Merge branch 'dev' into swiftyos/sse-long-running-tasks

This commit is contained in:
Swifty
2026-02-02 14:12:15 +01:00
36 changed files with 2244 additions and 157 deletions

View File

@@ -54,7 +54,7 @@ Before proceeding with the installation, ensure your system meets the following
### Updated Setup Instructions:
We've moved to a fully maintained and regularly updated documentation site.
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
👉 [Follow the official self-hosting guide here](https://agpt.co/docs/platform/getting-started/getting-started)
This tutorial assumes you have Docker, VSCode, git and npm installed.

View File

@@ -1859,6 +1859,11 @@ async def _execute_long_running_tool(
tool_call_id=tool_call_id,
result=error_response.model_dump_json(),
)
# Generate LLM continuation so user sees explanation even for errors
try:
await _generate_llm_continuation(session_id=session_id, user_id=user_id)
except Exception as llm_err:
logger.warning(f"Failed to generate LLM continuation for error: {llm_err}")
finally:
await _mark_operation_completed(tool_call_id)

View File

@@ -2,30 +2,54 @@
from .core import (
AgentGeneratorNotConfiguredError,
AgentJsonValidationError,
AgentSummary,
DecompositionResult,
DecompositionStep,
LibraryAgentSummary,
MarketplaceAgentSummary,
decompose_goal,
enrich_library_agents_from_steps,
extract_search_terms_from_steps,
extract_uuids_from_text,
generate_agent,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_library_agent_by_graph_id,
get_library_agent_by_id,
get_library_agents_for_generation,
json_to_graph,
save_agent_to_library,
search_marketplace_agents_for_generation,
)
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
__all__ = [
# Core functions
"AgentGeneratorNotConfiguredError",
"AgentJsonValidationError",
"AgentSummary",
"DecompositionResult",
"DecompositionStep",
"LibraryAgentSummary",
"MarketplaceAgentSummary",
"check_external_service_health",
"decompose_goal",
"enrich_library_agents_from_steps",
"extract_search_terms_from_steps",
"extract_uuids_from_text",
"generate_agent",
"generate_agent_patch",
"save_agent_to_library",
"get_agent_as_json",
"json_to_graph",
# Exceptions
"AgentGeneratorNotConfiguredError",
# Service
"is_external_service_configured",
"check_external_service_health",
# Error handling
"get_all_relevant_agents_for_generation",
"get_library_agent_by_graph_id",
"get_library_agent_by_id",
"get_library_agents_for_generation",
"get_user_message_for_error",
"is_external_service_configured",
"json_to_graph",
"save_agent_to_library",
"search_marketplace_agents_for_generation",
]

