Compare commits

...

3 Commits

Author SHA1 Message Date
Nicholas Tindle
e651781e01 Merge branch 'master' into aarushikansal/finetuning-blocks 2024-08-04 22:19:37 -07:00
Aarushi
e43af9066d fix file creation 2024-07-23 22:09:23 +01:00
Aarushi
614cfbe94f finetune block 2024-07-23 21:23:27 +01:00
2 changed files with 104 additions and 0 deletions

View File

@@ -0,0 +1,103 @@
from typing import Any, List
import json
import tempfile
import openai
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import BlockSecret, SecretField
class FinetuneBlock(Block):
class Input(BlockSchema):
api_key: BlockSecret = SecretField(key="openai_api_key", description="OpenAI API key")
model: str = "gpt-3.5-turbo"
training_data: str
validation_split: float = 0.2
n_epochs: int = 3
batch_size: int = 1
learning_rate_multiplier: float = 0.3
class Output(BlockSchema):
job_id: str
status: str
error: str
def __init__(self):
super().__init__(
id="b9a8c7d6-e5f4-3g2h-1i0j-k9l8m7n6o5p4",
description="Create and start an OpenAI fine-tuning job with JSONL formatted data",
categories={BlockCategory.LLM, BlockCategory.TRAINING},
input_schema=FinetuneBlock.Input,
output_schema=FinetuneBlock.Output,
test_input={
"api_key": "sk-test123",
"model": "gpt-3.5-turbo",
"training_data": '{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "What\'s the capital of France?"}, {"role": "assistant", "content": "Paris, as if everyone doesn\'t know that already."}]}\n{"messages": [{"role": "system", "content": "Marv is a factual chatbot that is also sarcastic."}, {"role": "user", "content": "Who wrote \'Romeo and Juliet\'?"}, {"role": "assistant", "content": "Oh, just some guy named William Shakespeare. Ever heard of him?"}]}'
},
test_output=[("job_id", "ft-abc123"), ("status", "created")],
test_mock={"create_fine_tuning_job": lambda *args, **kwargs: {"id": "ft-abc123", "status": "created"}}
)
@staticmethod
def split_data(data: str, validation_split: float) -> tuple[str, str]:
lines = data.strip().split('\n')
split_index = int(len(lines) * (1 - validation_split))
return '\n'.join(lines[:split_index]), '\n'.join(lines[split_index:])
@staticmethod
def create_temp_file(data: str) -> str:
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix='.jsonl') as temp_file:
temp_file.write(data)
return temp_file.name
@staticmethod
def create_fine_tuning_job(api_key: str, model: str, training_data: str, validation_data: str, n_epochs: int, learning_rate_multiplier: int,
batch_size: int) -> dict:
openai.api_key = api_key
training_file_path = FinetuneBlock.create_temp_file(training_data)
validation_file_path = FinetuneBlock.create_temp_file(validation_data)
training_file = openai.files.create(
file=open(training_file_path, "rb"),
purpose='fine-tune'
)
job_params = {
"training_file": training_file.id,
"model": model,
"hyperparameters": {
"n_epochs": n_epochs,
"batch_size": batch_size,
"learning_rate_multiplier": learning_rate_multiplier
}
}
if validation_data:
validation_file = openai.files.create(
file=open(validation_file_path, "rb"),
purpose='fine-tune'
)
job_params["validation_file"] = validation_file.id
job = openai.fine_tuning.jobs.create(**job_params)
return job
def run(self, input_data: Input) -> BlockOutput:
try:
# Split data into training and validation sets
training_data, validation_data = self.split_data(input_data.training_data, input_data.validation_split)
job = self.create_fine_tuning_job(
api_key=input_data.api_key.get_secret_value(),
model=input_data.model,
training_data=training_data,
validation_data=validation_data,
n_epochs=input_data.n_epochs,
learning_rate_multiplier=input_data.learning_rate_multiplier,
batch_size=input_data.batch_size
)
yield "job_id", job.id
yield "status", job.status
except Exception as e:
yield "error", str(e)

View File

@@ -22,6 +22,7 @@ class BlockCategory(Enum):
TEXT = "Block that processes text data."
SEARCH = "Block that searches or extracts information from the internet."
BASIC = "Block that performs basic operations."
TRAINING = "Block that performs finetuning actions"
INPUT_OUTPUT = "Block that interacts with input/output of the graph."
def dict(self) -> dict[str, str]: