Compare commits

..

25 Commits

Author SHA1 Message Date
Nicholas Tindle
e0784f8f6b refactor(forge): simplify deeply nested error handling in Anthropic provider
- Extract _get_tool_error_message helper method
- Replace 20+ levels of nesting with simple for loop
- Improve readability of tool_result construction
- Update benchmark poetry.lock

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 00:15:33 -06:00
Nicholas Tindle
3040f39136 feat(forge): modernize web search with tiered provider system
Replace basic DuckDuckGo-only search with a modern tiered system:

1. Tavily (primary) - AI-optimized results with content extraction
   - AI-generated answer summaries
   - Relevance scoring
   - Full page content extraction via search_and_extract command

2. Serper (secondary) - Fast, cheap Google SERP results
   - $0.30-1.00 per 1K queries
   - Real Google results without scraping

3. DDGS multi-engine (fallback) - Free, no API key required
   - Automatic fallback chain: DuckDuckGo → Bing → Brave → Google → etc.
   - 8 search backends supported

Key changes:
- Upgrade duckduckgo-search to ddgs v9.10 (renamed successor package)
- Add Tavily and Serper API integrations
- Implement automatic provider selection and fallback chain
- Add search_and_extract command for research with content extraction
- Add TAVILY_API_KEY and SERPER_API_KEY to env templates
- Update benchmark httpx constraint for ddgs compatibility
- 23 comprehensive tests for all providers and fallback scenarios

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 00:06:42 -06:00
Nicholas Tindle
515504c604 fix(classic): resolve pyright type errors in original_autogpt
- Change Agent class to use ActionProposal instead of OneShotAgentActionProposal
  to support multiple prompt strategy types
- Widen display_thoughts parameter type from AssistantThoughts to ModelWithSummary
- Fix speak attribute access in agent_protocol_server with hasattr check
- Add type: ignore comments for intentional thoughts field overrides in strategies
- Remove unused OneShotAgentActionProposal import

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:53:23 -06:00
Nicholas Tindle
18edeaeaf4 fix(classic): fix linting and formatting errors across codebase
- Fix 32+ flake8 E501 (line too long) errors by shortening descriptions
- Remove unused import in todo.py
- Fix test_todo.py argument order (config= keyword)
- Add type annotations to fix pyright errors where straightforward
- Add noqa comments for flake8 false positives in __init__.py
- Remove unused nonlocal declarations in main.py
- Run black and isort to fix formatting
- Update CLAUDE.md with improved linting commands

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:37:28 -06:00
Nicholas Tindle
44182aff9c feat(classic): add strategy benchmark test harness for CI
- Add test_prompt_strategies.py harness to compare prompt strategies
- Add pytest wrapper (test_strategy_benchmark.py) for CI integration
- Fix serve command (remove invalid --port flag, use AP_SERVER_PORT env)
- Fix test category (interface -> general)
- Add aiohttp-retry dependency for agbenchmark
- Add pytest markers: slow, integration, requires_agent

Usage:
  poetry run python agbenchmark_config/test_prompt_strategies.py --quick
  poetry run pytest tests/integration/test_strategy_benchmark.py -v

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:36:19 -06:00
Nicholas Tindle
864c5a7846 fix(classic): approve+feedback now executes command then sends feedback
Previously, when a user selected "Once" or "Always" with feedback (via Tab),
the command was NOT executed because UserFeedbackProvided was raised before
checking the approval scope. This fix changes the architecture from
exception-based to return-value-based.

Changes:
- Add PermissionCheckResult class with allowed, scope, and feedback fields
- Change check_command() to return PermissionCheckResult instead of bool
- Update prompt_fn signature to return (ApprovalScope, feedback) tuple
- Add pending_user_feedback mechanism to EpisodicActionHistory
- Update execute() to handle feedback after successful command execution
- Feedback message explicitly states "Command executed successfully"
- Add on_auto_approve callback for displaying auto-approved commands
- Add comprehensive tests for approval/denial with feedback scenarios

Behavior:
- Once + feedback → Execute command, then send feedback to agent
- Always + feedback → Execute command, save permission, send feedback
- Deny + feedback → Don't execute, send feedback to agent

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 22:32:43 -06:00
Nicholas Tindle
699fffb1a8 feat(classic): add Rich interactive selector for command approval
Adds a custom Rich-based interactive selector for the command approval
workflow. Features include:
- Arrow key navigation for selecting approval options
- Tab to add context to any selection (e.g., "Once + also check file x")
- Dedicated inline feedback option with shadow placeholder text
- Quick select with number keys 1-5
- Works within existing asyncio event loop (no prompt_toolkit dependency)

Also adds UIProvider abstraction pattern for future UI implementations.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 21:49:43 -06:00
Nicholas Tindle
f0641c2d26 fix(classic): auto-advance plan steps in Plan-Execute strategy
The strategy was stuck in a loop because it tracked plan steps but never
advanced them - the record_step_success() method existed but was never
called by the agent's execution loop.

Fix by using a _pending_step_advance flag to track when an action has
been proposed. On the next parse_response_content() call, advance the
previous step before processing the new response. This keeps step
tracking self-contained in the strategy without requiring agent changes.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 21:14:16 -06:00
Nicholas Tindle
94b6f74c95 feat(classic): add multiple prompt strategies for agent reasoning
Implement four new prompt strategies based on research papers:

- ReWOO: Reasoning Without Observation (5x token efficiency)
- Plan-and-Execute: Separate planning from execution phases
- Reflexion: Verbal reinforcement learning with episodic memory
- Tree of Thoughts: Deliberate problem solving with tree search

Each strategy extends a new BaseMultiStepPromptStrategy base class
with shared utilities. Strategies are selectable via PROMPT_STRATEGY
environment variable or config.prompt_strategy setting.

Fix JSONSchema generation issue where Optional/Union types created
anyOf schemas without direct type field - resolved by storing
plan/phase state in strategy instances rather than ActionProposal.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 20:33:10 -06:00
Nicholas Tindle
46aabab3ea feat(classic): upgrade to Python 3.12+ with CI testing on 3.12, 3.13, 3.14
- Update Python version constraint from ^3.10 to ^3.12 in all pyproject.toml
- Update classifiers to reflect Python 3.12, 3.13, 3.14 support
- Update dependencies for Python 3.13+ compatibility:
  - chromadb: ^0.4.10 -> ^1.4.0
  - numpy: >=1.26.0,<2.0.0 -> >=2.0.0
  - watchdog: 4.0.0 -> ^6.0.0
  - spacy: ^3.0.0 -> ^3.8.0 (numpy 2.x compatibility)
  - en-core-web-sm model: 3.7.1 -> 3.8.0
  - httpx (benchmark): ^0.24.0 -> ^0.27.0
- Update tool configuration:
  - Black target-version: py310 -> py312
  - Pyright pythonVersion: 3.10 -> 3.12
- Update Dockerfiles to use Python 3.12
- Update CI workflows to test on Python 3.12, 3.13, and 3.14
- Regenerate all poetry.lock files

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 20:25:11 -06:00
Nicholas Tindle
0a65df5102 fix(classic): always use native tool calling, fix N/A command loop
- Remove openai_functions config option - native tool calling is now always enabled
- Remove use_functions_api from BaseAgentConfiguration and prompt strategy
- Add use_prefill config to disable prefill for Anthropic (prefill + tools incompatible)
- Update anthropic dependency to ^0.45.0 for tools API support
- Simplify prompt strategy to always expect tool_calls from LLM response

This fixes the N/A command loop bug where models would output "N/A" as a
command name when function calling was disabled. With native tool calling
always enabled, models are forced to pick from valid tools only.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 19:54:40 -06:00
Nicholas Tindle
6fbd208fe3 chore: ignore .claude/settings.local.json in all directories
Update gitignore to use glob pattern for settings.local.json files
in any .claude directory. Also untrack the existing file.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:54:42 -06:00
Nicholas Tindle
8fc174ca87 refactor(classic): simplify log format by removing timestamps
Remove asctime from log formats since terminal output already has
timestamps from the logging infrastructure. Makes logs cleaner
and easier to read.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:47 -06:00
Nicholas Tindle
cacc89790f feat(classic): improve AutoGPT configuration and setup
Environment loading:
- Search for .env in multiple locations (cwd, ~/.autogpt, ~/.config/autogpt)
- Allows running autogpt from any directory
- Document search order in .env.template

Setup simplification:
- Remove interactive AI settings revision (was broken/unused)
- Simplify to just printing current settings
- Clean up unused imports

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:38 -06:00
Nicholas Tindle
b9113bee02 feat(classic): enhance existing components with new capabilities
CodeExecutorComponent:
- Add timeout and env_vars parameters to execution commands
- Add execute_shell_popen for streaming output
- Improve error handling with CodeTimeoutError

FileManagerComponent:
- Add file_info, file_search, file_copy, file_move commands
- Add directory_create, directory_list_tree commands
- Better path validation and error messages

GitOperationsComponent:
- Add git_log, git_show, git_branch commands
- Add git_stash, git_stash_pop, git_stash_list commands
- Add git_cherry_pick, git_revert, git_reset commands
- Add git_remote, git_fetch, git_pull, git_push commands

UserInteractionComponent:
- Add ask_multiple_choice for structured options
- Add notify_user for non-blocking notifications
- Add confirm_action for yes/no confirmations

WebSearchComponent:
- Minor error handling improvements

WebSeleniumComponent:
- Add get_page_content, execute_javascript commands
- Add take_element_screenshot command
- Add wait_for_element, scroll_page commands
- Improve element interaction reliability

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:27 -06:00
Nicholas Tindle
3f65da03e7 feat(classic): add new exception types for enhanced error handling
Add specialized exception classes for better error reporting:
- CodeTimeoutError: For code execution timeouts
- HTTPError: For HTTP request failures with status code/URL
- DataProcessingError: For JSON/CSV processing errors

Each exception includes helpful hints for users.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:10 -06:00
Nicholas Tindle
9e96d11b2d feat(classic): add utility components for agent capabilities
Add 6 new utility components to expand agent functionality:

- ArchiveHandlerComponent: ZIP/TAR archive operations (create, extract, list)
- ClipboardComponent: In-memory clipboard for copy/paste operations
- DataProcessorComponent: CSV/JSON data manipulation and analysis
- HTTPClientComponent: HTTP requests (GET, POST, PUT, DELETE)
- MathUtilsComponent: Mathematical calculations and statistics
- TextUtilsComponent: Text processing (regex, diff, encoding, hashing)

All components follow the forge component pattern with:
- CommandProvider for exposing commands
- DirectiveProvider for resources/best practices
- Comprehensive parameter validation

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:50:52 -06:00
Nicholas Tindle
4c264b7ae9 feat(classic): add TodoComponent with LLM-powered decomposition
Add a task management component modeled after Claude Code's TodoWrite:
- TodoItem with recursive sub_items for hierarchical task structure
- todo_write: atomic list replacement with sub-items support
- todo_read: retrieve current todos with nested structure
- todo_clear: clear all todos
- todo_decompose: use smart LLM to break down tasks into sub-steps

Features:
- Hierarchical task tracking with independent status per sub-item
- MessageProvider shows todos in LLM context with proper indentation
- DirectiveProvider adds best practices for task management
- Graceful fallback when LLM provider not configured

Integrates with:
- original_autogpt Agent (full LLM decomposition support)
- ForgeAgent (basic task tracking, no decomposition)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:49:48 -06:00
Nicholas Tindle
0adbc0bd05 fix(classic): update CI for removed frontend and helper scripts
Remove references to deleted files (./run, cli.py, setup.py, frontend/)
from CI workflows. Replace ./run agent start with direct poetry commands
to start agent servers in background.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:41:11 -06:00
Nicholas Tindle
8f3291bc92 feat(classic): add workspace permissions system for agent commands
Add a layered permission system that controls agent command execution:

- Create autogpt.yaml in .autogpt/ folder with default allow/deny rules
- File operations in workspace allowed by default
- Sensitive files (.env, .key, .pem) blocked by default
- Dangerous shell commands (sudo, rm -rf) blocked by default
- Interactive prompts for unknown commands (y=agent, Y=workspace, n=deny)
- Agent-specific permissions stored in .autogpt/agents/{id}/permissions.yaml

Files added:
- forge/forge/config/workspace_settings.py - Pydantic models for settings
- forge/forge/permissions.py - CommandPermissionManager with pattern matching

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:39:33 -06:00
Nicholas Tindle
7a20de880d chore: add .autogpt/ to gitignore
The .autogpt/ directory is where AutoGPT stores agent data when running
from any directory. This should not be committed to version control.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:02:47 -06:00
Nicholas Tindle
ef8a6d2528 feat(classic): make AutoGPT installable and runnable from any directory
Add --workspace option to CLI that defaults to current working directory,
allowing users to run `autogpt` from any folder. Agent data is now stored
in `.autogpt/` subdirectory of the workspace instead of a hardcoded path.

Changes:
- Add -w/--workspace CLI option to run and serve commands
- Remove dependency on forge package location for PROJECT_ROOT
- Update config to use workspace instead of project_root
- Store agent data in .autogpt/ within workspace directory
- Update pyproject.toml files with proper PyPI metadata
- Fix outdated tests to match current implementation

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:00:36 -06:00
Nicholas Tindle
fd66be2aaa chore(classic): remove unneeded files and add CLAUDE.md docs
- Remove deprecated Flutter frontend (replaced by autogpt_platform)
- Remove shell scripts (run, setup, autogpt.sh, etc.)
- Remove tutorials (outdated)
- Remove CLI-USAGE.md and FORGE-QUICKSTART.md
- Add CLAUDE.md files for Claude Code guidance

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 16:17:35 -06:00
Nicholas Tindle
ae2cc97dc4 feat(classic): add modern Anthropic models and fix deprecated API
- Add Claude 3.5 v2, Claude 4 Sonnet, Claude 4 Opus, and Claude 4.5 Opus models
- Add rolling aliases (CLAUDE_SONNET, CLAUDE_OPUS, CLAUDE_HAIKU)
- Fix deprecated beta.tools.messages.create API call to use standard messages.create
- Update anthropic SDK from ^0.25.1 to >=0.40,<1.0

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 16:15:16 -06:00
Nicholas Tindle
ea521eed26 wip: add supprot for new openai models (non working) 2025-12-26 10:02:17 -06:00
588 changed files with 31148 additions and 182903 deletions

View File

@@ -29,7 +29,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
python-version: ["3.12", "3.13", "3.14"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}

View File

@@ -11,9 +11,6 @@ on:
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
pull_request:
branches: [ master, dev, release-* ]
@@ -22,9 +19,6 @@ on:
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
defaults:
@@ -59,10 +53,15 @@ jobs:
run: |
curl -sSL https://install.python-poetry.org | python -
- name: Install dependencies
working-directory: ./classic/${{ matrix.agent-name }}/
run: poetry install
- name: Run regression tests
run: |
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
poetry run serve &
sleep 10 # Wait for server to start
poetry run agbenchmark --mock --test=BasicRetrieval --test=Battleship --test=WebArenaTask_0
poetry run agbenchmark --test=WriteFile
env:

View File

@@ -23,7 +23,7 @@ defaults:
shell: bash
env:
min-python-version: '3.10'
min-python-version: '3.12'
jobs:
test:
@@ -33,7 +33,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
python-version: ["3.12", "3.13", "3.14"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
defaults:
@@ -128,11 +128,16 @@ jobs:
run: |
curl -sSL https://install.python-poetry.org | python -
- name: Install agent dependencies
working-directory: classic/${{ matrix.agent-name }}
run: poetry install
- name: Run regression tests
working-directory: classic
run: |
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
poetry run python -m forge &
sleep 10 # Wait for server to start
set +e # Ignore non-zero exit codes and continue execution
echo "Running the following command: poetry run agbenchmark --maintain --mock"

View File

@@ -31,7 +31,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
python-version: ["3.12", "3.13", "3.14"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}

View File

@@ -1,60 +0,0 @@
name: Classic - Frontend CI/CD
on:
push:
branches:
- master
- dev
- 'ci-test*' # This will match any branch that starts with "ci-test"
paths:
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
pull_request:
paths:
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
jobs:
build:
permissions:
contents: write
pull-requests: write
runs-on: ubuntu-latest
env:
BUILD_BRANCH: ${{ format('classic-frontend-build/{0}', github.ref_name) }}
steps:
- name: Checkout Repo
uses: actions/checkout@v4
- name: Setup Flutter
uses: subosito/flutter-action@v2
with:
flutter-version: '3.13.2'
- name: Build Flutter to Web
run: |
cd classic/frontend
flutter build web --base-href /app/
# - name: Commit and Push to ${{ env.BUILD_BRANCH }}
# if: github.event_name == 'push'
# run: |
# git config --local user.email "action@github.com"
# git config --local user.name "GitHub Action"
# git add classic/frontend/build/web
# git checkout -B ${{ env.BUILD_BRANCH }}
# git commit -m "Update frontend build to ${GITHUB_SHA:0:7}" -a
# git push -f origin ${{ env.BUILD_BRANCH }}
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}
branch: ${{ env.BUILD_BRANCH }}
delete-branch: true
title: "Update frontend build in `${{ github.ref_name }}`"
body: "This PR updates the frontend build based on commit ${{ github.sha }}."
commit-message: "Update frontend build based on commit ${{ github.sha }}"

View File

@@ -59,7 +59,7 @@ jobs:
needs: get-changed-parts
runs-on: ubuntu-latest
env:
min-python-version: "3.10"
min-python-version: "3.12"
strategy:
matrix:
@@ -111,7 +111,7 @@ jobs:
needs: get-changed-parts
runs-on: ubuntu-latest
env:
min-python-version: "3.10"
min-python-version: "3.12"
strategy:
matrix:

3
.gitignore vendored
View File

@@ -3,6 +3,7 @@
classic/original_autogpt/keys.py
classic/original_autogpt/*.json
auto_gpt_workspace/*
.autogpt/
*.mpeg
.env
# Root .env files
@@ -177,5 +178,5 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
.claude/settings.local.json
**/.claude/settings.local.json
/autogpt_platform/backend/logs

View File

@@ -6,11 +6,12 @@ start-core:
# Stop core services
stop-core:
docker compose stop
docker compose stop deps
reset-db:
docker compose stop db
rm -rf db/docker/volumes/db/data
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
# View logs for core services
logs-core:
@@ -57,4 +58,4 @@ help:
@echo " run-backend - Run the backend FastAPI server"
@echo " run-frontend - Run the frontend Next.js development server"
@echo " test-data - Run the test data creator"
@echo " load-store-agents - Load store agents from agents/ folder into test database"
@echo " load-store-agents - Load store agents from agents/ folder into test database"

View File

@@ -12,11 +12,7 @@ class ChatConfig(BaseSettings):
# OpenAI API Configuration
model: str = Field(
default="anthropic/claude-opus-4.5", description="Default model to use"
)
title_model: str = Field(
default="openai/gpt-4o-mini",
description="Model to use for generating session titles (should be fast/cheap)",
default="qwen/qwen3-235b-a22b-2507", description="Default model to use"
)
api_key: str | None = Field(default=None, description="OpenAI API key")
base_url: str | None = Field(
@@ -76,31 +72,8 @@ class ChatConfig(BaseSettings):
v = "https://openrouter.ai/api/v1"
return v
# Prompt paths for different contexts
PROMPT_PATHS: dict[str, str] = {
"default": "prompts/chat_system.md",
"onboarding": "prompts/onboarding_system.md",
}
def get_system_prompt_for_type(
self, prompt_type: str = "default", **template_vars
) -> str:
"""Load and render a system prompt by type.
Args:
prompt_type: The type of prompt to load ("default" or "onboarding")
**template_vars: Variables to substitute in the template
Returns:
Rendered system prompt string
"""
prompt_path_str = self.PROMPT_PATHS.get(
prompt_type, self.PROMPT_PATHS["default"]
)
return self._load_prompt_from_path(prompt_path_str, **template_vars)
def get_system_prompt(self, **template_vars) -> str:
"""Load and render the default system prompt from file.
"""Load and render the system prompt from file.
Args:
**template_vars: Variables to substitute in the template
@@ -109,21 +82,9 @@ class ChatConfig(BaseSettings):
Rendered system prompt string
"""
return self._load_prompt_from_path(self.system_prompt_path, **template_vars)
def _load_prompt_from_path(self, prompt_path_str: str, **template_vars) -> str:
"""Load and render a system prompt from a given path.
Args:
prompt_path_str: Path to the prompt file relative to chat module
**template_vars: Variables to substitute in the template
Returns:
Rendered system prompt string
"""
# Get the path relative to this module
module_dir = Path(__file__).parent
prompt_path = module_dir / prompt_path_str
prompt_path = module_dir / self.system_prompt_path
# Check for .j2 extension first (Jinja2 template)
j2_path = Path(str(prompt_path) + ".j2")

View File

@@ -1,215 +0,0 @@
"""Database operations for chat sessions."""
import logging
from datetime import UTC, datetime
from typing import Any, cast
from prisma.models import ChatMessage as PrismaChatMessage
from prisma.models import ChatSession as PrismaChatSession
from prisma.types import (
ChatMessageCreateInput,
ChatSessionCreateInput,
ChatSessionUpdateInput,
)
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
async def get_chat_session(session_id: str) -> PrismaChatSession | None:
"""Get a chat session by ID from the database."""
session = await PrismaChatSession.prisma().find_unique(
where={"id": session_id},
include={"Messages": True},
)
if session and session.Messages:
# Sort messages by sequence in Python since Prisma doesn't support order_by in include
session.Messages.sort(key=lambda m: m.sequence)
return session
async def create_chat_session(
session_id: str,
user_id: str | None,
) -> PrismaChatSession:
"""Create a new chat session in the database."""
data = ChatSessionCreateInput(
id=session_id,
userId=user_id,
credentials=SafeJson({}),
successfulAgentRuns=SafeJson({}),
successfulAgentSchedules=SafeJson({}),
)
return await PrismaChatSession.prisma().create(
data=data,
include={"Messages": True},
)
async def update_chat_session(
session_id: str,
credentials: dict[str, Any] | None = None,
successful_agent_runs: dict[str, Any] | None = None,
successful_agent_schedules: dict[str, Any] | None = None,
total_prompt_tokens: int | None = None,
total_completion_tokens: int | None = None,
title: str | None = None,
) -> PrismaChatSession | None:
"""Update a chat session's metadata."""
data: ChatSessionUpdateInput = {"updatedAt": datetime.now(UTC)}
if credentials is not None:
data["credentials"] = SafeJson(credentials)
if successful_agent_runs is not None:
data["successfulAgentRuns"] = SafeJson(successful_agent_runs)
if successful_agent_schedules is not None:
data["successfulAgentSchedules"] = SafeJson(successful_agent_schedules)
if total_prompt_tokens is not None:
data["totalPromptTokens"] = total_prompt_tokens
if total_completion_tokens is not None:
data["totalCompletionTokens"] = total_completion_tokens
if title is not None:
data["title"] = title
session = await PrismaChatSession.prisma().update(
where={"id": session_id},
data=data,
include={"Messages": True},
)
if session and session.Messages:
session.Messages.sort(key=lambda m: m.sequence)
return session
async def add_chat_message(
session_id: str,
role: str,
sequence: int,
content: str | None = None,
name: str | None = None,
tool_call_id: str | None = None,
refusal: str | None = None,
tool_calls: list[dict[str, Any]] | None = None,
function_call: dict[str, Any] | None = None,
) -> PrismaChatMessage:
"""Add a message to a chat session."""
# Build the input dict dynamically - only include optional fields when they
# have values, as Prisma TypedDict validation fails when optional fields
# are explicitly set to None
data: dict[str, Any] = {
"Session": {"connect": {"id": session_id}},
"role": role,
"sequence": sequence,
}
# Add optional string fields
if content is not None:
data["content"] = content
if name is not None:
data["name"] = name
if tool_call_id is not None:
data["toolCallId"] = tool_call_id
if refusal is not None:
data["refusal"] = refusal
# Add optional JSON fields only when they have values
if tool_calls is not None:
data["toolCalls"] = SafeJson(tool_calls)
if function_call is not None:
data["functionCall"] = SafeJson(function_call)
# Update session's updatedAt timestamp
await PrismaChatSession.prisma().update(
where={"id": session_id},
data={"updatedAt": datetime.now(UTC)},
)
return await PrismaChatMessage.prisma().create(
data=cast(ChatMessageCreateInput, data)
)
async def add_chat_messages_batch(
session_id: str,
messages: list[dict[str, Any]],
start_sequence: int,
) -> list[PrismaChatMessage]:
"""Add multiple messages to a chat session in a batch."""
if not messages:
return []
created_messages = []
for i, msg in enumerate(messages):
# Build the input dict dynamically - only include optional JSON fields
# when they have values, as Prisma TypedDict validation fails when
# optional fields are explicitly set to None
data: dict[str, Any] = {
"Session": {"connect": {"id": session_id}},
"role": msg["role"],
"sequence": start_sequence + i,
}
# Add optional string fields
if msg.get("content") is not None:
data["content"] = msg["content"]
if msg.get("name") is not None:
data["name"] = msg["name"]
if msg.get("tool_call_id") is not None:
data["toolCallId"] = msg["tool_call_id"]
if msg.get("refusal") is not None:
data["refusal"] = msg["refusal"]
# Add optional JSON fields only when they have values
if msg.get("tool_calls") is not None:
data["toolCalls"] = SafeJson(msg["tool_calls"])
if msg.get("function_call") is not None:
data["functionCall"] = SafeJson(msg["function_call"])
created = await PrismaChatMessage.prisma().create(
data=cast(ChatMessageCreateInput, data)
)
created_messages.append(created)
# Update session's updatedAt timestamp
await PrismaChatSession.prisma().update(
where={"id": session_id},
data={"updatedAt": datetime.now(UTC)},
)
return created_messages
async def get_user_chat_sessions(
user_id: str,
limit: int = 50,
offset: int = 0,
) -> list[PrismaChatSession]:
"""Get chat sessions for a user, ordered by most recent."""
return await PrismaChatSession.prisma().find_many(
where={"userId": user_id},
order={"updatedAt": "desc"},
take=limit,
skip=offset,
)
async def get_user_session_count(user_id: str) -> int:
"""Get the total number of chat sessions for a user."""
return await PrismaChatSession.prisma().count(where={"userId": user_id})
async def delete_chat_session(session_id: str) -> bool:
"""Delete a chat session and all its messages."""
try:
await PrismaChatSession.prisma().delete(where={"id": session_id})
return True
except Exception as e:
logger.error(f"Failed to delete chat session {session_id}: {e}")
return False
async def get_chat_session_message_count(session_id: str) -> int:
"""Get the number of messages in a chat session."""
count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id})
return count

View File

@@ -16,15 +16,11 @@ from openai.types.chat.chat_completion_message_tool_call_param import (
ChatCompletionMessageToolCallParam,
Function,
)
from prisma.models import ChatMessage as PrismaChatMessage
from prisma.models import ChatSession as PrismaChatSession
from pydantic import BaseModel
from backend.data.redis_client import get_redis_async
from backend.util import json
from backend.util.exceptions import RedisError
from . import db as chat_db
from .config import ChatConfig
logger = logging.getLogger(__name__)
@@ -50,7 +46,6 @@ class Usage(BaseModel):
class ChatSession(BaseModel):
session_id: str
user_id: str | None
title: str | None = None
messages: list[ChatMessage]
usage: list[Usage]
credentials: dict[str, dict] = {} # Map of provider -> credential metadata
@@ -64,7 +59,6 @@ class ChatSession(BaseModel):
return ChatSession(
session_id=str(uuid.uuid4()),
user_id=user_id,
title=None,
messages=[],
usage=[],
credentials={},
@@ -72,85 +66,6 @@ class ChatSession(BaseModel):
updated_at=datetime.now(UTC),
)
@staticmethod
def from_prisma(
prisma_session: PrismaChatSession,
prisma_messages: list[PrismaChatMessage] | None = None,
) -> "ChatSession":
"""Convert Prisma models to Pydantic ChatSession."""
messages = []
if prisma_messages:
for msg in prisma_messages:
tool_calls = None
if msg.toolCalls:
tool_calls = (
json.loads(msg.toolCalls)
if isinstance(msg.toolCalls, str)
else msg.toolCalls
)
function_call = None
if msg.functionCall:
function_call = (
json.loads(msg.functionCall)
if isinstance(msg.functionCall, str)
else msg.functionCall
)
messages.append(
ChatMessage(
role=msg.role,
content=msg.content,
name=msg.name,
tool_call_id=msg.toolCallId,
refusal=msg.refusal,
tool_calls=tool_calls,
function_call=function_call,
)
)
# Parse JSON fields from Prisma
credentials = (
json.loads(prisma_session.credentials)
if isinstance(prisma_session.credentials, str)
else prisma_session.credentials or {}
)
successful_agent_runs = (
json.loads(prisma_session.successfulAgentRuns)
if isinstance(prisma_session.successfulAgentRuns, str)
else prisma_session.successfulAgentRuns or {}
)
successful_agent_schedules = (
json.loads(prisma_session.successfulAgentSchedules)
if isinstance(prisma_session.successfulAgentSchedules, str)
else prisma_session.successfulAgentSchedules or {}
)
# Calculate usage from token counts
usage = []
if prisma_session.totalPromptTokens or prisma_session.totalCompletionTokens:
usage.append(
Usage(
prompt_tokens=prisma_session.totalPromptTokens or 0,
completion_tokens=prisma_session.totalCompletionTokens or 0,
total_tokens=(prisma_session.totalPromptTokens or 0)
+ (prisma_session.totalCompletionTokens or 0),
)
)
return ChatSession(
session_id=prisma_session.id,
user_id=prisma_session.userId,
title=prisma_session.title,
messages=messages,
usage=usage,
credentials=credentials,
started_at=prisma_session.createdAt,
updated_at=prisma_session.updatedAt,
successful_agent_runs=successful_agent_runs,
successful_agent_schedules=successful_agent_schedules,
)
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
messages = []
for message in self.messages:
@@ -240,234 +155,50 @@ class ChatSession(BaseModel):
return messages
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
"""Get a chat session from Redis cache."""
redis_key = f"chat:session:{session_id}"
async_redis = await get_redis_async()
raw_session: bytes | None = await async_redis.get(redis_key)
if raw_session is None:
return None
try:
session = ChatSession.model_validate_json(raw_session)
logger.info(
f"Loading session {session_id} from cache: "
f"message_count={len(session.messages)}, "
f"roles={[m.role for m in session.messages]}"
)
return session
except Exception as e:
logger.error(f"Failed to deserialize session {session_id}: {e}", exc_info=True)
raise RedisError(f"Corrupted session data for {session_id}") from e
async def _cache_session(session: ChatSession) -> None:
"""Cache a chat session in Redis."""
redis_key = f"chat:session:{session.session_id}"
async_redis = await get_redis_async()
await async_redis.setex(redis_key, config.session_ttl, session.model_dump_json())
async def _get_session_from_db(session_id: str) -> ChatSession | None:
"""Get a chat session from the database."""
prisma_session = await chat_db.get_chat_session(session_id)
if not prisma_session:
return None
messages = prisma_session.Messages
logger.info(
f"Loading session {session_id} from DB: "
f"has_messages={messages is not None}, "
f"message_count={len(messages) if messages else 0}, "
f"roles={[m.role for m in messages] if messages else []}"
)
return ChatSession.from_prisma(prisma_session, messages)
async def _save_session_to_db(
session: ChatSession, existing_message_count: int
) -> None:
"""Save or update a chat session in the database."""
# Check if session exists in DB
existing = await chat_db.get_chat_session(session.session_id)
if not existing:
# Create new session
await chat_db.create_chat_session(
session_id=session.session_id,
user_id=session.user_id,
)
existing_message_count = 0
# Calculate total tokens from usage
total_prompt = sum(u.prompt_tokens for u in session.usage)
total_completion = sum(u.completion_tokens for u in session.usage)
# Update session metadata
await chat_db.update_chat_session(
session_id=session.session_id,
credentials=session.credentials,
successful_agent_runs=session.successful_agent_runs,
successful_agent_schedules=session.successful_agent_schedules,
total_prompt_tokens=total_prompt,
total_completion_tokens=total_completion,
)
# Add new messages (only those after existing count)
new_messages = session.messages[existing_message_count:]
if new_messages:
messages_data = []
for msg in new_messages:
messages_data.append(
{
"role": msg.role,
"content": msg.content,
"name": msg.name,
"tool_call_id": msg.tool_call_id,
"refusal": msg.refusal,
"tool_calls": msg.tool_calls,
"function_call": msg.function_call,
}
)
logger.info(
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
f"roles={[m['role'] for m in messages_data]}, "
f"start_sequence={existing_message_count}"
)
await chat_db.add_chat_messages_batch(
session_id=session.session_id,
messages=messages_data,
start_sequence=existing_message_count,
)
async def get_chat_session(
session_id: str,
user_id: str | None,
) -> ChatSession | None:
"""Get a chat session by ID.
"""Get a chat session by ID."""
redis_key = f"chat:session:{session_id}"
async_redis = await get_redis_async()
Checks Redis cache first, falls back to database if not found.
Caches database results back to Redis.
"""
# Try cache first
try:
session = await _get_session_from_cache(session_id)
if session:
# Verify user ownership
if session.user_id is not None and session.user_id != user_id:
logger.warning(
f"Session {session_id} user id mismatch: {session.user_id} != {user_id}"
)
return None
return session
except RedisError:
logger.warning(f"Cache error for session {session_id}, trying database")
except Exception as e:
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
raw_session: bytes | None = await async_redis.get(redis_key)
# Fall back to database
logger.info(f"Session {session_id} not in cache, checking database")
session = await _get_session_from_db(session_id)
if session is None:
logger.warning(f"Session {session_id} not found in cache or database")
if raw_session is None:
logger.warning(f"Session {session_id} not found in Redis")
return None
# Verify user ownership
try:
session = ChatSession.model_validate_json(raw_session)
except Exception as e:
logger.error(f"Failed to deserialize session {session_id}: {e}", exc_info=True)
raise RedisError(f"Corrupted session data for {session_id}") from e
if session.user_id is not None and session.user_id != user_id:
logger.warning(
f"Session {session_id} user id mismatch: {session.user_id} != {user_id}"
)
return None
# Cache the session from DB
try:
await _cache_session(session)
logger.info(f"Cached session {session_id} from database")
except Exception as e:
logger.warning(f"Failed to cache session {session_id}: {e}")
return session
async def upsert_chat_session(
session: ChatSession,
) -> ChatSession:
"""Update a chat session in both cache and database."""
# Get existing message count from DB for incremental saves
existing_message_count = await chat_db.get_chat_session_message_count(
session.session_id
"""Update a chat session with the given messages."""
redis_key = f"chat:session:{session.session_id}"
async_redis = await get_redis_async()
resp = await async_redis.setex(
redis_key, config.session_ttl, session.model_dump_json()
)
# Save to database
try:
await _save_session_to_db(session, existing_message_count)
except Exception as e:
logger.error(f"Failed to save session {session.session_id} to database: {e}")
# Continue to cache even if DB fails
# Save to cache
try:
await _cache_session(session)
except Exception as e:
if not resp:
raise RedisError(
f"Failed to persist chat session {session.session_id} to Redis: {e}"
) from e
return session
async def create_chat_session(user_id: str | None) -> ChatSession:
"""Create a new chat session and persist it."""
session = ChatSession.new(user_id)
# Create in database first
try:
await chat_db.create_chat_session(
session_id=session.session_id,
user_id=user_id,
f"Failed to persist chat session {session.session_id} to Redis: {resp}"
)
except Exception as e:
logger.error(f"Failed to create session in database: {e}")
# Continue even if DB fails - cache will still work
# Cache the session
try:
await _cache_session(session)
except Exception as e:
logger.warning(f"Failed to cache new session: {e}")
return session
async def get_user_sessions(
user_id: str,
limit: int = 50,
offset: int = 0,
) -> list[ChatSession]:
"""Get all chat sessions for a user from the database."""
prisma_sessions = await chat_db.get_user_chat_sessions(user_id, limit, offset)
sessions = []
for prisma_session in prisma_sessions:
# Convert without messages for listing (lighter weight)
sessions.append(ChatSession.from_prisma(prisma_session, None))
return sessions
async def delete_chat_session(session_id: str) -> bool:
"""Delete a chat session from both cache and database."""
# Delete from cache
try:
redis_key = f"chat:session:{session_id}"
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
logger.warning(f"Failed to delete session {session_id} from cache: {e}")
# Delete from database
return await chat_db.delete_chat_session(session_id)

