Compare commits

..

8 Commits

Author SHA1 Message Date
Lluis Agusti
9b98b2df40 chore: wip 2026-01-17 09:08:15 +07:00
Swifty
e55f05c7a8 feat(backend): add chat search tools and BM25 reranking (#11782)
This PR adds new chat tools for searching blocks and documentation,
along with BM25 reranking for improved search relevance.

### Changes 🏗️

**New Chat Tools:**
- `find_block` - Search for available blocks by name/description using
hybrid search
- `run_block` - Execute a block directly with provided inputs and
credentials
- `search_docs` - Search documentation with section-level granularity  
- `get_doc_page` - Retrieve full documentation page content

**Search Improvements:**
- Added BM25 reranking to hybrid search for better lexical relevance
- Documentation handler now chunks markdown by headings (##) for
finer-grained embeddings
- Section-based content IDs (`doc_path::section_index`) for precise doc
retrieval
- Startup embedding backfill in scheduler for immediate searchability

**Other Changes:**
- New response models for block and documentation search results
- Updated orphan cleanup to handle section-based doc embeddings
- Added `rank-bm25` dependency for BM25 scoring
- Removed max message limit check in chat service

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run find_block tool to search for blocks (e.g., "current time")
  - [x] Run run_block tool to execute a found block
  - [x] Run search_docs tool to search documentation
  - [x] Run get_doc_page tool to retrieve full doc content
- [x] Verify BM25 reranking improves search relevance for exact term
matches
  - [x] Verify documentation sections are properly chunked and embedded

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

**Dependencies added:** `rank-bm25` for BM25 scoring algorithm
2026-01-16 16:18:10 +01:00
Swifty
4a9b13acb6 feat(frontend): extract frontend changes from hackathon/copilot branch (#11717)
Frontend changes extracted from the hackathon/copilot branch for the
copilot feature development.

### Changes 🏗️

- New Chat system with contextual components (`Chat`, `ChatDrawer`,
`ChatContainer`, `ChatMessage`, etc.)
- Form renderer system with RJSF v6 integration and new input renderers
- Enhanced credentials management with improved OAuth flow and
credential selection
- New output renderers for various content types (Code, Image, JSON,
Markdown, Text, Video)
- Scrollable tabs component for better UI organization
- Marketplace update notifications and publishing workflow improvements
- Draft recovery feature with IndexedDB persistence
- Safe mode toggle functionality
- Various UI/UX improvements across the platform

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [ ] Test new Chat components functionality
  - [ ] Verify form renderer with various input types
  - [ ] Test credential management flows
  - [ ] Verify output renderers display correctly
  - [ ] Test draft recovery feature

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---------

Co-authored-by: Lluis Agusti <hi@llu.lu>
2026-01-16 22:15:39 +07:00
Zamil Majdy
5ff669e999 fix(backend): Make Redis connection lazy in cache module (#11775)
## Summary
- Makes Redis connection lazy in the cache module - connection is only
established when `shared_cache=True` is actually used
- Fixes DatabaseManager failing to start because it imports
`onboarding.py` which imports `cache.py`, triggering Redis connection at
module load time even though it only uses in-memory caching

## Root Cause
Commit `b01ea3fcb` (merged today) added `increment_onboarding_runs` to
DatabaseManager, which imports from `onboarding.py`. That module imports
`@cached` decorator from `cache.py`, which was creating a Redis
connection at module import time:

```python
# Old code - ran at import time!
redis = Redis(connection_pool=_get_cache_pool())
```

Since `onboarding.py` only uses `@cached(shared_cache=False)` (in-memory
caching), it doesn't actually need Redis. But the import triggered the
connection attempt.

## Changes
- Wrapped Redis connection in a singleton class with lazy initialization
- Connection is only established when `_get_redis()` is first called
(i.e., when `shared_cache=True` is used)
- Services using only in-memory caching can now import `cache.py`
without Redis configuration

## Test plan
- [ ] Services using `shared_cache=False` work without Redis configured
- [ ] Services using `shared_cache=True` still work correctly with Redis
- [ ] Existing cache tests pass

🤖 Generated with [Claude Code](https://claude.com/claude-code)

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 14:28:36 +00:00
Abhimanyu Yadav
ec03a13e26 fix(frontend): improve history tracking, error handling (#11786)
### Changes 🏗️

- **Improved Error Handling**: Enhanced error handling in
`useRunInputDialog.ts` to properly handle cases where node errors are
empty or undefined
- **Fixed Node Collision Resolution**: Updated `Flow.tsx` to use the
current state from the store instead of stale props
- **Enhanced History Management**:
    - Added proper state tracking for edge removal operations
    - Improved undo/redo functionality to prevent duplicate states
- Fixed edge case where history wasn't properly tracked during node
dragging
- **UI Improvements**:
- Fixed potential null reference in NodeHeader when accessing agent_name
    - Added placeholder for GoogleDrivePicker in INPUT mode
    - Fixed spacing in ArrayFieldTemplate
- **Bug Fixes**:
    - Added proper state tracking before modifying nodes/edges
    - Fixed history tracking to avoid redundant states
    - Improved collision detection and resolution

### Checklist ���

#### For code changes:

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Test undo/redo functionality after adding, removing, and moving
nodes
    - [x] Test edge creation and deletion with history tracking
    - [x] Verify error handling when graph validation fails
    - [x] Test Google Drive picker in different UI modes
    - [x] Verify node collision resolution works correctly
2026-01-16 13:34:57 +00:00
Abhimanyu Yadav
b08851f5d7 feat(frontend): improve GoogleDrivePickerField with input mode support and array field spacing (#11780)
### Changes 🏗️

- Added a placeholder UI for Google Drive Picker in INPUT block type
- Improved detection of Google Drive file objects in schema validation
- Extracted `isGoogleDrivePickerSchema` function for better code
organization
- Added spacing between array field elements with a gap-2 class
- Added debug logging for preprocessed schema in FormRenderer

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified Google Drive Picker shows placeholder in INPUT blocks
  - [x] Confirmed array field elements have proper spacing
  - [x] Tested that Google Drive file objects are properly detected
2026-01-16 13:02:36 +00:00
Abhimanyu Yadav
8b1720e61d feat(frontend): improve graph validation error handling and node navigation (#11779)
### Changes 🏗️

- Enhanced error handling for graph validation failures with detailed
user feedback
- Added automatic viewport navigation to the first node with errors when
validation fails
- Improved node title display to prioritize agent_name from hardcoded
values
- Removed console.log debugging statement from OutputHandler
- Added ApiError import and improved error type handling
- Reorganized imports for better code organization

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Create a graph with intentional validation errors and verify error
messages display correctly
- [x] Verify the viewport automatically navigates to the first node with
errors
- [x] Check that node titles correctly display customized names or agent
names
- [x] Test error recovery by fixing validation errors and successfully
running the graph
2026-01-16 11:14:00 +00:00
Abhimanyu Yadav
aa5a039c5e feat(frontend): add special rendering for NOTE UI type in FieldTemplate (#11771)
### Changes 🏗️

Added support for Note blocks in the FieldTemplate component by:
- Importing the BlockUIType enum from the build components types
- Extracting the uiType from the registry.formContext
- Adding a conditional rendering check that returns children directly
when the uiType is BlockUIType.NOTE

This change allows Note blocks to render without the standard field
template wrapper, providing a cleaner display for note-type content.


![Screenshot 2026-01-15 at
1.01.03 PM.png](https://app.graphite.com/user-attachments/assets/7d654eed-abbe-4ec3-9c80-24a77a8373e3.png)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Created a Note block and verified it renders correctly without
field template wrapper
- [x] Confirmed other block types still render with proper field
template
- [x] Verified that Note blocks maintain proper functionality in the
node graph
2026-01-16 11:10:21 +00:00
229 changed files with 8274 additions and 10261 deletions

View File

@@ -122,24 +122,6 @@ class ConnectionManager:
return len(connections)
async def broadcast_to_all(self, *, method: WSMethod, data: dict) -> int:
"""Broadcast a message to all active websocket connections."""
message = WSMessage(
method=method,
data=data,
).model_dump_json()
connections = tuple(self.active_connections)
if not connections:
return 0
await asyncio.gather(
*(connection.send_text(message) for connection in connections),
return_exceptions=True,
)
return len(connections)
async def _subscribe(self, channel_key: str, websocket: WebSocket) -> str:
if channel_key not in self.subscriptions:
self.subscriptions[channel_key] = set()

View File

@@ -173,64 +173,30 @@ async def get_execution_analytics_config(
# Return with provider prefix for clarity
return f"{provider_name}: {model_name}"
# Get all models from the registry (dynamic, not hardcoded enum)
from backend.data import llm_registry
from backend.server.v2.llm import db as llm_db
# Get the recommended model from the database (configurable via admin UI)
recommended_model_slug = await llm_db.get_recommended_model_slug()
# Build the available models list
first_enabled_slug = None
for registry_model in llm_registry.iter_dynamic_models():
# Only include enabled models in the list
if not registry_model.is_enabled:
continue
# Track first enabled model as fallback
if first_enabled_slug is None:
first_enabled_slug = registry_model.slug
model_enum = LlmModel(registry_model.slug) # Create enum instance from slug
label = generate_model_label(model_enum)
# Include all LlmModel values (no more filtering by hardcoded list)
recommended_model = LlmModel.GPT4O_MINI.value
for model in LlmModel:
label = generate_model_label(model)
# Add "(Recommended)" suffix to the recommended model
if registry_model.slug == recommended_model_slug:
if model.value == recommended_model:
label += " (Recommended)"
available_models.append(
ModelInfo(
value=registry_model.slug,
value=model.value,
label=label,
provider=registry_model.metadata.provider,
provider=model.provider,
)
)
# Sort models by provider and name for better UX
available_models.sort(key=lambda x: (x.provider, x.label))
# Handle case where no models are available
if not available_models:
logger.warning(
"No enabled LLM models found in registry. "
"Ensure models are configured and enabled in the LLM Registry."
)
# Provide a placeholder entry so admins see meaningful feedback
available_models.append(
ModelInfo(
value="",
label="No models available - configure in LLM Registry",
provider="none",
)
)
# Use the DB recommended model, or fallback to first enabled model
final_recommended = recommended_model_slug or first_enabled_slug or ""
return ExecutionAnalyticsConfig(
available_models=available_models,
default_system_prompt=DEFAULT_SYSTEM_PROMPT,
default_user_prompt=DEFAULT_USER_PROMPT,
recommended_model=final_recommended,
recommended_model=recommended_model,
)

View File

@@ -1,557 +0,0 @@
import logging
import autogpt_libs.auth
import fastapi
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
from backend.server.v2.llm import db as llm_db
from backend.server.v2.llm import model as llm_model
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
tags=["llm", "admin"],
dependencies=[fastapi.Security(autogpt_libs.auth.requires_admin_user)],
)
async def _refresh_runtime_state() -> None:
"""Refresh the LLM registry and clear all related caches to ensure real-time updates."""
logger.info("Refreshing LLM registry runtime state...")
try:
# Refresh registry from database
await llm_registry.refresh_llm_registry()
refresh_llm_costs()
# Clear block schema caches so they're regenerated with updated model options
from backend.data.block import BlockSchema
BlockSchema.clear_all_schema_caches()
logger.info("Cleared all block schema caches")
# Clear the /blocks endpoint cache so frontend gets updated schemas
try:
from backend.api.features.v1 import _get_cached_blocks
_get_cached_blocks.cache_clear()
logger.info("Cleared /blocks endpoint cache")
except Exception as e:
logger.warning("Failed to clear /blocks cache: %s", e)
# Clear the v2 builder providers cache (if it exists)
try:
from backend.api.features.builder import db as builder_db
if hasattr(builder_db, "_get_all_providers"):
builder_db._get_all_providers.cache_clear()
logger.info("Cleared v2 builder providers cache")
except Exception as e:
logger.debug("Could not clear v2 builder cache: %s", e)
# Notify all executor services to refresh their registry cache
from backend.data.llm_registry import publish_registry_refresh_notification
await publish_registry_refresh_notification()
logger.info("Published registry refresh notification")
except Exception as exc:
logger.exception(
"LLM runtime state refresh failed; caches may be stale: %s", exc
)
@router.get(
"/providers",
summary="List LLM providers",
response_model=llm_model.LlmProvidersResponse,
)
async def list_llm_providers(include_models: bool = True):
providers = await llm_db.list_providers(include_models=include_models)
return llm_model.LlmProvidersResponse(providers=providers)
@router.post(
"/providers",
summary="Create LLM provider",
response_model=llm_model.LlmProvider,
)
async def create_llm_provider(request: llm_model.UpsertLlmProviderRequest):
provider = await llm_db.upsert_provider(request=request)
await _refresh_runtime_state()
return provider
@router.patch(
"/providers/{provider_id}",
summary="Update LLM provider",
response_model=llm_model.LlmProvider,
)
async def update_llm_provider(
provider_id: str,
request: llm_model.UpsertLlmProviderRequest,
):
provider = await llm_db.upsert_provider(request=request, provider_id=provider_id)
await _refresh_runtime_state()
return provider
@router.get(
"/models",
summary="List LLM models",
response_model=llm_model.LlmModelsResponse,
)
async def list_llm_models(provider_id: str | None = fastapi.Query(default=None)):
models = await llm_db.list_models(provider_id=provider_id)
return llm_model.LlmModelsResponse(models=models)
@router.post(
"/models",
summary="Create LLM model",
response_model=llm_model.LlmModel,
)
async def create_llm_model(request: llm_model.CreateLlmModelRequest):
model = await llm_db.create_model(request=request)
await _refresh_runtime_state()
return model
@router.patch(
"/models/{model_id}",
summary="Update LLM model",
response_model=llm_model.LlmModel,
)
async def update_llm_model(
model_id: str,
request: llm_model.UpdateLlmModelRequest,
):
model = await llm_db.update_model(model_id=model_id, request=request)
await _refresh_runtime_state()
return model
@router.patch(
"/models/{model_id}/toggle",
summary="Toggle LLM model availability",
response_model=llm_model.ToggleLlmModelResponse,
)
async def toggle_llm_model(
model_id: str,
request: llm_model.ToggleLlmModelRequest,
):
"""
Toggle a model's enabled status, optionally migrating workflows when disabling.
If disabling a model and `migrate_to_slug` is provided, all workflows using
this model will be migrated to the specified replacement model before disabling.
A migration record is created which can be reverted later using the revert endpoint.
Optional fields:
- `migration_reason`: Reason for the migration (e.g., "Provider outage")
- `custom_credit_cost`: Custom pricing override for billing during migration
"""
try:
result = await llm_db.toggle_model(
model_id=model_id,
is_enabled=request.is_enabled,
migrate_to_slug=request.migrate_to_slug,
migration_reason=request.migration_reason,
custom_credit_cost=request.custom_credit_cost,
)
await _refresh_runtime_state()
if result.nodes_migrated > 0:
logger.info(
"Toggled model '%s' to %s and migrated %d nodes to '%s' (migration_id=%s)",
result.model.slug,
"enabled" if request.is_enabled else "disabled",
result.nodes_migrated,
result.migrated_to_slug,
result.migration_id,
)
return result
except ValueError as exc:
logger.warning("Model toggle validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to toggle LLM model %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to toggle model availability",
) from exc
@router.get(
"/models/{model_id}/usage",
summary="Get model usage count",
response_model=llm_model.LlmModelUsageResponse,
)
async def get_llm_model_usage(model_id: str):
"""Get the number of workflow nodes using this model."""
try:
return await llm_db.get_model_usage(model_id=model_id)
except ValueError as exc:
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to get model usage %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get model usage",
) from exc
@router.delete(
"/models/{model_id}",
summary="Delete LLM model and migrate workflows",
response_model=llm_model.DeleteLlmModelResponse,
)
async def delete_llm_model(
model_id: str,
replacement_model_slug: str = fastapi.Query(
..., description="Slug of the model to migrate existing workflows to"
),
):
"""
Delete a model and automatically migrate all workflows using it to a replacement model.
This endpoint:
1. Validates the replacement model exists and is enabled
2. Counts how many workflow nodes use the model being deleted
3. Updates all AgentNode.constantInput->model fields to the replacement
4. Deletes the model record
5. Refreshes all caches and notifies executors
Example: DELETE /admin/llm/models/{id}?replacement_model_slug=gpt-4o
"""
try:
result = await llm_db.delete_model(
model_id=model_id, replacement_model_slug=replacement_model_slug
)
await _refresh_runtime_state()
logger.info(
"Deleted model '%s' and migrated %d nodes to '%s'",
result.deleted_model_slug,
result.nodes_migrated,
result.replacement_model_slug,
)
return result
except ValueError as exc:
# Validation errors (model not found, replacement invalid, etc.)
logger.warning("Model deletion validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to delete LLM model %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to delete model and migrate workflows",
) from exc
# ============================================================================
# Migration Management Endpoints
# ============================================================================
@router.get(
"/migrations",
summary="List model migrations",
response_model=llm_model.LlmMigrationsResponse,
)
async def list_llm_migrations(
include_reverted: bool = fastapi.Query(
default=False, description="Include reverted migrations in the list"
),
):
"""
List all model migrations.
Migrations are created when disabling a model with the migrate_to_slug option.
They can be reverted to restore the original model configuration.
"""
try:
migrations = await llm_db.list_migrations(include_reverted=include_reverted)
return llm_model.LlmMigrationsResponse(migrations=migrations)
except Exception as exc:
logger.exception("Failed to list migrations: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to list migrations",
) from exc
@router.get(
"/migrations/{migration_id}",
summary="Get migration details",
response_model=llm_model.LlmModelMigration,
)
async def get_llm_migration(migration_id: str):
"""Get details of a specific migration."""
try:
migration = await llm_db.get_migration(migration_id)
if not migration:
raise fastapi.HTTPException(
status_code=404, detail=f"Migration '{migration_id}' not found"
)
return migration
except fastapi.HTTPException:
raise
except Exception as exc:
logger.exception("Failed to get migration %s: %s", migration_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get migration",
) from exc
@router.post(
"/migrations/{migration_id}/revert",
summary="Revert a model migration",
response_model=llm_model.RevertMigrationResponse,
)
async def revert_llm_migration(
migration_id: str,
request: llm_model.RevertMigrationRequest | None = None,
):
"""
Revert a model migration, restoring affected workflows to their original model.
This only reverts the specific nodes that were part of the migration.
The source model must exist for the revert to succeed.
Options:
- `re_enable_source_model`: Whether to re-enable the source model if disabled (default: True)
Response includes:
- `nodes_reverted`: Number of nodes successfully reverted
- `nodes_already_changed`: Number of nodes that were modified since migration (not reverted)
- `source_model_re_enabled`: Whether the source model was re-enabled
Requirements:
- Migration must not already be reverted
- Source model must exist
"""
try:
re_enable = request.re_enable_source_model if request else True
result = await llm_db.revert_migration(
migration_id,
re_enable_source_model=re_enable,
)
await _refresh_runtime_state()
logger.info(
"Reverted migration '%s': %d nodes restored from '%s' to '%s' "
"(%d already changed, source re-enabled=%s)",
migration_id,
result.nodes_reverted,
result.target_model_slug,
result.source_model_slug,
result.nodes_already_changed,
result.source_model_re_enabled,
)
return result
except ValueError as exc:
logger.warning("Migration revert validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to revert migration %s: %s", migration_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to revert migration",
) from exc
# ============================================================================
# Creator Management Endpoints
# ============================================================================
@router.get(
"/creators",
summary="List model creators",
response_model=llm_model.LlmCreatorsResponse,
)
async def list_llm_creators():
"""
List all model creators.
Creators are organizations that create/train models (e.g., OpenAI, Meta, Anthropic).
This is distinct from providers who host/serve the models (e.g., OpenRouter).
"""
try:
creators = await llm_db.list_creators()
return llm_model.LlmCreatorsResponse(creators=creators)
except Exception as exc:
logger.exception("Failed to list creators: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to list creators",
) from exc
@router.get(
"/creators/{creator_id}",
summary="Get creator details",
operation_id="getV2GetLlmCreatorDetails",
response_model=llm_model.LlmModelCreator,
)
async def get_llm_creator(creator_id: str):
"""Get details of a specific model creator."""
try:
creator = await llm_db.get_creator(creator_id)
if not creator:
raise fastapi.HTTPException(
status_code=404, detail=f"Creator '{creator_id}' not found"
)
return creator
except fastapi.HTTPException:
raise
except Exception as exc:
logger.exception("Failed to get creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get creator",
) from exc
@router.post(
"/creators",
summary="Create model creator",
response_model=llm_model.LlmModelCreator,
)
async def create_llm_creator(request: llm_model.UpsertLlmCreatorRequest):
"""
Create a new model creator.
A creator represents an organization that creates/trains AI models,
such as OpenAI, Anthropic, Meta, or Google.
"""
try:
creator = await llm_db.upsert_creator(request=request)
await _refresh_runtime_state()
logger.info("Created model creator '%s' (%s)", creator.display_name, creator.id)
return creator
except Exception as exc:
logger.exception("Failed to create creator: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to create creator",
) from exc
@router.patch(
"/creators/{creator_id}",
summary="Update model creator",
response_model=llm_model.LlmModelCreator,
)
async def update_llm_creator(
creator_id: str,
request: llm_model.UpsertLlmCreatorRequest,
):
"""Update an existing model creator."""
try:
creator = await llm_db.upsert_creator(request=request, creator_id=creator_id)
await _refresh_runtime_state()
logger.info("Updated model creator '%s' (%s)", creator.display_name, creator_id)
return creator
except Exception as exc:
logger.exception("Failed to update creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to update creator",
) from exc
@router.delete(
"/creators/{creator_id}",
summary="Delete model creator",
response_model=dict,
)
async def delete_llm_creator(creator_id: str):
"""
Delete a model creator.
This will remove the creator association from all models that reference it
(sets creatorId to NULL), but will not delete the models themselves.
"""
try:
await llm_db.delete_creator(creator_id)
await _refresh_runtime_state()
logger.info("Deleted model creator '%s'", creator_id)
return {"success": True, "message": f"Creator '{creator_id}' deleted"}
except ValueError as exc:
logger.warning("Creator deletion validation failed: %s", exc)
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to delete creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to delete creator",
) from exc
# ============================================================================
# Recommended Model Endpoints
# ============================================================================
@router.get(
"/recommended-model",
summary="Get recommended model",
response_model=llm_model.RecommendedModelResponse,
)
async def get_recommended_model():
"""
Get the currently recommended LLM model.
The recommended model is shown to users as the default/suggested option
in model selection dropdowns.
"""
try:
model = await llm_db.get_recommended_model()
return llm_model.RecommendedModelResponse(
model=model,
slug=model.slug if model else None,
)
except Exception as exc:
logger.exception("Failed to get recommended model: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get recommended model",
) from exc
@router.post(
"/recommended-model",
summary="Set recommended model",
response_model=llm_model.SetRecommendedModelResponse,
)
async def set_recommended_model(request: llm_model.SetRecommendedModelRequest):
"""
Set a model as the recommended model.
This clears the recommended flag from any other model and sets it on
the specified model. The model must be enabled to be set as recommended.
The recommended model is displayed to users as the default/suggested
option in model selection dropdowns throughout the platform.
"""
try:
model, previous_slug = await llm_db.set_recommended_model(request.model_id)
await _refresh_runtime_state()
logger.info(
"Set recommended model to '%s' (previous: %s)",
model.slug,
previous_slug or "none",
)
return llm_model.SetRecommendedModelResponse(
model=model,
previous_recommended_slug=previous_slug,
message=f"Model '{model.display_name}' is now the recommended model",
)
except ValueError as exc:
logger.warning("Set recommended model validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to set recommended model: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to set recommended model",
) from exc

View File

@@ -1,405 +0,0 @@
from unittest.mock import AsyncMock
import fastapi
import fastapi.testclient
import pytest
import pytest_mock
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from pytest_snapshot.plugin import Snapshot
import backend.api.features.admin.llm_routes as llm_routes
app = fastapi.FastAPI()
app.include_router(llm_routes.router)
client = fastapi.testclient.TestClient(app)
@pytest.fixture(autouse=True)
def setup_app_admin_auth(mock_jwt_admin):
"""Setup admin auth overrides for all tests in this module"""
app.dependency_overrides[get_jwt_payload] = mock_jwt_admin["get_jwt_payload"]
yield
app.dependency_overrides.clear()
def test_list_llm_providers_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful listing of LLM providers"""
# Mock the database function
mock_providers = [
{
"id": "provider-1",
"name": "openai",
"display_name": "OpenAI",
"description": "OpenAI LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": True,
"metadata": {},
"models": [],
},
{
"id": "provider-2",
"name": "anthropic",
"display_name": "Anthropic",
"description": "Anthropic LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": True,
"metadata": {},
"models": [],
},
]
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.list_providers",
new=AsyncMock(return_value=mock_providers),
)
response = client.get("/admin/llm/providers")
assert response.status_code == 200
response_data = response.json()
assert len(response_data["providers"]) == 2
assert response_data["providers"][0]["name"] == "openai"
# Snapshot test the response
configured_snapshot.assert_match(response_data, "list_llm_providers_success.json")
def test_list_llm_models_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful listing of LLM models"""
# Mock the database function
mock_models = [
{
"id": "model-1",
"slug": "gpt-4o",
"display_name": "GPT-4o",
"description": "GPT-4 Optimized",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-1",
"credit_cost": 10,
"credential_provider": "openai",
"metadata": {},
}
],
}
]
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.list_models",
new=AsyncMock(return_value=mock_models),
)
response = client.get("/admin/llm/models")
assert response.status_code == 200
response_data = response.json()
assert len(response_data["models"]) == 1
assert response_data["models"][0]["slug"] == "gpt-4o"
# Snapshot test the response
configured_snapshot.assert_match(response_data, "list_llm_models_success.json")
def test_create_llm_provider_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful creation of LLM provider"""
mock_provider = {
"id": "new-provider-id",
"name": "groq",
"display_name": "Groq",
"description": "Groq LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": False,
"metadata": {},
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.upsert_provider",
new=AsyncMock(return_value=mock_provider),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"name": "groq",
"display_name": "Groq",
"description": "Groq LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": False,
"metadata": {},
}
response = client.post("/admin/llm/providers", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["name"] == "groq"
assert response_data["display_name"] == "Groq"
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response
configured_snapshot.assert_match(response_data, "create_llm_provider_success.json")
def test_create_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful creation of LLM model"""
mock_model = {
"id": "new-model-id",
"slug": "gpt-4.1-mini",
"display_name": "GPT-4.1 Mini",
"description": "Latest GPT-4.1 Mini model",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-id",
"credit_cost": 5,
"credential_provider": "openai",
"metadata": {},
}
],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.create_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"slug": "gpt-4.1-mini",
"display_name": "GPT-4.1 Mini",
"description": "Latest GPT-4.1 Mini model",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"credit_cost": 5,
"credential_provider": "openai",
"metadata": {},
}
],
}
response = client.post("/admin/llm/models", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["slug"] == "gpt-4.1-mini"
assert response_data["is_enabled"] is True
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response
configured_snapshot.assert_match(response_data, "create_llm_model_success.json")
def test_update_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful update of LLM model"""
mock_model = {
"id": "model-1",
"slug": "gpt-4o",
"display_name": "GPT-4o Updated",
"description": "Updated description",
"provider_id": "provider-1",
"context_window": 256000,
"max_output_tokens": 32768,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-1",
"credit_cost": 15,
"credential_provider": "openai",
"metadata": {},
}
],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.update_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"display_name": "GPT-4o Updated",
"description": "Updated description",
"context_window": 256000,
"max_output_tokens": 32768,
}
response = client.patch("/admin/llm/models/model-1", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["display_name"] == "GPT-4o Updated"
assert response_data["context_window"] == 256000
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response
configured_snapshot.assert_match(response_data, "update_llm_model_success.json")
def test_toggle_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful toggling of LLM model enabled status"""
mock_model = {
"id": "model-1",
"slug": "gpt-4o",
"display_name": "GPT-4o",
"description": "GPT-4 Optimized",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": False,
"capabilities": {},
"metadata": {},
"costs": [],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.toggle_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {"is_enabled": False}
response = client.patch("/admin/llm/models/model-1/toggle", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["is_enabled"] is False
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response
configured_snapshot.assert_match(response_data, "toggle_llm_model_success.json")
def test_delete_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful deletion of LLM model with migration"""
mock_response = {
"deleted_model_slug": "gpt-3.5-turbo",
"deleted_model_display_name": "GPT-3.5 Turbo",
"replacement_model_slug": "gpt-4o-mini",
"nodes_migrated": 42,
"message": "Successfully deleted model 'GPT-3.5 Turbo' (gpt-3.5-turbo) "
"and migrated 42 workflow node(s) to 'gpt-4o-mini'.",
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(return_value=type("obj", (object,), mock_response)()),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
response = client.delete(
"/admin/llm/models/model-1?replacement_model_slug=gpt-4o-mini"
)
assert response.status_code == 200
response_data = response.json()
assert response_data["deleted_model_slug"] == "gpt-3.5-turbo"
assert response_data["nodes_migrated"] == 42
assert response_data["replacement_model_slug"] == "gpt-4o-mini"
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response
configured_snapshot.assert_match(response_data, "delete_llm_model_success.json")
def test_delete_llm_model_validation_error(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion fails with proper error when validation fails"""
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(side_effect=ValueError("Replacement model 'invalid' not found")),
)
response = client.delete("/admin/llm/models/model-1?replacement_model_slug=invalid")
assert response.status_code == 400
assert "Replacement model 'invalid' not found" in response.json()["detail"]
def test_delete_llm_model_missing_replacement(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion fails when replacement_model_slug is not provided"""
response = client.delete("/admin/llm/models/model-1")
# FastAPI will return 422 for missing required query params
assert response.status_code == 422

View File

@@ -15,7 +15,6 @@ from backend.blocks import load_all_blocks
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
from backend.data.db import query_raw_with_schema
from backend.data.llm_registry import get_all_model_slugs_for_validation
from backend.integrations.providers import ProviderName
from backend.util.cache import cached
from backend.util.models import Pagination
@@ -32,14 +31,7 @@ from .model import (
)
logger = logging.getLogger(__name__)
def _get_llm_models() -> list[str]:
"""Get LLM model names for search matching from the registry."""
return [
slug.lower().replace("-", " ") for slug in get_all_model_slugs_for_validation()
]
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
MAX_LIBRARY_AGENT_RESULTS = 100
MAX_MARKETPLACE_AGENT_RESULTS = 100
@@ -504,8 +496,8 @@ async def _get_static_counts():
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
for field in schema_cls.model_fields.values():
if field.annotation == LlmModel:
# Check if query matches any value in llm_models from registry
if any(query in name for name in _get_llm_models()):
# Check if query matches any value in llm_models
if any(query in name for name in llm_models):
return True
return False

View File

@@ -299,9 +299,6 @@ async def stream_chat_completion(
f"new message_count={len(session.messages)}"
)
if len(session.messages) > config.max_context_messages:
raise ValueError(f"Max messages exceeded: {config.max_context_messages}")
logger.info(
f"Upserting session: {session.session_id} with user id {session.user_id}, "
f"message_count={len(session.messages)}"

View File

@@ -8,8 +8,12 @@ from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
from .base import BaseTool
from .find_agent import FindAgentTool
from .find_block import FindBlockTool
from .find_library_agent import FindLibraryAgentTool
from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable
@@ -18,9 +22,13 @@ if TYPE_CHECKING:
TOOL_REGISTRY: dict[str, BaseTool] = {
"add_understanding": AddUnderstandingTool(),
"find_agent": FindAgentTool(),
"find_block": FindBlockTool(),
"find_library_agent": FindLibraryAgentTool(),
"run_agent": RunAgentTool(),
"run_block": RunBlockTool(),
"agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
}
# Export individual tool instances for backwards compatibility

View File

@@ -0,0 +1,192 @@
import logging
from typing import Any
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
from backend.api.features.chat.tools.models import (
BlockInfoSummary,
BlockInputFieldInfo,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.data.block import get_block
logger = logging.getLogger(__name__)
class FindBlockTool(BaseTool):
"""Tool for searching available blocks."""
@property
def name(self) -> str:
return "find_block"
@property
def description(self) -> str:
return (
"Search for available blocks by name or description. "
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
"The response includes each block's id, required_inputs, and input_schema."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": (
"Search query to find blocks by name or description. "
"Use keywords like 'email', 'http', 'text', 'ai', etc."
),
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search for blocks matching the query.
Args:
user_id: User ID (required)
session: Chat session
query: Search query
Returns:
BlockListResponse: List of matching blocks
NoResultsResponse: No blocks found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
if not query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
)
try:
# Search for blocks using hybrid search
results, total = await unified_hybrid_search(
query=query,
content_types=[ContentType.BLOCK],
page=1,
page_size=10,
)
if not results:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
"Check spelling of technical terms",
],
session_id=session_id,
)
# Enrich results with full block information
blocks: list[BlockInfoSummary] = []
for result in results:
block_id = result["content_id"]
block = get_block(block_id)
if block:
# Get input/output schemas
input_schema = {}
output_schema = {}
try:
input_schema = block.input_schema.jsonschema()
except Exception:
pass
try:
output_schema = block.output_schema.jsonschema()
except Exception:
pass
# Get categories from block instance
categories = []
if hasattr(block, "categories") and block.categories:
categories = [cat.value for cat in block.categories]
# Extract required inputs for easier use
required_inputs: list[BlockInputFieldInfo] = []
if input_schema:
properties = input_schema.get("properties", {})
required_fields = set(input_schema.get("required", []))
# Get credential field names to exclude from required inputs
credentials_fields = set(
block.input_schema.get_credentials_fields().keys()
)
for field_name, field_schema in properties.items():
# Skip credential fields - they're handled separately
if field_name in credentials_fields:
continue
required_inputs.append(
BlockInputFieldInfo(
name=field_name,
type=field_schema.get("type", "string"),
description=field_schema.get("description", ""),
required=field_name in required_fields,
default=field_schema.get("default"),
)
)
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=categories,
input_schema=input_schema,
output_schema=output_schema,
required_inputs=required_inputs,
)
)
if not blocks:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
],
session_id=session_id,
)
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
),
blocks=blocks,
count=len(blocks),
query=query,
session_id=session_id,
)
except Exception as e:
logger.error(f"Error searching blocks: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search blocks",
error=str(e),
session_id=session_id,
)

View File

@@ -0,0 +1,148 @@
"""GetDocPageTool - Fetch full content of a documentation page."""
import logging
from pathlib import Path
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
DocPageResponse,
ErrorResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
# Base URL for documentation (can be configured)
DOCS_BASE_URL = "https://docs.agpt.co"
class GetDocPageTool(BaseTool):
"""Tool for fetching full content of a documentation page."""
@property
def name(self) -> str:
return "get_doc_page"
@property
def description(self) -> str:
return (
"Get the full content of a documentation page by its path. "
"Use this after search_docs to read the complete content of a relevant page."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": (
"The path to the documentation file, as returned by search_docs. "
"Example: 'platform/block-sdk-guide.md'"
),
},
},
"required": ["path"],
}
@property
def requires_auth(self) -> bool:
return False # Documentation is public
def _get_docs_root(self) -> Path:
"""Get the documentation root directory."""
this_file = Path(__file__)
project_root = this_file.parent.parent.parent.parent.parent.parent.parent.parent
return project_root / "docs"
def _extract_title(self, content: str, fallback: str) -> str:
"""Extract title from markdown content."""
lines = content.split("\n")
for line in lines:
if line.startswith("# "):
return line[2:].strip()
return fallback
def _make_doc_url(self, path: str) -> str:
"""Create a URL for a documentation page."""
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Fetch full content of a documentation page.
Args:
user_id: User ID (not required for docs)
session: Chat session
path: Path to the documentation file
Returns:
DocPageResponse: Full document content
ErrorResponse: Error message
"""
path = kwargs.get("path", "").strip()
session_id = session.session_id if session else None
if not path:
return ErrorResponse(
message="Please provide a documentation path.",
error="Missing path parameter",
session_id=session_id,
)
# Sanitize path to prevent directory traversal
if ".." in path or path.startswith("/"):
return ErrorResponse(
message="Invalid documentation path.",
error="invalid_path",
session_id=session_id,
)
docs_root = self._get_docs_root()
full_path = docs_root / path
if not full_path.exists():
return ErrorResponse(
message=f"Documentation page not found: {path}",
error="not_found",
session_id=session_id,
)
# Ensure the path is within docs root
try:
full_path.resolve().relative_to(docs_root.resolve())
except ValueError:
return ErrorResponse(
message="Invalid documentation path.",
error="invalid_path",
session_id=session_id,
)
try:
content = full_path.read_text(encoding="utf-8")
title = self._extract_title(content, path)
return DocPageResponse(
message=f"Retrieved documentation page: {title}",
title=title,
path=path,
content=content,
doc_url=self._make_doc_url(path),
session_id=session_id,
)
except Exception as e:
logger.error(f"Failed to read documentation page {path}: {e}")
return ErrorResponse(
message=f"Failed to read documentation page: {str(e)}",
error="read_failed",
session_id=session_id,
)

View File

@@ -21,6 +21,10 @@ class ResponseType(str, Enum):
NO_RESULTS = "no_results"
AGENT_OUTPUT = "agent_output"
UNDERSTANDING_UPDATED = "understanding_updated"
BLOCK_LIST = "block_list"
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
# Base response model
@@ -209,3 +213,83 @@ class UnderstandingUpdatedResponse(ToolResponseBase):
type: ResponseType = ResponseType.UNDERSTANDING_UPDATED
updated_fields: list[str] = Field(default_factory=list)
current_understanding: dict[str, Any] = Field(default_factory=dict)
# Documentation search models
class DocSearchResult(BaseModel):
"""A single documentation search result."""
title: str
path: str
section: str
snippet: str # Short excerpt for UI display
score: float
doc_url: str | None = None
class DocSearchResultsResponse(ToolResponseBase):
"""Response for search_docs tool."""
type: ResponseType = ResponseType.DOC_SEARCH_RESULTS
results: list[DocSearchResult]
count: int
query: str
class DocPageResponse(ToolResponseBase):
"""Response for get_doc_page tool."""
type: ResponseType = ResponseType.DOC_PAGE
title: str
path: str
content: str # Full document content
doc_url: str | None = None
# Block models
class BlockInputFieldInfo(BaseModel):
"""Information about a block input field."""
name: str
type: str
description: str = ""
required: bool = False
default: Any | None = None
class BlockInfoSummary(BaseModel):
"""Summary of a block for search results."""
id: str
name: str
description: str
categories: list[str]
input_schema: dict[str, Any]
output_schema: dict[str, Any]
required_inputs: list[BlockInputFieldInfo] = Field(
default_factory=list,
description="List of required input fields for this block",
)
class BlockListResponse(ToolResponseBase):
"""Response for find_block tool."""
type: ResponseType = ResponseType.BLOCK_LIST
blocks: list[BlockInfoSummary]
count: int
query: str
usage_hint: str = Field(
default="To execute a block, call run_block with block_id set to the block's "
"'id' field and input_data containing the required fields from input_schema."
)
class BlockOutputResponse(ToolResponseBase):
"""Response for run_block tool."""
type: ResponseType = ResponseType.BLOCK_OUTPUT
block_id: str
block_name: str
outputs: dict[str, list[Any]]
success: bool = True

