added feature request tooling

This commit is contained in:
Swifty
2026-02-12 16:38:17 +01:00
parent 4f6055f494
commit b8b6c9de23
10 changed files with 1645 additions and 1 deletions

View File

@@ -12,6 +12,7 @@ from .base import BaseTool
from .create_agent import CreateAgentTool
from .customize_agent import CustomizeAgentTool
from .edit_agent import EditAgentTool
from .feature_requests import CreateFeatureRequestTool, SearchFeatureRequestsTool
from .find_agent import FindAgentTool
from .find_block import FindBlockTool
from .find_library_agent import FindLibraryAgentTool
@@ -45,6 +46,9 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Feature request tools
"search_feature_requests": SearchFeatureRequestsTool(),
"create_feature_request": CreateFeatureRequestTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),

View File

@@ -0,0 +1,369 @@
"""Feature request tools - search and create feature requests via Linear."""
import logging
from typing import Any
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestInfo,
FeatureRequestSearchResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.blocks.linear._api import LinearClient
from backend.data.model import APIKeyCredentials
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
# Target project and team IDs in our Linear workspace
FEATURE_REQUEST_PROJECT_ID = "13f066f3-f639-4a67-aaa3-31483ebdf8cd"
TEAM_ID = "557fd3d5-087e-43a9-83e3-476c8313ce49"
MAX_SEARCH_RESULTS = 10
# GraphQL queries/mutations
SEARCH_ISSUES_QUERY = """
query SearchFeatureRequests($term: String!, $filter: IssueFilter, $first: Int) {
searchIssues(term: $term, filter: $filter, first: $first) {
nodes {
id
identifier
title
description
}
}
}
"""
CUSTOMER_UPSERT_MUTATION = """
mutation CustomerUpsert($input: CustomerUpsertInput!) {
customerUpsert(input: $input) {
success
customer {
id
name
externalIds
}
}
}
"""
ISSUE_CREATE_MUTATION = """
mutation IssueCreate($input: IssueCreateInput!) {
issueCreate(input: $input) {
success
issue {
id
identifier
title
url
}
}
}
"""
CUSTOMER_NEED_CREATE_MUTATION = """
mutation CustomerNeedCreate($input: CustomerNeedCreateInput!) {
customerNeedCreate(input: $input) {
success
need {
id
body
customer {
id
name
}
issue {
id
identifier
title
url
}
}
}
}
"""
_settings: Settings | None = None
def _get_settings() -> Settings:
global _settings
if _settings is None:
_settings = Settings()
return _settings
def _get_linear_client() -> LinearClient:
"""Create a Linear client using the system API key from settings."""
api_key = _get_settings().secrets.linear_api_key
if not api_key:
raise RuntimeError("LINEAR_API_KEY secret is not configured")
credentials = APIKeyCredentials(
id="system-linear",
provider="linear",
api_key=SecretStr(api_key),
title="System Linear API Key",
)
return LinearClient(credentials=credentials)
class SearchFeatureRequestsTool(BaseTool):
"""Tool for searching existing feature requests in Linear."""
@property
def name(self) -> str:
return "search_feature_requests"
@property
def description(self) -> str:
return (
"Search existing feature requests to check if a similar request "
"already exists before creating a new one. Returns matching feature "
"requests with their ID, title, and description."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search term to find matching feature requests.",
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
query = kwargs.get("query", "").strip()
session_id = session.session_id if session else None
if not query:
return ErrorResponse(
message="Please provide a search query.",
error="Missing query parameter",
session_id=session_id,
)
client = _get_linear_client()
data = await client.query(
SEARCH_ISSUES_QUERY,
{
"term": query,
"filter": {
"project": {"id": {"eq": FEATURE_REQUEST_PROJECT_ID}},
},
"first": MAX_SEARCH_RESULTS,
},
)
nodes = data.get("searchIssues", {}).get("nodes", [])
if not nodes:
return NoResultsResponse(
message=f"No feature requests found matching '{query}'.",
suggestions=[
"Try different keywords",
"Use broader search terms",
"You can create a new feature request if none exists",
],
session_id=session_id,
)
results = [
