Merge dev into feature/video-editing-blocks

- Resolved conflicts keeping dev's media.py with ExecutionContext pattern
- Updated video blocks (clip, concat, download, narration, text_overlay) to use ExecutionContext
- Removed duplicate blocks (duration, loop, add_audio) - now provided by media.py
- Updated video/__init__.py to only export new video blocks
This commit is contained in:
Otto
2026-01-30 03:16:41 +00:00
222 changed files with 13856 additions and 5857 deletions

View File

@@ -29,8 +29,7 @@
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install",
"cd docs && pip install -r requirements.txt"
"cd autogpt_platform/frontend && pnpm install"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false

View File

@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
**Backend Entry Points:**
- `backend/backend/server/server.py` - FastAPI application setup
- `backend/backend/api/rest_api.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
### API Development
1. Update routes in `/backend/backend/server/routers/`
1. Update routes in `/backend/backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside route files
4. For `data/*.py` changes, validate user ID checks
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)

1
.gitignore vendored
View File

@@ -178,4 +178,5 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
.claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs

View File

@@ -16,7 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions.
- Format Python code with `poetry run format`.
- Format frontend code using `pnpm format`.
## Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
@@ -33,14 +32,17 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
## Testing
@@ -49,22 +51,8 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
Always run the relevant linters and tests before committing.
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
Types:
- feat
- fix
- refactor
- ci
- dx (developer experience)
Scopes:
- platform
- platform/library
- platform/marketplace
- backend
- backend/executor
- frontend
- frontend/library
- frontend/marketplace
- blocks
Types: - feat - fix - refactor - ci - dx (developer experience)
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
## Pull requests

View File

@@ -6,152 +6,30 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
AutoGPT Platform is a monorepo containing:
- **Backend** (`/backend`): Python FastAPI server with async support
- **Frontend** (`/frontend`): Next.js React application
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
- **Backend** (`backend`): Python FastAPI server with async support
- **Frontend** (`frontend`): Next.js React application
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
## Essential Commands
## Component Documentation
### Backend Development
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
```bash
# Install dependencies
cd backend && poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend server
poetry run serve
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in TESTING.md
#### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Frontend Development
```bash
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
### Backend Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
### Frontend Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
## Key Concepts
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
3. **Integrations**: OAuth and API connections stored per user
4. **Store**: Marketplace for sharing agent templates
5. **Virus Scanning**: ClamAV integration for file upload security
### Testing Approach
- Backend uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
- Frontend uses Playwright for E2E tests
- Component testing via Storybook
### Database Schema
Key models (defined in `/backend/schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
### Environment Configuration
#### Configuration Files
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
#### Docker Environment Loading Order
@@ -167,83 +45,12 @@ Key models (defined in `/backend/schema.prisma`):
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Common Development Tasks
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
### Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
### Security Implementation
**Cache Protection Middleware:**
- Located in `/backend/backend/server/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications
### Creating Pull Requests
- Create the PR aginst the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
- Use conventional commit messages (see below)/
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
- Create the PR against the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
- Use conventional commit messages (see below)
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
- Run the github pre-commit hooks to ensure code quality.
### Reviewing/Revising Pull Requests

View File

@@ -179,5 +179,10 @@ AYRSHARE_JWT_KEY=
SMARTLEAD_API_KEY=
ZEROBOUNCE_API_KEY=
# PostHog Analytics
# Get API key from https://posthog.com - Project Settings > Project API Key
POSTHOG_API_KEY=
POSTHOG_HOST=https://eu.i.posthog.com
# Other Services
AUTOMOD_API_KEY=

