Compare commits

..

17 Commits

Author SHA1 Message Date
Nicholas Tindle
f4f81bc4fc fix(backend): Remove _credentials_id key on fork instead of setting to None
Setting _credentials_id to None on fork was ambiguous — both "forked,
needs re-auth" and "chained data from upstream" were represented as None.
This caused _acquire_auto_credentials to silently skip credential
acquisition for forked agents, leading to confusing TypeErrors at runtime.

Now the key is deleted entirely, making the three states unambiguous:
- Present with value: user-selected credentials
- Present as None: chained data from upstream block
- Absent: forked/needs re-authentication

Also adds pre-run validation for the missing key case and makes error
messages provider-agnostic.

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-06 17:34:16 -06:00
Nicholas Tindle
c5abc01f25 fix(backend): Add error handling for auto-credentials store lookup
Wrap get_creds_by_id call in try/except in the auto-credentials
validation path to match the error handling pattern used for regular
credentials.

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-06 16:53:29 -06:00
Nicholas Tindle
8b7053c1de merge: Resolve conflicts with dev (PR #11986 graph model refactor)
Adapt auto-credentials filtering to dev's refactored graph model:
- aggregate_credentials_inputs() now returns 3-tuples (field_info, node_pairs, is_required)
- credentials_input_schema moved to GraphModel, builds JSON schema directly
- Update regular/auto_credentials_inputs properties for 3-tuple format
- Update test mocks and assertions for new tuple format and class hierarchy

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-06 16:39:57 -06:00
Nicholas Tindle
e00c1202ad fix(platform): Fix Google Drive auto-credentials handling across the platform
- Tag auto-credentials with `is_auto_credential` and `input_field_name` on `CredentialsFieldInfo` to distinguish them from regular user-provided credentials
- Add `regular_credentials_inputs` and `auto_credentials_inputs` properties to `Graph` so UI schemas, CoPilot, and library presets only surface regular credentials
- Extract `_acquire_auto_credentials()` helper in executor to resolve embedded `_credentials_id` at execution time with proper lock management
- Validate auto-credentials ownership in `_validate_node_input_credentials()` to catch stale/missing credentials before execution
- Clear `_credentials_id` in `_reassign_ids()` on graph fork so cloned agents require re-authentication
- Propagate `is_auto_credential` through `combine()` and `discriminate()` on `CredentialsFieldInfo`
- Add `referrerPolicy: "no-referrer-when-downgrade"` to Google API script loading to fix Firefox API key validation
- Comprehensive test coverage for all new behavior

Co-Authored-By: Claude Opus 4.6 <noreply@anthropic.com>
2026-02-06 16:08:53 -06:00
Reinier van der Leer
8fddc9d71f fix(backend): Reduce GET /api/graphs expense + latency (#11986)
[SECRT-1896: Fix crazy `GET /api/graphs` latency (P95 =
107s)](https://linear.app/autogpt/issue/SECRT-1896)

These changes should decrease latency of this endpoint by ~~60-65%~~ a
lot.

### Changes 🏗️

- Make `Graph.credentials_input_schema` cheaper by avoiding constructing
a new `BlockSchema` subclass
- Strip down `GraphMeta` - drop all computed fields
- Replace with either `GraphModel` or `GraphModelWithoutNodes` wherever
those computed fields are used
- Simplify usage in `list_graphs_paginated` and
`fetch_graph_from_store_slug`
- Refactor and clarify relationships between the different graph models
  - Split `BaseGraph` into `GraphBaseMeta` + `BaseGraph`
- Strip down `Graph` - move `credentials_input_schema` and
`aggregate_credentials_inputs` to `GraphModel`
- Refactor to eliminate double `aggregate_credentials_inputs()` call in
`credentials_input_schema` call tree
  - Add `GraphModelWithoutNodes` (similar to current `GraphMeta`)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] `GET /api/graphs` works as it should
  - [x] Running a graph succeeds
  - [x] Adding a sub-agent in the Builder works as it should
2026-02-06 19:13:21 +00:00
Ubbe
3d1cd03fc8 ci(frontend): disable chromatic for this month (#11994)
### Changes 🏗️

- we react the max snapshots quota and don't wanna upgrade
- make it run (when re-enabled) on `src/components` changes only to
reduce snapshots

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] CI hope for the best
2026-02-06 19:17:25 +07:00
Swifty
e7ebe42306 fix(frontend): Revert ThinkingMessage progress bar delay to original values (#11993) 2026-02-06 12:23:32 +01:00
Otto
e0fab7e34e fix(frontend): Improve clarification answer message formatting (#11985)
## Summary

Improves the auto-generated message format when users submit
clarification answers in the agent generator.

## Before

```
I have the answers to your questions:

keyword_1: User answer 1
keyword_2: User answer 2

Please proceed with creating the agent.
```
<img width="748" height="153" alt="image"
src="https://github.com/user-attachments/assets/7231aaab-8ea4-406b-ba31-fa2b6055b82d"
/>

## After

```
**Here are my answers:**

> What is the primary purpose?

User answer 1

> What is the target audience?

User answer 2

Please proceed with creating the agent.
```
<img width="619" height="352" alt="image"
src="https://github.com/user-attachments/assets/ef8c1fbf-fb60-4488-b51f-407c1b9e3e44"
/>


## Changes

- Use human-readable question text instead of machine-readable keywords
- Use blockquote format for questions (natural "quote and reply"
pattern)
- Use double newlines for proper Markdown paragraph breaks
- Iterate over `message.questions` array to preserve original question
order
- Move handler inside conditional block for proper TypeScript type
narrowing

## Why

- The old format was ugly and hard to read (raw keywords, no line
breaks)
- The new format uses a natural "quoting and replying" pattern
- Better readability for both users and the LLM (verified: backend does
NOT parse keywords)

## Linear Ticket

Fixes [SECRT-1822](https://linear.app/autogpt/issue/SECRT-1822)

## Testing

- [ ] Trigger agent creation that requires clarifying questions
- [ ] Fill out the form and submit
- [ ] Verify message appears with new blockquote format
- [ ] Verify questions appear in original order
- [ ] Verify agent generation proceeds correctly

Co-authored-by: Toran Bruce Richards <toran.richards@gmail.com>
2026-02-06 08:41:06 +00:00
Nicholas Tindle
29ee85c86f fix: add virus scanning to WorkspaceManager.write_file() (#11990)
## Summary

Adds virus scanning at the `WorkspaceManager.write_file()` layer for
defense in depth.

## Problem

Previously, virus scanning was only performed at entry points:
- `store_media_file()` in `backend/util/file.py`
- `WriteWorkspaceFileTool` in
`backend/api/features/chat/tools/workspace_files.py`

This created a trust boundary where any new caller of
`WorkspaceManager.write_file()` would need to remember to scan first.

## Solution

Add `scan_content_safe()` call directly in
`WorkspaceManager.write_file()` before persisting to storage. This
ensures all content is scanned regardless of the caller.

## Changes

- Added import for `scan_content_safe` from `backend.util.virus_scanner`
- Added virus scan call after file size validation, before storage

## Testing

Existing tests should pass. The scan is a no-op in test environments
where ClamAV isn't running.

Closes https://linear.app/autogpt/issue/OPEN-2993

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Medium Risk**
> Introduces a new required async scan step in the workspace write path,
which can add latency or cause new failures if the scanner/ClamAV is
misconfigured or unavailable.
> 
> **Overview**
> Adds a **defense-in-depth** virus scan to
`WorkspaceManager.write_file()` by invoking `scan_content_safe()` after
file-size validation and before any storage/database persistence.
> 
> This centralizes scanning so any caller writing workspace files gets
the same malware check without relying on upstream entry points to
remember to scan.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
0f5ac68b92. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->
2026-02-06 04:38:32 +00:00
Nicholas Tindle
85b6520710 feat(blocks): Add video editing blocks (#11796)
<!-- Clearly explain the need for these changes: -->
This PR adds general-purpose video editing blocks for the AutoGPT
Platform, enabling automated video production workflows like documentary
creation, marketing videos, tutorial assembly, and content repurposing.

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

**New blocks added in `backend/blocks/video/`:**
- `VideoDownloadBlock` - Download videos from URLs (YouTube, Vimeo, news
sites, direct links) using yt-dlp
- `VideoClipBlock` - Extract time segments from videos with start/end
time validation
- `VideoConcatBlock` - Merge multiple video clips with optional
transitions (none, crossfade, fade_black)
- `VideoTextOverlayBlock` - Add text overlays/captions with positioning
and timing options
- `VideoNarrationBlock` - Generate AI narration via ElevenLabs and mix
with video audio (replace, mix, or ducking modes)

**Dependencies required:**
- `yt-dlp` - For video downloading
- `moviepy` - For video editing operations

**Implementation details:**
- All blocks follow the SDK pattern with proper error handling and
exception chaining
- Proper resource cleanup in `finally` blocks to prevent memory leaks
- Input validation (e.g., end_time > start_time)
- Test mocks included for CI

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Blocks follow the SDK pattern with
`BlockSchemaInput`/`BlockSchemaOutput`
  - [x] Resource cleanup is implemented in `finally` blocks
  - [x] Exception chaining is properly implemented
  - [x] Input validation is in place
  - [x] Test mocks are provided for CI environments

#### For configuration changes:
- [ ] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [ ] I have included a list of my configuration changes in the PR
description (under **Changes**)

N/A - No configuration changes required.


<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Medium Risk**
> Adds new multimedia blocks that invoke ffmpeg/MoviePy and introduces
new external dependencies (plus container packages), which can impact
runtime stability and resource usage; download/overlay blocks are
present but disabled due to sandbox/policy concerns.
> 
> **Overview**
> Adds a new `backend.blocks.video` module with general-purpose video
workflow blocks (download, clip, concat w/ transitions, loop, add-audio,
text overlay, and ElevenLabs-powered narration), including shared
utilities for codec selection, filename cleanup, and an ffmpeg-based
chapter-strip workaround for MoviePy.
> 
> Extends credentials/config to support ElevenLabs
(`ELEVENLABS_API_KEY`, provider enum, system credentials, and cost
config) and adds new dependencies (`elevenlabs`, `yt-dlp`) plus Docker
runtime packages (`ffmpeg`, `imagemagick`).
> 
> Improves file/reference handling end-to-end by embedding MIME types in
`workspace://...#mime` outputs and updating frontend rendering to detect
video vs image from MIME fragments (and broaden supported audio/video
extensions), with optional enhanced output rendering behind a feature
flag in the legacy builder UI.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
da7a44d794. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
Co-authored-by: Otto <otto@agpt.co>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-02-05 22:22:33 +00:00
Bently
bfa942e032 feat(platform): Add Claude Opus 4.6 model support (#11983)
## Summary
Adds support for Anthropic's newly released Claude Opus 4.6 model.

## Changes
- Added `claude-opus-4-6` to the `LlmModel` enum
- Added model metadata: 200K context window (1M beta), **128K max output
tokens**
- Added block cost config (same pricing tier as Opus 4.5: $5/MTok input,
$25/MTok output)
- Updated chat config default model to Claude Opus 4.6

## Model Details
From [Anthropic's
docs](https://docs.anthropic.com/en/docs/about-claude/models):
- **API ID:** `claude-opus-4-6`
- **Context window:** 200K tokens (1M beta)
- **Max output:** 128K tokens (up from 64K on Opus 4.5)
- **Extended thinking:** Yes
- **Adaptive thinking:** Yes (new, Opus 4.6 exclusive)
- **Knowledge cutoff:** May 2025 (reliable), Aug 2025 (training)
- **Pricing:** $5/MTok input, $25/MTok output (same as Opus 4.5)

---------

Co-authored-by: Toran Bruce Richards <toran.richards@gmail.com>
2026-02-05 19:19:51 +00:00
Otto
11256076d8 fix(frontend): Rename "Tasks" tab to "Agents" in navbar (#11982)
## Summary
Renames the "Tasks" tab in the navbar to "Agents" per the Figma design.

## Changes
- `Navbar.tsx`: Changed label from "Tasks" to "Agents"

<img width="1069" height="153" alt="image"
src="https://github.com/user-attachments/assets/3869d2a2-9bd9-4346-b650-15dabbdb46c4"
/>


## Why
- "Tasks" was incorrectly named and confusing for users trying to find
their agent builds
- Matches the Figma design

## Linear Ticket
Fixes [SECRT-1894](https://linear.app/autogpt/issue/SECRT-1894)

## Related
- [SECRT-1865](https://linear.app/autogpt/issue/SECRT-1865) - Find and
Manage Existing/Unpublished or Recent Agent Builds Is Unintuitive
2026-02-05 17:54:39 +00:00
Bently
3ca2387631 feat(blocks): Implement Text Encode block (#11857)
## Summary
Implements a `TextEncoderBlock` that encodes plain text into escape
sequences (the reverse of `TextDecoderBlock`).

## Changes

### Block Implementation
- Added `encoder_block.py` with `TextEncoderBlock` in
`autogpt_platform/backend/backend/blocks/`
- Uses `codecs.encode(text, "unicode_escape").decode("utf-8")` for
encoding
- Mirrors the structure and patterns of the existing `TextDecoderBlock`
- Categorised as `BlockCategory.TEXT`

### Documentation
- Added Text Encoder section to
`docs/integrations/block-integrations/text.md` (the auto-generated docs
file for TEXT category blocks)
- Expanded "How it works" with technical details on the encoding method,
validation, and edge cases
- Added 3 structured use cases per docs guidelines: JSON payload
preparation, Config/ENV generation, Snapshot fixtures
- Added Text Encoder to the overview table in
`docs/integrations/README.md`
- Removed standalone `encoder_block.md` (TEXT category blocks belong in
`text.md` per `CATEGORY_FILE_MAP` in `generate_block_docs.py`)

### Documentation Formatting (CodeRabbit feedback)
- Added blank lines around markdown tables (MD058)
- Added `text` language tags to fenced code blocks (MD040)
- Restructured use case section with bold headings per coding guidelines

## How Docs Were Synced
The `check-docs-sync` CI job runs `poetry run python
scripts/generate_block_docs.py --check` which expects blocks to be
documented in category-grouped files. Since `TextEncoderBlock` uses
`BlockCategory.TEXT`, the `CATEGORY_FILE_MAP` maps it to `text.md` — not
a standalone file. The block entry was added to `text.md` following the
exact format used by the generator (with `<!-- MANUAL -->` markers for
hand-written sections).

## Related Issue
Fixes #11111

---------

Co-authored-by: Otto <otto@agpt.co>
Co-authored-by: lif <19658300+majiayu000@users.noreply.github.com>
Co-authored-by: Aryan Kaul <134673289+aryancodes1@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Nick Tindle <nick@ntindle.com>
2026-02-05 17:31:02 +00:00
Otto
ed07f02738 fix(copilot): edit_agent updates existing agent instead of creating duplicate (#11981)
## Summary

When editing an agent via CoPilot's `edit_agent` tool, the code was
always creating a new `LibraryAgent` entry instead of updating the
existing one to point to the new graph version. This caused duplicate
agents to appear in the user's library.

## Changes

In `save_agent_to_library()`:
- When `is_update=True`, now checks if there's an existing library agent
for the graph using `get_library_agent_by_graph_id()`
- If found, uses `update_agent_version_in_library()` to update the
existing library agent to point to the new version
- Falls back to creating a new library agent if no existing one is found
(e.g., if editing a graph that wasn't added to library yet)

## Testing

- Verified lint/format checks pass
- Plan reviewed and approved by Staff Engineer Plan Reviewer agent

## Related

Fixes [SECRT-1857](https://linear.app/autogpt/issue/SECRT-1857)

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
2026-02-05 15:02:26 +00:00
Swifty
b121030c94 feat(frontend): Add progress indicator during agent generation [SECRT-1883] (#11974)
## Summary
- Add asymptotic progress bar that appears during long-running chat
tasks
- Progress bar shows after 10 seconds with "Working on it..." label and
percentage
- Uses half-life formula: ~50% at 30s, ~75% at 60s, ~87.5% at 90s, etc.
- Creates the classic "game loading bar" effect that never reaches 100%



https://github.com/user-attachments/assets/3c59289e-793c-4a08-b3fc-69e1eef28b1f



## Test plan
- [x] Start a chat that triggers agent generation
- [x] Wait 10+ seconds for the progress bar to appear
- [x] Verify progress bar is centered with label and percentage
- [x] Verify progress follows expected timing (~50% at 30s)
- [x] Verify progress bar disappears when task completes

---------

Co-authored-by: Otto <otto@agpt.co>
2026-02-05 15:37:51 +01:00
Swifty
c22c18374d feat(frontend): Add ready-to-test prompt after agent creation [SECRT-1882] (#11975)
## Summary
- Add special UI prompt when agent is successfully created in chat
- Show "Agent Created Successfully" with agent name
- Provide two action buttons:
- **Run with example values**: Sends chat message asking AI to run with
placeholders
- **Run with my inputs**: Opens RunAgentModal for custom input
configuration
- After run/schedule, automatically send chat message with execution
details for AI monitoring



https://github.com/user-attachments/assets/b11e118c-de59-4b79-a629-8bd0d52d9161



## Test plan
- [x] Create an agent through chat
- [x] Verify "Agent Created Successfully" prompt appears
- [x] Click "Run with example values" - verify chat message is sent
- [x] Click "Run with my inputs" - verify RunAgentModal opens
- [x] Fill inputs and run - verify chat message with execution ID is
sent
- [x] Fill inputs and schedule - verify chat message with schedule
details is sent

---------

Co-authored-by: Otto <otto@agpt.co>
2026-02-05 15:37:31 +01:00
Swifty
e40233a3ac fix(backend/chat): Guide find_agent users toward action with CTAs (#11976)
When users search for agents, guide them toward creating custom agents
if no results are found or after showing results. This improves user
engagement by offering a clear next step.

### Changes 🏗️

- Updated `agent_search.py` to add CTAs in search responses
- Added messaging to inform users they can create custom agents based on
their needs
- Applied to both "no results found" and "agents found" scenarios

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Search for agents in marketplace with matching results
  - [x] Search for agents in marketplace with no results
  - [x] Search for agents in library with matching results  
  - [x] Search for agents in library with no results
  - [x] Verify CTA message appears in all cases

---------

Co-authored-by: Otto <otto@agpt.co>
2026-02-05 15:36:55 +01:00
146 changed files with 4863 additions and 9276 deletions

View File

@@ -27,11 +27,20 @@ jobs:
runs-on: ubuntu-latest
outputs:
cache-key: ${{ steps.cache-key.outputs.key }}
components-changed: ${{ steps.filter.outputs.components }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Check for component changes
uses: dorny/paths-filter@v3
id: filter
with:
filters: |
components:
- 'autogpt_platform/frontend/src/components/**'
- name: Set up Node.js
uses: actions/setup-node@v4
with:
@@ -90,8 +99,11 @@ jobs:
chromatic:
runs-on: ubuntu-latest
needs: setup
# Only run on dev branch pushes or PRs targeting dev
if: github.ref == 'refs/heads/dev' || github.base_ref == 'dev'
# Disabled: to re-enable, remove 'false &&' from the condition below
if: >-
false
&& (github.ref == 'refs/heads/dev' || github.base_ref == 'dev')
&& needs.setup.outputs.components-changed == 'true'
steps:
- name: Checkout repository

View File

@@ -152,6 +152,7 @@ REPLICATE_API_KEY=
REVID_API_KEY=
SCREENSHOTONE_API_KEY=
UNREAL_SPEECH_API_KEY=
ELEVENLABS_API_KEY=
# Data & Search Services
E2B_API_KEY=

View File

@@ -19,3 +19,6 @@ load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql
# Workspace files
workspaces/

View File

@@ -62,10 +62,12 @@ ENV POETRY_HOME=/opt/poetry \
DEBIAN_FRONTEND=noninteractive
ENV PATH=/opt/poetry/bin:$PATH
# Install Python without upgrading system-managed packages
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
&& rm -rf /var/lib/apt/lists/*
# Copy only necessary files from builder

View File

@@ -11,7 +11,7 @@ class ChatConfig(BaseSettings):
# OpenAI API Configuration
model: str = Field(
default="anthropic/claude-opus-4.5", description="Default model to use"
default="anthropic/claude-opus-4.6", description="Default model to use"
)
title_model: str = Field(
default="openai/gpt-4o-mini",

View File

@@ -18,10 +18,6 @@ class ResponseType(str, Enum):
START = "start"
FINISH = "finish"
# Step lifecycle (one LLM API call within a message)
START_STEP = "start-step"
FINISH_STEP = "finish-step"
# Text streaming
TEXT_START = "text-start"
TEXT_DELTA = "text-delta"
@@ -61,16 +57,6 @@ class StreamStart(StreamBaseResponse):
description="Task ID for SSE reconnection. Clients can reconnect using GET /tasks/{taskId}/stream",
)
def to_sse(self) -> str:
"""Convert to SSE format, excluding non-protocol fields like taskId."""
import json
data: dict[str, Any] = {
"type": self.type.value,
"messageId": self.messageId,
}
return f"data: {json.dumps(data)}\n\n"
class StreamFinish(StreamBaseResponse):
"""End of message/stream."""
@@ -78,26 +64,6 @@ class StreamFinish(StreamBaseResponse):
type: ResponseType = ResponseType.FINISH
class StreamStartStep(StreamBaseResponse):
"""Start of a step (one LLM API call within a message).
The AI SDK uses this to add a step-start boundary to message.parts,
enabling visual separation between multiple LLM calls in a single message.
"""
type: ResponseType = ResponseType.START_STEP
class StreamFinishStep(StreamBaseResponse):
"""End of a step (one LLM API call within a message).
The AI SDK uses this to reset activeTextParts and activeReasoningParts,
so the next LLM call in a tool-call continuation starts with clean state.
"""
type: ResponseType = ResponseType.FINISH_STEP
# ========== Text Streaming ==========
@@ -151,7 +117,7 @@ class StreamToolOutputAvailable(StreamBaseResponse):
type: ResponseType = ResponseType.TOOL_OUTPUT_AVAILABLE
toolCallId: str = Field(..., description="Tool call ID this responds to")
output: str | dict[str, Any] = Field(..., description="Tool execution output")
# Keep these for internal backend use
# Additional fields for internal use (not part of AI SDK spec but useful)
toolName: str | None = Field(
default=None, description="Name of the tool that was executed"
)
@@ -159,17 +125,6 @@ class StreamToolOutputAvailable(StreamBaseResponse):
default=True, description="Whether the tool execution succeeded"
)
def to_sse(self) -> str:
"""Convert to SSE format, excluding non-spec fields."""
import json
data = {
"type": self.type.value,
"toolCallId": self.toolCallId,
"output": self.output,
}
return f"data: {json.dumps(data)}\n\n"
# ========== Other ==========

View File

@@ -6,7 +6,7 @@ from collections.abc import AsyncGenerator
from typing import Annotated
from autogpt_libs import auth
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Response, Security
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Security
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
@@ -17,29 +17,7 @@ from . import stream_registry
from .completion_handler import process_operation_failure, process_operation_success
from .config import ChatConfig
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
from .response_model import StreamFinish, StreamHeartbeat
from .tools.models import (
AgentDetailsResponse,
AgentOutputResponse,
AgentPreviewResponse,
AgentSavedResponse,
AgentsFoundResponse,
BlockListResponse,
BlockOutputResponse,
ClarificationNeededResponse,
DocPageResponse,
DocSearchResultsResponse,
ErrorResponse,
ExecutionStartedResponse,
InputValidationErrorResponse,
NeedLoginResponse,
NoResultsResponse,
OperationInProgressResponse,
OperationPendingResponse,
OperationStartedResponse,
SetupRequirementsResponse,
UnderstandingUpdatedResponse,
)
from .response_model import StreamFinish, StreamHeartbeat, StreamStart
config = ChatConfig()
@@ -306,6 +284,10 @@ async def stream_chat_post(
# Background task that runs the AI generation independently of SSE connection
async def run_ai_generation():
try:
# Emit a start event with task_id for reconnection
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
await stream_registry.publish_chunk(task_id, start_chunk)
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
@@ -313,7 +295,6 @@ async def stream_chat_post(
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
_task_id=task_id, # Pass task_id so service emits start with taskId for reconnection
):
# Write to Redis (subscribers will receive via XREAD)
await stream_registry.publish_chunk(task_id, chunk)
@@ -393,73 +374,63 @@ async def stream_chat_post(
@router.get(
"/sessions/{session_id}/stream",
)
async def resume_session_stream(
async def stream_chat_get(
session_id: str,
message: Annotated[str, Query(min_length=1, max_length=10000)],
user_id: str | None = Depends(auth.get_user_id),
is_user_message: bool = Query(default=True),
):
"""
Resume an active stream for a session.
Stream chat responses for a session (GET - legacy endpoint).
Called by the AI SDK's ``useChat(resume: true)`` on page load.
Checks for an active (in-progress) task on the session and either replays
the full SSE stream or returns 204 No Content if nothing is running.
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
- Text fragments as they are generated
- Tool call UI elements (if invoked)
- Tool execution results
Args:
session_id: The chat session identifier.
session_id: The chat session identifier to associate with the streamed messages.
message: The user's new message to process.
user_id: Optional authenticated user ID.
is_user_message: Whether the message is a user message.
Returns:
StreamingResponse (SSE) when an active stream exists,
or 204 No Content when there is nothing to resume.
StreamingResponse: SSE-formatted response chunks.
"""
import asyncio
active_task, _last_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
if not active_task:
return Response(status_code=204)
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=active_task.task_id,
user_id=user_id,
last_message_id="0-0", # Full replay so useChat rebuilds the message
)
if subscriber_queue is None:
return Response(status_code=204)
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
try:
while True:
try:
chunk = await asyncio.wait_for(
subscriber_queue.get(), timeout=30.0
)
yield chunk.to_sse()
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
yield StreamHeartbeat().to_sse()
except GeneratorExit:
pass
except Exception as e:
logger.error(
f"Error in resume stream for session {session_id}: {e}"
)
finally:
try:
await stream_registry.unsubscribe_from_task(
active_task.task_id, subscriber_queue
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
message,
is_user_message=is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {active_task.task_id}: {unsub_err}",
exc_info=True,
)
yield "data: [DONE]\n\n"
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
@@ -467,8 +438,8 @@ async def resume_session_stream(
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -780,42 +751,3 @@ async def health_check() -> dict:
"service": "chat",
"version": "0.1.0",
}
# ========== Schema Export (for OpenAPI / Orval codegen) ==========
ToolResponseUnion = (
AgentsFoundResponse
| NoResultsResponse
| AgentDetailsResponse
| SetupRequirementsResponse
| ExecutionStartedResponse
| NeedLoginResponse
| ErrorResponse
| InputValidationErrorResponse
| AgentOutputResponse
| UnderstandingUpdatedResponse
| AgentPreviewResponse
| AgentSavedResponse
| ClarificationNeededResponse
| BlockListResponse
| BlockOutputResponse
| DocSearchResultsResponse
| DocPageResponse
| OperationStartedResponse
| OperationPendingResponse
| OperationInProgressResponse
)
@router.get(
"/schema/tool-responses",
response_model=ToolResponseUnion,
include_in_schema=True,
summary="[Dummy] Tool response type export for codegen",
description="This endpoint is not meant to be called. It exists solely to "
"expose tool response models in the OpenAPI schema for frontend codegen.",
)
async def _tool_response_schema() -> ToolResponseUnion: # type: ignore[return]
"""Never called at runtime. Exists only so Orval generates TS types."""
raise HTTPException(status_code=501, detail="Schema-only endpoint")

View File

@@ -52,10 +52,8 @@ from .response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamFinishStep,
StreamHeartbeat,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
@@ -353,10 +351,6 @@ async def stream_chat_completion(
retry_count: int = 0,
session: ChatSession | None = None,
context: dict[str, str] | None = None, # {url: str, content: str}
_continuation_message_id: (
str | None
) = None, # Internal: reuse message ID for tool call continuations
_task_id: str | None = None, # Internal: task ID for SSE reconnection support
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Main entry point for streaming chat completions with database handling.
@@ -485,17 +479,11 @@ async def stream_chat_completion(
# Generate unique IDs for AI SDK protocol
import uuid as uuid_module
is_continuation = _continuation_message_id is not None
message_id = _continuation_message_id or str(uuid_module.uuid4())
message_id = str(uuid_module.uuid4())
text_block_id = str(uuid_module.uuid4())
# Only yield message start for the initial call, not for continuations.
# This is the single place where StreamStart is emitted (removed from routes.py).
if not is_continuation:
yield StreamStart(messageId=message_id, taskId=_task_id)
# Emit start-step before each LLM call (AI SDK uses this to add step boundaries)
yield StreamStartStep()
# Yield message start
yield StreamStart(messageId=message_id)
try:
async for chunk in _stream_chat_chunks(
@@ -597,10 +585,6 @@ async def stream_chat_completion(
)
yield chunk
elif isinstance(chunk, StreamFinish):
if has_done_tool_call:
# Tool calls happened — close the step but don't send message-level finish.
# The continuation will open a new step, and finish will come at the end.
yield StreamFinishStep()
if not has_done_tool_call:
# Emit text-end before finish if we received text but haven't closed it
if has_received_text and not text_streaming_ended:
@@ -632,8 +616,6 @@ async def stream_chat_completion(
has_saved_assistant_message = True
has_yielded_end = True
# Emit finish-step before finish (resets AI SDK text/reasoning state)
yield StreamFinishStep()
yield chunk
elif isinstance(chunk, StreamError):
has_yielded_error = True
@@ -718,7 +700,6 @@ async def stream_chat_completion(
error_response = StreamError(errorText=error_message)
yield error_response
if not has_yielded_end:
yield StreamFinishStep()
yield StreamFinish()
return
@@ -733,8 +714,6 @@ async def stream_chat_completion(
retry_count=retry_count + 1,
session=session,
context=context,
_continuation_message_id=message_id, # Reuse message ID since start was already sent
_task_id=_task_id,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
@@ -804,8 +783,6 @@ async def stream_chat_completion(
session=session, # Pass session object to avoid Redis refetch
context=context,
tool_call_response=str(tool_response_messages),
_continuation_message_id=message_id, # Reuse message ID to avoid duplicates
_task_id=_task_id,
):
yield chunk
@@ -1588,7 +1565,6 @@ async def _execute_long_running_tool_with_streaming(
task_id,
StreamError(errorText=str(e)),
)
await stream_registry.publish_chunk(task_id, StreamFinishStep())
await stream_registry.publish_chunk(task_id, StreamFinish())
await _update_pending_operation(
@@ -1846,7 +1822,6 @@ async def _generate_llm_continuation_with_streaming(
# Publish start event
await stream_registry.publish_chunk(task_id, StreamStart(messageId=message_id))
await stream_registry.publish_chunk(task_id, StreamStartStep())
await stream_registry.publish_chunk(task_id, StreamTextStart(id=text_block_id))
# Stream the response
@@ -1870,7 +1845,6 @@ async def _generate_llm_continuation_with_streaming(
# Publish end events
await stream_registry.publish_chunk(task_id, StreamTextEnd(id=text_block_id))
await stream_registry.publish_chunk(task_id, StreamFinishStep())
if assistant_content:
# Reload session from DB to avoid race condition with user messages
@@ -1912,5 +1886,4 @@ async def _generate_llm_continuation_with_streaming(
task_id,
StreamError(errorText=f"Failed to generate response: {e}"),
)
await stream_registry.publish_chunk(task_id, StreamFinishStep())
await stream_registry.publish_chunk(task_id, StreamFinish())

View File

@@ -598,10 +598,8 @@ def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
ResponseType,
StreamError,
StreamFinish,
StreamFinishStep,
StreamHeartbeat,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
@@ -615,8 +613,6 @@ def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
type_to_class: dict[str, type[StreamBaseResponse]] = {
ResponseType.START.value: StreamStart,
ResponseType.FINISH.value: StreamFinish,
ResponseType.START_STEP.value: StreamStartStep,
ResponseType.FINISH_STEP.value: StreamFinishStep,
ResponseType.TEXT_START.value: StreamTextStart,
ResponseType.TEXT_DELTA.value: StreamTextDelta,
ResponseType.TEXT_END.value: StreamTextEnd,

View File

@@ -7,15 +7,7 @@ from typing import Any, NotRequired, TypedDict
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
get_store_listed_graphs,
)
from backend.data.graph import Graph, Link, Node, get_graph, get_store_listed_graphs
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import (
@@ -28,8 +20,6 @@ from .service import (
logger = logging.getLogger(__name__)
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
@@ -669,45 +659,6 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
)
def _reassign_node_ids(graph: Graph) -> None:
"""Reassign all node and link IDs to new UUIDs.
This is needed when creating a new version to avoid unique constraint violations.
"""
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
for node in graph.nodes:
node.id = id_map[node.id]
for link in graph.links:
link.id = str(uuid.uuid4())
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
"""Populate user_id in AgentExecutorBlock nodes.
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
This function fills in the actual user_id so sub-agents run with correct permissions.
Args:
agent_json: Agent JSON dict (modified in place)
user_id: User ID to set
"""
for node in agent_json.get("nodes", []):
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
input_default = node.get("input_default") or {}
if not input_default.get("user_id"):
input_default["user_id"] = user_id
node["input_default"] = input_default
logger.debug(
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
)
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -721,35 +672,10 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
# Populate user_id in AgentExecutorBlock nodes before conversion
_populate_agent_executor_user_ids(agent_json, user_id)
graph = json_to_graph(agent_json)
if is_update:
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
graph.id = str(uuid.uuid4())
graph.version = 1
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
created_graph = await create_graph(graph, user_id)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
return created_graph, library_agents[0]
return await library_db.update_graph_in_library(graph, user_id)
return await library_db.create_graph_in_library(graph, user_id)
def graph_to_json(graph: Graph) -> dict[str, Any]:

View File

@@ -206,9 +206,9 @@ async def search_agents(
]
)
no_results_msg = (
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
f"No agents found matching '{query}'. Let the user know they can try different keywords or browse the marketplace. Also let them know you can create a custom agent for them based on their needs."
if source == "marketplace"
else f"No agents matching '{query}' found in your library."
else f"No agents matching '{query}' found in your library. Let the user know you can create a custom agent for them based on their needs."
)
return NoResultsResponse(
message=no_results_msg, session_id=session_id, suggestions=suggestions
@@ -224,10 +224,10 @@ async def search_agents(
message = (
"Now you have found some options for the user to choose from. "
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
"Please ask the user if they would like to use any of these agents."
"Please ask the user if they would like to use any of these agents. Let the user know we can create a custom agent for them based on their needs."
if source == "marketplace"
else "Found agents in the user's library. You can provide a link to view an agent at: "
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute. Let the user know we can create a custom agent for them based on their needs."
)
return AgentsFoundResponse(

View File

@@ -6,7 +6,6 @@ from typing import Any
from backend.api.features.library import db as library_db
from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import (
CredentialsFieldInfo,
@@ -44,14 +43,8 @@ async def fetch_graph_from_store_slug(
return None, None
# Get the graph from store listing version
graph_meta = await store_db.get_available_graph(
store_agent.store_listing_version_id
)
graph = await graph_db.get_graph(
graph_id=graph_meta.id,
version=graph_meta.version,
user_id=None, # Public access
include_subgraphs=True,
graph = await store_db.get_available_graph(
store_agent.store_listing_version_id, hide_nodes=False
)
return graph, store_agent
@@ -124,11 +117,11 @@ def build_missing_credentials_from_graph(
preserving all supported credential types for each field.
"""
matched_keys = set(matched_credentials.keys()) if matched_credentials else set()
aggregated_fields = graph.aggregate_credentials_inputs()
aggregated_fields = graph.regular_credentials_inputs
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, (field_info, _node_fields) in aggregated_fields.items()
for field_key, (field_info, _, _) in aggregated_fields.items()
if field_key not in matched_keys
}
@@ -251,7 +244,7 @@ async def match_user_credentials_to_graph(
missing_creds: list[str] = []
# Get aggregated credentials requirements from the graph
aggregated_creds = graph.aggregate_credentials_inputs()
aggregated_creds = graph.regular_credentials_inputs
logger.debug(
f"Matching credentials for graph {graph.id}: {len(aggregated_creds)} required"
)
@@ -269,7 +262,8 @@ async def match_user_credentials_to_graph(
# provider is in the set of acceptable providers.
for credential_field_name, (
credential_requirements,
_node_fields,
_,
_,
) in aggregated_creds.items():
# Find first matching credential by provider, type, and scopes
matching_cred = next(

View File

@@ -0,0 +1,78 @@
"""Tests for chat tools utility functions."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.data.model import CredentialsFieldInfo
def _make_regular_field() -> CredentialsFieldInfo:
return CredentialsFieldInfo.model_validate(
{
"credentials_provider": ["github"],
"credentials_types": ["api_key"],
"is_auto_credential": False,
},
by_alias=True,
)
def test_build_missing_credentials_excludes_auto_creds():
"""
build_missing_credentials_from_graph() should use regular_credentials_inputs
and thus exclude auto_credentials from the "missing" set.
"""
from backend.api.features.chat.tools.utils import (
build_missing_credentials_from_graph,
)
regular_field = _make_regular_field()
mock_graph = MagicMock()
# regular_credentials_inputs should only return the non-auto field
mock_graph.regular_credentials_inputs = {
"github_api_key": (regular_field, {("node-1", "credentials")}, True),
}
result = build_missing_credentials_from_graph(mock_graph, matched_credentials=None)
# Should include the regular credential
assert "github_api_key" in result
# Should NOT include the auto_credential (not in regular_credentials_inputs)
assert "google_oauth2" not in result
@pytest.mark.asyncio
async def test_match_user_credentials_excludes_auto_creds():
"""
match_user_credentials_to_graph() should use regular_credentials_inputs
and thus exclude auto_credentials from matching.
"""
from backend.api.features.chat.tools.utils import match_user_credentials_to_graph
regular_field = _make_regular_field()
mock_graph = MagicMock()
mock_graph.id = "test-graph"
# regular_credentials_inputs returns only non-auto fields
mock_graph.regular_credentials_inputs = {
"github_api_key": (regular_field, {("node-1", "credentials")}, True),
}
# Mock the credentials manager to return no credentials
with patch(
"backend.api.features.chat.tools.utils.IntegrationCredentialsManager"
) as MockCredsMgr:
mock_store = AsyncMock()
mock_store.get_all_creds.return_value = []
MockCredsMgr.return_value.store = mock_store
matched, missing = await match_user_credentials_to_graph(
user_id="test-user", graph=mock_graph
)
# No credentials available, so github should be missing
assert len(matched) == 0
assert len(missing) == 1
assert "github_api_key" in missing[0]

View File

@@ -19,7 +19,10 @@ from backend.data.graph import GraphSettings
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.integrations.webhooks.graph_lifecycle_hooks import (
on_graph_activate,
on_graph_deactivate,
)
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.json import SafeJson
@@ -371,7 +374,7 @@ async def get_library_agent_by_graph_id(
async def add_generated_agent_image(
graph: graph_db.BaseGraph,
graph: graph_db.GraphBaseMeta,
user_id: str,
library_agent_id: str,
) -> Optional[prisma.models.LibraryAgent]:
@@ -537,6 +540,92 @@ async def update_agent_version_in_library(
return library_model.LibraryAgent.from_db(lib)
async def create_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new graph and add it to the user's library."""
graph.version = 1
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=True)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agents = await create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
return created_graph, library_agents[0]
async def update_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new version of an existing graph and update the library entry."""
existing_versions = await graph_db.get_graph_all_versions(graph.id, user_id)
current_active_version = (
next((v for v in existing_versions if v.is_active), None)
if existing_versions
else None
)
graph.version = (
max(v.version for v in existing_versions) + 1 if existing_versions else 1
)
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=False)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agent = await get_library_agent_by_graph_id(user_id, created_graph.id)
if not library_agent:
raise NotFoundError(f"Library agent not found for graph {created_graph.id}")
library_agent = await update_library_agent_version_and_settings(
user_id, created_graph
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
await graph_db.set_graph_active_version(
graph_id=created_graph.id,
version=created_graph.version,
user_id=user_id,
)
if current_active_version:
await on_graph_deactivate(current_active_version, user_id=user_id)
return created_graph, library_agent
async def update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
"""Update library agent to point to new graph version and sync settings."""
library = await update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
async def update_library_agent(
library_agent_id: str,
user_id: str,
@@ -1014,7 +1103,7 @@ async def create_preset_from_graph_execution(
raise NotFoundError(
f"Graph #{graph_execution.graph_id} not found or accessible"
)
elif len(graph.aggregate_credentials_inputs()) > 0:
elif len(graph.regular_credentials_inputs) > 0:
raise ValueError(
f"Graph execution #{graph_exec_id} can't be turned into a preset "
"because it was run before this feature existed "

View File

@@ -1,7 +1,7 @@
import asyncio
import logging
from datetime import datetime, timezone
from typing import Any, Literal
from typing import Any, Literal, overload
import fastapi
import prisma.enums
@@ -11,8 +11,8 @@ import prisma.types
from backend.data.db import transaction
from backend.data.graph import (
GraphMeta,
GraphModel,
GraphModelWithoutNodes,
get_graph,
get_graph_as_admin,
get_sub_graphs,
@@ -334,7 +334,22 @@ async def get_store_agent_details(
raise DatabaseError("Failed to fetch agent details") from e
async def get_available_graph(store_listing_version_id: str) -> GraphMeta:
@overload
async def get_available_graph(
store_listing_version_id: str, hide_nodes: Literal[False]
) -> GraphModel: ...
@overload
async def get_available_graph(
store_listing_version_id: str, hide_nodes: Literal[True] = True
) -> GraphModelWithoutNodes: ...
async def get_available_graph(
store_listing_version_id: str,
hide_nodes: bool = True,
) -> GraphModelWithoutNodes | GraphModel:
try:
# Get avaialble, non-deleted store listing version
store_listing_version = (
@@ -344,7 +359,7 @@ async def get_available_graph(store_listing_version_id: str) -> GraphMeta:
"isAvailable": True,
"isDeleted": False,
},
include={"AgentGraph": {"include": {"Nodes": True}}},
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
)
)
@@ -354,7 +369,9 @@ async def get_available_graph(store_listing_version_id: str) -> GraphMeta:
detail=f"Store listing version {store_listing_version_id} not found",
)
return GraphModel.from_db(store_listing_version.AgentGraph).meta()
return (GraphModelWithoutNodes if hide_nodes else GraphModel).from_db(
store_listing_version.AgentGraph
)
except Exception as e:
logger.error(f"Error getting agent: {e}")

View File

@@ -16,7 +16,7 @@ from backend.blocks.ideogram import (
StyleType,
UpscaleOption,
)
from backend.data.graph import BaseGraph
from backend.data.graph import GraphBaseMeta
from backend.data.model import CredentialsMetaInput, ProviderName
from backend.integrations.credentials_store import ideogram_credentials
from backend.util.request import Requests
@@ -34,14 +34,14 @@ class ImageStyle(str, Enum):
DIGITAL_ART = "digital art"
async def generate_agent_image(agent: BaseGraph | AgentGraph) -> io.BytesIO:
async def generate_agent_image(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
if settings.config.use_agent_image_generation_v2:
return await generate_agent_image_v2(graph=agent)
else:
return await generate_agent_image_v1(agent=agent)
async def generate_agent_image_v2(graph: BaseGraph | AgentGraph) -> io.BytesIO:
async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.BytesIO:
"""
Generate an image for an agent using Ideogram model.
Returns:
@@ -54,14 +54,17 @@ async def generate_agent_image_v2(graph: BaseGraph | AgentGraph) -> io.BytesIO:
description = f"{name} ({graph.description})" if graph.description else name
prompt = (
f"Create a visually striking retro-futuristic vector pop art illustration prominently featuring "
f'"{name}" in bold typography. The image clearly and literally depicts a {description}, '
f"along with recognizable objects directly associated with the primary function of a {name}. "
f"Ensure the imagery is concrete, intuitive, and immediately understandable, clearly conveying the "
f"purpose of a {name}. Maintain vibrant, limited-palette colors, sharp vector lines, geometric "
f"shapes, flat illustration techniques, and solid colors without gradients or shading. Preserve a "
f"retro-futuristic aesthetic influenced by mid-century futurism and 1960s psychedelia, "
f"prioritizing clear visual storytelling and thematic clarity above all else."
"Create a visually striking retro-futuristic vector pop art illustration "
f'prominently featuring "{name}" in bold typography. The image clearly and '
f"literally depicts a {description}, along with recognizable objects directly "
f"associated with the primary function of a {name}. "
f"Ensure the imagery is concrete, intuitive, and immediately understandable, "
f"clearly conveying the purpose of a {name}. "
"Maintain vibrant, limited-palette colors, sharp vector lines, "
"geometric shapes, flat illustration techniques, and solid colors "
"without gradients or shading. Preserve a retro-futuristic aesthetic "
"influenced by mid-century futurism and 1960s psychedelia, "
"prioritizing clear visual storytelling and thematic clarity above all else."
)
custom_colors = [
@@ -99,12 +102,12 @@ async def generate_agent_image_v2(graph: BaseGraph | AgentGraph) -> io.BytesIO:
return io.BytesIO(response.content)
async def generate_agent_image_v1(agent: BaseGraph | AgentGraph) -> io.BytesIO:
async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
"""
Generate an image for an agent using Flux model via Replicate API.
Args:
agent (Graph): The agent to generate an image for
agent (GraphBaseMeta | AgentGraph): The agent to generate an image for
Returns:
io.BytesIO: The generated image as bytes
@@ -114,7 +117,13 @@ async def generate_agent_image_v1(agent: BaseGraph | AgentGraph) -> io.BytesIO:
raise ValueError("Missing Replicate API key in settings")
# Construct prompt from agent details
prompt = f"Create a visually engaging app store thumbnail for the AI agent that highlights what it does in a clear and captivating way:\n- **Name**: {agent.name}\n- **Description**: {agent.description}\nFocus on showcasing its core functionality with an appealing design."
prompt = (
"Create a visually engaging app store thumbnail for the AI agent "
"that highlights what it does in a clear and captivating way:\n"
f"- **Name**: {agent.name}\n"
f"- **Description**: {agent.description}\n"
f"Focus on showcasing its core functionality with an appealing design."
)
# Set up Replicate client
client = ReplicateClient(api_token=settings.secrets.replicate_api_key)

View File

@@ -278,7 +278,7 @@ async def get_agent(
)
async def get_graph_meta_by_store_listing_version_id(
store_listing_version_id: str,
) -> backend.data.graph.GraphMeta:
) -> backend.data.graph.GraphModelWithoutNodes:
"""
Get Agent Graph from Store Listing Version ID.
"""

View File

@@ -101,7 +101,6 @@ from backend.util.timezone_utils import (
from backend.util.virus_scanner import scan_content_safe
from .library import db as library_db
from .library import model as library_model
from .store.model import StoreAgentDetails
@@ -823,18 +822,16 @@ async def update_graph(
graph: graph_db.Graph,
user_id: Annotated[str, Security(get_user_id)],
) -> graph_db.GraphModel:
# Sanity check
if graph.id and graph.id != graph_id:
raise HTTPException(400, detail="Graph ID does not match ID in URI")
# Determine new version
existing_versions = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
if not existing_versions:
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
latest_version_number = max(g.version for g in existing_versions)
graph.version = latest_version_number + 1
graph.version = max(g.version for g in existing_versions) + 1
current_active_version = next((v for v in existing_versions if v.is_active), None)
graph = graph_db.make_graph_model(graph, user_id)
graph.reassign_ids(user_id=user_id, reassign_graph_id=False)
graph.validate_graph(for_run=False)
@@ -842,27 +839,23 @@ async def update_graph(
new_graph_version = await graph_db.create_graph(graph, user_id=user_id)
if new_graph_version.is_active:
# Keep the library agent up to date with the new active version
await _update_library_agent_version_and_settings(user_id, new_graph_version)
# Handle activation of the new graph first to ensure continuity
await library_db.update_library_agent_version_and_settings(
user_id, new_graph_version
)
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
# Ensure new version is the only active version
await graph_db.set_graph_active_version(
graph_id=graph_id, version=new_graph_version.version, user_id=user_id
)
if current_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_version, user_id=user_id)
# Fetch new graph version *with sub-graphs* (needed for credentials input schema)
new_graph_version_with_subgraphs = await graph_db.get_graph(
graph_id,
new_graph_version.version,
user_id=user_id,
include_subgraphs=True,
)
assert new_graph_version_with_subgraphs # make type checker happy
assert new_graph_version_with_subgraphs
return new_graph_version_with_subgraphs
@@ -900,33 +893,15 @@ async def set_graph_active_version(
)
# Keep the library agent up to date with the new active version
await _update_library_agent_version_and_settings(user_id, new_active_graph)
await library_db.update_library_agent_version_and_settings(
user_id, new_active_graph
)
if current_active_graph and current_active_graph.version != new_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_graph, user_id=user_id)
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
@v1_router.patch(
path="/graphs/{graph_id}/settings",
summary="Update graph settings",

View File

@@ -0,0 +1,28 @@
"""ElevenLabs integration blocks - test credentials and shared utilities."""
from typing import Literal
from pydantic import SecretStr
from backend.data.model import APIKeyCredentials, CredentialsMetaInput
from backend.integrations.providers import ProviderName
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="elevenlabs",
api_key=SecretStr("mock-elevenlabs-api-key"),
title="Mock ElevenLabs API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
ElevenLabsCredentials = APIKeyCredentials
ElevenLabsCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.ELEVENLABS], Literal["api_key"]
]

View File

@@ -0,0 +1,77 @@
"""Text encoding block for converting special characters to escape sequences."""
import codecs
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
class TextEncoderBlock(Block):
"""
Encodes a string by converting special characters into escape sequences.
This block is the inverse of TextDecoderBlock. It takes text containing
special characters (like newlines, tabs, etc.) and converts them into
their escape sequence representations (e.g., newline becomes \\n).
"""
class Input(BlockSchemaInput):
"""Input schema for TextEncoderBlock."""
text: str = SchemaField(
description="A string containing special characters to be encoded",
placeholder="Your text with newlines and quotes to encode",
)
class Output(BlockSchemaOutput):
"""Output schema for TextEncoderBlock."""
encoded_text: str = SchemaField(
description="The encoded text with special characters converted to escape sequences"
)
error: str = SchemaField(description="Error message if encoding fails")
def __init__(self):
super().__init__(
id="5185f32e-4b65-4ecf-8fbb-873f003f09d6",
description="Encodes a string by converting special characters into escape sequences",
categories={BlockCategory.TEXT},
input_schema=TextEncoderBlock.Input,
output_schema=TextEncoderBlock.Output,
test_input={
"text": """Hello
World!
This is a "quoted" string."""
},
test_output=[
(
"encoded_text",
"""Hello\\nWorld!\\nThis is a "quoted" string.""",
)
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
"""
Encode the input text by converting special characters to escape sequences.
Args:
input_data: The input containing the text to encode.
**kwargs: Additional keyword arguments (unused).
Yields:
The encoded text with escape sequences, or an error message if encoding fails.
"""
try:
encoded_text = codecs.encode(input_data.text, "unicode_escape").decode(
"utf-8"
)
yield "encoded_text", encoded_text
except Exception as e:
yield "error", f"Encoding error: {str(e)}"

View File

@@ -115,6 +115,7 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_4_6_OPUS = "claude-opus-4-6"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
@@ -270,6 +271,9 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
), # claude-opus-4-6
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101

View File

@@ -1,246 +0,0 @@
import os
import tempfile
from typing import Optional
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
# 2) Load the clip
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
yield "duration", clip.duration
class LoopVideoBlock(Block):
"""
Block for looping (repeating) a video clip until a given duration or number of loops.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
# Provide EITHER a `duration` or `n_loops` or both. We'll demonstrate `duration`.
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. If omitted, defaults to no looping.",
default=None,
ge=0.0,
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. If omitted, defaults to 1 (no repeat).",
default=None,
ge=1,
)
class Output(BlockSchemaOutput):
video_out: str = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# 2) Load the clip
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
looped_clip = clip
if input_data.duration:
# Loop until we reach the specified duration
looped_clip = looped_clip.with_effects([Loop(duration=input_data.duration)])
elif input_data.n_loops:
looped_clip = looped_clip.with_effects([Loop(n=input_data.n_loops)])
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
assert isinstance(looped_clip, VideoFileClip)
# 4) Save the looped output
output_filename = MediaFileType(
f"{node_exec_id}_looped_{os.path.basename(local_video_path)}"
)
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out
class AddAudioToVideoBlock(Block):
"""
Block that adds (attaches) an audio track to an existing video.
Optionally scale the volume of the new track.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
video_abspath = os.path.join(abs_temp_dir, local_video_path)
audio_abspath = os.path.join(abs_temp_dir, local_audio_path)
# 2) Load video + audio with moviepy
video_clip = VideoFileClip(video_abspath)
audio_clip = AudioFileClip(audio_abspath)
# Optionally scale volume
if input_data.volume != 1.0:
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_clip)
# 4) Write to output file
output_filename = MediaFileType(
f"{node_exec_id}_audio_attached_{os.path.basename(local_video_path)}"
)
output_abspath = os.path.join(abs_temp_dir, output_filename)
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -0,0 +1,77 @@
import pytest
from backend.blocks.encoder_block import TextEncoderBlock
@pytest.mark.asyncio
async def test_text_encoder_basic():
"""Test basic encoding of newlines and special characters."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello\nWorld")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == "Hello\\nWorld"
@pytest.mark.asyncio
async def test_text_encoder_multiple_escapes():
"""Test encoding of multiple escape sequences."""
block = TextEncoderBlock()
result = []
async for output in block.run(
TextEncoderBlock.Input(text="Line1\nLine2\tTabbed\rCarriage")
):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert "\\n" in result[0][1]
assert "\\t" in result[0][1]
assert "\\r" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_unicode():
"""Test that unicode characters are handled correctly."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello 世界\n")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
# Unicode characters should be escaped as \uXXXX sequences
assert "\\n" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_empty_string():
"""Test encoding of an empty string."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == ""
@pytest.mark.asyncio
async def test_text_encoder_error_handling():
"""Test that encoding errors are handled gracefully."""
from unittest.mock import patch
block = TextEncoderBlock()
result = []
with patch("codecs.encode", side_effect=Exception("Mocked encoding error")):
async for output in block.run(TextEncoderBlock.Input(text="test")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "error"
assert "Mocked encoding error" in result[0][1]

View File

@@ -0,0 +1,37 @@
"""Video editing blocks for AutoGPT Platform.
This module provides blocks for:
- Downloading videos from URLs (YouTube, Vimeo, news sites, direct links)
- Clipping/trimming video segments
- Concatenating multiple videos
- Adding text overlays
- Adding AI-generated narration
- Getting media duration
- Looping videos
- Adding audio to videos
Dependencies:
- yt-dlp: For video downloading
- moviepy: For video editing operations
- elevenlabs: For AI narration (optional)
"""
from backend.blocks.video.add_audio import AddAudioToVideoBlock
from backend.blocks.video.clip import VideoClipBlock
from backend.blocks.video.concat import VideoConcatBlock
from backend.blocks.video.download import VideoDownloadBlock
from backend.blocks.video.duration import MediaDurationBlock
from backend.blocks.video.loop import LoopVideoBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.blocks.video.text_overlay import VideoTextOverlayBlock
__all__ = [
"AddAudioToVideoBlock",
"LoopVideoBlock",
"MediaDurationBlock",
"VideoClipBlock",
"VideoConcatBlock",
"VideoDownloadBlock",
"VideoNarrationBlock",
"VideoTextOverlayBlock",
]

View File

@@ -0,0 +1,131 @@
"""Shared utilities for video blocks."""
from __future__ import annotations
import logging
import os
import re
import subprocess
from pathlib import Path
logger = logging.getLogger(__name__)
# Known operation tags added by video blocks
_VIDEO_OPS = (
r"(?:clip|overlay|narrated|looped|concat|audio_attached|with_audio|narration)"
)
# Matches: {node_exec_id}_{operation}_ where node_exec_id contains a UUID
_BLOCK_PREFIX_RE = re.compile(
r"^[a-zA-Z0-9_-]*"
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
r"[a-zA-Z0-9_-]*"
r"_" + _VIDEO_OPS + r"_"
)
# Matches: a lone {node_exec_id}_ prefix (no operation keyword, e.g. download output)
_UUID_PREFIX_RE = re.compile(
r"^[a-zA-Z0-9_-]*"
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
r"[a-zA-Z0-9_-]*_"
)
def extract_source_name(input_path: str, max_length: int = 50) -> str:
"""Extract the original source filename by stripping block-generated prefixes.
Iteratively removes {node_exec_id}_{operation}_ prefixes that accumulate
when chaining video blocks, recovering the original human-readable name.
Safe for plain filenames (no UUID -> no stripping).
Falls back to "video" if everything is stripped.
"""
stem = Path(input_path).stem
# Pass 1: strip {node_exec_id}_{operation}_ prefixes iteratively
while _BLOCK_PREFIX_RE.match(stem):
stem = _BLOCK_PREFIX_RE.sub("", stem, count=1)
# Pass 2: strip a lone {node_exec_id}_ prefix (e.g. from download block)
if _UUID_PREFIX_RE.match(stem):
stem = _UUID_PREFIX_RE.sub("", stem, count=1)
if not stem:
return "video"
return stem[:max_length]
def get_video_codecs(output_path: str) -> tuple[str, str]:
"""Get appropriate video and audio codecs based on output file extension.
Args:
output_path: Path to the output file (used to determine extension)
Returns:
Tuple of (video_codec, audio_codec)
Codec mappings:
- .mp4: H.264 + AAC (universal compatibility)
- .webm: VP8 + Vorbis (web streaming)
- .mkv: H.264 + AAC (container supports many codecs)
- .mov: H.264 + AAC (Apple QuickTime, widely compatible)
- .m4v: H.264 + AAC (Apple iTunes/devices)
- .avi: MPEG-4 + MP3 (legacy Windows)
"""
ext = os.path.splitext(output_path)[1].lower()
codec_map: dict[str, tuple[str, str]] = {
".mp4": ("libx264", "aac"),
".webm": ("libvpx", "libvorbis"),
".mkv": ("libx264", "aac"),
".mov": ("libx264", "aac"),
".m4v": ("libx264", "aac"),
".avi": ("mpeg4", "libmp3lame"),
}
return codec_map.get(ext, ("libx264", "aac"))
def strip_chapters_inplace(video_path: str) -> None:
"""Strip chapter metadata from a media file in-place using ffmpeg.
MoviePy 2.x crashes with IndexError when parsing files with embedded
chapter metadata (https://github.com/Zulko/moviepy/issues/2419).
This strips chapters without re-encoding.
Args:
video_path: Absolute path to the media file to strip chapters from.
"""
base, ext = os.path.splitext(video_path)
tmp_path = base + ".tmp" + ext
try:
result = subprocess.run(
[
"ffmpeg",
"-y",
"-i",
video_path,
"-map_chapters",
"-1",
"-codec",
"copy",
tmp_path,
],
capture_output=True,
text=True,
timeout=300,
)
if result.returncode != 0:
logger.warning(
"ffmpeg chapter strip failed (rc=%d): %s",
result.returncode,
result.stderr,
)
return
os.replace(tmp_path, video_path)
except FileNotFoundError:
logger.warning("ffmpeg not found; skipping chapter strip")
finally:
if os.path.exists(tmp_path):
os.unlink(tmp_path)

View File

@@ -0,0 +1,113 @@
"""AddAudioToVideoBlock - Attach an audio track to a video file."""
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class AddAudioToVideoBlock(Block):
"""Add (attach) an audio track to an existing video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
)
video_abspath = get_exec_file_path(graph_exec_id, local_video_path)
audio_abspath = get_exec_file_path(graph_exec_id, local_audio_path)
# 2) Load video + audio with moviepy
strip_chapters_inplace(video_abspath)
strip_chapters_inplace(audio_abspath)
video_clip = None
audio_clip = None
final_clip = None
try:
video_clip = VideoFileClip(video_abspath)
audio_clip = AudioFileClip(audio_abspath)
# Optionally scale volume
if input_data.volume != 1.0:
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_clip)
# 4) Write to output file
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_with_audio_{source}.mp4")
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
final_clip.write_videofile(
output_abspath, codec="libx264", audio_codec="aac"
)
finally:
if final_clip:
final_clip.close()
if audio_clip:
audio_clip.close()
if video_clip:
video_clip.close()
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -0,0 +1,167 @@
"""VideoClipBlock - Extract a segment from a video file."""
from typing import Literal
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoClipBlock(Block):
"""Extract a time segment from a video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
start_time: float = SchemaField(description="Start time in seconds", ge=0.0)
end_time: float = SchemaField(description="End time in seconds", ge=0.0)
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Clipped video file (path or data URI)"
)
duration: float = SchemaField(description="Clip duration in seconds")
def __init__(self):
super().__init__(
id="8f539119-e580-4d86-ad41-86fbcb22abb1",
description="Extract a time segment from a video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"video_in": "/tmp/test.mp4",
"start_time": 0.0,
"end_time": 10.0,
},
test_output=[("video_out", str), ("duration", float)],
test_mock={
"_clip_video": lambda *args: 10.0,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "clip_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _clip_video(
self,
video_abspath: str,
output_abspath: str,
start_time: float,
end_time: float,
) -> float:
"""Extract a clip from a video. Extracted for testability."""
clip = None
subclip = None
try:
strip_chapters_inplace(video_abspath)
clip = VideoFileClip(video_abspath)
subclip = clip.subclipped(start_time, end_time)
video_codec, audio_codec = get_video_codecs(output_abspath)
subclip.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
return subclip.duration
finally:
if subclip:
subclip.close()
if clip:
clip.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range
if input_data.end_time <= input_data.start_time:
raise BlockExecutionError(
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Build output path
source = extract_source_name(local_video_path)
output_filename = MediaFileType(
f"{node_exec_id}_clip_{source}.{input_data.output_format}"
)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
duration = self._clip_video(
video_abspath,
output_abspath,
input_data.start_time,
input_data.end_time,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
yield "duration", duration
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to clip video: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -0,0 +1,227 @@
"""VideoConcatBlock - Concatenate multiple video clips into one."""
from typing import Literal
from moviepy import concatenate_videoclips
from moviepy.video.fx import CrossFadeIn, CrossFadeOut, FadeIn, FadeOut
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoConcatBlock(Block):
"""Merge multiple video clips into one continuous video."""
class Input(BlockSchemaInput):
videos: list[MediaFileType] = SchemaField(
description="List of video files to concatenate (in order)"
)
transition: Literal["none", "crossfade", "fade_black"] = SchemaField(
description="Transition between clips", default="none"
)
transition_duration: int = SchemaField(
description="Transition duration in seconds",
default=1,
ge=0,
advanced=True,
)
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Concatenated video file (path or data URI)"
)
total_duration: float = SchemaField(description="Total duration in seconds")
def __init__(self):
super().__init__(
id="9b0f531a-1118-487f-aeec-3fa63ea8900a",
description="Merge multiple video clips into one continuous video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"videos": ["/tmp/a.mp4", "/tmp/b.mp4"],
},
test_output=[
("video_out", str),
("total_duration", float),
],
test_mock={
"_concat_videos": lambda *args: 20.0,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "concat_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _concat_videos(
self,
video_abspaths: list[str],
output_abspath: str,
transition: str,
transition_duration: int,
) -> float:
"""Concatenate videos. Extracted for testability.
Returns:
Total duration of the concatenated video.
"""
clips = []
faded_clips = []
final = None
try:
# Load clips
for v in video_abspaths:
strip_chapters_inplace(v)
clips.append(VideoFileClip(v))
# Validate transition_duration against shortest clip
if transition in {"crossfade", "fade_black"} and transition_duration > 0:
min_duration = min(c.duration for c in clips)
if transition_duration >= min_duration:
raise BlockExecutionError(
message=(
f"transition_duration ({transition_duration}s) must be "
f"shorter than the shortest clip ({min_duration:.2f}s)"
),
block_name=self.name,
block_id=str(self.id),
)
if transition == "crossfade":
for i, clip in enumerate(clips):
effects = []
if i > 0:
effects.append(CrossFadeIn(transition_duration))
if i < len(clips) - 1:
effects.append(CrossFadeOut(transition_duration))
if effects:
clip = clip.with_effects(effects)
faded_clips.append(clip)
final = concatenate_videoclips(
faded_clips,
method="compose",
padding=-transition_duration,
)
elif transition == "fade_black":
for clip in clips:
faded = clip.with_effects(
[FadeIn(transition_duration), FadeOut(transition_duration)]
)
faded_clips.append(faded)
final = concatenate_videoclips(faded_clips)
else:
final = concatenate_videoclips(clips)
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
return final.duration
finally:
if final:
final.close()
for clip in faded_clips:
clip.close()
for clip in clips:
clip.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate minimum clips
if len(input_data.videos) < 2:
raise BlockExecutionError(
message="At least 2 videos are required for concatenation",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store all input videos locally
video_abspaths = []
for video in input_data.videos:
local_path = await self._store_input_video(execution_context, video)
video_abspaths.append(
get_exec_file_path(execution_context.graph_exec_id, local_path)
)
# Build output path
source = (
extract_source_name(video_abspaths[0]) if video_abspaths else "video"
)
output_filename = MediaFileType(
f"{node_exec_id}_concat_{source}.{input_data.output_format}"
)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
total_duration = self._concat_videos(
video_abspaths,
output_abspath,
input_data.transition,
input_data.transition_duration,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
yield "total_duration", total_duration
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to concatenate videos: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -0,0 +1,172 @@
"""VideoDownloadBlock - Download video from URL (YouTube, Vimeo, news sites, direct links)."""
import os
import typing
from typing import Literal
import yt_dlp
if typing.TYPE_CHECKING:
from yt_dlp import _Params
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoDownloadBlock(Block):
"""Download video from URL using yt-dlp."""
class Input(BlockSchemaInput):
url: str = SchemaField(
description="URL of the video to download (YouTube, Vimeo, direct link, etc.)",
placeholder="https://www.youtube.com/watch?v=...",
)
quality: Literal["best", "1080p", "720p", "480p", "audio_only"] = SchemaField(
description="Video quality preference", default="720p"
)
output_format: Literal["mp4", "webm", "mkv"] = SchemaField(
description="Output video format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_file: MediaFileType = SchemaField(
description="Downloaded video (path or data URI)"
)
duration: float = SchemaField(description="Video duration in seconds")
title: str = SchemaField(description="Video title from source")
source_url: str = SchemaField(description="Original source URL")
def __init__(self):
super().__init__(
id="c35daabb-cd60-493b-b9ad-51f1fe4b50c4",
description="Download video from URL (YouTube, Vimeo, news sites, direct links)",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
disabled=True, # Disable until we can sandbox yt-dlp and handle security implications
test_input={
"url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
"quality": "480p",
},
test_output=[
("video_file", str),
("duration", float),
("title", str),
("source_url", str),
],
test_mock={
"_download_video": lambda *args: (
"video.mp4",
212.0,
"Test Video",
),
"_store_output_video": lambda *args, **kwargs: "video.mp4",
},
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _get_format_string(self, quality: str) -> str:
formats = {
"best": "bestvideo+bestaudio/best",
"1080p": "bestvideo[height<=1080]+bestaudio/best[height<=1080]",
"720p": "bestvideo[height<=720]+bestaudio/best[height<=720]",
"480p": "bestvideo[height<=480]+bestaudio/best[height<=480]",
"audio_only": "bestaudio/best",
}
return formats.get(quality, formats["720p"])
def _download_video(
self,
url: str,
quality: str,
output_format: str,
output_dir: str,
node_exec_id: str,
) -> tuple[str, float, str]:
"""Download video. Extracted for testability."""
output_template = os.path.join(
output_dir, f"{node_exec_id}_%(title).50s.%(ext)s"
)
ydl_opts: "_Params" = {
"format": f"{self._get_format_string(quality)}/best",
"outtmpl": output_template,
"merge_output_format": output_format,
"quiet": True,
"no_warnings": True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
video_path = ydl.prepare_filename(info)
# Handle format conversion in filename
if not video_path.endswith(f".{output_format}"):
video_path = video_path.rsplit(".", 1)[0] + f".{output_format}"
# Return just the filename, not the full path
filename = os.path.basename(video_path)
return (
filename,
info.get("duration") or 0.0,
info.get("title") or "Unknown",
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Get the exec file directory
output_dir = get_exec_file_path(execution_context.graph_exec_id, "")
os.makedirs(output_dir, exist_ok=True)
filename, duration, title = self._download_video(
input_data.url,
input_data.quality,
input_data.output_format,
output_dir,
node_exec_id,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, MediaFileType(filename)
)
yield "video_file", video_out
yield "duration", duration
yield "title", title
yield "source_url", input_data.url
except Exception as e:
raise BlockExecutionError(
message=f"Failed to download video: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -0,0 +1,77 @@
"""MediaDurationBlock - Get the duration of a media file."""
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
"""Get the duration of a media file (video or audio)."""
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
# 2) Strip chapters to avoid MoviePy crash, then load the clip
strip_chapters_inplace(media_abspath)
clip = None
try:
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
duration = clip.duration
finally:
if clip:
clip.close()
yield "duration", duration