FeatureRequestInfo(
id=node["id"],
identifier=node["identifier"],
title=node["title"],
description=node.get("description"),
)
for node in nodes
]
return FeatureRequestSearchResponse(
message=f"Found {len(results)} feature request(s) matching '{query}'.",
results=results,
count=len(results),
query=query,
session_id=session_id,
)
class CreateFeatureRequestTool(BaseTool):
"""Tool for creating feature requests (or adding needs to existing ones)."""
@property
def name(self) -> str:
return "create_feature_request"
@property
def description(self) -> str:
return (
"Create a new feature request or add a customer need to an existing one. "
"Always search first with search_feature_requests to avoid duplicates. "
"If a matching request exists, pass its ID as existing_issue_id to add "
"the user's need to it instead of creating a duplicate."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "Title for the feature request.",
},
"description": {
"type": "string",
"description": "Detailed description of what the user wants and why.",
},
"existing_issue_id": {
"type": "string",
"description": (
"If adding a need to an existing feature request, "
"provide its Linear issue ID (from search results). "
"Omit to create a new feature request."
),
},
},
"required": ["title", "description"],
}
@property
def requires_auth(self) -> bool:
return True
async def _find_or_create_customer(
self, client: LinearClient, user_id: str
) -> dict:
"""Find existing customer by user_id or create a new one via upsert."""
data = await client.mutate(
CUSTOMER_UPSERT_MUTATION,
{
"input": {
"name": user_id,
"externalId": user_id,
},
},
)
result = data.get("customerUpsert", {})
if not result.get("success"):
raise RuntimeError(f"Failed to upsert customer: {data}")
return result["customer"]
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
title = kwargs.get("title", "").strip()
description = kwargs.get("description", "").strip()
existing_issue_id = kwargs.get("existing_issue_id")
session_id = session.session_id if session else None
if not title or not description:
return ErrorResponse(
message="Both title and description are required.",
error="Missing required parameters",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="Authentication required to create feature requests.",
error="Missing user_id",
session_id=session_id,
)
client = _get_linear_client()
# Step 1: Find or create customer for this user
customer = await self._find_or_create_customer(client, user_id)
customer_id = customer["id"]
customer_name = customer["name"]
# Step 2: Create or reuse issue
if existing_issue_id:
# Add need to existing issue - we still need the issue details for response
is_new_issue = False
issue_id = existing_issue_id
else:
# Create new issue in the feature requests project
data = await client.mutate(
ISSUE_CREATE_MUTATION,
{
"input": {
"title": title,
"description": description,
"teamId": TEAM_ID,
"projectId": FEATURE_REQUEST_PROJECT_ID,
},
},
)
result = data.get("issueCreate", {})
if not result.get("success"):
return ErrorResponse(
message="Failed to create feature request issue.",
error=str(data),
session_id=session_id,
)
issue = result["issue"]
issue_id = issue["id"]
is_new_issue = True
# Step 3: Create customer need on the issue
data = await client.mutate(
CUSTOMER_NEED_CREATE_MUTATION,
{
"input": {
"customerId": customer_id,
"issueId": issue_id,
"body": description,
"priority": 0,
},
},
)
need_result = data.get("customerNeedCreate", {})
if not need_result.get("success"):
return ErrorResponse(
message="Failed to attach customer need to the feature request.",
error=str(data),
session_id=session_id,
)
need = need_result["need"]
issue_info = need["issue"]
return FeatureRequestCreatedResponse(
message=(
f"{'Created new feature request' if is_new_issue else 'Added your request to existing feature request'} "
f"[{issue_info['identifier']}] {issue_info['title']}."
),
issue_id=issue_info["id"],
issue_identifier=issue_info["identifier"],
issue_title=issue_info["title"],
issue_url=issue_info.get("url", ""),
is_new_issue=is_new_issue,
customer_name=customer_name,
session_id=session_id,
)

