||
assert response.status_code == 403
|
||||
assert "Access denied" in response.json()["detail"]
|
||||
|
||||
|
||||
def test_process_review_action_approve_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_pending_review: PendingHumanReviewModel,
|
||||
test_user_id: str,
|
||||
) -> None:
|
||||
"""Test successful review approval"""
|
||||
# Mock the route functions
|
||||
|
||||
mock_get_reviews_for_execution = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.get_pending_reviews_for_execution"
|
||||
)
|
||||
mock_get_reviews_for_execution.return_value = [sample_pending_review]
|
||||
|
||||
mock_process_all_reviews = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.process_all_reviews_for_execution"
|
||||
)
|
||||
# Create approved review for return
|
||||
approved_review = PendingHumanReviewModel(
|
||||
node_exec_id="test_node_123",
|
||||
user_id=test_user_id,
|
||||
graph_exec_id="test_graph_exec_456",
|
||||
graph_id="test_graph_789",
|
||||
graph_version=1,
|
||||
payload={"data": "modified payload", "value": 50},
|
||||
instructions="Please review this data",
|
||||
editable=True,
|
||||
status=ReviewStatus.APPROVED,
|
||||
review_message="Looks good",
|
||||
was_edited=True,
|
||||
processed=False,
|
||||
created_at=FIXED_NOW,
|
||||
updated_at=FIXED_NOW,
|
||||
reviewed_at=FIXED_NOW,
|
||||
)
|
||||
mock_process_all_reviews.return_value = {"test_node_123": approved_review}
|
||||
|
||||
mock_has_pending = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.has_pending_reviews_for_graph_exec"
|
||||
)
|
||||
mock_has_pending.return_value = False
|
||||
|
||||
mocker.patch("backend.server.v2.executions.review.routes.add_graph_execution")
|
||||
|
||||
request_data = {
|
||||
"reviews": [
|
||||
{
|
||||
"node_exec_id": "test_node_123",
|
||||
"approved": True,
|
||||
"message": "Looks good",
|
||||
"reviewed_data": {"data": "modified payload", "value": 50},
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
response = client.post("/api/review/action", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert data["approved_count"] == 1
|
||||
assert data["rejected_count"] == 0
|
||||
assert data["failed_count"] == 0
|
||||
assert data["error"] is None
|
||||
|
||||
|
||||
def test_process_review_action_reject_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_pending_review: PendingHumanReviewModel,
|
||||
test_user_id: str,
|
||||
) -> None:
|
||||
"""Test successful review rejection"""
|
||||
# Mock the route functions
|
||||
|
||||
mock_get_reviews_for_execution = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.get_pending_reviews_for_execution"
|
||||
)
|
||||
mock_get_reviews_for_execution.return_value = [sample_pending_review]
|
||||
|
||||
mock_process_all_reviews = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.process_all_reviews_for_execution"
|
||||
)
|
||||
rejected_review = PendingHumanReviewModel(
|
||||
node_exec_id="test_node_123",
|
||||
user_id=test_user_id,
|
||||
graph_exec_id="test_graph_exec_456",
|
||||
graph_id="test_graph_789",
|
||||
graph_version=1,
|
||||
payload={"data": "test payload"},
|
||||
instructions="Please review",
|
||||
editable=True,
|
||||
status=ReviewStatus.REJECTED,
|
||||
review_message="Rejected by user",
|
||||
was_edited=False,
|
||||
processed=False,
|
||||
created_at=FIXED_NOW,
|
||||
updated_at=None,
|
||||
reviewed_at=FIXED_NOW,
|
||||
)
|
||||
mock_process_all_reviews.return_value = {"test_node_123": rejected_review}
|
||||
|
||||
mock_has_pending = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.has_pending_reviews_for_graph_exec"
|
||||
)
|
||||
mock_has_pending.return_value = False
|
||||
|
||||
request_data = {
|
||||
"reviews": [
|
||||
{
|
||||
"node_exec_id": "test_node_123",
|
||||
"approved": False,
|
||||
"message": None,
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
response = client.post("/api/review/action", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert data["approved_count"] == 0
|
||||
assert data["rejected_count"] == 1
|
||||
assert data["failed_count"] == 0
|
||||
assert data["error"] is None
|
||||
|
||||
|
||||
def test_process_review_action_mixed_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_pending_review: PendingHumanReviewModel,
|
||||
test_user_id: str,
|
||||
) -> None:
|
||||
"""Test mixed approve/reject operations"""
|
||||
# Create a second review
|
||||
second_review = PendingHumanReviewModel(
|
||||
node_exec_id="test_node_456",
|
||||
user_id=test_user_id,
|
||||
graph_exec_id="test_graph_exec_456",
|
||||
graph_id="test_graph_789",
|
||||
graph_version=1,
|
||||
payload={"data": "second payload"},
|
||||
instructions="Second review",
|
||||
editable=False,
|
||||