View File

@@ -68,50 +68,3 @@ async def test_chatsession_redis_storage_user_id_mismatch():
s2 = await get_chat_session(s.session_id, None)
assert s2 is None
@pytest.mark.asyncio(loop_scope="session")
async def test_chatsession_db_storage():
"""Test that messages are correctly saved to and loaded from DB (not cache)."""
from backend.data.redis_client import get_redis_async
# Create session with messages including assistant message
s = ChatSession.new(user_id=None)
s.messages = messages # Contains user, assistant, and tool messages
assert s.session_id is not None, "Session id is not set"
# Upsert to save to both cache and DB
s = await upsert_chat_session(s)
# Clear the Redis cache to force DB load
redis_key = f"chat:session:{s.session_id}"
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
# Load from DB (cache was cleared)
s2 = await get_chat_session(
session_id=s.session_id,
user_id=s.user_id,
)
assert s2 is not None, "Session not found after loading from DB"
assert len(s2.messages) == len(
s.messages
), f"Message count mismatch: expected {len(s.messages)}, got {len(s2.messages)}"
# Verify all roles are present
roles = [m.role for m in s2.messages]
assert "user" in roles, f"User message missing. Roles found: {roles}"
assert "assistant" in roles, f"Assistant message missing. Roles found: {roles}"
assert "tool" in roles, f"Tool message missing. Roles found: {roles}"
# Verify message content
for orig, loaded in zip(s.messages, s2.messages):
assert orig.role == loaded.role, f"Role mismatch: {orig.role} != {loaded.role}"
assert (
orig.content == loaded.content
), f"Content mismatch for {orig.role}: {orig.content} != {loaded.content}"
if orig.tool_calls:
assert (
loaded.tool_calls is not None
), f"Tool calls missing for {orig.role} message"
assert len(orig.tool_calls) == len(loaded.tool_calls)

View File

@@ -1,80 +1,12 @@
You are Otto, an AI Co-Pilot and Forward Deployed Engineer for AutoGPT, an AI Business Automation tool. Your mission is to help users quickly find, create, and set up AutoGPT agents to solve their business problems.
You are Otto, an AI Co-Pilot and Forward Deployed Engineer for AutoGPT, an AI Business Automation tool. Your mission is to help users quickly find and set up AutoGPT agents to solve their business problems.
Here are the functions available to you:
<functions>
**Understanding & Discovery:**
1. **add_understanding** - Save information about the user's business context (use this as you learn about them)
2. **find_agent** - Search the marketplace for pre-built agents that solve the user's problem
3. **find_library_agent** - Search the user's personal library of saved agents
4. **find_block** - Search for individual blocks (building components for agents)
5. **search_platform_docs** - Search AutoGPT documentation for help
**Agent Creation & Editing:**
6. **create_agent** - Create a new custom agent from scratch based on user requirements
7. **edit_agent** - Modify an existing agent (add/remove blocks, change configuration)
**Execution & Output:**
8. **run_agent** - Run or schedule an agent (automatically handles setup)
9. **run_block** - Run a single block directly without creating an agent
10. **agent_output** - Get the output/results from a running or completed agent execution
1. **find_agent** - Search for agents that solve the user's problem
2. **run_agent** - Run or schedule an agent (automatically handles setup)
</functions>
## ALWAYS GET THE USER'S NAME
**This is critical:** If you don't know the user's name, ask for it in your first response. Use a friendly, natural approach:
- "Hi! I'm Otto. What's your name?"
- "Hey there! Before we dive in, what should I call you?"
Once you have their name, immediately save it with `add_understanding(user_name="...")` and use it throughout the conversation.
## BUILDING USER UNDERSTANDING
**If no User Business Context is provided below**, gather information naturally during conversation - don't interrogate them.
**Key information to gather (in priority order):**
1. Their name (ALWAYS first if unknown)
2. Their job title and role
3. Their business/company and industry
4. Pain points and what they want to automate
5. Tools they currently use
**How to gather this information:**
- Ask naturally as part of helping them (e.g., "What's your role?" or "What industry are you in?")
- When they share information, immediately save it using `add_understanding`
- Don't ask all questions at once - spread them across the conversation
- Prioritize understanding their immediate problem first
**Example:**
```
User: "I need help automating my social media"
Otto: I can help with that! I'm Otto - what's your name?
User: "I'm Sarah"
Otto: [calls add_understanding with user_name="Sarah"]
Nice to meet you, Sarah! What's your role - are you a social media manager or business owner?
User: "I'm the marketing director at a fintech startup"
Otto: [calls add_understanding with job_title="Marketing Director", industry="fintech", business_size="startup"]
Great! Let me find social media automation agents for you.
[calls find_agent with query="social media automation marketing"]
```
## WHEN TO USE WHICH TOOL
**Finding existing agents:**
- `find_agent` - Search the marketplace for pre-built agents others have created
- `find_library_agent` - Search agents the user has already saved to their library
**Creating/editing agents:**
- `create_agent` - When user wants a custom agent that doesn't exist, or has specific requirements
- `edit_agent` - When user wants to modify an existing agent (change inputs, add blocks, etc.)
**Running agents:**
- `run_agent` - To execute an agent (handles credentials and inputs automatically)
- `agent_output` - To check the results of a running or completed agent execution
**Direct execution:**
- `run_block` - Run a single block directly without needing a full agent
## HOW run_agent WORKS
The `run_agent` tool automatically handles the entire setup flow:
@@ -89,61 +21,49 @@ Parameters:
- `use_defaults`: Set to `true` to run with default values (only after user confirms)
- `schedule_name` + `cron`: For scheduled execution
## HOW create_agent WORKS
Use `create_agent` when the user wants to build a custom automation:
- Describe what the agent should do
- The tool will create the agent structure with appropriate blocks
- Returns the agent ID for further editing or running
## HOW agent_output WORKS
Use `agent_output` to get results from agent executions:
- Pass the execution_id from a run_agent response
- Returns the current status and any outputs produced
- Useful for checking if an agent has completed and what it produced
## WORKFLOW
1. **Get their name** - If unknown, ask for it first
2. **Understand context** - Ask 1-2 questions about their problem while helping
3. **Find or create** - Use find_agent for existing solutions, create_agent for custom needs
4. **Set up and run** - Use run_agent to execute, agent_output to get results
1. **find_agent** - Search for agents that solve the user's problem
2. **run_agent** (first call, no inputs) - Get available inputs for the agent
3. **Ask user** what values they want to use OR if they want to use defaults
4. **run_agent** (second call) - Either with `inputs={...}` or `use_defaults=true`
## YOUR APPROACH
**Step 1: Greet and Identify**
- If you don't know their name, ask for it
- Be friendly and conversational
**Step 2: Understand the Problem**
**Step 1: Understand the Problem**
- Ask maximum 1-2 targeted questions
- Focus on: What business problem are they solving?
- If they want to create/edit an agent, understand what it should do
- Move quickly to searching for solutions
**Step 3: Find or Create**
- For existing solutions: Use `find_agent` with relevant keywords
- For custom needs: Use `create_agent` with their requirements
- For modifications: Use `edit_agent` on an existing agent
**Step 2: Find Agents**
- Use `find_agent` immediately with relevant keywords
- Suggest the best option from search results
- Explain briefly how it solves their problem
**Step 4: Execute**
- Call `run_agent` without inputs first to see what's available
- Ask user what values they want or if defaults are okay
- Call `run_agent` again with inputs or `use_defaults=true`
- Use `agent_output` to check results when needed
**Step 3: Get Agent Inputs**
- Call `run_agent(username_agent_slug="creator/agent-name")` without inputs
- This returns the available inputs (required and optional)
- Present these to the user and ask what values they want
## USING add_understanding
**Step 4: Run with User's Choice**
- If user provides values: `run_agent(username_agent_slug="...", inputs={...})`
- If user says "use defaults": `run_agent(username_agent_slug="...", use_defaults=true)`
- On success, share the agent link with the user
Call `add_understanding` whenever you learn something about the user:
**For Scheduled Execution:**
- Add `schedule_name` and `cron` parameters
- Example: `run_agent(username_agent_slug="...", inputs={...}, schedule_name="Daily Report", cron="0 9 * * *")`
**User info:** `user_name`, `job_title`
**Business:** `business_name`, `industry`, `business_size` (1-10, 11-50, 51-200, 201-1000, 1000+), `user_role` (decision maker, implementer, end user)
**Processes:** `key_workflows` (array), `daily_activities` (array)
**Pain points:** `pain_points` (array), `bottlenecks` (array), `manual_tasks` (array), `automation_goals` (array)
**Tools:** `current_software` (array), `existing_automation` (array)
**Other:** `additional_notes`
## FUNCTION CALL FORMAT
Example: `add_understanding(user_name="Sarah", job_title="Marketing Director", industry="fintech")`
To call a function, use this exact format:
`<function_call>function_name(parameter="value")</function_call>`
Examples:
- `<function_call>find_agent(query="social media automation")</function_call>`
- `<function_call>run_agent(username_agent_slug="creator/agent-name")</function_call>` (get inputs)
- `<function_call>run_agent(username_agent_slug="creator/agent-name", inputs={"topic": "AI news"})</function_call>`
- `<function_call>run_agent(username_agent_slug="creator/agent-name", use_defaults=true)</function_call>`
## KEY RULES
@@ -153,12 +73,8 @@ Example: `add_understanding(user_name="Sarah", job_title="Marketing Director", i
- Don't run agents without first showing available inputs to the user
- Don't use `use_defaults=true` without user explicitly confirming
- Don't write responses longer than 3 sentences
- Don't interrogate users with many questions - gather info naturally
**What You DO:**
- ALWAYS ask for user's name if you don't have it
- Save user information with `add_understanding` as you learn it
- Use their name when addressing them
- Always call run_agent first without inputs to see what's available
- Ask user what values they want OR if they want to use defaults
- Keep all responses to maximum 3 sentences
@@ -171,22 +87,18 @@ Example: `add_understanding(user_name="Sarah", job_title="Marketing Director", i
## RESPONSE STRUCTURE
Before responding, wrap your analysis in <thinking> tags to systematically plan your approach:
- Check if you know the user's name - if not, ask for it
- Check if you have user context - if not, plan to gather some naturally
- Extract the key business problem or request from the user's message
- Determine what function call (if any) you need to make next
- Plan your response to stay under the 3-sentence maximum
Example interaction:
```
User: "Hi, I want to build an agent that monitors my competitors"
Otto: <thinking>I don't know this user's name. I should ask for it while acknowledging their request.</thinking>
Hi! I'm Otto and I'd love to help you build a competitor monitoring agent. What's your name?
User: "I'm Mike"
Otto: [calls add_understanding with user_name="Mike"]
<thinking>Now I know Mike wants competitor monitoring. I should search for existing agents first.</thinking>
Great to meet you, Mike! Let me search for competitor monitoring agents.
[calls find_agent with query="competitor monitoring analysis"]
User: "Run the AI news agent for me"
Otto: <function_call>run_agent(username_agent_slug="autogpt/ai-news")</function_call>
[Tool returns: Agent accepts inputs - Required: topic. Optional: num_articles (default: 5)]
Otto: The AI News agent needs a topic. What topic would you like news about, or should I use the defaults?
User: "Use defaults"
Otto: <function_call>run_agent(username_agent_slug="autogpt/ai-news", use_defaults=true)</function_call>
```
KEEP ANSWERS TO 3 SENTENCES

View File

@@ -1,155 +0,0 @@
You are Otto, an AI Co-Pilot helping new users get started with AutoGPT, an AI Business Automation platform. Your mission is to welcome them, learn about their needs, and help them run their first successful agent.
Here are the functions available to you:
<functions>
**Understanding & Discovery:**
1. **add_understanding** - Save information about the user's business context (use this as you learn about them)
2. **find_agent** - Search the marketplace for pre-built agents that solve the user's problem
3. **find_library_agent** - Search the user's personal library of saved agents
4. **find_block** - Search for individual blocks (building components for agents)
5. **search_platform_docs** - Search AutoGPT documentation for help
**Agent Creation & Editing:**
6. **create_agent** - Create a new custom agent from scratch based on user requirements
7. **edit_agent** - Modify an existing agent (add/remove blocks, change configuration)
**Execution & Output:**
8. **run_agent** - Run or schedule an agent (automatically handles setup)
9. **run_block** - Run a single block directly without creating an agent
10. **agent_output** - Get the output/results from a running or completed agent execution
</functions>
## YOUR ONBOARDING MISSION
You are guiding a new user through their first experience with AutoGPT. Your goal is to:
1. Welcome them warmly and get their name
2. Learn about them and their business
3. Find or create an agent that solves a real problem for them
4. Get that agent running successfully
5. Celebrate their success and point them to next steps
## PHASE 1: WELCOME & INTRODUCTION
**Start every conversation by:**
- Giving a warm, friendly greeting
- Introducing yourself as Otto, their AI assistant
- Asking for their name immediately
**Example opening:**
```
Hi! I'm Otto, your AI assistant. Welcome to AutoGPT! I'm here to help you set up your first automation. What's your name?
```
Once you have their name, save it immediately with `add_understanding(user_name="...")` and use it throughout.
## PHASE 2: DISCOVERY
**After getting their name, learn about them:**
- What's their role/job title?
- What industry/business are they in?
- What's one thing they'd love to automate?
**Keep it conversational - don't interrogate. Example:**
```
Nice to meet you, Sarah! What do you do for work, and what's one task you wish you could automate?
```
Save everything you learn with `add_understanding`.
## PHASE 3: FIND OR CREATE AN AGENT
**Once you understand their need:**
- Search for existing agents with `find_agent`
- Present the best match and explain how it helps them
- If nothing fits, offer to create a custom agent with `create_agent`
**Be enthusiastic about the solution:**
```
I found a great agent for you! The "Social Media Scheduler" can automatically post to your accounts on a schedule. Want to try it?
```
## PHASE 4: SETUP & RUN
**Guide them through running the agent:**
1. Call `run_agent` without inputs first to see what's needed
2. Explain each input in simple terms
3. Ask what values they want to use
4. Run the agent with their inputs or defaults
**Don't mention credentials** - the UI handles that automatically.
## PHASE 5: CELEBRATE & HANDOFF
**After successful execution:**
- Congratulate them on their first automation!
- Tell them where to find this agent (their Library)
- Mention they can explore more agents in the Marketplace
- Offer to help with anything else
**Example:**
```
You did it! Your first agent is running. You can find it anytime in your Library. Ready to explore more automations?
```
## KEY RULES
**What You DON'T Do:**
- Don't help with login (frontend handles this)
- Don't mention credentials (UI handles automatically)
- Don't run agents without showing inputs first
- Don't use `use_defaults=true` without explicit confirmation
- Don't write responses longer than 3 sentences
- Don't overwhelm with too many questions at once
**What You DO:**
- ALWAYS get the user's name first
- Be warm, encouraging, and celebratory
- Save info with `add_understanding` as you learn it
- Use their name when addressing them
- Keep responses to maximum 3 sentences
- Make them feel successful at each step
## USING add_understanding
Save information as you learn it:
**User info:** `user_name`, `job_title`
**Business:** `business_name`, `industry`, `business_size`, `user_role`
**Pain points:** `pain_points`, `manual_tasks`, `automation_goals`
**Tools:** `current_software`
Example: `add_understanding(user_name="Sarah", job_title="Marketing Manager", automation_goals=["social media scheduling"])`
## HOW run_agent WORKS
1. **First call** (no inputs) → Shows available inputs
2. **Credentials** → UI handles automatically (don't mention)
3. **Execution** → Run with `inputs={...}` or `use_defaults=true`
## RESPONSE STRUCTURE
Before responding, plan your approach in <thinking> tags:
- What phase am I in? (Welcome/Discovery/Find/Setup/Celebrate)
- Do I know their name? If not, ask for it
- What's the next step to move them forward?
- Keep response under 3 sentences
**Example flow:**
```
User: "Hi"
Otto: <thinking>Phase 1 - I need to welcome them and get their name.</thinking>
Hi! I'm Otto, welcome to AutoGPT! I'm here to help you set up your first automation - what's your name?
User: "I'm Alex"
Otto: [calls add_understanding with user_name="Alex"]
<thinking>Got their name. Phase 2 - learn about them.</thinking>
Great to meet you, Alex! What do you do for work, and what's one task you'd love to automate?
User: "I run an e-commerce store and spend hours on customer support emails"
Otto: [calls add_understanding with industry="e-commerce", pain_points=["customer support emails"]]
<thinking>Phase 3 - search for agents.</thinking>
[calls find_agent with query="customer support email automation"]
```
KEEP ANSWERS TO 3 SENTENCES - Be warm, helpful, and focused on their success!

View File

@@ -26,14 +26,6 @@ router = APIRouter(
# ========== Request/Response Models ==========
class StreamChatRequest(BaseModel):
"""Request model for streaming chat with optional context."""
message: str
is_user_message: bool = True
context: dict[str, str] | None = None # {url: str, content: str}
class CreateSessionResponse(BaseModel):
"""Response model containing information on a newly created chat session."""
@@ -52,64 +44,9 @@ class SessionDetailResponse(BaseModel):
messages: list[dict]
class SessionSummaryResponse(BaseModel):
"""Response model for a session summary (without messages)."""
id: str
created_at: str
updated_at: str
title: str | None = None
class ListSessionsResponse(BaseModel):
"""Response model for listing chat sessions."""
sessions: list[SessionSummaryResponse]
total: int
# ========== Routes ==========
@router.get(
"/sessions",
dependencies=[Security(auth.requires_user)],
)
async def list_sessions(
user_id: Annotated[str, Security(auth.get_user_id)],
limit: int = Query(default=50, ge=1, le=100),
offset: int = Query(default=0, ge=0),
) -> ListSessionsResponse:
"""
List chat sessions for the authenticated user.
Returns a paginated list of chat sessions belonging to the current user,
ordered by most recently updated.
Args:
user_id: The authenticated user's ID.
limit: Maximum number of sessions to return (1-100).
offset: Number of sessions to skip for pagination.
Returns:
ListSessionsResponse: List of session summaries and total count.
"""
sessions = await chat_service.get_user_sessions(user_id, limit, offset)
return ListSessionsResponse(
sessions=[
SessionSummaryResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
updated_at=session.updated_at.isoformat(),
title=None, # TODO: Add title support
)
for session in sessions
],
total=len(sessions),
)
@router.post(
"/sessions",
)
@@ -165,89 +102,26 @@ async def get_session(
session = await chat_service.get_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found")
messages = [message.model_dump() for message in session.messages]
logger.info(
f"Returning session {session_id}: "
f"message_count={len(messages)}, "
f"roles={[m.get('role') for m in messages]}"
)
return SessionDetailResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
updated_at=session.updated_at.isoformat(),
user_id=session.user_id or None,
messages=messages,
)
@router.post(
"/sessions/{session_id}/stream",
)
async def stream_chat_post(
session_id: str,
request: StreamChatRequest,
user_id: str | None = Depends(auth.get_user_id),
):
"""
Stream chat responses for a session (POST with context support).
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
- Text fragments as they are generated
- Tool call UI elements (if invoked)
- Tool execution results
Args:
session_id: The chat session identifier to associate with the streamed messages.
request: Request body containing message, is_user_message, and optional context.
user_id: Optional authenticated user ID.
Returns:
StreamingResponse: SSE-formatted response chunks.
"""
# Validate session exists before starting the stream
# This prevents errors after the response has already started
session = await chat_service.get_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found. ")
if session.user_id is None and user_id is not None:
session = await chat_service.assign_user_to_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
):
yield chunk.to_sse()
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
},
messages=[message.model_dump() for message in session.messages],
)
@router.get(
"/sessions/{session_id}/stream",
)
async def stream_chat_get(
async def stream_chat(
session_id: str,
message: Annotated[str, Query(min_length=1, max_length=10000)],
user_id: str | None = Depends(auth.get_user_id),
is_user_message: bool = Query(default=True),
):
"""
Stream chat responses for a session (GET - legacy endpoint).
Stream chat responses for a session.
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
- Text fragments as they are generated
@@ -319,133 +193,6 @@ async def session_assign_user(
return {"status": "ok"}
# ========== Onboarding Routes ==========
# These routes use a specialized onboarding system prompt
@router.post(
"/onboarding/sessions",
)
async def create_onboarding_session(
user_id: Annotated[str | None, Depends(auth.get_user_id)],
) -> CreateSessionResponse:
"""
Create a new onboarding chat session.
Initiates a new chat session specifically for user onboarding,
using a specialized prompt that guides users through their first
experience with AutoGPT.
Args:
user_id: The optional authenticated user ID parsed from the JWT.
Returns:
CreateSessionResponse: Details of the created onboarding session.
"""
logger.info(
f"Creating onboarding session with user_id: "
f"...{user_id[-8:] if user_id and len(user_id) > 8 else '<redacted>'}"
)
session = await chat_service.create_chat_session(user_id)
return CreateSessionResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
user_id=session.user_id or None,
)
@router.get(
"/onboarding/sessions/{session_id}",
)
async def get_onboarding_session(
session_id: str,
user_id: Annotated[str | None, Depends(auth.get_user_id)],
) -> SessionDetailResponse:
"""
Retrieve the details of an onboarding chat session.
Args:
session_id: The unique identifier for the onboarding session.
user_id: The optional authenticated user ID.
Returns:
SessionDetailResponse: Details for the requested session.
"""
session = await chat_service.get_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found")
messages = [message.model_dump() for message in session.messages]
logger.info(
f"Returning onboarding session {session_id}: "
f"message_count={len(messages)}, "
f"roles={[m.get('role') for m in messages]}"
)
return SessionDetailResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
updated_at=session.updated_at.isoformat(),
user_id=session.user_id or None,
messages=messages,
)
@router.post(
"/onboarding/sessions/{session_id}/stream",
)
async def stream_onboarding_chat(
session_id: str,
request: StreamChatRequest,
user_id: str | None = Depends(auth.get_user_id),
):
"""
Stream onboarding chat responses for a session.
Uses the specialized onboarding system prompt to guide new users
through their first experience with AutoGPT. Streams AI responses
in real time over Server-Sent Events (SSE).
Args:
session_id: The onboarding session identifier.
request: Request body containing message and optional context.
user_id: Optional authenticated user ID.
Returns:
StreamingResponse: SSE-formatted response chunks.
"""
session = await chat_service.get_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found.")
if session.user_id is None and user_id is not None:
session = await chat_service.assign_user_to_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session,
context=request.context,
prompt_type="onboarding", # Use onboarding system prompt
):
yield chunk.to_sse()
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
},
)
# ========== Health Check ==========

View File

@@ -7,17 +7,16 @@ import orjson
from openai import AsyncOpenAI
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam
from backend.data.understanding import (
format_understanding_for_prompt,
get_business_understanding,
)
from backend.util.exceptions import NotFoundError
from . import db as chat_db
from .config import ChatConfig
from .model import ChatMessage, ChatSession, Usage
from .model import create_chat_session as model_create_chat_session
from .model import get_chat_session, upsert_chat_session
from .model import (
ChatMessage,
ChatSession,
Usage,
get_chat_session,
upsert_chat_session,
)
from .response_model import (
StreamBaseResponse,
StreamEnd,
@@ -37,109 +36,15 @@ config = ChatConfig()
client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
async def _is_first_session(user_id: str) -> bool:
"""Check if this is the user's first chat session.
Returns True if the user has 1 or fewer sessions (meaning this is their first).
"""
try:
session_count = await chat_db.get_user_session_count(user_id)
return session_count <= 1
except Exception as e:
logger.warning(f"Failed to check session count for user {user_id}: {e}")
return False # Default to non-onboarding if we can't check
async def _build_system_prompt(
user_id: str | None, prompt_type: str = "default"
) -> str:
"""Build the full system prompt including business understanding if available.
Args:
user_id: The user ID for fetching business understanding
prompt_type: The type of prompt to load ("default" or "onboarding")
If "default" and this is the user's first session, will use "onboarding" instead.
Returns:
The full system prompt with business understanding context if available
"""
# Auto-detect: if using default prompt and this is user's first session, use onboarding
effective_prompt_type = prompt_type
if prompt_type == "default" and user_id:
if await _is_first_session(user_id):
logger.info("First session detected for user, using onboarding prompt")
effective_prompt_type = "onboarding"
# Start with the base system prompt for the specified type
base_prompt = config.get_system_prompt_for_type(effective_prompt_type)
# If user is authenticated, try to fetch their business understanding
if user_id:
try:
understanding = await get_business_understanding(user_id)
if understanding:
context = format_understanding_for_prompt(understanding)
if context:
return (
f"{base_prompt}\n\n---\n\n"
f"{context}\n\n"
"Use this context to provide more personalized recommendations "
"and to better understand the user's business needs when "
"suggesting agents and automations."
)
except Exception as e:
logger.warning(f"Failed to fetch business understanding: {e}")
return base_prompt
async def _generate_session_title(message: str) -> str | None:
"""Generate a concise title for a chat session based on the first message.
Args:
message: The first user message in the session
Returns:
A short title (3-6 words) or None if generation fails
"""
try:
response = await client.chat.completions.create(
model=config.title_model,
messages=[
{
"role": "system",
"content": (
"Generate a very short title (3-6 words) for a chat conversation "
"based on the user's first message. The title should capture the "
"main topic or intent. Return ONLY the title, no quotes or punctuation."
),
},
{"role": "user", "content": message[:500]}, # Limit input length
],
max_tokens=20,
temperature=0.7,
)
title = response.choices[0].message.content
if title:
# Clean up the title
title = title.strip().strip("\"'")
# Limit length
if len(title) > 50:
title = title[:47] + "..."
return title
return None
except Exception as e:
logger.warning(f"Failed to generate session title: {e}")
return None
async def create_chat_session(
user_id: str | None = None,
) -> ChatSession:
"""
Create a new chat session and persist it to the database.
"""
return await model_create_chat_session(user_id)
session = ChatSession.new(user_id)
# Persist the session immediately so it can be used for streaming
return await upsert_chat_session(session)
async def get_session(
@@ -152,19 +57,6 @@ async def get_session(
return await get_chat_session(session_id, user_id)
async def get_user_sessions(
user_id: str,
limit: int = 50,
offset: int = 0,
) -> list[ChatSession]:
"""
Get all chat sessions for a user.
"""
from .model import get_user_sessions as model_get_user_sessions
return await model_get_user_sessions(user_id, limit, offset)
async def assign_user_to_session(
session_id: str,
user_id: str,
@@ -186,8 +78,6 @@ async def stream_chat_completion(
user_id: str | None = None,
retry_count: int = 0,
session: ChatSession | None = None,
context: dict[str, str] | None = None, # {url: str, content: str}
prompt_type: str = "default",
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Main entry point for streaming chat completions with database handling.
@@ -199,7 +89,6 @@ async def stream_chat_completion(
user_message: User's input message
user_id: User ID for authentication (None for anonymous)
session: Optional pre-loaded session object (for recursive calls to avoid Redis refetch)
prompt_type: The type of prompt to use ("default" or "onboarding")
Yields:
StreamBaseResponse objects formatted as SSE
@@ -232,18 +121,9 @@ async def stream_chat_completion(
)
if message:
# Build message content with context if provided
message_content = message
if context and context.get("url") and context.get("content"):
context_text = f"Page URL: {context['url']}\n\nPage Content:\n{context['content']}\n\n---\n\nUser Message: {message}"
message_content = context_text
logger.info(
f"Including page context: URL={context['url']}, content_length={len(context['content'])}"
)
session.messages.append(
ChatMessage(
role="user" if is_user_message else "assistant", content=message_content
role="user" if is_user_message else "assistant", content=message
)
)
logger.info(
@@ -261,32 +141,6 @@ async def stream_chat_completion(
session = await upsert_chat_session(session)
assert session, "Session not found"
# Generate title for new sessions on first user message (non-blocking)
# Check: is_user_message, no title yet, and this is the first user message
if is_user_message and message and not session.title:
user_messages = [m for m in session.messages if m.role == "user"]
if len(user_messages) == 1:
# First user message - generate title in background
import asyncio
async def _update_title():
try:
title = await _generate_session_title(message)
if title:
session.title = title
await upsert_chat_session(session)
logger.info(
f"Generated title for session {session_id}: {title}"
)
except Exception as e:
logger.warning(f"Failed to update session title: {e}")
# Fire and forget - don't block the chat response
asyncio.create_task(_update_title())
# Build system prompt with business understanding
system_prompt = await _build_system_prompt(user_id, prompt_type)
assistant_response = ChatMessage(
role="assistant",
content="",
@@ -305,7 +159,6 @@ async def stream_chat_completion(
async for chunk in _stream_chat_chunks(
session=session,
tools=tools,
system_prompt=system_prompt,
):
if isinstance(chunk, StreamTextChunk):
@@ -426,7 +279,6 @@ async def stream_chat_completion(
user_id=user_id,
retry_count=retry_count + 1,
session=session,
prompt_type=prompt_type,
):
yield chunk
return # Exit after retry to avoid double-saving in finally block
@@ -472,7 +324,6 @@ async def stream_chat_completion(
session_id=session.session_id,
user_id=user_id,
session=session, # Pass session object to avoid Redis refetch
prompt_type=prompt_type,
):
yield chunk
@@ -480,7 +331,6 @@ async def stream_chat_completion(
async def _stream_chat_chunks(
session: ChatSession,
tools: list[ChatCompletionToolParam],
system_prompt: str | None = None,
) -> AsyncGenerator[StreamBaseResponse, None]:
"""
Pure streaming function for OpenAI chat completions with tool calling.
@@ -488,9 +338,9 @@ async def _stream_chat_chunks(
This function is database-agnostic and focuses only on streaming logic.
Args:
session: Chat session with conversation history
tools: Available tools for the model
system_prompt: System prompt to prepend to messages
messages: Conversation context as ChatCompletionMessageParam list
session_id: Session ID
user_id: User ID for tool execution
Yields:
SSE formatted JSON response objects
@@ -500,17 +350,6 @@ async def _stream_chat_chunks(
logger.info("Starting pure chat stream")
# Build messages with system prompt prepended
messages = session.to_openai_messages()
if system_prompt:
from openai.types.chat import ChatCompletionSystemMessageParam
system_message = ChatCompletionSystemMessageParam(
role="system",
content=system_prompt,
)
messages = [system_message] + messages
# Loop to handle tool calls and continue conversation
while True:
try:
@@ -519,7 +358,7 @@ async def _stream_chat_chunks(
# Create the stream with proper types
stream = await client.chat.completions.create(
model=model,
messages=messages,
messages=session.to_openai_messages(),
tools=tools,
tool_choice="auto",
stream=True,
@@ -663,12 +502,8 @@ async def _yield_tool_call(
"""
logger.info(f"Yielding tool call: {tool_calls[yield_idx]}")
# Parse tool call arguments - handle empty arguments gracefully
raw_arguments = tool_calls[yield_idx]["function"]["arguments"]
if raw_arguments:
arguments = orjson.loads(raw_arguments)
else:
arguments = {}
# Parse tool call arguments - exceptions will propagate to caller
arguments = orjson.loads(tool_calls[yield_idx]["function"]["arguments"])
yield StreamToolCall(
tool_id=tool_calls[yield_idx]["id"],

View File

@@ -4,30 +4,21 @@ from openai.types.chat import ChatCompletionToolParam
from backend.api.features.chat.model import ChatSession
from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
from .base import BaseTool
from .find_agent import FindAgentTool
from .find_library_agent import FindLibraryAgentTool
from .run_agent import RunAgentTool
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolExecutionResult
# Initialize tool instances
add_understanding_tool = AddUnderstandingTool()
find_agent_tool = FindAgentTool()
find_library_agent_tool = FindLibraryAgentTool()
run_agent_tool = RunAgentTool()
agent_output_tool = AgentOutputTool()
# Export tools as OpenAI format
tools: list[ChatCompletionToolParam] = [
add_understanding_tool.as_openai_tool(),
find_agent_tool.as_openai_tool(),
find_library_agent_tool.as_openai_tool(),
run_agent_tool.as_openai_tool(),
agent_output_tool.as_openai_tool(),
]
@@ -40,11 +31,8 @@ async def execute_tool(
) -> "StreamToolExecutionResult":
tool_map: dict[str, BaseTool] = {
"add_understanding": add_understanding_tool,
"find_agent": find_agent_tool,
"find_library_agent": find_library_agent_tool,
"run_agent": run_agent_tool,
"agent_output": agent_output_tool,
}
if tool_name not in tool_map:
raise ValueError(f"Tool {tool_name} not found")

View File

@@ -3,7 +3,6 @@ from datetime import UTC, datetime
from os import getenv
import pytest
from prisma.types import ProfileCreateInput
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
@@ -50,13 +49,13 @@ async def setup_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile",
links=[], # Required field - empty array for test profiles
)
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile",
"links": [], # Required field - empty array for test profiles
}
)
# 2. Create a test graph with agent input -> agent output
@@ -173,13 +172,13 @@ async def setup_llm_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile for LLM tests",
links=[], # Required field - empty array for test profiles
)
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile for LLM tests",
"links": [], # Required field - empty array for test profiles
}
)
# 2. Create test OpenAI credentials for the user
@@ -333,13 +332,13 @@ async def setup_firecrawl_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile for Firecrawl tests",
links=[], # Required field - empty array for test profiles
)
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile for Firecrawl tests",
"links": [], # Required field - empty array for test profiles
}
)
# NOTE: We deliberately do NOT create Firecrawl credentials for this user

View File

@@ -1,202 +0,0 @@
"""Tool for capturing user business understanding incrementally."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.data.understanding import (
BusinessUnderstandingInput,
upsert_business_understanding,
)
from .base import BaseTool
from .models import ErrorResponse, ToolResponseBase, UnderstandingUpdatedResponse
logger = logging.getLogger(__name__)
class AddUnderstandingTool(BaseTool):
"""Tool for capturing user's business understanding incrementally."""
@property
def name(self) -> str:
return "add_understanding"
@property
def description(self) -> str:
return """Capture and store information about the user's business context,
workflows, pain points, and automation goals. Call this tool whenever the user
shares information about their business. Each call incrementally adds to the
existing understanding - you don't need to provide all fields at once.
Use this to build a comprehensive profile that helps recommend better agents
and automations for the user's specific needs."""
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"user_name": {
"type": "string",
"description": "The user's name",
},
"job_title": {
"type": "string",
"description": "The user's job title (e.g., 'Marketing Manager', 'CEO', 'Software Engineer')",
},
"business_name": {
"type": "string",
"description": "Name of the user's business or organization",
},
"industry": {
"type": "string",
"description": "Industry or sector (e.g., 'e-commerce', 'healthcare', 'finance')",
},
"business_size": {
"type": "string",
"description": "Company size: '1-10', '11-50', '51-200', '201-1000', or '1000+'",
},
"user_role": {
"type": "string",
"description": "User's role in organization context (e.g., 'decision maker', 'implementer', 'end user')",
},
"key_workflows": {
"type": "array",
"items": {"type": "string"},
"description": "Key business workflows (e.g., 'lead qualification', 'content publishing')",
},
"daily_activities": {
"type": "array",
"items": {"type": "string"},
"description": "Regular daily activities the user performs",
},
"pain_points": {
"type": "array",
"items": {"type": "string"},
"description": "Current pain points or challenges",
},
"bottlenecks": {
"type": "array",
"items": {"type": "string"},
"description": "Process bottlenecks slowing things down",
},
"manual_tasks": {
"type": "array",
"items": {"type": "string"},
"description": "Manual or repetitive tasks that could be automated",
},
"automation_goals": {
"type": "array",
"items": {"type": "string"},
"description": "Desired automation outcomes or goals",
},
"current_software": {
"type": "array",
"items": {"type": "string"},
"description": "Software and tools currently in use",
},
"existing_automation": {
"type": "array",
"items": {"type": "string"},
"description": "Any existing automations or integrations",
},
"additional_notes": {
"type": "string",
"description": "Any other relevant context or notes",
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
"""Requires authentication to store user-specific data."""
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""
Capture and store business understanding incrementally.
Each call merges new data with existing understanding:
- String fields are overwritten if provided
- List fields are appended (with deduplication)
"""
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required to save business understanding.",
session_id=session_id,
)
# Check if any data was provided
if not any(v is not None for v in kwargs.values()):
return ErrorResponse(
message="Please provide at least one field to update.",
session_id=session_id,
)
# Build input model
input_data = BusinessUnderstandingInput(
user_name=kwargs.get("user_name"),
job_title=kwargs.get("job_title"),
business_name=kwargs.get("business_name"),
industry=kwargs.get("industry"),
business_size=kwargs.get("business_size"),
user_role=kwargs.get("user_role"),
key_workflows=kwargs.get("key_workflows"),
daily_activities=kwargs.get("daily_activities"),
pain_points=kwargs.get("pain_points"),
bottlenecks=kwargs.get("bottlenecks"),
manual_tasks=kwargs.get("manual_tasks"),
automation_goals=kwargs.get("automation_goals"),
current_software=kwargs.get("current_software"),
existing_automation=kwargs.get("existing_automation"),
additional_notes=kwargs.get("additional_notes"),
)
# Track which fields were updated
updated_fields = [k for k, v in kwargs.items() if v is not None]
# Upsert with merge
understanding = await upsert_business_understanding(user_id, input_data)
# Build current understanding summary for the response
current_understanding = {
"user_name": understanding.user_name,
"job_title": understanding.job_title,
"business_name": understanding.business_name,
"industry": understanding.industry,
"business_size": understanding.business_size,
"user_role": understanding.user_role,
"key_workflows": understanding.key_workflows,
"daily_activities": understanding.daily_activities,
"pain_points": understanding.pain_points,
"bottlenecks": understanding.bottlenecks,
"manual_tasks": understanding.manual_tasks,
"automation_goals": understanding.automation_goals,
"current_software": understanding.current_software,
"existing_automation": understanding.existing_automation,
"additional_notes": understanding.additional_notes,
}
# Filter out empty values for cleaner response
current_understanding = {
k: v
for k, v in current_understanding.items()
if v is not None and v != [] and v != ""
}
return UnderstandingUpdatedResponse(
message=f"Updated understanding with: {', '.join(updated_fields)}. "
"I now have a better picture of your business context.",
session_id=session_id,
updated_fields=updated_fields,
current_understanding=current_understanding,
)

View File

@@ -1,455 +0,0 @@
"""Tool for retrieving agent execution outputs from user's library."""
import logging
import re
from datetime import datetime, timedelta, timezone
from typing import Any
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
from backend.api.features.library import db as library_db
from backend.api.features.library.model import LibraryAgent
from backend.data import execution as execution_db
from backend.data.execution import ExecutionStatus, GraphExecution, GraphExecutionMeta
from .base import BaseTool
from .models import (
AgentOutputResponse,
ErrorResponse,
ExecutionOutputInfo,
NoResultsResponse,
ToolResponseBase,
)
from .utils import fetch_graph_from_store_slug
logger = logging.getLogger(__name__)
class AgentOutputInput(BaseModel):
"""Input parameters for the agent_output tool."""
agent_name: str = ""
library_agent_id: str = ""
store_slug: str = ""
execution_id: str = ""
run_time: str = "latest"
@field_validator(
"agent_name",
"library_agent_id",
"store_slug",
"execution_id",
"run_time",
mode="before",
)
@classmethod
def strip_strings(cls, v: Any) -> Any:
"""Strip whitespace from string fields."""
return v.strip() if isinstance(v, str) else v
def parse_time_expression(
time_expr: str | None,
) -> tuple[datetime | None, datetime | None]:
"""
Parse time expression into datetime range (start, end).
Supports:
- "latest" or None -> returns (None, None) to get most recent
- "yesterday" -> 24h window for yesterday
- "today" -> Today from midnight
- "last week" / "last 7 days" -> 7 day window
- "last month" / "last 30 days" -> 30 day window
- ISO date "YYYY-MM-DD" -> 24h window for that date
"""
if not time_expr or time_expr.lower() == "latest":
return None, None
now = datetime.now(timezone.utc)
expr = time_expr.lower().strip()
# Relative expressions
if expr == "yesterday":
end = now.replace(hour=0, minute=0, second=0, microsecond=0)
start = end - timedelta(days=1)
return start, end
if expr in ("last week", "last 7 days"):
return now - timedelta(days=7), now
if expr in ("last month", "last 30 days"):
return now - timedelta(days=30), now
if expr == "today":
start = now.replace(hour=0, minute=0, second=0, microsecond=0)
return start, now
# Try ISO date format (YYYY-MM-DD)
date_match = re.match(r"^(\d{4})-(\d{2})-(\d{2})$", expr)
if date_match:
year, month, day = map(int, date_match.groups())
start = datetime(year, month, day, 0, 0, 0, tzinfo=timezone.utc)
end = start + timedelta(days=1)
return start, end
# Try ISO datetime
try:
parsed = datetime.fromisoformat(expr.replace("Z", "+00:00"))
if parsed.tzinfo is None:
parsed = parsed.replace(tzinfo=timezone.utc)
# Return +/- 1 hour window around the specified time
return parsed - timedelta(hours=1), parsed + timedelta(hours=1)
except ValueError:
pass
# Fallback: treat as "latest"
return None, None
class AgentOutputTool(BaseTool):
"""Tool for retrieving execution outputs from user's library agents."""
@property
def name(self) -> str:
return "agent_output"
@property
def description(self) -> str:
return """Retrieve execution outputs from agents in the user's library.
Identify the agent using one of:
- agent_name: Fuzzy search in user's library
- library_agent_id: Exact library agent ID
- store_slug: Marketplace format 'username/agent-name'
Select which run to retrieve using:
- execution_id: Specific execution ID
- run_time: 'latest' (default), 'yesterday', 'last week', or ISO date 'YYYY-MM-DD'
"""
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"agent_name": {
"type": "string",
"description": "Agent name to search for in user's library (fuzzy match)",
},
"library_agent_id": {
"type": "string",
"description": "Exact library agent ID",
},
"store_slug": {
"type": "string",
"description": "Marketplace identifier: 'username/agent-slug'",
},
"execution_id": {
"type": "string",
"description": "Specific execution ID to retrieve",
},
"run_time": {
"type": "string",
"description": (
"Time filter: 'latest', 'yesterday', 'last week', or 'YYYY-MM-DD'"
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return True
async def _resolve_agent(
self,
user_id: str,
agent_name: str | None,
library_agent_id: str | None,
store_slug: str | None,
) -> tuple[LibraryAgent | None, str | None]:
"""
Resolve agent from provided identifiers.
Returns (library_agent, error_message).
"""
# Priority 1: Exact library agent ID
if library_agent_id:
try:
agent = await library_db.get_library_agent(library_agent_id, user_id)
return agent, None
except Exception as e:
logger.warning(f"Failed to get library agent by ID: {e}")
return None, f"Library agent '{library_agent_id}' not found"
# Priority 2: Store slug (username/agent-name)
if store_slug and "/" in store_slug:
username, agent_slug = store_slug.split("/", 1)
graph, _ = await fetch_graph_from_store_slug(username, agent_slug)
if not graph:
return None, f"Agent '{store_slug}' not found in marketplace"
# Find in user's library by graph_id
agent = await library_db.get_library_agent_by_graph_id(user_id, graph.id)
if not agent:
return (
None,
f"Agent '{store_slug}' is not in your library. "
"Add it first to see outputs.",
)
return agent, None
# Priority 3: Fuzzy name search in library
if agent_name:
try:
response = await library_db.list_library_agents(
user_id=user_id,
search_term=agent_name,
page_size=5,
)
if not response.agents:
return (
None,
f"No agents matching '{agent_name}' found in your library",
)
# Return best match (first result from search)
return response.agents[0], None
except Exception as e:
logger.error(f"Error searching library agents: {e}")
return None, f"Error searching for agent: {e}"
return (
None,
"Please specify an agent name, library_agent_id, or store_slug",
)
async def _get_execution(
self,
user_id: str,
graph_id: str,
execution_id: str | None,
time_start: datetime | None,
time_end: datetime | None,
) -> tuple[GraphExecution | None, list[GraphExecutionMeta], str | None]:
"""
Fetch execution(s) based on filters.
Returns (single_execution, available_executions_meta, error_message).
"""
# If specific execution_id provided, fetch it directly
if execution_id:
execution = await execution_db.get_graph_execution(
user_id=user_id,
execution_id=execution_id,
include_node_executions=False,
)
if not execution:
return None, [], f"Execution '{execution_id}' not found"
return execution, [], None
# Get completed executions with time filters
executions = await execution_db.get_graph_executions(
graph_id=graph_id,
user_id=user_id,
statuses=[ExecutionStatus.COMPLETED],
created_time_gte=time_start,
created_time_lte=time_end,
limit=10,
)
if not executions:
return None, [], None # No error, just no executions
# If only one execution, fetch full details
if len(executions) == 1:
full_execution = await execution_db.get_graph_execution(
user_id=user_id,
execution_id=executions[0].id,
include_node_executions=False,
)
return full_execution, [], None
# Multiple executions - return latest with full details, plus list of available
full_execution = await execution_db.get_graph_execution(
user_id=user_id,
execution_id=executions[0].id,
include_node_executions=False,
)
return full_execution, executions, None
def _build_response(
self,
agent: LibraryAgent,
execution: GraphExecution | None,
available_executions: list[GraphExecutionMeta],
session_id: str | None,
) -> AgentOutputResponse:
"""Build the response based on execution data."""
library_agent_link = f"/library/agents/{agent.id}"
if not execution:
return AgentOutputResponse(
message=f"No completed executions found for agent '{agent.name}'",
session_id=session_id,
agent_name=agent.name,
agent_id=agent.graph_id,
library_agent_id=agent.id,
library_agent_link=library_agent_link,
total_executions=0,
)
execution_info = ExecutionOutputInfo(
execution_id=execution.id,
status=execution.status.value,
started_at=execution.started_at,
ended_at=execution.ended_at,
outputs=dict(execution.outputs),
inputs_summary=execution.inputs if execution.inputs else None,
)
available_list = None
if len(available_executions) > 1:
available_list = [
{
"id": e.id,
"status": e.status.value,
"started_at": e.started_at.isoformat() if e.started_at else None,
}
for e in available_executions[:5]
]
message = f"Found execution outputs for agent '{agent.name}'"
if len(available_executions) > 1:
message += (
f". Showing latest of {len(available_executions)} matching executions."
)
return AgentOutputResponse(
message=message,
session_id=session_id,
agent_name=agent.name,
agent_id=agent.graph_id,
library_agent_id=agent.id,
library_agent_link=library_agent_link,
execution=execution_info,
available_executions=available_list,
total_executions=len(available_executions) if available_executions else 1,
)
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute the agent_output tool."""
session_id = session.session_id
# Parse and validate input
try:
input_data = AgentOutputInput(**kwargs)
except Exception as e:
logger.error(f"Invalid input: {e}")
return ErrorResponse(
message="Invalid input parameters",
error=str(e),
session_id=session_id,
)
# Ensure user_id is present (should be guaranteed by requires_auth)
if not user_id:
return ErrorResponse(
message="User authentication required",
session_id=session_id,
)
# Check if at least one identifier is provided
if not any(
[
input_data.agent_name,
input_data.library_agent_id,
input_data.store_slug,
input_data.execution_id,
]
):
return ErrorResponse(
message=(
"Please specify at least one of: agent_name, "
"library_agent_id, store_slug, or execution_id"
),
session_id=session_id,
)
# If only execution_id provided, we need to find the agent differently
if (
input_data.execution_id
and not input_data.agent_name
and not input_data.library_agent_id
and not input_data.store_slug
):
# Fetch execution directly to get graph_id
execution = await execution_db.get_graph_execution(
user_id=user_id,
execution_id=input_data.execution_id,
include_node_executions=False,
)
if not execution:
return ErrorResponse(
message=f"Execution '{input_data.execution_id}' not found",
session_id=session_id,
)
# Find library agent by graph_id
agent = await library_db.get_library_agent_by_graph_id(
user_id, execution.graph_id
)
if not agent:
return NoResultsResponse(
message=(
f"Execution found but agent not in your library. "
f"Graph ID: {execution.graph_id}"
),
session_id=session_id,
suggestions=["Add the agent to your library to see more details"],
)
return self._build_response(agent, execution, [], session_id)
# Resolve agent from identifiers
agent, error = await self._resolve_agent(
user_id=user_id,
agent_name=input_data.agent_name or None,
library_agent_id=input_data.library_agent_id or None,
store_slug=input_data.store_slug or None,
)
if error or not agent:
return NoResultsResponse(
message=error or "Agent not found",
session_id=session_id,
suggestions=[
"Check the agent name or ID",
"Make sure the agent is in your library",
],
)
# Parse time expression
time_start, time_end = parse_time_expression(input_data.run_time)
# Fetch execution(s)
execution, available_executions, exec_error = await self._get_execution(
user_id=user_id,
graph_id=agent.graph_id,
execution_id=input_data.execution_id or None,
time_start=time_start,
time_end=time_end,
)
if exec_error:
return ErrorResponse(
message=exec_error,
session_id=session_id,
)
return self._build_response(agent, execution, available_executions, session_id)

View File

@@ -1,157 +0,0 @@
"""Tool for searching agents in the user's library."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.library import db as library_db
from backend.util.exceptions import DatabaseError
from .base import BaseTool
from .models import (
AgentCarouselResponse,
AgentInfo,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
class FindLibraryAgentTool(BaseTool):
"""Tool for searching agents in the user's library."""
@property
def name(self) -> str:
return "find_library_agent"
@property
def description(self) -> str:
return (
"Search for agents in the user's library. Use this to find agents "
"the user has already added to their library, including agents they "
"created or added from the marketplace."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": (
"Search query to find agents by name or description. "
"Use keywords for best results."
),
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search for agents in the user's library.
Args:
user_id: User ID (required)
session: Chat session
query: Search query
Returns:
AgentCarouselResponse: List of agents found in the library
NoResultsResponse: No agents found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
if not query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="User authentication required to search library",
session_id=session_id,
)
agents = []
try:
logger.info(f"Searching user library for: {query}")
library_results = await library_db.list_library_agents(
user_id=user_id,
search_term=query,
page_size=10,
)
logger.info(
f"Find library agents tool found {len(library_results.agents)} agents"
)
for agent in library_results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
),
)
except DatabaseError as e:
logger.error(f"Error searching library agents: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search library. Please try again.",
error=str(e),
session_id=session_id,
)
if not agents:
return NoResultsResponse(
message=(
f"No agents found matching '{query}' in your library. "
"Try different keywords or use find_agent to search the marketplace."
),
session_id=session_id,
suggestions=[
"Try more general terms",
"Use find_agent to search the marketplace",
"Check your library at /library",
],
)
title = (
f"Found {len(agents)} agent{'s' if len(agents) != 1 else ''} "
f"in your library for '{query}'"
)
return AgentCarouselResponse(
message=(
"Found agents in the user's library. You can provide a link to "
"view an agent at: /library/agents/{agent_id}. "
"Use agent_output to get execution results, or run_agent to execute."
),
title=title,
agents=agents,
count=len(agents),
session_id=session_id,
)

View File

@@ -1,6 +1,5 @@
"""Pydantic models for tool responses."""
from datetime import datetime
from enum import Enum
from typing import Any
@@ -20,15 +19,6 @@ class ResponseType(str, Enum):
ERROR = "error"
NO_RESULTS = "no_results"
SUCCESS = "success"
DOC_SEARCH_RESULTS = "doc_search_results"
AGENT_OUTPUT = "agent_output"
BLOCK_LIST = "block_list"
BLOCK_OUTPUT = "block_output"
UNDERSTANDING_UPDATED = "understanding_updated"
# Agent generation responses
AGENT_PREVIEW = "agent_preview"
AGENT_SAVED = "agent_saved"
CLARIFICATION_NEEDED = "clarification_needed"
# Base response model
@@ -183,128 +173,3 @@ class ErrorResponse(ToolResponseBase):
type: ResponseType = ResponseType.ERROR
error: str | None = None
details: dict[str, Any] | None = None
# Documentation search models
class DocSearchResult(BaseModel):
"""A single documentation search result."""
title: str
path: str
section: str
snippet: str # Short excerpt for UI display
content: str # Full text content for LLM to read and understand
score: float
doc_url: str | None = None
class DocSearchResultsResponse(ToolResponseBase):
"""Response for search_docs tool."""
type: ResponseType = ResponseType.DOC_SEARCH_RESULTS
results: list[DocSearchResult]
count: int
query: str
# Agent output models
class ExecutionOutputInfo(BaseModel):
"""Summary of a single execution's outputs."""
execution_id: str
status: str
started_at: datetime | None = None
ended_at: datetime | None = None
outputs: dict[str, list[Any]]
inputs_summary: dict[str, Any] | None = None
class AgentOutputResponse(ToolResponseBase):
"""Response for agent_output tool."""
type: ResponseType = ResponseType.AGENT_OUTPUT
agent_name: str
agent_id: str
library_agent_id: str | None = None
library_agent_link: str | None = None
execution: ExecutionOutputInfo | None = None
available_executions: list[dict[str, Any]] | None = None
total_executions: int = 0
# Block models
class BlockInfoSummary(BaseModel):
"""Summary of a block for search results."""
id: str
name: str
description: str
categories: list[str]
input_schema: dict[str, Any]
output_schema: dict[str, Any]
class BlockListResponse(ToolResponseBase):
"""Response for find_block tool."""
type: ResponseType = ResponseType.BLOCK_LIST
blocks: list[BlockInfoSummary]
count: int
query: str
class BlockOutputResponse(ToolResponseBase):
"""Response for run_block tool."""
type: ResponseType = ResponseType.BLOCK_OUTPUT
block_id: str
block_name: str
outputs: dict[str, list[Any]]
success: bool = True
# Business understanding models
class UnderstandingUpdatedResponse(ToolResponseBase):
"""Response for add_understanding tool."""
type: ResponseType = ResponseType.UNDERSTANDING_UPDATED
updated_fields: list[str] = Field(default_factory=list)
current_understanding: dict[str, Any] = Field(default_factory=dict)
# Agent generation models
class ClarifyingQuestion(BaseModel):
"""A question that needs user clarification."""
question: str
keyword: str
example: str | None = None
class AgentPreviewResponse(ToolResponseBase):
"""Response for previewing a generated agent before saving."""
type: ResponseType = ResponseType.AGENT_PREVIEW
agent_json: dict[str, Any]
agent_name: str
description: str
node_count: int
link_count: int = 0
class AgentSavedResponse(ToolResponseBase):
"""Response when an agent is saved to the library."""
type: ResponseType = ResponseType.AGENT_SAVED
agent_id: str
agent_name: str
library_agent_id: str
library_agent_link: str
agent_page_link: str # Link to the agent builder/editor page
class ClarificationNeededResponse(ToolResponseBase):
"""Response when the LLM needs more information from the user."""
type: ResponseType = ResponseType.CLARIFICATION_NEEDED
questions: list[ClarifyingQuestion] = Field(default_factory=list)

View File

@@ -7,7 +7,6 @@ from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig
from backend.api.features.chat.model import ChatSession
from backend.api.features.library import db as library_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
from backend.data.user import get_user_by_id
@@ -58,7 +57,6 @@ class RunAgentInput(BaseModel):
"""Input parameters for the run_agent tool."""
username_agent_slug: str = ""
library_agent_id: str = ""
inputs: dict[str, Any] = Field(default_factory=dict)
use_defaults: bool = False
schedule_name: str = ""
@@ -66,12 +64,7 @@ class RunAgentInput(BaseModel):
timezone: str = "UTC"
@field_validator(
"username_agent_slug",
"library_agent_id",
"schedule_name",
"cron",
"timezone",
mode="before",
"username_agent_slug", "schedule_name", "cron", "timezone", mode="before"
)
@classmethod
def strip_strings(cls, v: Any) -> Any:
@@ -97,7 +90,7 @@ class RunAgentTool(BaseTool):
@property
def description(self) -> str:
return """Run or schedule an agent from the marketplace or user's library.
return """Run or schedule an agent from the marketplace.
The tool automatically handles the setup flow:
- Returns missing inputs if required fields are not provided
@@ -105,10 +98,6 @@ class RunAgentTool(BaseTool):
- Executes immediately if all requirements are met
- Schedules execution if cron expression is provided
Identify the agent using either:
- username_agent_slug: Marketplace format 'username/agent-name'
- library_agent_id: ID of an agent in the user's library
For scheduled execution, provide: schedule_name, cron, and optionally timezone."""
@property
@@ -120,10 +109,6 @@ class RunAgentTool(BaseTool):
"type": "string",
"description": "Agent identifier in format 'username/agent-name'",
},
"library_agent_id": {
"type": "string",
"description": "Library agent ID from user's library",
},
"inputs": {
"type": "object",
"description": "Input values for the agent",
@@ -146,7 +131,7 @@ class RunAgentTool(BaseTool):
"description": "IANA timezone for schedule (default: UTC)",
},
},
"required": [],
"required": ["username_agent_slug"],
}
@property
@@ -164,16 +149,10 @@ class RunAgentTool(BaseTool):
params = RunAgentInput(**kwargs)
session_id = session.session_id
# Validate at least one identifier is provided
has_slug = params.username_agent_slug and "/" in params.username_agent_slug
has_library_id = bool(params.library_agent_id)
if not has_slug and not has_library_id:
# Validate agent slug format
if not params.username_agent_slug or "/" not in params.username_agent_slug:
return ErrorResponse(
message=(
"Please provide either a username_agent_slug "
"(format 'username/agent-name') or a library_agent_id"
),
message="Please provide an agent slug in format 'username/agent-name'",
session_id=session_id,
)
@@ -188,41 +167,13 @@ class RunAgentTool(BaseTool):
is_schedule = bool(params.schedule_name or params.cron)
try:
# Step 1: Fetch agent details
graph: GraphModel | None = None
library_agent = None
# Priority: library_agent_id if provided
if has_library_id:
library_agent = await library_db.get_library_agent(
params.library_agent_id, user_id
)
if not library_agent:
return ErrorResponse(
message=f"Library agent '{params.library_agent_id}' not found",
session_id=session_id,
)
# Get the graph from the library agent
from backend.data.graph import get_graph
graph = await get_graph(
library_agent.graph_id,
library_agent.graph_version,
user_id=user_id,
)
else:
# Fetch from marketplace slug
username, agent_name = params.username_agent_slug.split("/", 1)
graph, _ = await fetch_graph_from_store_slug(username, agent_name)
# Step 1: Fetch agent details (always happens first)
username, agent_name = params.username_agent_slug.split("/", 1)
graph, store_agent = await fetch_graph_from_store_slug(username, agent_name)
if not graph:
identifier = (
params.library_agent_id
if has_library_id
else params.username_agent_slug
)
return ErrorResponse(
message=f"Agent '{identifier}' not found",
message=f"Agent '{params.username_agent_slug}' not found in marketplace",
session_id=session_id,
)

View File

@@ -39,7 +39,7 @@ import backend.data.user
import backend.integrations.webhooks.utils
import backend.util.service
import backend.util.settings
from backend.blocks.llm import DEFAULT_LLM_MODEL
from backend.blocks.llm import LlmModel
from backend.data.model import Credentials
from backend.integrations.providers import ProviderName
from backend.monitoring.instrumentation import instrument_fastapi
@@ -113,7 +113,7 @@ async def lifespan_context(app: fastapi.FastAPI):
await backend.data.user.migrate_and_encrypt_user_integrations()
await backend.data.graph.fix_llm_provider_credentials()
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
await backend.data.graph.migrate_llm_models(LlmModel.GPT4O)
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
with launch_darkly_context():

View File

@@ -1,7 +1,6 @@
from typing import Any
from backend.blocks.llm import (
DEFAULT_LLM_MODEL,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
AIBlockBase,
@@ -50,7 +49,7 @@ class AIConditionBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for evaluating the condition.",
advanced=False,
)
@@ -82,7 +81,7 @@ class AIConditionBlock(AIBlockBase):
"condition": "the input is an email address",
"yes_value": "Valid email",
"no_value": "Not an email",
"model": DEFAULT_LLM_MODEL,
"model": LlmModel.GPT4O,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,

View File

@@ -182,10 +182,13 @@ class DataForSeoRelatedKeywordsBlock(Block):
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
# Handle missing key, null value, or valid list value
if isinstance(first_result, dict):
items = first_result.get("items") or []
else:
items = (
first_result.get("items", [])
if isinstance(first_result, dict)
else []
)
# Ensure items is never None
if items is None:
items = []
for item in items:
# Extract keyword_data from the item

File diff suppressed because it is too large Load Diff

View File

@@ -92,9 +92,8 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
O1 = "o1"
O1_MINI = "o1-mini"
# GPT-5 models
GPT5_2 = "gpt-5.2-2025-12-11"
GPT5_1 = "gpt-5.1-2025-11-13"
GPT5 = "gpt-5-2025-08-07"
GPT5_1 = "gpt-5.1-2025-11-13"
GPT5_MINI = "gpt-5-mini-2025-08-07"
GPT5_NANO = "gpt-5-nano-2025-08-07"
GPT5_CHAT = "gpt-5-chat-latest"
@@ -195,9 +194,8 @@ MODEL_METADATA = {
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_CHAT: ModelMetadata("openai", 400000, 16384),
@@ -305,8 +303,6 @@ MODEL_METADATA = {
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
}
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
for model in LlmModel:
if model not in MODEL_METADATA:
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
@@ -794,7 +790,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for answering the prompt.",
advanced=False,
)
@@ -859,7 +855,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
input_schema=AIStructuredResponseGeneratorBlock.Input,
output_schema=AIStructuredResponseGeneratorBlock.Output,
test_input={
"model": DEFAULT_LLM_MODEL,
"model": LlmModel.GPT4O,
"credentials": TEST_CREDENTIALS_INPUT,
"expected_format": {
"key1": "value1",
@@ -1225,7 +1221,7 @@ class AITextGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for answering the prompt.",
advanced=False,
)
@@ -1321,7 +1317,7 @@ class AITextSummarizerBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for summarizing the text.",
)
focus: str = SchemaField(
@@ -1538,7 +1534,7 @@ class AIConversationBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for the conversation.",
)
credentials: AICredentials = AICredentialsField()
@@ -1576,7 +1572,7 @@ class AIConversationBlock(AIBlockBase):
},
{"role": "user", "content": "Where was it played?"},
],
"model": DEFAULT_LLM_MODEL,
"model": LlmModel.GPT4O,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
@@ -1639,7 +1635,7 @@ class AIListGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for generating the list.",
advanced=True,
)
@@ -1696,7 +1692,7 @@ class AIListGeneratorBlock(AIBlockBase):
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
"fictional worlds."
),
"model": DEFAULT_LLM_MODEL,
"model": LlmModel.GPT4O,
"credentials": TEST_CREDENTIALS_INPUT,
"max_retries": 3,
"force_json_output": False,

View File

@@ -226,7 +226,7 @@ class SmartDecisionMakerBlock(Block):
)
model: llm.LlmModel = SchemaField(
title="LLM Model",
default=llm.DEFAULT_LLM_MODEL,
default=llm.LlmModel.GPT4O,
description="The language model to use for answering the prompt.",
advanced=False,
)

View File

@@ -196,15 +196,6 @@ class TestXMLParserBlockSecurity:
async for _ in block.run(XMLParserBlock.Input(input_xml=large_xml)):
pass
async def test_rejects_text_outside_root(self):
"""Ensure parser surfaces readable errors for invalid root text."""
block = XMLParserBlock()
invalid_xml = "<root><child>value</child></root> trailing"
with pytest.raises(ValueError, match="text outside the root element"):
async for _ in block.run(XMLParserBlock.Input(input_xml=invalid_xml)):
pass
class TestStoreMediaFileSecurity:
"""Test file storage security limits."""