View File

@@ -40,6 +40,9 @@ class ResponseType(str, Enum):
OPERATION_IN_PROGRESS = "operation_in_progress"
# Input validation
INPUT_VALIDATION_ERROR = "input_validation_error"
# Feature request types
FEATURE_REQUEST_SEARCH = "feature_request_search"
FEATURE_REQUEST_CREATED = "feature_request_created"
# Base response model
@@ -421,3 +424,34 @@ class AsyncProcessingResponse(ToolResponseBase):
status: str = "accepted" # Must be "accepted" for detection
operation_id: str | None = None
task_id: str | None = None
# Feature request models
class FeatureRequestInfo(BaseModel):
"""Information about a feature request issue."""
id: str
identifier: str
title: str
description: str | None = None
class FeatureRequestSearchResponse(ToolResponseBase):
"""Response for search_feature_requests tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_SEARCH
results: list[FeatureRequestInfo]
count: int
query: str
class FeatureRequestCreatedResponse(ToolResponseBase):
"""Response for create_feature_request tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_CREATED
issue_id: str
issue_identifier: str
issue_title: str
issue_url: str
is_new_issue: bool # False if added to existing
customer_name: str

View File

@@ -658,6 +658,9 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
mem0_api_key: str = Field(default="", description="Mem0 API key")
elevenlabs_api_key: str = Field(default="", description="ElevenLabs API key")
linear_api_key: str = Field(
default="", description="Linear API key for system-level operations"
)
linear_client_id: str = Field(default="", description="Linear client ID")
linear_client_secret: str = Field(default="", description="Linear client secret")