status=ReviewStatus.WAITING,
|
||||
review_message=None,
|
||||
was_edited=None,
|
||||
processed=False,
|
||||
created_at=FIXED_NOW,
|
||||
updated_at=None,
|
||||
reviewed_at=None,
|
||||
)
|
||||
|
||||
# Mock the route functions
|
||||
|
||||
mock_get_reviews_for_execution = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.get_pending_reviews_for_execution"
|
||||
)
|
||||
mock_get_reviews_for_execution.return_value = [sample_pending_review, second_review]
|
||||
|
||||
mock_process_all_reviews = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.process_all_reviews_for_execution"
|
||||
)
|
||||
# Create approved version of first review
|
||||
approved_review = PendingHumanReviewModel(
|
||||
node_exec_id="test_node_123",
|
||||
user_id=test_user_id,
|
||||
graph_exec_id="test_graph_exec_456",
|
||||
graph_id="test_graph_789",
|
||||
graph_version=1,
|
||||
payload={"data": "modified"},
|
||||
instructions="Please review",
|
||||
editable=True,
|
||||
status=ReviewStatus.APPROVED,
|
||||
review_message="Approved",
|
||||
was_edited=True,
|
||||
processed=False,
|
||||
created_at=FIXED_NOW,
|
||||
updated_at=None,
|
||||
reviewed_at=FIXED_NOW,
|
||||
)
|
||||
# Create rejected version of second review
|
||||
rejected_review = PendingHumanReviewModel(
|
||||
node_exec_id="test_node_456",
|
||||
user_id=test_user_id,
|
||||
graph_exec_id="test_graph_exec_456",
|
||||
graph_id="test_graph_789",
|
||||
graph_version=1,
|
||||
payload={"data": "second payload"},
|
||||
instructions="Second review",
|
||||
editable=False,
|
||||
status=ReviewStatus.REJECTED,
|
||||
review_message="Rejected by user",
|
||||
was_edited=False,
|
||||
processed=False,
|
||||
created_at=FIXED_NOW,
|
||||
updated_at=None,
|
||||
reviewed_at=FIXED_NOW,
|
||||
)
|
||||
mock_process_all_reviews.return_value = {
|
||||
"test_node_123": approved_review,
|
||||
"test_node_456": rejected_review,
|
||||
}
|
||||
|
||||
mock_has_pending = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.has_pending_reviews_for_graph_exec"
|
||||
)
|
||||
mock_has_pending.return_value = False
|
||||
|
||||
request_data = {
|
||||
"reviews": [
|
||||
{
|
||||
"node_exec_id": "test_node_123",
|
||||
"approved": True,
|
||||
"message": "Approved",
|
||||
"reviewed_data": {"data": "modified"},
|
||||
},
|
||||
{
|
||||
"node_exec_id": "test_node_456",
|
||||
"approved": False,
|
||||
"message": None,
|
||||
},
|
||||
]
|
||||
}
|
||||
|
||||
response = client.post("/api/review/action", json=request_data)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert data["approved_count"] == 1
|
||||
assert data["rejected_count"] == 1
|
||||
assert data["failed_count"] == 0
|
||||
assert data["error"] is None
|
||||
|
||||
|
||||
def test_process_review_action_empty_request(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
test_user_id: str,
|
||||
) -> None:
|
||||
"""Test error when no reviews provided"""
|
||||
request_data = {"reviews": []}
|
||||
|
||||
response = client.post("/api/review/action", json=request_data)
|
||||
|
||||
assert response.status_code == 422
|
||||
response_data = response.json()
|
||||
# Pydantic validation error format
|
||||
assert isinstance(response_data["detail"], list)
|
||||
assert len(response_data["detail"]) > 0
|
||||
assert "At least one review must be provided" in response_data["detail"][0]["msg"]
|
||||
|
||||
|
||||
def test_process_review_action_review_not_found(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
test_user_id: str,
|
||||
) -> None:
|
||||
"""Test error when review is not found"""
|
||||
# Mock the functions that extract graph execution ID from the request
|
||||
mock_get_reviews_for_execution = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.get_pending_reviews_for_execution"
|
||||
)
|
||||
mock_get_reviews_for_execution.return_value = [] # No reviews found
|
||||
|
||||
# Mock process_all_reviews to simulate not finding reviews
|
||||
mock_process_all_reviews = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.process_all_reviews_for_execution"
|
||||
)
|
||||
# This should raise a ValueError with "Reviews not found" message based on the data/human_review.py logic
|
||||
mock_process_all_reviews.side_effect = ValueError(
|
||||
"Reviews not found or access denied for IDs: nonexistent_node"
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"reviews": [
|
||||
{
|
||||
"node_exec_id": "nonexistent_node",
|
||||
"approved": True,
|
||||
"message": "Test",
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
response = client.post("/api/review/action", json=request_data)
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "Reviews not found" in response.json()["detail"]
|
||||
|
||||
|
||||