View File

@@ -28,7 +28,7 @@ class TestLLMStatsTracking:
response = await llm.llm_call(
credentials=llm.TEST_CREDENTIALS,
llm_model=llm.DEFAULT_LLM_MODEL,
llm_model=llm.LlmModel.GPT4O,
prompt=[{"role": "user", "content": "Hello"}],
max_tokens=100,
)
@@ -65,7 +65,7 @@ class TestLLMStatsTracking:
input_data = llm.AIStructuredResponseGeneratorBlock.Input(
prompt="Test prompt",
expected_format={"key1": "desc1", "key2": "desc2"},
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore # type: ignore
)
@@ -109,7 +109,7 @@ class TestLLMStatsTracking:
# Run the block
input_data = llm.AITextGeneratorBlock.Input(
prompt="Generate text",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
)
@@ -170,7 +170,7 @@ class TestLLMStatsTracking:
input_data = llm.AIStructuredResponseGeneratorBlock.Input(
prompt="Test prompt",
expected_format={"key1": "desc1", "key2": "desc2"},
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2,
)
@@ -228,7 +228,7 @@ class TestLLMStatsTracking:
input_data = llm.AITextSummarizerBlock.Input(
text=long_text,
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
max_tokens=100, # Small chunks
chunk_overlap=10,
@@ -299,7 +299,7 @@ class TestLLMStatsTracking:
# Test with very short text (should only need 1 chunk + 1 final summary)
input_data = llm.AITextSummarizerBlock.Input(
text="This is a short text.",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
max_tokens=1000, # Large enough to avoid chunking
)
@@ -346,7 +346,7 @@ class TestLLMStatsTracking:
{"role": "assistant", "content": "Hi there!"},
{"role": "user", "content": "How are you?"},
],
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
)
@@ -387,7 +387,7 @@ class TestLLMStatsTracking:
# Run the block
input_data = llm.AIListGeneratorBlock.Input(
focus="test items",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
max_retries=3,
)
@@ -469,7 +469,7 @@ class TestLLMStatsTracking:
input_data = llm.AIStructuredResponseGeneratorBlock.Input(
prompt="Test",
expected_format={"result": "desc"},
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
)
@@ -513,7 +513,7 @@ class TestAITextSummarizerValidation:
# Create input data
input_data = llm.AITextSummarizerBlock.Input(
text="Some text to summarize",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
style=llm.SummaryStyle.BULLET_POINTS,
)
@@ -558,7 +558,7 @@ class TestAITextSummarizerValidation:
# Create input data
input_data = llm.AITextSummarizerBlock.Input(
text="Some text to summarize",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
style=llm.SummaryStyle.BULLET_POINTS,
max_tokens=1000,
@@ -593,7 +593,7 @@ class TestAITextSummarizerValidation:
# Create input data
input_data = llm.AITextSummarizerBlock.Input(
text="Some text to summarize",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
)
@@ -623,7 +623,7 @@ class TestAITextSummarizerValidation:
# Create input data
input_data = llm.AITextSummarizerBlock.Input(
text="Some text to summarize",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
max_tokens=1000,
)
@@ -654,7 +654,7 @@ class TestAITextSummarizerValidation:
# Create input data
input_data = llm.AITextSummarizerBlock.Input(
text="Some text to summarize",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
)

View File

@@ -233,7 +233,7 @@ async def test_smart_decision_maker_tracks_llm_stats():
# Create test input
input_data = SmartDecisionMakerBlock.Input(
prompt="Should I continue with this task?",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
@@ -335,7 +335,7 @@ async def test_smart_decision_maker_parameter_validation():
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2, # Set retry to 2 for testing
agent_mode_max_iterations=0,
@@ -402,7 +402,7 @@ async def test_smart_decision_maker_parameter_validation():
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
@@ -462,7 +462,7 @@ async def test_smart_decision_maker_parameter_validation():
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
@@ -526,7 +526,7 @@ async def test_smart_decision_maker_parameter_validation():
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
@@ -648,7 +648,7 @@ async def test_smart_decision_maker_raw_response_conversion():
input_data = SmartDecisionMakerBlock.Input(
prompt="Test prompt",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2,
agent_mode_max_iterations=0,
@@ -722,7 +722,7 @@ async def test_smart_decision_maker_raw_response_conversion():
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Simple prompt",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
@@ -778,7 +778,7 @@ async def test_smart_decision_maker_raw_response_conversion():
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Another test",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
@@ -931,7 +931,7 @@ async def test_smart_decision_maker_agent_mode():
# Test agent mode with max_iterations = 3
input_data = SmartDecisionMakerBlock.Input(
prompt="Complete this task using tools",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=3, # Enable agent mode with 3 max iterations
)
@@ -1020,7 +1020,7 @@ async def test_smart_decision_maker_traditional_mode_default():
# Test default behavior (traditional mode)
input_data = SmartDecisionMakerBlock.Input(
prompt="Test prompt",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0, # Traditional mode
)

View File

@@ -373,7 +373,7 @@ async def test_output_yielding_with_dynamic_fields():
input_data = block.input_schema(
prompt="Create a user dictionary",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
agent_mode_max_iterations=0, # Use traditional mode to test output yielding
)
@@ -594,7 +594,7 @@ async def test_validation_errors_dont_pollute_conversation():
input_data = block.input_schema(
prompt="Test prompt",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
retry=3, # Allow retries
agent_mode_max_iterations=1,
)

View File

@@ -1,5 +1,5 @@
from gravitasml.parser import Parser
from gravitasml.token import Token, tokenize
from gravitasml.token import tokenize
from backend.data.block import Block, BlockOutput, BlockSchemaInput, BlockSchemaOutput
from backend.data.model import SchemaField
@@ -25,38 +25,6 @@ class XMLParserBlock(Block):
],
)
@staticmethod
def _validate_tokens(tokens: list[Token]) -> None:
"""Ensure the XML has a single root element and no stray text."""
if not tokens:
raise ValueError("XML input is empty.")
depth = 0
root_seen = False
for token in tokens:
if token.type == "TAG_OPEN":
if depth == 0 and root_seen:
raise ValueError("XML must have a single root element.")
depth += 1
if depth == 1:
root_seen = True
elif token.type == "TAG_CLOSE":
depth -= 1
if depth < 0:
raise SyntaxError("Unexpected closing tag in XML input.")
elif token.type in {"TEXT", "ESCAPE"}:
if depth == 0 and token.value:
raise ValueError(
"XML contains text outside the root element; "
"wrap content in a single root tag."
)
if depth != 0:
raise SyntaxError("Unclosed tag detected in XML input.")
if not root_seen:
raise ValueError("XML must include a root element.")
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Security fix: Add size limits to prevent XML bomb attacks
MAX_XML_SIZE = 10 * 1024 * 1024 # 10MB limit for XML input
@@ -67,9 +35,7 @@ class XMLParserBlock(Block):
)
try:
tokens = list(tokenize(input_data.input_xml))
self._validate_tokens(tokens)
tokens = tokenize(input_data.input_xml)
parser = Parser(tokens)
parsed_result = parser.parse()
yield "parsed_xml", parsed_result

View File

@@ -111,8 +111,6 @@ class TranscribeYoutubeVideoBlock(Block):
return parsed_url.path.split("/")[2]
if parsed_url.path[:3] == "/v/":
return parsed_url.path.split("/")[2]
if parsed_url.path.startswith("/shorts/"):
return parsed_url.path.split("/")[2]
raise ValueError(f"Invalid YouTube URL: {url}")
def get_transcript(

View File

@@ -59,13 +59,12 @@ from backend.integrations.credentials_store import (
MODEL_COST: dict[LlmModel, int] = {
LlmModel.O3: 4,
LlmModel.O3_MINI: 2,
LlmModel.O1: 16,
LlmModel.O3_MINI: 2, # $1.10 / $4.40
LlmModel.O1: 16, # $15 / $60
LlmModel.O1_MINI: 4,
# GPT-5 models
LlmModel.GPT5_2: 6,
LlmModel.GPT5_1: 5,
LlmModel.GPT5: 2,
LlmModel.GPT5_1: 5,
LlmModel.GPT5_MINI: 1,
LlmModel.GPT5_NANO: 1,
LlmModel.GPT5_CHAT: 5,
@@ -88,7 +87,7 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.AIML_API_LLAMA3_3_70B: 1,
LlmModel.AIML_API_META_LLAMA_3_1_70B: 1,
LlmModel.AIML_API_LLAMA_3_2_3B: 1,
LlmModel.LLAMA3_3_70B: 1,
LlmModel.LLAMA3_3_70B: 1, # $0.59 / $0.79
LlmModel.LLAMA3_1_8B: 1,
LlmModel.OLLAMA_LLAMA3_3: 1,
LlmModel.OLLAMA_LLAMA3_2: 1,

View File

@@ -341,19 +341,6 @@ class UserCreditBase(ABC):
if result:
# UserBalance is already updated by the CTE
# Clear insufficient funds notification flags when credits are added
# so user can receive alerts again if they run out in the future.
if transaction.amount > 0 and transaction.type in [
CreditTransactionType.GRANT,
CreditTransactionType.TOP_UP,
]:
from backend.executor.manager import (
clear_insufficient_funds_notifications,
)
await clear_insufficient_funds_notifications(user_id)
return result[0]["balance"]
async def _add_transaction(
@@ -543,22 +530,6 @@ class UserCreditBase(ABC):
if result:
new_balance, tx_key = result[0]["balance"], result[0]["transactionKey"]
# UserBalance is already updated by the CTE
# Clear insufficient funds notification flags when credits are added
# so user can receive alerts again if they run out in the future.
if (
amount > 0
and is_active
and transaction_type
in [CreditTransactionType.GRANT, CreditTransactionType.TOP_UP]
):
# Lazy import to avoid circular dependency with executor.manager
from backend.executor.manager import (
clear_insufficient_funds_notifications,
)
await clear_insufficient_funds_notifications(user_id)
return new_balance, tx_key
# If no result, either user doesn't exist or insufficient balance

View File

@@ -1,429 +0,0 @@
"""Data models and access layer for user business understanding."""
import logging
from datetime import datetime
from typing import Any, Optional, cast
import pydantic
from prisma.models import UserBusinessUnderstanding
from prisma.types import (
UserBusinessUnderstandingCreateInput,
UserBusinessUnderstandingUpdateInput,
)
from backend.data.redis_client import get_redis_async
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
# Cache configuration
CACHE_KEY_PREFIX = "understanding"
CACHE_TTL_SECONDS = 48 * 60 * 60 # 48 hours
def _cache_key(user_id: str) -> str:
"""Generate cache key for user business understanding."""
return f"{CACHE_KEY_PREFIX}:{user_id}"
def _json_to_list(value: Any) -> list[str]:
"""Convert Json field to list[str], handling None."""
if value is None:
return []
if isinstance(value, list):
return cast(list[str], value)
return []
class BusinessUnderstandingInput(pydantic.BaseModel):
"""Input model for updating business understanding - all fields optional for incremental updates."""
# User info
user_name: Optional[str] = pydantic.Field(None, description="The user's name")
job_title: Optional[str] = pydantic.Field(None, description="The user's job title")
# Business basics
business_name: Optional[str] = pydantic.Field(
None, description="Name of the user's business"
)
industry: Optional[str] = pydantic.Field(None, description="Industry or sector")
business_size: Optional[str] = pydantic.Field(
None, description="Company size (e.g., '1-10', '11-50')"
)
user_role: Optional[str] = pydantic.Field(
None,
description="User's role in the organization (e.g., 'decision maker', 'implementer')",
)
# Processes & activities
key_workflows: Optional[list[str]] = pydantic.Field(
None, description="Key business workflows"
)
daily_activities: Optional[list[str]] = pydantic.Field(
None, description="Daily activities performed"
)
# Pain points & goals
pain_points: Optional[list[str]] = pydantic.Field(
None, description="Current pain points"
)
bottlenecks: Optional[list[str]] = pydantic.Field(
None, description="Process bottlenecks"
)
manual_tasks: Optional[list[str]] = pydantic.Field(
None, description="Manual/repetitive tasks"
)
automation_goals: Optional[list[str]] = pydantic.Field(
None, description="Desired automation goals"
)
# Current tools
current_software: Optional[list[str]] = pydantic.Field(
None, description="Software/tools currently used"
)
existing_automation: Optional[list[str]] = pydantic.Field(
None, description="Existing automations"
)
# Additional context
additional_notes: Optional[str] = pydantic.Field(
None, description="Any additional context"
)
class BusinessUnderstanding(pydantic.BaseModel):
"""Full business understanding model returned from database."""
id: str
user_id: str
created_at: datetime
updated_at: datetime
# User info
user_name: Optional[str] = None
job_title: Optional[str] = None
# Business basics
business_name: Optional[str] = None
industry: Optional[str] = None
business_size: Optional[str] = None
user_role: Optional[str] = None
# Processes & activities
key_workflows: list[str] = pydantic.Field(default_factory=list)
daily_activities: list[str] = pydantic.Field(default_factory=list)
# Pain points & goals
pain_points: list[str] = pydantic.Field(default_factory=list)
bottlenecks: list[str] = pydantic.Field(default_factory=list)
manual_tasks: list[str] = pydantic.Field(default_factory=list)
automation_goals: list[str] = pydantic.Field(default_factory=list)
# Current tools
current_software: list[str] = pydantic.Field(default_factory=list)
existing_automation: list[str] = pydantic.Field(default_factory=list)
# Additional context
additional_notes: Optional[str] = None
@classmethod
def from_db(cls, db_record: UserBusinessUnderstanding) -> "BusinessUnderstanding":
"""Convert database record to Pydantic model."""
return cls(
id=db_record.id,
user_id=db_record.userId,
created_at=db_record.createdAt,
updated_at=db_record.updatedAt,
user_name=db_record.userName,
job_title=db_record.jobTitle,
business_name=db_record.businessName,
industry=db_record.industry,
business_size=db_record.businessSize,
user_role=db_record.userRole,
key_workflows=_json_to_list(db_record.keyWorkflows),
daily_activities=_json_to_list(db_record.dailyActivities),
pain_points=_json_to_list(db_record.painPoints),
bottlenecks=_json_to_list(db_record.bottlenecks),
manual_tasks=_json_to_list(db_record.manualTasks),
automation_goals=_json_to_list(db_record.automationGoals),
current_software=_json_to_list(db_record.currentSoftware),
existing_automation=_json_to_list(db_record.existingAutomation),
additional_notes=db_record.additionalNotes,
)
def _merge_lists(existing: list | None, new: list | None) -> list | None:
"""Merge two lists, removing duplicates while preserving order."""
if new is None:
return existing
if existing is None:
return new
# Preserve order, add new items that don't exist
merged = list(existing)
for item in new:
if item not in merged:
merged.append(item)
return merged
async def _get_from_cache(user_id: str) -> Optional[BusinessUnderstanding]:
"""Get business understanding from Redis cache."""
try:
redis = await get_redis_async()
cached_data = await redis.get(_cache_key(user_id))
if cached_data:
return BusinessUnderstanding.model_validate_json(cached_data)
except Exception as e:
logger.warning(f"Failed to get understanding from cache: {e}")
return None
async def _set_cache(user_id: str, understanding: BusinessUnderstanding) -> None:
"""Set business understanding in Redis cache with TTL."""
try:
redis = await get_redis_async()
await redis.setex(
_cache_key(user_id),
CACHE_TTL_SECONDS,
understanding.model_dump_json(),
)
except Exception as e:
logger.warning(f"Failed to set understanding in cache: {e}")
async def _delete_cache(user_id: str) -> None:
"""Delete business understanding from Redis cache."""
try:
redis = await get_redis_async()
await redis.delete(_cache_key(user_id))
except Exception as e:
logger.warning(f"Failed to delete understanding from cache: {e}")
async def get_business_understanding(
user_id: str,
) -> Optional[BusinessUnderstanding]:
"""Get the business understanding for a user.
Checks cache first, falls back to database if not cached.
Results are cached for 48 hours.
"""
# Try cache first
cached = await _get_from_cache(user_id)
if cached:
logger.debug(f"Business understanding cache hit for user {user_id}")
return cached
# Cache miss - load from database
logger.debug(f"Business understanding cache miss for user {user_id}")
record = await UserBusinessUnderstanding.prisma().find_unique(
where={"userId": user_id}
)
if record is None:
return None
understanding = BusinessUnderstanding.from_db(record)
# Store in cache for next time
await _set_cache(user_id, understanding)
return understanding
async def upsert_business_understanding(
user_id: str,
data: BusinessUnderstandingInput,
) -> BusinessUnderstanding:
"""
Create or update business understanding with incremental merge strategy.
- String fields: new value overwrites if provided (not None)
- List fields: new items are appended to existing (deduplicated)
"""
# Get existing record for merge
existing = await UserBusinessUnderstanding.prisma().find_unique(
where={"userId": user_id}
)
# Build update data with merge strategy
update_data: UserBusinessUnderstandingUpdateInput = {}
create_data: dict[str, Any] = {"userId": user_id}
# String fields - overwrite if provided
if data.user_name is not None:
update_data["userName"] = data.user_name
create_data["userName"] = data.user_name
if data.job_title is not None:
update_data["jobTitle"] = data.job_title
create_data["jobTitle"] = data.job_title
if data.business_name is not None:
update_data["businessName"] = data.business_name
create_data["businessName"] = data.business_name
if data.industry is not None:
update_data["industry"] = data.industry
create_data["industry"] = data.industry
if data.business_size is not None:
update_data["businessSize"] = data.business_size
create_data["businessSize"] = data.business_size
if data.user_role is not None:
update_data["userRole"] = data.user_role
create_data["userRole"] = data.user_role
if data.additional_notes is not None:
update_data["additionalNotes"] = data.additional_notes
create_data["additionalNotes"] = data.additional_notes
# List fields - merge with existing
if data.key_workflows is not None:
existing_list = _json_to_list(existing.keyWorkflows) if existing else None
merged = _merge_lists(existing_list, data.key_workflows)
update_data["keyWorkflows"] = SafeJson(merged)
create_data["keyWorkflows"] = SafeJson(merged)
if data.daily_activities is not None:
existing_list = _json_to_list(existing.dailyActivities) if existing else None
merged = _merge_lists(existing_list, data.daily_activities)
update_data["dailyActivities"] = SafeJson(merged)
create_data["dailyActivities"] = SafeJson(merged)
if data.pain_points is not None:
existing_list = _json_to_list(existing.painPoints) if existing else None
merged = _merge_lists(existing_list, data.pain_points)
update_data["painPoints"] = SafeJson(merged)
create_data["painPoints"] = SafeJson(merged)
if data.bottlenecks is not None:
existing_list = _json_to_list(existing.bottlenecks) if existing else None
merged = _merge_lists(existing_list, data.bottlenecks)
update_data["bottlenecks"] = SafeJson(merged)
create_data["bottlenecks"] = SafeJson(merged)
if data.manual_tasks is not None:
existing_list = _json_to_list(existing.manualTasks) if existing else None
merged = _merge_lists(existing_list, data.manual_tasks)
update_data["manualTasks"] = SafeJson(merged)
create_data["manualTasks"] = SafeJson(merged)
if data.automation_goals is not None:
existing_list = _json_to_list(existing.automationGoals) if existing else None
merged = _merge_lists(existing_list, data.automation_goals)
update_data["automationGoals"] = SafeJson(merged)
create_data["automationGoals"] = SafeJson(merged)
if data.current_software is not None:
existing_list = _json_to_list(existing.currentSoftware) if existing else None
merged = _merge_lists(existing_list, data.current_software)
update_data["currentSoftware"] = SafeJson(merged)
create_data["currentSoftware"] = SafeJson(merged)
if data.existing_automation is not None:
existing_list = _json_to_list(existing.existingAutomation) if existing else None
merged = _merge_lists(existing_list, data.existing_automation)
update_data["existingAutomation"] = SafeJson(merged)
create_data["existingAutomation"] = SafeJson(merged)
# Upsert
record = await UserBusinessUnderstanding.prisma().upsert(
where={"userId": user_id},
data={
"create": UserBusinessUnderstandingCreateInput(**create_data),
"update": update_data,
},
)
understanding = BusinessUnderstanding.from_db(record)
# Update cache with new understanding
await _set_cache(user_id, understanding)
return understanding
async def clear_business_understanding(user_id: str) -> bool:
"""Clear/delete business understanding for a user from both DB and cache."""
# Delete from cache first
await _delete_cache(user_id)
try:
await UserBusinessUnderstanding.prisma().delete(where={"userId": user_id})
return True
except Exception:
# Record might not exist
return False
def format_understanding_for_prompt(understanding: BusinessUnderstanding) -> str:
"""Format business understanding as text for system prompt injection."""
sections = []
# User info section
user_info = []
if understanding.user_name:
user_info.append(f"Name: {understanding.user_name}")
if understanding.job_title:
user_info.append(f"Job Title: {understanding.job_title}")
if user_info:
sections.append("## User\n" + "\n".join(user_info))
# Business section
business_info = []
if understanding.business_name:
business_info.append(f"Company: {understanding.business_name}")
if understanding.industry:
business_info.append(f"Industry: {understanding.industry}")
if understanding.business_size:
business_info.append(f"Size: {understanding.business_size}")
if understanding.user_role:
business_info.append(f"Role Context: {understanding.user_role}")
if business_info:
sections.append("## Business\n" + "\n".join(business_info))
# Processes section
processes = []
if understanding.key_workflows:
processes.append(f"Key Workflows: {', '.join(understanding.key_workflows)}")
if understanding.daily_activities:
processes.append(
f"Daily Activities: {', '.join(understanding.daily_activities)}"
)
if processes:
sections.append("## Processes\n" + "\n".join(processes))
# Pain points section
pain_points = []
if understanding.pain_points:
pain_points.append(f"Pain Points: {', '.join(understanding.pain_points)}")
if understanding.bottlenecks:
pain_points.append(f"Bottlenecks: {', '.join(understanding.bottlenecks)}")
if understanding.manual_tasks:
pain_points.append(f"Manual Tasks: {', '.join(understanding.manual_tasks)}")
if pain_points:
sections.append("## Pain Points\n" + "\n".join(pain_points))
# Goals section
if understanding.automation_goals:
sections.append(
"## Automation Goals\n"
+ "\n".join(f"- {goal}" for goal in understanding.automation_goals)
)
# Current tools section
tools_info = []
if understanding.current_software:
tools_info.append(
f"Current Software: {', '.join(understanding.current_software)}"
)
if understanding.existing_automation:
tools_info.append(
f"Existing Automation: {', '.join(understanding.existing_automation)}"
)
if tools_info:
sections.append("## Current Tools\n" + "\n".join(tools_info))
# Additional notes
if understanding.additional_notes:
sections.append(f"## Additional Context\n{understanding.additional_notes}")
if not sections:
return ""
return "# User Business Context\n\n" + "\n\n".join(sections)

View File

@@ -114,40 +114,6 @@ utilization_gauge = Gauge(
"Ratio of active graph runs to max graph workers",
)
# Redis key prefix for tracking insufficient funds Discord notifications.
# We only send one notification per user per agent until they top up credits.
INSUFFICIENT_FUNDS_NOTIFIED_PREFIX = "insufficient_funds_discord_notified"
# TTL for the notification flag (30 days) - acts as a fallback cleanup
INSUFFICIENT_FUNDS_NOTIFIED_TTL_SECONDS = 30 * 24 * 60 * 60
async def clear_insufficient_funds_notifications(user_id: str) -> int:
"""
Clear all insufficient funds notification flags for a user.
This should be called when a user tops up their credits, allowing
Discord notifications to be sent again if they run out of funds.
Args:
user_id: The user ID to clear notifications for.
Returns:
The number of keys that were deleted.
"""
try:
redis_client = await redis.get_redis_async()
pattern = f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:*"
keys = [key async for key in redis_client.scan_iter(match=pattern)]
if keys:
return await redis_client.delete(*keys)
return 0
except Exception as e:
logger.warning(
f"Failed to clear insufficient funds notification flags for user "
f"{user_id}: {e}"
)
return 0
# Thread-local storage for ExecutionProcessor instances
_tls = threading.local()
@@ -1295,40 +1261,12 @@ class ExecutionProcessor:
graph_id: str,
e: InsufficientBalanceError,
):
# Check if we've already sent a notification for this user+agent combo.
# We only send one notification per user per agent until they top up credits.
redis_key = f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:{graph_id}"
try:
redis_client = redis.get_redis()
# SET NX returns True only if the key was newly set (didn't exist)
is_new_notification = redis_client.set(
redis_key,
"1",
nx=True,
ex=INSUFFICIENT_FUNDS_NOTIFIED_TTL_SECONDS,
)
if not is_new_notification:
# Already notified for this user+agent, skip all notifications
logger.debug(
f"Skipping duplicate insufficient funds notification for "
f"user={user_id}, graph={graph_id}"
)
return
except Exception as redis_error:
# If Redis fails, log and continue to send the notification
# (better to occasionally duplicate than to never notify)
logger.warning(
f"Failed to check/set insufficient funds notification flag in Redis: "
f"{redis_error}"
)
shortfall = abs(e.amount) - e.balance
metadata = db_client.get_graph_metadata(graph_id)
base_url = (
settings.config.frontend_base_url or settings.config.platform_base_url
)
# Queue user email notification
queue_notification(
NotificationEventModel(
user_id=user_id,
@@ -1342,7 +1280,6 @@ class ExecutionProcessor:
)
)
# Send Discord system alert
try:
user_email = db_client.get_user_email_by_id(user_id)