View File

@@ -0,0 +1,297 @@
"""Tool for executing blocks directly."""
import logging
from collections import defaultdict
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
from .base import BaseTool
from .models import (
BlockOutputResponse,
ErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
UserReadiness,
)
logger = logging.getLogger(__name__)
class RunBlockTool(BaseTool):
"""Tool for executing a block and returning its outputs."""
@property
def name(self) -> str:
return "run_block"
@property
def description(self) -> str:
return (
"Execute a specific block with the provided input data. "
"IMPORTANT: You MUST call find_block first to get the block's 'id' - "
"do NOT guess or make up block IDs. "
"Use the 'id' from find_block results and provide input_data "
"matching the block's required_inputs."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"block_id": {
"type": "string",
"description": (
"The block's 'id' field from find_block results. "
"NEVER guess this - always get it from find_block first."
),
},
"input_data": {
"type": "object",
"description": (
"Input values for the block. Use the 'required_inputs' field "
"from find_block to see what fields are needed."
),
},
},
"required": ["block_id", "input_data"],
}
@property
def requires_auth(self) -> bool:
return True
async def _check_block_credentials(
self,
user_id: str,
block: Any,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Check if user has required credentials for a block.
Returns:
tuple[matched_credentials, missing_credentials]
"""
matched_credentials: dict[str, CredentialsMetaInput] = {}
missing_credentials: list[CredentialsMetaInput] = []
# Get credential field info from block's input schema
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return matched_credentials, missing_credentials
# Get user's available credentials
creds_manager = IntegrationCredentialsManager()
available_creds = await creds_manager.store.get_all_creds(user_id)
for field_name, field_info in credentials_fields_info.items():
# field_info.provider is a frozenset of acceptable providers
# field_info.supported_types is a frozenset of acceptable types
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in field_info.provider
and cred.type in field_info.supported_types
),
None,
)
if matching_cred:
matched_credentials[field_name] = CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
else:
# Create a placeholder for the missing credential
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing_credentials.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched_credentials, missing_credentials
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute a block with the given input data.
Args:
user_id: User ID (required)
session: Chat session
block_id: Block UUID to execute
input_data: Input values for the block
Returns:
BlockOutputResponse: Block execution outputs
SetupRequirementsResponse: Missing credentials
ErrorResponse: Error message
"""
block_id = kwargs.get("block_id", "").strip()
input_data = kwargs.get("input_data", {})
session_id = session.session_id
if not block_id:
return ErrorResponse(
message="Please provide a block_id",
session_id=session_id,
)
if not isinstance(input_data, dict):
return ErrorResponse(
message="input_data must be an object",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
# Get the block
block = get_block(block_id)
if not block:
return ErrorResponse(
message=f"Block '{block_id}' not found",
session_id=session_id,
)
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
# Check credentials
creds_manager = IntegrationCredentialsManager()
matched_credentials, missing_credentials = await self._check_block_credentials(
user_id, block
)
if missing_credentials:
# Return setup requirements response with missing credentials
missing_creds_dict = {c.id: c.model_dump() for c in missing_credentials}
return SetupRequirementsResponse(
message=(
f"Block '{block.name}' requires credentials that are not configured. "
"Please set up the required credentials before running this block."
),
session_id=session_id,
setup_info=SetupInfo(
agent_id=block_id,
agent_name=block.name,
user_readiness=UserReadiness(
has_all_credentials=False,
missing_credentials=missing_creds_dict,
ready_to_run=False,
),
requirements={
"credentials": [c.model_dump() for c in missing_credentials],
"inputs": self._get_inputs_list(block),
"execution_modes": ["immediate"],
},
),
graph_id=None,
graph_version=None,
)
try:
# Fetch actual credentials and prepare kwargs for block execution
# Create execution context with defaults (blocks may require it)
exec_kwargs: dict[str, Any] = {
"user_id": user_id,
"execution_context": ExecutionContext(),
}
for field_name, cred_meta in matched_credentials.items():
# Inject metadata into input_data (for validation)
if field_name not in input_data:
input_data[field_name] = cred_meta.model_dump()
# Fetch actual credentials and pass as kwargs (for execution)
actual_credentials = await creds_manager.get(
user_id, cred_meta.id, lock=False
)
if actual_credentials:
exec_kwargs[field_name] = actual_credentials
else:
return ErrorResponse(
message=f"Failed to retrieve credentials for {field_name}",
session_id=session_id,
)
# Execute the block and collect outputs
outputs: dict[str, list[Any]] = defaultdict(list)
async for output_name, output_data in block.execute(
input_data,
**exec_kwargs,
):
outputs[output_name].append(output_data)
return BlockOutputResponse(
message=f"Block '{block.name}' executed successfully",
block_id=block_id,
block_name=block.name,
outputs=dict(outputs),
success=True,
session_id=session_id,
)
except BlockError as e:
logger.warning(f"Block execution failed: {e}")
return ErrorResponse(
message=f"Block execution failed: {e}",
error=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Unexpected error executing block: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to execute block: {str(e)}",
error=str(e),
session_id=session_id,
)
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
"""Extract non-credential inputs from block schema."""
inputs_list = []
schema = block.input_schema.jsonschema()
properties = schema.get("properties", {})
required_fields = set(schema.get("required", []))
# Get credential field names to exclude
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
for field_name, field_schema in properties.items():
# Skip credential fields
if field_name in credentials_fields:
continue
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in required_fields,
}
)
return inputs_list

View File

@@ -0,0 +1,208 @@
"""SearchDocsTool - Search documentation using hybrid search."""
import logging
from typing import Any
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
DocSearchResult,
DocSearchResultsResponse,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
logger = logging.getLogger(__name__)
# Base URL for documentation (can be configured)
DOCS_BASE_URL = "https://docs.agpt.co"
# Maximum number of results to return
MAX_RESULTS = 5
# Snippet length for preview
SNIPPET_LENGTH = 200
class SearchDocsTool(BaseTool):
"""Tool for searching AutoGPT platform documentation."""
@property
def name(self) -> str:
return "search_docs"
@property
def description(self) -> str:
return (
"Search the AutoGPT platform documentation for information about "
"how to use the platform, build agents, configure blocks, and more. "
"Returns relevant documentation sections. Use get_doc_page to read full content."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": (
"Search query to find relevant documentation. "
"Use natural language to describe what you're looking for."
),
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return False # Documentation is public
def _create_snippet(self, content: str, max_length: int = SNIPPET_LENGTH) -> str:
"""Create a short snippet from content for preview."""
# Remove markdown formatting for cleaner snippet
clean_content = content.replace("#", "").replace("*", "").replace("`", "")
# Remove extra whitespace
clean_content = " ".join(clean_content.split())
if len(clean_content) <= max_length:
return clean_content
# Truncate at word boundary
truncated = clean_content[:max_length]
last_space = truncated.rfind(" ")
if last_space > max_length // 2:
truncated = truncated[:last_space]
return truncated + "..."
def _make_doc_url(self, path: str) -> str:
"""Create a URL for a documentation page."""
# Remove file extension for URL
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search documentation and return relevant sections.
Args:
user_id: User ID (not required for docs)
session: Chat session
query: Search query
Returns:
DocSearchResultsResponse: List of matching documentation sections
NoResultsResponse: No results found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id if session else None
if not query:
return ErrorResponse(
message="Please provide a search query.",
error="Missing query parameter",
session_id=session_id,
)
try:
# Search using hybrid search for DOCUMENTATION content type only
results, total = await unified_hybrid_search(
query=query,
content_types=[ContentType.DOCUMENTATION],
page=1,
page_size=MAX_RESULTS * 2, # Fetch extra for deduplication
min_score=0.1, # Lower threshold for docs
)
if not results:
return NoResultsResponse(
message=f"No documentation found for '{query}'.",
suggestions=[
"Try different keywords",
"Use more general terms",
"Check for typos in your query",
],
session_id=session_id,
)
# Deduplicate by document path (keep highest scoring section per doc)
seen_docs: dict[str, dict[str, Any]] = {}
for result in results:
metadata = result.get("metadata", {})
doc_path = metadata.get("path", "")
if not doc_path:
continue
# Keep the highest scoring result for each document
if doc_path not in seen_docs:
seen_docs[doc_path] = result
elif result.get("combined_score", 0) > seen_docs[doc_path].get(
"combined_score", 0
):
seen_docs[doc_path] = result
# Sort by score and take top MAX_RESULTS
deduplicated = sorted(
seen_docs.values(),
key=lambda x: x.get("combined_score", 0),
reverse=True,
)[:MAX_RESULTS]
if not deduplicated:
return NoResultsResponse(
message=f"No documentation found for '{query}'.",
suggestions=[
"Try different keywords",
"Use more general terms",
],
session_id=session_id,
)
# Build response
doc_results: list[DocSearchResult] = []
for result in deduplicated:
metadata = result.get("metadata", {})
doc_path = metadata.get("path", "")
doc_title = metadata.get("doc_title", "")
section_title = metadata.get("section_title", "")
searchable_text = result.get("searchable_text", "")
score = result.get("combined_score", 0)
doc_results.append(
DocSearchResult(
title=doc_title or section_title or doc_path,
path=doc_path,
section=section_title,
snippet=self._create_snippet(searchable_text),
score=round(score, 3),
doc_url=self._make_doc_url(doc_path),
)
)
return DocSearchResultsResponse(
message=f"Found {len(doc_results)} relevant documentation sections.",
results=doc_results,
count=len(doc_results),
query=query,
session_id=session_id,
)
except Exception as e:
logger.error(f"Documentation search failed: {e}")
return ErrorResponse(
message=f"Failed to search documentation: {str(e)}",
error="search_failed",
session_id=session_id,
)

View File

@@ -275,8 +275,22 @@ class BlockHandler(ContentHandler):
}
@dataclass
class MarkdownSection:
"""Represents a section of a markdown document."""
title: str # Section heading text
content: str # Section content (including the heading line)
level: int # Heading level (1 for #, 2 for ##, etc.)
index: int # Section index within the document
class DocumentationHandler(ContentHandler):
"""Handler for documentation files (.md/.mdx)."""
"""Handler for documentation files (.md/.mdx).
Chunks documents by markdown headings to create multiple embeddings per file.
Each section (## heading) becomes a separate embedding for better retrieval.
"""
@property
def content_type(self) -> ContentType:
@@ -297,35 +311,162 @@ class DocumentationHandler(ContentHandler):
docs_root = project_root / "docs"
return docs_root
def _extract_title_and_content(self, file_path: Path) -> tuple[str, str]:
"""Extract title and content from markdown file."""
def _extract_doc_title(self, file_path: Path) -> str:
"""Extract the document title from a markdown file."""
try:
content = file_path.read_text(encoding="utf-8")
lines = content.split("\n")
# Try to extract title from first # heading
lines = content.split("\n")
title = ""
body_lines = []
for line in lines:
if line.startswith("# ") and not title:
title = line[2:].strip()
else:
body_lines.append(line)
if line.startswith("# "):
return line[2:].strip()
# If no title found, use filename
if not title:
title = file_path.stem.replace("-", " ").replace("_", " ").title()
return file_path.stem.replace("-", " ").replace("_", " ").title()
except Exception as e:
logger.warning(f"Failed to read title from {file_path}: {e}")
return file_path.stem.replace("-", " ").replace("_", " ").title()
body = "\n".join(body_lines)
def _chunk_markdown_by_headings(
self, file_path: Path, min_heading_level: int = 2
) -> list[MarkdownSection]:
"""
Split a markdown file into sections based on headings.
return title, body
Args:
file_path: Path to the markdown file
min_heading_level: Minimum heading level to split on (default: 2 for ##)
Returns:
List of MarkdownSection objects, one per section.
If no headings found, returns a single section with all content.
"""
try:
content = file_path.read_text(encoding="utf-8")
except Exception as e:
logger.warning(f"Failed to read {file_path}: {e}")
return file_path.stem, ""
return []
lines = content.split("\n")
sections: list[MarkdownSection] = []
current_section_lines: list[str] = []
current_title = ""
current_level = 0
section_index = 0
doc_title = ""
for line in lines:
# Check if line is a heading
if line.startswith("#"):
# Count heading level
level = 0
for char in line:
if char == "#":
level += 1
else:
break
heading_text = line[level:].strip()
# Track document title (level 1 heading)
if level == 1 and not doc_title:
doc_title = heading_text
# Don't create a section for just the title - add it to first section
current_section_lines.append(line)
continue
# Check if this heading should start a new section
if level >= min_heading_level:
# Save previous section if it has content
if current_section_lines:
section_content = "\n".join(current_section_lines).strip()
if section_content:
# Use doc title for first section if no specific title
title = current_title if current_title else doc_title
if not title:
title = file_path.stem.replace("-", " ").replace(
"_", " "
)
sections.append(
MarkdownSection(
title=title,
content=section_content,
level=current_level if current_level else 1,
index=section_index,
)
)
section_index += 1
# Start new section
current_section_lines = [line]
current_title = heading_text
current_level = level
else:
# Lower level heading (e.g., # when splitting on ##)
current_section_lines.append(line)
else:
current_section_lines.append(line)
# Don't forget the last section
if current_section_lines:
section_content = "\n".join(current_section_lines).strip()
if section_content:
title = current_title if current_title else doc_title
if not title:
title = file_path.stem.replace("-", " ").replace("_", " ")
sections.append(
MarkdownSection(
title=title,
content=section_content,
level=current_level if current_level else 1,
index=section_index,
)
)
# If no sections were created (no headings found), create one section with all content
if not sections and content.strip():
title = (
doc_title
if doc_title
else file_path.stem.replace("-", " ").replace("_", " ")
)
sections.append(
MarkdownSection(
title=title,
content=content.strip(),
level=1,
index=0,
)
)
return sections
def _make_section_content_id(self, doc_path: str, section_index: int) -> str:
"""Create a unique content ID for a document section.
Format: doc_path::section_index
Example: 'platform/getting-started.md::0'
"""
return f"{doc_path}::{section_index}"
def _parse_section_content_id(self, content_id: str) -> tuple[str, int]:
"""Parse a section content ID back into doc_path and section_index.
Returns: (doc_path, section_index)
"""
if "::" in content_id:
parts = content_id.rsplit("::", 1)
return parts[0], int(parts[1])
# Legacy format (whole document)
return content_id, 0
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch documentation files without embeddings."""
"""Fetch documentation sections without embeddings.
Chunks each document by markdown headings and creates embeddings for each section.
Content IDs use the format: 'path/to/doc.md::section_index'
"""
docs_root = self._get_docs_root()
if not docs_root.exists():
@@ -335,14 +476,28 @@ class DocumentationHandler(ContentHandler):
# Find all .md and .mdx files
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
# Get relative paths for content IDs
doc_paths = [str(doc.relative_to(docs_root)) for doc in all_docs]
if not doc_paths:
if not all_docs:
return []
# Build list of all sections from all documents
all_sections: list[tuple[str, Path, MarkdownSection]] = []
for doc_file in all_docs:
doc_path = str(doc_file.relative_to(docs_root))
sections = self._chunk_markdown_by_headings(doc_file)
for section in sections:
all_sections.append((doc_path, doc_file, section))
if not all_sections:
return []
# Generate content IDs for all sections
section_content_ids = [
self._make_section_content_id(doc_path, section.index)
for doc_path, _, section in all_sections
]
# Check which ones have embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(doc_paths))])
placeholders = ",".join([f"${i+1}" for i in range(len(section_content_ids))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
@@ -350,76 +505,100 @@ class DocumentationHandler(ContentHandler):
WHERE "contentType" = 'DOCUMENTATION'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*doc_paths,
*section_content_ids,
)
existing_ids = {row["contentId"] for row in existing_result}
missing_docs = [
(doc_path, doc_file)
for doc_path, doc_file in zip(doc_paths, all_docs)
if doc_path not in existing_ids
# Filter to missing sections
missing_sections = [
(doc_path, doc_file, section, content_id)
for (doc_path, doc_file, section), content_id in zip(
all_sections, section_content_ids
)
if content_id not in existing_ids
]
# Convert to ContentItem
# Convert to ContentItem (up to batch_size)
items = []
for doc_path, doc_file in missing_docs[:batch_size]:
for doc_path, doc_file, section, content_id in missing_sections[:batch_size]:
try:
title, content = self._extract_title_and_content(doc_file)
# Get document title for context
doc_title = self._extract_doc_title(doc_file)
# Build searchable text
searchable_text = f"{title} {content}"
# Build searchable text with context
# Include doc title and section title for better search relevance
searchable_text = f"{doc_title} - {section.title}\n\n{section.content}"
items.append(
ContentItem(
content_id=doc_path,
content_id=content_id,
content_type=ContentType.DOCUMENTATION,
searchable_text=searchable_text,
metadata={
"title": title,
"doc_title": doc_title,
"section_title": section.title,
"section_index": section.index,
"heading_level": section.level,
"path": doc_path,
},
user_id=None, # Documentation is public
)
)
except Exception as e:
logger.warning(f"Failed to process doc {doc_path}: {e}")
logger.warning(f"Failed to process section {content_id}: {e}")
continue
return items
def _get_all_section_content_ids(self, docs_root: Path) -> set[str]:
"""Get all current section content IDs from the docs directory.
Used for stats and cleanup to know what sections should exist.
"""
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
content_ids = set()
for doc_file in all_docs:
doc_path = str(doc_file.relative_to(docs_root))
sections = self._chunk_markdown_by_headings(doc_file)
for section in sections:
content_ids.add(self._make_section_content_id(doc_path, section.index))
return content_ids
async def get_stats(self) -> dict[str, int]:
"""Get statistics about documentation embedding coverage."""
"""Get statistics about documentation embedding coverage.
Counts sections (not documents) since each section gets its own embedding.
"""
docs_root = self._get_docs_root()
if not docs_root.exists():
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
# Count all .md and .mdx files
all_docs = list(docs_root.rglob("*.md")) + list(docs_root.rglob("*.mdx"))
total_docs = len(all_docs)
# Get all section content IDs
all_section_ids = self._get_all_section_content_ids(docs_root)
total_sections = len(all_section_ids)
if total_docs == 0:
if total_sections == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
doc_paths = [str(doc.relative_to(docs_root)) for doc in all_docs]
placeholders = ",".join([f"${i+1}" for i in range(len(doc_paths))])
# Count embeddings in database for DOCUMENTATION type
embedded_result = await query_raw_with_schema(
f"""
"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{{schema_prefix}}"ContentType"
AND "contentId" = ANY(ARRAY[{placeholders}])
""",
*doc_paths,
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = 'DOCUMENTATION'::{schema_prefix}"ContentType"
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total": total_docs,
"total": total_sections,
"with_embeddings": with_embeddings,
"without_embeddings": total_docs - with_embeddings,
"without_embeddings": total_sections - with_embeddings,
}

View File

@@ -164,20 +164,20 @@ async def test_documentation_handler_get_missing_items(tmp_path, mocker):
assert len(items) == 2
# Check guide.md
# Check guide.md (content_id format: doc_path::section_index)
guide_item = next(
(item for item in items if item.content_id == "guide.md"), None
(item for item in items if item.content_id == "guide.md::0"), None
)
assert guide_item is not None
assert guide_item.content_type == ContentType.DOCUMENTATION
assert "Getting Started" in guide_item.searchable_text
assert "This is a guide" in guide_item.searchable_text
assert guide_item.metadata["title"] == "Getting Started"
assert guide_item.metadata["doc_title"] == "Getting Started"
assert guide_item.user_id is None
# Check api.mdx
# Check api.mdx (content_id format: doc_path::section_index)
api_item = next(
(item for item in items if item.content_id == "api.mdx"), None
(item for item in items if item.content_id == "api.mdx::0"), None
)
assert api_item is not None
assert "API Reference" in api_item.searchable_text
@@ -218,17 +218,74 @@ async def test_documentation_handler_title_extraction(tmp_path):
# Test with heading
doc_with_heading = tmp_path / "with_heading.md"
doc_with_heading.write_text("# My Title\n\nContent here")
title, content = handler._extract_title_and_content(doc_with_heading)
title = handler._extract_doc_title(doc_with_heading)
assert title == "My Title"
assert "# My Title" not in content
assert "Content here" in content
# Test without heading
doc_without_heading = tmp_path / "no-heading.md"
doc_without_heading.write_text("Just content, no heading")
title, content = handler._extract_title_and_content(doc_without_heading)
title = handler._extract_doc_title(doc_without_heading)
assert title == "No Heading" # Uses filename
assert "Just content" in content
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_markdown_chunking(tmp_path):
"""Test DocumentationHandler chunks markdown by headings."""
handler = DocumentationHandler()
# Test document with multiple sections
doc_with_sections = tmp_path / "sections.md"
doc_with_sections.write_text(
"# Document Title\n\n"
"Intro paragraph.\n\n"
"## Section One\n\n"
"Content for section one.\n\n"
"## Section Two\n\n"
"Content for section two.\n"
)
sections = handler._chunk_markdown_by_headings(doc_with_sections)
# Should have 3 sections: intro (with doc title), section one, section two
assert len(sections) == 3
assert sections[0].title == "Document Title"
assert sections[0].index == 0
assert "Intro paragraph" in sections[0].content
assert sections[1].title == "Section One"
assert sections[1].index == 1
assert "Content for section one" in sections[1].content
assert sections[2].title == "Section Two"
assert sections[2].index == 2
assert "Content for section two" in sections[2].content
# Test document without headings
doc_no_sections = tmp_path / "no-sections.md"
doc_no_sections.write_text("Just plain content without any headings.")
sections = handler._chunk_markdown_by_headings(doc_no_sections)
assert len(sections) == 1
assert sections[0].index == 0
assert "Just plain content" in sections[0].content
@pytest.mark.asyncio(loop_scope="session")
async def test_documentation_handler_section_content_ids():
"""Test DocumentationHandler creates and parses section content IDs."""
handler = DocumentationHandler()
# Test making content ID
content_id = handler._make_section_content_id("docs/guide.md", 2)
assert content_id == "docs/guide.md::2"
# Test parsing content ID
doc_path, section_index = handler._parse_section_content_id("docs/guide.md::2")
assert doc_path == "docs/guide.md"
assert section_index == 2
# Test parsing legacy format (no section index)
doc_path, section_index = handler._parse_section_content_id("docs/old-format.md")
assert doc_path == "docs/old-format.md"
assert section_index == 0
@pytest.mark.asyncio(loop_scope="session")

View File

@@ -683,20 +683,20 @@ async def cleanup_orphaned_embeddings() -> dict[str, Any]:
current_ids = set(get_blocks().keys())
elif content_type == ContentType.DOCUMENTATION:
from pathlib import Path
# embeddings.py is at: backend/backend/api/features/store/embeddings.py
# Need to go up to project root then into docs/
this_file = Path(__file__)
project_root = (
this_file.parent.parent.parent.parent.parent.parent.parent
# Use DocumentationHandler to get section-based content IDs
from backend.api.features.store.content_handlers import (
DocumentationHandler,
)
docs_root = project_root / "docs"
if docs_root.exists():
all_docs = list(docs_root.rglob("*.md")) + list(
docs_root.rglob("*.mdx")
)
current_ids = {str(doc.relative_to(docs_root)) for doc in all_docs}
doc_handler = CONTENT_HANDLERS.get(ContentType.DOCUMENTATION)
if isinstance(doc_handler, DocumentationHandler):
docs_root = doc_handler._get_docs_root()
if docs_root.exists():
current_ids = doc_handler._get_all_section_content_ids(
docs_root
)
else:
current_ids = set()
else:
current_ids = set()
else:

View File

@@ -3,13 +3,16 @@ Unified Hybrid Search
Combines semantic (embedding) search with lexical (tsvector) search
for improved relevance across all content types (agents, blocks, docs).
Includes BM25 reranking for improved lexical relevance.
"""
import logging
import re
from dataclasses import dataclass
from typing import Any, Literal
from prisma.enums import ContentType
from rank_bm25 import BM25Okapi
from backend.api.features.store.embeddings import (
EMBEDDING_DIM,
@@ -21,6 +24,84 @@ from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__)
# ============================================================================
# BM25 Reranking
# ============================================================================
def tokenize(text: str) -> list[str]:
"""Simple tokenizer for BM25 - lowercase and split on non-alphanumeric."""
if not text:
return []
# Lowercase and split on non-alphanumeric characters
tokens = re.findall(r"\b\w+\b", text.lower())
return tokens
def bm25_rerank(
query: str,
results: list[dict[str, Any]],
text_field: str = "searchable_text",
bm25_weight: float = 0.3,
original_score_field: str = "combined_score",
) -> list[dict[str, Any]]:
"""
Rerank search results using BM25.
Combines the original combined_score with BM25 score for improved
lexical relevance, especially for exact term matches.
Args:
query: The search query
results: List of result dicts with text_field and original_score_field
text_field: Field name containing the text to score
bm25_weight: Weight for BM25 score (0-1). Original score gets (1 - bm25_weight)
original_score_field: Field name containing the original score
Returns:
Results list sorted by combined score (BM25 + original)
"""
if not results or not query:
return results
# Extract texts and tokenize
corpus = [tokenize(r.get(text_field, "") or "") for r in results]
# Handle edge case where all documents are empty
if all(len(doc) == 0 for doc in corpus):
return results
# Build BM25 index
bm25 = BM25Okapi(corpus)
# Score query against corpus
query_tokens = tokenize(query)
if not query_tokens:
return results
bm25_scores = bm25.get_scores(query_tokens)
# Normalize BM25 scores to 0-1 range
max_bm25 = max(bm25_scores) if max(bm25_scores) > 0 else 1.0
normalized_bm25 = [s / max_bm25 for s in bm25_scores]
# Combine scores
original_weight = 1.0 - bm25_weight
for i, result in enumerate(results):
original_score = result.get(original_score_field, 0) or 0
result["bm25_score"] = normalized_bm25[i]
final_score = (
original_weight * original_score + bm25_weight * normalized_bm25[i]
)
result["final_score"] = final_score
result["relevance"] = final_score
# Sort by relevance descending
results.sort(key=lambda x: x.get("relevance", 0), reverse=True)
return results
@dataclass
class UnifiedSearchWeights:
"""Weights for unified search (no popularity signal)."""
@@ -273,9 +354,7 @@ async def unified_hybrid_search(
FROM normalized
),
filtered AS (
SELECT
*,
COUNT(*) OVER () as total_count
SELECT *, COUNT(*) OVER () as total_count
FROM scored
WHERE combined_score >= {min_score_param}
)
@@ -289,6 +368,15 @@ async def unified_hybrid_search(
)
total = results[0]["total_count"] if results else 0
# Apply BM25 reranking
if results:
results = bm25_rerank(
query=query,
results=results,
text_field="searchable_text",
bm25_weight=0.3,
original_score_field="combined_score",
)
# Clean up results
for result in results:
@@ -516,6 +604,8 @@ async def hybrid_search(
sa.featured,
sa.is_available,
sa.updated_at,
-- Searchable text for BM25 reranking
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
-- Semantic score
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score (raw, will normalize)
@@ -573,6 +663,7 @@ async def hybrid_search(
featured,
is_available,
updated_at,
searchable_text,
semantic_score,
lexical_score,
category_score,
@@ -603,8 +694,19 @@ async def hybrid_search(
total = results[0]["total_count"] if results else 0
# Apply BM25 reranking
if results:
results = bm25_rerank(
query=query,
results=results,
text_field="searchable_text",
bm25_weight=0.3,
original_score_field="combined_score",
)
for result in results:
result.pop("total_count", None)
result.pop("searchable_text", None)
logger.info(f"Hybrid search (store agents): {len(results)} results, {total} total")

View File

@@ -311,11 +311,43 @@ async def test_hybrid_search_min_score_filtering():
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_pagination():
"""Test hybrid search pagination."""
"""Test hybrid search pagination.
Pagination happens in SQL (LIMIT/OFFSET), then BM25 reranking is applied
to the paginated results.
"""
# Create mock results that SQL would return for a page
mock_results = [
{
"slug": f"agent-{i}",
"agent_name": f"Agent {i}",
"agent_image": "test.png",
"creator_username": "test",
"creator_avatar": "avatar.png",
"sub_heading": "Test",
"description": "Test description",
"runs": 100 - i,
"rating": 4.5,
"categories": ["test"],
"featured": False,
"is_available": True,
"updated_at": "2024-01-01T00:00:00Z",
"searchable_text": f"Agent {i} test description",
"combined_score": 0.9 - (i * 0.01),
"semantic_score": 0.7,
"lexical_score": 0.6,
"category_score": 0.5,
"recency_score": 0.4,
"popularity_score": 0.3,
"total_count": 25,
}
for i in range(10) # SQL returns page_size results
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
mock_query.return_value = mock_results
with patch(
"backend.api.features.store.hybrid_search.embed_query"
@@ -329,16 +361,18 @@ async def test_hybrid_search_pagination():
page_size=10,
)
# Verify pagination parameters
# Verify results returned
assert len(results) == 10
assert total == 25 # Total from SQL COUNT(*) OVER()
# Verify the SQL query uses page_size and offset
call_args = mock_query.call_args
params = call_args[0]
# Last two params should be LIMIT and OFFSET
limit = params[-2]
offset = params[-1]
assert limit == 10 # page_size
assert offset == 10 # (page - 1) * page_size = (2 - 1) * 10
# Last two params are page_size and offset
page_size_param = params[-2]
offset_param = params[-1]
assert page_size_param == 10
assert offset_param == 10 # (page 2 - 1) * 10
@pytest.mark.asyncio(loop_scope="session")
@@ -609,14 +643,36 @@ async def test_unified_hybrid_search_empty_query():
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_unified_hybrid_search_pagination():
"""Test unified search pagination."""
"""Test unified search pagination with BM25 reranking.
Pagination happens in SQL (LIMIT/OFFSET), then BM25 reranking is applied
to the paginated results.
"""
# Create mock results that SQL would return for a page
mock_results = [
{
"content_type": "STORE_AGENT",
"content_id": f"agent-{i}",
"searchable_text": f"Agent {i} description",
"metadata": {"name": f"Agent {i}"},
"updated_at": "2025-01-01T00:00:00Z",
"semantic_score": 0.7,
"lexical_score": 0.8 - (i * 0.01),
"category_score": 0.5,
"recency_score": 0.3,
"combined_score": 0.6 - (i * 0.01),
"total_count": 50,
}
for i in range(15) # SQL returns page_size results
]
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_query.return_value = []
mock_query.return_value = mock_results
mock_embed.return_value = [0.1] * embeddings.EMBEDDING_DIM
results, total = await unified_hybrid_search(
@@ -625,15 +681,18 @@ async def test_unified_hybrid_search_pagination():
page_size=15,
)
# Verify pagination parameters (last two params are LIMIT and OFFSET)
# Verify results returned
assert len(results) == 15
assert total == 50 # Total from SQL COUNT(*) OVER()
# Verify the SQL query uses page_size and offset
call_args = mock_query.call_args
params = call_args[0]
limit = params[-2]
offset = params[-1]
assert limit == 15 # page_size
assert offset == 30 # (page - 1) * page_size = (3 - 1) * 15
# Last two params are page_size and offset
page_size_param = params[-2]
offset_param = params[-1]
assert page_size_param == 15
assert offset_param == 30 # (page 3 - 1) * 15
@pytest.mark.asyncio(loop_scope="session")

View File

@@ -393,7 +393,6 @@ async def get_creators(
@router.get(
"/creator/{username}",
summary="Get creator details",
operation_id="getV2GetCreatorDetails",
tags=["store", "public"],
response_model=store_model.CreatorDetails,
)

View File

@@ -18,7 +18,6 @@ from prisma.errors import PrismaError
import backend.api.features.admin.credit_admin_routes
import backend.api.features.admin.execution_analytics_routes
import backend.api.features.admin.llm_routes
import backend.api.features.admin.store_admin_routes
import backend.api.features.builder
import backend.api.features.builder.routes
@@ -38,11 +37,9 @@ import backend.data.db
import backend.data.graph
import backend.data.user
import backend.integrations.webhooks.utils
import backend.server.v2.llm.routes as public_llm_routes
import backend.util.service
import backend.util.settings
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
from backend.blocks.llm import DEFAULT_LLM_MODEL
from backend.data.model import Credentials
from backend.integrations.providers import ProviderName
from backend.monitoring.instrumentation import instrument_fastapi
@@ -112,27 +109,11 @@ async def lifespan_context(app: fastapi.FastAPI):
AutoRegistry.patch_integrations()
# Refresh LLM registry before initializing blocks so blocks can use registry data
await llm_registry.refresh_llm_registry()
refresh_llm_costs()
# Clear block schema caches so they're regenerated with updated discriminator_mapping
from backend.data.block import BlockSchema
BlockSchema.clear_all_schema_caches()
await backend.data.block.initialize_blocks()
await backend.data.user.migrate_and_encrypt_user_integrations()
await backend.data.graph.fix_llm_provider_credentials()
# migrate_llm_models uses registry default model
from backend.blocks.llm import LlmModel
default_model_slug = llm_registry.get_default_model_slug()
if default_model_slug:
await backend.data.graph.migrate_llm_models(LlmModel(default_model_slug))
else:
logger.warning("Skipping LLM model migration: no default model available")
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
with launch_darkly_context():
@@ -317,16 +298,6 @@ app.include_router(
tags=["v2", "executions", "review"],
prefix="/api/review",
)
app.include_router(
backend.api.features.admin.llm_routes.router,
tags=["v2", "admin", "llm"],
prefix="/api/llm/admin",
)
app.include_router(
public_llm_routes.router,
tags=["v2", "llm"],
prefix="/api",
)
app.include_router(
backend.api.features.library.routes.router, tags=["v2"], prefix="/api/library"
)

View File

@@ -77,39 +77,7 @@ async def event_broadcaster(manager: ConnectionManager):
payload=notification.payload,
)
async def registry_refresh_worker():
"""Listen for LLM registry refresh notifications and broadcast to all clients."""
from backend.data.llm_registry import REGISTRY_REFRESH_CHANNEL
from backend.data.redis_client import connect_async
redis = await connect_async()
pubsub = redis.pubsub()
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
logger.info(
"Subscribed to LLM registry refresh notifications for WebSocket broadcast"
)
async for message in pubsub.listen():
if (
message["type"] == "message"
and message["channel"] == REGISTRY_REFRESH_CHANNEL
):
logger.info(
"Broadcasting LLM registry refresh to all WebSocket clients"
)
await manager.broadcast_to_all(
method=WSMethod.NOTIFICATION,
data={
"type": "LLM_REGISTRY_REFRESH",
"event": "registry_updated",
},
)
await asyncio.gather(
execution_worker(),
notification_worker(),
registry_refresh_worker(),
)
await asyncio.gather(execution_worker(), notification_worker())
async def authenticate_websocket(websocket: WebSocket) -> str:

View File

@@ -1,6 +1,7 @@
from typing import Any
from backend.blocks.llm import (
DEFAULT_LLM_MODEL,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
AIBlockBase,
@@ -9,7 +10,6 @@ from backend.blocks.llm import (
LlmModel,
LLMResponse,
llm_call,
llm_model_schema_extra,
)
from backend.data.block import (
BlockCategory,
@@ -50,10 +50,9 @@ class AIConditionBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for evaluating the condition.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
@@ -83,7 +82,7 @@ class AIConditionBlock(AIBlockBase):
"condition": "the input is an email address",
"yes_value": "Valid email",
"no_value": "Not an email",
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,

View File

@@ -4,19 +4,17 @@ import logging
import re
import secrets
from abc import ABC
from enum import Enum
from enum import Enum, EnumMeta
from json import JSONDecodeError
from typing import Any, Iterable, List, Literal, Optional
from typing import Any, Iterable, List, Literal, NamedTuple, Optional
import anthropic
import ollama
import openai
from anthropic.types import ToolParam
from groq import AsyncGroq
from pydantic import BaseModel, GetCoreSchemaHandler, SecretStr
from pydantic_core import CoreSchema, core_schema
from pydantic import BaseModel, SecretStr
from backend.data import llm_registry
from backend.data.block import (
Block,
BlockCategory,
@@ -24,7 +22,6 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.llm_registry import ModelMetadata
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -69,117 +66,114 @@ TEST_CREDENTIALS_INPUT = {
def AICredentialsField() -> AICredentials:
"""
Returns a CredentialsField for LLM providers.
The discriminator_mapping will be refreshed when the schema is generated
if it's empty, ensuring the LLM registry is loaded.
"""
# Get the mapping now - it may be empty initially, but will be refreshed
# when the schema is generated via CredentialsMetaInput._add_json_schema_extra
mapping = llm_registry.get_llm_discriminator_mapping()
return CredentialsField(
description="API key for the LLM provider.",
discriminator="model",
discriminator_mapping=mapping, # May be empty initially, refreshed later
discriminator_mapping={
model.value: model.metadata.provider for model in LlmModel
},
)
def llm_model_schema_extra() -> dict[str, Any]:
return {"options": llm_registry.get_llm_model_schema_options()}
class ModelMetadata(NamedTuple):
provider: str
context_window: int
max_output_tokens: int | None
class LlmModelMeta(type):
"""
Metaclass for LlmModel that enables attribute-style access to dynamic models.
This allows code like `LlmModel.GPT4O` to work by converting the attribute
name to a slug format:
- GPT4O -> gpt-4o
- GPT4O_MINI -> gpt-4o-mini
- CLAUDE_3_5_SONNET -> claude-3-5-sonnet
"""
def __getattr__(cls, name: str):
# Don't intercept private/dunder attributes
if name.startswith("_"):
raise AttributeError(f"type object 'LlmModel' has no attribute '{name}'")
# Convert attribute name to slug format:
# 1. Lowercase: GPT4O -> gpt4o
# 2. Underscores to hyphens: GPT4O_MINI -> gpt4o-mini
# 3. Insert hyphen between letter and digit: gpt4o -> gpt-4o
slug = name.lower().replace("_", "-")
slug = re.sub(r"([a-z])(\d)", r"\1-\2", slug)
return cls(slug)
class LlmModelMeta(EnumMeta):
pass
class LlmModel(str, metaclass=LlmModelMeta):
"""
Dynamic LLM model type that accepts any model slug from the registry.
This is a string subclass (not an Enum) that allows any model slug value.
All models are managed via the LLM Registry in the database.
Usage:
model = LlmModel("gpt-4o") # Direct construction
model = LlmModel.GPT4O # Attribute access (converted to "gpt-4o")
model.value # Returns the slug string
model.provider # Returns the provider from registry
"""
def __new__(cls, value: str):
if isinstance(value, LlmModel):
return value
return str.__new__(cls, value)
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
"""
Tell Pydantic how to validate LlmModel.
Accepts strings and converts them to LlmModel instances.
"""
return core_schema.no_info_after_validator_function(
cls, # The validator function (LlmModel constructor)
core_schema.str_schema(), # Accept string input
serialization=core_schema.to_string_ser_schema(), # Serialize as string
)
@property
def value(self) -> str:
"""Return the model slug (for compatibility with enum-style access)."""
return str(self)
@classmethod
def default(cls) -> "LlmModel":
"""
Get the default model from the registry.
Returns the recommended model if set, otherwise gpt-4o if available
and enabled, otherwise the first enabled model from the registry.
Falls back to "gpt-4o" if registry is empty (e.g., at module import time).
"""
from backend.data.llm_registry import get_default_model_slug
slug = get_default_model_slug()
if slug is None:
# Registry is empty (e.g., at module import time before DB connection).
# Fall back to gpt-4o for backward compatibility.
slug = "gpt-4o"
return cls(slug)
class LlmModel(str, Enum, metaclass=LlmModelMeta):
# OpenAI models
O3_MINI = "o3-mini"
O3 = "o3-2025-04-16"
O1 = "o1"
O1_MINI = "o1-mini"
# GPT-5 models
GPT5_2 = "gpt-5.2-2025-12-11"
GPT5_1 = "gpt-5.1-2025-11-13"
GPT5 = "gpt-5-2025-08-07"
GPT5_MINI = "gpt-5-mini-2025-08-07"
GPT5_NANO = "gpt-5-nano-2025-08-07"
GPT5_CHAT = "gpt-5-chat-latest"
GPT41 = "gpt-4.1-2025-04-14"
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
GPT4O_MINI = "gpt-4o-mini"
GPT4O = "gpt-4o"
GPT4_TURBO = "gpt-4-turbo"
GPT3_5_TURBO = "gpt-3.5-turbo"
# Anthropic models
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
CLAUDE_4_OPUS = "claude-opus-4-20250514"
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
AIML_API_LLAMA3_1_70B = "nvidia/llama-3.1-nemotron-70b-instruct"
AIML_API_LLAMA3_3_70B = "meta-llama/Llama-3.3-70B-Instruct-Turbo"
AIML_API_META_LLAMA_3_1_70B = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo"
AIML_API_LLAMA_3_2_3B = "meta-llama/Llama-3.2-3B-Instruct-Turbo"
# Groq models
LLAMA3_3_70B = "llama-3.3-70b-versatile"
LLAMA3_1_8B = "llama-3.1-8b-instant"
# Ollama models
OLLAMA_LLAMA3_3 = "llama3.3"
OLLAMA_LLAMA3_2 = "llama3.2"
OLLAMA_LLAMA3_8B = "llama3"
OLLAMA_LLAMA3_405B = "llama3.1:405b"
OLLAMA_DOLPHIN = "dolphin-mistral:latest"
# OpenRouter models
OPENAI_GPT_OSS_120B = "openai/gpt-oss-120b"
OPENAI_GPT_OSS_20B = "openai/gpt-oss-20b"
GEMINI_2_5_PRO = "google/gemini-2.5-pro-preview-03-25"
GEMINI_3_PRO_PREVIEW = "google/gemini-3-pro-preview"
GEMINI_2_5_FLASH = "google/gemini-2.5-flash"
GEMINI_2_0_FLASH = "google/gemini-2.0-flash-001"
GEMINI_2_5_FLASH_LITE_PREVIEW = "google/gemini-2.5-flash-lite-preview-06-17"
GEMINI_2_0_FLASH_LITE = "google/gemini-2.0-flash-lite-001"
MISTRAL_NEMO = "mistralai/mistral-nemo"
COHERE_COMMAND_R_08_2024 = "cohere/command-r-08-2024"
COHERE_COMMAND_R_PLUS_08_2024 = "cohere/command-r-plus-08-2024"
DEEPSEEK_CHAT = "deepseek/deepseek-chat" # Actually: DeepSeek V3
DEEPSEEK_R1_0528 = "deepseek/deepseek-r1-0528"
PERPLEXITY_SONAR = "perplexity/sonar"
PERPLEXITY_SONAR_PRO = "perplexity/sonar-pro"
PERPLEXITY_SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B = "nousresearch/hermes-3-llama-3.1-405b"
NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B = "nousresearch/hermes-3-llama-3.1-70b"
AMAZON_NOVA_LITE_V1 = "amazon/nova-lite-v1"
AMAZON_NOVA_MICRO_V1 = "amazon/nova-micro-v1"
AMAZON_NOVA_PRO_V1 = "amazon/nova-pro-v1"
MICROSOFT_WIZARDLM_2_8X22B = "microsoft/wizardlm-2-8x22b"
GRYPHE_MYTHOMAX_L2_13B = "gryphe/mythomax-l2-13b"
META_LLAMA_4_SCOUT = "meta-llama/llama-4-scout"
META_LLAMA_4_MAVERICK = "meta-llama/llama-4-maverick"
GROK_4 = "x-ai/grok-4"
GROK_4_FAST = "x-ai/grok-4-fast"
GROK_4_1_FAST = "x-ai/grok-4.1-fast"
GROK_CODE_FAST_1 = "x-ai/grok-code-fast-1"
KIMI_K2 = "moonshotai/kimi-k2"
QWEN3_235B_A22B_THINKING = "qwen/qwen3-235b-a22b-thinking-2507"
QWEN3_CODER = "qwen/qwen3-coder"
# Llama API models
LLAMA_API_LLAMA_4_SCOUT = "Llama-4-Scout-17B-16E-Instruct-FP8"
LLAMA_API_LLAMA4_MAVERICK = "Llama-4-Maverick-17B-128E-Instruct-FP8"
LLAMA_API_LLAMA3_3_8B = "Llama-3.3-8B-Instruct"
LLAMA_API_LLAMA3_3_70B = "Llama-3.3-70B-Instruct"
# v0 by Vercel models
V0_1_5_MD = "v0-1.5-md"
V0_1_5_LG = "v0-1.5-lg"
V0_1_0_MD = "v0-1.0-md"
@property
def metadata(self) -> ModelMetadata:
metadata = llm_registry.get_llm_model_metadata(self.value)
if metadata:
return metadata
raise ValueError(
f"Missing metadata for model: {self.value}. Model not found in LLM registry."
)
return MODEL_METADATA[self]
@property
def provider(self) -> str:
@@ -194,11 +188,128 @@ class LlmModel(str, metaclass=LlmModelMeta):
return self.metadata.max_output_tokens
# MODEL_METADATA removed - all models now come from the database via llm_registry
MODEL_METADATA = {
# https://platform.openai.com/docs/models
LlmModel.O3: ModelMetadata("openai", 200000, 100000),
LlmModel.O3_MINI: ModelMetadata("openai", 200000, 100000), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_CHAT: ModelMetadata("openai", 400000, 16384),
LlmModel.GPT41: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT41_MINI: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT4O_MINI: ModelMetadata(
"openai", 128000, 16384
), # gpt-4o-mini-2024-07-18
LlmModel.GPT4O: ModelMetadata("openai", 128000, 16384), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, 4096), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
"anthropic", 200000, 32000
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 32000
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000
), # claude-opus-4-5-20251101
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096
), # claude-3-haiku-20240307
# https://docs.aimlapi.com/api-overview/model-database/text-models
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata("aiml_api", 32000, 8000),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata("aiml_api", 128000, 40000),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata("aiml_api", 128000, None),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata("aiml_api", 131000, 2000),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata("aiml_api", 128000, None),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata("groq", 128000, 32768),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 128000, 8192),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata("open_router", 1050000, 8192),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata("open_router", 1048576, 8192),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata("open_router", 1048576, 8192),
LlmModel.MISTRAL_NEMO: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata("open_router", 163840, 163840),
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 8000),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata("open_router", 200000, 8000),
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
"open_router",
128000,
16000,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router", 131000, 4096
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
"open_router", 12288, 12288
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata("open_router", 131072, 131072),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata("open_router", 131072, 32768),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata("open_router", 128000, 5120),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata("open_router", 65536, 4096),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata("open_router", 4096, 4096),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata("open_router", 131072, 131072),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata("open_router", 1048576, 1000000),
LlmModel.GROK_4: ModelMetadata("open_router", 256000, 256000),
LlmModel.GROK_4_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_4_1_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_CODE_FAST_1: ModelMetadata("open_router", 256000, 10000),
LlmModel.KIMI_K2: ModelMetadata("open_router", 131000, 131000),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata("open_router", 262144, 262144),
LlmModel.QWEN3_CODER: ModelMetadata("open_router", 262144, 262144),
# Llama API models
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata("llama_api", 128000, 4028),
# v0 by Vercel models
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
}
# Default model constant for backward compatibility
# Uses the dynamic registry to get the default model
DEFAULT_LLM_MODEL = LlmModel.default()
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
for model in LlmModel:
if model not in MODEL_METADATA:
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
class ToolCall(BaseModel):
@@ -327,94 +438,19 @@ async def llm_call(
- prompt_tokens: The number of tokens used in the prompt.
- completion_tokens: The number of tokens used in the completion.
"""
# Get model metadata and check if enabled - with fallback support
# The model we'll actually use (may differ if original is disabled)
model_to_use = llm_model.value
# Check if model is in registry and if it's enabled
from backend.data.llm_registry import (
get_fallback_model_for_disabled,
get_model_info,
)
model_info = get_model_info(llm_model.value)
if model_info and not model_info.is_enabled:
# Model is disabled - try to find a fallback from the same provider
fallback = get_fallback_model_for_disabled(llm_model.value)
if fallback:
logger.warning(
f"Model '{llm_model.value}' is disabled. Using fallback model '{fallback.slug}' from the same provider ({fallback.metadata.provider})."
)
model_to_use = fallback.slug
# Use fallback model's metadata
provider = fallback.metadata.provider
context_window = fallback.metadata.context_window
model_max_output = fallback.metadata.max_output_tokens or int(2**15)
else:
# No fallback available - raise error
raise ValueError(
f"LLM model '{llm_model.value}' is disabled and no fallback model "
f"from the same provider is available. Please enable the model or "
f"select a different model in the block configuration."
)
else:
# Model is enabled or not in registry (legacy/static model)
try:
provider = llm_model.metadata.provider
context_window = llm_model.context_window
model_max_output = llm_model.max_output_tokens or int(2**15)
except ValueError:
# Model not in cache - try refreshing the registry once if we have DB access
logger.warning(f"Model {llm_model.value} not found in registry cache")
# Try refreshing the registry if we have database access
from backend.data.db import is_connected
if is_connected():
try:
logger.info(
f"Refreshing LLM registry and retrying lookup for {llm_model.value}"
)
await llm_registry.refresh_llm_registry()
# Try again after refresh
try:
provider = llm_model.metadata.provider
context_window = llm_model.context_window
model_max_output = llm_model.max_output_tokens or int(2**15)
logger.info(
f"Successfully loaded model {llm_model.value} metadata after registry refresh"
)
except ValueError:
# Still not found after refresh
raise ValueError(
f"LLM model '{llm_model.value}' not found in registry after refresh. "
"Please ensure the model is added and enabled in the LLM registry via the admin UI."
)
except Exception as refresh_exc:
logger.error(f"Failed to refresh LLM registry: {refresh_exc}")
raise ValueError(
f"LLM model '{llm_model.value}' not found in registry and failed to refresh. "
"Please ensure the model is added to the LLM registry via the admin UI."
) from refresh_exc
else:
# No DB access (e.g., in executor without direct DB connection)
# The registry should have been loaded on startup
raise ValueError(
f"LLM model '{llm_model.value}' not found in registry cache. "
"The registry may need to be refreshed. Please contact support or try again later."
)
provider = llm_model.metadata.provider
context_window = llm_model.context_window
if compress_prompt_to_fit:
prompt = compress_prompt(
messages=prompt,
target_tokens=context_window // 2,
target_tokens=llm_model.context_window // 2,
lossy_ok=True,
)
# Calculate available tokens based on context window and input length
estimated_input_tokens = estimate_token_count(prompt)
# model_max_output already set above
model_max_output = llm_model.max_output_tokens or int(2**15)
user_max = max_tokens or model_max_output
available_tokens = max(context_window - estimated_input_tokens, 0)
max_tokens = max(min(available_tokens, model_max_output, user_max), 1)
@@ -432,7 +468,7 @@ async def llm_call(
response_format = {"type": "json_object"}
response = await oai_client.chat.completions.create(
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_completion_tokens=max_tokens,
@@ -479,7 +515,7 @@ async def llm_call(
)
try:
resp = await client.messages.create(
model=model_to_use,
model=llm_model.value,
system=sysprompt,
messages=messages,
max_tokens=max_tokens,
@@ -543,7 +579,7 @@ async def llm_call(
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
response_format = {"type": "json_object"} if force_json_output else None
response = await client.chat.completions.create(
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_tokens=max_tokens,
@@ -565,7 +601,7 @@ async def llm_call(
sys_messages = [p["content"] for p in prompt if p["role"] == "system"]
usr_messages = [p["content"] for p in prompt if p["role"] != "system"]
response = await client.generate(
model=model_to_use,
model=llm_model.value,
prompt=f"{sys_messages}\n\n{usr_messages}",
stream=False,
options={"num_ctx": max_tokens},
@@ -595,7 +631,7 @@ async def llm_call(
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
max_tokens=max_tokens,
tools=tools_param, # type: ignore
@@ -637,7 +673,7 @@ async def llm_call(
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
max_tokens=max_tokens,
tools=tools_param, # type: ignore
@@ -664,7 +700,7 @@ async def llm_call(
reasoning=reasoning,
)
elif provider == "aiml_api":
client = openai.AsyncOpenAI(
client = openai.OpenAI(
base_url="https://api.aimlapi.com/v2",
api_key=credentials.api_key.get_secret_value(),
default_headers={
@@ -674,8 +710,8 @@ async def llm_call(
},
)
completion = await client.chat.completions.create(
model=model_to_use,
completion = client.chat.completions.create(
model=llm_model.value,
messages=prompt, # type: ignore
max_tokens=max_tokens,
)
@@ -707,7 +743,7 @@ async def llm_call(
)
response = await client.chat.completions.create(
model=model_to_use,
model=llm_model.value,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_tokens=max_tokens,
@@ -758,10 +794,9 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
force_json_output: bool = SchemaField(
title="Restrict LLM to pure JSON output",
@@ -824,7 +859,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
input_schema=AIStructuredResponseGeneratorBlock.Input,
output_schema=AIStructuredResponseGeneratorBlock.Output,
test_input={
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
"expected_format": {
"key1": "value1",
@@ -1190,10 +1225,9 @@ class AITextGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
sys_prompt: str = SchemaField(
@@ -1287,9 +1321,8 @@ class AITextSummarizerBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for summarizing the text.",
json_schema_extra=llm_model_schema_extra(),
)
focus: str = SchemaField(
title="Focus",
@@ -1505,9 +1538,8 @@ class AIConversationBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for the conversation.",
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
max_tokens: int | None = SchemaField(
@@ -1544,7 +1576,7 @@ class AIConversationBlock(AIBlockBase):
},
{"role": "user", "content": "Where was it played?"},
],
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
@@ -1607,10 +1639,9 @@ class AIListGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default_factory=LlmModel.default,
default=DEFAULT_LLM_MODEL,
description="The language model to use for generating the list.",
advanced=True,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
max_retries: int = SchemaField(
@@ -1665,7 +1696,7 @@ class AIListGeneratorBlock(AIBlockBase):
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
"fictional worlds."
),
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"model": DEFAULT_LLM_MODEL,
"credentials": TEST_CREDENTIALS_INPUT,
"max_retries": 3,
"force_json_output": False,

View File

@@ -226,10 +226,9 @@ class SmartDecisionMakerBlock(Block):
)
model: llm.LlmModel = SchemaField(
title="LLM Model",
default_factory=llm.LlmModel.default,
default=llm.DEFAULT_LLM_MODEL,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm.llm_model_schema_extra(),
)
credentials: llm.AICredentials = llm.AICredentialsField()
multiple_tool_calls: bool = SchemaField(

View File

@@ -10,13 +10,13 @@ import stagehand.main
from stagehand import Stagehand
from backend.blocks.llm import (
MODEL_METADATA,
AICredentials,
AICredentialsField,
LlmModel,
ModelMetadata,
)
from backend.blocks.stagehand._config import stagehand as stagehand_provider
from backend.data import llm_registry
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -91,7 +91,7 @@ class StagehandRecommendedLlmModel(str, Enum):
Returns the provider name for the model in the required format for Stagehand:
provider/model_name
"""
model_metadata = self.metadata
model_metadata = MODEL_METADATA[LlmModel(self.value)]
model_name = self.value
if len(model_name.split("/")) == 1 and not self.value.startswith(
@@ -107,23 +107,19 @@ class StagehandRecommendedLlmModel(str, Enum):
@property
def provider(self) -> str:
return self.metadata.provider
return MODEL_METADATA[LlmModel(self.value)].provider
@property
def metadata(self) -> ModelMetadata:
metadata = llm_registry.get_llm_model_metadata(self.value)
if metadata:
return metadata
# Fallback to LlmModel enum if registry lookup fails
return LlmModel(self.value).metadata
return MODEL_METADATA[LlmModel(self.value)]
@property
def context_window(self) -> int:
return self.metadata.context_window
return MODEL_METADATA[LlmModel(self.value)].context_window
@property
def max_output_tokens(self) -> int | None:
return self.metadata.max_output_tokens
return MODEL_METADATA[LlmModel(self.value)].max_output_tokens
class StagehandObserveBlock(Block):

View File

@@ -25,7 +25,6 @@ from prisma.models import AgentBlock
from prisma.types import AgentBlockCreateInput
from pydantic import BaseModel
from backend.data.llm_registry import update_schema_with_llm_registry
from backend.data.model import NodeExecutionStats
from backend.integrations.providers import ProviderName
from backend.util import json
@@ -144,59 +143,35 @@ class BlockInfo(BaseModel):
class BlockSchema(BaseModel):
cached_jsonschema: ClassVar[dict[str, Any] | None] = None
@classmethod
def clear_schema_cache(cls) -> None:
"""Clear the cached JSON schema for this class."""
# Use None instead of {} because {} is truthy and would prevent regeneration
cls.cached_jsonschema = None # type: ignore
@staticmethod
def clear_all_schema_caches() -> None:
"""Clear cached JSON schemas for all BlockSchema subclasses."""
def clear_recursive(cls: type) -> None:
"""Recursively clear cache for class and all subclasses."""
if hasattr(cls, "clear_schema_cache"):
cls.clear_schema_cache()
for subclass in cls.__subclasses__():
clear_recursive(subclass)
clear_recursive(BlockSchema)
cached_jsonschema: ClassVar[dict[str, Any]]
@classmethod
def jsonschema(cls) -> dict[str, Any]:
# Generate schema if not cached
if not cls.cached_jsonschema:
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
if cls.cached_jsonschema:
return cls.cached_jsonschema
def ref_to_dict(obj):
if isinstance(obj, dict):
# OpenAPI <3.1 does not support sibling fields that has a $ref key
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
keys = {"allOf", "anyOf", "oneOf"}
one_key = next(
(k for k in keys if k in obj and len(obj[k]) == 1), None
)
if one_key:
obj.update(obj[one_key][0])
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
return {
key: ref_to_dict(value)
for key, value in obj.items()
if not key.startswith("$") and key != one_key
}
elif isinstance(obj, list):
return [ref_to_dict(item) for item in obj]
def ref_to_dict(obj):
if isinstance(obj, dict):
# OpenAPI <3.1 does not support sibling fields that has a $ref key
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
keys = {"allOf", "anyOf", "oneOf"}
one_key = next((k for k in keys if k in obj and len(obj[k]) == 1), None)
if one_key:
obj.update(obj[one_key][0])
return obj
return {
key: ref_to_dict(value)
for key, value in obj.items()
if not key.startswith("$") and key != one_key
}
elif isinstance(obj, list):
return [ref_to_dict(item) for item in obj]
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
return obj
# Always post-process to ensure LLM registry data is up-to-date
# This refreshes model options and discriminator mappings even if schema was cached
update_schema_with_llm_registry(cls.cached_jsonschema, cls)
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
return cls.cached_jsonschema
@@ -705,12 +680,23 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
return False, reviewed_data
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
# Check for review requirement and get potentially modified input data
should_pause, input_data = await self.is_block_exec_need_review(
input_data, **kwargs
# Check for review requirement only if running within a graph execution context
# Direct block execution (e.g., from chat) skips the review process
has_graph_context = all(
key in kwargs
for key in (
"node_exec_id",
"graph_exec_id",
"graph_id",
"execution_context",
)
)
if should_pause:
return
if has_graph_context:
should_pause, input_data = await self.is_block_exec_need_review(
input_data, **kwargs
)
if should_pause:
return
# Validate the input data (original or reviewer-modified) once
if error := self.input_schema.validate_data(input_data):
@@ -884,28 +870,6 @@ def is_block_auth_configured(
async def initialize_blocks() -> None:
# Refresh LLM registry before initializing blocks so blocks can use registry data
# This ensures the registry cache is populated even in executor context
try:
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
# Only refresh if we have DB access (check if Prisma is connected)
from backend.data.db import is_connected
if is_connected():
await llm_registry.refresh_llm_registry()
refresh_llm_costs()
logger.info("LLM registry refreshed during block initialization")
else:
logger.warning(
"Prisma not connected, skipping LLM registry refresh during block initialization"
)
except Exception as exc:
logger.warning(
"Failed to refresh LLM registry during block initialization: %s", exc
)
# First, sync all provider costs to blocks
# Imported here to avoid circular import
from backend.sdk.cost_integration import sync_all_provider_costs

View File

@@ -1,4 +1,3 @@
import logging
from typing import Type
from backend.blocks.ai_image_customizer import AIImageCustomizerBlock, GeminiImageModel
@@ -24,18 +23,19 @@ from backend.blocks.ideogram import IdeogramModelBlock
from backend.blocks.jina.embeddings import JinaEmbeddingBlock
from backend.blocks.jina.search import ExtractWebsiteContentBlock, SearchTheWebBlock
from backend.blocks.llm import (
MODEL_METADATA,
AIConversationBlock,
AIListGeneratorBlock,
AIStructuredResponseGeneratorBlock,
AITextGeneratorBlock,
AITextSummarizerBlock,
LlmModel,
)
from backend.blocks.replicate.flux_advanced import ReplicateFluxAdvancedModelBlock
from backend.blocks.replicate.replicate_block import ReplicateModelBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
from backend.data import llm_registry
from backend.data.block import Block, BlockCost, BlockCostType
from backend.integrations.credentials_store import (
aiml_api_credentials,
@@ -55,63 +55,210 @@ from backend.integrations.credentials_store import (
v0_credentials,
)
logger = logging.getLogger(__name__)
# =============== Configure the cost for each LLM Model call =============== #
PROVIDER_CREDENTIALS = {
"openai": openai_credentials,
"anthropic": anthropic_credentials,
"groq": groq_credentials,
"open_router": open_router_credentials,
"llama_api": llama_api_credentials,
"aiml_api": aiml_api_credentials,
"v0": v0_credentials,
MODEL_COST: dict[LlmModel, int] = {
LlmModel.O3: 4,
LlmModel.O3_MINI: 2,
LlmModel.O1: 16,
LlmModel.O1_MINI: 4,
# GPT-5 models
LlmModel.GPT5_2: 6,
LlmModel.GPT5_1: 5,
LlmModel.GPT5: 2,
LlmModel.GPT5_MINI: 1,
LlmModel.GPT5_NANO: 1,
LlmModel.GPT5_CHAT: 5,
LlmModel.GPT41: 2,
LlmModel.GPT41_MINI: 1,
LlmModel.GPT4O_MINI: 1,
LlmModel.GPT4O: 3,
LlmModel.GPT4_TURBO: 10,
LlmModel.GPT3_5_TURBO: 1,
LlmModel.CLAUDE_4_1_OPUS: 21,
LlmModel.CLAUDE_4_OPUS: 21,
LlmModel.CLAUDE_4_SONNET: 5,
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9,
LlmModel.CLAUDE_3_7_SONNET: 5,
LlmModel.CLAUDE_3_HAIKU: 1,
LlmModel.AIML_API_QWEN2_5_72B: 1,
LlmModel.AIML_API_LLAMA3_1_70B: 1,
LlmModel.AIML_API_LLAMA3_3_70B: 1,
LlmModel.AIML_API_META_LLAMA_3_1_70B: 1,
LlmModel.AIML_API_LLAMA_3_2_3B: 1,
LlmModel.LLAMA3_3_70B: 1,
LlmModel.LLAMA3_1_8B: 1,
LlmModel.OLLAMA_LLAMA3_3: 1,
LlmModel.OLLAMA_LLAMA3_2: 1,
LlmModel.OLLAMA_LLAMA3_8B: 1,
LlmModel.OLLAMA_LLAMA3_405B: 1,
LlmModel.OLLAMA_DOLPHIN: 1,
LlmModel.OPENAI_GPT_OSS_120B: 1,
LlmModel.OPENAI_GPT_OSS_20B: 1,
LlmModel.GEMINI_2_5_PRO: 4,
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
LlmModel.MISTRAL_NEMO: 1,
LlmModel.COHERE_COMMAND_R_08_2024: 1,
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
LlmModel.DEEPSEEK_CHAT: 2,
LlmModel.PERPLEXITY_SONAR: 1,
LlmModel.PERPLEXITY_SONAR_PRO: 5,
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: 1,
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: 1,
LlmModel.AMAZON_NOVA_LITE_V1: 1,
LlmModel.AMAZON_NOVA_MICRO_V1: 1,
LlmModel.AMAZON_NOVA_PRO_V1: 1,
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: 1,
LlmModel.GRYPHE_MYTHOMAX_L2_13B: 1,
LlmModel.META_LLAMA_4_SCOUT: 1,
LlmModel.META_LLAMA_4_MAVERICK: 1,
LlmModel.LLAMA_API_LLAMA_4_SCOUT: 1,
LlmModel.LLAMA_API_LLAMA4_MAVERICK: 1,
LlmModel.LLAMA_API_LLAMA3_3_8B: 1,
LlmModel.LLAMA_API_LLAMA3_3_70B: 1,
LlmModel.GROK_4: 9,
LlmModel.GROK_4_FAST: 1,
LlmModel.GROK_4_1_FAST: 1,
LlmModel.GROK_CODE_FAST_1: 1,
LlmModel.KIMI_K2: 1,
LlmModel.QWEN3_235B_A22B_THINKING: 1,
LlmModel.QWEN3_CODER: 9,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.DEEPSEEK_R1_0528: 1,
# v0 by Vercel models
LlmModel.V0_1_5_MD: 1,
LlmModel.V0_1_5_LG: 2,
LlmModel.V0_1_0_MD: 1,
}
# =============== Configure the cost for each LLM Model call =============== #
# All LLM costs now come from the database via llm_registry
LLM_COST: list[BlockCost] = []
for model in LlmModel:
if model not in MODEL_COST:
raise ValueError(f"Missing MODEL_COST for model: {model}")
def _build_llm_costs_from_registry() -> list[BlockCost]:
"""Build BlockCost list from all models in the LLM registry."""
costs: list[BlockCost] = []
for model in llm_registry.iter_dynamic_models():
for cost in model.costs:
credentials = PROVIDER_CREDENTIALS.get(cost.credential_provider)
if not credentials:
logger.warning(
"Skipping cost entry for %s due to unknown credentials provider %s",
model.slug,
cost.credential_provider,
)
continue
cost_filter = {
"model": model.slug,
LLM_COST = (
# Anthropic Models
[
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": credentials.id,
"provider": credentials.provider,
"type": credentials.type,
"id": anthropic_credentials.id,
"provider": anthropic_credentials.provider,
"type": anthropic_credentials.type,
},
}
costs.append(
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter=cost_filter,
cost_amount=cost.credit_cost,
)
)
return costs
def refresh_llm_costs() -> None:
"""Refresh LLM costs from the registry. All costs now come from the database."""
LLM_COST.clear()
LLM_COST.extend(_build_llm_costs_from_registry())
# Initial load will happen after registry is refreshed at startup
# Don't call refresh_llm_costs() here - it will be called after registry refresh
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "anthropic"
]
# OpenAI Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": openai_credentials.id,
"provider": openai_credentials.provider,
"type": openai_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "openai"
]
# Groq Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {"id": groq_credentials.id},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "groq"
]
# Open Router Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": open_router_credentials.id,
"provider": open_router_credentials.provider,
"type": open_router_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "open_router"
]
# Llama API Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": llama_api_credentials.id,
"provider": llama_api_credentials.provider,
"type": llama_api_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "llama_api"
]
# v0 by Vercel Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": v0_credentials.id,
"provider": v0_credentials.provider,
"type": v0_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "v0"
]
# AI/ML Api Models
+ [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"credentials": {
"id": aiml_api_credentials.id,
"provider": aiml_api_credentials.provider,
"type": aiml_api_credentials.type,
},
},
cost_amount=cost,
)
for model, cost in MODEL_COST.items()
if MODEL_METADATA[model].provider == "aiml_api"
]
)
# =============== This is the exhaustive list of cost for each Block =============== #

View File

@@ -1483,10 +1483,8 @@ async def migrate_llm_models(migrate_to: LlmModel):
if field.annotation == LlmModel:
llm_model_fields[block.id] = field_name
# Get all model slugs from the registry (dynamic, not hardcoded enum)
from backend.data import llm_registry
enum_values = list(llm_registry.get_all_model_slugs_for_validation())
# Convert enum values to a list of strings for the SQL query
enum_values = [v.value for v in LlmModel]
escaped_enum_values = repr(tuple(enum_values)) # hack but works
# Update each block

View File

@@ -1,72 +0,0 @@
"""
LLM Registry module for managing LLM models, providers, and costs dynamically.
This module provides a database-driven registry system for LLM models,
replacing hardcoded model configurations with a flexible admin-managed system.
"""
from backend.data.llm_registry.model_types import ModelMetadata
# Re-export for backwards compatibility
from backend.data.llm_registry.notifications import (
REGISTRY_REFRESH_CHANNEL,
publish_registry_refresh_notification,
subscribe_to_registry_refresh,
)
from backend.data.llm_registry.registry import (
RegistryModel,
RegistryModelCost,
RegistryModelCreator,
get_all_model_slugs_for_validation,
get_default_model_slug,
get_dynamic_model_slugs,
get_fallback_model_for_disabled,
get_llm_discriminator_mapping,
get_llm_model_cost,
get_llm_model_metadata,
get_llm_model_schema_options,
get_model_info,
is_model_enabled,
iter_dynamic_models,
refresh_llm_registry,
register_static_costs,
register_static_metadata,
)
from backend.data.llm_registry.schema_utils import (
is_llm_model_field,
refresh_llm_discriminator_mapping,
refresh_llm_model_options,
update_schema_with_llm_registry,
)
__all__ = [
# Types
"ModelMetadata",
"RegistryModel",
"RegistryModelCost",
"RegistryModelCreator",
# Registry functions
"get_all_model_slugs_for_validation",
"get_default_model_slug",
"get_dynamic_model_slugs",
"get_fallback_model_for_disabled",
"get_llm_discriminator_mapping",
"get_llm_model_cost",
"get_llm_model_metadata",
"get_llm_model_schema_options",
"get_model_info",
"is_model_enabled",
"iter_dynamic_models",
"refresh_llm_registry",
"register_static_costs",
"register_static_metadata",
# Notifications
"REGISTRY_REFRESH_CHANNEL",
"publish_registry_refresh_notification",
"subscribe_to_registry_refresh",
# Schema utilities
"is_llm_model_field",
"refresh_llm_discriminator_mapping",
"refresh_llm_model_options",
"update_schema_with_llm_registry",
]

View File

@@ -1,11 +0,0 @@
"""Type definitions for LLM model metadata."""
from typing import NamedTuple
class ModelMetadata(NamedTuple):
"""Metadata for an LLM model."""
provider: str
context_window: int
max_output_tokens: int | None

View File

@@ -1,89 +0,0 @@
"""
Redis pub/sub notifications for LLM registry updates.
When models are added/updated/removed via the admin UI, this module
publishes notifications to Redis that all executor services subscribe to,
ensuring they refresh their registry cache in real-time.
"""
import asyncio
import logging
from typing import Any
from backend.data.redis_client import connect_async
logger = logging.getLogger(__name__)
# Redis channel name for LLM registry refresh notifications
REGISTRY_REFRESH_CHANNEL = "llm_registry:refresh"
async def publish_registry_refresh_notification() -> None:
"""
Publish a notification to Redis that the LLM registry has been updated.
All executor services subscribed to this channel will refresh their registry.
"""
try:
redis = await connect_async()
await redis.publish(REGISTRY_REFRESH_CHANNEL, "refresh")
logger.info("Published LLM registry refresh notification to Redis")
except Exception as exc:
logger.warning(
"Failed to publish LLM registry refresh notification: %s",
exc,
exc_info=True,
)
async def subscribe_to_registry_refresh(
on_refresh: Any, # Async callable that takes no args
) -> None:
"""
Subscribe to Redis notifications for LLM registry updates.
This runs in a loop and processes messages as they arrive.
Args:
on_refresh: Async callable to execute when a refresh notification is received
"""
try:
redis = await connect_async()
pubsub = redis.pubsub()
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
logger.info(
"Subscribed to LLM registry refresh notifications on channel: %s",
REGISTRY_REFRESH_CHANNEL,
)
# Process messages in a loop
while True:
try:
message = await pubsub.get_message(
ignore_subscribe_messages=True, timeout=1.0
)
if (
message
and message["type"] == "message"
and message["channel"] == REGISTRY_REFRESH_CHANNEL
):
logger.info("Received LLM registry refresh notification")
try:
await on_refresh()
except Exception as exc:
logger.error(
"Error refreshing LLM registry from notification: %s",
exc,
exc_info=True,
)
except Exception as exc:
logger.warning(
"Error processing registry refresh message: %s", exc, exc_info=True
)
# Continue listening even if one message fails
await asyncio.sleep(1)
except Exception as exc:
logger.error(
"Failed to subscribe to LLM registry refresh notifications: %s",
exc,
exc_info=True,
)
raise

View File

@@ -1,372 +0,0 @@
"""Core LLM registry implementation for managing models dynamically."""
from __future__ import annotations
import asyncio
import logging
from dataclasses import dataclass, field
from typing import Any, Iterable
import prisma.models
from backend.data.llm_registry.model_types import ModelMetadata
logger = logging.getLogger(__name__)
def _json_to_dict(value: Any) -> dict[str, Any]:
"""Convert Prisma Json type to dict, with fallback to empty dict."""
if value is None:
return {}
if isinstance(value, dict):
return value
# Prisma Json type should always be a dict at runtime
return dict(value) if value else {}
@dataclass(frozen=True)
class RegistryModelCost:
"""Cost configuration for an LLM model."""
credit_cost: int
credential_provider: str
credential_id: str | None
credential_type: str | None
currency: str | None
metadata: dict[str, Any]
@dataclass(frozen=True)
class RegistryModelCreator:
"""Creator information for an LLM model."""
id: str
name: str
display_name: str
description: str | None
website_url: str | None
logo_url: str | None
@dataclass(frozen=True)
class RegistryModel:
"""Represents a model in the LLM registry."""
slug: str
display_name: str
description: str | None
metadata: ModelMetadata
capabilities: dict[str, Any]
extra_metadata: dict[str, Any]
provider_display_name: str
is_enabled: bool
is_recommended: bool = False
costs: tuple[RegistryModelCost, ...] = field(default_factory=tuple)
creator: RegistryModelCreator | None = None
_static_metadata: dict[str, ModelMetadata] = {}
_static_costs: dict[str, int] = {}
_dynamic_models: dict[str, RegistryModel] = {}
_schema_options: list[dict[str, str]] = []
_discriminator_mapping: dict[str, str] = {}
_lock = asyncio.Lock()
def register_static_metadata(metadata: dict[Any, ModelMetadata]) -> None:
"""Register static metadata for legacy models (deprecated)."""
_static_metadata.update({str(key): value for key, value in metadata.items()})
_refresh_cached_schema()
def register_static_costs(costs: dict[Any, int]) -> None:
"""Register static costs for legacy models (deprecated)."""
_static_costs.update({str(key): value for key, value in costs.items()})
def _build_schema_options() -> list[dict[str, str]]:
"""Build schema options for model selection dropdown. Only includes enabled models."""
options: list[dict[str, str]] = []
# Only include enabled models in the dropdown options
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
if model.is_enabled:
options.append(
{
"label": model.display_name,
"value": model.slug,
"group": model.metadata.provider,
"description": model.description or "",
}
)
for slug, metadata in _static_metadata.items():
if slug in _dynamic_models:
continue
options.append(
{
"label": slug,
"value": slug,
"group": metadata.provider,
"description": "",
}
)
return options
async def refresh_llm_registry() -> None:
"""Refresh the LLM registry from the database. Loads all models (enabled and disabled)."""
async with _lock:
try:
records = await prisma.models.LlmModel.prisma().find_many(
include={
"Provider": True,
"Costs": True,
"Creator": True,
}
)
logger.debug("Found %d LLM model records in database", len(records))
except Exception as exc:
logger.error(
"Failed to refresh LLM registry from DB: %s", exc, exc_info=True
)
return
dynamic: dict[str, RegistryModel] = {}
for record in records:
provider_name = (
record.Provider.name if record.Provider else record.providerId
)
metadata = ModelMetadata(
provider=provider_name,
context_window=record.contextWindow,
max_output_tokens=record.maxOutputTokens,
)
costs = tuple(
RegistryModelCost(
credit_cost=cost.creditCost,
credential_provider=cost.credentialProvider,
credential_id=cost.credentialId,
credential_type=cost.credentialType,
currency=cost.currency,
metadata=_json_to_dict(cost.metadata),
)
for cost in (record.Costs or [])
)
# Map creator if present
creator = None
if record.Creator:
creator = RegistryModelCreator(
id=record.Creator.id,
name=record.Creator.name,
display_name=record.Creator.displayName,
description=record.Creator.description,
website_url=record.Creator.websiteUrl,
logo_url=record.Creator.logoUrl,
)
dynamic[record.slug] = RegistryModel(
slug=record.slug,
display_name=record.displayName,
description=record.description,
metadata=metadata,
capabilities=_json_to_dict(record.capabilities),
extra_metadata=_json_to_dict(record.metadata),
provider_display_name=(
record.Provider.displayName
if record.Provider
else record.providerId
),
is_enabled=record.isEnabled,
is_recommended=record.isRecommended,
costs=costs,
creator=creator,
)
# Atomic swap - build new structures then replace references
# This ensures readers never see partially updated state
global _dynamic_models
_dynamic_models = dynamic
_refresh_cached_schema()
logger.info(
"LLM registry refreshed with %s dynamic models (enabled: %s, disabled: %s)",
len(dynamic),
sum(1 for m in dynamic.values() if m.is_enabled),
sum(1 for m in dynamic.values() if not m.is_enabled),
)
def _refresh_cached_schema() -> None:
"""Refresh cached schema options and discriminator mapping."""
global _schema_options, _discriminator_mapping
# Build new structures
new_options = _build_schema_options()
new_mapping = {
slug: entry.metadata.provider for slug, entry in _dynamic_models.items()
}
for slug, metadata in _static_metadata.items():
new_mapping.setdefault(slug, metadata.provider)
# Atomic swap - replace references to ensure readers see consistent state
_schema_options = new_options
_discriminator_mapping = new_mapping
def get_llm_model_metadata(slug: str) -> ModelMetadata | None:
"""Get model metadata by slug. Checks dynamic models first, then static metadata."""
if slug in _dynamic_models:
return _dynamic_models[slug].metadata
return _static_metadata.get(slug)
def get_llm_model_cost(slug: str) -> tuple[RegistryModelCost, ...]:
"""Get model cost configuration by slug."""
if slug in _dynamic_models:
return _dynamic_models[slug].costs
cost_value = _static_costs.get(slug)
if cost_value is None:
return tuple()
return (
RegistryModelCost(
credit_cost=cost_value,
credential_provider="static",
credential_id=None,
credential_type=None,
currency=None,
metadata={},
),
)
def get_llm_model_schema_options() -> list[dict[str, str]]:
"""
Get schema options for LLM model selection dropdown.
Returns a copy of cached schema options that are refreshed when the registry is
updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
"""
# Return a copy to prevent external mutation
return list(_schema_options)
def get_llm_discriminator_mapping() -> dict[str, str]:
"""
Get discriminator mapping for LLM models.
Returns a copy of cached discriminator mapping that is refreshed when the registry
is updated via refresh_llm_registry() (called on startup and via Redis pub/sub).
"""
# Return a copy to prevent external mutation
return dict(_discriminator_mapping)
def get_dynamic_model_slugs() -> set[str]:
"""Get all dynamic model slugs from the registry."""
return set(_dynamic_models.keys())
def get_all_model_slugs_for_validation() -> set[str]:
"""
Get ALL model slugs (both enabled and disabled) for validation purposes.
This is used for JSON schema enum validation - we need to accept any known
model value (even disabled ones) so that existing graphs don't fail validation.
The actual fallback/enforcement happens at runtime in llm_call().
"""
all_slugs = set(_dynamic_models.keys())
all_slugs.update(_static_metadata.keys())
return all_slugs
def iter_dynamic_models() -> Iterable[RegistryModel]:
"""Iterate over all dynamic models in the registry."""
return tuple(_dynamic_models.values())
def get_fallback_model_for_disabled(disabled_model_slug: str) -> RegistryModel | None:
"""
Find a fallback model when the requested model is disabled.
Looks for an enabled model from the same provider. Prefers models with
similar names or capabilities if possible.
Args:
disabled_model_slug: The slug of the disabled model
Returns:
An enabled RegistryModel from the same provider, or None if no fallback found
"""
disabled_model = _dynamic_models.get(disabled_model_slug)
if not disabled_model:
return None
provider = disabled_model.metadata.provider
# Find all enabled models from the same provider
candidates = [
model
for model in _dynamic_models.values()
if model.is_enabled and model.metadata.provider == provider
]
if not candidates:
return None
# Sort by: prefer models with similar context window, then by name
candidates.sort(
key=lambda m: (
abs(m.metadata.context_window - disabled_model.metadata.context_window),
m.display_name.lower(),
)
)
return candidates[0]
def is_model_enabled(model_slug: str) -> bool:
"""Check if a model is enabled in the registry."""
model = _dynamic_models.get(model_slug)
if not model:
# Model not in registry - assume it's a static/legacy model and allow it
return True
return model.is_enabled
def get_model_info(model_slug: str) -> RegistryModel | None:
"""Get model info from the registry."""
return _dynamic_models.get(model_slug)
def get_default_model_slug() -> str | None:
"""
Get the default model slug to use for block defaults.
Returns the recommended model if set (configured via admin UI),
otherwise returns the first enabled model alphabetically.
Returns None if no models are available or enabled.
"""
# Return the recommended model if one is set and enabled
for model in _dynamic_models.values():
if model.is_recommended and model.is_enabled:
return model.slug
# No recommended model set - find first enabled model alphabetically
for model in sorted(_dynamic_models.values(), key=lambda m: m.display_name.lower()):
if model.is_enabled:
logger.warning(
"No recommended model set, using '%s' as default",
model.slug,
)
return model.slug
# No enabled models available
if _dynamic_models:
logger.error(
"No enabled models found in registry (%d models registered but all disabled)",
len(_dynamic_models),
)
else:
logger.error("No models registered in LLM registry")
return None