View File

@@ -1,11 +1,22 @@
"""Core agent generation functions."""
import logging
import re
import uuid
from typing import Any
from typing import Any, NotRequired, TypedDict
from backend.api.features.library import db as library_db
from backend.data.graph import Graph, Link, Node, create_graph
from backend.api.features.store import db as store_db
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
get_store_listed_graphs,
)
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import (
decompose_goal_external,
@@ -16,6 +27,74 @@ from .service import (
logger = logging.getLogger(__name__)
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
status: str
correctness_score: NotRequired[float]
activity_summary: NotRequired[str]
class LibraryAgentSummary(TypedDict):
"""Summary of a library agent for sub-agent composition.
Includes recent executions to help the LLM decide whether to use this agent.
Each execution shows status, correctness_score (0-1), and activity_summary.
"""
graph_id: str
graph_version: int
name: str
description: str
input_schema: dict[str, Any]
output_schema: dict[str, Any]
recent_executions: NotRequired[list[ExecutionSummary]]
class MarketplaceAgentSummary(TypedDict):
"""Summary of a marketplace agent for sub-agent composition."""
name: str
description: str
sub_heading: str
creator: str
is_marketplace_agent: bool
class DecompositionStep(TypedDict, total=False):
"""A single step in decomposed instructions."""
description: str
action: str
block_name: str
tool: str
name: str
class DecompositionResult(TypedDict, total=False):
"""Result from decompose_goal - can be instructions, questions, or error."""
type: str
steps: list[DecompositionStep]
questions: list[dict[str, Any]]
error: str
error_type: str
AgentSummary = LibraryAgentSummary | MarketplaceAgentSummary | dict[str, Any]
def _to_dict_list(
agents: list[AgentSummary] | list[dict[str, Any]] | None,
) -> list[dict[str, Any]] | None:
"""Convert typed agent summaries to plain dicts for external service calls."""
if agents is None:
return None
return [dict(a) for a in agents]
class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured."""
@@ -36,15 +115,422 @@ def _check_service_configured() -> None:
)
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
_UUID_PATTERN = re.compile(
r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}",
re.IGNORECASE,
)
def extract_uuids_from_text(text: str) -> list[str]:
"""Extract all UUID v4 strings from text.
Args:
text: Text that may contain UUIDs (e.g., user's goal description)
Returns:
List of unique UUIDs found in the text (lowercase)
"""
matches = _UUID_PATTERN.findall(text)
return list({m.lower() for m in matches})
async def get_library_agent_by_id(
user_id: str, agent_id: str
) -> LibraryAgentSummary | None:
"""Fetch a specific library agent by its ID (library agent ID or graph_id).
This function tries multiple lookup strategies:
1. First tries to find by graph_id (AgentGraph primary key)
2. If not found, tries to find by library agent ID (LibraryAgent primary key)
This handles both cases:
- User provides graph_id (e.g., from AgentExecutorBlock)
- User provides library agent ID (e.g., from library URL)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
LibraryAgentSummary if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except DatabaseError:
raise
except Exception as e:
logger.debug(f"Could not fetch library agent by graph_id {agent_id}: {e}")
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
get_library_agent_by_graph_id = get_library_agent_by_id
async def get_library_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
max_results: int = 15,
) -> list[LibraryAgentSummary]:
"""Fetch user's library agents formatted for Agent Generator.
Uses search-based fetching to return relevant agents instead of all agents.
This is more scalable for users with large libraries.
Includes recent_executions list to help the LLM assess agent quality:
- Each execution has status, correctness_score (0-1), and activity_summary
- This gives the LLM concrete examples of recent performance
Args:
user_id: The user ID
search_query: Optional search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
max_results: Maximum number of agents to return (default 15)
Returns:
List of LibraryAgentSummary with schemas and recent executions for sub-agent composition
"""
try:
response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query,
page=1,
page_size=max_results,
include_executions=True,
)
results: list[LibraryAgentSummary] = []
for agent in response.agents:
if exclude_graph_id is not None and agent.graph_id == exclude_graph_id:
continue
summary = LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
if agent.recent_executions:
exec_summaries: list[ExecutionSummary] = []
for ex in agent.recent_executions:
exec_sum = ExecutionSummary(status=ex.status)
if ex.correctness_score is not None:
exec_sum["correctness_score"] = ex.correctness_score
if ex.activity_summary:
exec_sum["activity_summary"] = ex.activity_summary
exec_summaries.append(exec_sum)
summary["recent_executions"] = exec_summaries
results.append(summary)
return results
except DatabaseError:
raise
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
return []
async def search_marketplace_agents_for_generation(
search_query: str,
max_results: int = 10,
) -> list[LibraryAgentSummary]:
"""Search marketplace agents formatted for Agent Generator.
Fetches marketplace agents and their full schemas so they can be used
as sub-agents in generated workflows.
Args:
search_query: Search term to find relevant public agents
max_results: Maximum number of agents to return (default 10)
Returns:
List of LibraryAgentSummary with full input/output schemas
"""
try:
response = await store_db.get_store_agents(
search_query=search_query,
page=1,
page_size=max_results,
)
agents_with_graphs = [
agent for agent in response.agents if agent.agent_graph_id
]
if not agents_with_graphs:
return []
graph_ids = [agent.agent_graph_id for agent in agents_with_graphs]
graphs = await get_store_listed_graphs(*graph_ids)
results: list[LibraryAgentSummary] = []
for agent in agents_with_graphs:
graph_id = agent.agent_graph_id
if graph_id and graph_id in graphs:
graph = graphs[graph_id]
results.append(
LibraryAgentSummary(
graph_id=graph.id,
graph_version=graph.version,
name=agent.agent_name,
description=agent.description,
input_schema=graph.input_schema,
output_schema=graph.output_schema,
)
)
return results
except Exception as e:
logger.warning(f"Failed to search marketplace agents: {e}")
return []
async def get_all_relevant_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
include_library: bool = True,
include_marketplace: bool = True,
max_library_results: int = 15,
max_marketplace_results: int = 10,
) -> list[AgentSummary]:
"""Fetch relevant agents from library and/or marketplace.
Searches both user's library and marketplace by default.
Explicitly mentioned UUIDs in the search query are always looked up.
Args:
user_id: The user ID
search_query: Search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
include_library: Whether to search user's library (default True)
include_marketplace: Whether to also search marketplace (default True)
max_library_results: Max library agents to return (default 15)
max_marketplace_results: Max marketplace agents to return (default 10)
Returns:
List of AgentSummary with full schemas (both library and marketplace agents)
"""
agents: list[AgentSummary] = []
seen_graph_ids: set[str] = set()
if search_query:
mentioned_uuids = extract_uuids_from_text(search_query)
for graph_id in mentioned_uuids:
if graph_id == exclude_graph_id:
continue
agent = await get_library_agent_by_graph_id(user_id, graph_id)
agent_graph_id = agent.get("graph_id") if agent else None
if agent and agent_graph_id and agent_graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(agent_graph_id)
logger.debug(
f"Found explicitly mentioned agent: {agent.get('name') or 'Unknown'}"
)
if include_library:
library_agents = await get_library_agents_for_generation(
user_id=user_id,
search_query=search_query,
exclude_graph_id=exclude_graph_id,
max_results=max_library_results,
)
for agent in library_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
if include_marketplace and search_query:
marketplace_agents = await search_marketplace_agents_for_generation(
search_query=search_query,
max_results=max_marketplace_results,
)
for agent in marketplace_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
return agents
def extract_search_terms_from_steps(
decomposition_result: DecompositionResult | dict[str, Any],
) -> list[str]:
"""Extract search terms from decomposed instruction steps.
Analyzes the decomposition result to extract relevant keywords
for additional library agent searches.
Args:
decomposition_result: Result from decompose_goal containing steps
Returns:
List of unique search terms extracted from steps
"""
search_terms: list[str] = []
if decomposition_result.get("type") != "instructions":
return search_terms
steps = decomposition_result.get("steps", [])
if not steps:
return search_terms
step_keys: list[str] = ["description", "action", "block_name", "tool", "name"]
for step in steps:
for key in step_keys:
value = step.get(key) # type: ignore[union-attr]
if isinstance(value, str) and len(value) > 3:
search_terms.append(value)
seen: set[str] = set()
unique_terms: list[str] = []
for term in search_terms:
term_lower = term.lower()
if term_lower not in seen:
seen.add(term_lower)
unique_terms.append(term)
return unique_terms
async def enrich_library_agents_from_steps(
user_id: str,
decomposition_result: DecompositionResult | dict[str, Any],
existing_agents: list[AgentSummary] | list[dict[str, Any]],
exclude_graph_id: str | None = None,
include_marketplace: bool = True,
max_additional_results: int = 10,
) -> list[AgentSummary] | list[dict[str, Any]]:
"""Enrich library agents list with additional searches based on decomposed steps.
This implements two-phase search: after decomposition, we search for additional
relevant agents based on the specific steps identified.
Args:
user_id: The user ID
decomposition_result: Result from decompose_goal containing steps
existing_agents: Already fetched library agents from initial search
exclude_graph_id: Optional graph ID to exclude
include_marketplace: Whether to also search marketplace
max_additional_results: Max additional agents per search term (default 10)
Returns:
Combined list of library agents (existing + newly discovered)
"""
search_terms = extract_search_terms_from_steps(decomposition_result)
if not search_terms:
return existing_agents
existing_ids: set[str] = set()
existing_names: set[str] = set()
for agent in existing_agents:
agent_name = agent.get("name")
if agent_name and isinstance(agent_name, str):
existing_names.add(agent_name.lower())
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
all_agents: list[AgentSummary] | list[dict[str, Any]] = list(existing_agents)
for term in search_terms[:3]:
try:
additional_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=term,
exclude_graph_id=exclude_graph_id,
include_marketplace=include_marketplace,
max_library_results=max_additional_results,
max_marketplace_results=5,
)
for agent in additional_agents:
agent_name = agent.get("name")
if not agent_name or not isinstance(agent_name, str):
continue
agent_name_lower = agent_name.lower()
if agent_name_lower in existing_names:
continue
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and graph_id in existing_ids:
continue
all_agents.append(agent)
existing_names.add(agent_name_lower)
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
except DatabaseError:
logger.error(f"Database error searching for agents with term '{term}'")
raise
except Exception as e:
logger.warning(
f"Failed to search for additional agents with term '{term}': {e}"
)
logger.debug(
f"Enriched library agents: {len(existing_agents)} initial + "
f"{len(all_agents) - len(existing_agents)} additional = {len(all_agents)} total"
)
return all_agents
async def decompose_goal(
description: str,
context: str = "",
library_agents: list[AgentSummary] | None = None,
) -> DecompositionResult | None:
"""Break down a goal into steps or return clarifying questions.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
Dict with either:
DecompositionResult with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
@@ -54,11 +540,15 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any]
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal")
return await decompose_goal_external(description, context)
result = await decompose_goal_external(
description, context, _to_dict_list(library_agents)
)
return result # type: ignore[return-value]
async def generate_agent(
instructions: dict[str, Any],
instructions: DecompositionResult | dict[str, Any],
library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any] | None:
@@ -66,6 +556,7 @@ async def generate_agent(
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables RabbitMQ callback)
task_id: Task ID for async processing (enables RabbitMQ callback)
@@ -77,17 +568,17 @@ async def generate_agent(
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions, operation_id, task_id)
result = await generate_agent_external(
dict(instructions), _to_dict_list(library_agents), operation_id, task_id
)
# Don't modify async response
if result and result.get("status") == "accepted":
return result
if result:
# Check if it's an error response - pass through as-is
if isinstance(result, dict) and result.get("type") == "error":
return result
# Ensure required fields for successful agent generation
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
@@ -97,6 +588,12 @@ async def generate_agent(
return result
class AgentJsonValidationError(Exception):
"""Raised when agent JSON is invalid or missing required fields."""
pass
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
"""Convert agent JSON dict to Graph model.
@@ -105,25 +602,55 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
Returns:
Graph ready for saving
Raises:
AgentJsonValidationError: If required fields are missing from nodes or links
"""
nodes = []
for n in agent_json.get("nodes", []):
for idx, n in enumerate(agent_json.get("nodes", [])):
block_id = n.get("block_id")
if not block_id:
node_id = n.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Node '{node_id}' is missing required field 'block_id'"
)
node = Node(
id=n.get("id", str(uuid.uuid4())),
block_id=n["block_id"],
block_id=block_id,
input_default=n.get("input_default", {}),
metadata=n.get("metadata", {}),
)
nodes.append(node)
links = []
for link_data in agent_json.get("links", []):
for idx, link_data in enumerate(agent_json.get("links", [])):
source_id = link_data.get("source_id")
sink_id = link_data.get("sink_id")
source_name = link_data.get("source_name")
sink_name = link_data.get("sink_name")
missing_fields = []
if not source_id:
missing_fields.append("source_id")
if not sink_id:
missing_fields.append("sink_id")
if not source_name:
missing_fields.append("source_name")
if not sink_name:
missing_fields.append("sink_name")
if missing_fields:
link_id = link_data.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Link '{link_id}' is missing required fields: {', '.join(missing_fields)}"
)
link = Link(
id=link_data.get("id", str(uuid.uuid4())),
source_id=link_data["source_id"],
sink_id=link_data["sink_id"],
source_name=link_data["source_name"],
sink_name=link_data["sink_name"],
source_id=source_id,
sink_id=sink_id,
source_name=source_name,
sink_name=sink_name,
is_static=link_data.get("is_static", False),
)
links.append(link)
@@ -144,22 +671,40 @@ def _reassign_node_ids(graph: Graph) -> None:
This is needed when creating a new version to avoid unique constraint violations.
"""
# Create mapping from old node IDs to new UUIDs
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
# Reassign node IDs
for node in graph.nodes:
node.id = id_map[node.id]
# Update link references to use new node IDs
for link in graph.links:
link.id = str(uuid.uuid4()) # Also give links new IDs
link.id = str(uuid.uuid4())
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
"""Populate user_id in AgentExecutorBlock nodes.
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
This function fills in the actual user_id so sub-agents run with correct permissions.
Args:
agent_json: Agent JSON dict (modified in place)
user_id: User ID to set
"""
for node in agent_json.get("nodes", []):
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
input_default = node.get("input_default") or {}
if not input_default.get("user_id"):
input_default["user_id"] = user_id
node["input_default"] = input_default
logger.debug(
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
)
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -173,33 +718,27 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
from backend.data.graph import get_graph_all_versions
# Populate user_id in AgentExecutorBlock nodes before conversion
_populate_agent_executor_user_ids(agent_json, user_id)
graph = json_to_graph(agent_json)
if is_update:
# For updates, keep the same graph ID but increment version
# and reassign node/link IDs to avoid conflicts
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
# Reassign node IDs (but keep graph ID the same)
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
# For new agents, always generate a fresh UUID to avoid collisions
graph.id = str(uuid.uuid4())
graph.version = 1
# Reassign all node IDs as well
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
# Save to database
created_graph = await create_graph(graph, user_id)
# Add to user's library (or update existing library agent)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
@@ -211,25 +750,31 @@ async def save_agent_to_library(
async def get_agent_as_json(
graph_id: str, user_id: str | None
agent_id: str, user_id: str | None
) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing.
Args:
graph_id: Graph ID or library agent ID
agent_id: Graph ID or library agent ID
user_id: User ID
Returns:
Agent as JSON dict or None if not found
"""
from backend.data.graph import get_graph
graph = await get_graph(agent_id, version=None, user_id=user_id)
if not graph and user_id:
try:
library_agent = await library_db.get_library_agent(agent_id, user_id)
graph = await get_graph(
library_agent.graph_id, version=None, user_id=user_id
)
except NotFoundError:
pass
# Try to get the graph (version=None gets the active version)
graph = await get_graph(graph_id, version=None, user_id=user_id)
if not graph:
return None
# Convert to JSON format
nodes = []
for node in graph.nodes:
nodes.append(
@@ -269,6 +814,7 @@ async def get_agent_as_json(
async def generate_agent_patch(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[AgentSummary] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any] | None:
@@ -282,6 +828,7 @@ async def generate_agent_patch(
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables RabbitMQ callback)
task_id: Task ID for async processing (enables RabbitMQ callback)
@@ -295,5 +842,5 @@ async def generate_agent_patch(
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(
update_request, current_agent, operation_id, task_id
update_request, current_agent, _to_dict_list(library_agents), operation_id, task_id
)