View File

@@ -0,0 +1,468 @@
"""
Test script for Linear GraphQL API - Customer Requests operations.
Tests the exact GraphQL calls needed for:
1. search_feature_requests - search issues in the Customer Feature Requests project
2. add_feature_request - upsert customer + create customer need on issue
Requires LINEAR_API_KEY in backend/.env
Generate one at: https://linear.app/settings/api
"""
import json
import os
import sys
import httpx
from dotenv import load_dotenv
load_dotenv()
LINEAR_API_URL = "https://api.linear.app/graphql"
API_KEY = os.getenv("LINEAR_API_KEY")
# Target project for feature requests
FEATURE_REQUEST_PROJECT_ID = "13f066f3-f639-4a67-aaa3-31483ebdf8cd"
# Team: Internal
TEAM_ID = "557fd3d5-087e-43a9-83e3-476c8313ce49"
if not API_KEY:
print("ERROR: LINEAR_API_KEY not found in .env")
print("Generate a personal API key at: https://linear.app/settings/api")
print("Then add LINEAR_API_KEY=lin_api_... to backend/.env")
sys.exit(1)
HEADERS = {
"Authorization": API_KEY,
"Content-Type": "application/json",
}
def graphql(query: str, variables: dict | None = None) -> dict:
"""Execute a GraphQL query against Linear API."""
payload = {"query": query}
if variables:
payload["variables"] = variables
resp = httpx.post(LINEAR_API_URL, json=payload, headers=HEADERS, timeout=30)
if resp.status_code != 200:
print(f"HTTP {resp.status_code}: {resp.text[:500]}")
resp.raise_for_status()
data = resp.json()
if "errors" in data:
print(f"GraphQL Errors: {json.dumps(data['errors'], indent=2)}")
return data
# ---------------------------------------------------------------------------
# QUERIES
# ---------------------------------------------------------------------------
# Search issues within the feature requests project by title/description
SEARCH_ISSUES_IN_PROJECT = """
query SearchFeatureRequests($filter: IssueFilter!, $first: Int) {
issues(filter: $filter, first: $first) {
nodes {
id
identifier
title
description
url
state {
name
type
}
project {
id
name
}
labels {
nodes {
name
}
}
}
}
}
"""
# Get issue with its customer needs
GET_ISSUE_WITH_NEEDS = """
query GetIssueWithNeeds($id: String!) {
issue(id: $id) {
id
identifier
title
url
needs {
nodes {
id
body
priority
customer {
id
name
domains
externalIds
}
}
}
}
}
"""
# Search customers
SEARCH_CUSTOMERS = """
query SearchCustomers($filter: CustomerFilter, $first: Int) {
customers(filter: $filter, first: $first) {
nodes {
id
name
domains
externalIds
revenue
size
status {
name
}
tier {
name
}
}
}
}
"""
# ---------------------------------------------------------------------------
# MUTATIONS
# ---------------------------------------------------------------------------
CUSTOMER_UPSERT = """
mutation CustomerUpsert($input: CustomerUpsertInput!) {
customerUpsert(input: $input) {
success
customer {
id
name
domains
externalIds
}
}
}
"""
CUSTOMER_NEED_CREATE = """
mutation CustomerNeedCreate($input: CustomerNeedCreateInput!) {
customerNeedCreate(input: $input) {
success
need {
id
body
priority
customer {
id
name
}
issue {
id
identifier
title
}
}
}
}
"""
ISSUE_CREATE = """
mutation IssueCreate($input: IssueCreateInput!) {
issueCreate(input: $input) {
success
issue {
id
identifier
title
url
}
}
}
"""
# ---------------------------------------------------------------------------
# TESTS
# ---------------------------------------------------------------------------
def test_1_search_feature_requests():
"""Search for feature requests in the target project by keyword."""
print("\n" + "=" * 60)
print("TEST 1: Search feature requests in project by keyword")
print("=" * 60)
search_term = "agent"
result = graphql(
SEARCH_ISSUES_IN_PROJECT,
{
"filter": {
"project": {"id": {"eq": FEATURE_REQUEST_PROJECT_ID}},
"or": [
{"title": {"containsIgnoreCase": search_term}},
{"description": {"containsIgnoreCase": search_term}},
],
},
"first": 5,
},
)
issues = result.get("data", {}).get("issues", {}).get("nodes", [])
for issue in issues:
proj = issue.get("project") or {}
print(f"\n [{issue['identifier']}] {issue['title']}")
print(f" Project: {proj.get('name', 'N/A')}")
print(f" State: {issue['state']['name']}")
print(f" URL: {issue['url']}")
print(f"\n Found {len(issues)} issues matching '{search_term}'")
return issues
def test_2_list_all_in_project():
"""List all issues in the feature requests project."""
print("\n" + "=" * 60)
print("TEST 2: List all issues in Customer Feature Requests project")
print("=" * 60)
result = graphql(
SEARCH_ISSUES_IN_PROJECT,
{
"filter": {
"project": {"id": {"eq": FEATURE_REQUEST_PROJECT_ID}},
},
"first": 10,
},
)
issues = result.get("data", {}).get("issues", {}).get("nodes", [])
if not issues:
print(" No issues in project yet (empty project)")
for issue in issues:
print(f"\n [{issue['identifier']}] {issue['title']}")
print(f" State: {issue['state']['name']}")
print(f"\n Total: {len(issues)} issues")
return issues
def test_3_search_customers():
"""List existing customers."""
print("\n" + "=" * 60)
print("TEST 3: List customers")
print("=" * 60)
result = graphql(SEARCH_CUSTOMERS, {"first": 10})
customers = result.get("data", {}).get("customers", {}).get("nodes", [])
if not customers:
print(" No customers exist yet")