View File

@@ -0,0 +1,115 @@
"""LoopVideoBlock - Loop a video to a given duration or number of repeats."""
from typing import Optional
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class LoopVideoBlock(Block):
"""Loop (repeat) a video clip until a given duration or number of loops."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. Either duration or n_loops must be provided.",
default=None,
ge=0.0,
le=3600.0, # Max 1 hour to prevent disk exhaustion
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. Either n_loops or duration must be provided.",
default=None,
ge=1,
le=10, # Max 10 loops to prevent disk exhaustion
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# 2) Load the clip
strip_chapters_inplace(input_abspath)
clip = None
looped_clip = None
try:
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
if input_data.duration:
# Loop until we reach the specified duration
looped_clip = clip.with_effects([Loop(duration=input_data.duration)])
elif input_data.n_loops:
looped_clip = clip.with_effects([Loop(n=input_data.n_loops)])
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
assert isinstance(looped_clip, VideoFileClip)
# 4) Save the looped output
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_looped_{source}.mp4")
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(
output_abspath, codec="libx264", audio_codec="aac"
)
finally:
if looped_clip:
looped_clip.close()
if clip:
clip.close()
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -0,0 +1,267 @@
"""VideoNarrationBlock - Generate AI voice narration and add to video."""
import os
from typing import Literal
from elevenlabs import ElevenLabs
from moviepy import CompositeAudioClip
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.elevenlabs._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
ElevenLabsCredentials,
ElevenLabsCredentialsInput,
)
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsField, SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoNarrationBlock(Block):
"""Generate AI narration and add to video."""
class Input(BlockSchemaInput):
credentials: ElevenLabsCredentialsInput = CredentialsField(
description="ElevenLabs API key for voice synthesis"
)
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
script: str = SchemaField(description="Narration script text")
voice_id: str = SchemaField(
description="ElevenLabs voice ID", default="21m00Tcm4TlvDq8ikWAM" # Rachel
)
model_id: Literal[
"eleven_multilingual_v2",
"eleven_flash_v2_5",
"eleven_turbo_v2_5",
"eleven_turbo_v2",
] = SchemaField(
description="ElevenLabs TTS model",
default="eleven_multilingual_v2",
)
mix_mode: Literal["replace", "mix", "ducking"] = SchemaField(
description="How to combine with original audio. 'ducking' applies stronger attenuation than 'mix'.",
default="ducking",
)
narration_volume: float = SchemaField(
description="Narration volume (0.0 to 2.0)",
default=1.0,
ge=0.0,
le=2.0,
advanced=True,
)
original_volume: float = SchemaField(
description="Original audio volume when mixing (0.0 to 1.0)",
default=0.3,
ge=0.0,
le=1.0,
advanced=True,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Video with narration (path or data URI)"
)
audio_file: MediaFileType = SchemaField(
description="Generated audio file (path or data URI)"
)
def __init__(self):
super().__init__(
id="3d036b53-859c-4b17-9826-ca340f736e0e",
description="Generate AI narration and add to video",
categories={BlockCategory.MULTIMEDIA, BlockCategory.AI},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"video_in": "/tmp/test.mp4",
"script": "Hello world",
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("video_out", str), ("audio_file", str)],
test_mock={
"_generate_narration_audio": lambda *args: b"mock audio content",
"_add_narration_to_video": lambda *args: None,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "narrated_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _generate_narration_audio(
self, api_key: str, script: str, voice_id: str, model_id: str
) -> bytes:
"""Generate narration audio via ElevenLabs API."""
client = ElevenLabs(api_key=api_key)
audio_generator = client.text_to_speech.convert(
voice_id=voice_id,
text=script,
model_id=model_id,
)
# The SDK returns a generator, collect all chunks
return b"".join(audio_generator)
def _add_narration_to_video(
self,
video_abspath: str,
audio_abspath: str,
output_abspath: str,
mix_mode: str,
narration_volume: float,
original_volume: float,
) -> None:
"""Add narration audio to video. Extracted for testability."""
video = None
final = None
narration_original = None
narration_scaled = None
original = None
try:
strip_chapters_inplace(video_abspath)
video = VideoFileClip(video_abspath)
narration_original = AudioFileClip(audio_abspath)
narration_scaled = narration_original.with_volume_scaled(narration_volume)
narration = narration_scaled
if mix_mode == "replace":
final_audio = narration
elif mix_mode == "mix":
if video.audio:
original = video.audio.with_volume_scaled(original_volume)
final_audio = CompositeAudioClip([original, narration])
else:
final_audio = narration
else: # ducking - apply stronger attenuation
if video.audio:
# Ducking uses a much lower volume for original audio
ducking_volume = original_volume * 0.3
original = video.audio.with_volume_scaled(ducking_volume)
final_audio = CompositeAudioClip([original, narration])
else:
final_audio = narration
final = video.with_audio(final_audio)
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
finally:
if original:
original.close()
if narration_scaled:
narration_scaled.close()
if narration_original:
narration_original.close()
if final:
final.close()
if video:
video.close()
async def run(
self,
input_data: Input,
*,
credentials: ElevenLabsCredentials,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Generate narration audio via ElevenLabs
audio_content = self._generate_narration_audio(
credentials.api_key.get_secret_value(),
input_data.script,
input_data.voice_id,
input_data.model_id,
)
# Save audio to exec file path
audio_filename = MediaFileType(f"{node_exec_id}_narration.mp3")
audio_abspath = get_exec_file_path(
execution_context.graph_exec_id, audio_filename
)
os.makedirs(os.path.dirname(audio_abspath), exist_ok=True)
with open(audio_abspath, "wb") as f:
f.write(audio_content)
# Add narration to video
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_narrated_{source}.mp4")
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_narration_to_video(
video_abspath,
audio_abspath,
output_abspath,
input_data.mix_mode,
input_data.narration_volume,
input_data.original_volume,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
audio_out = await self._store_output_video(
execution_context, audio_filename
)
yield "video_out", video_out
yield "audio_file", audio_out
except Exception as e:
raise BlockExecutionError(
message=f"Failed to add narration: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -0,0 +1,231 @@
"""VideoTextOverlayBlock - Add text overlay to video."""
from typing import Literal
from moviepy import CompositeVideoClip, TextClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoTextOverlayBlock(Block):
"""Add text overlay/caption to video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
text: str = SchemaField(description="Text to overlay on video")
position: Literal[
"top",
"center",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
] = SchemaField(description="Position of text on screen", default="bottom")
start_time: float | None = SchemaField(
description="When to show text (seconds). None = entire video",
default=None,
advanced=True,
)
end_time: float | None = SchemaField(
description="When to hide text (seconds). None = until end",
default=None,
advanced=True,
)
font_size: int = SchemaField(
description="Font size", default=48, ge=12, le=200, advanced=True
)
font_color: str = SchemaField(
description="Font color (hex or name)", default="white", advanced=True
)
bg_color: str | None = SchemaField(
description="Background color behind text (None for transparent)",
default=None,
advanced=True,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Video with text overlay (path or data URI)"
)
def __init__(self):
super().__init__(
id="8ef14de6-cc90-430a-8cfa-3a003be92454",
description="Add text overlay/caption to video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
disabled=True, # Disable until we can lockdown imagemagick security policy
test_input={"video_in": "/tmp/test.mp4", "text": "Hello World"},
test_output=[("video_out", str)],
test_mock={
"_add_text_overlay": lambda *args: None,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "overlay_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _add_text_overlay(
self,
video_abspath: str,
output_abspath: str,
text: str,
position: str,
start_time: float | None,
end_time: float | None,
font_size: int,
font_color: str,
bg_color: str | None,
) -> None:
"""Add text overlay to video. Extracted for testability."""
video = None
final = None
txt_clip = None
try:
strip_chapters_inplace(video_abspath)
video = VideoFileClip(video_abspath)
txt_clip = TextClip(
text=text,
font_size=font_size,
color=font_color,
bg_color=bg_color,
)
# Position mapping
pos_map = {
"top": ("center", "top"),
"center": ("center", "center"),
"bottom": ("center", "bottom"),
"top-left": ("left", "top"),
"top-right": ("right", "top"),
"bottom-left": ("left", "bottom"),
"bottom-right": ("right", "bottom"),
}
txt_clip = txt_clip.with_position(pos_map[position])
# Set timing
start = start_time or 0
end = end_time or video.duration
duration = max(0, end - start)
txt_clip = txt_clip.with_start(start).with_end(end).with_duration(duration)
final = CompositeVideoClip([video, txt_clip])
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
finally:
if txt_clip:
txt_clip.close()
if final:
final.close()
if video:
video.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range if both are provided
if (
input_data.start_time is not None
and input_data.end_time is not None
and input_data.end_time <= input_data.start_time
):
raise BlockExecutionError(
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Build output path
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_overlay_{source}.mp4")
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_text_overlay(
video_abspath,
output_abspath,
input_data.text,
input_data.position,
input_data.start_time,
input_data.end_time,
input_data.font_size,
input_data.font_color,
input_data.bg_color,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to add text overlay: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -246,7 +246,9 @@ class BlockSchema(BaseModel):
f"is not of type {CredentialsMetaInput.__name__}"
)
credentials_fields[field_name].validate_credentials_field_schema(cls)
CredentialsMetaInput.validate_credentials_field_schema(
cls.get_field_schema(field_name), field_name
)
elif field_name in credentials_fields:
raise KeyError(
@@ -317,6 +319,8 @@ class BlockSchema(BaseModel):
"credentials_provider": [config.get("provider", "google")],
"credentials_types": [config.get("type", "oauth2")],
"credentials_scopes": config.get("scopes"),
"is_auto_credential": True,
"input_field_name": info["field_name"],
}
result[kwarg_name] = CredentialsFieldInfo.model_validate(
auto_schema, by_alias=True

View File

@@ -36,12 +36,14 @@ from backend.blocks.replicate.replicate_block import ReplicateModelBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.data.block import Block, BlockCost, BlockCostType
from backend.integrations.credentials_store import (
aiml_api_credentials,
anthropic_credentials,
apollo_credentials,
did_credentials,
elevenlabs_credentials,
enrichlayer_credentials,
groq_credentials,
ideogram_credentials,
@@ -78,6 +80,7 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.CLAUDE_4_1_OPUS: 21,
LlmModel.CLAUDE_4_OPUS: 21,
LlmModel.CLAUDE_4_SONNET: 5,
LlmModel.CLAUDE_4_6_OPUS: 14,
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9,
@@ -639,4 +642,16 @@ BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
},
),
],
VideoNarrationBlock: [
BlockCost(
cost_amount=5, # ElevenLabs TTS cost
cost_filter={
"credentials": {
"id": elevenlabs_credentials.id,
"provider": elevenlabs_credentials.provider,
"type": elevenlabs_credentials.type,
}
},
)
],
}

View File

@@ -3,7 +3,7 @@ import logging
import uuid
from collections import defaultdict
from datetime import datetime, timezone
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, cast
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, Self, cast
from prisma.enums import SubmissionStatus
from prisma.models import (
@@ -20,7 +20,7 @@ from prisma.types import (
AgentNodeLinkCreateInput,
StoreListingVersionWhereInput,
)
from pydantic import BaseModel, BeforeValidator, Field, create_model
from pydantic import BaseModel, BeforeValidator, Field
from pydantic.fields import computed_field
from backend.blocks.agent import AgentExecutorBlock
@@ -30,7 +30,6 @@ from backend.data.db import prisma as db
from backend.data.dynamic_fields import is_tool_pin, sanitize_pin_name
from backend.data.includes import MAX_GRAPH_VERSIONS_FETCH
from backend.data.model import (
CredentialsField,
CredentialsFieldInfo,
CredentialsMetaInput,
is_credentials_field_name,
@@ -45,7 +44,6 @@ from .block import (
AnyBlockSchema,
Block,
BlockInput,
BlockSchema,
BlockType,
EmptySchema,
get_block,
@@ -113,10 +111,12 @@ class Link(BaseDbModel):
class Node(BaseDbModel):
block_id: str
input_default: BlockInput = {} # dict[input_name, default_value]
metadata: dict[str, Any] = {}
input_links: list[Link] = []
output_links: list[Link] = []
input_default: BlockInput = Field( # dict[input_name, default_value]
default_factory=dict
)
metadata: dict[str, Any] = Field(default_factory=dict)
input_links: list[Link] = Field(default_factory=list)
output_links: list[Link] = Field(default_factory=list)
@property
def credentials_optional(self) -> bool:
@@ -221,18 +221,33 @@ class NodeModel(Node):
return result
class BaseGraph(BaseDbModel):
class GraphBaseMeta(BaseDbModel):
"""
Shared base for `GraphMeta` and `BaseGraph`, with core graph metadata fields.
"""
version: int = 1
is_active: bool = True
name: str
description: str
instructions: str | None = None
recommended_schedule_cron: str | None = None
nodes: list[Node] = []
links: list[Link] = []
forked_from_id: str | None = None
forked_from_version: int | None = None
class BaseGraph(GraphBaseMeta):
"""
Graph with nodes, links, and computed I/O schema fields.
Used to represent sub-graphs within a `Graph`. Contains the full graph
structure including nodes and links, plus computed fields for schemas
and trigger info. Does NOT include user_id or created_at (see GraphModel).
"""
nodes: list[Node] = Field(default_factory=list)
links: list[Link] = Field(default_factory=list)
@computed_field
@property
def input_schema(self) -> dict[str, Any]:
@@ -361,44 +376,78 @@ class GraphTriggerInfo(BaseModel):
class Graph(BaseGraph):
sub_graphs: list[BaseGraph] = [] # Flattened sub-graphs
"""Creatable graph model used in API create/update endpoints."""
sub_graphs: list[BaseGraph] = Field(default_factory=list) # Flattened sub-graphs
class GraphMeta(GraphBaseMeta):
"""
Lightweight graph metadata model representing an existing graph from the database,
for use in listings and summaries.
Lacks `GraphModel`'s nodes, links, and expensive computed fields.
Use for list endpoints where full graph data is not needed and performance matters.
"""
id: str # type: ignore
version: int # type: ignore
user_id: str
created_at: datetime
@classmethod
def from_db(cls, graph: "AgentGraph") -> Self:
return cls(
id=graph.id,
version=graph.version,
is_active=graph.isActive,
name=graph.name or "",
description=graph.description or "",
instructions=graph.instructions,
recommended_schedule_cron=graph.recommendedScheduleCron,
forked_from_id=graph.forkedFromId,
forked_from_version=graph.forkedFromVersion,
user_id=graph.userId,
created_at=graph.createdAt,
)
class GraphModel(Graph, GraphMeta):
"""
Full graph model representing an existing graph from the database.
This is the primary model for working with persisted graphs. Includes all
graph data (nodes, links, sub_graphs) plus user ownership and timestamps.
Provides computed fields (input_schema, output_schema, etc.) used during
set-up (frontend) and execution (backend).
Inherits from:
- `Graph`: provides structure (nodes, links, sub_graphs) and computed schemas
- `GraphMeta`: provides user_id, created_at for database records
"""
nodes: list[NodeModel] = Field(default_factory=list) # type: ignore
@property
def starting_nodes(self) -> list[NodeModel]:
outbound_nodes = {link.sink_id for link in self.links}
input_nodes = {
node.id for node in self.nodes if node.block.block_type == BlockType.INPUT
}
return [
node
for node in self.nodes
if node.id not in outbound_nodes or node.id in input_nodes
]
@property
def webhook_input_node(self) -> NodeModel | None: # type: ignore
return cast(NodeModel, super().webhook_input_node)
@computed_field
@property
def credentials_input_schema(self) -> dict[str, Any]:
schema = self._credentials_input_schema.jsonschema()
# Determine which credential fields are required based on credentials_optional metadata
graph_credentials_inputs = self.aggregate_credentials_inputs()
required_fields = []
# Build a map of node_id -> node for quick lookup
all_nodes = {node.id: node for node in self.nodes}
for sub_graph in self.sub_graphs:
for node in sub_graph.nodes:
all_nodes[node.id] = node
for field_key, (
_field_info,
node_field_pairs,
) in graph_credentials_inputs.items():
# A field is required if ANY node using it has credentials_optional=False
is_required = False
for node_id, _field_name in node_field_pairs:
node = all_nodes.get(node_id)
if node and not node.credentials_optional:
is_required = True
break
if is_required:
required_fields.append(field_key)
schema["required"] = required_fields
return schema
@property
def _credentials_input_schema(self) -> type[BlockSchema]:
graph_credentials_inputs = self.aggregate_credentials_inputs()
graph_credentials_inputs = self.regular_credentials_inputs
logger.debug(
f"Combined credentials input fields for graph #{self.id} ({self.name}): "
f"{graph_credentials_inputs}"
@@ -406,8 +455,8 @@ class Graph(BaseGraph):
# Warn if same-provider credentials inputs can't be combined (= bad UX)
graph_cred_fields = list(graph_credentials_inputs.values())
for i, (field, keys) in enumerate(graph_cred_fields):
for other_field, other_keys in list(graph_cred_fields)[i + 1 :]:
for i, (field, keys, _) in enumerate(graph_cred_fields):
for other_field, other_keys, _ in list(graph_cred_fields)[i + 1 :]:
if field.provider != other_field.provider:
continue
if ProviderName.HTTP in field.provider:
@@ -423,31 +472,78 @@ class Graph(BaseGraph):
f"keys: {keys} <> {other_keys}."
)
fields: dict[str, tuple[type[CredentialsMetaInput], CredentialsMetaInput]] = {
agg_field_key: (
CredentialsMetaInput[
Literal[tuple(field_info.provider)], # type: ignore
Literal[tuple(field_info.supported_types)], # type: ignore
],
CredentialsField(
required_scopes=set(field_info.required_scopes or []),
discriminator=field_info.discriminator,
discriminator_mapping=field_info.discriminator_mapping,
discriminator_values=field_info.discriminator_values,
),
)
for agg_field_key, (field_info, _) in graph_credentials_inputs.items()
}
# Build JSON schema directly to avoid expensive create_model + validation overhead
properties = {}
required_fields = []
return create_model(
self.name.replace(" ", "") + "CredentialsInputSchema",
__base__=BlockSchema,
**fields, # type: ignore
)
for agg_field_key, (
field_info,
_,
is_required,
) in graph_credentials_inputs.items():
providers = list(field_info.provider)
cred_types = list(field_info.supported_types)
field_schema: dict[str, Any] = {
"credentials_provider": providers,
"credentials_types": cred_types,
"type": "object",
"properties": {
"id": {"title": "Id", "type": "string"},
"title": {
"anyOf": [{"type": "string"}, {"type": "null"}],
"default": None,
"title": "Title",
},
"provider": {
"title": "Provider",
"type": "string",
**(
{"enum": providers}
if len(providers) > 1
else {"const": providers[0]}
),
},
"type": {
"title": "Type",
"type": "string",
**(
{"enum": cred_types}
if len(cred_types) > 1
else {"const": cred_types[0]}
),
},
},
"required": ["id", "provider", "type"],
}
# Add other (optional) field info items
field_schema.update(
field_info.model_dump(
by_alias=True,
exclude_defaults=True,
exclude={"provider", "supported_types"}, # already included above
)
)
# Ensure field schema is well-formed
CredentialsMetaInput.validate_credentials_field_schema(
field_schema, agg_field_key
)
properties[agg_field_key] = field_schema
if is_required:
required_fields.append(agg_field_key)
return {
"type": "object",
"properties": properties,
"required": required_fields,
}
def aggregate_credentials_inputs(
self,
) -> dict[str, tuple[CredentialsFieldInfo, set[tuple[str, str]]]]:
) -> dict[str, tuple[CredentialsFieldInfo, set[tuple[str, str]], bool]]:
"""
Returns:
dict[aggregated_field_key, tuple(
@@ -455,13 +551,19 @@ class Graph(BaseGraph):
(now includes discriminator_values from matching nodes)
set[(node_id, field_name)]: Node credentials fields that are
compatible with this aggregated field spec
bool: True if the field is required (any node has credentials_optional=False)
)]
"""
# First collect all credential field data with input defaults
node_credential_data = []
# Track (field_info, (node_id, field_name), is_required) for each credential field
node_credential_data: list[tuple[CredentialsFieldInfo, tuple[str, str]]] = []
node_required_map: dict[str, bool] = {} # node_id -> is_required
for graph in [self] + self.sub_graphs:
for node in graph.nodes:
# Track if this node requires credentials (credentials_optional=False means required)
node_required_map[node.id] = not node.credentials_optional
for (
field_name,
field_info,
@@ -485,37 +587,43 @@ class Graph(BaseGraph):
)
# Combine credential field info (this will merge discriminator_values automatically)
return CredentialsFieldInfo.combine(*node_credential_data)
combined = CredentialsFieldInfo.combine(*node_credential_data)
class GraphModel(Graph):
user_id: str
nodes: list[NodeModel] = [] # type: ignore
created_at: datetime
@property
def starting_nodes(self) -> list[NodeModel]:
outbound_nodes = {link.sink_id for link in self.links}
input_nodes = {
node.id for node in self.nodes if node.block.block_type == BlockType.INPUT
# Add is_required flag to each aggregated field
# A field is required if ANY node using it has credentials_optional=False
return {
key: (
field_info,
node_field_pairs,
any(
node_required_map.get(node_id, True)
for node_id, _ in node_field_pairs
),
)
for key, (field_info, node_field_pairs) in combined.items()
}
return [
node
for node in self.nodes
if node.id not in outbound_nodes or node.id in input_nodes
]
@property
def webhook_input_node(self) -> NodeModel | None: # type: ignore
return cast(NodeModel, super().webhook_input_node)
def regular_credentials_inputs(
self,
) -> dict[str, tuple[CredentialsFieldInfo, set[tuple[str, str]], bool]]:
"""Credentials that need explicit user mapping (CredentialsMetaInput fields)."""
return {
k: v
for k, v in self.aggregate_credentials_inputs().items()
if not v[0].is_auto_credential
}
def meta(self) -> "GraphMeta":
"""
Returns a GraphMeta object with metadata about the graph.
This is used to return metadata about the graph without exposing nodes and links.
"""
return GraphMeta.from_graph(self)
@property
def auto_credentials_inputs(
self,
) -> dict[str, tuple[CredentialsFieldInfo, set[tuple[str, str]], bool]]:
"""Credentials embedded in file fields (_credentials_id), resolved at execution time."""
return {
k: v
for k, v in self.aggregate_credentials_inputs().items()
if v[0].is_auto_credential
}
def reassign_ids(self, user_id: str, reassign_graph_id: bool = False):
"""
@@ -567,6 +675,16 @@ class GraphModel(Graph):
) and graph_id in graph_id_map:
node.input_default["graph_id"] = graph_id_map[graph_id]
# Clear auto-credentials references (e.g., _credentials_id in
# GoogleDriveFile fields) so the new user must re-authenticate
# with their own account
for node in graph.nodes:
if not node.input_default:
continue
for key, value in node.input_default.items():
if isinstance(value, dict) and "_credentials_id" in value:
del value["_credentials_id"]
def validate_graph(
self,
for_run: bool = False,
@@ -799,13 +917,14 @@ class GraphModel(Graph):
if is_static_output_block(link.source_id):
link.is_static = True # Each value block output should be static.
@staticmethod
def from_db(
@classmethod
def from_db( # type: ignore[reportIncompatibleMethodOverride]
cls,
graph: AgentGraph,
for_export: bool = False,
sub_graphs: list[AgentGraph] | None = None,
) -> "GraphModel":
return GraphModel(
) -> Self:
return cls(
id=graph.id,
user_id=graph.userId if not for_export else "",
version=graph.version,
@@ -831,17 +950,28 @@ class GraphModel(Graph):
],
)
def hide_nodes(self) -> "GraphModelWithoutNodes":
"""
Returns a copy of the `GraphModel` with nodes, links, and sub-graphs hidden
(excluded from serialization). They are still present in the model instance
so all computed fields (e.g. `credentials_input_schema`) still work.
"""
return GraphModelWithoutNodes.model_validate(self, from_attributes=True)
class GraphMeta(Graph):
user_id: str
# Easy work-around to prevent exposing nodes and links in the API response
nodes: list[NodeModel] = Field(default=[], exclude=True) # type: ignore
links: list[Link] = Field(default=[], exclude=True)
class GraphModelWithoutNodes(GraphModel):
"""
GraphModel variant that excludes nodes, links, and sub-graphs from serialization.
@staticmethod
def from_graph(graph: GraphModel) -> "GraphMeta":
return GraphMeta(**graph.model_dump())
Used in contexts like the store where exposing internal graph structure
is not desired. Inherits all computed fields from GraphModel but marks
nodes and links as excluded from JSON output.
"""
nodes: list[NodeModel] = Field(default_factory=list, exclude=True)
links: list[Link] = Field(default_factory=list, exclude=True)
sub_graphs: list[BaseGraph] = Field(default_factory=list, exclude=True)
class GraphsPaginated(BaseModel):
@@ -912,21 +1042,11 @@ async def list_graphs_paginated(
where=where_clause,
distinct=["id"],
order={"version": "desc"},
include=AGENT_GRAPH_INCLUDE,
skip=offset,
take=page_size,
)
graph_models: list[GraphMeta] = []
for graph in graphs:
try:
graph_meta = GraphModel.from_db(graph).meta()
# Trigger serialization to validate that the graph is well formed
graph_meta.model_dump()
graph_models.append(graph_meta)
except Exception as e:
logger.error(f"Error processing graph {graph.id}: {e}")
continue
graph_models = [GraphMeta.from_db(graph) for graph in graphs]
return GraphsPaginated(
graphs=graph_models,

View File

@@ -463,3 +463,328 @@ def test_node_credentials_optional_with_other_metadata():
assert node.credentials_optional is True
assert node.metadata["position"] == {"x": 100, "y": 200}
assert node.metadata["customized_name"] == "My Custom Node"
# ============================================================================
# Tests for _reassign_ids credential clearing (Fix 3: SECRT-1772)
def test_combine_preserves_is_auto_credential_flag():
"""
CredentialsFieldInfo.combine() must propagate is_auto_credential and
input_field_name to the combined result. Regression test for reviewer
finding that combine() dropped these fields.
"""
from backend.data.model import CredentialsFieldInfo
auto_field = CredentialsFieldInfo.model_validate(
{
"credentials_provider": ["google"],
"credentials_types": ["oauth2"],
"credentials_scopes": ["drive.readonly"],
"is_auto_credential": True,
"input_field_name": "spreadsheet",
},
by_alias=True,
)
# combine() takes *args of (field_info, key) tuples
combined = CredentialsFieldInfo.combine(
(auto_field, ("node-1", "credentials")),
(auto_field, ("node-2", "credentials")),
)
assert len(combined) == 1
group_key = next(iter(combined))
combined_info, combined_keys = combined[group_key]
assert combined_info.is_auto_credential is True
assert combined_info.input_field_name == "spreadsheet"
assert combined_keys == {("node-1", "credentials"), ("node-2", "credentials")}
def test_combine_preserves_regular_credential_defaults():
"""Regular credentials should have is_auto_credential=False after combine()."""
from backend.data.model import CredentialsFieldInfo
regular_field = CredentialsFieldInfo.model_validate(
{
"credentials_provider": ["github"],
"credentials_types": ["api_key"],
"is_auto_credential": False,
},
by_alias=True,
)
combined = CredentialsFieldInfo.combine(
(regular_field, ("node-1", "credentials")),
)
group_key = next(iter(combined))
combined_info, _ = combined[group_key]
assert combined_info.is_auto_credential is False
assert combined_info.input_field_name is None
# ============================================================================
def test_reassign_ids_clears_credentials_id():
"""
[SECRT-1772] _reassign_ids should clear _credentials_id from
GoogleDriveFile-style input_default fields so forked agents
don't retain the original creator's credential references.
"""
from backend.data.graph import GraphModel
node = Node(
id="node-1",
block_id=StoreValueBlock().id,
input_default={
"spreadsheet": {
"_credentials_id": "original-cred-id",
"id": "file-123",
"name": "test.xlsx",
"mimeType": "application/vnd.google-apps.spreadsheet",
"url": "https://docs.google.com/spreadsheets/d/file-123",
},
},
)
graph = Graph(
id="test-graph",
name="Test",
description="Test",
nodes=[node],
links=[],
)
GraphModel._reassign_ids(graph, user_id="new-user", graph_id_map={})
# _credentials_id key should be removed (not set to None) so that
# _acquire_auto_credentials correctly errors instead of treating it as chained data
assert "_credentials_id" not in graph.nodes[0].input_default["spreadsheet"]
def test_reassign_ids_preserves_non_credential_fields():
"""
Regression guard: _reassign_ids should NOT modify non-credential fields
like name, mimeType, id, url.
"""
from backend.data.graph import GraphModel
node = Node(
id="node-1",
block_id=StoreValueBlock().id,
input_default={
"spreadsheet": {
"_credentials_id": "cred-abc",
"id": "file-123",
"name": "test.xlsx",
"mimeType": "application/vnd.google-apps.spreadsheet",
"url": "https://docs.google.com/spreadsheets/d/file-123",
},
},
)
graph = Graph(
id="test-graph",
name="Test",
description="Test",
nodes=[node],
links=[],
)
GraphModel._reassign_ids(graph, user_id="new-user", graph_id_map={})
field = graph.nodes[0].input_default["spreadsheet"]
assert field["id"] == "file-123"
assert field["name"] == "test.xlsx"
assert field["mimeType"] == "application/vnd.google-apps.spreadsheet"
assert field["url"] == "https://docs.google.com/spreadsheets/d/file-123"
def test_reassign_ids_handles_no_credentials():
"""
Regression guard: _reassign_ids should not error when input_default
has no dict fields with _credentials_id.
"""
from backend.data.graph import GraphModel
node = Node(
id="node-1",
block_id=StoreValueBlock().id,
input_default={
"input": "some value",
"another_input": 42,
},
)
graph = Graph(
id="test-graph",
name="Test",
description="Test",
nodes=[node],
links=[],
)
GraphModel._reassign_ids(graph, user_id="new-user", graph_id_map={})
# Should not error, fields unchanged
assert graph.nodes[0].input_default["input"] == "some value"
assert graph.nodes[0].input_default["another_input"] == 42
def test_reassign_ids_handles_multiple_credential_fields():
"""
[SECRT-1772] When a node has multiple dict fields with _credentials_id,
ALL of them should be cleared.
"""
from backend.data.graph import GraphModel
node = Node(
id="node-1",
block_id=StoreValueBlock().id,
input_default={
"spreadsheet": {
"_credentials_id": "cred-1",
"id": "file-1",
"name": "file1.xlsx",
},
"doc_file": {
"_credentials_id": "cred-2",
"id": "file-2",
"name": "file2.docx",
},
"plain_input": "not a dict",
},
)
graph = Graph(
id="test-graph",
name="Test",
description="Test",
nodes=[node],
links=[],
)
GraphModel._reassign_ids(graph, user_id="new-user", graph_id_map={})
assert "_credentials_id" not in graph.nodes[0].input_default["spreadsheet"]
assert "_credentials_id" not in graph.nodes[0].input_default["doc_file"]
assert graph.nodes[0].input_default["plain_input"] == "not a dict"
# ============================================================================
# Tests for discriminate() field propagation
def test_discriminate_preserves_is_auto_credential_flag():
"""
CredentialsFieldInfo.discriminate() must propagate is_auto_credential and
input_field_name to the discriminated result. Regression test for
discriminate() dropping these fields (same class of bug as combine()).
"""
from backend.data.model import CredentialsFieldInfo
auto_field = CredentialsFieldInfo.model_validate(
{
"credentials_provider": ["google", "openai"],
"credentials_types": ["oauth2"],
"credentials_scopes": ["drive.readonly"],
"is_auto_credential": True,
"input_field_name": "spreadsheet",
"discriminator": "model",
"discriminator_mapping": {"gpt-4": "openai", "gemini": "google"},
},
by_alias=True,
)
discriminated = auto_field.discriminate("gemini")
assert discriminated.is_auto_credential is True
assert discriminated.input_field_name == "spreadsheet"
assert discriminated.provider == frozenset(["google"])
def test_discriminate_preserves_regular_credential_defaults():
"""Regular credentials should have is_auto_credential=False after discriminate()."""
from backend.data.model import CredentialsFieldInfo
regular_field = CredentialsFieldInfo.model_validate(
{
"credentials_provider": ["google", "openai"],
"credentials_types": ["api_key"],
"is_auto_credential": False,
"discriminator": "model",
"discriminator_mapping": {"gpt-4": "openai", "gemini": "google"},
},
by_alias=True,
)
discriminated = regular_field.discriminate("gpt-4")
assert discriminated.is_auto_credential is False
assert discriminated.input_field_name is None
assert discriminated.provider == frozenset(["openai"])
# ============================================================================
# Tests for credentials_input_schema excluding auto_credentials
def test_credentials_input_schema_excludes_auto_creds():
"""
GraphModel.credentials_input_schema should exclude auto_credentials
(is_auto_credential=True) from the schema. Auto_credentials are
transparently resolved at execution time via file picker data.
"""
from datetime import datetime, timezone
from unittest.mock import PropertyMock, patch
from backend.data.graph import GraphModel, NodeModel
from backend.data.model import CredentialsFieldInfo
regular_field_info = CredentialsFieldInfo.model_validate(
{
"credentials_provider": ["github"],
"credentials_types": ["api_key"],
"is_auto_credential": False,
},
by_alias=True,
)
graph = GraphModel(
id="test-graph",
version=1,
name="Test",
description="Test",
user_id="test-user",
created_at=datetime.now(timezone.utc),
nodes=[
NodeModel(
id="node-1",
block_id=StoreValueBlock().id,
input_default={},
graph_id="test-graph",
graph_version=1,
),
],
links=[],
)
# Mock regular_credentials_inputs to return only the non-auto field (3-tuple)
regular_only = {
"github_credentials": (
regular_field_info,
{("node-1", "credentials")},
True,
),
}
with patch.object(
type(graph),
"regular_credentials_inputs",
new_callable=PropertyMock,
return_value=regular_only,
):
schema = graph.credentials_input_schema
field_names = set(schema.get("properties", {}).keys())
# Should include regular credential but NOT auto_credential
assert "github_credentials" in field_names
assert "google_credentials" not in field_names