View File

@@ -1,11 +1,43 @@
"""Error handling utilities for agent generator."""
import re
def _sanitize_error_details(details: str) -> str:
"""Sanitize error details to remove sensitive information.
Strips common patterns that could expose internal system info:
- File paths (Unix and Windows)
- Database connection strings
- URLs with credentials
- Stack trace internals
Args:
details: Raw error details string
Returns:
Sanitized error details safe for user display
"""
sanitized = re.sub(
r"/[a-zA-Z0-9_./\-]+\.(py|js|ts|json|yaml|yml)", "[path]", details
)
sanitized = re.sub(r"[A-Z]:\\[a-zA-Z0-9_\\.\\-]+", "[path]", sanitized)
sanitized = re.sub(
r"(postgres|mysql|mongodb|redis)://[^\s]+", "[database_url]", sanitized
)
sanitized = re.sub(r"https?://[^:]+:[^@]+@[^\s]+", "[url]", sanitized)
sanitized = re.sub(r", line \d+", "", sanitized)
sanitized = re.sub(r'File "[^"]+",?', "", sanitized)
return sanitized.strip()
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
error_details: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
@@ -19,25 +51,45 @@ def get_user_message_for_error(
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
error_details: Optional additional details about the error
Returns:
User-friendly error message suitable for display to the user
"""
base_message = ""
if error_type == "llm_parse_error":
return (
base_message = (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
return (
base_message = (
validation_message
or "The request failed validation. Please try rephrasing."
or "The generated agent failed validation. "
"This usually happens when the agent structure doesn't match "
"what the platform expects. Please try simplifying your goal "
"or breaking it into smaller parts."
)
elif error_type == "patch_error":
return "Failed to apply the changes. Please try a different approach."
base_message = (
"Failed to apply the changes. The modification couldn't be "
"validated. Please try a different approach or simplify the change."
)
elif error_type in ("timeout", "llm_timeout"):
return "The request took too long. Please try again."
base_message = (
"The request took too long to process. This can happen with "
"complex agents. Please try again or simplify your goal."
)
elif error_type in ("rate_limit", "llm_rate_limit"):
return "The service is currently busy. Please try again in a moment."
base_message = "The service is currently busy. Please try again in a moment."
else:
return f"Failed to {operation}. Please try again."
base_message = f"Failed to {operation}. Please try again."
if error_details:
details = _sanitize_error_details(error_details)
if len(details) > 200:
details = details[:200] + "..."
base_message += f"\n\nTechnical details: {details}"
return base_message

View File

@@ -117,13 +117,16 @@ def _get_client() -> httpx.AsyncClient:
async def decompose_goal_external(
description: str, context: str = ""
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
"""Call the external service to decompose a goal.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
Dict with either:
@@ -141,6 +144,8 @@ async def decompose_goal_external(
if context:
# The external service uses user_instruction for additional context
payload["user_instruction"] = context
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post("/api/decompose-description", json=payload)
@@ -207,6 +212,7 @@ async def decompose_goal_external(
async def generate_agent_external(
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any] | None:
@@ -214,6 +220,7 @@ async def generate_agent_external(
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables RabbitMQ callback)
task_id: Task ID for async processing (enables RabbitMQ callback)
@@ -224,6 +231,8 @@ async def generate_agent_external(
# Build request payload
payload: dict[str, Any] = {"instructions": instructions}
if library_agents:
payload["library_agents"] = library_agents
if operation_id and task_id:
payload["operation_id"] = operation_id
payload["task_id"] = task_id
@@ -250,8 +259,7 @@ async def generate_agent_external(
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} "
f"(type: {error_type})"
f"Agent Generator generation failed: {error_msg} (type: {error_type})"
)
return _create_error_response(error_msg, error_type)
@@ -274,6 +282,7 @@ async def generate_agent_external(
async def generate_agent_patch_external(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any] | None:
@@ -282,6 +291,7 @@ async def generate_agent_patch_external(
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables RabbitMQ callback)
task_id: Task ID for async processing (enables RabbitMQ callback)
@@ -295,6 +305,8 @@ async def generate_agent_patch_external(
"update_request": update_request,
"current_agent_json": current_agent,
}
if library_agents:
payload["library_agents"] = library_agents
if operation_id and task_id:
payload["operation_id"] = operation_id
payload["task_id"] = task_id

View File

@@ -1,6 +1,7 @@
"""Shared agent search functionality for find_agent and find_library_agent tools."""
import logging
import re
from typing import Literal
from backend.api.features.library import db as library_db
@@ -19,6 +20,85 @@ logger = logging.getLogger(__name__)
SearchSource = Literal["marketplace", "library"]
_UUID_PATTERN = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$",
re.IGNORECASE,
)
def _is_uuid(text: str) -> bool:
"""Check if text is a valid UUID v4."""
return bool(_UUID_PATTERN.match(text.strip()))
async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | None:
"""Fetch a library agent by ID (library agent ID or graph_id).
Tries multiple lookup strategies:
1. First by graph_id (AgentGraph primary key)
2. Then by library agent ID (LibraryAgent primary key)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
AgentInfo if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by graph_id {agent_id}: {e}",
exc_info=True,
)
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
async def search_agents(
query: str,
@@ -69,29 +149,37 @@ async def search_agents(
is_featured=False,
)
)
else: # library
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
else:
if _is_uuid(query):
logger.info(f"Query looks like UUID, trying direct lookup: {query}")
agent = await _get_library_agent_by_id(user_id, query) # type: ignore[arg-type]
if agent:
agents.append(agent)
logger.info(f"Found agent by direct ID lookup: {agent.name}")
if not agents:
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
)
logger.info(f"Found {len(agents)} agents in {source}")
except NotFoundError:
pass

View File

@@ -8,7 +8,9 @@ from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
decompose_goal,
enrich_library_agents_from_steps,
generate_agent,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
@@ -108,9 +110,24 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Step 1: Decompose goal into steps
library_agents = None
if user_id:
try:
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=description,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
try:
decomposition_result = await decompose_goal(description, context)
decomposition_result = await decompose_goal(
description, context, library_agents
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -129,7 +146,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check if the result is an error from the external service
if decomposition_result.get("type") == "error":
error_msg = decomposition_result.get("error", "Unknown error")
error_type = decomposition_result.get("error_type", "unknown")
@@ -149,7 +165,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check if LLM returned clarifying questions
if decomposition_result.get("type") == "clarifying_questions":
questions = decomposition_result.get("questions", [])
return ClarificationNeededResponse(
@@ -168,7 +183,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check for unachievable/vague goals
if decomposition_result.get("type") == "unachievable_goal":
suggested = decomposition_result.get("suggested_goal", "")
reason = decomposition_result.get("reason", "")
@@ -195,10 +209,24 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Step 2: Generate agent JSON (external service handles fixing and validation)
if user_id and library_agents is not None:
try:
library_agents = await enrich_library_agents_from_steps(
user_id=user_id,
decomposition_result=decomposition_result,
existing_agents=library_agents,
include_marketplace=True,
)
logger.debug(
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to enrich library agents from steps: {e}")
try:
agent_json = await generate_agent(
decomposition_result,
library_agents,
operation_id=operation_id,
task_id=task_id,
)
@@ -220,7 +248,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check if the result is an error from the external service
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
error_msg = agent_json.get("error", "Unknown error")
error_type = agent_json.get("error_type", "unknown")
@@ -228,7 +255,12 @@ class CreateAgentTool(BaseTool):
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message="The generated agent failed validation. Please try rephrasing your goal.",
validation_message=(
"I wasn't able to create a valid agent for this request. "
"The generated workflow had some structural issues. "
"Please try simplifying your goal or breaking it into smaller steps."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
@@ -259,7 +291,6 @@ class CreateAgentTool(BaseTool):
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -274,7 +305,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Save to library
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -292,7 +322,7 @@ class CreateAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -9,6 +9,7 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
@@ -122,7 +123,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Step 1: Fetch current agent
current_agent = await get_agent_as_json(agent_id, user_id)
if current_agent is None:
@@ -132,16 +132,31 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Build the update request with context
library_agents = None
if user_id:
try:
graph_id = current_agent.get("id")
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=changes,
exclude_graph_id=graph_id,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
update_request = changes
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(
update_request,
current_agent,
library_agents,
operation_id=operation_id,
task_id=task_id,
)
@@ -185,6 +200,7 @@ class EditAgentTool(BaseTool):
operation="generate the changes",
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
validation_message="The generated changes failed validation. Please try rephrasing your request.",
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
@@ -198,7 +214,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])
return ClarificationNeededResponse(
@@ -217,7 +232,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Result is the updated agent JSON
updated_agent = result
agent_name = updated_agent.get("name", "Updated Agent")
@@ -225,7 +239,6 @@ class EditAgentTool(BaseTool):
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -241,7 +254,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Save to library (creates a new version)
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -259,7 +271,7 @@ class EditAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.model import Credentials, CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -266,13 +266,14 @@ async def match_user_credentials_to_graph(
credential_requirements,
_node_fields,
) in aggregated_creds.items():
# Find first matching credential by provider and type
# Find first matching credential by provider, type, and scopes
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in credential_requirements.provider
and cred.type in credential_requirements.supported_types
and _credential_has_required_scopes(cred, credential_requirements)
),
None,
)
@@ -296,10 +297,17 @@ async def match_user_credentials_to_graph(
f"{credential_field_name} (validation failed: {e})"
)
else:
# Build a helpful error message including scope requirements
error_parts = [
f"provider in {list(credential_requirements.provider)}",
f"type in {list(credential_requirements.supported_types)}",
]
if credential_requirements.required_scopes:
error_parts.append(
f"scopes including {list(credential_requirements.required_scopes)}"
)
missing_creds.append(
f"{credential_field_name} "
f"(requires provider in {list(credential_requirements.provider)}, "
f"type in {list(credential_requirements.supported_types)})"
f"{credential_field_name} (requires {', '.join(error_parts)})"
)
logger.info(
@@ -309,6 +317,28 @@ async def match_user_credentials_to_graph(
return graph_credentials_inputs, missing_creds
def _credential_has_required_scopes(
credential: Credentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""
Check if a credential has all the scopes required by the block.
For OAuth2 credentials, verifies that the credential's scopes are a superset
of the required scopes. For other credential types, returns True (no scope check).
"""
# Only OAuth2 credentials have scopes to check
if credential.type != "oauth2":
return True
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
# Check that credential scopes are a superset of required scopes
return set(credential.scopes).issuperset(requirements.required_scopes)
async def check_user_has_required_credentials(
user_id: str,
required_credentials: list[CredentialsMetaInput],

View File

@@ -39,6 +39,7 @@ async def list_library_agents(
sort_by: library_model.LibraryAgentSort = library_model.LibraryAgentSort.UPDATED_AT,
page: int = 1,
page_size: int = 50,
include_executions: bool = False,
) -> library_model.LibraryAgentResponse:
"""
Retrieves a paginated list of LibraryAgent records for a given user.
@@ -49,6 +50,9 @@ async def list_library_agents(
sort_by: Sorting field (createdAt, updatedAt, isFavorite, isCreatedByUser).
page: Current page (1-indexed).
page_size: Number of items per page.
include_executions: Whether to include execution data for status calculation.
Defaults to False for performance (UI fetches status separately).
Set to True when accurate status/metrics are needed (e.g., agent generator).
Returns:
A LibraryAgentResponse containing the list of agents and pagination details.
@@ -76,7 +80,6 @@ async def list_library_agents(
"isArchived": False,
}
# Build search filter if applicable
if search_term:
where_clause["OR"] = [
{
@@ -93,7 +96,6 @@ async def list_library_agents(
},
]
# Determine sorting
order_by: prisma.types.LibraryAgentOrderByInput | None = None
if sort_by == library_model.LibraryAgentSort.CREATED_AT:
@@ -105,7 +107,7 @@ async def list_library_agents(
library_agents = await prisma.models.LibraryAgent.prisma().find_many(
where=where_clause,
include=library_agent_include(
user_id, include_nodes=False, include_executions=False
user_id, include_nodes=False, include_executions=include_executions
),
order=order_by,
skip=(page - 1) * page_size,

View File

@@ -9,6 +9,7 @@ import pydantic
from backend.data.block import BlockInput
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
from backend.util.json import loads as json_loads
from backend.util.models import Pagination
if TYPE_CHECKING:
@@ -16,10 +17,10 @@ if TYPE_CHECKING:
class LibraryAgentStatus(str, Enum):
COMPLETED = "COMPLETED" # All runs completed
HEALTHY = "HEALTHY" # Agent is running (not all runs have completed)
WAITING = "WAITING" # Agent is queued or waiting to start
ERROR = "ERROR" # Agent is in an error state
COMPLETED = "COMPLETED"
HEALTHY = "HEALTHY"
WAITING = "WAITING"
ERROR = "ERROR"
class MarketplaceListingCreator(pydantic.BaseModel):
@@ -39,6 +40,30 @@ class MarketplaceListing(pydantic.BaseModel):
creator: MarketplaceListingCreator
class RecentExecution(pydantic.BaseModel):
"""Summary of a recent execution for quality assessment.
Used by the LLM to understand the agent's recent performance with specific examples
rather than just aggregate statistics.
"""
status: str
correctness_score: float | None = None
activity_summary: str | None = None
def _parse_settings(settings: dict | str | None) -> GraphSettings:
"""Parse settings from database, handling both dict and string formats."""
if settings is None:
return GraphSettings()
try:
if isinstance(settings, str):
settings = json_loads(settings)
return GraphSettings.model_validate(settings)
except Exception:
return GraphSettings()
class LibraryAgent(pydantic.BaseModel):
"""
Represents an agent in the library, including metadata for display and
@@ -48,7 +73,7 @@ class LibraryAgent(pydantic.BaseModel):
id: str
graph_id: str
graph_version: int
owner_user_id: str # ID of user who owns/created this agent graph
owner_user_id: str
image_url: str | None
@@ -64,7 +89,7 @@ class LibraryAgent(pydantic.BaseModel):
description: str
instructions: str | None = None
input_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend
input_schema: dict[str, Any]
output_schema: dict[str, Any]
credentials_input_schema: dict[str, Any] | None = pydantic.Field(
description="Input schema for credentials required by the agent",
@@ -81,25 +106,19 @@ class LibraryAgent(pydantic.BaseModel):
)
trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs)
new_output: bool
# Whether the user can access the underlying graph
execution_count: int = 0
success_rate: float | None = None
avg_correctness_score: float | None = None
recent_executions: list[RecentExecution] = pydantic.Field(
default_factory=list,
description="List of recent executions with status, score, and summary",
)
can_access_graph: bool
# Indicates if this agent is the latest version
is_latest_version: bool
# Whether the agent is marked as favorite by the user
is_favorite: bool
# Recommended schedule cron (from marketplace agents)
recommended_schedule_cron: str | None = None
# User-specific settings for this library agent
settings: GraphSettings = pydantic.Field(default_factory=GraphSettings)
# Marketplace listing information if the agent has been published
marketplace_listing: Optional["MarketplaceListing"] = None
@staticmethod
@@ -123,7 +142,6 @@ class LibraryAgent(pydantic.BaseModel):
agent_updated_at = agent.AgentGraph.updatedAt
lib_agent_updated_at = agent.updatedAt
# Compute updated_at as the latest between library agent and graph
updated_at = (
max(agent_updated_at, lib_agent_updated_at)
if agent_updated_at
@@ -136,7 +154,6 @@ class LibraryAgent(pydantic.BaseModel):
creator_name = agent.Creator.name or "Unknown"
creator_image_url = agent.Creator.avatarUrl or ""
# Logic to calculate status and new_output
week_ago = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(
days=7
)
@@ -145,13 +162,55 @@ class LibraryAgent(pydantic.BaseModel):
status = status_result.status
new_output = status_result.new_output
# Check if user can access the graph
can_access_graph = agent.AgentGraph.userId == agent.userId
execution_count = len(executions)
success_rate: float | None = None
avg_correctness_score: float | None = None
if execution_count > 0:
success_count = sum(
1
for e in executions
if e.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED
)
success_rate = (success_count / execution_count) * 100
# Hard-coded to True until a method to check is implemented
correctness_scores = []
for e in executions:
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
correctness_scores.append(float(score))
if correctness_scores:
avg_correctness_score = sum(correctness_scores) / len(
correctness_scores
)
recent_executions: list[RecentExecution] = []
for e in executions:
exec_score: float | None = None
exec_summary: str | None = None
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
exec_score = float(score)
summary = e.stats.get("activity_status")
if summary is not None and isinstance(summary, str):
exec_summary = summary
exec_status = (
e.executionStatus.value
if hasattr(e.executionStatus, "value")
else str(e.executionStatus)
)
recent_executions.append(
RecentExecution(
status=exec_status,
correctness_score=exec_score,
activity_summary=exec_summary,
)
)
can_access_graph = agent.AgentGraph.userId == agent.userId
is_latest_version = True
# Build marketplace_listing if available
marketplace_listing_data = None
if store_listing and store_listing.ActiveVersion and profile:
creator_data = MarketplaceListingCreator(
@@ -190,11 +249,15 @@ class LibraryAgent(pydantic.BaseModel):
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
new_output=new_output,
execution_count=execution_count,
success_rate=success_rate,
avg_correctness_score=avg_correctness_score,
recent_executions=recent_executions,
can_access_graph=can_access_graph,
is_latest_version=is_latest_version,
is_favorite=agent.isFavorite,
recommended_schedule_cron=agent.AgentGraph.recommendedScheduleCron,
settings=GraphSettings.model_validate(agent.settings),
settings=_parse_settings(agent.settings),
marketplace_listing=marketplace_listing_data,
)
@@ -220,18 +283,15 @@ def _calculate_agent_status(
if not executions:
return AgentStatusResult(status=LibraryAgentStatus.COMPLETED, new_output=False)
# Track how many times each execution status appears
status_counts = {status: 0 for status in prisma.enums.AgentExecutionStatus}
new_output = False
for execution in executions:
# Check if there's a completed run more recent than `recent_threshold`
if execution.createdAt >= recent_threshold:
if execution.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED:
new_output = True
status_counts[execution.executionStatus] += 1
# Determine the final status based on counts
if status_counts[prisma.enums.AgentExecutionStatus.FAILED] > 0:
return AgentStatusResult(status=LibraryAgentStatus.ERROR, new_output=new_output)
elif status_counts[prisma.enums.AgentExecutionStatus.QUEUED] > 0:

View File

@@ -112,6 +112,7 @@ async def get_store_agents(
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
agent_graph_id=agent.get("agentGraphId", ""),
)
store_agents.append(store_agent)
except Exception as e:
@@ -170,6 +171,7 @@ async def get_store_agents(
description=agent.description,
runs=agent.runs,
rating=agent.rating,
agent_graph_id=agent.agentGraphId,
)
# Add to the list only if creation was successful
store_agents.append(store_agent)

View File

@@ -600,6 +600,7 @@ async def hybrid_search(
sa.featured,
sa.is_available,
sa.updated_at,
sa."agentGraphId",
-- Searchable text for BM25 reranking
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
-- Semantic score
@@ -659,6 +660,7 @@ async def hybrid_search(
featured,
is_available,
updated_at,
"agentGraphId",
searchable_text,
semantic_score,
lexical_score,

View File

@@ -38,6 +38,7 @@ class StoreAgent(pydantic.BaseModel):
description: str
runs: int
rating: float
agent_graph_id: str
class StoreAgentsResponse(pydantic.BaseModel):

View File

@@ -26,11 +26,13 @@ def test_store_agent():
description="Test description",
runs=50,
rating=4.5,
agent_graph_id="test-graph-id",
)
assert agent.slug == "test-agent"
assert agent.agent_name == "Test Agent"
assert agent.runs == 50
assert agent.rating == 4.5
assert agent.agent_graph_id == "test-graph-id"
def test_store_agents_response():
@@ -46,6 +48,7 @@ def test_store_agents_response():
description="Test description",
runs=50,
rating=4.5,
agent_graph_id="test-graph-id",
)
],
pagination=store_model.Pagination(

View File

@@ -82,6 +82,7 @@ def test_get_agents_featured(
description="Featured agent description",
runs=100,
rating=4.5,
agent_graph_id="test-graph-1",
)
],
pagination=store_model.Pagination(
@@ -127,6 +128,7 @@ def test_get_agents_by_creator(
description="Creator agent description",
runs=50,
rating=4.0,
agent_graph_id="test-graph-2",
)
],
pagination=store_model.Pagination(
@@ -172,6 +174,7 @@ def test_get_agents_sorted(
description="Top agent description",
runs=1000,
rating=5.0,
agent_graph_id="test-graph-3",
)
],
pagination=store_model.Pagination(
@@ -217,6 +220,7 @@ def test_get_agents_search(
description="Specific search term description",
runs=75,
rating=4.2,
agent_graph_id="test-graph-search",
)
],
pagination=store_model.Pagination(
@@ -262,6 +266,7 @@ def test_get_agents_category(
description="Category agent description",
runs=60,
rating=4.1,
agent_graph_id="test-graph-category",
)
],
pagination=store_model.Pagination(
@@ -306,6 +311,7 @@ def test_get_agents_pagination(
description=f"Agent {i} description",
runs=i * 10,
rating=4.0,
agent_graph_id="test-graph-2",
)
for i in range(5)
],

View File

@@ -33,6 +33,7 @@ class TestCacheDeletion:
description="Test description",
runs=100,
rating=4.5,
agent_graph_id="test-graph-id",
)
],
pagination=Pagination(

View File

@@ -1028,6 +1028,39 @@ async def get_graph(
return GraphModel.from_db(graph, for_export)
async def get_store_listed_graphs(*graph_ids: str) -> dict[str, GraphModel]:
"""Batch-fetch multiple store-listed graphs by their IDs.
Only returns graphs that have approved store listings (publicly available).
Does not require permission checks since store-listed graphs are public.
Args:
*graph_ids: Variable number of graph IDs to fetch
Returns:
Dict mapping graph_id to GraphModel for graphs with approved store listings
"""
if not graph_ids:
return {}
store_listings = await StoreListingVersion.prisma().find_many(
where={
"agentGraphId": {"in": list(graph_ids)},
"submissionStatus": SubmissionStatus.APPROVED,
"isDeleted": False,
},
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
distinct=["agentGraphId"],
order={"agentGraphVersion": "desc"},
)
return {
listing.agentGraphId: GraphModel.from_db(listing.AgentGraph)
for listing in store_listings
if listing.AgentGraph
}
async def get_graph_as_admin(
graph_id: str,
version: int | None = None,

View File

@@ -0,0 +1,39 @@
from urllib.parse import urlparse
import fastapi
from fastapi.routing import APIRoute
from backend.api.features.integrations.router import router as integrations_router
from backend.integrations.providers import ProviderName
from backend.integrations.webhooks import utils as webhooks_utils
def test_webhook_ingress_url_matches_route(monkeypatch) -> None:
app = fastapi.FastAPI()
app.include_router(integrations_router, prefix="/api/integrations")
provider = ProviderName.GITHUB
webhook_id = "webhook_123"
base_url = "https://example.com"
monkeypatch.setattr(webhooks_utils.app_config, "platform_base_url", base_url)
route = next(
route
for route in integrations_router.routes
if isinstance(route, APIRoute)
and route.path == "/{provider}/webhooks/{webhook_id}/ingress"
and "POST" in route.methods
)
expected_path = f"/api/integrations{route.path}".format(
provider=provider.value,
webhook_id=webhook_id,
)
actual_url = urlparse(webhooks_utils.webhook_ingress_url(provider, webhook_id))
expected_base = urlparse(base_url)
assert (actual_url.scheme, actual_url.netloc) == (
expected_base.scheme,
expected_base.netloc,
)
assert actual_url.path == expected_path

View File

@@ -9,7 +9,8 @@
"sub_heading": "Creator agent subheading",
"description": "Creator agent description",
"runs": 50,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
}
],
"pagination": {

View File

@@ -9,7 +9,8 @@
"sub_heading": "Category agent subheading",
"description": "Category agent description",
"runs": 60,
"rating": 4.1
"rating": 4.1,
"agent_graph_id": "test-graph-category"
}
],
"pagination": {

View File

@@ -9,7 +9,8 @@
"sub_heading": "Agent 0 subheading",
"description": "Agent 0 description",
"runs": 0,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
},
{
"slug": "agent-1",
@@ -20,7 +21,8 @@
"sub_heading": "Agent 1 subheading",
"description": "Agent 1 description",
"runs": 10,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
},
{
"slug": "agent-2",
@@ -31,7 +33,8 @@
"sub_heading": "Agent 2 subheading",
"description": "Agent 2 description",
"runs": 20,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
},
{
"slug": "agent-3",
@@ -42,7 +45,8 @@
"sub_heading": "Agent 3 subheading",
"description": "Agent 3 description",
"runs": 30,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
},
{
"slug": "agent-4",
@@ -53,7 +57,8 @@
"sub_heading": "Agent 4 subheading",
"description": "Agent 4 description",
"runs": 40,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
}
],
"pagination": {