View File

@@ -1,130 +0,0 @@
"""
Helper utilities for LLM registry integration with block schemas.
This module handles the dynamic injection of discriminator mappings
and model options from the LLM registry into block schemas.
"""
import logging
from typing import Any
from backend.data.llm_registry.registry import (
get_all_model_slugs_for_validation,
get_default_model_slug,
get_llm_discriminator_mapping,
get_llm_model_schema_options,
)
logger = logging.getLogger(__name__)
def is_llm_model_field(field_name: str, field_info: Any) -> bool:
"""
Check if a field is an LLM model selection field.
Returns True if the field has 'options' in json_schema_extra
(set by llm_model_schema_extra() in blocks/llm.py).
"""
if not hasattr(field_info, "json_schema_extra"):
return False
extra = field_info.json_schema_extra
if isinstance(extra, dict):
return "options" in extra
return False
def refresh_llm_model_options(field_schema: dict[str, Any]) -> None:
"""
Refresh LLM model options from the registry.
Updates 'options' (for frontend dropdown) to show only enabled models,
but keeps the 'enum' (for validation) inclusive of ALL known models.
This is important because:
- Options: What users see in the dropdown (enabled models only)
- Enum: What values pass validation (all known models, including disabled)
Existing graphs may have disabled models selected - they should pass validation
and the fallback logic in llm_call() will handle using an alternative model.
"""
fresh_options = get_llm_model_schema_options()
if not fresh_options:
return
# Update options array (UI dropdown) - only enabled models
if "options" in field_schema:
field_schema["options"] = fresh_options
all_known_slugs = get_all_model_slugs_for_validation()
if all_known_slugs and "enum" in field_schema:
existing_enum = set(field_schema.get("enum", []))
combined_enum = existing_enum | all_known_slugs
field_schema["enum"] = sorted(combined_enum)
# Set the default value from the registry (gpt-4o if available, else first enabled)
# This ensures new blocks have a sensible default pre-selected
default_slug = get_default_model_slug()
if default_slug:
field_schema["default"] = default_slug
def refresh_llm_discriminator_mapping(field_schema: dict[str, Any]) -> None:
"""
Refresh discriminator_mapping for fields that use model-based discrimination.
The discriminator is already set when AICredentialsField() creates the field.
We only need to refresh the mapping when models are added/removed.
"""
if field_schema.get("discriminator") != "model":
return
# Always refresh the mapping to get latest models
fresh_mapping = get_llm_discriminator_mapping()
if fresh_mapping:
field_schema["discriminator_mapping"] = fresh_mapping
def update_schema_with_llm_registry(
schema: dict[str, Any], model_class: type | None = None
) -> None:
"""
Update a JSON schema with current LLM registry data.
Refreshes:
1. Model options for LLM model selection fields (dropdown choices)
2. Discriminator mappings for credentials fields (model → provider)
Args:
schema: The JSON schema to update (mutated in-place)
model_class: The Pydantic model class (optional, for field introspection)
"""
properties = schema.get("properties", {})
for field_name, field_schema in properties.items():
if not isinstance(field_schema, dict):
continue
# Refresh model options for LLM model fields
if model_class and hasattr(model_class, "model_fields"):
field_info = model_class.model_fields.get(field_name)
if field_info and is_llm_model_field(field_name, field_info):
try:
refresh_llm_model_options(field_schema)
except Exception as exc:
logger.warning(
"Failed to refresh LLM options for field %s: %s",
field_name,
exc,
)
# Refresh discriminator mapping for fields that use model discrimination
try:
refresh_llm_discriminator_mapping(field_schema)
except Exception as exc:
logger.warning(
"Failed to refresh discriminator mapping for field %s: %s",
field_name,
exc,
)

View File

@@ -40,7 +40,6 @@ from pydantic_core import (
)
from typing_extensions import TypedDict
from backend.data.llm_registry import update_schema_with_llm_registry
from backend.integrations.providers import ProviderName
from backend.util.json import loads as json_loads
from backend.util.settings import Secrets
@@ -545,9 +544,7 @@ class CredentialsMetaInput(BaseModel, Generic[CP, CT]):
else:
schema["credentials_provider"] = allowed_providers
schema["credentials_types"] = model_class.allowed_cred_types()
# Ensure LLM discriminators are populated (delegates to shared helper)
update_schema_with_llm_registry(schema, model_class)
# Do not return anything, just mutate schema in place
model_config = ConfigDict(
json_schema_extra=_add_json_schema_extra, # type: ignore
@@ -696,20 +693,16 @@ def CredentialsField(
This is enforced by the `BlockSchema` base class.
"""
# Build field_schema_extra - always include discriminator and mapping if discriminator is set
field_schema_extra: dict[str, Any] = {}
# Always include discriminator if provided
if discriminator is not None:
field_schema_extra["discriminator"] = discriminator
# Always include discriminator_mapping when discriminator is set (even if empty initially)
field_schema_extra["discriminator_mapping"] = discriminator_mapping or {}
# Include other optional fields (only if not None)
if required_scopes:
field_schema_extra["credentials_scopes"] = list(required_scopes)
if discriminator_values:
field_schema_extra["discriminator_values"] = discriminator_values
field_schema_extra = {
k: v
for k, v in {
"credentials_scopes": list(required_scopes) or None,
"discriminator": discriminator,
"discriminator_mapping": discriminator_mapping,
"discriminator_values": discriminator_values,
}.items()
if v is not None
}
# Merge any json_schema_extra passed in kwargs
if "json_schema_extra" in kwargs:

View File

@@ -1,66 +0,0 @@
"""
Helper functions for LLM registry initialization in executor context.
These functions handle refreshing the LLM registry when the executor starts
and subscribing to real-time updates via Redis pub/sub.
"""
import logging
from backend.data import db, llm_registry
from backend.data.block import BlockSchema, initialize_blocks
from backend.data.block_cost_config import refresh_llm_costs
from backend.data.llm_registry import subscribe_to_registry_refresh
logger = logging.getLogger(__name__)
async def initialize_registry_for_executor() -> None:
"""
Initialize blocks and refresh LLM registry in the executor context.
This must run in the executor's event loop to have access to the database.
"""
try:
# Connect to database if not already connected
if not db.is_connected():
await db.connect()
logger.info("[GraphExecutor] Connected to database for registry refresh")
# Initialize blocks (internally refreshes LLM registry and costs)
await initialize_blocks()
logger.info("[GraphExecutor] Blocks initialized")
except Exception as exc:
logger.warning(
"[GraphExecutor] Failed to refresh LLM registry on startup: %s",
exc,
exc_info=True,
)
async def refresh_registry_on_notification() -> None:
"""Refresh LLM registry when notified via Redis pub/sub."""
try:
# Ensure DB is connected
if not db.is_connected():
await db.connect()
# Refresh registry and costs
await llm_registry.refresh_llm_registry()
refresh_llm_costs()
# Clear block schema caches so they regenerate with new model options
BlockSchema.clear_all_schema_caches()
logger.info("[GraphExecutor] LLM registry refreshed from notification")
except Exception as exc:
logger.error(
"[GraphExecutor] Failed to refresh LLM registry from notification: %s",
exc,
exc_info=True,
)
async def subscribe_to_registry_updates() -> None:
"""Subscribe to Redis pub/sub for LLM registry refresh notifications."""
await subscribe_to_registry_refresh(refresh_registry_on_notification)

View File

@@ -702,20 +702,6 @@ class ExecutionProcessor:
)
self.node_execution_thread.start()
self.node_evaluation_thread.start()
# Initialize LLM registry and subscribe to updates
from backend.executor.llm_registry_init import (
initialize_registry_for_executor,
subscribe_to_registry_updates,
)
asyncio.run_coroutine_threadsafe(
initialize_registry_for_executor(), self.node_execution_loop
)
asyncio.run_coroutine_threadsafe(
subscribe_to_registry_updates(), self.node_execution_loop
)
logger.info(f"[GraphExecutor] {self.tid} started")
@error_logged(swallow=False)

View File

@@ -602,6 +602,18 @@ class Scheduler(AppService):
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
self.scheduler.start()
# Run embedding backfill immediately on startup
# This ensures blocks/docs are searchable right away, not after 6 hours
# Safe to run on multiple pods - uses upserts and checks for existing embeddings
if self.register_system_tasks:
logger.info("Running embedding backfill on startup...")
try:
result = ensure_embeddings_coverage()
logger.info(f"Startup embedding backfill complete: {result}")
except Exception as e:
logger.error(f"Startup embedding backfill failed: {e}")
# Don't fail startup - the scheduled job will retry later
# Keep the service running since BackgroundScheduler doesn't block
super().run_service()

View File

@@ -1,854 +0,0 @@
from __future__ import annotations
from typing import Any, Iterable, Sequence, cast
import prisma
import prisma.models
from backend.data.db import transaction
from backend.server.v2.llm import model as llm_model
def _json_dict(value: Any | None) -> dict[str, Any]:
if not value:
return {}
if isinstance(value, dict):
return value
return {}
def _map_cost(record: prisma.models.LlmModelCost) -> llm_model.LlmModelCost:
return llm_model.LlmModelCost(
id=record.id,
unit=record.unit,
credit_cost=record.creditCost,
credential_provider=record.credentialProvider,
credential_id=record.credentialId,
credential_type=record.credentialType,
currency=record.currency,
metadata=_json_dict(record.metadata),
)
def _map_creator(
record: prisma.models.LlmModelCreator,
) -> llm_model.LlmModelCreator:
return llm_model.LlmModelCreator(
id=record.id,
name=record.name,
display_name=record.displayName,
description=record.description,
website_url=record.websiteUrl,
logo_url=record.logoUrl,
metadata=_json_dict(record.metadata),
)
def _map_model(record: prisma.models.LlmModel) -> llm_model.LlmModel:
costs = []
if record.Costs:
costs = [_map_cost(cost) for cost in record.Costs]
creator = None
if hasattr(record, "Creator") and record.Creator:
creator = _map_creator(record.Creator)
return llm_model.LlmModel(
id=record.id,
slug=record.slug,
display_name=record.displayName,
description=record.description,
provider_id=record.providerId,
creator_id=record.creatorId,
creator=creator,
context_window=record.contextWindow,
max_output_tokens=record.maxOutputTokens,
is_enabled=record.isEnabled,
is_recommended=record.isRecommended,
capabilities=_json_dict(record.capabilities),
metadata=_json_dict(record.metadata),
costs=costs,
)
def _map_provider(record: prisma.models.LlmProvider) -> llm_model.LlmProvider:
models: list[llm_model.LlmModel] = []
if record.Models:
models = [_map_model(model) for model in record.Models]
return llm_model.LlmProvider(
id=record.id,
name=record.name,
display_name=record.displayName,
description=record.description,
default_credential_provider=record.defaultCredentialProvider,
default_credential_id=record.defaultCredentialId,
default_credential_type=record.defaultCredentialType,
supports_tools=record.supportsTools,
supports_json_output=record.supportsJsonOutput,
supports_reasoning=record.supportsReasoning,
supports_parallel_tool=record.supportsParallelTool,
metadata=_json_dict(record.metadata),
models=models,
)
async def list_providers(
include_models: bool = True, enabled_only: bool = False
) -> list[llm_model.LlmProvider]:
"""
List all LLM providers.
Args:
include_models: Whether to include models for each provider
enabled_only: If True, only include enabled models (for public routes)
"""
include: Any = None
if include_models:
model_where = {"isEnabled": True} if enabled_only else None
include = {
"Models": {
"include": {"Costs": True, "Creator": True},
"where": model_where,
}
}
records = await prisma.models.LlmProvider.prisma().find_many(include=include)
return [_map_provider(record) for record in records]
async def upsert_provider(
request: llm_model.UpsertLlmProviderRequest,
provider_id: str | None = None,
) -> llm_model.LlmProvider:
data: Any = {
"name": request.name,
"displayName": request.display_name,
"description": request.description,
"defaultCredentialProvider": request.default_credential_provider,
"defaultCredentialId": request.default_credential_id,
"defaultCredentialType": request.default_credential_type,
"supportsTools": request.supports_tools,
"supportsJsonOutput": request.supports_json_output,
"supportsReasoning": request.supports_reasoning,
"supportsParallelTool": request.supports_parallel_tool,
"metadata": request.metadata,
}
include: Any = {"Models": {"include": {"Costs": True, "Creator": True}}}
if provider_id:
record = await prisma.models.LlmProvider.prisma().update(
where={"id": provider_id},
data=data,
include=include,
)
else:
record = await prisma.models.LlmProvider.prisma().create(
data=data,
include=include,
)
if record is None:
raise ValueError("Failed to create/update provider")
return _map_provider(record)
async def list_models(
provider_id: str | None = None, enabled_only: bool = False
) -> list[llm_model.LlmModel]:
"""
List LLM models.
Args:
provider_id: Optional filter by provider ID
enabled_only: If True, only return enabled models (for public routes)
"""
where: Any = {}
if provider_id:
where["providerId"] = provider_id
if enabled_only:
where["isEnabled"] = True
records = await prisma.models.LlmModel.prisma().find_many(
where=where if where else None,
include={"Costs": True, "Creator": True},
)
return [_map_model(record) for record in records]
def _cost_create_payload(
costs: Sequence[llm_model.LlmModelCostInput],
) -> dict[str, Iterable[dict[str, Any]]]:
create_items = []
for cost in costs:
item: dict[str, Any] = {
"unit": cost.unit,
"creditCost": cost.credit_cost,
"credentialProvider": cost.credential_provider,
}
# Only include optional fields if they have values
if cost.credential_id:
item["credentialId"] = cost.credential_id
if cost.credential_type:
item["credentialType"] = cost.credential_type
if cost.currency:
item["currency"] = cost.currency
# Handle metadata - use Prisma Json type
if cost.metadata is not None and cost.metadata != {}:
item["metadata"] = prisma.Json(cost.metadata)
create_items.append(item)
return {"create": create_items}
async def create_model(
request: llm_model.CreateLlmModelRequest,
) -> llm_model.LlmModel:
data: Any = {
"slug": request.slug,
"displayName": request.display_name,
"description": request.description,
"providerId": request.provider_id,
"contextWindow": request.context_window,
"maxOutputTokens": request.max_output_tokens,
"isEnabled": request.is_enabled,
"capabilities": request.capabilities,
"metadata": request.metadata,
"Costs": _cost_create_payload(request.costs),
}
if request.creator_id:
data["creatorId"] = request.creator_id
record = await prisma.models.LlmModel.prisma().create(
data=data,
include={"Costs": True, "Creator": True},
)
return _map_model(record)
async def update_model(
model_id: str,
request: llm_model.UpdateLlmModelRequest,
) -> llm_model.LlmModel:
# Build scalar field updates (non-relation fields)
scalar_data: Any = {}
if request.display_name is not None:
scalar_data["displayName"] = request.display_name
if request.description is not None:
scalar_data["description"] = request.description
if request.context_window is not None:
scalar_data["contextWindow"] = request.context_window
if request.max_output_tokens is not None:
scalar_data["maxOutputTokens"] = request.max_output_tokens
if request.is_enabled is not None:
scalar_data["isEnabled"] = request.is_enabled
if request.capabilities is not None:
scalar_data["capabilities"] = request.capabilities
if request.metadata is not None:
scalar_data["metadata"] = request.metadata
# Foreign keys can be updated directly as scalar fields
if request.provider_id is not None:
scalar_data["providerId"] = request.provider_id
if request.creator_id is not None:
# Empty string means remove the creator
scalar_data["creatorId"] = request.creator_id if request.creator_id else None
# If we have costs to update, we need to handle them separately
# because nested writes have different constraints
if request.costs is not None:
# Wrap cost replacement in a transaction for atomicity
async with transaction() as tx:
# First update scalar fields
if scalar_data:
await tx.llmmodel.update(
where={"id": model_id},
data=scalar_data,
)
# Then handle costs: delete existing and create new
await tx.llmmodelcost.delete_many(where={"llmModelId": model_id})
if request.costs:
cost_payload = _cost_create_payload(request.costs)
for cost_item in cost_payload["create"]:
cost_item["llmModelId"] = model_id
await tx.llmmodelcost.create(data=cast(Any, cost_item))
# Fetch the updated record (outside transaction)
record = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id},
include={"Costs": True, "Creator": True},
)
else:
# No costs update - simple update
record = await prisma.models.LlmModel.prisma().update(
where={"id": model_id},
data=scalar_data,
include={"Costs": True, "Creator": True},
)
if not record:
raise ValueError(f"Model with id '{model_id}' not found")
return _map_model(record)
async def toggle_model(
model_id: str,
is_enabled: bool,
migrate_to_slug: str | None = None,
migration_reason: str | None = None,
custom_credit_cost: int | None = None,
) -> llm_model.ToggleLlmModelResponse:
"""
Toggle a model's enabled status, optionally migrating workflows when disabling.
Args:
model_id: UUID of the model to toggle
is_enabled: New enabled status
migrate_to_slug: If disabling and this is provided, migrate all workflows
using this model to the specified replacement model
migration_reason: Optional reason for the migration (e.g., "Provider outage")
custom_credit_cost: Optional custom pricing override for migrated workflows.
When set, the billing system should use this cost instead
of the target model's cost for affected nodes.
Returns:
ToggleLlmModelResponse with the updated model and optional migration stats
"""
import json
# Get the model being toggled
model = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id}, include={"Costs": True}
)
if not model:
raise ValueError(f"Model with id '{model_id}' not found")
nodes_migrated = 0
migration_id: str | None = None
# If disabling with migration, perform migration first
if not is_enabled and migrate_to_slug:
# Validate replacement model exists and is enabled
replacement = await prisma.models.LlmModel.prisma().find_unique(
where={"slug": migrate_to_slug}
)
if not replacement:
raise ValueError(f"Replacement model '{migrate_to_slug}' not found")
if not replacement.isEnabled:
raise ValueError(
f"Replacement model '{migrate_to_slug}' is disabled. "
f"Please enable it before using it as a replacement."
)
# Perform all operations atomically within a single transaction
# This ensures no nodes are missed between query and update
async with transaction() as tx:
# Get the IDs of nodes that will be migrated (inside transaction for consistency)
node_ids_result = await tx.query_raw(
"""
SELECT id
FROM "AgentNode"
WHERE "constantInput"::jsonb->>'model' = $1
FOR UPDATE
""",
model.slug,
)
migrated_node_ids = (
[row["id"] for row in node_ids_result] if node_ids_result else []
)
nodes_migrated = len(migrated_node_ids)
if nodes_migrated > 0:
# Update by IDs to ensure we only update the exact nodes we queried
# Use JSON array and jsonb_array_elements_text for safe parameterization
node_ids_json = json.dumps(migrated_node_ids)
await tx.execute_raw(
"""
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
to_jsonb($1::text)
)
WHERE id::text IN (
SELECT jsonb_array_elements_text($2::jsonb)
)
""",
migrate_to_slug,
node_ids_json,
)
record = await tx.llmmodel.update(
where={"id": model_id},
data={"isEnabled": is_enabled},
include={"Costs": True},
)
# Create migration record for revert capability
if nodes_migrated > 0:
migration_data: Any = {
"sourceModelSlug": model.slug,
"targetModelSlug": migrate_to_slug,
"reason": migration_reason,
"migratedNodeIds": json.dumps(migrated_node_ids),
"nodeCount": nodes_migrated,
"customCreditCost": custom_credit_cost,
}
migration_record = await tx.llmmodelmigration.create(
data=migration_data
)
migration_id = migration_record.id
else:
# Simple toggle without migration
record = await prisma.models.LlmModel.prisma().update(
where={"id": model_id},
data={"isEnabled": is_enabled},
include={"Costs": True},
)
if record is None:
raise ValueError(f"Model with id '{model_id}' not found")
return llm_model.ToggleLlmModelResponse(
model=_map_model(record),
nodes_migrated=nodes_migrated,
migrated_to_slug=migrate_to_slug if nodes_migrated > 0 else None,
migration_id=migration_id,
)
async def get_model_usage(model_id: str) -> llm_model.LlmModelUsageResponse:
"""Get usage count for a model."""
import prisma as prisma_module
model = await prisma.models.LlmModel.prisma().find_unique(where={"id": model_id})
if not model:
raise ValueError(f"Model with id '{model_id}' not found")
count_result = await prisma_module.get_client().query_raw(
"""
SELECT COUNT(*) as count
FROM "AgentNode"
WHERE "constantInput"::jsonb->>'model' = $1
""",
model.slug,
)
node_count = int(count_result[0]["count"]) if count_result else 0
return llm_model.LlmModelUsageResponse(model_slug=model.slug, node_count=node_count)
async def delete_model(
model_id: str, replacement_model_slug: str
) -> llm_model.DeleteLlmModelResponse:
"""
Delete a model and migrate all AgentNodes using it to a replacement model.
This performs an atomic operation within a database transaction:
1. Validates the model exists
2. Validates the replacement model exists and is enabled
3. Counts affected nodes
4. Migrates all AgentNode.constantInput->model to replacement (in transaction)
5. Deletes the LlmModel record (CASCADE deletes costs) (in transaction)
Args:
model_id: UUID of the model to delete
replacement_model_slug: Slug of the model to migrate to
Returns:
DeleteLlmModelResponse with migration stats
Raises:
ValueError: If model not found, replacement not found, or replacement is disabled
"""
# 1. Get the model being deleted (validation - outside transaction)
model = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id}, include={"Costs": True}
)
if not model:
raise ValueError(f"Model with id '{model_id}' not found")
deleted_slug = model.slug
deleted_display_name = model.displayName
# 2. Validate replacement model exists and is enabled (validation - outside transaction)
replacement = await prisma.models.LlmModel.prisma().find_unique(
where={"slug": replacement_model_slug}
)
if not replacement:
raise ValueError(f"Replacement model '{replacement_model_slug}' not found")
if not replacement.isEnabled:
raise ValueError(
f"Replacement model '{replacement_model_slug}' is disabled. "
f"Please enable it before using it as a replacement."
)
# 3 & 4. Perform count, migration and deletion atomically within a transaction
nodes_affected = 0
async with transaction() as tx:
# Count affected nodes (inside transaction for consistency)
count_result = await tx.query_raw(
"""
SELECT COUNT(*) as count
FROM "AgentNode"
WHERE "constantInput"::jsonb->>'model' = $1
""",
deleted_slug,
)
nodes_affected = int(count_result[0]["count"]) if count_result else 0
# Migrate all AgentNode.constantInput->model to replacement
if nodes_affected > 0:
await tx.execute_raw(
"""
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
to_jsonb($1::text)
)
WHERE "constantInput"::jsonb->>'model' = $2
""",
replacement_model_slug,
deleted_slug,
)
# Delete the model (CASCADE will delete costs automatically)
await tx.llmmodel.delete(where={"id": model_id})
return llm_model.DeleteLlmModelResponse(
deleted_model_slug=deleted_slug,
deleted_model_display_name=deleted_display_name,
replacement_model_slug=replacement_model_slug,
nodes_migrated=nodes_affected,
message=(
f"Successfully deleted model '{deleted_display_name}' ({deleted_slug}) "
f"and migrated {nodes_affected} workflow node(s) to '{replacement_model_slug}'."
),
)
def _map_migration(
record: prisma.models.LlmModelMigration,
) -> llm_model.LlmModelMigration:
return llm_model.LlmModelMigration(
id=record.id,
source_model_slug=record.sourceModelSlug,
target_model_slug=record.targetModelSlug,
reason=record.reason,
node_count=record.nodeCount,
custom_credit_cost=record.customCreditCost,
is_reverted=record.isReverted,
created_at=record.createdAt.isoformat(),
reverted_at=record.revertedAt.isoformat() if record.revertedAt else None,
)
async def list_migrations(
include_reverted: bool = False,
) -> list[llm_model.LlmModelMigration]:
"""
List model migrations, optionally including reverted ones.
Args:
include_reverted: If True, include reverted migrations. Default is False.
Returns:
List of LlmModelMigration records
"""
where: Any = None if include_reverted else {"isReverted": False}
records = await prisma.models.LlmModelMigration.prisma().find_many(
where=where,
order={"createdAt": "desc"},
)
return [_map_migration(record) for record in records]
async def get_migration(migration_id: str) -> llm_model.LlmModelMigration | None:
"""Get a specific migration by ID."""
record = await prisma.models.LlmModelMigration.prisma().find_unique(
where={"id": migration_id}
)
return _map_migration(record) if record else None
async def revert_migration(
migration_id: str,
re_enable_source_model: bool = True,
) -> llm_model.RevertMigrationResponse:
"""
Revert a model migration, restoring affected nodes to their original model.
This only reverts the specific nodes that were migrated, not all nodes
currently using the target model.
Args:
migration_id: UUID of the migration to revert
re_enable_source_model: Whether to re-enable the source model if it's disabled
Returns:
RevertMigrationResponse with revert stats
Raises:
ValueError: If migration not found, already reverted, or source model not available
"""
import json
from datetime import datetime, timezone
# Get the migration record
migration = await prisma.models.LlmModelMigration.prisma().find_unique(
where={"id": migration_id}
)
if not migration:
raise ValueError(f"Migration with id '{migration_id}' not found")
if migration.isReverted:
raise ValueError(
f"Migration '{migration_id}' has already been reverted "
f"on {migration.revertedAt.isoformat() if migration.revertedAt else 'unknown date'}"
)
# Check if source model exists
source_model = await prisma.models.LlmModel.prisma().find_unique(
where={"slug": migration.sourceModelSlug}
)
if not source_model:
raise ValueError(
f"Source model '{migration.sourceModelSlug}' no longer exists. "
f"Cannot revert migration."
)
# Get the migrated node IDs (Prisma auto-parses JSONB to list)
migrated_node_ids: list[str] = (
migration.migratedNodeIds
if isinstance(migration.migratedNodeIds, list)
else json.loads(migration.migratedNodeIds) # type: ignore
)
if not migrated_node_ids:
raise ValueError("No nodes to revert in this migration")
# Track if we need to re-enable the source model
source_model_was_disabled = not source_model.isEnabled
should_re_enable = source_model_was_disabled and re_enable_source_model
source_model_re_enabled = False
# Perform revert atomically
async with transaction() as tx:
# Re-enable the source model if requested and it was disabled
if should_re_enable:
await tx.llmmodel.update(
where={"id": source_model.id},
data={"isEnabled": True},
)
source_model_re_enabled = True
# Update only the specific nodes that were migrated
# We need to check that they still have the target model (haven't been changed since)
# Use a single batch update for efficiency
# Use JSON array and jsonb_array_elements_text for safe parameterization
node_ids_json = json.dumps(migrated_node_ids)
result = await tx.execute_raw(
"""
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
to_jsonb($1::text)
)
WHERE id::text IN (
SELECT jsonb_array_elements_text($2::jsonb)
)
AND "constantInput"::jsonb->>'model' = $3
""",
migration.sourceModelSlug,
node_ids_json,
migration.targetModelSlug,
)
nodes_reverted = result if result else 0
# Mark migration as reverted
await tx.llmmodelmigration.update(
where={"id": migration_id},
data={
"isReverted": True,
"revertedAt": datetime.now(timezone.utc),
},
)
# Calculate nodes that were already changed since migration
nodes_already_changed = len(migrated_node_ids) - nodes_reverted
# Build appropriate message
message_parts = [
f"Successfully reverted migration: {nodes_reverted} node(s) restored "
f"from '{migration.targetModelSlug}' to '{migration.sourceModelSlug}'."
]
if nodes_already_changed > 0:
message_parts.append(
f" {nodes_already_changed} node(s) were already changed and not reverted."
)
if source_model_re_enabled:
message_parts.append(
f" Model '{migration.sourceModelSlug}' has been re-enabled."
)
return llm_model.RevertMigrationResponse(
migration_id=migration_id,
source_model_slug=migration.sourceModelSlug,
target_model_slug=migration.targetModelSlug,
nodes_reverted=nodes_reverted,
nodes_already_changed=nodes_already_changed,
source_model_re_enabled=source_model_re_enabled,
message="".join(message_parts),
)
# ============================================================================
# Creator CRUD operations
# ============================================================================
async def list_creators() -> list[llm_model.LlmModelCreator]:
"""List all LLM model creators."""
records = await prisma.models.LlmModelCreator.prisma().find_many(
order={"displayName": "asc"}
)
return [_map_creator(record) for record in records]
async def get_creator(creator_id: str) -> llm_model.LlmModelCreator | None:
"""Get a specific creator by ID."""
record = await prisma.models.LlmModelCreator.prisma().find_unique(
where={"id": creator_id}
)
return _map_creator(record) if record else None
async def upsert_creator(
request: llm_model.UpsertLlmCreatorRequest,
creator_id: str | None = None,
) -> llm_model.LlmModelCreator:
"""Create or update a model creator."""
data: Any = {
"name": request.name,
"displayName": request.display_name,
"description": request.description,
"websiteUrl": request.website_url,
"logoUrl": request.logo_url,
"metadata": request.metadata,
}
if creator_id:
record = await prisma.models.LlmModelCreator.prisma().update(
where={"id": creator_id},
data=data,
)
else:
record = await prisma.models.LlmModelCreator.prisma().create(data=data)
if record is None:
raise ValueError("Failed to create/update creator")
return _map_creator(record)
async def delete_creator(creator_id: str) -> bool:
"""
Delete a model creator.
This will set creatorId to NULL on all associated models (due to onDelete: SetNull).
Args:
creator_id: UUID of the creator to delete
Returns:
True if deleted successfully
Raises:
ValueError: If creator not found
"""
creator = await prisma.models.LlmModelCreator.prisma().find_unique(
where={"id": creator_id}
)
if not creator:
raise ValueError(f"Creator with id '{creator_id}' not found")
await prisma.models.LlmModelCreator.prisma().delete(where={"id": creator_id})
return True
async def get_recommended_model() -> llm_model.LlmModel | None:
"""
Get the currently recommended LLM model.
Returns:
The recommended model, or None if no model is marked as recommended.
"""
record = await prisma.models.LlmModel.prisma().find_first(
where={"isRecommended": True, "isEnabled": True},
include={"Costs": True, "Creator": True},
)
return _map_model(record) if record else None
async def set_recommended_model(
model_id: str,
) -> tuple[llm_model.LlmModel, str | None]:
"""
Set a model as the recommended model.
This will clear the isRecommended flag from any other model and set it
on the specified model. The model must be enabled.
Args:
model_id: UUID of the model to set as recommended
Returns:
Tuple of (the updated model, previous recommended model slug or None)
Raises:
ValueError: If model not found or not enabled
"""
# First, verify the model exists and is enabled
target_model = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id}
)
if not target_model:
raise ValueError(f"Model with id '{model_id}' not found")
if not target_model.isEnabled:
raise ValueError(
f"Cannot set disabled model '{target_model.slug}' as recommended"
)
# Get the current recommended model (if any)
current_recommended = await prisma.models.LlmModel.prisma().find_first(
where={"isRecommended": True}
)
previous_slug = current_recommended.slug if current_recommended else None
# Use a transaction to ensure atomicity
async with transaction() as tx:
# Clear isRecommended from all models
await tx.llmmodel.update_many(
where={"isRecommended": True},
data={"isRecommended": False},
)
# Set the new recommended model
await tx.llmmodel.update(
where={"id": model_id},
data={"isRecommended": True},
)
# Fetch and return the updated model
updated_record = await prisma.models.LlmModel.prisma().find_unique(
where={"id": model_id},
include={"Costs": True, "Creator": True},
)
if not updated_record:
raise ValueError("Failed to fetch updated model")
return _map_model(updated_record), previous_slug
async def get_recommended_model_slug() -> str | None:
"""
Get the slug of the currently recommended LLM model.
Returns:
The slug of the recommended model, or None if no model is marked as recommended.
"""
record = await prisma.models.LlmModel.prisma().find_first(
where={"isRecommended": True, "isEnabled": True},
)
return record.slug if record else None

View File

@@ -1,231 +0,0 @@
from __future__ import annotations
import re
from typing import Any, Optional
import prisma.enums
import pydantic
# Pattern for valid model slugs: alphanumeric start, then alphanumeric, dots, underscores, slashes, hyphens
SLUG_PATTERN = re.compile(r"^[a-zA-Z0-9][a-zA-Z0-9._/-]*$")
class LlmModelCost(pydantic.BaseModel):
id: str
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
credit_cost: int
credential_provider: str
credential_id: Optional[str] = None
credential_type: Optional[str] = None
currency: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class LlmModelCreator(pydantic.BaseModel):
"""Represents the organization that created/trained the model (e.g., OpenAI, Meta)."""
id: str
name: str
display_name: str
description: Optional[str] = None
website_url: Optional[str] = None
logo_url: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class LlmModel(pydantic.BaseModel):
id: str
slug: str
display_name: str
description: Optional[str] = None
provider_id: str
creator_id: Optional[str] = None
creator: Optional[LlmModelCreator] = None
context_window: int
max_output_tokens: Optional[int] = None
is_enabled: bool = True
is_recommended: bool = False
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
costs: list[LlmModelCost] = pydantic.Field(default_factory=list)
class LlmProvider(pydantic.BaseModel):
id: str
name: str
display_name: str
description: Optional[str] = None
default_credential_provider: Optional[str] = None
default_credential_id: Optional[str] = None
default_credential_type: Optional[str] = None
supports_tools: bool = True
supports_json_output: bool = True
supports_reasoning: bool = False
supports_parallel_tool: bool = False
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
models: list[LlmModel] = pydantic.Field(default_factory=list)
class LlmProvidersResponse(pydantic.BaseModel):
providers: list[LlmProvider]
class LlmModelsResponse(pydantic.BaseModel):
models: list[LlmModel]
class LlmCreatorsResponse(pydantic.BaseModel):
creators: list[LlmModelCreator]
class UpsertLlmProviderRequest(pydantic.BaseModel):
name: str
display_name: str
description: Optional[str] = None
default_credential_provider: Optional[str] = None
default_credential_id: Optional[str] = None
default_credential_type: Optional[str] = "api_key"
supports_tools: bool = True
supports_json_output: bool = True
supports_reasoning: bool = False
supports_parallel_tool: bool = False
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class UpsertLlmCreatorRequest(pydantic.BaseModel):
name: str
display_name: str
description: Optional[str] = None
website_url: Optional[str] = None
logo_url: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class LlmModelCostInput(pydantic.BaseModel):
unit: prisma.enums.LlmCostUnit = prisma.enums.LlmCostUnit.RUN
credit_cost: int
credential_provider: str
credential_id: Optional[str] = None
credential_type: Optional[str] = "api_key"
currency: Optional[str] = None
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
class CreateLlmModelRequest(pydantic.BaseModel):
slug: str
display_name: str
description: Optional[str] = None
provider_id: str
creator_id: Optional[str] = None
context_window: int
max_output_tokens: Optional[int] = None
is_enabled: bool = True
capabilities: dict[str, Any] = pydantic.Field(default_factory=dict)
metadata: dict[str, Any] = pydantic.Field(default_factory=dict)
costs: list[LlmModelCostInput]
@pydantic.field_validator("slug")
@classmethod
def validate_slug(cls, v: str) -> str:
if not v or len(v) > 100:
raise ValueError("Slug must be 1-100 characters")
if not SLUG_PATTERN.match(v):
raise ValueError(
"Slug must start with alphanumeric and contain only "
"alphanumeric characters, dots, underscores, slashes, or hyphens"
)
return v
class UpdateLlmModelRequest(pydantic.BaseModel):
display_name: Optional[str] = None
description: Optional[str] = None
context_window: Optional[int] = None
max_output_tokens: Optional[int] = None
is_enabled: Optional[bool] = None
capabilities: Optional[dict[str, Any]] = None
metadata: Optional[dict[str, Any]] = None
provider_id: Optional[str] = None
creator_id: Optional[str] = None
costs: Optional[list[LlmModelCostInput]] = None
class ToggleLlmModelRequest(pydantic.BaseModel):
is_enabled: bool
migrate_to_slug: Optional[str] = None
migration_reason: Optional[str] = None # e.g., "Provider outage"
# Custom pricing override for migrated workflows. When set, billing should use
# this cost instead of the target model's cost for affected nodes.
# See LlmModelMigration in schema.prisma for full documentation.
custom_credit_cost: Optional[int] = None
class ToggleLlmModelResponse(pydantic.BaseModel):
model: LlmModel
nodes_migrated: int = 0
migrated_to_slug: Optional[str] = None
migration_id: Optional[str] = None # ID of the migration record for revert
class DeleteLlmModelResponse(pydantic.BaseModel):
deleted_model_slug: str
deleted_model_display_name: str
replacement_model_slug: str
nodes_migrated: int
message: str
class LlmModelUsageResponse(pydantic.BaseModel):
model_slug: str
node_count: int
# Migration tracking models
class LlmModelMigration(pydantic.BaseModel):
id: str
source_model_slug: str
target_model_slug: str
reason: Optional[str] = None
node_count: int
# Custom pricing override - billing should use this instead of target model's cost
custom_credit_cost: Optional[int] = None
is_reverted: bool = False
created_at: str # ISO datetime string
reverted_at: Optional[str] = None
class LlmMigrationsResponse(pydantic.BaseModel):
migrations: list[LlmModelMigration]
class RevertMigrationRequest(pydantic.BaseModel):
re_enable_source_model: bool = (
True # Whether to re-enable the source model if disabled
)
class RevertMigrationResponse(pydantic.BaseModel):
migration_id: str
source_model_slug: str
target_model_slug: str
nodes_reverted: int
nodes_already_changed: int = (
0 # Nodes that were modified since migration (not reverted)
)
source_model_re_enabled: bool = False # Whether the source model was re-enabled
message: str
class SetRecommendedModelRequest(pydantic.BaseModel):
model_id: str
class SetRecommendedModelResponse(pydantic.BaseModel):
model: LlmModel
previous_recommended_slug: Optional[str] = None
message: str
class RecommendedModelResponse(pydantic.BaseModel):
model: Optional[LlmModel] = None
slug: Optional[str] = None

