Compare commits

..

183 Commits

Author SHA1 Message Date
Swifty
224411abd3 add updated_at as an option 2025-10-29 15:32:37 +01:00
Swifty
6b241af79e make store queries parameterised 2025-10-28 15:33:19 +01:00
Ubbe
320fb7d83a fix(frontend): waitlist modal copy (#11263)
### Changes 🏗️

### Before

<img width="800" height="649" alt="Screenshot_2025-10-23_at_00 44 59"
src="https://github.com/user-attachments/assets/fd717d39-772a-4331-bc54-4db15a9a3107"
/>

### After

<img width="800" height="555" alt="Screenshot 2025-10-27 at 23 19 10"
src="https://github.com/user-attachments/assets/64878bd0-3a96-4b3a-8344-1a88c89de52e"
/>

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Try to signup with a non-approved email
  - [x] You see the modal with an updated copy
2025-10-28 11:08:06 +00:00
Ubbe
54552248f7 fix(frontend): login not visible mobile (#11245)
## Changes 🏗️

The mobile 📱 experience is still a mess but this helps a little.

### Before

<img width="350" height="395" alt="Screenshot 2025-10-24 at 18 26 18"
src="https://github.com/user-attachments/assets/75eab232-8c37-41e7-a51d-dbe07db336a0"
/>

### After

<img width="350" height="406" alt="Screenshot 2025-10-24 at 18 25 54"
src="https://github.com/user-attachments/assets/ecbd8bbd-8a94-4775-b990-c8b51de48cf9"
/>


## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Load the app
  - [x] Check the Tally popup button copy
  - [x] The button still works
2025-10-28 14:00:50 +04:00
Ubbe
d8a5780ea2 fix(frontend): feedback button copy (#11246)
## Changes 🏗️

<img width="800" height="827" alt="Screenshot 2025-10-24 at 17 45 48"
src="https://github.com/user-attachments/assets/ab18361e-6c58-43e9-bea6-c9172d06c0e7"
/>

- Shows the text `Give feedback` so the button is more explicit 🏁 
- Refactor the component to stick to [new code
conventions](https://github.com/Significant-Gravitas/AutoGPT/blob/master/autogpt_platform/frontend/CONTRIBUTING.md)

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Load the app
  - [x] Check the Tally popup button copy
  - [x] The button still works
2025-10-28 14:00:33 +04:00
seer-by-sentry[bot]
377657f8a1 fix(backend): Extract response from LLM response dictionary (#11262)
### Changes 🏗️

- Modifies the LLM block to extract the actual response from the
dictionary returned by the LLM, instead of yielding the entire
dictionary. This addresses
[AUTOGPT-SERVER-6EY](https://sentry.io/organizations/significant-gravitas/issues/6950850822/).

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] After applying the fix, I ran the agent that triggered the Sentry
error and confirmed that it now completes successfully without errors.

---------

Co-authored-by: seer-by-sentry[bot] <157164994+seer-by-sentry[bot]@users.noreply.github.com>
Co-authored-by: Swifty <craigswift13@gmail.com>
2025-10-28 08:43:29 +00:00
seer-by-sentry[bot]
ff71c940c9 fix(backend): Properly encode hostname in URL validation (#11259)
Fixes
[AUTOGPT-SERVER-6KZ](https://sentry.io/organizations/significant-gravitas/issues/6976926125/).
The issue was that: Redirect handling strips the URL scheme, causing
subsequent requests to fail validation and hit a 404.

- Ensures the hostname in the URL is properly IDNA-encoded after
validation.
- Reconstructs the netloc with the encoded hostname and preserves the
port if it exists.

This fix was generated by Seer in Sentry, triggered by Craig Swift. 👁️
Run ID: 2204774

Not quite right? [Click here to continue debugging with
Seer.](https://sentry.io/organizations/significant-gravitas/issues/6976926125/?seerDrawer=true)

### Changes 🏗️

**backend/util/request.py:**
- Fixed URL validation to properly preserve port numbers when
reconstructing netloc
- Ensures IDNA-encoded hostname is combined with port (if present)
before URL reconstruction

**Test Results:**
-  Tested request to https://www.target.com/ (original failing URL from
Sentry issue)
-  Status: 200, Content retrieved successfully (339,846 bytes)
-  Port preservation verified for URLs with explicit ports

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Tested request to https://www.target.com/ (original failing URL)
  - [x] Verified status code 200 and successful content retrieval
  - [x] Verified port preservation in URL validation

<details>
  <summary>Example test plan</summary>
  
  - [ ] Create from scratch and execute an agent with at least 3 blocks
- [ ] Import an agent from file upload, and confirm it executes
correctly
  - [ ] Upload agent to marketplace
- [ ] Import an agent from marketplace and confirm it executes correctly
  - [ ] Edit an agent from monitor, and confirm it executes correctly
</details>

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

<details>
  <summary>Examples of configuration changes</summary>

  - Changing ports
  - Adding new services that need to communicate with each other
  - Secrets or environment variable changes
  - New or infrastructure changes such as databases
</details>

Co-authored-by: seer-by-sentry[bot] <157164994+seer-by-sentry[bot]@users.noreply.github.com>
Co-authored-by: Swifty <craigswift13@gmail.com>
2025-10-28 08:43:14 +00:00
Reinier van der Leer
9967b3a7ce fix(frontend/builder): Fix unnecessary graph re-saving (#11145)
- Resolves #10980
- 2nd attempt after #11075 broke some things

Fixes unnecessary graph re-saving when no changes were made after
initial save. More specifically, this PR fixes two causes of this issue:
- Frontend node IDs were being compared to backend IDs, which won't
match if the graph has been modified and saved since loading.
- `fillDefaults` was being applied to all nodes (including existing
ones) on element creation, and empty values were being stripped
*post-save* with `removeEmptyStringsAndNulls`. This invisible
auto-modification of node input data meant that in some common cases the
graph would never be in sync with the backend.

### Changes 🏗️

- Fix node ID handling
- Use `node.data.backend_id ?? node.id` instead of `node.id` in
`prepareSaveableGraph`
    - Also map link source/sink IDs to their corresponding backend IDs
  - Add note about `node.data.backend_id` to `_saveAgent`
  - Use `node.data.backend_id || node.id` as display ID in `CustomNode`

- Prevent auto-modification of node input data on existing nodes
- Prune empty values (`undefined`, `null`, `""`) from node input data
*pre-save* instead of post-save
- Related: improve typing and functionality of
`fillObjectDefaultsFromSchema` (moved and renamed from `fillDefaults`)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Node display ID updates on save
- [x] Clicking save a second time (without making more changes) doesn't
cause re-save
- [x] Updating nodes with dynamic input links (e.g. Create Dictionary
Block) doesn't make the links disappear


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

* **Bug Fixes**
* Prevented unintended auto-modification of existing nodes during
editing
* Improved consistency of node and connection identifiers in saved
graphs

* **Improvements**
  * Enhanced node title display logic for clearer node identification
* Optimized data cleanup utilities for more robust input processing in
the builder

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-10-27 16:49:02 +00:00
Bently
9db443960a feat(blocks/claude): Remove Claude 3.5 Sonnet and Haiku model (#11260)
Removes CLAUDE_3_5_SONNET and CLAUDE_3_5_HAIKU from LlmModel enum, model
metadata, and cost configuration since they are deprecated

  ### Checklist 📋

  #### For code changes:
  - [x] I have clearly listed my changes in the PR description
  - [x] I have made a test plan
  - [x] I have tested my changes according to the test plan:
  - [x] Verify the models are gone from the llm blocks
2025-10-27 16:49:02 +00:00
Ubbe
9316100864 fix(frontend): agent activity graph names (#11233)
## Changes 🏗️

We weren't fetching all library agents, just the first 15... to compute
the agent map on the Agent Activity dropdown. We suspect that is causing
some agent executions coming as `Unknown agent`.

In this changes, I'm fetching all the library agents upfront ( _without
blocking page load_ ) and caching them on the browser, so we have all
the details to render the agent runs. This is re-used in the library as
well for fast initial load on the agents list page.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] First request populates cache; subsequent identical requests hit
cache
- [x] Editing an agent invalidates relevant cache keys and serves fresh
data
  - [x] Different query params generate distinct cache entries
  - [x] Cache layer gracefully falls back to live data on errors
  - [x] 404 behavior for unknown agents unchanged

### For configuration changes:

None
2025-10-27 20:08:21 +04:00
Ubbe
cbe0cee0fc fix(frontend): Credentials disabling onboarding Run button (#11244)
## Changes 🏗️

The onboarding `Run` button is disabled sometimes when an agent
requiring credentials is selected. We think this can be because the
credentials load _async_ by a sub-component ( `<CredentialsInputs />` ),
and there wasn't a way for the parent component to know whether they
loaded or not.

- Refactored **Step 5** of onboarding to adhere to our code conventions
  - split concerns and colocated state
  - used generated API hooks
  - the UI will only render once API calls succeed
- Created a system where ``<CredentialsInputs />` notify the parent
component when they load
- Did minor adjustments here and there

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] I will know once I find an agent with credentials that I can
run....


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

* **New Features**
* Added visual agent selection card displaying agent details during
onboarding
  * Introduced credentials input management for agent configuration
  * Added onboarding guidance for initiating agent runs

* **Improvements**
  * Enhanced onboarding flow with improved state management
  * Refined login state handling
  * Adjusted spacing in agent rating display

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-10-27 19:53:14 +04:00
Swifty
7cbb1ed859 fix(backend/store): Sanitize all sql terms (#11228)
Categories and Creators where not sanitized in the full text search

### Changes 🏗️

- apply sanitization to categories and creators

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] run tests to check it still works
2025-10-27 12:59:05 +01:00
Reinier van der Leer
e06e7ff33f fix(backend): Implement graceful shutdown in AppService to prevent RPC errors (#11240)
We're currently seeing errors in the `DatabaseManager` while it's
shutting down, like:

```
WARNING [DatabaseManager] Termination request: SystemExit; 0 executing cleanup.
INFO [DatabaseManager]  Disconnecting Database...
INFO [PID-1|THREAD-29|DatabaseManager|Prisma-82fb1994-4b87-40c1-8869-fbd97bd33fc8] Releasing connection started...
INFO [PID-1|THREAD-29|DatabaseManager|Prisma-82fb1994-4b87-40c1-8869-fbd97bd33fc8] Releasing connection completed successfully.
INFO [DatabaseManager] Terminated.
ERROR POST /create_or_add_to_user_notification_batch failed: Failed to create or add to notification batch for user {user_id} and type AGENT_RUN: NoneType: None
```

This indicates two issues:
- The service doesn't wait for pending RPC calls to finish before
terminating
- We're using `logger.exception` outside an error handling context,
causing the confusing and not much useful `NoneType: None` to be printed
instead of error info

### Changes 🏗️

- Implement graceful shutdown in `AppService` so in-flight RPC calls can
finish
  - Add tests for graceful shutdown
  - Prevent `AppService` accepting new requests during shutdown
- Rework `AppService` lifecycle management; add support for async
`lifespan`
- Fix `AppService` endpoint error logging
- Improve logging in `AppProcess` and `AppService`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- Deploy to Dev cluster, then `kubectl rollout restart` the different
services a few times
    - [x] -> `DatabaseManager` doesn't break on re-deployment
    - [x] -> `Scheduler` doesn't break on re-deployment
    - [x] -> `NotificationManager` doesn't break on re-deployment
2025-10-25 14:47:19 +00:00
Abhimanyu Yadav
acb946801b feat(frontend): add agent execution functionality in new builder (#11186)
This PR implements real-time agent execution functionality in the new
flow editor, enabling users to run, monitor, and view results of their
agent workflows directly within the builder interface.


https://github.com/user-attachments/assets/8a730e08-f88d-49d4-be31-980e2c7a2f83

#### Key Features Added:

##### 1. **Agent Execution Controls**
- Added "Run Agent" / "Stop Agent" button with gradient styling in the
builder interface
- Implemented execution state management through a new `graphStore` for
tracking running status
- Save graph automatically before execution to ensure latest changes are
persisted

##### 2. **Real-time Execution Monitoring**
- Implemented WebSocket-based real-time updates for node execution
status via `useFlowRealtime` hook
- Subscribe to graph execution events and node execution events for live
status tracking
- Visual execution status badges on nodes showing states: `QUEUED`,
`RUNNING`, `COMPLETED`, `FAILED`, etc.
   - Animated gradient border effect when agent is actively running

##### 3. **Node Execution Results Display**
- New `NodeDataRenderer` component to display input/output data for each
executed node
   - Collapsible result sections with formatted JSON display
- Prepared UI for future functionality: copy, info, and expand actions
for node data

#### Technical Implementation:

- **State Management**: Extended `nodeStore` with execution status and
result tracking methods
- **WebSocket Integration**: Real-time communication for execution
updates without polling
- **Component Architecture**: Modular components for execution controls,
status display, and result rendering
- **Visual Feedback**: Color-coded status badges and animated borders
for clear execution state indication


#### TODO Items for Future PRs:
- Complete implementation of node result action buttons (copy, info,
expand)
- Add agent output display component
- Implement schedule run functionality
- Handle credential and input parameters for graph execution
- Add tooltips for better UX

### Checklist

- [x] Create a new agent with at least 3 blocks and verify execution
starts correctly
- [x] Verify real-time status updates appear on nodes during execution
- [x] Confirm execution results display in the node output sections
- [x] Verify the animated border appears when agent is running
- [x] Check that node status badges show correct states (QUEUED,
RUNNING, COMPLETED, etc.)
- [x] Test WebSocket reconnection after connection loss
- [x] Verify graph is saved before execution begins
2025-10-24 12:05:09 +00:00
Bently
48ff225837 feat(blocks/revid): Add cost configs for revid video blocks (#11242)
Updated block costs in `backend/backend/data/block_cost_config.py`:
  - **AIShortformVideoCreatorBlock**: Updated from 50 credits to 307
  - **AIAdMakerVideoCreatorBlock**: Added cost of 714 credits
  - **AIScreenshotToVideoAdBlock**: Added cost of 612 credits

  ### Checklist 📋

  #### For code changes:
  - [x] I have clearly listed my changes in the PR description
  - [x] I have made a test plan
  - [x] I have tested my changes according to the test plan:
- [x] Verify AIShortformVideoCreatorBlock costs 307 credits when
executed
- [x] Verify AIAdMakerVideoCreatorBlock costs 714 credits when executed
- [x] Verify AIScreenshotToVideoAdBlock costs 612 credits when executed
2025-10-23 09:46:22 +00:00
Nicholas Tindle
e2a9923f30 feat(frontend): Improve waitlist error display & messages (#11206)
Improves the "not on waitlist" error display based on feedback.

- Follow-up to #11198
  - Follow-up to #11196

### Changes 🏗️

- Use standard `ErrorCard`
- Improve text strings
- Merge `isWaitlistError` and `isWaitlistErrorFromParams`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] We need to test in dev becasue we don't have a waitlist locally
and will revert if it doesnt work
- deploy to dev environment and sign up with a non approved account and
see if error appears
2025-10-22 13:37:42 +00:00
Reinier van der Leer
39792d517e fix(frontend): Filter out undefined query params in API requests (#11238)
Part of our effort to eliminate preventable warnings and errors.

- Resolves #11237

### Changes 🏗️

- Exclude `undefined` query params in API requests

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - Open the Builder without a `flowVersion` URL parameter
    - [x] -> `GET /api/library/agents/by-graph/{graph_id}` succeeds
  - Open the builder with a `flowVersion` URL parameter
    - [x] -> version is correctly included in request URL parameters
2025-10-22 13:25:34 +00:00
Bently
a6a2f71458 Merge commit from fork
* Replace urllib with Requests in RSS block to prevent SSRF

* Format
2025-10-22 14:18:34 +01:00
Bently
788b861bb7 Merge commit from fork 2025-10-22 14:17:26 +01:00
Ubbe
e203e65dc4 feat(frontend): setup datafast custom events (#11231)
## Changes 🏗️

- Add [custom events](https://datafa.st/docs/custom-goals) in
**Datafa.st** to track the user journey around core actions
  - track `add_to_library`
  - track `download_agent`
  - track `run_agent`
  - track `schedule_agent` 
- Refactor the analytics service to encapsulate both **GA** and
**Datafa.st**

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Analytics load correctly locally
  - [x] Events fire in production
 
### For configuration changes:

Once deployed to production we need to verify we are receiving analytics
and custom events in [Datafa.st](https://datafa.st/)
2025-10-22 16:56:30 +04:00
Ubbe
bd03697ff2 fix(frontend): URL substring sanitazion issue (#11232)
Potential fix for
[https://github.com/Significant-Gravitas/AutoGPT/security/code-scanning/145](https://github.com/Significant-Gravitas/AutoGPT/security/code-scanning/145)

To fix the issue, rather than using substring matching on the raw URL
string, we need to properly parse the URL and inspect its hostname. We
should confirm that the `hostname` property of the parsed URL is equal
to either `vimeo.com` or explicitly permitted subdomains like
`www.vimeo.com`. We can use the native JavaScript `URL` class for robust
parsing.

**File/Location:**  
- Only change line(s) in
`autogpt_platform/frontend/src/app/(platform)/library/agents/[id]/components/AgentRunsView/components/OutputRenderers/renderers/MarkdownRenderer.tsx`
- Specifically, update the logic in function `isVideoUrl()` on line 45.

**Methods/Imports/Definitions:**  
- Use the standard `URL` class (no need to add a new import, as this is
available in browsers and in Node.js).
- Provide fallback in case the URL passed in is malformed (wrap in a
try-catch, treat as non-video in this case).
- Check the parsed hostname for equality with `vimeo.com` or,
optionally, specific allowed subdomains (`www.vimeo.com`).

---


_Suggested fixes powered by Copilot Autofix. Review carefully before
merging._

---------

Co-authored-by: Copilot Autofix powered by AI <62310815+github-advanced-security[bot]@users.noreply.github.com>
2025-10-22 16:56:12 +04:00
Reinier van der Leer
efd37b7a36 fix(frontend): Limit Sentry console capture to warnings and errors (#11223)
Debug and info level messages are currently ending up in Sentry,
polluting our issue feed.

### Changes 🏗️

- Limit Sentry console capture to warnings and worse

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - Trivial change, no test needed
2025-10-22 09:49:25 +00:00
Zamil Majdy
bb0b45d7f7 fix(backend): Make Jinja Error on TextFormatter as value error (#11236)
<!-- Clearly explain the need for these changes: -->

This PR converts Jinja2 TemplateError exceptions to ValueError in the
TextFormatter class to ensure proper error handling and HTTP status code
responses (400 instead of 500).

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

- Added import for `jinja2.exceptions.TemplateError` in
`backend/util/text.py:6`
- Wrapped template rendering in try-catch block in `format_string`
method (`backend/util/text.py:105-109`)
- Convert `TemplateError` to `ValueError` to ensure proper 400 HTTP
status code for client errors
- Added warning logging for template rendering errors before re-raising
as ValueError

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan: -->
- [x] Verified that invalid Jinja2 templates now raise ValueError
instead of TemplateError
  - [x] Confirmed that valid templates continue to work correctly
  - [x] Checked that warning logs are generated for template errors
  - [x] Validated that the exception chain is preserved with `from e`

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
2025-10-22 09:38:02 +00:00
Reinier van der Leer
04df981115 fix(backend): Fix structured logging for cloud environments (#11227)
- Resolves #11226

### Changes 🏗️

- Drop use of `CloudLoggingHandler` which docs state isn't for use in
GKE
- For cloud logging, output only structured log entries to `stdout`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Test deploy to dev and check logs
2025-10-21 12:48:41 +00:00
Swifty
d25997b4f2 Revert "Merge branch 'swiftyos/secrt-1709-store-provider-names-and-en… (#11225)
Changes to providers blocks to store in db

### Changes 🏗️

- revet change

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] I have reverted the merge
2025-10-21 09:12:00 +00:00
Zamil Majdy
11d55f6055 fix(backend/executor): Avoid running direct query in executor (#11224)
## Summary
- Fixes database connection warnings in executor logs: "Client is not
connected to the query engine, you must call `connect()` before
attempting to query data"
- Implements resilient database client pattern already used elsewhere in
the codebase
- Adds caching to reduce database load for user context lookups

## Changes
- Updated `get_user_context()` to check `prisma.is_connected()` and fall
back to database manager client
- Added `@cached(maxsize=1000, ttl_seconds=3600)` decorator for
performance optimization
- Updated database manager to expose `get_user_by_id` method

## Test plan
- [x] Verify executor pods no longer show Prisma connection warnings
- [x] Confirm user timezone is still correctly retrieved
- [x] Test fallback behavior when Prisma is disconnected

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-21 08:46:40 +00:00
Ubbe
063dc5cf65 refactor(frontend): standardise with environment service (#11209)
## Changes 🏗️

Standardize all the runtime environment checks on the Front-end and
associated conditions to run against a single environment service where
all the environment config is centralized and hence easier to manage.

This helps prevent typos and bug when manually asserting against
environment variables ( which are typed as `string` ), the helper
functions are easier to read and re-use across the codebase.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run the app and click around
  - [x] Everything is smooth
  - [x] Test on the CI and types are green  

### For configuration changes:

None 🙏🏽
2025-10-21 08:44:34 +00:00
Ubbe
b7646f3e58 docs(frontend): contributing guidelines (#11210)
## Changes 🏗️

Document how to contribute on the Front-end so it is easier for
non-regular contributors.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Contribution guidelines make sense and look good considering the
AutoGPT stack

### For configuration changes:

None
2025-10-21 08:26:51 +00:00
Ubbe
0befaf0a47 feat(frontend): update tooltip and alert styles (#11212)
## Changes 🏗️

Matching updated changes in AutoGPT design system:

<img width="283" height="156" alt="Screenshot 2025-10-20 at 23 55 15"
src="https://github.com/user-attachments/assets/3a2e0ee7-cd53-4552-b72b-42f4631f1503"
/>
<img width="427" height="92" alt="Screenshot 2025-10-20 at 23 55 25"
src="https://github.com/user-attachments/assets/95344765-2155-4861-abdd-f5ec1497ace2"
/>
<img width="472" height="85" alt="Screenshot 2025-10-20 at 23 55 30"
src="https://github.com/user-attachments/assets/31084b40-0eea-4feb-a627-c5014790c40d"
/>
<img width="370" height="87" alt="Screenshot 2025-10-20 at 23 55 35"
src="https://github.com/user-attachments/assets/a81dba12-a792-4d41-b269-0bc32fc81271"
/>


## Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Check the stories for Tooltip and Alerts, they look good


#### For configuration changes:
None
2025-10-21 08:14:28 +00:00
Reinier van der Leer
93f58dec5e Merge branch 'master' into dev 2025-10-21 08:49:12 +02:00
Reinier van der Leer
3da595f599 fix(backend): Only try to initialize LaunchDarkly once (#11222)
We currently try to re-init the LaunchDarkly client every time a feature flag is checked.
This causes 5 second extra latency on the flag check when LD is down, such as now.
Since flag checks are performed on every block execution, this currently cripples the platform's executors.

- Follow-up to #11221

### Changes 🏗️

- Only try to init LaunchDarkly once
- Improve surrounding log statements in the `feature_flag` module

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - This is a critical hotfix; we'll see its effect once deployed
2025-10-21 08:46:07 +02:00
Reinier van der Leer
e5e60921a3 fix(backend): Handle LaunchDarkly init failure (#11221)
LaunchDarkly is currently down and it's keeping our executor pods from
spinning up.

### Changes 🏗️

- Wrap `LaunchDarklyIntegration` init in a try/except

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - We'll see if it works once it deploys
2025-10-21 07:53:40 +02:00
Copilot
90af8f8e1a feat(backend): Add language fallback for YouTube transcription block (#11057)
## Problem

The YouTube transcription block would fail when attempting to transcribe
videos that only had transcripts available in non-English languages.
Even when usable transcripts existed in other languages, the block would
raise a `NoTranscriptFound` error because it only requested English
transcripts.

**Example video that would fail:**
https://www.youtube.com/watch?v=3AMl5d2NKpQ (only has Hungarian
transcripts)

**Error message:**
```
Could not retrieve a transcript for the video https://www.youtube.com/watch?v=3AMl5d2NKpQ! 
No transcripts were found for any of the requested language codes: ('en',)

For this video (3AMl5d2NKpQ) transcripts are available in the following languages:
(GENERATED) - hu ("Hungarian (auto-generated)")
```

## Solution

Implemented intelligent language fallback in the
`TranscribeYoutubeVideoBlock.get_transcript()` method:

1. **First**, tries to fetch English transcript (maintains backward
compatibility)
2. **If English unavailable**, lists all available transcripts and
selects the first one using this priority:
   - Manually created transcripts (any language)
   - Auto-generated transcripts (any language)
3. **Only fails** if no transcripts exist at all

**Example behavior:**
```python
# Before: Video with only Hungarian transcript
get_transcript("3AMl5d2NKpQ")  #  Raises NoTranscriptFound

# After: Video with only Hungarian transcript  
get_transcript("3AMl5d2NKpQ")  #  Returns Hungarian transcript
```

## Changes

- **Modified** `backend/blocks/youtube.py`: Added try-catch logic to
fallback to any available language when English is not found
- **Added** `test/blocks/test_youtube.py`: Comprehensive test suite
covering URL extraction, language fallback, transcript preferences, and
error handling (7 tests)
- **Updated** `docs/content/platform/blocks/youtube.md`: Documented the
language fallback behavior and transcript priority order

## Testing

-  All 7 new unit tests pass
-  Block integration test passes
-  Full test suite: 621 passed, 0 failed (no regressions)
-  Code formatting and linting pass

## Impact

This fix enables the YouTube transcription block to work with
international content while maintaining full backward compatibility:

-  Videos in any language can now be transcribed
-  English is still preferred when available
-  No breaking changes to existing functionality
-  Graceful degradation to available languages

Fixes #10637
Fixes https://linear.app/autogpt/issue/OPEN-2626

> [!WARNING]
>
> <details>
> <summary>Firewall rules blocked me from connecting to one or more
addresses (expand for details)</summary>
>
> #### I tried to connect to the following addresses, but was blocked by
firewall rules:
>
> - `www.youtube.com`
> - Triggering command:
`/home/REDACTED/.cache/pypoetry/virtualenvs/autogpt-platform-backend-Ajv4iu2i-py3.11/bin/python3`
(dns block)
>
> If you need me to access, download, or install something from one of
these locations, you can either:
>
> - Configure [Actions setup
steps](https://gh.io/copilot/actions-setup-steps) to set up my
environment, which run before the firewall is enabled
> - Add the appropriate URLs or hosts to the custom allowlist in this
repository's [Copilot coding agent
settings](https://github.com/Significant-Gravitas/AutoGPT/settings/copilot/coding_agent)
(admins only)
>
> </details>

<!-- START COPILOT CODING AGENT SUFFIX -->



<details>

<summary>Original prompt</summary>

> Issue Title: if theres only one lanague available for transcribe
youtube return that langage not an error
> Issue Description: `Could not retrieve a transcript for the video
https://www.youtube.com/watch?v=3AMl5d2NKpQ! This is most likely caused
by: No transcripts were found for any of the requested language codes:
('en',) For this video (3AMl5d2NKpQ) transcripts are available in the
following languages: (MANUALLY CREATED) None (GENERATED) - hu
("Hungarian (auto-generated)") (TRANSLATION LANGUAGES) None If you are
sure that the described cause is not responsible for this error and that
a transcript should be retrievable, please create an issue at
https://github.com/jdepoix/youtube-transcript-api/issues. Please add
which version of youtube_transcript_api you are using and provide the
information needed to replicate the error. Also make sure that there are
no open issues which already describe your problem!` you can use this
video to test:
[https://www.youtube.com/watch?v=3AMl5d2NKpQ\`](https://www.youtube.com/watch?v=3AMl5d2NKpQ%60)
> Fixes
https://linear.app/autogpt/issue/OPEN-2626/if-theres-only-one-lanague-available-for-transcribe-youtube-return
> 
> 
> Comment by User :
> This thread is for an agent session with githubcopilotcodingagent.
> 
> Comment by User :
> This thread is for an agent session with githubcopilotcodingagent.
> 
> Comment by User :
> This comment thread is synced to a corresponding [GitHub
issue](https://github.com/Significant-Gravitas/AutoGPT/issues/10637).
All replies are displayed in both locations.
> 
> 


</details>


<!-- START COPILOT CODING AGENT TIPS -->
---

 Let Copilot coding agent [set things up for
you](https://github.com/Significant-Gravitas/AutoGPT/issues/new?title=+Set+up+Copilot+instructions&body=Configure%20instructions%20for%20this%20repository%20as%20documented%20in%20%5BBest%20practices%20for%20Copilot%20coding%20agent%20in%20your%20repository%5D%28https://gh.io/copilot-coding-agent-tips%29%2E%0A%0A%3COnboard%20this%20repo%3E&assignees=copilot)
— coding agent works faster and does higher quality work when set up for
your repo.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ntindle <8845353+ntindle@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-10-21 02:31:33 +00:00
Nicholas Tindle
eba67e0a4b fix(platform/blocks): update linear oauth to use refresh tokens (#10998)
<!-- Clearly explain the need for these changes: -->

### Need 💡

This PR addresses Linear issue SECRT-1665, which mandates an update to
Linear's OAuth2 implementation. Linear is transitioning from long-lived
access tokens to short-lived access tokens with refresh tokens, with a
deadline of April 1, 2026. This change is crucial to ensure continued
integration with Linear and to support their new token management
system, including a migration path for existing long-lived tokens.

### Changes 🏗️

-   **`autogpt_platform/backend/backend/blocks/linear/_oauth.py`**:
- Implemented full support for refresh tokens, including HTTP Basic
Authentication for token refresh requests.
- Added `migrate_old_token()` method to exchange old long-lived access
tokens for new short-lived tokens with refresh tokens using Linear's
`/oauth/migrate_old_token` endpoint.
- Enhanced `get_access_token()` to automatically detect and attempt
migration for old tokens, and to refresh short-lived tokens when they
expire.
    -   Improved error handling and token expiration management.
- Updated `_request_tokens` to handle both authorization code and
refresh token flows, supporting Linear's recommended authentication
methods.
-   **`autogpt_platform/backend/backend/blocks/linear/_config.py`**:
- Updated `TEST_CREDENTIALS_OAUTH` mock data to include realistic
`access_token_expires_at` and `refresh_token` for testing the new token
lifecycle.
-   **`LINEAR_OAUTH_IMPLEMENTATION.md`**:
- Added documentation detailing the new Linear OAuth refresh token
implementation, including technical details, migration strategy, and
testing notes.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified OAuth URL generation and parameter encoding.
- [x] Confirmed HTTP Basic Authentication header creation for refresh
requests.
  - [x] Tested token expiration logic with a 5-minute buffer.
  - [x] Validated migration detection for old vs. new token types.
  - [x] Checked code syntax and import compatibility.

#### For configuration changes:

- [ ] `.env.default` is updated or already compatible with my changes
- [ ] `docker-compose.yml` is updated or already compatible with my
changes
- [ ] I have included a list of my configuration changes in the PR
description (under **Changes**)

---
Linear Issue: [SECRT-1665](https://linear.app/autogpt/issue/SECRT-1665)

<a
href="https://cursor.com/background-agent?bcId=bc-95f4c668-f7fa-4057-87e5-622ac81c0783"><picture><source
media="(prefers-color-scheme: dark)"
srcset="https://cursor.com/open-in-cursor-dark.svg"><source
media="(prefers-color-scheme: light)"
srcset="https://cursor.com/open-in-cursor-light.svg"><img alt="Open in
Cursor"
src="https://cursor.com/open-in-cursor.svg"></picture></a>&nbsp;<a
href="https://cursor.com/agents?id=bc-95f4c668-f7fa-4057-87e5-622ac81c0783"><picture><source
media="(prefers-color-scheme: dark)"
srcset="https://cursor.com/open-in-web-dark.svg"><source
media="(prefers-color-scheme: light)"
srcset="https://cursor.com/open-in-web-light.svg"><img alt="Open in Web"
src="https://cursor.com/open-in-web.svg"></picture></a>

---------

Co-authored-by: Cursor Agent <cursoragent@cursor.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
Co-authored-by: Bentlybro <Github@bentlybro.com>
2025-10-20 20:44:58 +00:00
Nicholas Tindle
47bb89caeb fix(backend): Disable LaunchDarkly integration in metrics.py (#11217) 2025-10-20 14:07:21 -05:00
Ubbe
271a520afa feat(frontend): setup DataFast analytics (#11182)
## Changes 🏗️

Following https://datafa.st/docs/nextjs-app-router

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] We will see once we make a production deployment and get data into
the platform

### For configuration changes:

None
2025-10-20 16:18:04 +04:00
Swifty
3988057032 Merge branch 'swiftyos/secrt-1712-remove-error-handling-form-store-routes' into dev 2025-10-18 12:28:25 +02:00
Swifty
a6c6e48f00 Merge branch 'swiftyos/open-2791-featplatform-add-easy-test-data-creation' into dev 2025-10-18 12:28:17 +02:00
Swifty
e72ce2f9e7 Merge branch 'swiftyos/secrt-1709-store-provider-names-and-env-vars-in-db' into dev 2025-10-18 12:27:58 +02:00
Swifty
bd7a79a920 Merge branch 'swiftyos/secrt-1706-improve-store-search' into dev 2025-10-18 12:27:31 +02:00
Nicholas Tindle
3f546ae845 fix(frontend): improve waitlist error display for users not on allowlist (#11198)
fix issue with identifying errors :(
### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] we have to test in dev due to waitlist integration, so we are
merging. will revert if fails

---------

Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2025-10-18 05:14:05 +00:00
Nicholas Tindle
097a19141d fix(frontend): improve waitlist error display for users not on allowlist (#11196)
## Summary

This PR improves the user experience for users who are not on the
waitlist during sign-up. When a user attempts to sign up or log in with
an email that's not on the allowlist, they now see a clear, helpful
modal with a direct call-to-action to join the waitlist.

Fixes
[OPEN-2794](https://linear.app/autogpt/issue/OPEN-2794/display-waitlist-error-for-users-not-on-waitlist-during-sign-up)

## Changes

-  Updated `EmailNotAllowedModal` with improved messaging and a "Join
Waitlist" button
- 🔧 Fixed OAuth provider signup/login to properly display the waitlist
modal
- 📝 Enhanced auth-code-error page to detect and display
waitlist-specific errors
- 💬 Added helpful guidance about checking email address and Discord
support link
- 🎯 Consistent waitlist error handling across all auth flows (regular
signup, OAuth, error pages)

## Test Plan

Tested locally by:
1. Attempting signup with non-allowlisted email - modal appears 
2. Attempting Google SSO with non-allowlisted account - modal appears 
3. Modal shows "Join Waitlist" button that opens
https://agpt.co/waitlist 
4. Help text about checking email and Discord support is visible 

## Screenshots

The new waitlist modal includes:
- Clear "Join the Waitlist" title
- Explanation that platform is in closed beta
- "Join Waitlist" button (opens in new tab)
- Help text about checking email address
- Discord support link for users who need help

🤖 Generated with [Claude Code](https://claude.com/claude-code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2025-10-18 03:37:31 +00:00
Swifty
c958c95d6b fix incorrect type import 2025-10-17 20:36:49 +02:00
Swifty
3e50cbd2cb fix import 2025-10-17 19:19:17 +02:00
Swifty
1b69f1644d revert frontend type change 2025-10-17 17:26:08 +02:00
Swifty
d9035a233c Merge branch 'swiftyos/secrt-1709-store-provider-names-and-env-vars-in-db' of github.com:Significant-Gravitas/AutoGPT into swiftyos/secrt-1709-store-provider-names-and-env-vars-in-db 2025-10-17 17:20:27 +02:00
Swifty
972cbfc3de fix tests 2025-10-17 17:20:05 +02:00
Swifty
8f861b1bb2 removed error handling from routes 2025-10-17 17:08:17 +02:00
Swifty
fa2731bb8b Merge branch 'dev' into swiftyos/secrt-1709-store-provider-names-and-env-vars-in-db 2025-10-17 17:06:09 +02:00
Swifty
2dc0c97a52 Add block registry and updated 2025-10-17 16:49:04 +02:00
Zamil Majdy
0bb2b87c32 fix(backend): resolve UserBalance migration issues and credit spending bug (#11192)
## Summary
Fix critical UserBalance migration and spending issues affecting users
with credits from transaction history but no UserBalance records.

## Root Issues Fixed

### Issue 1: UserBalance Migration Complexity
- **Problem**: Complex data migration with timestamp logic issues and
potential race conditions
- **Solution**: Simplified to idempotent table creation only,
application handles auto-population

### Issue 2: Credit Spending Bug  
- **Problem**: Users with $10.0 from transaction history couldn't spend
$0.16
- **Root Cause**: `_add_transaction` and `_enable_transaction` only
checked UserBalance table, returning 0 balance for users without records
- **Solution**: Enhanced both methods with transaction history fallback
logic

### Issue 3: Exception Handling Inconsistency
- **Problem**: Raw SQL unique violations raised different exception
types than Prisma ORM
- **Solution**: Convert raw SQL unique violations to
`UniqueViolationError` at source

## Changes Made

### Migration Cleanup
- **Idempotent operations**: Use `CREATE TABLE IF NOT EXISTS`, `CREATE
INDEX IF NOT EXISTS`
- **Inline foreign key**: Define constraint within `CREATE TABLE`
instead of separate `ALTER TABLE`
- **Removed data migration**: Application creates UserBalance records
on-demand
- **Safe to re-run**: No errors if table/index/constraint already exists

### Credit Logic Fixes
- **Enhanced `_add_transaction`**: Added transaction history fallback in
`user_balance_lock` CTE
- **Enhanced `_enable_transaction`**: Added same fallback logic for
payment fulfillment
- **Exception normalization**: Convert raw SQL unique violations to
`UniqueViolationError`
- **Simplified `onboarding_reward`**: Use standardized
`UniqueViolationError` catching

### SQL Fallback Pattern
```sql
COALESCE(
    (SELECT balance FROM UserBalance WHERE userId = ? FOR UPDATE),
    -- Fallback: compute from transaction history if UserBalance doesn't exist
    (SELECT COALESCE(ct.runningBalance, 0) 
     FROM CreditTransaction ct 
     WHERE ct.userId = ? AND ct.isActive = true AND ct.runningBalance IS NOT NULL 
     ORDER BY ct.createdAt DESC LIMIT 1),
    0
) as balance
```

## Impact

### Before
-  Users with transaction history but no UserBalance couldn't spend
credits
-  Migration had complex timestamp logic with potential bugs  
-  Raw SQL and Prisma exceptions handled differently
-  Error: "Insufficient balance of $10.0, where this will cost $0.16"

### After  
-  Seamless spending for all users regardless of UserBalance record
existence
-  Simple, idempotent migration that's safe to re-run
-  Consistent exception handling across all credit operations
-  Automatic UserBalance record creation during first transaction
-  Backward compatible - existing users unaffected

## Business Value
- **Eliminates user frustration**: Users can spend their credits
immediately
- **Smooth migration path**: From old User.balance to new UserBalance
table
- **Better reliability**: Atomic operations with proper error handling
- **Maintainable code**: Consistent patterns across credit operations

## Test Plan
- [ ] Manual testing with users who have transaction history but no
UserBalance records
- [ ] Verify migration can be run multiple times safely
- [ ] Test spending credits works for all user scenarios
- [ ] Verify payment fulfillment (`_enable_transaction`) works correctly
- [ ] Add comprehensive test coverage for this scenario

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-17 19:46:13 +07:00
Swifty
a1d9b45238 updated openapi spec 2025-10-17 14:01:37 +02:00
Swifty
29895c290f store providers in db 2025-10-17 13:34:35 +02:00
Zamil Majdy
73c0b6899a fix(backend): Remove advisory locks for atomic credit operations (#11143)
## Problem
High QPS failures on `spend_credits` operations due to lock contention
from `pg_advisory_xact_lock` causing serialization and seconds of wait
time.

## Solution 
Replace PostgreSQL advisory locks with atomic database operations using
CTEs (Common Table Expressions).

### Key Changes
- **Add persistent balance column** to User table for O(1) balance
lookups
- **Atomic CTE-based operations** for all credit transactions using
UPDATE...RETURNING pattern
- **Comprehensive concurrency tests** with 7 test scenarios including
stress testing
- **Remove all advisory lock usage** from the credit system

### Implementation Details
1. **Migration**: Adds balance column with backfill from transaction
history
2. **Atomic Operations**: All credit operations now use single atomic
CTEs that update balance and create transaction in one query
3. **Race Condition Prevention**: WHERE clauses in UPDATE statements
ensure balance never goes negative
4. **BetaUserCredit Compatibility**: Preserved monthly refill logic with
updated `_add_transaction` signature

### Performance Impact
-  Eliminated lock contention bottlenecks
-  O(1) balance lookups instead of O(n) transaction aggregation  
-  Atomic operations prevent race conditions without locks
-  Supports high QPS without serialization delays

### Testing
- All existing tests pass
- New concurrency test suite (`credit_concurrency_test.py`) with:
  - Concurrent spends from same user
  - Insufficient balance handling
  - Mixed operations (spends, top-ups, balance checks)
  - Race condition prevention
  - Integer overflow protection
  - Stress testing with 100 concurrent operations

### Breaking Changes
None - all existing APIs maintain compatibility

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **New Features**
* Enhanced top‑up flows with top‑up types, clearer credit→dollar
formatting, and idempotent onboarding rewards.

* **Bug Fixes**
* Fixed race conditions for concurrent spends/top‑ups, added
integer‑overflow and underflow protection, stronger input validation,
and improved refund/dispute handling.

* **Refactor**
* Persisted per‑user balance with atomic updates for reliable balances;
admin history now prefetches balances.

* **Tests**
* Added extensive concurrency, refund, ceiling/underflow and migration
test suites.

* **Chores**
* Database migration to add persisted user balance; APIKey status
extended (SUSPENDED).
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Swifty <craigswift13@gmail.com>
2025-10-17 17:05:05 +07:00
Zamil Majdy
4c853a54d7 Merge commit 'e4bc728d40332e7c2b1edec5f1b200f1917950e2' into HEAD 2025-10-17 16:43:23 +07:00
Zamil Majdy
dfdd632161 fix(backend/util): handle nested Pydantic models in SafeJson (#11188)
## Summary

Fixes a critical serialization bug introduced in PR #11187 where
`SafeJson` failed to serialize dictionaries containing Pydantic models,
causing 500 Internal Server Errors in the executor service.

## Problem

The error manifested as:
```
CRITICAL: Operation Approaching Failure Threshold: Service communication: '_call_method_async'
Current attempt: 50/50
Error: HTTPServerError: HTTP 500: Server error '500 Internal Server Error' 
for url 'http://autogpt-database-manager.prod-agpt.svc.cluster.local:8005/create_graph_execution'
```

Root cause in `create_graph_execution`
(backend/data/execution.py:656-657):
```python
"credentialInputs": SafeJson(credential_inputs) if credential_inputs else Json({})
```

Where `credential_inputs: Mapping[str, CredentialsMetaInput]` is a dict
containing Pydantic models.

After PR #11187's refactor, `_sanitize_value()` only converted top-level
BaseModel instances to dicts, but didn't handle BaseModel instances
nested inside dicts/lists/tuples. This caused Prisma's JSON serializer
to fail with:
```
TypeError: Type <class 'backend.data.model.CredentialsMetaInput'> not serializable
```

## Solution

Added BaseModel handling to `_sanitize_value()` to recursively convert
Pydantic models to dicts before sanitizing:

```python
elif isinstance(value, BaseModel):
    # Convert Pydantic models to dict and recursively sanitize
    return _sanitize_value(value.model_dump(exclude_none=True))
```

This ensures all nested Pydantic models are properly serialized
regardless of nesting depth.

## Changes

- **backend/util/json.py**: Added BaseModel check to `_sanitize_value()`
function
- **backend/util/test_json.py**: Added 6 comprehensive tests covering:
  - Dict containing Pydantic models
  - Deeply nested Pydantic models  
  - Lists of Pydantic models in dicts
  - The exact CredentialsMetaInput scenario
  - Complex mixed structures
  - Models with control characters

## Testing

 All new tests pass  
 Verified fix resolves the production 500 error  
 Code formatted with `poetry run format`

## Related

- Fixes issues introduced in PR #11187
- Related to executor service 500 errors in production

🤖 Generated with [Claude Code](https://claude.com/claude-code)

---------

Co-authored-by: Bentlybro <Github@bentlybro.com>
Co-authored-by: Claude <noreply@anthropic.com>
2025-10-17 09:27:09 +00:00
Swifty
1ed224d481 simplify test and add reset-db make command 2025-10-17 11:12:00 +02:00
Swifty
3b5d919399 fix formatting 2025-10-17 10:56:45 +02:00
Swifty
3c16de22ef add test data creation to makefile and test it 2025-10-17 10:51:58 +02:00
Zamil Majdy
e4bc728d40 Revert "Revert "fix(backend/util): rewrite SafeJson to prevent Invalid \escape errors (#11187)""
This reverts commit 8258338caf.
2025-10-17 15:25:30 +07:00
Swifty
2c6d85d15e feat(platform): Shared cache (#11150)
### Problem
When running multiple backend pods in production, requests can be routed
to different pods causing inconsistent cache states. Additionally, the
current cache implementation in `autogpt_libs` doesn't support shared
caching across processes, leading to data inconsistency and redundant
cache misses.

### Changes 🏗️

- **Moved cache implementation from autogpt_libs to backend**
(`/backend/backend/util/cache.py`)
  - Removed `/autogpt_libs/autogpt_libs/utils/cache.py`
  - Centralized cache utilities within the backend module
  - Updated all import statements across the codebase

- **Implemented Redis-based shared caching**
- Added `shared_cache` parameter to `@cached` decorator for
cross-process caching
  - Implemented Redis connection pooling for efficient cache operations
  - Added support for cache key pattern matching and bulk deletion
  - Added TTL refresh on cache access with `refresh_ttl_on_get` option

- **Enhanced cache functionality**
  - Added thundering herd protection with double-checked locking
  - Implemented thread-local caching with `@thread_cached` decorator
- Added cache management methods: `cache_clear()`, `cache_info()`,
`cache_delete()`
  - Added support for both sync and async functions

- **Updated store caching** (`/backend/server/v2/store/cache.py`)
  - Enabled shared caching for all store-related cache functions
  - Set appropriate TTL values (5-15 minutes) for different cache types
  - Added `clear_all_caches()` function for cache invalidation

- **Added Redis configuration**
  - Added Redis connection settings to backend settings
  - Configured dedicated connection pool for cache operations
  - Set up binary mode for pickle serialization

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verify Redis connection and cache operations work correctly
  - [x] Test shared cache across multiple backend instances
  - [x] Verify cache invalidation with `clear_all_caches()`
- [x] Run cache tests: `poetry run pytest
backend/backend/util/cache_test.py`
  - [x] Test thundering herd protection under concurrent load
  - [x] Verify TTL refresh functionality with `refresh_ttl_on_get=True`
  - [x] Test thread-local caching for request-scoped data
  - [x] Ensure no performance regression vs in-memory cache

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes (Redis already configured)
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
- Redis cache configuration uses existing Redis service settings
(REDIS_HOST, REDIS_PORT, REDIS_PASSWORD)
  - No new environment variables required
2025-10-17 07:56:01 +00:00
Bentlybro
8258338caf Revert "fix(backend/util): rewrite SafeJson to prevent Invalid \escape errors (#11187)"
This reverts commit e62a56e8ba.
2025-10-17 08:31:23 +01:00
Zamil Majdy
374f35874c feat(platform): Add LaunchDarkly flag for platform payment system (#11181)
## Summary

Implement selective rollout of payment functionality using LaunchDarkly
feature flags to enable gradual deployment to pilot users.

- Add `ENABLE_PLATFORM_PAYMENT` flag to control credit system behavior
- Update `get_user_credit_model` to use user-specific flag evaluation  
- Replace hardcoded `NEXT_PUBLIC_SHOW_BILLING_PAGE` with LaunchDarkly
flag
- Enable payment UI components only for flagged users
- Maintain backward compatibility with existing beta credit system
- Default to beta monthly credits when flag is disabled
- Fix tests to work with new async credit model function

## Key Changes

### Backend
- **Credit Model Selection**: The `get_user_credit_model()` function now
takes a `user_id` parameter and uses LaunchDarkly to determine which
credit model to return:
- Flag enabled → `UserCredit` (payment system enabled, no monthly
refills)
- Flag disabled → `BetaUserCredit` (current behavior with monthly
refills)
  
- **Flag Integration**: Added `ENABLE_PLATFORM_PAYMENT` flag and
integrated LaunchDarkly evaluation throughout the credit system

- **API Updates**: All credit-related endpoints now use the
user-specific credit model instead of a global instance

### Frontend
- **Dynamic UI**: Payment-related components (billing page, wallet
refill) now show/hide based on the LaunchDarkly flag
- **Removed Environment Variable**: Replaced
`NEXT_PUBLIC_SHOW_BILLING_PAGE` with runtime flag evaluation

### Testing
- **Test Fixes**: Updated all tests that referenced the removed global
`_user_credit_model` to use proper mocking of the new async function

## Deployment Strategy

This implementation enables a controlled rollout:
1. Deploy with flag disabled (default) - no behavior change for existing
users
2. Enable flag for pilot/beta users via LaunchDarkly dashboard
3. Monitor usage and feedback from pilot users
4. Gradually expand to more users
5. Eventually enable for all users once validated

## Test Plan

- [x] Unit tests pass for credit system components
- [x] Payment UI components show/hide correctly based on flag
- [x] Default behavior (flag disabled) maintains current functionality
- [x] Flag enabled users get payment system without monthly refills
- [x] Admin credit operations work correctly
- [x] Backward compatibility maintained

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-17 06:11:39 +00:00
Zamil Majdy
e62a56e8ba fix(backend/util): rewrite SafeJson to prevent Invalid \escape errors (#11187)
## Summary

Fixes the `Invalid \escape` error occurring in
`/upsert_execution_output` endpoint by completely rewriting the SafeJson
implementation.

## Problem

- Error: `POST /upsert_execution_output failed: Invalid \escape: line 1
column 36404 (char 36403)`
- Caused by data containing literal backslash-u sequences (e.g.,
`\u0000` as text, not actual null characters)
- Previous implementation tried to remove problematic escape sequences
from JSON strings
- This created invalid JSON when it removed `\\u0000` and left invalid
sequences like `\w`

## Solution

Completely rewrote SafeJson to work on Python data structures instead of
JSON strings:

1. **Direct data sanitization**: Recursively walks through dicts, lists,
and tuples to remove control characters directly from strings
2. **No JSON string manipulation**: Avoids all escape sequence parsing
issues
3. **More efficient**: Eliminates the serialize → sanitize → deserialize
cycle
4. **Preserves valid content**: Backslashes, paths, and literal text are
correctly preserved

## Changes

- Removed `POSTGRES_JSON_ESCAPES` regex (no longer needed)
- Added `_sanitize_value()` helper function for recursive sanitization
- Simplified `SafeJson()` to convert Pydantic models and sanitize data
structures
- Added `import json  # noqa: F401` for backwards compatibility

## Testing

-  Verified fix resolves the `Invalid \escape` error
-  All existing SafeJson unit tests pass
-  Problematic data with literal escape sequences no longer causes
errors
-  Code formatted with `poetry run format`

## Technical Details

**Before (JSON string approach):**
```python
# Serialize to JSON string
json_string = dumps(data)
# Remove escape sequences from string (BREAKS!)
sanitized = regex.sub("", json_string)
# Parse back (FAILS with Invalid \escape)
return Json(json.loads(sanitized))
```

**After (data structure approach):**
```python
# Convert Pydantic to dict
data = model.model_dump() if isinstance(data, BaseModel) else data
# Recursively sanitize strings in data structure
sanitized = _sanitize_value(data)
# Return as Json (no parsing needed)
return Json(sanitized)
```

🤖 Generated with [Claude Code](https://claude.com/claude-code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-17 05:56:08 +00:00
Abhimanyu Yadav
f3f9a60157 feat(frontend): add extra info in custom node in new builder (#11172)
Currently, we don’t add category and cost information to custom nodes in
the new builder. This means we’re rendering with the correct information
and costs are displayed accurately based on the selected discriminator
value.

<img width="441" height="781" alt="Screenshot 2025-10-15 at 2 43 33 PM"
src="https://github.com/user-attachments/assets/8199cfa7-4353-4de2-8c15-b68aa86e458c"
/>


### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] All information is displayed correctly.
- [x] I’ve tried changing the discrimination value and we’re getting the
correct cost for the selected value.
2025-10-17 04:35:22 +00:00
Swifty
3ed1c93ec0 Merge branch 'dev' into swiftyos/secrt-1706-improve-store-search 2025-10-16 15:10:01 +02:00
Swifty
773f545cfd update existing rows when migration is ran 2025-10-16 13:38:01 +02:00
Swifty
84ad4a9f95 updated migration and query 2025-10-16 13:06:47 +02:00
Swifty
8610118ddc ai sucks - fixing 2025-10-16 12:14:26 +02:00
Bently
9469b9e2eb feat(platform/backend): Add Claude Haiku 4.5 model support (#11179)
### Changes 🏗️

- **Added Claude Haiku 4.5 model support** (`claude-haiku-4-5-20251001`)
- Added model to `LlmModel` enum in
`autogpt_platform/backend/backend/blocks/llm.py`
- Configured model metadata with 200k context window and 64k max output
tokens
- Set pricing to 4 credits per million tokens in
`backend/data/block_cost_config.py`
  
- **Classic Forge Integration**
- Added `CLAUDE4_5_HAIKU_v1` to Anthropic provider in
`classic/forge/forge/llm/providers/anthropic.py`
- Configured with $1/1M prompt tokens and $5/1M completion tokens
pricing
  - Enabled function call API support

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  
  **Test Plan:**
- [x] Verify Claude Haiku 4.5 model appears in the LLM block model
selection dropdown
- [x] Test basic text generation using Claude Haiku 4.5 in an agent
workflow

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

<details>
  <summary>Configuration changes</summary>

  - No environment variable changes required
  - No docker-compose changes needed
- Model configuration is handled through existing Anthropic API
integration
</details>




https://github.com/user-attachments/assets/bbc42c47-0e7c-4772-852e-55aa91f4d253

---------

Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Bently <Bentlybro@users.noreply.github.com>
2025-10-16 10:11:38 +00:00
Swifty
ebb4ebb025 include parital types in second place 2025-10-16 12:10:38 +02:00
Swifty
cb532e1c4d update docker file to include partial types 2025-10-16 12:08:04 +02:00
Zamil Majdy
b7ae2c2fd2 fix(backend): move DatabaseError to backend.util.exceptions for better layer separation (#11177)
## Summary

Move DatabaseError from store-specific exceptions to generic backend
exceptions for proper layer separation, while also fixing store
exception inheritance to ensure proper HTTP status codes.

## Problem

1. **Poor Layer Separation**: DatabaseError was defined in
store-specific exceptions but represents infrastructure concerns that
affect the entire backend
2. **Incorrect HTTP Status Codes**: Store exceptions inherited from
Exception instead of ValueError, causing 500 responses for client errors
3. **Reusability Issues**: Other backend modules couldn't use
DatabaseError for DB operations
4. **Blanket Catch Issues**: Store-specific catches were affecting
generic database operations

## Solution

### Move DatabaseError to Generic Location
- Move from backend.server.v2.store.exceptions to
backend.util.exceptions
- Update all 23 references in backend/server/v2/store/db.py to use new
location
- Remove from StoreError inheritance hierarchy

### Fix Complete Store Exception Hierarchy
- MediaUploadError: Changed from Exception to ValueError inheritance
(client errors → 400)
- StoreError: Changed from Exception to ValueError inheritance (business
logic errors → 400)
- Store NotFound exceptions: Changed to inherit from NotFoundError (→
404)
- DatabaseError: Now properly inherits from Exception (infrastructure
errors → 500)

## Benefits

###  Proper Layer Separation
- Database errors are infrastructure concerns, not store-specific
business logic
- Store exceptions focus on business validation and client errors  
- Clean separation between infrastructure and business logic layers

###  Correct HTTP Status Codes
- DatabaseError: 500 (server infrastructure errors)
- Store NotFound errors: 404 (via existing NotFoundError handler)
- Store validation errors: 400 (via existing ValueError handler)
- Media upload errors: 400 (client validation errors)

###  Architectural Improvements
- DatabaseError now reusable across entire backend
- Eliminates blanket catch issues affecting generic DB operations
- All store exceptions use global exception handlers properly
- Future store exceptions automatically get proper status codes

## Files Changed

- **backend/util/exceptions.py**: Add DatabaseError class
- **backend/server/v2/store/exceptions.py**: Remove DatabaseError, fix
inheritance hierarchy
- **backend/server/v2/store/db.py**: Update all DatabaseError references
to new location

## Result

-  **No more stack trace spam**: Expected business logic errors handled
properly
-  **Proper HTTP semantics**: 500 for infrastructure, 400/404 for
client errors
-  **Better architecture**: Clean layer separation and reusable
components
-  **Fixes original issue**: AgentNotFoundError now returns 404 instead
of 500

This addresses the logging issue mentioned by @zamilmajdy while also
implementing the architectural improvements suggested by @Pwuts.
2025-10-16 09:51:58 +00:00
Swifty
794aee25ab add full text search 2025-10-16 11:49:36 +02:00
Abhimanyu Yadav
8b995c2394 feat(frontend): add saving ability in new builder (#11148)
This PR introduces saving functionality to the new builder interface,
allowing users to save and update agent flows. The implementation
includes both UI components and backend integration for persistent
storage of agent configurations.



https://github.com/user-attachments/assets/95ee46de-2373-4484-9f34-5f09aa071c5e


### Key Features Added:

#### 1. **Save Control Component** (`NewSaveControl`)
- Added a new save control popover in the control panel with form inputs
for agent name, description, and version display
- Integrated with the new control panel as a primary action button with
a floppy disk icon
- Supports keyboard shortcuts (Ctrl+S / Cmd+S) for quick saving

#### 2. **Graph Persistence Logic**
- Implemented `useNewSaveControl` hook to handle:
  - Creating new graphs via `usePostV1CreateNewGraph`
  - Updating existing graphs via `usePutV1UpdateGraphVersion`
- Intelligent comparison to prevent unnecessary saves when no changes
are made
  - URL parameter management for flowID and flowVersion tracking

#### 3. **Loading State Management**
- Added `GraphLoadingBox` component to display a loading indicator while
graphs are being fetched
- Enhanced `useFlow` hook with loading state tracking
(`isFlowContentLoading`)
- Improved UX with clear visual feedback during graph operations

#### 4. **Component Reorganization**
- Refactored components from `NewBlockMenu` to `NewControlPanel`
directory structure for better organization:
- Moved all block menu related components under
`NewControlPanel/NewBlockMenu/`
- Separated save control into its own module
(`NewControlPanel/NewSaveControl/`)
  - Improved modularity and separation of concerns

#### 5. **State Management Enhancements**
- Added `controlPanelStore` for managing control panel states (e.g.,
save popover visibility)
- Enhanced `nodeStore` with `getBackendNodes()` method for retrieving
nodes in backend format
- Added `getBackendLinks()` to `edgeStore` for consistent link
formatting

### Technical Improvements:

- **Graph Comparison Logic**: Implemented `graphsEquivalent()` helper to
deeply compare saved and current graph states, preventing redundant
saves
- **Form Validation**: Used Zod schema validation for save form inputs
with proper constraints
- **Error Handling**: Comprehensive error handling with user-friendly
toast notifications
- **Query Invalidation**: Proper cache invalidation after successful
saves to ensure data consistency

### UI/UX Enhancements:

- Clean, modern save dialog with clear labeling and placeholder text
- Real-time version display showing the current graph version
- Disabled state for save button during operations to prevent double
submissions
- Toast notifications for success and error states
- Higher z-index for GraphLoadingBox to ensure visibility over other
elements

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Saving is working perfectly. All nodes, links, their positions,
and hardcoded data are saved correctly.
  - [x] If there are no changes, the user cannot save the graph.
2025-10-16 08:06:18 +00:00
Zamil Majdy
12b1067017 fix(backend/store): improve store exception hierarchy for proper HTTP status codes (#11176)
## Summary

Fix store exception hierarchy to prevent ERROR level stack trace spam
for expected business logic errors and ensure proper HTTP status codes.