for c in customers:
status = c.get("status") or {}
tier = c.get("tier") or {}
print(f"\n [{c['id'][:8]}...] {c['name']}")
print(f" Domains: {c.get('domains', [])}")
print(f" External IDs: {c.get('externalIds', [])}")
print(
f" Status: {status.get('name', 'N/A')}, Tier: {tier.get('name', 'N/A')}"
)
print(f"\n Total: {len(customers)} customers")
return customers
def test_4_customer_upsert():
"""Upsert a test customer."""
print("\n" + "=" * 60)
print("TEST 4: Customer upsert (find-or-create)")
print("=" * 60)
result = graphql(
CUSTOMER_UPSERT,
{
"input": {
"name": "Test Customer (API Test)",
"domains": ["test-api-customer.example.com"],
"externalId": "test-customer-001",
}
},
)
upsert = result.get("data", {}).get("customerUpsert", {})
if upsert.get("success"):
customer = upsert["customer"]
print(f" Success! Customer: {customer['name']}")
print(f" ID: {customer['id']}")
print(f" Domains: {customer['domains']}")
print(f" External IDs: {customer['externalIds']}")
return customer
else:
print(f" Failed: {json.dumps(result, indent=2)}")
return None
def test_5_create_issue_and_need(customer_id: str):
"""Create a new feature request issue and attach a customer need."""
print("\n" + "=" * 60)
print("TEST 5: Create issue + customer need")
print("=" * 60)
# Step 1: Create issue in the project
result = graphql(
ISSUE_CREATE,
{
"input": {
"title": "Test Feature Request (API Test - safe to delete)",
"description": "This is a test feature request created via the GraphQL API.",
"teamId": TEAM_ID,
"projectId": FEATURE_REQUEST_PROJECT_ID,
}
},
)
data = result.get("data")
if not data:
print(f" Issue creation failed: {json.dumps(result, indent=2)}")
return None
issue_data = data.get("issueCreate", {})
if not issue_data.get("success"):
print(f" Issue creation failed: {json.dumps(result, indent=2)}")
return None
issue = issue_data["issue"]
print(f" Created issue: [{issue['identifier']}] {issue['title']}")
print(f" URL: {issue['url']}")
# Step 2: Attach customer need
result = graphql(
CUSTOMER_NEED_CREATE,
{
"input": {
"customerId": customer_id,
"issueId": issue["id"],
"body": "Our team really needs this feature for our workflow. High priority for us!",
"priority": 0,
}
},
)
need_data = result.get("data", {}).get("customerNeedCreate", {})
if need_data.get("success"):
need = need_data["need"]
print(f" Attached customer need: {need['id']}")
print(f" Customer: {need['customer']['name']}")
print(f" Body: {need['body'][:80]}")
else:
print(f" Customer need creation failed: {json.dumps(result, indent=2)}")
# Step 3: Verify by fetching the issue with needs
print("\n Verifying...")
verify = graphql(GET_ISSUE_WITH_NEEDS, {"id": issue["id"]})
issue_verify = verify.get("data", {}).get("issue", {})
needs = issue_verify.get("needs", {}).get("nodes", [])
print(f" Issue now has {len(needs)} customer need(s)")
for n in needs:
cust = n.get("customer") or {}
print(f" - {cust.get('name', 'N/A')}: {n.get('body', '')[:60]}")
return issue
def test_6_add_need_to_existing(customer_id: str, issue_id: str):
"""Add a customer need to an existing issue (the common case)."""
print("\n" + "=" * 60)
print("TEST 6: Add customer need to existing issue")
print("=" * 60)
result = graphql(
CUSTOMER_NEED_CREATE,
{
"input": {
"customerId": customer_id,
"issueId": issue_id,
"body": "We also want this! +1 from our organization.",
"priority": 0,
}
},
)
need_data = result.get("data", {}).get("customerNeedCreate", {})
if need_data.get("success"):
need = need_data["need"]
print(f" Success! Need: {need['id']}")
print(f" Customer: {need['customer']['name']}")
print(f" Issue: [{need['issue']['identifier']}] {need['issue']['title']}")
return need
else:
print(f" Failed: {json.dumps(result, indent=2)}")
return None
def main():
print("Linear GraphQL API - Customer Requests Test Suite")
print("=" * 60)
print(f"API URL: {LINEAR_API_URL}")
print(f"API Key: {API_KEY[:10]}...")
print(f"Project: Customer Feature Requests ({FEATURE_REQUEST_PROJECT_ID[:8]}...)")
# --- Read-only tests ---
test_1_search_feature_requests()
test_2_list_all_in_project()
test_3_search_customers()
# --- Write tests ---
print("\n" + "=" * 60)
answer = (
input("Run WRITE tests? (creates test customer + issue + need) [y/N]: ")
.strip()
.lower()
)
if answer != "y":
print("Skipped write tests.")
print("\nDone!")
return
customer = test_4_customer_upsert()
if not customer:
print("Customer upsert failed, stopping.")
return
issue = test_5_create_issue_and_need(customer["id"])
if not issue:
print("Issue creation failed, stopping.")
return
# Test adding a second need to the same issue (simulates another customer requesting same feature)
# First upsert a second customer
result = graphql(
CUSTOMER_UPSERT,
{
"input": {
"name": "Second Test Customer",
"domains": ["second-test.example.com"],
"externalId": "test-customer-002",
}
},
)
customer2 = result.get("data", {}).get("customerUpsert", {}).get("customer")
if customer2:
test_6_add_need_to_existing(customer2["id"], issue["id"])
print("\n" + "=" * 60)
print("All tests complete!")
print(
"Check the project: https://linear.app/autogpt/project/customer-feature-requests-710dcbf8bf4e/issues"
)
if __name__ == "__main__":
main()