View File

@@ -9,7 +9,8 @@
"sub_heading": "Search agent subheading",
"description": "Specific search term description",
"runs": 75,
"rating": 4.2
"rating": 4.2,
"agent_graph_id": "test-graph-search"
}
],
"pagination": {

View File

@@ -9,7 +9,8 @@
"sub_heading": "Top agent subheading",
"description": "Top agent description",
"runs": 1000,
"rating": 5.0
"rating": 5.0,
"agent_graph_id": "test-graph-3"
}
],
"pagination": {

View File

@@ -9,7 +9,8 @@
"sub_heading": "Featured agent subheading",
"description": "Featured agent description",
"runs": 100,
"rating": 4.5
"rating": 4.5,
"agent_graph_id": "test-graph-1"
}
],
"pagination": {

View File

@@ -31,6 +31,10 @@
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"execution_count": 0,
"success_rate": null,
"avg_correctness_score": null,
"recent_executions": [],
"can_access_graph": true,
"is_latest_version": true,
"is_favorite": false,
@@ -72,6 +76,10 @@
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"execution_count": 0,
"success_rate": null,
"avg_correctness_score": null,
"recent_executions": [],
"can_access_graph": false,
"is_latest_version": true,
"is_favorite": false,

View File

@@ -57,7 +57,8 @@ class TestDecomposeGoal:
result = await core.decompose_goal("Build a chatbot")
mock_external.assert_called_once_with("Build a chatbot", "")
# library_agents defaults to None
mock_external.assert_called_once_with("Build a chatbot", "", None)
assert result == expected_result
@pytest.mark.asyncio
@@ -74,7 +75,8 @@ class TestDecomposeGoal:
await core.decompose_goal("Build a chatbot", "Use Python")
mock_external.assert_called_once_with("Build a chatbot", "Use Python")
# library_agents defaults to None
mock_external.assert_called_once_with("Build a chatbot", "Use Python", None)
@pytest.mark.asyncio
async def test_returns_none_on_service_failure(self):
@@ -109,7 +111,8 @@ class TestGenerateAgent:
instructions = {"type": "instructions", "steps": ["Step 1"]}
result = await core.generate_agent(instructions)
mock_external.assert_called_once_with(instructions)
# library_agents defaults to None
mock_external.assert_called_once_with(instructions, None)
# Result should have id, version, is_active added if not present
assert result is not None
assert result["name"] == "Test Agent"
@@ -174,7 +177,8 @@ class TestGenerateAgentPatch:
current_agent = {"nodes": [], "links": []}
result = await core.generate_agent_patch("Add a node", current_agent)
mock_external.assert_called_once_with("Add a node", current_agent)
# library_agents defaults to None
mock_external.assert_called_once_with("Add a node", current_agent, None)
assert result == expected_result
@pytest.mark.asyncio