View File

@@ -1,25 +0,0 @@
import autogpt_libs.auth
import fastapi
from backend.server.v2.llm import db as llm_db
from backend.server.v2.llm import model as llm_model
router = fastapi.APIRouter(
prefix="/llm",
tags=["llm"],
dependencies=[fastapi.Security(autogpt_libs.auth.requires_user)],
)
@router.get("/models", response_model=llm_model.LlmModelsResponse)
async def list_models():
"""List all enabled LLM models available to users."""
models = await llm_db.list_models(enabled_only=True)
return llm_model.LlmModelsResponse(models=models)
@router.get("/providers", response_model=llm_model.LlmProvidersResponse)
async def list_providers():
"""List all LLM providers with their enabled models."""
providers = await llm_db.list_providers(include_models=True, enabled_only=True)
return llm_model.LlmProvidersResponse(providers=providers)

View File

@@ -16,7 +16,7 @@ import pickle
import threading
import time
from dataclasses import dataclass
from functools import wraps
from functools import cache, wraps
from typing import Any, Callable, ParamSpec, Protocol, TypeVar, cast, runtime_checkable
from redis import ConnectionPool, Redis
@@ -38,29 +38,34 @@ settings = Settings()
# maxmemory 2gb # Set memory limit (adjust based on your needs)
# save "" # Disable persistence if using Redis purely for caching
# Create a dedicated Redis connection pool for caching (binary mode for pickle)
_cache_pool: ConnectionPool | None = None
@conn_retry("Redis", "Acquiring cache connection pool")
@cache
def _get_cache_pool() -> ConnectionPool:
"""Get or create a connection pool for cache operations."""
global _cache_pool
if _cache_pool is None:
_cache_pool = ConnectionPool(
host=settings.config.redis_host,
port=settings.config.redis_port,
password=settings.config.redis_password or None,
decode_responses=False, # Binary mode for pickle
max_connections=50,
socket_keepalive=True,
socket_connect_timeout=5,
retry_on_timeout=True,
)
return _cache_pool
"""Get or create a connection pool for cache operations (lazy, thread-safe)."""
return ConnectionPool(
host=settings.config.redis_host,
port=settings.config.redis_port,
password=settings.config.redis_password or None,
decode_responses=False, # Binary mode for pickle
max_connections=50,
socket_keepalive=True,
socket_connect_timeout=5,
retry_on_timeout=True,
)
redis = Redis(connection_pool=_get_cache_pool())
@cache
@conn_retry("Redis", "Acquiring cache connection")
def _get_redis() -> Redis:
"""
Get the lazily-initialized Redis client for shared cache operations.
Uses @cache for thread-safe singleton behavior - connection is only
established when first accessed, allowing services that only use
in-memory caching to work without Redis configuration.
"""
r = Redis(connection_pool=_get_cache_pool())
r.ping() # Verify connection
return r
@dataclass
@@ -179,9 +184,9 @@ def cached(
try:
if refresh_ttl_on_get:
# Use GETEX to get value and refresh expiry atomically
cached_bytes = redis.getex(redis_key, ex=ttl_seconds)
cached_bytes = _get_redis().getex(redis_key, ex=ttl_seconds)
else:
cached_bytes = redis.get(redis_key)
cached_bytes = _get_redis().get(redis_key)
if cached_bytes and isinstance(cached_bytes, bytes):
return pickle.loads(cached_bytes)
@@ -195,7 +200,7 @@ def cached(
"""Set value in Redis with TTL."""
try:
pickled_value = pickle.dumps(value, protocol=pickle.HIGHEST_PROTOCOL)
redis.setex(redis_key, ttl_seconds, pickled_value)
_get_redis().setex(redis_key, ttl_seconds, pickled_value)
except Exception as e:
logger.error(
f"Redis error storing cache for {target_func.__name__}: {e}"
@@ -333,14 +338,18 @@ def cached(
if pattern:
# Clear entries matching pattern
keys = list(
redis.scan_iter(f"cache:{target_func.__name__}:{pattern}")
_get_redis().scan_iter(
f"cache:{target_func.__name__}:{pattern}"
)
)
else:
# Clear all cache keys
keys = list(redis.scan_iter(f"cache:{target_func.__name__}:*"))
keys = list(
_get_redis().scan_iter(f"cache:{target_func.__name__}:*")
)
if keys:
pipeline = redis.pipeline()
pipeline = _get_redis().pipeline()
for key in keys:
pipeline.delete(key)
pipeline.execute()
@@ -355,7 +364,9 @@ def cached(
def cache_info() -> dict[str, int | None]:
if shared_cache:
cache_keys = list(redis.scan_iter(f"cache:{target_func.__name__}:*"))
cache_keys = list(
_get_redis().scan_iter(f"cache:{target_func.__name__}:*")
)
return {
"size": len(cache_keys),
"maxsize": None, # Redis manages its own size
@@ -373,10 +384,8 @@ def cached(
key = _make_hashable_key(args, kwargs)
if shared_cache:
redis_key = _make_redis_key(key, target_func.__name__)
if redis.exists(redis_key):
redis.delete(redis_key)
return True
return False
deleted_count = cast(int, _get_redis().delete(redis_key))
return deleted_count > 0
else:
if key in cache_storage:
del cache_storage[key]

View File

@@ -1,78 +0,0 @@
-- CreateEnum
CREATE TYPE "LlmCostUnit" AS ENUM ('RUN', 'TOKENS');
-- CreateTable
CREATE TABLE "LlmProvider" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"name" TEXT NOT NULL,
"displayName" TEXT NOT NULL,
"description" TEXT,
"defaultCredentialProvider" TEXT,
"defaultCredentialId" TEXT,
"defaultCredentialType" TEXT,
"supportsTools" BOOLEAN NOT NULL DEFAULT TRUE,
"supportsJsonOutput" BOOLEAN NOT NULL DEFAULT TRUE,
"supportsReasoning" BOOLEAN NOT NULL DEFAULT FALSE,
"supportsParallelTool" BOOLEAN NOT NULL DEFAULT FALSE,
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
CONSTRAINT "LlmProvider_pkey" PRIMARY KEY ("id"),
CONSTRAINT "LlmProvider_name_key" UNIQUE ("name")
);
-- CreateTable
CREATE TABLE "LlmModel" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"slug" TEXT NOT NULL,
"displayName" TEXT NOT NULL,
"description" TEXT,
"providerId" TEXT NOT NULL,
"contextWindow" INTEGER NOT NULL,
"maxOutputTokens" INTEGER,
"isEnabled" BOOLEAN NOT NULL DEFAULT TRUE,
"capabilities" JSONB NOT NULL DEFAULT '{}'::jsonb,
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
CONSTRAINT "LlmModel_pkey" PRIMARY KEY ("id"),
CONSTRAINT "LlmModel_slug_key" UNIQUE ("slug")
);
-- CreateTable
CREATE TABLE "LlmModelCost" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"unit" "LlmCostUnit" NOT NULL DEFAULT 'RUN',
"creditCost" INTEGER NOT NULL,
"credentialProvider" TEXT NOT NULL,
"credentialId" TEXT,
"credentialType" TEXT,
"currency" TEXT,
"metadata" JSONB NOT NULL DEFAULT '{}'::jsonb,
"llmModelId" TEXT NOT NULL,
CONSTRAINT "LlmModelCost_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE INDEX "LlmModel_providerId_isEnabled_idx" ON "LlmModel"("providerId", "isEnabled");
-- CreateIndex
CREATE INDEX "LlmModel_slug_idx" ON "LlmModel"("slug");
-- CreateIndex
CREATE INDEX "LlmModelCost_llmModelId_idx" ON "LlmModelCost"("llmModelId");
-- CreateIndex
CREATE INDEX "LlmModelCost_credentialProvider_idx" ON "LlmModelCost"("credentialProvider");
-- AddForeignKey
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_providerId_fkey" FOREIGN KEY ("providerId") REFERENCES "LlmProvider"("id") ON DELETE RESTRICT ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "LlmModelCost" ADD CONSTRAINT "LlmModelCost_llmModelId_fkey" FOREIGN KEY ("llmModelId") REFERENCES "LlmModel"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -1,225 +0,0 @@
-- Seed LLM Registry from existing hard-coded data
-- This migration populates the LlmProvider, LlmModel, and LlmModelCost tables
-- with data from the existing MODEL_METADATA and MODEL_COST dictionaries
-- Insert Providers
INSERT INTO "LlmProvider" ("id", "name", "displayName", "description", "defaultCredentialProvider", "defaultCredentialType", "supportsTools", "supportsJsonOutput", "supportsReasoning", "supportsParallelTool", "metadata")
VALUES
(gen_random_uuid(), 'openai', 'OpenAI', 'OpenAI language models', 'openai', 'api_key', true, true, true, true, '{}'::jsonb),
(gen_random_uuid(), 'anthropic', 'Anthropic', 'Anthropic Claude models', 'anthropic', 'api_key', true, true, true, false, '{}'::jsonb),
(gen_random_uuid(), 'groq', 'Groq', 'Groq inference API', 'groq', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'open_router', 'OpenRouter', 'OpenRouter unified API', 'open_router', 'api_key', true, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'aiml_api', 'AI/ML API', 'AI/ML API models', 'aiml_api', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'ollama', 'Ollama', 'Ollama local models', 'ollama', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'llama_api', 'Llama API', 'Llama API models', 'llama_api', 'api_key', false, true, false, false, '{}'::jsonb),
(gen_random_uuid(), 'v0', 'v0', 'v0 by Vercel models', 'v0', 'api_key', true, true, false, false, '{}'::jsonb)
ON CONFLICT ("name") DO NOTHING;
-- Insert Models (using CTEs to reference provider IDs)
WITH provider_ids AS (
SELECT "id", "name" FROM "LlmProvider"
)
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
SELECT
gen_random_uuid(),
model_slug,
model_display_name,
NULL,
p."id",
context_window,
max_output_tokens,
true,
'{}'::jsonb,
'{}'::jsonb
FROM (VALUES
-- OpenAI models
('o3', 'O3', 'openai', 200000, 100000),
('o3-mini', 'O3 Mini', 'openai', 200000, 100000),
('o1', 'O1', 'openai', 200000, 100000),
('o1-mini', 'O1 Mini', 'openai', 128000, 65536),
('gpt-5-2025-08-07', 'GPT 5', 'openai', 400000, 128000),
('gpt-5.1-2025-11-13', 'GPT 5.1', 'openai', 400000, 128000),
('gpt-5-mini-2025-08-07', 'GPT 5 Mini', 'openai', 400000, 128000),
('gpt-5-nano-2025-08-07', 'GPT 5 Nano', 'openai', 400000, 128000),
('gpt-5-chat-latest', 'GPT 5 Chat', 'openai', 400000, 16384),
('gpt-4.1-2025-04-14', 'GPT 4.1', 'openai', 1047576, 32768),
('gpt-4.1-mini-2025-04-14', 'GPT 4.1 Mini', 'openai', 1047576, 32768),
('gpt-4o-mini', 'GPT 4o Mini', 'openai', 128000, 16384),
('gpt-4o', 'GPT 4o', 'openai', 128000, 16384),
('gpt-4-turbo', 'GPT 4 Turbo', 'openai', 128000, 4096),
('gpt-3.5-turbo', 'GPT 3.5 Turbo', 'openai', 16385, 4096),
-- Anthropic models
('claude-opus-4-1-20250805', 'Claude 4.1 Opus', 'anthropic', 200000, 32000),
('claude-opus-4-20250514', 'Claude 4 Opus', 'anthropic', 200000, 32000),
('claude-sonnet-4-20250514', 'Claude 4 Sonnet', 'anthropic', 200000, 64000),
('claude-opus-4-5-20251101', 'Claude 4.5 Opus', 'anthropic', 200000, 64000),
('claude-sonnet-4-5-20250929', 'Claude 4.5 Sonnet', 'anthropic', 200000, 64000),
('claude-haiku-4-5-20251001', 'Claude 4.5 Haiku', 'anthropic', 200000, 64000),
('claude-3-7-sonnet-20250219', 'Claude 3.7 Sonnet', 'anthropic', 200000, 64000),
('claude-3-haiku-20240307', 'Claude 3 Haiku', 'anthropic', 200000, 4096),
-- AI/ML API models
('Qwen/Qwen2.5-72B-Instruct-Turbo', 'Qwen 2.5 72B', 'aiml_api', 32000, 8000),
('nvidia/llama-3.1-nemotron-70b-instruct', 'Llama 3.1 Nemotron 70B', 'aiml_api', 128000, 40000),
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 'Llama 3.3 70B', 'aiml_api', 128000, NULL),
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 'Meta Llama 3.1 70B', 'aiml_api', 131000, 2000),
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 'Llama 3.2 3B', 'aiml_api', 128000, NULL),
-- Groq models
('llama-3.3-70b-versatile', 'Llama 3.3 70B', 'groq', 128000, 32768),
('llama-3.1-8b-instant', 'Llama 3.1 8B', 'groq', 128000, 8192),
-- Ollama models
('llama3.3', 'Llama 3.3', 'ollama', 8192, NULL),
('llama3.2', 'Llama 3.2', 'ollama', 8192, NULL),
('llama3', 'Llama 3', 'ollama', 8192, NULL),
('llama3.1:405b', 'Llama 3.1 405B', 'ollama', 8192, NULL),
('dolphin-mistral:latest', 'Dolphin Mistral', 'ollama', 32768, NULL),
-- OpenRouter models
('google/gemini-2.5-pro-preview-03-25', 'Gemini 2.5 Pro', 'open_router', 1050000, 8192),
('google/gemini-3-pro-preview', 'Gemini 3 Pro Preview', 'open_router', 1048576, 65535),
('google/gemini-2.5-flash', 'Gemini 2.5 Flash', 'open_router', 1048576, 65535),
('google/gemini-2.0-flash-001', 'Gemini 2.0 Flash', 'open_router', 1048576, 8192),
('google/gemini-2.5-flash-lite-preview-06-17', 'Gemini 2.5 Flash Lite Preview', 'open_router', 1048576, 65535),
('google/gemini-2.0-flash-lite-001', 'Gemini 2.0 Flash Lite', 'open_router', 1048576, 8192),
('mistralai/mistral-nemo', 'Mistral Nemo', 'open_router', 128000, 4096),
('cohere/command-r-08-2024', 'Command R', 'open_router', 128000, 4096),
('cohere/command-r-plus-08-2024', 'Command R Plus', 'open_router', 128000, 4096),
('deepseek/deepseek-chat', 'DeepSeek Chat', 'open_router', 64000, 2048),
('deepseek/deepseek-r1-0528', 'DeepSeek R1', 'open_router', 163840, 163840),
('perplexity/sonar', 'Perplexity Sonar', 'open_router', 127000, 8000),
('perplexity/sonar-pro', 'Perplexity Sonar Pro', 'open_router', 200000, 8000),
('perplexity/sonar-deep-research', 'Perplexity Sonar Deep Research', 'open_router', 128000, 16000),
('nousresearch/hermes-3-llama-3.1-405b', 'Hermes 3 Llama 3.1 405B', 'open_router', 131000, 4096),
('nousresearch/hermes-3-llama-3.1-70b', 'Hermes 3 Llama 3.1 70B', 'open_router', 12288, 12288),
('openai/gpt-oss-120b', 'GPT OSS 120B', 'open_router', 131072, 131072),
('openai/gpt-oss-20b', 'GPT OSS 20B', 'open_router', 131072, 32768),
('amazon/nova-lite-v1', 'Amazon Nova Lite', 'open_router', 300000, 5120),
('amazon/nova-micro-v1', 'Amazon Nova Micro', 'open_router', 128000, 5120),
('amazon/nova-pro-v1', 'Amazon Nova Pro', 'open_router', 300000, 5120),
('microsoft/wizardlm-2-8x22b', 'WizardLM 2 8x22B', 'open_router', 65536, 4096),
('gryphe/mythomax-l2-13b', 'MythoMax L2 13B', 'open_router', 4096, 4096),
('meta-llama/llama-4-scout', 'Llama 4 Scout', 'open_router', 131072, 131072),
('meta-llama/llama-4-maverick', 'Llama 4 Maverick', 'open_router', 1048576, 1000000),
('x-ai/grok-4', 'Grok 4', 'open_router', 256000, 256000),
('x-ai/grok-4-fast', 'Grok 4 Fast', 'open_router', 2000000, 30000),
('x-ai/grok-4.1-fast', 'Grok 4.1 Fast', 'open_router', 2000000, 30000),
('x-ai/grok-code-fast-1', 'Grok Code Fast 1', 'open_router', 256000, 10000),
('moonshotai/kimi-k2', 'Kimi K2', 'open_router', 131000, 131000),
('qwen/qwen3-235b-a22b-thinking-2507', 'Qwen 3 235B Thinking', 'open_router', 262144, 262144),
('qwen/qwen3-coder', 'Qwen 3 Coder', 'open_router', 262144, 262144),
-- Llama API models
('Llama-4-Scout-17B-16E-Instruct-FP8', 'Llama 4 Scout', 'llama_api', 128000, 4028),
('Llama-4-Maverick-17B-128E-Instruct-FP8', 'Llama 4 Maverick', 'llama_api', 128000, 4028),
('Llama-3.3-8B-Instruct', 'Llama 3.3 8B', 'llama_api', 128000, 4028),
('Llama-3.3-70B-Instruct', 'Llama 3.3 70B', 'llama_api', 128000, 4028),
-- v0 models
('v0-1.5-md', 'v0 1.5 MD', 'v0', 128000, 64000),
('v0-1.5-lg', 'v0 1.5 LG', 'v0', 512000, 64000),
('v0-1.0-md', 'v0 1.0 MD', 'v0', 128000, 64000)
) AS models(model_slug, model_display_name, provider_name, context_window, max_output_tokens)
JOIN provider_ids p ON p."name" = models.provider_name
ON CONFLICT ("slug") DO NOTHING;
-- Insert Costs (using CTEs to reference model IDs)
WITH model_ids AS (
SELECT "id", "slug", "providerId" FROM "LlmModel"
),
provider_ids AS (
SELECT "id", "name" FROM "LlmProvider"
)
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
SELECT
gen_random_uuid(),
'RUN'::"LlmCostUnit",
cost,
p."name",
NULL,
'api_key',
NULL,
'{}'::jsonb,
m."id"
FROM (VALUES
-- OpenAI costs
('o3', 4),
('o3-mini', 2),
('o1', 16),
('o1-mini', 4),
('gpt-5-2025-08-07', 2),
('gpt-5.1-2025-11-13', 5),
('gpt-5-mini-2025-08-07', 1),
('gpt-5-nano-2025-08-07', 1),
('gpt-5-chat-latest', 5),
('gpt-4.1-2025-04-14', 2),
('gpt-4.1-mini-2025-04-14', 1),
('gpt-4o-mini', 1),
('gpt-4o', 3),
('gpt-4-turbo', 10),
('gpt-3.5-turbo', 1),
-- Anthropic costs
('claude-opus-4-1-20250805', 21),
('claude-opus-4-20250514', 21),
('claude-sonnet-4-20250514', 5),
('claude-haiku-4-5-20251001', 4),
('claude-opus-4-5-20251101', 14),
('claude-sonnet-4-5-20250929', 9),
('claude-3-7-sonnet-20250219', 5),
('claude-3-haiku-20240307', 1),
-- AI/ML API costs
('Qwen/Qwen2.5-72B-Instruct-Turbo', 1),
('nvidia/llama-3.1-nemotron-70b-instruct', 1),
('meta-llama/Llama-3.3-70B-Instruct-Turbo', 1),
('meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo', 1),
('meta-llama/Llama-3.2-3B-Instruct-Turbo', 1),
-- Groq costs
('llama-3.3-70b-versatile', 1),
('llama-3.1-8b-instant', 1),
-- Ollama costs
('llama3.3', 1),
('llama3.2', 1),
('llama3', 1),
('llama3.1:405b', 1),
('dolphin-mistral:latest', 1),
-- OpenRouter costs
('google/gemini-2.5-pro-preview-03-25', 4),
('google/gemini-3-pro-preview', 5),
('mistralai/mistral-nemo', 1),
('cohere/command-r-08-2024', 1),
('cohere/command-r-plus-08-2024', 3),
('deepseek/deepseek-chat', 2),
('perplexity/sonar', 1),
('perplexity/sonar-pro', 5),
('perplexity/sonar-deep-research', 10),
('nousresearch/hermes-3-llama-3.1-405b', 1),
('nousresearch/hermes-3-llama-3.1-70b', 1),
('amazon/nova-lite-v1', 1),
('amazon/nova-micro-v1', 1),
('amazon/nova-pro-v1', 1),
('microsoft/wizardlm-2-8x22b', 1),
('gryphe/mythomax-l2-13b', 1),
('meta-llama/llama-4-scout', 1),
('meta-llama/llama-4-maverick', 1),
('x-ai/grok-4', 9),
('x-ai/grok-4-fast', 1),
('x-ai/grok-4.1-fast', 1),
('x-ai/grok-code-fast-1', 1),
('moonshotai/kimi-k2', 1),
('qwen/qwen3-235b-a22b-thinking-2507', 1),
('qwen/qwen3-coder', 9),
('google/gemini-2.5-flash', 1),
('google/gemini-2.0-flash-001', 1),
('google/gemini-2.5-flash-lite-preview-06-17', 1),
('google/gemini-2.0-flash-lite-001', 1),
('deepseek/deepseek-r1-0528', 1),
('openai/gpt-oss-120b', 1),
('openai/gpt-oss-20b', 1),
-- Llama API costs
('Llama-4-Scout-17B-16E-Instruct-FP8', 1),
('Llama-4-Maverick-17B-128E-Instruct-FP8', 1),
('Llama-3.3-8B-Instruct', 1),
('Llama-3.3-70B-Instruct', 1),
-- v0 costs
('v0-1.5-md', 1),
('v0-1.5-lg', 2),
('v0-1.0-md', 1)
) AS costs(model_slug, cost)
JOIN model_ids m ON m."slug" = costs.model_slug
JOIN provider_ids p ON p."id" = m."providerId";

View File

@@ -1,25 +0,0 @@
-- CreateTable
CREATE TABLE "LlmModelMigration" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"sourceModelSlug" TEXT NOT NULL,
"targetModelSlug" TEXT NOT NULL,
"reason" TEXT,
"migratedNodeIds" JSONB NOT NULL DEFAULT '[]',
"nodeCount" INTEGER NOT NULL,
"customCreditCost" INTEGER,
"isReverted" BOOLEAN NOT NULL DEFAULT false,
"revertedAt" TIMESTAMP(3),
CONSTRAINT "LlmModelMigration_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE INDEX "LlmModelMigration_sourceModelSlug_idx" ON "LlmModelMigration"("sourceModelSlug");
-- CreateIndex
CREATE INDEX "LlmModelMigration_targetModelSlug_idx" ON "LlmModelMigration"("targetModelSlug");
-- CreateIndex
CREATE INDEX "LlmModelMigration_isReverted_idx" ON "LlmModelMigration"("isReverted");

View File

@@ -1,127 +0,0 @@
-- Add LlmModelCreator table
-- Creator represents who made/trained the model (e.g., OpenAI, Meta)
-- This is distinct from Provider who hosts/serves the model (e.g., OpenRouter)
-- Create the LlmModelCreator table
CREATE TABLE "LlmModelCreator" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"name" TEXT NOT NULL,
"displayName" TEXT NOT NULL,
"description" TEXT,
"websiteUrl" TEXT,
"logoUrl" TEXT,
"metadata" JSONB NOT NULL DEFAULT '{}',
CONSTRAINT "LlmModelCreator_pkey" PRIMARY KEY ("id")
);
-- Create unique index on name
CREATE UNIQUE INDEX "LlmModelCreator_name_key" ON "LlmModelCreator"("name");
-- Add creatorId column to LlmModel
ALTER TABLE "LlmModel" ADD COLUMN "creatorId" TEXT;
-- Add foreign key constraint
ALTER TABLE "LlmModel" ADD CONSTRAINT "LlmModel_creatorId_fkey"
FOREIGN KEY ("creatorId") REFERENCES "LlmModelCreator"("id") ON DELETE SET NULL ON UPDATE CASCADE;
-- Create index on creatorId
CREATE INDEX "LlmModel_creatorId_idx" ON "LlmModel"("creatorId");
-- Seed creators based on known model creators
INSERT INTO "LlmModelCreator" ("id", "updatedAt", "name", "displayName", "description", "websiteUrl", "metadata")
VALUES
(gen_random_uuid(), CURRENT_TIMESTAMP, 'openai', 'OpenAI', 'Creator of GPT models', 'https://openai.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'anthropic', 'Anthropic', 'Creator of Claude models', 'https://anthropic.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'meta', 'Meta', 'Creator of Llama models', 'https://ai.meta.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'google', 'Google', 'Creator of Gemini models', 'https://deepmind.google', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'mistral', 'Mistral AI', 'Creator of Mistral models', 'https://mistral.ai', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cohere', 'Cohere', 'Creator of Command models', 'https://cohere.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'deepseek', 'DeepSeek', 'Creator of DeepSeek models', 'https://deepseek.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'perplexity', 'Perplexity AI', 'Creator of Sonar models', 'https://perplexity.ai', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'qwen', 'Qwen (Alibaba)', 'Creator of Qwen models', 'https://qwenlm.github.io', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'xai', 'xAI', 'Creator of Grok models', 'https://x.ai', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'amazon', 'Amazon', 'Creator of Nova models', 'https://aws.amazon.com/bedrock', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'microsoft', 'Microsoft', 'Creator of WizardLM models', 'https://microsoft.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'moonshot', 'Moonshot AI', 'Creator of Kimi models', 'https://moonshot.cn', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nvidia', 'NVIDIA', 'Creator of Nemotron models', 'https://nvidia.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'nous_research', 'Nous Research', 'Creator of Hermes models', 'https://nousresearch.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'vercel', 'Vercel', 'Creator of v0 models', 'https://vercel.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'cognitive_computations', 'Cognitive Computations', 'Creator of Dolphin models', 'https://erichartford.com', '{}'),
(gen_random_uuid(), CURRENT_TIMESTAMP, 'gryphe', 'Gryphe', 'Creator of MythoMax models', 'https://huggingface.co/Gryphe', '{}')
ON CONFLICT ("name") DO NOTHING;
-- Update existing models with their creators
-- OpenAI models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'openai')
WHERE "slug" LIKE 'gpt-%' OR "slug" LIKE 'o1%' OR "slug" LIKE 'o3%' OR "slug" LIKE 'openai/%';
-- Anthropic models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'anthropic')
WHERE "slug" LIKE 'claude-%';
-- Meta/Llama models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'meta')
WHERE "slug" LIKE 'llama%' OR "slug" LIKE 'Llama%' OR "slug" LIKE 'meta-llama/%' OR "slug" LIKE '%/llama-%';
-- Google models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'google')
WHERE "slug" LIKE 'google/%' OR "slug" LIKE 'gemini%';
-- Mistral models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'mistral')
WHERE "slug" LIKE 'mistral%' OR "slug" LIKE 'mistralai/%';
-- Cohere models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cohere')
WHERE "slug" LIKE 'cohere/%' OR "slug" LIKE 'command-%';
-- DeepSeek models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'deepseek')
WHERE "slug" LIKE 'deepseek/%' OR "slug" LIKE 'deepseek-%';
-- Perplexity models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'perplexity')
WHERE "slug" LIKE 'perplexity/%' OR "slug" LIKE 'sonar%';
-- Qwen models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'qwen')
WHERE "slug" LIKE 'Qwen/%' OR "slug" LIKE 'qwen/%';
-- xAI/Grok models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'xai')
WHERE "slug" LIKE 'x-ai/%' OR "slug" LIKE 'grok%';
-- Amazon models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'amazon')
WHERE "slug" LIKE 'amazon/%' OR "slug" LIKE 'nova-%';
-- Microsoft models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'microsoft')
WHERE "slug" LIKE 'microsoft/%' OR "slug" LIKE 'wizardlm%';
-- Moonshot models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'moonshot')
WHERE "slug" LIKE 'moonshotai/%' OR "slug" LIKE 'kimi%';
-- NVIDIA models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nvidia')
WHERE "slug" LIKE 'nvidia/%' OR "slug" LIKE '%nemotron%';
-- Nous Research models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'nous_research')
WHERE "slug" LIKE 'nousresearch/%' OR "slug" LIKE 'hermes%';
-- Vercel/v0 models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'vercel')
WHERE "slug" LIKE 'v0-%';
-- Dolphin models (Cognitive Computations / Eric Hartford)
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'cognitive_computations')
WHERE "slug" LIKE 'dolphin-%';
-- Gryphe models
UPDATE "LlmModel" SET "creatorId" = (SELECT "id" FROM "LlmModelCreator" WHERE "name" = 'gryphe')
WHERE "slug" LIKE 'gryphe/%' OR "slug" LIKE 'mythomax%';

View File

@@ -1,4 +0,0 @@
-- CreateIndex
-- Index for efficient LLM model lookups on AgentNode.constantInput->>'model'
-- This improves performance of model migration queries in the LLM registry
CREATE INDEX "AgentNode_constantInput_model_idx" ON "AgentNode" ((("constantInput"->>'model')));

View File

@@ -1,52 +0,0 @@
-- Add GPT-5.2 model and update O3 slug
-- This migration adds the new GPT-5.2 model added in dev branch
-- Update O3 slug to match dev branch format
UPDATE "LlmModel"
SET "slug" = 'o3-2025-04-16'
WHERE "slug" = 'o3';
-- Update cost reference for O3 if needed
-- (costs are linked by model ID, so no update needed)
-- Add GPT-5.2 model
WITH provider_id AS (
SELECT "id" FROM "LlmProvider" WHERE "name" = 'openai'
)
INSERT INTO "LlmModel" ("id", "slug", "displayName", "description", "providerId", "contextWindow", "maxOutputTokens", "isEnabled", "capabilities", "metadata")
SELECT
gen_random_uuid(),
'gpt-5.2-2025-12-11',
'GPT 5.2',
'OpenAI GPT-5.2 model',
p."id",
400000,
128000,
true,
'{}'::jsonb,
'{}'::jsonb
FROM provider_id p
ON CONFLICT ("slug") DO NOTHING;
-- Add cost for GPT-5.2
WITH model_id AS (
SELECT m."id", p."name" as provider_name
FROM "LlmModel" m
JOIN "LlmProvider" p ON p."id" = m."providerId"
WHERE m."slug" = 'gpt-5.2-2025-12-11'
)
INSERT INTO "LlmModelCost" ("id", "unit", "creditCost", "credentialProvider", "credentialId", "credentialType", "currency", "metadata", "llmModelId")
SELECT
gen_random_uuid(),
'RUN'::"LlmCostUnit",
3, -- Same cost tier as GPT-5.1
m.provider_name,
NULL,
'api_key',
NULL,
'{}'::jsonb,
m."id"
FROM model_id m
WHERE NOT EXISTS (
SELECT 1 FROM "LlmModelCost" c WHERE c."llmModelId" = m."id"
);

View File

@@ -1,11 +0,0 @@
-- Add isRecommended field to LlmModel table
-- This allows admins to mark a model as the recommended default
ALTER TABLE "LlmModel" ADD COLUMN "isRecommended" BOOLEAN NOT NULL DEFAULT false;
-- Set gpt-4o-mini as the default recommended model (if it exists)
UPDATE "LlmModel" SET "isRecommended" = true WHERE "slug" = 'gpt-4o-mini' AND "isEnabled" = true;
-- Create unique partial index to enforce only one recommended model at the database level
-- This prevents multiple rows from having isRecommended = true
CREATE UNIQUE INDEX "LlmModel_single_recommended_idx" ON "LlmModel" ("isRecommended") WHERE "isRecommended" = true;

View File

@@ -5339,6 +5339,24 @@ urllib3 = ">=1.26.14,<3"
fastembed = ["fastembed (>=0.7,<0.8)"]
fastembed-gpu = ["fastembed-gpu (>=0.7,<0.8)"]
[[package]]
name = "rank-bm25"
version = "0.2.2"
description = "Various BM25 algorithms for document ranking"
optional = false
python-versions = "*"
groups = ["main"]
files = [
{file = "rank_bm25-0.2.2-py3-none-any.whl", hash = "sha256:7bd4a95571adadfc271746fa146a4bcfd89c0cf731e49c3d1ad863290adbe8ae"},
{file = "rank_bm25-0.2.2.tar.gz", hash = "sha256:096ccef76f8188563419aaf384a02f0ea459503fdf77901378d4fd9d87e5e51d"},
]
[package.dependencies]
numpy = "*"
[package.extras]
dev = ["pytest"]
[[package]]
name = "rapidfuzz"
version = "3.13.0"
@@ -7494,4 +7512,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<3.14"
content-hash = "86838b5ae40d606d6e01a14dad8a56c389d890d7a6a0c274a6602cca80f0df84"
content-hash = "18b92e09596298c82432e4d0a85cb6d80a40b4229bee0a0c15f0529fd6cb21a4"

View File

@@ -46,6 +46,7 @@ poetry = "2.1.1" # CHECK DEPENDABOT SUPPORT BEFORE UPGRADING
postmarker = "^1.0"
praw = "~7.8.1"
prisma = "^0.15.0"
rank-bm25 = "^0.2.2"
prometheus-client = "^0.22.1"
prometheus-fastapi-instrumentator = "^7.0.0"
psutil = "^7.0.0"

View File

@@ -1095,151 +1095,6 @@ enum APIKeyStatus {
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
///////////// LLM REGISTRY AND BILLING DATA /////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// LlmCostUnit: Defines how LLM MODEL costs are calculated (per run or per token).
// This is distinct from BlockCostType (in backend/data/block.py) which defines
// how BLOCK EXECUTION costs are calculated (per run, per byte, or per second).
// LlmCostUnit is for pricing individual LLM model API calls in the registry,
// while BlockCostType is for billing platform block executions.
enum LlmCostUnit {
RUN
TOKENS
}
model LlmModelCreator {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
name String @unique // e.g., "openai", "anthropic", "meta"
displayName String // e.g., "OpenAI", "Anthropic", "Meta"
description String?
websiteUrl String? // Link to creator's website
logoUrl String? // URL to creator's logo
metadata Json @default("{}")
Models LlmModel[]
}
model LlmProvider {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
name String @unique
displayName String
description String?
defaultCredentialProvider String?
defaultCredentialId String?
defaultCredentialType String?
supportsTools Boolean @default(true)
supportsJsonOutput Boolean @default(true)
supportsReasoning Boolean @default(false)
supportsParallelTool Boolean @default(false)
metadata Json @default("{}")
Models LlmModel[]
}
model LlmModel {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
slug String @unique
displayName String
description String?
providerId String
Provider LlmProvider @relation(fields: [providerId], references: [id], onDelete: Restrict)
// Creator is the organization that created/trained the model (e.g., OpenAI, Meta)
// This is distinct from the provider who hosts/serves the model (e.g., OpenRouter)
creatorId String?
Creator LlmModelCreator? @relation(fields: [creatorId], references: [id], onDelete: SetNull)
contextWindow Int
maxOutputTokens Int?
isEnabled Boolean @default(true)
isRecommended Boolean @default(false)
capabilities Json @default("{}")
metadata Json @default("{}")
Costs LlmModelCost[]
@@index([providerId, isEnabled])
@@index([creatorId])
@@index([slug])
}
model LlmModelCost {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
unit LlmCostUnit @default(RUN)
creditCost Int
credentialProvider String
credentialId String?
credentialType String?
currency String?
metadata Json @default("{}")
llmModelId String
Model LlmModel @relation(fields: [llmModelId], references: [id], onDelete: Cascade)
@@index([llmModelId])
@@index([credentialProvider])
}
// Tracks model migrations for revert capability
// When a model is disabled with migration, we record which nodes were affected
// so they can be reverted when the original model is back online
model LlmModelMigration {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
sourceModelSlug String // The original model that was disabled
targetModelSlug String // The model workflows were migrated to
reason String? // Why the migration happened (e.g., "Provider outage")
// Track affected nodes as JSON array of node IDs
// Format: ["node-uuid-1", "node-uuid-2", ...]
migratedNodeIds Json @default("[]")
nodeCount Int // Number of nodes migrated
// Custom pricing override for migrated workflows during the migration period.
// Use case: When migrating users from an expensive model (e.g., GPT-4) to a cheaper
// one (e.g., GPT-3.5), you may want to temporarily maintain the original pricing
// to avoid billing surprises, or offer a discount during the transition.
//
// IMPORTANT: This field is intended for integration with the billing system.
// When billing calculates costs for nodes affected by this migration, it should
// check if customCreditCost is set and use it instead of the target model's cost.
// If null, the target model's normal cost applies.
//
// TODO: Integrate with billing system to apply this override during cost calculation.
customCreditCost Int?
// Revert tracking
isReverted Boolean @default(false)
revertedAt DateTime?
@@index([sourceModelSlug])
@@index([targetModelSlug])
@@index([isReverted])
}
////////////// OAUTH PROVIDER TABLES //////////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////

View File

@@ -0,0 +1,45 @@
"use client";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { Text } from "@/components/atoms/Text/Text";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { useRouter } from "next/navigation";
import { useEffect, useRef } from "react";
const LOGOUT_REDIRECT_DELAY_MS = 400;
function wait(ms: number): Promise<void> {
return new Promise(function resolveAfterDelay(resolve) {
setTimeout(resolve, ms);
});
}
export default function LogoutPage() {
const { logOut } = useSupabase();
const router = useRouter();
const hasStartedRef = useRef(false);
useEffect(function handleLogoutEffect() {
if (hasStartedRef.current) return;
hasStartedRef.current = true;
async function runLogout() {
await logOut();
await wait(LOGOUT_REDIRECT_DELAY_MS);
router.replace("/login");
}
void runLogout();
}, []);
return (
<div className="flex min-h-screen items-center justify-center px-4">
<div className="flex flex-col items-center justify-center gap-4 py-8">
<LoadingSpinner size="large" />
<Text variant="body" className="text-center">
Logging you out...
</Text>
</div>
</div>
);
}

View File

@@ -1,6 +1,6 @@
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInput";
import { CredentialsMetaInput } from "@/app/api/__generated__/models/credentialsMetaInput";
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import { useState } from "react";
import { getSchemaDefaultCredentials } from "../../helpers";
import { areAllCredentialsSet, getCredentialFields } from "./helpers";

View File

@@ -1,12 +1,12 @@
"use client";
import { RunAgentInputs } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/RunAgentInputs/RunAgentInputs";
import {
Card,
CardContent,
CardHeader,
CardTitle,
} from "@/components/__legacy__/ui/card";
import { RunAgentInputs } from "@/components/contextual/RunAgentInputs/RunAgentInputs";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { CircleNotchIcon } from "@phosphor-icons/react/dist/ssr";
import { Play } from "lucide-react";