View File

@@ -163,7 +163,6 @@ class User(BaseModel):
if TYPE_CHECKING:
from prisma.models import User as PrismaUser
from backend.data.block import BlockSchema
T = TypeVar("T")
logger = logging.getLogger(__name__)
@@ -508,15 +507,13 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
def allowed_cred_types(cls) -> tuple[CredentialsType, ...]:
return get_args(cls.model_fields["type"].annotation)
@classmethod
def validate_credentials_field_schema(cls, model: type["BlockSchema"]):
@staticmethod
def validate_credentials_field_schema(
field_schema: dict[str, Any], field_name: str
):
"""Validates the schema of a credentials input field"""
field_name = next(
name for name, type in model.get_credentials_fields().items() if type is cls
)
field_schema = model.jsonschema()["properties"][field_name]
try:
schema_extra = CredentialsFieldInfo[CP, CT].model_validate(field_schema)
field_info = CredentialsFieldInfo[CP, CT].model_validate(field_schema)
except ValidationError as e:
if "Field required [type=missing" not in str(e):
raise
@@ -526,11 +523,11 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
f"{field_schema}"
) from e
providers = cls.allowed_providers()
providers = field_info.provider
if (
providers is not None
and len(providers) > 1
and not schema_extra.discriminator
and not field_info.discriminator
):
raise TypeError(
f"Multi-provider CredentialsField '{field_name}' "
@@ -574,6 +571,8 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
discriminator: Optional[str] = None
discriminator_mapping: Optional[dict[str, CP]] = None
discriminator_values: set[Any] = Field(default_factory=set)
is_auto_credential: bool = False
input_field_name: Optional[str] = None
@classmethod
def combine(
@@ -654,6 +653,9 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
+ "_credentials"
)
# Propagate is_auto_credential from the combined field.
# All fields in a group should share the same is_auto_credential
# value since auto and regular credentials serve different purposes.
result[group_key] = (
CredentialsFieldInfo[CP, CT](
credentials_provider=combined.provider,
@@ -662,6 +664,8 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
discriminator=combined.discriminator,
discriminator_mapping=combined.discriminator_mapping,
discriminator_values=set(all_discriminator_values),
is_auto_credential=combined.is_auto_credential,
input_field_name=combined.input_field_name,
),
combined_keys,
)
@@ -687,6 +691,8 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
discriminator=self.discriminator,
discriminator_mapping=self.discriminator_mapping,
discriminator_values=self.discriminator_values,
is_auto_credential=self.is_auto_credential,
input_field_name=self.input_field_name,
)

View File

@@ -172,6 +172,81 @@ def execute_graph(
T = TypeVar("T")
async def _acquire_auto_credentials(
input_model: type[BlockSchema],
input_data: dict[str, Any],
creds_manager: "IntegrationCredentialsManager",
user_id: str,
) -> tuple[dict[str, Any], list[AsyncRedisLock]]:
"""
Resolve auto_credentials from GoogleDriveFileField-style inputs.
Returns:
(extra_exec_kwargs, locks): kwargs to inject into block execution, and
credential locks to release after execution completes.
"""
extra_exec_kwargs: dict[str, Any] = {}
locks: list[AsyncRedisLock] = []
# NOTE: If a block ever has multiple auto-credential fields, a ValueError
# on a later field will strand locks acquired for earlier fields. They'll
# auto-expire via Redis TTL, but add a try/except to release partial locks
# if that becomes a real scenario.
for kwarg_name, info in input_model.get_auto_credentials_fields().items():
field_name = info["field_name"]
field_data = input_data.get(field_name)
if field_data and isinstance(field_data, dict):
# Check if _credentials_id key exists in the field data
if "_credentials_id" in field_data:
cred_id = field_data["_credentials_id"]
if cred_id:
# Credential ID provided - acquire credentials
provider = info.get("config", {}).get(
"provider", "external service"
)
file_name = field_data.get("name", "selected file")
try:
credentials, lock = await creds_manager.acquire(
user_id, cred_id
)
locks.append(lock)
extra_exec_kwargs[kwarg_name] = credentials
except ValueError:
raise ValueError(
f"{provider.capitalize()} credentials for "
f"'{file_name}' in field '{field_name}' are not "
f"available in your account. "
f"This can happen if the agent was created by another "
f"user or the credentials were deleted. "
f"Please open the agent in the builder and re-select "
f"the file to authenticate with your own account."
)
# else: _credentials_id is explicitly None, skip (chained data)
else:
# _credentials_id key missing entirely - this is an error
provider = info.get("config", {}).get("provider", "external service")
file_name = field_data.get("name", "selected file")
raise ValueError(
f"Authentication missing for '{file_name}' in field "
f"'{field_name}'. Please re-select the file to authenticate "
f"with {provider.capitalize()}."
)
elif field_data is None and field_name not in input_data:
# Field not in input_data at all = connected from upstream block, skip
pass
else:
# field_data is None/empty but key IS in input_data = user didn't select
provider = info.get("config", {}).get("provider", "external service")
raise ValueError(
f"No file selected for '{field_name}'. "
f"Please select a file to provide "
f"{provider.capitalize()} authentication."
)
return extra_exec_kwargs, locks
async def execute_node(
node: Node,
data: NodeExecutionEntry,
@@ -271,41 +346,14 @@ async def execute_node(
extra_exec_kwargs[field_name] = credentials
# Handle auto-generated credentials (e.g., from GoogleDriveFileInput)
for kwarg_name, info in input_model.get_auto_credentials_fields().items():
field_name = info["field_name"]
field_data = input_data.get(field_name)
if field_data and isinstance(field_data, dict):
# Check if _credentials_id key exists in the field data
if "_credentials_id" in field_data:
cred_id = field_data["_credentials_id"]
if cred_id:
# Credential ID provided - acquire credentials
provider = info.get("config", {}).get(
"provider", "external service"
)
file_name = field_data.get("name", "selected file")
try:
credentials, lock = await creds_manager.acquire(
user_id, cred_id
)
creds_locks.append(lock)
extra_exec_kwargs[kwarg_name] = credentials
except ValueError:
# Credential was deleted or doesn't exist
raise ValueError(
f"Authentication expired for '{file_name}' in field '{field_name}'. "
f"The saved {provider.capitalize()} credentials no longer exist. "
f"Please re-select the file to re-authenticate."
)
# else: _credentials_id is explicitly None, skip credentials (for chained data)
else:
# _credentials_id key missing entirely - this is an error
provider = info.get("config", {}).get("provider", "external service")
file_name = field_data.get("name", "selected file")
raise ValueError(
f"Authentication missing for '{file_name}' in field '{field_name}'. "
f"Please re-select the file to authenticate with {provider.capitalize()}."
)
auto_extra_kwargs, auto_locks = await _acquire_auto_credentials(
input_model=input_model,
input_data=input_data,
creds_manager=creds_manager,
user_id=user_id,
)
extra_exec_kwargs.update(auto_extra_kwargs)
creds_locks.extend(auto_locks)
output_size = 0

View File

@@ -0,0 +1,320 @@
"""
Tests for auto_credentials handling in execute_node().
These test the _acquire_auto_credentials() helper function extracted from
execute_node() (manager.py lines 273-308).
"""
import pytest
from pytest_mock import MockerFixture
@pytest.fixture
def google_drive_file_data():
return {
"valid": {
"_credentials_id": "cred-id-123",
"id": "file-123",
"name": "test.xlsx",
"mimeType": "application/vnd.google-apps.spreadsheet",
},
"chained": {
"_credentials_id": None,
"id": "file-456",
"name": "chained.xlsx",
"mimeType": "application/vnd.google-apps.spreadsheet",
},
"missing_key": {
"id": "file-789",
"name": "bad.xlsx",
"mimeType": "application/vnd.google-apps.spreadsheet",
},
}
@pytest.fixture
def mock_input_model(mocker: MockerFixture):
"""Create a mock input model with get_auto_credentials_fields() returning one field."""
input_model = mocker.MagicMock()
input_model.get_auto_credentials_fields.return_value = {
"credentials": {
"field_name": "spreadsheet",
"config": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.readonly"],
},
}
}
return input_model
@pytest.fixture
def mock_creds_manager(mocker: MockerFixture):
manager = mocker.AsyncMock()
mock_lock = mocker.AsyncMock()
mock_creds = mocker.MagicMock()
mock_creds.id = "cred-id-123"
mock_creds.provider = "google"
manager.acquire.return_value = (mock_creds, mock_lock)
return manager, mock_creds, mock_lock
@pytest.mark.asyncio
async def test_auto_credentials_happy_path(
mocker: MockerFixture,
google_drive_file_data,
mock_input_model,
mock_creds_manager,
):
"""When field_data has a valid _credentials_id, credentials should be acquired."""
from backend.executor.manager import _acquire_auto_credentials
manager, mock_creds, mock_lock = mock_creds_manager
input_data = {"spreadsheet": google_drive_file_data["valid"]}
extra_kwargs, locks = await _acquire_auto_credentials(
input_model=mock_input_model,
input_data=input_data,
creds_manager=manager,
user_id="user-1",
)
manager.acquire.assert_called_once_with("user-1", "cred-id-123")
assert extra_kwargs["credentials"] == mock_creds
assert mock_lock in locks
@pytest.mark.asyncio
async def test_auto_credentials_field_none_static_raises(
mocker: MockerFixture,
mock_input_model,
mock_creds_manager,
):
"""
[THE BUG FIX TEST — OPEN-2895]
When field_data is None and the key IS in input_data (user didn't select a file),
should raise ValueError instead of silently skipping.
"""
from backend.executor.manager import _acquire_auto_credentials
manager, _, _ = mock_creds_manager
# Key is present but value is None = user didn't select a file
input_data = {"spreadsheet": None}
with pytest.raises(ValueError, match="No file selected"):
await _acquire_auto_credentials(
input_model=mock_input_model,
input_data=input_data,
creds_manager=manager,
user_id="user-1",
)
@pytest.mark.asyncio
async def test_auto_credentials_field_absent_skips(
mocker: MockerFixture,
mock_input_model,
mock_creds_manager,
):
"""
When the field key is NOT in input_data at all (upstream connection),
should skip without error.
"""
from backend.executor.manager import _acquire_auto_credentials
manager, _, _ = mock_creds_manager
# Key not present = connected from upstream block
input_data = {}
extra_kwargs, locks = await _acquire_auto_credentials(
input_model=mock_input_model,
input_data=input_data,
creds_manager=manager,
user_id="user-1",
)
manager.acquire.assert_not_called()
assert "credentials" not in extra_kwargs
assert locks == []
@pytest.mark.asyncio
async def test_auto_credentials_chained_cred_id_none(
mocker: MockerFixture,
google_drive_file_data,
mock_input_model,
mock_creds_manager,
):
"""
When _credentials_id is explicitly None (chained data from upstream),
should skip credential acquisition.
"""
from backend.executor.manager import _acquire_auto_credentials
manager, _, _ = mock_creds_manager
input_data = {"spreadsheet": google_drive_file_data["chained"]}
extra_kwargs, locks = await _acquire_auto_credentials(
input_model=mock_input_model,
input_data=input_data,
creds_manager=manager,
user_id="user-1",
)
manager.acquire.assert_not_called()
assert "credentials" not in extra_kwargs
@pytest.mark.asyncio
async def test_auto_credentials_missing_cred_id_key_raises(
mocker: MockerFixture,
google_drive_file_data,
mock_input_model,
mock_creds_manager,
):
"""
When _credentials_id key is missing entirely from field_data dict,
should raise ValueError.
"""
from backend.executor.manager import _acquire_auto_credentials
manager, _, _ = mock_creds_manager
input_data = {"spreadsheet": google_drive_file_data["missing_key"]}
with pytest.raises(ValueError, match="Authentication missing"):
await _acquire_auto_credentials(
input_model=mock_input_model,
input_data=input_data,
creds_manager=manager,
user_id="user-1",
)
@pytest.mark.asyncio
async def test_auto_credentials_ownership_mismatch_error(
mocker: MockerFixture,
google_drive_file_data,
mock_input_model,
mock_creds_manager,
):
"""
[SECRT-1772] When acquire() raises ValueError (credential belongs to another user),
the error message should mention 'not available' (not 'expired').
"""
from backend.executor.manager import _acquire_auto_credentials
manager, _, _ = mock_creds_manager
manager.acquire.side_effect = ValueError(
"Credentials #cred-id-123 for user #user-2 not found"
)
input_data = {"spreadsheet": google_drive_file_data["valid"]}
with pytest.raises(ValueError, match="not available in your account"):
await _acquire_auto_credentials(
input_model=mock_input_model,
input_data=input_data,
creds_manager=manager,
user_id="user-2",
)
@pytest.mark.asyncio
async def test_auto_credentials_deleted_credential_error(
mocker: MockerFixture,
google_drive_file_data,
mock_input_model,
mock_creds_manager,
):
"""
[SECRT-1772] When acquire() raises ValueError (credential was deleted),
the error message should mention 'not available' (not 'expired').
"""
from backend.executor.manager import _acquire_auto_credentials
manager, _, _ = mock_creds_manager
manager.acquire.side_effect = ValueError(
"Credentials #cred-id-123 for user #user-1 not found"
)
input_data = {"spreadsheet": google_drive_file_data["valid"]}
with pytest.raises(ValueError, match="not available in your account"):
await _acquire_auto_credentials(
input_model=mock_input_model,
input_data=input_data,
creds_manager=manager,
user_id="user-1",
)
@pytest.mark.asyncio
async def test_auto_credentials_lock_appended(
mocker: MockerFixture,
google_drive_file_data,
mock_input_model,
mock_creds_manager,
):
"""Lock from acquire() should be included in returned locks list."""
from backend.executor.manager import _acquire_auto_credentials
manager, _, mock_lock = mock_creds_manager
input_data = {"spreadsheet": google_drive_file_data["valid"]}
extra_kwargs, locks = await _acquire_auto_credentials(
input_model=mock_input_model,
input_data=input_data,
creds_manager=manager,
user_id="user-1",
)
assert len(locks) == 1
assert locks[0] is mock_lock
@pytest.mark.asyncio
async def test_auto_credentials_multiple_fields(
mocker: MockerFixture,
mock_creds_manager,
):
"""When there are multiple auto_credentials fields, only valid ones should acquire."""
from backend.executor.manager import _acquire_auto_credentials
manager, mock_creds, mock_lock = mock_creds_manager
input_model = mocker.MagicMock()
input_model.get_auto_credentials_fields.return_value = {
"credentials": {
"field_name": "spreadsheet",
"config": {"provider": "google", "type": "oauth2"},
},
"credentials2": {
"field_name": "doc_file",
"config": {"provider": "google", "type": "oauth2"},
},
}
input_data = {
"spreadsheet": {
"_credentials_id": "cred-id-123",
"id": "file-1",
"name": "file1.xlsx",
},
"doc_file": {
"_credentials_id": None,
"id": "file-2",
"name": "chained.doc",
},
}
extra_kwargs, locks = await _acquire_auto_credentials(
input_model=input_model,
input_data=input_data,
creds_manager=manager,
user_id="user-1",
)
# Only the first field should have acquired credentials
manager.acquire.assert_called_once_with("user-1", "cred-id-123")
assert "credentials" in extra_kwargs
assert "credentials2" not in extra_kwargs
assert len(locks) == 1

View File

@@ -259,7 +259,8 @@ async def _validate_node_input_credentials(
# Find any fields of type CredentialsMetaInput
credentials_fields = block.input_schema.get_credentials_fields()
if not credentials_fields:
auto_credentials_fields = block.input_schema.get_auto_credentials_fields()
if not credentials_fields and not auto_credentials_fields:
continue
# Track if any credential field is missing for this node
@@ -339,6 +340,47 @@ async def _validate_node_input_credentials(
] = "Invalid credentials: type/provider mismatch"
continue
# Validate auto-credentials (GoogleDriveFileField-based)
# These have _credentials_id embedded in the file field data
if auto_credentials_fields:
for _kwarg_name, info in auto_credentials_fields.items():
field_name = info["field_name"]
# Check input_default and nodes_input_masks for the field value
field_value = node.input_default.get(field_name)
if nodes_input_masks and node.id in nodes_input_masks:
field_value = nodes_input_masks[node.id].get(
field_name, field_value
)
if field_value and isinstance(field_value, dict):
if "_credentials_id" not in field_value:
# Key removed (e.g., on fork) — needs re-auth
has_missing_credentials = True
credential_errors[node.id][field_name] = (
"Authentication missing for the selected file. "
"Please re-select the file to authenticate with "
"your own account."
)
continue
cred_id = field_value.get("_credentials_id")
if cred_id and isinstance(cred_id, str):
try:
creds_store = get_integration_credentials_store()
creds = await creds_store.get_creds_by_id(user_id, cred_id)
except Exception as e:
has_missing_credentials = True
credential_errors[node.id][
field_name
] = f"Credentials not available: {e}"
continue
if not creds:
has_missing_credentials = True
credential_errors[node.id][field_name] = (
"The saved credentials are not available "
"for your account. Please re-select the file to "
"authenticate with your own account."
)
# If node has optional credentials and any are missing, mark for skipping
# But only if there are no other errors for this node
if (
@@ -370,10 +412,11 @@ def make_node_credentials_input_map(
"""
result: dict[str, dict[str, JsonValue]] = {}
# Get aggregated credentials fields for the graph
graph_cred_inputs = graph.aggregate_credentials_inputs()
# Only map regular credentials (not auto_credentials, which are resolved
# at execution time from _credentials_id in file field data)
graph_cred_inputs = graph.regular_credentials_inputs
for graph_input_name, (_, compatible_node_fields) in graph_cred_inputs.items():
for graph_input_name, (_, compatible_node_fields, _) in graph_cred_inputs.items():
# Best-effort map: skip missing items
if graph_input_name not in graph_credentials_input:
continue

View File

@@ -907,3 +907,335 @@ async def test_stop_graph_execution_cascades_to_child_with_reviews(
# Verify both parent and child status updates
assert mock_execution_db.update_graph_execution_stats.call_count >= 1
# ============================================================================
# Tests for auto_credentials validation in _validate_node_input_credentials
# (Fix 3: SECRT-1772 + Fix 4: Path 4)
# ============================================================================
@pytest.mark.asyncio
async def test_validate_node_input_credentials_auto_creds_valid(
mocker: MockerFixture,
):
"""
[SECRT-1772] When a node has auto_credentials with a valid _credentials_id
that exists in the store, validation should pass without errors.
"""
from backend.executor.utils import _validate_node_input_credentials
mock_node = mocker.MagicMock()
mock_node.id = "node-with-auto-creds"
mock_node.credentials_optional = False
mock_node.input_default = {
"spreadsheet": {
"_credentials_id": "valid-cred-id",
"id": "file-123",
"name": "test.xlsx",
}
}
mock_block = mocker.MagicMock()
# No regular credentials fields
mock_block.input_schema.get_credentials_fields.return_value = {}
# Has auto_credentials fields
mock_block.input_schema.get_auto_credentials_fields.return_value = {
"credentials": {
"field_name": "spreadsheet",
"config": {"provider": "google", "type": "oauth2"},
}
}
mock_node.block = mock_block
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
# Mock the credentials store to return valid credentials
mock_store = mocker.MagicMock()
mock_creds = mocker.MagicMock()
mock_creds.id = "valid-cred-id"
mock_store.get_creds_by_id = mocker.AsyncMock(return_value=mock_creds)
mocker.patch(
"backend.executor.utils.get_integration_credentials_store",
return_value=mock_store,
)
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="test-user",
nodes_input_masks=None,
)
assert mock_node.id not in errors
assert mock_node.id not in nodes_to_skip
@pytest.mark.asyncio
async def test_validate_node_input_credentials_auto_creds_missing(
mocker: MockerFixture,
):
"""
[SECRT-1772] When a node has auto_credentials with a _credentials_id
that doesn't exist for the current user, validation should report an error.
"""
from backend.executor.utils import _validate_node_input_credentials
mock_node = mocker.MagicMock()
mock_node.id = "node-with-bad-auto-creds"
mock_node.credentials_optional = False
mock_node.input_default = {
"spreadsheet": {
"_credentials_id": "other-users-cred-id",
"id": "file-123",
"name": "test.xlsx",
}
}
mock_block = mocker.MagicMock()
mock_block.input_schema.get_credentials_fields.return_value = {}
mock_block.input_schema.get_auto_credentials_fields.return_value = {
"credentials": {
"field_name": "spreadsheet",
"config": {"provider": "google", "type": "oauth2"},
}
}
mock_node.block = mock_block
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
# Mock the credentials store to return None (cred not found for this user)
mock_store = mocker.MagicMock()
mock_store.get_creds_by_id = mocker.AsyncMock(return_value=None)
mocker.patch(
"backend.executor.utils.get_integration_credentials_store",
return_value=mock_store,
)
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="different-user",
nodes_input_masks=None,
)
assert mock_node.id in errors
assert "spreadsheet" in errors[mock_node.id]
assert "not available" in errors[mock_node.id]["spreadsheet"].lower()
@pytest.mark.asyncio
async def test_validate_node_input_credentials_both_regular_and_auto(
mocker: MockerFixture,
):
"""
[SECRT-1772] A node that has BOTH regular credentials AND auto_credentials
should have both validated.
"""
from backend.executor.utils import _validate_node_input_credentials
mock_node = mocker.MagicMock()
mock_node.id = "node-with-both-creds"
mock_node.credentials_optional = False
mock_node.input_default = {
"credentials": {
"id": "regular-cred-id",
"provider": "github",
"type": "api_key",
},
"spreadsheet": {
"_credentials_id": "auto-cred-id",
"id": "file-123",
"name": "test.xlsx",
},
}
mock_credentials_field_type = mocker.MagicMock()
mock_credentials_meta = mocker.MagicMock()
mock_credentials_meta.id = "regular-cred-id"
mock_credentials_meta.provider = "github"
mock_credentials_meta.type = "api_key"
mock_credentials_field_type.model_validate.return_value = mock_credentials_meta
mock_block = mocker.MagicMock()
# Regular credentials field
mock_block.input_schema.get_credentials_fields.return_value = {
"credentials": mock_credentials_field_type,
}
# Auto-credentials field
mock_block.input_schema.get_auto_credentials_fields.return_value = {
"auto_credentials": {
"field_name": "spreadsheet",
"config": {"provider": "google", "type": "oauth2"},
}
}
mock_node.block = mock_block
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
# Mock the credentials store to return valid credentials for both
mock_store = mocker.MagicMock()
mock_regular_creds = mocker.MagicMock()
mock_regular_creds.id = "regular-cred-id"
mock_regular_creds.provider = "github"
mock_regular_creds.type = "api_key"
mock_auto_creds = mocker.MagicMock()
mock_auto_creds.id = "auto-cred-id"
def get_creds_side_effect(user_id, cred_id):
if cred_id == "regular-cred-id":
return mock_regular_creds
elif cred_id == "auto-cred-id":
return mock_auto_creds
return None
mock_store.get_creds_by_id = mocker.AsyncMock(side_effect=get_creds_side_effect)
mocker.patch(
"backend.executor.utils.get_integration_credentials_store",
return_value=mock_store,
)
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="test-user",
nodes_input_masks=None,
)
# Both should validate successfully - no errors
assert mock_node.id not in errors
assert mock_node.id not in nodes_to_skip
@pytest.mark.asyncio
async def test_validate_node_input_credentials_auto_creds_skipped_when_none(
mocker: MockerFixture,
):
"""
When a node has auto_credentials but the field value has _credentials_id=None
(e.g., from upstream connection), validation should skip it without error.
"""
from backend.executor.utils import _validate_node_input_credentials
mock_node = mocker.MagicMock()
mock_node.id = "node-with-chained-auto-creds"
mock_node.credentials_optional = False
mock_node.input_default = {
"spreadsheet": {
"_credentials_id": None,
"id": "file-123",
"name": "test.xlsx",
}
}
mock_block = mocker.MagicMock()
mock_block.input_schema.get_credentials_fields.return_value = {}
mock_block.input_schema.get_auto_credentials_fields.return_value = {
"credentials": {
"field_name": "spreadsheet",
"config": {"provider": "google", "type": "oauth2"},
}
}
mock_node.block = mock_block
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="test-user",
nodes_input_masks=None,
)
# No error - chained data with None cred_id is valid
assert mock_node.id not in errors
# ============================================================================
# Tests for CredentialsFieldInfo auto_credential tag (Fix 4: Path 4)
# ============================================================================
def test_credentials_field_info_auto_credential_tag():
"""
[Path 4] CredentialsFieldInfo should support is_auto_credential and
input_field_name fields for distinguishing auto from regular credentials.
"""
from backend.data.model import CredentialsFieldInfo
# Regular credential should have is_auto_credential=False by default
regular = CredentialsFieldInfo.model_validate(
{
"credentials_provider": ["github"],
"credentials_types": ["api_key"],
},
by_alias=True,
)
assert regular.is_auto_credential is False
assert regular.input_field_name is None
# Auto credential should have is_auto_credential=True
auto = CredentialsFieldInfo.model_validate(
{
"credentials_provider": ["google"],
"credentials_types": ["oauth2"],
"is_auto_credential": True,
"input_field_name": "spreadsheet",
},
by_alias=True,
)
assert auto.is_auto_credential is True
assert auto.input_field_name == "spreadsheet"
def test_make_node_credentials_input_map_excludes_auto_creds(
mocker: MockerFixture,
):
"""
[Path 4] make_node_credentials_input_map should only include regular credentials,
not auto_credentials (which are resolved at execution time).
"""
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.executor.utils import make_node_credentials_input_map
from backend.integrations.providers import ProviderName
# Create a mock graph with aggregate_credentials_inputs that returns
# both regular and auto credentials
mock_graph = mocker.MagicMock()
regular_field_info = CredentialsFieldInfo.model_validate(
{
"credentials_provider": ["github"],
"credentials_types": ["api_key"],
"is_auto_credential": False,
},
by_alias=True,
)
# Mock regular_credentials_inputs property (auto_credentials are excluded)
mock_graph.regular_credentials_inputs = {
"github_creds": (regular_field_info, {("node-1", "credentials")}, True),
}
graph_credentials_input = {
"github_creds": CredentialsMetaInput(
id="cred-123",
provider=ProviderName("github"),
type="api_key",
),
}
result = make_node_credentials_input_map(mock_graph, graph_credentials_input)
# Regular credentials should be mapped
assert "node-1" in result
assert "credentials" in result["node-1"]
# Auto credentials should NOT appear in the result
# (they would have been mapped to the kwarg_name "credentials" not "spreadsheet")
for node_id, fields in result.items():
for field_name, value in fields.items():
# Verify no auto-credential phantom entries
if isinstance(value, dict):
assert "_credentials_id" not in value

View File

@@ -224,6 +224,14 @@ openweathermap_credentials = APIKeyCredentials(
expires_at=None,
)
elevenlabs_credentials = APIKeyCredentials(
id="f4a8b6c2-3d1e-4f5a-9b8c-7d6e5f4a3b2c",
provider="elevenlabs",
api_key=SecretStr(settings.secrets.elevenlabs_api_key),
title="Use Credits for ElevenLabs",
expires_at=None,
)
DEFAULT_CREDENTIALS = [
ollama_credentials,
revid_credentials,
@@ -252,6 +260,7 @@ DEFAULT_CREDENTIALS = [
v0_credentials,
webshare_proxy_credentials,
openweathermap_credentials,
elevenlabs_credentials,
]
SYSTEM_CREDENTIAL_IDS = {cred.id for cred in DEFAULT_CREDENTIALS}
@@ -366,6 +375,8 @@ class IntegrationCredentialsStore:
all_credentials.append(webshare_proxy_credentials)
if settings.secrets.openweathermap_api_key:
all_credentials.append(openweathermap_credentials)
if settings.secrets.elevenlabs_api_key:
all_credentials.append(elevenlabs_credentials)
return all_credentials
async def get_creds_by_id(

View File

@@ -18,6 +18,7 @@ class ProviderName(str, Enum):
DISCORD = "discord"
D_ID = "d_id"
E2B = "e2b"
ELEVENLABS = "elevenlabs"
FAL = "fal"
GITHUB = "github"
GOOGLE = "google"

View File

@@ -8,6 +8,8 @@ from pathlib import Path
from typing import TYPE_CHECKING, Literal
from urllib.parse import urlparse
from pydantic import BaseModel
from backend.util.cloud_storage import get_cloud_storage_handler
from backend.util.request import Requests
from backend.util.settings import Config
@@ -17,6 +19,35 @@ from backend.util.virus_scanner import scan_content_safe
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
class WorkspaceUri(BaseModel):
"""Parsed workspace:// URI."""
file_ref: str # File ID or path (e.g. "abc123" or "/path/to/file.txt")
mime_type: str | None = None # MIME type from fragment (e.g. "video/mp4")
is_path: bool = False # True if file_ref is a path (starts with "/")
def parse_workspace_uri(uri: str) -> WorkspaceUri:
"""Parse a workspace:// URI into its components.
Examples:
"workspace://abc123" → WorkspaceUri(file_ref="abc123", mime_type=None, is_path=False)
"workspace://abc123#video/mp4" → WorkspaceUri(file_ref="abc123", mime_type="video/mp4", is_path=False)
"workspace:///path/to/file.txt" → WorkspaceUri(file_ref="/path/to/file.txt", mime_type=None, is_path=True)
"""
raw = uri.removeprefix("workspace://")
mime_type: str | None = None
if "#" in raw:
raw, fragment = raw.split("#", 1)
mime_type = fragment or None
return WorkspaceUri(
file_ref=raw,
mime_type=mime_type,
is_path=raw.startswith("/"),
)
# Return format options for store_media_file
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
@@ -183,22 +214,20 @@ async def store_media_file(
"This file type is only available in CoPilot sessions."
)
# Parse workspace reference
# workspace://abc123 - by file ID
# workspace:///path/to/file.txt - by virtual path
file_ref = file[12:] # Remove "workspace://"
# Parse workspace reference (strips #mimeType fragment from file ID)
ws = parse_workspace_uri(file)
if file_ref.startswith("/"):
# Path reference
workspace_content = await workspace_manager.read_file(file_ref)
file_info = await workspace_manager.get_file_info_by_path(file_ref)
if ws.is_path:
# Path reference: workspace:///path/to/file.txt
workspace_content = await workspace_manager.read_file(ws.file_ref)
file_info = await workspace_manager.get_file_info_by_path(ws.file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
else:
# ID reference
workspace_content = await workspace_manager.read_file_by_id(file_ref)
file_info = await workspace_manager.get_file_info(file_ref)
# ID reference: workspace://abc123 or workspace://abc123#video/mp4
workspace_content = await workspace_manager.read_file_by_id(ws.file_ref)
file_info = await workspace_manager.get_file_info(ws.file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
@@ -334,7 +363,21 @@ async def store_media_file(
# Don't re-save if input was already from workspace
if is_from_workspace:
# Return original workspace reference
# Return original workspace reference, ensuring MIME type fragment
ws = parse_workspace_uri(file)
if not ws.mime_type:
# Add MIME type fragment if missing (older refs without it)
try:
if ws.is_path:
info = await workspace_manager.get_file_info_by_path(
ws.file_ref
)
else:
info = await workspace_manager.get_file_info(ws.file_ref)
if info:
return MediaFileType(f"{file}#{info.mimeType}")
except Exception:
pass
return MediaFileType(file)
# Save new content to workspace
@@ -346,7 +389,7 @@ async def store_media_file(
filename=filename,
overwrite=True,
)
return MediaFileType(f"workspace://{file_record.id}")
return MediaFileType(f"workspace://{file_record.id}#{file_record.mimeType}")
else:
raise ValueError(f"Invalid return_format: {return_format}")

View File

@@ -656,6 +656,7 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
e2b_api_key: str = Field(default="", description="E2B API key")
nvidia_api_key: str = Field(default="", description="Nvidia API key")
mem0_api_key: str = Field(default="", description="Mem0 API key")
elevenlabs_api_key: str = Field(default="", description="ElevenLabs API key")
linear_client_id: str = Field(default="", description="Linear client ID")
linear_client_secret: str = Field(default="", description="Linear client secret")

View File

@@ -22,6 +22,7 @@ from backend.data.workspace import (
soft_delete_workspace_file,
)
from backend.util.settings import Config
from backend.util.virus_scanner import scan_content_safe
from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage
logger = logging.getLogger(__name__)
@@ -187,6 +188,9 @@ class WorkspaceManager:
f"{Config().max_file_size_mb}MB limit"
)
# Virus scan content before persisting (defense in depth)
await scan_content_safe(content, filename=filename)
# Determine path with session scoping
if path is None:
path = f"/{filename}"