View File

@@ -0,0 +1,857 @@
"""
Tests for library agent fetching functionality in agent generator.
This test suite verifies the search-based library agent fetching,
including the combination of library and marketplace agents.
"""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.agent_generator import core
class TestGetLibraryAgentsForGeneration:
"""Test get_library_agents_for_generation function."""
@pytest.mark.asyncio
async def test_fetches_agents_with_search_term(self):
"""Test that search_term is passed to the library db."""
# Create a mock agent with proper attribute values
mock_agent = MagicMock()
mock_agent.graph_id = "agent-123"
mock_agent.graph_version = 1
mock_agent.name = "Email Agent"
mock_agent.description = "Sends emails"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
mock_agent.recent_executions = []
mock_response = MagicMock()
mock_response.agents = [mock_agent]
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
result = await core.get_library_agents_for_generation(
user_id="user-123",
search_query="send email",
)
mock_list.assert_called_once_with(
user_id="user-123",
search_term="send email",
page=1,
page_size=15,
include_executions=True,
)
# Verify result format
assert len(result) == 1
assert result[0]["graph_id"] == "agent-123"
assert result[0]["name"] == "Email Agent"
@pytest.mark.asyncio
async def test_excludes_specified_graph_id(self):
"""Test that agents with excluded graph_id are filtered out."""
mock_response = MagicMock()
mock_response.agents = [
MagicMock(
graph_id="agent-123",
graph_version=1,
name="Agent 1",
description="First agent",
input_schema={},
output_schema={},
recent_executions=[],
),
MagicMock(
graph_id="agent-456",
graph_version=1,
name="Agent 2",
description="Second agent",
input_schema={},
output_schema={},
recent_executions=[],
),
]
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
):
result = await core.get_library_agents_for_generation(
user_id="user-123",
exclude_graph_id="agent-123",
)
# Verify the excluded agent is not in results
assert len(result) == 1
assert result[0]["graph_id"] == "agent-456"
@pytest.mark.asyncio
async def test_respects_max_results(self):
"""Test that max_results parameter limits the page_size."""
mock_response = MagicMock()
mock_response.agents = []
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
await core.get_library_agents_for_generation(
user_id="user-123",
max_results=5,
)
mock_list.assert_called_once_with(
user_id="user-123",
search_term=None,
page=1,
page_size=5,
include_executions=True,
)
class TestSearchMarketplaceAgentsForGeneration:
"""Test search_marketplace_agents_for_generation function."""
@pytest.mark.asyncio
async def test_searches_marketplace_with_query(self):
"""Test that marketplace is searched with the query."""
mock_response = MagicMock()
mock_response.agents = [
MagicMock(
agent_name="Public Agent",
description="A public agent",
sub_heading="Does something useful",
creator="creator-1",
agent_graph_id="graph-123",
)
]
mock_graph = MagicMock()
mock_graph.id = "graph-123"
mock_graph.version = 1
mock_graph.input_schema = {"type": "object"}
mock_graph.output_schema = {"type": "object"}
with (
patch(
"backend.api.features.store.db.get_store_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_search,
patch(
"backend.api.features.chat.tools.agent_generator.core.get_store_listed_graphs",
new_callable=AsyncMock,
return_value={"graph-123": mock_graph},
),
):
result = await core.search_marketplace_agents_for_generation(
search_query="automation",
max_results=10,
)
mock_search.assert_called_once_with(
search_query="automation",
page=1,
page_size=10,
)
assert len(result) == 1
assert result[0]["name"] == "Public Agent"
assert result[0]["graph_id"] == "graph-123"
@pytest.mark.asyncio
async def test_handles_marketplace_error_gracefully(self):
"""Test that marketplace errors don't crash the function."""
with patch(
"backend.api.features.store.db.get_store_agents",
new_callable=AsyncMock,
side_effect=Exception("Marketplace unavailable"),
):
result = await core.search_marketplace_agents_for_generation(
search_query="test"
)
# Should return empty list, not raise exception
assert result == []
class TestGetAllRelevantAgentsForGeneration:
"""Test get_all_relevant_agents_for_generation function."""
@pytest.mark.asyncio
async def test_combines_library_and_marketplace_agents(self):
"""Test that agents from both sources are combined."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
marketplace_agents = [
{
"graph_id": "market-456",
"graph_version": 1,
"name": "Market Agent",
"description": "From marketplace",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
return_value=marketplace_agents,
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test query",
include_marketplace=True,
)
# Library agents should come first
assert len(result) == 2
assert result[0]["name"] == "Library Agent"
assert result[1]["name"] == "Market Agent"
@pytest.mark.asyncio
async def test_deduplicates_by_graph_id(self):
"""Test that marketplace agents with same graph_id as library are excluded."""
library_agents = [
{
"graph_id": "shared-123",
"graph_version": 1,
"name": "Shared Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
marketplace_agents = [
{
"graph_id": "shared-123", # Same graph_id, should be deduplicated
"graph_version": 1,
"name": "Shared Agent",
"description": "From marketplace",
"input_schema": {},
"output_schema": {},
},
{
"graph_id": "unique-456",
"graph_version": 1,
"name": "Unique Agent",
"description": "Only in marketplace",
"input_schema": {},
"output_schema": {},
},
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
return_value=marketplace_agents,
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test",
include_marketplace=True,
)
# Shared Agent from marketplace should be excluded by graph_id
assert len(result) == 2
names = [a["name"] for a in result]
assert "Shared Agent" in names
assert "Unique Agent" in names
@pytest.mark.asyncio
async def test_skips_marketplace_when_disabled(self):
"""Test that marketplace is not searched when include_marketplace=False."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
) as mock_marketplace:
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test",
include_marketplace=False,
)
# Marketplace should not be called
mock_marketplace.assert_not_called()
assert len(result) == 1
@pytest.mark.asyncio
async def test_skips_marketplace_when_no_search_query(self):
"""Test that marketplace is not searched without a search query."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
) as mock_marketplace:
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query=None, # No search query
include_marketplace=True,
)
# Marketplace should not be called without search query
mock_marketplace.assert_not_called()
assert len(result) == 1
class TestExtractSearchTermsFromSteps:
"""Test extract_search_terms_from_steps function."""
def test_extracts_terms_from_instructions_type(self):
"""Test extraction from valid instructions decomposition result."""
decomposition_result = {
"type": "instructions",
"steps": [
{
"description": "Send an email notification",
"block_name": "GmailSendBlock",
},
{"description": "Fetch weather data", "action": "Get weather API"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert "Send an email notification" in result
assert "GmailSendBlock" in result
assert "Fetch weather data" in result
assert "Get weather API" in result
def test_returns_empty_for_non_instructions_type(self):
"""Test that non-instructions types return empty list."""
decomposition_result = {
"type": "clarifying_questions",
"questions": [{"question": "What email?"}],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert result == []
def test_deduplicates_terms_case_insensitively(self):
"""Test that duplicate terms are removed (case-insensitive)."""
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "Send Email", "name": "send email"},
{"description": "Other task"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
# Should only have one "send email" variant
email_terms = [t for t in result if "email" in t.lower()]
assert len(email_terms) == 1
def test_filters_short_terms(self):
"""Test that terms with 3 or fewer characters are filtered out."""
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "ab", "action": "xyz"}, # Both too short
{"description": "Valid term here"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert "ab" not in result
assert "xyz" not in result
assert "Valid term here" in result
def test_handles_empty_steps(self):
"""Test handling of empty steps list."""
decomposition_result = {
"type": "instructions",
"steps": [],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert result == []
class TestEnrichLibraryAgentsFromSteps:
"""Test enrich_library_agents_from_steps function."""
@pytest.mark.asyncio
async def test_enriches_with_additional_agents(self):
"""Test that additional agents are found based on steps."""
existing_agents = [
{
"graph_id": "existing-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
additional_agents = [
{
"graph_id": "new-456",
"graph_version": 1,
"name": "Email Agent",
"description": "For sending emails",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "Send email notification"},
],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should have both existing and new agents
assert len(result) == 2
names = [a["name"] for a in result]
assert "Existing Agent" in names
assert "Email Agent" in names
@pytest.mark.asyncio
async def test_deduplicates_by_graph_id(self):
"""Test that agents with same graph_id are not duplicated."""
existing_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
# Additional search returns same agent
additional_agents = [
{
"graph_id": "agent-123", # Same ID
"graph_version": 1,
"name": "Existing Agent Copy",
"description": "Same agent different name",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [{"description": "Some action"}],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should not duplicate
assert len(result) == 1
@pytest.mark.asyncio
async def test_deduplicates_by_name(self):
"""Test that agents with same name are not duplicated."""
existing_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Email Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
# Additional search returns agent with same name but different ID
additional_agents = [
{
"graph_id": "agent-456", # Different ID
"graph_version": 1,
"name": "Email Agent", # Same name
"description": "Different agent same name",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [{"description": "Send email"}],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should not duplicate by name
assert len(result) == 1
assert result[0].get("graph_id") == "agent-123" # Original kept
@pytest.mark.asyncio
async def test_returns_existing_when_no_steps(self):
"""Test that existing agents are returned when no search terms extracted."""
existing_agents = [
{
"graph_id": "existing-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "clarifying_questions", # Not instructions type
"questions": [],
}
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should return existing unchanged
assert result == existing_agents
@pytest.mark.asyncio
async def test_limits_search_terms_to_three(self):
"""Test that only first 3 search terms are used."""
existing_agents = []
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "First action"},
{"description": "Second action"},
{"description": "Third action"},
{"description": "Fourth action"},
{"description": "Fifth action"},
],
}
call_count = 0
async def mock_get_agents(*args, **kwargs):
nonlocal call_count
call_count += 1
return []
with patch.object(
core,
"get_all_relevant_agents_for_generation",
side_effect=mock_get_agents,
):
await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should only make 3 calls (limited to first 3 terms)
assert call_count == 3
class TestExtractUuidsFromText:
"""Test extract_uuids_from_text function."""
def test_extracts_single_uuid(self):
"""Test extraction of a single UUID from text."""
text = "Use my agent 46631191-e8a8-486f-ad90-84f89738321d for this task"
result = core.extract_uuids_from_text(text)
assert len(result) == 1
assert "46631191-e8a8-486f-ad90-84f89738321d" in result
def test_extracts_multiple_uuids(self):
"""Test extraction of multiple UUIDs from text."""
text = (
"Combine agents 11111111-1111-4111-8111-111111111111 "
"and 22222222-2222-4222-9222-222222222222"
)
result = core.extract_uuids_from_text(text)
assert len(result) == 2
assert "11111111-1111-4111-8111-111111111111" in result
assert "22222222-2222-4222-9222-222222222222" in result
def test_deduplicates_uuids(self):
"""Test that duplicate UUIDs are deduplicated."""
text = (
"Use 46631191-e8a8-486f-ad90-84f89738321d twice: "
"46631191-e8a8-486f-ad90-84f89738321d"
)
result = core.extract_uuids_from_text(text)
assert len(result) == 1
def test_normalizes_to_lowercase(self):
"""Test that UUIDs are normalized to lowercase."""
text = "Use 46631191-E8A8-486F-AD90-84F89738321D"
result = core.extract_uuids_from_text(text)
assert result[0] == "46631191-e8a8-486f-ad90-84f89738321d"
def test_returns_empty_for_no_uuids(self):
"""Test that empty list is returned when no UUIDs found."""
text = "Create an email agent that sends notifications"
result = core.extract_uuids_from_text(text)
assert result == []
def test_ignores_invalid_uuids(self):
"""Test that invalid UUID-like strings are ignored."""
text = "Not a valid UUID: 12345678-1234-1234-1234-123456789abc"
result = core.extract_uuids_from_text(text)
# UUID v4 requires specific patterns (4 in third group, 8/9/a/b in fourth)
assert len(result) == 0
class TestGetLibraryAgentById:
"""Test get_library_agent_by_id function (and its alias get_library_agent_by_graph_id)."""
@pytest.mark.asyncio
async def test_returns_agent_when_found_by_graph_id(self):
"""Test that agent is returned when found by graph_id."""
mock_agent = MagicMock()
mock_agent.graph_id = "agent-123"
mock_agent.graph_version = 1
mock_agent.name = "Test Agent"
mock_agent.description = "Test description"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is not None
assert result["graph_id"] == "agent-123"
assert result["name"] == "Test Agent"
@pytest.mark.asyncio
async def test_falls_back_to_library_agent_id(self):
"""Test that lookup falls back to library agent ID when graph_id not found."""
mock_agent = MagicMock()
mock_agent.graph_id = "graph-456" # Different from the lookup ID
mock_agent.graph_version = 1
mock_agent.name = "Library Agent"
mock_agent.description = "Found by library ID"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None, # Not found by graph_id
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
return_value=mock_agent, # Found by library ID
),
):
result = await core.get_library_agent_by_id("user-123", "library-id-123")
assert result is not None
assert result["graph_id"] == "graph-456"
assert result["name"] == "Library Agent"
@pytest.mark.asyncio
async def test_returns_none_when_not_found_by_either_method(self):
"""Test that None is returned when agent not found by either method."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None,
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=core.NotFoundError("Not found"),
),
):
result = await core.get_library_agent_by_id("user-123", "nonexistent")
assert result is None
@pytest.mark.asyncio
async def test_returns_none_on_exception(self):
"""Test that None is returned when exception occurs in both lookups."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is None
@pytest.mark.asyncio
async def test_alias_works(self):
"""Test that get_library_agent_by_graph_id is an alias for get_library_agent_by_id."""
assert core.get_library_agent_by_graph_id is core.get_library_agent_by_id
class TestGetAllRelevantAgentsWithUuids:
"""Test UUID extraction in get_all_relevant_agents_for_generation."""
@pytest.mark.asyncio
async def test_fetches_explicitly_mentioned_agents(self):
"""Test that agents mentioned by UUID are fetched directly."""
mock_agent = MagicMock()
mock_agent.graph_id = "46631191-e8a8-486f-ad90-84f89738321d"
mock_agent.graph_version = 1
mock_agent.name = "Mentioned Agent"
mock_agent.description = "Explicitly mentioned"
mock_agent.input_schema = {}
mock_agent.output_schema = {}
mock_response = MagicMock()
mock_response.agents = []
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
),
patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
),
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="Use agent 46631191-e8a8-486f-ad90-84f89738321d",
include_marketplace=False,
)
assert len(result) == 1
assert result[0].get("graph_id") == "46631191-e8a8-486f-ad90-84f89738321d"
assert result[0].get("name") == "Mentioned Agent"
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -433,5 +433,139 @@ class TestGetBlocksExternal:
assert result is None
class TestLibraryAgentsPassthrough:
"""Test that library_agents are passed correctly in all requests."""
def setup_method(self):
"""Reset client singleton before each test."""
service._settings = None
service._client = None
@pytest.mark.asyncio
async def test_decompose_goal_passes_library_agents(self):
"""Test that library_agents are included in decompose goal payload."""
library_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Email Sender",
"description": "Sends emails",
"input_schema": {"properties": {"to": {"type": "string"}}},
"output_schema": {"properties": {"sent": {"type": "boolean"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.decompose_goal_external(
"Send an email",
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_generate_agent_passes_library_agents(self):
"""Test that library_agents are included in generate agent payload."""
library_agents = [
{
"graph_id": "agent-456",
"graph_version": 2,
"name": "Data Fetcher",
"description": "Fetches data from API",
"input_schema": {"properties": {"url": {"type": "string"}}},
"output_schema": {"properties": {"data": {"type": "object"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": {"name": "Test Agent", "nodes": []},
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.generate_agent_external(
{"steps": ["Step 1"]},
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_generate_agent_patch_passes_library_agents(self):
"""Test that library_agents are included in patch generation payload."""
library_agents = [
{
"graph_id": "agent-789",
"graph_version": 1,
"name": "Slack Notifier",
"description": "Sends Slack messages",
"input_schema": {"properties": {"message": {"type": "string"}}},
"output_schema": {"properties": {"success": {"type": "boolean"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": {"name": "Updated Agent", "nodes": []},
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.generate_agent_patch_external(
"Add error handling",
{"name": "Original Agent", "nodes": []},
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_decompose_goal_without_library_agents(self):
"""Test that decompose goal works without library_agents."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.decompose_goal_external("Build a workflow")
# Verify library_agents was NOT passed when not provided
call_args = mock_client.post.call_args
assert "library_agents" not in call_args[1]["json"]
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -857,7 +857,7 @@ export const CustomNode = React.memo(
})();
const hasAdvancedFields =
data.inputSchema &&
data.inputSchema?.properties &&
Object.entries(data.inputSchema.properties).some(([key, value]) => {
return (
value.advanced === true && !data.inputSchema.required?.includes(key)