View File

@@ -1,8 +1,5 @@
"use client";
import { Sidebar } from "@/components/__legacy__/Sidebar";
import { Users, DollarSign, UserSearch, FileText } from "lucide-react";
import { Cpu } from "@phosphor-icons/react";
import { IconSliders } from "@/components/__legacy__/ui/icons";
@@ -29,11 +26,6 @@ const sidebarLinkGroups = [
href: "/admin/execution-analytics",
icon: <FileText className="h-6 w-6" />,
},
{
text: "LLM Registry",
href: "/admin/llms",
icon: <Cpu size={24} />,
},
{
text: "Admin User Management",
href: "/admin/settings",

View File

@@ -1,361 +0,0 @@
"use server";
import { revalidatePath } from "next/cache";
// Generated API functions
import {
getV2ListLlmProviders,
postV2CreateLlmProvider,
getV2ListLlmModels,
postV2CreateLlmModel,
patchV2UpdateLlmModel,
patchV2ToggleLlmModelAvailability,
deleteV2DeleteLlmModelAndMigrateWorkflows,
getV2GetModelUsageCount,
getV2ListModelMigrations,
postV2RevertAModelMigration,
getV2ListModelCreators,
postV2CreateModelCreator,
patchV2UpdateModelCreator,
deleteV2DeleteModelCreator,
postV2SetRecommendedModel,
} from "@/app/api/__generated__/endpoints/admin/admin";
// Generated types
import type { LlmProvidersResponse } from "@/app/api/__generated__/models/llmProvidersResponse";
import type { LlmModelsResponse } from "@/app/api/__generated__/models/llmModelsResponse";
import type { UpsertLlmProviderRequest } from "@/app/api/__generated__/models/upsertLlmProviderRequest";
import type { CreateLlmModelRequest } from "@/app/api/__generated__/models/createLlmModelRequest";
import type { UpdateLlmModelRequest } from "@/app/api/__generated__/models/updateLlmModelRequest";
import type { ToggleLlmModelRequest } from "@/app/api/__generated__/models/toggleLlmModelRequest";
import type { LlmMigrationsResponse } from "@/app/api/__generated__/models/llmMigrationsResponse";
import type { LlmCreatorsResponse } from "@/app/api/__generated__/models/llmCreatorsResponse";
import type { UpsertLlmCreatorRequest } from "@/app/api/__generated__/models/upsertLlmCreatorRequest";
import type { LlmModelUsageResponse } from "@/app/api/__generated__/models/llmModelUsageResponse";
import { LlmCostUnit } from "@/app/api/__generated__/models/llmCostUnit";
const ADMIN_LLM_PATH = "/admin/llms";
// =============================================================================
// Provider Actions
// =============================================================================
export async function fetchLlmProviders(): Promise<LlmProvidersResponse> {
const response = await getV2ListLlmProviders({ include_models: true });
if (response.status !== 200) {
throw new Error("Failed to fetch LLM providers");
}
return response.data;
}
export async function createLlmProviderAction(formData: FormData) {
const payload: UpsertLlmProviderRequest = {
name: String(formData.get("name") || "").trim(),
display_name: String(formData.get("display_name") || "").trim(),
description: formData.get("description")
? String(formData.get("description"))
: undefined,
default_credential_provider: formData.get("default_credential_provider")
? String(formData.get("default_credential_provider")).trim()
: undefined,
default_credential_id: undefined,
default_credential_type: "api_key",
supports_tools: formData.get("supports_tools") === "on",
supports_json_output: formData.get("supports_json_output") === "on",
supports_reasoning: formData.get("supports_reasoning") === "on",
supports_parallel_tool: formData.get("supports_parallel_tool") === "on",
metadata: {},
};
const response = await postV2CreateLlmProvider(payload);
if (response.status !== 200) {
throw new Error("Failed to create LLM provider");
}
revalidatePath(ADMIN_LLM_PATH);
}
// =============================================================================
// Model Actions
// =============================================================================
export async function fetchLlmModels(): Promise<LlmModelsResponse> {
const response = await getV2ListLlmModels();
if (response.status !== 200) {
throw new Error("Failed to fetch LLM models");
}
return response.data;
}
export async function createLlmModelAction(formData: FormData) {
const providerId = String(formData.get("provider_id"));
const creatorId = formData.get("creator_id");
// Fetch provider to get default credentials
const providersResponse = await getV2ListLlmProviders({
include_models: false,
});
if (providersResponse.status !== 200) {
throw new Error("Failed to fetch providers");
}
const provider = providersResponse.data.providers.find(
(p) => p.id === providerId,
);
if (!provider) {
throw new Error("Provider not found");
}
const payload: CreateLlmModelRequest = {
slug: String(formData.get("slug") || "").trim(),
display_name: String(formData.get("display_name") || "").trim(),
description: formData.get("description")
? String(formData.get("description"))
: undefined,
provider_id: providerId,
creator_id: creatorId ? String(creatorId) : undefined,
context_window: Number(formData.get("context_window") || 0),
max_output_tokens: formData.get("max_output_tokens")
? Number(formData.get("max_output_tokens"))
: undefined,
is_enabled: formData.get("is_enabled") === "on",
capabilities: {},
metadata: {},
costs: [
{
unit: (formData.get("unit") as LlmCostUnit) || LlmCostUnit.RUN,
credit_cost: Number(formData.get("credit_cost") || 0),
credential_provider:
provider.default_credential_provider || provider.name,
credential_id: provider.default_credential_id || undefined,
credential_type: provider.default_credential_type || "api_key",
metadata: {},
},
],
};
const response = await postV2CreateLlmModel(payload);
if (response.status !== 200) {
throw new Error("Failed to create LLM model");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function updateLlmModelAction(formData: FormData) {
const modelId = String(formData.get("model_id"));
const creatorId = formData.get("creator_id");
const payload: UpdateLlmModelRequest = {
display_name: formData.get("display_name")
? String(formData.get("display_name"))
: undefined,
description: formData.get("description")
? String(formData.get("description"))
: undefined,
provider_id: formData.get("provider_id")
? String(formData.get("provider_id"))
: undefined,
creator_id: creatorId ? String(creatorId) : undefined,
context_window: formData.get("context_window")
? Number(formData.get("context_window"))
: undefined,
max_output_tokens: formData.get("max_output_tokens")
? Number(formData.get("max_output_tokens"))
: undefined,
is_enabled: formData.get("is_enabled")
? formData.get("is_enabled") === "on"
: undefined,
costs: formData.get("credit_cost")
? [
{
unit: (formData.get("unit") as LlmCostUnit) || LlmCostUnit.RUN,
credit_cost: Number(formData.get("credit_cost")),
credential_provider: String(
formData.get("credential_provider") || "",
).trim(),
credential_id: formData.get("credential_id")
? String(formData.get("credential_id"))
: undefined,
credential_type: formData.get("credential_type")
? String(formData.get("credential_type"))
: undefined,
metadata: {},
},
]
: undefined,
};
const response = await patchV2UpdateLlmModel(modelId, payload);
if (response.status !== 200) {
throw new Error("Failed to update LLM model");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function toggleLlmModelAction(formData: FormData): Promise<void> {
const modelId = String(formData.get("model_id"));
const shouldEnable = formData.get("is_enabled") === "true";
const migrateToSlug = formData.get("migrate_to_slug");
const migrationReason = formData.get("migration_reason");
const customCreditCost = formData.get("custom_credit_cost");
const payload: ToggleLlmModelRequest = {
is_enabled: shouldEnable,
migrate_to_slug: migrateToSlug ? String(migrateToSlug) : undefined,
migration_reason: migrationReason ? String(migrationReason) : undefined,
custom_credit_cost: customCreditCost ? Number(customCreditCost) : undefined,
};
const response = await patchV2ToggleLlmModelAvailability(modelId, payload);
if (response.status !== 200) {
throw new Error("Failed to toggle LLM model");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function deleteLlmModelAction(formData: FormData): Promise<void> {
const modelId = String(formData.get("model_id"));
const rawReplacement = formData.get("replacement_model_slug");
if (rawReplacement == null || String(rawReplacement).trim() === "") {
throw new Error("Replacement model is required");
}
const replacementModelSlug = String(rawReplacement).trim();
const response = await deleteV2DeleteLlmModelAndMigrateWorkflows(modelId, {
replacement_model_slug: replacementModelSlug,
});
if (response.status !== 200) {
throw new Error("Failed to delete model");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function fetchLlmModelUsage(
modelId: string,
): Promise<LlmModelUsageResponse> {
const response = await getV2GetModelUsageCount(modelId);
if (response.status !== 200) {
throw new Error("Failed to fetch model usage");
}
return response.data;
}
// =============================================================================
// Migration Actions
// =============================================================================
export async function fetchLlmMigrations(
includeReverted: boolean = false,
): Promise<LlmMigrationsResponse> {
const response = await getV2ListModelMigrations({
include_reverted: includeReverted,
});
if (response.status !== 200) {
throw new Error("Failed to fetch migrations");
}
return response.data;
}
export async function revertLlmMigrationAction(
formData: FormData,
): Promise<void> {
const migrationId = String(formData.get("migration_id"));
const response = await postV2RevertAModelMigration(migrationId, null);
if (response.status !== 200) {
throw new Error("Failed to revert migration");
}
revalidatePath(ADMIN_LLM_PATH);
}
// =============================================================================
// Creator Actions
// =============================================================================
export async function fetchLlmCreators(): Promise<LlmCreatorsResponse> {
const response = await getV2ListModelCreators();
if (response.status !== 200) {
throw new Error("Failed to fetch creators");
}
return response.data;
}
export async function createLlmCreatorAction(
formData: FormData,
): Promise<void> {
const payload: UpsertLlmCreatorRequest = {
name: String(formData.get("name") || "").trim(),
display_name: String(formData.get("display_name") || "").trim(),
description: formData.get("description")
? String(formData.get("description"))
: undefined,
website_url: formData.get("website_url")
? String(formData.get("website_url")).trim()
: undefined,
logo_url: formData.get("logo_url")
? String(formData.get("logo_url")).trim()
: undefined,
metadata: {},
};
const response = await postV2CreateModelCreator(payload);
if (response.status !== 200) {
throw new Error("Failed to create creator");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function updateLlmCreatorAction(
formData: FormData,
): Promise<void> {
const creatorId = String(formData.get("creator_id"));
const payload: UpsertLlmCreatorRequest = {
name: String(formData.get("name") || "").trim(),
display_name: String(formData.get("display_name") || "").trim(),
description: formData.get("description")
? String(formData.get("description"))
: undefined,
website_url: formData.get("website_url")
? String(formData.get("website_url")).trim()
: undefined,
logo_url: formData.get("logo_url")
? String(formData.get("logo_url")).trim()
: undefined,
metadata: {},
};
const response = await patchV2UpdateModelCreator(creatorId, payload);
if (response.status !== 200) {
throw new Error("Failed to update creator");
}
revalidatePath(ADMIN_LLM_PATH);
}
export async function deleteLlmCreatorAction(
formData: FormData,
): Promise<void> {
const creatorId = String(formData.get("creator_id"));
const response = await deleteV2DeleteModelCreator(creatorId);
if (response.status !== 200) {
throw new Error("Failed to delete creator");
}
revalidatePath(ADMIN_LLM_PATH);
}
// =============================================================================
// Recommended Model Actions
// =============================================================================
export async function setRecommendedModelAction(
formData: FormData,
): Promise<void> {
const modelId = String(formData.get("model_id"));
const response = await postV2SetRecommendedModel({ model_id: modelId });
if (response.status !== 200) {
throw new Error("Failed to set recommended model");
}
revalidatePath(ADMIN_LLM_PATH);
}

View File

@@ -1,147 +0,0 @@
"use client";
import { useState } from "react";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import { createLlmCreatorAction } from "../actions";
import { useRouter } from "next/navigation";
export function AddCreatorModal() {
const [open, setOpen] = useState(false);
const [isSubmitting, setIsSubmitting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
async function handleSubmit(formData: FormData) {
setIsSubmitting(true);
setError(null);
try {
await createLlmCreatorAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to create creator");
} finally {
setIsSubmitting(false);
}
}
return (
<Dialog
title="Add Creator"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "512px" }}
>
<Dialog.Trigger>
<Button variant="primary" size="small">
Add Creator
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
Add a new model creator (the organization that made/trained the
model).
</div>
<form action={handleSubmit} className="space-y-4">
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="name"
className="text-sm font-medium text-foreground"
>
Name (slug) <span className="text-destructive">*</span>
</label>
<input
id="name"
required
name="name"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="openai"
/>
<p className="text-xs text-muted-foreground">
Lowercase identifier (e.g., openai, meta, anthropic)
</p>
</div>
<div className="space-y-2">
<label
htmlFor="display_name"
className="text-sm font-medium text-foreground"
>
Display Name <span className="text-destructive">*</span>
</label>
<input
id="display_name"
required
name="display_name"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="OpenAI"
/>
</div>
</div>
<div className="space-y-2">
<label
htmlFor="description"
className="text-sm font-medium text-foreground"
>
Description
</label>
<textarea
id="description"
name="description"
rows={2}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="Creator of GPT models..."
/>
</div>
<div className="space-y-2">
<label
htmlFor="website_url"
className="text-sm font-medium text-foreground"
>
Website URL
</label>
<input
id="website_url"
name="website_url"
type="url"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="https://openai.com"
/>
</div>
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
type="button"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isSubmitting}
>
Cancel
</Button>
<Button
variant="primary"
size="small"
type="submit"
disabled={isSubmitting}
>
{isSubmitting ? "Creating..." : "Add Creator"}
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,314 +0,0 @@
"use client";
import { useState } from "react";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import { createLlmModelAction } from "../actions";
import { useRouter } from "next/navigation";
interface Props {
providers: LlmProvider[];
creators: LlmModelCreator[];
}
export function AddModelModal({ providers, creators }: Props) {
const [open, setOpen] = useState(false);
const [selectedCreatorId, setSelectedCreatorId] = useState("");
const [isSubmitting, setIsSubmitting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
async function handleSubmit(formData: FormData) {
setIsSubmitting(true);
setError(null);
try {
await createLlmModelAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to create model");
} finally {
setIsSubmitting(false);
}
}
// When provider changes, auto-select matching creator if one exists
function handleProviderChange(providerId: string) {
const provider = providers.find((p) => p.id === providerId);
if (provider) {
// Find creator with same name as provider (e.g., "openai" -> "openai")
const matchingCreator = creators.find((c) => c.name === provider.name);
if (matchingCreator) {
setSelectedCreatorId(matchingCreator.id);
} else {
// No matching creator (e.g., OpenRouter hosts other creators' models)
setSelectedCreatorId("");
}
}
}
return (
<Dialog
title="Add Model"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "768px", maxHeight: "90vh", overflowY: "auto" }}
>
<Dialog.Trigger>
<Button variant="primary" size="small">
Add Model
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
Register a new model slug, metadata, and pricing.
</div>
<form action={handleSubmit} className="space-y-6">
{/* Basic Information */}
<div className="space-y-4">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Basic Information
</h3>
<p className="text-xs text-muted-foreground">
Core model details
</p>
</div>
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="slug"
className="text-sm font-medium text-foreground"
>
Model Slug <span className="text-destructive">*</span>
</label>
<input
id="slug"
required
name="slug"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="gpt-4.1-mini-2025-04-14"
/>
</div>
<div className="space-y-2">
<label
htmlFor="display_name"
className="text-sm font-medium text-foreground"
>
Display Name <span className="text-destructive">*</span>
</label>
<input
id="display_name"
required
name="display_name"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="GPT 4.1 Mini"
/>
</div>
</div>
<div className="space-y-2">
<label
htmlFor="description"
className="text-sm font-medium text-foreground"
>
Description
</label>
<textarea
id="description"
name="description"
rows={3}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="Optional description..."
/>
</div>
</div>
{/* Model Configuration */}
<div className="space-y-4 border-t border-border pt-6">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Model Configuration
</h3>
<p className="text-xs text-muted-foreground">
Model capabilities and limits
</p>
</div>
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="provider_id"
className="text-sm font-medium text-foreground"
>
Provider <span className="text-destructive">*</span>
</label>
<select
id="provider_id"
required
name="provider_id"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
defaultValue=""
onChange={(e) => handleProviderChange(e.target.value)}
>
<option value="" disabled>
Select provider
</option>
{providers.map((provider) => (
<option key={provider.id} value={provider.id}>
{provider.display_name} ({provider.name})
</option>
))}
</select>
<p className="text-xs text-muted-foreground">
Who hosts/serves the model
</p>
</div>
<div className="space-y-2">
<label
htmlFor="creator_id"
className="text-sm font-medium text-foreground"
>
Creator
</label>
<select
id="creator_id"
name="creator_id"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
value={selectedCreatorId}
onChange={(e) => setSelectedCreatorId(e.target.value)}
>
<option value="">No creator selected</option>
{creators.map((creator) => (
<option key={creator.id} value={creator.id}>
{creator.display_name} ({creator.name})
</option>
))}
</select>
<p className="text-xs text-muted-foreground">
Who made/trained the model (e.g., OpenAI, Meta)
</p>
</div>
</div>
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="context_window"
className="text-sm font-medium text-foreground"
>
Context Window <span className="text-destructive">*</span>
</label>
<input
id="context_window"
required
type="number"
name="context_window"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="128000"
min={1}
/>
</div>
<div className="space-y-2">
<label
htmlFor="max_output_tokens"
className="text-sm font-medium text-foreground"
>
Max Output Tokens
</label>
<input
id="max_output_tokens"
type="number"
name="max_output_tokens"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="16384"
min={1}
/>
</div>
</div>
</div>
{/* Pricing */}
<div className="space-y-4 border-t border-border pt-6">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">Pricing</h3>
<p className="text-xs text-muted-foreground">
Credit cost per run (credentials are managed via the provider)
</p>
</div>
<div className="grid gap-4 sm:grid-cols-1">
<div className="space-y-2">
<label
htmlFor="credit_cost"
className="text-sm font-medium text-foreground"
>
Credit Cost <span className="text-destructive">*</span>
</label>
<input
id="credit_cost"
required
type="number"
name="credit_cost"
step="1"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="5"
min={0}
/>
</div>
</div>
<p className="text-xs text-muted-foreground">
Credit cost is always in platform credits. Credentials are
inherited from the selected provider.
</p>
</div>
{/* Enabled Toggle */}
<div className="flex items-center gap-3 border-t border-border pt-6">
<input type="hidden" name="is_enabled" value="off" />
<input
id="is_enabled"
type="checkbox"
name="is_enabled"
defaultChecked
className="h-4 w-4 rounded border-input"
/>
<label
htmlFor="is_enabled"
className="text-sm font-medium text-foreground"
>
Enabled by default
</label>
</div>
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
type="button"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isSubmitting}
>
Cancel
</Button>
<Button
variant="primary"
size="small"
type="submit"
disabled={isSubmitting}
>
{isSubmitting ? "Creating..." : "Save Model"}
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,268 +0,0 @@
"use client";
import { useState } from "react";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import { createLlmProviderAction } from "../actions";
import { useRouter } from "next/navigation";
export function AddProviderModal() {
const [open, setOpen] = useState(false);
const [isSubmitting, setIsSubmitting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
async function handleSubmit(formData: FormData) {
setIsSubmitting(true);
setError(null);
try {
await createLlmProviderAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(
err instanceof Error ? err.message : "Failed to create provider",
);
} finally {
setIsSubmitting(false);
}
}
return (
<Dialog
title="Add Provider"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "768px", maxHeight: "90vh", overflowY: "auto" }}
>
<Dialog.Trigger>
<Button variant="primary" size="small">
Add Provider
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
Define a new upstream provider and default credential information.
</div>
{/* Setup Instructions */}
<div className="mb-6 rounded-lg border border-primary/30 bg-primary/5 p-4">
<div className="space-y-2">
<h4 className="text-sm font-semibold text-foreground">
Before Adding a Provider
</h4>
<p className="text-xs text-muted-foreground">
To use a new provider, you must first configure its credentials in
the backend:
</p>
<ol className="list-inside list-decimal space-y-1 text-xs text-muted-foreground">
<li>
Add the credential to{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono">
backend/integrations/credentials_store.py
</code>{" "}
with a UUID, provider name, and settings secret reference
</li>
<li>
Add it to the{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono">
PROVIDER_CREDENTIALS
</code>{" "}
dictionary in{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono">
backend/data/block_cost_config.py
</code>
</li>
<li>
Use the <strong>same provider name</strong> in the
&quot;Credential Provider&quot; field below that matches the key
in{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono">
PROVIDER_CREDENTIALS
</code>
</li>
</ol>
</div>
</div>
<form action={handleSubmit} className="space-y-6">
{/* Basic Information */}
<div className="space-y-4">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Basic Information
</h3>
<p className="text-xs text-muted-foreground">
Core provider details
</p>
</div>
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label
htmlFor="name"
className="text-sm font-medium text-foreground"
>
Provider Slug <span className="text-destructive">*</span>
</label>
<input
id="name"
required
name="name"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="e.g. openai"
/>
</div>
<div className="space-y-2">
<label
htmlFor="display_name"
className="text-sm font-medium text-foreground"
>
Display Name <span className="text-destructive">*</span>
</label>
<input
id="display_name"
required
name="display_name"
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="OpenAI"
/>
</div>
</div>
<div className="space-y-2">
<label
htmlFor="description"
className="text-sm font-medium text-foreground"
>
Description
</label>
<textarea
id="description"
name="description"
rows={3}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="Optional description..."
/>
</div>
</div>
{/* Default Credentials */}
<div className="space-y-4 border-t border-border pt-6">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Default Credentials
</h3>
<p className="text-xs text-muted-foreground">
Credential provider name that matches the key in{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono text-xs">
PROVIDER_CREDENTIALS
</code>
</p>
</div>
<div className="space-y-2">
<label
htmlFor="default_credential_provider"
className="text-sm font-medium text-foreground"
>
Credential Provider <span className="text-destructive">*</span>
</label>
<input
id="default_credential_provider"
name="default_credential_provider"
required
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm transition-colors placeholder:text-muted-foreground focus:border-primary focus:outline-none focus:ring-2 focus:ring-primary/20"
placeholder="openai"
/>
<p className="text-xs text-muted-foreground">
<strong>Important:</strong> This must exactly match the key in
the{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono text-xs">
PROVIDER_CREDENTIALS
</code>{" "}
dictionary in{" "}
<code className="rounded bg-muted px-1 py-0.5 font-mono text-xs">
block_cost_config.py
</code>
. Common values: &quot;openai&quot;, &quot;anthropic&quot;,
&quot;groq&quot;, &quot;open_router&quot;, etc.
</p>
</div>
</div>
{/* Capabilities */}
<div className="space-y-4 border-t border-border pt-6">
<div className="space-y-1">
<h3 className="text-sm font-semibold text-foreground">
Capabilities
</h3>
<p className="text-xs text-muted-foreground">
Provider feature flags
</p>
</div>
<div className="grid gap-3 sm:grid-cols-2">
{[
{ name: "supports_tools", label: "Supports tools" },
{ name: "supports_json_output", label: "Supports JSON output" },
{ name: "supports_reasoning", label: "Supports reasoning" },
{
name: "supports_parallel_tool",
label: "Supports parallel tool calls",
},
].map(({ name, label }) => (
<div
key={name}
className="flex items-center gap-3 rounded-md border border-border bg-muted/30 px-4 py-3 transition-colors hover:bg-muted/50"
>
<input type="hidden" name={name} value="off" />
<input
id={name}
type="checkbox"
name={name}
defaultChecked={
name !== "supports_reasoning" &&
name !== "supports_parallel_tool"
}
className="h-4 w-4 rounded border-input"
/>
<label
htmlFor={name}
className="text-sm font-medium text-foreground"
>
{label}
</label>
</div>
))}
</div>
</div>
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
type="button"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isSubmitting}
>
Cancel
</Button>
<Button
variant="primary"
size="small"
type="submit"
disabled={isSubmitting}
>
{isSubmitting ? "Creating..." : "Save Provider"}
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,195 +0,0 @@
"use client";
import { useState } from "react";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import {
Table,
TableBody,
TableCell,
TableHead,
TableHeader,
TableRow,
} from "@/components/atoms/Table/Table";
import { Button } from "@/components/atoms/Button/Button";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { updateLlmCreatorAction } from "../actions";
import { useRouter } from "next/navigation";
import { DeleteCreatorModal } from "./DeleteCreatorModal";
export function CreatorsTable({ creators }: { creators: LlmModelCreator[] }) {
if (!creators.length) {
return (
<div className="rounded-lg border border-dashed border-border p-6 text-center text-sm text-muted-foreground">
No creators registered yet.
</div>
);
}
return (
<div className="rounded-lg border">
<Table>
<TableHeader>
<TableRow>
<TableHead>Creator</TableHead>
<TableHead>Description</TableHead>
<TableHead>Website</TableHead>
<TableHead>Actions</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{creators.map((creator) => (
<TableRow key={creator.id}>
<TableCell>
<div className="font-medium">{creator.display_name}</div>
<div className="text-xs text-muted-foreground">
{creator.name}
</div>
</TableCell>
<TableCell>
<span className="text-sm text-muted-foreground">
{creator.description || "—"}
</span>
</TableCell>
<TableCell>
{creator.website_url ? (
<a
href={creator.website_url}
target="_blank"
rel="noopener noreferrer"
className="text-sm text-primary hover:underline"
>
{(() => {
try {
return new URL(creator.website_url).hostname;
} catch {
return creator.website_url;
}
})()}
</a>
) : (
<span className="text-muted-foreground"></span>
)}
</TableCell>
<TableCell>
<div className="flex items-center justify-end gap-2">
<EditCreatorModal creator={creator} />
<DeleteCreatorModal creator={creator} />
</div>
</TableCell>
</TableRow>
))}
</TableBody>
</Table>
</div>
);
}
function EditCreatorModal({ creator }: { creator: LlmModelCreator }) {
const [open, setOpen] = useState(false);
const [isSubmitting, setIsSubmitting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
async function handleSubmit(formData: FormData) {
setIsSubmitting(true);
setError(null);
try {
await updateLlmCreatorAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to update creator");
} finally {
setIsSubmitting(false);
}
}
return (
<Dialog
title="Edit Creator"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "512px" }}
>
<Dialog.Trigger>
<Button variant="outline" size="small" className="min-w-0">
Edit
</Button>
</Dialog.Trigger>
<Dialog.Content>
<form action={handleSubmit} className="space-y-4">
<input type="hidden" name="creator_id" value={creator.id} />
<div className="grid gap-4 sm:grid-cols-2">
<div className="space-y-2">
<label className="text-sm font-medium">Name (slug)</label>
<input
required
name="name"
defaultValue={creator.name}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm"
/>
</div>
<div className="space-y-2">
<label className="text-sm font-medium">Display Name</label>
<input
required
name="display_name"
defaultValue={creator.display_name}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm"
/>
</div>
</div>
<div className="space-y-2">
<label className="text-sm font-medium">Description</label>
<textarea
name="description"
rows={2}
defaultValue={creator.description ?? ""}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm"
/>
</div>
<div className="space-y-2">
<label className="text-sm font-medium">Website URL</label>
<input
name="website_url"
type="url"
defaultValue={creator.website_url ?? ""}
className="w-full rounded-md border border-input bg-background px-3 py-2 text-sm"
/>
</div>
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
type="button"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isSubmitting}
>
Cancel
</Button>
<Button
variant="primary"
size="small"
type="submit"
disabled={isSubmitting}
>
{isSubmitting ? "Updating..." : "Update"}
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,107 +0,0 @@
"use client";
import { useState } from "react";
import { useRouter } from "next/navigation";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import { deleteLlmCreatorAction } from "../actions";
export function DeleteCreatorModal({ creator }: { creator: LlmModelCreator }) {
const [open, setOpen] = useState(false);
const [isDeleting, setIsDeleting] = useState(false);
const [error, setError] = useState<string | null>(null);
const router = useRouter();
async function handleDelete(formData: FormData) {
setIsDeleting(true);
setError(null);
try {
await deleteLlmCreatorAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to delete creator");
} finally {
setIsDeleting(false);
}
}
return (
<Dialog
title="Delete Creator"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "480px" }}
>
<Dialog.Trigger>
<Button
type="button"
variant="outline"
size="small"
className="min-w-0 text-destructive hover:bg-destructive/10"
>
Delete
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="space-y-4">
<div className="rounded-lg border border-amber-500/30 bg-amber-500/10 p-4 dark:border-amber-400/30 dark:bg-amber-400/10">
<div className="flex items-start gap-3">
<div className="flex-shrink-0 text-amber-600 dark:text-amber-400">
</div>
<div className="text-sm text-foreground">
<p className="font-semibold">You are about to delete:</p>
<p className="mt-1">
<span className="font-medium">{creator.display_name}</span>{" "}
<span className="text-muted-foreground">
({creator.name})
</span>
</p>
<p className="mt-2 text-muted-foreground">
Models using this creator will have their creator field
cleared. This is safe and won&apos;t affect model
functionality.
</p>
</div>
</div>
</div>
<form action={handleDelete} className="space-y-4">
<input type="hidden" name="creator_id" value={creator.id} />
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
onClick={() => {
setOpen(false);
setError(null);
}}
disabled={isDeleting}
type="button"
>
Cancel
</Button>
<Button
type="submit"
variant="primary"
size="small"
disabled={isDeleting}
className="bg-destructive text-destructive-foreground hover:bg-destructive/90"
>
{isDeleting ? "Deleting..." : "Delete Creator"}
</Button>
</Dialog.Footer>
</form>
</div>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,201 +0,0 @@
"use client";
import { useState } from "react";
import { useRouter } from "next/navigation";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import { deleteLlmModelAction, fetchLlmModelUsage } from "../actions";
export function DeleteModelModal({
model,
availableModels,
}: {
model: LlmModel;
availableModels: LlmModel[];
}) {
const router = useRouter();
const [open, setOpen] = useState(false);
const [selectedReplacement, setSelectedReplacement] = useState<string>("");
const [isDeleting, setIsDeleting] = useState(false);
const [error, setError] = useState<string | null>(null);
const [usageCount, setUsageCount] = useState<number | null>(null);
const [usageLoading, setUsageLoading] = useState(false);
const [usageError, setUsageError] = useState<string | null>(null);
// Filter out the current model and disabled models from replacement options
const replacementOptions = availableModels.filter(
(m) => m.id !== model.id && m.is_enabled,
);
async function fetchUsage() {
setUsageLoading(true);
setUsageError(null);
try {
const usage = await fetchLlmModelUsage(model.id);
setUsageCount(usage.node_count);
} catch (err) {
console.error("Failed to fetch model usage:", err);
setUsageError("Failed to load usage count");
setUsageCount(null);
} finally {
setUsageLoading(false);
}
}
async function handleDelete(formData: FormData) {
setIsDeleting(true);
setError(null);
try {
await deleteLlmModelAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to delete model");
} finally {
setIsDeleting(false);
}
}
return (
<Dialog
title="Delete Model"
controlled={{
isOpen: open,
set: async (isOpen) => {
setOpen(isOpen);
if (isOpen) {
setUsageCount(null);
setUsageError(null);
setError(null);
setSelectedReplacement("");
await fetchUsage();
}
},
}}
styling={{ maxWidth: "600px" }}
>
<Dialog.Trigger>
<Button
type="button"
variant="outline"
size="small"
className="min-w-0 text-destructive hover:bg-destructive/10"
>
Delete
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
This action cannot be undone. All workflows using this model will be
migrated to the replacement model you select.
</div>
<div className="space-y-4">
<div className="rounded-lg border border-amber-500/30 bg-amber-500/10 p-4 dark:border-amber-400/30 dark:bg-amber-400/10">
<div className="flex items-start gap-3">
<div className="flex-shrink-0 text-amber-600 dark:text-amber-400">
</div>
<div className="text-sm text-foreground">
<p className="font-semibold">You are about to delete:</p>
<p className="mt-1">
<span className="font-medium">{model.display_name}</span>{" "}
<span className="text-muted-foreground">({model.slug})</span>
</p>
{usageLoading && (
<p className="mt-2 text-muted-foreground">
Loading usage count...
</p>
)}
{usageError && (
<p className="mt-2 text-destructive">{usageError}</p>
)}
{!usageLoading && !usageError && usageCount !== null && (
<p className="mt-2 font-semibold">
Impact: {usageCount} block{usageCount !== 1 ? "s" : ""}{" "}
currently use this model
</p>
)}
<p className="mt-2 text-muted-foreground">
All workflows currently using this model will be automatically
updated to use the replacement model you choose below.
</p>
</div>
</div>
</div>
<form action={handleDelete} className="space-y-4">
<input type="hidden" name="model_id" value={model.id} />
<input
type="hidden"
name="replacement_model_slug"
value={selectedReplacement}
/>
<label className="text-sm font-medium">
<span className="mb-2 block">
Select Replacement Model{" "}
<span className="text-destructive">*</span>
</span>
<select
required
value={selectedReplacement}
onChange={(e) => setSelectedReplacement(e.target.value)}
className="w-full rounded border border-input bg-background p-2 text-sm"
>
<option value="">-- Choose a replacement model --</option>
{replacementOptions.map((m) => (
<option key={m.id} value={m.slug}>
{m.display_name} ({m.slug})
</option>
))}
</select>
{replacementOptions.length === 0 && (
<p className="mt-2 text-xs text-destructive">
No replacement models available. You must have at least one
other enabled model before deleting this one.
</p>
)}
</label>
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
type="button"
onClick={() => {
setOpen(false);
setSelectedReplacement("");
setError(null);
}}
disabled={isDeleting}
>
Cancel
</Button>
<Button
type="submit"
variant="primary"
size="small"
disabled={
!selectedReplacement ||
isDeleting ||
replacementOptions.length === 0
}
className="bg-destructive text-destructive-foreground hover:bg-destructive/90"
>
{isDeleting ? "Deleting..." : "Delete and Migrate"}
</Button>
</Dialog.Footer>
</form>
</div>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,287 +0,0 @@
"use client";
import { useState } from "react";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import { toggleLlmModelAction, fetchLlmModelUsage } from "../actions";
export function DisableModelModal({
model,
availableModels,
}: {
model: LlmModel;
availableModels: LlmModel[];
}) {
const [open, setOpen] = useState(false);
const [isDisabling, setIsDisabling] = useState(false);
const [error, setError] = useState<string | null>(null);
const [usageCount, setUsageCount] = useState<number | null>(null);
const [selectedMigration, setSelectedMigration] = useState<string>("");
const [wantsMigration, setWantsMigration] = useState(false);
const [migrationReason, setMigrationReason] = useState("");
const [customCreditCost, setCustomCreditCost] = useState<string>("");
// Filter out the current model and disabled models from replacement options
const migrationOptions = availableModels.filter(
(m) => m.id !== model.id && m.is_enabled,
);
async function fetchUsage() {
try {
const usage = await fetchLlmModelUsage(model.id);
setUsageCount(usage.node_count);
} catch {
setUsageCount(null);
}
}
async function handleDisable(formData: FormData) {
setIsDisabling(true);
setError(null);
try {
await toggleLlmModelAction(formData);
setOpen(false);
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to disable model");
} finally {
setIsDisabling(false);
}
}
function resetState() {
setError(null);
setSelectedMigration("");
setWantsMigration(false);
setMigrationReason("");
setCustomCreditCost("");
}
const hasUsage = usageCount !== null && usageCount > 0;
return (
<Dialog
title="Disable Model"
controlled={{
isOpen: open,
set: async (isOpen) => {
setOpen(isOpen);
if (isOpen) {
setUsageCount(null);
resetState();
await fetchUsage();
}
},
}}
styling={{ maxWidth: "600px" }}
>
<Dialog.Trigger>
<Button
type="button"
variant="outline"
size="small"
className="min-w-0"
>
Disable
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
Disabling a model will hide it from users when creating new workflows.
</div>
<div className="space-y-4">
<div className="rounded-lg border border-amber-500/30 bg-amber-500/10 p-4 dark:border-amber-400/30 dark:bg-amber-400/10">
<div className="flex items-start gap-3">
<div className="flex-shrink-0 text-amber-600 dark:text-amber-400">
</div>
<div className="text-sm text-foreground">
<p className="font-semibold">You are about to disable:</p>
<p className="mt-1">
<span className="font-medium">{model.display_name}</span>{" "}
<span className="text-muted-foreground">({model.slug})</span>
</p>
{usageCount === null ? (
<p className="mt-2 text-muted-foreground">
Loading usage data...
</p>
) : usageCount > 0 ? (
<p className="mt-2 font-semibold">
Impact: {usageCount} block{usageCount !== 1 ? "s" : ""}{" "}
currently use this model
</p>
) : (
<p className="mt-2 text-muted-foreground">
No workflows are currently using this model.
</p>
)}
</div>
</div>
</div>
{hasUsage && (
<div className="space-y-4 rounded-lg border border-border bg-muted/50 p-4">
<label className="flex items-start gap-3">
<input
type="checkbox"
checked={wantsMigration}
onChange={(e) => {
setWantsMigration(e.target.checked);
if (!e.target.checked) {
setSelectedMigration("");
}
}}
className="mt-1"
/>
<div className="text-sm">
<span className="font-medium">
Migrate existing workflows to another model
</span>
<p className="mt-1 text-muted-foreground">
Creates a revertible migration record. If unchecked,
existing workflows will use automatic fallback to an enabled
model from the same provider.
</p>
</div>
</label>
{wantsMigration && (
<div className="space-y-4 border-t border-border pt-4">
<label className="block text-sm font-medium">
<span className="mb-2 block">
Replacement Model{" "}
<span className="text-destructive">*</span>
</span>
<select
required
value={selectedMigration}
onChange={(e) => setSelectedMigration(e.target.value)}
className="w-full rounded border border-input bg-background p-2 text-sm"
>
<option value="">-- Choose a replacement model --</option>
{migrationOptions.map((m) => (
<option key={m.id} value={m.slug}>
{m.display_name} ({m.slug})
</option>
))}
</select>
{migrationOptions.length === 0 && (
<p className="mt-2 text-xs text-destructive">
No other enabled models available for migration.
</p>
)}
</label>
<label className="block text-sm font-medium">
<span className="mb-2 block">
Migration Reason{" "}
<span className="font-normal text-muted-foreground">
(optional)
</span>
</span>
<input
type="text"
value={migrationReason}
onChange={(e) => setMigrationReason(e.target.value)}
placeholder="e.g., Provider outage, Cost reduction"
className="w-full rounded border border-input bg-background p-2 text-sm"
/>
<p className="mt-1 text-xs text-muted-foreground">
Helps track why the migration was made
</p>
</label>
<label className="block text-sm font-medium">
<span className="mb-2 block">
Custom Credit Cost{" "}
<span className="font-normal text-muted-foreground">
(optional)
</span>
</span>
<input
type="number"
min="0"
value={customCreditCost}
onChange={(e) => setCustomCreditCost(e.target.value)}
placeholder="Leave blank to use target model's cost"
className="w-full rounded border border-input bg-background p-2 text-sm"
/>
<p className="mt-1 text-xs text-muted-foreground">
Override pricing for migrated workflows. When set, billing
will use this cost instead of the target model&apos;s cost.
</p>
</label>
</div>
)}
</div>
)}
<form action={handleDisable} className="space-y-4">
<input type="hidden" name="model_id" value={model.id} />
<input type="hidden" name="is_enabled" value="false" />
{wantsMigration && selectedMigration && (
<>
<input
type="hidden"
name="migrate_to_slug"
value={selectedMigration}
/>
{migrationReason && (
<input
type="hidden"
name="migration_reason"
value={migrationReason}
/>
)}
{customCreditCost && (
<input
type="hidden"
name="custom_credit_cost"
value={customCreditCost}
/>
)}
</>
)}
{error && (
<div className="rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<Dialog.Footer>
<Button
variant="ghost"
size="small"
onClick={() => {
setOpen(false);
resetState();
}}
disabled={isDisabling}
>
Cancel
</Button>
<Button
type="submit"
variant="primary"
size="small"
disabled={
isDisabling ||
(wantsMigration && !selectedMigration) ||
usageCount === null
}
>
{isDisabling
? "Disabling..."
: wantsMigration && selectedMigration
? "Disable & Migrate"
: "Disable Model"}
</Button>
</Dialog.Footer>
</form>
</div>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,219 +0,0 @@
"use client";
import { useState } from "react";
import { useRouter } from "next/navigation";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Button } from "@/components/atoms/Button/Button";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
import { updateLlmModelAction } from "../actions";
export function EditModelModal({
model,
providers,
creators,
}: {
model: LlmModel;
providers: LlmProvider[];
creators: LlmModelCreator[];
}) {
const router = useRouter();
const [open, setOpen] = useState(false);
const [isSubmitting, setIsSubmitting] = useState(false);
const [error, setError] = useState<string | null>(null);
const cost = model.costs?.[0];
const provider = providers.find((p) => p.id === model.provider_id);
async function handleSubmit(formData: FormData) {
setIsSubmitting(true);
setError(null);
try {
await updateLlmModelAction(formData);
setOpen(false);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to update model");
} finally {
setIsSubmitting(false);
}
}
return (
<Dialog
title="Edit Model"
controlled={{ isOpen: open, set: setOpen }}
styling={{ maxWidth: "768px", maxHeight: "90vh", overflowY: "auto" }}
>
<Dialog.Trigger>
<Button variant="outline" size="small" className="min-w-0">
Edit
</Button>
</Dialog.Trigger>
<Dialog.Content>
<div className="mb-4 text-sm text-muted-foreground">
Update model metadata and pricing information.
</div>
{error && (
<div className="mb-4 rounded-lg border border-destructive/30 bg-destructive/10 p-3 text-sm text-destructive">
{error}
</div>
)}
<form action={handleSubmit} className="space-y-4">
<input type="hidden" name="model_id" value={model.id} />
<div className="grid gap-4 md:grid-cols-2">
<label className="text-sm font-medium">
Display Name
<input
required
name="display_name"
defaultValue={model.display_name}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
/>
</label>
<label className="text-sm font-medium">
Provider
<select
required
name="provider_id"
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
defaultValue={model.provider_id}
>
{providers.map((p) => (
<option key={p.id} value={p.id}>
{p.display_name} ({p.name})
</option>
))}
</select>
<span className="text-xs text-muted-foreground">
Who hosts/serves the model
</span>
</label>
</div>
<div className="grid gap-4 md:grid-cols-2">
<label className="text-sm font-medium">
Creator
<select
name="creator_id"
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
defaultValue={model.creator_id ?? ""}
>
<option value="">No creator selected</option>
{creators.map((c) => (
<option key={c.id} value={c.id}>
{c.display_name} ({c.name})
</option>
))}
</select>
<span className="text-xs text-muted-foreground">
Who made/trained the model (e.g., OpenAI, Meta)
</span>
</label>
</div>
<label className="text-sm font-medium">
Description
<textarea
name="description"
rows={2}
defaultValue={model.description ?? ""}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
placeholder="Optional description..."
/>
</label>
<div className="grid gap-4 md:grid-cols-2">
<label className="text-sm font-medium">
Context Window
<input
required
type="number"
name="context_window"
defaultValue={model.context_window}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
min={1}
/>
</label>
<label className="text-sm font-medium">
Max Output Tokens
<input
type="number"
name="max_output_tokens"
defaultValue={model.max_output_tokens ?? undefined}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
min={1}
/>
</label>
</div>
<div className="grid gap-4 md:grid-cols-2">
<label className="text-sm font-medium">
Credit Cost
<input
required
type="number"
name="credit_cost"
defaultValue={cost?.credit_cost ?? 0}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
min={0}
/>
<span className="text-xs text-muted-foreground">
Credits charged per run
</span>
</label>
<label className="text-sm font-medium">
Credential Provider
<select
required
name="credential_provider"
defaultValue={cost?.credential_provider ?? provider?.name ?? ""}
className="mt-1 w-full rounded border border-input bg-background p-2 text-sm"
>
<option value="" disabled>
Select provider
</option>
{providers.map((p) => (
<option key={p.id} value={p.name}>
{p.display_name} ({p.name})
</option>
))}
</select>
<span className="text-xs text-muted-foreground">
Must match a key in PROVIDER_CREDENTIALS
</span>
</label>
</div>
{/* Hidden defaults for credential_type and unit */}
<input
type="hidden"
name="credential_type"
value={cost?.credential_type ?? provider?.default_credential_type ?? "api_key"}
/>
<input type="hidden" name="unit" value={cost?.unit ?? "RUN"} />
<Dialog.Footer>
<Button
type="button"
variant="ghost"
size="small"
onClick={() => setOpen(false)}
disabled={isSubmitting}
>
Cancel
</Button>
<Button
variant="primary"
size="small"
type="submit"
disabled={isSubmitting}
>
{isSubmitting ? "Updating..." : "Update Model"}
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -1,131 +0,0 @@
"use client";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import type { LlmModelMigration } from "@/app/api/__generated__/models/llmModelMigration";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
import { ErrorBoundary } from "@/components/molecules/ErrorBoundary/ErrorBoundary";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { AddProviderModal } from "./AddProviderModal";
import { AddModelModal } from "./AddModelModal";
import { AddCreatorModal } from "./AddCreatorModal";
import { ProviderList } from "./ProviderList";
import { ModelsTable } from "./ModelsTable";
import { MigrationsTable } from "./MigrationsTable";
import { CreatorsTable } from "./CreatorsTable";
import { RecommendedModelSelector } from "./RecommendedModelSelector";
interface Props {
providers: LlmProvider[];
models: LlmModel[];
migrations: LlmModelMigration[];
creators: LlmModelCreator[];
}
function AdminErrorFallback() {
return (
<div className="mx-auto max-w-xl p-6">
<ErrorCard
responseError={{
message:
"An error occurred while loading the LLM Registry. Please refresh the page.",
}}
context="llm-registry"
onRetry={() => window.location.reload()}
/>
</div>
);
}
export function LlmRegistryDashboard({
providers,
models,
migrations,
creators,
}: Props) {
return (
<ErrorBoundary fallback={<AdminErrorFallback />} context="llm-registry">
<div className="mx-auto p-6">
<div className="flex flex-col gap-6">
{/* Header */}
<div>
<h1 className="text-3xl font-bold">LLM Registry</h1>
<p className="text-muted-foreground">
Manage providers, creators, models, and credit pricing
</p>
</div>
{/* Active Migrations Section - Only show if there are migrations */}
{migrations.length > 0 && (
<div className="rounded-lg border border-primary/30 bg-primary/5 p-6 shadow-sm">
<div className="mb-4">
<h2 className="text-xl font-semibold">Active Migrations</h2>
<p className="mt-1 text-sm text-muted-foreground">
These migrations can be reverted to restore workflows to their
original model
</p>
</div>
<MigrationsTable migrations={migrations} />
</div>
)}
{/* Providers & Creators Section - Side by Side */}
<div className="grid gap-6 lg:grid-cols-2">
{/* Providers */}
<div className="rounded-lg border bg-card p-6 shadow-sm">
<div className="mb-4 flex items-center justify-between">
<div>
<h2 className="text-xl font-semibold">Providers</h2>
<p className="mt-1 text-sm text-muted-foreground">
Who hosts/serves the models
</p>
</div>
<AddProviderModal />
</div>
<ProviderList providers={providers} />
</div>
{/* Creators */}
<div className="rounded-lg border bg-card p-6 shadow-sm">
<div className="mb-4 flex items-center justify-between">
<div>
<h2 className="text-xl font-semibold">Creators</h2>
<p className="mt-1 text-sm text-muted-foreground">
Who made/trained the models
</p>
</div>
<AddCreatorModal />
</div>
<CreatorsTable creators={creators} />
</div>
</div>
{/* Models Section */}
<div className="rounded-lg border bg-card p-6 shadow-sm">
<div className="mb-4 flex items-center justify-between">
<div>
<h2 className="text-xl font-semibold">Models</h2>
<p className="mt-1 text-sm text-muted-foreground">
Toggle availability, adjust context windows, and update credit
pricing
</p>
</div>
<AddModelModal providers={providers} creators={creators} />
</div>
{/* Recommended Model Selector */}
<div className="mb-6">
<RecommendedModelSelector models={models} />
</div>
<ModelsTable
models={models}
providers={providers}
creators={creators}
/>
</div>
</div>
</div>
</ErrorBoundary>
);
}