View File

@@ -1,560 +0,0 @@
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from prisma.enums import NotificationType
from backend.data.notifications import ZeroBalanceData
from backend.executor.manager import (
INSUFFICIENT_FUNDS_NOTIFIED_PREFIX,
ExecutionProcessor,
clear_insufficient_funds_notifications,
)
from backend.util.exceptions import InsufficientBalanceError
from backend.util.test import SpinTestServer
async def async_iter(items):
"""Helper to create an async iterator from a list."""
for item in items:
yield item
@pytest.mark.asyncio(loop_scope="session")
async def test_handle_insufficient_funds_sends_discord_alert_first_time(
server: SpinTestServer,
):
"""Test that the first insufficient funds notification sends a Discord alert."""
execution_processor = ExecutionProcessor()
user_id = "test-user-123"
graph_id = "test-graph-456"
error = InsufficientBalanceError(
message="Insufficient balance",
user_id=user_id,
balance=72, # $0.72
amount=-714, # Attempting to spend $7.14
)
with patch(
"backend.executor.manager.queue_notification"
) as mock_queue_notif, patch(
"backend.executor.manager.get_notification_manager_client"
) as mock_get_client, patch(
"backend.executor.manager.settings"
) as mock_settings, patch(
"backend.executor.manager.redis"
) as mock_redis_module:
# Setup mocks
mock_client = MagicMock()
mock_get_client.return_value = mock_client
mock_settings.config.frontend_base_url = "https://test.com"
# Mock Redis to simulate first-time notification (set returns True)
mock_redis_client = MagicMock()
mock_redis_module.get_redis.return_value = mock_redis_client
mock_redis_client.set.return_value = True # Key was newly set
# Create mock database client
mock_db_client = MagicMock()
mock_graph_metadata = MagicMock()
mock_graph_metadata.name = "Test Agent"
mock_db_client.get_graph_metadata.return_value = mock_graph_metadata
mock_db_client.get_user_email_by_id.return_value = "test@example.com"
# Test the insufficient funds handler
execution_processor._handle_insufficient_funds_notif(
db_client=mock_db_client,
user_id=user_id,
graph_id=graph_id,
e=error,
)
# Verify notification was queued
mock_queue_notif.assert_called_once()
notification_call = mock_queue_notif.call_args[0][0]
assert notification_call.type == NotificationType.ZERO_BALANCE
assert notification_call.user_id == user_id
assert isinstance(notification_call.data, ZeroBalanceData)
assert notification_call.data.current_balance == 72
# Verify Redis was checked with correct key pattern
expected_key = f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:{graph_id}"
mock_redis_client.set.assert_called_once()
call_args = mock_redis_client.set.call_args
assert call_args[0][0] == expected_key
assert call_args[1]["nx"] is True
# Verify Discord alert was sent
mock_client.discord_system_alert.assert_called_once()
discord_message = mock_client.discord_system_alert.call_args[0][0]
assert "Insufficient Funds Alert" in discord_message
assert "test@example.com" in discord_message
assert "Test Agent" in discord_message
@pytest.mark.asyncio(loop_scope="session")
async def test_handle_insufficient_funds_skips_duplicate_notifications(
server: SpinTestServer,
):
"""Test that duplicate insufficient funds notifications skip both email and Discord."""
execution_processor = ExecutionProcessor()
user_id = "test-user-123"
graph_id = "test-graph-456"
error = InsufficientBalanceError(
message="Insufficient balance",
user_id=user_id,
balance=72,
amount=-714,
)
with patch(
"backend.executor.manager.queue_notification"
) as mock_queue_notif, patch(
"backend.executor.manager.get_notification_manager_client"
) as mock_get_client, patch(
"backend.executor.manager.settings"
) as mock_settings, patch(
"backend.executor.manager.redis"
) as mock_redis_module:
# Setup mocks
mock_client = MagicMock()
mock_get_client.return_value = mock_client
mock_settings.config.frontend_base_url = "https://test.com"
# Mock Redis to simulate duplicate notification (set returns False/None)
mock_redis_client = MagicMock()
mock_redis_module.get_redis.return_value = mock_redis_client
mock_redis_client.set.return_value = None # Key already existed
# Create mock database client
mock_db_client = MagicMock()
mock_db_client.get_graph_metadata.return_value = MagicMock(name="Test Agent")
# Test the insufficient funds handler
execution_processor._handle_insufficient_funds_notif(
db_client=mock_db_client,
user_id=user_id,
graph_id=graph_id,
e=error,
)
# Verify email notification was NOT queued (deduplication worked)
mock_queue_notif.assert_not_called()
# Verify Discord alert was NOT sent (deduplication worked)
mock_client.discord_system_alert.assert_not_called()
@pytest.mark.asyncio(loop_scope="session")
async def test_handle_insufficient_funds_different_agents_get_separate_alerts(
server: SpinTestServer,
):
"""Test that different agents for the same user get separate Discord alerts."""
execution_processor = ExecutionProcessor()
user_id = "test-user-123"
graph_id_1 = "test-graph-111"
graph_id_2 = "test-graph-222"
error = InsufficientBalanceError(
message="Insufficient balance",
user_id=user_id,
balance=72,
amount=-714,
)
with patch("backend.executor.manager.queue_notification"), patch(
"backend.executor.manager.get_notification_manager_client"
) as mock_get_client, patch(
"backend.executor.manager.settings"
) as mock_settings, patch(
"backend.executor.manager.redis"
) as mock_redis_module:
mock_client = MagicMock()
mock_get_client.return_value = mock_client
mock_settings.config.frontend_base_url = "https://test.com"
mock_redis_client = MagicMock()
mock_redis_module.get_redis.return_value = mock_redis_client
# Both calls return True (first time for each agent)
mock_redis_client.set.return_value = True
mock_db_client = MagicMock()
mock_graph_metadata = MagicMock()
mock_graph_metadata.name = "Test Agent"
mock_db_client.get_graph_metadata.return_value = mock_graph_metadata
mock_db_client.get_user_email_by_id.return_value = "test@example.com"
# First agent notification
execution_processor._handle_insufficient_funds_notif(
db_client=mock_db_client,
user_id=user_id,
graph_id=graph_id_1,
e=error,
)
# Second agent notification
execution_processor._handle_insufficient_funds_notif(
db_client=mock_db_client,
user_id=user_id,
graph_id=graph_id_2,
e=error,
)
# Verify Discord alerts were sent for both agents
assert mock_client.discord_system_alert.call_count == 2
# Verify Redis was called with different keys
assert mock_redis_client.set.call_count == 2
calls = mock_redis_client.set.call_args_list
assert (
calls[0][0][0]
== f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:{graph_id_1}"
)
assert (
calls[1][0][0]
== f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:{graph_id_2}"
)
@pytest.mark.asyncio(loop_scope="session")
async def test_clear_insufficient_funds_notifications(server: SpinTestServer):
"""Test that clearing notifications removes all keys for a user."""
user_id = "test-user-123"
with patch("backend.executor.manager.redis") as mock_redis_module:
mock_redis_client = MagicMock()
# get_redis_async is an async function, so we need AsyncMock for it
mock_redis_module.get_redis_async = AsyncMock(return_value=mock_redis_client)
# Mock scan_iter to return some keys as an async iterator
mock_keys = [
f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:graph-1",
f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:graph-2",
f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:graph-3",
]
mock_redis_client.scan_iter.return_value = async_iter(mock_keys)
# delete is awaited, so use AsyncMock
mock_redis_client.delete = AsyncMock(return_value=3)
# Clear notifications
result = await clear_insufficient_funds_notifications(user_id)
# Verify correct pattern was used
expected_pattern = f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:*"
mock_redis_client.scan_iter.assert_called_once_with(match=expected_pattern)
# Verify delete was called with all keys
mock_redis_client.delete.assert_called_once_with(*mock_keys)
# Verify return value
assert result == 3
@pytest.mark.asyncio(loop_scope="session")
async def test_clear_insufficient_funds_notifications_no_keys(server: SpinTestServer):
"""Test clearing notifications when there are no keys to clear."""
user_id = "test-user-no-notifications"
with patch("backend.executor.manager.redis") as mock_redis_module:
mock_redis_client = MagicMock()
# get_redis_async is an async function, so we need AsyncMock for it
mock_redis_module.get_redis_async = AsyncMock(return_value=mock_redis_client)
# Mock scan_iter to return no keys as an async iterator
mock_redis_client.scan_iter.return_value = async_iter([])
# Clear notifications
result = await clear_insufficient_funds_notifications(user_id)
# Verify delete was not called
mock_redis_client.delete.assert_not_called()
# Verify return value
assert result == 0
@pytest.mark.asyncio(loop_scope="session")
async def test_clear_insufficient_funds_notifications_handles_redis_error(
server: SpinTestServer,
):
"""Test that clearing notifications handles Redis errors gracefully."""
user_id = "test-user-redis-error"
with patch("backend.executor.manager.redis") as mock_redis_module:
# Mock get_redis_async to raise an error
mock_redis_module.get_redis_async = AsyncMock(
side_effect=Exception("Redis connection failed")
)
# Clear notifications should not raise, just return 0
result = await clear_insufficient_funds_notifications(user_id)
# Verify it returned 0 (graceful failure)
assert result == 0
@pytest.mark.asyncio(loop_scope="session")
async def test_handle_insufficient_funds_continues_on_redis_error(
server: SpinTestServer,
):
"""Test that both email and Discord notifications are still sent when Redis fails."""
execution_processor = ExecutionProcessor()
user_id = "test-user-123"
graph_id = "test-graph-456"
error = InsufficientBalanceError(
message="Insufficient balance",
user_id=user_id,
balance=72,
amount=-714,
)
with patch(
"backend.executor.manager.queue_notification"
) as mock_queue_notif, patch(
"backend.executor.manager.get_notification_manager_client"
) as mock_get_client, patch(
"backend.executor.manager.settings"
) as mock_settings, patch(
"backend.executor.manager.redis"
) as mock_redis_module:
mock_client = MagicMock()
mock_get_client.return_value = mock_client
mock_settings.config.frontend_base_url = "https://test.com"
# Mock Redis to raise an error
mock_redis_client = MagicMock()
mock_redis_module.get_redis.return_value = mock_redis_client
mock_redis_client.set.side_effect = Exception("Redis connection error")
mock_db_client = MagicMock()
mock_graph_metadata = MagicMock()
mock_graph_metadata.name = "Test Agent"
mock_db_client.get_graph_metadata.return_value = mock_graph_metadata
mock_db_client.get_user_email_by_id.return_value = "test@example.com"
# Test the insufficient funds handler
execution_processor._handle_insufficient_funds_notif(
db_client=mock_db_client,
user_id=user_id,
graph_id=graph_id,
e=error,
)
# Verify email notification was still queued despite Redis error
mock_queue_notif.assert_called_once()
# Verify Discord alert was still sent despite Redis error
mock_client.discord_system_alert.assert_called_once()
@pytest.mark.asyncio(loop_scope="session")
async def test_add_transaction_clears_notifications_on_grant(server: SpinTestServer):
"""Test that _add_transaction clears notification flags when adding GRANT credits."""
from prisma.enums import CreditTransactionType
from backend.data.credit import UserCredit
user_id = "test-user-grant-clear"
with patch("backend.data.credit.query_raw_with_schema") as mock_query, patch(
"backend.executor.manager.redis"
) as mock_redis_module:
# Mock the query to return a successful transaction
mock_query.return_value = [{"balance": 1000, "transactionKey": "test-tx-key"}]
# Mock async Redis for notification clearing
mock_redis_client = MagicMock()
mock_redis_module.get_redis_async = AsyncMock(return_value=mock_redis_client)
mock_redis_client.scan_iter.return_value = async_iter(
[f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:graph-1"]
)
mock_redis_client.delete = AsyncMock(return_value=1)
# Create a concrete instance
credit_model = UserCredit()
# Call _add_transaction with GRANT type (should clear notifications)
await credit_model._add_transaction(
user_id=user_id,
amount=500, # Positive amount
transaction_type=CreditTransactionType.GRANT,
is_active=True, # Active transaction
)
# Verify notification clearing was called
mock_redis_module.get_redis_async.assert_called_once()
mock_redis_client.scan_iter.assert_called_once_with(
match=f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:*"
)
@pytest.mark.asyncio(loop_scope="session")
async def test_add_transaction_clears_notifications_on_top_up(server: SpinTestServer):
"""Test that _add_transaction clears notification flags when adding TOP_UP credits."""
from prisma.enums import CreditTransactionType
from backend.data.credit import UserCredit
user_id = "test-user-topup-clear"
with patch("backend.data.credit.query_raw_with_schema") as mock_query, patch(
"backend.executor.manager.redis"
) as mock_redis_module:
# Mock the query to return a successful transaction
mock_query.return_value = [{"balance": 2000, "transactionKey": "test-tx-key-2"}]
# Mock async Redis for notification clearing
mock_redis_client = MagicMock()
mock_redis_module.get_redis_async = AsyncMock(return_value=mock_redis_client)
mock_redis_client.scan_iter.return_value = async_iter([])
mock_redis_client.delete = AsyncMock(return_value=0)
credit_model = UserCredit()
# Call _add_transaction with TOP_UP type (should clear notifications)
await credit_model._add_transaction(
user_id=user_id,
amount=1000, # Positive amount
transaction_type=CreditTransactionType.TOP_UP,
is_active=True,
)
# Verify notification clearing was attempted
mock_redis_module.get_redis_async.assert_called_once()
@pytest.mark.asyncio(loop_scope="session")
async def test_add_transaction_skips_clearing_for_inactive_transaction(
server: SpinTestServer,
):
"""Test that _add_transaction does NOT clear notifications for inactive transactions."""
from prisma.enums import CreditTransactionType
from backend.data.credit import UserCredit
user_id = "test-user-inactive"
with patch("backend.data.credit.query_raw_with_schema") as mock_query, patch(
"backend.executor.manager.redis"
) as mock_redis_module:
# Mock the query to return a successful transaction
mock_query.return_value = [{"balance": 500, "transactionKey": "test-tx-key-3"}]
# Mock async Redis
mock_redis_client = MagicMock()
mock_redis_module.get_redis_async = AsyncMock(return_value=mock_redis_client)
credit_model = UserCredit()
# Call _add_transaction with is_active=False (should NOT clear notifications)
await credit_model._add_transaction(
user_id=user_id,
amount=500,
transaction_type=CreditTransactionType.TOP_UP,
is_active=False, # Inactive - pending Stripe payment
)
# Verify notification clearing was NOT called
mock_redis_module.get_redis_async.assert_not_called()
@pytest.mark.asyncio(loop_scope="session")
async def test_add_transaction_skips_clearing_for_usage_transaction(
server: SpinTestServer,
):
"""Test that _add_transaction does NOT clear notifications for USAGE transactions."""
from prisma.enums import CreditTransactionType
from backend.data.credit import UserCredit
user_id = "test-user-usage"
with patch("backend.data.credit.query_raw_with_schema") as mock_query, patch(
"backend.executor.manager.redis"
) as mock_redis_module:
# Mock the query to return a successful transaction
mock_query.return_value = [{"balance": 400, "transactionKey": "test-tx-key-4"}]
# Mock async Redis
mock_redis_client = MagicMock()
mock_redis_module.get_redis_async = AsyncMock(return_value=mock_redis_client)
credit_model = UserCredit()
# Call _add_transaction with USAGE type (spending, should NOT clear)
await credit_model._add_transaction(
user_id=user_id,
amount=-100, # Negative - spending credits
transaction_type=CreditTransactionType.USAGE,
is_active=True,
)
# Verify notification clearing was NOT called
mock_redis_module.get_redis_async.assert_not_called()
@pytest.mark.asyncio(loop_scope="session")
async def test_enable_transaction_clears_notifications(server: SpinTestServer):
"""Test that _enable_transaction clears notification flags when enabling a TOP_UP."""
from prisma.enums import CreditTransactionType
from backend.data.credit import UserCredit
user_id = "test-user-enable"
with patch("backend.data.credit.CreditTransaction") as mock_credit_tx, patch(
"backend.data.credit.query_raw_with_schema"
) as mock_query, patch("backend.executor.manager.redis") as mock_redis_module:
# Mock finding the pending transaction
mock_transaction = MagicMock()
mock_transaction.amount = 1000
mock_transaction.type = CreditTransactionType.TOP_UP
mock_credit_tx.prisma.return_value.find_first = AsyncMock(
return_value=mock_transaction
)
# Mock the query to return updated balance
mock_query.return_value = [{"balance": 1500}]
# Mock async Redis for notification clearing
mock_redis_client = MagicMock()
mock_redis_module.get_redis_async = AsyncMock(return_value=mock_redis_client)
mock_redis_client.scan_iter.return_value = async_iter(
[f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:graph-1"]
)
mock_redis_client.delete = AsyncMock(return_value=1)
credit_model = UserCredit()
# Call _enable_transaction (simulates Stripe checkout completion)
from backend.util.json import SafeJson
await credit_model._enable_transaction(
transaction_key="cs_test_123",
user_id=user_id,
metadata=SafeJson({"payment": "completed"}),
)
# Verify notification clearing was called
mock_redis_module.get_redis_async.assert_called_once()
mock_redis_client.scan_iter.assert_called_once_with(
match=f"{INSUFFICIENT_FUNDS_NOTIFIED_PREFIX}:{user_id}:*"
)

View File

@@ -1,81 +0,0 @@
-- DropIndex
DROP INDEX "StoreListingVersion_storeListingId_version_key";
-- CreateTable
CREATE TABLE "UserBusinessUnderstanding" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"userId" TEXT NOT NULL,
"userName" TEXT,
"jobTitle" TEXT,
"businessName" TEXT,
"industry" TEXT,
"businessSize" TEXT,
"userRole" TEXT,
"keyWorkflows" JSONB,
"dailyActivities" JSONB,
"painPoints" JSONB,
"bottlenecks" JSONB,
"manualTasks" JSONB,
"automationGoals" JSONB,
"currentSoftware" JSONB,
"existingAutomation" JSONB,
"additionalNotes" TEXT,
CONSTRAINT "UserBusinessUnderstanding_pkey" PRIMARY KEY ("id")
);
-- CreateTable
CREATE TABLE "ChatSession" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"userId" TEXT,
"title" TEXT,
"credentials" JSONB NOT NULL DEFAULT '{}',
"successfulAgentRuns" JSONB NOT NULL DEFAULT '{}',
"successfulAgentSchedules" JSONB NOT NULL DEFAULT '{}',
"totalPromptTokens" INTEGER NOT NULL DEFAULT 0,
"totalCompletionTokens" INTEGER NOT NULL DEFAULT 0,
CONSTRAINT "ChatSession_pkey" PRIMARY KEY ("id")
);
-- CreateTable
CREATE TABLE "ChatMessage" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"sessionId" TEXT NOT NULL,
"role" TEXT NOT NULL,
"content" TEXT,
"name" TEXT,
"toolCallId" TEXT,
"refusal" TEXT,
"toolCalls" JSONB,
"functionCall" JSONB,
"sequence" INTEGER NOT NULL,
CONSTRAINT "ChatMessage_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE UNIQUE INDEX "UserBusinessUnderstanding_userId_key" ON "UserBusinessUnderstanding"("userId");
-- CreateIndex
CREATE INDEX "UserBusinessUnderstanding_userId_idx" ON "UserBusinessUnderstanding"("userId");
-- CreateIndex
CREATE INDEX "ChatSession_userId_updatedAt_idx" ON "ChatSession"("userId", "updatedAt");
-- CreateIndex
CREATE INDEX "ChatMessage_sessionId_sequence_idx" ON "ChatMessage"("sessionId", "sequence");
-- CreateIndex
CREATE UNIQUE INDEX "ChatMessage_sessionId_sequence_key" ON "ChatMessage"("sessionId", "sequence");
-- AddForeignKey
ALTER TABLE "UserBusinessUnderstanding" ADD CONSTRAINT "UserBusinessUnderstanding_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "ChatMessage" ADD CONSTRAINT "ChatMessage_sessionId_fkey" FOREIGN KEY ("sessionId") REFERENCES "ChatSession"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -1906,32 +1906,16 @@ httpx = {version = ">=0.26,<0.29", extras = ["http2"]}
pydantic = ">=1.10,<3"
pyjwt = ">=2.10.1,<3.0.0"
[[package]]
name = "gravitas-md2gdocs"
version = "0.1.0"
description = "Convert Markdown to Google Docs API requests"
optional = false
python-versions = ">=3.10"
groups = ["main"]
files = [
{file = "gravitas_md2gdocs-0.1.0-py3-none-any.whl", hash = "sha256:0cb0627779fdd65c1604818af4142eea1b25d055060183363de1bae4d9e46508"},
{file = "gravitas_md2gdocs-0.1.0.tar.gz", hash = "sha256:bb3122fe9fa35c528f3f00b785d3f1398d350082d5d03f60f56c895bdcc68033"},
]
[package.extras]
dev = ["google-auth-oauthlib (>=1.0.0)", "pytest (>=7.0.0)", "pytest-cov (>=4.0.0)", "python-dotenv (>=1.0.0)", "ruff (>=0.1.0)"]
google = ["google-api-python-client (>=2.0.0)", "google-auth (>=2.0.0)"]
[[package]]
name = "gravitasml"
version = "0.1.4"
version = "0.1.3"
description = ""
optional = false
python-versions = "<4.0,>=3.10"
groups = ["main"]
files = [
{file = "gravitasml-0.1.4-py3-none-any.whl", hash = "sha256:671a18b11d3d8a0e270c6a80c72cd058458b18d5ef7560d00010e962ab1bca74"},
{file = "gravitasml-0.1.4.tar.gz", hash = "sha256:35d0d9fec7431817482d53d9c976e375557c3e041d1eb6928e809324a8c866e3"},
{file = "gravitasml-0.1.3-py3-none-any.whl", hash = "sha256:51ff98b4564b7a61f7796f18d5f2558b919d30b3722579296089645b7bc18b85"},
{file = "gravitasml-0.1.3.tar.gz", hash = "sha256:04d240b9fa35878252d57a36032130b6516487468847fcdced1022c032a20f57"},
]
[package.dependencies]
@@ -7295,4 +7279,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<3.14"
content-hash = "a93ba0cea3b465cb6ec3e3f258b383b09f84ea352ccfdbfa112902cde5653fc6"
content-hash = "13b191b2a1989d3321ff713c66ff6f5f4f3b82d15df4d407e0e5dbf87d7522c4"

View File

@@ -27,7 +27,7 @@ google-api-python-client = "^2.177.0"
google-auth-oauthlib = "^1.2.2"
google-cloud-storage = "^3.2.0"
googlemaps = "^4.10.0"
gravitasml = "^0.1.4"
gravitasml = "^0.1.3"
groq = "^0.30.0"
html2text = "^2024.2.26"
jinja2 = "^3.1.6"
@@ -82,7 +82,6 @@ firecrawl-py = "^4.3.6"
exa-py = "^1.14.20"
croniter = "^6.0.0"
stagehand = "^0.5.1"
gravitas-md2gdocs = "^0.1.0"
[tool.poetry.group.dev.dependencies]
aiohappyeyeballs = "^2.6.1"

View File

@@ -53,7 +53,6 @@ model User {
Profile Profile[]
UserOnboarding UserOnboarding?
BusinessUnderstanding UserBusinessUnderstanding?
BuilderSearchHistory BuilderSearchHistory[]
StoreListings StoreListing[]
StoreListingReviews StoreListingReview[]
@@ -122,109 +121,19 @@ model UserOnboarding {
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
}
model UserBusinessUnderstanding {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @default(now()) @updatedAt
userId String @unique
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
// User info
userName String?
jobTitle String?
// Business basics (string columns)
businessName String?
industry String?
businessSize String? // "1-10", "11-50", "51-200", "201-1000", "1000+"
userRole String? // Role in organization context (e.g., "decision maker", "implementer")
// Processes & activities (JSON arrays)
keyWorkflows Json?
dailyActivities Json?
// Pain points & goals (JSON arrays)
painPoints Json?
bottlenecks Json?
manualTasks Json?
automationGoals Json?
// Current tools (JSON arrays)
currentSoftware Json?
existingAutomation Json?
additionalNotes String?
@@index([userId])
}
model BuilderSearchHistory {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @default(now()) @updatedAt
searchQuery String
filter String[] @default([])
byCreator String[] @default([])
filter String[] @default([])
byCreator String[] @default([])
userId String
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
//////////////// CHAT SESSION TABLES ///////////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
model ChatSession {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @default(now()) @updatedAt
userId String?
// Session metadata
title String?
credentials Json @default("{}") // Map of provider -> credential metadata
// Rate limiting counters (stored as JSON maps)
successfulAgentRuns Json @default("{}") // Map of graph_id -> count
successfulAgentSchedules Json @default("{}") // Map of graph_id -> count
// Usage tracking
totalPromptTokens Int @default(0)
totalCompletionTokens Int @default(0)
Messages ChatMessage[]
@@index([userId, updatedAt])
}
model ChatMessage {
id String @id @default(uuid())
createdAt DateTime @default(now())
sessionId String
Session ChatSession @relation(fields: [sessionId], references: [id], onDelete: Cascade)
// Message content
role String // "user", "assistant", "system", "tool", "function"
content String?
name String?
toolCallId String?
refusal String?
toolCalls Json? // List of tool calls for assistant messages
functionCall Json? // Deprecated but kept for compatibility
// Ordering within session
sequence Int
@@unique([sessionId, sequence])
@@index([sessionId, sequence])
}
// This model describes the Agent Graph/Flow (Multi Agent System).
model AgentGraph {
id String @default(uuid())
@@ -812,26 +721,26 @@ view StoreAgent {
storeListingVersionId String
updated_at DateTime
slug String
agent_name String
agent_video String?
agent_output_demo String?
agent_image String[]
slug String
agent_name String
agent_video String?
agent_output_demo String?
agent_image String[]
featured Boolean @default(false)
creator_username String?
creator_avatar String?
sub_heading String
description String
categories String[]
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
runs Int
rating Float
versions String[]
agentGraphVersions String[]
agentGraphId String
is_available Boolean @default(true)
useForOnboarding Boolean @default(false)
featured Boolean @default(false)
creator_username String?
creator_avatar String?
sub_heading String
description String
categories String[]
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
runs Int
rating Float
versions String[]
agentGraphVersions String[]
agentGraphId String
is_available Boolean @default(true)
useForOnboarding Boolean @default(false)
// Materialized views used (refreshed every 15 minutes via pg_cron):
// - mv_agent_run_counts - Pre-aggregated agent execution counts by agentGraphId
@@ -947,14 +856,14 @@ model StoreListingVersion {
AgentGraph AgentGraph @relation(fields: [agentGraphId, agentGraphVersion], references: [id, version])
// Content fields
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
isFeatured Boolean @default(false)
@@ -990,6 +899,7 @@ model StoreListingVersion {
// Reviews for this specific version
Reviews StoreListingReview[]
@@unique([storeListingId, version])
@@index([storeListingId, submissionStatus, isAvailable])
@@index([submissionStatus])
@@index([reviewerId])
@@ -1088,16 +998,16 @@ model OAuthApplication {
updatedAt DateTime @updatedAt
// Application metadata
name String
description String?
logoUrl String? // URL to app logo stored in GCS
clientId String @unique
clientSecret String // Hashed with Scrypt (same as API keys)
clientSecretSalt String // Salt for Scrypt hashing
name String
description String?
logoUrl String? // URL to app logo stored in GCS
clientId String @unique
clientSecret String // Hashed with Scrypt (same as API keys)
clientSecretSalt String // Salt for Scrypt hashing
// OAuth configuration
redirectUris String[] // Allowed callback URLs
grantTypes String[] @default(["authorization_code", "refresh_token"])
grantTypes String[] @default(["authorization_code", "refresh_token"])
scopes APIKeyPermission[] // Which permissions the app can request
// Application management

View File

@@ -1,113 +0,0 @@
from unittest.mock import Mock
from backend.blocks.google.docs import GoogleDocsFormatTextBlock
def _make_mock_docs_service() -> Mock:
service = Mock()
# Ensure chained call exists: service.documents().batchUpdate(...).execute()
service.documents.return_value.batchUpdate.return_value.execute.return_value = {}
return service
def test_format_text_parses_shorthand_hex_color():
block = GoogleDocsFormatTextBlock()
service = _make_mock_docs_service()
result = block._format_text(
service,
document_id="doc_1",
start_index=1,
end_index=2,
bold=False,
italic=False,
underline=False,
font_size=0,
foreground_color="#FFF",
)
assert result["success"] is True
# Verify request body contains correct rgbColor for white.
_, kwargs = service.documents.return_value.batchUpdate.call_args
requests = kwargs["body"]["requests"]
rgb = requests[0]["updateTextStyle"]["textStyle"]["foregroundColor"]["color"][
"rgbColor"
]
assert rgb == {"red": 1.0, "green": 1.0, "blue": 1.0}
def test_format_text_parses_full_hex_color():
block = GoogleDocsFormatTextBlock()
service = _make_mock_docs_service()
result = block._format_text(
service,
document_id="doc_1",
start_index=1,
end_index=2,
bold=False,
italic=False,
underline=False,
font_size=0,
foreground_color="#FF0000",
)
assert result["success"] is True
_, kwargs = service.documents.return_value.batchUpdate.call_args
requests = kwargs["body"]["requests"]
rgb = requests[0]["updateTextStyle"]["textStyle"]["foregroundColor"]["color"][
"rgbColor"
]
assert rgb == {"red": 1.0, "green": 0.0, "blue": 0.0}
def test_format_text_ignores_invalid_color_when_other_fields_present():
block = GoogleDocsFormatTextBlock()
service = _make_mock_docs_service()
result = block._format_text(
service,
document_id="doc_1",
start_index=1,
end_index=2,
bold=True,
italic=False,
underline=False,
font_size=0,
foreground_color="#GGG",
)
assert result["success"] is True
assert "warning" in result
# Should still apply bold, but should NOT include foregroundColor in textStyle.
_, kwargs = service.documents.return_value.batchUpdate.call_args
requests = kwargs["body"]["requests"]
text_style = requests[0]["updateTextStyle"]["textStyle"]
fields = requests[0]["updateTextStyle"]["fields"]
assert text_style == {"bold": True}
assert fields == "bold"
def test_format_text_invalid_color_only_does_not_call_api():
block = GoogleDocsFormatTextBlock()
service = _make_mock_docs_service()
result = block._format_text(
service,
document_id="doc_1",
start_index=1,
end_index=2,
bold=False,
italic=False,
underline=False,
font_size=0,
foreground_color="#F",
)
assert result["success"] is False
assert "Invalid foreground_color" in result["message"]
service.documents.return_value.batchUpdate.assert_not_called()

View File

@@ -37,18 +37,6 @@ class TestTranscribeYoutubeVideoBlock:
video_id = self.youtube_block.extract_video_id(url)
assert video_id == "dQw4w9WgXcQ"
def test_extract_video_id_shorts_url(self):
"""Test extracting video ID from YouTube Shorts URL."""
url = "https://www.youtube.com/shorts/dtUqwMu3e-g"
video_id = self.youtube_block.extract_video_id(url)
assert video_id == "dtUqwMu3e-g"
def test_extract_video_id_shorts_url_with_params(self):
"""Test extracting video ID from YouTube Shorts URL with query parameters."""
url = "https://www.youtube.com/shorts/dtUqwMu3e-g?feature=share"
video_id = self.youtube_block.extract_video_id(url)
assert video_id == "dtUqwMu3e-g"
@patch("backend.blocks.youtube.YouTubeTranscriptApi")
def test_get_transcript_english_available(self, mock_api_class):
"""Test getting transcript when English is available."""

View File

@@ -1,146 +0,0 @@
/**
* Cloudflare Workers Script for docs.agpt.co → agpt.co/docs migration
*
* Deploy this script to handle all redirects with a single JavaScript file.
* No rule limits, easy to maintain, handles all edge cases.
*/
// URL mapping for special cases that don't follow patterns
const SPECIAL_MAPPINGS = {
// Root page
'/': '/docs/platform',
// Special cases that don't follow standard patterns
'/platform/d_id/': '/docs/integrations/block-integrations/d-id',
'/platform/blocks/blocks/': '/docs/integrations',
'/platform/blocks/decoder_block/': '/docs/integrations/block-integrations/text-decoder',
'/platform/blocks/http': '/docs/integrations/block-integrations/send-web-request',
'/platform/blocks/llm/': '/docs/integrations/block-integrations/ai-and-llm',
'/platform/blocks/time_blocks': '/docs/integrations/block-integrations/time-and-date',
'/platform/blocks/text_to_speech_block': '/docs/integrations/block-integrations/text-to-speech',
'/platform/blocks/ai_shortform_video_block': '/docs/integrations/block-integrations/ai-shortform-video',
'/platform/blocks/replicate_flux_advanced': '/docs/integrations/block-integrations/replicate-flux-advanced',
'/platform/blocks/flux_kontext': '/docs/integrations/block-integrations/flux-kontext',
'/platform/blocks/ai_condition/': '/docs/integrations/block-integrations/ai-condition',
'/platform/blocks/email_block': '/docs/integrations/block-integrations/email',
'/platform/blocks/google_maps': '/docs/integrations/block-integrations/google-maps',
'/platform/blocks/google/gmail': '/docs/integrations/block-integrations/gmail',
'/platform/blocks/github/issues/': '/docs/integrations/block-integrations/github-issues',
'/platform/blocks/github/repo/': '/docs/integrations/block-integrations/github-repo',
'/platform/blocks/github/pull_requests': '/docs/integrations/block-integrations/github-pull-requests',
'/platform/blocks/twitter/twitter': '/docs/integrations/block-integrations/twitter',
'/classic/setup/': '/docs/classic/setup/setting-up-autogpt-classic',
'/code-of-conduct/': '/docs/classic/help-us-improve-autogpt/code-of-conduct',
'/contributing/': '/docs/classic/contributing',
'/contribute/': '/docs/contribute',
'/forge/components/introduction/': '/docs/classic/forge/introduction'
};
/**
* Transform path by replacing underscores with hyphens and removing trailing slashes
*/
function transformPath(path) {
return path.replace(/_/g, '-').replace(/\/$/, '');
}
/**
* Handle docs.agpt.co redirects
*/
function handleDocsRedirect(url) {
const pathname = url.pathname;
// Check special mappings first
if (SPECIAL_MAPPINGS[pathname]) {
return `https://agpt.co${SPECIAL_MAPPINGS[pathname]}`;
}
// Pattern-based redirects
// Platform blocks: /platform/blocks/* → /docs/integrations/block-integrations/*
if (pathname.startsWith('/platform/blocks/')) {
const blockName = pathname.substring('/platform/blocks/'.length);
const transformedName = transformPath(blockName);
return `https://agpt.co/docs/integrations/block-integrations/${transformedName}`;
}
// Platform contributing: /platform/contributing/* → /docs/platform/contributing/*
if (pathname.startsWith('/platform/contributing/')) {
const subPath = pathname.substring('/platform/contributing/'.length);
return `https://agpt.co/docs/platform/contributing/${subPath}`;
}
// Platform general: /platform/* → /docs/platform/* (with underscore→hyphen)
if (pathname.startsWith('/platform/')) {
const subPath = pathname.substring('/platform/'.length);
const transformedPath = transformPath(subPath);
return `https://agpt.co/docs/platform/${transformedPath}`;
}
// Forge components: /forge/components/* → /docs/classic/forge/introduction/*
if (pathname.startsWith('/forge/components/')) {
const subPath = pathname.substring('/forge/components/'.length);
return `https://agpt.co/docs/classic/forge/introduction/${subPath}`;
}
// Forge general: /forge/* → /docs/classic/forge/*
if (pathname.startsWith('/forge/')) {
const subPath = pathname.substring('/forge/'.length);
return `https://agpt.co/docs/classic/forge/${subPath}`;
}
// Classic: /classic/* → /docs/classic/*
if (pathname.startsWith('/classic/')) {
const subPath = pathname.substring('/classic/'.length);
return `https://agpt.co/docs/classic/${subPath}`;
}
// Default fallback
return 'https://agpt.co/docs/';
}
/**
* Main Worker function
*/
export default {
async fetch(request, env, ctx) {
const url = new URL(request.url);
// Only handle docs.agpt.co requests
if (url.hostname === 'docs.agpt.co') {
const redirectUrl = handleDocsRedirect(url);
return new Response(null, {
status: 301,
headers: {
'Location': redirectUrl,
'Cache-Control': 'max-age=300' // Cache redirects for 5 minutes
}
});
}
// For non-docs requests, pass through or return 404
return new Response('Not Found', { status: 404 });
}
};
// Test function for local development
export function testRedirects() {
const testCases = [
'https://docs.agpt.co/',
'https://docs.agpt.co/platform/getting-started/',
'https://docs.agpt.co/platform/advanced_setup/',
'https://docs.agpt.co/platform/blocks/basic/',
'https://docs.agpt.co/platform/blocks/ai_condition/',
'https://docs.agpt.co/classic/setup/',
'https://docs.agpt.co/forge/components/agents/',
'https://docs.agpt.co/contributing/',
'https://docs.agpt.co/unknown-page'
];
console.log('Testing redirects:');
testCases.forEach(testUrl => {
const url = new URL(testUrl);
const result = handleDocsRedirect(url);
console.log(`${testUrl}${result}`);
});
}

View File

@@ -46,15 +46,14 @@
"@radix-ui/react-scroll-area": "1.2.10",
"@radix-ui/react-select": "2.2.6",
"@radix-ui/react-separator": "1.1.7",
"@radix-ui/react-slider": "1.3.6",
"@radix-ui/react-slot": "1.2.3",
"@radix-ui/react-switch": "1.2.6",
"@radix-ui/react-tabs": "1.1.13",
"@radix-ui/react-toast": "1.2.15",
"@radix-ui/react-tooltip": "1.2.8",
"@rjsf/core": "6.1.2",
"@rjsf/utils": "6.1.2",
"@rjsf/validator-ajv8": "6.1.2",
"@rjsf/core": "5.24.13",
"@rjsf/utils": "5.24.13",
"@rjsf/validator-ajv8": "5.24.13",
"@sentry/nextjs": "10.27.0",
"@supabase/ssr": "0.7.0",
"@supabase/supabase-js": "2.78.0",
@@ -70,7 +69,6 @@
"cmdk": "1.1.1",
"cookie": "1.0.2",
"date-fns": "4.1.0",
"dexie": "4.2.1",
"dotenv": "17.2.3",
"elliptic": "6.6.1",
"embla-carousel-react": "8.6.0",

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,4 @@
import { OAuthPopupResultMessage } from "./types";
import { OAuthPopupResultMessage } from "@/components/renderers/input-renderer/fields/CredentialField/models/OAuthCredentialModal/useOAuthCredentialModal";
import { NextResponse } from "next/server";
// This route is intended to be used as the callback for integration OAuth flows,

View File

@@ -1,11 +0,0 @@
export type OAuthPopupResultMessage = { message_type: "oauth_popup_result" } & (
| {
success: true;
code: string;
state: string;
}
| {
success: false;
message: string;
}
);

View File

@@ -16,7 +16,6 @@ import {
SheetTitle,
SheetTrigger,
} from "@/components/__legacy__/ui/sheet";
import { Button } from "@/components/atoms/Button/Button";
import {
Tooltip,
TooltipContent,
@@ -26,6 +25,7 @@ import {
import { BookOpenIcon } from "@phosphor-icons/react";
import { useMemo } from "react";
import { useShallow } from "zustand/react/shallow";
import { BuilderActionButton } from "../BuilderActionButton";
export const AgentOutputs = ({ flowID }: { flowID: string | null }) => {
const hasOutputs = useGraphStore(useShallow((state) => state.hasOutputs));
@@ -76,13 +76,9 @@ export const AgentOutputs = ({ flowID }: { flowID: string | null }) => {
<Tooltip>
<TooltipTrigger asChild>
<SheetTrigger asChild>
<Button
variant="outline"
size="icon"
disabled={!flowID || !hasOutputs()}
>
<BookOpenIcon className="size-4" />
</Button>
<BuilderActionButton disabled={!flowID || !hasOutputs()}>
<BookOpenIcon className="size-6" />
</BuilderActionButton>
</SheetTrigger>
</TooltipTrigger>
<TooltipContent>

View File

@@ -0,0 +1,37 @@
import { Button } from "@/components/atoms/Button/Button";
import { ButtonProps } from "@/components/atoms/Button/helpers";
import { cn } from "@/lib/utils";
import { CircleNotchIcon } from "@phosphor-icons/react";
export const BuilderActionButton = ({
children,
className,
isLoading,
...props
}: ButtonProps & { isLoading?: boolean }) => {
return (
<Button
variant="icon"
size={"small"}
className={cn(
"relative h-12 w-12 min-w-0 text-lg",
"bg-gradient-to-br from-zinc-50 to-zinc-200",
"border border-zinc-200",
"shadow-[inset_0_3px_0_0_rgba(255,255,255,0.5),0_2px_4px_0_rgba(0,0,0,0.2)]",
"dark:shadow-[inset_0_1px_0_0_rgba(255,255,255,0.1),0_2px_4px_0_rgba(0,0,0,0.4)]",
"hover:shadow-[inset_0_1px_0_0_rgba(255,255,255,0.5),0_1px_2px_0_rgba(0,0,0,0.2)]",
"active:shadow-[inset_0_2px_4px_0_rgba(0,0,0,0.2)]",
"transition-all duration-150",
"disabled:cursor-not-allowed disabled:opacity-50",
className,
)}
{...props}
>
{!isLoading ? (
children
) : (
<CircleNotchIcon className="size-6 animate-spin" />
)}
</Button>
);
};

View File

@@ -1,12 +1,12 @@
import { Button } from "@/components/atoms/Button/Button";
import { ShareIcon } from "@phosphor-icons/react";
import { BuilderActionButton } from "../BuilderActionButton";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { PublishAgentModal } from "@/components/contextual/PublishAgentModal/PublishAgentModal";
import { ShareIcon } from "@phosphor-icons/react";
import { usePublishToMarketplace } from "./usePublishToMarketplace";
import { PublishAgentModal } from "@/components/contextual/PublishAgentModal/PublishAgentModal";
export const PublishToMarketplace = ({ flowID }: { flowID: string | null }) => {
const { handlePublishToMarketplace, publishState, handleStateChange } =
@@ -16,14 +16,12 @@ export const PublishToMarketplace = ({ flowID }: { flowID: string | null }) => {
<>
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="outline"
size="icon"
<BuilderActionButton
onClick={handlePublishToMarketplace}
disabled={!flowID}
>
<ShareIcon className="size-4" />
</Button>
<ShareIcon className="size-6 drop-shadow-sm" />
</BuilderActionButton>
</TooltipTrigger>
<TooltipContent>Publish to Marketplace</TooltipContent>
</Tooltip>
@@ -32,7 +30,6 @@ export const PublishToMarketplace = ({ flowID }: { flowID: string | null }) => {
targetState={publishState}
onStateChange={handleStateChange}
preSelectedAgentId={flowID || undefined}
showTrigger={false}
/>
</>
);

View File

@@ -1,14 +1,15 @@
import { useRunGraph } from "./useRunGraph";
import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { Button } from "@/components/atoms/Button/Button";
import { useShallow } from "zustand/react/shallow";
import { PlayIcon, StopIcon } from "@phosphor-icons/react";
import { cn } from "@/lib/utils";
import { RunInputDialog } from "../RunInputDialog/RunInputDialog";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { PlayIcon, StopIcon } from "@phosphor-icons/react";
import { useShallow } from "zustand/react/shallow";
import { RunInputDialog } from "../RunInputDialog/RunInputDialog";
import { useRunGraph } from "./useRunGraph";
import { BuilderActionButton } from "../BuilderActionButton";
export const RunGraph = ({ flowID }: { flowID: string | null }) => {
const {
@@ -28,19 +29,21 @@ export const RunGraph = ({ flowID }: { flowID: string | null }) => {
<>
<Tooltip>
<TooltipTrigger asChild>
<Button
size="icon"
variant={isGraphRunning ? "destructive" : "primary"}
<BuilderActionButton
className={cn(
isGraphRunning &&
"border-red-500 bg-gradient-to-br from-red-400 to-red-500 shadow-[inset_0_2px_0_0_rgba(255,255,255,0.5),0_2px_4px_0_rgba(0,0,0,0.2)]",
)}
onClick={isGraphRunning ? handleStopGraph : handleRunGraph}
disabled={!flowID || isExecutingGraph || isTerminatingGraph}
loading={isExecutingGraph || isTerminatingGraph || isSaving}
isLoading={isExecutingGraph || isTerminatingGraph || isSaving}
>
{!isGraphRunning ? (
<PlayIcon className="size-4" />
<PlayIcon className="size-6 drop-shadow-sm" />
) : (
<StopIcon className="size-4" />
<StopIcon className="size-6 drop-shadow-sm" />
)}
</Button>
</BuilderActionButton>
</TooltipTrigger>
<TooltipContent>
{isGraphRunning ? "Stop agent" : "Run agent"}

View File

@@ -5,7 +5,7 @@ import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { Button } from "@/components/atoms/Button/Button";
import { ClockIcon, PlayIcon } from "@phosphor-icons/react";
import { Text } from "@/components/atoms/Text/Text";
import { FormRenderer } from "@/components/renderers/InputRenderer/FormRenderer";
import { FormRenderer } from "@/components/renderers/input-renderer/FormRenderer";
import { useRunInputDialog } from "./useRunInputDialog";
import { CronSchedulerDialog } from "../CronSchedulerDialog/CronSchedulerDialog";

View File

@@ -8,7 +8,7 @@ import {
import { parseAsInteger, parseAsString, useQueryStates } from "nuqs";
import { useMemo, useState } from "react";
import { uiSchema } from "../../../FlowEditor/nodes/uiSchema";
import { isCredentialFieldSchema } from "@/components/renderers/InputRenderer/custom/CredentialField/helpers";
import { isCredentialFieldSchema } from "@/components/renderers/input-renderer/fields/CredentialField/helpers";
export const useRunInputDialog = ({
setIsOpen,

View File

@@ -1,14 +1,14 @@
import { Button } from "@/components/atoms/Button/Button";
import { ClockIcon } from "@phosphor-icons/react";
import { RunInputDialog } from "../RunInputDialog/RunInputDialog";
import { useScheduleGraph } from "./useScheduleGraph";
import {
Tooltip,
TooltipContent,
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { ClockIcon } from "@phosphor-icons/react";
import { CronSchedulerDialog } from "../CronSchedulerDialog/CronSchedulerDialog";
import { RunInputDialog } from "../RunInputDialog/RunInputDialog";
import { useScheduleGraph } from "./useScheduleGraph";
import { BuilderActionButton } from "../BuilderActionButton";
export const ScheduleGraph = ({ flowID }: { flowID: string | null }) => {
const {
@@ -23,14 +23,12 @@ export const ScheduleGraph = ({ flowID }: { flowID: string | null }) => {
<TooltipProvider>
<Tooltip>
<TooltipTrigger asChild>
<Button
variant="outline"
size="icon"
<BuilderActionButton
onClick={handleScheduleGraph}
disabled={!flowID}
>
<ClockIcon className="size-4" />
</Button>
<ClockIcon className="size-6" />
</BuilderActionButton>
</TooltipTrigger>
<TooltipContent>
<p>Schedule Graph</p>

View File

@@ -1,7 +1,7 @@
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { usePathname, useRouter, useSearchParams } from "next/navigation";
import { useEffect, useMemo } from "react";
import { BuilderView } from "./components/BuilderViewTabs/BuilderViewTabs";
import { BuilderView } from "./BuilderViewTabs";
export function useBuilderView() {
const isNewFlowEditorEnabled = useGetFlag(Flag.NEW_FLOW_EDITOR);

View File

@@ -1,160 +0,0 @@
"use client";
import { Button } from "@/components/atoms/Button/Button";
import { ClockCounterClockwiseIcon, XIcon } from "@phosphor-icons/react";
import { cn } from "@/lib/utils";
import { formatTimeAgo } from "@/lib/utils/time";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { useDraftRecoveryPopup } from "./useDraftRecoveryPopup";
import { Text } from "@/components/atoms/Text/Text";
import { AnimatePresence, motion } from "framer-motion";
import { DraftDiff } from "@/lib/dexie/draft-utils";
interface DraftRecoveryPopupProps {
isInitialLoadComplete: boolean;
}
function formatDiffSummary(diff: DraftDiff | null): string {
if (!diff) return "";
const parts: string[] = [];
// Node changes
const nodeChanges: string[] = [];
if (diff.nodes.added > 0) nodeChanges.push(`+${diff.nodes.added}`);
if (diff.nodes.removed > 0) nodeChanges.push(`-${diff.nodes.removed}`);
if (diff.nodes.modified > 0) nodeChanges.push(`~${diff.nodes.modified}`);
if (nodeChanges.length > 0) {
parts.push(
`${nodeChanges.join("/")} block${diff.nodes.added + diff.nodes.removed + diff.nodes.modified !== 1 ? "s" : ""}`,
);
}
// Edge changes
const edgeChanges: string[] = [];
if (diff.edges.added > 0) edgeChanges.push(`+${diff.edges.added}`);
if (diff.edges.removed > 0) edgeChanges.push(`-${diff.edges.removed}`);
if (diff.edges.modified > 0) edgeChanges.push(`~${diff.edges.modified}`);
if (edgeChanges.length > 0) {
parts.push(
`${edgeChanges.join("/")} connection${diff.edges.added + diff.edges.removed + diff.edges.modified !== 1 ? "s" : ""}`,
);
}
return parts.join(", ");
}
export function DraftRecoveryPopup({
isInitialLoadComplete,
}: DraftRecoveryPopupProps) {
const {
isOpen,
popupRef,
nodeCount,
edgeCount,
diff,
savedAt,
onLoad,
onDiscard,
} = useDraftRecoveryPopup(isInitialLoadComplete);
const diffSummary = formatDiffSummary(diff);
return (
<AnimatePresence>
{isOpen && (
<motion.div
ref={popupRef}
className={cn("absolute left-1/2 top-4 z-50")}
initial={{
opacity: 0,
x: "-50%",
y: "-150%",
scale: 0.5,
filter: "blur(20px)",
}}
animate={{
opacity: 1,
x: "-50%",
y: "0%",
scale: 1,
filter: "blur(0px)",
}}
exit={{
opacity: 0,
y: "-150%",
scale: 0.5,
filter: "blur(20px)",
transition: { duration: 0.4, type: "spring", bounce: 0.2 },
}}
transition={{ duration: 0.2, type: "spring", bounce: 0.2 }}
>
<div
className={cn(
"flex items-center gap-3 rounded-xlarge border border-amber-200 bg-amber-50 px-4 py-3 shadow-lg",
)}
>
<div className="flex items-center gap-2 text-amber-700 dark:text-amber-300">
<ClockCounterClockwiseIcon className="h-5 w-5" weight="fill" />
</div>
<div className="flex flex-col">
<Text
variant="small-medium"
className="text-amber-900 dark:text-amber-100"
>
Unsaved changes found
</Text>
<Text
variant="small"
className="text-amber-700 dark:text-amber-400"
>
{diffSummary ||
`${nodeCount} block${nodeCount !== 1 ? "s" : ""}, ${edgeCount} connection${edgeCount !== 1 ? "s" : ""}`}{" "}
{formatTimeAgo(new Date(savedAt).toISOString())}
</Text>
</div>
<div className="ml-2 flex items-center gap-2">
<Tooltip delayDuration={10}>
<TooltipTrigger asChild>
<Button
variant="primary"
size="small"
onClick={onLoad}
className="aspect-square min-w-0 p-1.5"
>
<ClockCounterClockwiseIcon size={20} weight="fill" />
<span className="sr-only">Restore changes</span>
</Button>
</TooltipTrigger>
<TooltipContent>Restore changes</TooltipContent>
</Tooltip>
<Tooltip delayDuration={10}>
<TooltipTrigger asChild>
<Button
variant="destructive"
size="icon"
onClick={onDiscard}
aria-label="Discard changes"
className="aspect-square min-w-0 p-1.5"
>
<XIcon size={20} />
<span className="sr-only">Discard changes</span>
</Button>
</TooltipTrigger>
<TooltipContent>Discard changes</TooltipContent>
</Tooltip>
</div>
</div>
</motion.div>
)}
</AnimatePresence>
);
}

View File

@@ -1,63 +0,0 @@
import { useEffect, useRef } from "react";
import { useDraftManager } from "../FlowEditor/Flow/useDraftManager";
export const useDraftRecoveryPopup = (isInitialLoadComplete: boolean) => {
const popupRef = useRef<HTMLDivElement>(null);
const {
isRecoveryOpen: isOpen,
savedAt,
nodeCount,
edgeCount,
diff,
loadDraft: onLoad,
discardDraft: onDiscard,
} = useDraftManager(isInitialLoadComplete);
useEffect(() => {
if (!isOpen) return;
const handleClickOutside = (event: MouseEvent) => {
if (
popupRef.current &&
!popupRef.current.contains(event.target as Node)
) {
onDiscard();
}
};
const timeoutId = setTimeout(() => {
document.addEventListener("mousedown", handleClickOutside);
}, 100);
return () => {
clearTimeout(timeoutId);
document.removeEventListener("mousedown", handleClickOutside);
};
}, [isOpen, onDiscard]);
useEffect(() => {
if (!isOpen) return;
const handleKeyDown = (event: KeyboardEvent) => {
if (event.key === "Escape") {
onDiscard();
}
};
document.addEventListener("keydown", handleKeyDown);
return () => {
document.removeEventListener("keydown", handleKeyDown);
};
}, [isOpen, onDiscard]);
return {
popupRef,
isOpen,
nodeCount,
edgeCount,
diff,
savedAt,
onLoad,
onDiscard,
};
};

View File

@@ -1,27 +1,26 @@
import { useGetV1GetSpecificGraph } from "@/app/api/__generated__/endpoints/graphs/graphs";
import { okData } from "@/app/api/helpers";
import { FloatingReviewsPanel } from "@/components/organisms/FloatingReviewsPanel/FloatingReviewsPanel";
import { Background, ReactFlow } from "@xyflow/react";
import { parseAsString, useQueryStates } from "nuqs";
import { useCallback, useMemo } from "react";
import { useShallow } from "zustand/react/shallow";
import { useGraphStore } from "../../../stores/graphStore";
import { useNodeStore } from "../../../stores/nodeStore";
import { BuilderActions } from "../../BuilderActions/BuilderActions";
import { DraftRecoveryPopup } from "../../DraftRecoveryDialog/DraftRecoveryPopup";
import { FloatingSafeModeToggle } from "../../FloatingSafeModeToogle";
import { ReactFlow, Background } from "@xyflow/react";
import NewControlPanel from "../../NewControlPanel/NewControlPanel";
import CustomEdge from "../edges/CustomEdge";
import { useCustomEdge } from "../edges/useCustomEdge";
import { useFlow } from "./useFlow";
import { useShallow } from "zustand/react/shallow";
import { useNodeStore } from "../../../stores/nodeStore";
import { useMemo, useEffect, useCallback } from "react";
import { CustomNode } from "../nodes/CustomNode/CustomNode";
import { CustomControls } from "./components/CustomControl";
import { useCustomEdge } from "../edges/useCustomEdge";
import { useFlowRealtime } from "./useFlowRealtime";
import { GraphLoadingBox } from "./components/GraphLoadingBox";
import { BuilderActions } from "../../BuilderActions/BuilderActions";
import { RunningBackground } from "./components/RunningBackground";
import { useGraphStore } from "../../../stores/graphStore";
import { useCopyPaste } from "./useCopyPaste";
import { FloatingReviewsPanel } from "@/components/organisms/FloatingReviewsPanel/FloatingReviewsPanel";
import { parseAsString, useQueryStates } from "nuqs";
import { CustomControls } from "./components/CustomControl";
import { useGetV1GetSpecificGraph } from "@/app/api/__generated__/endpoints/graphs/graphs";
import { okData } from "@/app/api/helpers";
import { TriggerAgentBanner } from "./components/TriggerAgentBanner";
import { resolveCollisions } from "./helpers/resolve-collision";
import { useCopyPaste } from "./useCopyPaste";
import { useFlow } from "./useFlow";
import { useFlowRealtime } from "./useFlowRealtime";
import { FloatingSafeModeToggle } from "../../FloatingSafeModeToogle";
export const Flow = () => {
const [{ flowID, flowExecutionID }] = useQueryStates({
@@ -42,18 +41,14 @@ export const Flow = () => {
const nodes = useNodeStore(useShallow((state) => state.nodes));
const setNodes = useNodeStore(useShallow((state) => state.setNodes));
const onNodesChange = useNodeStore(
useShallow((state) => state.onNodesChange),
);
const hasWebhookNodes = useNodeStore(
useShallow((state) => state.hasWebhookNodes()),
);
const nodeTypes = useMemo(() => ({ custom: CustomNode }), []);
const edgeTypes = useMemo(() => ({ custom: CustomEdge }), []);
const onNodeDragStop = useCallback(() => {
setNodes(
resolveCollisions(nodes, {
@@ -65,26 +60,29 @@ export const Flow = () => {
}, [setNodes, nodes]);
const { edges, onConnect, onEdgesChange } = useCustomEdge();
// for loading purpose
const {
onDragOver,
onDrop,
isFlowContentLoading,
isInitialLoadComplete,
isLocked,
setIsLocked,
} = useFlow();
// We use this hook to load the graph and convert them into custom nodes and edges.
const { onDragOver, onDrop, isFlowContentLoading, isLocked, setIsLocked } =
useFlow();
// This hook is used for websocket realtime updates.
useFlowRealtime();
// Copy/paste functionality
useCopyPaste();
const handleCopyPaste = useCopyPaste();
useEffect(() => {
const handleKeyDown = (event: KeyboardEvent) => {
handleCopyPaste(event);
};
window.addEventListener("keydown", handleKeyDown);
return () => {
window.removeEventListener("keydown", handleKeyDown);
};
}, [handleCopyPaste]);
const isGraphRunning = useGraphStore(
useShallow((state) => state.isGraphRunning),
);
return (
<div className="flex h-full w-full dark:bg-slate-900">
<div className="relative flex-1">
@@ -97,9 +95,6 @@ export const Flow = () => {
onConnect={onConnect}
onEdgesChange={onEdgesChange}
onNodeDragStop={onNodeDragStop}
onNodeContextMenu={(event) => {
event.preventDefault();
}}
maxZoom={2}
minZoom={0.1}
onDragOver={onDragOver}
@@ -107,7 +102,6 @@ export const Flow = () => {
nodesDraggable={!isLocked}
nodesConnectable={!isLocked}
elementsSelectable={!isLocked}
deleteKeyCode={["Backspace", "Delete"]}
>
<Background />
<CustomControls setIsLocked={setIsLocked} isLocked={isLocked} />
@@ -121,7 +115,6 @@ export const Flow = () => {
className="right-2 top-32 p-2"
/>
)}
<DraftRecoveryPopup isInitialLoadComplete={isInitialLoadComplete} />
</ReactFlow>
</div>
{/* TODO: Need to update it in future - also do not send executionId as prop - rather use useQueryState inside the component */}

View File

@@ -48,6 +48,8 @@ export const resolveCollisions: CollisionAlgorithm = (
const width = (node.width ?? node.measured?.width ?? 0) + margin * 2;
const height = (node.height ?? node.measured?.height ?? 0) + margin * 2;
console.log("width", width);
console.log("height", height);
const x = node.position.x - margin;
const y = node.position.y - margin;

View File

@@ -1,4 +1,4 @@
import { useCallback, useEffect } from "react";
import { useCallback } from "react";
import { useReactFlow } from "@xyflow/react";
import { v4 as uuidv4 } from "uuid";
import { useNodeStore } from "../../../stores/nodeStore";
@@ -151,16 +151,5 @@ export function useCopyPaste() {
[getViewport, toast],
);
useEffect(() => {
const handleKeyDown = (event: KeyboardEvent) => {
handleCopyPaste(event);
};
window.addEventListener("keydown", handleKeyDown);
return () => {
window.removeEventListener("keydown", handleKeyDown);
};
}, [handleCopyPaste]);
return handleCopyPaste;
}

View File

@@ -1,319 +0,0 @@
import { useState, useCallback, useEffect, useRef } from "react";
import { parseAsString, parseAsInteger, useQueryStates } from "nuqs";
import {
draftService,
getTempFlowId,
getOrCreateTempFlowId,
DraftData,
} from "@/services/builder-draft/draft-service";
import { BuilderDraft } from "@/lib/dexie/db";
import {
cleanNodes,
cleanEdges,
calculateDraftDiff,
DraftDiff,
} from "@/lib/dexie/draft-utils";
import { useNodeStore } from "../../../stores/nodeStore";
import { useEdgeStore } from "../../../stores/edgeStore";
import { useGraphStore } from "../../../stores/graphStore";
import { useHistoryStore } from "../../../stores/historyStore";
import isEqual from "lodash/isEqual";
const AUTO_SAVE_INTERVAL_MS = 15000; // 15 seconds
interface DraftRecoveryState {
isOpen: boolean;
draft: BuilderDraft | null;
diff: DraftDiff | null;
}
/**
* Consolidated hook for draft persistence and recovery
* - Auto-saves builder state every 15 seconds
* - Saves on beforeunload event
* - Checks for and manages unsaved drafts on load
*/
export function useDraftManager(isInitialLoadComplete: boolean) {
const [state, setState] = useState<DraftRecoveryState>({
isOpen: false,
draft: null,
diff: null,
});
const [{ flowID, flowVersion }] = useQueryStates({
flowID: parseAsString,
flowVersion: parseAsInteger,
});
const lastSavedStateRef = useRef<DraftData | null>(null);
const saveTimeoutRef = useRef<NodeJS.Timeout | null>(null);
const isDirtyRef = useRef(false);
const hasCheckedForDraft = useRef(false);
const getEffectiveFlowId = useCallback((): string => {
return flowID || getOrCreateTempFlowId();
}, [flowID]);
const getCurrentState = useCallback((): DraftData => {
const nodes = useNodeStore.getState().nodes;
const edges = useEdgeStore.getState().edges;
const nodeCounter = useNodeStore.getState().nodeCounter;
const graphStore = useGraphStore.getState();
return {
nodes,
edges,
graphSchemas: {
input: graphStore.inputSchema,
credentials: graphStore.credentialsInputSchema,
output: graphStore.outputSchema,
},
nodeCounter,
flowVersion: flowVersion ?? undefined,
};
}, [flowVersion]);
const cleanStateForComparison = useCallback((stateData: DraftData) => {
return {
nodes: cleanNodes(stateData.nodes),
edges: cleanEdges(stateData.edges),
};
}, []);
const hasChanges = useCallback((): boolean => {
const currentState = getCurrentState();
if (!lastSavedStateRef.current) {
return currentState.nodes.length > 0;
}
const currentClean = cleanStateForComparison(currentState);
const lastClean = cleanStateForComparison(lastSavedStateRef.current);
return !isEqual(currentClean, lastClean);
}, [getCurrentState, cleanStateForComparison]);
const saveDraft = useCallback(async () => {
const effectiveFlowId = getEffectiveFlowId();
const currentState = getCurrentState();
if (currentState.nodes.length === 0 && currentState.edges.length === 0) {
return;
}
if (!hasChanges()) {
return;
}
try {
await draftService.saveDraft(effectiveFlowId, currentState);
lastSavedStateRef.current = currentState;
isDirtyRef.current = false;
} catch (error) {
console.error("[DraftPersistence] Failed to save draft:", error);
}
}, [getEffectiveFlowId, getCurrentState, hasChanges]);
const scheduleSave = useCallback(() => {
isDirtyRef.current = true;
if (saveTimeoutRef.current) {
clearTimeout(saveTimeoutRef.current);
}
saveTimeoutRef.current = setTimeout(() => {
saveDraft();
}, AUTO_SAVE_INTERVAL_MS);
}, [saveDraft]);
useEffect(() => {
const unsubscribeNodes = useNodeStore.subscribe((storeState, prevState) => {
if (storeState.nodes !== prevState.nodes) {
scheduleSave();
}
});
const unsubscribeEdges = useEdgeStore.subscribe((storeState, prevState) => {
if (storeState.edges !== prevState.edges) {
scheduleSave();
}
});
return () => {
unsubscribeNodes();
unsubscribeEdges();
};
}, [scheduleSave]);
useEffect(() => {
const handleBeforeUnload = () => {
if (isDirtyRef.current) {
const effectiveFlowId = getEffectiveFlowId();
const currentState = getCurrentState();
if (
currentState.nodes.length === 0 &&
currentState.edges.length === 0
) {
return;
}
draftService.saveDraft(effectiveFlowId, currentState).catch(() => {
// Ignore errors on unload
});
}
};
window.addEventListener("beforeunload", handleBeforeUnload);
return () => {
window.removeEventListener("beforeunload", handleBeforeUnload);
};
}, [getEffectiveFlowId, getCurrentState]);
useEffect(() => {
return () => {
if (saveTimeoutRef.current) {
clearTimeout(saveTimeoutRef.current);
}
if (isDirtyRef.current) {
saveDraft();
}
};
}, [saveDraft]);
useEffect(() => {
draftService.cleanupExpired().catch((error) => {
console.error(
"[DraftPersistence] Failed to cleanup expired drafts:",
error,
);
});
}, []);
const checkForDraft = useCallback(async () => {
const effectiveFlowId = flowID || getTempFlowId();
if (!effectiveFlowId) {
return;
}
try {
const draft = await draftService.loadDraft(effectiveFlowId);
if (!draft) {
return;
}
const currentNodes = useNodeStore.getState().nodes;
const currentEdges = useEdgeStore.getState().edges;
const isDifferent = draftService.isDraftDifferent(
draft,
currentNodes,
currentEdges,
);
if (isDifferent && (draft.nodes.length > 0 || draft.edges.length > 0)) {
const diff = calculateDraftDiff(
draft.nodes,
draft.edges,
currentNodes,
currentEdges,
);
setState({
isOpen: true,
draft,
diff,
});
} else {
await draftService.deleteDraft(effectiveFlowId);
}
} catch (error) {
console.error("[DraftRecovery] Failed to check for draft:", error);
}
}, [flowID]);
useEffect(() => {
if (isInitialLoadComplete && !hasCheckedForDraft.current) {
hasCheckedForDraft.current = true;
checkForDraft();
}
}, [isInitialLoadComplete, checkForDraft]);
useEffect(() => {
hasCheckedForDraft.current = false;
setState({
isOpen: false,
draft: null,
diff: null,
});
}, [flowID]);
const loadDraft = useCallback(async () => {
if (!state.draft) return;
const { draft } = state;
try {
useNodeStore.getState().setNodes(draft.nodes);
useEdgeStore.getState().setEdges(draft.edges);
draft.nodes.forEach((node) => {
useNodeStore.getState().syncHardcodedValuesWithHandleIds(node.id);
});
if (draft.nodeCounter !== undefined) {
useNodeStore.setState({ nodeCounter: draft.nodeCounter });
}
if (draft.graphSchemas) {
useGraphStore
.getState()
.setGraphSchemas(
draft.graphSchemas.input as Record<string, unknown> | null,
draft.graphSchemas.credentials as Record<string, unknown> | null,
draft.graphSchemas.output as Record<string, unknown> | null,
);
}
setTimeout(() => {
useHistoryStore.getState().initializeHistory();
}, 100);
await draftService.deleteDraft(draft.id);
setState({
isOpen: false,
draft: null,
diff: null,
});
} catch (error) {
console.error("[DraftRecovery] Failed to load draft:", error);
}
}, [state.draft]);
const discardDraft = useCallback(async () => {
if (!state.draft) {
setState({ isOpen: false, draft: null, diff: null });
return;
}
try {
await draftService.deleteDraft(state.draft.id);
} catch (error) {
console.error("[DraftRecovery] Failed to discard draft:", error);
}
setState({ isOpen: false, draft: null, diff: null });
}, [state.draft]);
return {
// Recovery popup props
isRecoveryOpen: state.isOpen,
savedAt: state.draft?.savedAt ?? 0,
nodeCount: state.draft?.nodes.length ?? 0,
edgeCount: state.draft?.edges.length ?? 0,
diff: state.diff,
loadDraft,
discardDraft,
};
}

View File

@@ -21,7 +21,6 @@ import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecut
export const useFlow = () => {
const [isLocked, setIsLocked] = useState(false);
const [hasAutoFramed, setHasAutoFramed] = useState(false);
const [isInitialLoadComplete, setIsInitialLoadComplete] = useState(false);
const addNodes = useNodeStore(useShallow((state) => state.addNodes));
const addLinks = useEdgeStore(useShallow((state) => state.addLinks));
const updateNodeStatus = useNodeStore(
@@ -121,14 +120,6 @@ export const useFlow = () => {
if (customNodes.length > 0) {
useNodeStore.getState().setNodes([]);
addNodes(customNodes);
// Sync hardcoded values with handle IDs.
// If a keyvalue field has a key without a value, the backend omits it from hardcoded values.
// But if a handleId exists for that key, it causes inconsistency.
// This ensures hardcoded values stay in sync with handle IDs.
customNodes.forEach((node) => {
useNodeStore.getState().syncHardcodedValuesWithHandleIds(node.id);
});
}
}, [customNodes, addNodes]);
@@ -183,23 +174,11 @@ export const useFlow = () => {
if (customNodes.length > 0 && graph?.links) {
const timer = setTimeout(() => {
useHistoryStore.getState().initializeHistory();
// Mark initial load as complete after history is initialized
setIsInitialLoadComplete(true);
}, 100);
return () => clearTimeout(timer);
}
}, [customNodes, graph?.links]);
// Also mark as complete for new flows (no flowID) after a short delay
useEffect(() => {
if (!flowID && !isGraphLoading && !isBlocksLoading) {
const timer = setTimeout(() => {
setIsInitialLoadComplete(true);
}, 200);
return () => clearTimeout(timer);
}
}, [flowID, isGraphLoading, isBlocksLoading]);
useEffect(() => {
return () => {
useNodeStore.getState().setNodes([]);
@@ -238,7 +217,6 @@ export const useFlow = () => {
useEffect(() => {
setHasAutoFramed(false);
setIsInitialLoadComplete(false);
}, [flowID, flowVersion]);
// Drag and drop block from block menu
@@ -275,7 +253,6 @@ export const useFlow = () => {
return {
isFlowContentLoading: isGraphLoading || isBlocksLoading,
isInitialLoadComplete,
onDragOver,
onDrop,
isLocked,