View File

@@ -0,0 +1,170 @@
# CLAUDE.md - Backend
This file provides guidance to Claude Code when working with the backend.
## Essential Commands
To run something with Python package dependencies you MUST use `poetry run ...`.
```bash
# Install dependencies
poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend as a whole
poetry run app
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in @TESTING.md
### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
## Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
## Testing Approach
- Uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
## Database Schema
Key models (defined in `schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
## Environment Configuration
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
## Common Development Tasks
### Adding a new block
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
#### Handling files in blocks with `store_media_file()`
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
### Modifying the API
1. Update route in `backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
## Security Implementation
### Cache Protection Middleware
- Located in `backend/api/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications

View File

@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
#### Using Global Auth Fixtures
Two global auth fixtures are provided by `backend/server/conftest.py`:
Two global auth fixtures are provided by `backend/api/conftest.py`:
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")

View File

@@ -86,6 +86,8 @@ async def execute_graph_block(
obj = backend.data.block.get_block(block_id)
if not obj:
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
if obj.disabled:
raise HTTPException(status_code=403, detail=f"Block #{block_id} is disabled.")
output = defaultdict(list)
async for name, data in obj.execute(data):

View File

@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
)
# Taken from backend/server/v2/store/db.py
# Taken from backend/api/features/store/db.py
def sanitize_query(query: str | None) -> str | None:
if query is None:
return query

View File

@@ -33,9 +33,15 @@ class ChatConfig(BaseSettings):
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
max_retries: int = Field(default=3, description="Maximum number of retries")
max_agent_runs: int = Field(default=3, description="Maximum number of agent runs")
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
max_agent_schedules: int = Field(
default=3, description="Maximum number of agent schedules"
default=30, description="Maximum number of agent schedules"
)
# Long-running operation configuration
long_running_operation_ttl: int = Field(
default=600,
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
)
# Langfuse Prompt Management Configuration

View File

@@ -247,3 +247,45 @@ async def get_chat_session_message_count(session_id: str) -> int:
"""Get the number of messages in a chat session."""
count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id})
return count
async def update_tool_message_content(
session_id: str,
tool_call_id: str,
new_content: str,
) -> bool:
"""Update the content of a tool message in chat history.
Used by background tasks to update pending operation messages with final results.
Args:
session_id: The chat session ID.
tool_call_id: The tool call ID to find the message.
new_content: The new content to set.
Returns:
True if a message was updated, False otherwise.
"""
try:
result = await PrismaChatMessage.prisma().update_many(
where={
"sessionId": session_id,
"toolCallId": tool_call_id,
},
data={
"content": new_content,
},
)
if result == 0:
logger.warning(
f"No message found to update for session {session_id}, "
f"tool_call_id {tool_call_id}"
)
return False
return True
except Exception as e:
logger.error(
f"Failed to update tool message for session {session_id}, "
f"tool_call_id {tool_call_id}: {e}"
)
return False

View File

@@ -295,6 +295,21 @@ async def cache_chat_session(session: ChatSession) -> None:
await _cache_session(session)
async def invalidate_session_cache(session_id: str) -> None:
"""Invalidate a chat session from Redis cache.
Used by background tasks to ensure fresh data is loaded on next access.
This is best-effort - Redis failures are logged but don't fail the operation.
"""
try:
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
# Best-effort: log but don't fail - cache will expire naturally
logger.warning(f"Failed to invalidate session cache for {session_id}: {e}")
async def _get_session_from_db(session_id: str) -> ChatSession | None:
"""Get a chat session from the database."""
prisma_session = await chat_db.get_chat_session(session_id)

View File

@@ -31,6 +31,7 @@ class ResponseType(str, Enum):
# Other
ERROR = "error"
USAGE = "usage"
HEARTBEAT = "heartbeat"
class StreamBaseResponse(BaseModel):
@@ -142,3 +143,20 @@ class StreamError(StreamBaseResponse):
details: dict[str, Any] | None = Field(
default=None, description="Additional error details"
)
class StreamHeartbeat(StreamBaseResponse):
"""Heartbeat to keep SSE connection alive during long-running operations.
Uses SSE comment format (: comment) which is ignored by clients but keeps
the connection alive through proxies and load balancers.
"""
type: ResponseType = ResponseType.HEARTBEAT
toolCallId: str | None = Field(
default=None, description="Tool call ID if heartbeat is for a specific tool"
)
def to_sse(self) -> str:
"""Convert to SSE comment format to keep connection alive."""
return ": heartbeat\n\n"

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,79 @@
# CoPilot Tools - Future Ideas
## Multimodal Image Support for CoPilot
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
**Backend Solution:**
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
```python
# Before sending to LLM, scan for workspace image references
# and inject them as image content parts
# Example message transformation:
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
# TO: {"role": "assistant", "content": [
# {"type": "text", "text": "Generated image: workspace://abc123"},
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
# ]}
```
**Where to implement:**
- In the chat stream handler before calling the LLM
- Or in a message preprocessing step
- Need to fetch image from workspace, convert to base64, add as image content
**Considerations:**
- Only do this for image MIME types (image/png, image/jpeg, etc.)
- May want a size limit (don't pass 10MB images)
- Track which images were "shown" to the AI for frontend indicator
- Cost implications - vision API calls are more expensive
**Frontend Solution:**
Show visual indicator on workspace files in chat:
- If AI saw the image: normal display
- If AI didn't see it: overlay icon saying "AI can't see this image"
Requires response metadata indicating which `workspace://` refs were passed to the model.
---
## Output Post-Processing Layer for run_block
**Problem:** Many blocks produce large outputs that:
- Consume massive context (100KB base64 image = ~133KB tokens)
- Can't fit in conversation
- Break things and cause high LLM costs
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
**Benefits:**
1. **Centralized** - one place to handle all output processing
2. **Future-proof** - new blocks automatically get output processing
3. **Keeps blocks pure** - they don't need to know about context constraints
4. **Handles all large outputs** - not just images
**Processing Rules:**
- Detect base64 data URIs → save to workspace, return `workspace://` reference
- Truncate very long strings (>N chars) with truncation note
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
- Handle nested large outputs in dicts recursively
- Cap total output size
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
**Example:**
```python
def _process_outputs_for_context(
outputs: dict[str, list[Any]],
workspace_manager: WorkspaceManager,
max_string_length: int = 10000,
max_array_preview: int = 5,
) -> dict[str, list[Any]]:
"""Process block outputs to prevent context bloat."""
processed = {}
for name, values in outputs.items():
processed[name] = [_process_value(v, workspace_manager) for v in values]
return processed
```

View File

@@ -1,8 +1,10 @@
import logging
from typing import TYPE_CHECKING, Any
from openai.types.chat import ChatCompletionToolParam
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tracking import track_tool_called
from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
@@ -16,10 +18,18 @@ from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
from .workspace_files import (
DeleteWorkspaceFileTool,
ListWorkspaceFilesTool,
ReadWorkspaceFileTool,
WriteWorkspaceFileTool,
)
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable
logger = logging.getLogger(__name__)
# Single source of truth for all tools
TOOL_REGISTRY: dict[str, BaseTool] = {
"add_understanding": AddUnderstandingTool(),
@@ -33,6 +43,11 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),
"write_workspace_file": WriteWorkspaceFileTool(),
"delete_workspace_file": DeleteWorkspaceFileTool(),
}
# Export individual tool instances for backwards compatibility
@@ -45,6 +60,11 @@ tools: list[ChatCompletionToolParam] = [
]
def get_tool(tool_name: str) -> BaseTool | None:
"""Get a tool instance by name."""
return TOOL_REGISTRY.get(tool_name)
async def execute_tool(
tool_name: str,
parameters: dict[str, Any],
@@ -53,7 +73,20 @@ async def execute_tool(
tool_call_id: str,
) -> "StreamToolOutputAvailable":
"""Execute a tool by name."""
tool = TOOL_REGISTRY.get(tool_name)
tool = get_tool(tool_name)
if not tool:
raise ValueError(f"Tool {tool_name} not found")
# Track tool call in PostHog
logger.info(
f"Tracking tool call: tool={tool_name}, user={user_id}, "
f"session={session.session_id}, call_id={tool_call_id}"
)
track_tool_called(
user_id=user_id,
session_id=session.session_id,
tool_name=tool_name,
tool_call_id=tool_call_id,
)
return await tool.execute(user_id, session, tool_call_id, **parameters)

View File

@@ -3,8 +3,6 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.understanding import (
BusinessUnderstandingInput,
@@ -61,7 +59,6 @@ and automations for the user's specific needs."""
"""Requires authentication to store user-specific data."""
return True
@observe(as_type="tool", name="add_understanding")
async def _execute(
self,
user_id: str | None,

View File

@@ -1,29 +1,31 @@
"""Agent generator package - Creates agents from natural language."""
from .core import (
apply_agent_patch,
AgentGeneratorNotConfiguredError,
decompose_goal,
generate_agent,
generate_agent_patch,
get_agent_as_json,
json_to_graph,
save_agent_to_library,
)
from .fixer import apply_all_fixes
from .utils import get_blocks_info
from .validator import validate_agent
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
__all__ = [
# Core functions
"decompose_goal",
"generate_agent",
"generate_agent_patch",
"apply_agent_patch",
"save_agent_to_library",
"get_agent_as_json",
# Fixer
"apply_all_fixes",
# Validator
"validate_agent",
# Utils
"get_blocks_info",
"json_to_graph",
# Exceptions
"AgentGeneratorNotConfiguredError",
# Service
"is_external_service_configured",
"check_external_service_health",
# Error handling
"get_user_message_for_error",
]

View File

@@ -1,25 +0,0 @@
"""OpenRouter client configuration for agent generation."""
import os
from openai import AsyncOpenAI
# Configuration - use OPEN_ROUTER_API_KEY for consistency with chat/config.py
OPENROUTER_API_KEY = os.getenv("OPEN_ROUTER_API_KEY")
AGENT_GENERATOR_MODEL = os.getenv("AGENT_GENERATOR_MODEL", "anthropic/claude-opus-4.5")
# OpenRouter client (OpenAI-compatible API)
_client: AsyncOpenAI | None = None
def get_client() -> AsyncOpenAI:
"""Get or create the OpenRouter client."""
global _client
if _client is None:
if not OPENROUTER_API_KEY:
raise ValueError("OPENROUTER_API_KEY environment variable is required")
_client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=OPENROUTER_API_KEY,
)
return _client

View File

@@ -1,7 +1,5 @@
"""Core agent generation functions."""
import copy
import json
import logging
import uuid
from typing import Any
@@ -9,13 +7,35 @@ from typing import Any
from backend.api.features.library import db as library_db
from backend.data.graph import Graph, Link, Node, create_graph
from .client import AGENT_GENERATOR_MODEL, get_client
from .prompts import DECOMPOSITION_PROMPT, GENERATION_PROMPT, PATCH_PROMPT
from .utils import get_block_summaries, parse_json_from_llm
from .service import (
decompose_goal_external,
generate_agent_external,
generate_agent_patch_external,
is_external_service_configured,
)
logger = logging.getLogger(__name__)
class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured."""
pass
def _check_service_configured() -> None:
"""Check if the external Agent Generator service is configured.
Raises:
AgentGeneratorNotConfiguredError: If the service is not configured.
"""
if not is_external_service_configured():
raise AgentGeneratorNotConfiguredError(
"Agent Generator service is not configured. "
"Set AGENTGENERATOR_HOST environment variable to enable agent generation."
)
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
"""Break down a goal into steps or return clarifying questions.
@@ -28,40 +48,13 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any]
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
client = get_client()
prompt = DECOMPOSITION_PROMPT.format(block_summaries=get_block_summaries())
full_description = description
if context:
full_description = f"{description}\n\nAdditional context:\n{context}"
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": full_description},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for decomposition")
return None
result = parse_json_from_llm(content)
if result is None:
logger.error(f"Failed to parse decomposition response: {content[:200]}")
return None
return result
except Exception as e:
logger.error(f"Error decomposing goal: {e}")
return None
_check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal")
return await decompose_goal_external(description, context)
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
@@ -71,45 +64,26 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
instructions: Structured instructions from decompose_goal
Returns:
Agent JSON dict or None on error
Agent JSON dict, error dict {"type": "error", ...}, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
client = get_client()
prompt = GENERATION_PROMPT.format(block_summaries=get_block_summaries())
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": json.dumps(instructions, indent=2)},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for agent generation")
return None
result = parse_json_from_llm(content)
if result is None:
logger.error(f"Failed to parse agent JSON: {content[:200]}")
return None
# Ensure required fields
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions)
if result:
# Check if it's an error response - pass through as-is
if isinstance(result, dict) and result.get("type") == "error":
return result
# Ensure required fields for successful agent generation
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
result["version"] = 1
if "is_active" not in result:
result["is_active"] = True
return result
except Exception as e:
logger.error(f"Error generating agent: {e}")
return None
return result
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
@@ -284,108 +258,24 @@ async def get_agent_as_json(
async def generate_agent_patch(
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Generate a patch to update an existing agent.
"""Update an existing agent using natural language.
The external Agent Generator service handles:
- Generating the patch
- Applying the patch
- Fixing and validating the result
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
Returns:
Patch dict or clarifying questions, or None on error
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
error dict {"type": "error", ...}, or None on unexpected error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
client = get_client()
prompt = PATCH_PROMPT.format(
current_agent=json.dumps(current_agent, indent=2),
block_summaries=get_block_summaries(),
)
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": update_request},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for patch generation")
return None
return parse_json_from_llm(content)
except Exception as e:
logger.error(f"Error generating patch: {e}")
return None
def apply_agent_patch(
current_agent: dict[str, Any], patch: dict[str, Any]
) -> dict[str, Any]:
"""Apply a patch to an existing agent.
Args:
current_agent: Current agent JSON
patch: Patch dict with operations
Returns:
Updated agent JSON
"""
agent = copy.deepcopy(current_agent)
patches = patch.get("patches", [])
for p in patches:
patch_type = p.get("type")
if patch_type == "modify":
node_id = p.get("node_id")
changes = p.get("changes", {})
for node in agent.get("nodes", []):
if node["id"] == node_id:
_deep_update(node, changes)
logger.debug(f"Modified node {node_id}")
break
elif patch_type == "add":
new_nodes = p.get("new_nodes", [])
new_links = p.get("new_links", [])
agent["nodes"] = agent.get("nodes", []) + new_nodes
agent["links"] = agent.get("links", []) + new_links
logger.debug(f"Added {len(new_nodes)} nodes, {len(new_links)} links")
elif patch_type == "remove":
node_ids_to_remove = set(p.get("node_ids", []))
link_ids_to_remove = set(p.get("link_ids", []))
# Remove nodes
agent["nodes"] = [
n for n in agent.get("nodes", []) if n["id"] not in node_ids_to_remove
]
# Remove links (both explicit and those referencing removed nodes)
agent["links"] = [
link
for link in agent.get("links", [])
if link["id"] not in link_ids_to_remove
and link["source_id"] not in node_ids_to_remove
and link["sink_id"] not in node_ids_to_remove
]
logger.debug(
f"Removed {len(node_ids_to_remove)} nodes, {len(link_ids_to_remove)} links"
)
return agent
def _deep_update(target: dict, source: dict) -> None:
"""Recursively update a dict with another dict."""
for key, value in source.items():
if key in target and isinstance(target[key], dict) and isinstance(value, dict):
_deep_update(target[key], value)
else:
target[key] = value
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(update_request, current_agent)

View File

@@ -0,0 +1,43 @@
"""Error handling utilities for agent generator."""
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
This function maps internal error types to user-friendly messages,
providing a consistent experience across different agent operations.
Args:
error_type: The error type from the external service
(e.g., "llm_parse_error", "timeout", "rate_limit")
operation: Description of what operation failed, used in the default
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
Returns:
User-friendly error message suitable for display to the user
"""
if error_type == "llm_parse_error":
return (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
return (
validation_message
or "The request failed validation. Please try rephrasing."
)
elif error_type == "patch_error":
return "Failed to apply the changes. Please try a different approach."
elif error_type in ("timeout", "llm_timeout"):
return "The request took too long. Please try again."
elif error_type in ("rate_limit", "llm_rate_limit"):
return "The service is currently busy. Please try again in a moment."
else:
return f"Failed to {operation}. Please try again."

View File

@@ -1,606 +0,0 @@
"""Agent fixer - Fixes common LLM generation errors."""
import logging
import re
import uuid
from typing import Any
from .utils import (
ADDTODICTIONARY_BLOCK_ID,
ADDTOLIST_BLOCK_ID,
CODE_EXECUTION_BLOCK_ID,
CONDITION_BLOCK_ID,
CREATEDICT_BLOCK_ID,
CREATELIST_BLOCK_ID,
DATA_SAMPLING_BLOCK_ID,
DOUBLE_CURLY_BRACES_BLOCK_IDS,
GET_CURRENT_DATE_BLOCK_ID,
STORE_VALUE_BLOCK_ID,
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
get_blocks_info,
is_valid_uuid,
)
logger = logging.getLogger(__name__)
def fix_agent_ids(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix invalid UUIDs in agent and link IDs."""
# Fix agent ID
if not is_valid_uuid(agent.get("id", "")):
agent["id"] = str(uuid.uuid4())
logger.debug(f"Fixed agent ID: {agent['id']}")
# Fix node IDs
id_mapping = {} # Old ID -> New ID
for node in agent.get("nodes", []):
if not is_valid_uuid(node.get("id", "")):
old_id = node.get("id", "")
new_id = str(uuid.uuid4())
id_mapping[old_id] = new_id
node["id"] = new_id
logger.debug(f"Fixed node ID: {old_id} -> {new_id}")
# Fix link IDs and update references
for link in agent.get("links", []):
if not is_valid_uuid(link.get("id", "")):
link["id"] = str(uuid.uuid4())
logger.debug(f"Fixed link ID: {link['id']}")
# Update source/sink IDs if they were remapped
if link.get("source_id") in id_mapping:
link["source_id"] = id_mapping[link["source_id"]]
if link.get("sink_id") in id_mapping:
link["sink_id"] = id_mapping[link["sink_id"]]
return agent
def fix_double_curly_braces(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix single curly braces to double in template blocks."""
for node in agent.get("nodes", []):
if node.get("block_id") not in DOUBLE_CURLY_BRACES_BLOCK_IDS:
continue
input_data = node.get("input_default", {})
for key in ("prompt", "format"):
if key in input_data and isinstance(input_data[key], str):
original = input_data[key]
# Fix simple variable references: {var} -> {{var}}
fixed = re.sub(
r"(?<!\{)\{([a-zA-Z_][a-zA-Z0-9_]*)\}(?!\})",
r"{{\1}}",
original,
)
if fixed != original:
input_data[key] = fixed
logger.debug(f"Fixed curly braces in {key}")
return agent
def fix_storevalue_before_condition(agent: dict[str, Any]) -> dict[str, Any]:
"""Add StoreValueBlock before ConditionBlock if needed for value2."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
# Find all ConditionBlock nodes
condition_node_ids = {
node["id"] for node in nodes if node.get("block_id") == CONDITION_BLOCK_ID
}
if not condition_node_ids:
return agent
new_nodes = []
new_links = []
processed_conditions = set()
for link in links:
sink_id = link.get("sink_id")
sink_name = link.get("sink_name")
# Check if this link goes to a ConditionBlock's value2
if sink_id in condition_node_ids and sink_name == "value2":
source_node = next(
(n for n in nodes if n["id"] == link.get("source_id")), None
)
# Skip if source is already a StoreValueBlock
if source_node and source_node.get("block_id") == STORE_VALUE_BLOCK_ID:
continue
# Skip if we already processed this condition
if sink_id in processed_conditions:
continue
processed_conditions.add(sink_id)
# Create StoreValueBlock
store_node_id = str(uuid.uuid4())
store_node = {
"id": store_node_id,
"block_id": STORE_VALUE_BLOCK_ID,
"input_default": {"data": None},
"metadata": {"position": {"x": 0, "y": -100}},
}
new_nodes.append(store_node)
# Create link: original source -> StoreValueBlock
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": link["source_id"],
"source_name": link["source_name"],
"sink_id": store_node_id,
"sink_name": "input",
"is_static": False,
}
)
# Update original link: StoreValueBlock -> ConditionBlock
link["source_id"] = store_node_id
link["source_name"] = "output"
logger.debug(f"Added StoreValueBlock before ConditionBlock {sink_id}")
if new_nodes:
agent["nodes"] = nodes + new_nodes
return agent
def fix_addtolist_blocks(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix AddToList blocks by adding prerequisite empty AddToList block.
When an AddToList block is found:
1. Checks if there's a CreateListBlock before it
2. Removes CreateListBlock if linked directly to AddToList
3. Adds an empty AddToList block before the original
4. Ensures the original has a self-referencing link
"""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
new_nodes = []
original_addtolist_ids = set()
nodes_to_remove = set()
links_to_remove = []
# First pass: identify CreateListBlock nodes to remove
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
if (
source_node
and sink_node
and source_node.get("block_id") == CREATELIST_BLOCK_ID
and sink_node.get("block_id") == ADDTOLIST_BLOCK_ID
):
nodes_to_remove.add(source_node.get("id"))
links_to_remove.append(link)
logger.debug(f"Removing CreateListBlock {source_node.get('id')}")
# Second pass: process AddToList blocks
filtered_nodes = []
for node in nodes:
if node.get("id") in nodes_to_remove:
continue
if node.get("block_id") == ADDTOLIST_BLOCK_ID:
original_addtolist_ids.add(node.get("id"))
node_id = node.get("id")
pos = node.get("metadata", {}).get("position", {"x": 0, "y": 0})
# Check if already has prerequisite
has_prereq = any(
link.get("sink_id") == node_id
and link.get("sink_name") == "list"
and link.get("source_name") == "updated_list"
for link in links
)
if not has_prereq:
# Remove links to "list" input (except self-reference)
for link in links:
if (
link.get("sink_id") == node_id
and link.get("sink_name") == "list"
and link.get("source_id") != node_id
and link not in links_to_remove
):
links_to_remove.append(link)
# Create prerequisite AddToList block
prereq_id = str(uuid.uuid4())
prereq_node = {
"id": prereq_id,
"block_id": ADDTOLIST_BLOCK_ID,
"input_default": {"list": [], "entry": None, "entries": []},
"metadata": {
"position": {"x": pos.get("x", 0) - 800, "y": pos.get("y", 0)}
},
}
new_nodes.append(prereq_node)
# Link prerequisite to original
links.append(
{
"id": str(uuid.uuid4()),
"source_id": prereq_id,
"source_name": "updated_list",
"sink_id": node_id,
"sink_name": "list",
"is_static": False,
}
)
logger.debug(f"Added prerequisite AddToList block for {node_id}")
filtered_nodes.append(node)
# Remove marked links
filtered_links = [link for link in links if link not in links_to_remove]
# Add self-referencing links for original AddToList blocks
for node in filtered_nodes + new_nodes:
if (
node.get("block_id") == ADDTOLIST_BLOCK_ID
and node.get("id") in original_addtolist_ids
):
node_id = node.get("id")
has_self_ref = any(
link["source_id"] == node_id
and link["sink_id"] == node_id
and link["source_name"] == "updated_list"
and link["sink_name"] == "list"
for link in filtered_links
)
if not has_self_ref:
filtered_links.append(
{
"id": str(uuid.uuid4()),
"source_id": node_id,
"source_name": "updated_list",
"sink_id": node_id,
"sink_name": "list",
"is_static": False,
}
)
logger.debug(f"Added self-reference for AddToList {node_id}")
agent["nodes"] = filtered_nodes + new_nodes
agent["links"] = filtered_links
return agent
def fix_addtodictionary_blocks(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix AddToDictionary blocks by removing empty CreateDictionary nodes."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
nodes_to_remove = set()
links_to_remove = []
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
if (
source_node
and sink_node
and source_node.get("block_id") == CREATEDICT_BLOCK_ID
and sink_node.get("block_id") == ADDTODICTIONARY_BLOCK_ID
):
nodes_to_remove.add(source_node.get("id"))
links_to_remove.append(link)
logger.debug(f"Removing CreateDictionary {source_node.get('id')}")
agent["nodes"] = [n for n in nodes if n.get("id") not in nodes_to_remove]
agent["links"] = [link for link in links if link not in links_to_remove]
return agent
def fix_code_execution_output(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix CodeExecutionBlock output: change 'response' to 'stdout_logs'."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
if (
source_node
and source_node.get("block_id") == CODE_EXECUTION_BLOCK_ID
and link.get("source_name") == "response"
):
link["source_name"] = "stdout_logs"
logger.debug("Fixed CodeExecutionBlock output: response -> stdout_logs")
return agent
def fix_data_sampling_sample_size(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix DataSamplingBlock by setting sample_size to 1 as default."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
links_to_remove = []
for node in nodes:
if node.get("block_id") == DATA_SAMPLING_BLOCK_ID:
node_id = node.get("id")
input_default = node.get("input_default", {})
# Remove links to sample_size
for link in links:
if (
link.get("sink_id") == node_id
and link.get("sink_name") == "sample_size"
):
links_to_remove.append(link)
# Set default
input_default["sample_size"] = 1
node["input_default"] = input_default
logger.debug(f"Fixed DataSamplingBlock {node_id} sample_size to 1")
if links_to_remove:
agent["links"] = [link for link in links if link not in links_to_remove]
return agent
def fix_node_x_coordinates(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix node x-coordinates to ensure 800+ unit spacing between linked nodes."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
node_lookup = {n.get("id"): n for n in nodes}
for link in links:
source_id = link.get("source_id")
sink_id = link.get("sink_id")
source_node = node_lookup.get(source_id)
sink_node = node_lookup.get(sink_id)
if not source_node or not sink_node:
continue
source_pos = source_node.get("metadata", {}).get("position", {})
sink_pos = sink_node.get("metadata", {}).get("position", {})
source_x = source_pos.get("x", 0)
sink_x = sink_pos.get("x", 0)
if abs(sink_x - source_x) < 800:
new_x = source_x + 800
if "metadata" not in sink_node:
sink_node["metadata"] = {}
if "position" not in sink_node["metadata"]:
sink_node["metadata"]["position"] = {}
sink_node["metadata"]["position"]["x"] = new_x
logger.debug(f"Fixed node {sink_id} x: {sink_x} -> {new_x}")
return agent
def fix_getcurrentdate_offset(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix GetCurrentDateBlock offset to ensure it's positive."""
for node in agent.get("nodes", []):
if node.get("block_id") == GET_CURRENT_DATE_BLOCK_ID:
input_default = node.get("input_default", {})
if "offset" in input_default:
offset = input_default["offset"]
if isinstance(offset, (int, float)) and offset < 0:
input_default["offset"] = abs(offset)
logger.debug(f"Fixed offset: {offset} -> {abs(offset)}")
return agent
def fix_ai_model_parameter(
agent: dict[str, Any],
blocks_info: list[dict[str, Any]],
default_model: str = "gpt-4o",
) -> dict[str, Any]:
"""Add default model parameter to AI blocks if missing."""
block_map = {b.get("id"): b for b in blocks_info}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
block = block_map.get(block_id)
if not block:
continue
# Check if block has AI category
categories = block.get("categories", [])
is_ai_block = any(
cat.get("category") == "AI" for cat in categories if isinstance(cat, dict)
)
if is_ai_block:
input_default = node.get("input_default", {})
if "model" not in input_default:
input_default["model"] = default_model
node["input_default"] = input_default
logger.debug(
f"Added model '{default_model}' to AI block {node.get('id')}"
)
return agent
def fix_link_static_properties(
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> dict[str, Any]:
"""Fix is_static property based on source block's staticOutput."""
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
for link in agent.get("links", []):
source_node = node_lookup.get(link.get("source_id"))
if not source_node:
continue
source_block = block_map.get(source_node.get("block_id"))
if not source_block:
continue
static_output = source_block.get("staticOutput", False)
if link.get("is_static") != static_output:
link["is_static"] = static_output
logger.debug(f"Fixed link {link.get('id')} is_static to {static_output}")
return agent
def fix_data_type_mismatch(
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> dict[str, Any]:
"""Fix data type mismatches by inserting UniversalTypeConverterBlock."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in nodes}
def get_property_type(schema: dict, name: str) -> str | None:
if "_#_" in name:
parent, child = name.split("_#_", 1)
parent_schema = schema.get(parent, {})
if "properties" in parent_schema:
return parent_schema["properties"].get(child, {}).get("type")
return None
return schema.get(name, {}).get("type")
def are_types_compatible(src: str, sink: str) -> bool:
if {src, sink} <= {"integer", "number"}:
return True
return src == sink
type_mapping = {
"string": "string",
"text": "string",
"integer": "number",
"number": "number",
"float": "number",
"boolean": "boolean",
"bool": "boolean",
"array": "list",
"list": "list",
"object": "dictionary",
"dict": "dictionary",
"dictionary": "dictionary",
}
new_links = []
nodes_to_add = []
for link in links:
source_node = node_lookup.get(link.get("source_id"))
sink_node = node_lookup.get(link.get("sink_id"))
if not source_node or not sink_node:
new_links.append(link)
continue
source_block = block_map.get(source_node.get("block_id"))
sink_block = block_map.get(sink_node.get("block_id"))
if not source_block or not sink_block:
new_links.append(link)
continue
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
source_type = get_property_type(source_outputs, link.get("source_name", ""))
sink_type = get_property_type(sink_inputs, link.get("sink_name", ""))
if (
source_type
and sink_type
and not are_types_compatible(source_type, sink_type)
):
# Insert type converter
converter_id = str(uuid.uuid4())
target_type = type_mapping.get(sink_type, sink_type)
converter_node = {
"id": converter_id,
"block_id": UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
"input_default": {"type": target_type},
"metadata": {"position": {"x": 0, "y": 100}},
}
nodes_to_add.append(converter_node)
# source -> converter
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": link["source_id"],
"source_name": link["source_name"],
"sink_id": converter_id,
"sink_name": "value",
"is_static": False,
}
)
# converter -> sink
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": converter_id,
"source_name": "value",
"sink_id": link["sink_id"],
"sink_name": link["sink_name"],
"is_static": False,
}
)
logger.debug(f"Inserted type converter: {source_type} -> {target_type}")
else:
new_links.append(link)
if nodes_to_add:
agent["nodes"] = nodes + nodes_to_add
agent["links"] = new_links
return agent
def apply_all_fixes(
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> dict[str, Any]:
"""Apply all fixes to an agent JSON.
Args:
agent: Agent JSON dict
blocks_info: Optional list of block info dicts for advanced fixes
Returns:
Fixed agent JSON
"""
# Basic fixes (no block info needed)
agent = fix_agent_ids(agent)
agent = fix_double_curly_braces(agent)
agent = fix_storevalue_before_condition(agent)
agent = fix_addtolist_blocks(agent)
agent = fix_addtodictionary_blocks(agent)
agent = fix_code_execution_output(agent)
agent = fix_data_sampling_sample_size(agent)
agent = fix_node_x_coordinates(agent)
agent = fix_getcurrentdate_offset(agent)
# Advanced fixes (require block info)
if blocks_info is None:
blocks_info = get_blocks_info()
agent = fix_ai_model_parameter(agent, blocks_info)
agent = fix_link_static_properties(agent, blocks_info)
agent = fix_data_type_mismatch(agent, blocks_info)
return agent

View File

@@ -1,225 +0,0 @@
"""Prompt templates for agent generation."""
DECOMPOSITION_PROMPT = """
You are an expert AutoGPT Workflow Decomposer. Your task is to analyze a user's high-level goal and break it down into a clear, step-by-step plan using the available blocks.
Each step should represent a distinct, automatable action suitable for execution by an AI automation system.
---
FIRST: Analyze the user's goal and determine:
1) Design-time configuration (fixed settings that won't change per run)
2) Runtime inputs (values the agent's end-user will provide each time it runs)
For anything that can vary per run (email addresses, names, dates, search terms, etc.):
- DO NOT ask for the actual value
- Instead, define it as an Agent Input with a clear name, type, and description
Only ask clarifying questions about design-time config that affects how you build the workflow:
- Which external service to use (e.g., "Gmail vs Outlook", "Notion vs Google Docs")
- Required formats or structures (e.g., "CSV, JSON, or PDF output?")
- Business rules that must be hard-coded
IMPORTANT CLARIFICATIONS POLICY:
- Ask no more than five essential questions
- Do not ask for concrete values that can be provided at runtime as Agent Inputs
- Do not ask for API keys or credentials; the platform handles those directly
- If there is enough information to infer reasonable defaults, prefer to propose defaults
---
GUIDELINES:
1. List each step as a numbered item
2. Describe the action clearly and specify inputs/outputs
3. Ensure steps are in logical, sequential order
4. Mention block names naturally (e.g., "Use GetWeatherByLocationBlock to...")
5. Help the user reach their goal efficiently
---
RULES:
1. OUTPUT FORMAT: Only output either clarifying questions OR step-by-step instructions, not both
2. USE ONLY THE BLOCKS PROVIDED
3. ALL required_input fields must be provided
4. Data types of linked properties must match
5. Write expert-level prompts for AI-related blocks
---
CRITICAL BLOCK RESTRICTIONS:
1. AddToListBlock: Outputs updated list EVERY addition, not after all additions
2. SendEmailBlock: Draft the email for user review; set SMTP config based on email type
3. ConditionBlock: value2 is reference, value1 is contrast
4. CodeExecutionBlock: DO NOT USE - use AI blocks instead
5. ReadCsvBlock: Only use the 'rows' output, not 'row'
---
OUTPUT FORMAT:
If more information is needed:
```json
{{
"type": "clarifying_questions",
"questions": [
{{
"question": "Which email provider should be used? (Gmail, Outlook, custom SMTP)",
"keyword": "email_provider",
"example": "Gmail"
}}
]
}}
```
If ready to proceed:
```json
{{
"type": "instructions",
"steps": [
{{
"step_number": 1,
"block_name": "AgentShortTextInputBlock",
"description": "Get the URL of the content to analyze.",
"inputs": [{{"name": "name", "value": "URL"}}],
"outputs": [{{"name": "result", "description": "The URL entered by user"}}]
}}
]
}}
```
---
AVAILABLE BLOCKS:
{block_summaries}
"""
GENERATION_PROMPT = """
You are an expert AI workflow builder. Generate a valid agent JSON from the given instructions.
---
NODES:
Each node must include:
- `id`: Unique UUID v4 (e.g. `a8f5b1e2-c3d4-4e5f-8a9b-0c1d2e3f4a5b`)
- `block_id`: The block identifier (must match an Allowed Block)
- `input_default`: Dict of inputs (can be empty if no static inputs needed)
- `metadata`: Must contain:
- `position`: {{"x": number, "y": number}} - adjacent nodes should differ by 800+ in X
- `customized_name`: Clear name describing this block's purpose in the workflow
---
LINKS:
Each link connects a source node's output to a sink node's input:
- `id`: MUST be UUID v4 (NOT "link-1", "link-2", etc.)
- `source_id`: ID of the source node
- `source_name`: Output field name from the source block
- `sink_id`: ID of the sink node
- `sink_name`: Input field name on the sink block
- `is_static`: true only if source block has static_output: true
CRITICAL: All IDs must be valid UUID v4 format!
---
AGENT (GRAPH):
Wrap nodes and links in:
- `id`: UUID of the agent
- `name`: Short, generic name (avoid specific company names, URLs)
- `description`: Short, generic description
- `nodes`: List of all nodes
- `links`: List of all links
- `version`: 1
- `is_active`: true
---
TIPS:
- All required_input fields must be provided via input_default or a valid link
- Ensure consistent source_id and sink_id references
- Avoid dangling links
- Input/output pins must match block schemas
- Do not invent unknown block_ids
---
ALLOWED BLOCKS:
{block_summaries}
---
Generate the complete agent JSON. Output ONLY valid JSON, no explanation.
"""
PATCH_PROMPT = """
You are an expert at modifying AutoGPT agent workflows. Given the current agent and a modification request, generate a JSON patch to update the agent.
CURRENT AGENT:
{current_agent}
AVAILABLE BLOCKS:
{block_summaries}
---
PATCH FORMAT:
Return a JSON object with the following structure:
```json
{{
"type": "patch",
"intent": "Brief description of what the patch does",
"patches": [
{{
"type": "modify",
"node_id": "uuid-of-node-to-modify",
"changes": {{
"input_default": {{"field": "new_value"}},
"metadata": {{"customized_name": "New Name"}}
}}
}},
{{
"type": "add",
"new_nodes": [
{{
"id": "new-uuid",
"block_id": "block-uuid",
"input_default": {{}},
"metadata": {{"position": {{"x": 0, "y": 0}}, "customized_name": "Name"}}
}}
],
"new_links": [
{{
"id": "link-uuid",
"source_id": "source-node-id",
"source_name": "output_field",
"sink_id": "sink-node-id",
"sink_name": "input_field"
}}
]
}},
{{
"type": "remove",
"node_ids": ["uuid-of-node-to-remove"],
"link_ids": ["uuid-of-link-to-remove"]
}}
]
}}
```
If you need more information, return:
```json
{{
"type": "clarifying_questions",
"questions": [
{{
"question": "What specific change do you want?",
"keyword": "change_type",
"example": "Add error handling"
}}
]
}}
```
Generate the minimal patch needed. Output ONLY valid JSON.
"""

View File

@@ -0,0 +1,374 @@
"""External Agent Generator service client.
This module provides a client for communicating with the external Agent Generator
microservice. When AGENTGENERATOR_HOST is configured, the agent generation functions
will delegate to the external service instead of using the built-in LLM-based implementation.
"""
import logging
from typing import Any
import httpx
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
def _create_error_response(
error_message: str,
error_type: str = "unknown",
details: dict[str, Any] | None = None,
) -> dict[str, Any]:
"""Create a standardized error response dict.
Args:
error_message: Human-readable error message
error_type: Machine-readable error type
details: Optional additional error details
Returns:
Error dict with type="error" and error details
"""
response: dict[str, Any] = {
"type": "error",
"error": error_message,
"error_type": error_type,
}
if details:
response["details"] = details
return response
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
"""Classify an HTTP error into error_type and message.
Args:
e: The HTTP status error
Returns:
Tuple of (error_type, error_message)
"""
status = e.response.status_code
if status == 429:
return "rate_limit", f"Agent Generator rate limited: {e}"
elif status == 503:
return "service_unavailable", f"Agent Generator unavailable: {e}"
elif status == 504 or status == 408:
return "timeout", f"Agent Generator timed out: {e}"
else:
return "http_error", f"HTTP error calling Agent Generator: {e}"
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
"""Classify a request error into error_type and message.
Args:
e: The request error
Returns:
Tuple of (error_type, error_message)
"""
error_str = str(e).lower()
if "timeout" in error_str or "timed out" in error_str:
return "timeout", f"Agent Generator request timed out: {e}"
elif "connect" in error_str:
return "connection_error", f"Could not connect to Agent Generator: {e}"
else:
return "request_error", f"Request error calling Agent Generator: {e}"
_client: httpx.AsyncClient | None = None
_settings: Settings | None = None
def _get_settings() -> Settings:
"""Get or create settings singleton."""
global _settings
if _settings is None:
_settings = Settings()
return _settings
def is_external_service_configured() -> bool:
"""Check if external Agent Generator service is configured."""
settings = _get_settings()
return bool(settings.config.agentgenerator_host)
def _get_base_url() -> str:
"""Get the base URL for the external service."""
settings = _get_settings()
host = settings.config.agentgenerator_host
port = settings.config.agentgenerator_port
return f"http://{host}:{port}"
def _get_client() -> httpx.AsyncClient:
"""Get or create the HTTP client for the external service."""
global _client
if _client is None:
settings = _get_settings()
_client = httpx.AsyncClient(
base_url=_get_base_url(),
timeout=httpx.Timeout(settings.config.agentgenerator_timeout),
)
return _client
async def decompose_goal_external(
description: str, context: str = ""
) -> dict[str, Any] | None:
"""Call the external service to decompose a goal.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
Returns:
Dict with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...}
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
"""
client = _get_client()
# Build the request payload
payload: dict[str, Any] = {"description": description}
if context:
# The external service uses user_instruction for additional context
payload["user_instruction"] = context
try:
response = await client.post("/api/decompose-description", json=payload)
response.raise_for_status()
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator decomposition failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Map the response to the expected format
response_type = data.get("type")
if response_type == "instructions":
return {"type": "instructions", "steps": data.get("steps", [])}
elif response_type == "clarifying_questions":
return {
"type": "clarifying_questions",
"questions": data.get("questions", []),
}
elif response_type == "unachievable_goal":
return {
"type": "unachievable_goal",
"reason": data.get("reason"),
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "vague_goal":
return {
"type": "vague_goal",
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "error":
# Pass through error from the service
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
else:
logger.error(
f"Unknown response type from external service: {response_type}"
)
return _create_error_response(
f"Unknown response type from Agent Generator: {response_type}",
"invalid_response",
)
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_external(
instructions: dict[str, Any],
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
Args:
instructions: Structured instructions from decompose_goal
Returns:
Agent JSON dict on success, or error dict {"type": "error", ...} on error
"""
client = _get_client()
try:
response = await client.post(
"/api/generate-agent", json={"instructions": instructions}
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
return data.get("agent_json")
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_patch_external(
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
Returns:
Updated agent JSON, clarifying questions dict, or error dict on error
"""
client = _get_client()
try:
response = await client.post(
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator patch generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
return {
"type": "clarifying_questions",
"questions": data.get("questions", []),
}
# Check if it's an error passed through
if data.get("type") == "error":
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
# Otherwise return the updated agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def get_blocks_external() -> list[dict[str, Any]] | None:
"""Get available blocks from the external service.
Returns:
List of block info dicts or None on error
"""
client = _get_client()
try:
response = await client.get("/api/blocks")
response.raise_for_status()
data = response.json()
if not data.get("success"):
logger.error("External service returned error getting blocks")
return None
return data.get("blocks", [])
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error getting blocks from external service: {e}")
return None
except httpx.RequestError as e:
logger.error(f"Request error getting blocks from external service: {e}")
return None
except Exception as e:
logger.error(f"Unexpected error getting blocks from external service: {e}")
return None
async def health_check() -> bool:
"""Check if the external service is healthy.
Returns:
True if healthy, False otherwise
"""
if not is_external_service_configured():
return False
client = _get_client()
try:
response = await client.get("/health")
response.raise_for_status()
data = response.json()
return data.get("status") == "healthy" and data.get("blocks_loaded", False)
except Exception as e:
logger.warning(f"External agent generator health check failed: {e}")
return False
async def close_client() -> None:
"""Close the HTTP client."""
global _client
if _client is not None:
await _client.aclose()
_client = None

View File

@@ -1,213 +0,0 @@
"""Utilities for agent generation."""
import json
import re
from typing import Any
from backend.data.block import get_blocks
# UUID validation regex
UUID_REGEX = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$"
)
# Block IDs for various fixes
STORE_VALUE_BLOCK_ID = "1ff065e9-88e8-4358-9d82-8dc91f622ba9"
CONDITION_BLOCK_ID = "715696a0-e1da-45c8-b209-c2fa9c3b0be6"
ADDTOLIST_BLOCK_ID = "aeb08fc1-2fc1-4141-bc8e-f758f183a822"
ADDTODICTIONARY_BLOCK_ID = "31d1064e-7446-4693-a7d4-65e5ca1180d1"
CREATELIST_BLOCK_ID = "a912d5c7-6e00-4542-b2a9-8034136930e4"
CREATEDICT_BLOCK_ID = "b924ddf4-de4f-4b56-9a85-358930dcbc91"
CODE_EXECUTION_BLOCK_ID = "0b02b072-abe7-11ef-8372-fb5d162dd712"
DATA_SAMPLING_BLOCK_ID = "4a448883-71fa-49cf-91cf-70d793bd7d87"
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID = "95d1b990-ce13-4d88-9737-ba5c2070c97b"
GET_CURRENT_DATE_BLOCK_ID = "b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1"
DOUBLE_CURLY_BRACES_BLOCK_IDS = [
"44f6c8ad-d75c-4ae1-8209-aad1c0326928", # FillTextTemplateBlock
"6ab085e2-20b3-4055-bc3e-08036e01eca6",
"90f8c45e-e983-4644-aa0b-b4ebe2f531bc",
"363ae599-353e-4804-937e-b2ee3cef3da4", # AgentOutputBlock
"3b191d9f-356f-482d-8238-ba04b6d18381",
"db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
"3a7c4b8d-6e2f-4a5d-b9c1-f8d23c5a9b0e",
"ed1ae7a0-b770-4089-b520-1f0005fad19a",
"a892b8d9-3e4e-4e9c-9c1e-75f8efcf1bfa",
"b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1",
"716a67b3-6760-42e7-86dc-18645c6e00fc",
"530cf046-2ce0-4854-ae2c-659db17c7a46",
"ed55ac19-356e-4243-a6cb-bc599e9b716f",
"1f292d4a-41a4-4977-9684-7c8d560b9f91", # LLM blocks
"32a87eab-381e-4dd4-bdb8-4c47151be35a",
]
def is_valid_uuid(value: str) -> bool:
"""Check if a string is a valid UUID v4."""
return isinstance(value, str) and UUID_REGEX.match(value) is not None
def _compact_schema(schema: dict) -> dict[str, str]:
"""Extract compact type info from a JSON schema properties dict.
Returns a dict of {field_name: type_string} for essential info only.
"""
props = schema.get("properties", {})
result = {}
for name, prop in props.items():
# Skip internal/complex fields
if name.startswith("_"):
continue
# Get type string
type_str = prop.get("type", "any")
# Handle anyOf/oneOf (optional types)
if "anyOf" in prop:
types = [t.get("type", "?") for t in prop["anyOf"] if t.get("type")]
type_str = "|".join(types) if types else "any"
elif "allOf" in prop:
type_str = "object"
# Add array item type if present
if type_str == "array" and "items" in prop:
items = prop["items"]
if isinstance(items, dict):
item_type = items.get("type", "any")
type_str = f"array[{item_type}]"
result[name] = type_str
return result
def get_block_summaries(include_schemas: bool = True) -> str:
"""Generate compact block summaries for prompts.
Args:
include_schemas: Whether to include input/output type info
Returns:
Formatted string of block summaries (compact format)
"""
blocks = get_blocks()
summaries = []
for block_id, block_cls in blocks.items():
block = block_cls()
name = block.name
desc = getattr(block, "description", "") or ""
# Truncate description
if len(desc) > 150:
desc = desc[:147] + "..."
if not include_schemas:
summaries.append(f"- {name} (id: {block_id}): {desc}")
else:
# Compact format with type info only
inputs = {}
outputs = {}
required = []
if hasattr(block, "input_schema"):
try:
schema = block.input_schema.jsonschema()
inputs = _compact_schema(schema)
required = schema.get("required", [])
except Exception:
pass
if hasattr(block, "output_schema"):
try:
schema = block.output_schema.jsonschema()
outputs = _compact_schema(schema)
except Exception:
pass
# Build compact line format
# Format: NAME (id): desc | in: {field:type, ...} [required] | out: {field:type}
in_str = ", ".join(f"{k}:{v}" for k, v in inputs.items())
out_str = ", ".join(f"{k}:{v}" for k, v in outputs.items())
req_str = f" req=[{','.join(required)}]" if required else ""
static = " [static]" if getattr(block, "static_output", False) else ""
line = f"- {name} (id: {block_id}): {desc}"
if in_str:
line += f"\n in: {{{in_str}}}{req_str}"
if out_str:
line += f"\n out: {{{out_str}}}{static}"
summaries.append(line)
return "\n".join(summaries)
def get_blocks_info() -> list[dict[str, Any]]:
"""Get block information with schemas for validation and fixing."""
blocks = get_blocks()
blocks_info = []
for block_id, block_cls in blocks.items():
block = block_cls()
blocks_info.append(
{
"id": block_id,
"name": block.name,
"description": getattr(block, "description", ""),
"categories": getattr(block, "categories", []),
"staticOutput": getattr(block, "static_output", False),
"inputSchema": (
block.input_schema.jsonschema()
if hasattr(block, "input_schema")
else {}
),
"outputSchema": (
block.output_schema.jsonschema()
if hasattr(block, "output_schema")
else {}
),
}
)
return blocks_info
def parse_json_from_llm(text: str) -> dict[str, Any] | None:
"""Extract JSON from LLM response (handles markdown code blocks)."""
if not text:
return None
# Try fenced code block
match = re.search(r"```(?:json)?\s*([\s\S]*?)```", text, re.IGNORECASE)
if match:
try:
return json.loads(match.group(1).strip())
except json.JSONDecodeError:
pass
# Try raw text
try:
return json.loads(text.strip())
except json.JSONDecodeError:
pass
# Try finding {...} span
start = text.find("{")
end = text.rfind("}")
if start != -1 and end > start:
try:
return json.loads(text[start : end + 1])
except json.JSONDecodeError:
pass
# Try finding [...] span
start = text.find("[")
end = text.rfind("]")
if start != -1 and end > start:
try:
return json.loads(text[start : end + 1])
except json.JSONDecodeError:
pass
return None

View File

@@ -1,279 +0,0 @@
"""Agent validator - Validates agent structure and connections."""
import logging
import re
from typing import Any
from .utils import get_blocks_info
logger = logging.getLogger(__name__)
class AgentValidator:
"""Validator for AutoGPT agents with detailed error reporting."""
def __init__(self):
self.errors: list[str] = []
def add_error(self, error: str) -> None:
"""Add an error message."""
self.errors.append(error)
def validate_block_existence(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate all block IDs exist in the blocks library."""
valid = True
valid_block_ids = {b.get("id") for b in blocks_info if b.get("id")}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
node_id = node.get("id")
if not block_id:
self.add_error(f"Node '{node_id}' is missing 'block_id' field.")
valid = False
continue
if block_id not in valid_block_ids:
self.add_error(
f"Node '{node_id}' references block_id '{block_id}' which does not exist."
)
valid = False
return valid
def validate_link_node_references(self, agent: dict[str, Any]) -> bool:
"""Validate all node IDs referenced in links exist."""
valid = True
valid_node_ids = {n.get("id") for n in agent.get("nodes", []) if n.get("id")}
for link in agent.get("links", []):
link_id = link.get("id", "Unknown")
source_id = link.get("source_id")
sink_id = link.get("sink_id")
if not source_id:
self.add_error(f"Link '{link_id}' is missing 'source_id'.")
valid = False
elif source_id not in valid_node_ids:
self.add_error(
f"Link '{link_id}' references non-existent source_id '{source_id}'."
)
valid = False
if not sink_id:
self.add_error(f"Link '{link_id}' is missing 'sink_id'.")
valid = False
elif sink_id not in valid_node_ids:
self.add_error(
f"Link '{link_id}' references non-existent sink_id '{sink_id}'."
)
valid = False
return valid
def validate_required_inputs(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate required inputs are provided."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
block = block_map.get(block_id)
if not block:
continue
required_inputs = block.get("inputSchema", {}).get("required", [])
input_defaults = node.get("input_default", {})
node_id = node.get("id")
# Get linked inputs
linked_inputs = {
link["sink_name"]
for link in agent.get("links", [])
if link.get("sink_id") == node_id
}
for req_input in required_inputs:
if (
req_input not in input_defaults
and req_input not in linked_inputs
and req_input != "credentials"
):
block_name = block.get("name", "Unknown Block")
self.add_error(
f"Node '{node_id}' ({block_name}) is missing required input '{req_input}'."
)
valid = False
return valid
def validate_data_type_compatibility(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate linked data types are compatible."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
def get_type(schema: dict, name: str) -> str | None:
if "_#_" in name:
parent, child = name.split("_#_", 1)
parent_schema = schema.get(parent, {})
if "properties" in parent_schema:
return parent_schema["properties"].get(child, {}).get("type")
return None
return schema.get(name, {}).get("type")
def are_compatible(src: str, sink: str) -> bool:
if {src, sink} <= {"integer", "number"}:
return True
return src == sink
for link in agent.get("links", []):
source_node = node_lookup.get(link.get("source_id"))
sink_node = node_lookup.get(link.get("sink_id"))
if not source_node or not sink_node:
continue
source_block = block_map.get(source_node.get("block_id"))
sink_block = block_map.get(sink_node.get("block_id"))
if not source_block or not sink_block:
continue
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
source_type = get_type(source_outputs, link.get("source_name", ""))
sink_type = get_type(sink_inputs, link.get("sink_name", ""))
if source_type and sink_type and not are_compatible(source_type, sink_type):
self.add_error(
f"Type mismatch: {source_block.get('name')} output '{link['source_name']}' "
f"({source_type}) -> {sink_block.get('name')} input '{link['sink_name']}' ({sink_type})."
)
valid = False
return valid
def validate_nested_sink_links(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate nested sink links (with _#_ notation)."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
for link in agent.get("links", []):
sink_name = link.get("sink_name", "")
if "_#_" in sink_name:
parent, child = sink_name.split("_#_", 1)
sink_node = node_lookup.get(link.get("sink_id"))
if not sink_node:
continue
block = block_map.get(sink_node.get("block_id"))
if not block:
continue
input_props = block.get("inputSchema", {}).get("properties", {})
parent_schema = input_props.get(parent)
if not parent_schema:
self.add_error(
f"Invalid nested link '{sink_name}': parent '{parent}' not found."
)
valid = False
continue
if not parent_schema.get("additionalProperties"):
if not (
isinstance(parent_schema, dict)
and "properties" in parent_schema
and child in parent_schema.get("properties", {})
):
self.add_error(
f"Invalid nested link '{sink_name}': child '{child}' not found in '{parent}'."
)
valid = False
return valid
def validate_prompt_spaces(self, agent: dict[str, Any]) -> bool:
"""Validate prompts don't have spaces in template variables."""
valid = True
for node in agent.get("nodes", []):
input_default = node.get("input_default", {})
prompt = input_default.get("prompt", "")
if not isinstance(prompt, str):
continue
# Find {{...}} with spaces
matches = re.finditer(r"\{\{([^}]+)\}\}", prompt)
for match in matches:
content = match.group(1)
if " " in content:
self.add_error(
f"Node '{node.get('id')}' has spaces in template variable: "
f"'{{{{{content}}}}}' should be '{{{{{content.replace(' ', '_')}}}}}'."
)
valid = False
return valid
def validate(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> tuple[bool, str | None]:
"""Run all validations.
Returns:
Tuple of (is_valid, error_message)
"""
self.errors = []
if blocks_info is None:
blocks_info = get_blocks_info()
checks = [
self.validate_block_existence(agent, blocks_info),
self.validate_link_node_references(agent),
self.validate_required_inputs(agent, blocks_info),
self.validate_data_type_compatibility(agent, blocks_info),
self.validate_nested_sink_links(agent, blocks_info),
self.validate_prompt_spaces(agent),
]
all_passed = all(checks)
if all_passed:
logger.info("Agent validation successful")
return True, None
error_message = "Agent validation failed:\n"
for i, error in enumerate(self.errors, 1):
error_message += f"{i}. {error}\n"
logger.warning(f"Agent validation failed with {len(self.errors)} errors")
return False, error_message
def validate_agent(
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> tuple[bool, str | None]:
"""Convenience function to validate an agent.
Returns:
Tuple of (is_valid, error_message)
"""
validator = AgentValidator()
return validator.validate(agent, blocks_info)

View File

@@ -5,7 +5,6 @@ import re
from datetime import datetime, timedelta, timezone
from typing import Any
from langfuse import observe
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
@@ -329,7 +328,6 @@ class AgentOutputTool(BaseTool):
total_executions=len(available_executions) if available_executions else 1,
)
@observe(as_type="tool", name="view_agent_output")
async def _execute(
self,
user_id: str | None,

View File

@@ -36,6 +36,16 @@ class BaseTool:
"""Whether this tool requires authentication."""
return False
@property
def is_long_running(self) -> bool:
"""Whether this tool is long-running and should execute in background.
Long-running tools (like agent generation) are executed via background
tasks to survive SSE disconnections. The result is persisted to chat
history and visible when the user refreshes.
"""
return False
def as_openai_tool(self) -> ChatCompletionToolParam:
"""Convert to OpenAI tool format."""
return ChatCompletionToolParam(

View File

@@ -3,17 +3,14 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
apply_all_fixes,
AgentGeneratorNotConfiguredError,
decompose_goal,
generate_agent,
get_blocks_info,
get_user_message_for_error,
save_agent_to_library,
validate_agent,
)
from .base import BaseTool
from .models import (
@@ -27,9 +24,6 @@ from .models import (
logger = logging.getLogger(__name__)
# Maximum retries for agent generation with validation feedback
MAX_GENERATION_RETRIES = 2
class CreateAgentTool(BaseTool):
"""Tool for creating agents from natural language descriptions."""
@@ -49,6 +43,10 @@ class CreateAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
@@ -80,7 +78,6 @@ class CreateAgentTool(BaseTool):
"required": ["description"],
}
@observe(as_type="tool", name="create_agent")
async def _execute(
self,
user_id: str | None,
@@ -91,9 +88,8 @@ class CreateAgentTool(BaseTool):
Flow:
1. Decompose the description into steps (may return clarifying questions)
2. Generate agent JSON from the steps
3. Apply fixes to correct common LLM errors
4. Preview or save based on the save parameter
2. Generate agent JSON (external service handles fixing and validation)
3. Preview or save based on the save parameter
"""
description = kwargs.get("description", "").strip()
context = kwargs.get("context", "")
@@ -110,18 +106,41 @@ class CreateAgentTool(BaseTool):
# Step 1: Decompose goal into steps
try:
decomposition_result = await decompose_goal(description, context)
except ValueError as e:
# Handle missing API key or configuration errors
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=f"Agent generation is not configured: {str(e)}",
error="configuration_error",
message=(
"Agent generation is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
if decomposition_result is None:
return ErrorResponse(
message="Failed to analyze the goal. Please try rephrasing.",
error="Decomposition failed",
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
error="decomposition_failed",
details={"description": description[:100]},
session_id=session_id,
)
# Check if the result is an error from the external service
if decomposition_result.get("type") == "error":
error_msg = decomposition_result.get("error", "Unknown error")
error_type = decomposition_result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="analyze the goal",
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"decomposition_failed:{error_type}",
details={
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
@@ -171,72 +190,54 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Step 2: Generate agent JSON with retry on validation failure
blocks_info = get_blocks_info()
agent_json = None
validation_errors = None
for attempt in range(MAX_GENERATION_RETRIES + 1):
# Generate agent (include validation errors from previous attempt)
if attempt == 0:
agent_json = await generate_agent(decomposition_result)
else:
# Retry with validation error feedback
logger.info(
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
)
retry_instructions = {
**decomposition_result,
"previous_errors": validation_errors,
"retry_instructions": (
"The previous generation had validation errors. "
"Please fix these issues in the new generation:\n"
f"{validation_errors}"
),
}
agent_json = await generate_agent(retry_instructions)
if agent_json is None:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message="Failed to generate the agent. Please try again.",
error="Generation failed",
session_id=session_id,
)
continue
# Step 3: Apply fixes to correct common errors
agent_json = apply_all_fixes(agent_json, blocks_info)
# Step 4: Validate the agent
is_valid, validation_errors = validate_agent(agent_json, blocks_info)
if is_valid:
logger.info(f"Agent generated successfully on attempt {attempt + 1}")
break
logger.warning(
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
# Step 2: Generate agent JSON (external service handles fixing and validation)
try:
agent_json = await generate_agent(decomposition_result)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
"Agent generation is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
if attempt == MAX_GENERATION_RETRIES:
# Return error with validation details
return ErrorResponse(
message=(
f"Generated agent has validation errors after {MAX_GENERATION_RETRIES + 1} attempts. "
f"Please try rephrasing your request or simplify the workflow."
),
error="validation_failed",
details={"validation_errors": validation_errors},
session_id=session_id,
)
if agent_json is None:
return ErrorResponse(
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
error="generation_failed",
details={"description": description[:100]},
session_id=session_id,
)
# Check if the result is an error from the external service
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
error_msg = agent_json.get("error", "Unknown error")
error_type = agent_json.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message="The generated agent failed validation. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"generation_failed:{error_type}",
details={
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
agent_name = agent_json.get("name", "Generated Agent")
agent_description = agent_json.get("description", "")
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
# Step 4: Preview or save
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(

View File

@@ -3,18 +3,14 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
apply_agent_patch,
apply_all_fixes,
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_blocks_info,
get_user_message_for_error,
save_agent_to_library,
validate_agent,
)
from .base import BaseTool
from .models import (
@@ -28,9 +24,6 @@ from .models import (
logger = logging.getLogger(__name__)
# Maximum retries for patch generation with validation feedback
MAX_GENERATION_RETRIES = 2
class EditAgentTool(BaseTool):
"""Tool for editing existing agents using natural language."""
@@ -43,13 +36,17 @@ class EditAgentTool(BaseTool):
def description(self) -> str:
return (
"Edit an existing agent from the user's library using natural language. "
"Generates a patch to update the agent while preserving unchanged parts."
"Generates updates to the agent while preserving unchanged parts."
)
@property
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
@@ -87,7 +84,6 @@ class EditAgentTool(BaseTool):
"required": ["agent_id", "changes"],
}
@observe(as_type="tool", name="edit_agent")
async def _execute(
self,
user_id: str | None,
@@ -98,9 +94,8 @@ class EditAgentTool(BaseTool):
Flow:
1. Fetch the current agent
2. Generate a patch based on the requested changes
3. Apply the patch to create an updated agent
4. Preview or save based on the save parameter
2. Generate updated agent (external service handles fixing and validation)
3. Preview or save based on the save parameter
"""
agent_id = kwargs.get("agent_id", "").strip()
changes = kwargs.get("changes", "").strip()
@@ -137,121 +132,81 @@ class EditAgentTool(BaseTool):
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
# Step 2: Generate patch with retry on validation failure
blocks_info = get_blocks_info()
updated_agent = None
validation_errors = None
intent = "Applied requested changes"
for attempt in range(MAX_GENERATION_RETRIES + 1):
# Generate patch (include validation errors from previous attempt)
try:
if attempt == 0:
patch_result = await generate_agent_patch(
update_request, current_agent
)
else:
# Retry with validation error feedback
logger.info(
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
)
retry_request = (
f"{update_request}\n\n"
f"IMPORTANT: The previous edit had validation errors. "
f"Please fix these issues:\n{validation_errors}"
)
patch_result = await generate_agent_patch(
retry_request, current_agent
)
except ValueError as e:
# Handle missing API key or configuration errors
return ErrorResponse(
message=f"Agent generation is not configured: {str(e)}",
error="configuration_error",
session_id=session_id,
)
if patch_result is None:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message="Failed to generate changes. Please try rephrasing.",
error="Patch generation failed",
session_id=session_id,
)
continue
# Check if LLM returned clarifying questions
if patch_result.get("type") == "clarifying_questions":
questions = patch_result.get("questions", [])
return ClarificationNeededResponse(
message=(
"I need some more information about the changes. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
],
session_id=session_id,
)
# Step 3: Apply patch and fixes
try:
updated_agent = apply_agent_patch(current_agent, patch_result)
updated_agent = apply_all_fixes(updated_agent, blocks_info)
except Exception as e:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message=f"Failed to apply changes: {str(e)}",
error="patch_apply_failed",
details={"exception": str(e)},
session_id=session_id,
)
validation_errors = str(e)
continue
# Step 4: Validate the updated agent
is_valid, validation_errors = validate_agent(updated_agent, blocks_info)
if is_valid:
logger.info(f"Agent edited successfully on attempt {attempt + 1}")
intent = patch_result.get("intent", "Applied requested changes")
break
logger.warning(
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(update_request, current_agent)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
"Agent editing is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
if attempt == MAX_GENERATION_RETRIES:
# Return error with validation details
return ErrorResponse(
message=(
f"Updated agent has validation errors after "
f"{MAX_GENERATION_RETRIES + 1} attempts. "
f"Please try rephrasing your request or simplify the changes."
),
error="validation_failed",
details={"validation_errors": validation_errors},
session_id=session_id,
)
if result is None:
return ErrorResponse(
message="Failed to generate changes. The agent generation service may be unavailable or timed out. Please try again.",
error="update_generation_failed",
details={"agent_id": agent_id, "changes": changes[:100]},
session_id=session_id,
)
# At this point, updated_agent is guaranteed to be set (we return on all failure paths)
assert updated_agent is not None
# Check if the result is an error from the external service
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the changes",
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
validation_message="The generated changes failed validation. Please try rephrasing your request.",
)
return ErrorResponse(
message=user_message,
error=f"update_generation_failed:{error_type}",
details={
"agent_id": agent_id,
"changes": changes[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
# Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])
return ClarificationNeededResponse(
message=(
"I need some more information about the changes. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
],
session_id=session_id,
)
# Result is the updated agent JSON
updated_agent = result
agent_name = updated_agent.get("name", "Updated Agent")
agent_description = updated_agent.get("description", "")
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
# Step 5: Preview or save
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
f"I've updated the agent. Changes: {intent}. "
f"I've updated the agent. "
f"The agent now has {node_count} blocks. "
f"Review it and call edit_agent with save=true to save the changes."
),
@@ -277,10 +232,7 @@ class EditAgentTool(BaseTool):
)
return AgentSavedResponse(
message=(
f"Updated agent '{created_graph.name}' has been saved to your library! "
f"Changes: {intent}"
),
message=f"Updated agent '{created_graph.name}' has been saved to your library!",
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,

View File

@@ -2,8 +2,6 @@
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -37,7 +35,6 @@ class FindAgentTool(BaseTool):
"required": ["query"],
}
@observe(as_type="tool", name="find_agent")
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:

View File

@@ -1,7 +1,6 @@
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
@@ -56,7 +55,6 @@ class FindBlockTool(BaseTool):
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_block")
async def _execute(
self,
user_id: str | None,
@@ -109,7 +107,8 @@ class FindBlockTool(BaseTool):
block_id = result["content_id"]
block = get_block(block_id)
if block:
# Skip disabled blocks
if block and not block.disabled:
# Get input/output schemas
input_schema = {}
output_schema = {}

View File

@@ -2,8 +2,6 @@
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -43,7 +41,6 @@ class FindLibraryAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_library_agent")
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:

View File

@@ -4,8 +4,6 @@ import logging
from pathlib import Path
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
@@ -73,7 +71,6 @@ class GetDocPageTool(BaseTool):
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="get_doc_page")
async def _execute(
self,
user_id: str | None,

View File

@@ -28,6 +28,16 @@ class ResponseType(str, Enum):
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
# Workspace response types
WORKSPACE_FILE_LIST = "workspace_file_list"
WORKSPACE_FILE_CONTENT = "workspace_file_content"
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
# Long-running operation types
OPERATION_STARTED = "operation_started"
OPERATION_PENDING = "operation_pending"
OPERATION_IN_PROGRESS = "operation_in_progress"
# Base response model
@@ -334,3 +344,39 @@ class BlockOutputResponse(ToolResponseBase):
block_name: str
outputs: dict[str, list[Any]]
success: bool = True
# Long-running operation models
class OperationStartedResponse(ToolResponseBase):
"""Response when a long-running operation has been started in the background.
This is returned immediately to the client while the operation continues
to execute. The user can close the tab and check back later.
"""
type: ResponseType = ResponseType.OPERATION_STARTED
operation_id: str
tool_name: str
class OperationPendingResponse(ToolResponseBase):
"""Response stored in chat history while a long-running operation is executing.
This is persisted to the database so users see a pending state when they
refresh before the operation completes.
"""
type: ResponseType = ResponseType.OPERATION_PENDING
operation_id: str
tool_name: str
class OperationInProgressResponse(ToolResponseBase):
"""Response when an operation is already in progress.
Returned for idempotency when the same tool_call_id is requested again
while the background task is still running.
"""
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
tool_call_id: str

View File

@@ -3,11 +3,14 @@
import logging
from typing import Any
from langfuse import observe
from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tracking import (
track_agent_run_success,
track_agent_scheduled,
)
from backend.api.features.library import db as library_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
@@ -155,7 +158,6 @@ class RunAgentTool(BaseTool):
"""All operations require authentication."""
return True
@observe(as_type="tool", name="run_agent")
async def _execute(
self,
user_id: str | None,
@@ -453,6 +455,16 @@ class RunAgentTool(BaseTool):
session.successful_agent_runs.get(library_agent.graph_id, 0) + 1
)
# Track in PostHog
track_agent_run_success(
user_id=user_id,
session_id=session_id,
graph_id=library_agent.graph_id,
graph_name=library_agent.name,
execution_id=execution.id,
library_agent_id=library_agent.id,
)
library_agent_link = f"/library/agents/{library_agent.id}"
return ExecutionStartedResponse(
message=(
@@ -534,6 +546,18 @@ class RunAgentTool(BaseTool):
session.successful_agent_schedules.get(library_agent.graph_id, 0) + 1
)
# Track in PostHog
track_agent_scheduled(
user_id=user_id,
session_id=session_id,
graph_id=library_agent.graph_id,
graph_name=library_agent.name,
schedule_id=result.id,
schedule_name=schedule_name,
cron=cron,
library_agent_id=library_agent.id,
)
library_agent_link = f"/library/agents/{library_agent.id}"
return ExecutionStartedResponse(
message=(

View File

@@ -29,7 +29,7 @@ def mock_embedding_functions():
yield
@pytest.mark.asyncio(scope="session")
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent(setup_test_data):
"""Test that the run_agent tool successfully executes an approved agent"""
# Use test data from fixture
@@ -70,7 +70,7 @@ async def test_run_agent(setup_test_data):
assert result_data["graph_name"] == "Test Agent"
@pytest.mark.asyncio(scope="session")
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_missing_inputs(setup_test_data):
"""Test that the run_agent tool returns error when inputs are missing"""
# Use test data from fixture
@@ -106,7 +106,7 @@ async def test_run_agent_missing_inputs(setup_test_data):
assert "message" in result_data
@pytest.mark.asyncio(scope="session")
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_invalid_agent_id(setup_test_data):
"""Test that the run_agent tool returns error for invalid agent ID"""
# Use test data from fixture
@@ -141,7 +141,7 @@ async def test_run_agent_invalid_agent_id(setup_test_data):
)
@pytest.mark.asyncio(scope="session")
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_with_llm_credentials(setup_llm_test_data):
"""Test that run_agent works with an agent requiring LLM credentials"""
# Use test data from fixture
@@ -185,7 +185,7 @@ async def test_run_agent_with_llm_credentials(setup_llm_test_data):
assert result_data["graph_name"] == "LLM Test Agent"
@pytest.mark.asyncio(scope="session")
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_data):
"""Test that run_agent returns available inputs when called without inputs or use_defaults."""
user = setup_test_data["user"]
@@ -219,7 +219,7 @@ async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_da
assert "inputs" in result_data["message"].lower()
@pytest.mark.asyncio(scope="session")
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_with_use_defaults(setup_test_data):
"""Test that run_agent executes successfully with use_defaults=True."""
user = setup_test_data["user"]
@@ -251,7 +251,7 @@ async def test_run_agent_with_use_defaults(setup_test_data):
assert result_data["graph_id"] == graph.id
@pytest.mark.asyncio(scope="session")
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
"""Test that run_agent returns setup_requirements when credentials are missing."""
user = setup_firecrawl_test_data["user"]
@@ -285,7 +285,7 @@ async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
assert len(setup_info["user_readiness"]["missing_credentials"]) > 0
@pytest.mark.asyncio(scope="session")
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_invalid_slug_format(setup_test_data):
"""Test that run_agent returns error for invalid slug format (no slash)."""
user = setup_test_data["user"]
@@ -313,7 +313,7 @@ async def test_run_agent_invalid_slug_format(setup_test_data):
assert "username/agent-name" in result_data["message"]
@pytest.mark.asyncio(scope="session")
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_unauthenticated():
"""Test that run_agent returns need_login for unauthenticated users."""
tool = RunAgentTool()
@@ -340,7 +340,7 @@ async def test_run_agent_unauthenticated():
assert "sign in" in result_data["message"].lower()
@pytest.mark.asyncio(scope="session")
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_schedule_without_cron(setup_test_data):
"""Test that run_agent returns error when scheduling without cron expression."""
user = setup_test_data["user"]
@@ -372,7 +372,7 @@ async def test_run_agent_schedule_without_cron(setup_test_data):
assert "cron" in result_data["message"].lower()
@pytest.mark.asyncio(scope="session")
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_schedule_without_name(setup_test_data):
"""Test that run_agent returns error when scheduling without schedule_name."""
user = setup_test_data["user"]

View File

@@ -1,15 +1,15 @@
"""Tool for executing blocks directly."""
import logging
import uuid
from collections import defaultdict
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
@@ -130,7 +130,6 @@ class RunBlockTool(BaseTool):
return matched_credentials, missing_credentials
@observe(as_type="tool", name="run_block")
async def _execute(
self,
user_id: str | None,
@@ -179,6 +178,11 @@ class RunBlockTool(BaseTool):
message=f"Block '{block_id}' not found",
session_id=session_id,
)
if block.disabled:
return ErrorResponse(
message=f"Block '{block_id}' is disabled",
session_id=session_id,
)
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
@@ -221,11 +225,48 @@ class RunBlockTool(BaseTool):
)
try:
# Fetch actual credentials and prepare kwargs for block execution
# Create execution context with defaults (blocks may require it)
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)
# Generate synthetic IDs for CoPilot context
# Each chat session is treated as its own agent with one continuous run
# This means:
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
# - node_exec_id = unique per block execution
synthetic_graph_id = f"copilot-session-{session.session_id}"
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
synthetic_node_id = f"copilot-node-{block_id}"
synthetic_node_exec_id = (
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
)
# Create unified execution context with all required fields
execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=synthetic_graph_id,
graph_exec_id=synthetic_graph_exec_id,
graph_version=1, # Versions are 1-indexed
node_id=synthetic_node_id,
node_exec_id=synthetic_node_exec_id,
# Workspace with session scoping
workspace_id=workspace.id,
session_id=session.session_id,
)
# Prepare kwargs for block execution
# Keep individual kwargs for backwards compatibility with existing blocks
exec_kwargs: dict[str, Any] = {
"user_id": user_id,
"execution_context": ExecutionContext(),
"execution_context": execution_context,
# Legacy: individual kwargs for blocks not yet using execution_context
"workspace_id": workspace.id,
"graph_exec_id": synthetic_graph_exec_id,
"node_exec_id": synthetic_node_exec_id,
"node_id": synthetic_node_id,
"graph_version": 1, # Versions are 1-indexed
"graph_id": synthetic_graph_id,
}
for field_name, cred_meta in matched_credentials.items():

View File

@@ -3,7 +3,6 @@
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
@@ -88,7 +87,6 @@ class SearchDocsTool(BaseTool):
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="search_docs")
async def _execute(
self,
user_id: str | None,

View File

@@ -0,0 +1,620 @@
"""CoPilot tools for workspace file operations."""
import base64
import logging
from typing import Any, Optional
from pydantic import BaseModel
from backend.api.features.chat.model import ChatSession
from backend.data.workspace import get_or_create_workspace
from backend.util.settings import Config
from backend.util.virus_scanner import scan_content_safe
from backend.util.workspace import WorkspaceManager
from .base import BaseTool
from .models import ErrorResponse, ResponseType, ToolResponseBase
logger = logging.getLogger(__name__)
class WorkspaceFileInfoData(BaseModel):
"""Data model for workspace file information (not a response itself)."""
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
class WorkspaceFileListResponse(ToolResponseBase):
"""Response containing list of workspace files."""
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
files: list[WorkspaceFileInfoData]
total_count: int
class WorkspaceFileContentResponse(ToolResponseBase):
"""Response containing workspace file content (legacy, for small text files)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
file_id: str
name: str
path: str
mime_type: str
content_base64: str
class WorkspaceFileMetadataResponse(ToolResponseBase):
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
download_url: str
preview: str | None = None # First 500 chars for text files
class WorkspaceWriteResponse(ToolResponseBase):
"""Response after writing a file to workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
file_id: str
name: str
path: str
size_bytes: int
class WorkspaceDeleteResponse(ToolResponseBase):
"""Response after deleting a file from workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
file_id: str
success: bool
class ListWorkspaceFilesTool(BaseTool):
"""Tool for listing files in user's workspace."""
@property
def name(self) -> str:
return "list_workspace_files"
@property
def description(self) -> str:
return (
"List files in the user's workspace. "
"Returns file names, paths, sizes, and metadata. "
"Optionally filter by path prefix."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path_prefix": {
"type": "string",
"description": (
"Optional path prefix to filter files "
"(e.g., '/documents/' to list only files in documents folder). "
"By default, only files from the current session are listed."
),
},
"limit": {
"type": "integer",
"description": "Maximum number of files to return (default 50, max 100)",
"minimum": 1,
"maximum": 100,
},
"include_all_sessions": {
"type": "boolean",
"description": (
"If true, list files from all sessions. "
"Default is false (only current session's files)."
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
path_prefix: Optional[str] = kwargs.get("path_prefix")
limit = min(kwargs.get("limit", 50), 100)
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
files = await manager.list_files(
path=path_prefix,
limit=limit,
include_all_sessions=include_all_sessions,
)
total = await manager.get_file_count(
path=path_prefix,
include_all_sessions=include_all_sessions,
)
file_infos = [
WorkspaceFileInfoData(
file_id=f.id,
name=f.name,
path=f.path,
mime_type=f.mimeType,
size_bytes=f.sizeBytes,
)
for f in files
]
scope_msg = "all sessions" if include_all_sessions else "current session"
return WorkspaceFileListResponse(
files=file_infos,
total_count=total,
message=f"Found {len(files)} files in workspace ({scope_msg})",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error listing workspace files: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to list workspace files: {str(e)}",
error=str(e),
session_id=session_id,
)
class ReadWorkspaceFileTool(BaseTool):
"""Tool for reading file content from workspace."""
# Size threshold for returning full content vs metadata+URL
# Files larger than this return metadata with download URL to prevent context bloat
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
# Preview size for text files
PREVIEW_SIZE = 500
@property
def name(self) -> str:
return "read_workspace_file"
@property
def description(self) -> str:
return (
"Read a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"For small text files, returns content directly. "
"For large or binary files, returns metadata and a download URL. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
"force_download_url": {
"type": "boolean",
"description": (
"If true, always return metadata+URL instead of inline content. "
"Default is false (auto-selects based on file size/type)."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
def _is_text_mime_type(self, mime_type: str) -> bool:
"""Check if the MIME type is a text-based type."""
text_types = [
"text/",
"application/json",
"application/xml",
"application/javascript",
"application/x-python",
"application/x-sh",
]
return any(mime_type.startswith(t) for t in text_types)
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
force_download_url: bool = kwargs.get("force_download_url", False)
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Get file info
if file_id:
file_info = await manager.get_file_info(file_id)
if file_info is None:
return ErrorResponse(
message=f"File not found: {file_id}",
session_id=session_id,
)
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
# Decide whether to return inline content or metadata+URL
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
is_text_file = self._is_text_mime_type(file_info.mimeType)
# Return inline content for small text files (unless force_download_url)
if is_small_file and is_text_file and not force_download_url:
content = await manager.read_file_by_id(target_file_id)
content_b64 = base64.b64encode(content).decode("utf-8")
return WorkspaceFileContentResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
content_base64=content_b64,
message=f"Successfully read file: {file_info.name}",
session_id=session_id,
)
# Return metadata + workspace:// reference for large or binary files
# This prevents context bloat (100KB file = ~133KB as base64)
# Use workspace:// format so frontend urlTransform can add proxy prefix
download_url = f"workspace://{target_file_id}"
# Generate preview for text files
preview: str | None = None
if is_text_file:
try:
content = await manager.read_file_by_id(target_file_id)
preview_text = content[: self.PREVIEW_SIZE].decode(
"utf-8", errors="replace"
)
if len(content) > self.PREVIEW_SIZE:
preview_text += "..."
preview = preview_text
except Exception:
pass # Preview is optional
return WorkspaceFileMetadataResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
size_bytes=file_info.sizeBytes,
download_url=download_url,
preview=preview,
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
session_id=session_id,
)
except FileNotFoundError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error reading workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to read workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class WriteWorkspaceFileTool(BaseTool):
"""Tool for writing files to workspace."""
@property
def name(self) -> str:
return "write_workspace_file"
@property
def description(self) -> str:
return (
"Write or create a file in the user's workspace. "
"Provide the content as a base64-encoded string. "
f"Maximum file size is {Config().max_file_size_mb}MB. "
"Files are saved to the current session's folder by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "Name for the file (e.g., 'report.pdf')",
},
"content_base64": {
"type": "string",
"description": "Base64-encoded file content",
},
"path": {
"type": "string",
"description": (
"Optional virtual path where to save the file "
"(e.g., '/documents/report.pdf'). "
"Defaults to '/{filename}'. Scoped to current session."
),
},
"mime_type": {
"type": "string",
"description": (
"Optional MIME type of the file. "
"Auto-detected from filename if not provided."
),
},
"overwrite": {
"type": "boolean",
"description": "Whether to overwrite if file exists at path (default: false)",
},
},
"required": ["filename", "content_base64"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
filename: str = kwargs.get("filename", "")
content_b64: str = kwargs.get("content_base64", "")
path: Optional[str] = kwargs.get("path")
mime_type: Optional[str] = kwargs.get("mime_type")
overwrite: bool = kwargs.get("overwrite", False)
if not filename:
return ErrorResponse(
message="Please provide a filename",
session_id=session_id,
)
if not content_b64:
return ErrorResponse(
message="Please provide content_base64",
session_id=session_id,
)
# Decode content
try:
content = base64.b64decode(content_b64)
except Exception:
return ErrorResponse(
message="Invalid base64-encoded content",
session_id=session_id,
)
# Check size
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
return ErrorResponse(
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
session_id=session_id,
)
try:
# Virus scan
await scan_content_safe(content, filename=filename)
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
file_record = await manager.write_file(
content=content,
filename=filename,
path=path,
mime_type=mime_type,
overwrite=overwrite,
)
return WorkspaceWriteResponse(
file_id=file_record.id,
name=file_record.name,
path=file_record.path,
size_bytes=file_record.sizeBytes,
message=f"Successfully wrote file: {file_record.name}",
session_id=session_id,
)
except ValueError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error writing workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to write workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class DeleteWorkspaceFileTool(BaseTool):
"""Tool for deleting files from workspace."""
@property
def name(self) -> str:
return "delete_workspace_file"
@property
def description(self) -> str:
return (
"Delete a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Determine the file_id to delete
target_file_id: str
if file_id:
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
success = await manager.delete_file(target_file_id)
if not success:
return ErrorResponse(
message=f"File not found: {target_file_id}",
session_id=session_id,
)
return WorkspaceDeleteResponse(
file_id=target_file_id,
success=True,
message="File deleted successfully",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to delete workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)

View File

@@ -0,0 +1,250 @@
"""PostHog analytics tracking for the chat system."""
import atexit
import logging
from typing import Any
from posthog import Posthog
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
settings = Settings()
# PostHog client instance (lazily initialized)
_posthog_client: Posthog | None = None
def _shutdown_posthog() -> None:
"""Flush and shutdown PostHog client on process exit."""
if _posthog_client is not None:
_posthog_client.flush()
_posthog_client.shutdown()
atexit.register(_shutdown_posthog)
def _get_posthog_client() -> Posthog | None:
"""Get or create the PostHog client instance."""
global _posthog_client
if _posthog_client is not None:
return _posthog_client
if not settings.secrets.posthog_api_key:
logger.debug("PostHog API key not configured, analytics disabled")
return None
_posthog_client = Posthog(
settings.secrets.posthog_api_key,
host=settings.secrets.posthog_host,
)
logger.info(
f"PostHog client initialized with host: {settings.secrets.posthog_host}"
)
return _posthog_client
def _get_base_properties() -> dict[str, Any]:
"""Get base properties included in all events."""
return {
"environment": settings.config.app_env.value,
"source": "chat_copilot",
}
def track_user_message(
user_id: str | None,
session_id: str,
message_length: int,
) -> None:
"""Track when a user sends a message in chat.
Args:
user_id: The user's ID (or None for anonymous)
session_id: The chat session ID
message_length: Length of the user's message
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"message_length": message_length,
}
client.capture(
distinct_id=user_id or f"anonymous_{session_id}",
event="copilot_message_sent",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track user message: {e}")
def track_tool_called(
user_id: str | None,
session_id: str,
tool_name: str,
tool_call_id: str,
) -> None:
"""Track when a tool is called in chat.
Args:
user_id: The user's ID (or None for anonymous)
session_id: The chat session ID
tool_name: Name of the tool being called
tool_call_id: Unique ID of the tool call
"""
client = _get_posthog_client()
if not client:
logger.info("PostHog client not available for tool tracking")
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"tool_name": tool_name,
"tool_call_id": tool_call_id,
}
distinct_id = user_id or f"anonymous_{session_id}"
logger.info(
f"Sending copilot_tool_called event to PostHog: distinct_id={distinct_id}, "
f"tool_name={tool_name}"
)
client.capture(
distinct_id=distinct_id,
event="copilot_tool_called",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track tool call: {e}")
def track_agent_run_success(
user_id: str,
session_id: str,
graph_id: str,
graph_name: str,
execution_id: str,
library_agent_id: str,
) -> None:
"""Track when an agent is successfully run.
Args:
user_id: The user's ID
session_id: The chat session ID
graph_id: ID of the agent graph
graph_name: Name of the agent
execution_id: ID of the execution
library_agent_id: ID of the library agent
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"graph_id": graph_id,
"graph_name": graph_name,
"execution_id": execution_id,
"library_agent_id": library_agent_id,
}
client.capture(
distinct_id=user_id,
event="copilot_agent_run_success",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track agent run: {e}")
def track_agent_scheduled(
user_id: str,
session_id: str,
graph_id: str,
graph_name: str,
schedule_id: str,
schedule_name: str,
cron: str,
library_agent_id: str,
) -> None:
"""Track when an agent is successfully scheduled.
Args:
user_id: The user's ID
session_id: The chat session ID
graph_id: ID of the agent graph
graph_name: Name of the agent
schedule_id: ID of the schedule
schedule_name: Name of the schedule
cron: Cron expression for the schedule
library_agent_id: ID of the library agent
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"graph_id": graph_id,
"graph_name": graph_name,
"schedule_id": schedule_id,
"schedule_name": schedule_name,
"cron": cron,
"library_agent_id": library_agent_id,
}
client.capture(
distinct_id=user_id,
event="copilot_agent_scheduled",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track agent schedule: {e}")
def track_trigger_setup(
user_id: str,
session_id: str,
graph_id: str,
graph_name: str,
trigger_type: str,
library_agent_id: str,
) -> None:
"""Track when a trigger is set up for an agent.
Args:
user_id: The user's ID
session_id: The chat session ID
graph_id: ID of the agent graph
graph_name: Name of the agent
trigger_type: Type of trigger (e.g., 'webhook')
library_agent_id: ID of the library agent
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"graph_id": graph_id,
"graph_name": graph_name,
"trigger_type": trigger_type,
"library_agent_id": library_agent_id,
}
client.capture(
distinct_id=user_id,
event="copilot_trigger_setup",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track trigger setup: {e}")

View File

@@ -23,6 +23,7 @@ class PendingHumanReviewModel(BaseModel):
id: Unique identifier for the review record
user_id: ID of the user who must perform the review
node_exec_id: ID of the node execution that created this review
node_id: ID of the node definition (for grouping reviews from same node)
graph_exec_id: ID of the graph execution containing the node
graph_id: ID of the graph template being executed
graph_version: Version number of the graph template
@@ -37,6 +38,10 @@ class PendingHumanReviewModel(BaseModel):
"""
node_exec_id: str = Field(description="Node execution ID (primary key)")
node_id: str = Field(
description="Node definition ID (for grouping)",
default="", # Temporary default for test compatibility
)
user_id: str = Field(description="User ID associated with the review")
graph_exec_id: str = Field(description="Graph execution ID")
graph_id: str = Field(description="Graph ID")
@@ -66,7 +71,9 @@ class PendingHumanReviewModel(BaseModel):
)
@classmethod
def from_db(cls, review: "PendingHumanReview") -> "PendingHumanReviewModel":
def from_db(
cls, review: "PendingHumanReview", node_id: str
) -> "PendingHumanReviewModel":
"""
Convert a database model to a response model.
@@ -74,9 +81,14 @@ class PendingHumanReviewModel(BaseModel):
payload, instructions, and editable flag.
Handles invalid data gracefully by using safe defaults.
Args:
review: Database review object
node_id: Node definition ID (fetched from NodeExecution)
"""
return cls(
node_exec_id=review.nodeExecId,
node_id=node_id,
user_id=review.userId,
graph_exec_id=review.graphExecId,
graph_id=review.graphId,
@@ -107,6 +119,13 @@ class ReviewItem(BaseModel):
reviewed_data: SafeJsonData | None = Field(
None, description="Optional edited data (ignored if approved=False)"
)
auto_approve_future: bool = Field(
default=False,
description=(
"If true and this review is approved, future executions of this same "
"block (node) will be automatically approved. This only affects approved reviews."
),
)
@field_validator("reviewed_data")
@classmethod
@@ -174,6 +193,9 @@ class ReviewRequest(BaseModel):
This request must include ALL pending reviews for a graph execution.
Each review will be either approved (with optional data modifications)
or rejected (data ignored). The execution will resume only after ALL reviews are processed.
Each review item can individually specify whether to auto-approve future executions
of the same block via the `auto_approve_future` field on ReviewItem.
"""
reviews: List[ReviewItem] = Field(

View File

@@ -1,17 +1,27 @@
import asyncio
import logging
from typing import List
from typing import Any, List
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, HTTPException, Query, Security, status
from prisma.enums import ReviewStatus
from backend.data.execution import get_graph_execution_meta
from backend.data.execution import (
ExecutionContext,
ExecutionStatus,
get_graph_execution_meta,
)
from backend.data.graph import get_graph_settings
from backend.data.human_review import (
create_auto_approval_record,
get_pending_reviews_for_execution,
get_pending_reviews_for_user,
get_reviews_by_node_exec_ids,
has_pending_reviews_for_graph_exec,
process_all_reviews_for_execution,
)
from backend.data.model import USER_TIMEZONE_NOT_SET
from backend.data.user import get_user_by_id
from backend.executor.utils import add_graph_execution
from .model import PendingHumanReviewModel, ReviewRequest, ReviewResponse
@@ -127,17 +137,70 @@ async def process_review_action(
detail="At least one review must be provided",
)
# Build review decisions map
# Batch fetch all requested reviews (regardless of status for idempotent handling)
reviews_map = await get_reviews_by_node_exec_ids(
list(all_request_node_ids), user_id
)
# Validate all reviews were found (must exist, any status is OK for now)
missing_ids = all_request_node_ids - set(reviews_map.keys())
if missing_ids:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Review(s) not found: {', '.join(missing_ids)}",
)
# Validate all reviews belong to the same execution
graph_exec_ids = {review.graph_exec_id for review in reviews_map.values()}
if len(graph_exec_ids) > 1:
raise HTTPException(
status_code=status.HTTP_409_CONFLICT,
detail="All reviews in a single request must belong to the same execution.",
)
graph_exec_id = next(iter(graph_exec_ids))
# Validate execution status before processing reviews
graph_exec_meta = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec_meta:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Graph execution #{graph_exec_id} not found",
)
# Only allow processing reviews if execution is paused for review
# or incomplete (partial execution with some reviews already processed)
if graph_exec_meta.status not in (
ExecutionStatus.REVIEW,
ExecutionStatus.INCOMPLETE,
):
raise HTTPException(
status_code=status.HTTP_409_CONFLICT,
detail=f"Cannot process reviews while execution status is {graph_exec_meta.status}. "
f"Reviews can only be processed when execution is paused (REVIEW status). "
f"Current status: {graph_exec_meta.status}",
)
# Build review decisions map and track which reviews requested auto-approval
# Auto-approved reviews use original data (no modifications allowed)
review_decisions = {}
auto_approve_requests = {} # Map node_exec_id -> auto_approve_future flag
for review in request.reviews:
review_status = (
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
)
# If this review requested auto-approval, don't allow data modifications
reviewed_data = None if review.auto_approve_future else review.reviewed_data
review_decisions[review.node_exec_id] = (
review_status,
review.reviewed_data,
reviewed_data,
review.message,
)
auto_approve_requests[review.node_exec_id] = review.auto_approve_future
# Process all reviews
updated_reviews = await process_all_reviews_for_execution(
@@ -145,6 +208,87 @@ async def process_review_action(
review_decisions=review_decisions,
)
# Create auto-approval records for approved reviews that requested it
# Deduplicate by node_id to avoid race conditions when multiple reviews
# for the same node are processed in parallel
async def create_auto_approval_for_node(
node_id: str, review_result
) -> tuple[str, bool]:
"""
Create auto-approval record for a node.
Returns (node_id, success) tuple for tracking failures.
"""
try:
await create_auto_approval_record(
user_id=user_id,
graph_exec_id=review_result.graph_exec_id,
graph_id=review_result.graph_id,
graph_version=review_result.graph_version,
node_id=node_id,
payload=review_result.payload,
)
return (node_id, True)
except Exception as e:
logger.error(
f"Failed to create auto-approval record for node {node_id}",
exc_info=e,
)
return (node_id, False)
# Collect node_exec_ids that need auto-approval
node_exec_ids_needing_auto_approval = [
node_exec_id
for node_exec_id, review_result in updated_reviews.items()
if review_result.status == ReviewStatus.APPROVED
and auto_approve_requests.get(node_exec_id, False)
]
# Batch-fetch node executions to get node_ids
nodes_needing_auto_approval: dict[str, Any] = {}
if node_exec_ids_needing_auto_approval:
from backend.data.execution import get_node_executions
node_execs = await get_node_executions(
graph_exec_id=graph_exec_id, include_exec_data=False
)
node_exec_map = {node_exec.node_exec_id: node_exec for node_exec in node_execs}
for node_exec_id in node_exec_ids_needing_auto_approval:
node_exec = node_exec_map.get(node_exec_id)
if node_exec:
review_result = updated_reviews[node_exec_id]
# Use the first approved review for this node (deduplicate by node_id)
if node_exec.node_id not in nodes_needing_auto_approval:
nodes_needing_auto_approval[node_exec.node_id] = review_result
else:
logger.error(
f"Failed to create auto-approval record for {node_exec_id}: "
f"Node execution not found. This may indicate a race condition "
f"or data inconsistency."
)
# Execute all auto-approval creations in parallel (deduplicated by node_id)
auto_approval_results = await asyncio.gather(
*[
create_auto_approval_for_node(node_id, review_result)
for node_id, review_result in nodes_needing_auto_approval.items()
],
return_exceptions=True,
)
# Count auto-approval failures
auto_approval_failed_count = 0
for result in auto_approval_results:
if isinstance(result, Exception):
# Unexpected exception during auto-approval creation
auto_approval_failed_count += 1
logger.error(
f"Unexpected exception during auto-approval creation: {result}"
)
elif isinstance(result, tuple) and len(result) == 2 and not result[1]:
# Auto-approval creation failed (returned False)
auto_approval_failed_count += 1
# Count results
approved_count = sum(
1
@@ -157,30 +301,53 @@ async def process_review_action(
if review.status == ReviewStatus.REJECTED
)
# Resume execution if we processed some reviews
# Resume execution only if ALL pending reviews for this execution have been processed
if updated_reviews:
# Get graph execution ID from any processed review
first_review = next(iter(updated_reviews.values()))
graph_exec_id = first_review.graph_exec_id
# Check if any pending reviews remain for this execution
still_has_pending = await has_pending_reviews_for_graph_exec(graph_exec_id)
if not still_has_pending:
# Resume execution
# Get the graph_id from any processed review
first_review = next(iter(updated_reviews.values()))
try:
# Fetch user and settings to build complete execution context
user = await get_user_by_id(user_id)
settings = await get_graph_settings(
user_id=user_id, graph_id=first_review.graph_id
)
# Preserve user's timezone preference when resuming execution
user_timezone = (
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
)
execution_context = ExecutionContext(
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
user_timezone=user_timezone,
)
await add_graph_execution(
graph_id=first_review.graph_id,
user_id=user_id,
graph_exec_id=graph_exec_id,
execution_context=execution_context,
)
logger.info(f"Resumed execution {graph_exec_id}")
except Exception as e:
logger.error(f"Failed to resume execution {graph_exec_id}: {str(e)}")
# Build error message if auto-approvals failed
error_message = None
if auto_approval_failed_count > 0:
error_message = (
f"{auto_approval_failed_count} auto-approval setting(s) could not be saved. "
f"You may need to manually approve these reviews in future executions."
)
return ReviewResponse(
approved_count=approved_count,
rejected_count=rejected_count,
failed_count=0,
error=None,
failed_count=auto_approval_failed_count,
error=error_message,
)

View File

@@ -21,7 +21,7 @@ from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, NotFoundError
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.json import SafeJson
from backend.util.models import Pagination
from backend.util.settings import Config
@@ -64,11 +64,11 @@ async def list_library_agents(
if page < 1 or page_size < 1:
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
raise DatabaseError("Invalid pagination input")
raise InvalidInputError("Invalid pagination input")
if search_term and len(search_term.strip()) > 100:
logger.warning(f"Search term too long: {repr(search_term)}")
raise DatabaseError("Search term is too long")
raise InvalidInputError("Search term is too long")
where_clause: prisma.types.LibraryAgentWhereInput = {
"userId": user_id,
@@ -175,7 +175,7 @@ async def list_favorite_library_agents(
if page < 1 or page_size < 1:
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
raise DatabaseError("Invalid pagination input")
raise InvalidInputError("Invalid pagination input")
where_clause: prisma.types.LibraryAgentWhereInput = {
"userId": user_id,
@@ -583,7 +583,13 @@ async def update_library_agent(
)
update_fields["isDeleted"] = is_deleted
if settings is not None:
update_fields["settings"] = SafeJson(settings.model_dump())
existing_agent = await get_library_agent(id=library_agent_id, user_id=user_id)
current_settings_dict = (
existing_agent.settings.model_dump() if existing_agent.settings else {}
)
new_settings = settings.model_dump(exclude_unset=True)
merged_settings = {**current_settings_dict, **new_settings}
update_fields["settings"] = SafeJson(merged_settings)
try:
# If graph_version is provided, update to that specific version

View File

@@ -1,4 +1,3 @@
import logging
from typing import Literal, Optional
import autogpt_libs.auth as autogpt_auth_lib
@@ -6,15 +5,11 @@ from fastapi import APIRouter, Body, HTTPException, Query, Security, status
from fastapi.responses import Response
from prisma.enums import OnboardingStep
import backend.api.features.store.exceptions as store_exceptions
from backend.data.onboarding import complete_onboarding_step
from backend.util.exceptions import DatabaseError, NotFoundError
from .. import db as library_db
from .. import model as library_model
logger = logging.getLogger(__name__)
router = APIRouter(
prefix="/agents",
tags=["library", "private"],
@@ -26,10 +21,6 @@ router = APIRouter(
"",
summary="List Library Agents",
response_model=library_model.LibraryAgentResponse,
responses={
200: {"description": "List of library agents"},
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
@@ -53,43 +44,19 @@ async def list_library_agents(
) -> library_model.LibraryAgentResponse:
"""
Get all agents in the user's library (both created and saved).
Args:
user_id: ID of the authenticated user.
search_term: Optional search term to filter agents by name/description.
filter_by: List of filters to apply (favorites, created by user).
sort_by: List of sorting criteria (created date, updated date).
page: Page number to retrieve.
page_size: Number of agents per page.
Returns:
A LibraryAgentResponse containing agents and pagination metadata.
Raises:
HTTPException: If a server/database error occurs.
"""
try:
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
except Exception as e:
logger.error(f"Could not list library agents for user #{user_id}: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
@router.get(
"/favorites",
summary="List Favorite Library Agents",
responses={
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_favorite_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
@@ -106,30 +73,12 @@ async def list_favorite_library_agents(
) -> library_model.LibraryAgentResponse:
"""
Get all favorite agents in the user's library.
Args:
user_id: ID of the authenticated user.
page: Page number to retrieve.
page_size: Number of agents per page.
Returns:
A LibraryAgentResponse containing favorite agents and pagination metadata.
Raises:
HTTPException: If a server/database error occurs.
"""
try:
return await library_db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
except Exception as e:
logger.error(f"Could not list favorite library agents for user #{user_id}: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
return await library_db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
@router.get("/{library_agent_id}", summary="Get Library Agent")
@@ -162,10 +111,6 @@ async def get_library_agent_by_graph_id(
summary="Get Agent By Store ID",
tags=["store", "library"],
response_model=library_model.LibraryAgent | None,
responses={
200: {"description": "Library agent found"},
404: {"description": "Agent not found"},
},
)
async def get_library_agent_by_store_listing_version_id(
store_listing_version_id: str,
@@ -174,32 +119,15 @@ async def get_library_agent_by_store_listing_version_id(
"""
Get Library Agent from Store Listing Version ID.
"""
try:
return await library_db.get_library_agent_by_store_version_id(
store_listing_version_id, user_id
)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
)
except Exception as e:
logger.error(f"Could not fetch library agent from store version ID: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
return await library_db.get_library_agent_by_store_version_id(
store_listing_version_id, user_id
)
@router.post(
"",
summary="Add Marketplace Agent",
status_code=status.HTTP_201_CREATED,
responses={
201: {"description": "Agent added successfully"},
404: {"description": "Store listing version not found"},
500: {"description": "Server error"},
},
)
async def add_marketplace_agent_to_library(
store_listing_version_id: str = Body(embed=True),
@@ -210,59 +138,19 @@ async def add_marketplace_agent_to_library(
) -> library_model.LibraryAgent:
"""
Add an agent from the marketplace to the user's library.
Args:
store_listing_version_id: ID of the store listing version to add.
user_id: ID of the authenticated user.
Returns:
library_model.LibraryAgent: Agent added to the library
Raises:
HTTPException(404): If the listing version is not found.
HTTPException(500): If a server/database error occurs.
"""
try:
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
)
return agent
except store_exceptions.AgentNotFoundError as e:
logger.warning(
f"Could not find store listing version {store_listing_version_id} "
"to add to library"
)
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=str(e))
except DatabaseError as e:
logger.error(f"Database error while adding agent to library: {e}", e)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Inspect DB logs for details."},
) from e
except Exception as e:
logger.error(f"Unexpected error while adding agent to library: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={
"message": str(e),
"hint": "Check server logs for more information.",
},
) from e
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(user_id, OnboardingStep.MARKETPLACE_ADD_AGENT)
return agent
@router.patch(
"/{library_agent_id}",
summary="Update Library Agent",
responses={
200: {"description": "Agent updated successfully"},
500: {"description": "Server error"},
},
)
async def update_library_agent(
library_agent_id: str,
@@ -271,52 +159,21 @@ async def update_library_agent(
) -> library_model.LibraryAgent:
"""
Update the library agent with the given fields.
Args:
library_agent_id: ID of the library agent to update.
payload: Fields to update (auto_update_version, is_favorite, etc.).
user_id: ID of the authenticated user.
Raises:
HTTPException(500): If a server/database error occurs.
"""
try:
return await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
graph_version=payload.graph_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
settings=payload.settings,
)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
) from e
except DatabaseError as e:
logger.error(f"Database error while updating library agent: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Verify DB connection."},
) from e
except Exception as e:
logger.error(f"Unexpected error while updating library agent: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Check server logs."},
) from e
return await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
graph_version=payload.graph_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
settings=payload.settings,
)
@router.delete(
"/{library_agent_id}",
summary="Delete Library Agent",
responses={
204: {"description": "Agent deleted successfully"},
404: {"description": "Agent not found"},
500: {"description": "Server error"},
},
)
async def delete_library_agent(
library_agent_id: str,
@@ -324,28 +181,11 @@ async def delete_library_agent(
) -> Response:
"""
Soft-delete the specified library agent.
Args:
library_agent_id: ID of the library agent to delete.
user_id: ID of the authenticated user.
Returns:
204 No Content if successful.
Raises:
HTTPException(404): If the agent does not exist.
HTTPException(500): If a server/database error occurs.
"""
try:
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
) from e
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
@router.post("/{library_agent_id}/fork", summary="Fork Library Agent")

View File

@@ -118,21 +118,6 @@ async def test_get_library_agents_success(
)
def test_get_library_agents_error(mocker: pytest_mock.MockFixture, test_user_id: str):
mock_db_call = mocker.patch("backend.api.features.library.db.list_library_agents")
mock_db_call.side_effect = Exception("Test error")
response = client.get("/agents?search_term=test")
assert response.status_code == 500
mock_db_call.assert_called_once_with(
user_id=test_user_id,
search_term="test",
sort_by=library_model.LibraryAgentSort.UPDATED_AT,
page=1,
page_size=15,
)
@pytest.mark.asyncio
async def test_get_favorite_library_agents_success(
mocker: pytest_mock.MockFixture,
@@ -190,23 +175,6 @@ async def test_get_favorite_library_agents_success(
)
def test_get_favorite_library_agents_error(
mocker: pytest_mock.MockFixture, test_user_id: str
):
mock_db_call = mocker.patch(
"backend.api.features.library.db.list_favorite_library_agents"
)
mock_db_call.side_effect = Exception("Test error")
response = client.get("/agents/favorites")
assert response.status_code == 500
mock_db_call.assert_called_once_with(
user_id=test_user_id,
page=1,
page_size=15,
)
def test_add_agent_to_library_success(
mocker: pytest_mock.MockFixture, test_user_id: str
):
@@ -258,19 +226,3 @@ def test_add_agent_to_library_success(
store_listing_version_id="test-version-id", user_id=test_user_id
)
mock_complete_onboarding.assert_awaited_once()
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):
mock_db_call = mocker.patch(
"backend.api.features.library.db.add_store_agent_to_library"
)
mock_db_call.side_effect = Exception("Test error")
response = client.post(
"/agents", json={"store_listing_version_id": "test-version-id"}
)
assert response.status_code == 500
assert "detail" in response.json() # Verify error response structure
mock_db_call.assert_called_once_with(
store_listing_version_id="test-version-id", user_id=test_user_id
)

View File

@@ -20,6 +20,7 @@ from typing import AsyncGenerator
import httpx
import pytest
import pytest_asyncio
from autogpt_libs.api_key.keysmith import APIKeySmith
from prisma.enums import APIKeyPermission
from prisma.models import OAuthAccessToken as PrismaOAuthAccessToken
@@ -38,13 +39,13 @@ keysmith = APIKeySmith()
# ============================================================================
@pytest.fixture
@pytest.fixture(scope="session")
def test_user_id() -> str:
"""Test user ID for OAuth tests."""
return str(uuid.uuid4())
@pytest.fixture
@pytest_asyncio.fixture(scope="session", loop_scope="session")
async def test_user(server, test_user_id: str):
"""Create a test user in the database."""
await PrismaUser.prisma().create(
@@ -67,7 +68,7 @@ async def test_user(server, test_user_id: str):
await PrismaUser.prisma().delete(where={"id": test_user_id})
@pytest.fixture
@pytest_asyncio.fixture
async def test_oauth_app(test_user: str):
"""Create a test OAuth application in the database."""
app_id = str(uuid.uuid4())
@@ -122,7 +123,7 @@ def pkce_credentials() -> tuple[str, str]:
return generate_pkce()
@pytest.fixture
@pytest_asyncio.fixture
async def client(server, test_user: str) -> AsyncGenerator[httpx.AsyncClient, None]:
"""
Create an async HTTP client that talks directly to the FastAPI app.
@@ -287,7 +288,7 @@ async def test_authorize_invalid_client_returns_error(
assert query_params["error"][0] == "invalid_client"
@pytest.fixture
@pytest_asyncio.fixture
async def inactive_oauth_app(test_user: str):
"""Create an inactive test OAuth application in the database."""
app_id = str(uuid.uuid4())
@@ -1004,7 +1005,7 @@ async def test_token_refresh_revoked(
assert "revoked" in response.json()["detail"].lower()
@pytest.fixture
@pytest_asyncio.fixture
async def other_oauth_app(test_user: str):
"""Create a second OAuth application for cross-app tests."""
app_id = str(uuid.uuid4())

View File

@@ -188,6 +188,10 @@ class BlockHandler(ContentHandler):
try:
block_instance = block_cls()
# Skip disabled blocks - they shouldn't be indexed
if block_instance.disabled:
continue
# Build searchable text from block metadata
parts = []
if hasattr(block_instance, "name") and block_instance.name:
@@ -248,12 +252,19 @@ class BlockHandler(ContentHandler):
from backend.data.block import get_blocks
all_blocks = get_blocks()
total_blocks = len(all_blocks)
# Filter out disabled blocks - they're not indexed
enabled_block_ids = [
block_id
for block_id, block_cls in all_blocks.items()
if not block_cls().disabled
]
total_blocks = len(enabled_block_ids)
if total_blocks == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
block_ids = list(all_blocks.keys())
block_ids = enabled_block_ids
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
embedded_result = await query_raw_with_schema(

View File

@@ -81,6 +81,7 @@ async def test_block_handler_get_missing_items(mocker):
mock_block_instance.name = "Calculator Block"
mock_block_instance.description = "Performs calculations"
mock_block_instance.categories = [MagicMock(value="MATH")]
mock_block_instance.disabled = False
mock_block_instance.input_schema.model_json_schema.return_value = {
"properties": {"expression": {"description": "Math expression to evaluate"}}
}
@@ -116,11 +117,18 @@ async def test_block_handler_get_stats(mocker):
"""Test BlockHandler returns correct stats."""
handler = BlockHandler()
# Mock get_blocks
# Mock get_blocks - each block class returns an instance with disabled=False
def make_mock_block_class():
mock_class = MagicMock()
mock_instance = MagicMock()
mock_instance.disabled = False
mock_class.return_value = mock_instance
return mock_class
mock_blocks = {
"block-1": MagicMock(),
"block-2": MagicMock(),
"block-3": MagicMock(),
"block-1": make_mock_block_class(),
"block-2": make_mock_block_class(),
"block-3": make_mock_block_class(),
}
# Mock embedded count query (2 blocks have embeddings)
@@ -309,6 +317,7 @@ async def test_block_handler_handles_missing_attributes():
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Minimal Block"
mock_block_instance.disabled = False
# No description, categories, or schema
del mock_block_instance.description
del mock_block_instance.categories
@@ -342,6 +351,7 @@ async def test_block_handler_skips_failed_blocks():
good_instance.name = "Good Block"
good_instance.description = "Works fine"
good_instance.categories = []
good_instance.disabled = False
good_block.return_value = good_instance
bad_block = MagicMock()

View File

@@ -1552,7 +1552,7 @@ async def review_store_submission(
# Generate embedding for approved listing (blocking - admin operation)
# Inside transaction: if embedding fails, entire transaction rolls back
embedding_success = await ensure_embedding(
await ensure_embedding(
version_id=store_listing_version_id,
name=store_listing_version.name,
description=store_listing_version.description,
@@ -1560,12 +1560,6 @@ async def review_store_submission(
categories=store_listing_version.categories or [],
tx=tx,
)
if not embedding_success:
raise ValueError(
f"Failed to generate embedding for listing {store_listing_version_id}. "
"This is likely due to OpenAI API being unavailable. "
"Please try again later or contact support if the issue persists."
)
await prisma.models.StoreListing.prisma(tx).update(
where={"id": store_listing_version.StoreListing.id},

View File

@@ -21,7 +21,6 @@ from backend.util.json import dumps
logger = logging.getLogger(__name__)
# OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small"
# Embedding dimension for the model above
@@ -63,49 +62,42 @@ def build_searchable_text(
return " ".join(parts)
async def generate_embedding(text: str) -> list[float] | None:
async def generate_embedding(text: str) -> list[float]:
"""
Generate embedding for text using OpenAI API.
Returns None if embedding generation fails.
Fail-fast: no retries to maintain consistency with approval flow.
Raises exceptions on failure - caller should handle.
"""
try:
client = get_openai_client()
if not client:
logger.error("openai_internal_api_key not set, cannot generate embedding")
return None
client = get_openai_client()
if not client:
raise RuntimeError("openai_internal_api_key not set, cannot generate embedding")
# Truncate text to token limit using tiktoken
# Character-based truncation is insufficient because token ratios vary by content type
enc = encoding_for_model(EMBEDDING_MODEL)
tokens = enc.encode(text)
if len(tokens) > EMBEDDING_MAX_TOKENS:
tokens = tokens[:EMBEDDING_MAX_TOKENS]
truncated_text = enc.decode(tokens)
logger.info(
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
)
else:
truncated_text = text
start_time = time.time()
response = await client.embeddings.create(
model=EMBEDDING_MODEL,
input=truncated_text,
)
latency_ms = (time.time() - start_time) * 1000
embedding = response.data[0].embedding
# Truncate text to token limit using tiktoken
# Character-based truncation is insufficient because token ratios vary by content type
enc = encoding_for_model(EMBEDDING_MODEL)
tokens = enc.encode(text)
if len(tokens) > EMBEDDING_MAX_TOKENS:
tokens = tokens[:EMBEDDING_MAX_TOKENS]
truncated_text = enc.decode(tokens)
logger.info(
f"Generated embedding: {len(embedding)} dims, "
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
)
return embedding
else:
truncated_text = text
except Exception as e:
logger.error(f"Failed to generate embedding: {e}")
return None
start_time = time.time()
response = await client.embeddings.create(
model=EMBEDDING_MODEL,
input=truncated_text,
)
latency_ms = (time.time() - start_time) * 1000
embedding = response.data[0].embedding
logger.info(
f"Generated embedding: {len(embedding)} dims, "
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
)
return embedding
async def store_embedding(
@@ -144,48 +136,45 @@ async def store_content_embedding(
New function for unified content embedding storage.
Uses raw SQL since Prisma doesn't natively support pgvector.
Raises exceptions on failure - caller should handle.
"""
try:
client = tx if tx else prisma.get_client()
client = tx if tx else prisma.get_client()
# Convert embedding to PostgreSQL vector format
embedding_str = embedding_to_vector_string(embedding)
metadata_json = dumps(metadata or {})
# Convert embedding to PostgreSQL vector format
embedding_str = embedding_to_vector_string(embedding)
metadata_json = dumps(metadata or {})
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
# Use unqualified ::vector - pgvector is in search_path on all environments
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
""",
content_type,
content_id,
user_id,
embedding_str,
searchable_text,
metadata_json,
client=client,
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
# Use unqualified ::vector - pgvector is in search_path on all environments
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
""",
content_type,
content_id,
user_id,
embedding_str,
searchable_text,
metadata_json,
client=client,
)
logger.info(f"Stored embedding for {content_type}:{content_id}")
return True
except Exception as e:
logger.error(f"Failed to store embedding for {content_type}:{content_id}: {e}")
return False
logger.info(f"Stored embedding for {content_type}:{content_id}")
return True
async def get_embedding(version_id: str) -> dict[str, Any] | None:
@@ -217,34 +206,31 @@ async def get_content_embedding(
New function for unified content embedding retrieval.
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
Raises exceptions on failure - caller should handle.
"""
try:
result = await query_raw_with_schema(
"""
SELECT
"contentType",
"contentId",
"userId",
"embedding"::text as "embedding",
"searchableText",
"metadata",
"createdAt",
"updatedAt"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
)
result = await query_raw_with_schema(
"""
SELECT
"contentType",
"contentId",
"userId",
"embedding"::text as "embedding",
"searchableText",
"metadata",
"createdAt",
"updatedAt"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
)
if result and len(result) > 0:
return result[0]
return None
except Exception as e:
logger.error(f"Failed to get embedding for {content_type}:{content_id}: {e}")
return None
if result and len(result) > 0:
return result[0]
return None
async def ensure_embedding(
@@ -272,46 +258,38 @@ async def ensure_embedding(
tx: Optional transaction client
Returns:
True if embedding exists/was created, False on failure
True if embedding exists/was created
Raises exceptions on failure - caller should handle.
"""
try:
# Check if embedding already exists
if not force:
existing = await get_embedding(version_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for version {version_id} already exists")
return True
# Check if embedding already exists
if not force:
existing = await get_embedding(version_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for version {version_id} already exists")
return True
# Build searchable text for embedding
searchable_text = build_searchable_text(
name, description, sub_heading, categories
)
# Build searchable text for embedding
searchable_text = build_searchable_text(name, description, sub_heading, categories)
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(f"Could not generate embedding for version {version_id}")
return False
# Generate new embedding
embedding = await generate_embedding(searchable_text)
# Store the embedding with metadata using new function
metadata = {
"name": name,
"subHeading": sub_heading,
"categories": categories,
}
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata,
user_id=None, # Store agents are public
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
return False
# Store the embedding with metadata using new function
metadata = {
"name": name,
"subHeading": sub_heading,
"categories": categories,
}
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata,
user_id=None, # Store agents are public
tx=tx,
)
async def delete_embedding(version_id: str) -> bool:
@@ -476,6 +454,7 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
total_processed = 0
total_success = 0
total_failed = 0
all_errors: dict[str, int] = {} # Aggregate errors across all content types
# Process content types in explicit order
processing_order = [
@@ -521,6 +500,13 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
success = sum(1 for result in results if result is True)
failed = len(results) - success
# Aggregate errors across all content types
if failed > 0:
for result in results:
if isinstance(result, Exception):
error_key = f"{type(result).__name__}: {str(result)}"
all_errors[error_key] = all_errors.get(error_key, 0) + 1
results_by_type[content_type.value] = {
"processed": len(missing_items),
"success": success,
@@ -546,6 +532,13 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
"error": str(e),
}
# Log aggregated errors once at the end
if all_errors:
error_details = ", ".join(
f"{error} ({count}x)" for error, count in all_errors.items()
)
logger.error(f"Embedding backfill errors: {error_details}")
return {
"by_type": results_by_type,
"totals": {
@@ -557,11 +550,12 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
}
async def embed_query(query: str) -> list[float] | None:
async def embed_query(query: str) -> list[float]:
"""
Generate embedding for a search query.
Same as generate_embedding but with clearer intent.
Raises exceptions on failure - caller should handle.
"""
return await generate_embedding(query)
@@ -594,40 +588,30 @@ async def ensure_content_embedding(
tx: Optional transaction client
Returns:
True if embedding exists/was created, False on failure
True if embedding exists/was created
Raises exceptions on failure - caller should handle.
"""
try:
# Check if embedding already exists
if not force:
existing = await get_content_embedding(content_type, content_id, user_id)
if existing and existing.get("embedding"):
logger.debug(
f"Embedding for {content_type}:{content_id} already exists"
)
return True
# Check if embedding already exists
if not force:
existing = await get_content_embedding(content_type, content_id, user_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for {content_type}:{content_id} already exists")
return True
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(
f"Could not generate embedding for {content_type}:{content_id}"
)
return False
# Generate new embedding
embedding = await generate_embedding(searchable_text)
# Store the embedding
return await store_content_embedding(
content_type=content_type,
content_id=content_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata or {},
user_id=user_id,
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
return False
# Store the embedding
return await store_content_embedding(
content_type=content_type,
content_id=content_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata or {},
user_id=user_id,
tx=tx,
)
async def cleanup_orphaned_embeddings() -> dict[str, Any]:
@@ -854,9 +838,8 @@ async def semantic_search(
limit = 100
# Generate query embedding
query_embedding = await embed_query(query)
if query_embedding is not None:
try:
query_embedding = await embed_query(query)
# Semantic search with embeddings
embedding_str = embedding_to_vector_string(query_embedding)
@@ -907,24 +890,21 @@ async def semantic_search(
"""
)
try:
results = await query_raw_with_schema(sql, *params)
return [
{
"content_id": row["content_id"],
"content_type": row["content_type"],
"searchable_text": row["searchable_text"],
"metadata": row["metadata"],
"similarity": float(row["similarity"]),
}
for row in results
]
except Exception as e:
logger.error(f"Semantic search failed: {e}")
# Fall through to lexical search below
results = await query_raw_with_schema(sql, *params)
return [
{
"content_id": row["content_id"],
"content_type": row["content_type"],
"searchable_text": row["searchable_text"],
"metadata": row["metadata"],
"similarity": float(row["similarity"]),
}
for row in results
]
except Exception as e:
logger.warning(f"Semantic search failed, falling back to lexical search: {e}")
# Fallback to lexical search if embeddings unavailable
logger.warning("Falling back to lexical search (embeddings unavailable)")
params_lexical: list[Any] = [limit]
user_filter = ""

View File

@@ -298,17 +298,16 @@ async def test_schema_handling_error_cases():
mock_client.execute_raw.side_effect = Exception("Database error")
mock_get_client.return_value = mock_client
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * EMBEDDING_DIM,
searchable_text="test",
metadata=None,
user_id=None,
)
# Should return False on error, not raise
assert result is False
# Should raise exception on error
with pytest.raises(Exception, match="Database error"):
await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * EMBEDDING_DIM,
searchable_text="test",
metadata=None,
user_id=None,
)
if __name__ == "__main__":

View File

@@ -80,9 +80,8 @@ async def test_generate_embedding_no_api_key():
) as mock_get_client:
mock_get_client.return_value = None
result = await embeddings.generate_embedding("test text")
assert result is None
with pytest.raises(RuntimeError, match="openai_internal_api_key not set"):
await embeddings.generate_embedding("test text")
@pytest.mark.asyncio(loop_scope="session")
@@ -97,9 +96,8 @@ async def test_generate_embedding_api_error():
) as mock_get_client:
mock_get_client.return_value = mock_client
result = await embeddings.generate_embedding("test text")
assert result is None
with pytest.raises(Exception, match="API Error"):
await embeddings.generate_embedding("test text")
@pytest.mark.asyncio(loop_scope="session")
@@ -173,11 +171,10 @@ async def test_store_embedding_database_error(mocker):
embedding = [0.1, 0.2, 0.3]
result = await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
assert result is False
with pytest.raises(Exception, match="Database error"):
await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
@pytest.mark.asyncio(loop_scope="session")
@@ -277,17 +274,16 @@ async def test_ensure_embedding_create_new(mock_get, mock_store, mock_generate):
async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
"""Test ensure_embedding when generation fails."""
mock_get.return_value = None
mock_generate.return_value = None
mock_generate.side_effect = Exception("Generation failed")
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is False
with pytest.raises(Exception, match="Generation failed"):
await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
@pytest.mark.asyncio(loop_scope="session")

View File

@@ -186,13 +186,12 @@ async def unified_hybrid_search(
offset = (page - 1) * page_size
# Generate query embedding
query_embedding = await embed_query(query)
# Graceful degradation if embedding unavailable
if query_embedding is None or not query_embedding:
# Generate query embedding with graceful degradation
try:
query_embedding = await embed_query(query)
except Exception as e:
logger.warning(
"Failed to generate query embedding - falling back to lexical-only search. "
f"Failed to generate query embedding - falling back to lexical-only search: {e}. "
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
)
query_embedding = [0.0] * EMBEDDING_DIM
@@ -464,13 +463,12 @@ async def hybrid_search(
offset = (page - 1) * page_size
# Generate query embedding
query_embedding = await embed_query(query)
# Graceful degradation
if query_embedding is None or not query_embedding:
# Generate query embedding with graceful degradation
try:
query_embedding = await embed_query(query)
except Exception as e:
logger.warning(
"Failed to generate query embedding - falling back to lexical-only search."
f"Failed to generate query embedding - falling back to lexical-only search: {e}"
)
query_embedding = [0.0] * EMBEDDING_DIM
total_non_semantic = (

View File

@@ -172,8 +172,8 @@ async def test_hybrid_search_without_embeddings():
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Simulate embedding failure
mock_embed.return_value = None
# Simulate embedding failure by raising exception
mock_embed.side_effect = Exception("Embedding generation failed")
mock_query.return_value = mock_results
# Should NOT raise - graceful degradation
@@ -613,7 +613,9 @@ async def test_unified_hybrid_search_graceful_degradation():
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = mock_results
mock_embed.return_value = None # Embedding failure
mock_embed.side_effect = Exception(
"Embedding generation failed"
) # Embedding failure
# Should NOT raise - graceful degradation
results, total = await unified_hybrid_search(

View File

@@ -261,14 +261,36 @@ async def get_onboarding_agents(
return await get_recommended_agents(user_id)
class OnboardingStatusResponse(pydantic.BaseModel):
"""Response for onboarding status check."""
is_onboarding_enabled: bool
is_chat_enabled: bool
@v1_router.get(
"/onboarding/enabled",
summary="Is onboarding enabled",
tags=["onboarding", "public"],
dependencies=[Security(requires_user)],
response_model=OnboardingStatusResponse,
)
async def is_onboarding_enabled() -> bool:
return await onboarding_enabled()
async def is_onboarding_enabled(
user_id: Annotated[str, Security(get_user_id)],
) -> OnboardingStatusResponse:
# Check if chat is enabled for user
is_chat_enabled = await is_feature_enabled(Flag.CHAT, user_id, False)
# If chat is enabled, skip legacy onboarding
if is_chat_enabled:
return OnboardingStatusResponse(
is_onboarding_enabled=False,
is_chat_enabled=True,
)
return OnboardingStatusResponse(
is_onboarding_enabled=await onboarding_enabled(),
is_chat_enabled=False,
)
@v1_router.post(
@@ -364,6 +386,8 @@ async def execute_graph_block(
obj = get_block(block_id)
if not obj:
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
if obj.disabled:
raise HTTPException(status_code=403, detail=f"Block #{block_id} is disabled.")
user = await get_user_by_id(user_id)
if not user:

View File

@@ -138,6 +138,7 @@ def test_execute_graph_block(
"""Test execute block endpoint"""
# Mock block
mock_block = Mock()
mock_block.disabled = False
async def mock_execute(*args, **kwargs):
yield "output1", {"data": "result1"}

View File

@@ -0,0 +1 @@
# Workspace API feature module

View File

@@ -0,0 +1,122 @@
"""
Workspace API routes for managing user file storage.
"""
import logging
import re
from typing import Annotated
from urllib.parse import quote
import fastapi
from autogpt_libs.auth.dependencies import get_user_id, requires_user
from fastapi.responses import Response
from backend.data.workspace import get_workspace, get_workspace_file
from backend.util.workspace_storage import get_workspace_storage
def _sanitize_filename_for_header(filename: str) -> str:
"""
Sanitize filename for Content-Disposition header to prevent header injection.
Removes/replaces characters that could break the header or inject new headers.
Uses RFC5987 encoding for non-ASCII characters.
"""
# Remove CR, LF, and null bytes (header injection prevention)
sanitized = re.sub(r"[\r\n\x00]", "", filename)
# Escape quotes
sanitized = sanitized.replace('"', '\\"')
# For non-ASCII, use RFC5987 filename* parameter
# Check if filename has non-ASCII characters
try:
sanitized.encode("ascii")
return f'attachment; filename="{sanitized}"'
except UnicodeEncodeError:
# Use RFC5987 encoding for UTF-8 filenames
encoded = quote(sanitized, safe="")
return f"attachment; filename*=UTF-8''{encoded}"
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
dependencies=[fastapi.Security(requires_user)],
)
def _create_streaming_response(content: bytes, file) -> Response:
"""Create a streaming response for file content."""
return Response(
content=content,
media_type=file.mimeType,
headers={
"Content-Disposition": _sanitize_filename_for_header(file.name),
"Content-Length": str(len(content)),
},
)
async def _create_file_download_response(file) -> Response:
"""
Create a download response for a workspace file.
Handles both local storage (direct streaming) and GCS (signed URL redirect
with fallback to streaming).
"""
storage = await get_workspace_storage()
# For local storage, stream the file directly
if file.storagePath.startswith("local://"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
# For GCS, try to redirect to signed URL, fall back to streaming
try:
url = await storage.get_download_url(file.storagePath, expires_in=300)
# If we got back an API path (fallback), stream directly instead
if url.startswith("/api/"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
return fastapi.responses.RedirectResponse(url=url, status_code=302)
except Exception as e:
# Log the signed URL failure with context
logger.error(
f"Failed to get signed URL for file {file.id} "
f"(storagePath={file.storagePath}): {e}",
exc_info=True,
)
# Fall back to streaming directly from GCS
try:
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
except Exception as fallback_error:
logger.error(
f"Fallback streaming also failed for file {file.id} "
f"(storagePath={file.storagePath}): {fallback_error}",
exc_info=True,
)
raise
@router.get(
"/files/{file_id}/download",
summary="Download file by ID",
)
async def download_file(
user_id: Annotated[str, fastapi.Security(get_user_id)],
file_id: str,
) -> Response:
"""
Download a file by its ID.
Returns the file content directly or redirects to a signed URL for GCS.
"""
workspace = await get_workspace(user_id)
if workspace is None:
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
file = await get_workspace_file(file_id, workspace.id)
if file is None:
raise fastapi.HTTPException(status_code=404, detail="File not found")
return await _create_file_download_response(file)

View File

@@ -32,6 +32,7 @@ import backend.api.features.postmark.postmark
import backend.api.features.store.model
import backend.api.features.store.routes
import backend.api.features.v1
import backend.api.features.workspace.routes as workspace_routes
import backend.data.block
import backend.data.db
import backend.data.graph
@@ -52,6 +53,7 @@ from backend.util.exceptions import (
)
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
from backend.util.service import UnhealthyServiceError
from backend.util.workspace_storage import shutdown_workspace_storage
from .external.fastapi_app import external_api
from .features.analytics import router as analytics_router
@@ -124,6 +126,11 @@ async def lifespan_context(app: fastapi.FastAPI):
except Exception as e:
logger.warning(f"Error shutting down cloud storage handler: {e}")
try:
await shutdown_workspace_storage()
except Exception as e:
logger.warning(f"Error shutting down workspace storage: {e}")
await backend.data.db.disconnect()
@@ -315,6 +322,11 @@ app.include_router(
tags=["v2", "chat"],
prefix="/api/chat",
)
app.include_router(
workspace_routes.router,
tags=["workspace"],
prefix="/api/workspace",
)
app.include_router(
backend.api.features.oauth.router,
tags=["oauth"],

View File

@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -117,11 +118,13 @@ class AIImageCustomizerBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("image_url", "https://replicate.delivery/generated-image.jpg"),
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: MediaFileType(
"https://replicate.delivery/generated-image.jpg"
""
),
},
test_credentials=TEST_CREDENTIALS,
@@ -132,8 +135,7 @@ class AIImageCustomizerBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
@@ -141,10 +143,9 @@ class AIImageCustomizerBlock(Block):
processed_images = await asyncio.gather(
*(
store_media_file(
graph_exec_id=graph_exec_id,
file=img,
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
)
for img in input_data.images
)
@@ -158,7 +159,14 @@ class AIImageCustomizerBlock(Block):
aspect_ratio=input_data.aspect_ratio.value,
output_format=input_data.output_format.value,
)
yield "image_url", result
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
except Exception as e:
yield "error", str(e)

View File

@@ -6,6 +6,7 @@ from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -13,6 +14,8 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
class ImageSize(str, Enum):
@@ -165,11 +168,13 @@ class AIImageGeneratorBlock(Block):
test_output=[
(
"image_url",
"https://replicate.delivery/generated-image.webp",
# Test output is a data URI since we now store images
lambda x: x.startswith(""
},
)
@@ -318,11 +323,24 @@ class AIImageGeneratorBlock(Block):
style_text = style_map.get(style, "")
return f"{style_text} of" if style_text else ""
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
try:
url = await self.generate_image(input_data, credentials)
if url:
yield "image_url", url
# Store the generated image to the user's workspace/execution folder
stored_url = await store_media_file(
file=MediaFileType(url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else:
yield "error", "Image generation returned an empty result."
except Exception as e:

View File

@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -21,7 +22,9 @@ from backend.data.model import (
)
from backend.integrations.providers import ProviderName
from backend.util.exceptions import BlockExecutionError
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -271,7 +274,10 @@ class AIShortformVideoCreatorBlock(Block):
"voice": Voice.LILY,
"video_style": VisualMediaType.STOCK_VIDEOS,
},
test_output=("video_url", "https://example.com/video.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -280,15 +286,21 @@ class AIShortformVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/video.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
# Use data URI to avoid HTTP requests during tests
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Create a new Webhook.site URL
webhook_token, webhook_url = await self.create_webhook()
@@ -340,7 +352,13 @@ class AIShortformVideoCreatorBlock(Block):
)
video_url = await self.wait_for_video(credentials.api_key, pid)
logger.debug(f"Video ready: {video_url}")
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
class AIAdMakerVideoCreatorBlock(Block):
@@ -447,7 +465,10 @@ class AIAdMakerVideoCreatorBlock(Block):
"https://cdn.revid.ai/uploads/1747076315114-image.png",
],
},
test_output=("video_url", "https://example.com/ad.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -456,14 +477,21 @@ class AIAdMakerVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/ad.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -531,7 +559,13 @@ class AIAdMakerVideoCreatorBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
class AIScreenshotToVideoAdBlock(Block):
@@ -626,7 +660,10 @@ class AIScreenshotToVideoAdBlock(Block):
"script": "Amazing numbers!",
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
},
test_output=("video_url", "https://example.com/screenshot.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -635,14 +672,21 @@ class AIScreenshotToVideoAdBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/screenshot.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -710,4 +754,10 @@ class AIScreenshotToVideoAdBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url

View File

@@ -6,6 +6,7 @@ if TYPE_CHECKING:
from pydantic import SecretStr
from backend.data.execution import ExecutionContext
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -17,6 +18,8 @@ from backend.sdk import (
Requests,
SchemaField,
)
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
from ._config import bannerbear
@@ -135,15 +138,17 @@ class BannerbearTextOverlayBlock(Block):
},
test_output=[
("success", True),
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
("uid", "test-uid-123"),
("status", "completed"),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"_make_api_request": lambda *args, **kwargs: {
"uid": "test-uid-123",
"status": "completed",
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
"image_url": "",
}
},
test_credentials=TEST_CREDENTIALS,
@@ -177,7 +182,12 @@ class BannerbearTextOverlayBlock(Block):
raise Exception(error_msg)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Build the modifications array
modifications = []
@@ -234,6 +244,18 @@ class BannerbearTextOverlayBlock(Block):
# Synchronous request - image should be ready
yield "success", True
yield "image_url", data.get("image_url", "")
# Store the generated image to workspace for persistence
image_url = data.get("image_url", "")
if image_url:
stored_url = await store_media_file(
file=MediaFileType(image_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else:
yield "image_url", ""
yield "uid", data.get("uid", "")
yield "status", data.get("status", "completed")

View File

@@ -9,6 +9,7 @@ from backend.data.block import (
BlockSchemaOutput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.type import MediaFileType, convert
@@ -17,10 +18,10 @@ from backend.util.type import MediaFileType, convert
class FileStoreBlock(Block):
class Input(BlockSchemaInput):
file_in: MediaFileType = SchemaField(
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
description="The file to download and store. Can be a URL (https://...), data URI, or local path."
)
base_64: bool = SchemaField(
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
default=False,
advanced=True,
title="Produce Base64 Output",
@@ -28,13 +29,18 @@ class FileStoreBlock(Block):
class Output(BlockSchemaOutput):
file_out: MediaFileType = SchemaField(
description="The relative path to the stored file in the temporary directory."
description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
)
def __init__(self):
super().__init__(
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
description="Stores the input file in the temporary directory.",
description=(
"Downloads and stores a file from a URL, data URI, or local path. "
"Use this to fetch images, documents, or other files for processing. "
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
"In graphs: outputs a data URI to pass to other blocks."
),
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
input_schema=FileStoreBlock.Input,
output_schema=FileStoreBlock.Output,
@@ -45,15 +51,18 @@ class FileStoreBlock(Block):
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "file_out", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.file_in,
user_id=user_id,
return_content=input_data.base_64,
execution_context=execution_context,
return_format=return_format,
)
@@ -116,6 +125,7 @@ class PrintToConsoleBlock(Block):
input_schema=PrintToConsoleBlock.Input,
output_schema=PrintToConsoleBlock.Output,
test_input={"text": "Hello, World!"},
is_sensitive_action=True,
test_output=[
("output", "Hello, World!"),
("status", "printed"),

View File

@@ -15,6 +15,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import APIKeyCredentials, SchemaField
from backend.util.file import store_media_file
from backend.util.request import Requests
@@ -666,8 +667,7 @@ class SendDiscordFileBlock(Block):
file: MediaFileType,
filename: str,
message_content: str,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
) -> dict:
intents = discord.Intents.default()
intents.guilds = True
@@ -731,10 +731,9 @@ class SendDiscordFileBlock(Block):
# Local file path - read from stored media file
# This would be a path from a previous block's output
stored_file = await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=True, # Get as data URI
execution_context=execution_context,
return_format="for_external_api", # Get content to send to Discord
)
# Now process as data URI
header, encoded = stored_file.split(",", 1)
@@ -781,8 +780,7 @@ class SendDiscordFileBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
@@ -793,8 +791,7 @@ class SendDiscordFileBlock(Block):
file=input_data.file,
filename=input_data.filename,
message_content=input_data.message_content,
graph_exec_id=graph_exec_id,
user_id=user_id,
execution_context=execution_context,
)
yield "status", result.get("status", "Unknown error")

View File

@@ -17,8 +17,11 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.request import ClientResponseError, Requests
from backend.util.type import MediaFileType
logger = logging.getLogger(__name__)
@@ -64,9 +67,13 @@ class AIVideoGeneratorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
test_output=[
# Output will be a workspace ref or data URI depending on context
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
# Use data URI to avoid HTTP requests during tests
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
},
)
@@ -208,11 +215,22 @@ class AIVideoGeneratorBlock(Block):
raise RuntimeError(f"API request failed: {str(e)}")
async def run(
self, input_data: Input, *, credentials: FalCredentials, **kwargs
self,
input_data: Input,
*,
credentials: FalCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
video_url = await self.generate_video(input_data, credentials)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
except Exception as e:
error_message = str(e)
yield "error", error_message

View File

@@ -12,6 +12,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -121,10 +122,12 @@ class AIImageEditorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("output_image", "https://replicate.com/output/edited-image.png"),
# Output will be a workspace ref or data URI depending on context
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png",
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: "",
},
test_credentials=TEST_CREDENTIALS,
)
@@ -134,8 +137,7 @@ class AIImageEditorBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
result = await self.run_model(
@@ -144,20 +146,25 @@ class AIImageEditorBlock(Block):
prompt=input_data.prompt,
input_image_b64=(
await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.input_image,
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
)
if input_data.input_image
else None
),
aspect_ratio=input_data.aspect_ratio.value,
seed=input_data.seed,
user_id=user_id,
graph_exec_id=graph_exec_id,
user_id=execution_context.user_id or "",
graph_exec_id=execution_context.graph_exec_id or "",
)
yield "output_image", result
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "output_image", stored_url
async def run_model(
self,

View File

@@ -21,6 +21,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
from backend.util.settings import Settings
@@ -95,8 +96,7 @@ def _make_mime_text(
async def create_mime_message(
input_data,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
) -> str:
"""Create a MIME message with attachments and return base64-encoded raw message."""
@@ -117,12 +117,12 @@ async def create_mime_message(
if input_data.attachments:
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -582,27 +582,25 @@ class GmailSendBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._send_email(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "result", result
async def _send_email(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to or not input_data.subject or not input_data.body:
raise ValueError(
"At least one recipient, subject, and body are required for sending an email"
)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
raw_message = await create_mime_message(input_data, execution_context)
sent_message = await asyncio.to_thread(
lambda: service.users()
.messages()
@@ -692,30 +690,28 @@ class GmailCreateDraftBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._create_draft(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "result", GmailDraftResult(
id=result["id"], message_id=result["message"]["id"], status="draft_created"
)
async def _create_draft(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to or not input_data.subject:
raise ValueError(
"At least one recipient and subject are required for creating a draft"
)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
raw_message = await create_mime_message(input_data, execution_context)
draft = await asyncio.to_thread(
lambda: service.users()
.drafts()
@@ -1100,7 +1096,7 @@ class GmailGetThreadBlock(GmailBase):
async def _build_reply_message(
service, input_data, graph_exec_id: str, user_id: str
service, input_data, execution_context: ExecutionContext
) -> tuple[str, str]:
"""
Builds a reply MIME message for Gmail threads.
@@ -1190,12 +1186,12 @@ async def _build_reply_message(
# Handle attachments
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -1311,16 +1307,14 @@ class GmailReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
message = await self._reply(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "messageId", message["id"]
yield "threadId", message.get("threadId", input_data.threadId)
@@ -1343,11 +1337,11 @@ class GmailReplyBlock(GmailBase):
yield "email", email
async def _reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id
service, input_data, execution_context
)
# Send the message
@@ -1441,16 +1435,14 @@ class GmailDraftReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
draft = await self._create_draft_reply(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "draftId", draft["id"]
yield "messageId", draft["message"]["id"]
@@ -1458,11 +1450,11 @@ class GmailDraftReplyBlock(GmailBase):
yield "status", "draft_created"
async def _create_draft_reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id
service, input_data, execution_context
)
# Create draft with proper thread association
@@ -1629,23 +1621,21 @@ class GmailForwardBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._forward_message(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "messageId", result["id"]
yield "threadId", result.get("threadId", "")
yield "status", "forwarded"
async def _forward_message(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to:
raise ValueError("At least one recipient is required for forwarding")
@@ -1727,12 +1717,12 @@ To: {original_to}
# Add any additional attachments
for attach in input_data.additionalAttachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())

View File

@@ -9,7 +9,7 @@ from typing import Any, Optional
from prisma.enums import ReviewStatus
from pydantic import BaseModel
from backend.data.execution import ExecutionContext, ExecutionStatus
from backend.data.execution import ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
@@ -28,6 +28,11 @@ class ReviewDecision(BaseModel):
class HITLReviewHelper:
"""Helper class for Human-In-The-Loop review operations."""
@staticmethod
async def check_approval(**kwargs) -> Optional[ReviewResult]:
"""Check if there's an existing approval for this node execution."""
return await get_database_manager_async_client().check_approval(**kwargs)
@staticmethod
async def get_or_create_human_review(**kwargs) -> Optional[ReviewResult]:
"""Create or retrieve a human review from the database."""
@@ -55,11 +60,11 @@ class HITLReviewHelper:
async def _handle_review_request(
input_data: Any,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewResult]:
@@ -69,11 +74,11 @@ class HITLReviewHelper:
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_id: ID of the node in the graph definition
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
@@ -83,15 +88,41 @@ class HITLReviewHelper:
Raises:
Exception: If review creation or status update fails
"""
# Skip review if safe mode is disabled - return auto-approved result
if not execution_context.human_in_the_loop_safe_mode:
# Note: Safe mode checks (human_in_the_loop_safe_mode, sensitive_action_safe_mode)
# are handled by the caller:
# - HITL blocks check human_in_the_loop_safe_mode in their run() method
# - Sensitive action blocks check sensitive_action_safe_mode in is_block_exec_need_review()
# This function only handles checking for existing approvals.
# Check if this node has already been approved (normal or auto-approval)
if approval_result := await HITLReviewHelper.check_approval(
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
node_id=node_id,
user_id=user_id,
input_data=input_data,
):
logger.info(
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
f"Block {block_name} skipping review for node {node_exec_id} - "
f"found existing approval"
)
# Return a new ReviewResult with the current node_exec_id but approved status
# For auto-approvals, always use current input_data
# For normal approvals, use approval_result.data unless it's None
is_auto_approval = approval_result.node_exec_id != node_exec_id
approved_data = (
input_data
if is_auto_approval
else (
approval_result.data
if approval_result.data is not None
else input_data
)
)
return ReviewResult(
data=input_data,
data=approved_data,
status=ReviewStatus.APPROVED,
message="Auto-approved (safe mode disabled)",
message=approval_result.message,
processed=True,
node_exec_id=node_exec_id,
)
@@ -103,7 +134,7 @@ class HITLReviewHelper:
graph_id=graph_id,
graph_version=graph_version,
input_data=input_data,
message=f"Review required for {block_name} execution",
message=block_name, # Use block_name directly as the message
editable=editable,
)
@@ -129,11 +160,11 @@ class HITLReviewHelper:
async def handle_review_decision(
input_data: Any,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewDecision]:
@@ -143,11 +174,11 @@ class HITLReviewHelper:
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_id: ID of the node in the graph definition
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
@@ -158,11 +189,11 @@ class HITLReviewHelper:
review_result = await HITLReviewHelper._handle_review_request(
input_data=input_data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=block_name,
editable=editable,
)

View File

@@ -15,6 +15,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
CredentialsField,
CredentialsMetaInput,
@@ -116,10 +117,9 @@ class SendWebRequestBlock(Block):
@staticmethod
async def _prepare_files(
graph_exec_id: str,
execution_context: ExecutionContext,
files_name: str,
files: list[MediaFileType],
user_id: str,
) -> list[tuple[str, tuple[str, BytesIO, str]]]:
"""
Prepare files for the request by storing them and reading their content.
@@ -127,11 +127,16 @@ class SendWebRequestBlock(Block):
(files_name, (filename, BytesIO, mime_type))
"""
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
graph_exec_id = execution_context.graph_exec_id
if graph_exec_id is None:
raise ValueError("graph_exec_id is required for file operations")
for media in files:
# Normalise to a list so we can repeat the same key
rel_path = await store_media_file(
graph_exec_id, media, user_id, return_content=False
file=media,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, rel_path)
async with aiofiles.open(abs_path, "rb") as f:
@@ -143,7 +148,7 @@ class SendWebRequestBlock(Block):
return files_payload
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
) -> BlockOutput:
# ─── Parse/normalise body ────────────────────────────────────
body = input_data.body
@@ -174,7 +179,7 @@ class SendWebRequestBlock(Block):
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
if use_files:
files_payload = await self._prepare_files(
graph_exec_id, input_data.files_name, input_data.files, user_id
execution_context, input_data.files_name, input_data.files
)
# Enforce body format rules
@@ -238,9 +243,8 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
self,
input_data: Input,
*,
graph_exec_id: str,
execution_context: ExecutionContext,
credentials: HostScopedCredentials,
user_id: str,
**kwargs,
) -> BlockOutput:
# Create SendWebRequestBlock.Input from our input (removing credentials field)
@@ -271,6 +275,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
# Use parent class run method
async for output_name, output_data in super().run(
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs
base_input, execution_context=execution_context, **kwargs
):
yield output_name, output_data

View File

@@ -97,6 +97,7 @@ class HumanInTheLoopBlock(Block):
input_data: Input,
*,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
@@ -115,12 +116,12 @@ class HumanInTheLoopBlock(Block):
decision = await self.handle_review_decision(
input_data=input_data.data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
block_name=input_data.name, # Use user-provided name instead of block type
editable=input_data.editable,
)

View File

@@ -12,6 +12,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.mock import MockObject
@@ -462,18 +463,21 @@ class AgentFileInputBlock(AgentInputBlock):
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
if not input_data.value:
return
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "result", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.value,
user_id=user_id,
return_content=input_data.base_64,
execution_context=execution_context,
return_format=return_format,
)

View File

@@ -0,0 +1,246 @@
import os
import tempfile
from typing import Optional
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
# 2) Load the clip
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
yield "duration", clip.duration
class LoopVideoBlock(Block):
"""
Block for looping (repeating) a video clip until a given duration or number of loops.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
# Provide EITHER a `duration` or `n_loops` or both. We'll demonstrate `duration`.
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. If omitted, defaults to no looping.",
default=None,
ge=0.0,
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. If omitted, defaults to 1 (no repeat).",
default=None,
ge=1,
)
class Output(BlockSchemaOutput):
video_out: str = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# 2) Load the clip
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
looped_clip = clip
if input_data.duration:
# Loop until we reach the specified duration
looped_clip = looped_clip.with_effects([Loop(duration=input_data.duration)])
elif input_data.n_loops:
looped_clip = looped_clip.with_effects([Loop(n=input_data.n_loops)])
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
assert isinstance(looped_clip, VideoFileClip)
# 4) Save the looped output
output_filename = MediaFileType(
f"{node_exec_id}_looped_{os.path.basename(local_video_path)}"
)
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out
class AddAudioToVideoBlock(Block):
"""
Block that adds (attaches) an audio track to an existing video.
Optionally scale the volume of the new track.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
video_abspath = os.path.join(abs_temp_dir, local_video_path)
audio_abspath = os.path.join(abs_temp_dir, local_audio_path)
# 2) Load video + audio with moviepy
video_clip = VideoFileClip(video_abspath)
audio_clip = AudioFileClip(audio_abspath)
# Optionally scale volume
if input_data.volume != 1.0:
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_clip)
# 4) Write to output file
output_filename = MediaFileType(
f"{node_exec_id}_audio_attached_{os.path.basename(local_video_path)}"
)
output_abspath = os.path.join(abs_temp_dir, output_filename)
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -11,6 +11,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -112,8 +113,7 @@ class ScreenshotWebPageBlock(Block):
@staticmethod
async def take_screenshot(
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
url: str,
viewport_width: int,
viewport_height: int,
@@ -155,12 +155,11 @@ class ScreenshotWebPageBlock(Block):
return {
"image": await store_media_file(
graph_exec_id=graph_exec_id,
file=MediaFileType(
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
),
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_block_output",
)
}
@@ -169,15 +168,13 @@ class ScreenshotWebPageBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
screenshot_data = await self.take_screenshot(
credentials=credentials,
graph_exec_id=graph_exec_id,
user_id=user_id,
execution_context=execution_context,
url=input_data.url,
viewport_width=input_data.viewport_width,
viewport_height=input_data.viewport_height,

View File

@@ -7,6 +7,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import ContributorDetails, SchemaField
from backend.util.file import get_exec_file_path, store_media_file
from backend.util.type import MediaFileType
@@ -98,7 +99,7 @@ class ReadSpreadsheetBlock(Block):
)
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
) -> BlockOutput:
import csv
from io import StringIO
@@ -106,14 +107,16 @@ class ReadSpreadsheetBlock(Block):
# Determine data source - prefer file_input if provided, otherwise use contents
if input_data.file_input:
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
# Get full file path
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
assert execution_context.graph_exec_id # Validated by store_media_file
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -10,6 +10,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -17,7 +18,9 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -102,7 +105,7 @@ class CreateTalkingAvatarVideoBlock(Block):
test_output=[
(
"video_url",
"https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
lambda x: x.startswith(("workspace://", "data:")),
),
],
test_mock={
@@ -110,9 +113,10 @@ class CreateTalkingAvatarVideoBlock(Block):
"id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx",
"status": "created",
},
# Use data URI to avoid HTTP requests during tests
"get_clip_status": lambda *args, **kwargs: {
"status": "done",
"result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
"result_url": "data:video/mp4;base64,AAAA",
},
},
test_credentials=TEST_CREDENTIALS,
@@ -138,7 +142,12 @@ class CreateTalkingAvatarVideoBlock(Block):
return response.json()
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Create the clip
payload = {
@@ -165,7 +174,14 @@ class CreateTalkingAvatarVideoBlock(Block):
for _ in range(input_data.max_polling_attempts):
status_response = await self.get_clip_status(credentials.api_key, clip_id)
if status_response["status"] == "done":
yield "video_url", status_response["result_url"]
# Store the generated video to the user's workspace for persistence
video_url = status_response["result_url"]
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
return
elif status_response["status"] == "error":
raise RuntimeError(

View File

@@ -12,6 +12,7 @@ from backend.blocks.iteration import StepThroughItemsBlock
from backend.blocks.llm import AITextSummarizerBlock
from backend.blocks.text import ExtractTextInformationBlock
from backend.blocks.xml_parser import XMLParserBlock
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
@@ -233,9 +234,12 @@ class TestStoreMediaFileSecurity:
with pytest.raises(ValueError, match="File too large"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(large_data_uri),
user_id="test_user",
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
)
@patch("backend.util.file.Path")
@@ -270,9 +274,12 @@ class TestStoreMediaFileSecurity:
# Should raise an error when directory size exceeds limit
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(
"data:text/plain;base64,dGVzdA=="
), # Small test file
user_id="test_user",
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
)

View File

@@ -11,10 +11,22 @@ from backend.blocks.http import (
HttpMethod,
SendAuthenticatedWebRequestBlock,
)
from backend.data.execution import ExecutionContext
from backend.data.model import HostScopedCredentials
from backend.util.request import Response
def make_test_context(
graph_exec_id: str = "test-exec-id",
user_id: str = "test-user-id",
) -> ExecutionContext:
"""Helper to create test ExecutionContext."""
return ExecutionContext(
user_id=user_id,
graph_exec_id=graph_exec_id,
)
class TestHttpBlockWithHostScopedCredentials:
"""Test suite for HTTP block integration with HostScopedCredentials."""
@@ -105,8 +117,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -161,8 +172,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=wildcard_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -208,8 +218,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=non_matching_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -258,8 +267,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -318,8 +326,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=auto_discovered_creds, # Execution manager found these
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -382,8 +389,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=multi_header_creds,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -471,8 +477,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=test_creds,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))

View File

@@ -11,6 +11,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util import json, text
from backend.util.file import get_exec_file_path, store_media_file
@@ -444,18 +445,21 @@ class FileReadBlock(Block):
)
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
) -> BlockOutput:
# Store the media file properly (handles URLs, data URIs, etc.)
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
# Get full file path
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
# Get full file path (graph_exec_id validated by store_media_file above)
if not execution_context.graph_exec_id:
raise ValueError("execution_context.graph_exec_id is required")
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -6,9 +6,9 @@ This module provides blocks for:
- Concatenating multiple videos
- Adding text overlays
- Adding AI-generated narration
- Getting media duration
- Looping videos
- Adding audio to videos
Note: MediaDurationBlock, LoopVideoBlock, and AddAudioToVideoBlock are
provided by backend/blocks/media.py.
Dependencies:
- yt-dlp: For video downloading
@@ -16,19 +16,13 @@ Dependencies:
- requests: For API calls (narration block)
"""
from backend.blocks.video.add_audio import AddAudioToVideoBlock
from backend.blocks.video.clip import VideoClipBlock
from backend.blocks.video.concat import VideoConcatBlock
from backend.blocks.video.download import VideoDownloadBlock
from backend.blocks.video.duration import MediaDurationBlock
from backend.blocks.video.loop import LoopVideoBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.blocks.video.text_overlay import VideoTextOverlayBlock
__all__ = [
"AddAudioToVideoBlock",
"LoopVideoBlock",
"MediaDurationBlock",
"VideoClipBlock",
"VideoConcatBlock",
"VideoDownloadBlock",

View File

@@ -1,127 +0,0 @@
"""AddAudioToVideoBlock - Attach an audio track to a video."""
import os
from typing import Literal
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import get_video_codecs
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class AddAudioToVideoBlock(Block):
"""Attach an audio track to an existing video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the final output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# 1) Store the inputs locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
user_id=user_id,
return_content=False,
)
local_audio_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.audio_in,
user_id=user_id,
return_content=False,
)
video_abspath = get_exec_file_path(graph_exec_id, local_video_path)
audio_abspath = get_exec_file_path(graph_exec_id, local_audio_path)
video_clip = None
audio_clip_original = None
audio_clip_scaled = None
final_clip = None
try:
# 2) Load video + audio with moviepy
video_clip = VideoFileClip(video_abspath)
audio_clip_original = AudioFileClip(audio_abspath)
# Optionally scale volume
audio_to_use = audio_clip_original
if input_data.volume != 1.0:
audio_clip_scaled = audio_clip_original.with_volume_scaled(
input_data.volume
)
audio_to_use = audio_clip_scaled
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_to_use)
# 4) Write to output file
output_filename = MediaFileType(
f"{node_exec_id}_audio_attached_{os.path.basename(local_video_path)}"
)
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
video_codec, audio_codec = get_video_codecs(output_abspath)
final_clip.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
# 5) Return either path or data URI
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
)
yield "video_out", video_out
finally:
if final_clip:
final_clip.close()
if audio_clip_scaled:
audio_clip_scaled.close()
if audio_clip_original:
audio_clip_original.close()
if video_clip:
video_clip.close()

View File

@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
@@ -30,10 +31,6 @@ class VideoClipBlock(Block):
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
@@ -62,29 +59,23 @@ class VideoClipBlock(Block):
)
async def _store_input_video(
self, graph_exec_id: str, file: MediaFileType, user_id: str
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self,
graph_exec_id: str,
file: MediaFileType,
user_id: str,
return_content: bool,
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=return_content,
execution_context=execution_context,
return_format="for_block_output",
)
def _clip_video(
@@ -115,9 +106,8 @@ class VideoClipBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range
@@ -129,11 +119,15 @@ class VideoClipBlock(Block):
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
graph_exec_id, input_data.video_in, user_id
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
video_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# Build output path
output_filename = MediaFileType(
@@ -142,7 +136,9 @@ class VideoClipBlock(Block):
# Ensure correct extension
base, _ = os.path.splitext(output_filename)
output_filename = MediaFileType(f"{base}.{input_data.output_format}")
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
duration = self._clip_video(
video_abspath,
@@ -151,13 +147,8 @@ class VideoClipBlock(Block):
input_data.end_time,
)
# Return as data URI or path
video_out = await self._store_output_video(
graph_exec_id,
output_filename,
user_id,
input_data.output_return_type == "data_uri",
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(execution_context, output_filename)
yield "video_out", video_out
yield "duration", duration

View File

@@ -14,6 +14,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
@@ -38,10 +39,6 @@ class VideoConcatBlock(Block):
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
@@ -66,29 +63,23 @@ class VideoConcatBlock(Block):
)
async def _store_input_video(
self, graph_exec_id: str, file: MediaFileType, user_id: str
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self,
graph_exec_id: str,
file: MediaFileType,
user_id: str,
return_content: bool,
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=return_content,
execution_context=execution_context,
return_format="for_block_output",
)
def _concat_videos(
@@ -150,9 +141,8 @@ class VideoConcatBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# Validate minimum clips
@@ -164,19 +154,23 @@ class VideoConcatBlock(Block):
)
try:
assert execution_context.graph_exec_id is not None
# Store all input videos locally
video_abspaths = []
for video in input_data.videos:
local_path = await self._store_input_video(
graph_exec_id, video, user_id
local_path = await self._store_input_video(execution_context, video)
video_abspaths.append(
get_exec_file_path(execution_context.graph_exec_id, local_path)
)
video_abspaths.append(get_exec_file_path(graph_exec_id, local_path))
# Build output path
output_filename = MediaFileType(
f"{node_exec_id}_concat.{input_data.output_format}"
)
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
total_duration = self._concat_videos(
video_abspaths,
@@ -185,13 +179,8 @@ class VideoConcatBlock(Block):
input_data.transition_duration,
)
# Return as data URI or path
video_out = await self._store_output_video(
graph_exec_id,
output_filename,
user_id,
input_data.output_return_type == "data_uri",
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(execution_context, output_filename)
yield "video_out", video_out
yield "total_duration", total_duration

View File

@@ -16,6 +16,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
@@ -35,10 +36,6 @@ class VideoDownloadBlock(Block):
output_format: Literal["mp4", "webm", "mkv"] = SchemaField(
description="Output video format", default="mp4", advanced=True
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_file: MediaFileType = SchemaField(
@@ -72,18 +69,13 @@ class VideoDownloadBlock(Block):
)
async def _store_output_video(
self,
graph_exec_id: str,
file: MediaFileType,
user_id: str,
return_content: bool,
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=return_content,
execution_context=execution_context,
return_format="for_block_output",
)
def _get_format_string(self, quality: str) -> str:
@@ -138,14 +130,15 @@ class VideoDownloadBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Get the exec file directory
output_dir = get_exec_file_path(graph_exec_id, "")
output_dir = get_exec_file_path(execution_context.graph_exec_id, "")
os.makedirs(output_dir, exist_ok=True)
filename, duration, title = self._download_video(
@@ -156,12 +149,9 @@ class VideoDownloadBlock(Block):
node_exec_id,
)
# Return as data URI or path
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
graph_exec_id,
MediaFileType(filename),
user_id,
input_data.output_return_type == "data_uri",
execution_context, MediaFileType(filename)
)
yield "video_file", video_out

View File

@@ -1,71 +0,0 @@
"""MediaDurationBlock - Get the duration of a media file."""
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
"""Get the duration of a media file."""
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.media_in,
user_id=user_id,
return_content=False,
)
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
# 2) Load the clip
clip = None
try:
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
yield "duration", clip.duration
finally:
if clip:
clip.close()

View File

@@ -1,116 +0,0 @@
"""LoopVideoBlock - Loop a video to a given duration or number of repeats."""
import os
from typing import Literal, Optional
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import get_video_codecs
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class LoopVideoBlock(Block):
"""Loop (repeat) a video clip until a given duration or number of loops."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. If omitted, defaults to no looping.",
default=None,
ge=0.0,
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. If omitted, defaults to 1 (no repeat).",
default=None,
ge=1,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="How to return the output video. Either a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: str = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# 1) Store the input video locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
user_id=user_id,
return_content=False,
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
clip: VideoFileClip | None = None
looped_clip: VideoFileClip | None = None
try:
# 2) Load the clip
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
# Note: Loop effect handles both video and audio looping automatically
if input_data.duration:
looped_clip = clip.with_effects([Loop(duration=input_data.duration)]) # type: ignore[arg-type] Clip implements shallow copy that loses type info
elif input_data.n_loops:
looped_clip = clip.with_effects([Loop(n=input_data.n_loops)]) # type: ignore[arg-type] Clip implements shallow copy that loses type info
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
# 4) Save the looped output
output_filename = MediaFileType(
f"{node_exec_id}_looped_{os.path.basename(local_video_path)}"
)
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
assert looped_clip is not None
video_codec, audio_codec = get_video_codecs(output_abspath)
looped_clip.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
# Return as data URI or path
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
)
yield "video_out", video_out
finally:
if looped_clip is not None:
looped_clip.close()
if clip is not None:
clip.close()

View File

@@ -22,6 +22,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsField, SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
@@ -68,10 +69,6 @@ class VideoNarrationBlock(Block):
le=1.0,
advanced=True,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
@@ -104,29 +101,23 @@ class VideoNarrationBlock(Block):
)
async def _store_input_video(
self, graph_exec_id: str, file: MediaFileType, user_id: str
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self,
graph_exec_id: str,
file: MediaFileType,
user_id: str,
return_content: bool,
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=return_content,
execution_context=execution_context,
return_format="for_block_output",
)
def _generate_narration_audio(
@@ -204,17 +195,20 @@ class VideoNarrationBlock(Block):
input_data: Input,
*,
credentials: ElevenLabsCredentials,
execution_context: ExecutionContext,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
graph_exec_id, input_data.video_in, user_id
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
video_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# Generate narration audio via ElevenLabs
audio_content = self._generate_narration_audio(
@@ -226,7 +220,9 @@ class VideoNarrationBlock(Block):
# Save audio to exec file path
audio_filename = MediaFileType(f"{node_exec_id}_narration.mp3")
audio_abspath = get_exec_file_path(graph_exec_id, audio_filename)
audio_abspath = get_exec_file_path(
execution_context.graph_exec_id, audio_filename
)
os.makedirs(os.path.dirname(audio_abspath), exist_ok=True)
with open(audio_abspath, "wb") as f:
f.write(audio_content)
@@ -235,7 +231,9 @@ class VideoNarrationBlock(Block):
output_filename = MediaFileType(
f"{node_exec_id}_narrated_{os.path.basename(local_video_path)}"
)
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_narration_to_video(
video_abspath,
@@ -246,16 +244,9 @@ class VideoNarrationBlock(Block):
input_data.original_volume,
)
# Return as data URI or path
return_as_data_uri = input_data.output_return_type == "data_uri"
video_out = await self._store_output_video(
graph_exec_id, output_filename, user_id, return_as_data_uri
)
audio_out = await self._store_output_video(
graph_exec_id, audio_filename, user_id, return_as_data_uri
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(execution_context, output_filename)
audio_out = await self._store_output_video(execution_context, audio_filename)
yield "video_out", video_out
yield "audio_file", audio_out

View File

@@ -14,6 +14,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
@@ -57,10 +58,6 @@ class VideoTextOverlayBlock(Block):
default=None,
advanced=True,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
@@ -84,29 +81,23 @@ class VideoTextOverlayBlock(Block):
)
async def _store_input_video(
self, graph_exec_id: str, file: MediaFileType, user_id: str