View File

@@ -8136,6 +8136,25 @@
]
},
"new_output": { "type": "boolean", "title": "New Output" },
"execution_count": {
"type": "integer",
"title": "Execution Count",
"default": 0
},
"success_rate": {
"anyOf": [{ "type": "number" }, { "type": "null" }],
"title": "Success Rate"
},
"avg_correctness_score": {
"anyOf": [{ "type": "number" }, { "type": "null" }],
"title": "Avg Correctness Score"
},
"recent_executions": {
"items": { "$ref": "#/components/schemas/RecentExecution" },
"type": "array",
"title": "Recent Executions",
"description": "List of recent executions with status, score, and summary"
},
"can_access_graph": {
"type": "boolean",
"title": "Can Access Graph"
@@ -9550,6 +9569,23 @@
"required": ["providers", "pagination"],
"title": "ProviderResponse"
},
"RecentExecution": {
"properties": {
"status": { "type": "string", "title": "Status" },
"correctness_score": {
"anyOf": [{ "type": "number" }, { "type": "null" }],
"title": "Correctness Score"
},
"activity_summary": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Activity Summary"
}
},
"type": "object",
"required": ["status"],
"title": "RecentExecution",
"description": "Summary of a recent execution for quality assessment.\n\nUsed by the LLM to understand the agent's recent performance with specific examples\nrather than just aggregate statistics."
},
"RefundRequest": {
"properties": {
"id": { "type": "string", "title": "Id" },
@@ -9979,7 +10015,8 @@
"sub_heading": { "type": "string", "title": "Sub Heading" },
"description": { "type": "string", "title": "Description" },
"runs": { "type": "integer", "title": "Runs" },
"rating": { "type": "number", "title": "Rating" }
"rating": { "type": "number", "title": "Rating" },
"agent_graph_id": { "type": "string", "title": "Agent Graph Id" }
},
"type": "object",
"required": [
@@ -9991,7 +10028,8 @@
"sub_heading",
"description",
"runs",
"rating"
"rating",
"agent_graph_id"
],
"title": "StoreAgent"
},

View File

@@ -156,11 +156,19 @@ export function ChatMessage({
}
if (isClarificationNeeded && message.type === "clarification_needed") {
const hasUserReplyAfter =
index >= 0 &&
messages
.slice(index + 1)
.some((m) => m.type === "message" && m.role === "user");
return (
<ClarificationQuestionsWidget
questions={message.questions}
message={message.message}
sessionId={message.sessionId}
onSubmitAnswers={handleClarificationAnswers}
isAnswered={hasUserReplyAfter}
className={className}
/>
);

View File

@@ -6,7 +6,7 @@ import { Input } from "@/components/atoms/Input/Input";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import { CheckCircleIcon, QuestionIcon } from "@phosphor-icons/react";
import { useState } from "react";
import { useState, useEffect, useRef } from "react";
export interface ClarifyingQuestion {
question: string;
@@ -17,39 +17,96 @@ export interface ClarifyingQuestion {
interface Props {
questions: ClarifyingQuestion[];
message: string;
sessionId?: string;
onSubmitAnswers: (answers: Record<string, string>) => void;
onCancel?: () => void;
isAnswered?: boolean;
className?: string;
}
function getStorageKey(sessionId?: string): string | null {
if (!sessionId) return null;
return `clarification_answers_${sessionId}`;
}
export function ClarificationQuestionsWidget({
questions,
message,
sessionId,
onSubmitAnswers,
onCancel,
isAnswered = false,
className,
}: Props) {
const [answers, setAnswers] = useState<Record<string, string>>({});
const [isSubmitted, setIsSubmitted] = useState(false);
const lastSessionIdRef = useRef<string | undefined>(undefined);
useEffect(() => {
const storageKey = getStorageKey(sessionId);
if (!storageKey) {
setAnswers({});
setIsSubmitted(false);
lastSessionIdRef.current = sessionId;
return;
}
try {
const saved = localStorage.getItem(storageKey);
if (saved) {
const parsed = JSON.parse(saved) as Record<string, string>;
setAnswers(parsed);
} else {
setAnswers({});
}
setIsSubmitted(false);
} catch {
setAnswers({});
setIsSubmitted(false);
}
lastSessionIdRef.current = sessionId;
}, [sessionId]);
useEffect(() => {
if (lastSessionIdRef.current !== sessionId) {
return;
}
const storageKey = getStorageKey(sessionId);
if (!storageKey) return;
const hasAnswers = Object.values(answers).some((v) => v.trim());
try {
if (hasAnswers) {
localStorage.setItem(storageKey, JSON.stringify(answers));
} else {
localStorage.removeItem(storageKey);
}
} catch {}
}, [answers, sessionId]);
function handleAnswerChange(keyword: string, value: string) {
setAnswers((prev) => ({ ...prev, [keyword]: value }));
}
function handleSubmit() {
// Check if all questions are answered
const allAnswered = questions.every((q) => answers[q.keyword]?.trim());
if (!allAnswered) {
return;
}
setIsSubmitted(true);
onSubmitAnswers(answers);
const storageKey = getStorageKey(sessionId);
try {
if (storageKey) {
localStorage.removeItem(storageKey);
}
} catch {}
}
const allAnswered = questions.every((q) => answers[q.keyword]?.trim());
// Show submitted state after answers are submitted
if (isSubmitted) {
if (isAnswered || isSubmitted) {
return (
<div
className={cn(

View File

@@ -30,9 +30,9 @@ export function getErrorMessage(result: unknown): string {
}
if (typeof result === "object" && result !== null) {
const response = result as Record<string, unknown>;
if (response.error) return stripInternalReasoning(String(response.error));
if (response.message)
return stripInternalReasoning(String(response.message));
if (response.error) return stripInternalReasoning(String(response.error));
}
return "An error occurred";
}
@@ -363,8 +363,8 @@ export function formatToolResponse(result: unknown, toolName: string): string {
case "error":
const errorMsg =
(response.error as string) || response.message || "An error occurred";
return `Error: ${errorMsg}`;
(response.message as string) || response.error || "An error occurred";
return stripInternalReasoning(String(errorMsg));
case "no_results":
const suggestions = (response.suggestions as string[]) || [];

View File

@@ -4,6 +4,28 @@
This guide walks through creating a simple question-answer AI agent using AutoGPT's visual builder. This is a basic example that can be expanded into more complex agents.
## **Prerequisites**
### **Cloud-Hosted AutoGPT**
If you're using the cloud-hosted version at [agpt.co](https://agpt.co), you're ready to go! AI blocks come with **built-in credits** — no API keys required to get started. If you'd prefer to use your own API keys, you can add them via **Profile → Integrations**.
### **Self-Hosted (Docker)**
If you're running AutoGPT locally with Docker, you'll need to add your own API keys to `autogpt_platform/backend/.env`:
```bash
# Create or edit backend/.env
OPENAI_API_KEY=sk-your-key-here
ANTHROPIC_API_KEY=sk-ant-your-key-here
# Add other provider keys as needed
```
After adding keys, restart the services:
```bash
docker compose down && docker compose up -d
```
**Note:** The Calculator example below doesn't require any API credentials — it's a good way to test your setup before adding AI blocks.
## **Example Agent: Q&A (with AI)**
A step-by-step guide to creating a simple Q&A agent using input and output blocks.