View File

@@ -15,6 +15,10 @@ import { ToolUIPart, UIDataTypes, UIMessage, UITools } from "ai";
import { useEffect, useRef, useState } from "react";
import { CreateAgentTool } from "../../tools/CreateAgent/CreateAgent";
import { EditAgentTool } from "../../tools/EditAgent/EditAgent";
import {
CreateFeatureRequestTool,
SearchFeatureRequestsTool,
} from "../../tools/FeatureRequests/FeatureRequests";
import { FindAgentsTool } from "../../tools/FindAgents/FindAgents";
import { FindBlocksTool } from "../../tools/FindBlocks/FindBlocks";
import { RunAgentTool } from "../../tools/RunAgent/RunAgent";
@@ -254,6 +258,20 @@ export const ChatMessagesContainer = ({
part={part as ToolUIPart}
/>
);
case "tool-search_feature_requests":
return (
<SearchFeatureRequestsTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
case "tool-create_feature_request":
return (
<CreateFeatureRequestTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
default:
return null;
}

View File

@@ -14,6 +14,10 @@ import { Text } from "@/components/atoms/Text/Text";
import { CopilotChatActionsProvider } from "../components/CopilotChatActionsProvider/CopilotChatActionsProvider";
import { CreateAgentTool } from "../tools/CreateAgent/CreateAgent";
import { EditAgentTool } from "../tools/EditAgent/EditAgent";
import {
CreateFeatureRequestTool,
SearchFeatureRequestsTool,
} from "../tools/FeatureRequests/FeatureRequests";
import { FindAgentsTool } from "../tools/FindAgents/FindAgents";
import { FindBlocksTool } from "../tools/FindBlocks/FindBlocks";
import { RunAgentTool } from "../tools/RunAgent/RunAgent";
@@ -45,6 +49,8 @@ const SECTIONS = [
"Tool: Create Agent",
"Tool: Edit Agent",
"Tool: View Agent Output",
"Tool: Search Feature Requests",
"Tool: Create Feature Request",
"Full Conversation Example",
] as const;
@@ -1421,6 +1427,235 @@ export default function StyleguidePage() {
</SubSection>
</Section>
{/* ============================================================= */}
{/* SEARCH FEATURE REQUESTS */}
{/* ============================================================= */}
<Section title="Tool: Search Feature Requests">
<SubSection label="Input streaming">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "input-streaming",
input: { query: "dark mode" },
}}
/>
</SubSection>
<SubSection label="Input available">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "input-available",
input: { query: "dark mode" },
}}
/>
</SubSection>
<SubSection label="Output available (with results)">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-available",
input: { query: "dark mode" },
output: {
type: "feature_request_search",
message:
'Found 2 feature request(s) matching "dark mode".',
query: "dark mode",
count: 2,
results: [
{
id: "fr-001",
identifier: "INT-42",
title: "Add dark mode to the platform",
description:
"Users have requested a dark mode option for the builder and copilot interfaces to reduce eye strain during long sessions.",
},
{
id: "fr-002",
identifier: "INT-87",
title: "Dark theme for agent output viewer",
description:
"Specifically requesting dark theme support for the agent output/execution viewer panel.",
},
],
},
}}
/>
</SubSection>
<SubSection label="Output available (no results)">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-available",
input: { query: "teleportation" },
output: {
type: "no_results",
message:
"No feature requests found matching 'teleportation'.",
suggestions: [
"Try different keywords",
"Use broader search terms",
"You can create a new feature request if none exists",
],
},
}}
/>
</SubSection>
<SubSection label="Output available (error)">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-available",
input: { query: "dark mode" },
output: {
type: "error",
message: "Failed to search feature requests.",
error: "LINEAR_API_KEY environment variable is not set",
},
}}
/>
</SubSection>
<SubSection label="Output error">
<SearchFeatureRequestsTool
part={{
type: "tool-search_feature_requests",
toolCallId: uid(),
state: "output-error",
input: { query: "dark mode" },
}}
/>
</SubSection>
</Section>
{/* ============================================================= */}
{/* CREATE FEATURE REQUEST */}
{/* ============================================================= */}
<Section title="Tool: Create Feature Request">
<SubSection label="Input streaming">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "input-streaming",
input: {
title: "Add dark mode",
description: "I would love dark mode for the platform.",
},
}}
/>
</SubSection>
<SubSection label="Input available">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "input-available",
input: {
title: "Add dark mode",
description: "I would love dark mode for the platform.",
},
}}
/>
</SubSection>
<SubSection label="Output available (new issue created)">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-available",
input: {
title: "Add dark mode",
description: "I would love dark mode for the platform.",
},
output: {
type: "feature_request_created",
message:
"Created new feature request [INT-105] Add dark mode.",
issue_id: "issue-new-123",
issue_identifier: "INT-105",
issue_title: "Add dark mode",
issue_url:
"https://linear.app/autogpt/issue/INT-105/add-dark-mode",
is_new_issue: true,
customer_name: "user-abc-123",
},
}}
/>
</SubSection>
<SubSection label="Output available (added to existing issue)">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-available",
input: {
title: "Dark mode support",
description:
"Please add dark mode, it would help with long sessions.",
existing_issue_id: "fr-001",
},
output: {
type: "feature_request_created",
message:
"Added your request to existing feature request [INT-42] Add dark mode to the platform.",
issue_id: "fr-001",
issue_identifier: "INT-42",
issue_title: "Add dark mode to the platform",
issue_url:
"https://linear.app/autogpt/issue/INT-42/add-dark-mode-to-the-platform",
is_new_issue: false,
customer_name: "user-xyz-789",
},
}}
/>
</SubSection>
<SubSection label="Output available (error)">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-available",
input: {
title: "Add dark mode",
description: "I would love dark mode.",
},
output: {
type: "error",
message:
"Failed to attach customer need to the feature request.",
error: "Linear API request failed (500): Internal error",
},
}}
/>
</SubSection>
<SubSection label="Output error">
<CreateFeatureRequestTool
part={{
type: "tool-create_feature_request",
toolCallId: uid(),
state: "output-error",
input: { title: "Add dark mode" },
}}
/>
</SubSection>
</Section>
{/* ============================================================= */}
{/* FULL CONVERSATION EXAMPLE */}
{/* ============================================================= */}