View File

@@ -1,133 +0,0 @@
"use client";
import { useState } from "react";
import type { LlmModelMigration } from "@/app/api/__generated__/models/llmModelMigration";
import { Button } from "@/components/atoms/Button/Button";
import {
Table,
TableBody,
TableCell,
TableHead,
TableHeader,
TableRow,
} from "@/components/atoms/Table/Table";
import { revertLlmMigrationAction } from "../actions";
export function MigrationsTable({
migrations,
}: {
migrations: LlmModelMigration[];
}) {
if (!migrations.length) {
return (
<div className="rounded-lg border border-dashed border-border p-6 text-center text-sm text-muted-foreground">
No active migrations. Migrations are created when you disable a model
with the &quot;Migrate existing workflows&quot; option.
</div>
);
}
return (
<div className="rounded-lg border">
<Table>
<TableHeader>
<TableRow>
<TableHead>Migration</TableHead>
<TableHead>Reason</TableHead>
<TableHead>Nodes Affected</TableHead>
<TableHead>Custom Cost</TableHead>
<TableHead>Created</TableHead>
<TableHead className="text-right">Actions</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{migrations.map((migration) => (
<MigrationRow key={migration.id} migration={migration} />
))}
</TableBody>
</Table>
</div>
);
}
function MigrationRow({ migration }: { migration: LlmModelMigration }) {
const [isReverting, setIsReverting] = useState(false);
const [error, setError] = useState<string | null>(null);
async function handleRevert(formData: FormData) {
setIsReverting(true);
setError(null);
try {
await revertLlmMigrationAction(formData);
} catch (err) {
setError(
err instanceof Error ? err.message : "Failed to revert migration",
);
} finally {
setIsReverting(false);
}
}
const createdDate = new Date(migration.created_at);
return (
<>
<TableRow>
<TableCell>
<div className="text-sm">
<span className="font-medium">{migration.source_model_slug}</span>
<span className="mx-2 text-muted-foreground"></span>
<span className="font-medium">{migration.target_model_slug}</span>
</div>
</TableCell>
<TableCell>
<div className="text-sm text-muted-foreground">
{migration.reason || "—"}
</div>
</TableCell>
<TableCell>
<div className="text-sm">{migration.node_count}</div>
</TableCell>
<TableCell>
<div className="text-sm">
{migration.custom_credit_cost !== null &&
migration.custom_credit_cost !== undefined
? `${migration.custom_credit_cost} credits`
: "—"}
</div>
</TableCell>
<TableCell>
<div className="text-sm text-muted-foreground">
{createdDate.toLocaleDateString()}{" "}
{createdDate.toLocaleTimeString([], {
hour: "2-digit",
minute: "2-digit",
})}
</div>
</TableCell>
<TableCell className="text-right">
<form action={handleRevert} className="inline">
<input type="hidden" name="migration_id" value={migration.id} />
<Button
type="submit"
variant="outline"
size="small"
disabled={isReverting}
>
{isReverting ? "Reverting..." : "Revert"}
</Button>
</form>
</TableCell>
</TableRow>
{error && (
<TableRow>
<TableCell colSpan={6}>
<div className="rounded border border-destructive/30 bg-destructive/10 p-2 text-sm text-destructive">
{error}
</div>
</TableCell>
</TableRow>
)}
</>
);
}

View File

@@ -1,172 +0,0 @@
"use client";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import type { LlmModelCreator } from "@/app/api/__generated__/models/llmModelCreator";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
import {
Table,
TableBody,
TableCell,
TableHead,
TableHeader,
TableRow,
} from "@/components/atoms/Table/Table";
import { Button } from "@/components/atoms/Button/Button";
import { toggleLlmModelAction } from "../actions";
import { DeleteModelModal } from "./DeleteModelModal";
import { DisableModelModal } from "./DisableModelModal";
import { EditModelModal } from "./EditModelModal";
import { Star } from "@phosphor-icons/react";
export function ModelsTable({
models,
providers,
creators,
}: {
models: LlmModel[];
providers: LlmProvider[];
creators: LlmModelCreator[];
}) {
if (!models.length) {
return (
<div className="rounded-lg border border-dashed border-border p-6 text-center text-sm text-muted-foreground">
No models registered yet.
</div>
);
}
const providerLookup = new Map(
providers.map((provider) => [provider.id, provider]),
);
return (
<div className="rounded-lg border">
<Table>
<TableHeader>
<TableRow>
<TableHead>Model</TableHead>
<TableHead>Provider</TableHead>
<TableHead>Creator</TableHead>
<TableHead>Context Window</TableHead>
<TableHead>Max Output</TableHead>
<TableHead>Cost</TableHead>
<TableHead>Status</TableHead>
<TableHead>Actions</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{models.map((model) => {
const cost = model.costs?.[0];
const provider = providerLookup.get(model.provider_id);
return (
<TableRow
key={model.id}
className={model.is_enabled ? "" : "opacity-60"}
>
<TableCell>
<div className="font-medium">{model.display_name}</div>
<div className="text-xs text-muted-foreground">
{model.slug}
</div>
</TableCell>
<TableCell>
{provider ? (
<>
<div>{provider.display_name}</div>
<div className="text-xs text-muted-foreground">
{provider.name}
</div>
</>
) : (
model.provider_id
)}
</TableCell>
<TableCell>
{model.creator ? (
<>
<div>{model.creator.display_name}</div>
<div className="text-xs text-muted-foreground">
{model.creator.name}
</div>
</>
) : (
<span className="text-muted-foreground"></span>
)}
</TableCell>
<TableCell>{model.context_window.toLocaleString()}</TableCell>
<TableCell>
{model.max_output_tokens
? model.max_output_tokens.toLocaleString()
: "—"}
</TableCell>
<TableCell>
{cost ? (
<>
<div className="font-medium">
{cost.credit_cost} credits
</div>
<div className="text-xs text-muted-foreground">
{cost.credential_provider}
</div>
</>
) : (
"—"
)}
</TableCell>
<TableCell>
<div className="flex flex-col gap-1">
<span
className={`inline-flex rounded-full px-2.5 py-1 text-xs font-semibold ${
model.is_enabled
? "bg-primary/10 text-primary"
: "bg-muted text-muted-foreground"
}`}
>
{model.is_enabled ? "Enabled" : "Disabled"}
</span>
{model.is_recommended && (
<span className="inline-flex items-center gap-1 rounded-full bg-amber-500/10 px-2.5 py-1 text-xs font-semibold text-amber-600 dark:text-amber-400">
<Star size={12} weight="fill" />
Recommended
</span>
)}
</div>
</TableCell>
<TableCell>
<div className="flex items-center justify-end gap-2">
{model.is_enabled ? (
<DisableModelModal
model={model}
availableModels={models}
/>
) : (
<EnableModelButton modelId={model.id} />
)}
<EditModelModal
model={model}
providers={providers}
creators={creators}
/>
<DeleteModelModal model={model} availableModels={models} />
</div>
</TableCell>
</TableRow>
);
})}
</TableBody>
</Table>
</div>
);
}
function EnableModelButton({ modelId }: { modelId: string }) {
return (
<form action={toggleLlmModelAction} className="inline">
<input type="hidden" name="model_id" value={modelId} />
<input type="hidden" name="is_enabled" value="true" />
<Button type="submit" variant="outline" size="small" className="min-w-0">
Enable
</Button>
</form>
);
}

View File

@@ -1,71 +0,0 @@
import {
Table,
TableBody,
TableCell,
TableHead,
TableHeader,
TableRow,
} from "@/components/atoms/Table/Table";
import type { LlmProvider } from "@/app/api/__generated__/models/llmProvider";
export function ProviderList({ providers }: { providers: LlmProvider[] }) {
if (!providers.length) {
return (
<div className="rounded-lg border border-dashed border-border p-6 text-center text-sm text-muted-foreground">
No providers configured yet.
</div>
);
}
return (
<div className="rounded-lg border">
<Table>
<TableHeader>
<TableRow>
<TableHead>Name</TableHead>
<TableHead>Display Name</TableHead>
<TableHead>Default Credential</TableHead>
<TableHead>Capabilities</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{providers.map((provider) => (
<TableRow key={provider.id}>
<TableCell className="font-medium">{provider.name}</TableCell>
<TableCell>{provider.display_name}</TableCell>
<TableCell>
{provider.default_credential_provider
? `${provider.default_credential_provider} (${provider.default_credential_id ?? "id?"})`
: "—"}
</TableCell>
<TableCell className="text-sm text-muted-foreground">
<div className="flex flex-wrap gap-2">
{provider.supports_tools && (
<span className="rounded bg-muted px-2 py-0.5 text-xs">
Tools
</span>
)}
{provider.supports_json_output && (
<span className="rounded bg-muted px-2 py-0.5 text-xs">
JSON
</span>
)}
{provider.supports_reasoning && (
<span className="rounded bg-muted px-2 py-0.5 text-xs">
Reasoning
</span>
)}
{provider.supports_parallel_tool && (
<span className="rounded bg-muted px-2 py-0.5 text-xs">
Parallel Tools
</span>
)}
</div>
</TableCell>
</TableRow>
))}
</TableBody>
</Table>
</div>
);
}

View File

@@ -1,87 +0,0 @@
"use client";
import { useState } from "react";
import { useRouter } from "next/navigation";
import type { LlmModel } from "@/app/api/__generated__/models/llmModel";
import { Button } from "@/components/atoms/Button/Button";
import { setRecommendedModelAction } from "../actions";
import { Star } from "@phosphor-icons/react";
export function RecommendedModelSelector({ models }: { models: LlmModel[] }) {
const router = useRouter();
const enabledModels = models.filter((m) => m.is_enabled);
const currentRecommended = models.find((m) => m.is_recommended);
const [selectedModelId, setSelectedModelId] = useState<string>(
currentRecommended?.id || "",
);
const [isSaving, setIsSaving] = useState(false);
const [error, setError] = useState<string | null>(null);
const hasChanges = selectedModelId !== (currentRecommended?.id || "");
async function handleSave() {
if (!selectedModelId) return;
setIsSaving(true);
setError(null);
try {
const formData = new FormData();
formData.set("model_id", selectedModelId);
await setRecommendedModelAction(formData);
router.refresh();
} catch (err) {
setError(err instanceof Error ? err.message : "Failed to save");
} finally {
setIsSaving(false);
}
}
return (
<div className="rounded-lg border border-border bg-card p-4">
<div className="mb-3 flex items-center gap-2">
<Star size={20} weight="fill" className="text-amber-500" />
<h3 className="text-sm font-semibold">Recommended Model</h3>
</div>
<p className="mb-3 text-xs text-muted-foreground">
The recommended model is shown as the default suggestion in model
selection dropdowns throughout the platform.
</p>
<div className="flex items-center gap-3">
<select
value={selectedModelId}
onChange={(e) => setSelectedModelId(e.target.value)}
className="flex-1 rounded-md border border-input bg-background px-3 py-2 text-sm"
disabled={isSaving}
>
<option value="">-- Select a model --</option>
{enabledModels.map((model) => (
<option key={model.id} value={model.id}>
{model.display_name} ({model.slug})
</option>
))}
</select>
<Button
type="button"
variant="primary"
size="small"
onClick={handleSave}
disabled={!hasChanges || !selectedModelId || isSaving}
>
{isSaving ? "Saving..." : "Save"}
</Button>
</div>
{error && <p className="mt-2 text-xs text-destructive">{error}</p>}
{currentRecommended && !hasChanges && (
<p className="mt-2 text-xs text-muted-foreground">
Currently set to:{" "}
<span className="font-medium">{currentRecommended.display_name}</span>
</p>
)}
</div>
);
}

View File

@@ -1,46 +0,0 @@
/**
* Server-side data fetching for LLM Registry page.
*/
import {
fetchLlmCreators,
fetchLlmMigrations,
fetchLlmModels,
fetchLlmProviders,
} from "./actions";
export async function getLlmRegistryPageData() {
// Fetch providers and models (required)
const [providersResponse, modelsResponse] = await Promise.all([
fetchLlmProviders(),
fetchLlmModels(),
]);
// Fetch migrations separately with fallback (table might not exist yet)
let migrations: Awaited<ReturnType<typeof fetchLlmMigrations>>["migrations"] =
[];
try {
const migrationsResponse = await fetchLlmMigrations(false);
migrations = migrationsResponse.migrations;
} catch {
// Migrations table might not exist yet - that's ok, just show empty list
console.warn("Could not fetch migrations - table may not exist yet");
}
// Fetch creators separately with fallback (table might not exist yet)
let creators: Awaited<ReturnType<typeof fetchLlmCreators>>["creators"] = [];
try {
const creatorsResponse = await fetchLlmCreators();
creators = creatorsResponse.creators;
} catch {
// Creators table might not exist yet - that's ok, just show empty list
console.warn("Could not fetch creators - table may not exist yet");
}
return {
providers: providersResponse.providers,
models: modelsResponse.models,
migrations,
creators,
};
}

View File

@@ -1,14 +0,0 @@
import { withRoleAccess } from "@/lib/withRoleAccess";
import { getLlmRegistryPageData } from "./getLlmRegistryPage";
import { LlmRegistryDashboard } from "./components/LlmRegistryDashboard";
async function LlmRegistryPage() {
const data = await getLlmRegistryPageData();
return <LlmRegistryDashboard {...data} />;
}
export default async function AdminLlmRegistryPage() {
const withAdminAccess = await withRoleAccess(["admin"]);
const ProtectedLlmRegistryPage = await withAdminAccess(LlmRegistryPage);
return <ProtectedLlmRegistryPage />;
}

View File

@@ -9,7 +9,7 @@ export async function GET(request: Request) {
const { searchParams, origin } = new URL(request.url);
const code = searchParams.get("code");
let next = "/marketplace";
let next = "/";
if (code) {
const supabase = await getServerSupabase();

View File

@@ -1,11 +1,11 @@
"use client";
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInput";
import { useGetOauthGetOauthAppInfo } from "@/app/api/__generated__/endpoints/oauth/oauth";
import { okData } from "@/app/api/helpers";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { AuthCard } from "@/components/auth/AuthCard";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import type {
BlockIOCredentialsSubSchema,

View File

@@ -1,11 +1,6 @@
import { BlockUIType } from "@/app/(platform)/build/components/types";
import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import {
globalRegistry,
OutputActions,
OutputItem,
} from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { Label } from "@/components/__legacy__/ui/label";
import { ScrollArea } from "@/components/__legacy__/ui/scroll-area";
import {
@@ -23,6 +18,11 @@ import {
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import {
globalRegistry,
OutputActions,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { BookOpenIcon } from "@phosphor-icons/react";
import { useMemo } from "react";
import { useShallow } from "zustand/react/shallow";

View File

@@ -1,7 +1,8 @@
import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { usePostV1ExecuteGraphAgent } from "@/app/api/__generated__/endpoints/graphs/graphs";
import { useToast } from "@/components/molecules/Toast/use-toast";
import {
ApiError,
CredentialsMetaInput,
GraphExecutionMeta,
} from "@/lib/autogpt-server-api";
@@ -9,6 +10,9 @@ import { parseAsInteger, parseAsString, useQueryStates } from "nuqs";
import { useMemo, useState } from "react";
import { uiSchema } from "../../../FlowEditor/nodes/uiSchema";
import { isCredentialFieldSchema } from "@/components/renderers/InputRenderer/custom/CredentialField/helpers";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { useReactFlow } from "@xyflow/react";
export const useRunInputDialog = ({
setIsOpen,
@@ -31,6 +35,7 @@ export const useRunInputDialog = ({
flowVersion: parseAsInteger,
});
const { toast } = useToast();
const { setViewport } = useReactFlow();
const { mutateAsync: executeGraph, isPending: isExecutingGraph } =
usePostV1ExecuteGraphAgent({
@@ -42,13 +47,75 @@ export const useRunInputDialog = ({
});
},
onError: (error) => {
// Reset running state on error
if (error instanceof ApiError && error.isGraphValidationError()) {
const errorData = error.response?.detail || {
node_errors: {},
message: undefined,
};
const nodeErrors = errorData.node_errors || {};
if (Object.keys(nodeErrors).length > 0) {
Object.entries(nodeErrors).forEach(
([nodeId, nodeErrorsForNode]) => {
useNodeStore
.getState()
.updateNodeErrors(
nodeId,
nodeErrorsForNode as { [key: string]: string },
);
},
);
} else {
useNodeStore.getState().nodes.forEach((node) => {
useNodeStore.getState().updateNodeErrors(node.id, {});
});
}
toast({
title: errorData?.message || "Graph validation failed",
description:
"Please fix the validation errors on the highlighted nodes and try again.",
variant: "destructive",
});
setIsOpen(false);
const firstBackendId = Object.keys(nodeErrors)[0];
if (firstBackendId) {
const firstErrorNode = useNodeStore
.getState()
.nodes.find(
(n) =>
n.data.metadata?.backend_id === firstBackendId ||
n.id === firstBackendId,
);
if (firstErrorNode) {
setTimeout(() => {
setViewport(
{
x:
-firstErrorNode.position.x * 0.8 +
window.innerWidth / 2 -
150,
y: -firstErrorNode.position.y * 0.8 + 50,
zoom: 0.8,
},
{ duration: 500 },
);
}, 50);
}
}
} else {
toast({
title: "Error running graph",
description:
(error as Error).message || "An unexpected error occurred.",
variant: "destructive",
});
setIsOpen(false);
}
setIsGraphRunning(false);
toast({
title: (error.detail as string) ?? "An unexpected error occurred.",
description: "An unexpected error occurred.",
variant: "destructive",
});
},
},
});

View File

@@ -55,14 +55,16 @@ export const Flow = () => {
const edgeTypes = useMemo(() => ({ custom: CustomEdge }), []);
const onNodeDragStop = useCallback(() => {
const currentNodes = useNodeStore.getState().nodes;
setNodes(
resolveCollisions(nodes, {
resolveCollisions(currentNodes, {
maxIterations: Infinity,
overlapThreshold: 0.5,
margin: 15,
}),
);
}, [setNodes, nodes]);
}, [setNodes]);
const { edges, onConnect, onEdgesChange } = useCustomEdge();
// for loading purpose

View File

@@ -6,6 +6,7 @@ import {
import { useEdgeStore } from "@/app/(platform)/build/stores/edgeStore";
import { useCallback } from "react";
import { useNodeStore } from "../../../stores/nodeStore";
import { useHistoryStore } from "../../../stores/historyStore";
import { CustomEdge } from "./CustomEdge";
export const useCustomEdge = () => {
@@ -51,7 +52,20 @@ export const useCustomEdge = () => {
const onEdgesChange = useCallback(
(changes: EdgeChange<CustomEdge>[]) => {
const hasRemoval = changes.some((change) => change.type === "remove");
const prevState = hasRemoval
? {
nodes: useNodeStore.getState().nodes,
edges: edges,
}
: null;
setEdges(applyEdgeChanges(changes, edges));
if (prevState) {
useHistoryStore.getState().pushState(prevState);
}
},
[edges, setEdges],
);

View File

@@ -20,11 +20,13 @@ type Props = {
export const NodeHeader = ({ data, nodeId }: Props) => {
const updateNodeData = useNodeStore((state) => state.updateNodeData);
const title = (data.metadata?.customized_name as string) || data.title;
const title =
(data.metadata?.customized_name as string) ||
data.hardcodedValues?.agent_name ||
data.title;
const [isEditingTitle, setIsEditingTitle] = useState(false);
const [editedTitle, setEditedTitle] = useState(
beautifyString(title).replace("Block", "").trim(),
);
const [editedTitle, setEditedTitle] = useState(title);
const handleTitleEdit = () => {
updateNodeData(nodeId, {

View File

@@ -1,7 +1,7 @@
"use client";
import type { OutputMetadata } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { globalRegistry } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import { globalRegistry } from "@/components/contextual/OutputRenderers";
export const TextRenderer: React.FC<{
value: any;

View File

@@ -1,7 +1,3 @@
import {
OutputActions,
OutputItem,
} from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { ScrollArea } from "@/components/__legacy__/ui/scroll-area";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
@@ -11,6 +7,10 @@ import {
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import {
OutputActions,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { beautifyString } from "@/lib/utils";
import {

View File

@@ -1,6 +1,6 @@
import type { OutputMetadata } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { globalRegistry } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { downloadOutputs } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers/utils/download";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import { globalRegistry } from "@/components/contextual/OutputRenderers";
import { downloadOutputs } from "@/components/contextual/OutputRenderers/utils/download";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { beautifyString } from "@/lib/utils";
import React, { useMemo, useState } from "react";

View File

@@ -1,10 +1,10 @@
import { Alert, AlertDescription } from "@/components/molecules/Alert/Alert";
import { Text } from "@/components/atoms/Text/Text";
import Link from "next/link";
import { useGetV2GetLibraryAgentByGraphId } from "@/app/api/__generated__/endpoints/library/library";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { useQueryStates, parseAsString } from "nuqs";
import { isValidUUID } from "@/app/(platform)/chat/helpers";
import { Text } from "@/components/atoms/Text/Text";
import { Alert, AlertDescription } from "@/components/molecules/Alert/Alert";
import { isValidUUID } from "@/lib/utils";
import Link from "next/link";
import { parseAsString, useQueryStates } from "nuqs";
export const WebhookDisclaimer = ({ nodeId }: { nodeId: string }) => {
const [{ flowID }] = useQueryStates({

View File

@@ -31,8 +31,6 @@ export const OutputHandler = ({
const [isOutputVisible, setIsOutputVisible] = useState(true);
const brokenOutputs = useBrokenOutputs(nodeId);
console.log("brokenOutputs", brokenOutputs);
const showHandles = uiType !== BlockUIType.OUTPUT;
const renderOutputHandles = (

View File

@@ -7,9 +7,8 @@ import { BlockCategoryResponse } from "@/app/api/__generated__/models/blockCateg
import { BlockResponse } from "@/app/api/__generated__/models/blockResponse";
import * as Sentry from "@sentry/nextjs";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { useState, useEffect } from "react";
import { useState } from "react";
import { useToast } from "@/components/molecules/Toast/use-toast";
import BackendApi from "@/lib/autogpt-server-api";
export const useAllBlockContent = () => {
const { toast } = useToast();
@@ -94,32 +93,6 @@ export const useAllBlockContent = () => {
const isErrorOnLoadingMore = (categoryName: string) =>
errorLoadingCategories.has(categoryName);
// Listen for LLM registry refresh notifications
useEffect(() => {
const api = new BackendApi();
const queryClient = getQueryClient();
const handleNotification = (notification: any) => {
if (
notification?.type === "LLM_REGISTRY_REFRESH" ||
notification?.event === "registry_updated"
) {
// Invalidate all block-related queries to force refresh
const categoriesQueryKey = getGetV2GetBuilderBlockCategoriesQueryKey();
queryClient.invalidateQueries({ queryKey: categoriesQueryKey });
}
};
const unsubscribe = api.onWebSocketMessage(
"notification",
handleNotification,
);
return () => {
unsubscribe();
};
}, []);
return {
data,
isLoading,

View File

@@ -1,9 +1,9 @@
import type { OutputMetadata } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import {
globalRegistry,
OutputActions,
OutputItem,
} from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
} from "@/components/contextual/OutputRenderers";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { beautifyString } from "@/lib/utils";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";

View File

@@ -3,7 +3,6 @@ import {
CustomNodeData,
} from "@/app/(platform)/build/components/legacy-builder/CustomNode/CustomNode";
import { NodeTableInput } from "@/app/(platform)/build/components/legacy-builder/NodeTableInput";
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInput";
import { Button } from "@/components/__legacy__/ui/button";
import { Calendar } from "@/components/__legacy__/ui/calendar";
import { LocalValuedInput } from "@/components/__legacy__/ui/input";
@@ -28,6 +27,7 @@ import {
SelectValue,
} from "@/components/__legacy__/ui/select";
import { Switch } from "@/components/atoms/Switch/Switch";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import { GoogleDrivePickerInput } from "@/components/contextual/GoogleDrivePicker/GoogleDrivePickerInput";
import {
BlockIOArraySubSchema,
@@ -610,11 +610,8 @@ const NodeOneOfDiscriminatorField: FC<{
return oneOfVariants
.map((variant) => {
const discProperty = variant.properties?.[discriminatorProperty];
const variantDiscValue =
discProperty && "const" in discProperty
? (discProperty.const as string)
: undefined; // NOTE: can discriminators only be strings?
const variantDiscValue = variant.properties?.[discriminatorProperty]
?.const as string; // NOTE: can discriminators only be strings?
return {
value: variantDiscValue,
@@ -1127,47 +1124,9 @@ const NodeStringInput: FC<{
displayName,
}) => {
value ||= schema.default || "";
// Check if we have options with labels (e.g., LLM model picker)
const hasOptions = schema.options && schema.options.length > 0;
const hasEnum = schema.enum && schema.enum.length > 0;
// Helper to get display label for a value
const getDisplayLabel = (val: string) => {
if (hasOptions) {
const option = schema.options!.find((opt) => opt.value === val);
return option?.label || beautifyString(val);
}
return beautifyString(val);
};
return (
<div className={className}>
{hasOptions ? (
// Render options with proper labels (used by LLM model picker)
<Select
defaultValue={value}
onValueChange={(newValue) => handleInputChange(selfKey, newValue)}
>
<SelectTrigger>
<SelectValue placeholder={schema.placeholder || displayName}>
{value ? getDisplayLabel(value) : undefined}
</SelectValue>
</SelectTrigger>
<SelectContent className="nodrag">
{schema.options!.map((option, index) => (
<SelectItem
key={index}
value={option.value}
title={option.description}
>
{option.label}
</SelectItem>
))}
</SelectContent>
</Select>
) : hasEnum ? (
// Fallback to enum with beautified strings
{schema.enum && schema.enum.length > 0 ? (
<Select
defaultValue={value}
onValueChange={(newValue) => handleInputChange(selfKey, newValue)}
@@ -1176,8 +1135,8 @@ const NodeStringInput: FC<{
<SelectValue placeholder={schema.placeholder || displayName} />
</SelectTrigger>
<SelectContent className="nodrag">
{schema
.enum!.filter((option) => option)
{schema.enum
.filter((option) => option)
.map((option, index) => (
<SelectItem key={index} value={option}>
{beautifyString(option)}

View File

@@ -5,6 +5,8 @@ import { customEdgeToLink, linkToCustomEdge } from "../components/helper";
import { MarkerType } from "@xyflow/react";
import { NodeExecutionResult } from "@/app/api/__generated__/models/nodeExecutionResult";
import { cleanUpHandleId } from "@/components/renderers/InputRenderer/helpers";
import { useHistoryStore } from "./historyStore";
import { useNodeStore } from "./nodeStore";
type EdgeStore = {
edges: CustomEdge[];
@@ -53,25 +55,36 @@ export const useEdgeStore = create<EdgeStore>((set, get) => ({
id,
};
set((state) => {
const exists = state.edges.some(
(e) =>
e.source === newEdge.source &&
e.target === newEdge.target &&
e.sourceHandle === newEdge.sourceHandle &&
e.targetHandle === newEdge.targetHandle,
);
if (exists) return state;
return { edges: [...state.edges, newEdge] };
});
const exists = get().edges.some(
(e) =>
e.source === newEdge.source &&
e.target === newEdge.target &&
e.sourceHandle === newEdge.sourceHandle &&
e.targetHandle === newEdge.targetHandle,
);
if (exists) return newEdge;
const prevState = {
nodes: useNodeStore.getState().nodes,
edges: get().edges,
};
set((state) => ({ edges: [...state.edges, newEdge] }));
useHistoryStore.getState().pushState(prevState);
return newEdge;
},
removeEdge: (edgeId) =>
removeEdge: (edgeId) => {
const prevState = {
nodes: useNodeStore.getState().nodes,
edges: get().edges,
};
set((state) => ({
edges: state.edges.filter((e) => e.id !== edgeId),
})),
}));
useHistoryStore.getState().pushState(prevState);
},
upsertMany: (edges) =>
set((state) => {

View File

@@ -37,6 +37,15 @@ export const useHistoryStore = create<HistoryStore>((set, get) => ({
return;
}
const actualCurrentState = {
nodes: useNodeStore.getState().nodes,
edges: useEdgeStore.getState().edges,
};
if (isEqual(state, actualCurrentState)) {
return;
}
set((prev) => ({
past: [...prev.past.slice(-MAX_HISTORY + 1), state],
future: [],
@@ -55,18 +64,25 @@ export const useHistoryStore = create<HistoryStore>((set, get) => ({
undo: () => {
const { past, future } = get();
if (past.length <= 1) return;
if (past.length === 0) return;
const currentState = past[past.length - 1];
const actualCurrentState = {
nodes: useNodeStore.getState().nodes,
edges: useEdgeStore.getState().edges,
};
const previousState = past[past.length - 2];
const previousState = past[past.length - 1];
if (isEqual(actualCurrentState, previousState)) {
return;
}
useNodeStore.getState().setNodes(previousState.nodes);
useEdgeStore.getState().setEdges(previousState.edges);
set({
past: past.slice(0, -1),
future: [currentState, ...future],
past: past.length > 1 ? past.slice(0, -1) : past,
future: [actualCurrentState, ...future],
});
},
@@ -74,18 +90,36 @@ export const useHistoryStore = create<HistoryStore>((set, get) => ({
const { past, future } = get();
if (future.length === 0) return;
const actualCurrentState = {
nodes: useNodeStore.getState().nodes,
edges: useEdgeStore.getState().edges,
};
const nextState = future[0];
useNodeStore.getState().setNodes(nextState.nodes);
useEdgeStore.getState().setEdges(nextState.edges);
const lastPast = past[past.length - 1];
const shouldPushToPast =
!lastPast || !isEqual(actualCurrentState, lastPast);
set({
past: [...past, nextState],
past: shouldPushToPast ? [...past, actualCurrentState] : past,
future: future.slice(1),
});
},
canUndo: () => get().past.length > 1,
canUndo: () => {
const { past } = get();
if (past.length === 0) return false;
const actualCurrentState = {
nodes: useNodeStore.getState().nodes,
edges: useEdgeStore.getState().edges,
};
return !isEqual(actualCurrentState, past[past.length - 1]);
},
canRedo: () => get().future.length > 0,
clear: () => set({ past: [{ nodes: [], edges: [] }], future: [] }),

View File

@@ -1,6 +1,7 @@
import { create } from "zustand";
import { NodeChange, XYPosition, applyNodeChanges } from "@xyflow/react";
import { CustomNode } from "../components/FlowEditor/nodes/CustomNode/CustomNode";
import { CustomEdge } from "../components/FlowEditor/edges/CustomEdge";
import { BlockInfo } from "@/app/api/__generated__/models/blockInfo";
import {
convertBlockInfoIntoCustomNodeData,
@@ -44,6 +45,8 @@ const MINIMUM_MOVE_BEFORE_LOG = 50;
// Track initial positions when drag starts (outside store to avoid re-renders)
const dragStartPositions: Record<string, XYPosition> = {};
let dragStartState: { nodes: CustomNode[]; edges: CustomEdge[] } | null = null;
type NodeStore = {
nodes: CustomNode[];
nodeCounter: number;
@@ -124,14 +127,20 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
nodeCounter: state.nodeCounter + 1,
})),
onNodesChange: (changes) => {
const prevState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
// Track initial positions when drag starts
changes.forEach((change) => {
if (change.type === "position" && change.dragging === true) {
if (!dragStartState) {
const currentNodes = get().nodes;
const currentEdges = useEdgeStore.getState().edges;
dragStartState = {
nodes: currentNodes.map((n) => ({
...n,
position: { ...n.position },
data: { ...n.data },
})),
edges: currentEdges.map((e) => ({ ...e })),
};
}
if (!dragStartPositions[change.id]) {
const node = get().nodes.find((n) => n.id === change.id);
if (node) {
@@ -141,12 +150,17 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
}
});
// Check if we should track this change in history
let shouldTrack = changes.some(
(change) => change.type === "remove" || change.type === "add",
);
let shouldTrack = changes.some((change) => change.type === "remove");
let stateToTrack: { nodes: CustomNode[]; edges: CustomEdge[] } | null =
null;
if (shouldTrack) {
stateToTrack = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
}
// For position changes, only track if movement exceeds threshold
if (!shouldTrack) {
changes.forEach((change) => {
if (change.type === "position" && change.dragging === false) {
@@ -158,20 +172,23 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
);
if (distanceMoved > MINIMUM_MOVE_BEFORE_LOG) {
shouldTrack = true;
stateToTrack = dragStartState;
}
}
// Clean up tracked position after drag ends
delete dragStartPositions[change.id];
}
});
if (Object.keys(dragStartPositions).length === 0) {
dragStartState = null;
}
}
set((state) => ({
nodes: applyNodeChanges(changes, state.nodes),
}));
if (shouldTrack) {
useHistoryStore.getState().pushState(prevState);
if (shouldTrack && stateToTrack) {
useHistoryStore.getState().pushState(stateToTrack);
}
},
@@ -185,6 +202,11 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
hardcodedValues?: Record<string, any>,
position?: XYPosition,
) => {
const prevState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
const customNodeData = convertBlockInfoIntoCustomNodeData(
block,
hardcodedValues,
@@ -218,21 +240,24 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
set((state) => ({
nodes: [...state.nodes, customNode],
}));
useHistoryStore.getState().pushState(prevState);
return customNode;
},
updateNodeData: (nodeId, data) => {
const prevState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
set((state) => ({
nodes: state.nodes.map((n) =>
n.id === nodeId ? { ...n, data: { ...n.data, ...data } } : n,
),
}));
const newState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
useHistoryStore.getState().pushState(newState);
useHistoryStore.getState().pushState(prevState);
},
toggleAdvanced: (nodeId: string) =>
set((state) => ({
@@ -391,6 +416,11 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
},
setCredentialsOptional: (nodeId: string, optional: boolean) => {
const prevState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
set((state) => ({
nodes: state.nodes.map((n) =>
n.id === nodeId
@@ -408,12 +438,7 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
),
}));
const newState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
useHistoryStore.getState().pushState(newState);
useHistoryStore.getState().pushState(prevState);
},
// Sub-agent resolution mode state

View File

@@ -0,0 +1,111 @@
"use client";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import type { ReactNode } from "react";
import { ChatContainer } from "./components/ChatContainer/ChatContainer";
import { ChatErrorState } from "./components/ChatErrorState/ChatErrorState";
import { ChatLoadingState } from "./components/ChatLoadingState/ChatLoadingState";
import { useChat } from "./useChat";
export interface ChatProps {
className?: string;
headerTitle?: ReactNode;
showHeader?: boolean;
showSessionInfo?: boolean;
showNewChatButton?: boolean;
onNewChat?: () => void;
headerActions?: ReactNode;
urlSessionId?: string | null;
initialPrompt?: string | null;
}
export function Chat({
className,
headerTitle = "AutoGPT Copilot",
showHeader = true,
showSessionInfo = true,
showNewChatButton = true,
onNewChat,
headerActions,
urlSessionId,
initialPrompt,
}: ChatProps) {
const {
messages,
isLoading,
isCreating,
error,
sessionId,
createSession,
clearSession,
} = useChat({ urlSessionId });
function handleNewChat() {
clearSession();
onNewChat?.();
}
return (
<div className={cn("flex h-full flex-col", className)}>
{/* Header */}
{showHeader && (
<header className="shrink-0 border-t border-zinc-200 bg-white p-3">
<div className="flex items-center justify-between">
<div className="flex items-center gap-3">
{typeof headerTitle === "string" ? (
<Text variant="h2" className="text-lg font-semibold">
{headerTitle}
</Text>
) : (
headerTitle
)}
</div>
<div className="flex items-center gap-3">
{showSessionInfo && sessionId && (
<>
{showNewChatButton && (
<Button
variant="outline"
size="small"
onClick={handleNewChat}
>
New Chat
</Button>
)}
</>
)}
{headerActions}
</div>
</div>
</header>
)}
{/* Main Content */}
<main className="flex min-h-0 flex-1 flex-col overflow-hidden">
{/* Loading State - show when explicitly loading/creating OR when we don't have a session yet and no error */}
{(isLoading || isCreating || (!sessionId && !error)) && (
<ChatLoadingState
message={isCreating ? "Creating session..." : "Loading..."}
/>
)}
{/* Error State */}
{error && !isLoading && (
<ChatErrorState error={error} onRetry={createSession} />
)}
{/* Session Content */}
{sessionId && !isLoading && !error && (
<ChatContainer
sessionId={sessionId}
initialMessages={messages}
initialPrompt={initialPrompt}
className="flex-1"
/>
)}
</main>
</div>
);
}

View File

@@ -1,15 +1,16 @@
import React from "react";
import { Text } from "@/components/atoms/Text/Text";
import { Button } from "@/components/atoms/Button/Button";
import { Card } from "@/components/atoms/Card/Card";
import { List, Robot, ArrowRight } from "@phosphor-icons/react";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import { ArrowRight, List, Robot } from "@phosphor-icons/react";
import Image from "next/image";
export interface Agent {
id: string;
name: string;
description: string;
version?: number;
image_url?: string;
}
export interface AgentCarouselMessageProps {
@@ -30,7 +31,7 @@ export function AgentCarouselMessage({
return (
<div
className={cn(
"mx-4 my-2 flex flex-col gap-4 rounded-lg border border-purple-200 bg-purple-50 p-6 dark:border-purple-900 dark:bg-purple-950",
"mx-4 my-2 flex flex-col gap-4 rounded-lg border border-purple-200 bg-purple-50 p-6",
className,
)}
>
@@ -40,13 +41,10 @@ export function AgentCarouselMessage({
<List size={24} weight="bold" className="text-white" />
</div>
<div>
<Text variant="h3" className="text-purple-900 dark:text-purple-100">
<Text variant="h3" className="text-purple-900">
Found {displayCount} {displayCount === 1 ? "Agent" : "Agents"}
</Text>
<Text
variant="small"
className="text-purple-700 dark:text-purple-300"
>
<Text variant="small" className="text-purple-700">
Select an agent to view details or run it
</Text>
</div>
@@ -57,40 +55,49 @@ export function AgentCarouselMessage({
{agents.map((agent) => (
<Card
key={agent.id}
className="border border-purple-200 bg-white p-4 dark:border-purple-800 dark:bg-purple-900"
className="border border-purple-200 bg-white p-4"
>
<div className="flex gap-3">
<div className="flex h-10 w-10 flex-shrink-0 items-center justify-center rounded-lg bg-purple-100 dark:bg-purple-800">
<Robot size={20} weight="bold" className="text-purple-600" />
<div className="relative h-10 w-10 flex-shrink-0 overflow-hidden rounded-lg bg-purple-100">
{agent.image_url ? (
<Image
src={agent.image_url}
alt={`${agent.name} preview image`}
fill
className="object-cover"
/>
) : (
<div className="flex h-full w-full items-center justify-center">
<Robot
size={20}
weight="bold"
className="text-purple-600"
/>
</div>
)}
</div>
<div className="flex-1 space-y-2">
<div>
<Text
variant="body"
className="font-semibold text-purple-900 dark:text-purple-100"
className="font-semibold text-purple-900"
>
{agent.name}
</Text>
{agent.version && (
<Text
variant="small"
className="text-purple-600 dark:text-purple-400"
>
<Text variant="small" className="text-purple-600">
v{agent.version}
</Text>
)}
</div>
<Text
variant="small"
className="line-clamp-2 text-purple-700 dark:text-purple-300"
>
<Text variant="small" className="line-clamp-2 text-purple-700">
{agent.description}
</Text>
{onSelectAgent && (
<Button
onClick={() => onSelectAgent(agent.id)}
variant="ghost"
className="mt-2 flex items-center gap-1 p-0 text-sm text-purple-600 hover:text-purple-800 dark:text-purple-400 dark:hover:text-purple-200"
className="mt-2 flex items-center gap-1 p-0 text-sm text-purple-600 hover:text-purple-800"
>
View details
<ArrowRight size={16} weight="bold" />
@@ -103,10 +110,7 @@ export function AgentCarouselMessage({
</div>
{totalCount && totalCount > agents.length && (
<Text
variant="small"
className="text-center text-purple-600 dark:text-purple-400"
>
<Text variant="small" className="text-center text-purple-600">
Showing {agents.length} of {totalCount} results
</Text>
)}

View File

@@ -0,0 +1,246 @@
"use client";
import { Button } from "@/components/atoms/Button/Button";
import { Card } from "@/components/atoms/Card/Card";
import { Text } from "@/components/atoms/Text/Text";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import { RunAgentInputs } from "@/components/contextual/RunAgentInputs/RunAgentInputs";
import type { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import {
BlockIOCredentialsSubSchema,
BlockIOSubSchema,
} from "@/lib/autogpt-server-api/types";
import { cn, isEmpty } from "@/lib/utils";
import { PlayIcon, WarningIcon } from "@phosphor-icons/react";
import { useMemo } from "react";
import { useAgentInputsSetup } from "./useAgentInputsSetup";
type LibraryAgentInputSchemaProperties = LibraryAgent["input_schema"] extends {
properties: infer P;
}
? P extends Record<string, BlockIOSubSchema>
? P
: Record<string, BlockIOSubSchema>
: Record<string, BlockIOSubSchema>;
type LibraryAgentCredentialsInputSchemaProperties =
LibraryAgent["credentials_input_schema"] extends {
properties: infer P;
}
? P extends Record<string, BlockIOCredentialsSubSchema>
? P
: Record<string, BlockIOCredentialsSubSchema>
: Record<string, BlockIOCredentialsSubSchema>;
interface Props {
agentName?: string;
inputSchema: LibraryAgentInputSchemaProperties | Record<string, any>;
credentialsSchema?:
| LibraryAgentCredentialsInputSchemaProperties
| Record<string, any>;
message: string;
requiredFields?: string[];
onRun: (
inputs: Record<string, any>,
credentials: Record<string, any>,
) => void;
onCancel?: () => void;
className?: string;
}
export function AgentInputsSetup({
agentName,
inputSchema,
credentialsSchema,
message,
requiredFields,
onRun,
onCancel,
className,
}: Props) {
const { inputValues, setInputValue, credentialsValues, setCredentialsValue } =
useAgentInputsSetup();
const inputSchemaObj = useMemo(() => {
if (!inputSchema) return { properties: {}, required: [] };
if ("properties" in inputSchema && "type" in inputSchema) {
return inputSchema as {
properties: Record<string, any>;
required?: string[];
};
}
return { properties: inputSchema as Record<string, any>, required: [] };
}, [inputSchema]);
const credentialsSchemaObj = useMemo(() => {
if (!credentialsSchema) return { properties: {}, required: [] };
if ("properties" in credentialsSchema && "type" in credentialsSchema) {
return credentialsSchema as {
properties: Record<string, any>;
required?: string[];
};
}
return {
properties: credentialsSchema as Record<string, any>,
required: [],
};
}, [credentialsSchema]);
const agentInputFields = useMemo(() => {
const properties = inputSchemaObj.properties || {};
return Object.fromEntries(
Object.entries(properties).filter(
([_, subSchema]: [string, any]) => !subSchema.hidden,
),
);
}, [inputSchemaObj]);
const agentCredentialsInputFields = useMemo(() => {
return credentialsSchemaObj.properties || {};
}, [credentialsSchemaObj]);
const inputFields = Object.entries(agentInputFields);
const credentialFields = Object.entries(agentCredentialsInputFields);
const defaultsFromSchema = useMemo(() => {
const defaults: Record<string, any> = {};
Object.entries(agentInputFields).forEach(([key, schema]) => {
if ("default" in schema && schema.default !== undefined) {
defaults[key] = schema.default;
}
});
return defaults;
}, [agentInputFields]);
const defaultsFromCredentialsSchema = useMemo(() => {
const defaults: Record<string, any> = {};
Object.entries(agentCredentialsInputFields).forEach(([key, schema]) => {
if ("default" in schema && schema.default !== undefined) {
defaults[key] = schema.default;
}
});
return defaults;
}, [agentCredentialsInputFields]);
const mergedInputValues = useMemo(() => {
return { ...defaultsFromSchema, ...inputValues };
}, [defaultsFromSchema, inputValues]);
const mergedCredentialsValues = useMemo(() => {
return { ...defaultsFromCredentialsSchema, ...credentialsValues };
}, [defaultsFromCredentialsSchema, credentialsValues]);
const allRequiredInputsAreSet = useMemo(() => {
const requiredInputs = new Set(
requiredFields || (inputSchemaObj.required as string[]) || [],
);
const nonEmptyInputs = new Set(
Object.keys(mergedInputValues).filter(
(k) => !isEmpty(mergedInputValues[k]),
),
);
const missing = [...requiredInputs].filter(
(input) => !nonEmptyInputs.has(input),
);
return missing.length === 0;
}, [inputSchemaObj.required, mergedInputValues, requiredFields]);
const allCredentialsAreSet = useMemo(() => {
const requiredCredentials = new Set(
(credentialsSchemaObj.required as string[]) || [],
);
if (requiredCredentials.size === 0) {
return true;
}
const missing = [...requiredCredentials].filter((key) => {
const cred = mergedCredentialsValues[key];
return !cred || !cred.id;
});
return missing.length === 0;
}, [credentialsSchemaObj.required, mergedCredentialsValues]);
const canRun = allRequiredInputsAreSet && allCredentialsAreSet;
function handleRun() {
if (canRun) {
onRun(mergedInputValues, mergedCredentialsValues);
}
}
return (
<Card
className={cn(
"mx-4 my-2 overflow-hidden border-blue-200 bg-blue-50",
className,
)}
>
<div className="flex items-start gap-4 p-6">
<div className="flex h-12 w-12 flex-shrink-0 items-center justify-center rounded-full bg-blue-500">
<WarningIcon size={24} weight="bold" className="text-white" />
</div>
<div className="flex-1">
<Text variant="h3" className="mb-2 text-blue-900">
{agentName ? `Configure ${agentName}` : "Agent Configuration"}
</Text>
<Text variant="body" className="mb-4 text-blue-700">
{message}
</Text>
{inputFields.length > 0 && (
<div className="mb-4 space-y-4">
{inputFields.map(([key, inputSubSchema]) => (
<RunAgentInputs
key={key}
schema={inputSubSchema}
value={inputValues[key] ?? inputSubSchema.default}
placeholder={inputSubSchema.description}
onChange={(value) => setInputValue(key, value)}
/>
))}
</div>
)}
{credentialFields.length > 0 && (
<div className="mb-4 space-y-4">
{credentialFields.map(([key, schema]) => {
const requiredCredentials = new Set(
(credentialsSchemaObj.required as string[]) || [],
);
return (
<CredentialsInput
key={key}
schema={schema}
selectedCredentials={credentialsValues[key]}
onSelectCredentials={(value) =>
setCredentialsValue(key, value)
}
siblingInputs={mergedInputValues}
isOptional={!requiredCredentials.has(key)}
/>
);
})}
</div>
)}
<div className="flex gap-2">
<Button
variant="primary"
size="small"
onClick={handleRun}
disabled={!canRun}
>
<PlayIcon className="mr-2 h-4 w-4" weight="bold" />
Run Agent
</Button>
{onCancel && (
<Button variant="outline" size="small" onClick={onCancel}>
Cancel
</Button>
)}
</div>
</div>
</div>
</Card>
);
}

View File

@@ -0,0 +1,38 @@
import type { CredentialsMetaInput } from "@/lib/autogpt-server-api/types";
import { useState } from "react";
export function useAgentInputsSetup() {
const [inputValues, setInputValues] = useState<Record<string, any>>({});
const [credentialsValues, setCredentialsValues] = useState<
Record<string, CredentialsMetaInput>
>({});
function setInputValue(key: string, value: any) {
setInputValues((prev) => ({
...prev,
[key]: value,
}));
}
function setCredentialsValue(key: string, value?: CredentialsMetaInput) {
if (value) {
setCredentialsValues((prev) => ({
...prev,
[key]: value,
}));
} else {
setCredentialsValues((prev) => {
const next = { ...prev };
delete next[key];
return next;
});
}
}
return {
inputValues,
setInputValue,
credentialsValues,
setCredentialsValue,
};
}

View File

@@ -1,10 +1,9 @@
"use client";
import React from "react";
import { useRouter } from "next/navigation";
import { Button } from "@/components/atoms/Button/Button";
import { SignInIcon, UserPlusIcon, ShieldIcon } from "@phosphor-icons/react";
import { cn } from "@/lib/utils";
import { ShieldIcon, SignInIcon, UserPlusIcon } from "@phosphor-icons/react";
import { useRouter } from "next/navigation";
export interface AuthPromptWidgetProps {
message: string;
@@ -22,7 +21,7 @@ export function AuthPromptWidget({
message,
sessionId,
agentInfo,
returnUrl = "/chat",
returnUrl = "/copilot/chat",
className,
}: AuthPromptWidgetProps) {
const router = useRouter();
@@ -54,8 +53,8 @@ export function AuthPromptWidget({
return (
<div
className={cn(
"my-4 overflow-hidden rounded-lg border border-violet-200 dark:border-violet-800",
"bg-gradient-to-br from-violet-50 to-purple-50 dark:from-violet-950/30 dark:to-purple-950/30",
"my-4 overflow-hidden rounded-lg border border-violet-200",
"bg-gradient-to-br from-violet-50 to-purple-50",
"duration-500 animate-in fade-in-50 slide-in-from-bottom-2",
className,
)}
@@ -66,21 +65,19 @@ export function AuthPromptWidget({
<ShieldIcon size={20} weight="fill" className="text-white" />
</div>
<div>
<h3 className="text-lg font-semibold text-neutral-900 dark:text-neutral-100">
<h3 className="text-lg font-semibold text-neutral-900">
Authentication Required
</h3>
<p className="text-sm text-neutral-600 dark:text-neutral-400">
<p className="text-sm text-neutral-600">
Sign in to set up and manage agents
</p>
</div>
</div>
<div className="mb-5 rounded-md bg-white/50 p-4 dark:bg-neutral-900/50">
<p className="text-sm text-neutral-700 dark:text-neutral-300">
{message}
</p>
<div className="mb-5 rounded-md bg-white/50 p-4">
<p className="text-sm text-neutral-700">{message}</p>
{agentInfo && (
<div className="mt-3 text-xs text-neutral-600 dark:text-neutral-400">
<div className="mt-3 text-xs text-neutral-600">
<p>
Ready to set up:{" "}
<span className="font-medium">{agentInfo.name}</span>
@@ -114,7 +111,7 @@ export function AuthPromptWidget({
</Button>
</div>
<div className="mt-4 text-center text-xs text-neutral-500 dark:text-neutral-500">
<div className="mt-4 text-center text-xs text-neutral-500">
Your chat session will be preserved after signing in
</div>
</div>

View File

@@ -0,0 +1,103 @@
import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessionDetailResponse";
import { cn } from "@/lib/utils";
import { useCallback, useEffect, useRef } from "react";
import { usePageContext } from "../../usePageContext";
import { ChatInput } from "../ChatInput/ChatInput";
import { MessageList } from "../MessageList/MessageList";
import { QuickActionsWelcome } from "../QuickActionsWelcome/QuickActionsWelcome";
import { useChatContainer } from "./useChatContainer";
export interface ChatContainerProps {
sessionId: string | null;
initialMessages: SessionDetailResponse["messages"];
className?: string;
initialPrompt?: string | null;
}
export function ChatContainer({
sessionId,
initialMessages,
className,
initialPrompt,
}: ChatContainerProps) {
const { messages, streamingChunks, isStreaming, sendMessage } =
useChatContainer({
sessionId,
initialMessages,
});
const { capturePageContext } = usePageContext();
const hasSentInitialRef = useRef(false);
// Wrap sendMessage to automatically capture page context
const sendMessageWithContext = useCallback(
async (content: string, isUserMessage: boolean = true) => {
const context = capturePageContext();
await sendMessage(content, isUserMessage, context);
},
[sendMessage, capturePageContext],
);
useEffect(
function handleInitialPrompt() {
if (!initialPrompt) return;
if (hasSentInitialRef.current) return;
if (!sessionId) return;
if (messages.length > 0) return;
hasSentInitialRef.current = true;
void sendMessageWithContext(initialPrompt);
},
[initialPrompt, messages.length, sendMessageWithContext, sessionId],
);
const quickActions = [
"Find agents for social media management",
"Show me agents for content creation",
"Help me automate my business",
"What can you help me with?",
];
return (
<div
className={cn("flex h-full min-h-0 flex-col", className)}
style={{
backgroundColor: "#ffffff",
backgroundImage:
"radial-gradient(#e5e5e5 0.5px, transparent 0.5px), radial-gradient(#e5e5e5 0.5px, #ffffff 0.5px)",
backgroundSize: "20px 20px",
backgroundPosition: "0 0, 10px 10px",
}}
>
{/* Messages or Welcome Screen */}
<div className="flex min-h-0 flex-1 flex-col overflow-hidden pb-24">
{messages.length === 0 ? (
<QuickActionsWelcome
title="Welcome to AutoGPT Copilot"
description="Start a conversation to discover and run AI agents."
actions={quickActions}
onActionClick={sendMessageWithContext}
disabled={isStreaming || !sessionId}
/>
) : (
<MessageList
messages={messages}
streamingChunks={streamingChunks}
isStreaming={isStreaming}
onSendMessage={sendMessageWithContext}
className="flex-1"
/>
)}
</div>
{/* Input - Always visible */}
<div className="sticky bottom-0 z-50 border-t border-zinc-200 bg-white p-4">
<ChatInput
onSend={sendMessageWithContext}
disabled={isStreaming || !sessionId}
placeholder={
sessionId ? "Type your message..." : "Creating session..."
}
/>
</div>
</div>
);
}

View File

@@ -1,14 +1,14 @@
import { toast } from "sonner";
import type { StreamChunk } from "@/app/(platform)/chat/useChatStream";
import { StreamChunk } from "../../useChatStream";
import type { HandlerDependencies } from "./useChatContainer.handlers";
import {
handleError,
handleLoginNeeded,
handleStreamEnd,
handleTextChunk,
handleTextEnded,
handleToolCallStart,
handleToolResponse,
handleLoginNeeded,
handleStreamEnd,
handleError,
} from "./useChatContainer.handlers";
export function createStreamEventDispatcher(

View File

@@ -1,5 +1,24 @@
import type { ChatMessageData } from "@/app/(platform)/chat/components/ChatMessage/useChatMessage";
import type { ToolResult } from "@/types/chat";
import type { ChatMessageData } from "../ChatMessage/useChatMessage";
export function removePageContext(content: string): string {
// Remove "Page URL: ..." pattern at start of line (case insensitive, handles various formats)
let cleaned = content.replace(/^\s*Page URL:\s*[^\n\r]*/gim, "");
// Find "User Message:" marker at start of line to preserve the actual user message
const userMessageMatch = cleaned.match(/^\s*User Message:\s*([\s\S]*)$/im);
if (userMessageMatch) {
// If we found "User Message:", extract everything after it
cleaned = userMessageMatch[1];
} else {
// If no "User Message:" marker, remove "Page Content:" and everything after it at start of line
cleaned = cleaned.replace(/^\s*Page Content:[\s\S]*$/gim, "");
}
// Clean up extra whitespace and newlines
cleaned = cleaned.replace(/\n\s*\n\s*\n+/g, "\n\n").trim();
return cleaned;
}
export function createUserMessage(content: string): ChatMessageData {
return {
@@ -63,6 +82,7 @@ export function isAgentArray(value: unknown): value is Array<{
name: string;
description: string;
version?: number;
image_url?: string;
}> {
if (!Array.isArray(value)) {
return false;
@@ -77,7 +97,8 @@ export function isAgentArray(value: unknown): value is Array<{
typeof item.name === "string" &&
"description" in item &&
typeof item.description === "string" &&
(!("version" in item) || typeof item.version === "number"),
(!("version" in item) || typeof item.version === "number") &&
(!("image_url" in item) || typeof item.image_url === "string"),
);
}
@@ -232,6 +253,7 @@ export function isSetupInfo(value: unknown): value is {
export function extractCredentialsNeeded(
parsedResult: Record<string, unknown>,
toolName: string = "run_agent",
): ChatMessageData | null {
try {
const setupInfo = parsedResult?.setup_info as
@@ -244,7 +266,7 @@ export function extractCredentialsNeeded(
| Record<string, Record<string, unknown>>
| undefined;
if (missingCreds && Object.keys(missingCreds).length > 0) {
const agentName = (setupInfo?.agent_name as string) || "this agent";
const agentName = (setupInfo?.agent_name as string) || "this block";
const credentials = Object.values(missingCreds).map((credInfo) => ({
provider: (credInfo.provider as string) || "unknown",
providerName:
@@ -264,7 +286,7 @@ export function extractCredentialsNeeded(
}));
return {
type: "credentials_needed",
toolName: "run_agent",
toolName,
credentials,
message: `To run ${agentName}, you need to add ${credentials.length === 1 ? "credentials" : `${credentials.length} credentials`}.`,
agentName,
@@ -277,3 +299,92 @@ export function extractCredentialsNeeded(
return null;
}
}
export function extractInputsNeeded(
parsedResult: Record<string, unknown>,
toolName: string = "run_agent",
): ChatMessageData | null {
try {
const setupInfo = parsedResult?.setup_info as
| Record<string, unknown>
| undefined;
const requirements = setupInfo?.requirements as
| Record<string, unknown>
| undefined;
const inputs = requirements?.inputs as
| Array<Record<string, unknown>>
| undefined;
const credentials = requirements?.credentials as
| Array<Record<string, unknown>>
| undefined;
if (!inputs || inputs.length === 0) {
return null;
}
const agentName = (setupInfo?.agent_name as string) || "this agent";
const agentId = parsedResult?.graph_id as string | undefined;
const graphVersion = parsedResult?.graph_version as number | undefined;
const properties: Record<string, any> = {};
const requiredProps: string[] = [];
inputs.forEach((input) => {
const name = input.name as string;
if (name) {
properties[name] = {
title: input.name as string,
description: (input.description as string) || "",
type: (input.type as string) || "string",
default: input.default,
enum: input.options,
format: input.format,
};
if ((input.required as boolean) === true) {
requiredProps.push(name);
}
}
});
const inputSchema: Record<string, any> = {
type: "object",
properties,
};
if (requiredProps.length > 0) {
inputSchema.required = requiredProps;
}
const credentialsSchema: Record<string, any> = {};
if (credentials && credentials.length > 0) {
credentials.forEach((cred) => {
const id = cred.id as string;
if (id) {
credentialsSchema[id] = {
type: "object",
properties: {},
credentials_provider: [cred.provider as string],
credentials_types: [(cred.type as string) || "api_key"],
credentials_scopes: cred.scopes as string[] | undefined,
};
}
});
}
return {
type: "inputs_needed",
toolName,
agentName,
agentId,
graphVersion,
inputSchema,
credentialsSchema:
Object.keys(credentialsSchema).length > 0
? credentialsSchema
: undefined,
message: `Please provide the required inputs to run ${agentName}.`,
timestamp: new Date(),
};
} catch (err) {
console.error("Failed to extract inputs from setup info:", err);
return null;
}
}

View File

@@ -1,13 +1,18 @@
import type { Dispatch, SetStateAction, MutableRefObject } from "react";
import type { StreamChunk } from "@/app/(platform)/chat/useChatStream";
import type { ChatMessageData } from "@/app/(platform)/chat/components/ChatMessage/useChatMessage";
import { parseToolResponse, extractCredentialsNeeded } from "./helpers";
import type { Dispatch, MutableRefObject, SetStateAction } from "react";
import { StreamChunk } from "../../useChatStream";
import type { ChatMessageData } from "../ChatMessage/useChatMessage";
import {
extractCredentialsNeeded,
extractInputsNeeded,
parseToolResponse,
} from "./helpers";
export interface HandlerDependencies {
setHasTextChunks: Dispatch<SetStateAction<boolean>>;
setStreamingChunks: Dispatch<SetStateAction<string[]>>;
streamingChunksRef: MutableRefObject<string[]>;
setMessages: Dispatch<SetStateAction<ChatMessageData[]>>;
setIsStreamingInitiated: Dispatch<SetStateAction<boolean>>;
sessionId: string;
}
@@ -100,11 +105,18 @@ export function handleToolResponse(
parsedResult = null;
}
if (
chunk.tool_name === "run_agent" &&
(chunk.tool_name === "run_agent" || chunk.tool_name === "run_block") &&
chunk.success &&
parsedResult?.type === "setup_requirements"
) {
const credentialsMessage = extractCredentialsNeeded(parsedResult);
const inputsMessage = extractInputsNeeded(parsedResult, chunk.tool_name);
if (inputsMessage) {
deps.setMessages((prev) => [...prev, inputsMessage]);
}
const credentialsMessage = extractCredentialsNeeded(
parsedResult,
chunk.tool_name,
);
if (credentialsMessage) {
deps.setMessages((prev) => [...prev, credentialsMessage]);
}
@@ -197,10 +209,15 @@ export function handleStreamEnd(
deps.setStreamingChunks([]);
deps.streamingChunksRef.current = [];
deps.setHasTextChunks(false);
deps.setIsStreamingInitiated(false);
console.log("[Stream End] Stream complete, messages in local state");
}
export function handleError(chunk: StreamChunk, _deps: HandlerDependencies) {
export function handleError(chunk: StreamChunk, deps: HandlerDependencies) {
const errorMessage = chunk.message || chunk.content || "An error occurred";
console.error("Stream error:", errorMessage);
deps.setIsStreamingInitiated(false);
deps.setHasTextChunks(false);
deps.setStreamingChunks([]);
deps.streamingChunksRef.current = [];
}

View File

@@ -0,0 +1,206 @@
import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessionDetailResponse";
import { useCallback, useMemo, useRef, useState } from "react";
import { toast } from "sonner";
import { useChatStream } from "../../useChatStream";
import type { ChatMessageData } from "../ChatMessage/useChatMessage";
import { createStreamEventDispatcher } from "./createStreamEventDispatcher";
import {
createUserMessage,
filterAuthMessages,
isToolCallArray,
isValidMessage,
parseToolResponse,
removePageContext,
} from "./helpers";
interface Args {
sessionId: string | null;
initialMessages: SessionDetailResponse["messages"];
}
export function useChatContainer({ sessionId, initialMessages }: Args) {
const [messages, setMessages] = useState<ChatMessageData[]>([]);
const [streamingChunks, setStreamingChunks] = useState<string[]>([]);
const [hasTextChunks, setHasTextChunks] = useState(false);
const [isStreamingInitiated, setIsStreamingInitiated] = useState(false);
const streamingChunksRef = useRef<string[]>([]);
const { error, sendMessage: sendStreamMessage } = useChatStream();
const isStreaming = isStreamingInitiated || hasTextChunks;
const allMessages = useMemo(() => {
const processedInitialMessages: ChatMessageData[] = [];
// Map to track tool calls by their ID so we can look up tool names for tool responses
const toolCallMap = new Map<string, string>();
for (const msg of initialMessages) {
if (!isValidMessage(msg)) {
console.warn("Invalid message structure from backend:", msg);
continue;
}
let content = String(msg.content || "");
const role = String(msg.role || "assistant").toLowerCase();
const toolCalls = msg.tool_calls;
const timestamp = msg.timestamp
? new Date(msg.timestamp as string)
: undefined;
// Remove page context from user messages when loading existing sessions
if (role === "user") {
content = removePageContext(content);
// Skip user messages that become empty after removing page context
if (!content.trim()) {
continue;
}
processedInitialMessages.push({
type: "message",
role: "user",
content,
timestamp,
});
continue;
}
// Handle assistant messages first (before tool messages) to build tool call map
if (role === "assistant") {
// Strip <thinking> tags from content
content = content
.replace(/<thinking>[\s\S]*?<\/thinking>/gi, "")
.trim();
// If assistant has tool calls, create tool_call messages for each
if (toolCalls && isToolCallArray(toolCalls) && toolCalls.length > 0) {
for (const toolCall of toolCalls) {
const toolName = toolCall.function.name;
const toolId = toolCall.id;
// Store tool name for later lookup
toolCallMap.set(toolId, toolName);
try {
const args = JSON.parse(toolCall.function.arguments || "{}");
processedInitialMessages.push({
type: "tool_call",
toolId,
toolName,
arguments: args,
timestamp,
});
} catch (err) {
console.warn("Failed to parse tool call arguments:", err);
processedInitialMessages.push({
type: "tool_call",
toolId,
toolName,
arguments: {},
timestamp,
});
}
}
// Only add assistant message if there's content after stripping thinking tags
if (content.trim()) {
processedInitialMessages.push({
type: "message",
role: "assistant",
content,
timestamp,
});
}
} else if (content.trim()) {
// Assistant message without tool calls, but with content
processedInitialMessages.push({
type: "message",
role: "assistant",
content,
timestamp,
});
}
continue;
}
// Handle tool messages - look up tool name from tool call map
if (role === "tool") {
const toolCallId = (msg.tool_call_id as string) || "";
const toolName = toolCallMap.get(toolCallId) || "unknown";
const toolResponse = parseToolResponse(
content,
toolCallId,
toolName,
timestamp,
);
if (toolResponse) {
processedInitialMessages.push(toolResponse);
}
continue;
}
// Handle other message types (system, etc.)
if (content.trim()) {
processedInitialMessages.push({
type: "message",
role: role as "user" | "assistant" | "system",
content,
timestamp,
});
}
}
return [...processedInitialMessages, ...messages];
}, [initialMessages, messages]);
const sendMessage = useCallback(
async function sendMessage(
content: string,
isUserMessage: boolean = true,
context?: { url: string; content: string },
) {
if (!sessionId) {
console.error("Cannot send message: no session ID");
return;
}
if (isUserMessage) {
const userMessage = createUserMessage(content);
setMessages((prev) => [...filterAuthMessages(prev), userMessage]);
} else {
setMessages((prev) => filterAuthMessages(prev));
}
setStreamingChunks([]);
streamingChunksRef.current = [];
setHasTextChunks(false);
setIsStreamingInitiated(true);
const dispatcher = createStreamEventDispatcher({
setHasTextChunks,
setStreamingChunks,
streamingChunksRef,
setMessages,
sessionId,
setIsStreamingInitiated,
});
try {
await sendStreamMessage(
sessionId,
content,
dispatcher,
isUserMessage,
context,
);
} catch (err) {
console.error("Failed to send message:", err);
setIsStreamingInitiated(false);
const errorMessage =
err instanceof Error ? err.message : "Failed to send message";
toast.error("Failed to send message", {
description: errorMessage,
});
}
},
[sessionId, sendStreamMessage],
);
return {
messages: allMessages,
streamingChunks,
isStreaming,
error,
sendMessage,
};
}

View File

@@ -0,0 +1,149 @@
import { Text } from "@/components/atoms/Text/Text";
import { CredentialsInput } from "@/components/contextual/CredentialsInput/CredentialsInput";
import type { BlockIOCredentialsSubSchema } from "@/lib/autogpt-server-api";
import { cn } from "@/lib/utils";
import { CheckIcon, RobotIcon, WarningIcon } from "@phosphor-icons/react";
import { useEffect, useRef } from "react";
import { useChatCredentialsSetup } from "./useChatCredentialsSetup";
export interface CredentialInfo {
provider: string;
providerName: string;
credentialType: "api_key" | "oauth2" | "user_password" | "host_scoped";
title: string;
scopes?: string[];
}
interface Props {
credentials: CredentialInfo[];
agentName?: string;
message: string;
onAllCredentialsComplete: () => void;
onCancel: () => void;
className?: string;
}
function createSchemaFromCredentialInfo(
credential: CredentialInfo,
): BlockIOCredentialsSubSchema {
return {
type: "object",
properties: {},
credentials_provider: [credential.provider],
credentials_types: [credential.credentialType],
credentials_scopes: credential.scopes,
discriminator: undefined,
discriminator_mapping: undefined,
discriminator_values: undefined,
};
}
export function ChatCredentialsSetup({
credentials,
agentName: _agentName,
message,
onAllCredentialsComplete,
onCancel: _onCancel,
}: Props) {
const { selectedCredentials, isAllComplete, handleCredentialSelect } =
useChatCredentialsSetup(credentials);
// Track if we've already called completion to prevent double calls
const hasCalledCompleteRef = useRef(false);
// Reset the completion flag when credentials change (new credential setup flow)
useEffect(
function resetCompletionFlag() {
hasCalledCompleteRef.current = false;
},
[credentials],
);
// Auto-call completion when all credentials are configured
useEffect(
function autoCompleteWhenReady() {
if (isAllComplete && !hasCalledCompleteRef.current) {
hasCalledCompleteRef.current = true;
onAllCredentialsComplete();
}
},
[isAllComplete, onAllCredentialsComplete],
);
return (
<div className="group relative flex w-full justify-start gap-3 px-4 py-3">
<div className="flex w-full max-w-3xl gap-3">
<div className="flex-shrink-0">
<div className="flex h-7 w-7 items-center justify-center rounded-lg bg-indigo-500">
<RobotIcon className="h-4 w-4 text-indigo-50" />
</div>
</div>
<div className="flex min-w-0 flex-1 flex-col">
<div className="group relative min-w-20 overflow-hidden rounded-xl border border-slate-100 bg-slate-50/20 px-6 py-2.5 text-sm leading-relaxed backdrop-blur-xl">
<div className="absolute inset-0 bg-gradient-to-br from-slate-200/20 via-slate-300/10 to-transparent" />
<div className="relative z-10 space-y-3 text-slate-900">
<div>
<Text variant="h4" className="mb-1 text-slate-900">
Credentials Required
</Text>
<Text variant="small" className="text-slate-600">
{message}
</Text>
</div>
<div className="space-y-3">
{credentials.map((cred, index) => {
const schema = createSchemaFromCredentialInfo(cred);
const isSelected = !!selectedCredentials[cred.provider];
return (
<div
key={`${cred.provider}-${index}`}
className={cn(
"relative rounded-lg border p-3",
isSelected
? "border-green-500 bg-green-50/50"
: "border-slate-200 bg-white/50",
)}
>
<div className="mb-2 flex items-center gap-2">
{isSelected ? (
<CheckIcon
size={16}
className="text-green-500"
weight="bold"
/>
) : (
<WarningIcon
size={16}
className="text-slate-500"
weight="bold"
/>
)}
<Text
variant="small"
className="font-semibold text-slate-900"
>
{cred.providerName}
</Text>
</div>
<CredentialsInput
schema={schema}
selectedCredentials={selectedCredentials[cred.provider]}
onSelectCredentials={(credMeta) =>
handleCredentialSelect(cred.provider, credMeta)
}
/>
</div>
);
})}
</div>
</div>
</div>
</div>
</div>
</div>
);
}

Some files were not shown because too many files have changed in this diff Show More