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self,
graph_exec_id: str,
file: MediaFileType,
user_id: str,
return_content: bool,
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=return_content,
execution_context=execution_context,
return_format="for_block_output",
)
def _add_text_overlay(
@@ -172,9 +163,8 @@ class VideoTextOverlayBlock(Block):
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range if both are provided
@@ -190,17 +180,23 @@ class VideoTextOverlayBlock(Block):
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
graph_exec_id, input_data.video_in, user_id
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
video_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# Build output path
output_filename = MediaFileType(
f"{node_exec_id}_overlay_{os.path.basename(local_video_path)}"
)
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_text_overlay(
video_abspath,
@@ -214,13 +210,8 @@ class VideoTextOverlayBlock(Block):
input_data.bg_color,
)
# Return as data URI or path
video_out = await self._store_output_video(
graph_exec_id,
output_filename,
user_id,
input_data.output_return_type == "data_uri",
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(execution_context, output_filename)
yield "video_out", video_out

View File

@@ -1,7 +1,7 @@
import logging
import os
import pytest
import pytest_asyncio
from dotenv import load_dotenv
from backend.util.logging import configure_logging
@@ -19,7 +19,7 @@ if not os.getenv("PRISMA_DEBUG"):
prisma_logger.setLevel(logging.INFO)
@pytest.fixture(scope="session")
@pytest_asyncio.fixture(scope="session", loop_scope="session")
async def server():
from backend.util.test import SpinTestServer
@@ -27,7 +27,7 @@ async def server():
yield server
@pytest.fixture(scope="session", autouse=True)
@pytest_asyncio.fixture(scope="session", loop_scope="session", autouse=True)
async def graph_cleanup(server):
created_graph_ids = []
original_create_graph = server.agent_server.test_create_graph

View File

@@ -441,6 +441,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
static_output: bool = False,
block_type: BlockType = BlockType.STANDARD,
webhook_config: Optional[BlockWebhookConfig | BlockManualWebhookConfig] = None,
is_sensitive_action: bool = False,
):
"""
Initialize the block with the given schema.
@@ -473,8 +474,8 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
self.static_output = static_output
self.block_type = block_type
self.webhook_config = webhook_config
self.is_sensitive_action = is_sensitive_action
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
self.is_sensitive_action: bool = False
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
@@ -622,6 +623,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
input_data: BlockInput,
*,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
@@ -648,11 +650,11 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
decision = await HITLReviewHelper.handle_review_decision(
input_data=input_data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=True,
)

View File

@@ -83,12 +83,29 @@ class ExecutionContext(BaseModel):
model_config = {"extra": "ignore"}
# Execution identity
user_id: Optional[str] = None
graph_id: Optional[str] = None
graph_exec_id: Optional[str] = None
graph_version: Optional[int] = None
node_id: Optional[str] = None
node_exec_id: Optional[str] = None
# Safety settings
human_in_the_loop_safe_mode: bool = True
sensitive_action_safe_mode: bool = False
# User settings
user_timezone: str = "UTC"
# Execution hierarchy
root_execution_id: Optional[str] = None
parent_execution_id: Optional[str] = None
# Workspace
workspace_id: Optional[str] = None
session_id: Optional[str] = None
# -------------------------- Models -------------------------- #

View File

@@ -6,10 +6,10 @@ Handles all database operations for pending human reviews.
import asyncio
import logging
from datetime import datetime, timezone
from typing import Optional
from typing import TYPE_CHECKING, Optional
from prisma.enums import ReviewStatus
from prisma.models import PendingHumanReview
from prisma.models import AgentNodeExecution, PendingHumanReview
from prisma.types import PendingHumanReviewUpdateInput
from pydantic import BaseModel
@@ -17,8 +17,12 @@ from backend.api.features.executions.review.model import (
PendingHumanReviewModel,
SafeJsonData,
)
from backend.data.execution import get_graph_execution_meta
from backend.util.json import SafeJson
if TYPE_CHECKING:
pass
logger = logging.getLogger(__name__)
@@ -32,6 +36,125 @@ class ReviewResult(BaseModel):
node_exec_id: str
def get_auto_approve_key(graph_exec_id: str, node_id: str) -> str:
"""Generate the special nodeExecId key for auto-approval records."""
return f"auto_approve_{graph_exec_id}_{node_id}"
async def check_approval(
node_exec_id: str,
graph_exec_id: str,
node_id: str,
user_id: str,
input_data: SafeJsonData | None = None,
) -> Optional[ReviewResult]:
"""
Check if there's an existing approval for this node execution.
Checks both:
1. Normal approval by node_exec_id (previous run of the same node execution)
2. Auto-approval by special key pattern "auto_approve_{graph_exec_id}_{node_id}"
Args:
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
node_id: ID of the node definition (not execution)
user_id: ID of the user (for data isolation)
input_data: Current input data (used for auto-approvals to avoid stale data)
Returns:
ReviewResult if approval found (either normal or auto), None otherwise
"""
auto_approve_key = get_auto_approve_key(graph_exec_id, node_id)
# Check for either normal approval or auto-approval in a single query
existing_review = await PendingHumanReview.prisma().find_first(
where={
"OR": [
{"nodeExecId": node_exec_id},
{"nodeExecId": auto_approve_key},
],
"status": ReviewStatus.APPROVED,
"userId": user_id,
},
)
if existing_review:
is_auto_approval = existing_review.nodeExecId == auto_approve_key
logger.info(
f"Found {'auto-' if is_auto_approval else ''}approval for node {node_id} "
f"(exec: {node_exec_id}) in execution {graph_exec_id}"
)
# For auto-approvals, use current input_data to avoid replaying stale payload
# For normal approvals, use the stored payload (which may have been edited)
return ReviewResult(
data=(
input_data
if is_auto_approval and input_data is not None
else existing_review.payload
),
status=ReviewStatus.APPROVED,
message=(
"Auto-approved (user approved all future actions for this node)"
if is_auto_approval
else existing_review.reviewMessage or ""
),
processed=True,
node_exec_id=existing_review.nodeExecId,
)
return None
async def create_auto_approval_record(
user_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
node_id: str,
payload: SafeJsonData,
) -> None:
"""
Create an auto-approval record for a node in this execution.
This is stored as a PendingHumanReview with a special nodeExecId pattern
and status=APPROVED, so future executions of the same node can skip review.
Raises:
ValueError: If the graph execution doesn't belong to the user
"""
# Validate that the graph execution belongs to this user (defense in depth)
graph_exec = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec:
raise ValueError(
f"Graph execution {graph_exec_id} not found or doesn't belong to user {user_id}"
)
auto_approve_key = get_auto_approve_key(graph_exec_id, node_id)
await PendingHumanReview.prisma().upsert(
where={"nodeExecId": auto_approve_key},
data={
"create": {
"nodeExecId": auto_approve_key,
"userId": user_id,
"graphExecId": graph_exec_id,
"graphId": graph_id,
"graphVersion": graph_version,
"payload": SafeJson(payload),
"instructions": "Auto-approval record",
"editable": False,
"status": ReviewStatus.APPROVED,
"processed": True,
"reviewedAt": datetime.now(timezone.utc),
},
"update": {}, # Already exists, no update needed
},
)
async def get_or_create_human_review(
user_id: str,
node_exec_id: str,
@@ -108,6 +231,89 @@ async def get_or_create_human_review(
)
async def get_pending_review_by_node_exec_id(
node_exec_id: str, user_id: str
) -> Optional["PendingHumanReviewModel"]:
"""
Get a pending review by its node execution ID.
Args:
node_exec_id: The node execution ID to look up
user_id: User ID for authorization (only returns if review belongs to this user)
Returns:
The pending review if found and belongs to user, None otherwise
"""
review = await PendingHumanReview.prisma().find_first(
where={
"nodeExecId": node_exec_id,
"userId": user_id,
"status": ReviewStatus.WAITING,
}
)
if not review:
return None
# Local import to avoid event loop conflicts in tests
from backend.data.execution import get_node_execution
node_exec = await get_node_execution(review.nodeExecId)
node_id = node_exec.node_id if node_exec else review.nodeExecId
return PendingHumanReviewModel.from_db(review, node_id=node_id)
async def get_reviews_by_node_exec_ids(
node_exec_ids: list[str], user_id: str
) -> dict[str, "PendingHumanReviewModel"]:
"""
Get multiple reviews by their node execution IDs regardless of status.
Unlike get_pending_reviews_by_node_exec_ids, this returns reviews in any status
(WAITING, APPROVED, REJECTED). Used for validation in idempotent operations.
Args:
node_exec_ids: List of node execution IDs to look up
user_id: User ID for authorization (only returns reviews belonging to this user)
Returns:
Dictionary mapping node_exec_id -> PendingHumanReviewModel for found reviews
"""
if not node_exec_ids:
return {}
reviews = await PendingHumanReview.prisma().find_many(
where={
"nodeExecId": {"in": node_exec_ids},
"userId": user_id,
}
)
if not reviews:
return {}
# Batch fetch all node executions to avoid N+1 queries
node_exec_ids_to_fetch = [review.nodeExecId for review in reviews]
node_execs = await AgentNodeExecution.prisma().find_many(
where={"id": {"in": node_exec_ids_to_fetch}},
include={"Node": True},
)
# Create mapping from node_exec_id to node_id
node_exec_id_to_node_id = {
node_exec.id: node_exec.agentNodeId for node_exec in node_execs
}
result = {}
for review in reviews:
node_id = node_exec_id_to_node_id.get(review.nodeExecId, review.nodeExecId)
result[review.nodeExecId] = PendingHumanReviewModel.from_db(
review, node_id=node_id
)
return result
async def has_pending_reviews_for_graph_exec(graph_exec_id: str) -> bool:
"""
Check if a graph execution has any pending reviews.
@@ -137,8 +343,11 @@ async def get_pending_reviews_for_user(
page_size: Number of reviews per page
Returns:
List of pending review models
List of pending review models with node_id included
"""
# Local import to avoid event loop conflicts in tests
from backend.data.execution import get_node_execution
# Calculate offset for pagination
offset = (page - 1) * page_size
@@ -149,7 +358,14 @@ async def get_pending_reviews_for_user(
take=page_size,
)
return [PendingHumanReviewModel.from_db(review) for review in reviews]
# Fetch node_id for each review from NodeExecution
result = []
for review in reviews:
node_exec = await get_node_execution(review.nodeExecId)
node_id = node_exec.node_id if node_exec else review.nodeExecId
result.append(PendingHumanReviewModel.from_db(review, node_id=node_id))
return result
async def get_pending_reviews_for_execution(
@@ -163,8 +379,11 @@ async def get_pending_reviews_for_execution(
user_id: User ID for security validation
Returns:
List of pending review models
List of pending review models with node_id included
"""
# Local import to avoid event loop conflicts in tests
from backend.data.execution import get_node_execution
reviews = await PendingHumanReview.prisma().find_many(
where={
"userId": user_id,
@@ -174,7 +393,14 @@ async def get_pending_reviews_for_execution(
order={"createdAt": "asc"},
)
return [PendingHumanReviewModel.from_db(review) for review in reviews]
# Fetch node_id for each review from NodeExecution
result = []
for review in reviews:
node_exec = await get_node_execution(review.nodeExecId)
node_id = node_exec.node_id if node_exec else review.nodeExecId
result.append(PendingHumanReviewModel.from_db(review, node_id=node_id))
return result
async def process_all_reviews_for_execution(
@@ -183,38 +409,68 @@ async def process_all_reviews_for_execution(
) -> dict[str, PendingHumanReviewModel]:
"""Process all pending reviews for an execution with approve/reject decisions.
Handles race conditions gracefully: if a review was already processed with the
same decision by a concurrent request, it's treated as success rather than error.
Args:
user_id: User ID for ownership validation
review_decisions: Map of node_exec_id -> (status, reviewed_data, message)
Returns:
Dict of node_exec_id -> updated review model
Dict of node_exec_id -> updated review model (includes already-processed reviews)
"""
if not review_decisions:
return {}
node_exec_ids = list(review_decisions.keys())
# Get all reviews for validation
reviews = await PendingHumanReview.prisma().find_many(
# Get all reviews (both WAITING and already processed) for the user
all_reviews = await PendingHumanReview.prisma().find_many(
where={
"nodeExecId": {"in": node_exec_ids},
"userId": user_id,
"status": ReviewStatus.WAITING,
},
)
# Validate all reviews can be processed
if len(reviews) != len(node_exec_ids):
missing_ids = set(node_exec_ids) - {review.nodeExecId for review in reviews}
# Separate into pending and already-processed reviews
reviews_to_process = []
already_processed = []
for review in all_reviews:
if review.status == ReviewStatus.WAITING:
reviews_to_process.append(review)
else:
already_processed.append(review)
# Check for truly missing reviews (not found at all)
found_ids = {review.nodeExecId for review in all_reviews}
missing_ids = set(node_exec_ids) - found_ids
if missing_ids:
raise ValueError(
f"Reviews not found, access denied, or not in WAITING status: {', '.join(missing_ids)}"
f"Reviews not found or access denied: {', '.join(missing_ids)}"
)
# Create parallel update tasks
# Validate already-processed reviews have compatible status (same decision)
# This handles race conditions where another request processed the same reviews
for review in already_processed:
requested_status = review_decisions[review.nodeExecId][0]
if review.status != requested_status:
raise ValueError(
f"Review {review.nodeExecId} was already processed with status "
f"{review.status}, cannot change to {requested_status}"
)
# Log if we're handling a race condition (some reviews already processed)
if already_processed:
already_processed_ids = [r.nodeExecId for r in already_processed]
logger.info(
f"Race condition handled: {len(already_processed)} review(s) already "
f"processed by concurrent request: {already_processed_ids}"
)
# Create parallel update tasks for reviews that still need processing
update_tasks = []
for review in reviews:
for review in reviews_to_process:
new_status, reviewed_data, message = review_decisions[review.nodeExecId]
has_data_changes = reviewed_data is not None and reviewed_data != review.payload
@@ -239,16 +495,27 @@ async def process_all_reviews_for_execution(
update_tasks.append(task)
# Execute all updates in parallel and get updated reviews
updated_reviews = await asyncio.gather(*update_tasks)
updated_reviews = await asyncio.gather(*update_tasks) if update_tasks else []
# Note: Execution resumption is now handled at the API layer after ALL reviews
# for an execution are processed (both approved and rejected)
# Return as dict for easy access
return {
review.nodeExecId: PendingHumanReviewModel.from_db(review)
for review in updated_reviews
}
# Fetch node_id for each review and return as dict for easy access
# Local import to avoid event loop conflicts in tests
from backend.data.execution import get_node_execution
# Combine updated reviews with already-processed ones (for idempotent response)
all_result_reviews = list(updated_reviews) + already_processed
result = {}
for review in all_result_reviews:
node_exec = await get_node_execution(review.nodeExecId)
node_id = node_exec.node_id if node_exec else review.nodeExecId
result[review.nodeExecId] = PendingHumanReviewModel.from_db(
review, node_id=node_id
)
return result
async def update_review_processed_status(node_exec_id: str, processed: bool) -> None:
@@ -256,3 +523,44 @@ async def update_review_processed_status(node_exec_id: str, processed: bool) ->
await PendingHumanReview.prisma().update(
where={"nodeExecId": node_exec_id}, data={"processed": processed}
)
async def cancel_pending_reviews_for_execution(graph_exec_id: str, user_id: str) -> int:
"""
Cancel all pending reviews for a graph execution (e.g., when execution is stopped).
Marks all WAITING reviews as REJECTED with a message indicating the execution was stopped.
Args:
graph_exec_id: The graph execution ID
user_id: User ID who owns the execution (for security validation)
Returns:
Number of reviews cancelled
Raises:
ValueError: If the graph execution doesn't belong to the user
"""
# Validate user ownership before cancelling reviews
graph_exec = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec:
raise ValueError(
f"Graph execution {graph_exec_id} not found or doesn't belong to user {user_id}"
)
result = await PendingHumanReview.prisma().update_many(
where={
"graphExecId": graph_exec_id,
"userId": user_id,
"status": ReviewStatus.WAITING,
},
data={
"status": ReviewStatus.REJECTED,
"reviewMessage": "Execution was stopped by user",
"processed": True,
"reviewedAt": datetime.now(timezone.utc),
},
)
return result

View File

@@ -36,7 +36,7 @@ def sample_db_review():
return mock_review
@pytest.mark.asyncio
@pytest.mark.asyncio(loop_scope="function")
async def test_get_or_create_human_review_new(
mocker: pytest_mock.MockFixture,
sample_db_review,
@@ -46,8 +46,8 @@ async def test_get_or_create_human_review_new(
sample_db_review.status = ReviewStatus.WAITING
sample_db_review.processed = False
mock_upsert = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_upsert.return_value.upsert = AsyncMock(return_value=sample_db_review)
mock_prisma = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_prisma.return_value.upsert = AsyncMock(return_value=sample_db_review)
result = await get_or_create_human_review(
user_id="test-user-123",
@@ -64,7 +64,7 @@ async def test_get_or_create_human_review_new(
assert result is None
@pytest.mark.asyncio
@pytest.mark.asyncio(loop_scope="function")
async def test_get_or_create_human_review_approved(
mocker: pytest_mock.MockFixture,
sample_db_review,
@@ -75,8 +75,8 @@ async def test_get_or_create_human_review_approved(
sample_db_review.processed = False
sample_db_review.reviewMessage = "Looks good"
mock_upsert = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_upsert.return_value.upsert = AsyncMock(return_value=sample_db_review)
mock_prisma = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_prisma.return_value.upsert = AsyncMock(return_value=sample_db_review)
result = await get_or_create_human_review(
user_id="test-user-123",
@@ -96,7 +96,7 @@ async def test_get_or_create_human_review_approved(
assert result.message == "Looks good"
@pytest.mark.asyncio
@pytest.mark.asyncio(loop_scope="function")
async def test_has_pending_reviews_for_graph_exec_true(
mocker: pytest_mock.MockFixture,
):
@@ -109,7 +109,7 @@ async def test_has_pending_reviews_for_graph_exec_true(
assert result is True
@pytest.mark.asyncio
@pytest.mark.asyncio(loop_scope="function")
async def test_has_pending_reviews_for_graph_exec_false(
mocker: pytest_mock.MockFixture,
):
@@ -122,7 +122,7 @@ async def test_has_pending_reviews_for_graph_exec_false(
assert result is False
@pytest.mark.asyncio
@pytest.mark.asyncio(loop_scope="function")
async def test_get_pending_reviews_for_user(
mocker: pytest_mock.MockFixture,
sample_db_review,
@@ -131,10 +131,19 @@ async def test_get_pending_reviews_for_user(
mock_find_many = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_find_many.return_value.find_many = AsyncMock(return_value=[sample_db_review])
# Mock get_node_execution to return node with node_id (async function)
mock_node_exec = Mock()
mock_node_exec.node_id = "test_node_def_789"
mocker.patch(
"backend.data.execution.get_node_execution",
new=AsyncMock(return_value=mock_node_exec),
)
result = await get_pending_reviews_for_user("test_user", page=2, page_size=10)
assert len(result) == 1
assert result[0].node_exec_id == "test_node_123"
assert result[0].node_id == "test_node_def_789"
# Verify pagination parameters
call_args = mock_find_many.return_value.find_many.call_args
@@ -142,7 +151,7 @@ async def test_get_pending_reviews_for_user(
assert call_args.kwargs["take"] == 10
@pytest.mark.asyncio
@pytest.mark.asyncio(loop_scope="function")
async def test_get_pending_reviews_for_execution(
mocker: pytest_mock.MockFixture,
sample_db_review,
@@ -151,12 +160,21 @@ async def test_get_pending_reviews_for_execution(
mock_find_many = mocker.patch("backend.data.human_review.PendingHumanReview.prisma")
mock_find_many.return_value.find_many = AsyncMock(return_value=[sample_db_review])
# Mock get_node_execution to return node with node_id (async function)
mock_node_exec = Mock()
mock_node_exec.node_id = "test_node_def_789"
mocker.patch(
"backend.data.execution.get_node_execution",
new=AsyncMock(return_value=mock_node_exec),
)
result = await get_pending_reviews_for_execution(
"test_graph_exec_456", "test-user-123"
)
assert len(result) == 1
assert result[0].graph_exec_id == "test_graph_exec_456"
assert result[0].node_id == "test_node_def_789"
# Verify it filters by execution and user
call_args = mock_find_many.return_value.find_many.call_args
@@ -166,7 +184,7 @@ async def test_get_pending_reviews_for_execution(
assert where_clause["status"] == ReviewStatus.WAITING
@pytest.mark.asyncio
@pytest.mark.asyncio(loop_scope="function")
async def test_process_all_reviews_for_execution_success(
mocker: pytest_mock.MockFixture,
sample_db_review,
@@ -201,6 +219,14 @@ async def test_process_all_reviews_for_execution_success(
new=AsyncMock(return_value=[updated_review]),
)
# Mock get_node_execution to return node with node_id (async function)
mock_node_exec = Mock()
mock_node_exec.node_id = "test_node_def_789"
mocker.patch(
"backend.data.execution.get_node_execution",
new=AsyncMock(return_value=mock_node_exec),
)
result = await process_all_reviews_for_execution(
user_id="test-user-123",
review_decisions={
@@ -211,9 +237,10 @@ async def test_process_all_reviews_for_execution_success(
assert len(result) == 1
assert "test_node_123" in result
assert result["test_node_123"].status == ReviewStatus.APPROVED
assert result["test_node_123"].node_id == "test_node_def_789"
@pytest.mark.asyncio
@pytest.mark.asyncio(loop_scope="function")
async def test_process_all_reviews_for_execution_validation_errors(
mocker: pytest_mock.MockFixture,
):
@@ -233,7 +260,7 @@ async def test_process_all_reviews_for_execution_validation_errors(
)
@pytest.mark.asyncio
@pytest.mark.asyncio(loop_scope="function")
async def test_process_all_reviews_edit_permission_error(
mocker: pytest_mock.MockFixture,
sample_db_review,
@@ -259,7 +286,7 @@ async def test_process_all_reviews_edit_permission_error(
)
@pytest.mark.asyncio
@pytest.mark.asyncio(loop_scope="function")
async def test_process_all_reviews_mixed_approval_rejection(
mocker: pytest_mock.MockFixture,
sample_db_review,
@@ -329,6 +356,14 @@ async def test_process_all_reviews_mixed_approval_rejection(
new=AsyncMock(return_value=[approved_review, rejected_review]),
)
# Mock get_node_execution to return node with node_id (async function)
mock_node_exec = Mock()
mock_node_exec.node_id = "test_node_def_789"
mocker.patch(
"backend.data.execution.get_node_execution",
new=AsyncMock(return_value=mock_node_exec),
)
result = await process_all_reviews_for_execution(
user_id="test-user-123",
review_decisions={
@@ -340,3 +375,5 @@ async def test_process_all_reviews_mixed_approval_rejection(
assert len(result) == 2
assert "test_node_123" in result
assert "test_node_456" in result
assert result["test_node_123"].node_id == "test_node_def_789"
assert result["test_node_456"].node_id == "test_node_def_789"

View File

@@ -41,6 +41,7 @@ FrontendOnboardingStep = Literal[
OnboardingStep.AGENT_NEW_RUN,
OnboardingStep.AGENT_INPUT,
OnboardingStep.CONGRATS,
OnboardingStep.VISIT_COPILOT,
OnboardingStep.MARKETPLACE_VISIT,
OnboardingStep.BUILDER_OPEN,
]
@@ -122,6 +123,9 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
async def _reward_user(user_id: str, onboarding: UserOnboarding, step: OnboardingStep):
reward = 0
match step:
# Welcome bonus for visiting copilot ($5 = 500 credits)
case OnboardingStep.VISIT_COPILOT:
reward = 500
# Reward user when they clicked New Run during onboarding
# This is because they need credits before scheduling a run (next step)
# This is seen as a reward for the GET_RESULTS step in the wallet

View File

@@ -0,0 +1,276 @@
"""
Database CRUD operations for User Workspace.
This module provides functions for managing user workspaces and workspace files.
"""
import logging
from datetime import datetime, timezone
from typing import Optional
from prisma.models import UserWorkspace, UserWorkspaceFile
from prisma.types import UserWorkspaceFileWhereInput
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
async def get_or_create_workspace(user_id: str) -> UserWorkspace:
"""
Get user's workspace, creating one if it doesn't exist.
Uses upsert to handle race conditions when multiple concurrent requests
attempt to create a workspace for the same user.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance
"""
workspace = await UserWorkspace.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id},
"update": {}, # No updates needed if exists
},
)
return workspace
async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
"""
Get user's workspace if it exists.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance or None
"""
return await UserWorkspace.prisma().find_unique(where={"userId": user_id})
async def create_workspace_file(
workspace_id: str,
file_id: str,
name: str,
path: str,
storage_path: str,
mime_type: str,
size_bytes: int,
checksum: Optional[str] = None,
metadata: Optional[dict] = None,
) -> UserWorkspaceFile:
"""
Create a new workspace file record.
Args:
workspace_id: The workspace ID
file_id: The file ID (same as used in storage path for consistency)
name: User-visible filename
path: Virtual path (e.g., "/documents/report.pdf")
storage_path: Actual storage path (GCS or local)
mime_type: MIME type of the file
size_bytes: File size in bytes
checksum: Optional SHA256 checksum
metadata: Optional additional metadata
Returns:
Created UserWorkspaceFile instance
"""
# Normalize path to start with /
if not path.startswith("/"):
path = f"/{path}"
file = await UserWorkspaceFile.prisma().create(
data={
"id": file_id,
"workspaceId": workspace_id,
"name": name,
"path": path,
"storagePath": storage_path,
"mimeType": mime_type,
"sizeBytes": size_bytes,
"checksum": checksum,
"metadata": SafeJson(metadata or {}),
}
)
logger.info(
f"Created workspace file {file.id} at path {path} "
f"in workspace {workspace_id}"
)
return file
async def get_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by ID.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
UserWorkspaceFile instance or None
"""
where_clause: dict = {"id": file_id, "isDeleted": False}
if workspace_id:
where_clause["workspaceId"] = workspace_id
return await UserWorkspaceFile.prisma().find_first(where=where_clause)
async def get_workspace_file_by_path(
workspace_id: str,
path: str,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by its virtual path.
Args:
workspace_id: The workspace ID
path: Virtual path
Returns:
UserWorkspaceFile instance or None
"""
# Normalize path
if not path.startswith("/"):
path = f"/{path}"
return await UserWorkspaceFile.prisma().find_first(
where={
"workspaceId": workspace_id,
"path": path,
"isDeleted": False,
}
)
async def list_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
limit: Optional[int] = None,
offset: int = 0,
) -> list[UserWorkspaceFile]:
"""
List files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/documents/")
include_deleted: Whether to include soft-deleted files
limit: Maximum number of files to return
offset: Number of files to skip
Returns:
List of UserWorkspaceFile instances
"""
where_clause: UserWorkspaceFileWhereInput = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().find_many(
where=where_clause,
order={"createdAt": "desc"},
take=limit,
skip=offset,
)
async def count_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
) -> int:
"""
Count files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/sessions/abc123/")
include_deleted: Whether to include soft-deleted files
Returns:
Number of files
"""
where_clause: dict = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().count(where=where_clause)
async def soft_delete_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Soft-delete a workspace file.
The path is modified to include a deletion timestamp to free up the original
path for new files while preserving the record for potential recovery.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
Updated UserWorkspaceFile instance or None if not found
"""
# First verify the file exists and belongs to workspace
file = await get_workspace_file(file_id, workspace_id)
if file is None:
return None
deleted_at = datetime.now(timezone.utc)
# Modify path to free up the unique constraint for new files at original path
# Format: {original_path}__deleted__{timestamp}
deleted_path = f"{file.path}__deleted__{int(deleted_at.timestamp())}"
updated = await UserWorkspaceFile.prisma().update(
where={"id": file_id},
data={
"isDeleted": True,
"deletedAt": deleted_at,
"path": deleted_path,
},
)
logger.info(f"Soft-deleted workspace file {file_id}")
return updated
async def get_workspace_total_size(workspace_id: str) -> int:
"""
Get the total size of all files in a workspace.
Args:
workspace_id: The workspace ID
Returns:
Total size in bytes
"""
files = await list_workspace_files(workspace_id)
return sum(file.sizeBytes for file in files)

View File

@@ -50,6 +50,8 @@ from backend.data.graph import (
validate_graph_execution_permissions,
)
from backend.data.human_review import (
cancel_pending_reviews_for_execution,
check_approval,
get_or_create_human_review,
has_pending_reviews_for_graph_exec,
update_review_processed_status,
@@ -190,6 +192,8 @@ class DatabaseManager(AppService):
get_user_notification_preference = _(get_user_notification_preference)
# Human In The Loop
cancel_pending_reviews_for_execution = _(cancel_pending_reviews_for_execution)
check_approval = _(check_approval)
get_or_create_human_review = _(get_or_create_human_review)
has_pending_reviews_for_graph_exec = _(has_pending_reviews_for_graph_exec)
update_review_processed_status = _(update_review_processed_status)
@@ -313,6 +317,8 @@ class DatabaseManagerAsyncClient(AppServiceClient):
set_execution_kv_data = d.set_execution_kv_data
# Human In The Loop
cancel_pending_reviews_for_execution = d.cancel_pending_reviews_for_execution
check_approval = d.check_approval
get_or_create_human_review = d.get_or_create_human_review
update_review_processed_status = d.update_review_processed_status

View File

@@ -236,7 +236,14 @@ async def execute_node(
input_size = len(input_data_str)
log_metadata.debug("Executed node with input", input=input_data_str)
# Create node-specific execution context to avoid race conditions
# (multiple nodes can execute concurrently and would otherwise mutate shared state)
execution_context = execution_context.model_copy(
update={"node_id": node_id, "node_exec_id": node_exec_id}
)
# Inject extra execution arguments for the blocks via kwargs
# Keep individual kwargs for backwards compatibility with existing blocks
extra_exec_kwargs: dict = {
"graph_id": graph_id,
"graph_version": graph_version,

Some files were not shown because too many files have changed in this diff Show More