View File

@@ -0,0 +1,240 @@
"use client";
import type { ToolUIPart } from "ai";
import { useMemo } from "react";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import {
ContentBadge,
ContentCard,
ContentCardDescription,
ContentCardHeader,
ContentCardTitle,
ContentGrid,
ContentLink,
ContentMessage,
ContentSuggestionsList,
} from "../../components/ToolAccordion/AccordionContent";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import {
AccordionIcon,
getAccordionTitle,
getAnimationText,
getFeatureRequestOutput,
isCreatedOutput,
isErrorOutput,
isNoResultsOutput,
isSearchResultsOutput,
ToolIcon,
type FeatureRequestToolType,
} from "./helpers";
export interface FeatureRequestToolPart {
type: FeatureRequestToolType;
toolCallId: string;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
interface Props {
part: FeatureRequestToolPart;
}
function truncate(text: string, maxChars: number): string {
const trimmed = text.trim();
if (trimmed.length <= maxChars) return trimmed;
return `${trimmed.slice(0, maxChars).trimEnd()}`;
}
export function SearchFeatureRequestsTool({ part }: Props) {
const output = getFeatureRequestOutput(part);
const text = getAnimationText(part);
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const isError =
part.state === "output-error" || (!!output && isErrorOutput(output));
const normalized = useMemo(() => {
if (!output) return null;
return { title: getAccordionTitle(part.type, output) };
}, [output, part.type]);
const isOutputAvailable = part.state === "output-available" && !!output;
const searchOutput =
isOutputAvailable && output && isSearchResultsOutput(output)
? output
: null;
const noResultsOutput =
isOutputAvailable && output && isNoResultsOutput(output) ? output : null;
const errorOutput =
isOutputAvailable && output && isErrorOutput(output) ? output : null;
const hasExpandableContent =
isOutputAvailable &&
((!!searchOutput && searchOutput.count > 0) ||
!!noResultsOutput ||
!!errorOutput);
const accordionDescription =
hasExpandableContent && searchOutput
? `Found ${searchOutput.count} result${searchOutput.count === 1 ? "" : "s"} for "${searchOutput.query}"`
: hasExpandableContent && (noResultsOutput || errorOutput)
? ((noResultsOutput ?? errorOutput)?.message ?? null)
: null;
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon
toolType={part.type}
isStreaming={isStreaming}
isError={isError}
/>
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && normalized && (
<ToolAccordion
icon={<AccordionIcon toolType={part.type} />}
title={normalized.title}
description={accordionDescription}
>
{searchOutput && (
<ContentGrid>
{searchOutput.results.map((r) => (
<ContentCard key={r.id}>
<ContentCardHeader>
<ContentCardTitle>
{r.identifier} {r.title}
</ContentCardTitle>
</ContentCardHeader>
{r.description && (
<ContentCardDescription>
{truncate(r.description, 200)}
</ContentCardDescription>
)}
</ContentCard>
))}
</ContentGrid>
)}
{noResultsOutput && (
<div>
<ContentMessage>{noResultsOutput.message}</ContentMessage>
{noResultsOutput.suggestions &&
noResultsOutput.suggestions.length > 0 && (
<ContentSuggestionsList items={noResultsOutput.suggestions} />
)}
</div>
)}
{errorOutput && (
<div>
<ContentMessage>{errorOutput.message}</ContentMessage>
{errorOutput.error && (
<ContentCardDescription>
{errorOutput.error}
</ContentCardDescription>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}
export function CreateFeatureRequestTool({ part }: Props) {
const output = getFeatureRequestOutput(part);
const text = getAnimationText(part);
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const isError =
part.state === "output-error" || (!!output && isErrorOutput(output));
const normalized = useMemo(() => {
if (!output) return null;
return { title: getAccordionTitle(part.type, output) };
}, [output, part.type]);
const isOutputAvailable = part.state === "output-available" && !!output;
const createdOutput =
isOutputAvailable && output && isCreatedOutput(output) ? output : null;
const errorOutput =
isOutputAvailable && output && isErrorOutput(output) ? output : null;
const hasExpandableContent =
isOutputAvailable && (!!createdOutput || !!errorOutput);
const accordionDescription =
hasExpandableContent && createdOutput
? `${createdOutput.issue_identifier}${createdOutput.issue_title}`
: hasExpandableContent && errorOutput
? errorOutput.message
: null;
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon
toolType={part.type}
isStreaming={isStreaming}
isError={isError}
/>
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && normalized && (
<ToolAccordion
icon={<AccordionIcon toolType={part.type} />}
title={normalized.title}
description={accordionDescription}
>
{createdOutput && (
<ContentCard>
<ContentCardHeader
action={
createdOutput.issue_url ? (
<ContentLink href={createdOutput.issue_url}>
View
</ContentLink>
) : undefined
}
>
<ContentCardTitle>
{createdOutput.issue_identifier} {createdOutput.issue_title}
</ContentCardTitle>
</ContentCardHeader>
<div className="mt-2 flex items-center gap-2">
<ContentBadge>
{createdOutput.is_new_issue ? "New" : "Existing"}
</ContentBadge>
</div>
<ContentMessage>{createdOutput.message}</ContentMessage>
</ContentCard>
)}
{errorOutput && (
<div>
<ContentMessage>{errorOutput.message}</ContentMessage>
{errorOutput.error && (
<ContentCardDescription>
{errorOutput.error}
</ContentCardDescription>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}