## Problem

The original error from production logs showed AgentNotFoundError for
non-existent agents like autogpt/domain-drop-catcher was:
- Returning 500 status codes instead of 404 
- Generating ERROR level stack traces in logs for expected not found
scenarios
- Bypassing global exception handlers due to improper inheritance

## Root Cause

Store exceptions inherited from Exception instead of ValueError, causing
them to bypass the global ValueError handler (400) and fall through to
the generic Exception handler (500) with full stack traces.

## Solution

Create proper exception hierarchy for ALL store-related errors by
making:
- MediaUploadError inherit from ValueError instead of Exception
- StoreError inherit from ValueError instead of Exception  
- Store NotFound exceptions inherit from NotFoundError (which inherits
from ValueError)

## Changes Made

1. MediaUploadError: Changed from Exception to ValueError inheritance
2. StoreError: Changed from Exception to ValueError inheritance  
3. Store NotFound exceptions: Changed to inherit from NotFoundError

## Benefits

- Correct HTTP status codes: Not found errors return 404, validation
errors return 400
- No more 500 stack trace spam for expected business logic errors
- Clean consistent error handling using existing global handlers
- Future-proof: Any new store exceptions automatically get proper status
codes

## Result

- AgentNotFoundError for autogpt/domain-drop-catcher now returns 404
instead of 500
- InvalidFileTypeError, VirusDetectedError, etc. now return 400 instead
of 500
- No ERROR level stack traces for expected client errors
- Proper HTTP semantics throughout the store API
2025-10-16 04:36:49 +00:00
Zamil Majdy
ba53cb78dc fix(backend/util): comprehensive SafeJson sanitization to prevent PostgreSQL null character errors (#11174)
## Summary
Fix critical SafeJson function to properly sanitize JSON-encoded Unicode
escape sequences that were causing PostgreSQL 22P05 errors when null
characters in web scraped content were stored as "\u0000" in the
database.

## Root Cause Analysis
The existing SafeJson function in backend/util/json.py:
1. Only removed raw control characters (\x00-\x08, etc.) using
POSTGRES_CONTROL_CHARS regex
2. Failed to handle JSON-encoded Unicode escape sequences (\u0000,
\u0001, etc.)
3. When web scraping returned content with null bytes, these were
JSON-encoded as "\u0000" strings
4. PostgreSQL rejected these Unicode escape sequences, causing 22P05
errors

## Changes Made

### Enhanced SafeJson Function (backend/util/json.py:147-153)
- **Add POSTGRES_JSON_ESCAPES regex**: Comprehensive pattern targeting
all PostgreSQL-incompatible Unicode and single-char JSON escape
sequences
- **Unicode escapes**: \u0000-\u0008, \u000B-\u000C, \u000E-\u001F,
\u007F (preserves \u0009=tab, \u000A=newline, \u000D=carriage return)
- **Single-char escapes**: \b (backspace), \f (form feed) with negative
lookbehind/lookahead to preserve file paths like "C:\\file.txt"
- **Two-pass sanitization**: Remove JSON escape sequences first, then
raw characters as fallback

### Comprehensive Test Coverage (backend/util/test_json.py:219-414)
Added 11 new test methods covering:
- **Control character sanitization**: Verify dangerous characters (\x00,
\x07, \x0C, etc.) are removed while preserving safe whitespace (\t, \n,
\r)
- **Web scraping content**: Simulate SearchTheWebBlock scenarios with
null bytes and control characters
- **Code preservation**: Ensure legitimate file paths, JSON strings,
regex patterns, and programming code are preserved
- **Unicode escape handling**: Test both \u0000-style and \b/\f-style
escape sequences
- **Edge case protection**: Prevent over-matching of legitimate
sequences like "mybfile.txt" or "\\u0040"
- **Mixed content scenarios**: Verify only problematic sequences are
removed while preserving legitimate content

## Validation Results
-  All 24 SafeJson tests pass including 11 new comprehensive
sanitization tests
-  Control characters properly removed: \x00, \x01, \x08, \x0C, \x1F,
\x7F
-  Safe characters preserved: \t (tab), \n (newline), \r (carriage
return)
-  File paths preserved: "C:\\Users\\file.txt", "\\\\server\\share"
-  Programming code preserved: regex patterns, JSON strings, SQL
escapes
-  Unicode escapes sanitized: \u0000 → removed, \u0048 ("H") →
preserved if valid
-  No false positives: Legitimate sequences not accidentally removed
-  poetry run format succeeds without errors

## Impact
- **Prevents PostgreSQL 22P05 errors**: No more null character database
rejections from web scraping
- **Maintains data integrity**: Legitimate content preserved while
dangerous characters removed
- **Comprehensive protection**: Handles both raw bytes and JSON-encoded
escape sequences
- **Web scraping reliability**: SearchTheWebBlock and similar blocks now
store content safely
- **Backward compatibility**: Existing SafeJson behavior unchanged for
legitimate content

## Test Plan
- [x] All existing SafeJson tests pass (24/24)
- [x] New comprehensive sanitization tests pass (11/11)
- [x] Control character removal verified
- [x] Legitimate content preservation verified
- [x] Web scraping scenarios tested
- [x] Code formatting and type checking passes

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-15 21:25:30 +00:00
Reinier van der Leer
f9778cc87e fix(blocks): Unhide "Add to Dictionary" block's dictionary input (#11175)
The `dictionary` input on the Add to Dictionary block is hidden, even
though it is the main input.

### Changes 🏗️

- Mark `dictionary` explicitly as not advanced (so not hidden by
default)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - Trivial change, no test needed
2025-10-15 15:04:56 +00:00
Nicholas Tindle
b230b1b5cf feat(backend): Add Sentry user and tag tracking to node execution (#11170)
Integrates Sentry SDK to set user and contextual tags during node
execution for improved error tracking and user count analytics. Ensures
Sentry context is properly set and restored, and exceptions are captured
with relevant context before scope restoration.

<!-- Clearly explain the need for these changes: -->

### Changes 🏗️
Adds sentry tracking to block failures
<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Test to make sure the userid and block details show up in Sentry
  - [x] make sure other errors aren't contaminated 


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- New Features
- Added conditional support for feature flags when configured, enabling
targeted rollouts and experiments without impacting unconfigured
environments.

- Chores
- Enhanced error monitoring with richer contextual data during node
execution to improve stability and diagnostics.
- Updated metrics initialization to dynamically include feature flag
integrations when available, without altering behavior for unconfigured
setups.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-10-15 14:33:08 +00:00
Reinier van der Leer
1925e77733 feat(backend): Include default input values in graph export (#11173)
Since #10323, one-time graph inputs are no longer stored on the input
nodes (#9139), so we can reasonably assume that the default value set by
the graph creator will be safe to export.

### Changes 🏗️

- Don't strip the default value from input nodes in
`NodeModel.stripped_for_export(..)`, except for inputs marked as
`secret`
- Update and expand tests for graph export secrets stripping mechanism

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Expanded tests pass
- Relatively simple change with good test coverage, no manual test
needed
2025-10-15 14:04:44 +00:00
Copilot
9bc9b53b99 fix(backend): Add channel ID support to SendDiscordMessageBlock for consistency with other Discord blocks (#11055)
## Problem

The `SendDiscordMessageBlock` only accepted channel names, while other
Discord blocks like `SendDiscordFileBlock` and `SendDiscordEmbedBlock`
accept both channel IDs and channel names. This inconsistency made it
difficult to use channel IDs with the message sending block, which is
often more reliable and direct than name-based lookup.

## Solution

Updated `SendDiscordMessageBlock` to accept both channel IDs and channel
names through the `channel_name` field, matching the implementation
pattern used in other Discord blocks.

### Changes Made

1. **Enhanced channel resolution logic** to try parsing the input as a
channel ID first, then fall back to name-based search:
   ```python
   # Try to parse as channel ID first
   try:
       channel_id = int(channel_name)
       channel = client.get_channel(channel_id)
   except ValueError:
       # Not an ID, treat as channel name
       # ... search guilds for matching channel name
   ```

2. **Updated field descriptions** to clarify the dual functionality:
- `channel_name`: Now describes that it accepts "Channel ID or channel
name"
   - `server_name`: Clarified as "only needed if using channel name"

3. **Added type checking** to ensure the resolved channel can send
messages before attempting to send

4. **Updated documentation** to reflect the new capability

## Backward Compatibility

 **Fully backward compatible**: The field name remains `channel_name`
(not renamed), and all existing workflows using channel names will
continue to work exactly as before.

 **New capability**: Users can now also provide channel IDs (e.g.,
`"123456789012345678"`) for more direct channel targeting.

## Testing

- All existing tests pass, including `SendDiscordMessageBlock` and all
other Discord block tests
- Implementation verified to match the pattern used in
`SendDiscordFileBlock` and `SendDiscordEmbedBlock`
- Code passes all linting, formatting, and type checking

Fixes https://github.com/Significant-Gravitas/AutoGPT/issues/10909

<!-- START COPILOT CODING AGENT SUFFIX -->



<details>

<summary>Original prompt</summary>

> Issue Title: SendDiscordMessage needs to take a channel id as an
option under channelname the same as the other discord blocks
> Issue Description: with how we can process the other discord blocks we
should do the same here with the identifiers being allowed to be a
channel name or id. we can't rename the field though or that will break
backwards compatibility
> Fixes
https://linear.app/autogpt/issue/OPEN-2701/senddiscordmessage-needs-to-take-a-channel-id-as-an-option-under
> 
> 
> Comment by User :
> This thread is for an agent session with githubcopilotcodingagent.
> 
> Comment by User :
> This thread is for an agent session with githubcopilotcodingagent.
> 
> Comment by User 055a3053-5ab6-449a-bcfa-990768594185:
> the ones with boxes around them need confirmed for lables but yeah its
related but not dupe
> 
> Comment by User 264d7bf4-db2a-46fa-a880-7d67b58679e6:
> this might be a duplicate since there is a related ticket but not sure
> 
> Comment by User :
> This comment thread is synced to a corresponding [GitHub
issue](https://github.com/Significant-Gravitas/AutoGPT/issues/10909).
All replies are displayed in both locations.
> 
> 


</details>


<!-- START COPILOT CODING AGENT TIPS -->
---

💬 Share your feedback on Copilot coding agent for the chance to win a
$200 gift card! Click
[here](https://survey3.medallia.com/?EAHeSx-AP01bZqG0Ld9QLQ) to start
the survey.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

* New Features
* Send Discord Message block now accepts a channel ID in addition to
channel name.
  * Server name is only required when using a channel name.
* Improved channel detection and validation with clearer errors if the
channel isn’t found.

* Documentation
* Updated block documentation to reflect support for channel ID or name
and clarify when server name is needed.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ntindle <8845353+ntindle@users.noreply.github.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
Co-authored-by: Bently <Github@bentlybro.com>
2025-10-15 13:04:53 +00:00
Toran Bruce Richards
adfa75eca8 feat(blocks): Add references output pin to Fact Checker block (#11166)
Closes #11163

## Summary
Expanded the Fact Checker block to yield its references list from the
Jina AI API response.

## Changes 🏗️
- Added `Reference` TypedDict to define the structure of reference
objects
- Added `references` field to the Output schema
- Modified the `run` method to extract and yield references from the API
response
- Added fallback to empty list if references are not present

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified that the Fact Checker block schema includes the new
references field
- [x] Confirmed that references are properly extracted from the API
response when present
- [x] Tested the fallback behavior when references are not in the API
response
- [x] Ensured backward compatibility - existing functionality remains
unchanged
- [x] Verified the Reference TypedDict matches the expected API response
structure

Generated with [Claude Code](https://claude.ai/code)

## Summary by CodeRabbit

* **New Features**
* Fact-checking results now include a references list to support
verification.
* Each reference provides a URL, a key quote, and an indicator showing
whether it supports the claim.
* References are presented alongside factuality, result, and reasoning
when available; otherwise, an empty list is returned.
* Enhances transparency and traceability of fact-check outcomes without
altering existing result fields.

---------

Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Toran Bruce Richards <Torantulino@users.noreply.github.com>
Co-authored-by: Bentlybro <Github@bentlybro.com>
2025-10-15 10:19:43 +00:00
seer-by-sentry[bot]
0f19d01483 fix(frontend): Improve error handling for invalid agent files (#11165)
### Changes 🏗️

<img width="672" height="761" alt="Screenshot 2025-10-14 at 16 12 50"
src="https://github.com/user-attachments/assets/9e664ade-10fe-4c09-af10-b26d10dca360"
/>


Fixes
[BUILDER-3YG](https://sentry.io/organizations/significant-gravitas/issues/6942679655/).
The issue was that: User uploaded an incompatible external agent persona
file lacking required flow graph keys (`nodes`, `links`).

- Improves error handling when an invalid agent file is uploaded.
- Provides a more user-friendly error message indicating the file must
be a valid agent.json file exported from the AutoGPT platform.
- Clears the invalid file from the form and resets the agent object to
null.

This fix was generated by Seer in Sentry, triggered by Toran Bruce
Richards. 👁️ Run ID: 1943626

Not quite right? [Click here to continue debugging with
Seer.](https://sentry.io/organizations/significant-gravitas/issues/6942679655/?seerDrawer=true)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] Test that uploading an invalid agent file (e.g., missing `nodes`
or `links`) triggers the improved error handling and displays the
user-friendly error message.
- [x] Verify that the invalid file is cleared from the form after the
error, and the agent object is reset to null.

---------

Co-authored-by: seer-by-sentry[bot] <157164994+seer-by-sentry[bot]@users.noreply.github.com>
Co-authored-by: Swifty <craigswift13@gmail.com>
Co-authored-by: Lluis Agusti <hi@llu.lu>
2025-10-15 09:55:00 +00:00
Abhimanyu Yadav
112c39f6a6 fix(frontend): fix auto select credential mechanism in new builder (#11171)
We’re currently facing two problems with credentials:

1. When we change the discriminator input value, the form data
credential field should be cleaned up completely.
2. When I select a different discriminator and if that provider has a
value, it should select the latest one.

So, in this PR, I’ve encountered both issues.

### Changes 🏗️
- Updated CredentialField to utilize a new setCredential function for
managing selected credentials.
- Implemented logic to auto-select the latest credential when none is
selected and clear the credential if the provider changes.
- Improved SelectCredential component with a defaultValue prop and
adjusted styling for better UI consistency.
- Removed unnecessary console logs from helper functions to clean up the
code.

<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Credential selection works perfectly with both the discriminator
and normal addition.
  - [x] Auto-select credential is also working.
2025-10-15 08:39:05 +00:00
Toran Bruce Richards
22946f4617 feat(blocks): add dedicated Perplexity block (#11164)
Fixes #11162

## Summary

Implements a new Perplexity block that allows users to query
Perplexity's sonar models via OpenRouter with support for extracting URL
citations and annotations.

## Changes

- Add new block for Perplexity sonar models (sonar, sonar-pro,
sonar-deep-research)
- Support model selection for all three Perplexity models
- Implement annotations output pin for URL citations and source
references
- Integrate with OpenRouter API for accessing Perplexity models
- Follow existing block patterns from AI text generator block

## Test Plan

 Block successfully instantiates
 Block is properly loaded by the dynamic loading system
 Output fields include response and annotations as required

Generated with [Claude Code](https://claude.ai/code)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- New Features
- Added a Perplexity integration block to query Sonar models via
OpenRouter.
- Supports multiple model options, optional system prompt, and
adjustable max tokens.
- Returns concise responses with citation-style annotations extracted
from the model output.
  - Provides clear error messages when requests fail.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Toran Bruce Richards <Torantulino@users.noreply.github.com>
Co-authored-by: Bentlybro <Github@bentlybro.com>
2025-10-15 08:34:37 +00:00
Ubbe
938834ac83 dx(frontend): enable Next.js sourcemaps for Sentry (#11161)
## Changes 🏗️

Next.js Sourcemaps aren't working on production, followed:

- https://docs.sentry.io/platforms/javascript/guides/nextjs/sourcemaps/
- https://docs.sentry.io/organization/integrations/deployment/vercel/

## Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] We will see once deployed ...

### For configuration changes:

None
2025-10-15 12:47:14 +04:00
Zamil Majdy
934cb3a9c7 feat(backend): Make execution limit per user per graph and reduce to 25 (#11169)
## Summary
- Changed max_concurrent_graph_executions_per_user from 50 to 25
concurrent executions
- Updated the limit to be per user per graph instead of globally per
user
- Users can now run different graphs concurrently without being limited
by executions of other graphs
- Enhanced database query to filter by both user_id and graph_id

## Changes Made
- **Settings**: Reduced default limit from 50 to 25 and updated
description to clarify per-graph scope
- **Database Layer**: Modified `get_graph_executions_count` to accept
optional `graph_id` parameter
- **Executor Manager**: Updated rate limiting logic to check
per-user-per-graph instead of per-user globally
- **Logging**: Enhanced warning messages to include graph_id context

## Test plan
- [ ] Verify that users can run up to 25 concurrent executions of the
same graph
- [ ] Verify that users can run different graphs concurrently without
interference
- [ ] Test rate limiting behavior when limit is exceeded for a specific
graph
- [ ] Confirm logging shows correct graph_id context in rate limit
messages

## Impact
This change improves the user experience by allowing concurrent
execution of different graphs while still preventing resource exhaustion
from running too many instances of the same graph.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-15 00:02:55 +00:00
seer-by-sentry[bot]
7b8499ec69 feat(backend): Prevent duplicate slugs for store submissions (#11155)
<!-- Clearly explain the need for these changes: -->
This PR prevents users from creating multiple store submissions with the
same slug, which could lead to confusion and potential conflicts in the
marketplace. Each user's submissions should have unique slugs to ensure
proper identification and navigation.

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->
- **Backend**: Added validation to check for existing slugs before
creating new store submissions in `backend/server/v2/store/db.py`
- **Backend**: Introduced new `SlugAlreadyInUseError` exception in
`backend/server/v2/store/exceptions.py` for clearer error handling
- **Backend**: Updated store routes to return HTTP 409 Conflict when
slug is already in use in `backend/server/v2/store/routes.py`
- **Backend**: Cleaned up test file in
`backend/server/v2/store/db_test.py`
- **Frontend**: Enhanced error handling in the publish agent modal to
display specific error messages to users in
`frontend/src/components/contextual/PublishAgentModal/components/AgentInfoStep/useAgentInfoStep.ts`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Add a store submission with a specific slug
- [x] Attempt to add another store submission with the same slug for the
same user - Verify a 409 conflict error is returned with appropriate
error message
- [x] Add a store submission with the same slug, but for a different
user - Verify the submission is successful
- [x] Verify frontend displays the specific error message when slug
conflict occurs
  - [x] Existing tests pass without modification

---------

Co-authored-by: seer-by-sentry[bot] <157164994+seer-by-sentry[bot]@users.noreply.github.com>
Co-authored-by: Swifty <craigswift13@gmail.com>
2025-10-14 11:14:00 +00:00
Abhimanyu Yadav
63076a67e1 fix(frontend): fix client side error handling in custom mutator (#11160)
- depends on https://github.com/Significant-Gravitas/AutoGPT/pull/11159

Currently, we’re not throwing errors for client-side requests in the
custom mutator. This way, we’re ignoring the client-side request error.
If we do encounter an error, we send it as a normal response object.
That’s why our onError callback on React Query mutation and hasError
isn’t working in the query. To fix this, in this PR, we’re throwing the
client-side error.

### Changes 🏗️
- We’re throwing errors for both server-side and client-side requests.  
- Why server-side? So the client cache isn’t hydrated with the error.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] All end-to-end functionality is working properly.
- [x] I’ve manually checked all the pages and they are all functioning
correctly.
2025-10-14 08:41:57 +00:00
Abhimanyu Yadav
41260a7b4a fix(frontend): fix publish agent behavior when user is logged out (#11159)
When a user clicks the “Become a Creator” button on the marketplace
page, we send an unauthorised request to the server to get a list of
agents. In this PR, I’ve fixed this by checking if the user is logged
in. If they’re not, I’ll show them a UI to log in or create an account.
 
<img width="967" height="605" alt="Screenshot 2025-10-14 at 12 04 52 PM"
src="https://github.com/user-attachments/assets/95079d9c-e6ef-4d75-9422-ce4fb138e584"
/>

### Changes
- Modify the publish agent test to detect the correct text even when the
user is logged out.
- Use Supabase helpers to check if the user is logged in. If not,
display the appropriate UI.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] The login UI is correctly displayed when the user is logged out.
- [x] The login UI is also correctly displayed when the user is logged
in.
  - [x] The login and signup buttons are working perfectly.
2025-10-14 08:41:49 +00:00
Ubbe
5f2d4643f8 feat(frontend): dynamic search terms (#11156)
## Changes 🏗️

<img width="800" height="664" alt="Screenshot 2025-10-14 at 14 09 54"
src="https://github.com/user-attachments/assets/73f6277a-6bef-40f9-b208-31aba0cfc69f"
/>

<img width="600" height="773" alt="Screenshot 2025-10-14 at 14 10 05"
src="https://github.com/user-attachments/assets/c88cb22f-1597-4216-9688-09c19030df89"
/>

Allow to manage on the fly which search terms appear on the Marketplace
page via Launch Darkly dashboard. There is a new flag configured there:
`marketplace-search-terms`:
- **enabled** → `["Foo", "Bar"]` → the terms that will appear
- **disabled** → `[ "Marketing", "SEO", "Content Creation",
"Automation", "Fun"]` → the default ones show

### Small fix

Fix the following browser console warning about `onLoadingComplete`
being deprecated...
<img width="600" height="231" alt="Screenshot 2025-10-14 at 13 55 45"
src="https://github.com/user-attachments/assets/1b26e228-0902-4554-9f8c-4839f8d4ed83"
/>


## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Ran the flag locally and verified it shows the terms set on Launch
Darkly

### For configuration changes:

Launch Darkly new flag needs to be configured on all environments.
2025-10-14 06:43:56 +01:00
Krzysztof Czerwinski
9c8652b273 feat(backend): Whitelist Onboarding Agents (#11149)
Some agents aren't suitable for onboarding. This adds per-store agent
setting to allow them for onboarding. In case no agent is allowed
fallback to the former search.

### Changes 🏗️

- Add `useForOnboarding` to `StoreListing` model and `StoreAgent` view
(with migration)
- Remove filtering of agents with empty input schema or credentials 

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Only allowed agents are displayed
- [x] Fallback to the old system in case there aren't enough allowed
agents
2025-10-13 15:05:22 +00:00
Swifty
58ef687a54 fix(platform): Disable logging store terms (#11147)
There is concern that the write load on the database may derail the
performance optimisations.
This hotfix comments out the code that adds the search terms to the db,
so we can discuss how best to do this in a way that won't bring down the
db.

### Changes 🏗️

- commented out the code to log store terms to the db

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] check search still works in dev
2025-10-13 13:17:04 +00:00
Ubbe
c7dcbc64ec fix(frontend): ask for credentials in onboarding agent run (#11146)
## Changes 🏗️

<img width="800" height="852" alt="Screenshot_2025-10-13_at_19 20 47"
src="https://github.com/user-attachments/assets/2fc150b9-1053-4e25-9018-24bcc2d93b43"
/>

<img width="800" height="669" alt="Screenshot 2025-10-13 at 19 23 41"
src="https://github.com/user-attachments/assets/9078b04e-0f65-42f3-ac4a-d2f3daa91215"
/>

- Onboarding “Run” step now renders required credentials (e.g., Google
OAuth) and includes them in execution.
- Run button remains disabled until required inputs and credentials are
provided.
- Logic extracted and strongly typed; removed any usage.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [ ] I have tested my changes according to the test plan ( _once merged
in dev..._ )
  - [ ] Select an onboarding agent that requires Google OAuth:
  - [ ] Credentials selector appears.
  - [ ] After selecting/signing in, “Run agent” enables.
  - [ ]Run succeeds and navigates to the next step.

### For configuration changes:

None
2025-10-13 12:51:45 +00:00
Ubbe
99ac206272 fix(frontend): handle websocket disconnect issue (#11144)
## Changes 🏗️

I found that if I logged out while an agent was running, sometimes
Webscokets would keep open connections but fail to connect ( given there
is no token anymore ) and cause strange behavior down the line on the
login screen.

Two root causes behind after inspecting the browser logs 🧐 
- WebSocket connections were attempted with an empty token right after
logout, yielding `wss://.../ws?token=` and repeated `1006/connection`
refused loops.
- During logout, sockets in `CONNECTING` state weren’t being closed, so
the browser kept trying to finish the handshake and were reattempted
shortly after failing

Trying to fix this like:
- Guard `connectWebSocket()` to no-op if a logout/disconnect intent is
set, and to skip connecting when no token is available.
- Treat `CONNECTING` sockets as closeable in `disconnectWebSocket()` and
clear `wsConnecting` to avoid stale pending Promises
- Left existing heartbeat/reconnect logic intact, but it now won’t run
when we’re logging out or when we can’t get a token.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Login and run an agent that takes long to run
  - [x] Logout
  - [x] Check the browser console and you don't see any socket errors
  - [x] The login screen behaves ok   

### For configuration changes:

Noop
2025-10-13 12:10:16 +00:00
Abhimanyu Yadav
f67d78df3e feat(frontend): Implement discriminator logic in the new builder’s credential system. (#11124)
- Depends on https://github.com/Significant-Gravitas/AutoGPT/pull/11107
and https://github.com/Significant-Gravitas/AutoGPT/pull/11122

In this PR, I’ve added support for discrimination. Now, users can choose
a credential type based on other input values.


https://github.com/user-attachments/assets/6cedc59b-ec84-4ae2-bb06-59d891916847

### Changes 🏗️
- Updated CredentialsField to utilize credentialProvider from schema.
- Refactored helper functions to filter credentials based on the
selected provider.
- Modified APIKeyCredentialsModal and PasswordCredentialsModal to accept
provider as a prop.
- Improved FieldTemplate to dynamically display the correct credential
provider.
- Added getCredentialProviderFromSchema function to manage
multi-provider scenarios.

### Checklist 📋

#### For code changes:
- [x] Credential input is correctly updating based on other input
values.
- [x] Credential can be added correctly.
2025-10-13 12:08:10 +00:00
Swifty
e32c509ccc feat(backend): Simplify caching to just store routes (#11140)
### Problem
Limits caching to just the main marketplace routes

### Changes 🏗️

- **Simplified store cache implementation** in
`backend/server/v2/store/cache.py`
  - Streamlined caching logic for better maintainability
  - Reduced complexity while maintaining performance
  
- **Added cache invalidation on store updates**
  - Implemented cache clearing when new agents are added to the store
- Added invalidation logic in admin store routes
(`admin_store_routes.py`)
  - Ensures all pods reflect the latest store state after modifications

- **Updated store database operations** in
`backend/server/v2/store/db.py`
  - Modified to work with the new cache structure
  
- **Added cache deletion tests** (`test_cache_delete.py`)
  - Validates cache invalidation works correctly
  - Ensures cache consistency across operations

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verify store listings are cached correctly
  - [x] Upload a new agent to the store and confirm cache is invalidated
2025-10-13 07:25:59 +00:00
seer-by-sentry[bot]
20acd8b51d fix(backend): Improve Postmark error handling and logging for notification delivery (#11052)
<!-- Clearly explain the need for these changes: -->
Fixes
[AUTOGPT-SERVER-5K6](https://sentry.io/organizations/significant-gravitas/issues/6887660207/).
The issue was that: Batch sending fails due to malformed data (422) and
inactive recipients (406); the 406 error is misclassified as a size
limit failure.

- Implements more robust error handling for Postmark API failures during
notification sending.
- Specifically handles inactive recipients (HTTP 406), malformed data
(HTTP 422), and oversized notifications.
- Adds detailed logging for each error case, including the notification
index and error message.
- Skips individual notifications that fail due to these errors,
preventing the entire batch from failing.
- Improves error handling for ValueErrors during send_templated calls,
specifically addressing oversized notifications.


This fix was generated by Seer in Sentry, triggered by Nicholas Tindle.
👁️ Run ID: 1675950

Not quite right? [Click here to continue debugging with
Seer.](https://sentry.io/organizations/significant-gravitas/issues/6887660207/?seerDrawer=true)

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->
- Implements more robust error handling for Postmark API failures during
notification sending.
- Specifically handles inactive recipients (HTTP 406), malformed data
(HTTP 422), and oversized notifications.
- Adds detailed logging for each error case, including the notification
index and error message.
- Skips individual notifications that fail due to these errors,
preventing the entire batch from failing.
- Improves error handling for ValueErrors during send_templated calls,
specifically addressing oversized notifications.
- Also disables this in prod to prevent scaling issues until we work out
some of the more critical issues

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] Test sending notifications with invalid email addresses to ensure
406 errors are handled correctly.
- [x] Test sending notifications with malformed data to ensure 422
errors are handled correctly.
- [x] Test sending oversized notifications to ensure they are skipped
and logged correctly.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

- New Features
  - None

- Bug Fixes
- Individual email failures no longer abort a batch; processing
continues after per-recipient errors.
- Specific handling for inactive recipients and malformed messages to
prevent repeated delivery attempts.

- Chores
  - Improved error logging and diagnostics for email delivery scenarios.

- Tests
- Added tests covering email-sending error cases, user-deactivation on
inactive addresses, and batch-continuation behavior.

- Documentation
  - None
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: seer-by-sentry[bot] <157164994+seer-by-sentry[bot]@users.noreply.github.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-10-13 07:16:48 +00:00
Nicholas Tindle
a49c957467 Revert "fix(frontend/builder): Sync frontend node IDs with backend after save" (#11142)
Reverts Significant-Gravitas/AutoGPT#11075
2025-10-13 07:16:02 +00:00
Abhimanyu Yadav
cf6e724e99 feat(platform): load graph on new builder (#11141)
In this PR, I’ve added functionality to fetch a graph based on the
flowID and flowVersion provided in the URL. Once the graph is fetched,
we add the nodes and links using the graph data in a new builder.

<img width="1512" height="982" alt="Screenshot 2025-10-11 at 10 26
07 AM"
src="https://github.com/user-attachments/assets/2f66eb52-77b2-424c-86db-559ea201b44d"
/>


### Changes
- Added `get_specific_blocks` route in `routes.py`.
- Created `get_block_by_id` function in `db.py`.
- Add a new hook `useFlow.ts` to load the graph and populate it in the
flow editor.
- Updated frontend components to reflect changes in block handling.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Able to load the graph correctly.
  - [x] Able to populate it on the builder.
2025-10-11 15:28:37 +00:00
Reinier van der Leer
b67555391d fix(frontend/builder): Sync frontend node IDs with backend after save (#11075)
- Resolves #10980

Fixes unnecessary graph re-saving when no changes were made after
initial save. The issue occurred because frontend node IDs weren't
synced with backend IDs after save operations.

### Changes 🏗️

- Update actual node.id to match backend node ID after save
- Update edge references with new node IDs
- Properly sync visual editor state with backend

### Test Plan 📋

- [x] TypeScript compilation passes  
- [x] Pre-commit hooks pass
- [x] Manual test: Save graph, verify no re-save needed on subsequent
save/run
2025-10-11 01:12:19 +00:00
Zamil Majdy
05a72f4185 feat(backend): implement user rate limiting for concurrent graph executions (#11128)
## Summary
Add configurable rate limiting to prevent users from exceeding the
maximum number of concurrent graph executions, defaulting to 50 per
user.

## Changes Made

### Configuration (`backend/util/settings.py`)
- Add `max_concurrent_graph_executions_per_user` setting (default: 50,
range: 1-1000)
- Configurable via environment variables or settings file

### Database Query Function (`backend/data/execution.py`) 
- Add `get_graph_executions_count()` function for efficient count
queries
- Supports filtering by user_id, statuses, and time ranges
- Used to check current RUNNING/QUEUED executions per user

### Database Manager Integration (`backend/executor/database.py`)
- Expose `get_graph_executions_count` through DatabaseManager RPC
interface
- Follows existing patterns for database operations
- Enables proper service-to-service communication

### Rate Limiting Logic (`backend/executor/manager.py`)
- Inline rate limit check in `_handle_run_message()` before cluster lock
- Use existing `db_client` pattern for consistency
- Reject and requeue executions when limit exceeded
- Graceful error handling - proceed if rate limit check fails
- Enhanced logging with user_id and current/max execution counts

## Technical Implementation
- **Database approach**: Query actual execution statuses for accuracy
- **RPC pattern**: Use DatabaseManager client following existing
codebase patterns
- **Fail-safe design**: Proceed with execution if rate limit check fails
- **Requeue on limit**: Rejected executions are requeued for later
processing
- **Early rejection**: Check rate limit before expensive cluster lock
operations

## Rate Limiting Flow
1. Parse incoming graph execution request
2. Query database via RPC for user's current RUNNING/QUEUED execution
count
3. Compare against configured limit (default: 50)
4. If limit exceeded: reject and requeue message
5. If within limit: proceed with normal execution flow

## Configuration Example
```env
MAX_CONCURRENT_GRAPH_EXECUTIONS_PER_USER=25  # Reduce to 25 for stricter limits
```

## Test plan
- [x] Basic functionality tested - settings load correctly, database
function works
- [x] ExecutionManager imports and initializes without errors
- [x] Database manager exposes the new function through RPC
- [x] Code follows existing patterns and conventions
- [ ] Integration testing with actual rate limiting scenarios
- [ ] Performance testing to ensure minimal impact on execution pipeline

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-11 08:02:34 +07:00
Swifty
36f634c417 fix(backend): Update store agent view to return only latest version (#11065)
This PR fixes duplicate agent listings on the marketplace home page by
updating the StoreAgent view to return only the latest approved version
of each agent.

### Changes 🏗️

- Updated `StoreAgent` database view to filter for only the latest
approved version per listing
- Added CTE (Common Table Expression) `latest_versions` to efficiently
determine the maximum version for each store listing
- Modified the join logic to only include the latest version instead of
all approved versions
- Updated `versions` array field to contain only the single latest
version

**Technical details:**
- The view now uses a `latest_versions` CTE that groups by
`storeListingId` and finds `MAX(version)` for approved submissions
- Join condition ensures only the latest version is included:
`slv.version = lv.latest_version`
- This prevents duplicate entries for agents with multiple approved
versions

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified marketplace home page shows no duplicate agents
- [x] Confirmed only latest version is displayed for agents with
multiple approved versions
  - [x] Checked that agent details page still functions correctly
  - [x] Validated that run counts and ratings are still accurate

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
2025-10-10 09:31:36 +00:00
Swifty
18e169aa51 feat(platform): Log Marketplace Search Terms (#11092)
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Reinier van der Leer <Pwuts@users.noreply.github.com>
2025-10-10 11:33:28 +02:00
Swifty
c5b90f7b09 feat(platform): Simplify running of core docker services (#11113)
Co-authored-by: vercel[bot] <35613825+vercel[bot]@users.noreply.github.com>
2025-10-10 11:32:46 +02:00
Ubbe
a446c1acc9 fix(frontend): improve navbar on mobile (#11137)
## Changes 🏗️

Make the navigation bar look nice across screen sizes 📱 

<img width="1229" height="388" alt="Screenshot 2025-10-10 at 17 53 48"
src="https://github.com/user-attachments/assets/037a9957-9c0b-4e2c-9ef5-af198fdce923"
/>

<img width="700" height="392" alt="Screenshot 2025-10-10 at 17 53 42"
src="https://github.com/user-attachments/assets/bf9a0f83-a528-4613-83e7-6e204078b905"
/>

<img width="500" height="377" alt="Screenshot 2025-10-10 at 17 52 24"
src="https://github.com/user-attachments/assets/2209d4f3-a41a-4700-894b-5e6e7c15fefb"
/>

<img width="300" height="381" alt="Screenshot 2025-10-10 at 17 52 16"
src="https://github.com/user-attachments/assets/1c87d545-784e-47b5-b23c-6f37cfae489b"
/>


## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Login to the platform and resize the window down
- [x] The navbar looks good across screen sizes and everything is
aligned and accessible

### For configuration changes:

None
2025-10-10 09:10:24 +00:00
Ubbe
59d242f69c fix(frontend): remove agent activity flag (#11136)
## Changes 🏗️

The Agent Activity Dropdown is now stable, it has been 100% exposed to
users on production for a few weeks, no need to have it behind a flag
anymore.

## Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Login to AutoGPT
- [x] The bell on the navbar is always present even if the flag on
Launch Darkly is turned off

### For configuration changes:

None
2025-10-10 09:08:42 +00:00
Abhimanyu Yadav
a2cd5d9c1f feat(frontend): add support for user password credentials in new FlowEditor (#11122)
- depends on https://github.com/Significant-Gravitas/AutoGPT/pull/11107

In this PR, I’ve added a way to add a username and password as
credentials on new builder.


https://github.com/user-attachments/assets/b896ea62-6a6d-487c-99a3-727cef4ad9a5

### Changes 🏗️
- Introduced PasswordCredentialsModal to handle user password
credentials.
- Updated useCredentialField to support user password type.
- Refactored APIKeyCredentialsModal to remove unnecessary onSuccess
prop.
- Enhanced the CredentialsField component to conditionally render the
new password modal based on supported credential types.

### Checklist 📋

#### For code changes:
- [x] Ability to add username and password correctly.
- [x] The username and password are visible in the credentials list
after adding it.
2025-10-10 07:15:21 +00:00
Abhimanyu Yadav
df5b348676 feat(frontend): add search functionality in new block menu (#11121)
- Depends on https://github.com/Significant-Gravitas/AutoGPT/pull/11120

In this PR, I’ve added a search functionality to the new block menu with
pagination.



https://github.com/user-attachments/assets/4c199997-4b5a-43c7-83b6-66abb1feb915



### Changes 🏗️
- Add a frontend for the search list with pagination functionality.
- Updated the search route to use GET method.
- Removed the SearchRequest model and replaced it with individual query
parameters.

### Checklist 📋

#### For code changes:
- [x] The search functionality is working perfectly.
- [x] If the search query doesn’t exist, it correctly displays a “No
Result” UI.
2025-10-09 12:28:12 +00:00
Bently
4856bd1f3a fix(backend): prevent sub-agent execution visibility across users (#11132)
Fixes a issue where sub-agent executions triggered by one user were
visible in the original agent author's execution library.
 ## Solution

Fixed the user_id attribution in
`autogpt_platform/backend/backend/executor/manager.py` by ensuring that
sub-agent executions always use the actual executor's user_id rather
than the agent author's user_id stored in node defaults.

### Changes
- Added user_id override in `execute_node()` function when preparing
AgentExecutorBlock input (line 194)
- Ensures sub-agent executions are correctly attributed to the user
running them, not the agent author
- Maintains proper privacy isolation between users in marketplace agent
scenarios

### Security Impact
- **Before**: When User B downloaded and ran a marketplace agent
containing sub-agents owned by User A, the sub-agent executions appeared
in User A's library
- **After**: Sub-agent executions now only appear in the library of the
user who actually ran them
- Prevents unauthorized access to execution data and user privacy
violation

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Test plan: -->
  - [x] Create an agent with sub-agents as User A
  - [x] Publish agent to marketplace
  - [x] Run the agent as User B
- [x] Verify User A cannot see User B's sub-agent executions in their
library
  - [x] Verify User B can see their own sub-agent executions
  - [x] Verify primary agent executions remain correctly filtered
2025-10-09 11:17:26 +00:00
Abhimanyu Yadav
2e1d3dd185 refactor(frontend): replace context api in new block menu with zustand store (#11120)
Currently, we use the context API for the block menu provider and to
access some of its state outside the blockMenuProvider wrapper. For
instance, in the tutorial, we need to move this wrapper higher up in the
tree, perhaps at the top of the builder tree. This will cause
unnecessary re-renders. Therefore, we should create a block menu zustand
store so that we can easily access it in other parts of the builder.

### Changes 🏗️
- Deleted `block-menu-provider.tsx` file.
- Updated BlockMenu, BlockMenuContent, BlockMenuDefaultContent, and
other components to utilize blockMenuStore instead of
BlockMenuStateProvider.
- Adjusted imports and context usage accordingly.

### Checklist 📋
- [x] Changes have been clearly listed.
- [x] Code has been tested and verified.
- [x] I’ve checked every part of the block menu where we used the
context API and it’s working perfectly.
- [x] Ability to use block menu state in other parts of the builder.
2025-10-09 11:04:42 +00:00
Abhimanyu Yadav
ff72343035 feat(frontend): add UI for sticky notes on new builder (#11123)
Currently, the new builder doesn’t support sticky notes. We’re rendering
them as normal nodes with an input, which is why I’ve added a UI for
this.

<img width="1512" height="982" alt="Screenshot 2025-10-08 at 4 12 58 PM"
src="https://github.com/user-attachments/assets/be716e45-71c6-4cc4-81ba-97313426222f"
/>

To add sticky notes, go to the search menu of the block menu and search
for “Note block”. Then, add them from there.

### Changes 🏗️
- Updated CustomNodeData to include uiType.
- Conditional rendering in CustomNode based on uiType.
- Added a custom sticky note UI component called `StickyNoteBlock.tsx`.
- Adjusted FormCreator and FieldTemplate to pass and utilize uiType.
- Enhanced TextInputWidget to render differently based on uiType.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Able to attach sticky notes to the builder.
- [x] Able to accurately capture data while writing on sticky notes and
data is persistent also
2025-10-09 06:48:19 +00:00
Abhimanyu Yadav
7982c34450 feat(frontend): add oauth2 credential support in new builder (#11107)
In this PR, I have added support of oAuth2 in new builder.


https://github.com/user-attachments/assets/89472ebb-8ec2-467a-9824-79a80a71af8a

### Changes 🏗️
- Updated the FlowEditor to support OAuth2 credential selection.
- Improved the UI for API key and OAuth2 modals, enhancing user
experience.
- Refactored credential field components for better modularity and
maintainability.
- Updated OpenAPI documentation to reflect changes in OAuth flow
endpoints.

### Checklist 📋
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Able to create OAuth credentials
  - [x] OAuth2 is correctly selected using the Credential Selector.
2025-10-09 06:47:15 +00:00
Zamil Majdy
59c27fe248 feat(backend): implement comprehensive rate-limited Discord alerting system (#11106)
## Summary
Implement comprehensive Discord alerting system with intelligent rate
limiting to prevent spam and provide proper visibility into system
failures across retry mechanisms and execution errors.

## Key Features

### 🚨 Rate-Limited Discord Alerting Infrastructure
- **Reusable rate-limited alerts**: `send_rate_limited_discord_alert()`
function for any Discord alerts
- **5-minute rate limiting**: Prevents spam for identical error
signatures (function+error+context)
- **Thread-safe**: Proper locking for concurrent alert attempts
- **Configurable channels**: Support custom Discord channels or default
to PLATFORM
- **Graceful failure handling**: Alert failures don't break main
application flow

### 🔄 Enhanced Retry Alert System
- **Unified threshold alerting**: Both general retries and
infrastructure retries alert at EXCESSIVE_RETRY_THRESHOLD (50 attempts)
- **Critical retry alerts**: Early warning when operations approach
failure threshold
- **Infrastructure monitoring**: Dedicated alerts for database, Redis,
RabbitMQ connection issues
- **Rate limited**: All retry alerts use rate limiting to prevent
overwhelming Discord channels

### 📊 Unknown Execution Error Alerts
- **Automatic error detection**: Alert for unexpected graph execution
failures
- **Rich context**: Include user ID, graph ID, execution ID, error type
and message
- **Filtered alerts**: Skip known errors (InsufficientBalanceError,
ModerationError)
- **Proper error tracking**: Ensure execution_stats.error is set for all
error types

## Technical Implementation

### Rate Limiting Strategy
```python
# Create unique signatures based on function+error+context
error_signature = f"{context}:{func_name}:{type(exception).__name__}:{str(exception)[:100]}"
```
- **5-minute windows**: ALERT_RATE_LIMIT_SECONDS = 300 prevents
duplicate alerts
- **Memory efficient**: Only store last alert timestamp per unique error
signature
- **Context awareness**: Same error in different contexts can send
separate alerts

### Alerting Hierarchy
1. **50 attempts**: Critical alert warning about approaching failure
(EXCESSIVE_RETRY_THRESHOLD)
2. **100 attempts**: Final infrastructure failure (conn_retry max_retry)
3. **Unknown execution errors**: Immediate rate-limited alerts for
unexpected failures

## Files Modified

### Core Implementation
- `backend/executor/manager.py`: Unknown execution error alerts with
rate limiting
- `backend/util/retry.py`: Comprehensive rate-limited alerting
infrastructure
- `backend/util/retry_test.py`: Full test coverage for rate limiting
functionality (14 tests)

### Code Quality Improvements
- **Inlined alert messages**: Eliminated unnecessary temporary variables
- **Simplified logic**: Removed excessive comments and redundant alerts
- **Consistent patterns**: All alert functions follow same clean code
style
- **DRY principle**: Reusable rate-limited alert system for future
monitoring needs

## Benefits

### 🛡️ Prevents Alert Spam
- **Rate limiting**: No more overwhelming Discord channels with
duplicate alerts
- **Intelligent deduplication**: Same errors rate limited while
different errors get through
- **Thread safety**: Concurrent operations handled correctly

### 🔍 Better System Visibility  
- **Unknown errors**: Issues that need investigation are properly
surfaced
- **Infrastructure monitoring**: Early warning for
database/Redis/RabbitMQ issues
- **Rich context**: All necessary debugging information included in
alerts

### 🧹 Maintainable Codebase
- **Reusable infrastructure**: `send_rate_limited_discord_alert()` for
future monitoring
- **Clean, consistent code**: Inlined messages, simplified logic, proper
abstractions
- **Comprehensive testing**: Rate limiting edge cases and real-world
scenarios covered

## Validation Results
-  All 14 retry tests pass including comprehensive rate limiting
coverage
-  Manager execution tests pass validating integration with execution
flow
-  Thread safety validated with concurrent alert attempt tests
-  Real-world scenarios tested including the specific spend_credits
spam issue that motivated this work
-  Code formatting, linting, and type checking all pass

## Before/After Comparison

### Before
- No rate limiting → Discord spam for repeated errors
- Unknown execution errors not monitored → Issues went unnoticed  
- Inconsistent alerting thresholds → Confusing monitoring
- Verbose code with temporary variables → Harder to maintain

### After  
-  Rate-limited intelligent alerting prevents spam
-  Unknown execution errors properly monitored with context
-  Unified 50-attempt threshold for consistent monitoring
-  Clean, maintainable code with reusable infrastructure

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-09 08:22:15 +07:00
Zamil Majdy
c7575dc579 fix(backend): implement rate limiting for critical retry alerts to prevent spam (#11127)
## Summary
Fix the critical issue where retry failure alerts were being spammed
when service communication failed repeatedly.

## Problem
The service communication retry mechanism was sending a critical Discord
alert every time it hit the 50-attempt threshold, with no rate limiting.
This caused alert spam when the same operation (like spend_credits) kept
failing repeatedly with the same error.

## Solution

### Rate Limiting Implementation
- Add ALERT_RATE_LIMIT_SECONDS = 300 (5 minutes) between identical
alerts
- Create _should_send_alert() function with thread-safe rate limiting
using _alert_rate_limiter dict
- Generate unique signatures based on
context:func_name:exception_type:exception_message
- Only send alert if sufficient time has passed since last identical
alert

### Enhanced Logging  
- Rate-limited alerts log as warnings instead of being silently dropped
- Add full exception tracebacks for final failures and every 10th retry
attempt
- Improve alert message clarity and add note about rate limiting
- Better structured logging with exception types and details

### Error Context Preservation
- Maintain all original retry behavior and exception handling
- Preserve critical alerting for genuinely new issues  
- Clean up alert message (removed accidental paste from error logs)

## Technical Details
- Thread-safe implementation using threading.Lock() for rate limiter
access
- Signature includes first 100 chars of exception message for
granularity
- Memory efficient - only stores last alert timestamp per unique error
type
- No breaking changes to existing retry functionality

## Impact
- **Eliminates alert spam**: Same failing operation only alerts once per
5 minutes
- **Preserves critical alerts**: New/different failures still trigger
immediate alerts
- **Better debugging**: Enhanced logging provides full exception context
- **Maintains reliability**: All retry logic works exactly as before

## Testing
-  Rate limiting tested with multiple scenarios
-  Import compatibility verified 
-  No regressions in retry functionality
-  Alert generation works for new vs repeated errors

## Type of Change
- [x] Bug fix (non-breaking change which fixes an issue)
- [ ] New feature (non-breaking change which adds functionality)
- [ ] Breaking change (fix or feature that would cause existing
functionality to not work as expected)
- [ ] This change requires a documentation update

## How Has This Been Tested?
- Manual testing of rate limiting functionality with different error
scenarios
- Import verification to ensure no regressions
- Code formatting and linting compliance

## Checklist
- [x] My code follows the style guidelines of this project
- [x] I have performed a self-review of my own code
- [x] I have commented my code, particularly in hard-to-understand areas
- [x] I have made corresponding changes to the documentation (N/A -
internal utility)
- [x] My changes generate no new warnings
- [x] Any dependent changes have been merged and published in downstream
modules (N/A)
2025-10-09 05:53:10 +07:00
Ubbe
73603a8ce5 fix(frontend): onboarding re-directs (#11126)
## Changes 🏗️

We weren't awaiting the onboarding enabled check and also we were
re-directing to a wrong onboarding URL.

## Checklist 📋

### For code changes

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Create a new user
  - [x] Re-directs well to onboarding
  - [x] Complete up to Step 5 and logout
  - [x] Login again
  - [x] You are on Step 5  

#### For configuration changes:

None
2025-10-08 15:18:25 +00:00
Ubbe
e562ca37aa fix(frontend): login redirects + onboarding (#11125)
## Changes 🏗️

### Fix re-direct bugs

Sometimes the app will re-direct to a strange URL after login:
```
http://localhost:3000/marketplace,%20/marketplace
```
It looks like a race-condition because the re-direct to `/marketplace`
was done on a [server
action](https://nextjs.org/docs/14/app/building-your-application/data-fetching/server-actions-and-mutations)
rather than in the browser.

** Fixed by** 

Moving the login / signup server actions to Next.js API endpoints. In
this way the login/signup pages just call an API endpoint and handle its
response without having to hassle with serverless 💆🏽

### Wallet layout flash

<img width="800" height="744" alt="Screenshot 2025-10-08 at 22 52 03"
src="https://github.com/user-attachments/assets/7cb85fd5-7dc4-4870-b4e1-173cc8148e51"
/>

The wallet popover would sometimes flash after login, because it was
re-rendering once onboarding and credits data loaded.

** Fixed by** 

Only rendering once we have onboarding and credits data, without the
popover is useless and causes flashes.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Login / Signup to the app with email and Google
  - [x] Works fine
  - [x] Onboarding popover does not flash
  - [x] Onboarding and marketplace re-directs work   

### For configuration changes:

None
2025-10-08 18:35:45 +04:00
Nicholas Tindle
f906fd9298 fix(backend): Allow Project.content to be optional for linear search projects (#11118)
Changed the type of the 'content' field in the Project model to accept
None, making it optional instead of required. Linear doesn't always
return data here if its not set by the user.

<!-- Clearly explain the need for these changes: -->

### Changes 🏗️
- Makes the content optional
<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Manually test it works with our data


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- **Bug Fixes**
- Improved handling of projects with no content by making content
optional.
- Prevents validation errors during project creation, import, or sync
when content is missing.
- Enhances compatibility with integrations that may omit content fields.
- No impact on existing projects with content; behavior remains
unchanged.
  - No user action required.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2025-10-07 20:04:37 +00:00
seer-by-sentry[bot]
9e79add436 fix(backend): Change progress type to float in Linear Project (#11117)
### Changes 🏗️

- Changed the type of the `progress` field in the `LinearTask` model
from `int` to `float` to fix
[BUILDER-3V5](https://sentry.io/organizations/significant-gravitas/issues/6929150079/).

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] Root cause analysis confirms fix -- testing will need to occur in
dev environment before release to prod but this should merge now


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

- New Features
- Progress indicators now support decimal values, allowing more precise
tracking (e.g., 42.5% instead of 42%). This enables finer-grained
updates in the interface and any integrations consuming progress data.
- Users may notice smoother progress changes during long-running tasks,
with improved accuracy in percentage displays across relevant views and
APIs.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

Co-authored-by: seer-by-sentry[bot] <157164994+seer-by-sentry[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-10-07 17:59:26 +00:00
Nicholas Tindle
de6f4fca23 Merge branch 'master' into dev 2025-10-07 11:13:38 -05:00
Nicholas Tindle
fb4b8ed9fc feat: track users with sentry on client side (not backend yet) (#11077)
<!-- Clearly explain the need for these changes: -->
We need to be able to count user impact by user count which means we
need to track that
### Changes 🏗️
- Attaches user id to frontend actions (which hopefully propagate to the
backend in some places)
<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Test login -> shows on sentry
  - [x] Test logout -> no longer shows on sentry
2025-10-07 15:35:57 +00:00
Zamil Majdy
f3900127d7 feat(backend): instrument prometheus for internal services (#11114)
<!-- Clearly explain the need for these changes: -->

### Changes 🏗️

Instrument Prometheus for internal services

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Existing tests
2025-10-07 21:34:38 +07:00
Abhimanyu Yadav
7c47f54e25 feat(frontend): add an API key modal for adding credentials in new builder. (#11105)
In this PR, I’ve added an API Key modal to the new builder so users can
add API key credentials.


https://github.com/user-attachments/assets/68da226c-3787-4950-abb0-7a715910355e

### Changes
- Updated the credential field to support API key.
- Added a modal for creating new API keys and improved the selection UI
for credentials.
- Refactored components for better modularity and maintainability.
- Enhanced styling and user experience in the FlowEditor components.
- Updated OpenAPI documentation for better clarity on credential
operations.

### Checklist 📋

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Able to create API key perfectly.
  - [x] can select the correct credentials.
2025-10-07 11:19:17 +00:00
Lluis Agusti
927042d93e fix(frontend): more turnstile experiments (2) 2025-10-07 00:40:49 +09:00
Lluis Agusti
4244979a45 fix(frontend): more turnstile experiments 2025-10-07 00:22:20 +09:00
Lluis Agusti
aa27365e7f fix(frontend): fix captcha reset 2025-10-06 23:57:42 +09:00
Nicholas Tindle
b86aa8b14e feat(frontend): launchdarkly tracking on frontend browser (#11076)
<!-- Clearly explain the need for these changes: -->
We struggle to identify where issues are coming from feature flags and
which are from normal use. This adds that split on the frontend.

### Changes 🏗️
Include sentry in the LD initialization
<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] Test that launch darkly flags get attached to the frontend
(browser only)
2025-10-06 13:48:13 +00:00
Lluis Agusti
e7ab2626f5 fix(frontend): remove captcha ref reset 2025-10-06 22:34:08 +09:00
Ubbe
ff58ce174b fix(frontend): possible login issues related to turnstile (#11094)
## Changes 🏗️

We are seeing login and authentication issues in production and staging.
Locally though, the app behaves fine. We also had issues related to the
CAPTCHA in the past.

Our CAPTCHA code is less than ideal, with some heavy `useEffect` that
will load the Turnstile script into the DOM. I have the impression that
is loading the script multiple times ( due to dependencies on the
effects array not being well set ), or the like causing associated login
issues.

Created a new Turnstile component using
[`react-turnstile`](https://docs.page/marsidev/react-turnstile) that is
way simpler and should hopefully be more stable.

I also fixed an issue with the Credits popover layout rendering cropped
on the window.

## Checklist 📋

### For code changes

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Login/logout on the app multiple times with Turnstile ON,
everything is stable
  - [x] Credits popover appears on the right place 

### For configuration changes:

None
2025-10-06 12:59:27 +00:00
Abhimanyu Yadav
2d8ab6b7c0 feat(frontend): add selecting UI for custom node in new builder (#11091)
React Flow has built-in functionality to select multiple nodes by using
`cmd` + click. You can also select using rectangle selection by holding
the shift key. However, we need to design a custom node after it’s
selected.

<img width="845" height="510" alt="Screenshot 2025-10-06 at 12 41 16 PM"
src="https://github.com/user-attachments/assets/c91f22e3-2211-46b6-b3d3-fbc89148e99a"
/>

### Tests
- [x] Selecting Ui is visible after selecting a node, using cmd + click,
and after rectangle selection.
2025-10-06 12:53:59 +00:00
Abhimanyu Yadav
a7306970b8 refactor(frontend): simplify marketplace search page and update data fetching (#11061)
This PR refactors the marketplace search page to improve code
maintainability, readability, and follows modern React patterns by
extracting complex logic into a custom hook and creating dedicated
components.

### 🔄 Changes

#### **Architecture Improvements**
- **Component Extraction**: Replaced the monolithic `SearchResults`
component with a cleaner `MainSearchResultPage` component that focuses
solely on presentation
- **Custom Hook Pattern**: Extracted all business logic and state
management into `useMainSearchResultPage` hook for better separation of
concerns
- **Loading State Component**: Added dedicated
`MainSearchResultPageLoading` component for consistent loading UI

#### **Code Simplification**
- **Reduced search page to 19 lines** (from 175 lines) by removing
inline logic and state management
- **Centralized data fetching** using auto-generated API endpoints
(`useGetV2ListStoreAgents`, `useGetV2ListStoreCreators`)
- **Improved error handling** with dedicated error states and loading
states

#### **Feature Updates**
- **Sort Options**: Commented out "Most Recent" and "Highest Rated" sort
options due to backend limitations (no date/rating data available)
- **Client-side Sorting**: Implemented client-side sorting for "runs"
and "rating" as a temporary solution
- **Search Filters**: Maintained filter functionality for
agents/creators with improved state management

### 📊 Impact

- **Better Developer Experience**: Code is now more modular and easier
to understand
- **Improved Maintainability**: Business logic separated from
presentation layer
- **Future-Ready**: Structure prepared for backend improvements when
date/rating data becomes available
- **Type Safety**: Leveraging TypeScript with auto-generated API types

### 🧪 Testing Checklist

- [x] Search functionality works correctly with various search terms
- [x] Filter chips correctly toggle between "All", "Agents", and
"Creators"
- [x] Sort dropdown displays only "Most Runs" option
- [x] Client-side sorting correctly sorts agents and creators by runs
- [x] Loading state displays while fetching data
- [x] Error state displays when API calls fail
- [x] "No results found" message appears for empty searches
- [x] Search bar in results page is functional
- [x] Results display correctly with proper layout and styling
2025-10-06 12:53:45 +00:00
Abhimanyu Yadav
c42f94ce2a feat(frontend): add new credential field for new builder (#11066)
In this PR, I’ve added a feature to select a credential from a list and
also provided a UI to create a new credential if desired.

<img width="443" height="157" alt="Screenshot 2025-10-06 at 9 28 07 AM"
src="https://github.com/user-attachments/assets/d9e72a14-255d-45b6-aa61-b55c2465dd7e"
/>

#### Frontend Changes:
- **Refactored credential field** from a single component to a modular
architecture:
  - Created `CredentialField/` directory with separated concerns
- Added `SelectCredential.tsx` component for credential selection UI
with provider details display
- Implemented `useCredentialField.ts` custom hook for credential data
fetching with 10-minute caching
- Added `helpers.ts` with credential filtering and provider name
formatting utilities
  - Added loading states with skeleton UI while fetching credentials

- **Enhanced UI/UX features**:
- Dropdown selector showing credentials with provider, title, username,
and host details
  - Visual key icon for each credential option
  - Placeholder "Add API Key" button (implementation pending)
  - Loading skeleton UI for better perceived performance
  - Smart filtering of credentials based on provider requirements

- **Template improvements**:
- Updated `FieldTemplate.tsx` to properly handle credential field
display
- Special handling for credential field labels showing provider-specific
names
  - Removed input handle for credential fields in the node editor

#### Backend Changes:
- **API Documentation improvements**:
- Added OpenAPI summaries to `/credentials` endpoint ("List
Credentials")
- Added summary to `/{provider}/credentials/{cred_id}` endpoint ("Get
Specific Credential By ID")

### Test Plan 📋

   - [x] Navigate to the flow builder
   - [x] Add a block that requires credentials (e.g., API block)
- [x] Verify the credential dropdown loads and displays available
credentials
- [x] Check that only credentials matching the provider requirements are
shown
2025-10-06 12:52:45 +00:00
Zamil Majdy
4e1557e498 fix(backend): Add dynamic input pin support for Smart Decision Maker Block (#11082)
## Summary

- Centralize dynamic field delimiters and helpers in
backend/data/dynamic_fields.py.
- Refactor SmartDecisionMaker: build function signatures with
dynamic-field mapping and re-map tool outputs back to original dynamic
names.
- Deterministic retry loop with retry-only feedback to avoid polluting
final conversation history.
- Update executor/utils.py and data/graph.py to use centralized
utilities.
- Update and extend tests: dynamic-field E2E flow, mapping verification,
output yielding, and retry validation; switch mocked llm_call to
AsyncMock; align tool-name expectations.
- Add a single-tool fallback in schema lookup to support mocked
scenarios.

## Validation

- Full backend test suite: 1125 passed, 88 skipped, 53 warnings (local).
- Backend lint/format pass.

## Scope

- Minimal and localized to SmartDecisionMaker and dynamic-field
utilities; unrelated pyright warnings remain unchanged.

## Risks/Mitigations

- Behavior is backward-compatible; dynamic-field constants are
centralized and reused.
- Output re-mapping only affects SmartDecisionMaker tool outputs and
matches existing link naming conventions.

## Checklist

- [x] Formatted and linted
- [x] All updated tests pass locally
- [x] No secrets introduced

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-04 14:23:13 +00:00
seer-by-sentry[bot]
7f8cf36ceb feat(frontend): Add description to Upload Agent dialog (#11053)
### Changes 🏗️

- Added a description to the Upload Agent dialog to provide more context
for users. Fixes
[BUILDER-3N1](https://sentry.io/organizations/significant-gravitas/issues/6915512912/).
The issue was that: DialogContent in LibraryUploadAgentDialog lacks an
accessible description, violating WAI-ARIA standards.

<img width="2066" height="1740" alt="image"
src="https://github.com/user-attachments/assets/c876fb33-4375-4a66-a6a2-6b13c00ef8d3"
/>


### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Test it works
  - [x] Get design approval

Co-authored-by: seer-by-sentry[bot] <157164994+seer-by-sentry[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-10-03 16:38:49 +00:00
Ubbe
0978566089 fix(frontend): performance and layout issues (#11036)
## Changes 🏗️

### Performance (Onboarding) 🐎 

- Moved non-UI logic into `providers/onboarding/helpers.ts` to reduce
provider complexity.
- Memoized provider value and narrowed state updates to cut unnecessary
re-renders.
- Deferred non-critical effects until after mount to lower initial JS
work.
 
**Result:** faster initial render and smoother onboarding flows under
load.

### Layout and overflow fixes 📐 

- Replaced `w-screen` with `w-full` in platform/admin/profile layouts
and marketplace wrappers to avoid 100vw scrollbar overflow.
- Adjusted mobile navbar position (`right-0` instead of `-right-4`) to
prevent off-viewport elements.

**Result:** removed horizontal scrolling on Marketplace, Library, and
Settings pages; Build remains unaffected.

### New Generic Error pages

- Standardized global error handling in `app/global-error.tsx` for
consistent display and user feedback.
- Added platform-scoped error page(s) under `app/(platform)/error` for
route-level failures with a consistent layout.
- Improved retry affordances using existing `ErrorCard`.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verify onboarding flows render faster and re-render less (DevTools
flamegraph)
- [x] Confirm no horizontal scrolling on Marketplace, Library, Settings
at common widths
  - [x] Validate mobile navbar stays within viewport
- [x] Trigger errors to confirm global and platform error pages render
consistently

### For configuration changes:

None
2025-10-03 22:41:01 +09:00
Zamil Majdy
8b4eb6f87c fix(backend): resolve SmartDecisionMaker ChatCompletionMessage error and enhance tool call token counting (#11059)
## Summary
Fix two critical production issues affecting SmartDecisionMaker
functionality and prompt compression accuracy.

### 🔧 Changes Made

#### Issue 1: SmartDecisionMaker ChatCompletionMessage Error
**Problem**: PR #11015 introduced code that appended
`response.raw_response` (ChatCompletionMessage object) directly to
conversation history, causing `'ChatCompletionMessage' object has no
attribute 'get'` errors.

**Root Cause**: ChatCompletionMessage objects don't have `.get()` method
but conversation history processing expects dictionary objects with
`.get()` capability.

**Solution**: Created `_convert_raw_response_to_dict()` helper function
for type-safe conversion:
-  **Helper function**: Safely converts raw_response to dictionary
format for conversation history
-  **Type safety**: Handles OpenAI (ChatCompletionMessage), Anthropic
(Message), and Ollama (string) responses
-  **Preserves context**: Maintains conversation flow for multi-turn
tool calling scenarios
-  **DRY principle**: Single helper used in both validation error path
(line 624) and success path (line 681)
-  **No breaking changes**: Tool call continuity preserved for complex
workflows

#### Issue 2: Tool Call Token Counting in Prompt Compression
**Problem**: `_msg_tokens()` function only counted tokens in 'content'
field, severely undercounting tool calls which store data in different
fields (tool_calls, function.arguments, etc.).

**Root Cause**: Tool calls have no 'content' to calculate length of,
causing massive token undercounting during prompt compression that could
lead to context overflow.

**Solution**: Enhanced `_msg_tokens()` to handle both OpenAI and
Anthropic tool call formats:
-  **OpenAI format**: Count tokens in `tool_calls[].id`, `type`,
`function.name`, `function.arguments`
-  **Anthropic format**: Count tokens in `content[].tool_use` (`id`,
`name`, `input`) and `content[].tool_result`
-  **Backward compatibility**: Regular string content counted exactly
as before
-  **Comprehensive testing**: Added 11 unit tests in `prompt_test.py`

### 📊 Validation Results
-  **SmartDecisionMaker errors resolved**: No more
ChatCompletionMessage.get() failures
-  **Token counting accuracy**: OpenAI tool calls 9+ tokens vs previous
3-4 wrapper-only tokens
-  **Token counting accuracy**: Anthropic tool calls 13+ tokens vs
previous 3-4 wrapper-only tokens
-  **Backward compatibility**: Regular messages maintain exact same
token count
-  **Type safety**: 0 type errors in both modified files
-  **Test coverage**: All 11 new unit tests pass + existing
SmartDecisionMaker tests pass
-  **Multi-turn conversations**: Tool call workflows continue working
correctly

### 🎯 Impact
- **Resolves Sentry issue OPEN-2750**: ChatCompletionMessage errors
eliminated
- **Prevents context overflow**: Accurate token counting during prompt
compression for long tool call conversations
- **Production stability**: SmartDecisionMaker retry mechanism works
correctly with proper conversation flow
- **Resource efficiency**: Better memory management through accurate
token accounting
- **Zero breaking changes**: Full backward compatibility maintained

### 🧪 Test Plan
- [x] Verified SmartDecisionMaker no longer crashes with
ChatCompletionMessage errors
- [x] Validated tool call token counting accuracy with comprehensive
unit tests (11 tests all pass)
- [x] Confirmed backward compatibility for regular message token
counting
- [x] Tested both OpenAI and Anthropic tool call formats
- [x] Verified type safety with pyright checks
- [x] Ensured conversation history flows correctly with helper function
- [x] Confirmed multi-turn tool calling scenarios work with preserved
context

### 📝 Files Modified
- `backend/blocks/smart_decision_maker.py` - Added
`_convert_raw_response_to_dict()` helper for safe conversion
- `backend/util/prompt.py` - Enhanced tool call token counting for
accurate prompt compression
- `backend/util/prompt_test.py` - Comprehensive unit tests for token
counting (11 tests)

###  Ready for Review
Both fixes are critical for production stability and have been
thoroughly tested with zero breaking changes. The helper function
approach ensures type safety while preserving essential conversation
context for complex tool calling workflows.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-03 00:25:21 +00:00
Reinier van der Leer
4b7d17b9d2 refactor(blocks/code): Clean up & rename code execution blocks (#11019)
The code execution blocks' implementations are heavily duplicated and
their names aren't very clear.
E.g. the "InstantiationBlock" just shows up as "Instantiation" in the
block list.

I would've done this in #11017 but kept the refactoring separate for
easier reviewing.

### Changes 🏗️

- Rename "Code Execution" block to "Execute Code"
- Rename "Instantiation" block to "Instantiate Code Sandbox"
- Rename "Step Execution" block to "Execute Code Step"
- Deduplicate implementation of the three code execution blocks
- Add `dispose_sandbox` toggle to "Execute Code" and "Execute Code Step"
blocks
- Note: it's default `True` on the Execute Code block, default `False`
on the Execute Code Step block
- Update block and input descriptions to clarify behavior
- Fix all linting issues

<details>
<summary>Screenshots</summary>

![the three blocks as they look
now](https://github.com/user-attachments/assets/8e4274f7-e006-440c-b2b8-980df546186d)
![updated block names and descriptions in the block
list](https://github.com/user-attachments/assets/866c3d9e-13ea-4fc0-87de-a5257bafb6d4)
![the new dispose_sandbox toggle on the Execute Code
block](https://github.com/user-attachments/assets/56815dbb-f313-4308-81dd-50d949d9eafb)
![the new dispose_sandbox toggle on the Execute Code Step
block](https://github.com/user-attachments/assets/469c140c-4cd2-4210-97b2-f27fc91778de)

</details>

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Test all code execution blocks manually
2025-10-02 22:50:49 +00:00
dependabot[bot]
0fc6a44389 chore(backend/deps-dev): Bump the development-dependencies group across 1 directory with 4 updates (#10946)
Bumps the development-dependencies group with 4 updates in the
/autogpt_platform/backend directory:
[faker](https://github.com/joke2k/faker),
[pyright](https://github.com/RobertCraigie/pyright-python),
[pytest-mock](https://github.com/pytest-dev/pytest-mock) and
[ruff](https://github.com/astral-sh/ruff).

Updates `faker` from 37.6.0 to 37.8.0
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/joke2k/faker/releases">faker's
releases</a>.</em></p>
<blockquote>
<h2>Release v37.8.0</h2>
<p>See <a
href="https://github.com/joke2k/faker/blob/refs/tags/v37.8.0/CHANGELOG.md">CHANGELOG.md</a>.</p>
<h2>Release v37.7.0</h2>
<p>See <a
href="https://github.com/joke2k/faker/blob/refs/tags/v37.7.0/CHANGELOG.md">CHANGELOG.md</a>.</p>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/joke2k/faker/blob/master/CHANGELOG.md">faker's
changelog</a>.</em></p>
<blockquote>
<h3><a
href="https://github.com/joke2k/faker/compare/v37.7.0...v37.8.0">v37.8.0
- 2025-09-15</a></h3>
<ul>
<li>Add Automotive providers for <code>ja_JP</code> locale. Thanks <a
href="https://github.com/ItoRino424"><code>@​ItoRino424</code></a>.</li>
</ul>
<h3><a
href="https://github.com/joke2k/faker/compare/v37.6.0...v37.7.0">v37.7.0
- 2025-09-15</a></h3>
<ul>
<li>Add Nigerian name locales (<code>yo_NG</code>, <code>ha_NG</code>,
<code>ig_NG</code>, <code>en_NG</code>). Thanks <a
href="https://github.com/ifeoluwaoladeji"><code>@​ifeoluwaoladeji</code></a>.</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="4bde8f57ad"><code>4bde8f5</code></a>
Bump version: 37.7.0 → 37.8.0</li>
<li><a
href="f542f364cb"><code>f542f36</code></a>
📝 Update CHANGELOG.md</li>
<li><a
href="e28d7cb909"><code>e28d7cb</code></a>
fix test</li>
<li><a
href="e4305b0e29"><code>e4305b0</code></a>
fix padding</li>
<li><a
href="a359441a81"><code>a359441</code></a>
💄 format code</li>
<li><a
href="0e3f0bdf81"><code>0e3f0bd</code></a>
Add Automotive providers for <code>ja_JP</code> locale (<a
href="https://redirect.github.com/joke2k/faker/issues/2251">#2251</a>)</li>
<li><a
href="d4fa69dfc7"><code>d4fa69d</code></a>
Bump version: 37.6.0 → 37.7.0</li>
<li><a
href="f636f06a37"><code>f636f06</code></a>
📝 Update CHANGELOG.md</li>
<li><a
href="9a482dd25b"><code>9a482dd</code></a>
💄 Format code</li>
<li><a
href="2493b2d51a"><code>2493b2d</code></a>
fix: fix minor grammar typo (<a
href="https://redirect.github.com/joke2k/faker/issues/2259">#2259</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/joke2k/faker/compare/v37.6.0...v37.8.0">compare
view</a></li>
</ul>
</details>
<br />

Updates `pyright` from 1.1.404 to 1.1.405
<details>
<summary>Commits</summary>
<ul>
<li><a
href="e211ec8df8"><code>e211ec8</code></a>
Pyright NPM Package update to 1.1.405 (<a
href="https://redirect.github.com/RobertCraigie/pyright-python/issues/353">#353</a>)</li>
<li>See full diff in <a
href="https://github.com/RobertCraigie/pyright-python/compare/v1.1.404...v1.1.405">compare
view</a></li>
</ul>
</details>
<br />

Updates `pytest-mock` from 3.14.1 to 3.15.1
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/pytest-dev/pytest-mock/releases">pytest-mock's
releases</a>.</em></p>
<blockquote>
<h2>v3.15.1</h2>
<p><em>2025-09-16</em></p>
<ul>
<li><a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/529">#529</a>:
Fixed <code>itertools._tee object has no attribute error</code> -- now
<code>duplicate_iterators=True</code> must be passed to
<code>mocker.spy</code> to duplicate iterators.</li>
</ul>
<h2>v3.15.0</h2>
<p><em>2025-09-04</em></p>
<ul>
<li>Python 3.8 (EOL) is no longer supported.</li>
<li><a
href="https://redirect.github.com/pytest-dev/pytest-mock/pull/524">#524</a>:
Added <code>spy_return_iter</code> to <code>mocker.spy</code>, which
contains a duplicate of the return value of the spied method if it is an
<code>Iterator</code>.</li>
</ul>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/pytest-dev/pytest-mock/blob/main/CHANGELOG.rst">pytest-mock's
changelog</a>.</em></p>
<blockquote>
<h2>3.15.1</h2>
<p><em>2025-09-16</em></p>
<ul>
<li><code>[#529](https://github.com/pytest-dev/pytest-mock/issues/529)
&lt;https://github.com/pytest-dev/pytest-mock/issues/529&gt;</code>_:
Fixed <code>itertools._tee object has no attribute error</code> -- now
<code>duplicate_iterators=True</code> must be passed to
<code>mocker.spy</code> to duplicate iterators.</li>
</ul>
<h2>3.15.0</h2>
<p><em>2025-09-04</em></p>
<ul>
<li>Python 3.8 (EOL) is no longer supported.</li>
<li><code>[#524](https://github.com/pytest-dev/pytest-mock/issues/524)
&lt;https://github.com/pytest-dev/pytest-mock/pull/524&gt;</code>_:
Added <code>spy_return_iter</code> to <code>mocker.spy</code>, which
contains a duplicate of the return value of the spied method if it is an
<code>Iterator</code>.</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="e1b5c62a38"><code>e1b5c62</code></a>
Release 3.15.1</li>
<li><a
href="184eb190d6"><code>184eb19</code></a>
Set <code>spy_return_iter</code> only when explicitly requested (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/537">#537</a>)</li>
<li><a
href="4fa0088a0a"><code>4fa0088</code></a>
[pre-commit.ci] pre-commit autoupdate (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/536">#536</a>)</li>
<li><a
href="f5aff33ce7"><code>f5aff33</code></a>
Fix test failure with pytest 8+ and verbose mode (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/535">#535</a>)</li>
<li><a
href="adc41873c9"><code>adc4187</code></a>
Bump actions/setup-python from 5 to 6 in the github-actions group (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/533">#533</a>)</li>
<li><a
href="95ad570060"><code>95ad570</code></a>
[pre-commit.ci] pre-commit autoupdate (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/532">#532</a>)</li>
<li><a
href="e696bf02c1"><code>e696bf0</code></a>
Fix standalone mock support (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/531">#531</a>)</li>
<li><a
href="5b29b03ce9"><code>5b29b03</code></a>
Fix gen-release-notes script</li>
<li><a
href="7d22ef4e56"><code>7d22ef4</code></a>
Merge pull request <a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/528">#528</a>
from pytest-dev/release-3.15.0</li>
<li><a
href="90b29f89e2"><code>90b29f8</code></a>
Update CHANGELOG for 3.15.0</li>
<li>Additional commits viewable in <a
href="https://github.com/pytest-dev/pytest-mock/compare/v3.14.1...v3.15.1">compare
view</a></li>
</ul>
</details>
<br />

Updates `ruff` from 0.12.11 to 0.13.0
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/astral-sh/ruff/releases">ruff's
releases</a>.</em></p>
<blockquote>
<h2>0.13.0</h2>
<h2>Release Notes</h2>
<p>Check out the <a href="https://astral.sh/blog/ruff-v0.13.0">blog
post</a> for a migration guide and overview of the changes!</p>
<h3>Breaking changes</h3>
<ul>
<li>
<p><strong>Several rules can now add <code>from __future__ import
annotations</code> automatically</strong></p>
<p><code>TC001</code>, <code>TC002</code>, <code>TC003</code>,
<code>RUF013</code>, and <code>UP037</code> now add <code>from
__future__ import annotations</code> as part of their fixes when the
<code>lint.future-annotations</code> setting is enabled. This allows the
rules to move more imports into <code>TYPE_CHECKING</code> blocks
(<code>TC001</code>, <code>TC002</code>, and <code>TC003</code>), use
PEP 604 union syntax on Python versions before 3.10
(<code>RUF013</code>), and unquote more annotations
(<code>UP037</code>).</p>
</li>
<li>
<p><strong>Full module paths are now used to verify first-party
modules</strong></p>
<p>Ruff now checks that the full path to a module exists on disk before
categorizing it as a first-party import. This change makes first-party
import detection more accurate, helping to avoid false positives on
local directories with the same name as a third-party dependency, for
example. See the <a
href="https://docs.astral.sh/ruff/faq/#how-does-ruff-determine-which-of-my-imports-are-first-party-third-party-etc">FAQ
section</a> on import categorization for more details.</p>
</li>
<li>
<p><strong>Deprecated rules must now be selected by exact rule
code</strong></p>
<p>Ruff will no longer activate deprecated rules selected by their group
name or prefix. As noted below, the two remaining deprecated rules were
also removed in this release, so this won't affect any current rules,
but it will still affect any deprecations in the future.</p>
</li>
<li>
<p><strong>The deprecated macOS configuration directory fallback has
been removed</strong></p>
<p>Ruff will no longer look for a user-level configuration file at
<code>~/Library/Application Support/ruff/ruff.toml</code> on macOS. This
feature was deprecated in v0.5 in favor of using the <a
href="https://specifications.freedesktop.org/basedir-spec/latest/">XDG
specification</a> (usually resolving to
<code>~/.config/ruff/ruff.toml</code>), like on Linux. The fallback and
accompanying deprecation warning have now been removed.</p>
</li>
</ul>
<h3>Removed Rules</h3>
<p>The following rules have been removed:</p>
<ul>
<li><a
href="https://docs.astral.sh/ruff/rules/pandas-df-variable-name"><code>pandas-df-variable-name</code></a>
(<code>PD901</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/non-pep604-isinstance"><code>non-pep604-isinstance</code></a>
(<code>UP038</code>)</li>
</ul>
<h3>Stabilization</h3>
<p>The following rules have been stabilized and are no longer in
preview:</p>
<ul>
<li><a
href="https://docs.astral.sh/ruff/rules/airflow-dag-no-schedule-argument"><code>airflow-dag-no-schedule-argument</code></a>
(<code>AIR002</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/airflow3-removal"><code>airflow3-removal</code></a>
(<code>AIR301</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/airflow3-moved-to-provider"><code>airflow3-moved-to-provider</code></a>
(<code>AIR302</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/airflow3-suggested-update"><code>airflow3-suggested-update</code></a>
(<code>AIR311</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/airflow3-suggested-to-move-to-provider"><code>airflow3-suggested-to-move-to-provider</code></a>
(<code>AIR312</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/long-sleep-not-forever"><code>long-sleep-not-forever</code></a>
(<code>ASYNC116</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/f-string-number-format"><code>f-string-number-format</code></a>
(<code>FURB116</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/os-symlink"><code>os-symlink</code></a>
(<code>PTH211</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/generic-not-last-base-class"><code>generic-not-last-base-class</code></a>
(<code>PYI059</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/redundant-none-literal"><code>redundant-none-literal</code></a>
(<code>PYI061</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/pytest-raises-ambiguous-pattern"><code>pytest-raises-ambiguous-pattern</code></a>
(<code>RUF043</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/unused-unpacked-variable"><code>unused-unpacked-variable</code></a>
(<code>RUF059</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/useless-class-metaclass-type"><code>useless-class-metaclass-type</code></a>
(<code>UP050</code>)</li>
</ul>
<p>The following behaviors have been stabilized:</p>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/astral-sh/ruff/blob/main/CHANGELOG.md">ruff's
changelog</a>.</em></p>
<blockquote>
<h2>0.13.0</h2>
<p>Check out the <a href="https://astral.sh/blog/ruff-v0.13.0">blog
post</a> for a migration
guide and overview of the changes!</p>
<h3>Breaking changes</h3>
<ul>
<li>
<p><strong>Several rules can now add <code>from __future__ import
annotations</code> automatically</strong></p>
<p><code>TC001</code>, <code>TC002</code>, <code>TC003</code>,
<code>RUF013</code>, and <code>UP037</code> now add <code>from
__future__ import annotations</code> as part of their fixes when the
<code>lint.future-annotations</code> setting is enabled. This allows the
rules to move
more imports into <code>TYPE_CHECKING</code> blocks (<code>TC001</code>,
<code>TC002</code>, and <code>TC003</code>),
use PEP 604 union syntax on Python versions before 3.10
(<code>RUF013</code>), and
unquote more annotations (<code>UP037</code>).</p>
</li>
<li>
<p><strong>Full module paths are now used to verify first-party
modules</strong></p>
<p>Ruff now checks that the full path to a module exists on disk before
categorizing it as a first-party import. This change makes first-party
import detection more accurate, helping to avoid false positives on
local
directories with the same name as a third-party dependency, for example.
See
the <a
href="https://docs.astral.sh/ruff/faq/#how-does-ruff-determine-which-of-my-imports-are-first-party-third-party-etc">FAQ
section</a> on import categorization for more details.</p>
</li>
<li>
<p><strong>Deprecated rules must now be selected by exact rule
code</strong></p>
<p>Ruff will no longer activate deprecated rules selected by their group
name
or prefix. As noted below, the two remaining deprecated rules were also
removed in this release, so this won't affect any current rules, but it
will
still affect any deprecations in the future.</p>
</li>
<li>
<p><strong>The deprecated macOS configuration directory fallback has
been removed</strong></p>
<p>Ruff will no longer look for a user-level configuration file at
<code>~/Library/Application Support/ruff/ruff.toml</code> on macOS. This
feature was
deprecated in v0.5 in favor of using the <a
href="https://specifications.freedesktop.org/basedir-spec/latest/">XDG
specification</a>
(usually resolving to <code>~/.config/ruff/ruff.toml</code>), like on
Linux. The
fallback and accompanying deprecation warning have now been removed.</p>
</li>
</ul>
<h3>Removed Rules</h3>
<p>The following rules have been removed:</p>
<ul>
<li><a
href="https://docs.astral.sh/ruff/rules/pandas-df-variable-name"><code>pandas-df-variable-name</code></a>
(<code>PD901</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/non-pep604-isinstance"><code>non-pep604-isinstance</code></a>
(<code>UP038</code>)</li>
</ul>
<h3>Stabilization</h3>
<p>The following rules have been stabilized and are no longer in
preview:</p>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="a1fdd66f10"><code>a1fdd66</code></a>
Bump 0.13.0 (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20336">#20336</a>)</li>
<li><a
href="8770b95509"><code>8770b95</code></a>
[ty] introduce <code>DivergentType</code> (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20312">#20312</a>)</li>
<li><a
href="65982a1e14"><code>65982a1</code></a>
[ty] Use 'unknown' specialization for upper bound on Self (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20325">#20325</a>)</li>
<li><a
href="57d1f7132d"><code>57d1f71</code></a>
[ty] Simplify unions of enum literals and subtypes thereof (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20324">#20324</a>)</li>
<li><a
href="7a75702237"><code>7a75702</code></a>
Ignore deprecated rules unless selected by exact code (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20167">#20167</a>)</li>
<li><a
href="9ca632c84f"><code>9ca632c</code></a>
Stabilize adding future import via config option (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20277">#20277</a>)</li>
<li><a
href="64fe7d30a3"><code>64fe7d3</code></a>
[<code>flake8-errmsg</code>] Stabilize extending
<code>raw-string-in-exception</code> (<code>EM101</code>) to ...</li>
<li><a
href="beeeb8d5c5"><code>beeeb8d</code></a>
Stabilize the remaining Airflow rules (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20250">#20250</a>)</li>
<li><a
href="b6fca52855"><code>b6fca52</code></a>
[<code>flake8-bugbear</code>] Stabilize support for non-context-manager
calls in `assert...</li>
<li><a
href="ac7f882c78"><code>ac7f882</code></a>
[<code>flake8-commas</code>] Stabilize support for trailing comma checks
in type paramet...</li>
<li>Additional commits viewable in <a
href="https://github.com/astral-sh/ruff/compare/0.12.11...0.13.0">compare
view</a></li>
</ul>
</details>
<br />


Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore <dependency name> major version` will close this
group update PR and stop Dependabot creating any more for the specific
dependency's major version (unless you unignore this specific
dependency's major version or upgrade to it yourself)
- `@dependabot ignore <dependency name> minor version` will close this
group update PR and stop Dependabot creating any more for the specific
dependency's minor version (unless you unignore this specific
dependency's minor version or upgrade to it yourself)
- `@dependabot ignore <dependency name>` will close this group update PR
and stop Dependabot creating any more for the specific dependency
(unless you unignore this specific dependency or upgrade to it yourself)
- `@dependabot unignore <dependency name>` will remove all of the ignore
conditions of the specified dependency
- `@dependabot unignore <dependency name> <ignore condition>` will
remove the ignore condition of the specified dependency and ignore
conditions


</details>

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2025-10-02 20:57:18 +00:00
dependabot[bot]
f5ee579ab2 chore(backend/deps): Bump firecrawl-py from 2.16.3 to 4.3.1 in /autogpt_platform/backend (#10809)
Bumps [firecrawl-py](https://github.com/firecrawl/firecrawl) from 2.16.3
to 4.3.1.
<details>
<summary>Commits</summary>
<ul>
<li>See full diff in <a
href="https://github.com/firecrawl/firecrawl/commits">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=firecrawl-py&package-manager=pip&previous-version=2.16.3&new-version=4.3.1)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

You can trigger a rebase of this PR by commenting `@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Upgrade firecrawl-py to v4.3.6 and refactor firecrawl blocks to new v4
API, formats handling, method names, and response fields.
> 
> - **Dependencies**
> - Bump `firecrawl-py` from `2.16.3` to `4.3.6` (adds `httpx`, updates
`pydantic>=2`).
> - **Firecrawl API migration**
>   - Centralize `ScrapeFormat` in `backend/blocks/firecrawl/_api.py`.
> - Add `_format_utils.convert_to_format_options` to map `ScrapeFormat`
(incl. `screenshot@fullPage`) to v4 `FormatOption`/`ScreenshotFormat`.
> - Switch to v4 types (`firecrawl.v2.types.ScrapeOptions`); adopt
snake_case fields (`only_main_content`, `max_age`, `wait_for`).
> - Rename methods: `crawl_url` → `crawl`, `scrape_url` → `scrape`,
`map_url` → `map`.
> - Normalize response attributes: `rawHtml` → `raw_html`,
`changeTracking` → `change_tracking`.
> - **Blocks**
> - `crawl.py`, `scrape.py`, `search.py`: use new formats conversion and
updated options/fields; adjust iteration over results (`search`: iterate
`web` when present).
> - `map.py`: return both `links` and detailed `results`
(url/title/description) and update output schema accordingly.
> - **Project files**
> - Update `pyproject.toml` and `poetry.lock` for new dependency
versions.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
d872f2e82b. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

> **Note**
> Automatic rebases have been disabled on this pull request as it has
been open for over 30 days.

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-10-02 20:14:18 +00:00
Zamil Majdy
57a06f7088 fix(blocks, security): Fixes for various DoS vulnerabilities (#10798)
This PR addresses multiple critical and medium security vulnerabilities
that could lead to Denial of Service (DoS) attacks. All fixes implement
defense-in-depth strategies with comprehensive testing.

### Changes 🏗️

#### **Critical Security Fixes:**

1. **GHSA-m2wr-7m3r-p52c - ReDoS in CodeExtractionBlock** 
- Fixed catastrophic backtracking in regex patterns `\s+[\s\S]*?` and
`\s+(.*?)`
   - Replaced with safer patterns: `[ \t]*\n([^\s\S]*?)`
   - Files: `backend/blocks/code_extraction_block.py`

2. **GHSA-955p-gpfx-r66j - AITextSummarizerBlock Memory Amplification**
   - Added 1MB text size limit and 100 chunk maximum
   - Prevents 10K input → 50G memory amplification attacks
   - Files: `backend/blocks/llm.py`

3. **GHSA-5cqw-g779-9f9x - RSS Feed XML Bomb DoS**
   - Added 10MB feed size limit and 30s timeout
   - Prevents deep XML parsing memory exhaustion
   - Files: `backend/blocks/rss.py`

4. **GHSA-7g34-7fvq-xxq6 - File Storage Disk Exhaustion**
   - Added 100MB per file and 1GB per execution directory limits
   - Prevents disk space exhaustion from file uploads
   - Files: `backend/util/file.py`

5. **GHSA-pppq-xx2w-7jpq - ExtractTextInformationBlock ReDoS**
   - Added 1MB text limit, 1000 match limit, and 5s timeout protection
   - Prevents lookahead pattern memory exhaustion
   - Files: `backend/blocks/text.py`

6. **GHSA-vw3v-whvp-33v5 - Docker Logging Disk Exhaustion**
- Added log rotation limits at Docker (10MB × 3 files) and application
levels
   - Prevents unbounded log growth causing disk exhaustion
- Files: `docker-compose.platform.yml`,
`autogpt_libs/autogpt_libs/logging/config.py`

#### **Additional Security Improvements:**

7. **StepThroughItemsBlock DoS Prevention**
   - Added 10,000 item limit and 1MB input size limit
   - Prevents large iteration DoS attacks
   - Files: `backend/blocks/iteration.py`

8. **XMLParserBlock XML Bomb Prevention**
   - Added 10MB XML input size limit
   - Files: `backend/blocks/xml_parser.py`

#### **Code Quality:**
- Fixed Python 3.10 typing compatibility issues
- Added comprehensive security test suite
- All code formatted and linted

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Created comprehensive security test suite covering all
vulnerabilities
  - [x] Verified ReDoS patterns are fixed and don't cause timeouts
  - [x] Confirmed memory limits prevent amplification attacks
  - [x] Tested file size limits prevent disk exhaustion
  - [x] Validated log rotation prevents unbounded growth
  - [x] Ensured backward compatibility for normal usage

#### For configuration changes:
- [x] `docker-compose.yml` is updated with logging limits
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

### Test Plan 🧪

**Security Tests:**
1. **ReDoS Protection**: Tested with malicious regex inputs (large
spaces) - completes without hanging
2. **Memory Limits**: Verified 2MB text input gets truncated to 1MB,
chunk limits enforced
3. **File Size Limits**: Confirmed 200MB files rejected, directory size
limits enforced
4. **Iteration Limits**: Tested 20K item arrays rejected, large JSON
strings rejected
5. **Timeout Protection**: Dangerous regex patterns timeout after 5s
instead of hanging

**Compatibility Tests:**
- Normal functionality preserved for all blocks
- Existing tests pass with new security limits
- Performance impact minimal for typical usage

### Security Impact 🛡️

**Before:** Multiple attack vectors could cause:
- CPU exhaustion (ReDoS attacks)
- Memory exhaustion (amplification attacks)  
- Disk exhaustion (file/log bombs)
- Service unavailability

**After:** All attack vectors mitigated with:
- Input validation and size limits
- Timeout protections
- Resource quotas
- Defense-in-depth approach

All fixes maintain backward compatibility while preventing DoS attacks.

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Adds robust DoS protections across blocks (regex, memory, iteration,
XML/RSS, file I/O) and enables app/Docker log rotation with
comprehensive tests.
> 
> - **Security hardening**:
> - Replace unsafe regex in `backend/blocks/code_extraction_block.py` to
prevent ReDoS; add safer extraction/removal patterns.
> - Constrain LLM summarizer chunking in `backend/blocks/llm.py` (1MB
cap, chunk/overlap validation, chunk count limit).
> - Limit RSS fetching in `backend/blocks/rss.py` (scheme validation,
10MB cap, timeout, bounded read) and return empty on failure.
>   - Impose XML size limit (10MB) in `backend/blocks/xml_parser.py`.
> - Add file upload/download limits in `backend/util/file.py`
(100MB/file, 1GB dir quota) and enforce scanning before write.
> - Enable rotating file logs in `autogpt_libs/logging/config.py` (size
+ backups) and Docker json-file log rotation in
`docker-compose.platform.yml`.
> - **Iteration block**:
> - Add item count/string size limits; fix yielded key for dicts; cap
iterations in `backend/blocks/iteration.py`.
> - **Tests**:
> - New `backend/blocks/test/test_security_fixes.py` covering ReDoS,
timeouts, memory/size and iteration limits, XML/file constraints.
> - **Misc**:
> - Typing fallback for `NotRequired` in `activity_status_generator.py`.
>   - Dependency updates in `backend/poetry.lock`.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
500e1578b1. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
Co-authored-by: Zamil Majdy <majdyz@users.noreply.github.com>
Co-authored-by: Reinier van der Leer <Pwuts@users.noreply.github.com>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2025-10-02 12:55:55 +00:00
Zamil Majdy
258bf0b1a5 fix(backend): improve activity status generation accuracy and handle missing blocks gracefully (#11039)
## Summary
Fix critical issues where activity status generator incorrectly reported
failed executions as successful, and enhance AI evaluation logic to be
more accurate about actual task accomplishment.

## Changes Made

### 1. Missing Block Handling (`backend/data/graph.py`)
- **Replace ValueError with graceful degradation**: When blocks are
deleted/missing, return `_UnknownBlock` placeholder instead of crashing
- **Comprehensive interface implementation**: `_UnknownBlock` implements
all expected Block methods to prevent type errors
- **Warning logging**: Log missing blocks for debugging without breaking
execution flow
- **Removed unnecessary caching**: Direct constructor calls instead of
cached wrapper functions

### 2. Enhanced Activity Status AI Evaluation
(`backend/executor/activity_status_generator.py`)

#### Intention-Based Success Evaluation
- **Graph description analysis**: AI now reads graph description FIRST
to understand intended purpose
- **Purpose-driven evaluation**: Success is measured against what the
graph was designed to accomplish
- **Critical output analysis**: Enhanced detection of missing outputs
from key blocks (Output, Post, Create, Send, Publish, Generate)
- **Sub-agent failure detection**: Better identification when
AgentExecutorBlock produces no outputs

#### Improved Prompting
- **Intent-specific examples**: 'blog writing' → check for blog content,
'email automation' → check for sent emails
- **Primary evaluation criteria**: 'Did this execution accomplish what
the graph was designed to do?'
- **Enhanced checklist**: 7-point analysis including graph description
matching
- **Technical vs. goal completion**: Distinguish between workflow steps
completing vs. actual user goals achieved

#### Removed Database Error Handling
- **Eliminated try-catch blocks**: No longer needed around
`get_graph_metadata` and `get_graph` calls
- **Direct database calls**: Simplified error handling after fixing
missing block root cause
- **Cleaner code flow**: More predictable execution path without
redundant error handling

## Problem Solved
- **False success reports**: AI previously marked executions as
'successful' when critical output blocks produced no results
- **Missing block crashes**: System would fail when trying to analyze
executions with deleted/missing blocks
- **Intent-blind evaluation**: AI evaluated technical completion instead
of actual goal achievement
- **Database service errors**: 500 errors when missing blocks caused
graph loading failures

## Business Impact
- **More accurate user feedback**: Users get honest assessment of
whether their automations actually worked
- **Better task completion detection**: Clear distinction between
'workflow completed' vs. 'goal achieved'
- **Improved reliability**: System handles edge cases gracefully without
crashing
- **Enhanced user trust**: Truthful reporting builds confidence in the
platform

## Testing
-  Tested with problematic executions that previously showed false
successes
-  Confirmed missing block handling works without warnings
-  Verified enhanced prompt correctly identifies failures
-  Database calls work without try-catch protection

## Example Before/After

**Before (False Success):**
```
Graph: "Automated SEO Blog Writer"
Status: " I successfully completed your blog writing task!"
Reality: No blog content was actually created (critical output blocks had no outputs)
```

**After (Accurate Failure Detection):**
```
Graph: "Automated SEO Blog Writer"  
Status: " The task failed because the blog post creation step didn't produce any output."
Reality: Correctly identifies that the intended blog writing goal was not achieved
```

## Files Modified
- `backend/data/graph.py`: Missing block graceful handling with complete
interface
- `backend/executor/activity_status_generator.py`: Enhanced AI
evaluation with intention-based analysis

## Type of Change
- [x] Bug fix (non-breaking change which fixes an issue)
- [x] New feature (non-breaking change which adds functionality) 
- [ ] Breaking change (fix or feature that would cause existing
functionality to not work as expected)
- [ ] This change requires a documentation update

## Checklist
- [x] My code follows the style guidelines of this project
- [x] I have performed a self-review of my own code
- [x] I have commented my code, particularly in hard-to-understand areas
- [x] I have made corresponding changes to the documentation
- [x] My changes generate no new warnings
- [x] I have added tests that prove my fix is effective or that my
feature works
- [x] New and existing unit tests pass locally with my changes
- [x] Any dependent changes have been merged and published in downstream
modules

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-02 12:28:57 +00:00
Ubbe
4a1cb6d64b fix(frontend): performance and layout issues (#11036)
## Changes 🏗️

### Performance (Onboarding) 🐎 

- Moved non-UI logic into `providers/onboarding/helpers.ts` to reduce
provider complexity.
- Memoized provider value and narrowed state updates to cut unnecessary
re-renders.
- Deferred non-critical effects until after mount to lower initial JS
work.
 
**Result:** faster initial render and smoother onboarding flows under
load.

### Layout and overflow fixes 📐 

- Replaced `w-screen` with `w-full` in platform/admin/profile layouts
and marketplace wrappers to avoid 100vw scrollbar overflow.
- Adjusted mobile navbar position (`right-0` instead of `-right-4`) to
prevent off-viewport elements.

**Result:** removed horizontal scrolling on Marketplace, Library, and
Settings pages; Build remains unaffected.

### New Generic Error pages

- Standardized global error handling in `app/global-error.tsx` for
consistent display and user feedback.
- Added platform-scoped error page(s) under `app/(platform)/error` for
route-level failures with a consistent layout.
- Improved retry affordances using existing `ErrorCard`.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verify onboarding flows render faster and re-render less (DevTools
flamegraph)
- [x] Confirm no horizontal scrolling on Marketplace, Library, Settings
at common widths
  - [x] Validate mobile navbar stays within viewport
- [x] Trigger errors to confirm global and platform error pages render
consistently

### For configuration changes:

None
2025-10-02 10:21:31 +00:00
Copilot
7c9db7419a fix(frontend): Display run cost correctly - convert cents to dollars run detail components (#10997)
Fixed costs being displayed as raw cent values instead of properly
formatted dollar amounts in the frontend monitoring and agent run detail
pages.

## Problem
The platform was showing costs incorrectly in two key areas:
- **Monitoring page**: Total cost displayed as raw cents with incorrect
"seconds" unit (e.g., "Total cost: 150 seconds")
- **Agent run details**: Individual run costs displayed as raw cents
(e.g., "Cost: $150" for what should be $1.50)

## Solution
Updated the affected components to properly convert cents to dollars
with consistent formatting:

**FlowRunsStatus.tsx** - Fixed total cost calculation and display:
```tsx
// Before
{filteredFlowRuns.reduce((total, run) => total + (run.stats?.cost ?? 0), 0)} seconds

// After  
${(filteredFlowRuns.reduce((total, run) => total + (run.stats?.cost ?? 0), 0) / 100).toFixed(2)}
```

**RunDetailHeader.tsx** - Fixed individual run cost display:
```tsx
// Before
Cost: ${run.stats.cost}

// After
Cost: ${(run.stats.cost / 100).toFixed(2)}
```

## Validation
- Backend correctly stores costs in cents (verified in models and
database schemas)
- Email notification templates already handle the conversion properly
using `(credits_used|float)/100`
- Other components use the existing `formatCredits()` utility which
correctly converts cents to dollars
- No security vulnerabilities introduced (CodeQL verification passed)
- All linting and formatting checks pass

The fix ensures users now see accurate dollar amounts (e.g., $1.50
instead of $150 or "150 seconds") across the platform's cost reporting
interfaces.

![Cost Display Fix
Demo](https://github.com/user-attachments/assets/13c75a1d-7c78-4c11-9293-3dcf4c443097)

> [!WARNING]
>
> <details>
> <summary>Firewall rules blocked me from connecting to one or more
addresses (expand for details)</summary>
>
> #### I tried to connect to the following addresses, but was blocked by
firewall rules:
>
> - `checkpoint.prisma.io`
> - Triggering command: `/usr/bin/node
/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child
{&#34;product&#34;:&#34;prisma&#34;,&#34;version&#34;:&#34;5.17.0&#34;,&#34;cli_install_type&#34;:&#34;local&#34;,&#34;information&#34;:&#34;&#34;,&#34;local_timestamp&#34;:&#34;2025-09-25T21:41:17Z&#34;,&#34;project_hash&#34;:&#34;a5170f80&#34;,&#34;cli_path&#34;:&#34;/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/index.js&#34;,&#34;cli_path_hash&#34;:&#34;40bbdaf9&#34;,&#34;endpoint&#34;:&#34;REDACTED&#34;,&#34;disable&#34;:false,&#34;arch&#34;:&#34;x64&#34;,&#34;os&#34;:&#34;linux&#34;,&#34;node_version&#34;:&#34;v20.19.5&#34;,&#34;ci&#34;:false,&#34;ci_name&#34;:&#34;&#34;,&#34;command&#34;:&#34;generate&#34;,&#34;schema_providers&#34;:[&#34;postgresql&#34;],&#34;schema_preview_features&#34;:[],&#34;schema_generators_providers&#34;:[&#34;prisma-client-py&#34;],&#34;cache_file&#34;:&#34;/root/.cache/checkpoint-nodejs/prisma-40bbdaf9&#34;,&#34;cache_duration&#34;:43200000,&#34;remind_duration&#34;:172800000,&#34;force&#34;:false,&#34;timeout&#34;:5000,&#34;unref&#34;:true,&#34;child_path&#34;:&#34;/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child&#34;,&#34;client_event_id&#34;:&#34;&#34;,&#34;previous_client_event_id&#34;:&#34;&#34;,&#34;check_if_update_available&#34;:false}`
(dns block)
> - Triggering command: `/usr/bin/node
/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child
{&#34;product&#34;:&#34;prisma&#34;,&#34;version&#34;:&#34;5.17.0&#34;,&#34;cli_install_type&#34;:&#34;local&#34;,&#34;information&#34;:&#34;&#34;,&#34;local_timestamp&#34;:&#34;2025-09-25T21:41:19Z&#34;,&#34;project_hash&#34;:&#34;a5170f80&#34;,&#34;cli_path&#34;:&#34;/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/index.js&#34;,&#34;cli_path_hash&#34;:&#34;40bbdaf9&#34;,&#34;endpoint&#34;:&#34;REDACTED&#34;,&#34;disable&#34;:false,&#34;arch&#34;:&#34;x64&#34;,&#34;os&#34;:&#34;linux&#34;,&#34;node_version&#34;:&#34;v20.19.5&#34;,&#34;ci&#34;:false,&#34;ci_name&#34;:&#34;&#34;,&#34;command&#34;:&#34;migrate
deploy&#34;,&#34;schema_providers&#34;:[&#34;postgresql&#34;],&#34;schema_preview_features&#34;:[],&#34;schema_generators_providers&#34;:[&#34;prisma-client-py&#34;],&#34;cache_file&#34;:&#34;/root/.cache/checkpoint-nodejs/prisma-40bbdaf9&#34;,&#34;cache_duration&#34;:43200000,&#34;remind_duration&#34;:172800000,&#34;force&#34;:false,&#34;timeout&#34;:5000,&#34;unref&#34;:true,&#34;child_path&#34;:&#34;/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child&#34;,&#34;client_event_id&#34;:&#34;&#34;,&#34;previous_client_event_id&#34;:&#34;&#34;,&#34;check_if_update_available&#34;:false}`
(dns block)
> - Triggering command: `/opt/hostedtoolcache/node/21.7.3/x64/bin/node
/home/REDACTED/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child
{&#34;product&#34;:&#34;prisma&#34;,&#34;version&#34;:&#34;5.17.0&#34;,&#34;cli_install_type&#34;:&#34;local&#34;,&#34;information&#34;:&#34;&#34;,&#34;local_timestamp&#34;:&#34;2025-09-25T21:44:58Z&#34;,&#34;project_hash&#34;:&#34;c6190a20&#34;,&#34;cli_path&#34;:&#34;/home/REDACTED/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/index.js&#34;,&#34;cli_path_hash&#34;:&#34;8d85b642&#34;,&#34;endpoint&#34;:&#34;REDACTED&#34;,&#34;disable&#34;:false,&#34;arch&#34;:&#34;x64&#34;,&#34;os&#34;:&#34;linux&#34;,&#34;node_version&#34;:&#34;v21.7.3&#34;,&#34;ci&#34;:true,&#34;ci_name&#34;:&#34;GitHub
Actions&#34;,&#34;command&#34;:&#34;generate&#34;,&#34;schema_providers&#34;:[&#34;postgresql&#34;],&#34;schema_preview_features&#34;:[],&#34;schema_generators_providers&#34;:[&#34;prisma-client-py&#34;],&#34;cache_file&#34;:&#34;/home/REDACTED/.cache/checkpoint-nodejs/prisma-8d85b642&#34;,&#34;cache_duration&#34;:43200000,&#34;remind_duration&#34;:172800000,&#34;force&#34;:false,&#34;timeout&#34;:5000,&#34;unref&#34;:true,&#34;child_path&#34;:&#34;/home/REDACTED/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child&#34;,&#34;client_event_id&#34;:&#34;&#34;,&#34;previous_client_event_id&#34;:&#34;&#34;,&#34;check_if_update_available&#34;:false}`
(dns block)
> - `fonts.googleapis.com`
> - Triggering command: `node
/home/REDACTED/work/AutoGPT/AutoGPT/autogpt_platform/frontend/node_modules/.bin/../next/dist/bin/next
build` (dns block)
> -
`https://api.github.com/repos/Significant-Gravitas/Significant-Gravitas%2FAutoGPT/languages`
> - Triggering command:
`/home/REDACTED/work/_temp/ghcca-node/node/bin/node --enable-source-maps
/home/REDACTED/work/_temp/copilot-developer-action-main/dist/index.js`
(http block)
> - `o1.ingest.sentry.io`
> - Triggering command: `node
/home/REDACTED/work/AutoGPT/AutoGPT/autogpt_platform/frontend/node_modules/.bin/../next/dist/bin/next
build` (dns block)
>
> If you need me to access, download, or install something from one of
these locations, you can either:
>
> - Configure [Actions setup
steps](https://gh.io/copilot/actions-setup-steps) to set up my
environment, which run before the firewall is enabled
> - Add the appropriate URLs or hosts to the custom allowlist in this
repository's [Copilot coding agent
settings](https://github.com/Significant-Gravitas/AutoGPT/settings/copilot/coding_agent)
(admins only)
>
> </details>

<!-- START COPILOT CODING AGENT SUFFIX -->



<details>

<summary>Original prompt</summary>

> 
> ----
> 
> *This section details on the original issue you should resolve*
> 
> <issue_title>Costs are being shown as dollars rather than cents based
on the new runs page</issue_title>
> <issue_description></issue_description>
> 
> ## Comments on the Issue (you are @copilot in this section)
> 
> <comments>
> </comments>
> 


</details>
Fixes Significant-Gravitas/AutoGPT#10886

<!-- START COPILOT CODING AGENT TIPS -->
---

💡 You can make Copilot smarter by setting up custom instructions,
customizing its development environment and configuring Model Context
Protocol (MCP) servers. Learn more [Copilot coding agent
tips](https://gh.io/copilot-coding-agent-tips) in the docs.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ntindle <8845353+ntindle@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-10-02 10:08:03 +00:00
Krzysztof Czerwinski
18bbd8e572 fix(frontend): Fix confetti (#11031)
### Changes 🏗️

- Fix not being able to complete `MARKETPLACE_RUN_AGENT` task
- Fix confetti shooting on every refresh
- Fix confetti shooting from top-left corner

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Bugs eradicated
2025-10-02 03:19:25 +00:00
Zamil Majdy
047f011520 fix(platform): resolve authentication performance bottlenecks and improve reliability (#11028)
## Summary
Fix critical authentication performance bottlenecks causing infinite
loading during login and malformed redirect URL handling.

## Root Cause Analysis
- **OnboardingProvider** was running expensive `isOnboardingEnabled()`
database queries on every route for all users
- **Timezone detection** was calling backend APIs during authentication
flow instead of only during onboarding
- **Malformed redirect URLs** like `/marketplace,%20/marketplace`
causing authentication callback failures
- **Arbitrary setTimeout** creating race conditions instead of proper
authentication state management

## Changes Made

### 1. Backend: Cache Expensive Onboarding Queries
(`backend/data/onboarding.py`)
- Add `@cached(maxsize=1, ttl_seconds=300)` decorator to
`onboarding_enabled()`
- Cache expensive database queries for 5 minutes to prevent repeated
execution during auth
- Optimize query with `take=MIN_AGENT_COUNT + 1` to stop counting early
- Fix typo: "Onboading" → "Onboarding"

### 2. Frontend: Optimize OnboardingProvider
(`providers/onboarding/onboarding-provider.tsx`)
- **Route-based optimization**: Only call `isOnboardingEnabled()` when
user is actually on `/onboarding/*` routes
- **Preserve functionality**: Still fetch `getUserOnboarding()` for step
completion tracking on all routes
- **Smart redirects**: Only handle onboarding completion redirects when
on onboarding routes
- **Performance improvement**: Eliminates expensive database calls for
95% of page loads

### 3. Frontend: Fix Timezone Detection Race Conditions
(`hooks/useOnboardingTimezoneDetection.ts`)
- **Remove setTimeout hack**: Replace arbitrary 1000ms timeout with
proper authentication state checks
- **Add route filtering**: Only run timezone detection on
`/onboarding/*` routes using `pathname.startsWith()`
- **Proper auth dependencies**: Use `useSupabase()` hook to wait for
`user` and `!isUserLoading`
- **Fire-and-forget updates**: Change from `mutateAsync()` to `mutate()`
to prevent blocking UI

### 4. Frontend: Apply Fire-and-Forget Pattern
(`hooks/useTimezoneDetection.ts`)
- Change timezone auto-detection from `mutateAsync()` to `mutate()`
- Prevents blocking user interactions during background timezone updates
- API still executes successfully, user doesn't wait for response

### 5. Frontend: Enhanced URL Validation (`auth/callback/route.ts`)
- **Add malformed URL detection**: Check for commas and spaces in
redirect URLs
- **Constants**: Use `DEFAULT_REDIRECT_PATH = "/marketplace"` instead of
hardcoded strings
- **Better error handling**: Try-catch with fallback to safe default
path
- **Path depth limits**: Reject suspiciously deep URLs (>5 segments)
- **Race condition mitigation**: Default to `/marketplace` for corrupted
URLs with warning logs

## Technical Implementation

### Performance Optimizations
- **Database caching**: 5-minute cache prevents repeated expensive
onboarding queries
- **Route-aware logic**: Heavy operations only run where needed
(`/onboarding/*` routes)
- **Non-blocking updates**: Timezone updates don't block authentication
flow
- **Proper state management**: Wait for actual authentication instead of
arbitrary delays

### Authentication Flow Improvements
- **Eliminate race conditions**: No more setTimeout guessing - wait for
proper auth state
- **Faster auth**: Remove blocking timezone API calls during login flow
- **Better UX**: Handle malformed URLs gracefully instead of failing

## Files Changed
- `backend/data/onboarding.py` - Add caching to expensive queries
- `providers/onboarding/onboarding-provider.tsx` - Route-based
optimization
- `hooks/useOnboardingTimezoneDetection.ts` - Proper auth state + route
filtering + fire-and-forget
- `hooks/useTimezoneDetection.ts` - Fire-and-forget pattern
- `auth/callback/route.ts` - Enhanced URL validation

## Impact
- **Eliminates infinite loading** during authentication flow
- **Improves auth response times** from 5-11+ seconds to sub-second
- **Prevents malformed redirect URLs** that confused users
- **Reduces database load** through intelligent caching  
- **Maintains all existing functionality** with better performance
- **Eliminates race conditions** from arbitrary timeouts

## Validation
-  All pre-commit hooks pass (format, lint, typecheck)
-  No breaking changes to existing functionality
-  Backward compatible with all onboarding flows
-  Enhanced error logging and graceful fallbacks

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-02 01:26:49 +00:00
Reinier van der Leer
d11917eb10 feat(blocks): Improve data output of code execution block (#11017)
- Resolves #11016

### Changes 🏗️

- Add more extensive outputs to Code Execution Block
- Rename "Response" output to "Main Text Output"

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Object outputs can be accessed now
2025-10-01 10:38:04 +00:00
Copilot
4663066e65 feat(blocks): Implement AI Condition Block for natural language condition evaluation (#10996)
This PR implements the AI Condition Block as requested in issue
AUTOMAT-60. The new block enables users to define conditional logic
using natural language descriptions instead of traditional comparison
operators, while maintaining the same yes/no data pass-through
functionality as the existing ConditionBlock.

## Overview

The AI Condition Block uses Large Language Models to evaluate conditions
written in plain English, such as:
- "the input is the body of an email"
- "the input is a City in the USA"
- "the input is an error or a refusal"

## Key Features

**Natural Language Processing**: Users can express complex conditions in
everyday English rather than programming logic, making agent workflows
more intuitive and accessible.

**Consistent Interface**: Maintains the same input/output schema as the
standard ConditionBlock:
- Boolean `result` output indicating condition evaluation
- `yes_output` and `no_output` for conditional data flow
- Optional custom values for yes/no cases

**Robust Error Handling**: Defaults to `false` on AI evaluation failures
to ensure safe operation and prevent workflow interruption.

**Performance Optimized**: Uses minimal token limits (10 tokens) for
true/false responses to reduce latency and API costs.

## Implementation Details

The block is implemented as `AIConditionBlock` in
`backend/blocks/ai_condition.py` and inherits from `AIBlockBase`
following established platform patterns. It includes:

- Proper LLM integration with credential management
- Token usage tracking and statistics
- Comprehensive test mocking for reliable CI/CD
- Full documentation with examples and use cases

## Use Cases

This block enables more sophisticated conditional logic for:
- **Content Classification**: Automatically categorize text, emails, or
documents
- **Data Validation**: Validate inputs using natural language rules
- **Smart Routing**: Route data based on AI-evaluated conditions
- **Error Detection**: Identify and handle error messages or problematic
inputs
- **Quality Control**: Check content against flexible quality standards

## Testing

The implementation includes comprehensive testing that integrates with
the existing platform test suite. All tests pass, including:
- Unit tests with proper LLM response mocking
- Code quality checks (linting, formatting, type checking)
- Security analysis via CodeQL
- Integration testing to ensure proper block discovery and loading

The block is automatically discovered by the platform's block loading
system and is immediately available for use in agent workflows.

## PR Checklist

- [x] **Have you listed your changes in the description?**
  - Added new `AIConditionBlock` in `backend/blocks/ai_condition.py`
- Added comprehensive documentation in
`docs/content/platform/blocks/ai_condition.md`
  - Implemented natural language condition evaluation using LLMs

- [x] **Have you included a test plan?**
  - Unit tests with mocked LLM responses
  - Integration tests for block discovery and loading
  - Error handling validation
  - Token usage tracking verification

- [x] **Have you tested your changes according to the test plan?**
  - All existing tests pass
  - Linting and formatting checks pass
  - Type checking passes
  - Security analysis via CodeQL passes
- Fixed `json_format` parameter to `force_json_output` per recent API
changes

> [!WARNING]
>
> <details>
> <summary>Firewall rules blocked me from connecting to one or more
addresses (expand for details)</summary>
>
> #### I tried to connect to the following addresses, but was blocked by
firewall rules:
>
> - `api.openai.com`
> - Triggering command:
`/home/REDACTED/.cache/pypoetry/virtualenvs/autogpt-platform-backend-Ajv4iu2i-py3.11/bin/python
/home/REDACTED/.cache/pypoetry/virtualenvs/autogpt-platform-backend-Ajv4iu2i-py3.11/bin/pytest
backend/blocks/test/test_block.py::test_available_blocks -k
AIConditionBlock -v` (dns block)
> -
`https://api.github.com/repos/Significant-Gravitas/Significant-Gravitas%2FAutoGPT/languages`
> - Triggering command:
`/home/REDACTED/work/_temp/ghcca-node/node/bin/node --enable-source-maps
/home/REDACTED/work/_temp/copilot-developer-action-main/dist/index.js`
(http block)
>
> If you need me to access, download, or install something from one of
these locations, you can either:
>
> - Configure [Actions setup
steps](https://gh.io/copilot/actions-setup-steps) to set up my
environment, which run before the firewall is enabled
> - Add the appropriate URLs or hosts to the custom allowlist in this
repository's [Copilot coding agent
settings](https://github.com/Significant-Gravitas/AutoGPT/settings/copilot/coding_agent)
(admins only)
>
> </details>

<!-- START COPILOT CODING AGENT SUFFIX -->



<details>

<summary>Original prompt</summary>

> Issue Title: AI Condition Block
> Issue Description: A version of the condition/if block that uses an AI
powered condition.
>
> It should have the same yes/no data pass throughs, as well as
outputting a result Boolean.
>
> The condition is plaintext English, provided by the user, and could be
anything.
>
> e.g
> If `[the input] is the body of an email`
> If `[the input] is a City in the USA`
> If `[the input] is an error or a refusal`
> Fixes https://linear.app/autogpt/issue/AUTOMAT-60/ai-condition-block
>
>
> Comment by User 4bcbb358-1758-43e4-abef-a0a42b63442f:
> 📋 I need a **repo** label on this issue to determine which GitHub
repository to work in.
>
> Please add a repo label to this issue with the format
`owner/repository-name` (e.g., `github/copilot`), then I'll
automatically start working on it!
>
> Comment by User :
> This thread is for an agent session with githubcopilotcodingagent.
>
>


</details>


<!-- START COPILOT CODING AGENT TIPS -->
---

 Let Copilot coding agent [set things up for
you](https://github.com/Significant-Gravitas/AutoGPT/issues/new?title=+Set+up+Copilot+instructions&body=Configure%20instructions%20for%20this%20repository%20as%20documented%20in%20%5BBest%20practices%20for%20Copilot%20coding%20agent%20in%20your%20repository%5D%28https://gh.io/copilot-coding-agent-tips%29%2E%0A%0A%3COnboard%20this%20repo%3E&assignees=copilot)
— coding agent works faster and does higher quality work when set up for
your repo.

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Introduces `AIConditionBlock` that uses an LLM to evaluate
natural-language conditions and outputs boolean result with yes/no
pass-through, plus accompanying documentation.
> 
> - **Backend**:
>   - **New block**: `backend/blocks/ai_condition.py`
> - Evaluates natural-language conditions via `llm_call` using
selectable `LlmModel` and credentials.
> - Parses strict true/false responses (with fallback token matching),
yields `result`, `yes_output`/`no_output`, and `error` on
ambiguity/failure.
> - Tracks token usage via `NodeExecutionStats`; includes test
inputs/mocks and `force_json_output=False`.
> - **Docs**:
> - Adds `docs/content/platform/blocks/ai_condition.md` with usage,
inputs/outputs, examples, and considerations.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
06e9586bd3. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ntindle <8845353+ntindle@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicktindle@outlook.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2025-10-01 05:02:57 +00:00
Krzysztof Czerwinski
48a0faa611 feat(frontend): Restore onboarding steps (#11027)
Wallet update removed `BUILDER_OPEN` and `BUILDER_RUN_AGENT`.

### Changes 🏗️

- Restore completion codepaths for `BUILDER_OPEN` and
`BUILDER_RUN_AGENT` for analytical purposes

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Tasks are completed silently
2025-10-01 04:53:51 +00:00
Nicholas Tindle
70d00b4104 fix(ci): Delete pr_reviewer section in .pr_agent.toml (#11024)
Remove pr_reviewer section from configuration

<!-- Clearly explain the need for these changes: -->

### Changes 🏗️
removes the out of config status section
<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] validated by global config
2025-10-01 03:01:24 +00:00
Nicholas Tindle
aad0434cb2 feat(frontend): Enhance Sentry integration and TallyPopup telemetry (#10862)
Added Sentry captureConsoleIntegration and extraErrorDataIntegration to
client, edge, and server configs. Improved replay integration with
unmasking support. Updated TallyPopup to collect and expose Sentry
replay data, user agent, and page URL for enhanced telemetry and
debugging. Improved event handling and error logging for Tally events.
Marked CustomNode title for Sentry unmasking.<!-- Clearly explain the
need for these changes: -->

### Changes 🏗️
Reconfigure sentry
Pass the id with sentry replay to tally alongside prefilling email, and
passing non user identifying attributes like platform url, full url, and
is authenticated.
<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Test the results show up in sentry
  - [x] Test the url works in tally
2025-10-01 03:00:20 +00:00
Krzysztof Czerwinski
f33ec1f2ec feat(platform): New retention-focused tasks and wallet update (#10977)
### Changes 🏗️

- Rename wallet and update design
- Update tasks and add Hidden Tasks section
- Update onboarding backend code and related db migration
- Add progress bar for some tasks

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] All tasks can be finished
  - [x] Finished tasks add correct amount of credits

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2025-10-01 01:29:30 +00:00
dependabot[bot]
e68b873bcf chore(frontend/deps): Bump @faker-js/faker from 9.9.0 to 10.0.0 in /autogpt_platform/frontend (#10806)
Bumps [@faker-js/faker](https://github.com/faker-js/faker) from 9.9.0 to
10.0.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/faker-js/faker/releases"><code>@​faker-js/faker</code>'s
releases</a>.</em></p>
<blockquote>
<h2>v10.0.0</h2>
<h2>New &amp; Noteworthy</h2>
<ul>
<li>esm only (for cjs support look into migration guide, we got you
covered 😉)</li>
<li>remove v9 deprecations</li>
<li>change default error strategy to 'fail' in word module</li>
<li>remove invalid credit card issuer patterns</li>
<li>see our <a
href="https://v10.fakerjs.dev/guide/upgrading.html">migration
guide</a></li>
</ul>
<h2>What's Changed</h2>
<ul>
<li>ci: use node 24 by <a
href="https://github.com/Shinigami92"><code>@​Shinigami92</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3543">faker-js/faker#3543</a></li>
<li>infra: stop using node 18 by <a
href="https://github.com/Shinigami92"><code>@​Shinigami92</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3536">faker-js/faker#3536</a></li>
<li>infra: use import.meta.dirname by <a
href="https://github.com/Shinigami92"><code>@​Shinigami92</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3542">faker-js/faker#3542</a></li>
<li>chore(deps): update devdependencies (major) by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3512">faker-js/faker#3512</a></li>
<li>chore(deps): update eslint by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3555">faker-js/faker#3555</a></li>
<li>chore(deps): update dependency <code>@​vitest/eslint-plugin</code>
to v1.3.4 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3554">faker-js/faker#3554</a></li>
<li>chore(deps): update devdependencies by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3556">faker-js/faker#3556</a></li>
<li>chore(deps): lock file maintenance by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3557">faker-js/faker#3557</a></li>
<li>feat!: esm only by <a
href="https://github.com/Shinigami92"><code>@​Shinigami92</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3540">faker-js/faker#3540</a></li>
<li>refactor!: remove deprecations by <a
href="https://github.com/Shinigami92"><code>@​Shinigami92</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3553">faker-js/faker#3553</a></li>
<li>docs: migration guide for v10 by <a
href="https://github.com/matthewmayer"><code>@​matthewmayer</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3559">faker-js/faker#3559</a></li>
<li>infra: more precise engines field by <a
href="https://github.com/matthewmayer"><code>@​matthewmayer</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3561">faker-js/faker#3561</a></li>
<li>refactor(word)!: change default error strategy to 'fail' by <a
href="https://github.com/xDivisionByZerox"><code>@​xDivisionByZerox</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3560">faker-js/faker#3560</a></li>
<li>chore(release): 10.0.0-beta.0 by <a
href="https://github.com/fakerjs-bot"><code>@​fakerjs-bot</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3565">faker-js/faker#3565</a></li>
<li>docs: Minor improvements to migration guide by <a
href="https://github.com/matthewmayer"><code>@​matthewmayer</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3569">faker-js/faker#3569</a></li>
<li>chore(deps): update pnpm to v10.13.1 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3570">faker-js/faker#3570</a></li>
<li>chore(deps): update devdependencies by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3571">faker-js/faker#3571</a></li>
<li>chore(deps): update eslint by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3572">faker-js/faker#3572</a></li>
<li>chore(deps): lock file maintenance by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3562">faker-js/faker#3562</a></li>
<li>chore(deps): update dependency typescript to v5.9.2 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3576">faker-js/faker#3576</a></li>
<li>chore(deps): update pnpm to v10.14.0 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3579">faker-js/faker#3579</a></li>
<li>chore(deps): update
mcr.microsoft.com/devcontainers/typescript-node:22 docker digest to
2baa40a by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3575">faker-js/faker#3575</a></li>
<li>chore(deps): update devdependencies by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3577">faker-js/faker#3577</a></li>
<li>chore(deps): update eslint (major) by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3580">faker-js/faker#3580</a></li>
<li>chore(deps): update eslint by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3578">faker-js/faker#3578</a></li>
<li>feat(locale): extended list of colors in Polish by <a
href="https://github.com/pkuczynski"><code>@​pkuczynski</code></a> in <a
href="https://redirect.github.com/faker-js/faker/pull/3586">faker-js/faker#3586</a></li>
<li>refactor(locale): remove invalid credit card issuer patterns by <a
href="https://github.com/xDivisionByZerox"><code>@​xDivisionByZerox</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3568">faker-js/faker#3568</a></li>
<li>docs: update migration guide with findings from playground update by
<a
href="https://github.com/xDivisionByZerox"><code>@​xDivisionByZerox</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3587">faker-js/faker#3587</a></li>
<li>chore: fix typo in test by <a
href="https://github.com/noritaka1166"><code>@​noritaka1166</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3591">faker-js/faker#3591</a></li>
<li>chore(deps): update all non-major dependencies by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3596">faker-js/faker#3596</a></li>
<li>chore(deps): update amannn/action-semantic-pull-request action to v6
by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3598">faker-js/faker#3598</a></li>
<li>chore(deps): update devdependencies by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3599">faker-js/faker#3599</a></li>
<li>chore(deps): update actions/checkout action to v5 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3597">faker-js/faker#3597</a></li>
<li>chore(deps): update dependency cypress to v15 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3603">faker-js/faker#3603</a></li>
<li>chore(deps): update dependency vitepress to v1.6.4 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3601">faker-js/faker#3601</a></li>
<li>chore(deps): pin dependency node to 24.6.0 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3600">faker-js/faker#3600</a></li>
<li>chore(deps): update dependency typescript-eslint to v8.40.0 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3602">faker-js/faker#3602</a></li>
<li>chore(deps): update dependency eslint-plugin-jsdoc to v54 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3604">faker-js/faker#3604</a></li>
<li>chore(deps): lock file maintenance by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3584">faker-js/faker#3584</a></li>
<li>chore(release): 10.0.0 by <a
href="https://github.com/fakerjs-bot"><code>@​fakerjs-bot</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3605">faker-js/faker#3605</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/faker-js/faker/blob/next/CHANGELOG.md"><code>@​faker-js/faker</code>'s
changelog</a>.</em></p>
<blockquote>
<h2><a
href="https://github.com/faker-js/faker/compare/v10.0.0-beta.0...v10.0.0">10.0.0</a>
(2025-08-21)</h2>
<h3>New Locales</h3>
<ul>
<li><strong>locale:</strong> extended list of colors in Polish (<a
href="https://redirect.github.com/faker-js/faker/issues/3586">#3586</a>)
(<a
href="9940d54f75">9940d54</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li><strong>locales:</strong> add animal vocabulary(bear, bird, cat,
rabbit, pet_name) in Korean (<a
href="https://redirect.github.com/faker-js/faker/issues/3535">#3535</a>)
(<a
href="0d2143c75d">0d2143c</a>)</li>
</ul>
<h3>Changed Locales</h3>
<ul>
<li><strong>locale:</strong> remove invalid credit card issuer patterns
(<a
href="https://redirect.github.com/faker-js/faker/issues/3568">#3568</a>)
(<a
href="9783d95a8e">9783d95</a>)</li>
</ul>
<h2><a
href="https://github.com/faker-js/faker/compare/v9.9.0...v10.0.0-beta.0">10.0.0-beta.0</a>
(2025-07-09)</h2>
<h3>⚠ BREAKING CHANGES</h3>
<ul>
<li>
<p><strong>word:</strong> change default error strategy to 'fail' (<a
href="https://redirect.github.com/faker-js/faker/issues/3560">#3560</a>)</p>
</li>
<li>
<p>remove deprecations (<a
href="https://redirect.github.com/faker-js/faker/issues/3553">#3553</a>)</p>
</li>
<li>
<p>esm only (<a
href="https://redirect.github.com/faker-js/faker/issues/3540">#3540</a>)</p>
</li>
<li>
<p>remove deprecations (<a
href="https://redirect.github.com/faker-js/faker/issues/3553">#3553</a>)
(<a
href="623d2741a4">623d274</a>)</p>
</li>
<li>
<p><strong>word:</strong> change default error strategy to 'fail' (<a
href="https://redirect.github.com/faker-js/faker/issues/3560">#3560</a>)
(<a
href="93416f71cf">93416f7</a>)</p>
</li>
</ul>
<h3>Features</h3>
<ul>
<li>esm only (<a
href="https://redirect.github.com/faker-js/faker/issues/3540">#3540</a>)
(<a
href="160960b797">160960b</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="51943aecb9"><code>51943ae</code></a>
chore(release): 10.0.0 (<a
href="https://redirect.github.com/faker-js/faker/issues/3605">#3605</a>)</li>
<li><a
href="96d7517b9b"><code>96d7517</code></a>
chore(deps): lock file maintenance (<a
href="https://redirect.github.com/faker-js/faker/issues/3584">#3584</a>)</li>
<li><a
href="2eb6fa0a7a"><code>2eb6fa0</code></a>
chore(deps): update dependency eslint-plugin-jsdoc to v54 (<a
href="https://redirect.github.com/faker-js/faker/issues/3604">#3604</a>)</li>
<li><a
href="1fcfe4830d"><code>1fcfe48</code></a>
chore(deps): pin dependency node to 24.6.0 (<a
href="https://redirect.github.com/faker-js/faker/issues/3600">#3600</a>)</li>
<li><a
href="2bd4807fa2"><code>2bd4807</code></a>
chore(deps): update dependency typescript-eslint to v8.40.0 (<a
href="https://redirect.github.com/faker-js/faker/issues/3602">#3602</a>)</li>
<li><a
href="09a88eb100"><code>09a88eb</code></a>
chore(deps): update dependency vitepress to v1.6.4 (<a
href="https://redirect.github.com/faker-js/faker/issues/3601">#3601</a>)</li>
<li><a
href="5418574bf7"><code>5418574</code></a>
chore(deps): update dependency cypress to v15 (<a
href="https://redirect.github.com/faker-js/faker/issues/3603">#3603</a>)</li>
<li><a
href="9e4f463ecf"><code>9e4f463</code></a>
chore(deps): update actions/checkout action to v5 (<a
href="https://redirect.github.com/faker-js/faker/issues/3597">#3597</a>)</li>
<li><a
href="287ecdaa39"><code>287ecda</code></a>
chore(deps): update devdependencies (<a
href="https://redirect.github.com/faker-js/faker/issues/3599">#3599</a>)</li>
<li><a
href="2b1495956f"><code>2b14959</code></a>
chore(deps): update amannn/action-semantic-pull-request action to v6 (<a
href="https://redirect.github.com/faker-js/faker/issues/3598">#3598</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/faker-js/faker/compare/v9.9.0...v10.0.0">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=@faker-js/faker&package-manager=npm_and_yarn&previous-version=9.9.0&new-version=10.0.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Upgrades `@faker-js/faker` to v10 and updates test utilities to
dynamically import Faker and make password generation async.
> 
> - **Frontend dependencies**:
>   - Bump `@faker-js/faker` from `9.9.0` to `10.0.0`.
> - **Tests**:
> - Replace static imports with dynamic `import("@faker-js/faker")` in
`src/tests/utils/{auth.ts,signup.ts}`.
> - Change `generateTestPassword` to `async` returning `Promise<string>`
to use ESM Faker.
> - Adjust test user creation to use dynamically generated
`email`/`password` via Faker.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
334f4a264d. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2025-09-30 21:12:18 +00:00
Nicholas Tindle
4530e97e59 feat(platform/blocks): Add table input UI and builder block (#10829)
<!-- Clearly explain the need for these changes: -->


https://github.com/user-attachments/assets/909a6ecf-5731-424c-8dee-fe25db907365


### Need 💡

This PR introduces a new "Table Input" block and corresponding UI
component, allowing users to easily input structured, tabular data
directly within the agent builder. This addresses the need for a
user-friendly way to define custom column headers and populate rows of
data, which is then output as a list of dictionaries.

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

* **New `TableInputBlock` (backend):** A new block
(`backend/backend/blocks/table_input.py`) has been added. It defines an
`Input` schema with `headers` (a list of strings for column names) and
`value` (a list of dictionaries representing table rows). The block
outputs the `value` data in the specified dictionary format.
* **New `NodeTableInput` Component (frontend):** A new React component
(`frontend/src/components/node-table-input.tsx`) was created to render
an editable table UI, supporting dynamic row addition/removal and cell
editing.
*   **Frontend Integration:**
* `NodeGenericInputField` and `NodeObjectInputTree` were updated to pass
`parentContext` down the component hierarchy.
* `NodeArrayInput` was modified to conditionally render the new
`NodeTableInput` component. It now detects when an array field
(`selfKey` is "value") is part of a parent context that defines
`headers`, indicating it should be rendered as a table.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Add a "Table Input" block to the builder.
  - [x] Define custom headers (e.g., "Name", "Email").
  - [x] Add several rows of data using the table UI.
- [x] Verify that adding, editing, and removing rows works as expected.
- [x] Connect the output of the "Table Input" block to another block
(e.g., a "Print" block) and confirm the output format is a list of
dictionaries with the defined headers as keys.
  - [x] Test with an empty table (no rows).
  - [x] Test with no headers defined (should default).
- [x] Test that an empty row returns empty data (is this a good
behavior?


example output of the block
```
{
  "advanced": false,
  "column_headers": [
    "Col 1",
    "Col 2",
    "Col 3"
  ],
  "name": "table_input",
  "value": [
    {
      "Col 1": "row 1",
      "Col 2": "row 1",
      "Col 3": "row 1"
    },
    {
      "Col 1": "val 1",
      "Col 2": "val 2",
      "Col 3": "val 3"
    }
  ]
}
```

---
<a
href="https://cursor.com/background-agent?bcId=bc-b8d31867-1034-4374-852c-b92ca69cc399">
  <picture>
<source media="(prefers-color-scheme: dark)"
srcset="https://cursor.com/open-in-cursor-dark.svg">
<source media="(prefers-color-scheme: light)"
srcset="https://cursor.com/open-in-cursor-light.svg">
<img alt="Open in Cursor" src="https://cursor.com/open-in-cursor.svg">
  </picture>
</a>
<a
href="https://cursor.com/agents?id=bc-b8d31867-1034-4374-852c-b92ca69cc399">
  <picture>
<source media="(prefers-color-scheme: dark)"
srcset="https://cursor.com/open-in-web-dark.svg">
<source media="(prefers-color-scheme: light)"
srcset="https://cursor.com/open-in-web-light.svg">
    <img alt="Open in Web" src="https://cursor.com/open-in-web.svg">
  </picture>
</a>

---------

Co-authored-by: Cursor Agent <cursoragent@cursor.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2025-09-30 19:41:03 +00:00
Bently
477c261488 feat(blocks): Add claude-sonnet-4.5 (#11023)
## Summary
Adds claude-sonnet-4.5 model to the platform and sets the price to 9

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] test the new claude-sonnet-4.5 model on the platform to make sure
it works
2025-09-30 19:30:58 +00:00
dependabot[bot]
8ac2228e1e chore(frontend/deps): Upgrade @sentry/nextjs from 9.42.0 to 10.8.0 (#10802)
Bumps [@sentry/nextjs](https://github.com/getsentry/sentry-javascript)
from 9.42.0 to 10.8.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/getsentry/sentry-javascript/releases"><code>@​sentry/nextjs</code>'s
releases</a>.</em></p>
<blockquote>
<h2>10.8.0</h2>
<h3>Important Changes</h3>
<ul>
<li>
<p><strong>feat(sveltekit): Add Compatibility for builtin SvelteKit
Tracing (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17423">#17423</a>)</strong></p>
<p>This release makes the <code>@sentry/sveltekit</code> SDK compatible
with SvelteKit's native <a
href="https://svelte.dev/docs/kit/observability">observability
support</a> introduced in SvelteKit version <code>2.31.0</code>.
If you enable both, instrumentation and tracing, the SDK will now
initialize early enough to set up additional instrumentation like
database queries and it will pick up spans emitted from SvelteKit.</p>
<p>We will follow up with docs how to set up the SDK soon.
For now, If you're on SvelteKit version <code>2.31.0</code> or newer,
you can easily opt into the new feature:</p>
<ol>
<li>
<p>Enable <a
href="https://svelte.dev/docs/kit/observability">experimental tracing
and instrumentation support</a> in <code>svelte.config.js</code>:</p>
</li>
<li>
<p>Move your <code>Sentry.init()</code> call from
<code>src/hooks.server.(js|ts)</code> to the new
<code>instrumentation.server.(js|ts)</code> file:</p>
<pre lang="ts"><code>// instrumentation.server.ts
import * as Sentry from '@sentry/sveltekit';
<p>Sentry.init({<br />
dsn: '...',<br />
// rest of your config<br />
});<br />
</code></pre></p>
<p>The rest of your Sentry config in <code>hooks.server.ts</code>
(<code>sentryHandle</code> and <code>handleErrorWithSentry</code>)
should stay the same.</p>
</li>
</ol>
<p>If you prefer to stay on the hooks-file based config for now, the SDK
will continue to work as previously.</p>
<p>Thanks to the Svelte team and <a
href="https://github.com/elliott-with-the-longest-name-on-github"><code>@​elliott-with-the-longest-name-on-github</code></a>
for implementing observability support and for reviewing our PR!</p>
</li>
</ul>
<h3>Other Changes</h3>
<ul>
<li>fix(react): Avoid multiple name updates on navigation spans (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17438">#17438</a>)</li>
</ul>
<!-- raw HTML omitted -->
<ul>
<li>test(profiling): Add tests for current state of profiling (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17470">#17470</a>)</li>
</ul>
<!-- raw HTML omitted -->
<h2>Bundle size 📦</h2>
<table>
<thead>
<tr>
<th>Path</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>@​sentry/browser</code></td>
<td>23.59 KB</td>
</tr>
<tr>
<td><code>@​sentry/browser</code> - with treeshaking flags</td>
<td>22.2 KB</td>
</tr>
<tr>
<td><code>@​sentry/browser</code> (incl. Tracing)</td>
<td>38.94 KB</td>
</tr>
<tr>
<td><code>@​sentry/browser</code> (incl. Tracing, Replay)</td>
<td>76.4 KB</td>
</tr>
<tr>
<td><code>@​sentry/browser</code> (incl. Tracing, Replay) - with
treeshaking flags</td>
<td>66.43 KB</td>
</tr>
</tbody>
</table>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/getsentry/sentry-javascript/blob/develop/CHANGELOG.md"><code>@​sentry/nextjs</code>'s
changelog</a>.</em></p>
<blockquote>
<h2>10.8.0</h2>
<h3>Important Changes</h3>
<ul>
<li>
<p><strong>feat(sveltekit): Add Compatibility for builtin SvelteKit
Tracing (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17423">#17423</a>)</strong></p>
<p>This release makes the <code>@sentry/sveltekit</code> SDK compatible
with SvelteKit's native <a
href="https://svelte.dev/docs/kit/observability">observability
support</a> introduced in SvelteKit version <code>2.31.0</code>.
If you enable both, instrumentation and tracing, the SDK will now
initialize early enough to set up additional instrumentation like
database queries and it will pick up spans emitted from SvelteKit.</p>
<p>We will follow up with docs how to set up the SDK soon.
For now, If you're on SvelteKit version <code>2.31.0</code> or newer,
you can easily opt into the new feature:</p>
<ol>
<li>
<p>Enable <a
href="https://svelte.dev/docs/kit/observability">experimental tracing
and instrumentation support</a> in <code>svelte.config.js</code>:</p>
</li>
<li>
<p>Move your <code>Sentry.init()</code> call from
<code>src/hooks.server.(js|ts)</code> to the new
<code>instrumentation.server.(js|ts)</code> file:</p>
<pre lang="ts"><code>// instrumentation.server.ts
import * as Sentry from '@sentry/sveltekit';
<p>Sentry.init({<br />
dsn: '...',<br />
// rest of your config<br />
});<br />
</code></pre></p>
<p>The rest of your Sentry config in <code>hooks.server.ts</code>
(<code>sentryHandle</code> and <code>handleErrorWithSentry</code>)
should stay the same.</p>
</li>
</ol>
<p>If you prefer to stay on the hooks-file based config for now, the SDK
will continue to work as previously.</p>
<p>Thanks to the Svelte team and <a
href="https://github.com/elliott-with-the-longest-name-on-github"><code>@​elliott-with-the-longest-name-on-github</code></a>
for implementing observability support and for reviewing our PR!</p>
</li>
</ul>
<h3>Other Changes</h3>
<ul>
<li>fix(react): Avoid multiple name updates on navigation spans (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17438">#17438</a>)</li>
</ul>
<!-- raw HTML omitted -->
<ul>
<li>test(profiling): Add tests for current state of profiling (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17470">#17470</a>)</li>
</ul>
<!-- raw HTML omitted -->
<h2>10.7.0</h2>
<h3>Important Changes</h3>
<ul>
<li><strong>feat(cloudflare): Add
<code>instrumentPrototypeMethods</code> option to instrument RPC methods
for DurableObjects (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17424">#17424</a>)</strong></li>
</ul>
<p>By default, <code>Sentry.instrumentDurableObjectWithSentry</code>
will not wrap any RPC methods on the prototype. To enable wrapping for
RPC methods, set <code>instrumentPrototypeMethods</code> to
<code>true</code> or, if performance is a concern, a list of only the
methods you want to instrument:</p>
<pre lang="js"><code>&lt;/tr&gt;&lt;/table&gt; 
</code></pre>
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="bd8458e659"><code>bd8458e</code></a>
release: 10.8.0</li>
<li><a
href="dbdddc896f"><code>dbdddc8</code></a>
Merge pull request <a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17481">#17481</a>
from getsentry/prepare-release/10.8.0</li>
<li><a
href="f5d4bd616e"><code>f5d4bd6</code></a>
meta(changelog): Update changelog for 10.8.0</li>
<li><a
href="dfdc3b0ab9"><code>dfdc3b0</code></a>
test(profiling): Add tests for current state of profiling (<a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17470">#17470</a>)</li>
<li><a
href="895b38590c"><code>895b385</code></a>
fix(react): Avoid multiple name updates on navigation spans (<a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17438">#17438</a>)</li>
<li><a
href="e6e20d847c"><code>e6e20d8</code></a>
feat(sveltekit): Add Compatibility for builtin SvelteKit Tracing (<a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17423">#17423</a>)</li>
<li><a
href="7e24422327"><code>7e24422</code></a>
Merge pull request <a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17472">#17472</a>
from getsentry/master</li>
<li><a
href="27e97b0cec"><code>27e97b0</code></a>
Merge branch 'release/10.7.0'</li>
<li><a
href="b7e4816824"><code>b7e4816</code></a>
release: 10.7.0</li>
<li><a
href="0bc8417d50"><code>0bc8417</code></a>
Merge pull request <a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17471">#17471</a>
from getsentry/prepare-release/10.7.0</li>
<li>Additional commits viewable in <a
href="https://github.com/getsentry/sentry-javascript/compare/9.42.0...10.8.0">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=@sentry/nextjs&package-manager=npm_and_yarn&previous-version=9.42.0&new-version=10.8.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Upgrades `@sentry/nextjs` to 10.15.0, updating numerous related
`@sentry/*`, OpenTelemetry (v2), and build/dev dependencies via the
lockfile.
> 
> - **Dependencies (frontend)**:
>   - Upgrade `@sentry/nextjs` from `9.42.0` to `10.15.0`.
>   - Cascading updates in `pnpm-lock.yaml`:
> - `@sentry/*` packages (`browser`, `core`, `node`, `opentelemetry`,
`react`, `vercel-edge`, `webpack-plugin`, `bundler-plugin-core`, `cli`,
etc.).
> - OpenTelemetry stack to newer major versions
(`@opentelemetry/core`/`resources`/`sdk-trace-base` 2.x; multiple
`instrumentation-*` packages).
> - Build tooling: `rollup` 4.52.x and platform binaries;
`@rollup/plugin-*`.
> - Misc dev typings and utilities (e.g., `@types/mysql`, `@types/pg`,
`debug`, `@prisma/instrumentation`).
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
5b4b37e551. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-09-30 16:42:05 +00:00
Zamil Majdy
91dd9364bb fix(backend): implement retry mechanism for SmartDecisionMaker tool call validation (#11015)
<!-- Clearly explain the need for these changes: -->

This PR fixes a critical production issue where SmartDecisionMakerBlock
was silently accepting tool calls with typo'd parameter names (e.g.,
'maximum_keyword_difficulty' instead of 'max_keyword_difficulty'),
causing downstream blocks to receive null values and execution failures.

The solution implements comprehensive parameter validation with
automatic retry when the LLM provides malformed tool calls, giving the
LLM specific feedback to correct the errors.

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

**Core Validation & Retry Logic
(`backend/blocks/smart_decision_maker.py`)**
- Add tool call parameter validation against function schema
- Implement retry mechanism using existing `create_retry_decorator` from
`backend.util.retry`
- Validate provided parameters against expected schema properties and
required fields
- Generate specific error messages for unknown parameters (typos) and
missing required parameters
- Add error feedback to conversation history for LLM learning on retry
attempts
- Use `input_data.retry` field to configure number of retry attempts

**Comprehensive Test Coverage
(`backend/blocks/test/test_smart_decision_maker.py`)**
- Add `test_smart_decision_maker_parameter_validation` with 4
comprehensive test scenarios:
1. Tool call with typo'd parameter (should retry and eventually fail
with clear error)
2. Tool call missing required parameter (should fail immediately with
clear error)
  3. Valid tool call with optional parameter missing (should succeed)
  4. Valid tool call with all parameters provided (should succeed)
- Verify retry mechanism works correctly and respects retry count
- Mock LLM responses for controlled testing of validation logic

**Load Tests Documentation Update (`load-tests/README.md`)**
- Update documentation to reflect current orchestrator-based
architecture
- Remove references to deprecated `run-tests.js` and
`comprehensive-orchestrator.js`
- Streamline documentation to focus on working
`orchestrator/orchestrator.js`
- Update NPM scripts and command examples for current workflow
- Clean up outdated file references to match actual infrastructure

**Production Impact**
- **Prevents silent failures**: Tool call parameter typos now cause
retries instead of null downstream values
- **Maintains compatibility**: No breaking changes to existing
SmartDecisionMaker functionality
- **Improves reliability**: LLM receives feedback to correct parameter
errors
- **Configurable retries**: Uses existing `retry` field for user control
- **Accurate documentation**: Load-tests docs now match actual working
infrastructure

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] Run existing SmartDecisionMaker tests to ensure no regressions:
`poetry run pytest backend/blocks/test/test_smart_decision_maker.py
-xvs`  All 4 tests passed
- [x] Run new parameter validation test specifically: `poetry run pytest
backend/blocks/test/test_smart_decision_maker.py::test_smart_decision_maker_parameter_validation
-xvs`  Passed with retry behavior confirmed
- [x] Verify retry mechanism works by checking log output for retry
attempts  Confirmed in test logs
- [x] Test tool call validation with different scenarios (typos, missing
params, valid calls)  All scenarios covered and working
- [x] Run code formatting and linting: `poetry run format`  All
formatters passed
- [x] Verify no breaking changes to existing SmartDecisionMaker
functionality  All existing tests pass
- [x] Verify load-tests documentation accuracy  README now matches
actual orchestrator infrastructure

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

**Note**: No configuration changes were needed as this uses existing
retry infrastructure and block schema validation.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-30 16:18:05 +00:00
Zamil Majdy
f314fbf14f fix(backend): resolve two critical long-running agent execution failures (#11011)
## Summary

Fix two production issues causing agent execution failures that occurred
this morning:

1. **AsyncRedisLock Release Error** (ExecutionID:
08b2c251-ee27-45de-b88d-1792823ca3ee)
   - Error: "Cannot release a lock that's no longer owned" 
- Root cause: Race condition where lock expires during long database
operations
   - Location: backend/executor/manager.py synchronized context manager

2. **Tool Call Parameter Validation** (ExecutionID:
766fd9a0-5f22-4a77-96e8-14c9d02f3292)
- Issue: LLM used typo'd parameter 'maximum_keyword_difficulty' instead
of 'max_keyword_difficulty'
- SmartDecisionMakerBlock silently accepted typo, setting correct
parameter to null
- Result: Downstream blocks received null values causing execution
failures

## Changes Made

### AsyncRedisLock Error Handling
- Add try-catch blocks around AsyncRedisLock.release() calls in
ExecutionManager and OAuth refresh
- Prevent crashes when locks expire between ownership check and release
- Log warnings instead of crashing execution

### Tool Call Parameter Validation  
- **Reject unknown parameters**: Raise ValueError for typo'd parameter
names with detailed error messages
- **Allow optional parameters**: Only validate missing REQUIRED
parameters
- **Safe parameter access**: Use .get() to handle optional parameters
with defaults
- **Clean code**: Extract parameters object once to eliminate
duplication

## Technical Implementation

**Lock Release Protection:**
```python
if await lock.locked() and await lock.owned():
    try:
        await lock.release()
    except Exception as e:
        logger.warning(f"Failed to release lock for key {key}: {e}")
```

**Parameter Validation Logic:**
```python
# Get parameters schema from tool definition  
if tool_def and "function" in tool_def and "parameters" in tool_def["function"]:
    parameters = tool_def["function"]["parameters"]
    expected_args = parameters.get("properties", {})
    required_params = set(parameters.get("required", []))

# Detect parameter typos and missing required params
unexpected_args = provided_args - expected_args_set  
missing_required_args = required_params - provided_args

if unexpected_args or missing_required_args:
    raise ValueError(error_msg)  # Detailed error explaining the problem
```

## Testing

- [x] All existing tests pass
- [x] Lock error handling prevents execution crashes  
- [x] Tool validation catches typos while allowing optional parameters
- [x] Maintains backward compatibility with existing workflows

## Impact

-  No more "Cannot release a lock" crashes during long database
operations
-  Tool calls with typo'd parameters are rejected with clear error
messages
-  Optional parameters work correctly with default values  
-  Production stability improved with graceful error handling

## Files Modified

- `backend/executor/manager.py` - AsyncRedisLock error handling in
synchronized context
- `backend/integrations/creds_manager.py` - OAuth refresh lock error
handling
- `backend/blocks/smart_decision_maker.py` - Tool call parameter
validation with typo detection

Fixes two critical production failures that were causing 2/5 agent runs
to fail this morning.

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-29 15:34:20 +00:00
Zamil Majdy
a97ff641c3 feat(backend): optimize FastAPI endpoints performance and alert system (#11000)
## Summary

Comprehensive performance optimization fixing event loop binding issues
and addressing all PR feedback.

### Original Performance Issues Fixed

**Event Loop Binding Problems:**
- JWT authentication dependencies were synchronous, causing thread pool
bottlenecks under high concurrency
- FastAPI's default thread pool (40 threads) was insufficient for
high-load scenarios
- Backend services lacked proper event loop configuration

**Security & Performance Improvements:**
- Security middleware converted from BaseHTTPMiddleware to pure ASGI for
better performance
- Added blocks endpoint to cacheable paths for improved response times
- Cross-platform uvloop detection with Windows compatibility

### Key Changes Made

#### 1. JWT Authentication Async Conversion
- **Files**: `autogpt_libs/auth/dependencies.py`,
`autogpt_libs/auth/jwt_utils.py`
- **Change**: Convert all JWT functions to async (`requires_user`,
`requires_admin_user`, `get_user_id`, `get_jwt_payload`)
- **Impact**: Eliminates thread pool blocking, improves concurrency
handling
- **Tests**: All 25+ authentication tests updated to async patterns

#### 2. FastAPI Thread Pool Optimization  
- **File**: `backend/server/rest_api.py:82-93`
- **Change**: Configure thread pool size via
`config.fastapi_thread_pool_size`
- **Default**: Increased from 40 to higher limit for sync operations
- **Impact**: Better handling of remaining sync dependencies

#### 3. Performance-Optimized Security Middleware
- **File**: `backend/server/middleware/security.py`
- **Change**: Pure ASGI implementation replacing BaseHTTPMiddleware
- **Headers**: HTTP spec compliant capitalization
(X-Content-Type-Options, X-Frame-Options, etc.)
- **Caching**: Added `/api/blocks` and `/api/v1/blocks` to cacheable
paths
- **Impact**: Reduced middleware overhead, improved header compliance

#### 4. Cross-Platform Event Loop Configuration
- **File**: `backend/server/rest_api.py:311-312`
- **Change**: Platform-aware uvloop detection: `'uvloop' if
platform.system() != 'Windows' else 'auto'`
- **Impact**: Windows compatibility while maintaining Unix performance
benefits
- **Verified**: 'auto' is valid uvicorn default parameter

#### 5. Enhanced Caching Infrastructure
- **File**: `autogpt_libs/utils/cache.py:118-132`
- **Change**: Per-event-loop asyncio.Lock instances prevent cross-loop
deadlocks
- **Impact**: Thread-safe caching across multiple event loops

#### 6. Database Query Limits & Performance
- **Files**: Multiple data layer files
- **Change**: Added configurable limits to prevent unbounded queries
- **Constants**: `MAX_GRAPH_VERSIONS_FETCH=50`,
`MAX_USER_API_KEYS_FETCH=500`, etc.
- **Impact**: Consistent performance regardless of data volume

#### 7. OpenAPI Documentation Improvements
- **File**: `backend/server/routers/v1.py:68-85`
- **Change**: Added proper response model and schema for blocks endpoint
- **Impact**: Better API documentation and type safety

#### 8. Error Handling & Retry Logic Fixes
- **File**: `backend/util/retry.py:63`
- **Change**: Accurate retry threshold comments referencing
EXCESSIVE_RETRY_THRESHOLD
- **Impact**: Clear documentation for debugging retry scenarios

### ntindle Feedback Addressed

 **HTTP Header Capitalization**: All headers now use proper HTTP spec
capitalization
 **Windows uvloop Compatibility**: Clean platform detection with inline
conditional
 **OpenAPI Response Model**: Blocks endpoint properly documented in
schema
 **Retry Comment Accuracy**: References actual threshold constants
instead of hardcoded numbers
 **Code Cleanliness**: Inline conditionals preferred over verbose if
statements

### Performance Testing Results

**Before Optimization:**
- High latency under concurrent load
- Thread pool exhaustion at ~40 concurrent requests
- Event loop binding issues causing timeouts

**After Optimization:**
- Improved concurrency handling with async JWT pipeline
- Configurable thread pool scaling
- Cross-platform event loop optimization
- Reduced middleware overhead

### Backward Compatibility

 **All existing functionality preserved**  
 **No breaking API changes**  
 **Enhanced test coverage with async patterns**  
 **Windows and Unix compatibility maintained**

### Files Modified

**Core Authentication & Performance:**
- `autogpt_libs/auth/dependencies.py` - Async JWT dependencies
- `autogpt_libs/auth/jwt_utils.py` - Async JWT utilities  
- `backend/server/rest_api.py` - Thread pool config + uvloop detection
- `backend/server/middleware/security.py` - ASGI security middleware

**Database & Limits:**
- `backend/data/includes.py` - Performance constants and configurable
includes
- `backend/data/api_key.py`, `backend/data/credit.py`,
`backend/data/graph.py`, `backend/data/integrations.py` - Query limits

**Caching & Infrastructure:**
- `autogpt_libs/utils/cache.py` - Per-event-loop lock safety
- `backend/server/routers/v1.py` - OpenAPI improvements
- `backend/util/retry.py` - Comment accuracy

**Testing:**
- `autogpt_libs/auth/dependencies_test.py` - 25+ async test conversions
- `autogpt_libs/auth/jwt_utils_test.py` - Async JWT test patterns

Ready for review and production deployment. 🚀

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-29 05:32:48 +00:00
Zamil Majdy
114f604d7b Merge branch 'master' of github.com:Significant-Gravitas/AutoGPT into dev 2025-09-27 18:43:26 +07:00
Zamil Majdy
3abea1ed96 fix(backend): prevent duplicate graph executions across multiple executor pods (#11008)
## Problem
Multiple executor pods could simultaneously execute the same graph,
leading to:
- Duplicate executions and wasted resources
- Inconsistent execution states and results
- Race conditions in graph execution management
- Inefficient resource utilization in cluster environments

## Solution
Implement distributed locking using ClusterLock to ensure only one
executor pod can process a specific graph execution at a time.

## Key Changes

### Core Fix: Distributed Execution Coordination
- **ClusterLock implementation**: Redis-based distributed locking
prevents duplicate executions
- **Atomic lock acquisition**: Only one executor can hold the lock for a
specific graph execution
- **Automatic lock expiry**: Prevents deadlocks if executor pods crash
or become unresponsive
- **Graceful degradation**: System continues operating even if Redis
becomes temporarily unavailable

### Technical Implementation
- Move ClusterLock to `backend/executor/` alongside ExecutionManager
(its primary consumer)
- Comprehensive integration tests (27 test scenarios) ensure reliability
under all conditions
- Redis client compatibility for different deployment configurations
- Rate-limited lock refresh to minimize Redis load

### Reliability Improvements
- **Context manager support**: Automatic lock cleanup prevents resource
leaks
- **Ownership verification**: Locks can only be refreshed/released by
the owner
- **Concurrency testing**: Thread-safe operations verified under high
contention
- **Error handling**: Robust failure scenarios including network
partitions

## Test Coverage
-  Concurrent executor coordination (prevents duplicate executions)
-  Lock expiry and refresh mechanisms (prevents deadlocks)
-  Redis connection failures (graceful degradation)
-  Thread safety under high load (production scenarios)
-  Long-running executions with periodic refresh

## Impact
- **No more duplicate executions**: Eliminates wasted compute resources
and inconsistent results
- **Improved reliability**: Robust distributed coordination across
executor pods
- **Better resource utilization**: Only one pod processes each execution
- **Scalable architecture**: Supports multiple executor pods without
conflicts

## Validation
- All integration tests pass 
- Existing ExecutionManager functionality preserved   
- No breaking changes to APIs 
- Production-ready distributed locking 

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-27 11:42:40 +00:00
Abhimanyu Yadav
da6e1ad26d refactor(frontend): enhance builder UI for better performance (#10922)
### Changes 🏗️

This PR introduces a new high-performance builder interface for the
AutoGPT platform, implementing a React Flow-based visual editor with
optimized state management and rendering.

#### Key Changes:

1. **New Flow Editor Implementation**
   - Built on React Flow for efficient graph rendering and interaction
- Implements a node-based visual workflow builder with custom nodes and
edges
- Dynamic form generation using React JSON Schema Form (RJSF) for block
inputs
   - Intelligent connection handling with visual feedback

2. **State Management Optimization**  
   - Added Zustand for lightweight, performant state management
   - Separated node and edge stores for better data isolation
   - Reduced unnecessary re-renders through granular state updates

3. **Dual Builder View (Temporary)**
   - Added toggle between old and new builder implementations
   - Allows A/B testing and gradual migration
   - Feature flagged for controlled rollout

4. **Enhanced UI Components**
- Custom form widgets for various input types (date, time, file, etc.)
   - Array and object editors with improved UX
   - Connection handles with visual state indicators
   - Advanced mode toggle for complex configurations

5. **Architecture Improvements**
   - Modular component structure for better code organization
   - Comprehensive documentation for the new system
   - Type-safe implementation with TypeScript

#### Dependencies Added:
- `zustand` (v5.0.2) - State management
- `@rjsf/core` (v5.22.8) - JSON Schema Form core
- `@rjsf/utils` (v5.22.8) - RJSF utilities  
- `@rjsf/validator-ajv8` (v5.22.8) - Schema validation

### Performance Improvements 🚀

- **Reduced Re-renders**: Zustand's shallow comparison and selective
subscriptions minimize unnecessary component updates
- **Optimized Graph Rendering**: React Flow provides efficient
canvas-based rendering for large workflows
- **Lazy Loading**: Components are loaded on-demand reducing initial
bundle size
- **Memoized Computations**: Heavy calculations are cached to avoid
redundant processing

### Test Plan 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  
#### Test Checklist:
- [x] Create a new agent from scratch with at least 5 blocks
- [x] Connect blocks and verify connections render correctly
- [x] Switch between old and new builder views 
- [x] Test all form input types (text, number, boolean, array, object)
- [x] Verify data persistence when switching views
- [x] Test advanced mode toggle functionality
- [x] Performance test with 50+ blocks to verify smooth interaction

### Migration Strategy

The implementation includes a temporary toggle to switch between the old
and new builder. This allows for:
- Gradual user migration
- A/B testing to measure performance improvements
- Fallback option if issues are discovered
- Collecting user feedback before full rollout

### Documentation

Comprehensive documentation has been added:
- `/components/FlowEditor/docs/README.md` - Architecture overview and
store management
- `/components/FlowEditor/docs/FORM_CREATOR.md` - Detailed form system
documentation

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Claude <noreply@anthropic.com>
2025-09-26 10:42:05 +00:00
Swifty
634fffb967 fix(blocks): Handle NoneType in DataForSEO Blocks and Add missing Err (#11004)
This PR fixes critical issues in the DataForSEO blocks to improve error
handling and prevent runtime exceptions.

### Changes 🏗️

1. **Fixed NoneType error in DataForSEO Related Keywords Block**
(#10990)
- Added null check to ensure `items` is always a list before iteration
   - Prevents TypeError when API returns None for items field
   - Ensures robust handling of unexpected API responses

2. **Added error output pins to DataForSEO blocks** (#10981)
- Added `error` field to Output schema in both `related_keywords.py` and
`keyword_suggestions.py`
   - Wrapped entire `run` methods in try-except blocks
- Errors are now properly yielded to the error output pin, allowing
agents to handle failures gracefully

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified that DataForSEO blocks handle None responses without
throwing TypeError
- [x] Confirmed error output pins capture and yield exceptions properly
- [x] Ensured backwards compatibility with existing block
implementations
  - [x] Tested both Related Keywords and Keyword Suggestions blocks

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---

Fixes #10990
Fixes #10981

Generated with [Claude Code](https://claude.ai/code)

<!-- Clearly explain the need for these changes: -->

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [ ] I have clearly listed my changes in the PR description
- [ ] I have made a test plan
- [ ] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [ ] ...

<details>
  <summary>Example test plan</summary>
  
  - [ ] Create from scratch and execute an agent with at least 3 blocks
- [ ] Import an agent from file upload, and confirm it executes
correctly
  - [ ] Upload agent to marketplace
- [ ] Import an agent from marketplace and confirm it executes correctly
  - [ ] Edit an agent from monitor, and confirm it executes correctly
</details>

#### For configuration changes:

- [ ] `.env.default` is updated or already compatible with my changes
- [ ] `docker-compose.yml` is updated or already compatible with my
changes
- [ ] I have included a list of my configuration changes in the PR
description (under **Changes**)

<details>
  <summary>Examples of configuration changes</summary>

  - Changing ports
  - Adding new services that need to communicate with each other
  - Secrets or environment variable changes
  - New or infrastructure changes such as databases
</details>

Co-authored-by: Toran Bruce Richards <toran.richards@gmail.com>
2025-09-26 11:23:14 +02:00
Toran Bruce Richards
f3ec426c82 fix(blocks): Handle NoneType in DataForSEO Blocks and Add missing Error pins (#10995)
This PR fixes critical issues in the DataForSEO blocks to improve error
handling and prevent runtime exceptions.

### Changes 🏗️

1. **Fixed NoneType error in DataForSEO Related Keywords Block**
(#10990)
- Added null check to ensure `items` is always a list before iteration
   - Prevents TypeError when API returns None for items field
   - Ensures robust handling of unexpected API responses

2. **Added error output pins to DataForSEO blocks** (#10981)
- Added `error` field to Output schema in both `related_keywords.py` and
`keyword_suggestions.py`
   - Wrapped entire `run` methods in try-except blocks
- Errors are now properly yielded to the error output pin, allowing
agents to handle failures gracefully

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified that DataForSEO blocks handle None responses without
throwing TypeError
- [x] Confirmed error output pins capture and yield exceptions properly
- [x] Ensured backwards compatibility with existing block
implementations
  - [x] Tested both Related Keywords and Keyword Suggestions blocks

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---

Fixes #10990
Fixes #10981

Generated with [Claude Code](https://claude.ai/code)
2025-09-25 20:22:10 +00:00
Reinier van der Leer
0b267f573e feat(blocks): Improve JSON generation+parsing in AI Structured Response block (#10960)
The AI Structured Response Generator block currently doesn't support
responses that aren't pure JSON. This prohibits multi-step prompting
because reasoning content is not allowed in the response, which in turn
limits performance.

### Changes 🏗️

- Adjust prompt to enclose JSON in pre-defined tags so we can extract it
from a response that isn't pure JSON
- Adjust mechanism to extract and parse JSON
- Add `force_json_output` input (advanced, default `False`)
- Update incorrect `max_output_tokens` values for Claude 4 and 3.7 to
prevent responses from being cut off due to `max_tokens`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] LLMs correctly follows response generation instructions
- [x] LLMs follow system response format instructions even if user
prompt contains conflicting instructions
  - [x] JSON is extracted from response successfully
  - [x] `force_json_output` works (at least for models that support it)

Tested with Claude 4 Sonnet, various GPT models, and Llama 3.3 70B.

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-09-25 17:42:25 +00:00
Reinier van der Leer
7bd571d9ce fix(blocks): Default disable HTML escaping in all blocks with templating features (#10955)
- Resolves #10954

Unnecessary escaping distorts content and so should be disabled wherever
the output isn't used in HTML.

### Changes 🏗️

- Disable HTML escaping on prompt value insertion in AI blocks
- Make HTML escaping optional in text formatting and output blocks

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x]
`SandboxedEnvironment(autoescape=False).from_string(template_str).render(values)`
doesn't escape characters with HTML entities
2025-09-25 12:04:38 +00:00
Zamil Majdy
7a331651ba feat(backend): enhance database indexes for AgentGraph and AgentGraphExecution performance (#10985)
## Summary

Enhances database performance by improving indexes on `AgentGraph` and
`AgentGraphExecution` tables for better query efficiency.

### Changes 🏗️

- **Database Schema**: Updated Prisma schema to enhance database indexes
- Modified `AgentGraph` index from `[userId, isActive]` to `[userId,
isActive, id, version]` for better compound query performance
- Enhanced `AgentGraphExecution` index from `[userId]` to `[userId,
isDeleted, createdAt]` to support filtered queries with sorting
- **Migration**: Auto-generated Prisma migration to implement the index
changes
- Drops existing indexes: `AgentGraph_userId_isActive_idx` and
`AgentGraphExecution_userId_idx`
- Creates new compound indexes:
`AgentGraph_userId_isActive_id_version_idx` and
`AgentGraphExecution_userId_isDeleted_createdAt_idx`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified migration runs successfully
  - [x] Confirmed database queries continue to work with new indexes
  - [x] Tested that existing functionality remains unaffected

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-25 09:05:53 +00:00
Zamil Majdy
5bc69adc33 Merge branch 'master' of github.com:Significant-Gravitas/AutoGPT into dev 2025-09-25 16:09:01 +07:00
Krzysztof Czerwinski
f4bcc8494f hotfix: Fix Agent node missing inputs and outputs (#10987)
Restore `include=AGENT_GRAPH_INCLUDE` that is needed to build schema
from the nodes.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] I/O is back on the Agent node
2025-09-25 08:56:32 +00:00
Zamil Majdy
4c000086e6 feat(backend): implement clean k6 load testing infrastructure (#10978)
## Summary

Implement comprehensive k6 load testing infrastructure for the AutoGPT
Platform with clean file organization, unified test runner, and cloud
integration.

## Key Features

### 🗂️ Clean File Organization
- **tests/basic/**: Simple validation tests (connectivity, single
endpoints)
- **tests/api/**: Core functionality tests (API endpoints, graph
execution)
- **tests/marketplace/**: User-facing feature tests (public/library
access)
- **tests/comprehensive/**: End-to-end scenario tests (complete user
journeys)
- **orchestrator/**: Advanced test orchestration for full suites

### 🚀 Unified Test Runner
- **Single entry point**: `run-tests.js` for both local and cloud
execution
- **7 available tests**: From basic connectivity to comprehensive
platform journeys
- **Flexible execution**: Run individual tests, comma-separated lists,
or all tests
- **Auto-configuration**: Different VU/duration settings for local vs
cloud execution

### 🔐 Advanced Authentication
- **Pre-authenticated tokens**: 24-hour JWT tokens eliminate Supabase
rate limiting
- **Configurable generation**: Default 10 tokens, scalable to 150+ for
high concurrency
- **Graceful handling**: Proper auth failure detection and recovery
- **ES module compatible**: Modern JavaScript with full import/export
support

### ☁️ k6 Cloud Integration
- **Cloud execution**: Tests run on k6 cloud infrastructure for
consistent results
- **Real-time monitoring**: Live dashboards with performance metrics
- **URL tracking**: Automatic test result URL capture and storage
- **Sequential orchestration**: Proper delays between tests for resource
management

## Test Coverage

### Performance Validated
- **Core API**: 100 VUs successfully testing `/api/credits`,
`/api/graphs`, `/api/blocks`, `/api/executions`
- **Graph Execution**: 80 VUs for complete workflow pipeline testing
- **Marketplace**: 150 VUs for public browsing, 100 VUs for
authenticated library operations
- **Authentication**: 150+ concurrent users with pre-authenticated token
scaling

### User Journey Simulation
- **Dashboard workflows**: Credits checking, graph management, execution
monitoring
- **Marketplace browsing**: Public search, agent discovery, category
filtering
- **Library operations**: Agent adding, favoriting, forking, detailed
views
- **Complete workflows**: End-to-end platform usage with realistic user
behavior

## Technical Implementation

### ES Module Compatibility
- Full ES module support with modern JavaScript imports/exports
- Proper module execution patterns for Node.js compatibility
- Clean separation between CommonJS legacy and modern ES modules

### Error Handling & Monitoring  
- **Separate metrics**: HTTP status, authentication, JSON validation,
overall success
- **Graceful degradation**: Auth failures don't crash VUs, proper error
tracking
- **Performance thresholds**: Configurable P95/P99 latency and error
rate limits
- **Custom counters**: Track operation types, success rates, user
journey completion

### Infrastructure Benefits
- **Rate limit protection**: Pre-auth tokens prevent Supabase auth
bottlenecks
- **Scalable testing**: Support for 150+ concurrent users with proper
token management
- **Cloud consistency**: Tests run on dedicated k6 cloud servers for
reliable results
- **Development workflow**: Local execution for debugging, cloud for
performance validation

## Usage

### Quick Start
```bash
# Setup and verification
export SUPABASE_SERVICE_KEY="your-service-key"
node generate-tokens.js
node run-tests.js verify

# Local testing (development)
node run-tests.js run core-api-test DEV

# Cloud testing (performance)
node run-tests.js cloud all DEV
```

### NPM Scripts
```bash
npm run verify    # Quick setup check
npm test         # All tests locally  
npm run cloud    # All tests in k6 cloud
```

## Validation Results

 **Authentication**: 100% success rate with fresh 24-hour tokens  
 **File Structure**: All imports and references verified correct  
 **Test Execution**: All 7 tests execute successfully with proper
metrics
 **Cloud Integration**: k6 cloud execution working with proper
credentials
 **Documentation**: Complete README with usage examples and
troubleshooting

## Files Changed

### Core Infrastructure
- `run-tests.js`: Unified test runner supporting local/cloud execution
- `generate-tokens.js`: ES module compatible token generation with
24-hour expiry
- `README.md`: Comprehensive documentation with updated file references

### Organized Test Structure  
- `tests/basic/connectivity-test.js`: Basic connectivity validation
- `tests/basic/single-endpoint-test.js`: Individual API endpoint testing
- `tests/api/core-api-test.js`: Core authenticated API endpoints
- `tests/api/graph-execution-test.js`: Graph workflow pipeline testing  
- `tests/marketplace/public-access-test.js`: Public marketplace browsing
- `tests/marketplace/library-access-test.js`: Authenticated
marketplace/library operations
- `tests/comprehensive/platform-journey-test.js`: Complete user journey
simulation

### Configuration
- `configs/environment.js`: Environment URLs and performance settings
- `package.json`: NPM scripts and dependencies for unified workflow

This infrastructure provides a solid foundation for continuous
performance monitoring and load testing of the AutoGPT Platform.

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2025-09-25 12:51:54 +07:00
Krzysztof Czerwinski
9c6cc5b29d Merge branch 'dev' 2025-09-25 13:28:17 +09:00
Toran Bruce Richards
b34973ca47 feat: Add 'depth' parameter to DataForSEO Related Keywords block (#10983)
Fixes #10982

<!-- Clearly explain the need for these changes: -->
The DataForSEO Related Keywords block was missing the `depth` parameter,
which is a critical parameter that controls the comprehensiveness of
keyword research. The depth parameter determines the number of related
keywords returned by the API, ranging from 1 keyword at depth 0 to
approximately 4680 keywords at depth 4.

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->
- Added `depth` parameter to the DataForSEO Related Keywords block as an
integer input field (range 0-4)
- Added `depth` parameter to the `related_keywords` method signature in
the API client
- Updated the API client to include the depth parameter in the request
payload when provided
- Added documentation explaining the depth parameter's effect on the
number of returned keywords
- Fixed missing parameter in function signature that was causing runtime
errors

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] Verified the depth parameter appears correctly in the block UI
with appropriate range validation (0-4)
  - [x] Confirmed the parameter is passed correctly to the API client
- [x] Tested that omitting the depth parameter doesn't break existing
functionality (defaults to None)
- [x] Verified the implementation follows the existing pattern for
optional parameters in the DataForSEO blocks

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [ ] I have included a list of my configuration changes in the PR
description (under **Changes**)

Note: No configuration changes were required for this feature addition.

---------

Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Toran Bruce Richards <Torantulino@users.noreply.github.com>
2025-09-24 21:29:47 +00:00
Nicholas Tindle
2bc6a56877 fix(backend): Fix GCS timeout error in FileInput blocks (#10976)
## Summary
- Fixed "Timeout context manager should be used inside a task" error
occurring intermittently in FileInput blocks when downloading files from
Google Cloud Storage
- Implemented proper async session management for GCS client to ensure
operations run within correct task context
- Added comprehensive logging to help diagnose and monitor the issue in
production

## Changes
### Core Fix
- Modified `CloudStorageHandler._retrieve_file_gcs()` to create a fresh
GCS client and session for each download operation
- This ensures the aiohttp session is always created within the proper
async task context, preventing the timeout error
- The fix trades a small amount of efficiency for reliability, but only
affects download operations

### Logging Enhancements
- Added detailed logging in `store_media_file()` to track execution
context and async task state
- Enhanced `scan_content_safe()` to specifically catch and log timeout
errors with CRITICAL level
- Added context logging in virus scanner around `asyncio.create_task()`
calls
- Upgraded key debug logs to info level for visibility in production

### Code Quality
- Fixed unbound variable issue where `async_client` could be referenced
before initialization
- Replaced bare `except:` clauses with proper exception handling
- Fixed unused parameters warning in `__aexit__` method

## Testing
- The timeout error was occurring intermittently in production when
FileInput blocks processed GCS files
- With these changes, the error should be eliminated as the session is
always created in the correct context
- Comprehensive logging allows monitoring of the fix effectiveness in
production


## Context
The root cause was that `gcloud-aio-storage` was creating its internal
aiohttp session/timeout context outside of an async task context when
called by the executor. This happened intermittently depending on how
the executor scheduled block execution.

## Related Issues
- Addresses timeout errors reported in FileInput block execution
- Improves reliability of file uploads from the platform

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Test a multiple file input agent and it works
  - [x] Test the agent that is causing the failure and it works

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2025-09-24 16:21:41 -05:00
Nicholas Tindle
87c773d03a fix(backend): Fix GCS timeout error in FileInput blocks (#10976)
## Summary
- Fixed "Timeout context manager should be used inside a task" error
occurring intermittently in FileInput blocks when downloading files from
Google Cloud Storage
- Implemented proper async session management for GCS client to ensure
operations run within correct task context
- Added comprehensive logging to help diagnose and monitor the issue in
production

## Changes
### Core Fix
- Modified `CloudStorageHandler._retrieve_file_gcs()` to create a fresh
GCS client and session for each download operation
- This ensures the aiohttp session is always created within the proper
async task context, preventing the timeout error
- The fix trades a small amount of efficiency for reliability, but only
affects download operations

### Logging Enhancements
- Added detailed logging in `store_media_file()` to track execution
context and async task state
- Enhanced `scan_content_safe()` to specifically catch and log timeout
errors with CRITICAL level
- Added context logging in virus scanner around `asyncio.create_task()`
calls
- Upgraded key debug logs to info level for visibility in production

### Code Quality
- Fixed unbound variable issue where `async_client` could be referenced
before initialization
- Replaced bare `except:` clauses with proper exception handling
- Fixed unused parameters warning in `__aexit__` method

## Testing
- The timeout error was occurring intermittently in production when
FileInput blocks processed GCS files
- With these changes, the error should be eliminated as the session is
always created in the correct context
- Comprehensive logging allows monitoring of the fix effectiveness in
production


## Context
The root cause was that `gcloud-aio-storage` was creating its internal
aiohttp session/timeout context outside of an async task context when
called by the executor. This happened intermittently depending on how
the executor scheduled block execution.

## Related Issues
- Addresses timeout errors reported in FileInput block execution
- Improves reliability of file uploads from the platform

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Test a multiple file input agent and it works
  - [x] Test the agent that is causing the failure and it works

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2025-09-24 21:06:51 +00:00
Swifty
ebeefc96e8 feat(backend): implement caching layer for store API endpoints (Part 1) (#10975)
## Summary
This PR introduces comprehensive caching for the Store API endpoints to
improve performance and reduce database load. This is **Part 1** in a
series of PRs to add comprehensive caching across our entire API.

### Key improvements:
- Implements caching layer using the existing `@cached` decorator from
`autogpt_libs.utils.cache`
- Reduces database queries by 80-90% for frequently accessed public data
- Built-in thundering herd protection prevents database overload during
cache expiry
- Selective cache invalidation ensures data freshness when mutations
occur

## Details

### Cached endpoints with TTLs:
- **Public data (5-10 min TTL):**
  - `/agents` - Store agents list (2 min)
  - `/agents/{username}/{agent_name}` - Agent details (5 min)
  - `/graph/{store_listing_version_id}` - Agent graphs (10 min)
  - `/agents/{store_listing_version_id}` - Agent by version (10 min)
  - `/creators` - Creators list (5 min)
  - `/creator/{username}` - Creator details (5 min)

- **User-specific data (1 min TTL):**
  - `/profile` - User profiles (5 min)
  - `/myagents` - User's own agents (1 min)
  - `/submissions` - User's submissions (1 min)

### Cache invalidation strategy:
- Profile updates → clear user's profile cache
- New reviews → clear specific agent cache + agents list
- New submissions → clear agents list + user's caches
- Submission edits → clear related version caches

### Cache management endpoints:
- `GET /cache/info` - Monitor cache statistics
- `POST /cache/clear` - Clear all caches
- `POST /cache/clear/{cache_name}` - Clear specific cache

## Changes  
<!-- REQUIRED: Bullet point summary of changes -->
- Added caching decorators to all suitable GET endpoints in store routes
- Implemented cache invalidation on data mutations (POST/PUT/DELETE)
- Added cache management endpoints for monitoring and manual clearing
- Created comprehensive test suite for cache_delete functionality
- Verified thundering herd protection works correctly

## Testing
<!-- How to test your changes -->
-  Created comprehensive test suite (`test_cache_delete.py`)
validating:
  - Selective cache deletion works correctly
  - Cache entries are properly invalidated on mutations
  - Other cache entries remain unaffected
  - cache_info() accurately reflects state
-  Tested thundering herd protection with concurrent requests
-  Verified all endpoints return correct data with and without cache

## Checklist
<!-- REQUIRED: Be sure to check these off before marking the PR ready
for review. -->
- [x] I have self-reviewed this PR's diff, line by line
- [x] I have updated and tested the software architecture documentation
(if applicable)
- [x] I have run the agent to verify that it still works (if applicable)

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2025-09-24 10:01:52 +00:00
Nicholas Tindle
83fe8d5b94 fix(backend): make preset migration not crash the system (#10966)
<!-- Clearly explain the need for these changes: -->
For those who develop blocks, they may or may not exist in the code at
the same time as the database.
> Create block in one branch, test, then move to another branch the
block is not in

This migration will prevent startup in that case.

### Changes 🏗️
Adds a try except around the migration
<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Test that startup actually works

---------

Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2025-09-24 14:23:22 +07:00
Zamil Majdy
50689218ed feat(backend): implement comprehensive load testing performance fixes + database health improvements (#10965) 2025-09-24 14:22:57 +07:00
Aayush Shah
ddff09a8e4 feat(blocks): add NotionReadPage block (#10760)
Introduces a Notion Read Page block that fetches a page by ID via the
Notion REST API. This is a first step toward Notion integration in the
AutoGPT Platform.

Motivation - Notion was not integrated yet. Im starting with a small
block to add capability incrementally.

### Notes
- I referred to the Todoist block implementation as a reference since
I’m a beginner.
- This is my first PR here  
- The block passed `docker compose run --rm rest_server pytest -q`
successfully

<!-- Clearly explain the need for these changes: -->

<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:

### Test plan
- [x] Ran `docker compose run --rm rest_server pytest -q
backend/blocks/test/test_block.py -k notion`
- [x] Confirmed tests passed (2 passed, 652 deselected, warnings only).
- [x] Ran poetry run format to fix linters and tests

---------

Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Nicholas Tindle <nicktindle@outlook.com>
2025-09-19 18:54:47 +00:00
Ubbe
0c363a1cea fix(frontend): force dynamic rendering on marketplace (#10957)
## Changes 🏗️

When building on Vercel:
```
    at Object.start (.next/server/chunks/2744.js:1:312830) {
  description: "Route /marketplace couldn't be rendered statically because it used `cookies`. See more info here: https://nextjs.org/docs/messages/dynamic-server-error",
  digest: 'DYNAMIC_SERVER_USAGE'
}
Failed to get server auth token: Error: Dynamic server usage: Route /marketplace couldn't be rendered statically because it used `cookies`. See more info here: https://nextjs.org/docs/messages/dynamic-server-error
    at r (.next/server/chunks/8450.js:22:7298)
    at n (.next/server/chunks/4735.js:1:37020)
    at g (.next/server/chunks/555.js:1:31925)
    at m (.next/server/chunks/555.js:1:87056)
    at h (.next/server/chunks/555.js:1:932)
    at k (.next/server/chunks/555.js:1:25195)
    at queryFn (.next/server/chunks/555.js:1:25590)
    at Object.f [as fn] (.next/server/chunks/2744.js:1:316625)
    at q (.next/server/chunks/2744.js:1:312288)
    at Object.start (.next/server/chunks/2744.js:1:312830) {
  description: "Route /marketplace couldn't be rendered statically because it used `cookies`. See more info here: https://nextjs.org/docs/messages/dynamic-server-error",
  digest: 'DYNAMIC_SERVER_USAGE'
}
```
That's because the `/marketplace` page prefetches the store agents data
on the server, and that query uses `cookies` for Auth. In theory, those
endpoints can be called without auth, but I think if you are logged that
affects the results.

The simpler for now is to tell Next.js to not try to statically render
it and render on the fly with caching. According to AI we shouldn't see
much difference performance wise:

> Short answer: Usually no noticeable slowdown. You’ll trade a small
TTFB increase (server renders per request) for correct behavior with
cookies. Overall interactivity stays the same since we still dehydrate
React Query data.
Why it’s fine:
Server already had to fetch marketplace data; doing it at request-time
vs build-time is roughly the same cost for users.
Hydration uses the prefetched data, avoiding extra client round-trips.
If you want extra speed:
If those endpoints don’t need auth, we can skip reading cookies during
server prefetch and enable ISR (e.g., revalidate=60) for partial
caching.
Or move the cookie-dependent parts to the client and keep the page
static.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run the app
  - [x] Page load marketplace is fine and not slow 
  - [x] No build cookies errors 


### For configuration changes:

None
2025-09-19 08:24:08 +00:00
Ubbe
e5d870a348 refactor(frontend): move old components to __legacy__ (#10953)
## Changes 🏗️

Moving non-design-system components ( old ) to a `components/__legacy__`
folder 📁 so like this is more obvious for developers that they should
not import them or use them on new features. What is now top-level in
`/components` is what it is actively maintained.

Document some existing components like `<Alert />`. More on this coming
on follow-up PRs.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Test and types pass on the CI
  - [x] Run app locally, click around, looks good 

### For configuration changes:

None
2025-09-18 21:37:43 +00:00
Reinier van der Leer
3f19cba28f fix(frontend/builder): Fix moved blocks disappearing on save (#10951)
- Resolves #10926
- Fixes a bug introduced in #10779

### Changes 🏗️

- Fix `.metadata.position` in graph save payload
- Make node reconciliation after graph save more robust

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Moved nodes don't disappear on graph save
2025-09-18 13:34:06 +00:00
Reinier van der Leer
a978e91271 fix(ci, backend): Update Redis image & amend config to work with it (#10952)
CI is currently broken because Bitnami has pulled all `bitnami/redis`
images.
The current official Redis image on Docker Hub is `redis`.

### Changes 🏗️

- Replace `bitnami/redis:6.2` by `redis:latest` in Backend CI workflow
file
- Make `REDIS_PASSWORD` optional in the backend settings

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] CI no longer broken
2025-09-18 13:02:49 +00:00
Ubbe
f283e6c514 refactor(frontend): cleanup of components folder (2/3) (#10942)
## Changes 🏗️

Following up my initial PR to tidy up the `components` folder
https://github.com/Significant-Gravitas/AutoGPT/pull/10940.

This is mostly moving files around and renaming some + documenting them
on the design system as needed. Should be pretty safe as long as types
on the CI pass.

## Checklist 📋

### For code changes:

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run the app locally
  - [x] Click around, looks ok
  - [x] Test and types pass on the CI  

### For configuration changes:

None
2025-09-18 16:21:18 +09:00
Ubbe
9fc2101e7e refactor(frontend): tidy up on components folder (#10940)
## Changes 🏗️

Re-organise the `components` folder, moving things which are not re-used
across screens or part of the design system out of it.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run the app locally
  - [x] It works and test/types pass CI wise 

### For configuration changes:

None
2025-09-17 12:56:49 +00:00
680 changed files with 33756 additions and 11566 deletions

View File

@@ -12,6 +12,7 @@ This file provides comprehensive onboarding information for GitHub Copilot codin
- **Infrastructure** - Docker configurations, CI/CD, and development tools
**Primary Languages & Frameworks:**
- **Backend**: Python 3.10-3.13, FastAPI, Prisma ORM, PostgreSQL, RabbitMQ
- **Frontend**: TypeScript, Next.js 15, React, Tailwind CSS, Radix UI
- **Development**: Docker, Poetry, pnpm, Playwright, Storybook
@@ -23,15 +24,17 @@ This file provides comprehensive onboarding information for GitHub Copilot codin
**Always run these commands in the correct directory and in this order:**
1. **Initial Setup** (required once):
```bash
# Clone and enter repository
git clone <repo> && cd AutoGPT
# Start all services (database, redis, rabbitmq, clamav)
cd autogpt_platform && docker compose --profile local up deps --build --detach
```
2. **Backend Setup** (always run before backend development):
```bash
cd autogpt_platform/backend
poetry install # Install dependencies
@@ -48,6 +51,7 @@ This file provides comprehensive onboarding information for GitHub Copilot codin
### Runtime Requirements
**Critical:** Always ensure Docker services are running before starting development:
```bash
cd autogpt_platform && docker compose --profile local up deps --build --detach
```
@@ -58,6 +62,7 @@ cd autogpt_platform && docker compose --profile local up deps --build --detach
### Development Commands
**Backend Development:**
```bash
cd autogpt_platform/backend
poetry run serve # Start development server (port 8000)
@@ -68,6 +73,7 @@ poetry run lint # Lint code (ruff) - run after format
```
**Frontend Development:**
```bash
cd autogpt_platform/frontend
pnpm dev # Start development server (port 3000) - use for active development
@@ -81,23 +87,27 @@ pnpm storybook # Start component development server
### Testing Strategy
**Backend Tests:**
- **Block Tests**: `poetry run pytest backend/blocks/test/test_block.py -xvs` (validates all blocks)
- **Specific Block**: `poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[BlockName]' -xvs`
- **Snapshot Tests**: Use `--snapshot-update` when output changes, always review with `git diff`
**Frontend Tests:**
- **E2E Tests**: Always run `pnpm dev` before `pnpm test` (Playwright requires running instance)
- **Component Tests**: Use Storybook for isolated component development
### Critical Validation Steps
**Before committing changes:**
1. Run `poetry run format` (backend) and `pnpm format` (frontend)
2. Ensure all tests pass in modified areas
3. Verify Docker services are still running
4. Check that database migrations apply cleanly
**Common Issues & Workarounds:**
- **Prisma issues**: Run `poetry run prisma generate` after schema changes
- **Permission errors**: Ensure Docker has proper permissions
- **Port conflicts**: Check the `docker-compose.yml` file for the current list of exposed ports. You can list all mapped ports with:
@@ -108,6 +118,7 @@ pnpm storybook # Start component development server
### Core Architecture
**AutoGPT Platform** (`autogpt_platform/`):
- `backend/` - FastAPI server with async support
- `backend/backend/` - Core API logic
- `backend/blocks/` - Agent execution blocks
@@ -121,6 +132,7 @@ pnpm storybook # Start component development server
- `docker-compose.yml` - Development stack orchestration
**Key Configuration Files:**
- `pyproject.toml` - Python dependencies and tooling
- `package.json` - Node.js dependencies and scripts
- `schema.prisma` - Database schema and migrations
@@ -136,6 +148,7 @@ pnpm storybook # Start component development server
### Development Workflow
**GitHub Actions**: Multiple CI/CD workflows in `.github/workflows/`
- `platform-backend-ci.yml` - Backend testing and validation
- `platform-frontend-ci.yml` - Frontend testing and validation
- `platform-fullstack-ci.yml` - End-to-end integration tests
@@ -146,11 +159,13 @@ pnpm storybook # Start component development server
### Key Source Files
**Backend Entry Points:**
- `backend/backend/server/server.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic
**Frontend Entry Points:**
- `frontend/src/app/layout.tsx` - Root application layout
- `frontend/src/app/page.tsx` - Home page
- `frontend/src/lib/supabase/` - Authentication and database client
@@ -160,6 +175,7 @@ pnpm storybook # Start component development server
### Agent Block System
Agents are built using a visual block-based system where each block performs a single action. Blocks are defined in `backend/blocks/` and must include:
- Block definition with input/output schemas
- Execution logic with proper error handling
- Tests validating functionality
@@ -167,6 +183,7 @@ Agents are built using a visual block-based system where each block performs a s
### Database & ORM
**Prisma ORM** with PostgreSQL backend including pgvector for embeddings:
- Schema in `schema.prisma`
- Migrations in `backend/migrations/`
- Always run `prisma migrate dev` and `prisma generate` after schema changes
@@ -174,13 +191,15 @@ Agents are built using a visual block-based system where each block performs a s
## Environment Configuration
### Configuration Files Priority Order
1. **Backend**: `/backend/.env.default` → `/backend/.env` (user overrides)
2. **Frontend**: `/frontend/.env.default` → `/frontend/.env` (user overrides)
2. **Frontend**: `/frontend/.env.default` → `/frontend/.env` (user overrides)
3. **Platform**: `/.env.default` (Supabase/shared) → `/.env` (user overrides)
4. Docker Compose `environment:` sections override file-based config
5. Shell environment variables have highest precedence
### Docker Environment Setup
- All services use hardcoded defaults (no `${VARIABLE}` substitutions)
- The `env_file` directive loads variables INTO containers at runtime
- Backend/Frontend services use YAML anchors for consistent configuration
@@ -189,6 +208,7 @@ Agents are built using a visual block-based system where each block performs a s
## Advanced Development Patterns
### Adding New Blocks
1. Create file in `/backend/backend/blocks/`
2. Inherit from `Block` base class with input/output schemas
3. Implement `run` method with proper error handling
@@ -198,6 +218,7 @@ Agents are built using a visual block-based system where each block performs a s
7. Consider how inputs/outputs connect with other blocks in graph editor
### API Development
1. Update routes in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside route files
@@ -205,21 +226,76 @@ Agents are built using a visual block-based system where each block performs a s
5. Run `poetry run test` to verify changes
### Frontend Development
1. Components in `/frontend/src/components/`
2. Use existing UI components from `/frontend/src/components/ui/`
3. Add Storybook stories for component development
4. Test user-facing features with Playwright E2E tests
5. Update protected routes in middleware when needed
**📖 Complete Frontend Guide**: See `autogpt_platform/frontend/CONTRIBUTING.md` and `autogpt_platform/frontend/.cursorrules` for comprehensive patterns and conventions.
**Quick Reference:**
**Component Structure:**
- Separate render logic from data/behavior
- Structure: `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Exception: Small components (3-4 lines of logic) can be inline
- Render-only components can be direct files without folders
**Data Fetching:**
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Generated via Orval from backend OpenAPI spec
- Pattern: `use{Method}{Version}{OperationName}`
- Example: `useGetV2ListLibraryAgents`
- Regenerate with: `pnpm generate:api`
- **Never** use deprecated `BackendAPI` or `src/lib/autogpt-server-api/*`
**Code Conventions:**
- Use function declarations for components and handlers (not arrow functions)
- Only arrow functions for small inline lambdas (map, filter, etc.)
- Components: `PascalCase`, Hooks: `camelCase` with `use` prefix
- No barrel files or `index.ts` re-exports
- Minimal comments (code should be self-documenting)
**Styling:**
- Use Tailwind CSS utilities only
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
- Only use Phosphor Icons (`@phosphor-icons/react`)
- Prefer design tokens over hardcoded values
**Error Handling:**
- Render errors: Use `<ErrorCard />` component
- Mutation errors: Display with toast notifications
- Manual exceptions: Use `Sentry.captureException()`
- Global error boundaries already configured
**Testing:**
- Add/update Storybook stories for UI components (`pnpm storybook`)
- Run Playwright E2E tests with `pnpm test`
- Verify in Chromatic after PR
**Architecture:**
- Default to client components ("use client")
- Server components only for SEO or extreme TTFB needs
- Use React Query for server state (via generated hooks)
- Co-locate UI state in components/hooks
### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)
- Prevents sensitive data caching in browsers/proxies
- Add new cacheable endpoints to `CACHEABLE_PATHS`
### CI/CD Alignment
The repository has comprehensive CI workflows that test:
- **Backend**: Python 3.11-3.13, services (Redis/RabbitMQ/ClamAV), Prisma migrations, Poetry lock validation
- **Frontend**: Node.js 21, pnpm, Playwright with Docker Compose stack, API schema validation
- **Integration**: Full-stack type checking and E2E testing
@@ -229,6 +305,7 @@ Match these patterns when developing locally - the copilot setup environment mir
## Collaboration with Other AI Assistants
This repository is actively developed with assistance from Claude (via CLAUDE.md files). When working on this codebase:
- Check for existing CLAUDE.md files that provide additional context
- Follow established patterns and conventions already in the codebase
- Maintain consistency with existing code style and architecture
@@ -237,8 +314,9 @@ This repository is actively developed with assistance from Claude (via CLAUDE.md
## Trust These Instructions
These instructions are comprehensive and tested. Only perform additional searches if:
1. Information here is incomplete for your specific task
2. You encounter errors not covered by the workarounds
3. You need to understand implementation details not covered above
For detailed platform development patterns, refer to `autogpt_platform/CLAUDE.md` and `AGENTS.md` in the repository root.
For detailed platform development patterns, refer to `autogpt_platform/CLAUDE.md` and `AGENTS.md` in the repository root.

View File

@@ -37,9 +37,7 @@ jobs:
services:
redis:
image: bitnami/redis:6.2
env:
REDIS_PASSWORD: testpassword
image: redis:latest
ports:
- 6379:6379
rabbitmq:
@@ -204,7 +202,6 @@ jobs:
JWT_VERIFY_KEY: ${{ steps.supabase.outputs.JWT_SECRET }}
REDIS_HOST: "localhost"
REDIS_PORT: "6379"
REDIS_PASSWORD: "testpassword"
ENCRYPTION_KEY: "dvziYgz0KSK8FENhju0ZYi8-fRTfAdlz6YLhdB_jhNw=" # DO NOT USE IN PRODUCTION!!
env:

View File

@@ -1,113 +0,0 @@
name: Platform - Container Publishing
on:
release:
types: [published]
workflow_dispatch:
inputs:
no_cache:
type: boolean
description: 'Build from scratch, without using cached layers'
default: false
registry:
type: choice
description: 'Container registry to publish to'
options:
- 'both'
- 'ghcr'
- 'dockerhub'
default: 'both'
env:
GHCR_REGISTRY: ghcr.io
GHCR_IMAGE_BASE: ${{ github.repository_owner }}/autogpt-platform
DOCKERHUB_IMAGE_BASE: ${{ secrets.DOCKER_USER }}/autogpt-platform
permissions:
contents: read
packages: write
jobs:
build-and-publish:
runs-on: ubuntu-latest
strategy:
matrix:
component: [backend, frontend]
fail-fast: false
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Log in to GitHub Container Registry
if: inputs.registry == 'both' || inputs.registry == 'ghcr' || github.event_name == 'release'
uses: docker/login-action@v3
with:
registry: ${{ env.GHCR_REGISTRY }}
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Log in to Docker Hub
if: (inputs.registry == 'both' || inputs.registry == 'dockerhub' || github.event_name == 'release') && secrets.DOCKER_USER
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USER }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Extract metadata
id: meta
uses: docker/metadata-action@v5
with:
images: |
${{ env.GHCR_REGISTRY }}/${{ env.GHCR_IMAGE_BASE }}-${{ matrix.component }}
${{ secrets.DOCKER_USER && format('{0}-{1}', env.DOCKERHUB_IMAGE_BASE, matrix.component) || '' }}
tags: |
type=ref,event=branch
type=ref,event=pr
type=semver,pattern={{version}}
type=semver,pattern={{major}}.{{minor}}
type=semver,pattern={{major}}
type=raw,value=latest,enable={{is_default_branch}}
- name: Set build context and dockerfile for backend
if: matrix.component == 'backend'
run: |
echo "BUILD_CONTEXT=." >> $GITHUB_ENV
echo "DOCKERFILE=autogpt_platform/backend/Dockerfile" >> $GITHUB_ENV
echo "BUILD_TARGET=server" >> $GITHUB_ENV
- name: Set build context and dockerfile for frontend
if: matrix.component == 'frontend'
run: |
echo "BUILD_CONTEXT=." >> $GITHUB_ENV
echo "DOCKERFILE=autogpt_platform/frontend/Dockerfile" >> $GITHUB_ENV
echo "BUILD_TARGET=prod" >> $GITHUB_ENV
- name: Build and push container image
uses: docker/build-push-action@v6
with:
context: ${{ env.BUILD_CONTEXT }}
file: ${{ env.DOCKERFILE }}
target: ${{ env.BUILD_TARGET }}
platforms: linux/amd64,linux/arm64
push: true
tags: ${{ steps.meta.outputs.tags }}
labels: ${{ steps.meta.outputs.labels }}
cache-from: ${{ !inputs.no_cache && 'type=gha' || '' }},scope=platform-${{ matrix.component }}
cache-to: type=gha,scope=platform-${{ matrix.component }},mode=max
- name: Generate build summary
run: |
echo "## 🐳 Container Build Summary" >> $GITHUB_STEP_SUMMARY
echo "" >> $GITHUB_STEP_SUMMARY
echo "**Component:** ${{ matrix.component }}" >> $GITHUB_STEP_SUMMARY
echo "**Registry:** ${{ inputs.registry || 'both' }}" >> $GITHUB_STEP_SUMMARY
echo "**Tags:** ${{ steps.meta.outputs.tags }}" >> $GITHUB_STEP_SUMMARY
echo "" >> $GITHUB_STEP_SUMMARY
echo "### Images Published:" >> $GITHUB_STEP_SUMMARY
echo '```' >> $GITHUB_STEP_SUMMARY
echo "${{ steps.meta.outputs.tags }}" | sed 's/,/\n/g' >> $GITHUB_STEP_SUMMARY
echo '```' >> $GITHUB_STEP_SUMMARY

View File

@@ -1,6 +1,3 @@
[pr_reviewer]
num_code_suggestions=0
[pr_code_suggestions]
commitable_code_suggestions=false
num_code_suggestions=0

View File

@@ -63,6 +63,9 @@ poetry run pytest path/to/test.py --snapshot-update
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
@@ -75,12 +78,23 @@ pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
We have a components library in autogpt_platform/frontend/src/components/atoms that should be used when adding new pages and components.
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
@@ -95,11 +109,16 @@ We have a components library in autogpt_platform/frontend/src/components/atoms t
### Frontend Architecture
- **Framework**: Next.js App Router with React Server Components
- **State Management**: React hooks + Supabase client for real-time updates
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: Radix UI primitives with Tailwind CSS styling
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
@@ -153,6 +172,7 @@ Key models (defined in `/backend/schema.prisma`):
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
@@ -160,6 +180,7 @@ Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
@@ -180,10 +201,20 @@ ex: do the inputs and outputs tie well together?
**Frontend feature development:**
1. Components go in `/frontend/src/components/`
2. Use existing UI components from `/frontend/src/components/ui/`
3. Add Storybook stories for new components
4. Test with Playwright if user-facing
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
### Security Implementation

View File

@@ -1,389 +0,0 @@
# AutoGPT Platform Container Publishing
This document describes the container publishing infrastructure and deployment options for the AutoGPT Platform.
## Published Container Images
### GitHub Container Registry (GHCR) - Recommended
- **Backend**: `ghcr.io/significant-gravitas/autogpt-platform-backend`
- **Frontend**: `ghcr.io/significant-gravitas/autogpt-platform-frontend`
### Docker Hub
- **Backend**: `significantgravitas/autogpt-platform-backend`
- **Frontend**: `significantgravitas/autogpt-platform-frontend`
## Available Tags
- `latest` - Latest stable release from master branch
- `v1.0.0`, `v1.1.0`, etc. - Specific version releases
- `main` - Latest development build (use with caution)
## Quick Start
### Using Docker Compose (Recommended)
```bash
# Clone the repository (or just download the compose file)
git clone https://github.com/Significant-Gravitas/AutoGPT.git
cd AutoGPT/autogpt_platform
# Deploy with published images
./deploy.sh deploy
```
### Manual Docker Run
```bash
# Start dependencies first
docker network create autogpt
# PostgreSQL
docker run -d --name postgres --network autogpt \
-e POSTGRES_DB=autogpt \
-e POSTGRES_USER=autogpt \
-e POSTGRES_PASSWORD=password \
-v postgres_data:/var/lib/postgresql/data \
postgres:15
# Redis
docker run -d --name redis --network autogpt \
-v redis_data:/data \
redis:7-alpine redis-server --requirepass password
# RabbitMQ
docker run -d --name rabbitmq --network autogpt \
-e RABBITMQ_DEFAULT_USER=autogpt \
-e RABBITMQ_DEFAULT_PASS=password \
-p 15672:15672 \
rabbitmq:3-management
# Backend
docker run -d --name backend --network autogpt \
-p 8000:8000 \
-e DATABASE_URL=postgresql://autogpt:password@postgres:5432/autogpt \
-e REDIS_HOST=redis \
-e RABBITMQ_HOST=rabbitmq \
ghcr.io/significant-gravitas/autogpt-platform-backend:latest
# Frontend
docker run -d --name frontend --network autogpt \
-p 3000:3000 \
-e AGPT_SERVER_URL=http://localhost:8000/api \
ghcr.io/significant-gravitas/autogpt-platform-frontend:latest
```
## Deployment Scripts
### Deploy Script
The included `deploy.sh` script provides a complete deployment solution:
```bash
# Basic deployment
./deploy.sh deploy
# Deploy specific version
./deploy.sh -v v1.0.0 deploy
# Deploy from Docker Hub
./deploy.sh -r docker.io deploy
# Production deployment
./deploy.sh -p production deploy
# Other operations
./deploy.sh start # Start services
./deploy.sh stop # Stop services
./deploy.sh restart # Restart services
./deploy.sh update # Update to latest
./deploy.sh backup # Create backup
./deploy.sh status # Show status
./deploy.sh logs # Show logs
./deploy.sh cleanup # Remove everything
```
## Platform-Specific Deployment Guides
### Unraid
See [Unraid Deployment Guide](../docs/content/platform/deployment/unraid.md)
Key features:
- Community Applications template
- Web UI management
- Automatic updates
- Built-in backup system
### Home Assistant Add-on
See [Home Assistant Add-on Guide](../docs/content/platform/deployment/home-assistant.md)
Key features:
- Native Home Assistant integration
- Automation services
- Entity monitoring
- Backup integration
### Kubernetes
See [Kubernetes Deployment Guide](../docs/content/platform/deployment/kubernetes.md)
Key features:
- Helm charts
- Horizontal scaling
- Health checks
- Persistent volumes
## Container Architecture
### Backend Container
- **Base Image**: `debian:13-slim`
- **Runtime**: Python 3.13 with Poetry
- **Services**: REST API, WebSocket, Executor, Scheduler, Database Manager, Notification
- **Ports**: 8000-8007 (depending on service)
- **Health Check**: `GET /health`
### Frontend Container
- **Base Image**: `node:21-alpine`
- **Runtime**: Next.js production build
- **Port**: 3000
- **Health Check**: HTTP 200 on root path
## Environment Configuration
### Required Environment Variables
#### Backend
```env
DATABASE_URL=postgresql://user:pass@host:5432/db
REDIS_HOST=redis
RABBITMQ_HOST=rabbitmq
JWT_SECRET=your-secret-key
```
#### Frontend
```env
AGPT_SERVER_URL=http://backend:8000/api
SUPABASE_URL=http://auth:8000
```
### Optional Configuration
```env
# Logging
LOG_LEVEL=INFO
ENABLE_DEBUG=false
# Performance
REDIS_PASSWORD=your-redis-password
RABBITMQ_PASSWORD=your-rabbitmq-password
# Security
CORS_ORIGINS=http://localhost:3000
```
## CI/CD Pipeline
### GitHub Actions Workflow
The publishing workflow (`.github/workflows/platform-container-publish.yml`) automatically:
1. **Triggers** on releases and manual dispatch
2. **Builds** both backend and frontend containers
3. **Tests** container functionality
4. **Publishes** to both GHCR and Docker Hub
5. **Tags** with version and latest
### Manual Publishing
```bash
# Build and tag locally
docker build -t ghcr.io/significant-gravitas/autogpt-platform-backend:latest \
-f autogpt_platform/backend/Dockerfile \
--target server .
docker build -t ghcr.io/significant-gravitas/autogpt-platform-frontend:latest \
-f autogpt_platform/frontend/Dockerfile \
--target prod .
# Push to registry
docker push ghcr.io/significant-gravitas/autogpt-platform-backend:latest
docker push ghcr.io/significant-gravitas/autogpt-platform-frontend:latest
```
## Security Considerations
### Container Security
1. **Non-root users** - Containers run as non-root
2. **Minimal base images** - Using slim/alpine images
3. **No secrets in images** - All secrets via environment variables
4. **Read-only filesystem** - Where possible
5. **Resource limits** - CPU and memory limits set
### Deployment Security
1. **Network isolation** - Use dedicated networks
2. **TLS encryption** - Enable HTTPS in production
3. **Secret management** - Use Docker secrets or external secret stores
4. **Regular updates** - Keep images updated
5. **Vulnerability scanning** - Regular security scans
## Monitoring
### Health Checks
All containers include health checks:
```bash
# Check container health
docker inspect --format='{{.State.Health.Status}}' container_name
# Manual health check
curl http://localhost:8000/health
```
### Metrics
The backend exposes Prometheus metrics at `/metrics`:
```bash
curl http://localhost:8000/metrics
```
### Logging
Containers log to stdout/stderr for easy aggregation:
```bash
# View logs
docker logs container_name
# Follow logs
docker logs -f container_name
# Aggregate logs
docker compose logs -f
```
## Troubleshooting
### Common Issues
1. **Container won't start**
```bash
# Check logs
docker logs container_name
# Check environment
docker exec container_name env
```
2. **Database connection failed**
```bash
# Test connectivity
docker exec backend ping postgres
# Check database status
docker exec postgres pg_isready
```
3. **Port conflicts**
```bash
# Check port usage
ss -tuln | grep :3000
# Use different ports
docker run -p 3001:3000 ...
```
### Debug Mode
Enable debug mode for detailed logging:
```env
LOG_LEVEL=DEBUG
ENABLE_DEBUG=true
```
## Performance Optimization
### Resource Limits
```yaml
# Docker Compose
services:
backend:
deploy:
resources:
limits:
memory: 2G
cpus: '1.0'
reservations:
memory: 1G
cpus: '0.5'
```
### Scaling
```bash
# Scale backend services
docker compose up -d --scale backend=3
# Or use Docker Swarm
docker service scale backend=3
```
## Backup and Recovery
### Data Backup
```bash
# Database backup
docker exec postgres pg_dump -U autogpt autogpt > backup.sql
# Volume backup
docker run --rm -v postgres_data:/data -v $(pwd):/backup \
alpine tar czf /backup/postgres_backup.tar.gz /data
```
### Restore
```bash
# Database restore
docker exec -i postgres psql -U autogpt autogpt < backup.sql
# Volume restore
docker run --rm -v postgres_data:/data -v $(pwd):/backup \
alpine tar xzf /backup/postgres_backup.tar.gz -C /
```
## Support
- **Documentation**: [Platform Docs](../docs/content/platform/)
- **Issues**: [GitHub Issues](https://github.com/Significant-Gravitas/AutoGPT/issues)
- **Discord**: [AutoGPT Community](https://discord.gg/autogpt)
- **Docker Hub**: [Container Registry](https://hub.docker.com/r/significantgravitas/)
## Contributing
To contribute to the container infrastructure:
1. **Test locally** with `docker build` and `docker run`
2. **Update documentation** if making changes
3. **Test deployment scripts** on your platform
4. **Submit PR** with clear description of changes
## Roadmap
- [ ] ARM64 support for Apple Silicon
- [ ] Helm charts for Kubernetes
- [ ] Official Unraid template
- [ ] Home Assistant Add-on store submission
- [ ] Multi-stage builds optimization
- [ ] Security scanning integration
- [ ] Performance benchmarking

57
autogpt_platform/Makefile Normal file
View File

@@ -0,0 +1,57 @@
.PHONY: start-core stop-core logs-core format lint migrate run-backend run-frontend
# Run just Supabase + Redis + RabbitMQ
start-core:
docker compose up -d deps
# Stop core services
stop-core:
docker compose stop deps
reset-db:
rm -rf db/docker/volumes/db/data
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
# View logs for core services
logs-core:
docker compose logs -f deps
# Run formatting and linting for backend and frontend
format:
cd backend && poetry run format
cd frontend && pnpm format
cd frontend && pnpm lint
init-env:
cp -n .env.default .env || true
cd backend && cp -n .env.default .env || true
cd frontend && cp -n .env.default .env || true
# Run migrations for backend
migrate:
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
run-backend:
cd backend && poetry run app
run-frontend:
cd frontend && pnpm dev
test-data:
cd backend && poetry run python test/test_data_creator.py
help:
@echo "Usage: make <target>"
@echo "Targets:"
@echo " start-core - Start just the core services (Supabase, Redis, RabbitMQ) in background"
@echo " stop-core - Stop the core services"
@echo " reset-db - Reset the database by deleting the volume"
@echo " logs-core - Tail the logs for core services"
@echo " format - Format & lint backend (Python) and frontend (TypeScript) code"
@echo " migrate - Run backend database migrations"
@echo " run-backend - Run the backend FastAPI server"
@echo " run-frontend - Run the frontend Next.js development server"
@echo " test-data - Run the test data creator"

View File

@@ -2,38 +2,16 @@
Welcome to the AutoGPT Platform - a powerful system for creating and running AI agents to solve business problems. This platform enables you to harness the power of artificial intelligence to automate tasks, analyze data, and generate insights for your organization.
## Deployment Options
### Quick Deploy with Published Containers (Recommended)
The fastest way to get started is using our pre-built containers:
```bash
# Download and run with published images
curl -fsSL https://raw.githubusercontent.com/Significant-Gravitas/AutoGPT/master/autogpt_platform/deploy.sh -o deploy.sh
chmod +x deploy.sh
./deploy.sh deploy
```
Access the platform at http://localhost:3000 after deployment completes.
### Platform-Specific Deployments
- **Unraid**: [Deployment Guide](../docs/content/platform/deployment/unraid.md)
- **Home Assistant**: [Add-on Guide](../docs/content/platform/deployment/home-assistant.md)
- **Kubernetes**: [K8s Deployment](../docs/content/platform/deployment/kubernetes.md)
- **General Containers**: [Container Guide](../docs/content/platform/container-deployment.md)
## Development Setup
## Getting Started
### Prerequisites
- Docker
- Docker Compose V2 (comes with Docker Desktop, or can be installed separately)
### Running from Source
### Running the System
To run the AutoGPT Platform from source for development:
To run the AutoGPT Platform, follow these steps:
1. Clone this repository to your local machine and navigate to the `autogpt_platform` directory within the repository:
@@ -60,6 +38,37 @@ To run the AutoGPT Platform from source for development:
4. After all the services are in ready state, open your browser and navigate to `http://localhost:3000` to access the AutoGPT Platform frontend.
### Running Just Core services
You can now run the following to enable just the core services.
```
# For help
make help
# Run just Supabase + Redis + RabbitMQ
make start-core
# Stop core services
make stop-core
# View logs from core services
make logs-core
# Run formatting and linting for backend and frontend
make format
# Run migrations for backend database
make migrate
# Run backend server
make run-backend
# Run frontend development server
make run-frontend
```
### Docker Compose Commands
Here are some useful Docker Compose commands for managing your AutoGPT Platform:
@@ -179,28 +188,3 @@ If you need to update the API client after making changes to the backend API:
```
This will fetch the latest OpenAPI specification and regenerate the TypeScript client code.
## Container Deployment
For production deployments and specific platforms, see our container deployment guides:
- **[Container Deployment Overview](CONTAINERS.md)** - Complete guide to using published containers
- **[Deployment Script](deploy.sh)** - Automated deployment and management tool
- **[Published Images](docker-compose.published.yml)** - Docker Compose for published containers
### Published Container Images
- **Backend**: `ghcr.io/significant-gravitas/autogpt-platform-backend:latest`
- **Frontend**: `ghcr.io/significant-gravitas/autogpt-platform-frontend:latest`
### Quick Production Deployment
```bash
# Deploy with published containers
./deploy.sh deploy
# Or use the published compose file directly
docker compose -f docker-compose.published.yml up -d
```
For detailed deployment instructions, troubleshooting, and platform-specific guides, see the [Container Documentation](CONTAINERS.md).

View File

@@ -10,7 +10,7 @@ from .jwt_utils import get_jwt_payload, verify_user
from .models import User
def requires_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User:
async def requires_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User:
"""
FastAPI dependency that requires a valid authenticated user.
@@ -20,7 +20,9 @@ def requires_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User
return verify_user(jwt_payload, admin_only=False)
def requires_admin_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User:
async def requires_admin_user(
jwt_payload: dict = fastapi.Security(get_jwt_payload),
) -> User:
"""
FastAPI dependency that requires a valid admin user.
@@ -30,7 +32,7 @@ def requires_admin_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -
return verify_user(jwt_payload, admin_only=True)
def get_user_id(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> str:
async def get_user_id(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> str:
"""
FastAPI dependency that returns the ID of the authenticated user.

View File

@@ -45,7 +45,7 @@ class TestAuthDependencies:
"""Create a test client."""
return TestClient(app)
def test_requires_user_with_valid_jwt_payload(self, mocker: MockerFixture):
async def test_requires_user_with_valid_jwt_payload(self, mocker: MockerFixture):
"""Test requires_user with valid JWT payload."""
jwt_payload = {"sub": "user-123", "role": "user", "email": "user@example.com"}
@@ -53,12 +53,12 @@ class TestAuthDependencies:
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = requires_user(jwt_payload)
user = await requires_user(jwt_payload)
assert isinstance(user, User)
assert user.user_id == "user-123"
assert user.role == "user"
def test_requires_user_with_admin_jwt_payload(self, mocker: MockerFixture):
async def test_requires_user_with_admin_jwt_payload(self, mocker: MockerFixture):
"""Test requires_user accepts admin users."""
jwt_payload = {
"sub": "admin-456",
@@ -69,28 +69,28 @@ class TestAuthDependencies:
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = requires_user(jwt_payload)
user = await requires_user(jwt_payload)
assert user.user_id == "admin-456"
assert user.role == "admin"
def test_requires_user_missing_sub(self):
async def test_requires_user_missing_sub(self):
"""Test requires_user with missing user ID."""
jwt_payload = {"role": "user", "email": "user@example.com"}
with pytest.raises(HTTPException) as exc_info:
requires_user(jwt_payload)
await requires_user(jwt_payload)
assert exc_info.value.status_code == 401
assert "User ID not found" in exc_info.value.detail
def test_requires_user_empty_sub(self):
async def test_requires_user_empty_sub(self):
"""Test requires_user with empty user ID."""
jwt_payload = {"sub": "", "role": "user"}
with pytest.raises(HTTPException) as exc_info:
requires_user(jwt_payload)
await requires_user(jwt_payload)
assert exc_info.value.status_code == 401
def test_requires_admin_user_with_admin(self, mocker: MockerFixture):
async def test_requires_admin_user_with_admin(self, mocker: MockerFixture):
"""Test requires_admin_user with admin role."""
jwt_payload = {
"sub": "admin-789",
@@ -101,51 +101,51 @@ class TestAuthDependencies:
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = requires_admin_user(jwt_payload)
user = await requires_admin_user(jwt_payload)
assert user.user_id == "admin-789"
assert user.role == "admin"
def test_requires_admin_user_with_regular_user(self):
async def test_requires_admin_user_with_regular_user(self):
"""Test requires_admin_user rejects regular users."""
jwt_payload = {"sub": "user-123", "role": "user", "email": "user@example.com"}
with pytest.raises(HTTPException) as exc_info:
requires_admin_user(jwt_payload)
await requires_admin_user(jwt_payload)
assert exc_info.value.status_code == 403
assert "Admin access required" in exc_info.value.detail
def test_requires_admin_user_missing_role(self):
async def test_requires_admin_user_missing_role(self):
"""Test requires_admin_user with missing role."""
jwt_payload = {"sub": "user-123", "email": "user@example.com"}
with pytest.raises(KeyError):
requires_admin_user(jwt_payload)
await requires_admin_user(jwt_payload)
def test_get_user_id_with_valid_payload(self, mocker: MockerFixture):
async def test_get_user_id_with_valid_payload(self, mocker: MockerFixture):
"""Test get_user_id extracts user ID correctly."""
jwt_payload = {"sub": "user-id-xyz", "role": "user"}
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user_id = get_user_id(jwt_payload)
user_id = await get_user_id(jwt_payload)
assert user_id == "user-id-xyz"
def test_get_user_id_missing_sub(self):
async def test_get_user_id_missing_sub(self):
"""Test get_user_id with missing user ID."""
jwt_payload = {"role": "user"}
with pytest.raises(HTTPException) as exc_info:
get_user_id(jwt_payload)
await get_user_id(jwt_payload)
assert exc_info.value.status_code == 401
assert "User ID not found" in exc_info.value.detail
def test_get_user_id_none_sub(self):
async def test_get_user_id_none_sub(self):
"""Test get_user_id with None user ID."""
jwt_payload = {"sub": None, "role": "user"}
with pytest.raises(HTTPException) as exc_info:
get_user_id(jwt_payload)
await get_user_id(jwt_payload)
assert exc_info.value.status_code == 401
@@ -170,7 +170,7 @@ class TestAuthDependenciesIntegration:
return _create_token
def test_endpoint_auth_enabled_no_token(self):
async def test_endpoint_auth_enabled_no_token(self):
"""Test endpoints require token when auth is enabled."""
app = FastAPI()
@@ -184,7 +184,7 @@ class TestAuthDependenciesIntegration:
response = client.get("/test")
assert response.status_code == 401
def test_endpoint_with_valid_token(self, create_token):
async def test_endpoint_with_valid_token(self, create_token):
"""Test endpoint with valid JWT token."""
app = FastAPI()
@@ -203,7 +203,7 @@ class TestAuthDependenciesIntegration:
assert response.status_code == 200
assert response.json()["user_id"] == "test-user"
def test_admin_endpoint_requires_admin_role(self, create_token):
async def test_admin_endpoint_requires_admin_role(self, create_token):
"""Test admin endpoint rejects non-admin users."""
app = FastAPI()
@@ -240,7 +240,7 @@ class TestAuthDependenciesIntegration:
class TestAuthDependenciesEdgeCases:
"""Edge case tests for authentication dependencies."""
def test_dependency_with_complex_payload(self):
async def test_dependency_with_complex_payload(self):
"""Test dependencies handle complex JWT payloads."""
complex_payload = {
"sub": "user-123",
@@ -256,14 +256,14 @@ class TestAuthDependenciesEdgeCases:
"exp": 9999999999,
}
user = requires_user(complex_payload)
user = await requires_user(complex_payload)
assert user.user_id == "user-123"
assert user.email == "test@example.com"
admin = requires_admin_user(complex_payload)
admin = await requires_admin_user(complex_payload)
assert admin.role == "admin"
def test_dependency_with_unicode_in_payload(self):
async def test_dependency_with_unicode_in_payload(self):
"""Test dependencies handle unicode in JWT payloads."""
unicode_payload = {
"sub": "user-😀-123",
@@ -272,11 +272,11 @@ class TestAuthDependenciesEdgeCases:
"name": "日本語",
}
user = requires_user(unicode_payload)
user = await requires_user(unicode_payload)
assert "😀" in user.user_id
assert user.email == "测试@example.com"
def test_dependency_with_null_values(self):
async def test_dependency_with_null_values(self):
"""Test dependencies handle null values in payload."""
null_payload = {
"sub": "user-123",
@@ -286,18 +286,18 @@ class TestAuthDependenciesEdgeCases:
"metadata": None,
}
user = requires_user(null_payload)
user = await requires_user(null_payload)
assert user.user_id == "user-123"
assert user.email is None
def test_concurrent_requests_isolation(self):
async def test_concurrent_requests_isolation(self):
"""Test that concurrent requests don't interfere with each other."""
payload1 = {"sub": "user-1", "role": "user"}
payload2 = {"sub": "user-2", "role": "admin"}
# Simulate concurrent processing
user1 = requires_user(payload1)
user2 = requires_admin_user(payload2)
user1 = await requires_user(payload1)
user2 = await requires_admin_user(payload2)
assert user1.user_id == "user-1"
assert user2.user_id == "user-2"
@@ -314,7 +314,7 @@ class TestAuthDependenciesEdgeCases:
({"sub": "user", "role": "user"}, "Admin access required", True),
],
)
def test_dependency_error_cases(
async def test_dependency_error_cases(
self, payload, expected_error: str, admin_only: bool
):
"""Test that errors propagate correctly through dependencies."""
@@ -325,7 +325,7 @@ class TestAuthDependenciesEdgeCases:
verify_user(payload, admin_only=admin_only)
assert expected_error in exc_info.value.detail
def test_dependency_valid_user(self):
async def test_dependency_valid_user(self):
"""Test valid user case for dependency."""
# Import verify_user to test it directly since dependencies use FastAPI Security
from autogpt_libs.auth.jwt_utils import verify_user

View File

@@ -16,7 +16,7 @@ bearer_jwt_auth = HTTPBearer(
)
def get_jwt_payload(
async def get_jwt_payload(
credentials: HTTPAuthorizationCredentials | None = Security(bearer_jwt_auth),
) -> dict[str, Any]:
"""

View File

@@ -116,32 +116,32 @@ def test_parse_jwt_token_missing_audience():
assert "Invalid token" in str(exc_info.value)
def test_get_jwt_payload_with_valid_token():
async def test_get_jwt_payload_with_valid_token():
"""Test extracting JWT payload with valid bearer token."""
token = create_token(TEST_USER_PAYLOAD)
credentials = HTTPAuthorizationCredentials(scheme="Bearer", credentials=token)
result = jwt_utils.get_jwt_payload(credentials)
result = await jwt_utils.get_jwt_payload(credentials)
assert result["sub"] == "test-user-id"
assert result["role"] == "user"
def test_get_jwt_payload_no_credentials():
async def test_get_jwt_payload_no_credentials():
"""Test JWT payload when no credentials provided."""
with pytest.raises(HTTPException) as exc_info:
jwt_utils.get_jwt_payload(None)
await jwt_utils.get_jwt_payload(None)
assert exc_info.value.status_code == 401
assert "Authorization header is missing" in exc_info.value.detail
def test_get_jwt_payload_invalid_token():
async def test_get_jwt_payload_invalid_token():
"""Test JWT payload extraction with invalid token."""
credentials = HTTPAuthorizationCredentials(
scheme="Bearer", credentials="invalid.token.here"
)
with pytest.raises(HTTPException) as exc_info:
jwt_utils.get_jwt_payload(credentials)
await jwt_utils.get_jwt_payload(credentials)
assert exc_info.value.status_code == 401
assert "Invalid token" in exc_info.value.detail

View File

@@ -4,6 +4,7 @@ import logging
import os
import socket
import sys
from logging.handlers import RotatingFileHandler
from pathlib import Path
from pydantic import Field, field_validator
@@ -93,42 +94,36 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
config = LoggingConfig()
log_handlers: list[logging.Handler] = []
structured_logging = config.enable_cloud_logging or force_cloud_logging
# Console output handlers
stdout = logging.StreamHandler(stream=sys.stdout)
stdout.setLevel(config.level)
stdout.addFilter(BelowLevelFilter(logging.WARNING))
if config.level == logging.DEBUG:
stdout.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stdout.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
if not structured_logging:
stdout = logging.StreamHandler(stream=sys.stdout)
stdout.setLevel(config.level)
stdout.addFilter(BelowLevelFilter(logging.WARNING))
if config.level == logging.DEBUG:
stdout.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stdout.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
stderr = logging.StreamHandler()
stderr.setLevel(logging.WARNING)
if config.level == logging.DEBUG:
stderr.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stderr.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
stderr = logging.StreamHandler()
stderr.setLevel(logging.WARNING)
if config.level == logging.DEBUG:
stderr.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stderr.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
log_handlers += [stdout, stderr]
log_handlers += [stdout, stderr]
# Cloud logging setup
if config.enable_cloud_logging or force_cloud_logging:
import google.cloud.logging
from google.cloud.logging.handlers import CloudLoggingHandler
from google.cloud.logging_v2.handlers.transports import (
BackgroundThreadTransport,
)
else:
# Use Google Cloud Structured Log Handler. Log entries are printed to stdout
# in a JSON format which is automatically picked up by Google Cloud Logging.
from google.cloud.logging.handlers import StructuredLogHandler
client = google.cloud.logging.Client()
# Use BackgroundThreadTransport to prevent blocking the main thread
# and deadlocks when gRPC calls to Google Cloud Logging hang
cloud_handler = CloudLoggingHandler(
client,
name="autogpt_logs",
transport=BackgroundThreadTransport,
)
cloud_handler.setLevel(config.level)
log_handlers.append(cloud_handler)
structured_log_handler = StructuredLogHandler(stream=sys.stdout)
structured_log_handler.setLevel(config.level)
log_handlers.append(structured_log_handler)
# File logging setup
if config.enable_file_logging:
@@ -139,8 +134,13 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
print(f"Log directory: {config.log_dir}")
# Activity log handler (INFO and above)
activity_log_handler = logging.FileHandler(
config.log_dir / LOG_FILE, "a", "utf-8"
# Security fix: Use RotatingFileHandler with size limits to prevent disk exhaustion
activity_log_handler = RotatingFileHandler(
config.log_dir / LOG_FILE,
mode="a",
encoding="utf-8",
maxBytes=10 * 1024 * 1024, # 10MB per file
backupCount=3, # Keep 3 backup files (40MB total)
)
activity_log_handler.setLevel(config.level)
activity_log_handler.setFormatter(
@@ -150,8 +150,13 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
if config.level == logging.DEBUG:
# Debug log handler (all levels)
debug_log_handler = logging.FileHandler(
config.log_dir / DEBUG_LOG_FILE, "a", "utf-8"
# Security fix: Use RotatingFileHandler with size limits
debug_log_handler = RotatingFileHandler(
config.log_dir / DEBUG_LOG_FILE,
mode="a",
encoding="utf-8",
maxBytes=10 * 1024 * 1024, # 10MB per file
backupCount=3, # Keep 3 backup files (40MB total)
)
debug_log_handler.setLevel(logging.DEBUG)
debug_log_handler.setFormatter(
@@ -160,8 +165,13 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
log_handlers.append(debug_log_handler)
# Error log handler (ERROR and above)
error_log_handler = logging.FileHandler(
config.log_dir / ERROR_LOG_FILE, "a", "utf-8"
# Security fix: Use RotatingFileHandler with size limits
error_log_handler = RotatingFileHandler(
config.log_dir / ERROR_LOG_FILE,
mode="a",
encoding="utf-8",
maxBytes=10 * 1024 * 1024, # 10MB per file
backupCount=3, # Keep 3 backup files (40MB total)
)
error_log_handler.setLevel(logging.ERROR)
error_log_handler.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT, no_color=True))
@@ -169,7 +179,13 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
# Configure the root logger
logging.basicConfig(
format=DEBUG_LOG_FORMAT if config.level == logging.DEBUG else SIMPLE_LOG_FORMAT,
format=(
"%(levelname)s %(message)s"
if structured_logging
else (
DEBUG_LOG_FORMAT if config.level == logging.DEBUG else SIMPLE_LOG_FORMAT
)
),
level=config.level,
handlers=log_handlers,
)

View File

@@ -1,3 +1,5 @@
from typing import Optional
from pydantic import Field
from pydantic_settings import BaseSettings, SettingsConfigDict
@@ -13,8 +15,8 @@ class RateLimitSettings(BaseSettings):
default="6379", description="Redis port", validation_alias="REDIS_PORT"
)
redis_password: str = Field(
default="password",
redis_password: Optional[str] = Field(
default=None,
description="Redis password",
validation_alias="REDIS_PASSWORD",
)

View File

@@ -11,7 +11,7 @@ class RateLimiter:
self,
redis_host: str = RATE_LIMIT_SETTINGS.redis_host,
redis_port: str = RATE_LIMIT_SETTINGS.redis_port,
redis_password: str = RATE_LIMIT_SETTINGS.redis_password,
redis_password: str | None = RATE_LIMIT_SETTINGS.redis_password,
requests_per_minute: int = RATE_LIMIT_SETTINGS.requests_per_minute,
):
self.redis = Redis(

View File

@@ -1,266 +0,0 @@
import inspect
import logging
import threading
import time
from functools import wraps
from typing import (
Awaitable,
Callable,
ParamSpec,
Protocol,
Tuple,
TypeVar,
cast,
overload,
runtime_checkable,
)
P = ParamSpec("P")
R = TypeVar("R")
logger = logging.getLogger(__name__)
@overload
def thread_cached(func: Callable[P, Awaitable[R]]) -> Callable[P, Awaitable[R]]:
pass
@overload
def thread_cached(func: Callable[P, R]) -> Callable[P, R]:
pass
def thread_cached(
func: Callable[P, R] | Callable[P, Awaitable[R]],
) -> Callable[P, R] | Callable[P, Awaitable[R]]:
thread_local = threading.local()
def _clear():
if hasattr(thread_local, "cache"):
del thread_local.cache
if inspect.iscoroutinefunction(func):
async def async_wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = (args, tuple(sorted(kwargs.items())))
if key not in cache:
cache[key] = await cast(Callable[P, Awaitable[R]], func)(
*args, **kwargs
)
return cache[key]
setattr(async_wrapper, "clear_cache", _clear)
return async_wrapper
else:
def sync_wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = (args, tuple(sorted(kwargs.items())))
if key not in cache:
cache[key] = func(*args, **kwargs)
return cache[key]
setattr(sync_wrapper, "clear_cache", _clear)
return sync_wrapper
def clear_thread_cache(func: Callable) -> None:
if clear := getattr(func, "clear_cache", None):
clear()
FuncT = TypeVar("FuncT")
R_co = TypeVar("R_co", covariant=True)
@runtime_checkable
class AsyncCachedFunction(Protocol[P, R_co]):
"""Protocol for async functions with cache management methods."""
def cache_clear(self) -> None:
"""Clear all cached entries."""
return None
def cache_info(self) -> dict[str, int | None]:
"""Get cache statistics."""
return {}
async def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R_co:
"""Call the cached function."""
return None # type: ignore
def async_ttl_cache(
maxsize: int = 128, ttl_seconds: int | None = None
) -> Callable[[Callable[P, Awaitable[R]]], AsyncCachedFunction[P, R]]:
"""
TTL (Time To Live) cache decorator for async functions.
Similar to functools.lru_cache but works with async functions and includes optional TTL.
Args:
maxsize: Maximum number of cached entries
ttl_seconds: Time to live in seconds. If None, entries never expire (like lru_cache)
Returns:
Decorator function
Example:
# With TTL
@async_ttl_cache(maxsize=1000, ttl_seconds=300)
async def api_call(param: str) -> dict:
return {"result": param}
# Without TTL (permanent cache like lru_cache)
@async_ttl_cache(maxsize=1000)
async def expensive_computation(param: str) -> dict:
return {"result": param}
"""
def decorator(
async_func: Callable[P, Awaitable[R]],
) -> AsyncCachedFunction[P, R]:
# Cache storage - use union type to handle both cases
cache_storage: dict[tuple, R | Tuple[R, float]] = {}
@wraps(async_func)
async def wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
# Create cache key from arguments
key = (args, tuple(sorted(kwargs.items())))
current_time = time.time()
# Check if we have a valid cached entry
if key in cache_storage:
if ttl_seconds is None:
# No TTL - return cached result directly
logger.debug(
f"Cache hit for {async_func.__name__} with key: {str(key)[:50]}"
)
return cast(R, cache_storage[key])
else:
# With TTL - check expiration
cached_data = cache_storage[key]
if isinstance(cached_data, tuple):
result, timestamp = cached_data
if current_time - timestamp < ttl_seconds:
logger.debug(
f"Cache hit for {async_func.__name__} with key: {str(key)[:50]}"
)
return cast(R, result)
else:
# Expired entry
del cache_storage[key]
logger.debug(
f"Cache entry expired for {async_func.__name__}"
)
# Cache miss or expired - fetch fresh data
logger.debug(
f"Cache miss for {async_func.__name__} with key: {str(key)[:50]}"
)
result = await async_func(*args, **kwargs)
# Store in cache
if ttl_seconds is None:
cache_storage[key] = result
else:
cache_storage[key] = (result, current_time)
# Simple cleanup when cache gets too large
if len(cache_storage) > maxsize:
# Remove oldest entries (simple FIFO cleanup)
cutoff = maxsize // 2
oldest_keys = list(cache_storage.keys())[:-cutoff] if cutoff > 0 else []
for old_key in oldest_keys:
cache_storage.pop(old_key, None)
logger.debug(
f"Cache cleanup: removed {len(oldest_keys)} entries for {async_func.__name__}"
)
return result
# Add cache management methods (similar to functools.lru_cache)
def cache_clear() -> None:
cache_storage.clear()
def cache_info() -> dict[str, int | None]:
return {
"size": len(cache_storage),
"maxsize": maxsize,
"ttl_seconds": ttl_seconds,
}
# Attach methods to wrapper
setattr(wrapper, "cache_clear", cache_clear)
setattr(wrapper, "cache_info", cache_info)
return cast(AsyncCachedFunction[P, R], wrapper)
return decorator
@overload
def async_cache(
func: Callable[P, Awaitable[R]],
) -> AsyncCachedFunction[P, R]:
pass
@overload
def async_cache(
func: None = None,
*,
maxsize: int = 128,
) -> Callable[[Callable[P, Awaitable[R]]], AsyncCachedFunction[P, R]]:
pass
def async_cache(
func: Callable[P, Awaitable[R]] | None = None,
*,
maxsize: int = 128,
) -> (
AsyncCachedFunction[P, R]
| Callable[[Callable[P, Awaitable[R]]], AsyncCachedFunction[P, R]]
):
"""
Process-level cache decorator for async functions (no TTL).
Similar to functools.lru_cache but works with async functions.
This is a convenience wrapper around async_ttl_cache with ttl_seconds=None.
Args:
func: The async function to cache (when used without parentheses)
maxsize: Maximum number of cached entries
Returns:
Decorated function or decorator
Example:
# Without parentheses (uses default maxsize=128)
@async_cache
async def get_data(param: str) -> dict:
return {"result": param}
# With parentheses and custom maxsize
@async_cache(maxsize=1000)
async def expensive_computation(param: str) -> dict:
# Expensive computation here
return {"result": param}
"""
if func is None:
# Called with parentheses @async_cache() or @async_cache(maxsize=...)
return async_ttl_cache(maxsize=maxsize, ttl_seconds=None)
else:
# Called without parentheses @async_cache
decorator = async_ttl_cache(maxsize=maxsize, ttl_seconds=None)
return decorator(func)

View File

@@ -1,705 +0,0 @@
"""Tests for the @thread_cached decorator.
This module tests the thread-local caching functionality including:
- Basic caching for sync and async functions
- Thread isolation (each thread has its own cache)
- Cache clearing functionality
- Exception handling (exceptions are not cached)
- Argument handling (positional vs keyword arguments)
"""
import asyncio
import threading
import time
from concurrent.futures import ThreadPoolExecutor
from unittest.mock import Mock
import pytest
from autogpt_libs.utils.cache import (
async_cache,
async_ttl_cache,
clear_thread_cache,
thread_cached,
)
class TestThreadCached:
def test_sync_function_caching(self):
call_count = 0
@thread_cached
def expensive_function(x: int, y: int = 0) -> int:
nonlocal call_count
call_count += 1
return x + y
assert expensive_function(1, 2) == 3
assert call_count == 1
assert expensive_function(1, 2) == 3
assert call_count == 1
assert expensive_function(1, y=2) == 3
assert call_count == 2
assert expensive_function(2, 3) == 5
assert call_count == 3
assert expensive_function(1) == 1
assert call_count == 4
@pytest.mark.asyncio
async def test_async_function_caching(self):
call_count = 0
@thread_cached
async def expensive_async_function(x: int, y: int = 0) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01)
return x + y
assert await expensive_async_function(1, 2) == 3
assert call_count == 1
assert await expensive_async_function(1, 2) == 3
assert call_count == 1
assert await expensive_async_function(1, y=2) == 3
assert call_count == 2
assert await expensive_async_function(2, 3) == 5
assert call_count == 3
def test_thread_isolation(self):
call_count = 0
results = {}
@thread_cached
def thread_specific_function(x: int) -> str:
nonlocal call_count
call_count += 1
return f"{threading.current_thread().name}-{x}"
def worker(thread_id: int):
result1 = thread_specific_function(1)
result2 = thread_specific_function(1)
result3 = thread_specific_function(2)
results[thread_id] = (result1, result2, result3)
with ThreadPoolExecutor(max_workers=3) as executor:
futures = [executor.submit(worker, i) for i in range(3)]
for future in futures:
future.result()
assert call_count >= 2
for thread_id, (r1, r2, r3) in results.items():
assert r1 == r2
assert r1 != r3
@pytest.mark.asyncio
async def test_async_thread_isolation(self):
call_count = 0
results = {}
@thread_cached
async def async_thread_specific_function(x: int) -> str:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01)
return f"{threading.current_thread().name}-{x}"
async def async_worker(worker_id: int):
result1 = await async_thread_specific_function(1)
result2 = await async_thread_specific_function(1)
result3 = await async_thread_specific_function(2)
results[worker_id] = (result1, result2, result3)
tasks = [async_worker(i) for i in range(3)]
await asyncio.gather(*tasks)
for worker_id, (r1, r2, r3) in results.items():
assert r1 == r2
assert r1 != r3
def test_clear_cache_sync(self):
call_count = 0
@thread_cached
def clearable_function(x: int) -> int:
nonlocal call_count
call_count += 1
return x * 2
assert clearable_function(5) == 10
assert call_count == 1
assert clearable_function(5) == 10
assert call_count == 1
clear_thread_cache(clearable_function)
assert clearable_function(5) == 10
assert call_count == 2
@pytest.mark.asyncio
async def test_clear_cache_async(self):
call_count = 0
@thread_cached
async def clearable_async_function(x: int) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01)
return x * 2
assert await clearable_async_function(5) == 10
assert call_count == 1
assert await clearable_async_function(5) == 10
assert call_count == 1
clear_thread_cache(clearable_async_function)
assert await clearable_async_function(5) == 10
assert call_count == 2
def test_simple_arguments(self):
call_count = 0
@thread_cached
def simple_function(a: str, b: int, c: str = "default") -> str:
nonlocal call_count
call_count += 1
return f"{a}-{b}-{c}"
# First call with all positional args
result1 = simple_function("test", 42, "custom")
assert call_count == 1
# Same args, all positional - should hit cache
result2 = simple_function("test", 42, "custom")
assert call_count == 1
assert result1 == result2
# Same values but last arg as keyword - creates different cache key
result3 = simple_function("test", 42, c="custom")
assert call_count == 2
assert result1 == result3 # Same result, different cache entry
# Different value - new cache entry
result4 = simple_function("test", 43, "custom")
assert call_count == 3
assert result1 != result4
def test_positional_vs_keyword_args(self):
"""Test that positional and keyword arguments create different cache entries."""
call_count = 0
@thread_cached
def func(a: int, b: int = 10) -> str:
nonlocal call_count
call_count += 1
return f"result-{a}-{b}"
# All positional
result1 = func(1, 2)
assert call_count == 1
assert result1 == "result-1-2"
# Same values, but second arg as keyword
result2 = func(1, b=2)
assert call_count == 2 # Different cache key!
assert result2 == "result-1-2" # Same result
# Verify both are cached separately
func(1, 2) # Uses first cache entry
assert call_count == 2
func(1, b=2) # Uses second cache entry
assert call_count == 2
def test_exception_handling(self):
call_count = 0
@thread_cached
def failing_function(x: int) -> int:
nonlocal call_count
call_count += 1
if x < 0:
raise ValueError("Negative value")
return x * 2
assert failing_function(5) == 10
assert call_count == 1
with pytest.raises(ValueError):
failing_function(-1)
assert call_count == 2
with pytest.raises(ValueError):
failing_function(-1)
assert call_count == 3
assert failing_function(5) == 10
assert call_count == 3
@pytest.mark.asyncio
async def test_async_exception_handling(self):
call_count = 0
@thread_cached
async def async_failing_function(x: int) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01)
if x < 0:
raise ValueError("Negative value")
return x * 2
assert await async_failing_function(5) == 10
assert call_count == 1
with pytest.raises(ValueError):
await async_failing_function(-1)
assert call_count == 2
with pytest.raises(ValueError):
await async_failing_function(-1)
assert call_count == 3
def test_sync_caching_performance(self):
@thread_cached
def slow_function(x: int) -> int:
print(f"slow_function called with x={x}")
time.sleep(0.1)
return x * 2
start = time.time()
result1 = slow_function(5)
first_call_time = time.time() - start
print(f"First call took {first_call_time:.4f} seconds")
start = time.time()
result2 = slow_function(5)
second_call_time = time.time() - start
print(f"Second call took {second_call_time:.4f} seconds")
assert result1 == result2 == 10
assert first_call_time > 0.09
assert second_call_time < 0.01
@pytest.mark.asyncio
async def test_async_caching_performance(self):
@thread_cached
async def slow_async_function(x: int) -> int:
print(f"slow_async_function called with x={x}")
await asyncio.sleep(0.1)
return x * 2
start = time.time()
result1 = await slow_async_function(5)
first_call_time = time.time() - start
print(f"First async call took {first_call_time:.4f} seconds")
start = time.time()
result2 = await slow_async_function(5)
second_call_time = time.time() - start
print(f"Second async call took {second_call_time:.4f} seconds")
assert result1 == result2 == 10
assert first_call_time > 0.09
assert second_call_time < 0.01
def test_with_mock_objects(self):
mock = Mock(return_value=42)
@thread_cached
def function_using_mock(x: int) -> int:
return mock(x)
assert function_using_mock(1) == 42
assert mock.call_count == 1
assert function_using_mock(1) == 42
assert mock.call_count == 1
assert function_using_mock(2) == 42
assert mock.call_count == 2
class TestAsyncTTLCache:
"""Tests for the @async_ttl_cache decorator."""
@pytest.mark.asyncio
async def test_basic_caching(self):
"""Test basic caching functionality."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=60)
async def cached_function(x: int, y: int = 0) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01) # Simulate async work
return x + y
# First call
result1 = await cached_function(1, 2)
assert result1 == 3
assert call_count == 1
# Second call with same args - should use cache
result2 = await cached_function(1, 2)
assert result2 == 3
assert call_count == 1 # No additional call
# Different args - should call function again
result3 = await cached_function(2, 3)
assert result3 == 5
assert call_count == 2
@pytest.mark.asyncio
async def test_ttl_expiration(self):
"""Test that cache entries expire after TTL."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=1) # Short TTL
async def short_lived_cache(x: int) -> int:
nonlocal call_count
call_count += 1
return x * 2
# First call
result1 = await short_lived_cache(5)
assert result1 == 10
assert call_count == 1
# Second call immediately - should use cache
result2 = await short_lived_cache(5)
assert result2 == 10
assert call_count == 1
# Wait for TTL to expire
await asyncio.sleep(1.1)
# Third call after expiration - should call function again
result3 = await short_lived_cache(5)
assert result3 == 10
assert call_count == 2
@pytest.mark.asyncio
async def test_cache_info(self):
"""Test cache info functionality."""
@async_ttl_cache(maxsize=5, ttl_seconds=300)
async def info_test_function(x: int) -> int:
return x * 3
# Check initial cache info
info = info_test_function.cache_info()
assert info["size"] == 0
assert info["maxsize"] == 5
assert info["ttl_seconds"] == 300
# Add an entry
await info_test_function(1)
info = info_test_function.cache_info()
assert info["size"] == 1
@pytest.mark.asyncio
async def test_cache_clear(self):
"""Test cache clearing functionality."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=60)
async def clearable_function(x: int) -> int:
nonlocal call_count
call_count += 1
return x * 4
# First call
result1 = await clearable_function(2)
assert result1 == 8
assert call_count == 1
# Second call - should use cache
result2 = await clearable_function(2)
assert result2 == 8
assert call_count == 1
# Clear cache
clearable_function.cache_clear()
# Third call after clear - should call function again
result3 = await clearable_function(2)
assert result3 == 8
assert call_count == 2
@pytest.mark.asyncio
async def test_maxsize_cleanup(self):
"""Test that cache cleans up when maxsize is exceeded."""
call_count = 0
@async_ttl_cache(maxsize=3, ttl_seconds=60)
async def size_limited_function(x: int) -> int:
nonlocal call_count
call_count += 1
return x**2
# Fill cache to maxsize
await size_limited_function(1) # call_count: 1
await size_limited_function(2) # call_count: 2
await size_limited_function(3) # call_count: 3
info = size_limited_function.cache_info()
assert info["size"] == 3
# Add one more entry - should trigger cleanup
await size_limited_function(4) # call_count: 4
# Cache size should be reduced (cleanup removes oldest entries)
info = size_limited_function.cache_info()
assert info["size"] is not None and info["size"] <= 3 # Should be cleaned up
@pytest.mark.asyncio
async def test_argument_variations(self):
"""Test caching with different argument patterns."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=60)
async def arg_test_function(a: int, b: str = "default", *, c: int = 100) -> str:
nonlocal call_count
call_count += 1
return f"{a}-{b}-{c}"
# Different ways to call with same logical arguments
result1 = await arg_test_function(1, "test", c=200)
assert call_count == 1
# Same arguments, same order - should use cache
result2 = await arg_test_function(1, "test", c=200)
assert call_count == 1
assert result1 == result2
# Different arguments - should call function
result3 = await arg_test_function(2, "test", c=200)
assert call_count == 2
assert result1 != result3
@pytest.mark.asyncio
async def test_exception_handling(self):
"""Test that exceptions are not cached."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=60)
async def exception_function(x: int) -> int:
nonlocal call_count
call_count += 1
if x < 0:
raise ValueError("Negative value not allowed")
return x * 2
# Successful call - should be cached
result1 = await exception_function(5)
assert result1 == 10
assert call_count == 1
# Same successful call - should use cache
result2 = await exception_function(5)
assert result2 == 10
assert call_count == 1
# Exception call - should not be cached
with pytest.raises(ValueError):
await exception_function(-1)
assert call_count == 2
# Same exception call - should call again (not cached)
with pytest.raises(ValueError):
await exception_function(-1)
assert call_count == 3
@pytest.mark.asyncio
async def test_concurrent_calls(self):
"""Test caching behavior with concurrent calls."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=60)
async def concurrent_function(x: int) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.05) # Simulate work
return x * x
# Launch concurrent calls with same arguments
tasks = [concurrent_function(3) for _ in range(5)]
results = await asyncio.gather(*tasks)
# All results should be the same
assert all(result == 9 for result in results)
# Note: Due to race conditions, call_count might be up to 5 for concurrent calls
# This tests that the cache doesn't break under concurrent access
assert 1 <= call_count <= 5
class TestAsyncCache:
"""Tests for the @async_cache decorator (no TTL)."""
@pytest.mark.asyncio
async def test_basic_caching_no_ttl(self):
"""Test basic caching functionality without TTL."""
call_count = 0
@async_cache(maxsize=10)
async def cached_function(x: int, y: int = 0) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01) # Simulate async work
return x + y
# First call
result1 = await cached_function(1, 2)
assert result1 == 3
assert call_count == 1
# Second call with same args - should use cache
result2 = await cached_function(1, 2)
assert result2 == 3
assert call_count == 1 # No additional call
# Third call after some time - should still use cache (no TTL)
await asyncio.sleep(0.05)
result3 = await cached_function(1, 2)
assert result3 == 3
assert call_count == 1 # Still no additional call
# Different args - should call function again
result4 = await cached_function(2, 3)
assert result4 == 5
assert call_count == 2
@pytest.mark.asyncio
async def test_no_ttl_vs_ttl_behavior(self):
"""Test the difference between TTL and no-TTL caching."""
ttl_call_count = 0
no_ttl_call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=1) # Short TTL
async def ttl_function(x: int) -> int:
nonlocal ttl_call_count
ttl_call_count += 1
return x * 2
@async_cache(maxsize=10) # No TTL
async def no_ttl_function(x: int) -> int:
nonlocal no_ttl_call_count
no_ttl_call_count += 1
return x * 2
# First calls
await ttl_function(5)
await no_ttl_function(5)
assert ttl_call_count == 1
assert no_ttl_call_count == 1
# Wait for TTL to expire
await asyncio.sleep(1.1)
# Second calls after TTL expiry
await ttl_function(5) # Should call function again (TTL expired)
await no_ttl_function(5) # Should use cache (no TTL)
assert ttl_call_count == 2 # TTL function called again
assert no_ttl_call_count == 1 # No-TTL function still cached
@pytest.mark.asyncio
async def test_async_cache_info(self):
"""Test cache info for no-TTL cache."""
@async_cache(maxsize=5)
async def info_test_function(x: int) -> int:
return x * 3
# Check initial cache info
info = info_test_function.cache_info()
assert info["size"] == 0
assert info["maxsize"] == 5
assert info["ttl_seconds"] is None # No TTL
# Add an entry
await info_test_function(1)
info = info_test_function.cache_info()
assert info["size"] == 1
class TestTTLOptional:
"""Tests for optional TTL functionality."""
@pytest.mark.asyncio
async def test_ttl_none_behavior(self):
"""Test that ttl_seconds=None works like no TTL."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=None)
async def no_ttl_via_none(x: int) -> int:
nonlocal call_count
call_count += 1
return x**2
# First call
result1 = await no_ttl_via_none(3)
assert result1 == 9
assert call_count == 1
# Wait (would expire if there was TTL)
await asyncio.sleep(0.1)
# Second call - should still use cache
result2 = await no_ttl_via_none(3)
assert result2 == 9
assert call_count == 1 # No additional call
# Check cache info
info = no_ttl_via_none.cache_info()
assert info["ttl_seconds"] is None
@pytest.mark.asyncio
async def test_cache_options_comparison(self):
"""Test different cache options work as expected."""
ttl_calls = 0
no_ttl_calls = 0
@async_ttl_cache(maxsize=10, ttl_seconds=1) # With TTL
async def ttl_function(x: int) -> int:
nonlocal ttl_calls
ttl_calls += 1
return x * 10
@async_cache(maxsize=10) # Process-level cache (no TTL)
async def process_function(x: int) -> int:
nonlocal no_ttl_calls
no_ttl_calls += 1
return x * 10
# Both should cache initially
await ttl_function(3)
await process_function(3)
assert ttl_calls == 1
assert no_ttl_calls == 1
# Immediate second calls - both should use cache
await ttl_function(3)
await process_function(3)
assert ttl_calls == 1
assert no_ttl_calls == 1
# Wait for TTL to expire
await asyncio.sleep(1.1)
# After TTL expiry
await ttl_function(3) # Should call function again
await process_function(3) # Should still use cache
assert ttl_calls == 2 # TTL cache expired, called again
assert no_ttl_calls == 1 # Process cache never expires

View File

@@ -21,7 +21,7 @@ PRISMA_SCHEMA="postgres/schema.prisma"
# Redis Configuration
REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_PASSWORD=password
# REDIS_PASSWORD=
# RabbitMQ Credentials
RABBITMQ_DEFAULT_USER=rabbitmq_user_default
@@ -66,6 +66,11 @@ NVIDIA_API_KEY=
GITHUB_CLIENT_ID=
GITHUB_CLIENT_SECRET=
# Notion OAuth App server credentials - https://developers.notion.com/docs/authorization
# Configure a public integration
NOTION_CLIENT_ID=
NOTION_CLIENT_SECRET=
# Google OAuth App server credentials - https://console.cloud.google.com/apis/credentials, and enable gmail api and set scopes
# https://console.cloud.google.com/apis/credentials/consent ?project=<your_project_id>
# You'll need to add/enable the following scopes (minimum):

View File

@@ -9,4 +9,12 @@ secrets/*
!secrets/.gitkeep
*.ignore.*
*.ign.*
*.ign.*
# Load test results and reports
load-tests/*_RESULTS.md
load-tests/*_REPORT.md
load-tests/results/
load-tests/*.json
load-tests/*.log
load-tests/node_modules/*

View File

@@ -9,8 +9,15 @@ WORKDIR /app
RUN echo 'Acquire::http::Pipeline-Depth 0;\nAcquire::http::No-Cache true;\nAcquire::BrokenProxy true;\n' > /etc/apt/apt.conf.d/99fixbadproxy
# Update package list and install Python and build dependencies
# Install Node.js repository key and setup
RUN apt-get update --allow-releaseinfo-change --fix-missing \
&& apt-get install -y curl ca-certificates gnupg \
&& mkdir -p /etc/apt/keyrings \
&& curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key | gpg --dearmor -o /etc/apt/keyrings/nodesource.gpg \
&& echo "deb [signed-by=/etc/apt/keyrings/nodesource.gpg] https://deb.nodesource.com/node_20.x nodistro main" | tee /etc/apt/sources.list.d/nodesource.list
# Update package list and install Python, Node.js, and build dependencies
RUN apt-get update \
&& apt-get install -y \
python3.13 \
python3.13-dev \
@@ -20,7 +27,9 @@ RUN apt-get update --allow-releaseinfo-change --fix-missing \
libpq5 \
libz-dev \
libssl-dev \
postgresql-client
postgresql-client \
nodejs \
&& rm -rf /var/lib/apt/lists/*
ENV POETRY_HOME=/opt/poetry
ENV POETRY_NO_INTERACTION=1
@@ -38,6 +47,7 @@ RUN poetry install --no-ansi --no-root
# Generate Prisma client
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
RUN poetry run prisma generate
FROM debian:13-slim AS server_dependencies
@@ -54,13 +64,18 @@ ENV PATH=/opt/poetry/bin:$PATH
# Install Python without upgrading system-managed packages
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip
python3-pip \
&& rm -rf /var/lib/apt/lists/*
# Copy only necessary files from builder
COPY --from=builder /app /app
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
# Copy Prisma binaries
# Copy Node.js installation for Prisma
COPY --from=builder /usr/bin/node /usr/bin/node
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
COPY --from=builder /usr/bin/npm /usr/bin/npm
COPY --from=builder /usr/bin/npx /usr/bin/npx
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
@@ -78,6 +93,7 @@ FROM server_dependencies AS migrate
# Migration stage only needs schema and migrations - much lighter than full backend
COPY autogpt_platform/backend/schema.prisma /app/autogpt_platform/backend/
COPY autogpt_platform/backend/backend/data/partial_types.py /app/autogpt_platform/backend/backend/data/partial_types.py
COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migrations
FROM server_dependencies AS server

View File

@@ -1,4 +1,3 @@
import functools
import importlib
import logging
import os
@@ -6,6 +5,8 @@ import re
from pathlib import Path
from typing import TYPE_CHECKING, TypeVar
from backend.util.cache import cached
logger = logging.getLogger(__name__)
@@ -15,7 +16,7 @@ if TYPE_CHECKING:
T = TypeVar("T")
@functools.cache
@cached(ttl_seconds=3600)
def load_all_blocks() -> dict[str, type["Block"]]:
from backend.data.block import Block
from backend.util.settings import Config

View File

@@ -0,0 +1,214 @@
from typing import Any
from backend.blocks.llm import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
AIBlockBase,
AICredentials,
AICredentialsField,
LlmModel,
LLMResponse,
llm_call,
)
from backend.data.block import BlockCategory, BlockOutput, BlockSchema
from backend.data.model import APIKeyCredentials, NodeExecutionStats, SchemaField
class AIConditionBlock(AIBlockBase):
"""
An AI-powered condition block that uses natural language to evaluate conditions.
This block allows users to define conditions in plain English (e.g., "the input is an email address",
"the input is a city in the USA") and uses AI to determine if the input satisfies the condition.
It provides the same yes/no data pass-through functionality as the standard ConditionBlock.
"""
class Input(BlockSchema):
input_value: Any = SchemaField(
description="The input value to evaluate with the AI condition",
placeholder="Enter the value to be evaluated (text, number, or any data)",
)
condition: str = SchemaField(
description="A plaintext English description of the condition to evaluate",
placeholder="E.g., 'the input is the body of an email', 'the input is a City in the USA', 'the input is an error or a refusal'",
)
yes_value: Any = SchemaField(
description="(Optional) Value to output if the condition is true. If not provided, input_value will be used.",
placeholder="Leave empty to use input_value, or enter a specific value",
default=None,
)
no_value: Any = SchemaField(
description="(Optional) Value to output if the condition is false. If not provided, input_value will be used.",
placeholder="Leave empty to use input_value, or enter a specific value",
default=None,
)
model: LlmModel = SchemaField(
title="LLM Model",
default=LlmModel.GPT4O,
description="The language model to use for evaluating the condition.",
advanced=False,
)
credentials: AICredentials = AICredentialsField()
class Output(BlockSchema):
result: bool = SchemaField(
description="The result of the AI condition evaluation (True or False)"
)
yes_output: Any = SchemaField(
description="The output value if the condition is true"
)
no_output: Any = SchemaField(
description="The output value if the condition is false"
)
error: str = SchemaField(
description="Error message if the AI evaluation is uncertain or fails"
)
def __init__(self):
super().__init__(
id="553ec5b8-6c45-4299-8d75-b394d05f72ff",
input_schema=AIConditionBlock.Input,
output_schema=AIConditionBlock.Output,
description="Uses AI to evaluate natural language conditions and provide conditional outputs",
categories={BlockCategory.AI, BlockCategory.LOGIC},
test_input={
"input_value": "john@example.com",
"condition": "the input is an email address",
"yes_value": "Valid email",
"no_value": "Not an email",
"model": LlmModel.GPT4O,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("result", True),
("yes_output", "Valid email"),
],
test_mock={
"llm_call": lambda *args, **kwargs: LLMResponse(
raw_response="",
prompt=[],
response="true",
tool_calls=None,
prompt_tokens=50,
completion_tokens=10,
reasoning=None,
)
},
)
async def llm_call(
self,
credentials: APIKeyCredentials,
llm_model: LlmModel,
prompt: list,
max_tokens: int,
) -> LLMResponse:
"""Wrapper method for llm_call to enable mocking in tests."""
return await llm_call(
credentials=credentials,
llm_model=llm_model,
prompt=prompt,
force_json_output=False,
max_tokens=max_tokens,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
"""
Evaluate the AI condition and return appropriate outputs.
"""
# Prepare the yes and no values, using input_value as default
yes_value = (
input_data.yes_value
if input_data.yes_value is not None
else input_data.input_value
)
no_value = (
input_data.no_value
if input_data.no_value is not None
else input_data.input_value
)
# Convert input_value to string for AI evaluation
input_str = str(input_data.input_value)
# Create the prompt for AI evaluation
prompt = [
{
"role": "system",
"content": (
"You are an AI assistant that evaluates conditions based on input data. "
"You must respond with only 'true' or 'false' (lowercase) to indicate whether "
"the given condition is met by the input value. Be accurate and consider the "
"context and meaning of both the input and the condition."
),
},
{
"role": "user",
"content": (
f"Input value: {input_str}\n"
f"Condition to evaluate: {input_data.condition}\n\n"
f"Does the input value satisfy the condition? Respond with only 'true' or 'false'."
),
},
]
# Call the LLM
try:
response = await self.llm_call(
credentials=credentials,
llm_model=input_data.model,
prompt=prompt,
max_tokens=10, # We only expect a true/false response
)
# Extract the boolean result from the response
response_text = response.response.strip().lower()
if response_text == "true":
result = True
elif response_text == "false":
result = False
else:
# If the response is not clear, try to interpret it using word boundaries
import re
# Use word boundaries to avoid false positives like 'untrue' or '10'
tokens = set(re.findall(r"\b(true|false|yes|no|1|0)\b", response_text))
if tokens == {"true"} or tokens == {"yes"} or tokens == {"1"}:
result = True
elif tokens == {"false"} or tokens == {"no"} or tokens == {"0"}:
result = False
else:
# Unclear or conflicting response - default to False and yield error
result = False
yield "error", f"Unclear AI response: '{response.response}'"
# Update internal stats
self.merge_stats(
NodeExecutionStats(
input_token_count=response.prompt_tokens,
output_token_count=response.completion_tokens,
)
)
self.prompt = response.prompt
except Exception as e:
# In case of any error, default to False to be safe
result = False
# Log the error but don't fail the block execution
import logging
logger = logging.getLogger(__name__)
logger.error(f"AI condition evaluation failed: {str(e)}")
yield "error", f"AI evaluation failed: {str(e)}"
# Yield results
yield "result", result
if result:
yield "yes_output", yes_value
else:
yield "no_output", no_value

View File

@@ -1,8 +1,10 @@
from enum import Enum
from typing import Literal
from typing import Any, Literal, Optional
from e2b_code_interpreter import AsyncSandbox
from pydantic import SecretStr
from e2b_code_interpreter import Result as E2BExecutionResult
from e2b_code_interpreter.charts import Chart as E2BExecutionResultChart
from pydantic import BaseModel, JsonValue, SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
@@ -36,14 +38,135 @@ class ProgrammingLanguage(Enum):
JAVA = "java"
class CodeExecutionBlock(Block):
class MainCodeExecutionResult(BaseModel):
"""
*Pydantic model mirroring `e2b_code_interpreter.Result`*
Represents the data to be displayed as a result of executing a cell in a Jupyter notebook.
The result is similar to the structure returned by ipython kernel: https://ipython.readthedocs.io/en/stable/development/execution.html#execution-semantics
The result can contain multiple types of data, such as text, images, plots, etc. Each type of data is represented
as a string, and the result can contain multiple types of data. The display calls don't have to have text representation,
for the actual result the representation is always present for the result, the other representations are always optional.
""" # noqa
class Chart(BaseModel, E2BExecutionResultChart):
pass
text: Optional[str] = None
html: Optional[str] = None
markdown: Optional[str] = None
svg: Optional[str] = None
png: Optional[str] = None
jpeg: Optional[str] = None
pdf: Optional[str] = None
latex: Optional[str] = None
json: Optional[JsonValue] = None # type: ignore (reportIncompatibleMethodOverride)
javascript: Optional[str] = None
data: Optional[dict] = None
chart: Optional[Chart] = None
extra: Optional[dict] = None
"""Extra data that can be included. Not part of the standard types."""
class CodeExecutionResult(MainCodeExecutionResult):
__doc__ = MainCodeExecutionResult.__doc__
is_main_result: bool = False
"""Whether this data is the main result of the cell. Data can be produced by display calls of which can be multiple in a cell.""" # noqa
class BaseE2BExecutorMixin:
"""Shared implementation methods for E2B executor blocks."""
async def execute_code(
self,
api_key: str,
code: str,
language: ProgrammingLanguage,
template_id: str = "",
setup_commands: Optional[list[str]] = None,
timeout: Optional[int] = None,
sandbox_id: Optional[str] = None,
dispose_sandbox: bool = False,
):
"""
Unified code execution method that handles all three use cases:
1. Create new sandbox and execute (ExecuteCodeBlock)
2. Create new sandbox, execute, and return sandbox_id (InstantiateCodeSandboxBlock)
3. Connect to existing sandbox and execute (ExecuteCodeStepBlock)
""" # noqa
sandbox = None
try:
if sandbox_id:
# Connect to existing sandbox (ExecuteCodeStepBlock case)
sandbox = await AsyncSandbox.connect(
sandbox_id=sandbox_id, api_key=api_key
)
else:
# Create new sandbox (ExecuteCodeBlock/InstantiateCodeSandboxBlock case)
sandbox = await AsyncSandbox.create(
api_key=api_key, template=template_id, timeout=timeout
)
if setup_commands:
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Execute the code
execution = await sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox on error
)
if execution.error:
raise Exception(execution.error)
results = execution.results
text_output = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return results, text_output, stdout_logs, stderr_logs, sandbox.sandbox_id
finally:
# Dispose of sandbox if requested to reduce usage costs
if dispose_sandbox and sandbox:
await sandbox.kill()
def process_execution_results(
self, results: list[E2BExecutionResult]
) -> tuple[dict[str, Any] | None, list[dict[str, Any]]]:
"""Process and filter execution results."""
# Filter out empty formats and convert to dicts
processed_results = [
{
f: value
for f in [*r.formats(), "extra", "is_main_result"]
if (value := getattr(r, f, None)) is not None
}
for r in results
]
if main_result := next(
(r for r in processed_results if r.get("is_main_result")), None
):
# Make main_result a copy we can modify & remove is_main_result
(main_result := {**main_result}).pop("is_main_result")
return main_result, processed_results
class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
# TODO : Add support to upload and download files
# Currently, You can customized the CPU and Memory, only by creating a pre customized sandbox template
# NOTE: Currently, you can only customize the CPU and Memory
# by creating a pre customized sandbox template
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
description=(
"Enter your API key for the E2B platform. "
"You can get it in here - https://e2b.dev/docs"
),
)
# Todo : Option to run commond in background
@@ -76,6 +199,14 @@ class CodeExecutionBlock(Block):
description="Execution timeout in seconds", default=300
)
dispose_sandbox: bool = SchemaField(
description=(
"Whether to dispose of the sandbox immediately after execution. "
"If disabled, the sandbox will run until its timeout expires."
),
default=True,
)
template_id: str = SchemaField(
description=(
"You can use an E2B sandbox template by entering its ID here. "
@@ -87,7 +218,16 @@ class CodeExecutionBlock(Block):
)
class Output(BlockSchema):
response: str = SchemaField(description="Response from code execution")
main_result: MainCodeExecutionResult = SchemaField(
title="Main Result", description="The main result from the code execution"
)
results: list[CodeExecutionResult] = SchemaField(
description="List of results from the code execution"
)
response: str = SchemaField(
title="Main Text Output",
description="Text output (if any) of the main execution result",
)
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
@@ -97,10 +237,10 @@ class CodeExecutionBlock(Block):
def __init__(self):
super().__init__(
id="0b02b072-abe7-11ef-8372-fb5d162dd712",
description="Executes code in an isolated sandbox environment with internet access.",
description="Executes code in a sandbox environment with internet access.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=CodeExecutionBlock.Input,
output_schema=CodeExecutionBlock.Output,
input_schema=ExecuteCodeBlock.Input,
output_schema=ExecuteCodeBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
@@ -111,91 +251,59 @@ class CodeExecutionBlock(Block):
"template_id": "",
},
test_output=[
("results", []),
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_code": lambda code, language, setup_commands, timeout, api_key, template_id: (
"Hello World",
"Hello World\n",
"",
"execute_code": lambda api_key, code, language, template_id, setup_commands, timeout, dispose_sandbox: ( # noqa
[], # results
"Hello World", # text_output
"Hello World\n", # stdout_logs
"", # stderr_logs
"sandbox_id", # sandbox_id
),
},
)
async def execute_code(
self,
code: str,
language: ProgrammingLanguage,
setup_commands: list[str],
timeout: int,
api_key: str,
template_id: str,
):
try:
sandbox = None
if template_id:
sandbox = await AsyncSandbox.create(
template=template_id, api_key=api_key, timeout=timeout
)
else:
sandbox = await AsyncSandbox.create(api_key=api_key, timeout=timeout)
if not sandbox:
raise Exception("Sandbox not created")
# Running setup commands
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Executing the code
execution = await sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return response, stdout_logs, stderr_logs
except Exception as e:
raise e
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
response, stdout_logs, stderr_logs = await self.execute_code(
input_data.code,
input_data.language,
input_data.setup_commands,
input_data.timeout,
credentials.api_key.get_secret_value(),
input_data.template_id,
results, text_output, stdout, stderr, _ = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.code,
language=input_data.language,
template_id=input_data.template_id,
setup_commands=input_data.setup_commands,
timeout=input_data.timeout,
dispose_sandbox=input_data.dispose_sandbox,
)
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
# Determine result object shape & filter out empty formats
main_result, results = self.process_execution_results(results)
if main_result:
yield "main_result", main_result
yield "results", results
if text_output:
yield "response", text_output
if stdout:
yield "stdout_logs", stdout
if stderr:
yield "stderr_logs", stderr
except Exception as e:
yield "error", str(e)
class InstantiationBlock(Block):
class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
description=(
"Enter your API key for the E2B platform. "
"You can get it in here - https://e2b.dev/docs"
)
)
# Todo : Option to run commond in background
@@ -240,7 +348,10 @@ class InstantiationBlock(Block):
class Output(BlockSchema):
sandbox_id: str = SchemaField(description="ID of the sandbox instance")
response: str = SchemaField(description="Response from code execution")
response: str = SchemaField(
title="Text Result",
description="Text result (if any) of the setup code execution",
)
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
@@ -250,10 +361,13 @@ class InstantiationBlock(Block):
def __init__(self):
super().__init__(
id="ff0861c9-1726-4aec-9e5b-bf53f3622112",
description="Instantiate an isolated sandbox environment with internet access where to execute code in.",
description=(
"Instantiate a sandbox environment with internet access "
"in which you can execute code with the Execute Code Step block."
),
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=InstantiationBlock.Input,
output_schema=InstantiationBlock.Output,
input_schema=InstantiateCodeSandboxBlock.Input,
output_schema=InstantiateCodeSandboxBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
@@ -269,11 +383,12 @@ class InstantiationBlock(Block):
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_code": lambda setup_code, language, setup_commands, timeout, api_key, template_id: (
"sandbox_id",
"Hello World",
"Hello World\n",
"",
"execute_code": lambda api_key, code, language, template_id, setup_commands, timeout: ( # noqa
[], # results
"Hello World", # text_output
"Hello World\n", # stdout_logs
"", # stderr_logs
"sandbox_id", # sandbox_id
),
},
)
@@ -282,78 +397,38 @@ class InstantiationBlock(Block):
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
sandbox_id, response, stdout_logs, stderr_logs = await self.execute_code(
input_data.setup_code,
input_data.language,
input_data.setup_commands,
input_data.timeout,
credentials.api_key.get_secret_value(),
input_data.template_id,
_, text_output, stdout, stderr, sandbox_id = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.setup_code,
language=input_data.language,
template_id=input_data.template_id,
setup_commands=input_data.setup_commands,
timeout=input_data.timeout,
)
if sandbox_id:
yield "sandbox_id", sandbox_id
else:
yield "error", "Sandbox ID not found"
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
if text_output:
yield "response", text_output
if stdout:
yield "stdout_logs", stdout
if stderr:
yield "stderr_logs", stderr
except Exception as e:
yield "error", str(e)
async def execute_code(
self,
code: str,
language: ProgrammingLanguage,
setup_commands: list[str],
timeout: int,
api_key: str,
template_id: str,
):
try:
sandbox = None
if template_id:
sandbox = await AsyncSandbox.create(
template=template_id, api_key=api_key, timeout=timeout
)
else:
sandbox = await AsyncSandbox.create(api_key=api_key, timeout=timeout)
if not sandbox:
raise Exception("Sandbox not created")
# Running setup commands
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Executing the code
execution = await sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return sandbox.sandbox_id, response, stdout_logs, stderr_logs
except Exception as e:
raise e
class StepExecutionBlock(Block):
class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
description=(
"Enter your API key for the E2B platform. "
"You can get it in here - https://e2b.dev/docs"
),
)
sandbox_id: str = SchemaField(
@@ -374,8 +449,22 @@ class StepExecutionBlock(Block):
advanced=False,
)
dispose_sandbox: bool = SchemaField(
description="Whether to dispose of the sandbox after executing this code.",
default=False,
)
class Output(BlockSchema):
response: str = SchemaField(description="Response from code execution")
main_result: MainCodeExecutionResult = SchemaField(
title="Main Result", description="The main result from the code execution"
)
results: list[CodeExecutionResult] = SchemaField(
description="List of results from the code execution"
)
response: str = SchemaField(
title="Main Text Output",
description="Text output (if any) of the main execution result",
)
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
@@ -385,10 +474,10 @@ class StepExecutionBlock(Block):
def __init__(self):
super().__init__(
id="82b59b8e-ea10-4d57-9161-8b169b0adba6",
description="Execute code in a previously instantiated sandbox environment.",
description="Execute code in a previously instantiated sandbox.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=StepExecutionBlock.Input,
output_schema=StepExecutionBlock.Output,
input_schema=ExecuteCodeStepBlock.Input,
output_schema=ExecuteCodeStepBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
@@ -397,61 +486,43 @@ class StepExecutionBlock(Block):
"language": ProgrammingLanguage.PYTHON.value,
},
test_output=[
("results", []),
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_step_code": lambda sandbox_id, step_code, language, api_key: (
"Hello World",
"Hello World\n",
"",
"execute_code": lambda api_key, code, language, sandbox_id, dispose_sandbox: ( # noqa
[], # results
"Hello World", # text_output
"Hello World\n", # stdout_logs
"", # stderr_logs
sandbox_id, # sandbox_id
),
},
)
async def execute_step_code(
self,
sandbox_id: str,
code: str,
language: ProgrammingLanguage,
api_key: str,
):
try:
sandbox = await AsyncSandbox.connect(sandbox_id=sandbox_id, api_key=api_key)
if not sandbox:
raise Exception("Sandbox not found")
# Executing the code
execution = await sandbox.run_code(code, language=language.value)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return response, stdout_logs, stderr_logs
except Exception as e:
raise e
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
response, stdout_logs, stderr_logs = await self.execute_step_code(
input_data.sandbox_id,
input_data.step_code,
input_data.language,
credentials.api_key.get_secret_value(),
results, text_output, stdout, stderr, _ = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.step_code,
language=input_data.language,
sandbox_id=input_data.sandbox_id,
dispose_sandbox=input_data.dispose_sandbox,
)
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
# Determine result object shape & filter out empty formats
main_result, results = self.process_execution_results(results)
if main_result:
yield "main_result", main_result
yield "results", results
if text_output:
yield "response", text_output
if stdout:
yield "stdout_logs", stdout
if stderr:
yield "stderr_logs", stderr
except Exception as e:
yield "error", str(e)

View File

@@ -90,7 +90,7 @@ class CodeExtractionBlock(Block):
for aliases in language_aliases.values()
for alias in aliases
)
+ r")\s+[\s\S]*?```"
+ r")[ \t]*\n[\s\S]*?```"
)
remaining_text = re.sub(pattern, "", input_data.text).strip()
@@ -103,7 +103,9 @@ class CodeExtractionBlock(Block):
# Escape special regex characters in the language string
language = re.escape(language)
# Extract all code blocks enclosed in ```language``` blocks
pattern = re.compile(rf"```{language}\s+(.*?)```", re.DOTALL | re.IGNORECASE)
pattern = re.compile(
rf"```{language}[ \t]*\n(.*?)\n```", re.DOTALL | re.IGNORECASE
)
matches = pattern.finditer(text)
# Combine all code blocks for this language with newlines between them
code_blocks = [match.group(1).strip() for match in matches]

View File

@@ -66,6 +66,7 @@ class AddToDictionaryBlock(Block):
dictionary: dict[Any, Any] = SchemaField(
default_factory=dict,
description="The dictionary to add the entry to. If not provided, a new dictionary will be created.",
advanced=False,
)
key: str = SchemaField(
default="",

View File

@@ -113,6 +113,7 @@ class DataForSeoClient:
include_serp_info: bool = False,
include_clickstream_data: bool = False,
limit: int = 100,
depth: Optional[int] = None,
) -> List[Dict[str, Any]]:
"""
Get related keywords from DataForSEO Labs.
@@ -125,6 +126,7 @@ class DataForSeoClient:
include_serp_info: Include SERP data
include_clickstream_data: Include clickstream metrics
limit: Maximum number of results (up to 3000)
depth: Keyword search depth (0-4), controls number of returned keywords
Returns:
API response with related keywords
@@ -148,6 +150,8 @@ class DataForSeoClient:
task_data["include_clickstream_data"] = include_clickstream_data
if limit is not None:
task_data["limit"] = limit
if depth is not None:
task_data["depth"] = depth
payload = [task_data]

View File

@@ -90,6 +90,7 @@ class DataForSeoKeywordSuggestionsBlock(Block):
seed_keyword: str = SchemaField(
description="The seed keyword used for the query"
)
error: str = SchemaField(description="Error message if the API call failed")
def __init__(self):
super().__init__(
@@ -161,43 +162,52 @@ class DataForSeoKeywordSuggestionsBlock(Block):
**kwargs,
) -> BlockOutput:
"""Execute the keyword suggestions query."""
client = DataForSeoClient(credentials)
try:
client = DataForSeoClient(credentials)
results = await self._fetch_keyword_suggestions(client, input_data)
results = await self._fetch_keyword_suggestions(client, input_data)
# Process and format the results
suggestions = []
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
items = (
first_result.get("items", []) if isinstance(first_result, dict) else []
)
for item in items:
# Create the KeywordSuggestion object
suggestion = KeywordSuggestion(
keyword=item.get("keyword", ""),
search_volume=item.get("keyword_info", {}).get("search_volume"),
competition=item.get("keyword_info", {}).get("competition"),
cpc=item.get("keyword_info", {}).get("cpc"),
keyword_difficulty=item.get("keyword_properties", {}).get(
"keyword_difficulty"
),
serp_info=(
item.get("serp_info") if input_data.include_serp_info else None
),
clickstream_data=(
item.get("clickstream_keyword_info")
if input_data.include_clickstream_data
else None
),
# Process and format the results
suggestions = []
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
items = (
first_result.get("items", [])
if isinstance(first_result, dict)
else []
)
yield "suggestion", suggestion
suggestions.append(suggestion)
if items is None:
items = []
for item in items:
# Create the KeywordSuggestion object
suggestion = KeywordSuggestion(
keyword=item.get("keyword", ""),
search_volume=item.get("keyword_info", {}).get("search_volume"),
competition=item.get("keyword_info", {}).get("competition"),
cpc=item.get("keyword_info", {}).get("cpc"),
keyword_difficulty=item.get("keyword_properties", {}).get(
"keyword_difficulty"
),
serp_info=(
item.get("serp_info")
if input_data.include_serp_info
else None
),
clickstream_data=(
item.get("clickstream_keyword_info")
if input_data.include_clickstream_data
else None
),
)
yield "suggestion", suggestion
suggestions.append(suggestion)
yield "suggestions", suggestions
yield "total_count", len(suggestions)
yield "seed_keyword", input_data.keyword
yield "suggestions", suggestions
yield "total_count", len(suggestions)
yield "seed_keyword", input_data.keyword
except Exception as e:
yield "error", f"Failed to fetch keyword suggestions: {str(e)}"
class KeywordSuggestionExtractorBlock(Block):

View File

@@ -78,6 +78,12 @@ class DataForSeoRelatedKeywordsBlock(Block):
ge=1,
le=3000,
)
depth: int = SchemaField(
description="Keyword search depth (0-4). Controls the number of returned keywords: 0=1 keyword, 1=~8 keywords, 2=~72 keywords, 3=~584 keywords, 4=~4680 keywords",
default=1,
ge=0,
le=4,
)
class Output(BlockSchema):
related_keywords: List[RelatedKeyword] = SchemaField(
@@ -92,6 +98,7 @@ class DataForSeoRelatedKeywordsBlock(Block):
seed_keyword: str = SchemaField(
description="The seed keyword used for the query"
)
error: str = SchemaField(description="Error message if the API call failed")
def __init__(self):
super().__init__(
@@ -154,6 +161,7 @@ class DataForSeoRelatedKeywordsBlock(Block):
include_serp_info=input_data.include_serp_info,
include_clickstream_data=input_data.include_clickstream_data,
limit=input_data.limit,
depth=input_data.depth,
)
async def run(
@@ -164,50 +172,60 @@ class DataForSeoRelatedKeywordsBlock(Block):
**kwargs,
) -> BlockOutput:
"""Execute the related keywords query."""
client = DataForSeoClient(credentials)
try:
client = DataForSeoClient(credentials)
results = await self._fetch_related_keywords(client, input_data)
results = await self._fetch_related_keywords(client, input_data)
# Process and format the results
related_keywords = []
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
items = (
first_result.get("items", []) if isinstance(first_result, dict) else []
)
for item in items:
# Extract keyword_data from the item
keyword_data = item.get("keyword_data", {})
# Create the RelatedKeyword object
keyword = RelatedKeyword(
keyword=keyword_data.get("keyword", ""),
search_volume=keyword_data.get("keyword_info", {}).get(
"search_volume"
),
competition=keyword_data.get("keyword_info", {}).get("competition"),
cpc=keyword_data.get("keyword_info", {}).get("cpc"),
keyword_difficulty=keyword_data.get("keyword_properties", {}).get(
"keyword_difficulty"
),
serp_info=(
keyword_data.get("serp_info")
if input_data.include_serp_info
else None
),
clickstream_data=(
keyword_data.get("clickstream_keyword_info")
if input_data.include_clickstream_data
else None
),
# Process and format the results
related_keywords = []
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
items = (
first_result.get("items", [])
if isinstance(first_result, dict)
else []
)
yield "related_keyword", keyword
related_keywords.append(keyword)
# Ensure items is never None
if items is None:
items = []
for item in items:
# Extract keyword_data from the item
keyword_data = item.get("keyword_data", {})
yield "related_keywords", related_keywords
yield "total_count", len(related_keywords)
yield "seed_keyword", input_data.keyword
# Create the RelatedKeyword object
keyword = RelatedKeyword(
keyword=keyword_data.get("keyword", ""),
search_volume=keyword_data.get("keyword_info", {}).get(
"search_volume"
),
competition=keyword_data.get("keyword_info", {}).get(
"competition"
),
cpc=keyword_data.get("keyword_info", {}).get("cpc"),
keyword_difficulty=keyword_data.get(
"keyword_properties", {}
).get("keyword_difficulty"),
serp_info=(
keyword_data.get("serp_info")
if input_data.include_serp_info
else None
),
clickstream_data=(
keyword_data.get("clickstream_keyword_info")
if input_data.include_clickstream_data
else None
),
)
yield "related_keyword", keyword
related_keywords.append(keyword)
yield "related_keywords", related_keywords
yield "total_count", len(related_keywords)
yield "seed_keyword", input_data.keyword
except Exception as e:
yield "error", f"Failed to fetch related keywords: {str(e)}"
class RelatedKeywordExtractorBlock(Block):

View File

@@ -4,13 +4,13 @@ import mimetypes
from pathlib import Path
from typing import Any
import aiohttp
import discord
from pydantic import SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import APIKeyCredentials, SchemaField
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
from ._auth import (
@@ -114,10 +114,9 @@ class ReadDiscordMessagesBlock(Block):
if message.attachments:
attachment = message.attachments[0] # Process the first attachment
if attachment.filename.endswith((".txt", ".py")):
async with aiohttp.ClientSession() as session:
async with session.get(attachment.url) as response:
file_content = response.text()
self.output_data += f"\n\nFile from user: {attachment.filename}\nContent: {file_content}"
response = await Requests().get(attachment.url)
file_content = response.text()
self.output_data += f"\n\nFile from user: {attachment.filename}\nContent: {file_content}"
await client.close()
@@ -171,11 +170,11 @@ class SendDiscordMessageBlock(Block):
description="The content of the message to send"
)
channel_name: str = SchemaField(
description="The name of the channel the message will be sent to"
description="Channel ID or channel name to send the message to"
)
server_name: str = SchemaField(
description="The name of the server where the channel is located",
advanced=True, # Optional field for server name
description="Server name (only needed if using channel name)",
advanced=True,
default="",
)
@@ -231,25 +230,49 @@ class SendDiscordMessageBlock(Block):
@client.event
async def on_ready():
print(f"Logged in as {client.user}")
for guild in client.guilds:
if server_name and guild.name != server_name:
continue
for channel in guild.text_channels:
if channel.name == channel_name:
# Split message into chunks if it exceeds 2000 characters
chunks = self.chunk_message(message_content)
last_message = None
for chunk in chunks:
last_message = await channel.send(chunk)
result["status"] = "Message sent"
result["message_id"] = (
str(last_message.id) if last_message else ""
)
result["channel_id"] = str(channel.id)
await client.close()
return
channel = None
result["status"] = "Channel not found"
# Try to parse as channel ID first
try:
channel_id = int(channel_name)
channel = client.get_channel(channel_id)
except ValueError:
# Not a valid ID, will try name lookup
pass
# If not found by ID (or not an ID), try name lookup
if not channel:
for guild in client.guilds:
if server_name and guild.name != server_name:
continue
for ch in guild.text_channels:
if ch.name == channel_name:
channel = ch
break
if channel:
break
if not channel:
result["status"] = f"Channel not found: {channel_name}"
await client.close()
return
# Type check - ensure it's a text channel that can send messages
if not hasattr(channel, "send"):
result["status"] = (
f"Channel {channel_name} cannot receive messages (not a text channel)"
)
await client.close()
return
# Split message into chunks if it exceeds 2000 characters
chunks = self.chunk_message(message_content)
last_message = None
for chunk in chunks:
last_message = await channel.send(chunk) # type: ignore
result["status"] = "Message sent"
result["message_id"] = str(last_message.id) if last_message else ""
result["channel_id"] = str(channel.id)
await client.close()
await client.start(token)
@@ -675,16 +698,15 @@ class SendDiscordFileBlock(Block):
elif file.startswith(("http://", "https://")):
# URL - download the file
async with aiohttp.ClientSession() as session:
async with session.get(file) as response:
file_bytes = await response.read()
response = await Requests().get(file)
file_bytes = response.content
# Try to get filename from URL if not provided
if not filename:
from urllib.parse import urlparse
# Try to get filename from URL if not provided
if not filename:
from urllib.parse import urlparse
path = urlparse(file).path
detected_filename = Path(path).name or "download"
path = urlparse(file).path
detected_filename = Path(path).name or "download"
else:
# Local file path - read from stored media file
# This would be a path from a previous block's output

View File

@@ -0,0 +1,12 @@
from enum import Enum
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"

View File

@@ -0,0 +1,28 @@
"""Utility functions for converting between our ScrapeFormat enum and firecrawl FormatOption types."""
from typing import List
from firecrawl.v2.types import FormatOption, ScreenshotFormat
from backend.blocks.firecrawl._api import ScrapeFormat
def convert_to_format_options(
formats: List[ScrapeFormat],
) -> List[FormatOption]:
"""Convert our ScrapeFormat enum values to firecrawl FormatOption types.
Handles special cases like screenshot@fullPage which needs to be converted
to a ScreenshotFormat object.
"""
result: List[FormatOption] = []
for format_enum in formats:
if format_enum.value == "screenshot@fullPage":
# Special case: convert to ScreenshotFormat with full_page=True
result.append(ScreenshotFormat(type="screenshot", full_page=True))
else:
# Regular string literals
result.append(format_enum.value)
return result

View File

@@ -1,8 +1,9 @@
from enum import Enum
from typing import Any
from firecrawl import FirecrawlApp, ScrapeOptions
from firecrawl import FirecrawlApp
from firecrawl.v2.types import ScrapeOptions
from backend.blocks.firecrawl._api import ScrapeFormat
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -14,21 +15,10 @@ from backend.sdk import (
)
from ._config import firecrawl
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"
from ._format_utils import convert_to_format_options
class FirecrawlCrawlBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
url: str = SchemaField(description="The URL to crawl")
@@ -78,18 +68,17 @@ class FirecrawlCrawlBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
# Sync call
crawl_result = app.crawl_url(
crawl_result = app.crawl(
input_data.url,
limit=input_data.limit,
scrape_options=ScrapeOptions(
formats=[format.value for format in input_data.formats],
onlyMainContent=input_data.only_main_content,
maxAge=input_data.max_age,
waitFor=input_data.wait_for,
formats=convert_to_format_options(input_data.formats),
only_main_content=input_data.only_main_content,
max_age=input_data.max_age,
wait_for=input_data.wait_for,
),
)
yield "data", crawl_result.data
@@ -101,7 +90,7 @@ class FirecrawlCrawlBlock(Block):
elif f == ScrapeFormat.HTML:
yield "html", data.html
elif f == ScrapeFormat.RAW_HTML:
yield "raw_html", data.rawHtml
yield "raw_html", data.raw_html
elif f == ScrapeFormat.LINKS:
yield "links", data.links
elif f == ScrapeFormat.SCREENSHOT:
@@ -109,6 +98,6 @@ class FirecrawlCrawlBlock(Block):
elif f == ScrapeFormat.SCREENSHOT_FULL_PAGE:
yield "screenshot_full_page", data.screenshot
elif f == ScrapeFormat.CHANGE_TRACKING:
yield "change_tracking", data.changeTracking
yield "change_tracking", data.change_tracking
elif f == ScrapeFormat.JSON:
yield "json", data.json

View File

@@ -20,7 +20,6 @@ from ._config import firecrawl
@cost(BlockCost(2, BlockCostType.RUN))
class FirecrawlExtractBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
urls: list[str] = SchemaField(
@@ -53,7 +52,6 @@ class FirecrawlExtractBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
extract_result = app.extract(

View File

@@ -1,3 +1,5 @@
from typing import Any
from firecrawl import FirecrawlApp
from backend.sdk import (
@@ -14,14 +16,16 @@ from ._config import firecrawl
class FirecrawlMapWebsiteBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
url: str = SchemaField(description="The website url to map")
class Output(BlockSchema):
links: list[str] = SchemaField(description="The links of the website")
links: list[str] = SchemaField(description="List of URLs found on the website")
results: list[dict[str, Any]] = SchemaField(
description="List of search results with url, title, and description"
)
def __init__(self):
super().__init__(
@@ -35,12 +39,22 @@ class FirecrawlMapWebsiteBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
# Sync call
map_result = app.map_url(
map_result = app.map(
url=input_data.url,
)
yield "links", map_result.links
# Convert SearchResult objects to dicts
results_data = [
{
"url": link.url,
"title": link.title,
"description": link.description,
}
for link in map_result.links
]
yield "links", [link.url for link in map_result.links]
yield "results", results_data

View File

@@ -1,8 +1,8 @@
from enum import Enum
from typing import Any
from firecrawl import FirecrawlApp
from backend.blocks.firecrawl._api import ScrapeFormat
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -14,21 +14,10 @@ from backend.sdk import (
)
from ._config import firecrawl
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"
from ._format_utils import convert_to_format_options
class FirecrawlScrapeBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
url: str = SchemaField(description="The URL to crawl")
@@ -78,12 +67,11 @@ class FirecrawlScrapeBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
scrape_result = app.scrape_url(
scrape_result = app.scrape(
input_data.url,
formats=[format.value for format in input_data.formats],
formats=convert_to_format_options(input_data.formats),
only_main_content=input_data.only_main_content,
max_age=input_data.max_age,
wait_for=input_data.wait_for,
@@ -96,7 +84,7 @@ class FirecrawlScrapeBlock(Block):
elif f == ScrapeFormat.HTML:
yield "html", scrape_result.html
elif f == ScrapeFormat.RAW_HTML:
yield "raw_html", scrape_result.rawHtml
yield "raw_html", scrape_result.raw_html
elif f == ScrapeFormat.LINKS:
yield "links", scrape_result.links
elif f == ScrapeFormat.SCREENSHOT:
@@ -104,6 +92,6 @@ class FirecrawlScrapeBlock(Block):
elif f == ScrapeFormat.SCREENSHOT_FULL_PAGE:
yield "screenshot_full_page", scrape_result.screenshot
elif f == ScrapeFormat.CHANGE_TRACKING:
yield "change_tracking", scrape_result.changeTracking
yield "change_tracking", scrape_result.change_tracking
elif f == ScrapeFormat.JSON:
yield "json", scrape_result.json

View File

@@ -1,8 +1,9 @@
from enum import Enum
from typing import Any
from firecrawl import FirecrawlApp, ScrapeOptions
from firecrawl import FirecrawlApp
from firecrawl.v2.types import ScrapeOptions
from backend.blocks.firecrawl._api import ScrapeFormat
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -14,21 +15,10 @@ from backend.sdk import (
)
from ._config import firecrawl
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"
from ._format_utils import convert_to_format_options
class FirecrawlSearchBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
query: str = SchemaField(description="The query to search for")
@@ -61,7 +51,6 @@ class FirecrawlSearchBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
# Sync call
@@ -69,11 +58,12 @@ class FirecrawlSearchBlock(Block):
input_data.query,
limit=input_data.limit,
scrape_options=ScrapeOptions(
formats=[format.value for format in input_data.formats],
maxAge=input_data.max_age,
waitFor=input_data.wait_for,
formats=convert_to_format_options(input_data.formats) or None,
max_age=input_data.max_age,
wait_for=input_data.wait_for,
),
)
yield "data", scrape_result
for site in scrape_result.data:
yield "site", site
if hasattr(scrape_result, "web") and scrape_result.web:
for site in scrape_result.web:
yield "site", site

View File

@@ -10,7 +10,6 @@ from backend.util.settings import Config
from backend.util.text import TextFormatter
from backend.util.type import LongTextType, MediaFileType, ShortTextType
formatter = TextFormatter()
config = Config()
@@ -132,6 +131,11 @@ class AgentOutputBlock(Block):
default="",
advanced=True,
)
escape_html: bool = SchemaField(
default=False,
advanced=True,
description="Whether to escape special characters in the inserted values to be HTML-safe. Enable for HTML output, disable for plain text.",
)
advanced: bool = SchemaField(
description="Whether to treat the output as advanced.",
default=False,
@@ -193,6 +197,7 @@ class AgentOutputBlock(Block):
"""
if input_data.format:
try:
formatter = TextFormatter(autoescape=input_data.escape_html)
yield "output", formatter.format_string(
input_data.format, {input_data.name: input_data.value}
)
@@ -549,6 +554,89 @@ class AgentToggleInputBlock(AgentInputBlock):
)
class AgentTableInputBlock(AgentInputBlock):
"""
This block allows users to input data in a table format.
Configure the table columns at build time, then users can input
rows of data at runtime. Each row is output as a dictionary
with column names as keys.
"""
class Input(AgentInputBlock.Input):
value: Optional[list[dict[str, Any]]] = SchemaField(
description="The table data as a list of dictionaries.",
default=None,
advanced=False,
title="Default Value",
)
column_headers: list[str] = SchemaField(
description="Column headers for the table.",
default_factory=lambda: ["Column 1", "Column 2", "Column 3"],
advanced=False,
title="Column Headers",
)
def generate_schema(self):
"""Generate schema for the value field with table format."""
schema = super().generate_schema()
schema["type"] = "array"
schema["format"] = "table"
schema["items"] = {
"type": "object",
"properties": {
header: {"type": "string"}
for header in (
self.column_headers or ["Column 1", "Column 2", "Column 3"]
)
},
}
if self.value is not None:
schema["default"] = self.value
return schema
class Output(AgentInputBlock.Output):
result: list[dict[str, Any]] = SchemaField(
description="The table data as a list of dictionaries with headers as keys."
)
def __init__(self):
super().__init__(
id="5603b273-f41e-4020-af7d-fbc9c6a8d928",
description="Block for table data input with customizable headers.",
disabled=not config.enable_agent_input_subtype_blocks,
input_schema=AgentTableInputBlock.Input,
output_schema=AgentTableInputBlock.Output,
test_input=[
{
"name": "test_table",
"column_headers": ["Name", "Age", "City"],
"value": [
{"Name": "John", "Age": "30", "City": "New York"},
{"Name": "Jane", "Age": "25", "City": "London"},
],
"description": "Example table input",
}
],
test_output=[
(
"result",
[
{"Name": "John", "Age": "30", "City": "New York"},
{"Name": "Jane", "Age": "25", "City": "London"},
],
)
],
)
async def run(self, input_data: Input, *args, **kwargs) -> BlockOutput:
"""
Yields the table data as a list of dictionaries.
"""
# Pass through the value, defaulting to empty list if None
yield "result", input_data.value if input_data.value is not None else []
IO_BLOCK_IDs = [
AgentInputBlock().id,
AgentOutputBlock().id,
@@ -560,4 +648,5 @@ IO_BLOCK_IDs = [
AgentFileInputBlock().id,
AgentDropdownInputBlock().id,
AgentToggleInputBlock().id,
AgentTableInputBlock().id,
]

View File

@@ -2,7 +2,7 @@ from typing import Any
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.json import json
from backend.util.json import loads
class StepThroughItemsBlock(Block):
@@ -54,20 +54,43 @@ class StepThroughItemsBlock(Block):
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Security fix: Add limits to prevent DoS from large iterations
MAX_ITEMS = 10000 # Maximum items to iterate
MAX_ITEM_SIZE = 1024 * 1024 # 1MB per item
for data in [input_data.items, input_data.items_object, input_data.items_str]:
if not data:
continue
# Limit string size before parsing
if isinstance(data, str):
items = json.loads(data)
if len(data) > MAX_ITEM_SIZE:
raise ValueError(
f"Input too large: {len(data)} bytes > {MAX_ITEM_SIZE} bytes"
)
items = loads(data)
else:
items = data
# Check total item count
if isinstance(items, (list, dict)):
if len(items) > MAX_ITEMS:
raise ValueError(f"Too many items: {len(items)} > {MAX_ITEMS}")
iteration_count = 0
if isinstance(items, dict):
# If items is a dictionary, iterate over its values
for item in items.values():
yield "item", item
yield "key", item
for key, value in items.items():
if iteration_count >= MAX_ITEMS:
break
yield "item", value
yield "key", key # Fixed: should yield key, not item
iteration_count += 1
else:
# If items is a list, iterate over the list
for index, item in enumerate(items):
if iteration_count >= MAX_ITEMS:
break
yield "item", item
yield "key", index
iteration_count += 1

View File

@@ -1,5 +1,8 @@
from typing import List
from urllib.parse import quote
from typing_extensions import TypedDict
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
@@ -10,6 +13,12 @@ from backend.data.model import SchemaField
from backend.util.request import Requests
class Reference(TypedDict):
url: str
keyQuote: str
isSupportive: bool
class FactCheckerBlock(Block):
class Input(BlockSchema):
statement: str = SchemaField(
@@ -23,6 +32,10 @@ class FactCheckerBlock(Block):
)
result: bool = SchemaField(description="The result of the factuality check")
reason: str = SchemaField(description="The reason for the factuality result")
references: List[Reference] = SchemaField(
description="List of references supporting or contradicting the statement",
default=[],
)
error: str = SchemaField(description="Error message if the check fails")
def __init__(self):
@@ -53,5 +66,11 @@ class FactCheckerBlock(Block):
yield "factuality", data["factuality"]
yield "result", data["result"]
yield "reason", data["reason"]
# Yield references if present in the response
if "references" in data:
yield "references", data["references"]
else:
yield "references", []
else:
raise RuntimeError(f"Expected 'data' key not found in response: {data}")

View File

@@ -62,10 +62,10 @@ TEST_CREDENTIALS_OAUTH = OAuth2Credentials(
title="Mock Linear API key",
username="mock-linear-username",
access_token=SecretStr("mock-linear-access-token"),
access_token_expires_at=None,
access_token_expires_at=1672531200, # Mock expiration time for short-lived token
refresh_token=SecretStr("mock-linear-refresh-token"),
refresh_token_expires_at=None,
scopes=["mock-linear-scopes"],
scopes=["read", "write"],
)
TEST_CREDENTIALS_API_KEY = APIKeyCredentials(

View File

@@ -2,7 +2,9 @@
Linear OAuth handler implementation.
"""
import base64
import json
import time
from typing import Optional
from urllib.parse import urlencode
@@ -38,8 +40,9 @@ class LinearOAuthHandler(BaseOAuthHandler):
self.client_secret = client_secret
self.redirect_uri = redirect_uri
self.auth_base_url = "https://linear.app/oauth/authorize"
self.token_url = "https://api.linear.app/oauth/token" # Correct token URL
self.token_url = "https://api.linear.app/oauth/token"
self.revoke_url = "https://api.linear.app/oauth/revoke"
self.migrate_url = "https://api.linear.app/oauth/migrate_old_token"
def get_login_url(
self, scopes: list[str], state: str, code_challenge: Optional[str]
@@ -82,19 +85,84 @@ class LinearOAuthHandler(BaseOAuthHandler):
return True # Linear doesn't return JSON on successful revoke
async def migrate_old_token(
self, credentials: OAuth2Credentials
) -> OAuth2Credentials:
"""
Migrate an old long-lived token to a new short-lived token with refresh token.
This uses Linear's /oauth/migrate_old_token endpoint to exchange current
long-lived tokens for short-lived tokens with refresh tokens without
requiring users to re-authorize.
"""
if not credentials.access_token:
raise ValueError("No access token to migrate")
request_body = {
"client_id": self.client_id,
"client_secret": self.client_secret,
}
headers = {
"Authorization": f"Bearer {credentials.access_token.get_secret_value()}",
"Content-Type": "application/x-www-form-urlencoded",
}
response = await Requests().post(
self.migrate_url, data=request_body, headers=headers
)
if not response.ok:
try:
error_data = response.json()
error_message = error_data.get("error", "Unknown error")
error_description = error_data.get("error_description", "")
if error_description:
error_message = f"{error_message}: {error_description}"
except json.JSONDecodeError:
error_message = response.text
raise LinearAPIException(
f"Failed to migrate Linear token ({response.status}): {error_message}",
response.status,
)
token_data = response.json()
# Extract token expiration
now = int(time.time())
expires_in = token_data.get("expires_in")
access_token_expires_at = None
if expires_in:
access_token_expires_at = now + expires_in
new_credentials = OAuth2Credentials(
provider=self.PROVIDER_NAME,
title=credentials.title,
username=credentials.username,
access_token=token_data["access_token"],
scopes=credentials.scopes, # Preserve original scopes
refresh_token=token_data.get("refresh_token"),
access_token_expires_at=access_token_expires_at,
refresh_token_expires_at=None,
)
new_credentials.id = credentials.id
return new_credentials
async def _refresh_tokens(
self, credentials: OAuth2Credentials
) -> OAuth2Credentials:
if not credentials.refresh_token:
raise ValueError(
"No refresh token available."
) # Linear uses non-expiring tokens
"No refresh token available. Token may need to be migrated to the new refresh token system."
)
return await self._request_tokens(
{
"refresh_token": credentials.refresh_token.get_secret_value(),
"grant_type": "refresh_token",
}
},
current_credentials=credentials,
)
async def _request_tokens(
@@ -102,16 +170,33 @@ class LinearOAuthHandler(BaseOAuthHandler):
params: dict[str, str],
current_credentials: Optional[OAuth2Credentials] = None,
) -> OAuth2Credentials:
# Determine if this is a refresh token request
is_refresh = params.get("grant_type") == "refresh_token"
# Build request body with appropriate grant_type
request_body = {
"client_id": self.client_id,
"client_secret": self.client_secret,
"grant_type": "authorization_code", # Ensure grant_type is correct
**params,
}
headers = {
"Content-Type": "application/x-www-form-urlencoded"
} # Correct header for token request
# Set default grant_type if not provided
if "grant_type" not in request_body:
request_body["grant_type"] = "authorization_code"
headers = {"Content-Type": "application/x-www-form-urlencoded"}
# For refresh token requests, support HTTP Basic Authentication as recommended
if is_refresh:
# Option 1: Use HTTP Basic Auth (preferred by Linear)
client_credentials = f"{self.client_id}:{self.client_secret}"
encoded_credentials = base64.b64encode(client_credentials.encode()).decode()
headers["Authorization"] = f"Basic {encoded_credentials}"
# Remove client credentials from body when using Basic Auth
request_body.pop("client_id", None)
request_body.pop("client_secret", None)
response = await Requests().post(
self.token_url, data=request_body, headers=headers
)
@@ -120,6 +205,9 @@ class LinearOAuthHandler(BaseOAuthHandler):
try:
error_data = response.json()
error_message = error_data.get("error", "Unknown error")
error_description = error_data.get("error_description", "")
if error_description:
error_message = f"{error_message}: {error_description}"
except json.JSONDecodeError:
error_message = response.text
raise LinearAPIException(
@@ -129,27 +217,84 @@ class LinearOAuthHandler(BaseOAuthHandler):
token_data = response.json()
# Note: Linear access tokens do not expire, so we set expires_at to None
# Extract token expiration if provided (for new refresh token implementation)
now = int(time.time())
expires_in = token_data.get("expires_in")
access_token_expires_at = None
if expires_in:
access_token_expires_at = now + expires_in
# Get username - preserve from current credentials if refreshing
username = None
if current_credentials and is_refresh:
username = current_credentials.username
elif "user" in token_data:
username = token_data["user"].get("name", "Unknown User")
else:
# Fetch username using the access token
username = await self._request_username(token_data["access_token"])
new_credentials = OAuth2Credentials(
provider=self.PROVIDER_NAME,
title=current_credentials.title if current_credentials else None,
username=token_data.get("user", {}).get(
"name", "Unknown User"
), # extract name or set appropriate
username=username or "Unknown User",
access_token=token_data["access_token"],
scopes=token_data["scope"].split(
","
), # Linear returns comma-separated scopes
refresh_token=token_data.get(
"refresh_token"
), # Linear uses non-expiring tokens so this might be null
access_token_expires_at=None,
refresh_token_expires_at=None,
scopes=(
token_data["scope"].split(",")
if "scope" in token_data
else (current_credentials.scopes if current_credentials else [])
),
refresh_token=token_data.get("refresh_token"),
access_token_expires_at=access_token_expires_at,
refresh_token_expires_at=None, # Linear doesn't provide refresh token expiration
)
if current_credentials:
new_credentials.id = current_credentials.id
return new_credentials
async def get_access_token(self, credentials: OAuth2Credentials) -> str:
"""
Returns a valid access token, handling migration and refresh as needed.
This overrides the base implementation to handle Linear's token migration
from old long-lived tokens to new short-lived tokens with refresh tokens.
"""
# If token has no expiration and no refresh token, it might be an old token
# that needs migration
if (
credentials.access_token_expires_at is None
and credentials.refresh_token is None
):
try:
# Attempt to migrate the old token
migrated_credentials = await self.migrate_old_token(credentials)
# Update the credentials store would need to be handled by the caller
# For now, use the migrated credentials for this request
credentials = migrated_credentials
except LinearAPIException:
# Migration failed, try to use the old token as-is
# This maintains backward compatibility
pass
# Use the standard refresh logic from the base class
if self.needs_refresh(credentials):
credentials = await self.refresh_tokens(credentials)
return credentials.access_token.get_secret_value()
def needs_migration(self, credentials: OAuth2Credentials) -> bool:
"""
Check if credentials represent an old long-lived token that needs migration.
Old tokens have no expiration time and no refresh token.
"""
return (
credentials.access_token_expires_at is None
and credentials.refresh_token is None
)
async def _request_username(self, access_token: str) -> Optional[str]:
# Use the LinearClient to fetch user details using GraphQL
from ._api import LinearClient

View File

@@ -37,5 +37,5 @@ class Project(BaseModel):
name: str
description: str
priority: int
progress: int
content: str
progress: float
content: str | None

View File

@@ -1,5 +1,9 @@
# This file contains a lot of prompt block strings that would trigger "line too long"
# flake8: noqa: E501
import ast
import logging
import re
import secrets
from abc import ABC
from enum import Enum, EnumMeta
from json import JSONDecodeError
@@ -27,7 +31,7 @@ from backend.util.prompt import compress_prompt, estimate_token_count
from backend.util.text import TextFormatter
logger = TruncatedLogger(logging.getLogger(__name__), "[LLM-Block]")
fmt = TextFormatter()
fmt = TextFormatter(autoescape=False)
LLMProviderName = Literal[
ProviderName.AIML_API,
@@ -97,9 +101,9 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
CLAUDE_4_OPUS = "claude-opus-4-20250514"
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_3_5_SONNET = "claude-3-5-sonnet-latest"
CLAUDE_3_5_HAIKU = "claude-3-5-haiku-latest"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
@@ -204,20 +208,20 @@ MODEL_METADATA = {
"anthropic", 200000, 32000
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 8192
"anthropic", 200000, 32000
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 8192
"anthropic", 200000, 64000
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 8192
"anthropic", 200000, 64000
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata(
"anthropic", 200000, 8192
), # claude-3-5-sonnet-20241022
LlmModel.CLAUDE_3_5_HAIKU: ModelMetadata(
"anthropic", 200000, 8192
), # claude-3-5-haiku-20241022
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096
), # claude-3-haiku-20240307
@@ -382,7 +386,9 @@ def extract_openai_tool_calls(response) -> list[ToolContentBlock] | None:
return None
def get_parallel_tool_calls_param(llm_model: LlmModel, parallel_tool_calls):
def get_parallel_tool_calls_param(
llm_model: LlmModel, parallel_tool_calls: bool | None
):
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
if llm_model.startswith("o") or parallel_tool_calls is None:
return openai.NOT_GIVEN
@@ -393,8 +399,8 @@ async def llm_call(
credentials: APIKeyCredentials,
llm_model: LlmModel,
prompt: list[dict],
json_format: bool,
max_tokens: int | None,
force_json_output: bool = False,
tools: list[dict] | None = None,
ollama_host: str = "localhost:11434",
parallel_tool_calls=None,
@@ -407,7 +413,7 @@ async def llm_call(
credentials: The API key credentials to use.
llm_model: The LLM model to use.
prompt: The prompt to send to the LLM.
json_format: Whether the response should be in JSON format.
force_json_output: Whether the response should be in JSON format.
max_tokens: The maximum number of tokens to generate in the chat completion.
tools: The tools to use in the chat completion.
ollama_host: The host for ollama to use.
@@ -446,7 +452,7 @@ async def llm_call(
llm_model, parallel_tool_calls
)
if json_format:
if force_json_output:
response_format = {"type": "json_object"}
response = await oai_client.chat.completions.create(
@@ -559,7 +565,7 @@ async def llm_call(
raise ValueError("Groq does not support tools.")
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
response_format = {"type": "json_object"} if json_format else None
response_format = {"type": "json_object"} if force_json_output else None
response = await client.chat.completions.create(
model=llm_model.value,
messages=prompt, # type: ignore
@@ -717,7 +723,7 @@ async def llm_call(
)
response_format = None
if json_format:
if force_json_output:
response_format = {"type": "json_object"}
parallel_tool_calls_param = get_parallel_tool_calls_param(
@@ -780,6 +786,17 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
description="The language model to use for answering the prompt.",
advanced=False,
)
force_json_output: bool = SchemaField(
title="Restrict LLM to pure JSON output",
default=False,
description=(
"Whether to force the LLM to produce a JSON-only response. "
"This can increase the block's reliability, "
"but may also reduce the quality of the response "
"because it prohibits the LLM from reasoning "
"before providing its JSON response."
),
)
credentials: AICredentials = AICredentialsField()
sys_prompt: str = SchemaField(
title="System Prompt",
@@ -848,17 +865,18 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
"llm_call": lambda *args, **kwargs: LLMResponse(
raw_response="",
prompt=[""],
response=json.dumps(
{
"key1": "key1Value",
"key2": "key2Value",
}
response=(
'<json_output id="test123456">{\n'
' "key1": "key1Value",\n'
' "key2": "key2Value"\n'
"}</json_output>"
),
tool_calls=None,
prompt_tokens=0,
completion_tokens=0,
reasoning=None,
)
),
"get_collision_proof_output_tag_id": lambda *args: "test123456",
},
)
@@ -867,9 +885,9 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
credentials: APIKeyCredentials,
llm_model: LlmModel,
prompt: list[dict],
json_format: bool,
compress_prompt_to_fit: bool,
max_tokens: int | None,
force_json_output: bool = False,
compress_prompt_to_fit: bool = True,
tools: list[dict] | None = None,
ollama_host: str = "localhost:11434",
) -> LLMResponse:
@@ -882,8 +900,8 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
credentials=credentials,
llm_model=llm_model,
prompt=prompt,
json_format=json_format,
max_tokens=max_tokens,
force_json_output=force_json_output,
tools=tools,
ollama_host=ollama_host,
compress_prompt_to_fit=compress_prompt_to_fit,
@@ -895,11 +913,6 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
logger.debug(f"Calling LLM with input data: {input_data}")
prompt = [json.to_dict(p) for p in input_data.conversation_history]
def trim_prompt(s: str) -> str:
"""Removes indentation up to and including `|` from a multi-line prompt."""
lines = s.strip().split("\n")
return "\n".join([line.strip().lstrip("|") for line in lines])
values = input_data.prompt_values
if values:
input_data.prompt = fmt.format_string(input_data.prompt, values)
@@ -908,28 +921,15 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
if input_data.sys_prompt:
prompt.append({"role": "system", "content": input_data.sys_prompt})
# Use a one-time unique tag to prevent collisions with user/LLM content
output_tag_id = self.get_collision_proof_output_tag_id()
output_tag_start = f'<json_output id="{output_tag_id}">'
if input_data.expected_format:
expected_format = [
f"{json.dumps(k)}: {json.dumps(v)}"
for k, v in input_data.expected_format.items()
]
if input_data.list_result:
format_prompt = (
f'"results": [\n {{\n {", ".join(expected_format)}\n }}\n]'
)
else:
format_prompt = ",\n| ".join(expected_format)
sys_prompt = trim_prompt(
f"""
|Reply with pure JSON strictly following this JSON format:
|{{
| {format_prompt}
|}}
|
|Ensure the response is valid JSON. DO NOT include any additional text (e.g. markdown code block fences) outside of the JSON.
|If you cannot provide all the keys, provide an empty string for the values you cannot answer.
"""
sys_prompt = self.response_format_instructions(
input_data.expected_format,
list_mode=input_data.list_result,
pure_json_mode=input_data.force_json_output,
output_tag_start=output_tag_start,
)
prompt.append({"role": "system", "content": sys_prompt})
@@ -947,18 +947,21 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
except JSONDecodeError as e:
return f"JSON decode error: {e}"
logger.debug(f"LLM request: {prompt}")
error_feedback_message = ""
llm_model = input_data.model
for retry_count in range(input_data.retry):
logger.debug(f"LLM request: {prompt}")
try:
llm_response = await self.llm_call(
credentials=credentials,
llm_model=llm_model,
prompt=prompt,
compress_prompt_to_fit=input_data.compress_prompt_to_fit,
json_format=bool(input_data.expected_format),
force_json_output=(
input_data.force_json_output
and bool(input_data.expected_format)
),
ollama_host=input_data.ollama_host,
max_tokens=input_data.max_tokens,
)
@@ -973,30 +976,52 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
if input_data.expected_format:
try:
response_obj = json.loads(response_text)
except JSONDecodeError as json_error:
response_obj = self.get_json_from_response(
response_text,
pure_json_mode=input_data.force_json_output,
output_tag_start=output_tag_start,
)
except (ValueError, JSONDecodeError) as parse_error:
censored_response = re.sub(r"[A-Za-z0-9]", "*", response_text)
response_snippet = (
f"{censored_response[:50]}...{censored_response[-30:]}"
)
logger.warning(
f"Error getting JSON from LLM response: {parse_error}\n\n"
f"Response start+end: `{response_snippet}`"
)
prompt.append({"role": "assistant", "content": response_text})
indented_json_error = str(json_error).replace("\n", "\n|")
error_feedback_message = trim_prompt(
f"""
|Your previous response could not be parsed as valid JSON:
|
|{indented_json_error}
|
|Please provide a valid JSON response that matches the expected format.
"""
error_feedback_message = self.invalid_response_feedback(
parse_error,
was_parseable=False,
list_mode=input_data.list_result,
pure_json_mode=input_data.force_json_output,
output_tag_start=output_tag_start,
)
prompt.append(
{"role": "user", "content": error_feedback_message}
)
continue
# Handle object response for `force_json_output`+`list_result`
if input_data.list_result and isinstance(response_obj, dict):
if "results" in response_obj:
response_obj = response_obj.get("results", [])
elif len(response_obj) == 1:
response_obj = list(response_obj.values())
if "results" in response_obj and isinstance(
response_obj["results"], list
):
response_obj = response_obj["results"]
else:
error_feedback_message = (
"Expected an array of objects in the 'results' key, "
f"but got: {response_obj}"
)
prompt.append(
{"role": "assistant", "content": response_text}
)
prompt.append(
{"role": "user", "content": error_feedback_message}
)
continue
validation_errors = "\n".join(
[
@@ -1022,12 +1047,12 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
return
prompt.append({"role": "assistant", "content": response_text})
error_feedback_message = trim_prompt(
f"""
|Your response did not match the expected format:
|
|{validation_errors}
"""
error_feedback_message = self.invalid_response_feedback(
validation_errors,
was_parseable=True,
list_mode=input_data.list_result,
pure_json_mode=input_data.force_json_output,
output_tag_start=output_tag_start,
)
prompt.append({"role": "user", "content": error_feedback_message})
else:
@@ -1059,6 +1084,127 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
raise RuntimeError(error_feedback_message)
def response_format_instructions(
self,
expected_object_format: dict[str, str],
*,
list_mode: bool,
pure_json_mode: bool,
output_tag_start: str,
) -> str:
expected_output_format = json.dumps(expected_object_format, indent=2)
output_type = "object" if not list_mode else "array"
outer_output_type = "object" if pure_json_mode else output_type
if output_type == "array":
indented_obj_format = expected_output_format.replace("\n", "\n ")
expected_output_format = f"[\n {indented_obj_format},\n ...\n]"
if pure_json_mode:
indented_list_format = expected_output_format.replace("\n", "\n ")
expected_output_format = (
"{\n"
' "reasoning": "... (optional)",\n' # for better performance
f' "results": {indented_list_format}\n'
"}"
)
# Preserve indentation in prompt
expected_output_format = expected_output_format.replace("\n", "\n|")
# Prepare prompt
if not pure_json_mode:
expected_output_format = (
f"{output_tag_start}\n{expected_output_format}\n</json_output>"
)
instructions = f"""
|In your response you MUST include a valid JSON {outer_output_type} strictly following this format:
|{expected_output_format}
|
|If you cannot provide all the keys, you MUST provide an empty string for the values you cannot answer.
""".strip()
if not pure_json_mode:
instructions += f"""
|
|You MUST enclose your final JSON answer in {output_tag_start}...</json_output> tags, even if the user specifies a different tag.
|There MUST be exactly ONE {output_tag_start}...</json_output> block in your response, which MUST ONLY contain the JSON {outer_output_type} and nothing else. Other text outside this block is allowed.
""".strip()
return trim_prompt(instructions)
def invalid_response_feedback(
self,
error,
*,
was_parseable: bool,
list_mode: bool,
pure_json_mode: bool,
output_tag_start: str,
) -> str:
outer_output_type = "object" if not list_mode or pure_json_mode else "array"
if was_parseable:
complaint = f"Your previous response did not match the expected {outer_output_type} format."
else:
complaint = f"Your previous response did not contain a parseable JSON {outer_output_type}."
indented_parse_error = str(error).replace("\n", "\n|")
instruction = (
f"Please provide a {output_tag_start}...</json_output> block containing a"
if not pure_json_mode
else "Please provide a"
) + f" valid JSON {outer_output_type} that matches the expected format."
return trim_prompt(
f"""
|{complaint}
|
|{indented_parse_error}
|
|{instruction}
"""
)
def get_json_from_response(
self, response_text: str, *, pure_json_mode: bool, output_tag_start: str
) -> dict[str, Any] | list[dict[str, Any]]:
if pure_json_mode:
# Handle pure JSON responses
try:
return json.loads(response_text)
except JSONDecodeError as first_parse_error:
# If that didn't work, try finding the { and } to deal with possible ```json fences etc.
json_start = response_text.find("{")
json_end = response_text.rfind("}")
try:
return json.loads(response_text[json_start : json_end + 1])
except JSONDecodeError:
# Raise the original error, as it's more likely to be relevant
raise first_parse_error from None
if output_tag_start not in response_text:
raise ValueError(
"Response does not contain the expected "
f"{output_tag_start}...</json_output> block."
)
json_output = (
response_text.split(output_tag_start, 1)[1]
.rsplit("</json_output>", 1)[0]
.strip()
)
return json.loads(json_output)
def get_collision_proof_output_tag_id(self) -> str:
return secrets.token_hex(8)
def trim_prompt(s: str) -> str:
"""Removes indentation up to and including `|` from a multi-line prompt."""
lines = s.strip().split("\n")
return "\n".join([line.strip().lstrip("|") for line in lines])
class AITextGeneratorBlock(AIBlockBase):
class Input(BlockSchema):
@@ -1254,11 +1400,27 @@ class AITextSummarizerBlock(AIBlockBase):
@staticmethod
def _split_text(text: str, max_tokens: int, overlap: int) -> list[str]:
# Security fix: Add validation to prevent DoS attacks
# Limit text size to prevent memory exhaustion
MAX_TEXT_LENGTH = 1_000_000 # 1MB character limit
MAX_CHUNKS = 100 # Maximum number of chunks to prevent excessive memory use
if len(text) > MAX_TEXT_LENGTH:
text = text[:MAX_TEXT_LENGTH]
# Ensure chunk_size is at least 1 to prevent infinite loops
chunk_size = max(1, max_tokens - overlap)
# Ensure overlap is less than max_tokens to prevent invalid configurations
if overlap >= max_tokens:
overlap = max(0, max_tokens - 1)
words = text.split()
chunks = []
chunk_size = max_tokens - overlap
for i in range(0, len(words), chunk_size):
if len(chunks) >= MAX_CHUNKS:
break # Limit the number of chunks to prevent memory exhaustion
chunk = " ".join(words[i : i + max_tokens])
chunks.append(chunk)
@@ -1392,7 +1554,9 @@ class AIConversationBlock(AIBlockBase):
("prompt", list),
],
test_mock={
"llm_call": lambda *args, **kwargs: "The 2020 World Series was played at Globe Life Field in Arlington, Texas."
"llm_call": lambda *args, **kwargs: dict(
response="The 2020 World Series was played at Globe Life Field in Arlington, Texas."
)
},
)
@@ -1421,7 +1585,7 @@ class AIConversationBlock(AIBlockBase):
),
credentials=credentials,
)
yield "response", response
yield "response", response["response"]
yield "prompt", self.prompt

View File

@@ -0,0 +1,536 @@
"""
Notion API helper functions and client for making authenticated requests.
"""
from typing import Any, Dict, List, Optional
from backend.data.model import OAuth2Credentials
from backend.util.request import Requests
NOTION_VERSION = "2022-06-28"
class NotionAPIException(Exception):
"""Exception raised for Notion API errors."""
def __init__(self, message: str, status_code: int):
super().__init__(message)
self.status_code = status_code
class NotionClient:
"""Client for interacting with the Notion API."""
def __init__(self, credentials: OAuth2Credentials):
self.credentials = credentials
self.headers = {
"Authorization": credentials.auth_header(),
"Notion-Version": NOTION_VERSION,
"Content-Type": "application/json",
}
self.requests = Requests()
async def get_page(self, page_id: str) -> dict:
"""
Fetch a page by ID.
Args:
page_id: The ID of the page to fetch.
Returns:
The page object from Notion API.
"""
url = f"https://api.notion.com/v1/pages/{page_id}"
response = await self.requests.get(url, headers=self.headers)
if not response.ok:
raise NotionAPIException(
f"Failed to fetch page: {response.status} - {response.text()}",
response.status,
)
return response.json()
async def get_blocks(self, block_id: str, recursive: bool = True) -> List[dict]:
"""
Fetch all blocks from a page or block.
Args:
block_id: The ID of the page or block to fetch children from.
recursive: Whether to fetch nested blocks recursively.
Returns:
List of block objects.
"""
blocks = []
cursor = None
while True:
url = f"https://api.notion.com/v1/blocks/{block_id}/children"
params = {"page_size": 100}
if cursor:
params["start_cursor"] = cursor
response = await self.requests.get(url, headers=self.headers, params=params)
if not response.ok:
raise NotionAPIException(
f"Failed to fetch blocks: {response.status} - {response.text()}",
response.status,
)
data = response.json()
current_blocks = data.get("results", [])
# If recursive, fetch children for blocks that have them
if recursive:
for block in current_blocks:
if block.get("has_children"):
block["children"] = await self.get_blocks(
block["id"], recursive=True
)
blocks.extend(current_blocks)
if not data.get("has_more"):
break
cursor = data.get("next_cursor")
return blocks
async def query_database(
self,
database_id: str,
filter_obj: Optional[dict] = None,
sorts: Optional[List[dict]] = None,
page_size: int = 100,
) -> dict:
"""
Query a database with optional filters and sorts.
Args:
database_id: The ID of the database to query.
filter_obj: Optional filter object for the query.
sorts: Optional list of sort objects.
page_size: Number of results per page.
Returns:
Query results including pages and pagination info.
"""
url = f"https://api.notion.com/v1/databases/{database_id}/query"
payload: Dict[str, Any] = {"page_size": page_size}
if filter_obj:
payload["filter"] = filter_obj
if sorts:
payload["sorts"] = sorts
response = await self.requests.post(url, headers=self.headers, json=payload)
if not response.ok:
raise NotionAPIException(
f"Failed to query database: {response.status} - {response.text()}",
response.status,
)
return response.json()
async def create_page(
self,
parent: dict,
properties: dict,
children: Optional[List[dict]] = None,
icon: Optional[dict] = None,
cover: Optional[dict] = None,
) -> dict:
"""
Create a new page.
Args:
parent: Parent object (page_id or database_id).
properties: Page properties.
children: Optional list of block children.
icon: Optional icon object.
cover: Optional cover object.
Returns:
The created page object.
"""
url = "https://api.notion.com/v1/pages"
payload: Dict[str, Any] = {"parent": parent, "properties": properties}
if children:
payload["children"] = children
if icon:
payload["icon"] = icon
if cover:
payload["cover"] = cover
response = await self.requests.post(url, headers=self.headers, json=payload)
if not response.ok:
raise NotionAPIException(
f"Failed to create page: {response.status} - {response.text()}",
response.status,
)
return response.json()
async def update_page(self, page_id: str, properties: dict) -> dict:
"""
Update a page's properties.
Args:
page_id: The ID of the page to update.
properties: Properties to update.
Returns:
The updated page object.
"""
url = f"https://api.notion.com/v1/pages/{page_id}"
response = await self.requests.patch(
url, headers=self.headers, json={"properties": properties}
)
if not response.ok:
raise NotionAPIException(
f"Failed to update page: {response.status} - {response.text()}",
response.status,
)
return response.json()
async def append_blocks(self, block_id: str, children: List[dict]) -> dict:
"""
Append blocks to a page or block.
Args:
block_id: The ID of the page or block to append to.
children: List of block objects to append.
Returns:
Response with the created blocks.
"""
url = f"https://api.notion.com/v1/blocks/{block_id}/children"
response = await self.requests.patch(
url, headers=self.headers, json={"children": children}
)
if not response.ok:
raise NotionAPIException(
f"Failed to append blocks: {response.status} - {response.text()}",
response.status,
)
return response.json()
async def search(
self,
query: str = "",
filter_obj: Optional[dict] = None,
sort: Optional[dict] = None,
page_size: int = 100,
) -> dict:
"""
Search for pages and databases.
Args:
query: Search query text.
filter_obj: Optional filter object.
sort: Optional sort object.
page_size: Number of results per page.
Returns:
Search results.
"""
url = "https://api.notion.com/v1/search"
payload: Dict[str, Any] = {"page_size": page_size}
if query:
payload["query"] = query
if filter_obj:
payload["filter"] = filter_obj
if sort:
payload["sort"] = sort
response = await self.requests.post(url, headers=self.headers, json=payload)
if not response.ok:
raise NotionAPIException(
f"Search failed: {response.status} - {response.text()}", response.status
)
return response.json()
# Conversion helper functions
def parse_rich_text(rich_text_array: List[dict]) -> str:
"""
Extract plain text from a Notion rich text array.
Args:
rich_text_array: Array of rich text objects from Notion.
Returns:
Plain text string.
"""
if not rich_text_array:
return ""
text_parts = []
for text_obj in rich_text_array:
if "plain_text" in text_obj:
text_parts.append(text_obj["plain_text"])
return "".join(text_parts)
def rich_text_to_markdown(rich_text_array: List[dict]) -> str:
"""
Convert Notion rich text array to markdown with formatting.
Args:
rich_text_array: Array of rich text objects from Notion.
Returns:
Markdown formatted string.
"""
if not rich_text_array:
return ""
markdown_parts = []
for text_obj in rich_text_array:
text = text_obj.get("plain_text", "")
annotations = text_obj.get("annotations", {})
# Apply formatting based on annotations
if annotations.get("code"):
text = f"`{text}`"
else:
if annotations.get("bold"):
text = f"**{text}**"
if annotations.get("italic"):
text = f"*{text}*"
if annotations.get("strikethrough"):
text = f"~~{text}~~"
if annotations.get("underline"):
text = f"<u>{text}</u>"
# Handle links
if text_obj.get("href"):
text = f"[{text}]({text_obj['href']})"
markdown_parts.append(text)
return "".join(markdown_parts)
def block_to_markdown(block: dict, indent_level: int = 0) -> str:
"""
Convert a single Notion block to markdown.
Args:
block: Block object from Notion API.
indent_level: Current indentation level for nested blocks.
Returns:
Markdown string representation of the block.
"""
block_type = block.get("type")
indent = " " * indent_level
markdown_lines = []
# Handle different block types
if block_type == "paragraph":
text = rich_text_to_markdown(block["paragraph"].get("rich_text", []))
if text:
markdown_lines.append(f"{indent}{text}")
elif block_type == "heading_1":
text = parse_rich_text(block["heading_1"].get("rich_text", []))
markdown_lines.append(f"{indent}# {text}")
elif block_type == "heading_2":
text = parse_rich_text(block["heading_2"].get("rich_text", []))
markdown_lines.append(f"{indent}## {text}")
elif block_type == "heading_3":
text = parse_rich_text(block["heading_3"].get("rich_text", []))
markdown_lines.append(f"{indent}### {text}")
elif block_type == "bulleted_list_item":
text = rich_text_to_markdown(block["bulleted_list_item"].get("rich_text", []))
markdown_lines.append(f"{indent}- {text}")
elif block_type == "numbered_list_item":
text = rich_text_to_markdown(block["numbered_list_item"].get("rich_text", []))
# Note: This is simplified - proper numbering would need context
markdown_lines.append(f"{indent}1. {text}")
elif block_type == "to_do":
text = rich_text_to_markdown(block["to_do"].get("rich_text", []))
checked = "x" if block["to_do"].get("checked") else " "
markdown_lines.append(f"{indent}- [{checked}] {text}")
elif block_type == "toggle":
text = rich_text_to_markdown(block["toggle"].get("rich_text", []))
markdown_lines.append(f"{indent}<details>")
markdown_lines.append(f"{indent}<summary>{text}</summary>")
markdown_lines.append(f"{indent}")
# Process children if they exist
if block.get("children"):
for child in block["children"]:
child_markdown = block_to_markdown(child, indent_level + 1)
if child_markdown:
markdown_lines.append(child_markdown)
markdown_lines.append(f"{indent}</details>")
elif block_type == "code":
code = parse_rich_text(block["code"].get("rich_text", []))
language = block["code"].get("language", "")
markdown_lines.append(f"{indent}```{language}")
markdown_lines.append(f"{indent}{code}")
markdown_lines.append(f"{indent}```")
elif block_type == "quote":
text = rich_text_to_markdown(block["quote"].get("rich_text", []))
markdown_lines.append(f"{indent}> {text}")
elif block_type == "divider":
markdown_lines.append(f"{indent}---")
elif block_type == "image":
image = block["image"]
url = image.get("external", {}).get("url") or image.get("file", {}).get(
"url", ""
)
caption = parse_rich_text(image.get("caption", []))
alt_text = caption if caption else "Image"
markdown_lines.append(f"{indent}![{alt_text}]({url})")
if caption:
markdown_lines.append(f"{indent}*{caption}*")
elif block_type == "video":
video = block["video"]
url = video.get("external", {}).get("url") or video.get("file", {}).get(
"url", ""
)
caption = parse_rich_text(video.get("caption", []))
markdown_lines.append(f"{indent}[Video]({url})")
if caption:
markdown_lines.append(f"{indent}*{caption}*")
elif block_type == "file":
file = block["file"]
url = file.get("external", {}).get("url") or file.get("file", {}).get("url", "")
caption = parse_rich_text(file.get("caption", []))
name = caption if caption else "File"
markdown_lines.append(f"{indent}[{name}]({url})")
elif block_type == "bookmark":
url = block["bookmark"].get("url", "")
caption = parse_rich_text(block["bookmark"].get("caption", []))
markdown_lines.append(f"{indent}[{caption if caption else url}]({url})")
elif block_type == "equation":
expression = block["equation"].get("expression", "")
markdown_lines.append(f"{indent}$${expression}$$")
elif block_type == "callout":
text = rich_text_to_markdown(block["callout"].get("rich_text", []))
icon = block["callout"].get("icon", {})
if icon.get("emoji"):
markdown_lines.append(f"{indent}> {icon['emoji']} {text}")
else:
markdown_lines.append(f"{indent}> {text}")
elif block_type == "child_page":
title = block["child_page"].get("title", "Untitled")
markdown_lines.append(f"{indent}📄 [{title}](notion://page/{block['id']})")
elif block_type == "child_database":
title = block["child_database"].get("title", "Untitled Database")
markdown_lines.append(f"{indent}🗂️ [{title}](notion://database/{block['id']})")
elif block_type == "table":
# Tables are complex - for now just indicate there's a table
markdown_lines.append(
f"{indent}[Table with {block['table'].get('table_width', 0)} columns]"
)
elif block_type == "column_list":
# Process columns
if block.get("children"):
markdown_lines.append(f"{indent}<div style='display: flex'>")
for column in block["children"]:
markdown_lines.append(f"{indent}<div style='flex: 1'>")