def test_process_review_action_partial_failure(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_pending_review: PendingHumanReviewModel,
|
||||
test_user_id: str,
|
||||
) -> None:
|
||||
"""Test handling of partial failures in review processing"""
|
||||
# Mock the route functions
|
||||
mock_get_reviews_for_execution = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.get_pending_reviews_for_execution"
|
||||
)
|
||||
mock_get_reviews_for_execution.return_value = [sample_pending_review]
|
||||
|
||||
# Mock partial failure in processing
|
||||
mock_process_all_reviews = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.process_all_reviews_for_execution"
|
||||
)
|
||||
mock_process_all_reviews.side_effect = ValueError("Some reviews failed validation")
|
||||
|
||||
request_data = {
|
||||
"reviews": [
|
||||
{
|
||||
"node_exec_id": "test_node_123",
|
||||
"approved": True,
|
||||
"message": "Test",
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
response = client.post("/api/review/action", json=request_data)
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "Some reviews failed validation" in response.json()["detail"]
|
||||
|
||||
|
||||
def test_process_review_action_invalid_node_exec_id(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
sample_pending_review: PendingHumanReviewModel,
|
||||
test_user_id: str,
|
||||
) -> None:
|
||||
"""Test failure when trying to process review with invalid node execution ID"""
|
||||
# Mock the route functions
|
||||
mock_get_reviews_for_execution = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.get_pending_reviews_for_execution"
|
||||
)
|
||||
mock_get_reviews_for_execution.return_value = [sample_pending_review]
|
||||
|
||||
# Mock validation failure - this should return 400, not 500
|
||||
mock_process_all_reviews = mocker.patch(
|
||||
"backend.server.v2.executions.review.routes.process_all_reviews_for_execution"
|
||||
)
|
||||
mock_process_all_reviews.side_effect = ValueError(
|
||||
"Invalid node execution ID format"
|
||||
)
|
||||
|
||||
request_data = {
|
||||
"reviews": [
|
||||
{
|
||||
"node_exec_id": "invalid-node-format",
|
||||
"approved": True,
|
||||
"message": "Test",
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
response = client.post("/api/review/action", json=request_data)
|
||||
|
||||
# Should be a 400 Bad Request, not 500 Internal Server Error
|
||||
assert response.status_code == 400
|
||||
assert "Invalid node execution ID format" in response.json()["detail"]
|
||||
@@ -0,0 +1,190 @@
|
||||
import logging
|
||||
from typing import List
|
||||
|
||||
import autogpt_libs.auth as autogpt_auth_lib
|
||||
from fastapi import APIRouter, HTTPException, Query, Security, status
|
||||
from prisma.enums import ReviewStatus
|
||||
|
||||
from backend.data.execution import get_graph_execution_meta
|
||||
from backend.data.human_review import (
|
||||
get_pending_reviews_for_execution,
|
||||
get_pending_reviews_for_user,
|
||||
has_pending_reviews_for_graph_exec,
|
||||
process_all_reviews_for_execution,
|
||||
)
|
||||
from backend.executor.utils import add_graph_execution
|
||||
from backend.server.v2.executions.review.model import (
|
||||
PendingHumanReviewModel,
|
||||
ReviewRequest,
|
||||
ReviewResponse,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
router = APIRouter(
|
||||
tags=["v2", "executions", "review"],
|
||||
dependencies=[Security(autogpt_auth_lib.requires_user)],
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/pending",
|
||||
summary="Get Pending Reviews",
|
||||
response_model=List[PendingHumanReviewModel],
|
||||
responses={
|
||||
200: {"description": "List of pending reviews"},
|
||||
500: {"description": "Server error", "content": {"application/json": {}}},
|
||||
},
|
||||
)
|
||||
async def list_pending_reviews(
|
||||
user_id: str = Security(autogpt_auth_lib.get_user_id),
|
||||
page: int = Query(1, ge=1, description="Page number (1-indexed)"),
|
||||
page_size: int = Query(25, ge=1, le=100, description="Number of reviews per page"),
|
||||
) -> List[PendingHumanReviewModel]:
|
||||
"""Get all pending reviews for the current user.
|
||||
|
||||
Retrieves all reviews with status "WAITING" that belong to the authenticated user.
|
||||
Results are ordered by creation time (newest first).
|
||||
|
||||
Args:
|
||||
user_id: Authenticated user ID from security dependency
|
||||
|
||||
Returns:
|
||||
List of pending review objects with status converted to typed literals
|
||||
|
||||
Raises:
|
||||
HTTPException: If authentication fails or database error occurs
|
||||
|
||||
Note:
|
||||
Reviews with invalid status values are logged as warnings but excluded
|
||||
from results rather than failing the entire request.
|
||||
"""
|
||||
|
||||
return await get_pending_reviews_for_user(user_id, page, page_size)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/execution/{graph_exec_id}",
|
||||
summary="Get Pending Reviews for Execution",
|
||||
response_model=List[PendingHumanReviewModel],
|
||||
responses={
|
||||
200: {"description": "List of pending reviews for the execution"},
|
||||
400: {"description": "Invalid graph execution ID"},
|
||||
403: {"description": "Access denied to graph execution"},
|
||||
500: {"description": "Server error", "content": {"application/json": {}}},
|
||||
},
|
||||
)
|
||||
async def list_pending_reviews_for_execution(
|
||||
graph_exec_id: str,
|
||||
user_id: str = Security(autogpt_auth_lib.get_user_id),
|
||||
) -> List[PendingHumanReviewModel]:
|
||||
"""Get all pending reviews for a specific graph execution.
|
||||
|
||||
Retrieves all reviews with status "WAITING" for the specified graph execution
|
||||
that belong to the authenticated user. Results are ordered by creation time
|
||||
(oldest first) to preserve review order within the execution.
|
||||
|
||||
Args:
|
||||
graph_exec_id: ID of the graph execution to get reviews for
|
||||
user_id: Authenticated user ID from security dependency
|
||||
|
||||
Returns:
|
||||
List of pending review objects for the specified execution
|
||||
|
||||
Raises:
|
||||
HTTPException:
|
||||
- 403: If user doesn't own the graph execution
|
||||
- 500: If authentication fails or database error occurs
|
||||
|
||||
Note:
|
||||
Only returns reviews owned by the authenticated user for security.
|
||||
Reviews with invalid status are excluded with warning logs.
|
||||
"""
|
||||
|
||||
# Verify user owns the graph execution before returning reviews
|
||||
graph_exec = await get_graph_execution_meta(
|
||||
user_id=user_id, execution_id=graph_exec_id
|
||||
)
|
||||
if not graph_exec:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_403_FORBIDDEN,
|
||||
detail="Access denied to graph execution",
|
||||
)
|
||||
|
||||
return await get_pending_reviews_for_execution(graph_exec_id, user_id)
|
||||
|
||||
|
||||
@router.post("/action", response_model=ReviewResponse)
|
||||
async def process_review_action(
|
||||
request: ReviewRequest,
|
||||
user_id: str = Security(autogpt_auth_lib.get_user_id),
|
||||
) -> ReviewResponse:
|
||||
"""Process reviews with approve or reject actions."""
|
||||
|
||||
# Collect all node exec IDs from the request
|
||||
all_request_node_ids = {review.node_exec_id for review in request.reviews}
|
||||
|
||||
if not all_request_node_ids:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_400_BAD_REQUEST,
|
||||
detail="At least one review must be provided",
|
||||
)
|
||||
|
||||
# Build review decisions map
|
||||
review_decisions = {}
|
||||
for review in request.reviews:
|
||||
review_status = (
|
||||
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
|
||||
)
|
||||
review_decisions[review.node_exec_id] = (
|
||||
review_status,
|
||||
review.reviewed_data,
|
||||
review.message,
|
||||
)
|
||||
|
||||
# Process all reviews
|
||||
updated_reviews = await process_all_reviews_for_execution(
|
||||
user_id=user_id,
|
||||
review_decisions=review_decisions,
|
||||
)
|
||||
|
||||
# Count results
|
||||
approved_count = sum(
|
||||
1
|
||||
for review in updated_reviews.values()
|
||||
if review.status == ReviewStatus.APPROVED
|
||||
)
|
||||
rejected_count = sum(
|
||||
1
|
||||
for review in updated_reviews.values()
|
||||
if review.status == ReviewStatus.REJECTED
|
||||
)
|
||||
|
||||
# Resume execution if we processed some reviews
|
||||
if updated_reviews:
|
||||
# Get graph execution ID from any processed review
|
||||
first_review = next(iter(updated_reviews.values()))
|
||||
graph_exec_id = first_review.graph_exec_id
|
||||
|
||||
# Check if any pending reviews remain for this execution
|
||||
still_has_pending = await has_pending_reviews_for_graph_exec(graph_exec_id)
|
||||
|
||||
if not still_has_pending:
|
||||
# Resume execution
|
||||
try:
|
||||
await add_graph_execution(
|
||||
graph_id=first_review.graph_id,
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
)
|
||||
logger.info(f"Resumed execution {graph_exec_id}")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to resume execution {graph_exec_id}: {str(e)}")
|
||||
|
||||
return ReviewResponse(
|
||||
approved_count=approved_count,
|
||||
rejected_count=rejected_count,
|
||||
failed_count=0,
|
||||
error=None,
|
||||
)
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user