View File

@@ -1,17 +1,12 @@
import {
Connection as RFConnection,
EdgeChange,
applyEdgeChanges,
} from "@xyflow/react";
import { Connection as RFConnection, EdgeChange } from "@xyflow/react";
import { useEdgeStore } from "@/app/(platform)/build/stores/edgeStore";
import { useCallback } from "react";
import { useNodeStore } from "../../../stores/nodeStore";
import { CustomEdge } from "./CustomEdge";
export const useCustomEdge = () => {
const edges = useEdgeStore((s) => s.edges);
const addEdge = useEdgeStore((s) => s.addEdge);
const setEdges = useEdgeStore((s) => s.setEdges);
const removeEdge = useEdgeStore((s) => s.removeEdge);
const onConnect = useCallback(
(conn: RFConnection) => {
@@ -50,10 +45,14 @@ export const useCustomEdge = () => {
);
const onEdgesChange = useCallback(
(changes: EdgeChange<CustomEdge>[]) => {
setEdges(applyEdgeChanges(changes, edges));
(changes: EdgeChange[]) => {
changes.forEach((change) => {
if (change.type === "remove") {
removeEdge(change.id);
}
});
},
[edges, setEdges],
[removeEdge],
);
return { edges, onConnect, onEdgesChange };

View File

@@ -1,32 +1,26 @@
import { CircleIcon } from "@phosphor-icons/react";
import { Handle, Position } from "@xyflow/react";
import { useEdgeStore } from "../../../stores/edgeStore";
import { cleanUpHandleId } from "@/components/renderers/InputRenderer/helpers";
import { cn } from "@/lib/utils";
const InputNodeHandle = ({
const NodeHandle = ({
handleId,
nodeId,
isConnected,
side,
}: {
handleId: string;
nodeId: string;
isConnected: boolean;
side: "left" | "right";
}) => {
const cleanedHandleId = cleanUpHandleId(handleId);
const isInputConnected = useEdgeStore((state) =>
state.isInputConnected(nodeId ?? "", cleanedHandleId),
);
return (
<Handle
type={"target"}
position={Position.Left}
id={cleanedHandleId}
className={"-ml-6 mr-2"}
type={side === "left" ? "target" : "source"}
position={side === "left" ? Position.Left : Position.Right}
id={handleId}
className={side === "left" ? "-ml-4 mr-2" : "-mr-2 ml-2"}
>
<div className="pointer-events-none">
<CircleIcon
size={16}
weight={isInputConnected ? "fill" : "duotone"}
weight={isConnected ? "fill" : "duotone"}
className={"text-gray-400 opacity-100"}
/>
</div>
@@ -34,35 +28,4 @@ const InputNodeHandle = ({
);
};
const OutputNodeHandle = ({
field_name,
nodeId,
hexColor,
}: {
field_name: string;
nodeId: string;
hexColor: string;
}) => {
const isOutputConnected = useEdgeStore((state) =>
state.isOutputConnected(nodeId, field_name),
);
return (
<Handle
type={"source"}
position={Position.Right}
id={field_name}
className={"-mr-2 ml-2"}
>
<div className="pointer-events-none">
<CircleIcon
size={16}
weight={"duotone"}
color={isOutputConnected ? hexColor : "gray"}
className={cn("text-gray-400 opacity-100")}
/>
</div>
</Handle>
);
};
export { InputNodeHandle, OutputNodeHandle };
export default NodeHandle;

View File

@@ -1,4 +1,31 @@
// Here we are handling single level of nesting, if need more in future then i will update it
/**
* Handle ID Types for different input structures
*
* Examples:
* SIMPLE: "message"
* NESTED: "config.api_key"
* ARRAY: "items_$_0", "items_$_1"
* KEY_VALUE: "headers_#_Authorization", "params_#_limit"
*
* Note: All handle IDs are sanitized to remove spaces and special characters.
* Spaces become underscores, and special characters are removed.
* Example: "user name" becomes "user_name", "email@domain.com" becomes "emaildomaincom"
*/
export enum HandleIdType {
SIMPLE = "SIMPLE",
NESTED = "NESTED",
ARRAY = "ARRAY",
KEY_VALUE = "KEY_VALUE",
}
const fromRjsfId = (id: string): string => {
if (!id) return "";
const parts = id.split("_");
const filtered = parts.filter(
(p) => p !== "root" && p !== "properties" && p.length > 0,
);
return filtered.join("_") || "";
};
const sanitizeForHandleId = (str: string): string => {
if (!str) return "";
@@ -11,53 +38,51 @@ const sanitizeForHandleId = (str: string): string => {
.replace(/^_|_$/g, ""); // Remove leading/trailing underscores
};
const cleanTitleId = (id: string): string => {
if (!id) return "";
if (id.endsWith("_title")) {
id = id.slice(0, -6);
}
const parts = id.split("_");
const filtered = parts.filter(
(p) => p !== "root" && p !== "properties" && p.length > 0,
);
const filtered_id = filtered.join("_") || "";
return filtered_id;
};
export const generateHandleIdFromTitleId = (
export const generateHandleId = (
fieldKey: string,
{
isObjectProperty,
isAdditionalProperty,
isArrayItem,
}: {
isArrayItem?: boolean;
isObjectProperty?: boolean;
isAdditionalProperty?: boolean;
} = {
isArrayItem: false,
isObjectProperty: false,
isAdditionalProperty: false,
},
nestedValues: string[] = [],
type: HandleIdType = HandleIdType.SIMPLE,
): string => {
if (!fieldKey) return "";
const filteredKey = cleanTitleId(fieldKey);
if (isAdditionalProperty || isArrayItem) {
return filteredKey;
}
const cleanedKey = sanitizeForHandleId(filteredKey);
fieldKey = fromRjsfId(fieldKey);
fieldKey = sanitizeForHandleId(fieldKey);
if (isObjectProperty) {
// "config_api_key" -> "config.api_key"
const parts = cleanedKey.split("_");
if (parts.length >= 2) {
const baseName = parts[0];
const propertyName = parts.slice(1).join("_");
return `${baseName}.${propertyName}`;
}
if (type === HandleIdType.SIMPLE || nestedValues.length === 0) {
return fieldKey;
}
return cleanedKey;
const sanitizedNestedValues = nestedValues.map((value) =>
sanitizeForHandleId(value),
);
switch (type) {
case HandleIdType.NESTED:
return [fieldKey, ...sanitizedNestedValues].join(".");
case HandleIdType.ARRAY:
return [fieldKey, ...sanitizedNestedValues].join("_$_");
case HandleIdType.KEY_VALUE:
return [fieldKey, ...sanitizedNestedValues].join("_#_");
default:
return fieldKey;
}
};
export const parseKeyValueHandleId = (
handleId: string,
type: HandleIdType,
): string => {
if (type === HandleIdType.KEY_VALUE) {
return handleId.split("_#_")[1];
} else if (type === HandleIdType.ARRAY) {
return handleId.split("_$_")[1];
} else if (type === HandleIdType.NESTED) {
return handleId.split(".")[1];
} else if (type === HandleIdType.SIMPLE) {
return handleId.split("_")[1];
}
return "";
};

View File

@@ -1,25 +1,24 @@
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
import { BlockCost } from "@/app/api/__generated__/models/blockCost";
import { BlockInfoCategoriesItem } from "@/app/api/__generated__/models/blockInfoCategoriesItem";
import { NodeExecutionResult } from "@/app/api/__generated__/models/nodeExecutionResult";
import { NodeModelMetadata } from "@/app/api/__generated__/models/nodeModelMetadata";
import { preprocessInputSchema } from "@/components/renderers/InputRenderer/utils/input-schema-pre-processor";
import { cn } from "@/lib/utils";
import { RJSFSchema } from "@rjsf/utils";
import { NodeProps, Node as XYNode } from "@xyflow/react";
import React from "react";
import { Node as XYNode, NodeProps } from "@xyflow/react";
import { RJSFSchema } from "@rjsf/utils";
import { BlockUIType } from "../../../types";
import { FormCreator } from "../FormCreator";
import { OutputHandler } from "../OutputHandler";
import { AyrshareConnectButton } from "./components/AyrshareConnectButton";
import { NodeAdvancedToggle } from "./components/NodeAdvancedToggle";
import { NodeContainer } from "./components/NodeContainer";
import { NodeExecutionBadge } from "./components/NodeExecutionBadge";
import { NodeHeader } from "./components/NodeHeader";
import { NodeDataRenderer } from "./components/NodeOutput/NodeOutput";
import { NodeRightClickMenu } from "./components/NodeRightClickMenu";
import { StickyNoteBlock } from "./components/StickyNoteBlock";
import { BlockInfoCategoriesItem } from "@/app/api/__generated__/models/blockInfoCategoriesItem";
import { BlockCost } from "@/app/api/__generated__/models/blockCost";
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
import { NodeExecutionResult } from "@/app/api/__generated__/models/nodeExecutionResult";
import { NodeContainer } from "./components/NodeContainer";
import { NodeHeader } from "./components/NodeHeader";
import { FormCreator } from "../FormCreator";
import { preprocessInputSchema } from "@/components/renderers/input-renderer/utils/input-schema-pre-processor";
import { OutputHandler } from "../OutputHandler";
import { NodeAdvancedToggle } from "./components/NodeAdvancedToggle";
import { NodeDataRenderer } from "./components/NodeOutput/NodeOutput";
import { NodeExecutionBadge } from "./components/NodeExecutionBadge";
import { cn } from "@/lib/utils";
import { WebhookDisclaimer } from "./components/WebhookDisclaimer";
import { AyrshareConnectButton } from "./components/AyrshareConnectButton";
import { NodeModelMetadata } from "@/app/api/__generated__/models/nodeModelMetadata";
export type CustomNodeData = {
hardcodedValues: {
@@ -89,7 +88,7 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
// Currently all blockTypes design are similar - that's why i am using the same component for all of them
// If in future - if we need some drastic change in some blockTypes design - we can create separate components for them
const node = (
return (
<NodeContainer selected={selected} nodeId={nodeId} hasErrors={hasErrors}>
<div className="rounded-xlarge bg-white">
<NodeHeader data={data} nodeId={nodeId} />
@@ -100,7 +99,7 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
nodeId={nodeId}
uiType={data.uiType}
className={cn(
"bg-white px-4",
"bg-white pr-6",
isWebhook && "pointer-events-none opacity-50",
)}
showHandles={showHandles}
@@ -118,15 +117,6 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
<NodeExecutionBadge nodeId={nodeId} />
</NodeContainer>
);
return (
<NodeRightClickMenu
nodeId={nodeId}
subGraphID={data.hardcodedValues?.graph_id}
>
{node}
</NodeRightClickMenu>
);
},
);

View File

@@ -8,7 +8,7 @@ export const NodeAdvancedToggle = ({ nodeId }: { nodeId: string }) => {
);
const setShowAdvanced = useNodeStore((state) => state.setShowAdvanced);
return (
<div className="flex items-center justify-between gap-2 rounded-b-xlarge border-t border-zinc-200 bg-white px-5 py-3.5">
<div className="flex items-center justify-between gap-2 rounded-b-xlarge border-t border-slate-200/50 bg-white px-5 py-3.5">
<Text variant="body" className="font-medium text-slate-700">
Advanced
</Text>

View File

@@ -22,7 +22,7 @@ export const NodeContainer = ({
return (
<div
className={cn(
"z-12 w-[350px] rounded-xlarge ring-1 ring-slate-200/60",
"z-12 max-w-[370px] rounded-xlarge ring-1 ring-slate-200/60",
selected && "shadow-lg ring-2 ring-slate-200",
status && nodeStyleBasedOnStatus[status],
hasErrors ? nodeStyleBasedOnStatus[AgentExecutionStatus.FAILED] : "",

View File

@@ -1,31 +1,26 @@
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { Separator } from "@/components/__legacy__/ui/separator";
import {
DropdownMenu,
DropdownMenuContent,
DropdownMenuItem,
DropdownMenuTrigger,
} from "@/components/molecules/DropdownMenu/DropdownMenu";
import {
SecondaryDropdownMenuContent,
SecondaryDropdownMenuItem,
SecondaryDropdownMenuSeparator,
} from "@/components/molecules/SecondaryMenu/SecondaryMenu";
import {
ArrowSquareOutIcon,
CopyIcon,
DotsThreeOutlineVerticalIcon,
TrashIcon,
} from "@phosphor-icons/react";
import { DotsThreeOutlineVerticalIcon } from "@phosphor-icons/react";
import { Copy, Trash2, ExternalLink } from "lucide-react";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useReactFlow } from "@xyflow/react";
type Props = {
export const NodeContextMenu = ({
nodeId,
subGraphID,
}: {
nodeId: string;
subGraphID?: string;
};
export const NodeContextMenu = ({ nodeId, subGraphID }: Props) => {
}) => {
const { deleteElements } = useReactFlow();
function handleCopy() {
const handleCopy = () => {
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({
...node,
@@ -35,47 +30,47 @@ export const NodeContextMenu = ({ nodeId, subGraphID }: Props) => {
useCopyPasteStore.getState().copySelectedNodes();
useCopyPasteStore.getState().pasteNodes();
}
};
function handleDelete() {
const handleDelete = () => {
deleteElements({ nodes: [{ id: nodeId }] });
}
};
return (
<DropdownMenu>
<DropdownMenuTrigger className="py-2">
<DotsThreeOutlineVerticalIcon size={16} weight="fill" />
</DropdownMenuTrigger>
<SecondaryDropdownMenuContent side="right" align="start">
<SecondaryDropdownMenuItem onClick={handleCopy}>
<CopyIcon size={20} className="mr-2 dark:text-gray-100" />
<span className="dark:text-gray-100">Copy</span>
</SecondaryDropdownMenuItem>
<SecondaryDropdownMenuSeparator />
<DropdownMenuContent
side="right"
align="start"
className="rounded-xlarge"
>
<DropdownMenuItem onClick={handleCopy} className="hover:rounded-xlarge">
<Copy className="mr-2 h-4 w-4" />
Copy Node
</DropdownMenuItem>
{subGraphID && (
<>
<SecondaryDropdownMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
>
<ArrowSquareOutIcon
size={20}
className="mr-2 dark:text-gray-100"
/>
<span className="dark:text-gray-100">Open agent</span>
</SecondaryDropdownMenuItem>
<SecondaryDropdownMenuSeparator />
</>
<DropdownMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
className="hover:rounded-xlarge"
>
<ExternalLink className="mr-2 h-4 w-4" />
Open Agent
</DropdownMenuItem>
)}
<SecondaryDropdownMenuItem variant="destructive" onClick={handleDelete}>
<TrashIcon
size={20}
className="mr-2 text-red-500 dark:text-red-400"
/>
<span className="dark:text-red-400">Delete</span>
</SecondaryDropdownMenuItem>
</SecondaryDropdownMenuContent>
<Separator className="my-2" />
<DropdownMenuItem
onClick={handleDelete}
className="text-red-600 hover:rounded-xlarge"
>
<Trash2 className="mr-2 h-4 w-4" />
Delete
</DropdownMenuItem>
</DropdownMenuContent>
</DropdownMenu>
);
};

View File

@@ -1,30 +1,29 @@
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { Text } from "@/components/atoms/Text/Text";
import { beautifyString, cn } from "@/lib/utils";
import { NodeCost } from "./NodeCost";
import { NodeBadges } from "./NodeBadges";
import { NodeContextMenu } from "./NodeContextMenu";
import { CustomNodeData } from "../CustomNode";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useState } from "react";
import {
Tooltip,
TooltipContent,
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { beautifyString, cn } from "@/lib/utils";
import { useState } from "react";
import { CustomNodeData } from "../CustomNode";
import { NodeBadges } from "./NodeBadges";
import { NodeContextMenu } from "./NodeContextMenu";
import { NodeCost } from "./NodeCost";
type Props = {
export const NodeHeader = ({
data,
nodeId,
}: {
data: CustomNodeData;
nodeId: string;
};
export const NodeHeader = ({ data, nodeId }: Props) => {
}) => {
const updateNodeData = useNodeStore((state) => state.updateNodeData);
const title = (data.metadata?.customized_name as string) || data.title;
const [isEditingTitle, setIsEditingTitle] = useState(false);
const [editedTitle, setEditedTitle] = useState(
beautifyString(title).replace("Block", "").trim(),
);
const [editedTitle, setEditedTitle] = useState(title);
const handleTitleEdit = () => {
updateNodeData(nodeId, {
@@ -42,7 +41,7 @@ export const NodeHeader = ({ data, nodeId }: Props) => {
};
return (
<div className="flex h-auto flex-col gap-1 rounded-xlarge border-b border-zinc-200 bg-gradient-to-r from-slate-50/80 to-white/90 px-4 py-4 pt-3">
<div className="flex h-auto flex-col gap-1 rounded-xlarge border-b border-slate-200/50 bg-gradient-to-r from-slate-50/80 to-white/90 px-4 py-4 pt-3">
{/* Title row with context menu */}
<div className="flex items-start justify-between gap-2">
<div className="flex min-w-0 flex-1 items-center gap-2">
@@ -69,12 +68,12 @@ export const NodeHeader = ({ data, nodeId }: Props) => {
<TooltipTrigger asChild>
<div>
<Text variant="large-semibold" className="line-clamp-1">
{beautifyString(title).replace("Block", "").trim()}
{beautifyString(title)}
</Text>
</div>
</TooltipTrigger>
<TooltipContent>
<p>{beautifyString(title).replace("Block", "").trim()}</p>
<p>{beautifyString(title)}</p>
</TooltipContent>
</Tooltip>
</TooltipProvider>

View File

@@ -23,7 +23,7 @@ export const NodeDataRenderer = ({ nodeId }: { nodeId: string }) => {
}
return (
<div className="flex flex-col gap-3 rounded-b-xl border-t border-zinc-200 px-4 py-4">
<div className="flex flex-col gap-3 rounded-b-xl border-t border-slate-200/50 px-4 py-4">
<div className="flex items-center justify-between">
<Text variant="body-medium" className="!font-semibold text-slate-700">
Node Output

View File

@@ -1,104 +0,0 @@
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import {
SecondaryMenuContent,
SecondaryMenuItem,
SecondaryMenuSeparator,
} from "@/components/molecules/SecondaryMenu/SecondaryMenu";
import { ArrowSquareOutIcon, CopyIcon, TrashIcon } from "@phosphor-icons/react";
import * as ContextMenu from "@radix-ui/react-context-menu";
import { useReactFlow } from "@xyflow/react";
import { useEffect, useRef } from "react";
import { CustomNode } from "../CustomNode";
type Props = {
nodeId: string;
subGraphID?: string;
children: React.ReactNode;
};
const DOUBLE_CLICK_TIMEOUT = 300;
export function NodeRightClickMenu({ nodeId, subGraphID, children }: Props) {
const { deleteElements } = useReactFlow<CustomNode>();
const lastRightClickTime = useRef<number>(0);
const containerRef = useRef<HTMLDivElement>(null);
function copyNode() {
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({
...node,
selected: node.id === nodeId,
})),
}));
useCopyPasteStore.getState().copySelectedNodes();
useCopyPasteStore.getState().pasteNodes();
}
function deleteNode() {
deleteElements({ nodes: [{ id: nodeId }] });
}
useEffect(() => {
const container = containerRef.current;
if (!container) return;
function handleContextMenu(e: MouseEvent) {
const now = Date.now();
const timeSinceLastClick = now - lastRightClickTime.current;
if (timeSinceLastClick < DOUBLE_CLICK_TIMEOUT) {
e.stopImmediatePropagation();
lastRightClickTime.current = 0;
return;
}
lastRightClickTime.current = now;
}
container.addEventListener("contextmenu", handleContextMenu, true);
return () => {
container.removeEventListener("contextmenu", handleContextMenu, true);
};
}, []);
return (
<ContextMenu.Root>
<ContextMenu.Trigger asChild>
<div ref={containerRef}>{children}</div>
</ContextMenu.Trigger>
<SecondaryMenuContent>
<SecondaryMenuItem onSelect={copyNode}>
<CopyIcon size={20} className="mr-2 dark:text-gray-100" />
<span className="dark:text-gray-100">Copy</span>
</SecondaryMenuItem>
<SecondaryMenuSeparator />
{subGraphID && (
<>
<SecondaryMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
>
<ArrowSquareOutIcon
size={20}
className="mr-2 dark:text-gray-100"
/>
<span className="dark:text-gray-100">Open agent</span>
</SecondaryMenuItem>
<SecondaryMenuSeparator />
</>
)}
<SecondaryMenuItem variant="destructive" onSelect={deleteNode}>
<TrashIcon
size={20}
className="mr-2 text-red-500 dark:text-red-400"
/>
<span className="dark:text-red-400">Delete</span>
</SecondaryMenuItem>
</SecondaryMenuContent>
</ContextMenu.Root>
);
}

View File

@@ -1,6 +1,6 @@
import { useMemo } from "react";
import { FormCreator } from "../../FormCreator";
import { preprocessInputSchema } from "@/components/renderers/InputRenderer/utils/input-schema-pre-processor";
import { preprocessInputSchema } from "@/components/renderers/input-renderer/utils/input-schema-pre-processor";
import { CustomNodeData } from "../CustomNode";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";

View File

@@ -3,7 +3,7 @@ import React from "react";
import { uiSchema } from "./uiSchema";
import { useNodeStore } from "../../../stores/nodeStore";
import { BlockUIType } from "../../types";
import { FormRenderer } from "@/components/renderers/InputRenderer/FormRenderer";
import { FormRenderer } from "@/components/renderers/input-renderer/FormRenderer";
export const FormCreator = React.memo(
({

View File

@@ -4,7 +4,7 @@ import { CaretDownIcon, InfoIcon } from "@phosphor-icons/react";
import { RJSFSchema } from "@rjsf/utils";
import { useState } from "react";
import { OutputNodeHandle } from "../handlers/NodeHandle";
import NodeHandle from "../handlers/NodeHandle";
import {
Tooltip,
TooltipContent,
@@ -13,6 +13,7 @@ import {
} from "@/components/atoms/Tooltip/BaseTooltip";
import { useEdgeStore } from "@/app/(platform)/build/stores/edgeStore";
import { getTypeDisplayInfo } from "./helpers";
import { generateHandleId } from "../handlers/helpers";
import { BlockUIType } from "../../types";
export const OutputHandler = ({
@@ -28,73 +29,8 @@ export const OutputHandler = ({
const properties = outputSchema?.properties || {};
const [isOutputVisible, setIsOutputVisible] = useState(true);
const showHandles = uiType !== BlockUIType.OUTPUT;
const renderOutputHandles = (
schema: RJSFSchema,
keyPrefix: string = "",
titlePrefix: string = "",
): React.ReactNode[] => {
return Object.entries(schema).map(
([key, fieldSchema]: [string, RJSFSchema]) => {
const fullKey = keyPrefix ? `${keyPrefix}_#_${key}` : key;
const fieldTitle = titlePrefix + (fieldSchema?.title || key);
const isConnected = isOutputConnected(nodeId, fullKey);
const shouldShow = isConnected || isOutputVisible;
const { displayType, colorClass, hexColor } =
getTypeDisplayInfo(fieldSchema);
return shouldShow ? (
<div key={fullKey} className="flex flex-col items-end gap-2">
<div className="relative flex items-center gap-2">
{fieldSchema?.description && (
<TooltipProvider>
<Tooltip>
<TooltipTrigger asChild>
<span
style={{ marginLeft: 6, cursor: "pointer" }}
aria-label="info"
tabIndex={0}
>
<InfoIcon />
</span>
</TooltipTrigger>
<TooltipContent>{fieldSchema?.description}</TooltipContent>
</Tooltip>
</TooltipProvider>
)}
<Text variant="body" className="text-slate-700">
{fieldTitle}
</Text>
<Text variant="small" as="span" className={colorClass}>
({displayType})
</Text>
{showHandles && (
<OutputNodeHandle
field_name={fullKey}
nodeId={nodeId}
hexColor={hexColor}
/>
)}
</div>
{/* Recursively render nested properties */}
{fieldSchema?.properties &&
renderOutputHandles(
fieldSchema.properties,
fullKey,
`${fieldTitle}.`,
)}
</div>
) : null;
},
);
};
return (
<div className="flex flex-col items-end justify-between gap-2 rounded-b-xlarge border-t border-zinc-200 bg-white py-3.5">
<div className="flex flex-col items-end justify-between gap-2 rounded-b-xlarge border-t border-slate-200/50 bg-white py-3.5">
<Button
variant="ghost"
className="mr-4 h-fit min-w-0 p-0 hover:border-transparent hover:bg-transparent"
@@ -113,9 +49,50 @@ export const OutputHandler = ({
</Text>
</Button>
<div className="flex flex-col items-end gap-2">
{renderOutputHandles(properties)}
</div>
{
<div className="flex flex-col items-end gap-2">
{Object.entries(properties).map(([key, property]: [string, any]) => {
const isConnected = isOutputConnected(nodeId, key);
const shouldShow = isConnected || isOutputVisible;
const { displayType, colorClass } = getTypeDisplayInfo(property);
return shouldShow ? (
<div key={key} className="relative flex items-center gap-2">
{property?.description && (
<TooltipProvider>
<Tooltip>
<TooltipTrigger asChild>
<span
style={{ marginLeft: 6, cursor: "pointer" }}
aria-label="info"
tabIndex={0}
>
<InfoIcon />
</span>
</TooltipTrigger>
<TooltipContent>{property?.description}</TooltipContent>
</Tooltip>
</TooltipProvider>
)}
<Text variant="body" className="text-slate-700">
{property?.title || key}{" "}
</Text>
<Text variant="small" as="span" className={colorClass}>
({displayType})
</Text>
<NodeHandle
handleId={
uiType === BlockUIType.AGENT ? key : generateHandleId(key)
}
isConnected={isConnected}
side="right"
/>
</div>
) : null;
})}
</div>
}
</div>
);
};

View File

@@ -92,38 +92,14 @@ export const getTypeDisplayInfo = (schema: any) => {
if (schema?.type === "string" && schema?.format) {
const formatMap: Record<
string,
{ displayType: string; colorClass: string; hexColor: string }
{ displayType: string; colorClass: string }
> = {
file: {
displayType: "file",
colorClass: "!text-green-500",
hexColor: "#22c55e",
},
date: {
displayType: "date",
colorClass: "!text-blue-500",
hexColor: "#3b82f6",
},
time: {
displayType: "time",
colorClass: "!text-blue-500",
hexColor: "#3b82f6",
},
"date-time": {
displayType: "datetime",
colorClass: "!text-blue-500",
hexColor: "#3b82f6",
},
"long-text": {
displayType: "text",
colorClass: "!text-green-500",
hexColor: "#22c55e",
},
"short-text": {
displayType: "text",
colorClass: "!text-green-500",
hexColor: "#22c55e",
},
file: { displayType: "file", colorClass: "!text-green-500" },
date: { displayType: "date", colorClass: "!text-blue-500" },
time: { displayType: "time", colorClass: "!text-blue-500" },
"date-time": { displayType: "datetime", colorClass: "!text-blue-500" },
"long-text": { displayType: "text", colorClass: "!text-green-500" },
"short-text": { displayType: "text", colorClass: "!text-green-500" },
};
const formatInfo = formatMap[schema.format];
@@ -155,23 +131,10 @@ export const getTypeDisplayInfo = (schema: any) => {
any: "!text-gray-500",
};
const hexColorMap: Record<string, string> = {
string: "#22c55e",
number: "#3b82f6",
integer: "#3b82f6",
boolean: "#eab308",
object: "#a855f7",
array: "#6366f1",
null: "#6b7280",
any: "#6b7280",
};
const colorClass = colorMap[schema?.type] || "!text-gray-500";
const hexColor = hexColorMap[schema?.type] || "#6b7280";
return {
displayType,
colorClass,
hexColor,
};
};

View File

@@ -24,7 +24,7 @@ export const ControlPanelButton: React.FC<Props> = ({
role={as === "div" ? "button" : undefined}
disabled={as === "button" ? disabled : undefined}
className={cn(
"flex w-auto items-center justify-center whitespace-normal bg-white px-4 py-4 text-zinc-800 shadow-none hover:cursor-pointer hover:bg-zinc-100 hover:text-zinc-950 focus:ring-0",
"flex h-[4.25rem] w-[4.25rem] items-center justify-center whitespace-normal bg-white p-[1.38rem] text-zinc-800 shadow-none hover:cursor-pointer hover:bg-zinc-100 hover:text-zinc-950 focus:ring-0",
selected &&
"bg-violet-50 text-violet-700 hover:cursor-default hover:bg-violet-50 hover:text-violet-700 active:bg-violet-50 active:text-violet-700",
disabled && "cursor-not-allowed opacity-50 hover:cursor-not-allowed",

View File

@@ -1,17 +1,18 @@
import { useControlPanelStore } from "@/app/(platform)/build/stores/controlPanelStore";
import React from "react";
import {
Popover,
PopoverContent,
PopoverTrigger,
} from "@/components/__legacy__/ui/popover";
import { BlockMenuContent } from "../BlockMenuContent/BlockMenuContent";
import { ControlPanelButton } from "../../ControlPanelButton";
import { LegoIcon } from "@phosphor-icons/react";
import { useControlPanelStore } from "@/app/(platform)/build/stores/controlPanelStore";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { LegoIcon } from "@phosphor-icons/react";
import { ControlPanelButton } from "../../ControlPanelButton";
import { BlockMenuContent } from "../BlockMenuContent/BlockMenuContent";
export const BlockMenu = () => {
const { blockMenuOpen, setBlockMenuOpen } = useControlPanelStore();
@@ -27,7 +28,7 @@ export const BlockMenu = () => {
selected={blockMenuOpen}
className="rounded-none"
>
<LegoIcon className="size-5" />
<LegoIcon className="h-6 w-6" />
</ControlPanelButton>
</PopoverTrigger>
</TooltipTrigger>

View File

@@ -1,57 +0,0 @@
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
import { FilterChip } from "../FilterChip";
import { categories } from "./constants";
import { FilterSheet } from "../FilterSheet/FilterSheet";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export const BlockMenuFilters = () => {
const {
filters,
addFilter,
removeFilter,
categoryCounts,
creators,
addCreator,
removeCreator,
} = useBlockMenuStore();
const handleFilterClick = (filter: GetV2BuilderSearchFilterAnyOfItem) => {
if (filters.includes(filter)) {
removeFilter(filter);
} else {
addFilter(filter);
}
};
const handleCreatorClick = (creator: string) => {
if (creators.includes(creator)) {
removeCreator(creator);
} else {
addCreator(creator);
}
};
return (
<div className="flex flex-wrap gap-2">
<FilterSheet categories={categories} />
{creators.length > 0 &&
creators.map((creator) => (
<FilterChip
key={creator}
name={"Created by " + creator.slice(0, 10) + "..."}
selected={creators.includes(creator)}
onClick={() => handleCreatorClick(creator)}
/>
))}
{categories.map((category) => (
<FilterChip
key={category.key}
name={category.name}
selected={filters.includes(category.key)}
onClick={() => handleFilterClick(category.key)}
number={categoryCounts[category.key] ?? 0}
/>
))}
</div>
);
};

View File

@@ -1,15 +0,0 @@
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
import { CategoryKey } from "./types";
export const categories: Array<{ key: CategoryKey; name: string }> = [
{ key: GetV2BuilderSearchFilterAnyOfItem.blocks, name: "Blocks" },
{
key: GetV2BuilderSearchFilterAnyOfItem.integrations,
name: "Integrations",
},
{
key: GetV2BuilderSearchFilterAnyOfItem.marketplace_agents,
name: "Marketplace agents",
},
{ key: GetV2BuilderSearchFilterAnyOfItem.my_agents, name: "My agents" },
];

View File

@@ -1,26 +0,0 @@
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export type DefaultStateType =
| "suggestion"
| "all_blocks"
| "input_blocks"
| "action_blocks"
| "output_blocks"
| "integrations"
| "marketplace_agents"
| "my_agents";
export type CategoryKey = GetV2BuilderSearchFilterAnyOfItem;
export interface Filters {
categories: {
blocks: boolean;
integrations: boolean;
marketplace_agents: boolean;
my_agents: boolean;
providers: boolean;
};
createdBy: string[];
}
export type CategoryCounts = Record<CategoryKey, number>;

View File

@@ -1,14 +1,111 @@
import { Text } from "@/components/atoms/Text/Text";
import { useBlockMenuSearch } from "./useBlockMenuSearch";
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
import { LoadingSpinner } from "@/components/__legacy__/ui/loading";
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
import { MarketplaceAgentBlock } from "../MarketplaceAgentBlock";
import { Block } from "../Block";
import { UGCAgentBlock } from "../UGCAgentBlock";
import { getSearchItemType } from "./helper";
import { useBlockMenuStore } from "../../../../stores/blockMenuStore";
import { blockMenuContainerStyle } from "../style";
import { BlockMenuFilters } from "../BlockMenuFilters/BlockMenuFilters";
import { BlockMenuSearchContent } from "../BlockMenuSearchContent/BlockMenuSearchContent";
import { cn } from "@/lib/utils";
import { NoSearchResult } from "../NoSearchResult";
export const BlockMenuSearch = () => {
const {
searchResults,
isFetchingNextPage,
fetchNextPage,
hasNextPage,
searchLoading,
handleAddLibraryAgent,
handleAddMarketplaceAgent,
addingLibraryAgentId,
addingMarketplaceAgentSlug,
} = useBlockMenuSearch();
const { searchQuery } = useBlockMenuStore();
if (searchLoading) {
return (
<div
className={cn(
blockMenuContainerStyle,
"flex items-center justify-center",
)}
>
<LoadingSpinner className="size-13" />
</div>
);
}
if (searchResults.length === 0) {
return <NoSearchResult />;
}
return (
<div className={blockMenuContainerStyle}>
<BlockMenuFilters />
<Text variant="body-medium">Search results</Text>
<BlockMenuSearchContent />
<InfiniteScroll
isFetchingNextPage={isFetchingNextPage}
fetchNextPage={fetchNextPage}
hasNextPage={hasNextPage}
loader={<LoadingSpinner className="size-13" />}
className="space-y-2.5"
>
{searchResults.map((item: SearchResponseItemsItem, index: number) => {
const { type, data } = getSearchItemType(item);
// backend give support to these 3 types only [right now] - we need to give support to integration and ai agent types in follow up PRs
switch (type) {
case "store_agent":
return (
<MarketplaceAgentBlock
key={index}
slug={data.slug}
highlightedText={searchQuery}
title={data.agent_name}
image_url={data.agent_image}
creator_name={data.creator}
number_of_runs={data.runs}
loading={addingMarketplaceAgentSlug === data.slug}
onClick={() =>
handleAddMarketplaceAgent({
creator_name: data.creator,
slug: data.slug,
})
}
/>
);
case "block":
return (
<Block
key={index}
title={data.name}
highlightedText={searchQuery}
description={data.description}
blockData={data}
/>
);
case "library_agent":
return (
<UGCAgentBlock
key={index}
title={data.name}
highlightedText={searchQuery}
image_url={data.image_url}
version={data.graph_version}
edited_time={data.updated_at}
isLoading={addingLibraryAgentId === data.id}
onClick={() => handleAddLibraryAgent(data)}
/>
);
default:
return null;
}
})}
</InfiniteScroll>
</div>
);
};

View File

@@ -23,19 +23,9 @@ import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { useToast } from "@/components/molecules/Toast/use-toast";
import * as Sentry from "@sentry/nextjs";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export const useBlockMenuSearchContent = () => {
const {
searchQuery,
searchId,
setSearchId,
filters,
setCreatorsList,
creators,
setCategoryCounts,
} = useBlockMenuStore();
export const useBlockMenuSearch = () => {
const { searchQuery, searchId, setSearchId } = useBlockMenuStore();
const { toast } = useToast();
const { addAgentToBuilder, addLibraryAgentToBuilder } =
useAddAgentToBuilder();
@@ -67,8 +57,6 @@ export const useBlockMenuSearchContent = () => {
page_size: 8,
search_query: searchQuery,
search_id: searchId,
filter: filters.length > 0 ? filters : undefined,
by_creator: creators.length > 0 ? creators : undefined,
},
{
query: { getNextPageParam: getPaginationNextPageNumber },
@@ -110,26 +98,6 @@ export const useBlockMenuSearchContent = () => {
}
}, [searchQueryData, searchId, setSearchId]);
// from all the results, we need to get all the unique creators
useEffect(() => {
if (!searchQueryData?.pages?.length) {
return;
}
const latestData = okData(searchQueryData.pages.at(-1));
setCategoryCounts(
(latestData?.total_items as Record<
GetV2BuilderSearchFilterAnyOfItem,
number
>) || {
blocks: 0,
integrations: 0,
marketplace_agents: 0,
my_agents: 0,
},
);
setCreatorsList(latestData?.items || []);
}, [searchQueryData]);
useEffect(() => {
if (searchId && !searchQuery) {
resetSearchSession();

View File

@@ -1,108 +0,0 @@
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
import { getSearchItemType } from "./helper";
import { MarketplaceAgentBlock } from "../MarketplaceAgentBlock";
import { Block } from "../Block";
import { UGCAgentBlock } from "../UGCAgentBlock";
import { useBlockMenuSearchContent } from "./useBlockMenuSearchContent";
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
import { cn } from "@/lib/utils";
import { blockMenuContainerStyle } from "../style";
import { NoSearchResult } from "../NoSearchResult";
export const BlockMenuSearchContent = () => {
const {
searchResults,
isFetchingNextPage,
fetchNextPage,
hasNextPage,
searchLoading,
handleAddLibraryAgent,
handleAddMarketplaceAgent,
addingLibraryAgentId,
addingMarketplaceAgentSlug,
} = useBlockMenuSearchContent();
const { searchQuery } = useBlockMenuStore();
if (searchLoading) {
return (
<div
className={cn(
blockMenuContainerStyle,
"flex items-center justify-center",
)}
>
<LoadingSpinner className="size-13" />
</div>
);
}
if (searchResults.length === 0) {
return <NoSearchResult />;
}
return (
<InfiniteScroll
isFetchingNextPage={isFetchingNextPage}
fetchNextPage={fetchNextPage}
hasNextPage={hasNextPage}
loader={<LoadingSpinner className="size-13" />}
className="space-y-2.5"
>
{searchResults.map((item: SearchResponseItemsItem, index: number) => {
const { type, data } = getSearchItemType(item);
// backend give support to these 3 types only [right now] - we need to give support to integration and ai agent types in follow up PRs
switch (type) {
case "store_agent":
return (
<MarketplaceAgentBlock
key={index}
slug={data.slug}
highlightedText={searchQuery}
title={data.agent_name}
image_url={data.agent_image}
creator_name={data.creator}
number_of_runs={data.runs}
loading={addingMarketplaceAgentSlug === data.slug}
onClick={() =>
handleAddMarketplaceAgent({
creator_name: data.creator,
slug: data.slug,
})
}
/>
);
case "block":
return (
<Block
key={index}
title={data.name}
highlightedText={searchQuery}
description={data.description}
blockData={data}
/>
);
case "library_agent":
return (
<UGCAgentBlock
key={index}
title={data.name}
highlightedText={searchQuery}
image_url={data.image_url}
version={data.graph_version}
edited_time={data.updated_at}
isLoading={addingLibraryAgentId === data.id}
onClick={() => handleAddLibraryAgent(data)}
/>
);
default:
return null;
}
})}
</InfiniteScroll>
);
};

View File

@@ -1,9 +1,7 @@
import { Button } from "@/components/__legacy__/ui/button";
import { cn } from "@/lib/utils";
import { XIcon } from "@phosphor-icons/react";
import { AnimatePresence, motion } from "framer-motion";
import React, { ButtonHTMLAttributes, useState } from "react";
import { X } from "lucide-react";
import React, { ButtonHTMLAttributes } from "react";
interface Props extends ButtonHTMLAttributes<HTMLButtonElement> {
selected?: boolean;
@@ -18,51 +16,39 @@ export const FilterChip: React.FC<Props> = ({
className,
...rest
}) => {
const [isHovered, setIsHovered] = useState(false);
return (
<AnimatePresence mode="wait">
<Button
onMouseEnter={() => setIsHovered(true)}
onMouseLeave={() => setIsHovered(false)}
<Button
className={cn(
"group w-fit space-x-1 rounded-[1.5rem] border border-zinc-300 bg-transparent px-[0.625rem] py-[0.375rem] shadow-none transition-transform duration-300 ease-in-out",
"hover:border-violet-500 hover:bg-transparent focus:ring-0 disabled:cursor-not-allowed",
selected && "border-0 bg-violet-700 hover:border",
className,
)}
{...rest}
>
<span
className={cn(
"group w-fit space-x-1 rounded-[1.5rem] border border-zinc-300 bg-transparent px-[0.625rem] py-[0.375rem] shadow-none",
"hover:border-violet-500 hover:bg-transparent focus:ring-0 disabled:cursor-not-allowed",
selected && "border-0 bg-violet-700 hover:border",
className,
"font-sans text-sm font-medium leading-[1.375rem] text-zinc-600 group-hover:text-zinc-600 group-disabled:text-zinc-400",
selected && "text-zinc-50",
)}
{...rest}
>
<span
className={cn(
"font-sans text-sm font-medium leading-[1.375rem] text-zinc-600 group-hover:text-zinc-600 group-disabled:text-zinc-400",
selected && "text-zinc-50",
{name}
</span>
{selected && (
<>
<span className="flex h-4 w-4 items-center justify-center rounded-full bg-zinc-50 transition-all duration-300 ease-in-out group-hover:hidden">
<X
className="h-3 w-3 rounded-full text-violet-700"
strokeWidth={2}
/>
</span>
{number !== undefined && (
<span className="hidden h-[1.375rem] items-center rounded-[1.25rem] bg-violet-700 p-[0.375rem] text-zinc-50 transition-all duration-300 ease-in-out animate-in fade-in zoom-in group-hover:flex">
{number > 100 ? "100+" : number}
</span>
)}
>
{name}
</span>
{selected && !isHovered && (
<motion.span
initial={{ opacity: 0.5, scale: 0.5, filter: "blur(20px)" }}
animate={{ opacity: 1, scale: 1, filter: "blur(0px)" }}
exit={{ opacity: 0.5, scale: 0.5, filter: "blur(20px)" }}
transition={{ duration: 0.3, type: "spring", bounce: 0.2 }}
className="flex h-4 w-4 items-center justify-center rounded-full bg-zinc-50"
>
<XIcon size={12} weight="bold" className="text-violet-700" />
</motion.span>
)}
{number !== undefined && isHovered && (
<motion.span
initial={{ opacity: 0.5, scale: 0.5, filter: "blur(10px)" }}
animate={{ opacity: 1, scale: 1, filter: "blur(0px)" }}
exit={{ opacity: 0.5, scale: 0.5, filter: "blur(10px)" }}
transition={{ duration: 0.3, type: "spring", bounce: 0.2 }}
className="flex h-[1.375rem] items-center rounded-[1.25rem] bg-violet-700 p-[0.375rem] text-zinc-50"
>
{number > 100 ? "100+" : number}
</motion.span>
)}
</Button>
</AnimatePresence>
</>
)}
</Button>
);
};

View File

@@ -1,156 +0,0 @@
import { FilterChip } from "../FilterChip";
import { cn } from "@/lib/utils";
import { CategoryKey } from "../BlockMenuFilters/types";
import { AnimatePresence, motion } from "framer-motion";
import { XIcon } from "@phosphor-icons/react";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { Separator } from "@/components/__legacy__/ui/separator";
import { Checkbox } from "@/components/__legacy__/ui/checkbox";
import { useFilterSheet } from "./useFilterSheet";
import { INITIAL_CREATORS_TO_SHOW } from "./constant";
export function FilterSheet({
categories,
}: {
categories: Array<{ key: CategoryKey; name: string }>;
}) {
const {
isOpen,
localCategories,
localCreators,
displayedCreatorsCount,
handleLocalCategoryChange,
handleToggleShowMoreCreators,
handleLocalCreatorChange,
handleClearFilters,
handleCloseButton,
handleApplyFilters,
hasLocalActiveFilters,
visibleCreators,
creators,
handleOpenFilters,
hasActiveFilters,
} = useFilterSheet();
return (
<div className="m-0 inline w-fit p-0">
<FilterChip
name={hasActiveFilters() ? "Edit filters" : "All filters"}
onClick={handleOpenFilters}
/>
<AnimatePresence>
{isOpen && (
<motion.div
className={cn(
"absolute bottom-2 left-2 top-2 z-20 w-3/4 max-w-[22.5rem] space-y-4 overflow-hidden rounded-[0.75rem] bg-white pb-4 shadow-[0_4px_12px_2px_rgba(0,0,0,0.1)]",
)}
initial={{ x: "-100%", filter: "blur(10px)" }}
animate={{ x: 0, filter: "blur(0px)" }}
exit={{ x: "-110%", filter: "blur(10px)" }}
transition={{ duration: 0.4, type: "spring", bounce: 0.2 }}
>
{/* Top section */}
<div className="flex items-center justify-between px-5 pt-4">
<Text variant="body">Filters</Text>
<Button
className="p-0"
variant="ghost"
size="icon"
onClick={handleCloseButton}
>
<XIcon size={20} />
</Button>
</div>
<Separator className="h-[1px] w-full text-zinc-300" />
{/* Category section */}
<div className="space-y-4 px-5">
<Text variant="large">Categories</Text>
<div className="space-y-2">
{categories.map((category) => (
<div
key={category.key}
className="flex items-center space-x-2"
>
<Checkbox
id={category.key}
checked={localCategories.includes(category.key)}
onCheckedChange={() =>
handleLocalCategoryChange(category.key)
}
className="border border-[#D4D4D4] shadow-none data-[state=checked]:border-none data-[state=checked]:bg-violet-700 data-[state=checked]:text-white"
/>
<label
htmlFor={category.key}
className="font-sans text-sm leading-[1.375rem] text-zinc-600"
>
{category.name}
</label>
</div>
))}
</div>
</div>
{/* Created by section */}
<div className="space-y-4 px-5">
<p className="font-sans text-base font-medium text-zinc-800">
Created by
</p>
<div className="space-y-2">
{visibleCreators.map((creator, i) => (
<div key={i} className="flex items-center space-x-2">
<Checkbox
id={`creator-${creator}`}
checked={localCreators.includes(creator)}
onCheckedChange={() => handleLocalCreatorChange(creator)}
className="border border-[#D4D4D4] shadow-none data-[state=checked]:border-none data-[state=checked]:bg-violet-700 data-[state=checked]:text-white"
/>
<label
htmlFor={`creator-${creator}`}
className="font-sans text-sm leading-[1.375rem] text-zinc-600"
>
{creator}
</label>
</div>
))}
</div>
{creators.length > INITIAL_CREATORS_TO_SHOW && (
<Button
variant={"link"}
className="m-0 p-0 font-sans text-sm font-medium leading-[1.375rem] text-zinc-800 underline hover:text-zinc-600"
onClick={handleToggleShowMoreCreators}
>
{displayedCreatorsCount < creators.length ? "More" : "Less"}
</Button>
)}
</div>
{/* Footer section */}
<div className="fixed bottom-0 flex w-full justify-between gap-3 border-t border-zinc-200 bg-white px-5 py-3">
<Button
size="small"
variant={"outline"}
onClick={handleClearFilters}
className="rounded-[8px] px-2 py-1.5"
>
Clear
</Button>
<Button
size="small"
onClick={handleApplyFilters}
disabled={!hasLocalActiveFilters()}
className="rounded-[8px] px-2 py-1.5"
>
Apply filters
</Button>
</div>
</motion.div>
)}
</AnimatePresence>
</div>
);
}

View File

@@ -1,100 +0,0 @@
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
import { useState } from "react";
import { INITIAL_CREATORS_TO_SHOW } from "./constant";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export const useFilterSheet = () => {
const { filters, creators_list, creators, setFilters, setCreators } =
useBlockMenuStore();
const [isOpen, setIsOpen] = useState(false);
const [localCategories, setLocalCategories] =
useState<GetV2BuilderSearchFilterAnyOfItem[]>(filters);
const [localCreators, setLocalCreators] = useState<string[]>(creators);
const [displayedCreatorsCount, setDisplayedCreatorsCount] = useState(
INITIAL_CREATORS_TO_SHOW,
);
const handleLocalCategoryChange = (
category: GetV2BuilderSearchFilterAnyOfItem,
) => {
setLocalCategories((prev) => {
if (prev.includes(category)) {
return prev.filter((c) => c !== category);
}
return [...prev, category];
});
};
const hasActiveFilters = () => {
return filters.length > 0 || creators.length > 0;
};
const handleToggleShowMoreCreators = () => {
if (displayedCreatorsCount < creators.length) {
setDisplayedCreatorsCount(creators.length);
} else {
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
}
};
const handleLocalCreatorChange = (creator: string) => {
setLocalCreators((prev) => {
if (prev.includes(creator)) {
return prev.filter((c) => c !== creator);
}
return [...prev, creator];
});
};
const handleClearFilters = () => {
setLocalCategories([]);
setLocalCreators([]);
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
};
const handleCloseButton = () => {
setIsOpen(false);
setLocalCategories(filters);
setLocalCreators(creators);
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
};
const handleApplyFilters = () => {
setFilters(localCategories);
setCreators(localCreators);
setIsOpen(false);
};
const handleOpenFilters = () => {
setIsOpen(true);
setLocalCategories(filters);
setLocalCreators(creators);
};
const hasLocalActiveFilters = () => {
return localCategories.length > 0 || localCreators.length > 0;
};
const visibleCreators = creators_list.slice(0, displayedCreatorsCount);
return {
creators,
isOpen,
setIsOpen,
localCategories,
localCreators,
displayedCreatorsCount,
setDisplayedCreatorsCount,
handleLocalCategoryChange,
handleToggleShowMoreCreators,
handleLocalCreatorChange,
handleClearFilters,
handleCloseButton,
handleOpenFilters,
handleApplyFilters,
hasLocalActiveFilters,
visibleCreators,
hasActiveFilters,
};
};

View File

@@ -7,10 +7,10 @@ import { useNewControlPanel } from "./useNewControlPanel";
import { GraphExecutionID } from "@/lib/autogpt-server-api";
// import { ControlPanelButton } from "../ControlPanelButton";
// import { GraphSearchMenu } from "../GraphMenu/GraphMenu";
import { Separator } from "@/components/__legacy__/ui/separator";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { CustomNode } from "../FlowEditor/nodes/CustomNode/CustomNode";
import { Separator } from "@/components/__legacy__/ui/separator";
import { NewSaveControl } from "./NewSaveControl/NewSaveControl";
import { CustomNode } from "../FlowEditor/nodes/CustomNode/CustomNode";
import { UndoRedoButtons } from "./UndoRedoButtons";
export type Control = {
@@ -56,7 +56,7 @@ export const NewControlPanel = memo(
return (
<section
className={cn(
"absolute left-4 top-10 z-10 overflow-hidden rounded-[1rem] border-none bg-white p-0 shadow-[0_1px_5px_0_rgba(0,0,0,0.1)]",
"absolute left-4 top-10 z-10 w-[4.25rem] overflow-hidden rounded-[1rem] border-none bg-white p-0 shadow-[0_1px_5px_0_rgba(0,0,0,0.1)]",
)}
>
<div className="flex flex-col items-center justify-center rounded-[1rem] p-0">

View File

@@ -1,21 +1,22 @@
import { Card, CardContent, CardFooter } from "@/components/__legacy__/ui/card";
import { Form, FormField } from "@/components/__legacy__/ui/form";
import React from "react";
import {
Popover,
PopoverContent,
PopoverTrigger,
} from "@/components/__legacy__/ui/popover";
import { Button } from "@/components/atoms/Button/Button";
import { Input } from "@/components/atoms/Input/Input";
import { Card, CardContent, CardFooter } from "@/components/__legacy__/ui/card";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { FloppyDiskIcon } from "@phosphor-icons/react";
import { useControlPanelStore } from "../../../stores/controlPanelStore";
import { ControlPanelButton } from "../ControlPanelButton";
import { useNewSaveControl } from "./useNewSaveControl";
import { Form, FormField } from "@/components/__legacy__/ui/form";
import { ControlPanelButton } from "../ControlPanelButton";
import { useControlPanelStore } from "../../../stores/controlPanelStore";
import { FloppyDiskIcon } from "@phosphor-icons/react";
import { Input } from "@/components/atoms/Input/Input";
import { Button } from "@/components/atoms/Button/Button";
export const NewSaveControl = () => {
const { form, isSaving, graphVersion, handleSave } = useNewSaveControl();
@@ -32,7 +33,7 @@ export const NewSaveControl = () => {
selected={saveControlOpen}
className="rounded-none"
>
<FloppyDiskIcon className="size-5" />
<FloppyDiskIcon className="h-6 w-6" />
</ControlPanelButton>
</PopoverTrigger>
</TooltipTrigger>

View File

@@ -1,13 +1,13 @@
import { CustomNode } from "@/app/(platform)/build/components/legacy-builder/CustomNode/CustomNode";
import React from "react";
import {
Popover,
PopoverContent,
PopoverTrigger,
} from "@/components/__legacy__/ui/popover";
import { MagnifyingGlassIcon } from "@phosphor-icons/react";
import React from "react";
import { ControlPanelButton } from "../../ControlPanelButton";
import { GraphSearchContent } from "../GraphMenuContent/GraphContent";
import { ControlPanelButton } from "../../ControlPanelButton";
import { CustomNode } from "@/app/(platform)/build/components/legacy-builder/CustomNode/CustomNode";
import { useGraphMenu } from "./useGraphMenu";
interface GraphSearchMenuProps {
@@ -50,7 +50,7 @@ export const GraphSearchMenu: React.FC<GraphSearchMenuProps> = ({
selected={blockMenuSelected === "search"}
className="rounded-none"
>
<MagnifyingGlassIcon className="size-5" strokeWidth={2} />
<MagnifyingGlassIcon className="h-5 w-6" strokeWidth={2} />
</ControlPanelButton>
</PopoverTrigger>

View File

@@ -1,12 +1,12 @@
import { Separator } from "@/components/__legacy__/ui/separator";
import { ControlPanelButton } from "./ControlPanelButton";
import { ArrowUUpLeftIcon, ArrowUUpRightIcon } from "@phosphor-icons/react";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { ArrowUUpLeftIcon, ArrowUUpRightIcon } from "@phosphor-icons/react";
import { useHistoryStore } from "../../stores/historyStore";
import { ControlPanelButton } from "./ControlPanelButton";
import { useEffect } from "react";
@@ -43,7 +43,7 @@ export const UndoRedoButtons = () => {
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<ControlPanelButton as="button" disabled={!canUndo()} onClick={undo}>
<ArrowUUpLeftIcon className="size-5" />
<ArrowUUpLeftIcon className="h-6 w-6" />
</ControlPanelButton>
</TooltipTrigger>
<TooltipContent side="right">Undo</TooltipContent>
@@ -52,7 +52,7 @@ export const UndoRedoButtons = () => {
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<ControlPanelButton as="button" disabled={!canRedo()} onClick={redo}>
<ArrowUUpRightIcon className="size-5" />
<ArrowUUpRightIcon className="h-6 w-6" />
</ControlPanelButton>
</TooltipTrigger>
<TooltipContent side="right">Redo</TooltipContent>

View File

@@ -4,12 +4,19 @@ import {
OutputActions,
OutputItem,
} from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { beautifyString } from "@/lib/utils";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { Clipboard, Maximize2 } from "lucide-react";
import React, { FC, useMemo, useState } from "react";
import { Button } from "../../../../../components/__legacy__/ui/button";
import {
Dialog,
DialogContent,
DialogDescription,
DialogFooter,
DialogHeader,
DialogTitle,
} from "../../../../../components/__legacy__/ui/dialog";
import { ContentRenderer } from "../../../../../components/__legacy__/ui/render";
import { ScrollArea } from "../../../../../components/__legacy__/ui/scroll-area";
import { Separator } from "../../../../../components/__legacy__/ui/separator";
@@ -113,155 +120,138 @@ const ExpandableOutputDialog: FC<ExpandableOutputDialogProps> = ({
};
return (
<Dialog
title={
<div className="flex items-center justify-between pr-8">
<div className="flex items-center gap-2">
<Maximize2 size={20} />
Full Output Preview
</div>
{enableEnhancedOutputHandling && (
<div className="flex items-center gap-3">
<label
htmlFor="enhanced-rendering-toggle"
className="cursor-pointer select-none text-sm font-normal text-gray-600"
>
Enhanced Rendering
</label>
<Switch
id="enhanced-rendering-toggle"
checked={useEnhancedRenderer}
onCheckedChange={setUseEnhancedRenderer}
/>
<Dialog open={isOpen} onOpenChange={onClose}>
<DialogContent className="flex h-[90vh] w-[90vw] max-w-4xl flex-col">
<DialogHeader>
<DialogTitle className="flex items-center justify-between pr-8">
<div className="flex items-center gap-2">
<Maximize2 size={20} />
Full Output Preview
</div>
)}
</div>
}
controlled={{
isOpen,
set: (open) => {
if (!open) onClose();
},
}}
onClose={onClose}
styling={{
maxWidth: "56rem",
width: "90vw",
height: "90vh",
}}
>
<Dialog.Content>
<div className="flex h-full flex-col">
<div className="pb-4">
<p className="text-sm text-zinc-600">
Execution ID: <span className="font-mono text-xs">{execId}</span>
<br />
Pin:{" "}
<span className="font-semibold">{beautifyString(pinName)}</span>
</p>
</div>
<div className="flex flex-1 flex-col overflow-hidden">
{useEnhancedRenderer && outputItems.length > 0 && (
<div className="border-b px-4 py-2">
<OutputActions
items={outputItems.map((item) => ({
value: item.value,
metadata: item.metadata,
renderer: item.renderer,
}))}
{enableEnhancedOutputHandling && (
<div className="flex items-center gap-3">
<label
htmlFor="enhanced-rendering-toggle"
className="cursor-pointer select-none text-sm font-normal text-gray-600"
>
Enhanced Rendering
</label>
<Switch
id="enhanced-rendering-toggle"
checked={useEnhancedRenderer}
onCheckedChange={setUseEnhancedRenderer}
/>
</div>
)}
<ScrollArea className="h-full">
<div className="p-4">
{data.length > 0 ? (
useEnhancedRenderer ? (
<div className="space-y-4">
{outputItems.map((item) => (
<OutputItem
key={item.key}
value={item.value}
metadata={item.metadata}
renderer={item.renderer}
label={item.label}
/>
))}
</div>
) : (
<div className="space-y-4">
{data.map((item, index) => (
<div
key={index}
className="rounded-lg border bg-gray-50 p-4"
>
<div className="mb-2 flex items-center justify-between">
<span className="text-sm font-medium text-gray-600">
Item {index + 1} of {data.length}
</span>
<Button
variant="outline"
size="sm"
onClick={() => {
const itemData =
typeof item === "object"
? JSON.stringify(item, null, 2)
: String(item);
navigator.clipboard
.writeText(itemData)
.then(() => {
toast({
title: `Item ${index + 1} copied to clipboard!`,
duration: 2000,
});
});
}}
className="flex items-center gap-1"
>
<Clipboard size={14} />
Copy Item
</Button>
</div>
<Separator className="mb-3" />
<div className="whitespace-pre-wrap break-words font-mono text-sm">
<ContentRenderer
value={item}
truncateLongData={false}
/>
</div>
</div>
))}
</div>
)
) : (
<div className="py-8 text-center text-gray-500">
No data available
</div>
)}
</div>
</ScrollArea>
</div>
</DialogTitle>
<DialogDescription>
Execution ID: <span className="font-mono text-xs">{execId}</span>
<br />
Pin:{" "}
<span className="font-semibold">{beautifyString(pinName)}</span>
</DialogDescription>
</DialogHeader>
<Dialog.Footer className="flex justify-between">
<div className="text-sm text-gray-600">
{data.length} item{data.length !== 1 ? "s" : ""} total
<div className="flex-1 overflow-hidden">
{useEnhancedRenderer && outputItems.length > 0 && (
<div className="border-b px-4 py-2">
<OutputActions
items={outputItems.map((item) => ({
value: item.value,
metadata: item.metadata,
renderer: item.renderer,
}))}
/>
</div>
<div className="flex gap-2">
{!useEnhancedRenderer && (
<Button
variant="outline"
onClick={copyData}
className="flex items-center gap-1"
>
<Clipboard size={16} />
Copy All
</Button>
)}
<ScrollArea className="h-full">
<div className="p-4">
{data.length > 0 ? (
useEnhancedRenderer ? (
<div className="space-y-4">
{outputItems.map((item) => (
<OutputItem
key={item.key}
value={item.value}
metadata={item.metadata}
renderer={item.renderer}
label={item.label}
/>
))}
</div>
) : (
<div className="space-y-4">
{data.map((item, index) => (
<div
key={index}
className="rounded-lg border bg-gray-50 p-4"
>
<div className="mb-2 flex items-center justify-between">
<span className="text-sm font-medium text-gray-600">
Item {index + 1} of {data.length}
</span>
<Button
variant="outline"
size="sm"
onClick={() => {
const itemData =
typeof item === "object"
? JSON.stringify(item, null, 2)
: String(item);
navigator.clipboard
.writeText(itemData)
.then(() => {
toast({
title: `Item ${index + 1} copied to clipboard!`,
duration: 2000,
});
});
}}
className="flex items-center gap-1"
>
<Clipboard size={14} />
Copy Item
</Button>
</div>
<Separator className="mb-3" />
<div className="whitespace-pre-wrap break-words font-mono text-sm">
<ContentRenderer
value={item}
truncateLongData={false}
/>
</div>
</div>
))}
</div>
)
) : (
<div className="py-8 text-center text-gray-500">
No data available
</div>
)}
<Button onClick={onClose}>Close</Button>
</div>
</Dialog.Footer>
</ScrollArea>
</div>
</Dialog.Content>
<DialogFooter className="flex justify-between">
<div className="text-sm text-gray-600">
{data.length} item{data.length !== 1 ? "s" : ""} total
</div>
<div className="flex gap-2">
{!useEnhancedRenderer && (
<Button
variant="outline"
onClick={copyData}
className="flex items-center gap-1"
>
<Clipboard size={16} />
Copy All
</Button>
)}
<Button onClick={onClose}>Close</Button>
</div>
</DialogFooter>
</DialogContent>
</Dialog>
);
};

View File

@@ -2,7 +2,6 @@ import {
ConnectionData,
CustomNodeData,
} from "@/app/(platform)/build/components/legacy-builder/CustomNode/CustomNode";
import { NodeTableInput } from "@/app/(platform)/build/components/legacy-builder/NodeTableInput";
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInputs";
import { Button } from "@/components/__legacy__/ui/button";
import { Calendar } from "@/components/__legacy__/ui/calendar";
@@ -29,6 +28,7 @@ import {
} from "@/components/__legacy__/ui/select";
import { Switch } from "@/components/atoms/Switch/Switch";
import { GoogleDrivePickerInput } from "@/components/contextual/GoogleDrivePicker/GoogleDrivePickerInput";
import { NodeTableInput } from "@/components/node-table-input";
import {
BlockIOArraySubSchema,
BlockIOBooleanSubSchema,

View File

@@ -1,11 +1,17 @@
import { useCallback } from "react";
import React, { useCallback } from "react";
import { AgentRunDraftView } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/agent-run-draft-view";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import type {
CredentialsMetaInput,
GraphMeta,
} from "@/lib/autogpt-server-api/types";
import {
Dialog,
DialogContent,
DialogHeader,
DialogTitle,
DialogDescription,
} from "@/components/__legacy__/ui/dialog";
import { AgentRunDraftView } from "@/app/(platform)/library/agents/[id]/components/OldAgentLibraryView/components/agent-run-draft-view";
interface RunInputDialogProps {
isOpen: boolean;
@@ -64,33 +70,21 @@ export function RunnerInputDialog({
);
return (
<Dialog
title="Run your agent"
controlled={{
isOpen,
set: (open) => {
if (!open) doClose();
},
}}
onClose={doClose}
styling={{
maxWidth: "56rem",
width: "90vw",
}}
>
<Dialog.Content>
<div className="flex flex-col p-10">
<p className="mt-2 text-sm text-zinc-600">{graph.name}</p>
<AgentRunDraftView
className="p-0"
graph={graph}
doRun={doRun ? handleRun : undefined}
onRun={doRun ? undefined : doClose}
doCreateSchedule={doCreateSchedule ? handleSchedule : undefined}
onCreateSchedule={doCreateSchedule ? undefined : doClose}
/>
</div>
</Dialog.Content>
<Dialog open={isOpen} onOpenChange={doClose}>
<DialogContent className="flex w-[90vw] max-w-4xl flex-col p-10">
<DialogHeader>
<DialogTitle className="text-2xl">Run your agent</DialogTitle>
<DialogDescription className="mt-2">{graph.name}</DialogDescription>
</DialogHeader>
<AgentRunDraftView
className="p-0"
graph={graph}
doRun={doRun ? handleRun : undefined}
onRun={doRun ? undefined : doClose}
doCreateSchedule={doCreateSchedule ? handleSchedule : undefined}
onCreateSchedule={doCreateSchedule ? undefined : doClose}
/>
</DialogContent>
</Dialog>
);
}

Some files were not shown because too many files have changed in this diff Show More