View File

@@ -1169,6 +1169,29 @@ attrs = ">=21.3.0"
e2b = ">=1.5.4,<2.0.0"
httpx = ">=0.20.0,<1.0.0"
[[package]]
name = "elevenlabs"
version = "1.59.0"
description = ""
optional = false
python-versions = "<4.0,>=3.8"
groups = ["main"]
files = [
{file = "elevenlabs-1.59.0-py3-none-any.whl", hash = "sha256:468145db81a0bc867708b4a8619699f75583e9481b395ec1339d0b443da771ed"},
{file = "elevenlabs-1.59.0.tar.gz", hash = "sha256:16e735bd594e86d415dd445d249c8cc28b09996cfd627fbc10102c0a84698859"},
]
[package.dependencies]
httpx = ">=0.21.2"
pydantic = ">=1.9.2"
pydantic-core = ">=2.18.2,<3.0.0"
requests = ">=2.20"
typing_extensions = ">=4.0.0"
websockets = ">=11.0"
[package.extras]
pyaudio = ["pyaudio (>=0.2.14)"]
[[package]]
name = "email-validator"
version = "2.2.0"
@@ -7361,6 +7384,28 @@ files = [
defusedxml = ">=0.7.1,<0.8.0"
requests = "*"
[[package]]
name = "yt-dlp"
version = "2025.12.8"
description = "A feature-rich command-line audio/video downloader"
optional = false
python-versions = ">=3.10"
groups = ["main"]
files = [
{file = "yt_dlp-2025.12.8-py3-none-any.whl", hash = "sha256:36e2584342e409cfbfa0b5e61448a1c5189e345cf4564294456ee509e7d3e065"},
{file = "yt_dlp-2025.12.8.tar.gz", hash = "sha256:b773c81bb6b71cb2c111cfb859f453c7a71cf2ef44eff234ff155877184c3e4f"},
]
[package.extras]
build = ["build", "hatchling (>=1.27.0)", "pip", "setuptools (>=71.0.2)", "wheel"]
curl-cffi = ["curl-cffi (>=0.5.10,<0.6.dev0 || >=0.10.dev0,<0.14) ; implementation_name == \"cpython\""]
default = ["brotli ; implementation_name == \"cpython\"", "brotlicffi ; implementation_name != \"cpython\"", "certifi", "mutagen", "pycryptodomex", "requests (>=2.32.2,<3)", "urllib3 (>=2.0.2,<3)", "websockets (>=13.0)", "yt-dlp-ejs (==0.3.2)"]
dev = ["autopep8 (>=2.0,<3.0)", "pre-commit", "pytest (>=8.1,<9.0)", "pytest-rerunfailures (>=14.0,<15.0)", "ruff (>=0.14.0,<0.15.0)"]
pyinstaller = ["pyinstaller (>=6.17.0)"]
secretstorage = ["cffi", "secretstorage"]
static-analysis = ["autopep8 (>=2.0,<3.0)", "ruff (>=0.14.0,<0.15.0)"]
test = ["pytest (>=8.1,<9.0)", "pytest-rerunfailures (>=14.0,<15.0)"]
[[package]]
name = "zerobouncesdk"
version = "1.1.2"
@@ -7512,4 +7557,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<3.14"
content-hash = "ee5742dc1a9df50dfc06d4b26a1682cbb2b25cab6b79ce5625ec272f93e4f4bf"
content-hash = "8239323f9ae6713224dffd1fe8ba8b449fe88b6c3c7a90940294a74f43a0387a"

View File

@@ -20,6 +20,7 @@ click = "^8.2.0"
cryptography = "^45.0"
discord-py = "^2.5.2"
e2b-code-interpreter = "^1.5.2"
elevenlabs = "^1.50.0"
fastapi = "^0.116.1"
feedparser = "^6.0.11"
flake8 = "^7.3.0"
@@ -71,6 +72,7 @@ tweepy = "^4.16.0"
uvicorn = { extras = ["standard"], version = "^0.35.0" }
websockets = "^15.0"
youtube-transcript-api = "^1.2.1"
yt-dlp = "2025.12.08"
zerobouncesdk = "^1.1.2"
# NOTE: please insert new dependencies in their alphabetical location
pytest-snapshot = "^0.9.0"

View File

@@ -3,7 +3,6 @@
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},
"description": "A test graph",

View File

@@ -1,34 +1,14 @@
[
{
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},
"created_at": "2025-09-04T13:37:00",
"description": "A test graph",
"forked_from_id": null,
"forked_from_version": null,
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"id": "graph-123",
"input_schema": {
"properties": {},
"required": [],
"type": "object"
},
"instructions": null,
"is_active": true,
"name": "Test Graph",
"output_schema": {
"properties": {},
"required": [],
"type": "object"
},
"recommended_schedule_cron": null,
"sub_graphs": [],
"trigger_setup_info": null,
"user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
"version": 1
}

View File

@@ -30,7 +30,6 @@
"defaults"
],
"dependencies": {
"@ai-sdk/react": "3.0.61",
"@faker-js/faker": "10.0.0",
"@hookform/resolvers": "5.2.2",
"@next/third-parties": "15.4.6",
@@ -61,10 +60,6 @@
"@rjsf/utils": "6.1.2",
"@rjsf/validator-ajv8": "6.1.2",
"@sentry/nextjs": "10.27.0",
"@streamdown/cjk": "1.0.1",
"@streamdown/code": "1.0.1",
"@streamdown/math": "1.0.1",
"@streamdown/mermaid": "1.0.1",
"@supabase/ssr": "0.7.0",
"@supabase/supabase-js": "2.78.0",
"@tanstack/react-query": "5.90.6",
@@ -73,7 +68,6 @@
"@vercel/analytics": "1.5.0",
"@vercel/speed-insights": "1.2.0",
"@xyflow/react": "12.9.2",
"ai": "6.0.59",
"boring-avatars": "1.11.2",
"class-variance-authority": "0.7.1",
"clsx": "2.1.1",
@@ -118,11 +112,9 @@
"remark-math": "6.0.0",
"shepherd.js": "14.5.1",
"sonner": "2.0.7",
"streamdown": "2.1.0",
"tailwind-merge": "2.6.0",
"tailwind-scrollbar": "3.1.0",
"tailwindcss-animate": "1.0.7",
"use-stick-to-bottom": "1.1.2",
"uuid": "11.1.0",
"vaul": "1.1.2",
"zod": "3.25.76",

File diff suppressed because it is too large Load Diff

View File

@@ -1,5 +1,5 @@
import { CredentialsMetaInput } from "@/app/api/__generated__/models/credentialsMetaInput";
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
import { GraphModel } from "@/app/api/__generated__/models/graphModel";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import { useState } from "react";
import { getSchemaDefaultCredentials } from "../../helpers";
@@ -9,7 +9,7 @@ type Credential = CredentialsMetaInput | undefined;
type Credentials = Record<string, Credential>;
type Props = {
agent: GraphMeta | null;
agent: GraphModel | null;
siblingInputs?: Record<string, any>;
onCredentialsChange: (
credentials: Record<string, CredentialsMetaInput>,

View File

@@ -1,9 +1,9 @@
import { CredentialsMetaInput } from "@/app/api/__generated__/models/credentialsMetaInput";
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
import { GraphModel } from "@/app/api/__generated__/models/graphModel";
import { BlockIOCredentialsSubSchema } from "@/lib/autogpt-server-api/types";
export function getCredentialFields(
agent: GraphMeta | null,
agent: GraphModel | null,
): AgentCredentialsFields {
if (!agent) return {};

View File

@@ -3,10 +3,10 @@ import type {
CredentialsMetaInput,
} from "@/lib/autogpt-server-api/types";
import type { InputValues } from "./types";
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
import { GraphModel } from "@/app/api/__generated__/models/graphModel";
export function computeInitialAgentInputs(
agent: GraphMeta | null,
agent: GraphModel | null,
existingInputs?: InputValues | null,
): InputValues {
const properties = agent?.input_schema?.properties || {};
@@ -29,7 +29,7 @@ export function computeInitialAgentInputs(
}
type IsRunDisabledParams = {
agent: GraphMeta | null;
agent: GraphModel | null;
isRunning: boolean;
agentInputs: InputValues | null | undefined;
};

View File

@@ -30,6 +30,8 @@ import {
} from "@/components/atoms/Tooltip/BaseTooltip";
import { GraphMeta } from "@/lib/autogpt-server-api";
import jaro from "jaro-winkler";
import { getV1GetSpecificGraph } from "@/app/api/__generated__/endpoints/graphs/graphs";
import { okData } from "@/app/api/helpers";
type _Block = Omit<Block, "inputSchema" | "outputSchema"> & {
uiKey?: string;
@@ -107,6 +109,8 @@ export function BlocksControl({
.filter((b) => b.uiType !== BlockUIType.AGENT)
.sort((a, b) => a.name.localeCompare(b.name));
// Agent blocks are created from GraphMeta which doesn't include schemas.
// Schemas will be fetched on-demand when the block is actually added.
const agentBlockList = flows
.map((flow): _Block => {
return {
@@ -116,8 +120,9 @@ export function BlocksControl({
`Ver.${flow.version}` +
(flow.description ? ` | ${flow.description}` : ""),
categories: [{ category: "AGENT", description: "" }],
inputSchema: flow.input_schema,
outputSchema: flow.output_schema,
// Empty schemas - will be populated when block is added
inputSchema: { type: "object", properties: {} },
outputSchema: { type: "object", properties: {} },
staticOutput: false,
uiType: BlockUIType.AGENT,
costs: [],
@@ -125,8 +130,7 @@ export function BlocksControl({
hardcodedValues: {
graph_id: flow.id,
graph_version: flow.version,
input_schema: flow.input_schema,
output_schema: flow.output_schema,
// Schemas will be fetched on-demand when block is added
},
};
})
@@ -182,6 +186,37 @@ export function BlocksControl({
setSelectedCategory(null);
}, []);
// Handler to add a block, fetching graph data on-demand for agent blocks
const handleAddBlock = useCallback(
async (block: _Block & { notAvailable: string | null }) => {
if (block.notAvailable) return;
// For agent blocks, fetch the full graph to get schemas
if (block.uiType === BlockUIType.AGENT && block.hardcodedValues) {
const graphID = block.hardcodedValues.graph_id as string;
const graphVersion = block.hardcodedValues.graph_version as number;
const graphData = okData(
await getV1GetSpecificGraph(graphID, { version: graphVersion }),
);
if (graphData) {
addBlock(block.id, block.name, {
...block.hardcodedValues,
input_schema: graphData.input_schema,
output_schema: graphData.output_schema,
});
} else {
// Fallback: add without schemas (will be incomplete)
console.error("Failed to fetch graph data for agent block");
addBlock(block.id, block.name, block.hardcodedValues || {});
}
} else {
addBlock(block.id, block.name, block.hardcodedValues || {});
}
},
[addBlock],
);
// Extract unique categories from blocks
const categories = useMemo(() => {
return Array.from(
@@ -303,10 +338,7 @@ export function BlocksControl({
}),
);
}}
onClick={() =>
!block.notAvailable &&
addBlock(block.id, block.name, block?.hardcodedValues || {})
}
onClick={() => handleAddBlock(block)}
title={block.notAvailable ?? undefined}
>
<div

View File

@@ -1,6 +1,6 @@
import { beautifyString } from "@/lib/utils";
import { Clipboard, Maximize2 } from "lucide-react";
import React, { useState } from "react";
import React, { useMemo, useState } from "react";
import { Button } from "../../../../../components/__legacy__/ui/button";
import { ContentRenderer } from "../../../../../components/__legacy__/ui/render";
import {
@@ -11,6 +11,12 @@ import {
TableHeader,
TableRow,
} from "../../../../../components/__legacy__/ui/table";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import {
globalRegistry,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { useToast } from "../../../../../components/molecules/Toast/use-toast";
import ExpandableOutputDialog from "./ExpandableOutputDialog";
@@ -26,6 +32,9 @@ export default function DataTable({
data,
}: DataTableProps) {
const { toast } = useToast();
const enableEnhancedOutputHandling = useGetFlag(
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
);
const [expandedDialog, setExpandedDialog] = useState<{
isOpen: boolean;
execId: string;
@@ -33,6 +42,15 @@ export default function DataTable({
data: any[];
} | null>(null);
// Prepare renderers for each item when enhanced mode is enabled
const getItemRenderer = useMemo(() => {
if (!enableEnhancedOutputHandling) return null;
return (item: unknown) => {
const metadata: OutputMetadata = {};
return globalRegistry.getRenderer(item, metadata);
};
}, [enableEnhancedOutputHandling]);
const copyData = (pin: string, data: string) => {
navigator.clipboard.writeText(data).then(() => {
toast({
@@ -102,15 +120,31 @@ export default function DataTable({
<Clipboard size={18} />
</Button>
</div>
{value.map((item, index) => (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < value.length - 1 && ", "}
</React.Fragment>
))}
{value.map((item, index) => {
const renderer = getItemRenderer?.(item);
if (enableEnhancedOutputHandling && renderer) {
const metadata: OutputMetadata = {};
return (
<React.Fragment key={index}>
<OutputItem
value={item}
metadata={metadata}
renderer={renderer}
/>
{index < value.length - 1 && ", "}
</React.Fragment>
);
}
return (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < value.length - 1 && ", "}
</React.Fragment>
);
})}
</div>
</TableCell>
</TableRow>

View File

@@ -29,13 +29,17 @@ import "@xyflow/react/dist/style.css";
import { ConnectedEdge, CustomNode } from "../CustomNode/CustomNode";
import "./flow.css";
import {
BlockIORootSchema,
BlockUIType,
formatEdgeID,
GraphExecutionID,
GraphID,
GraphMeta,
LibraryAgent,
SpecialBlockID,
} from "@/lib/autogpt-server-api";
import { getV1GetSpecificGraph } from "@/app/api/__generated__/endpoints/graphs/graphs";
import { okData } from "@/app/api/helpers";
import { IncompatibilityInfo } from "../../../hooks/useSubAgentUpdate/types";
import { Key, storage } from "@/services/storage/local-storage";
import { findNewlyAddedBlockCoordinates, getTypeColor } from "@/lib/utils";
@@ -687,8 +691,94 @@ const FlowEditor: React.FC<{
[getNode, updateNode, nodes],
);
/* Shared helper to create and add a node */
const createAndAddNode = useCallback(
async (
blockID: string,
blockName: string,
hardcodedValues: Record<string, any>,
position: { x: number; y: number },
): Promise<CustomNode | null> => {
const nodeSchema = availableBlocks.find((node) => node.id === blockID);
if (!nodeSchema) {
console.error(`Schema not found for block ID: ${blockID}`);
return null;
}
// For agent blocks, fetch the full graph to get schemas
let inputSchema: BlockIORootSchema = nodeSchema.inputSchema;
let outputSchema: BlockIORootSchema = nodeSchema.outputSchema;
let finalHardcodedValues = hardcodedValues;
if (blockID === SpecialBlockID.AGENT) {
const graphID = hardcodedValues.graph_id as string;
const graphVersion = hardcodedValues.graph_version as number;
const graphData = okData(
await getV1GetSpecificGraph(graphID, { version: graphVersion }),
);
if (graphData) {
inputSchema = graphData.input_schema as BlockIORootSchema;
outputSchema = graphData.output_schema as BlockIORootSchema;
finalHardcodedValues = {
...hardcodedValues,
input_schema: graphData.input_schema,
output_schema: graphData.output_schema,
};
} else {
console.error("Failed to fetch graph data for agent block");
}
}
const newNode: CustomNode = {
id: nodeId.toString(),
type: "custom",
position,
data: {
blockType: blockName,
blockCosts: nodeSchema.costs || [],
title: `${blockName} ${nodeId}`,
description: nodeSchema.description,
categories: nodeSchema.categories,
inputSchema: inputSchema,
outputSchema: outputSchema,
hardcodedValues: finalHardcodedValues,
connections: [],
isOutputOpen: false,
block_id: blockID,
isOutputStatic: nodeSchema.staticOutput,
uiType: nodeSchema.uiType,
},
};
addNodes(newNode);
setNodeId((prevId) => prevId + 1);
clearNodesStatusAndOutput();
history.push({
type: "ADD_NODE",
payload: { node: { ...newNode, ...newNode.data } },
undo: () => deleteElements({ nodes: [{ id: newNode.id }] }),
redo: () => addNodes(newNode),
});
return newNode;
},
[
availableBlocks,
nodeId,
addNodes,
deleteElements,
clearNodesStatusAndOutput,
],
);
const addNode = useCallback(
(blockId: string, nodeType: string, hardcodedValues: any = {}) => {
async (
blockId: string,
nodeType: string,
hardcodedValues: Record<string, any> = {},
) => {
const nodeSchema = availableBlocks.find((node) => node.id === blockId);
if (!nodeSchema) {
console.error(`Schema not found for block ID: ${blockId}`);
@@ -707,73 +797,42 @@ const FlowEditor: React.FC<{
// Alternative: We could also use D3 force, Intersection for this (React flow Pro examples)
const { x, y } = getViewport();
const viewportCoordinates =
const position =
nodeDimensions && Object.keys(nodeDimensions).length > 0
? // we will get all the dimension of nodes, then store
findNewlyAddedBlockCoordinates(
? findNewlyAddedBlockCoordinates(
nodeDimensions,
nodeSchema.uiType == BlockUIType.NOTE ? 300 : 500,
60,
1.0,
)
: // we will get all the dimension of nodes, then store
{
: {
x: window.innerWidth / 2 - x,
y: window.innerHeight / 2 - y,
};
const newNode: CustomNode = {
id: nodeId.toString(),
type: "custom",
position: viewportCoordinates, // Set the position to the calculated viewport center
data: {
blockType: nodeType,
blockCosts: nodeSchema.costs,
title: `${nodeType} ${nodeId}`,
description: nodeSchema.description,
categories: nodeSchema.categories,
inputSchema: nodeSchema.inputSchema,
outputSchema: nodeSchema.outputSchema,
hardcodedValues: hardcodedValues,
connections: [],
isOutputOpen: false,
block_id: blockId,
isOutputStatic: nodeSchema.staticOutput,
uiType: nodeSchema.uiType,
},
};
addNodes(newNode);
setNodeId((prevId) => prevId + 1);
clearNodesStatusAndOutput(); // Clear status and output when a new node is added
const newNode = await createAndAddNode(
blockId,
nodeType,
hardcodedValues,
position,
);
if (!newNode) return;
setViewport(
{
// Rough estimate of the dimension of the node is: 500x400px.
// Though we skip shifting the X, considering the block menu side-bar.
x: -viewportCoordinates.x * 0.8 + (window.innerWidth - 0.0) / 2,
y: -viewportCoordinates.y * 0.8 + (window.innerHeight - 400) / 2,
x: -position.x * 0.8 + (window.innerWidth - 0.0) / 2,
y: -position.y * 0.8 + (window.innerHeight - 400) / 2,
zoom: 0.8,
},
{ duration: 500 },
);
history.push({
type: "ADD_NODE",
payload: { node: { ...newNode, ...newNode.data } },
undo: () => deleteElements({ nodes: [{ id: newNode.id }] }),
redo: () => addNodes(newNode),
});
},
[
nodeId,
getViewport,
setViewport,
availableBlocks,
addNodes,
nodeDimensions,
deleteElements,
clearNodesStatusAndOutput,
createAndAddNode,
],
);
@@ -920,7 +979,7 @@ const FlowEditor: React.FC<{
}, []);
const onDrop = useCallback(
(event: React.DragEvent) => {
async (event: React.DragEvent) => {
event.preventDefault();
const blockData = event.dataTransfer.getData("application/reactflow");
@@ -935,62 +994,17 @@ const FlowEditor: React.FC<{
y: event.clientY,
});
// Find the block schema
const nodeSchema = availableBlocks.find((node) => node.id === blockId);
if (!nodeSchema) {
console.error(`Schema not found for block ID: ${blockId}`);
return;
}
// Create the new node at the drop position
const newNode: CustomNode = {
id: nodeId.toString(),
type: "custom",
await createAndAddNode(
blockId,
blockName,
hardcodedValues || {},
position,
data: {
blockType: blockName,
blockCosts: nodeSchema.costs || [],
title: `${blockName} ${nodeId}`,
description: nodeSchema.description,
categories: nodeSchema.categories,
inputSchema: nodeSchema.inputSchema,
outputSchema: nodeSchema.outputSchema,
hardcodedValues: hardcodedValues,
connections: [],
isOutputOpen: false,
block_id: blockId,
uiType: nodeSchema.uiType,
},
};
history.push({
type: "ADD_NODE",
payload: { node: { ...newNode, ...newNode.data } },
undo: () => {
deleteElements({ nodes: [{ id: newNode.id } as any], edges: [] });
},
redo: () => {
addNodes([newNode]);
},
});
addNodes([newNode]);
clearNodesStatusAndOutput();
setNodeId((prevId) => prevId + 1);
);
} catch (error) {
console.error("Failed to drop block:", error);
}
},
[
nodeId,
availableBlocks,
nodes,
edges,
addNodes,
screenToFlowPosition,
deleteElements,
clearNodesStatusAndOutput,
],
[screenToFlowPosition, createAndAddNode],
);
const buildContextValue: BuilderContextType = useMemo(

View File

@@ -1,8 +1,14 @@
import React, { useContext, useState } from "react";
import React, { useContext, useMemo, useState } from "react";
import { Button } from "@/components/__legacy__/ui/button";
import { Maximize2 } from "lucide-react";
import * as Separator from "@radix-ui/react-separator";
import { ContentRenderer } from "@/components/__legacy__/ui/render";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import {
globalRegistry,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { beautifyString } from "@/lib/utils";
@@ -21,6 +27,9 @@ export default function NodeOutputs({
data,
}: NodeOutputsProps) {
const builderContext = useContext(BuilderContext);
const enableEnhancedOutputHandling = useGetFlag(
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
);
const [expandedDialog, setExpandedDialog] = useState<{
isOpen: boolean;
@@ -37,6 +46,15 @@ export default function NodeOutputs({
const { getNodeTitle } = builderContext;
// Prepare renderers for each item when enhanced mode is enabled
const getItemRenderer = useMemo(() => {
if (!enableEnhancedOutputHandling) return null;
return (item: unknown) => {
const metadata: OutputMetadata = {};
return globalRegistry.getRenderer(item, metadata);
};
}, [enableEnhancedOutputHandling]);
const getBeautifiedPinName = (pin: string) => {
if (!pin.startsWith("tools_^_")) {
return beautifyString(pin);
@@ -87,15 +105,31 @@ export default function NodeOutputs({
<div className="mt-2">
<strong className="mr-2">Data:</strong>
<div className="mt-1">
{dataArray.slice(0, 10).map((item, index) => (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < Math.min(dataArray.length, 10) - 1 && ", "}
</React.Fragment>
))}
{dataArray.slice(0, 10).map((item, index) => {
const renderer = getItemRenderer?.(item);
if (enableEnhancedOutputHandling && renderer) {
const metadata: OutputMetadata = {};
return (
<React.Fragment key={index}>
<OutputItem
value={item}
metadata={metadata}
renderer={renderer}
/>
{index < Math.min(dataArray.length, 10) - 1 && ", "}
</React.Fragment>
);
}
return (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < Math.min(dataArray.length, 10) - 1 && ", "}
</React.Fragment>
);
})}
{dataArray.length > 10 && (
<span style={{ color: "#888" }}>
<br />

View File

@@ -4,13 +4,13 @@ import { AgentRunDraftView } from "@/app/(platform)/library/agents/[id]/componen
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import type {
CredentialsMetaInput,
GraphMeta,
Graph,
} from "@/lib/autogpt-server-api/types";
interface RunInputDialogProps {
isOpen: boolean;
doClose: () => void;
graph: GraphMeta;
graph: Graph;
doRun?: (
inputs: Record<string, any>,
credentialsInputs: Record<string, CredentialsMetaInput>,

View File

@@ -9,13 +9,13 @@ import { CustomNodeData } from "@/app/(platform)/build/components/legacy-builder
import {
BlockUIType,
CredentialsMetaInput,
GraphMeta,
Graph,
} from "@/lib/autogpt-server-api/types";
import RunnerOutputUI, { OutputNodeInfo } from "./RunnerOutputUI";
import { RunnerInputDialog } from "./RunnerInputUI";
interface RunnerUIWrapperProps {
graph: GraphMeta;
graph: Graph;
nodes: Node<CustomNodeData>[];
graphExecutionError?: string | null;
saveAndRun: (

View File

@@ -1,5 +1,5 @@
import { GraphInputSchema } from "@/lib/autogpt-server-api";
import { GraphMetaLike, IncompatibilityInfo } from "./types";
import { GraphLike, IncompatibilityInfo } from "./types";
// Helper type for schema properties - the generated types are too loose
type SchemaProperties = Record<string, GraphInputSchema["properties"][string]>;
@@ -36,7 +36,7 @@ export function getSchemaRequired(schema: unknown): SchemaRequired {
*/
export function createUpdatedAgentNodeInputs(
currentInputs: Record<string, unknown>,
latestSubGraphVersion: GraphMetaLike,
latestSubGraphVersion: GraphLike,
): Record<string, unknown> {
return {
...currentInputs,

View File

@@ -1,7 +1,11 @@
import type { GraphMeta as LegacyGraphMeta } from "@/lib/autogpt-server-api";
import type {
Graph as LegacyGraph,
GraphMeta as LegacyGraphMeta,
} from "@/lib/autogpt-server-api";
import type { GraphModel as GeneratedGraph } from "@/app/api/__generated__/models/graphModel";
import type { GraphMeta as GeneratedGraphMeta } from "@/app/api/__generated__/models/graphMeta";
export type SubAgentUpdateInfo<T extends GraphMetaLike = GraphMetaLike> = {
export type SubAgentUpdateInfo<T extends GraphLike = GraphLike> = {
hasUpdate: boolean;
currentVersion: number;
latestVersion: number;
@@ -10,7 +14,10 @@ export type SubAgentUpdateInfo<T extends GraphMetaLike = GraphMetaLike> = {
incompatibilities: IncompatibilityInfo | null;
};
// Union type for GraphMeta that works with both legacy and new builder
// Union type for Graph (with schemas) that works with both legacy and new builder
export type GraphLike = LegacyGraph | GeneratedGraph;
// Union type for GraphMeta (without schemas) for version detection
export type GraphMetaLike = LegacyGraphMeta | GeneratedGraphMeta;
export type IncompatibilityInfo = {

View File

@@ -1,5 +1,11 @@
import { useMemo } from "react";
import { GraphInputSchema, GraphOutputSchema } from "@/lib/autogpt-server-api";
import type {
GraphInputSchema,
GraphOutputSchema,
} from "@/lib/autogpt-server-api";
import type { GraphModel } from "@/app/api/__generated__/models/graphModel";
import { useGetV1GetSpecificGraph } from "@/app/api/__generated__/endpoints/graphs/graphs";
import { okData } from "@/app/api/helpers";
import { getEffectiveType } from "@/lib/utils";
import { EdgeLike, getSchemaProperties, getSchemaRequired } from "./helpers";
import {
@@ -11,26 +17,38 @@ import {
/**
* Checks if a newer version of a sub-agent is available and determines compatibility
*/
export function useSubAgentUpdate<T extends GraphMetaLike>(
export function useSubAgentUpdate(
nodeID: string,
graphID: string | undefined,
graphVersion: number | undefined,
currentInputSchema: GraphInputSchema | undefined,
currentOutputSchema: GraphOutputSchema | undefined,
connections: EdgeLike[],
availableGraphs: T[],
): SubAgentUpdateInfo<T> {
availableGraphs: GraphMetaLike[],
): SubAgentUpdateInfo<GraphModel> {
// Find the latest version of the same graph
const latestGraph = useMemo(() => {
const latestGraphInfo = useMemo(() => {
if (!graphID) return null;
return availableGraphs.find((graph) => graph.id === graphID) || null;
}, [graphID, availableGraphs]);
// Check if there's an update available
// Check if there's a newer version available
const hasUpdate = useMemo(() => {
if (!latestGraph || graphVersion === undefined) return false;
return latestGraph.version! > graphVersion;
}, [latestGraph, graphVersion]);
if (!latestGraphInfo || graphVersion === undefined) return false;
return latestGraphInfo.version! > graphVersion;
}, [latestGraphInfo, graphVersion]);
// Fetch full graph IF an update is detected
const { data: latestGraph } = useGetV1GetSpecificGraph(
graphID ?? "",
{ version: latestGraphInfo?.version },
{
query: {
enabled: hasUpdate && !!graphID && !!latestGraphInfo?.version,
select: okData,
},
},
);
// Get connected input and output handles for this specific node
const connectedHandles = useMemo(() => {
@@ -152,8 +170,8 @@ export function useSubAgentUpdate<T extends GraphMetaLike>(
return {
hasUpdate,
currentVersion: graphVersion || 0,
latestVersion: latestGraph?.version || 0,
latestGraph,
latestVersion: latestGraphInfo?.version || 0,
latestGraph: latestGraph || null,
isCompatible: compatibilityResult.isCompatible,
incompatibilities: compatibilityResult.incompatibilities,
};

View File

@@ -18,7 +18,7 @@ interface GraphStore {
outputSchema: Record<string, any> | null,
) => void;
// Available graphs; used for sub-graph updates
// Available graphs; used for sub-graph updated version detection
availableSubGraphs: GraphMeta[];
setAvailableSubGraphs: (graphs: GraphMeta[]) => void;

View File

@@ -1,71 +0,0 @@
"use client";
import { ChatInput } from "@/components/contextual/Chat/components/ChatInput/ChatInput";
import { UIDataTypes, UIMessage, UITools } from "ai";
import { LayoutGroup, motion } from "framer-motion";
import { ChatMessagesContainer } from "../ChatMessagesContainer/ChatMessagesContainer";
import { CopilotChatActionsProvider } from "../CopilotChatActionsProvider/CopilotChatActionsProvider";
import { EmptySession } from "../EmptySession/EmptySession";
export interface ChatContainerProps {
messages: UIMessage<unknown, UIDataTypes, UITools>[];
status: string;
error: Error | undefined;
sessionId: string | null;
isLoadingSession: boolean;
isCreatingSession: boolean;
onCreateSession: () => void | Promise<string>;
onSend: (message: string) => void | Promise<void>;
}
export const ChatContainer = ({
messages,
status,
error,
sessionId,
isLoadingSession,
isCreatingSession,
onCreateSession,
onSend,
}: ChatContainerProps) => {
const inputLayoutId = "copilot-2-chat-input";
return (
<CopilotChatActionsProvider onSend={onSend}>
<LayoutGroup id="copilot-2-chat-layout">
<div className="flex h-full min-h-0 w-full flex-col bg-[#f8f8f9] px-2 lg:px-0">
{sessionId ? (
<div className="mx-auto flex h-full min-h-0 w-full max-w-3xl flex-col">
<ChatMessagesContainer
messages={messages}
status={status}
error={error}
isLoading={isLoadingSession}
/>
<motion.div
layoutId={inputLayoutId}
transition={{ type: "spring", bounce: 0.2, duration: 0.65 }}
className="relative px-3 pb-2 pt-2"
>
<div className="pointer-events-none absolute left-0 right-0 top-[-18px] z-10 h-6 bg-gradient-to-b from-transparent to-[#f8f8f9]" />
<ChatInput
inputId="chat-input-session"
onSend={onSend}
disabled={status === "streaming"}
isStreaming={status === "streaming"}
onStop={() => {}}
placeholder="What else can I help with?"
/>
</motion.div>
</div>
) : (
<EmptySession
inputLayoutId={inputLayoutId}
isCreatingSession={isCreatingSession}
onCreateSession={onCreateSession}
onSend={onSend}
/>
)}
</div>
</LayoutGroup>
</CopilotChatActionsProvider>
);
};

View File

@@ -1,144 +0,0 @@
import {
Conversation,
ConversationContent,
ConversationScrollButton,
} from "@/components/ai-elements/conversation";
import {
Message,
MessageContent,
MessageResponse,
} from "@/components/ai-elements/message";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { UIDataTypes, UIMessage, UITools, ToolUIPart } from "ai";
import { FindBlocksTool } from "../../tools/FindBlocks/FindBlocks";
import { FindAgentsTool } from "../../tools/FindAgents/FindAgents";
import { SearchDocsTool } from "../../tools/SearchDocs/SearchDocs";
import { RunBlockTool } from "../../tools/RunBlock/RunBlock";
import { RunAgentTool } from "../../tools/RunAgent/RunAgent";
import { ViewAgentOutputTool } from "../../tools/ViewAgentOutput/ViewAgentOutput";
import { CreateAgentTool } from "../../tools/CreateAgent/CreateAgent";
import { EditAgentTool } from "../../tools/EditAgent/EditAgent";
interface ChatMessagesContainerProps {
messages: UIMessage<unknown, UIDataTypes, UITools>[];
status: string;
error: Error | undefined;
isLoading: boolean;
}
export const ChatMessagesContainer = ({
messages,
status,
error,
isLoading,
}: ChatMessagesContainerProps) => {
return (
<Conversation className="min-h-0 flex-1">
<ConversationContent className="gap-6 px-3 py-6">
{isLoading && messages.length === 0 && (
<div className="flex flex-1 items-center justify-center">
<LoadingSpinner size="large" className="text-neutral-400" />
</div>
)}
{messages.map((message) => (
<Message from={message.role} key={message.id}>
<MessageContent
className={
"text-[1rem] leading-relaxed " +
"group-[.is-user]:rounded-xl group-[.is-user]:bg-purple-100 group-[.is-user]:px-3 group-[.is-user]:py-2.5 group-[.is-user]:text-slate-900 group-[.is-user]:[border-bottom-right-radius:0] " +
"group-[.is-assistant]:bg-transparent group-[.is-assistant]:text-slate-900"
}
>
{message.parts.map((part, i) => {
switch (part.type) {
case "text":
return (
<MessageResponse key={`${message.id}-${i}`}>
{part.text}
</MessageResponse>
);
case "tool-find_block":
return (
<FindBlocksTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
case "tool-find_agent":
case "tool-find_library_agent":
return (
<FindAgentsTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
case "tool-search_docs":
case "tool-get_doc_page":
return (
<SearchDocsTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
case "tool-run_block":
return (
<RunBlockTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
case "tool-run_agent":
case "tool-schedule_agent":
return (
<RunAgentTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
case "tool-create_agent":
return (
<CreateAgentTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
case "tool-edit_agent":
return (
<EditAgentTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
case "tool-view_agent_output":
return (
<ViewAgentOutputTool
key={`${message.id}-${i}`}
part={part as ToolUIPart}
/>
);
default:
return null;
}
})}
</MessageContent>
</Message>
))}
{status === "submitted" && (
<Message from="assistant">
<MessageContent className="text-[1rem] leading-relaxed">
<span className="inline-block animate-shimmer bg-gradient-to-r from-neutral-400 via-neutral-600 to-neutral-400 bg-[length:200%_100%] bg-clip-text text-transparent">
Thinking...
</span>
</MessageContent>
</Message>
)}
{error && (
<div className="rounded-lg bg-red-50 p-3 text-red-600">
Error: {error.message}
</div>
)}
</ConversationContent>
<ConversationScrollButton />
</Conversation>
);
};

View File

@@ -1,191 +0,0 @@
"use client";
import { useGetV2ListSessions } from "@/app/api/__generated__/endpoints/chat/chat";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import {
Sidebar,
SidebarContent,
SidebarFooter,
SidebarHeader,
SidebarTrigger,
useSidebar,
} from "@/components/ui/sidebar";
import { cn } from "@/lib/utils";
import {
PlusCircleIcon,
PlusIcon,
SpinnerGapIcon,
} from "@phosphor-icons/react";
import { motion } from "framer-motion";
import { parseAsString, useQueryState } from "nuqs";
export function ChatSidebar() {
const { state } = useSidebar();
const isCollapsed = state === "collapsed";
const [sessionId, setSessionId] = useQueryState("sessionId", parseAsString);
const { data: sessionsResponse, isLoading: isLoadingSessions } =
useGetV2ListSessions({ limit: 50 });
const sessions =
sessionsResponse?.status === 200 ? sessionsResponse.data.sessions : [];
function handleNewChat() {
setSessionId(null);
}
function handleSelectSession(id: string) {
setSessionId(id);
}
function formatDate(dateString: string) {
const date = new Date(dateString);
const now = new Date();
const diffMs = now.getTime() - date.getTime();
const diffDays = Math.floor(diffMs / (1000 * 60 * 60 * 24));
if (diffDays === 0) return "Today";
if (diffDays === 1) return "Yesterday";
if (diffDays < 7) return `${diffDays} days ago`;
const day = date.getDate();
const ordinal =
day % 10 === 1 && day !== 11
? "st"
: day % 10 === 2 && day !== 12
? "nd"
: day % 10 === 3 && day !== 13
? "rd"
: "th";
const month = date.toLocaleDateString("en-US", { month: "short" });
const year = date.getFullYear();
return `${day}${ordinal} ${month} ${year}`;
}
return (
<Sidebar
variant="inset"
collapsible="icon"
className="!top-[50px] !h-[calc(100vh-50px)] border-r border-zinc-100 px-0"
>
{isCollapsed && (
<SidebarHeader
className={cn(
"flex",
isCollapsed
? "flex-row items-center justify-between gap-y-4 md:flex-col md:items-start md:justify-start"
: "flex-row items-center justify-between",
)}
>
<motion.div
key={isCollapsed ? "header-collapsed" : "header-expanded"}
className="flex flex-col items-center gap-3 pt-4"
initial={{ opacity: 0, filter: "blur(3px)" }}
animate={{ opacity: 1, filter: "blur(0px)" }}
transition={{ type: "spring", bounce: 0.2 }}
>
<div className="flex flex-col items-center gap-2">
<SidebarTrigger />
<Button
variant="ghost"
onClick={handleNewChat}
style={{ minWidth: "auto", width: "auto" }}
>
<PlusCircleIcon className="!size-5" />
<span className="sr-only">New Chat</span>
</Button>
</div>
</motion.div>
</SidebarHeader>
)}
<SidebarContent className="gap-4 overflow-y-auto px-4 py-4 [-ms-overflow-style:none] [scrollbar-width:none] [&::-webkit-scrollbar]:hidden">
{!isCollapsed && (
<motion.div
initial={{ opacity: 0 }}
animate={{ opacity: 1 }}
transition={{ duration: 0.2, delay: 0.1 }}
className="flex items-center justify-between px-3"
>
<Text variant="h3" size="body-medium">
Your chats
</Text>
<div className="relative left-6">
<SidebarTrigger />
</div>
</motion.div>
)}
{!isCollapsed && (
<motion.div
initial={{ opacity: 0 }}
animate={{ opacity: 1 }}
transition={{ duration: 0.2, delay: 0.15 }}
className="mt-4 flex flex-col gap-1"
>
{isLoadingSessions ? (
<div className="flex items-center justify-center py-4">
<SpinnerGapIcon className="h-5 w-5 animate-spin text-neutral-400" />
</div>
) : sessions.length === 0 ? (
<p className="py-4 text-center text-sm text-neutral-500">
No conversations yet
</p>
) : (
sessions.map((session) => (
<button
key={session.id}
onClick={() => handleSelectSession(session.id)}
className={cn(
"w-full rounded-lg px-3 py-2.5 text-left transition-colors",
session.id === sessionId
? "bg-zinc-100"
: "hover:bg-zinc-50",
)}
>
<div className="flex min-w-0 max-w-full flex-col overflow-hidden">
<div className="min-w-0 max-w-full">
<Text
variant="body"
className={cn(
"truncate font-normal",
session.id === sessionId
? "text-zinc-600"
: "text-zinc-800",
)}
>
{session.title || `Untitled chat`}
</Text>
</div>
<Text variant="small" className="text-neutral-400">
{formatDate(session.updated_at)}
</Text>
</div>
</button>
))
)}
</motion.div>
)}
</SidebarContent>
{!isCollapsed && sessionId && (
<SidebarFooter className="shrink-0 bg-zinc-50 p-3 pb-1 shadow-[0_-4px_6px_-1px_rgba(0,0,0,0.05)]">
<motion.div
initial={{ opacity: 0 }}
animate={{ opacity: 1 }}
transition={{ duration: 0.2, delay: 0.2 }}
>
<Button
variant="primary"
size="small"
onClick={handleNewChat}
className="w-full"
leftIcon={<PlusIcon className="h-4 w-4" weight="bold" />}
>
New Chat
</Button>
</motion.div>
</SidebarFooter>
)}
</Sidebar>
);
}

View File

@@ -1,16 +0,0 @@
"use client";
import { CopilotChatActionsContext } from "./useCopilotChatActions";
interface Props {
onSend: (message: string) => void | Promise<void>;
children: React.ReactNode;
}
export function CopilotChatActionsProvider({ onSend, children }: Props) {
return (
<CopilotChatActionsContext.Provider value={{ onSend }}>
{children}
</CopilotChatActionsContext.Provider>
);
}

View File

@@ -1,23 +0,0 @@
"use client";
import { createContext, useContext } from "react";
interface CopilotChatActions {
onSend: (message: string) => void | Promise<void>;
}
const CopilotChatActionsContext = createContext<CopilotChatActions | null>(
null,
);
export function useCopilotChatActions(): CopilotChatActions {
const ctx = useContext(CopilotChatActionsContext);
if (!ctx) {
throw new Error(
"useCopilotChatActions must be used within CopilotChatActionsProvider",
);
}
return ctx;
}
export { CopilotChatActionsContext };

View File

@@ -1,111 +0,0 @@
"use client";
import {
getGreetingName,
getInputPlaceholder,
getQuickActions,
} from "@/app/(platform)/copilot/helpers";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { ChatInput } from "@/components/contextual/Chat/components/ChatInput/ChatInput";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { SpinnerGapIcon } from "@phosphor-icons/react";
import { motion } from "framer-motion";
import { useEffect, useState } from "react";
interface Props {
inputLayoutId: string;
isCreatingSession: boolean;
onCreateSession: () => void | Promise<string>;
onSend: (message: string) => void | Promise<void>;
}
export function EmptySession({
inputLayoutId,
isCreatingSession,
onSend,
}: Props) {
const { user } = useSupabase();
const greetingName = getGreetingName(user);
const quickActions = getQuickActions();
const [loadingAction, setLoadingAction] = useState<string | null>(null);
const [inputPlaceholder, setInputPlaceholder] = useState(
getInputPlaceholder(),
);
useEffect(() => {
setInputPlaceholder(getInputPlaceholder(window.innerWidth));
}, [window.innerWidth]);
async function handleQuickActionClick(action: string) {
if (isCreatingSession || loadingAction) return;
setLoadingAction(action);
try {
await onSend(action);
} finally {
setLoadingAction(null);
}
}
return (
<div className="flex h-full flex-1 items-center justify-center overflow-y-auto bg-[#f8f8f9] px-0 py-5 md:px-6 md:py-10">
<motion.div
className="w-full max-w-3xl text-center"
initial={{ opacity: 0, y: 14, filter: "blur(6px)" }}
animate={{ opacity: 1, y: 0, filter: "blur(0px)" }}
transition={{ type: "spring", bounce: 0.2, duration: 0.7 }}
>
<div className="mx-auto max-w-3xl">
<Text variant="h3" className="mb-1 !text-[1.375rem] text-zinc-700">
Hey, <span className="text-violet-600">{greetingName}</span>
</Text>
<Text variant="h3" className="mb-8 !font-normal">
Tell me about your work I&apos;ll find what to automate.
</Text>
<div className="mb-6">
<motion.div
layoutId={inputLayoutId}
transition={{ type: "spring", bounce: 0.2, duration: 0.65 }}
className="w-full px-2"
>
<ChatInput
inputId="chat-input-empty"
onSend={onSend}
disabled={isCreatingSession}
placeholder={inputPlaceholder}
className="w-full"
/>
</motion.div>
</div>
</div>
<div className="flex flex-wrap items-center justify-center gap-3 overflow-x-auto [-ms-overflow-style:none] [scrollbar-width:none] [&::-webkit-scrollbar]:hidden">
{quickActions.map((action) => (
<Button
key={action}
type="button"
variant="outline"
size="small"
onClick={() => void handleQuickActionClick(action)}
disabled={isCreatingSession || loadingAction !== null}
aria-busy={loadingAction === action}
leftIcon={
loadingAction === action ? (
<SpinnerGapIcon
className="h-4 w-4 animate-spin"
weight="bold"
/>
) : null
}
className="h-auto shrink-0 border-zinc-300 px-3 py-2 text-[.9rem] text-zinc-600"
>
{action}
</Button>
))}
</div>
</motion.div>
</div>
);
}

View File

@@ -1,11 +0,0 @@
export function getInputPlaceholder(width?: number) {
if (!width) return "What's your role and what eats up most of your day?";
if (width < 500) {
return "I'm a chef and I hate...";
}
if (width <= 1080) {
return "What's your role and what eats up most of your day?";
}
return "What's your role and what eats up most of your day? e.g. 'I'm a recruiter and I hate...'";
}

View File

@@ -1,140 +0,0 @@
import type { SessionSummaryResponse } from "@/app/api/__generated__/models/sessionSummaryResponse";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { scrollbarStyles } from "@/components/styles/scrollbars";
import { cn } from "@/lib/utils";
import { PlusIcon, SpinnerGapIcon, X } from "@phosphor-icons/react";
import { Drawer } from "vaul";
interface Props {
isOpen: boolean;
sessions: SessionSummaryResponse[];
currentSessionId: string | null;
isLoading: boolean;
onSelectSession: (sessionId: string) => void;
onNewChat: () => void;
onClose: () => void;
onOpenChange: (open: boolean) => void;
}
function formatDate(dateString: string) {
const date = new Date(dateString);
const now = new Date();
const diffMs = now.getTime() - date.getTime();
const diffDays = Math.floor(diffMs / (1000 * 60 * 60 * 24));
if (diffDays === 0) return "Today";
if (diffDays === 1) return "Yesterday";
if (diffDays < 7) return `${diffDays} days ago`;
const day = date.getDate();
const ordinal =
day % 10 === 1 && day !== 11
? "st"
: day % 10 === 2 && day !== 12
? "nd"
: day % 10 === 3 && day !== 13
? "rd"
: "th";
const month = date.toLocaleDateString("en-US", { month: "short" });
const year = date.getFullYear();
return `${day}${ordinal} ${month} ${year}`;
}
export function MobileDrawer({
isOpen,
sessions,
currentSessionId,
isLoading,
onSelectSession,
onNewChat,
onClose,
onOpenChange,
}: Props) {
return (
<Drawer.Root open={isOpen} onOpenChange={onOpenChange} direction="left">
<Drawer.Portal>
<Drawer.Overlay className="fixed inset-0 z-[60] bg-black/10 backdrop-blur-sm" />
<Drawer.Content className="fixed left-0 top-0 z-[70] flex h-full w-80 flex-col border-r border-zinc-200 bg-zinc-50">
<div className="shrink-0 border-b border-zinc-200 px-4 py-2">
<div className="flex items-center justify-between">
<Drawer.Title className="text-lg font-semibold text-zinc-800">
Your chats
</Drawer.Title>
<Button
variant="icon"
size="icon"
aria-label="Close sessions"
onClick={onClose}
>
<X width="1rem" height="1rem" />
</Button>
</div>
</div>
<div
className={cn(
"flex min-h-0 flex-1 flex-col gap-1 overflow-y-auto px-3 py-3",
scrollbarStyles,
)}
>
{isLoading ? (
<div className="flex items-center justify-center py-4">
<SpinnerGapIcon className="h-5 w-5 animate-spin text-neutral-400" />
</div>
) : sessions.length === 0 ? (
<p className="py-4 text-center text-sm text-neutral-500">
No conversations yet
</p>
) : (
sessions.map((session) => (
<button
key={session.id}
onClick={() => onSelectSession(session.id)}
className={cn(
"w-full rounded-lg px-3 py-2.5 text-left transition-colors",
session.id === currentSessionId
? "bg-zinc-100"
: "hover:bg-zinc-50",
)}
>
<div className="flex min-w-0 max-w-full flex-col overflow-hidden">
<div className="min-w-0 max-w-full">
<Text
variant="body"
className={cn(
"truncate font-normal",
session.id === currentSessionId
? "text-zinc-600"
: "text-zinc-800",
)}
>
{session.title || "Untitled chat"}
</Text>
</div>
<Text variant="small" className="text-neutral-400">
{formatDate(session.updated_at)}
</Text>
</div>
</button>
))
)}
</div>
{currentSessionId && (
<div className="shrink-0 bg-white p-3 shadow-[0_-4px_6px_-1px_rgba(0,0,0,0.05)]">
<Button
variant="primary"
size="small"
onClick={onNewChat}
className="w-full"
leftIcon={<PlusIcon width="1rem" height="1rem" />}
>
New Chat
</Button>
</div>
)}
</Drawer.Content>
</Drawer.Portal>
</Drawer.Root>
);
}

View File

@@ -1,22 +0,0 @@
import { Button } from "@/components/atoms/Button/Button";
import { NAVBAR_HEIGHT_PX } from "@/lib/constants";
import { ListIcon } from "@phosphor-icons/react";
interface Props {
onOpenDrawer: () => void;
}
export function MobileHeader({ onOpenDrawer }: Props) {
return (
<Button
variant="icon"
size="icon"
aria-label="Open sessions"
onClick={onOpenDrawer}
className="fixed z-50 bg-white shadow-md"
style={{ left: "1rem", top: `${NAVBAR_HEIGHT_PX + 20}px` }}
>
<ListIcon width="1.25rem" height="1.25rem" />
</Button>
);
}

View File

@@ -1,54 +0,0 @@
import { cn } from "@/lib/utils";
import { AnimatePresence, motion } from "framer-motion";
interface Props {
text: string;
className?: string;
}
export function MorphingTextAnimation({ text, className }: Props) {
const letters = text.split("");
return (
<div className={cn(className)}>
<AnimatePresence mode="popLayout" initial={false}>
<motion.div key={text} className="whitespace-nowrap">
<motion.span className="inline-flex overflow-hidden">
{letters.map((char, index) => (
<motion.span
key={`${text}-${index}`}
initial={{
opacity: 0,
y: 8,
rotateX: "80deg",
filter: "blur(6px)",
}}
animate={{
opacity: 1,
y: 0,
rotateX: "0deg",
filter: "blur(0px)",
}}
exit={{
opacity: 0,
y: -8,
rotateX: "-80deg",
filter: "blur(6px)",
}}
style={{ willChange: "transform" }}
transition={{
delay: 0.015 * index,
type: "spring",
bounce: 0.5,
}}
className="inline-block"
>
{char === " " ? "\u00A0" : char}
</motion.span>
))}
</motion.span>
</motion.div>
</AnimatePresence>
</div>
);
}

View File

@@ -1,92 +0,0 @@
"use client";
import { cn } from "@/lib/utils";
import { CaretDownIcon } from "@phosphor-icons/react";
import { AnimatePresence, motion, useReducedMotion } from "framer-motion";
import { useId } from "react";
import { useToolAccordion } from "./useToolAccordion";
interface Props {
badgeText: string;
title: React.ReactNode;
description?: React.ReactNode;
children: React.ReactNode;
className?: string;
defaultExpanded?: boolean;
expanded?: boolean;
onExpandedChange?: (expanded: boolean) => void;
}
export function ToolAccordion({
badgeText,
title,
description,
children,
className,
defaultExpanded,
expanded,
onExpandedChange,
}: Props) {
const shouldReduceMotion = useReducedMotion();
const contentId = useId();
const { isExpanded, toggle } = useToolAccordion({
expanded,
defaultExpanded,
onExpandedChange,
});
return (
<div className={cn("mt-2 w-full rounded-lg border px-3 py-2", className)}>
<button
type="button"
aria-expanded={isExpanded}
aria-controls={contentId}
onClick={toggle}
className="flex w-full items-center justify-between gap-3 py-1 text-left"
>
<div className="flex min-w-0 items-center gap-2">
<span className="px-2 py-0.5 text-[11px] font-medium text-muted-foreground">
{badgeText}
</span>
<div className="min-w-0">
<p className="truncate text-sm font-medium text-foreground">
{title}
</p>
{description && (
<p className="truncate text-xs text-muted-foreground">
{description}
</p>
)}
</div>
</div>
<CaretDownIcon
className={cn(
"h-4 w-4 shrink-0 text-muted-foreground transition-transform",
isExpanded && "rotate-180",
)}
weight="bold"
/>
</button>
<AnimatePresence initial={false}>
{isExpanded && (
<motion.div
id={contentId}
initial={{ height: 0, opacity: 0, filter: "blur(10px)" }}
animate={{ height: "auto", opacity: 1, filter: "blur(0px)" }}
exit={{ height: 0, opacity: 0, filter: "blur(10px)" }}
transition={
shouldReduceMotion
? { duration: 0 }
: { type: "spring", bounce: 0.35, duration: 0.55 }
}
className="overflow-hidden"
style={{ willChange: "height, opacity, filter" }}
>
<div className="pb-2 pt-3">{children}</div>
</motion.div>
)}
</AnimatePresence>
</div>
);
}

View File

@@ -1,32 +0,0 @@
import { useState } from "react";
interface UseToolAccordionOptions {
expanded?: boolean;
defaultExpanded?: boolean;
onExpandedChange?: (expanded: boolean) => void;
}
interface UseToolAccordionResult {
isExpanded: boolean;
toggle: () => void;
}
export function useToolAccordion({
expanded,
defaultExpanded = false,
onExpandedChange,
}: UseToolAccordionOptions): UseToolAccordionResult {
const [uncontrolledExpanded, setUncontrolledExpanded] =
useState(defaultExpanded);
const isControlled = typeof expanded === "boolean";
const isExpanded = isControlled ? expanded : uncontrolledExpanded;
function toggle() {
const next = !isExpanded;
if (!isControlled) setUncontrolledExpanded(next);
onExpandedChange?.(next);
}
return { isExpanded, toggle };
}

View File

@@ -1,128 +0,0 @@
import type { UIMessage, UIDataTypes, UITools } from "ai";
interface SessionChatMessage {
role: string;
content: string | null;
tool_call_id: string | null;
tool_calls: unknown[] | null;
}
function coerceSessionChatMessages(
rawMessages: unknown[],
): SessionChatMessage[] {
return rawMessages
.map((m) => {
if (!m || typeof m !== "object") return null;
const msg = m as Record<string, unknown>;
const role = typeof msg.role === "string" ? msg.role : null;
if (!role) return null;
return {
role,
content:
typeof msg.content === "string"
? msg.content
: msg.content == null
? null
: String(msg.content),
tool_call_id:
typeof msg.tool_call_id === "string"
? msg.tool_call_id
: msg.tool_call_id == null
? null
: String(msg.tool_call_id),
tool_calls: Array.isArray(msg.tool_calls) ? msg.tool_calls : null,
};
})
.filter((m): m is SessionChatMessage => m !== null);
}
function safeJsonParse(value: string): unknown {
try {
return JSON.parse(value) as unknown;
} catch {
return value;
}
}
function toToolInput(rawArguments: unknown): unknown {
if (typeof rawArguments === "string") {
const trimmed = rawArguments.trim();
return trimmed ? safeJsonParse(trimmed) : {};
}
if (rawArguments && typeof rawArguments === "object") return rawArguments;
return {};
}
export function convertChatSessionMessagesToUiMessages(
sessionId: string,
rawMessages: unknown[],
): UIMessage<unknown, UIDataTypes, UITools>[] {
const messages = coerceSessionChatMessages(rawMessages);
const toolOutputsByCallId = new Map<string, unknown>();
for (const msg of messages) {
if (msg.role !== "tool") continue;
if (!msg.tool_call_id) continue;
if (msg.content == null) continue;
toolOutputsByCallId.set(msg.tool_call_id, msg.content);
}
const uiMessages: UIMessage<unknown, UIDataTypes, UITools>[] = [];
messages.forEach((msg, index) => {
if (msg.role === "tool") return;
if (msg.role !== "user" && msg.role !== "assistant") return;
const parts: UIMessage<unknown, UIDataTypes, UITools>["parts"] = [];
if (typeof msg.content === "string" && msg.content.trim()) {
parts.push({ type: "text", text: msg.content, state: "done" });
}
if (msg.role === "assistant" && Array.isArray(msg.tool_calls)) {
for (const rawToolCall of msg.tool_calls) {
if (!rawToolCall || typeof rawToolCall !== "object") continue;
const toolCall = rawToolCall as {
id?: unknown;
function?: { name?: unknown; arguments?: unknown };
};
const toolCallId = String(toolCall.id ?? "").trim();
const toolName = String(toolCall.function?.name ?? "").trim();
if (!toolCallId || !toolName) continue;
const input = toToolInput(toolCall.function?.arguments);
const output = toolOutputsByCallId.get(toolCallId);
if (output !== undefined) {
parts.push({
type: `tool-${toolName}`,
toolCallId,
state: "output-available",
input,
output: typeof output === "string" ? safeJsonParse(output) : output,
});
} else {
parts.push({
type: `tool-${toolName}`,
toolCallId,
state: "input-available",
input,
});
}
}
}
if (parts.length === 0) return;
uiMessages.push({
id: `${sessionId}-${index}`,
role: msg.role,
parts,
});
});
return uiMessages;
}

View File

@@ -1,67 +0,0 @@
"use client";
import { SidebarProvider } from "@/components/ui/sidebar";
import { ChatContainer } from "./components/ChatContainer/ChatContainer";
import { ChatSidebar } from "./components/ChatSidebar/ChatSidebar";
import { MobileDrawer } from "./components/MobileDrawer/MobileDrawer";
import { MobileHeader } from "./components/MobileHeader/MobileHeader";
import { useCopilotPage } from "./useCopilotPage";
export default function Page() {
const {
sessionId,
messages,
status,
error,
isLoadingSession,
isCreatingSession,
createSession,
onSend,
// Mobile drawer
isMobile,
isDrawerOpen,
sessions,
isLoadingSessions,
handleOpenDrawer,
handleCloseDrawer,
handleDrawerOpenChange,
handleSelectSession,
handleNewChat,
} = useCopilotPage();
return (
<SidebarProvider
defaultOpen={true}
className="h-[calc(100vh-72px)] min-h-0"
>
{!isMobile && <ChatSidebar />}
<div className="relative flex h-full w-full flex-col overflow-hidden bg-[#f8f8f9] px-0">
{isMobile && <MobileHeader onOpenDrawer={handleOpenDrawer} />}
<div className="flex-1 overflow-hidden">
<ChatContainer
messages={messages}
status={status}
error={error}
sessionId={sessionId}
isLoadingSession={isLoadingSession}
isCreatingSession={isCreatingSession}
onCreateSession={createSession}
onSend={onSend}
/>
</div>
</div>
{isMobile && (
<MobileDrawer
isOpen={isDrawerOpen}
sessions={sessions}
currentSessionId={sessionId}
isLoading={isLoadingSessions}
onSelectSession={handleSelectSession}
onNewChat={handleNewChat}
onClose={handleCloseDrawer}
onOpenChange={handleDrawerOpenChange}
/>
)}
</SidebarProvider>
);
}

View File

@@ -1,218 +0,0 @@
"use client";
import type { ToolUIPart } from "ai";
import Link from "next/link";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import { useCopilotChatActions } from "../../components/CopilotChatActionsProvider/useCopilotChatActions";
import {
ClarificationQuestionsWidget,
type ClarifyingQuestion as WidgetClarifyingQuestion,
} from "@/components/contextual/Chat/components/ClarificationQuestionsWidget/ClarificationQuestionsWidget";
import {
formatMaybeJson,
getAnimationText,
getCreateAgentToolOutput,
isAgentPreviewOutput,
isAgentSavedOutput,
isClarificationNeededOutput,
isErrorOutput,
isOperationInProgressOutput,
isOperationPendingOutput,
isOperationStartedOutput,
ToolIcon,
truncateText,
type CreateAgentToolOutput,
} from "./helpers";
export interface CreateAgentToolPart {
type: string;
toolCallId: string;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
interface Props {
part: CreateAgentToolPart;
}
function getAccordionMeta(output: CreateAgentToolOutput): {
badgeText: string;
title: string;
description?: string;
} {
if (isAgentSavedOutput(output)) {
return { badgeText: "Create agent", title: output.agent_name };
}
if (isAgentPreviewOutput(output)) {
return {
badgeText: "Create agent",
title: output.agent_name,
description: `${output.node_count} block${output.node_count === 1 ? "" : "s"}`,
};
}
if (isClarificationNeededOutput(output)) {
const questions = output.questions ?? [];
return {
badgeText: "Create agent",
title: "Needs clarification",
description: `${questions.length} question${questions.length === 1 ? "" : "s"}`,
};
}
if (
isOperationStartedOutput(output) ||
isOperationPendingOutput(output) ||
isOperationInProgressOutput(output)
) {
return { badgeText: "Create agent", title: "Creating agent" };
}
return { badgeText: "Create agent", title: "Error" };
}
export function CreateAgentTool({ part }: Props) {
const text = getAnimationText(part);
const { onSend } = useCopilotChatActions();
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const output = getCreateAgentToolOutput(part);
const isError =
part.state === "output-error" || (!!output && isErrorOutput(output));
const hasExpandableContent =
part.state === "output-available" &&
!!output &&
(isOperationStartedOutput(output) ||
isOperationPendingOutput(output) ||
isOperationInProgressOutput(output) ||
isAgentPreviewOutput(output) ||
isAgentSavedOutput(output) ||
isClarificationNeededOutput(output) ||
isErrorOutput(output));
function handleClarificationAnswers(answers: Record<string, string>) {
const contextMessage = Object.entries(answers)
.map(([keyword, answer]) => `${keyword}: ${answer}`)
.join("\n");
onSend(
`I have the answers to your questions:\n\n${contextMessage}\n\nPlease proceed with creating the agent.`,
);
}
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon isStreaming={isStreaming} isError={isError} />
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && output && (
<ToolAccordion
{...getAccordionMeta(output)}
defaultExpanded={isClarificationNeededOutput(output)}
>
{(isOperationStartedOutput(output) ||
isOperationPendingOutput(output)) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
<p className="text-xs text-muted-foreground">
Operation: {output.operation_id}
</p>
<p className="text-xs italic text-muted-foreground">
Check your library in a few minutes.
</p>
</div>
)}
{isOperationInProgressOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
<p className="text-xs italic text-muted-foreground">
Please wait for the current operation to finish.
</p>
</div>
)}
{isAgentSavedOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
<div className="flex flex-wrap gap-2">
<Link
href={output.library_agent_link}
className="text-xs font-medium text-purple-600 hover:text-purple-700"
>
Open in library
</Link>
<Link
href={output.agent_page_link}
className="text-xs font-medium text-purple-600 hover:text-purple-700"
>
Open in builder
</Link>
</div>
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{truncateText(
formatMaybeJson({ agent_id: output.agent_id }),
800,
)}
</pre>
</div>
)}
{isAgentPreviewOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{output.description?.trim() && (
<p className="text-xs text-muted-foreground">
{output.description}
</p>
)}
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{truncateText(formatMaybeJson(output.agent_json), 1600)}
</pre>
</div>
)}
{isClarificationNeededOutput(output) && (
<ClarificationQuestionsWidget
questions={(output.questions ?? []).map((q) => {
const item: WidgetClarifyingQuestion = {
question: q.question,
keyword: q.keyword,
};
const example =
typeof q.example === "string" && q.example.trim()
? q.example.trim()
: null;
if (example) item.example = example;
return item;
})}
message={output.message}
onSubmitAnswers={handleClarificationAnswers}
/>
)}
{isErrorOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{output.error && (
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{formatMaybeJson(output.error)}
</pre>
)}
{output.details && (
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{formatMaybeJson(output.details)}
</pre>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}

View File

@@ -1,181 +0,0 @@
import type { ToolUIPart } from "ai";
import { PlusIcon } from "@phosphor-icons/react";
import type { AgentPreviewResponse } from "@/app/api/__generated__/models/agentPreviewResponse";
import type { AgentSavedResponse } from "@/app/api/__generated__/models/agentSavedResponse";
import type { ClarificationNeededResponse } from "@/app/api/__generated__/models/clarificationNeededResponse";
import type { ErrorResponse } from "@/app/api/__generated__/models/errorResponse";
import type { OperationInProgressResponse } from "@/app/api/__generated__/models/operationInProgressResponse";
import type { OperationPendingResponse } from "@/app/api/__generated__/models/operationPendingResponse";
import type { OperationStartedResponse } from "@/app/api/__generated__/models/operationStartedResponse";
import { ResponseType } from "@/app/api/__generated__/models/responseType";
export type CreateAgentToolOutput =
| OperationStartedResponse
| OperationPendingResponse
| OperationInProgressResponse
| AgentPreviewResponse
| AgentSavedResponse
| ClarificationNeededResponse
| ErrorResponse;
function parseOutput(output: unknown): CreateAgentToolOutput | null {
if (!output) return null;
if (typeof output === "string") {
const trimmed = output.trim();
if (!trimmed) return null;
try {
return parseOutput(JSON.parse(trimmed) as unknown);
} catch {
return null;
}
}
if (typeof output === "object") {
const type = (output as { type?: unknown }).type;
if (
type === ResponseType.operation_started ||
type === ResponseType.operation_pending ||
type === ResponseType.operation_in_progress ||
type === ResponseType.agent_preview ||
type === ResponseType.agent_saved ||
type === ResponseType.clarification_needed ||
type === ResponseType.error
) {
return output as CreateAgentToolOutput;
}
if ("operation_id" in output && "tool_name" in output)
return output as OperationStartedResponse | OperationPendingResponse;
if ("tool_call_id" in output) return output as OperationInProgressResponse;
if ("agent_json" in output && "agent_name" in output)
return output as AgentPreviewResponse;
if ("agent_id" in output && "library_agent_id" in output)
return output as AgentSavedResponse;
if ("questions" in output) return output as ClarificationNeededResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
}
return null;
}
export function getCreateAgentToolOutput(
part: unknown,
): CreateAgentToolOutput | null {
if (!part || typeof part !== "object") return null;
return parseOutput((part as { output?: unknown }).output);
}
export function isOperationStartedOutput(
output: CreateAgentToolOutput,
): output is OperationStartedResponse {
return (
output.type === ResponseType.operation_started ||
("operation_id" in output && "tool_name" in output)
);
}
export function isOperationPendingOutput(
output: CreateAgentToolOutput,
): output is OperationPendingResponse {
return output.type === ResponseType.operation_pending;
}
export function isOperationInProgressOutput(
output: CreateAgentToolOutput,
): output is OperationInProgressResponse {
return (
output.type === ResponseType.operation_in_progress ||
"tool_call_id" in output
);
}
export function isAgentPreviewOutput(
output: CreateAgentToolOutput,
): output is AgentPreviewResponse {
return output.type === ResponseType.agent_preview || "agent_json" in output;
}
export function isAgentSavedOutput(
output: CreateAgentToolOutput,
): output is AgentSavedResponse {
return (
output.type === ResponseType.agent_saved || "agent_page_link" in output
);
}
export function isClarificationNeededOutput(
output: CreateAgentToolOutput,
): output is ClarificationNeededResponse {
return (
output.type === ResponseType.clarification_needed || "questions" in output
);
}
export function isErrorOutput(
output: CreateAgentToolOutput,
): output is ErrorResponse {
return output.type === ResponseType.error || "error" in output;
}
export function getAnimationText(part: {
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}): string {
switch (part.state) {
case "input-streaming":
case "input-available":
return "Creating a new agent";
case "output-available": {
const output = parseOutput(part.output);
if (!output) return "Creating a new agent";
if (isOperationStartedOutput(output)) return "Agent creation started";
if (isOperationPendingOutput(output)) return "Agent creation in progress";
if (isOperationInProgressOutput(output))
return "Agent creation already in progress";
if (isAgentSavedOutput(output)) return `Saved "${output.agent_name}"`;
if (isAgentPreviewOutput(output)) return `Preview "${output.agent_name}"`;
if (isClarificationNeededOutput(output)) return "Needs clarification";
return "Error creating agent";
}
case "output-error":
return "Error creating agent";
default:
return "Creating a new agent";
}
}
export function ToolIcon({
isStreaming,
isError,
}: {
isStreaming?: boolean;
isError?: boolean;
}) {
return (
<PlusIcon
size={14}
weight="regular"
className={
isError
? "text-red-500"
: isStreaming
? "text-neutral-500"
: "text-neutral-400"
}
/>
);
}
export function formatMaybeJson(value: unknown): string {
if (typeof value === "string") return value;
try {
return JSON.stringify(value, null, 2);
} catch {
return String(value);
}
}
export function truncateText(text: string, maxChars: number): string {
const trimmed = text.trim();
if (trimmed.length <= maxChars) return trimmed;
return `${trimmed.slice(0, maxChars).trimEnd()}`;
}

View File

@@ -1,218 +0,0 @@
"use client";
import type { ToolUIPart } from "ai";
import Link from "next/link";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import { useCopilotChatActions } from "../../components/CopilotChatActionsProvider/useCopilotChatActions";
import {
ClarificationQuestionsWidget,
type ClarifyingQuestion as WidgetClarifyingQuestion,
} from "@/components/contextual/Chat/components/ClarificationQuestionsWidget/ClarificationQuestionsWidget";
import {
formatMaybeJson,
getAnimationText,
getEditAgentToolOutput,
isAgentPreviewOutput,
isAgentSavedOutput,
isClarificationNeededOutput,
isErrorOutput,
isOperationInProgressOutput,
isOperationPendingOutput,
isOperationStartedOutput,
ToolIcon,
truncateText,
type EditAgentToolOutput,
} from "./helpers";
export interface EditAgentToolPart {
type: string;
toolCallId: string;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
interface Props {
part: EditAgentToolPart;
}
function getAccordionMeta(output: EditAgentToolOutput): {
badgeText: string;
title: string;
description?: string;
} {
if (isAgentSavedOutput(output)) {
return { badgeText: "Edit agent", title: output.agent_name };
}
if (isAgentPreviewOutput(output)) {
return {
badgeText: "Edit agent",
title: output.agent_name,
description: `${output.node_count} block${output.node_count === 1 ? "" : "s"}`,
};
}
if (isClarificationNeededOutput(output)) {
const questions = output.questions ?? [];
return {
badgeText: "Edit agent",
title: "Needs clarification",
description: `${questions.length} question${questions.length === 1 ? "" : "s"}`,
};
}
if (
isOperationStartedOutput(output) ||
isOperationPendingOutput(output) ||
isOperationInProgressOutput(output)
) {
return { badgeText: "Edit agent", title: "Editing agent" };
}
return { badgeText: "Edit agent", title: "Error" };
}
export function EditAgentTool({ part }: Props) {
const text = getAnimationText(part);
const { onSend } = useCopilotChatActions();
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const output = getEditAgentToolOutput(part);
const isError =
part.state === "output-error" || (!!output && isErrorOutput(output));
const hasExpandableContent =
part.state === "output-available" &&
!!output &&
(isOperationStartedOutput(output) ||
isOperationPendingOutput(output) ||
isOperationInProgressOutput(output) ||
isAgentPreviewOutput(output) ||
isAgentSavedOutput(output) ||
isClarificationNeededOutput(output) ||
isErrorOutput(output));
function handleClarificationAnswers(answers: Record<string, string>) {
const contextMessage = Object.entries(answers)
.map(([keyword, answer]) => `${keyword}: ${answer}`)
.join("\n");
onSend(
`I have the answers to your questions:\n\n${contextMessage}\n\nPlease proceed with editing the agent.`,
);
}
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon isStreaming={isStreaming} isError={isError} />
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && output && (
<ToolAccordion
{...getAccordionMeta(output)}
defaultExpanded={isClarificationNeededOutput(output)}
>
{(isOperationStartedOutput(output) ||
isOperationPendingOutput(output)) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
<p className="text-xs text-muted-foreground">
Operation: {output.operation_id}
</p>
<p className="text-xs italic text-muted-foreground">
Check your library in a few minutes.
</p>
</div>
)}
{isOperationInProgressOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
<p className="text-xs italic text-muted-foreground">
Please wait for the current operation to finish.
</p>
</div>
)}
{isAgentSavedOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
<div className="flex flex-wrap gap-2">
<Link
href={output.library_agent_link}
className="text-xs font-medium text-purple-600 hover:text-purple-700"
>
Open in library
</Link>
<Link
href={output.agent_page_link}
className="text-xs font-medium text-purple-600 hover:text-purple-700"
>
Open in builder
</Link>
</div>
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{truncateText(
formatMaybeJson({ agent_id: output.agent_id }),
800,
)}
</pre>
</div>
)}
{isAgentPreviewOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{output.description?.trim() && (
<p className="text-xs text-muted-foreground">
{output.description}
</p>
)}
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{truncateText(formatMaybeJson(output.agent_json), 1600)}
</pre>
</div>
)}
{isClarificationNeededOutput(output) && (
<ClarificationQuestionsWidget
questions={(output.questions ?? []).map((q) => {
const item: WidgetClarifyingQuestion = {
question: q.question,
keyword: q.keyword,
};
const example =
typeof q.example === "string" && q.example.trim()
? q.example.trim()
: null;
if (example) item.example = example;
return item;
})}
message={output.message}
onSubmitAnswers={handleClarificationAnswers}
/>
)}
{isErrorOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{output.error && (
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{formatMaybeJson(output.error)}
</pre>
)}
{output.details && (
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{formatMaybeJson(output.details)}
</pre>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}

View File

@@ -1,181 +0,0 @@
import type { ToolUIPart } from "ai";
import { PencilLineIcon } from "@phosphor-icons/react";
import type { AgentPreviewResponse } from "@/app/api/__generated__/models/agentPreviewResponse";
import type { AgentSavedResponse } from "@/app/api/__generated__/models/agentSavedResponse";
import type { ClarificationNeededResponse } from "@/app/api/__generated__/models/clarificationNeededResponse";
import type { ErrorResponse } from "@/app/api/__generated__/models/errorResponse";
import type { OperationInProgressResponse } from "@/app/api/__generated__/models/operationInProgressResponse";
import type { OperationPendingResponse } from "@/app/api/__generated__/models/operationPendingResponse";
import type { OperationStartedResponse } from "@/app/api/__generated__/models/operationStartedResponse";
import { ResponseType } from "@/app/api/__generated__/models/responseType";
export type EditAgentToolOutput =
| OperationStartedResponse
| OperationPendingResponse
| OperationInProgressResponse
| AgentPreviewResponse
| AgentSavedResponse
| ClarificationNeededResponse
| ErrorResponse;
function parseOutput(output: unknown): EditAgentToolOutput | null {
if (!output) return null;
if (typeof output === "string") {
const trimmed = output.trim();
if (!trimmed) return null;
try {
return parseOutput(JSON.parse(trimmed) as unknown);
} catch {
return null;
}
}
if (typeof output === "object") {
const type = (output as { type?: unknown }).type;
if (
type === ResponseType.operation_started ||
type === ResponseType.operation_pending ||
type === ResponseType.operation_in_progress ||
type === ResponseType.agent_preview ||
type === ResponseType.agent_saved ||
type === ResponseType.clarification_needed ||
type === ResponseType.error
) {
return output as EditAgentToolOutput;
}
if ("operation_id" in output && "tool_name" in output)
return output as OperationStartedResponse | OperationPendingResponse;
if ("tool_call_id" in output) return output as OperationInProgressResponse;
if ("agent_json" in output && "agent_name" in output)
return output as AgentPreviewResponse;
if ("agent_id" in output && "library_agent_id" in output)
return output as AgentSavedResponse;
if ("questions" in output) return output as ClarificationNeededResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
}
return null;
}
export function getEditAgentToolOutput(
part: unknown,
): EditAgentToolOutput | null {
if (!part || typeof part !== "object") return null;
return parseOutput((part as { output?: unknown }).output);
}
export function isOperationStartedOutput(
output: EditAgentToolOutput,
): output is OperationStartedResponse {
return (
output.type === ResponseType.operation_started ||
("operation_id" in output && "tool_name" in output)
);
}
export function isOperationPendingOutput(
output: EditAgentToolOutput,
): output is OperationPendingResponse {
return output.type === ResponseType.operation_pending;
}
export function isOperationInProgressOutput(
output: EditAgentToolOutput,
): output is OperationInProgressResponse {
return (
output.type === ResponseType.operation_in_progress ||
"tool_call_id" in output
);
}
export function isAgentPreviewOutput(
output: EditAgentToolOutput,
): output is AgentPreviewResponse {
return output.type === ResponseType.agent_preview || "agent_json" in output;
}
export function isAgentSavedOutput(
output: EditAgentToolOutput,
): output is AgentSavedResponse {
return (
output.type === ResponseType.agent_saved || "agent_page_link" in output
);
}
export function isClarificationNeededOutput(
output: EditAgentToolOutput,
): output is ClarificationNeededResponse {
return (
output.type === ResponseType.clarification_needed || "questions" in output
);
}
export function isErrorOutput(
output: EditAgentToolOutput,
): output is ErrorResponse {
return output.type === ResponseType.error || "error" in output;
}
export function getAnimationText(part: {
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}): string {
switch (part.state) {
case "input-streaming":
case "input-available":
return "Editing the agent";
case "output-available": {
const output = parseOutput(part.output);
if (!output) return "Editing the agent";
if (isOperationStartedOutput(output)) return "Agent update started";
if (isOperationPendingOutput(output)) return "Agent update in progress";
if (isOperationInProgressOutput(output))
return "Agent update already in progress";
if (isAgentSavedOutput(output)) return `Saved "${output.agent_name}"`;
if (isAgentPreviewOutput(output)) return `Preview "${output.agent_name}"`;
if (isClarificationNeededOutput(output)) return "Needs clarification";
return "Error editing agent";
}
case "output-error":
return "Error editing agent";
default:
return "Editing the agent";
}
}
export function ToolIcon({
isStreaming,
isError,
}: {
isStreaming?: boolean;
isError?: boolean;
}) {
return (
<PencilLineIcon
size={14}
weight="regular"
className={
isError
? "text-red-500"
: isStreaming
? "text-neutral-500"
: "text-neutral-400"
}
/>
);
}
export function formatMaybeJson(value: unknown): string {
if (typeof value === "string") return value;
try {
return JSON.stringify(value, null, 2);
} catch {
return String(value);
}
}
export function truncateText(text: string, maxChars: number): string {
const trimmed = text.trim();
if (trimmed.length <= maxChars) return trimmed;
return `${trimmed.slice(0, maxChars).trimEnd()}`;
}

View File

@@ -1,131 +0,0 @@
"use client";
import { ToolUIPart } from "ai";
import Link from "next/link";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import {
getAgentHref,
getAnimationText,
getFindAgentsOutput,
getSourceLabelFromToolType,
isAgentsFoundOutput,
isErrorOutput,
ToolIcon,
} from "./helpers";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
export interface FindAgentsToolPart {
type: string;
toolCallId: string;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
interface Props {
part: FindAgentsToolPart;
}
export function FindAgentsTool({ part }: Props) {
const text = getAnimationText(part);
const output = getFindAgentsOutput(part);
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const isError =
part.state === "output-error" || (!!output && isErrorOutput(output));
const query =
typeof part.input === "object" && part.input !== null
? String((part.input as { query?: unknown }).query ?? "").trim()
: "";
const agentsFoundOutput =
part.state === "output-available" && output && isAgentsFoundOutput(output)
? output
: null;
const hasAgents =
!!agentsFoundOutput &&
agentsFoundOutput.agents.length > 0 &&
(typeof agentsFoundOutput.count !== "number" ||
agentsFoundOutput.count > 0);
const totalCount = agentsFoundOutput ? agentsFoundOutput.count : 0;
const { label: sourceLabel, source } = getSourceLabelFromToolType(part.type);
const scopeText =
source === "library"
? "in your library"
: source === "marketplace"
? "in marketplace"
: "";
const accordionDescription = `Found ${totalCount}${scopeText ? ` ${scopeText}` : ""}${
query ? ` for "${query}"` : ""
}`;
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon
toolType={part.type}
isStreaming={isStreaming}
isError={isError}
/>
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasAgents && agentsFoundOutput && (
<ToolAccordion
badgeText={sourceLabel}
title="Agent results"
description={accordionDescription}
>
<div className="grid gap-2 sm:grid-cols-2">
{agentsFoundOutput.agents.map((agent) => {
const href = getAgentHref(agent);
const agentSource =
agent.source === "library"
? "Library"
: agent.source === "marketplace"
? "Marketplace"
: null;
return (
<div
key={agent.id}
className="rounded-2xl border bg-background p-3"
>
<div className="flex items-start justify-between gap-2">
<div className="min-w-0">
<div className="flex items-center gap-2">
<p className="truncate text-sm font-medium text-foreground">
{agent.name}
</p>
{agentSource && (
<span className="shrink-0 rounded-full border bg-muted px-2 py-0.5 text-[11px] text-muted-foreground">
{agentSource}
</span>
)}
</div>
<p className="mt-1 line-clamp-2 text-xs text-muted-foreground">
{agent.description}
</p>
</div>
{href && (
<Link
href={href}
className="shrink-0 text-xs font-medium text-purple-600 hover:text-purple-700"
>
Open
</Link>
)}
</div>
</div>
);
})}
</div>
</ToolAccordion>
)}
</div>
);
}

View File

@@ -1,176 +0,0 @@
import { ToolUIPart } from "ai";
import { MagnifyingGlassIcon, SquaresFourIcon } from "@phosphor-icons/react";
import type { AgentInfo } from "@/app/api/__generated__/models/agentInfo";
import type { AgentsFoundResponse } from "@/app/api/__generated__/models/agentsFoundResponse";
import type { ErrorResponse } from "@/app/api/__generated__/models/errorResponse";
import type { NoResultsResponse } from "@/app/api/__generated__/models/noResultsResponse";
import { ResponseType } from "@/app/api/__generated__/models/responseType";
export interface FindAgentInput {
query: string;
}
export type FindAgentsOutput =
| AgentsFoundResponse
| NoResultsResponse
| ErrorResponse;
export type FindAgentsToolType =
| "tool-find_agent"
| "tool-find_library_agent"
| (string & {});
function parseOutput(output: unknown): FindAgentsOutput | null {
if (!output) return null;
if (typeof output === "string") {
const trimmed = output.trim();
if (!trimmed) return null;
try {
return parseOutput(JSON.parse(trimmed) as unknown);
} catch {
return null;
}
}
if (typeof output === "object") {
const type = (output as { type?: unknown }).type;
if (
type === ResponseType.agents_found ||
type === ResponseType.no_results ||
type === ResponseType.error
) {
return output as FindAgentsOutput;
}
if ("agents" in output && "count" in output)
return output as AgentsFoundResponse;
if ("suggestions" in output && !("error" in output))
return output as NoResultsResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
}
return null;
}
export function getFindAgentsOutput(part: unknown): FindAgentsOutput | null {
if (!part || typeof part !== "object") return null;
return parseOutput((part as { output?: unknown }).output);
}
export function isAgentsFoundOutput(
output: FindAgentsOutput,
): output is AgentsFoundResponse {
return output.type === ResponseType.agents_found || "agents" in output;
}
export function isNoResultsOutput(
output: FindAgentsOutput,
): output is NoResultsResponse {
return (
output.type === ResponseType.no_results ||
("suggestions" in output && !("error" in output))
);
}
export function isErrorOutput(
output: FindAgentsOutput,
): output is ErrorResponse {
return output.type === ResponseType.error || "error" in output;
}
export function getSourceLabelFromToolType(toolType?: FindAgentsToolType): {
source: "marketplace" | "library" | "unknown";
label: string;
} {
if (toolType === "tool-find_library_agent") {
return { source: "library", label: "Library" };
}
if (toolType === "tool-find_agent") {
return { source: "marketplace", label: "Marketplace" };
}
return { source: "unknown", label: "Agents" };
}
export function getAnimationText(part: {
type?: FindAgentsToolType;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}): string {
const { source } = getSourceLabelFromToolType(part.type);
const query = (part.input as FindAgentInput | undefined)?.query?.trim();
// Action phrase matching legacy ToolCallMessage
const actionPhrase =
source === "library"
? "Looking for library agents"
: "Looking for agents in the marketplace";
const queryText = query ? ` matching "${query}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `${actionPhrase}${queryText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) {
return `${actionPhrase}${queryText}`;
}
if (isNoResultsOutput(output)) {
return `No agents found${queryText}`;
}
if (isAgentsFoundOutput(output)) {
const count = output.count ?? output.agents?.length ?? 0;
return `Found ${count} agent${count === 1 ? "" : "s"}${queryText}`;
}
if (isErrorOutput(output)) {
return `Error finding agents${queryText}`;
}
return `${actionPhrase}${queryText}`;
}
case "output-error":
return `Error finding agents${queryText}`;
default:
return actionPhrase;
}
}
export function getAgentHref(agent: AgentInfo): string | null {
if (agent.source === "library") {
return `/library/agents/${encodeURIComponent(agent.id)}`;
}
const [creator, slug, ...rest] = agent.id.split("/");
if (!creator || !slug || rest.length > 0) return null;
return `/marketplace/agent/${encodeURIComponent(creator)}/${encodeURIComponent(slug)}`;
}
export function ToolIcon({
toolType,
isStreaming,
isError,
}: {
toolType?: FindAgentsToolType;
isStreaming?: boolean;
isError?: boolean;
}) {
const { source } = getSourceLabelFromToolType(toolType);
const IconComponent =
source === "library" ? MagnifyingGlassIcon : SquaresFourIcon;
return (
<IconComponent
size={14}
weight="regular"
className={
isError
? "text-red-500"
: isStreaming
? "text-neutral-500"
: "text-neutral-400"
}
/>
);
}

View File

@@ -1,41 +0,0 @@
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import type { BlockListResponse } from "@/app/api/__generated__/models/blockListResponse";
import { ToolUIPart } from "ai";
import { getAnimationText, ToolIcon } from "./helpers";
export interface FindBlockInput {
query: string;
}
export type FindBlockOutput = BlockListResponse;
export interface FindBlockToolPart {
type: string;
toolName?: string;
toolCallId: string;
state: ToolUIPart["state"];
input?: FindBlockInput | unknown;
output?: string | FindBlockOutput | unknown;
title?: string;
}
interface Props {
part: FindBlockToolPart;
}
export function FindBlocksTool({ part }: Props) {
const text = getAnimationText(part);
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const isError = part.state === "output-error";
return (
<div className="flex items-center gap-2 py-2 text-sm text-muted-foreground">
<ToolIcon isStreaming={isStreaming} isError={isError} />
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
);
}

View File

@@ -1,72 +0,0 @@
import { ToolUIPart } from "ai";
import type { BlockListResponse } from "@/app/api/__generated__/models/blockListResponse";
import { ResponseType } from "@/app/api/__generated__/models/responseType";
import { FindBlockInput, FindBlockToolPart } from "./FindBlocks";
import { PackageIcon } from "@phosphor-icons/react";
function parseOutput(output: unknown): BlockListResponse | null {
if (!output) return null;
if (typeof output === "string") {
const trimmed = output.trim();
if (!trimmed) return null;
try {
return parseOutput(JSON.parse(trimmed) as unknown);
} catch {
return null;
}
}
if (typeof output === "object") {
const type = (output as { type?: unknown }).type;
if (type === ResponseType.block_list || "blocks" in output) {
return output as BlockListResponse;
}
}
return null;
}
export function getAnimationText(part: FindBlockToolPart): string {
const query = (part.input as FindBlockInput | undefined)?.query?.trim();
const queryText = query ? ` matching "${query}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Searching for blocks${queryText}`;
case "output-available": {
const parsed = parseOutput(part.output);
if (parsed) {
return `Found ${parsed.count} block${parsed.count === 1 ? "" : "s"}${queryText}`;
}
return `Searching for blocks${queryText}`;
}
case "output-error":
return `Error finding blocks${queryText}`;
default:
return "Searching for blocks";
}
}
export function ToolIcon({
isStreaming,
isError,
}: {
isStreaming?: boolean;
isError?: boolean;
}) {
return (
<PackageIcon
size={14}
weight="regular"
className={
isError
? "text-red-500"
: isStreaming
? "text-neutral-500"
: "text-neutral-400"
}
/>
);
}

View File

@@ -1,377 +0,0 @@
"use client";
import type { ToolUIPart } from "ai";
import Link from "next/link";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import { useCopilotChatActions } from "../../components/CopilotChatActionsProvider/useCopilotChatActions";
import {
ChatCredentialsSetup,
type CredentialInfo,
} from "@/components/contextual/Chat/components/ChatCredentialsSetup/ChatCredentialsSetup";
import {
formatMaybeJson,
getAnimationText,
getRunAgentToolOutput,
isRunAgentAgentDetailsOutput,
isRunAgentErrorOutput,
isRunAgentExecutionStartedOutput,
isRunAgentNeedLoginOutput,
isRunAgentSetupRequirementsOutput,
ToolIcon,
type RunAgentToolOutput,
} from "./helpers";
export interface RunAgentToolPart {
type: string;
toolCallId: string;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
interface Props {
part: RunAgentToolPart;
}
function getAccordionMeta(output: RunAgentToolOutput): {
badgeText: string;
title: string;
description?: string;
} {
if (isRunAgentExecutionStartedOutput(output)) {
const statusText =
typeof output.status === "string" && output.status.trim()
? output.status.trim()
: "started";
return {
badgeText: "Run agent",
title: output.graph_name,
description: `Status: ${statusText}`,
};
}
if (isRunAgentAgentDetailsOutput(output)) {
return {
badgeText: "Run agent",
title: output.agent.name,
description: "Inputs required",
};
}
if (isRunAgentSetupRequirementsOutput(output)) {
const missingCredsCount = Object.keys(
(output.setup_info.user_readiness?.missing_credentials ?? {}) as Record<
string,
unknown
>,
).length;
return {
badgeText: "Run agent",
title: output.setup_info.agent_name,
description:
missingCredsCount > 0
? `Missing ${missingCredsCount} credential${missingCredsCount === 1 ? "" : "s"}`
: output.message,
};
}
if (isRunAgentNeedLoginOutput(output)) {
return { badgeText: "Run agent", title: "Sign in required" };
}
return { badgeText: "Run agent", title: "Error" };
}
function coerceMissingCredentials(
rawMissingCredentials: unknown,
): CredentialInfo[] {
const missing =
rawMissingCredentials && typeof rawMissingCredentials === "object"
? (rawMissingCredentials as Record<string, unknown>)
: {};
const validTypes = new Set([
"api_key",
"oauth2",
"user_password",
"host_scoped",
]);
const results: CredentialInfo[] = [];
Object.values(missing).forEach((value) => {
if (!value || typeof value !== "object") return;
const cred = value as Record<string, unknown>;
const provider =
typeof cred.provider === "string" ? cred.provider.trim() : "";
if (!provider) return;
const providerName =
typeof cred.provider_name === "string" && cred.provider_name.trim()
? cred.provider_name.trim()
: provider.replace(/_/g, " ");
const title =
typeof cred.title === "string" && cred.title.trim()
? cred.title.trim()
: providerName;
const types =
Array.isArray(cred.types) && cred.types.length > 0
? cred.types
: typeof cred.type === "string"
? [cred.type]
: [];
const credentialTypes = types
.map((t) => (typeof t === "string" ? t.trim() : ""))
.filter(
(t): t is "api_key" | "oauth2" | "user_password" | "host_scoped" =>
validTypes.has(t),
);
if (credentialTypes.length === 0) return;
const scopes = Array.isArray(cred.scopes)
? cred.scopes.filter((s): s is string => typeof s === "string")
: undefined;
const item: CredentialInfo = {
provider,
providerName,
credentialTypes,
title,
};
if (scopes && scopes.length > 0) {
item.scopes = scopes;
}
results.push(item);
});
return results;
}
function coerceExpectedInputs(rawInputs: unknown): Array<{
name: string;
title: string;
type: string;
description?: string;
required: boolean;
}> {
if (!Array.isArray(rawInputs)) return [];
const results: Array<{
name: string;
title: string;
type: string;
description?: string;
required: boolean;
}> = [];
rawInputs.forEach((value, index) => {
if (!value || typeof value !== "object") return;
const input = value as Record<string, unknown>;
const name =
typeof input.name === "string" && input.name.trim()
? input.name.trim()
: `input-${index}`;
const title =
typeof input.title === "string" && input.title.trim()
? input.title.trim()
: name;
const type = typeof input.type === "string" ? input.type : "unknown";
const description =
typeof input.description === "string" && input.description.trim()
? input.description.trim()
: undefined;
const required = Boolean(input.required);
const item: {
name: string;
title: string;
type: string;
description?: string;
required: boolean;
} = { name, title, type, required };
if (description) item.description = description;
results.push(item);
});
return results;
}
export function RunAgentTool({ part }: Props) {
const text = getAnimationText(part);
const { onSend } = useCopilotChatActions();
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const output = getRunAgentToolOutput(part);
const isError =
part.state === "output-error" ||
(!!output && isRunAgentErrorOutput(output));
const hasExpandableContent =
part.state === "output-available" &&
!!output &&
(isRunAgentExecutionStartedOutput(output) ||
isRunAgentAgentDetailsOutput(output) ||
isRunAgentSetupRequirementsOutput(output) ||
isRunAgentNeedLoginOutput(output) ||
isRunAgentErrorOutput(output));
function handleAllCredentialsComplete() {
onSend(
"I've configured the required credentials. Please check if everything is ready and proceed with running the agent.",
);
}
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon isStreaming={isStreaming} isError={isError} />
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && output && (
<ToolAccordion
{...getAccordionMeta(output)}
defaultExpanded={
isRunAgentSetupRequirementsOutput(output) ||
isRunAgentAgentDetailsOutput(output)
}
>
{isRunAgentExecutionStartedOutput(output) && (
<div className="grid gap-2">
<div className="rounded-2xl border bg-background p-3">
<div className="flex items-start justify-between gap-3">
<div className="min-w-0">
<p className="text-sm font-medium text-foreground">
Execution started
</p>
<p className="mt-0.5 truncate text-xs text-muted-foreground">
{output.execution_id}
</p>
<p className="mt-2 text-xs text-muted-foreground">
{output.message}
</p>
</div>
{output.library_agent_link && (
<Link
href={output.library_agent_link}
className="shrink-0 text-xs font-medium text-purple-600 hover:text-purple-700"
>
Open
</Link>
)}
</div>
</div>
</div>
)}
{isRunAgentAgentDetailsOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{output.agent.description?.trim() && (
<p className="text-xs text-muted-foreground">
{output.agent.description}
</p>
)}
<div className="rounded-2xl border bg-background p-3">
<p className="text-xs font-medium text-foreground">Inputs</p>
<p className="mt-1 text-xs text-muted-foreground">
Provide required inputs in chat, or ask to run with defaults.
</p>
<pre className="mt-2 whitespace-pre-wrap text-xs text-muted-foreground">
{formatMaybeJson(output.agent.inputs)}
</pre>
</div>
</div>
)}
{isRunAgentSetupRequirementsOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{coerceMissingCredentials(
output.setup_info.user_readiness?.missing_credentials,
).length > 0 && (
<ChatCredentialsSetup
credentials={coerceMissingCredentials(
output.setup_info.user_readiness?.missing_credentials,
)}
agentName={output.setup_info.agent_name}
message={output.message}
onAllCredentialsComplete={handleAllCredentialsComplete}
onCancel={() => {}}
/>
)}
{coerceExpectedInputs(
(output.setup_info.requirements as Record<string, unknown>)
?.inputs,
).length > 0 && (
<div className="rounded-2xl border bg-background p-3">
<p className="text-xs font-medium text-foreground">
Expected inputs
</p>
<div className="mt-2 grid gap-2">
{coerceExpectedInputs(
(
output.setup_info.requirements as Record<
string,
unknown
>
)?.inputs,
).map((input) => (
<div key={input.name} className="rounded-xl border p-2">
<div className="flex items-center justify-between gap-2">
<p className="truncate text-xs font-medium text-foreground">
{input.title}
</p>
<span className="shrink-0 rounded-full border bg-muted px-2 py-0.5 text-[11px] text-muted-foreground">
{input.required ? "Required" : "Optional"}
</span>
</div>
<p className="mt-1 text-xs text-muted-foreground">
{input.name} {input.type}
{input.description ? `${input.description}` : ""}
</p>
</div>
))}
</div>
</div>
)}
</div>
)}
{isRunAgentNeedLoginOutput(output) && (
<p className="text-sm text-foreground">{output.message}</p>
)}
{isRunAgentErrorOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{output.error && (
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{formatMaybeJson(output.error)}
</pre>
)}
{output.details && (
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{formatMaybeJson(output.details)}
</pre>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}

View File

@@ -1,191 +0,0 @@
import type { ToolUIPart } from "ai";
import { PlayIcon } from "@phosphor-icons/react";
import type { AgentDetailsResponse } from "@/app/api/__generated__/models/agentDetailsResponse";
import type { ErrorResponse } from "@/app/api/__generated__/models/errorResponse";
import type { ExecutionStartedResponse } from "@/app/api/__generated__/models/executionStartedResponse";
import type { NeedLoginResponse } from "@/app/api/__generated__/models/needLoginResponse";
import { ResponseType } from "@/app/api/__generated__/models/responseType";
import type { SetupRequirementsResponse } from "@/app/api/__generated__/models/setupRequirementsResponse";
export interface RunAgentInput {
username_agent_slug?: string;
library_agent_id?: string;
inputs?: Record<string, unknown>;
use_defaults?: boolean;
schedule_name?: string;
cron?: string;
timezone?: string;
}
export type RunAgentToolOutput =
| SetupRequirementsResponse
| ExecutionStartedResponse
| AgentDetailsResponse
| NeedLoginResponse
| ErrorResponse;
const RUN_AGENT_OUTPUT_TYPES = new Set<string>([
ResponseType.setup_requirements,
ResponseType.execution_started,
ResponseType.agent_details,
ResponseType.need_login,
ResponseType.error,
]);
export function isRunAgentSetupRequirementsOutput(
output: RunAgentToolOutput,
): output is SetupRequirementsResponse {
return (
output.type === ResponseType.setup_requirements ||
("setup_info" in output && typeof output.setup_info === "object")
);
}
export function isRunAgentExecutionStartedOutput(
output: RunAgentToolOutput,
): output is ExecutionStartedResponse {
return (
output.type === ResponseType.execution_started || "execution_id" in output
);
}
export function isRunAgentAgentDetailsOutput(
output: RunAgentToolOutput,
): output is AgentDetailsResponse {
return output.type === ResponseType.agent_details || "agent" in output;
}
export function isRunAgentNeedLoginOutput(
output: RunAgentToolOutput,
): output is NeedLoginResponse {
return output.type === ResponseType.need_login;
}
export function isRunAgentErrorOutput(
output: RunAgentToolOutput,
): output is ErrorResponse {
return output.type === ResponseType.error || "error" in output;
}
function parseOutput(output: unknown): RunAgentToolOutput | null {
if (!output) return null;
if (typeof output === "string") {
const trimmed = output.trim();
if (!trimmed) return null;
try {
return parseOutput(JSON.parse(trimmed) as unknown);
} catch {
return null;
}
}
if (typeof output === "object") {
const type = (output as { type?: unknown }).type;
if (typeof type === "string" && RUN_AGENT_OUTPUT_TYPES.has(type)) {
return output as RunAgentToolOutput;
}
if ("execution_id" in output) return output as ExecutionStartedResponse;
if ("setup_info" in output) return output as SetupRequirementsResponse;
if ("agent" in output) return output as AgentDetailsResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
if (type === ResponseType.need_login) return output as NeedLoginResponse;
}
return null;
}
export function getRunAgentToolOutput(
part: unknown,
): RunAgentToolOutput | null {
if (!part || typeof part !== "object") return null;
return parseOutput((part as { output?: unknown }).output);
}
function getAgentIdentifierText(
input: RunAgentInput | undefined,
): string | null {
if (!input) return null;
const slug = input.username_agent_slug?.trim();
if (slug) return slug;
const libraryId = input.library_agent_id?.trim();
if (libraryId) return `Library agent ${libraryId}`;
return null;
}
function getExecutionModeText(input: RunAgentInput | undefined): string | null {
if (!input) return null;
const isSchedule = Boolean(input.schedule_name?.trim() || input.cron?.trim());
return isSchedule ? "Scheduled run" : "Run";
}
export function getAnimationText(part: {
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}): string {
const input = part.input as RunAgentInput | undefined;
const agentIdentifier = getAgentIdentifierText(input);
const isSchedule = Boolean(
input?.schedule_name?.trim() || input?.cron?.trim(),
);
const actionPhrase = isSchedule
? "Scheduling the agent to run"
: "Running the agent";
const identifierText = agentIdentifier ? ` "${agentIdentifier}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `${actionPhrase}${identifierText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `${actionPhrase}${identifierText}`;
if (isRunAgentExecutionStartedOutput(output)) {
return `Started "${output.graph_name}"`;
}
if (isRunAgentAgentDetailsOutput(output)) {
return `Agent inputs needed for "${output.agent.name}"`;
}
if (isRunAgentSetupRequirementsOutput(output)) {
return `Setup needed for "${output.setup_info.agent_name}"`;
}
if (isRunAgentNeedLoginOutput(output))
return "Sign in required to run agent";
return "Error running agent";
}
case "output-error":
return "Error running agent";
default:
return actionPhrase;
}
}
export function ToolIcon({
isStreaming,
isError,
}: {
isStreaming?: boolean;
isError?: boolean;
}) {
return (
<PlayIcon
size={14}
weight="regular"
className={
isError
? "text-red-500"
: isStreaming
? "text-neutral-500"
: "text-neutral-400"
}
/>
);
}
export function formatMaybeJson(value: unknown): string {
if (typeof value === "string") return value;
try {
return JSON.stringify(value, null, 2);
} catch {
return String(value);
}
}

View File

@@ -1,325 +0,0 @@
"use client";
import type { ToolUIPart } from "ai";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import { useCopilotChatActions } from "../../components/CopilotChatActionsProvider/useCopilotChatActions";
import {
ChatCredentialsSetup,
type CredentialInfo,
} from "@/components/contextual/Chat/components/ChatCredentialsSetup/ChatCredentialsSetup";
import {
formatMaybeJson,
getAnimationText,
getRunBlockToolOutput,
isRunBlockBlockOutput,
isRunBlockErrorOutput,
isRunBlockSetupRequirementsOutput,
ToolIcon,
type RunBlockToolOutput,
} from "./helpers";
export interface RunBlockToolPart {
type: string;
toolCallId: string;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
interface Props {
part: RunBlockToolPart;
}
function getAccordionMeta(output: RunBlockToolOutput): {
badgeText: string;
title: string;
description?: string;
} {
if (isRunBlockBlockOutput(output)) {
const keys = Object.keys(output.outputs ?? {});
return {
badgeText: "Run block",
title: output.block_name,
description:
keys.length > 0
? `${keys.length} output key${keys.length === 1 ? "" : "s"}`
: output.message,
};
}
if (isRunBlockSetupRequirementsOutput(output)) {
const missingCredsCount = Object.keys(
(output.setup_info.user_readiness?.missing_credentials ?? {}) as Record<
string,
unknown
>,
).length;
return {
badgeText: "Run block",
title: output.setup_info.agent_name,
description:
missingCredsCount > 0
? `Missing ${missingCredsCount} credential${missingCredsCount === 1 ? "" : "s"}`
: output.message,
};
}
return { badgeText: "Run block", title: "Error" };
}
function coerceMissingCredentials(
rawMissingCredentials: unknown,
): CredentialInfo[] {
const missing =
rawMissingCredentials && typeof rawMissingCredentials === "object"
? (rawMissingCredentials as Record<string, unknown>)
: {};
const validTypes = new Set([
"api_key",
"oauth2",
"user_password",
"host_scoped",
]);
const results: CredentialInfo[] = [];
Object.values(missing).forEach((value) => {
if (!value || typeof value !== "object") return;
const cred = value as Record<string, unknown>;
const provider =
typeof cred.provider === "string" ? cred.provider.trim() : "";
if (!provider) return;
const providerName =
typeof cred.provider_name === "string" && cred.provider_name.trim()
? cred.provider_name.trim()
: provider.replace(/_/g, " ");
const title =
typeof cred.title === "string" && cred.title.trim()
? cred.title.trim()
: providerName;
const types =
Array.isArray(cred.types) && cred.types.length > 0
? cred.types
: typeof cred.type === "string"
? [cred.type]
: [];
const credentialTypes = types
.map((t) => (typeof t === "string" ? t.trim() : ""))
.filter(
(t): t is "api_key" | "oauth2" | "user_password" | "host_scoped" =>
validTypes.has(t),
);
if (credentialTypes.length === 0) return;
const scopes = Array.isArray(cred.scopes)
? cred.scopes.filter((s): s is string => typeof s === "string")
: undefined;
const item: CredentialInfo = {
provider,
providerName,
credentialTypes,
title,
};
if (scopes && scopes.length > 0) {
item.scopes = scopes;
}
results.push(item);
});
return results;
}
function coerceExpectedInputs(rawInputs: unknown): Array<{
name: string;
title: string;
type: string;
description?: string;
required: boolean;
}> {
if (!Array.isArray(rawInputs)) return [];
const results: Array<{
name: string;
title: string;
type: string;
description?: string;
required: boolean;
}> = [];
rawInputs.forEach((value, index) => {
if (!value || typeof value !== "object") return;
const input = value as Record<string, unknown>;
const name =
typeof input.name === "string" && input.name.trim()
? input.name.trim()
: `input-${index}`;
const title =
typeof input.title === "string" && input.title.trim()
? input.title.trim()
: name;
const type = typeof input.type === "string" ? input.type : "unknown";
const description =
typeof input.description === "string" && input.description.trim()
? input.description.trim()
: undefined;
const required = Boolean(input.required);
const item: {
name: string;
title: string;
type: string;
description?: string;
required: boolean;
} = { name, title, type, required };
if (description) item.description = description;
results.push(item);
});
return results;
}
export function RunBlockTool({ part }: Props) {
const text = getAnimationText(part);
const { onSend } = useCopilotChatActions();
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const output = getRunBlockToolOutput(part);
const isError =
part.state === "output-error" ||
(!!output && isRunBlockErrorOutput(output));
const hasExpandableContent =
part.state === "output-available" &&
!!output &&
(isRunBlockBlockOutput(output) ||
isRunBlockSetupRequirementsOutput(output) ||
isRunBlockErrorOutput(output));
function handleAllCredentialsComplete() {
onSend(
"I've configured the required credentials. Please re-run the block now.",
);
}
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon isStreaming={isStreaming} isError={isError} />
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && output && (
<ToolAccordion
{...getAccordionMeta(output)}
defaultExpanded={isRunBlockSetupRequirementsOutput(output)}
>
{isRunBlockBlockOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{Object.entries(output.outputs ?? {}).map(([key, items]) => (
<div key={key} className="rounded-2xl border bg-background p-3">
<div className="flex items-center justify-between gap-2">
<p className="truncate text-xs font-medium text-foreground">
{key}
</p>
<span className="shrink-0 rounded-full border bg-muted px-2 py-0.5 text-[11px] text-muted-foreground">
{items.length} item{items.length === 1 ? "" : "s"}
</span>
</div>
<pre className="mt-2 whitespace-pre-wrap text-xs text-muted-foreground">
{formatMaybeJson(items.slice(0, 3))}
</pre>
</div>
))}
</div>
)}
{isRunBlockSetupRequirementsOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{coerceMissingCredentials(
output.setup_info.user_readiness?.missing_credentials,
).length > 0 && (
<ChatCredentialsSetup
credentials={coerceMissingCredentials(
output.setup_info.user_readiness?.missing_credentials,
)}
agentName={output.setup_info.agent_name}
message={output.message}
onAllCredentialsComplete={handleAllCredentialsComplete}
onCancel={() => {}}
/>
)}
{coerceExpectedInputs(
(output.setup_info.requirements as Record<string, unknown>)
?.inputs,
).length > 0 && (
<div className="rounded-2xl border bg-background p-3">
<p className="text-xs font-medium text-foreground">
Expected inputs
</p>
<div className="mt-2 grid gap-2">
{coerceExpectedInputs(
(
output.setup_info.requirements as Record<
string,
unknown
>
)?.inputs,
).map((input) => (
<div key={input.name} className="rounded-xl border p-2">
<div className="flex items-center justify-between gap-2">
<p className="truncate text-xs font-medium text-foreground">
{input.title}
</p>
<span className="shrink-0 rounded-full border bg-muted px-2 py-0.5 text-[11px] text-muted-foreground">
{input.required ? "Required" : "Optional"}
</span>
</div>
<p className="mt-1 text-xs text-muted-foreground">
{input.name} {input.type}
{input.description ? `${input.description}` : ""}
</p>
</div>
))}
</div>
</div>
)}
</div>
)}
{isRunBlockErrorOutput(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{output.error && (
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{formatMaybeJson(output.error)}
</pre>
)}
{output.details && (
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{formatMaybeJson(output.details)}
</pre>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}

View File

@@ -1,140 +0,0 @@
import type { ToolUIPart } from "ai";
import { PlayIcon } from "@phosphor-icons/react";
import type { BlockOutputResponse } from "@/app/api/__generated__/models/blockOutputResponse";
import type { ErrorResponse } from "@/app/api/__generated__/models/errorResponse";
import { ResponseType } from "@/app/api/__generated__/models/responseType";
import type { SetupRequirementsResponse } from "@/app/api/__generated__/models/setupRequirementsResponse";
export interface RunBlockInput {
block_id?: string;
input_data?: Record<string, unknown>;
}
export type RunBlockToolOutput =
| SetupRequirementsResponse
| BlockOutputResponse
| ErrorResponse;
const RUN_BLOCK_OUTPUT_TYPES = new Set<string>([
ResponseType.setup_requirements,
ResponseType.block_output,
ResponseType.error,
]);
export function isRunBlockSetupRequirementsOutput(
output: RunBlockToolOutput,
): output is SetupRequirementsResponse {
return (
output.type === ResponseType.setup_requirements ||
("setup_info" in output && typeof output.setup_info === "object")
);
}
export function isRunBlockBlockOutput(
output: RunBlockToolOutput,
): output is BlockOutputResponse {
return output.type === ResponseType.block_output || "block_id" in output;
}
export function isRunBlockErrorOutput(
output: RunBlockToolOutput,
): output is ErrorResponse {
return output.type === ResponseType.error || "error" in output;
}
function parseOutput(output: unknown): RunBlockToolOutput | null {
if (!output) return null;
if (typeof output === "string") {
const trimmed = output.trim();
if (!trimmed) return null;
try {
return parseOutput(JSON.parse(trimmed) as unknown);
} catch {
return null;
}
}
if (typeof output === "object") {
const type = (output as { type?: unknown }).type;
if (typeof type === "string" && RUN_BLOCK_OUTPUT_TYPES.has(type)) {
return output as RunBlockToolOutput;
}
if ("block_id" in output) return output as BlockOutputResponse;
if ("setup_info" in output) return output as SetupRequirementsResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
}
return null;
}
export function getRunBlockToolOutput(
part: unknown,
): RunBlockToolOutput | null {
if (!part || typeof part !== "object") return null;
return parseOutput((part as { output?: unknown }).output);
}
function getBlockLabel(input: RunBlockInput | undefined): string | null {
const blockId = input?.block_id?.trim();
if (!blockId) return null;
return `Block ${blockId.slice(0, 8)}`;
}
export function getAnimationText(part: {
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}): string {
const input = part.input as RunBlockInput | undefined;
const blockId = input?.block_id?.trim();
const blockText = blockId ? ` "${blockId}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Running the block${blockText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `Running the block${blockText}`;
if (isRunBlockBlockOutput(output)) return `Ran "${output.block_name}"`;
if (isRunBlockSetupRequirementsOutput(output)) {
return `Setup needed for "${output.setup_info.agent_name}"`;
}
return "Error running block";
}
case "output-error":
return "Error running block";
default:
return "Running the block";
}
}
export function ToolIcon({
isStreaming,
isError,
}: {
isStreaming?: boolean;
isError?: boolean;
}) {
return (
<PlayIcon
size={14}
weight="regular"
className={
isError
? "text-red-500"
: isStreaming
? "text-neutral-500"
: "text-neutral-400"
}
/>
);
}
export function formatMaybeJson(value: unknown): string {
if (typeof value === "string") return value;
try {
return JSON.stringify(value, null, 2);
} catch {
return String(value);
}
}

View File

@@ -1,197 +0,0 @@
"use client";
import type { ToolUIPart } from "ai";
import Link from "next/link";
import { useMemo } from "react";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import {
getDocsToolOutput,
getDocsToolTitle,
getToolLabel,
getAnimationText,
isDocPageOutput,
isDocSearchResultsOutput,
isErrorOutput,
isNoResultsOutput,
ToolIcon,
toDocsUrl,
type DocsToolType,
} from "./helpers";
export interface DocsToolPart {
type: DocsToolType;
toolCallId: string;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
interface Props {
part: DocsToolPart;
}
function truncate(text: string, maxChars: number): string {
const trimmed = text.trim();
if (trimmed.length <= maxChars) return trimmed;
return `${trimmed.slice(0, maxChars).trimEnd()}`;
}
export function SearchDocsTool({ part }: Props) {
const output = getDocsToolOutput(part);
const text = getAnimationText(part);
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const isError =
part.state === "output-error" || (!!output && isErrorOutput(output));
const normalized = useMemo(() => {
if (!output) return null;
const title = getDocsToolTitle(part.type, output);
const label = getToolLabel(part.type);
return { title, label };
}, [output, part.type]);
const isOutputAvailable = part.state === "output-available" && !!output;
const docSearchOutput =
isOutputAvailable && output && isDocSearchResultsOutput(output)
? output
: null;
const docPageOutput =
isOutputAvailable && output && isDocPageOutput(output) ? output : null;
const noResultsOutput =
isOutputAvailable && output && isNoResultsOutput(output) ? output : null;
const errorOutput =
isOutputAvailable && output && isErrorOutput(output) ? output : null;
const hasExpandableContent =
isOutputAvailable &&
((!!docSearchOutput && docSearchOutput.count > 0) ||
!!docPageOutput ||
!!noResultsOutput ||
!!errorOutput);
const accordionDescription =
hasExpandableContent && docSearchOutput
? `Found ${docSearchOutput.count} result${docSearchOutput.count === 1 ? "" : "s"} for "${docSearchOutput.query}"`
: hasExpandableContent && docPageOutput
? docPageOutput.path
: hasExpandableContent && (noResultsOutput || errorOutput)
? ((noResultsOutput ?? errorOutput)?.message ?? null)
: null;
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon
toolType={part.type}
isStreaming={isStreaming}
isError={isError}
/>
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && normalized && (
<ToolAccordion
badgeText={normalized.label}
title={normalized.title}
description={accordionDescription}
>
{docSearchOutput && (
<div className="grid gap-2">
{docSearchOutput.results.map((r) => {
const href = r.doc_url ?? toDocsUrl(r.path);
return (
<div
key={r.path}
className="rounded-2xl border bg-background p-3"
>
<div className="flex items-start justify-between gap-2">
<div className="min-w-0">
<p className="truncate text-sm font-medium text-foreground">
{r.title}
</p>
<p className="mt-0.5 truncate text-xs text-muted-foreground">
{r.path}
{r.section ? `${r.section}` : ""}
</p>
<p className="mt-2 text-xs text-muted-foreground">
{truncate(r.snippet, 240)}
</p>
</div>
<Link
href={href}
target="_blank"
rel="noreferrer"
className="shrink-0 text-xs font-medium text-purple-600 hover:text-purple-700"
>
Open
</Link>
</div>
</div>
);
})}
</div>
)}
{docPageOutput && (
<div>
<div className="flex items-start justify-between gap-2">
<div className="min-w-0">
<p className="truncate text-sm font-medium text-foreground">
{docPageOutput.title}
</p>
<p className="mt-0.5 truncate text-xs text-muted-foreground">
{docPageOutput.path}
</p>
</div>
<Link
href={docPageOutput.doc_url ?? toDocsUrl(docPageOutput.path)}
target="_blank"
rel="noreferrer"
className="shrink-0 text-xs font-medium text-purple-600 hover:text-purple-700"
>
Open
</Link>
</div>
<p className="mt-2 whitespace-pre-wrap text-xs text-muted-foreground">
{truncate(docPageOutput.content, 800)}
</p>
</div>
)}
{noResultsOutput && (
<div>
<p className="text-sm text-foreground">
{noResultsOutput.message}
</p>
{noResultsOutput.suggestions &&
noResultsOutput.suggestions.length > 0 && (
<ul className="mt-2 list-disc space-y-1 pl-5 text-xs text-muted-foreground">
{noResultsOutput.suggestions.slice(0, 5).map((s) => (
<li key={s}>{s}</li>
))}
</ul>
)}
</div>
)}
{errorOutput && (
<div>
<p className="text-sm text-foreground">{errorOutput.message}</p>
{errorOutput.error && (
<p className="mt-2 text-xs text-muted-foreground">
{errorOutput.error}
</p>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}

View File

@@ -1,205 +0,0 @@
import { ToolUIPart } from "ai";
import { FileMagnifyingGlassIcon, FileTextIcon } from "@phosphor-icons/react";
import type { DocPageResponse } from "@/app/api/__generated__/models/docPageResponse";
import type { DocSearchResultsResponse } from "@/app/api/__generated__/models/docSearchResultsResponse";
import type { ErrorResponse } from "@/app/api/__generated__/models/errorResponse";
import type { NoResultsResponse } from "@/app/api/__generated__/models/noResultsResponse";
import { ResponseType } from "@/app/api/__generated__/models/responseType";
export interface SearchDocsInput {
query: string;
}
export interface GetDocPageInput {
path: string;
}
export type DocsToolOutput =
| DocSearchResultsResponse
| DocPageResponse
| NoResultsResponse
| ErrorResponse;
export type DocsToolType = "tool-search_docs" | "tool-get_doc_page" | string;
export function getToolLabel(toolType: DocsToolType): string {
switch (toolType) {
case "tool-search_docs":
return "Docs";
case "tool-get_doc_page":
return "Docs page";
default:
return "Docs";
}
}
function parseOutput(output: unknown): DocsToolOutput | null {
if (!output) return null;
if (typeof output === "string") {
const trimmed = output.trim();
if (!trimmed) return null;
try {
return parseOutput(JSON.parse(trimmed) as unknown);
} catch {
return null;
}
}
if (typeof output === "object") {
const type = (output as { type?: unknown }).type;
if (
type === ResponseType.doc_search_results ||
type === ResponseType.doc_page ||
type === ResponseType.no_results ||
type === ResponseType.error
) {
return output as DocsToolOutput;
}
if ("results" in output && "query" in output)
return output as DocSearchResultsResponse;
if ("content" in output && "path" in output)
return output as DocPageResponse;
if ("suggestions" in output && !("error" in output))
return output as NoResultsResponse;
if ("error" in output || "details" in output)
return output as ErrorResponse;
}
return null;
}
export function getDocsToolOutput(part: unknown): DocsToolOutput | null {
if (!part || typeof part !== "object") return null;
return parseOutput((part as { output?: unknown }).output);
}
export function isDocSearchResultsOutput(
output: DocsToolOutput,
): output is DocSearchResultsResponse {
return output.type === ResponseType.doc_search_results || "results" in output;
}
export function isDocPageOutput(
output: DocsToolOutput,
): output is DocPageResponse {
return output.type === ResponseType.doc_page || "content" in output;
}
export function isNoResultsOutput(
output: DocsToolOutput,
): output is NoResultsResponse {
return (
output.type === ResponseType.no_results ||
("suggestions" in output && !("error" in output))
);
}
export function isErrorOutput(output: DocsToolOutput): output is ErrorResponse {
return output.type === ResponseType.error || "error" in output;
}
export function getDocsToolTitle(
toolType: DocsToolType,
output: DocsToolOutput,
): string {
if (toolType === "tool-search_docs") {
if (isDocSearchResultsOutput(output)) return "Documentation results";
if (isNoResultsOutput(output)) return "No documentation found";
return "Documentation search error";
}
if (isDocPageOutput(output)) return "Documentation page";
if (isNoResultsOutput(output)) return "No documentation found";
return "Documentation page error";
}
export function getAnimationText(part: {
type: DocsToolType;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}): string {
switch (part.type) {
case "tool-search_docs": {
const query = (part.input as SearchDocsInput | undefined)?.query?.trim();
const queryText = query ? ` for "${query}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Searching documentation${queryText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `Searching documentation${queryText}`;
if (isDocSearchResultsOutput(output)) {
const count = output.count ?? output.results.length;
return `Found ${count} result${count === 1 ? "" : "s"}${queryText}`;
}
if (isNoResultsOutput(output)) {
return `No results found${queryText}`;
}
return `Error searching documentation${queryText}`;
}
case "output-error":
return `Error searching documentation${queryText}`;
default:
return "Searching documentation";
}
}
case "tool-get_doc_page": {
const path = (part.input as GetDocPageInput | undefined)?.path?.trim();
const pathText = path ? ` "${path}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Loading documentation page${pathText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `Loading documentation page${pathText}`;
if (isDocPageOutput(output)) return `Loaded "${output.title}"`;
if (isNoResultsOutput(output)) return "Documentation page not found";
return "Error loading documentation page";
}
case "output-error":
return "Error loading documentation page";
default:
return "Loading documentation page";
}
}
}
return "Processing";
}
export function ToolIcon({
toolType,
isStreaming,
isError,
}: {
toolType: DocsToolType;
isStreaming?: boolean;
isError?: boolean;
}) {
const IconComponent =
toolType === "tool-get_doc_page" ? FileTextIcon : FileMagnifyingGlassIcon;
return (
<IconComponent
size={14}
weight="regular"
className={
isError
? "text-red-500"
: isStreaming
? "text-neutral-500"
: "text-neutral-400"
}
/>
);
}
export function toDocsUrl(path: string): string {
const urlPath = path.includes(".")
? path.slice(0, path.lastIndexOf("."))
: path;
return `https://docs.agpt.co/${urlPath}`;
}

View File

@@ -1,181 +0,0 @@
"use client";
import type { ToolUIPart } from "ai";
import Link from "next/link";
import { MorphingTextAnimation } from "../../components/MorphingTextAnimation/MorphingTextAnimation";
import { ToolAccordion } from "../../components/ToolAccordion/ToolAccordion";
import {
formatMaybeJson,
getAnimationText,
getViewAgentOutputToolOutput,
isAgentOutputResponse,
isErrorResponse,
isNoResultsResponse,
ToolIcon,
type ViewAgentOutputToolOutput,
} from "./helpers";
export interface ViewAgentOutputToolPart {
type: string;
toolCallId: string;
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}
interface Props {
part: ViewAgentOutputToolPart;
}
function getAccordionMeta(output: ViewAgentOutputToolOutput): {
badgeText: string;
title: string;
description?: string;
} {
if (isAgentOutputResponse(output)) {
const status = output.execution?.status;
return {
badgeText: "Agent output",
title: output.agent_name,
description: status ? `Status: ${status}` : output.message,
};
}
if (isNoResultsResponse(output)) {
return { badgeText: "Agent output", title: "No results" };
}
return { badgeText: "Agent output", title: "Error" };
}
export function ViewAgentOutputTool({ part }: Props) {
const text = getAnimationText(part);
const isStreaming =
part.state === "input-streaming" || part.state === "input-available";
const output = getViewAgentOutputToolOutput(part);
const isError =
part.state === "output-error" || (!!output && isErrorResponse(output));
const hasExpandableContent =
part.state === "output-available" &&
!!output &&
(isAgentOutputResponse(output) ||
isNoResultsResponse(output) ||
isErrorResponse(output));
return (
<div className="py-2">
<div className="flex items-center gap-2 text-sm text-muted-foreground">
<ToolIcon isStreaming={isStreaming} isError={isError} />
<MorphingTextAnimation
text={text}
className={isError ? "text-red-500" : undefined}
/>
</div>
{hasExpandableContent && output && (
<ToolAccordion {...getAccordionMeta(output)}>
{isAgentOutputResponse(output) && (
<div className="grid gap-2">
<div className="flex items-start justify-between gap-3">
<p className="text-sm text-foreground">{output.message}</p>
{output.library_agent_link && (
<Link
href={output.library_agent_link}
className="shrink-0 text-xs font-medium text-purple-600 hover:text-purple-700"
>
Open
</Link>
)}
</div>
{output.execution ? (
<div className="grid gap-2">
<div className="rounded-2xl border bg-background p-3">
<p className="text-xs font-medium text-foreground">
Execution
</p>
<p className="mt-1 truncate text-xs text-muted-foreground">
{output.execution.execution_id}
</p>
<p className="mt-1 text-xs text-muted-foreground">
Status: {output.execution.status}
</p>
</div>
{output.execution.inputs_summary && (
<div className="rounded-2xl border bg-background p-3">
<p className="text-xs font-medium text-foreground">
Inputs summary
</p>
<pre className="mt-2 whitespace-pre-wrap text-xs text-muted-foreground">
{formatMaybeJson(output.execution.inputs_summary)}
</pre>
</div>
)}
{Object.entries(output.execution.outputs ?? {}).map(
([key, items]) => (
<div
key={key}
className="rounded-2xl border bg-background p-3"
>
<div className="flex items-center justify-between gap-2">
<p className="truncate text-xs font-medium text-foreground">
{key}
</p>
<span className="shrink-0 rounded-full border bg-muted px-2 py-0.5 text-[11px] text-muted-foreground">
{items.length} item{items.length === 1 ? "" : "s"}
</span>
</div>
<pre className="mt-2 whitespace-pre-wrap text-xs text-muted-foreground">
{formatMaybeJson(items.slice(0, 3))}
</pre>
</div>
),
)}
</div>
) : (
<div className="rounded-2xl border bg-background p-3">
<p className="text-sm text-foreground">
No execution selected.
</p>
<p className="mt-1 text-xs text-muted-foreground">
Try asking for a specific run or execution_id.
</p>
</div>
)}
</div>
)}
{isNoResultsResponse(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{output.suggestions && output.suggestions.length > 0 && (
<ul className="mt-1 list-disc space-y-1 pl-5 text-xs text-muted-foreground">
{output.suggestions.slice(0, 5).map((s) => (
<li key={s}>{s}</li>
))}
</ul>
)}
</div>
)}
{isErrorResponse(output) && (
<div className="grid gap-2">
<p className="text-sm text-foreground">{output.message}</p>
{output.error && (
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{formatMaybeJson(output.error)}
</pre>
)}
{output.details && (
<pre className="whitespace-pre-wrap rounded-2xl border bg-muted/30 p-3 text-xs text-muted-foreground">
{formatMaybeJson(output.details)}
</pre>
)}
</div>
)}
</ToolAccordion>
)}
</div>
);
}

View File

@@ -1,154 +0,0 @@
import type { ToolUIPart } from "ai";
import { EyeIcon } from "@phosphor-icons/react";
import type { AgentOutputResponse } from "@/app/api/__generated__/models/agentOutputResponse";
import type { ErrorResponse } from "@/app/api/__generated__/models/errorResponse";
import type { NoResultsResponse } from "@/app/api/__generated__/models/noResultsResponse";
import { ResponseType } from "@/app/api/__generated__/models/responseType";
export interface ViewAgentOutputInput {
agent_name?: string;
library_agent_id?: string;
store_slug?: string;
execution_id?: string;
run_time?: string;
}
export type ViewAgentOutputToolOutput =
| AgentOutputResponse
| NoResultsResponse
| ErrorResponse;
function parseOutput(output: unknown): ViewAgentOutputToolOutput | null {
if (!output) return null;
if (typeof output === "string") {
const trimmed = output.trim();
if (!trimmed) return null;
try {
return parseOutput(JSON.parse(trimmed) as unknown);
} catch {
return null;
}
}
if (typeof output === "object") {
const type = (output as { type?: unknown }).type;
if (
type === ResponseType.agent_output ||
type === ResponseType.no_results ||
type === ResponseType.error
) {
return output as ViewAgentOutputToolOutput;
}
if ("agent_id" in output && "agent_name" in output) {
return output as AgentOutputResponse;
}
if ("suggestions" in output && !("error" in output)) {
return output as NoResultsResponse;
}
if ("error" in output || "details" in output)
return output as ErrorResponse;
}
return null;
}
export function isAgentOutputResponse(
output: ViewAgentOutputToolOutput,
): output is AgentOutputResponse {
return output.type === ResponseType.agent_output || "agent_id" in output;
}
export function isNoResultsResponse(
output: ViewAgentOutputToolOutput,
): output is NoResultsResponse {
return (
output.type === ResponseType.no_results ||
("suggestions" in output && !("error" in output))
);
}
export function isErrorResponse(
output: ViewAgentOutputToolOutput,
): output is ErrorResponse {
return output.type === ResponseType.error || "error" in output;
}
export function getViewAgentOutputToolOutput(
part: unknown,
): ViewAgentOutputToolOutput | null {
if (!part || typeof part !== "object") return null;
return parseOutput((part as { output?: unknown }).output);
}
function getAgentIdentifierText(
input: ViewAgentOutputInput | undefined,
): string | null {
if (!input) return null;
const libraryId = input.library_agent_id?.trim();
if (libraryId) return `Library agent ${libraryId}`;
const slug = input.store_slug?.trim();
if (slug) return slug;
const name = input.agent_name?.trim();
if (name) return name;
return null;
}
export function getAnimationText(part: {
state: ToolUIPart["state"];
input?: unknown;
output?: unknown;
}): string {
const input = part.input as ViewAgentOutputInput | undefined;
const agent = getAgentIdentifierText(input);
const agentText = agent ? ` "${agent}"` : "";
switch (part.state) {
case "input-streaming":
case "input-available":
return `Retrieving agent output${agentText}`;
case "output-available": {
const output = parseOutput(part.output);
if (!output) return `Retrieving agent output${agentText}`;
if (isAgentOutputResponse(output)) {
if (output.execution)
return `Retrieved output (${output.execution.status})`;
return "Retrieved agent output";
}
if (isNoResultsResponse(output)) return "No outputs found";
return "Error loading agent output";
}
case "output-error":
return "Error loading agent output";
default:
return "Retrieving agent output";
}
}
export function ToolIcon({
isStreaming,
isError,
}: {
isStreaming?: boolean;
isError?: boolean;
}) {
return (
<EyeIcon
size={14}
weight="regular"
className={
isError
? "text-red-500"
: isStreaming
? "text-neutral-500"
: "text-neutral-400"
}
/>
);
}
export function formatMaybeJson(value: unknown): string {
if (typeof value === "string") return value;
try {
return JSON.stringify(value, null, 2);
} catch {
return String(value);
}
}

View File

@@ -1,64 +0,0 @@
import {
getGetV2ListSessionsQueryKey,
useGetV2GetSession,
usePostV2CreateSession,
} from "@/app/api/__generated__/endpoints/chat/chat";
import { useQueryClient } from "@tanstack/react-query";
import { parseAsString, useQueryState } from "nuqs";
import { useMemo } from "react";
import { convertChatSessionMessagesToUiMessages } from "./helpers/convertChatSessionToUiMessages";
export function useChatSession() {
const [sessionId, setSessionId] = useQueryState("sessionId", parseAsString);
const queryClient = useQueryClient();
const sessionQuery = useGetV2GetSession(sessionId ?? "", {
query: {
staleTime: Infinity,
refetchOnWindowFocus: false,
refetchOnReconnect: false,
},
});
// Memoize so the effect in useCopilotPage doesn't infinite-loop on a new
// array reference every render. Re-derives only when query data changes.
const hydratedMessages = useMemo(() => {
if (sessionQuery.data?.status !== 200 || !sessionId) return undefined;
return convertChatSessionMessagesToUiMessages(
sessionId,
sessionQuery.data.data.messages ?? [],
);
}, [sessionQuery.data, sessionId]);
const { mutateAsync: createSessionMutation, isPending: isCreatingSession } =
usePostV2CreateSession({
mutation: {
onSuccess: (response) => {
if (response.status === 200 && response.data?.id) {
setSessionId(response.data.id);
queryClient.invalidateQueries({
queryKey: getGetV2ListSessionsQueryKey(),
});
}
},
},
});
async function createSession() {
if (sessionId) return sessionId;
const response = await createSessionMutation();
if (response.status !== 200 || !response.data?.id) {
throw new Error("Failed to create session");
}
return response.data.id;
}
return {
sessionId,
setSessionId,
hydratedMessages,
isLoadingSession: sessionQuery.isLoading,
createSession,
isCreatingSession,
};
}

View File

@@ -1,137 +0,0 @@
import { useGetV2ListSessions } from "@/app/api/__generated__/endpoints/chat/chat";
import { useBreakpoint } from "@/lib/hooks/useBreakpoint";
import { useChat } from "@ai-sdk/react";
import { DefaultChatTransport } from "ai";
import { useCallback, useEffect, useState } from "react";
import { useChatSession } from "./useChatSession";
export function useCopilotPage() {
const [isDrawerOpen, setIsDrawerOpen] = useState(false);
const [pendingMessage, setPendingMessage] = useState<string | null>(null);
const {
sessionId,
setSessionId,
hydratedMessages,
isLoadingSession,
createSession,
isCreatingSession,
} = useChatSession();
const breakpoint = useBreakpoint();
const isMobile =
breakpoint === "base" || breakpoint === "sm" || breakpoint === "md";
const transport = sessionId
? new DefaultChatTransport({
api: `/api/chat/sessions/${sessionId}/stream`,
prepareSendMessagesRequest: ({ messages }) => {
const last = messages[messages.length - 1];
return {
body: {
message: last.parts
?.map((p) => (p.type === "text" ? p.text : ""))
.join(""),
is_user_message: last.role === "user",
context: null,
},
};
},
// Resume uses GET on the same endpoint (no message param → backend resumes)
prepareReconnectToStreamRequest: () => ({
api: `/api/chat/sessions/${sessionId}/stream`,
}),
})
: null;
const { messages, sendMessage, status, error, setMessages } = useChat({
id: sessionId ?? undefined,
transport: transport ?? undefined,
resume: !!sessionId,
});
useEffect(() => {
if (!hydratedMessages || hydratedMessages.length === 0) return;
setMessages((prev) => {
if (prev.length > hydratedMessages.length) return prev;
return hydratedMessages;
});
}, [hydratedMessages, setMessages]);
// Clear messages when session is null
useEffect(() => {
if (!sessionId) setMessages([]);
}, [sessionId, setMessages]);
useEffect(() => {
if (!sessionId || !pendingMessage) return;
const msg = pendingMessage;
setPendingMessage(null);
sendMessage({ text: msg });
}, [sessionId, pendingMessage, sendMessage]);
async function onSend(message: string) {
const trimmed = message.trim();
if (!trimmed) return;
if (sessionId) {
sendMessage({ text: trimmed });
return;
}
setPendingMessage(trimmed);
await createSession();
}
const { data: sessionsResponse, isLoading: isLoadingSessions } =
useGetV2ListSessions({ limit: 50 });
const sessions =
sessionsResponse?.status === 200 ? sessionsResponse.data.sessions : [];
const handleOpenDrawer = useCallback(() => {
setIsDrawerOpen(true);
}, []);
const handleCloseDrawer = useCallback(() => {
setIsDrawerOpen(false);
}, []);
const handleDrawerOpenChange = useCallback((open: boolean) => {
setIsDrawerOpen(open);
}, []);
const handleSelectSession = useCallback(
(id: string) => {
setSessionId(id);
if (isMobile) setIsDrawerOpen(false);
},
[setSessionId, isMobile],
);
const handleNewChat = useCallback(() => {
setSessionId(null);
if (isMobile) setIsDrawerOpen(false);
}, [setSessionId, isMobile]);
return {
sessionId,
messages,
status,
error,
isLoadingSession,
isCreatingSession,
createSession,
onSend,
// Mobile drawer
isMobile,
isDrawerOpen,
sessions,
isLoadingSessions,
handleOpenDrawer,
handleCloseDrawer,
handleDrawerOpenChange,
handleSelectSession,
handleNewChat,
};
}

View File

@@ -10,8 +10,8 @@ import React, {
import {
CredentialsMetaInput,
CredentialsType,
Graph,
GraphExecutionID,
GraphMeta,
LibraryAgentPreset,
LibraryAgentPresetID,
LibraryAgentPresetUpdatable,
@@ -69,7 +69,7 @@ export function AgentRunDraftView({
className,
recommendedScheduleCron,
}: {
graph: GraphMeta;
graph: Graph;
agentActions?: ButtonAction[];
recommendedScheduleCron?: string | null;
doRun?: (

View File

@@ -2,8 +2,8 @@
import React, { useCallback, useMemo } from "react";
import {
Graph,
GraphExecutionID,
GraphMeta,
Schedule,
ScheduleID,
} from "@/lib/autogpt-server-api";
@@ -35,7 +35,7 @@ export function AgentScheduleDetailsView({
onForcedRun,
doDeleteSchedule,
}: {
graph: GraphMeta;
graph: Graph;
schedule: Schedule;
agentActions: ButtonAction[];
onForcedRun: (runID: GraphExecutionID) => void;

Some files were not shown because too many files have changed in this diff Show More