View File

@@ -0,0 +1,271 @@
import {
CheckCircleIcon,
LightbulbIcon,
MagnifyingGlassIcon,
PlusCircleIcon,
} from "@phosphor-icons/react";
import type { ToolUIPart } from "ai";
/* ------------------------------------------------------------------ */
/* Types (local until API client is regenerated) */
/* ------------------------------------------------------------------ */
interface FeatureRequestInfo {
id: string;
identifier: string;
title: string;
description?: string | null;
}
export interface FeatureRequestSearchResponse {
type: "feature_request_search";
message: string;
results: FeatureRequestInfo[];
count: number;
query: string;
}
export interface FeatureRequestCreatedResponse {
type: "feature_request_created";
message: string;
issue_id: string;
issue_identifier: string;
issue_title: string;
issue_url: string;
is_new_issue: boolean;
customer_name: string;
}
interface NoResultsResponse {
type: "no_results";
message: string;
suggestions?: string[];
}
interface ErrorResponse {
type: "error";
message: string;
error?: string;
}
export type FeatureRequestOutput =
| FeatureRequestSearchResponse
| FeatureRequestCreatedResponse
| NoResultsResponse
| ErrorResponse;
export type FeatureRequestToolType =
| "tool-search_feature_requests"
| "tool-create_feature_request"
| string;
/* ------------------------------------------------------------------ */
/* Output parsing */
/* ------------------------------------------------------------------ */
function parseOutput(output: unknown): FeatureRequestOutput | null {
if (!output) return null;
if (typeof output === "string") {
const trimmed = output.trim();
if (!trimmed) return null;
try {
return parseOutput(JSON.parse(trimmed) as unknown);
} catch {
return null;
}
}
if (typeof output === "object") {
const type = (output as { type?: unknown }).type;
if (
type === "feature_request_search" ||
type === "feature_request_created" ||
type === "no_results" ||
type === "error"
) {
return output as FeatureRequestOutput;
}
// Fallback structural checks
if ("results" in output && "query" in output)
return output as FeatureRequestSearchResponse;
if ("issue_identifier" in output)
return output as FeatureRequestCreatedResponse;
if ("suggestions" in output && !("error" in output))
return output as NoResultsResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
}
return null;
}
export function getFeatureRequestOutput(
part: unknown,
): FeatureRequestOutput | null {
if (!part || typeof part !== "object") return null;
return parseOutput((part as { output?: unknown }).output);
}
/* ------------------------------------------------------------------ */
/* Type guards */
/* ------------------------------------------------------------------ */
export function isSearchResultsOutput(
output: FeatureRequestOutput,
): output is FeatureRequestSearchResponse {
return (
output.type === "feature_request_search" ||
("results" in output && "query" in output)
);
}
export function isCreatedOutput(
output: FeatureRequestOutput,
): output is FeatureRequestCreatedResponse {
return (
output.type === "feature_request_created" || "issue_identifier" in output
);
}
export function isNoResultsOutput(
output: FeatureRequestOutput,
): output is NoResultsResponse {
return (
output.type === "no_results" ||
("suggestions" in output && !("error" in output))
);
}
export function isErrorOutput(
output: FeatureRequestOutput,
): output is ErrorResponse {
return output.type === "error" || "error" in output;
}
/* ------------------------------------------------------------------ */
/* Accordion metadata */
/* ------------------------------------------------------------------ */
export function getAccordionTitle(
toolType: FeatureRequestToolType,
output: FeatureRequestOutput,
): string {
if (toolType === "tool-search_feature_requests") {
if (isSearchResultsOutput(output)) return "Feature requests";
if (isNoResultsOutput(output)) return "No feature requests found";
return "Feature request search error";
}
if (isCreatedOutput(output)) {
return output.is_new_issue
? "Feature request created"
: "Added to feature request";
}
if (isErrorOutput(output)) return "Feature request error";
return "Feature request";
}
/* ------------------------------------------------------------------ */
/* Animation text */
/* ------------------------------------------------------------------ */
interface AnimationPart {
type: FeatureRequestToolType;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
export function getAnimationText(part: AnimationPart): string {
if (part.type === "tool-search_feature_requests") {
const query = (part.input as { query?: string } | undefined)?.query?.trim();
const queryText = query ? ` for "${query}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Searching feature requests${queryText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `Searching feature requests${queryText}`;
if (isSearchResultsOutput(output)) {
return `Found ${output.count} feature request${output.count === 1 ? "" : "s"}${queryText}`;
}
if (isNoResultsOutput(output))
return `No feature requests found${queryText}`;
return `Error searching feature requests${queryText}`;
}
case "output-error":
return `Error searching feature requests${queryText}`;
default:
return "Searching feature requests";
}
}
// create_feature_request
const title = (part.input as { title?: string } | undefined)?.title?.trim();
const titleText = title ? ` "${title}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Creating feature request${titleText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `Creating feature request${titleText}`;
if (isCreatedOutput(output)) {
return output.is_new_issue
? `Created ${output.issue_identifier}`
: `Added to ${output.issue_identifier}`;
}
if (isErrorOutput(output)) return "Error creating feature request";
return `Created feature request${titleText}`;
}
case "output-error":
return "Error creating feature request";
default:
return "Creating feature request";
}
}
/* ------------------------------------------------------------------ */
/* Icons */
/* ------------------------------------------------------------------ */
export function ToolIcon({
toolType,
isStreaming,
isError,
}: {
toolType: FeatureRequestToolType;
isStreaming?: boolean;
isError?: boolean;
}) {
const IconComponent =
toolType === "tool-create_feature_request"
? PlusCircleIcon
: MagnifyingGlassIcon;
return (
<IconComponent
size={14}
weight="regular"
className={
isError
? "text-red-500"
: isStreaming
? "text-neutral-500"
: "text-neutral-400"
}
/>
);
}
export function AccordionIcon({
toolType,
}: {
toolType: FeatureRequestToolType;
}) {
const IconComponent =
toolType === "tool-create_feature_request"
? CheckCircleIcon
: LightbulbIcon;
return <IconComponent size={32} weight="light" />;
}

View File

@@ -10495,7 +10495,9 @@
"operation_started",
"operation_pending",
"operation_in_progress",
"input_validation_error"
"input_validation_error",
"feature_request_search",
"feature_request_created"
],
"title": "ResponseType",
"description": "Types of tool responses."