if column.get("children"):
for child in column["children"]:
child_markdown = block_to_markdown(child, indent_level + 1)
if child_markdown:
markdown_lines.append(child_markdown)
markdown_lines.append(f"{indent}</div>")
markdown_lines.append(f"{indent}</div>")
# Handle children for blocks that haven't been processed yet
elif block.get("children") and block_type not in ["toggle", "column_list"]:
for child in block["children"]:
child_markdown = block_to_markdown(child, indent_level)
if child_markdown:
markdown_lines.append(child_markdown)
return "\n".join(markdown_lines) if markdown_lines else ""
def blocks_to_markdown(blocks: List[dict]) -> str:
"""
Convert a list of Notion blocks to a markdown document.
Args:
blocks: List of block objects from Notion API.
Returns:
Complete markdown document as a string.
"""
markdown_parts = []
for i, block in enumerate(blocks):
markdown = block_to_markdown(block)
if markdown:
markdown_parts.append(markdown)
# Add spacing between top-level blocks (except lists)
if i < len(blocks) - 1:
next_type = blocks[i + 1].get("type", "")
current_type = block.get("type", "")
# Don't add extra spacing between list items
list_types = {"bulleted_list_item", "numbered_list_item", "to_do"}
if not (current_type in list_types and next_type in list_types):
markdown_parts.append("")
return "\n".join(markdown_parts)
def extract_page_title(page: dict) -> str:
"""
Extract the title from a Notion page object.
Args:
page: Page object from Notion API.
Returns:
Page title as a string.
"""
properties = page.get("properties", {})
# Find the title property (it has type "title")
for prop_name, prop_value in properties.items():
if prop_value.get("type") == "title":
return parse_rich_text(prop_value.get("title", []))
return "Untitled"

View File

@@ -0,0 +1,42 @@
from typing import Literal
from pydantic import SecretStr
from backend.data.model import CredentialsField, CredentialsMetaInput, OAuth2Credentials
from backend.integrations.providers import ProviderName
from backend.util.settings import Secrets
secrets = Secrets()
NOTION_OAUTH_IS_CONFIGURED = bool(
secrets.notion_client_id and secrets.notion_client_secret
)
NotionCredentials = OAuth2Credentials
NotionCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.NOTION], Literal["oauth2"]
]
def NotionCredentialsField() -> NotionCredentialsInput:
"""Creates a Notion OAuth2 credentials field."""
return CredentialsField(
description="Connect your Notion account. Ensure the pages/databases are shared with the integration."
)
# Test credentials for Notion OAuth2
TEST_CREDENTIALS = OAuth2Credentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="notion",
access_token=SecretStr("test_access_token"),
title="Mock Notion OAuth",
scopes=["read_content", "insert_content", "update_content"],
username="testuser",
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}

View File

@@ -0,0 +1,360 @@
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import model_validator
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import OAuth2Credentials, SchemaField
from ._api import NotionClient
from ._auth import (
NOTION_OAUTH_IS_CONFIGURED,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
NotionCredentialsField,
NotionCredentialsInput,
)
class NotionCreatePageBlock(Block):
"""Create a new page in Notion with content."""
class Input(BlockSchema):
credentials: NotionCredentialsInput = NotionCredentialsField()
parent_page_id: Optional[str] = SchemaField(
description="Parent page ID to create the page under. Either this OR parent_database_id is required.",
default=None,
)
parent_database_id: Optional[str] = SchemaField(
description="Parent database ID to create the page in. Either this OR parent_page_id is required.",
default=None,
)
title: str = SchemaField(
description="Title of the new page",
)
content: Optional[str] = SchemaField(
description="Content for the page. Can be plain text or markdown - will be converted to Notion blocks.",
default=None,
)
properties: Optional[Dict[str, Any]] = SchemaField(
description="Additional properties for database pages (e.g., {'Status': 'In Progress', 'Priority': 'High'})",
default=None,
)
icon_emoji: Optional[str] = SchemaField(
description="Emoji to use as the page icon (e.g., '📄', '🚀')", default=None
)
@model_validator(mode="after")
def validate_parent(self):
"""Ensure either parent_page_id or parent_database_id is provided."""
if not self.parent_page_id and not self.parent_database_id:
raise ValueError(
"Either parent_page_id or parent_database_id must be provided"
)
if self.parent_page_id and self.parent_database_id:
raise ValueError(
"Only one of parent_page_id or parent_database_id should be provided, not both"
)
return self
class Output(BlockSchema):
page_id: str = SchemaField(description="ID of the created page.")
page_url: str = SchemaField(description="URL of the created page.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="c15febe0-66ce-4c6f-aebd-5ab351653804",
description="Create a new page in Notion. Requires EITHER a parent_page_id OR parent_database_id. Supports markdown content.",
categories={BlockCategory.PRODUCTIVITY},
input_schema=NotionCreatePageBlock.Input,
output_schema=NotionCreatePageBlock.Output,
disabled=not NOTION_OAUTH_IS_CONFIGURED,
test_input={
"parent_page_id": "00000000-0000-0000-0000-000000000000",
"title": "Test Page",
"content": "This is test content.",
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("page_id", "12345678-1234-1234-1234-123456789012"),
(
"page_url",
"https://notion.so/Test-Page-12345678123412341234123456789012",
),
],
test_credentials=TEST_CREDENTIALS,
test_mock={
"create_page": lambda *args, **kwargs: (
"12345678-1234-1234-1234-123456789012",
"https://notion.so/Test-Page-12345678123412341234123456789012",
)
},
)
@staticmethod
def _markdown_to_blocks(content: str) -> List[dict]:
"""Convert markdown content to Notion block objects."""
if not content:
return []
blocks = []
lines = content.split("\n")
i = 0
while i < len(lines):
line = lines[i]
# Skip empty lines
if not line.strip():
i += 1
continue
# Headings
if line.startswith("### "):
blocks.append(
{
"type": "heading_3",
"heading_3": {
"rich_text": [
{"type": "text", "text": {"content": line[4:].strip()}}
]
},
}
)
elif line.startswith("## "):
blocks.append(
{
"type": "heading_2",
"heading_2": {
"rich_text": [
{"type": "text", "text": {"content": line[3:].strip()}}
]
},
}
)
elif line.startswith("# "):
blocks.append(
{
"type": "heading_1",
"heading_1": {
"rich_text": [
{"type": "text", "text": {"content": line[2:].strip()}}
]
},
}
)
# Bullet points
elif line.strip().startswith("- "):
blocks.append(
{
"type": "bulleted_list_item",
"bulleted_list_item": {
"rich_text": [
{
"type": "text",
"text": {"content": line.strip()[2:].strip()},
}
]
},
}
)
# Numbered list
elif line.strip() and line.strip()[0].isdigit() and ". " in line:
content_start = line.find(". ") + 2
blocks.append(
{
"type": "numbered_list_item",
"numbered_list_item": {
"rich_text": [
{
"type": "text",
"text": {"content": line[content_start:].strip()},
}
]
},
}
)
# Code block
elif line.strip().startswith("```"):
code_lines = []
language = line[3:].strip() or "plain text"
i += 1
while i < len(lines) and not lines[i].strip().startswith("```"):
code_lines.append(lines[i])
i += 1
blocks.append(
{
"type": "code",
"code": {
"rich_text": [
{
"type": "text",
"text": {"content": "\n".join(code_lines)},
}
],
"language": language,
},
}
)
# Quote
elif line.strip().startswith("> "):
blocks.append(
{
"type": "quote",
"quote": {
"rich_text": [
{
"type": "text",
"text": {"content": line.strip()[2:].strip()},
}
]
},
}
)
# Horizontal rule
elif line.strip() in ["---", "***", "___"]:
blocks.append({"type": "divider", "divider": {}})
# Regular paragraph
else:
# Parse for basic markdown formatting
text_content = line.strip()
rich_text = []
# Simple bold/italic parsing (this is simplified)
if "**" in text_content or "*" in text_content:
# For now, just pass as plain text
# A full implementation would parse and create proper annotations
rich_text = [{"type": "text", "text": {"content": text_content}}]
else:
rich_text = [{"type": "text", "text": {"content": text_content}}]
blocks.append(
{"type": "paragraph", "paragraph": {"rich_text": rich_text}}
)
i += 1
return blocks
@staticmethod
def _build_properties(
title: str, additional_properties: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""Build properties object for page creation."""
properties: Dict[str, Any] = {
"title": {"title": [{"type": "text", "text": {"content": title}}]}
}
if additional_properties:
for key, value in additional_properties.items():
if key.lower() == "title":
continue # Skip title as we already have it
# Try to intelligently map property types
if isinstance(value, bool):
properties[key] = {"checkbox": value}
elif isinstance(value, (int, float)):
properties[key] = {"number": value}
elif isinstance(value, list):
# Assume multi-select
properties[key] = {
"multi_select": [{"name": str(item)} for item in value]
}
elif isinstance(value, str):
# Could be select, rich_text, or other types
# For simplicity, try common patterns
if key.lower() in ["status", "priority", "type", "category"]:
properties[key] = {"select": {"name": value}}
elif key.lower() in ["url", "link"]:
properties[key] = {"url": value}
elif key.lower() in ["email"]:
properties[key] = {"email": value}
else:
properties[key] = {
"rich_text": [{"type": "text", "text": {"content": value}}]
}
return properties
@staticmethod
async def create_page(
credentials: OAuth2Credentials,
title: str,
parent_page_id: Optional[str] = None,
parent_database_id: Optional[str] = None,
content: Optional[str] = None,
properties: Optional[Dict[str, Any]] = None,
icon_emoji: Optional[str] = None,
) -> tuple[str, str]:
"""
Create a new Notion page.
Returns:
Tuple of (page_id, page_url)
"""
if not parent_page_id and not parent_database_id:
raise ValueError(
"Either parent_page_id or parent_database_id must be provided"
)
if parent_page_id and parent_database_id:
raise ValueError(
"Only one of parent_page_id or parent_database_id should be provided, not both"
)
client = NotionClient(credentials)
# Build parent object
if parent_page_id:
parent = {"type": "page_id", "page_id": parent_page_id}
else:
parent = {"type": "database_id", "database_id": parent_database_id}
# Build properties
page_properties = NotionCreatePageBlock._build_properties(title, properties)
# Convert content to blocks if provided
children = None
if content:
children = NotionCreatePageBlock._markdown_to_blocks(content)
# Build icon if provided
icon = None
if icon_emoji:
icon = {"type": "emoji", "emoji": icon_emoji}
# Create the page
result = await client.create_page(
parent=parent, properties=page_properties, children=children, icon=icon
)
page_id = result.get("id", "")
page_url = result.get("url", "")
if not page_id or not page_url:
raise ValueError("Failed to get page ID or URL from Notion response")
return page_id, page_url
async def run(
self,
input_data: Input,
*,
credentials: OAuth2Credentials,
**kwargs,
) -> BlockOutput:
try:
page_id, page_url = await self.create_page(
credentials,
input_data.title,
input_data.parent_page_id,
input_data.parent_database_id,
input_data.content,
input_data.properties,
input_data.icon_emoji,
)
yield "page_id", page_id
yield "page_url", page_url
except Exception as e:
yield "error", str(e) if str(e) else "Unknown error"

View File

@@ -0,0 +1,285 @@
from __future__ import annotations
from typing import Any, Dict, List, Optional
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import OAuth2Credentials, SchemaField
from ._api import NotionClient, parse_rich_text
from ._auth import (
NOTION_OAUTH_IS_CONFIGURED,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
NotionCredentialsField,
NotionCredentialsInput,
)
class NotionReadDatabaseBlock(Block):
"""Query a Notion database and retrieve entries with their properties."""
class Input(BlockSchema):
credentials: NotionCredentialsInput = NotionCredentialsField()
database_id: str = SchemaField(
description="Notion database ID. Must be accessible by the connected integration.",
)
filter_property: Optional[str] = SchemaField(
description="Property name to filter by (e.g., 'Status', 'Priority')",
default=None,
)
filter_value: Optional[str] = SchemaField(
description="Value to filter for in the specified property", default=None
)
sort_property: Optional[str] = SchemaField(
description="Property name to sort by", default=None
)
sort_direction: Optional[str] = SchemaField(
description="Sort direction: 'ascending' or 'descending'",
default="ascending",
)
limit: int = SchemaField(
description="Maximum number of entries to retrieve",
default=100,
ge=1,
le=100,
)
class Output(BlockSchema):
entries: List[Dict[str, Any]] = SchemaField(
description="List of database entries with their properties."
)
entry: Dict[str, Any] = SchemaField(
description="Individual database entry (yields one per entry found)."
)
entry_ids: List[str] = SchemaField(
description="List of entry IDs for batch operations."
)
entry_id: str = SchemaField(
description="Individual entry ID (yields one per entry found)."
)
count: int = SchemaField(description="Number of entries retrieved.")
database_title: str = SchemaField(description="Title of the database.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="fcd53135-88c9-4ba3-be50-cc6936286e6c",
description="Query a Notion database with optional filtering and sorting, returning structured entries.",
categories={BlockCategory.PRODUCTIVITY},
input_schema=NotionReadDatabaseBlock.Input,
output_schema=NotionReadDatabaseBlock.Output,
disabled=not NOTION_OAUTH_IS_CONFIGURED,
test_input={
"database_id": "00000000-0000-0000-0000-000000000000",
"limit": 10,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
(
"entries",
[{"Name": "Test Entry", "Status": "Active", "_id": "test-123"}],
),
("entry_ids", ["test-123"]),
(
"entry",
{"Name": "Test Entry", "Status": "Active", "_id": "test-123"},
),
("entry_id", "test-123"),
("count", 1),
("database_title", "Test Database"),
],
test_credentials=TEST_CREDENTIALS,
test_mock={
"query_database": lambda *args, **kwargs: (
[{"Name": "Test Entry", "Status": "Active", "_id": "test-123"}],
1,
"Test Database",
)
},
)
@staticmethod
def _parse_property_value(prop: dict) -> Any:
"""Parse a Notion property value into a simple Python type."""
prop_type = prop.get("type")
if prop_type == "title":
return parse_rich_text(prop.get("title", []))
elif prop_type == "rich_text":
return parse_rich_text(prop.get("rich_text", []))
elif prop_type == "number":
return prop.get("number")
elif prop_type == "select":
select = prop.get("select")
return select.get("name") if select else None
elif prop_type == "multi_select":
return [item.get("name") for item in prop.get("multi_select", [])]
elif prop_type == "date":
date = prop.get("date")
if date:
return date.get("start")
return None
elif prop_type == "checkbox":
return prop.get("checkbox", False)
elif prop_type == "url":
return prop.get("url")
elif prop_type == "email":
return prop.get("email")
elif prop_type == "phone_number":
return prop.get("phone_number")
elif prop_type == "people":
return [
person.get("name", person.get("id"))
for person in prop.get("people", [])
]
elif prop_type == "files":
files = prop.get("files", [])
return [
f.get(
"name",
f.get("external", {}).get("url", f.get("file", {}).get("url")),
)
for f in files
]
elif prop_type == "relation":
return [rel.get("id") for rel in prop.get("relation", [])]
elif prop_type == "formula":
formula = prop.get("formula", {})
return formula.get(formula.get("type"))
elif prop_type == "rollup":
rollup = prop.get("rollup", {})
return rollup.get(rollup.get("type"))
elif prop_type == "created_time":
return prop.get("created_time")
elif prop_type == "created_by":
return prop.get("created_by", {}).get(
"name", prop.get("created_by", {}).get("id")
)
elif prop_type == "last_edited_time":
return prop.get("last_edited_time")
elif prop_type == "last_edited_by":
return prop.get("last_edited_by", {}).get(
"name", prop.get("last_edited_by", {}).get("id")
)
else:
# Return the raw value for unknown types
return prop
@staticmethod
def _build_filter(property_name: str, value: str) -> dict:
"""Build a simple filter object for a property."""
# This is a simplified filter - in reality, you'd need to know the property type
# For now, we'll try common filter types
return {
"or": [
{"property": property_name, "rich_text": {"contains": value}},
{"property": property_name, "title": {"contains": value}},
{"property": property_name, "select": {"equals": value}},
{"property": property_name, "multi_select": {"contains": value}},
]
}
@staticmethod
async def query_database(
credentials: OAuth2Credentials,
database_id: str,
filter_property: Optional[str] = None,
filter_value: Optional[str] = None,
sort_property: Optional[str] = None,
sort_direction: str = "ascending",
limit: int = 100,
) -> tuple[List[Dict[str, Any]], int, str]:
"""
Query a Notion database and parse the results.
Returns:
Tuple of (entries_list, count, database_title)
"""
client = NotionClient(credentials)
# Build filter if specified
filter_obj = None
if filter_property and filter_value:
filter_obj = NotionReadDatabaseBlock._build_filter(
filter_property, filter_value
)
# Build sorts if specified
sorts = None
if sort_property:
sorts = [{"property": sort_property, "direction": sort_direction}]
# Query the database
result = await client.query_database(
database_id, filter_obj=filter_obj, sorts=sorts, page_size=limit
)
# Parse the entries
entries = []
for page in result.get("results", []):
entry = {}
properties = page.get("properties", {})
for prop_name, prop_value in properties.items():
entry[prop_name] = NotionReadDatabaseBlock._parse_property_value(
prop_value
)
# Add metadata
entry["_id"] = page.get("id")
entry["_url"] = page.get("url")
entry["_created_time"] = page.get("created_time")
entry["_last_edited_time"] = page.get("last_edited_time")
entries.append(entry)
# Get database title (we need to make a separate call for this)
try:
database_url = f"https://api.notion.com/v1/databases/{database_id}"
db_response = await client.requests.get(
database_url, headers=client.headers
)
if db_response.ok:
db_data = db_response.json()
db_title = parse_rich_text(db_data.get("title", []))
else:
db_title = "Unknown Database"
except Exception:
db_title = "Unknown Database"
return entries, len(entries), db_title
async def run(
self,
input_data: Input,
*,
credentials: OAuth2Credentials,
**kwargs,
) -> BlockOutput:
try:
entries, count, db_title = await self.query_database(
credentials,
input_data.database_id,
input_data.filter_property,
input_data.filter_value,
input_data.sort_property,
input_data.sort_direction or "ascending",
input_data.limit,
)
# Yield the complete list for batch operations
yield "entries", entries
# Extract and yield IDs as a list for batch operations
entry_ids = [entry["_id"] for entry in entries if "_id" in entry]
yield "entry_ids", entry_ids
# Yield each individual entry and its ID for single connections
for entry in entries:
yield "entry", entry
if "_id" in entry:
yield "entry_id", entry["_id"]
yield "count", count
yield "database_title", db_title
except Exception as e:
yield "error", str(e) if str(e) else "Unknown error"

View File

@@ -0,0 +1,64 @@
from __future__ import annotations
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import OAuth2Credentials, SchemaField
from ._api import NotionClient
from ._auth import (
NOTION_OAUTH_IS_CONFIGURED,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
NotionCredentialsField,
NotionCredentialsInput,
)
class NotionReadPageBlock(Block):
"""Read a Notion page by ID and return its raw JSON."""
class Input(BlockSchema):
credentials: NotionCredentialsInput = NotionCredentialsField()
page_id: str = SchemaField(
description="Notion page ID. Must be accessible by the connected integration. You can get this from the page URL notion.so/A-Page-586edd711467478da59fe3ce29a1ffab would be 586edd711467478da59fe35e29a1ffab",
)
class Output(BlockSchema):
page: dict = SchemaField(description="Raw Notion page JSON.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="5246cc1d-34b7-452b-8fc5-3fb25fd8f542",
description="Read a Notion page by its ID and return its raw JSON.",
categories={BlockCategory.PRODUCTIVITY},
input_schema=NotionReadPageBlock.Input,
output_schema=NotionReadPageBlock.Output,
disabled=not NOTION_OAUTH_IS_CONFIGURED,
test_input={
"page_id": "00000000-0000-0000-0000-000000000000",
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[("page", dict)],
test_credentials=TEST_CREDENTIALS,
test_mock={
"get_page": lambda *args, **kwargs: {"object": "page", "id": "mocked"}
},
)
@staticmethod
async def get_page(credentials: OAuth2Credentials, page_id: str) -> dict:
client = NotionClient(credentials)
return await client.get_page(page_id)
async def run(
self,
input_data: Input,
*,
credentials: OAuth2Credentials,
**kwargs,
) -> BlockOutput:
try:
page = await self.get_page(credentials, input_data.page_id)
yield "page", page
except Exception as e:
yield "error", str(e) if str(e) else "Unknown error"

View File

@@ -0,0 +1,109 @@
from __future__ import annotations
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import OAuth2Credentials, SchemaField
from ._api import NotionClient, blocks_to_markdown, extract_page_title
from ._auth import (
NOTION_OAUTH_IS_CONFIGURED,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
NotionCredentialsField,
NotionCredentialsInput,
)
class NotionReadPageMarkdownBlock(Block):
"""Read a Notion page and convert it to clean Markdown format."""
class Input(BlockSchema):
credentials: NotionCredentialsInput = NotionCredentialsField()
page_id: str = SchemaField(
description="Notion page ID. Must be accessible by the connected integration. You can get this from the page URL notion.so/A-Page-586edd711467478da59fe35e29a1ffab would be 586edd711467478da59fe35e29a1ffab",
)
include_title: bool = SchemaField(
description="Whether to include the page title as a header in the markdown",
default=True,
)
class Output(BlockSchema):
markdown: str = SchemaField(description="Page content in Markdown format.")
title: str = SchemaField(description="Page title.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="d1312c4d-fae2-4e70-893d-f4d07cce1d4e",
description="Read a Notion page and convert it to Markdown format with proper formatting for headings, lists, links, and rich text.",
categories={BlockCategory.PRODUCTIVITY},
input_schema=NotionReadPageMarkdownBlock.Input,
output_schema=NotionReadPageMarkdownBlock.Output,
disabled=not NOTION_OAUTH_IS_CONFIGURED,
test_input={
"page_id": "00000000-0000-0000-0000-000000000000",
"include_title": True,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("markdown", "# Test Page\n\nThis is test content."),
("title", "Test Page"),
],
test_credentials=TEST_CREDENTIALS,
test_mock={
"get_page_markdown": lambda *args, **kwargs: (
"# Test Page\n\nThis is test content.",
"Test Page",
)
},
)
@staticmethod
async def get_page_markdown(
credentials: OAuth2Credentials, page_id: str, include_title: bool = True
) -> tuple[str, str]:
"""
Get a Notion page and convert it to markdown.
Args:
credentials: OAuth2 credentials for Notion.
page_id: The ID of the page to fetch.
include_title: Whether to include the page title in the markdown.
Returns:
Tuple of (markdown_content, title)
"""
client = NotionClient(credentials)
# Get page metadata
page = await client.get_page(page_id)
title = extract_page_title(page)
# Get all blocks from the page
blocks = await client.get_blocks(page_id, recursive=True)
# Convert blocks to markdown
content_markdown = blocks_to_markdown(blocks)
# Combine title and content if requested
if include_title and title:
full_markdown = f"# {title}\n\n{content_markdown}"
else:
full_markdown = content_markdown
return full_markdown, title
async def run(
self,
input_data: Input,
*,
credentials: OAuth2Credentials,
**kwargs,
) -> BlockOutput:
try:
markdown, title = await self.get_page_markdown(
credentials, input_data.page_id, input_data.include_title
)
yield "markdown", markdown
yield "title", title
except Exception as e:
yield "error", str(e) if str(e) else "Unknown error"

View File

@@ -0,0 +1,225 @@
from __future__ import annotations
from typing import List, Optional
from pydantic import BaseModel
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import OAuth2Credentials, SchemaField
from ._api import NotionClient, extract_page_title, parse_rich_text
from ._auth import (
NOTION_OAUTH_IS_CONFIGURED,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
NotionCredentialsField,
NotionCredentialsInput,
)
class NotionSearchResult(BaseModel):
"""Typed model for Notion search results."""
id: str
type: str # 'page' or 'database'
title: str
url: str
created_time: Optional[str] = None
last_edited_time: Optional[str] = None
parent_type: Optional[str] = None # 'page', 'database', or 'workspace'
parent_id: Optional[str] = None
icon: Optional[str] = None # emoji icon if present
is_inline: Optional[bool] = None # for databases only
class NotionSearchBlock(Block):
"""Search across your Notion workspace for pages and databases."""
class Input(BlockSchema):
credentials: NotionCredentialsInput = NotionCredentialsField()
query: str = SchemaField(
description="Search query text. Leave empty to get all accessible pages/databases.",
default="",
)
filter_type: Optional[str] = SchemaField(
description="Filter results by type: 'page' or 'database'. Leave empty for both.",
default=None,
)
limit: int = SchemaField(
description="Maximum number of results to return", default=20, ge=1, le=100
)
class Output(BlockSchema):
results: List[NotionSearchResult] = SchemaField(
description="List of search results with title, type, URL, and metadata."
)
result: NotionSearchResult = SchemaField(
description="Individual search result (yields one per result found)."
)
result_ids: List[str] = SchemaField(
description="List of IDs from search results for batch operations."
)
count: int = SchemaField(description="Number of results found.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="313515dd-9848-46ea-9cd6-3c627c892c56",
description="Search your Notion workspace for pages and databases by text query.",
categories={BlockCategory.PRODUCTIVITY, BlockCategory.SEARCH},
input_schema=NotionSearchBlock.Input,
output_schema=NotionSearchBlock.Output,
disabled=not NOTION_OAUTH_IS_CONFIGURED,
test_input={
"query": "project",
"limit": 5,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
(
"results",
[
NotionSearchResult(
id="123",
type="page",
title="Project Plan",
url="https://notion.so/Project-Plan-123",
)
],
),
("result_ids", ["123"]),
(
"result",
NotionSearchResult(
id="123",
type="page",
title="Project Plan",
url="https://notion.so/Project-Plan-123",
),
),
("count", 1),
],
test_credentials=TEST_CREDENTIALS,
test_mock={
"search_workspace": lambda *args, **kwargs: (
[
NotionSearchResult(
id="123",
type="page",
title="Project Plan",
url="https://notion.so/Project-Plan-123",
)
],
1,
)
},
)
@staticmethod
async def search_workspace(
credentials: OAuth2Credentials,
query: str = "",
filter_type: Optional[str] = None,
limit: int = 20,
) -> tuple[List[NotionSearchResult], int]:
"""
Search the Notion workspace.
Returns:
Tuple of (results_list, count)
"""
client = NotionClient(credentials)
# Build filter if type is specified
filter_obj = None
if filter_type:
filter_obj = {"property": "object", "value": filter_type}
# Execute search
response = await client.search(
query=query, filter_obj=filter_obj, page_size=limit
)
# Parse results
results = []
for item in response.get("results", []):
result_data = {
"id": item.get("id", ""),
"type": item.get("object", ""),
"url": item.get("url", ""),
"created_time": item.get("created_time"),
"last_edited_time": item.get("last_edited_time"),
"title": "", # Will be set below
}
# Extract title based on type
if item.get("object") == "page":
# For pages, get the title from properties
result_data["title"] = extract_page_title(item)
# Add parent info
parent = item.get("parent", {})
if parent.get("type") == "page_id":
result_data["parent_type"] = "page"
result_data["parent_id"] = parent.get("page_id")
elif parent.get("type") == "database_id":
result_data["parent_type"] = "database"
result_data["parent_id"] = parent.get("database_id")
elif parent.get("type") == "workspace":
result_data["parent_type"] = "workspace"
# Add icon if present
icon = item.get("icon")
if icon and icon.get("type") == "emoji":
result_data["icon"] = icon.get("emoji")
elif item.get("object") == "database":
# For databases, get title from the title array
result_data["title"] = parse_rich_text(item.get("title", []))
# Add database-specific metadata
result_data["is_inline"] = item.get("is_inline", False)
# Add parent info
parent = item.get("parent", {})
if parent.get("type") == "page_id":
result_data["parent_type"] = "page"
result_data["parent_id"] = parent.get("page_id")
elif parent.get("type") == "workspace":
result_data["parent_type"] = "workspace"
# Add icon if present
icon = item.get("icon")
if icon and icon.get("type") == "emoji":
result_data["icon"] = icon.get("emoji")
results.append(NotionSearchResult(**result_data))
return results, len(results)
async def run(
self,
input_data: Input,
*,
credentials: OAuth2Credentials,
**kwargs,
) -> BlockOutput:
try:
results, count = await self.search_workspace(
credentials, input_data.query, input_data.filter_type, input_data.limit
)
# Yield the complete list for batch operations
yield "results", results
# Extract and yield IDs as a list for batch operations
result_ids = [r.id for r in results]
yield "result_ids", result_ids
# Yield each individual result for single connections
for result in results:
yield "result", result
yield "count", count
except Exception as e:
yield "error", str(e) if str(e) else "Unknown error"

View File

@@ -0,0 +1,226 @@
# flake8: noqa: E501
import logging
from enum import Enum
from typing import Any, Literal
import openai
from pydantic import SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
NodeExecutionStats,
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.logging import TruncatedLogger
logger = TruncatedLogger(logging.getLogger(__name__), "[Perplexity-Block]")
class PerplexityModel(str, Enum):
"""Perplexity sonar models available via OpenRouter"""
SONAR = "perplexity/sonar"
SONAR_PRO = "perplexity/sonar-pro"
SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
PerplexityCredentials = CredentialsMetaInput[
Literal[ProviderName.OPEN_ROUTER], Literal["api_key"]
]
TEST_CREDENTIALS = APIKeyCredentials(
id="test-perplexity-creds",
provider="open_router",
api_key=SecretStr("mock-openrouter-api-key"),
title="Mock OpenRouter API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
def PerplexityCredentialsField() -> PerplexityCredentials:
return CredentialsField(
description="OpenRouter API key for accessing Perplexity models.",
)
class PerplexityBlock(Block):
class Input(BlockSchema):
prompt: str = SchemaField(
description="The query to send to the Perplexity model.",
placeholder="Enter your query here...",
)
model: PerplexityModel = SchemaField(
title="Perplexity Model",
default=PerplexityModel.SONAR,
description="The Perplexity sonar model to use.",
advanced=False,
)
credentials: PerplexityCredentials = PerplexityCredentialsField()
system_prompt: str = SchemaField(
title="System Prompt",
default="",
description="Optional system prompt to provide context to the model.",
advanced=True,
)
max_tokens: int | None = SchemaField(
advanced=True,
default=None,
description="The maximum number of tokens to generate.",
)
class Output(BlockSchema):
response: str = SchemaField(
description="The response from the Perplexity model."
)
annotations: list[dict[str, Any]] = SchemaField(
description="List of URL citations and annotations from the response."
)
error: str = SchemaField(description="Error message if the API call failed.")
def __init__(self):
super().__init__(
id="c8a5f2e9-8b3d-4a7e-9f6c-1d5e3c9b7a4f",
description="Query Perplexity's sonar models with real-time web search capabilities and receive annotated responses with source citations.",
categories={BlockCategory.AI, BlockCategory.SEARCH},
input_schema=PerplexityBlock.Input,
output_schema=PerplexityBlock.Output,
test_input={
"prompt": "What is the weather today?",
"model": PerplexityModel.SONAR,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("response", "The weather varies by location..."),
("annotations", list),
],
test_mock={
"call_perplexity": lambda *args, **kwargs: {
"response": "The weather varies by location...",
"annotations": [
{
"type": "url_citation",
"url_citation": {
"title": "weather.com",
"url": "https://weather.com",
},
}
],
}
},
)
self.execution_stats = NodeExecutionStats()
async def call_perplexity(
self,
credentials: APIKeyCredentials,
model: PerplexityModel,
prompt: str,
system_prompt: str = "",
max_tokens: int | None = None,
) -> dict[str, Any]:
"""Call Perplexity via OpenRouter and extract annotations."""
client = openai.AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=credentials.api_key.get_secret_value(),
)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": prompt})
try:
response = await client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=model.value,
messages=messages,
max_tokens=max_tokens,
)
if not response.choices:
raise ValueError("No response from Perplexity via OpenRouter.")
# Extract the response content
response_content = response.choices[0].message.content or ""
# Extract annotations if present in the message
annotations = []
if hasattr(response.choices[0].message, "annotations"):
# If annotations are directly available
annotations = response.choices[0].message.annotations
else:
# Check if there's a raw response with annotations
raw = getattr(response.choices[0].message, "_raw_response", None)
if isinstance(raw, dict) and "annotations" in raw:
annotations = raw["annotations"]
if not annotations and hasattr(response, "model_extra"):
# Check model_extra for annotations
model_extra = response.model_extra
if isinstance(model_extra, dict):
# Check in choices
if "choices" in model_extra and len(model_extra["choices"]) > 0:
choice = model_extra["choices"][0]
if "message" in choice and "annotations" in choice["message"]:
annotations = choice["message"]["annotations"]
# Also check the raw response object for annotations
if not annotations:
raw = getattr(response, "_raw_response", None)
if isinstance(raw, dict):
# Check various possible locations for annotations
if "annotations" in raw:
annotations = raw["annotations"]
elif "choices" in raw and len(raw["choices"]) > 0:
choice = raw["choices"][0]
if "message" in choice and "annotations" in choice["message"]:
annotations = choice["message"]["annotations"]
# Update execution stats
if response.usage:
self.execution_stats.input_token_count = response.usage.prompt_tokens
self.execution_stats.output_token_count = (
response.usage.completion_tokens
)
return {"response": response_content, "annotations": annotations or []}
except Exception as e:
logger.error(f"Error calling Perplexity: {e}")
raise
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
logger.debug(f"Running Perplexity block with model: {input_data.model}")
try:
result = await self.call_perplexity(
credentials=credentials,
model=input_data.model,
prompt=input_data.prompt,
system_prompt=input_data.system_prompt,
max_tokens=input_data.max_tokens,
)
yield "response", result["response"]
yield "annotations", result["annotations"]
except Exception as e:
error_msg = f"Error calling Perplexity: {str(e)}"
logger.error(error_msg)
yield "error", error_msg

View File

@@ -1,4 +1,5 @@
import asyncio
import logging
from datetime import datetime, timedelta, timezone
from typing import Any
@@ -7,6 +8,7 @@ import pydantic
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.request import Requests
class RSSEntry(pydantic.BaseModel):
@@ -100,8 +102,33 @@ class ReadRSSFeedBlock(Block):
)
@staticmethod
def parse_feed(url: str) -> dict[str, Any]:
return feedparser.parse(url) # type: ignore
async def parse_feed(url: str) -> dict[str, Any]:
# Security fix: Add protection against memory exhaustion attacks
MAX_FEED_SIZE = 10 * 1024 * 1024 # 10MB limit for RSS feeds
# Download feed content with size limit
try:
response = await Requests(raise_for_status=True).get(url)
# Check content length if available
content_length = response.headers.get("Content-Length")
if content_length and int(content_length) > MAX_FEED_SIZE:
raise ValueError(
f"Feed too large: {content_length} bytes exceeds {MAX_FEED_SIZE} limit"
)
# Get content with size limit
content = response.content
if len(content) > MAX_FEED_SIZE:
raise ValueError(f"Feed too large: exceeds {MAX_FEED_SIZE} byte limit")
# Parse with feedparser using the validated content
# feedparser has built-in protection against XML attacks
return feedparser.parse(content) # type: ignore
except Exception as e:
# Log error and return empty feed
logging.warning(f"Failed to parse RSS feed from {url}: {e}")
return {"entries": []}
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
keep_going = True
@@ -111,7 +138,7 @@ class ReadRSSFeedBlock(Block):
while keep_going:
keep_going = input_data.run_continuously
feed = self.parse_feed(input_data.rss_url)
feed = await self.parse_feed(input_data.rss_url)
all_entries = []
for entry in feed["entries"]:

View File

@@ -13,6 +13,11 @@ from backend.data.block import (
BlockSchema,
BlockType,
)
from backend.data.dynamic_fields import (
extract_base_field_name,
get_dynamic_field_description,
is_dynamic_field,
)
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util import json
from backend.util.clients import get_database_manager_async_client
@@ -98,6 +103,22 @@ def _create_tool_response(call_id: str, output: Any) -> dict[str, Any]:
return {"role": "tool", "tool_call_id": call_id, "content": content}
def _convert_raw_response_to_dict(raw_response: Any) -> dict[str, Any]:
"""
Safely convert raw_response to dictionary format for conversation history.
Handles different response types from different LLM providers.
"""
if isinstance(raw_response, str):
# Ollama returns a string, convert to dict format
return {"role": "assistant", "content": raw_response}
elif isinstance(raw_response, dict):
# Already a dict (from tests or some providers)
return raw_response
else:
# OpenAI/Anthropic return objects, convert with json.to_dict
return json.to_dict(raw_response)
def get_pending_tool_calls(conversation_history: list[Any]) -> dict[str, int]:
"""
All the tool calls entry in the conversation history requires a response.
@@ -261,6 +282,7 @@ class SmartDecisionMakerBlock(Block):
@staticmethod
def cleanup(s: str):
"""Clean up block names for use as tool function names."""
return re.sub(r"[^a-zA-Z0-9_-]", "_", s).lower()
@staticmethod
@@ -288,41 +310,66 @@ class SmartDecisionMakerBlock(Block):
}
sink_block_input_schema = block.input_schema
properties = {}
field_mapping = {} # clean_name -> original_name
for link in links:
sink_name = SmartDecisionMakerBlock.cleanup(link.sink_name)
field_name = link.sink_name
is_dynamic = is_dynamic_field(field_name)
# Clean property key to ensure Anthropic API compatibility for ALL fields
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
field_mapping[clean_field_name] = field_name
# Handle dynamic fields (e.g., values_#_*, items_$_*, etc.)
# These are fields that get merged by the executor into their base field
if (
"_#_" in link.sink_name
or "_$_" in link.sink_name
or "_@_" in link.sink_name
):
# For dynamic fields, provide a generic string schema
# The executor will handle merging these into the appropriate structure
properties[sink_name] = {
if is_dynamic:
# For dynamic fields, use cleaned name but preserve original in description
properties[clean_field_name] = {
"type": "string",
"description": f"Dynamic value for {link.sink_name}",
"description": get_dynamic_field_description(field_name),
}
else:
# For regular fields, use the block's schema
# For regular fields, use the block's schema directly
try:
properties[sink_name] = sink_block_input_schema.get_field_schema(
link.sink_name
properties[clean_field_name] = (
sink_block_input_schema.get_field_schema(field_name)
)
except (KeyError, AttributeError):
# If the field doesn't exist in the schema, provide a generic schema
properties[sink_name] = {
# If field doesn't exist in schema, provide a generic one
properties[clean_field_name] = {
"type": "string",
"description": f"Value for {link.sink_name}",
"description": f"Value for {field_name}",
}
# Build the parameters schema using a single unified path
base_schema = block.input_schema.jsonschema()
base_required = set(base_schema.get("required", []))
# Compute required fields at the leaf level:
# - If a linked field is dynamic and its base is required in the block schema, require the leaf
# - If a linked field is regular and is required in the block schema, require the leaf
required_fields: set[str] = set()
for link in links:
field_name = link.sink_name
is_dynamic = is_dynamic_field(field_name)
# Always use cleaned field name for property key (Anthropic API compliance)
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
if is_dynamic:
base_name = extract_base_field_name(field_name)
if base_name in base_required:
required_fields.add(clean_field_name)
else:
if field_name in base_required:
required_fields.add(clean_field_name)
tool_function["parameters"] = {
**block.input_schema.jsonschema(),
"type": "object",
"properties": properties,
"additionalProperties": False,
"required": sorted(required_fields),
}
# Store field mapping for later use in output processing
tool_function["_field_mapping"] = field_mapping
return {"type": "function", "function": tool_function}
@staticmethod
@@ -366,13 +413,12 @@ class SmartDecisionMakerBlock(Block):
sink_block_properties = sink_block_input_schema.get("properties", {}).get(
link.sink_name, {}
)
sink_name = SmartDecisionMakerBlock.cleanup(link.sink_name)
description = (
sink_block_properties["description"]
if "description" in sink_block_properties
else f"The {link.sink_name} of the tool"
)
properties[sink_name] = {
properties[link.sink_name] = {
"type": "string",
"description": description,
"default": json.dumps(sink_block_properties.get("default", None)),
@@ -388,24 +434,17 @@ class SmartDecisionMakerBlock(Block):
return {"type": "function", "function": tool_function}
@staticmethod
async def _create_function_signature(node_id: str) -> list[dict[str, Any]]:
async def _create_function_signature(
node_id: str,
) -> list[dict[str, Any]]:
"""
Creates function signatures for tools linked to a specified node within a graph.
This method filters the graph links to identify those that are tools and are
connected to the given node_id. It then constructs function signatures for each
tool based on the metadata and input schema of the linked nodes.
Creates function signatures for connected tools.
Args:
node_id: The node_id for which to create function signatures.
Returns:
list[dict[str, Any]]: A list of dictionaries, each representing a function signature
for a tool, including its name, description, and parameters.
Raises:
ValueError: If no tool links are found for the specified node_id, or if a sink node
or its metadata cannot be found.
List of function signatures for tools
"""
db_client = get_database_manager_async_client()
tools = [
@@ -430,20 +469,116 @@ class SmartDecisionMakerBlock(Block):
raise ValueError(f"Sink node not found: {links[0].sink_id}")
if sink_node.block_id == AgentExecutorBlock().id:
return_tool_functions.append(
tool_func = (
await SmartDecisionMakerBlock._create_agent_function_signature(
sink_node, links
)
)
return_tool_functions.append(tool_func)
else:
return_tool_functions.append(
tool_func = (
await SmartDecisionMakerBlock._create_block_function_signature(
sink_node, links
)
)
return_tool_functions.append(tool_func)
return return_tool_functions
async def _attempt_llm_call_with_validation(
self,
credentials: llm.APIKeyCredentials,
input_data: Input,
current_prompt: list[dict],
tool_functions: list[dict[str, Any]],
):
"""
Attempt a single LLM call with tool validation.
Returns the response if successful, raises ValueError if validation fails.
"""
resp = await llm.llm_call(
credentials=credentials,
llm_model=input_data.model,
prompt=current_prompt,
max_tokens=input_data.max_tokens,
tools=tool_functions,
ollama_host=input_data.ollama_host,
parallel_tool_calls=input_data.multiple_tool_calls,
)
# Track LLM usage stats per call
self.merge_stats(
NodeExecutionStats(
input_token_count=resp.prompt_tokens,
output_token_count=resp.completion_tokens,
llm_call_count=1,
)
)
if not resp.tool_calls:
return resp
validation_errors_list: list[str] = []
for tool_call in resp.tool_calls:
tool_name = tool_call.function.name
try:
tool_args = json.loads(tool_call.function.arguments)
except Exception as e:
validation_errors_list.append(
f"Tool call '{tool_name}' has invalid JSON arguments: {e}"
)
continue
# Find the tool definition to get the expected arguments
tool_def = next(
(
tool
for tool in tool_functions
if tool["function"]["name"] == tool_name
),
None,
)
if tool_def is None and len(tool_functions) == 1:
tool_def = tool_functions[0]
# Get parameters schema from tool definition
if (
tool_def
and "function" in tool_def
and "parameters" in tool_def["function"]
):
parameters = tool_def["function"]["parameters"]
expected_args = parameters.get("properties", {})
required_params = set(parameters.get("required", []))
else:
expected_args = {arg: {} for arg in tool_args.keys()}
required_params = set()
# Validate tool call arguments
provided_args = set(tool_args.keys())
expected_args_set = set(expected_args.keys())
# Check for unexpected arguments (typos)
unexpected_args = provided_args - expected_args_set
# Only check for missing REQUIRED parameters
missing_required_args = required_params - provided_args
if unexpected_args or missing_required_args:
error_msg = f"Tool call '{tool_name}' has parameter errors:"
if unexpected_args:
error_msg += f" Unknown parameters: {sorted(unexpected_args)}."
if missing_required_args:
error_msg += f" Missing required parameters: {sorted(missing_required_args)}."
error_msg += f" Expected parameters: {sorted(expected_args_set)}."
if required_params:
error_msg += f" Required parameters: {sorted(required_params)}."
validation_errors_list.append(error_msg)
if validation_errors_list:
raise ValueError("; ".join(validation_errors_list))
return resp
async def run(
self,
input_data: Input,
@@ -466,27 +601,19 @@ class SmartDecisionMakerBlock(Block):
if pending_tool_calls and input_data.last_tool_output is None:
raise ValueError(f"Tool call requires an output for {pending_tool_calls}")
# Only assign the last tool output to the first pending tool call
tool_output = []
if pending_tool_calls and input_data.last_tool_output is not None:
# Get the first pending tool call ID
first_call_id = next(iter(pending_tool_calls.keys()))
tool_output.append(
_create_tool_response(first_call_id, input_data.last_tool_output)
)
# Add tool output to prompt right away
prompt.extend(tool_output)
# Check if there are still pending tool calls after handling the first one
remaining_pending_calls = get_pending_tool_calls(prompt)
# If there are still pending tool calls, yield the conversation and return early
if remaining_pending_calls:
yield "conversations", prompt
return
# Fallback on adding tool output in the conversation history as user prompt.
elif input_data.last_tool_output:
logger.error(
f"[SmartDecisionMakerBlock-node_exec_id={node_exec_id}] "
@@ -519,25 +646,33 @@ class SmartDecisionMakerBlock(Block):
):
prompt.append({"role": "user", "content": prefix + input_data.prompt})
response = await llm.llm_call(
credentials=credentials,
llm_model=input_data.model,
prompt=prompt,
json_format=False,
max_tokens=input_data.max_tokens,
tools=tool_functions,
ollama_host=input_data.ollama_host,
parallel_tool_calls=input_data.multiple_tool_calls,
)
current_prompt = list(prompt)
max_attempts = max(1, int(input_data.retry))
response = None
# Track LLM usage stats
self.merge_stats(
NodeExecutionStats(
input_token_count=response.prompt_tokens,
output_token_count=response.completion_tokens,
llm_call_count=1,
last_error = None
for attempt in range(max_attempts):
try:
response = await self._attempt_llm_call_with_validation(
credentials, input_data, current_prompt, tool_functions
)
break
except ValueError as e:
last_error = e
error_feedback = (
"Your tool call had parameter errors. Please fix the following issues and try again:\n"
+ f"- {str(e)}\n"
+ "\nPlease make sure to use the exact parameter names as specified in the function schema."
)
current_prompt = list(current_prompt) + [
{"role": "user", "content": error_feedback}
]
if response is None:
raise last_error or ValueError(
"Failed to get valid response after all retry attempts"
)
)
if not response.tool_calls:
yield "finished", response.response
@@ -547,7 +682,6 @@ class SmartDecisionMakerBlock(Block):
tool_name = tool_call.function.name
tool_args = json.loads(tool_call.function.arguments)
# Find the tool definition to get the expected arguments
tool_def = next(
(
tool
@@ -556,7 +690,6 @@ class SmartDecisionMakerBlock(Block):
),
None,
)
if (
tool_def
and "function" in tool_def
@@ -564,20 +697,38 @@ class SmartDecisionMakerBlock(Block):
):
expected_args = tool_def["function"]["parameters"].get("properties", {})
else:
expected_args = tool_args.keys()
expected_args = {arg: {} for arg in tool_args.keys()}
# Yield provided arguments and None for missing ones
for arg_name in expected_args:
if arg_name in tool_args:
yield f"tools_^_{tool_name}_~_{arg_name}", tool_args[arg_name]
else:
yield f"tools_^_{tool_name}_~_{arg_name}", None
# Get field mapping from tool definition
field_mapping = (
tool_def.get("function", {}).get("_field_mapping", {})
if tool_def
else {}
)
for clean_arg_name in expected_args:
# arg_name is now always the cleaned field name (for Anthropic API compliance)
# Get the original field name from field mapping for proper emit key generation
original_field_name = field_mapping.get(clean_arg_name, clean_arg_name)
arg_value = tool_args.get(clean_arg_name)
sanitized_tool_name = self.cleanup(tool_name)
sanitized_arg_name = self.cleanup(original_field_name)
emit_key = f"tools_^_{sanitized_tool_name}_~_{sanitized_arg_name}"
logger.debug(
"[SmartDecisionMakerBlock|geid:%s|neid:%s] emit %s",
graph_exec_id,
node_exec_id,
emit_key,
)
yield emit_key, arg_value
# Add reasoning to conversation history if available
if response.reasoning:
prompt.append(
{"role": "assistant", "content": f"[Reasoning]: {response.reasoning}"}
)
prompt.append(response.raw_response)
prompt.append(_convert_raw_response_to_dict(response.raw_response))
yield "conversations", prompt

View File

@@ -1,6 +1,7 @@
import logging
import signal
import threading
import warnings
from contextlib import contextmanager
from enum import Enum
@@ -26,6 +27,13 @@ from backend.sdk import (
SchemaField,
)
# Suppress false positive cleanup warning of litellm (a dependency of stagehand)
warnings.filterwarnings(
"ignore",
message="coroutine 'close_litellm_async_clients' was never awaited",
category=RuntimeWarning,
)
# Store the original method
original_register_signal_handlers = stagehand.main.Stagehand._register_signal_handlers

View File

@@ -19,7 +19,7 @@ async def test_block_ids_valid(block: Type[Block]):
# Skip list for blocks with known invalid UUIDs
skip_blocks = {
"GetWeatherInformationBlock",
"CodeExecutionBlock",
"ExecuteCodeBlock",
"CountdownTimerBlock",
"TwitterGetListTweetsBlock",
"TwitterRemoveListMemberBlock",

View File

@@ -0,0 +1,269 @@
"""
Test security fixes for various DoS vulnerabilities.
"""
import asyncio
from unittest.mock import patch
import pytest
from backend.blocks.code_extraction_block import CodeExtractionBlock
from backend.blocks.iteration import StepThroughItemsBlock
from backend.blocks.llm import AITextSummarizerBlock
from backend.blocks.text import ExtractTextInformationBlock
from backend.blocks.xml_parser import XMLParserBlock
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
class TestCodeExtractionBlockSecurity:
"""Test ReDoS fixes in CodeExtractionBlock."""
async def test_redos_protection(self):
"""Test that the regex patterns don't cause ReDoS."""
block = CodeExtractionBlock()
# Test with input that would previously cause ReDoS
malicious_input = "```python" + " " * 10000 # Large spaces
result = []
async for output_name, output_data in block.run(
CodeExtractionBlock.Input(text=malicious_input)
):
result.append((output_name, output_data))
# Should complete without hanging
assert len(result) >= 1
assert any(name == "remaining_text" for name, _ in result)
class TestAITextSummarizerBlockSecurity:
"""Test memory exhaustion fixes in AITextSummarizerBlock."""
def test_split_text_limits(self):
"""Test that _split_text has proper limits."""
# Test text size limit
large_text = "a" * 2_000_000 # 2MB text
result = AITextSummarizerBlock._split_text(large_text, 1000, 100)
# Should be truncated to 1MB
total_chars = sum(len(chunk) for chunk in result)
assert total_chars <= 1_000_000 + 1000 # Allow for chunk boundary
# Test chunk count limit
result = AITextSummarizerBlock._split_text("word " * 10000, 10, 9)
assert len(result) <= 100 # MAX_CHUNKS limit
# Test parameter validation
result = AITextSummarizerBlock._split_text(
"test", 10, 15
) # overlap > max_tokens
assert len(result) >= 1 # Should still work
class TestExtractTextInformationBlockSecurity:
"""Test ReDoS and memory exhaustion fixes in ExtractTextInformationBlock."""
async def test_text_size_limits(self):
"""Test text size limits."""
block = ExtractTextInformationBlock()
# Test with large input
large_text = "a" * 2_000_000 # 2MB
results = []
async for output_name, output_data in block.run(
ExtractTextInformationBlock.Input(
text=large_text, pattern=r"a+", find_all=True, group=0
)
):
results.append((output_name, output_data))
# Should complete and have limits applied
matched_results = [r for name, r in results if name == "matched_results"]
if matched_results:
assert len(matched_results[0]) <= 1000 # MAX_MATCHES limit
async def test_dangerous_pattern_timeout(self):
"""Test timeout protection for dangerous patterns."""
block = ExtractTextInformationBlock()
# Test with potentially dangerous lookahead pattern
test_input = "a" * 1000
# This should complete quickly due to timeout protection
start_time = asyncio.get_event_loop().time()
results = []
async for output_name, output_data in block.run(
ExtractTextInformationBlock.Input(
text=test_input, pattern=r"(?=.+)", find_all=True, group=0
)
):
results.append((output_name, output_data))
end_time = asyncio.get_event_loop().time()
# Should complete within reasonable time (much less than 5s timeout)
assert (end_time - start_time) < 10
async def test_redos_catastrophic_backtracking(self):
"""Test that ReDoS patterns with catastrophic backtracking are handled."""
block = ExtractTextInformationBlock()
# Pattern that causes catastrophic backtracking: (a+)+b
# With input "aaaaaaaaaaaaaaaaaaaaaaaaaaaa" (no 'b'), this causes exponential time
dangerous_pattern = r"(a+)+b"
test_input = "a" * 30 # 30 'a's without a 'b' at the end
# This should be handled by timeout protection or pattern detection
start_time = asyncio.get_event_loop().time()
results = []
async for output_name, output_data in block.run(
ExtractTextInformationBlock.Input(
text=test_input, pattern=dangerous_pattern, find_all=True, group=0
)
):
results.append((output_name, output_data))
end_time = asyncio.get_event_loop().time()
elapsed = end_time - start_time
# Should complete within timeout (6 seconds to be safe)
# The current threading.Timer approach doesn't work, so this will likely fail
# demonstrating the need for a fix
assert elapsed < 6, f"Regex took {elapsed}s, timeout mechanism failed"
# Should return empty results on timeout or no match
matched_results = [r for name, r in results if name == "matched_results"]
assert matched_results[0] == [] # No matches expected
class TestStepThroughItemsBlockSecurity:
"""Test iteration limits in StepThroughItemsBlock."""
async def test_item_count_limits(self):
"""Test maximum item count limits."""
block = StepThroughItemsBlock()
# Test with too many items
large_list = list(range(20000)) # Exceeds MAX_ITEMS (10000)
with pytest.raises(ValueError, match="Too many items"):
async for _ in block.run(StepThroughItemsBlock.Input(items=large_list)):
pass
async def test_string_size_limits(self):
"""Test string input size limits."""
block = StepThroughItemsBlock()
# Test with large JSON string
large_string = '["item"]' * 200000 # Large JSON string
with pytest.raises(ValueError, match="Input too large"):
async for _ in block.run(
StepThroughItemsBlock.Input(items_str=large_string)
):
pass
async def test_normal_iteration_works(self):
"""Test that normal iteration still works."""
block = StepThroughItemsBlock()
results = []
async for output_name, output_data in block.run(
StepThroughItemsBlock.Input(items=[1, 2, 3])
):
results.append((output_name, output_data))
# Should have 6 outputs (item, key for each of 3 items)
assert len(results) == 6
items = [data for name, data in results if name == "item"]
assert items == [1, 2, 3]
class TestXMLParserBlockSecurity:
"""Test XML size limits in XMLParserBlock."""
async def test_xml_size_limits(self):
"""Test XML input size limits."""
block = XMLParserBlock()
# Test with large XML - need to exceed 10MB limit
# Each "<item>data</item>" is 17 chars, need ~620K items for >10MB
large_xml = "<root>" + "<item>data</item>" * 620000 + "</root>"
with pytest.raises(ValueError, match="XML too large"):
async for _ in block.run(XMLParserBlock.Input(input_xml=large_xml)):
pass
class TestStoreMediaFileSecurity:
"""Test file storage security limits."""
@patch("backend.util.file.scan_content_safe")
@patch("backend.util.file.get_cloud_storage_handler")
async def test_file_size_limits(self, mock_cloud_storage, mock_scan):
"""Test file size limits."""
# Mock cloud storage handler - get_cloud_storage_handler is async
# but is_cloud_path and parse_cloud_path are sync methods
from unittest.mock import MagicMock
mock_handler = MagicMock()
mock_handler.is_cloud_path.return_value = False
# Make get_cloud_storage_handler an async function that returns the mock handler
async def async_get_handler():
return mock_handler
mock_cloud_storage.side_effect = async_get_handler
mock_scan.return_value = None
# Test with large base64 content
large_content = "a" * (200 * 1024 * 1024) # 200MB
large_data_uri = f"data:text/plain;base64,{large_content}"
with pytest.raises(ValueError, match="File too large"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(large_data_uri),
user_id="test_user",
)
@patch("backend.util.file.Path")
@patch("backend.util.file.scan_content_safe")
@patch("backend.util.file.get_cloud_storage_handler")
async def test_directory_size_limits(self, mock_cloud_storage, mock_scan, MockPath):
"""Test directory size limits."""
from unittest.mock import MagicMock
mock_handler = MagicMock()
mock_handler.is_cloud_path.return_value = False
async def async_get_handler():
return mock_handler
mock_cloud_storage.side_effect = async_get_handler
mock_scan.return_value = None
# Create mock path instance for the execution directory
mock_path_instance = MagicMock()
mock_path_instance.exists.return_value = True
# Mock glob to return files that total > 1GB
mock_file = MagicMock()
mock_file.is_file.return_value = True
mock_file.stat.return_value.st_size = 2 * 1024 * 1024 * 1024 # 2GB
mock_path_instance.glob.return_value = [mock_file]
# Make Path() return our mock
MockPath.return_value = mock_path_instance
# Should raise an error when directory size exceeds limit
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(
"data:text/plain;base64,dGVzdA=="
), # Small test file
user_id="test_user",
)

View File

@@ -30,7 +30,6 @@ class TestLLMStatsTracking:
credentials=llm.TEST_CREDENTIALS,
llm_model=llm.LlmModel.GPT4O,
prompt=[{"role": "user", "content": "Hello"}],
json_format=False,
max_tokens=100,
)
@@ -42,6 +41,8 @@ class TestLLMStatsTracking:
@pytest.mark.asyncio
async def test_ai_structured_response_block_tracks_stats(self):
"""Test that AIStructuredResponseGeneratorBlock correctly tracks stats."""
from unittest.mock import patch
import backend.blocks.llm as llm
block = llm.AIStructuredResponseGeneratorBlock()
@@ -51,7 +52,7 @@ class TestLLMStatsTracking:
return llm.LLMResponse(
raw_response="",
prompt=[],
response='{"key1": "value1", "key2": "value2"}',
response='<json_output id="test123456">{"key1": "value1", "key2": "value2"}</json_output>',
tool_calls=None,
prompt_tokens=15,
completion_tokens=25,
@@ -69,10 +70,12 @@ class TestLLMStatsTracking:
)
outputs = {}
async for output_name, output_data in block.run(
input_data, credentials=llm.TEST_CREDENTIALS
):
outputs[output_name] = output_data
# Mock secrets.token_hex to return consistent ID
with patch("secrets.token_hex", return_value="test123456"):
async for output_name, output_data in block.run(
input_data, credentials=llm.TEST_CREDENTIALS
):
outputs[output_name] = output_data
# Check stats
assert block.execution_stats.input_token_count == 15
@@ -143,7 +146,7 @@ class TestLLMStatsTracking:
return llm.LLMResponse(
raw_response="",
prompt=[],
response='{"wrong": "format"}',
response='<json_output id="test123456">{"wrong": "format"}</json_output>',
tool_calls=None,
prompt_tokens=10,
completion_tokens=15,
@@ -154,7 +157,7 @@ class TestLLMStatsTracking:
return llm.LLMResponse(
raw_response="",
prompt=[],
response='{"key1": "value1", "key2": "value2"}',
response='<json_output id="test123456">{"key1": "value1", "key2": "value2"}</json_output>',
tool_calls=None,
prompt_tokens=20,
completion_tokens=25,
@@ -173,10 +176,12 @@ class TestLLMStatsTracking:
)
outputs = {}
async for output_name, output_data in block.run(
input_data, credentials=llm.TEST_CREDENTIALS
):
outputs[output_name] = output_data
# Mock secrets.token_hex to return consistent ID
with patch("secrets.token_hex", return_value="test123456"):
async for output_name, output_data in block.run(
input_data, credentials=llm.TEST_CREDENTIALS
):
outputs[output_name] = output_data
# Check stats - should accumulate both calls
# For 2 attempts: attempt 1 (failed) + attempt 2 (success) = 2 total
@@ -269,7 +274,8 @@ class TestLLMStatsTracking:
mock_response.choices = [
MagicMock(
message=MagicMock(
content='{"summary": "Test chunk summary"}', tool_calls=None
content='<json_output id="test123456">{"summary": "Test chunk summary"}</json_output>',
tool_calls=None,
)
)
]
@@ -277,7 +283,7 @@ class TestLLMStatsTracking:
mock_response.choices = [
MagicMock(
message=MagicMock(
content='{"final_summary": "Test final summary"}',
content='<json_output id="test123456">{"final_summary": "Test final summary"}</json_output>',
tool_calls=None,
)
)
@@ -298,11 +304,13 @@ class TestLLMStatsTracking:
max_tokens=1000, # Large enough to avoid chunking
)
outputs = {}
async for output_name, output_data in block.run(
input_data, credentials=llm.TEST_CREDENTIALS
):
outputs[output_name] = output_data
# Mock secrets.token_hex to return consistent ID
with patch("secrets.token_hex", return_value="test123456"):
outputs = {}
async for output_name, output_data in block.run(
input_data, credentials=llm.TEST_CREDENTIALS
):
outputs[output_name] = output_data
print(f"Actual calls made: {call_count}")
print(f"Block stats: {block.execution_stats}")
@@ -354,7 +362,7 @@ class TestLLMStatsTracking:
assert block.execution_stats.llm_call_count == 1
# Check output
assert outputs["response"] == {"response": "AI response to conversation"}
assert outputs["response"] == "AI response to conversation"
@pytest.mark.asyncio
async def test_ai_list_generator_with_retries(self):
@@ -457,7 +465,7 @@ class TestLLMStatsTracking:
return llm.LLMResponse(
raw_response="",
prompt=[],
response='{"result": "test"}',
response='<json_output id="test123456">{"result": "test"}</json_output>',
tool_calls=None,
prompt_tokens=10,
completion_tokens=20,
@@ -476,10 +484,12 @@ class TestLLMStatsTracking:
# Run the block
outputs = {}
async for output_name, output_data in block.run(
input_data, credentials=llm.TEST_CREDENTIALS
):
outputs[output_name] = output_data
# Mock secrets.token_hex to return consistent ID
with patch("secrets.token_hex", return_value="test123456"):
async for output_name, output_data in block.run(
input_data, credentials=llm.TEST_CREDENTIALS
):
outputs[output_name] = output_data
# Block finished - now grab and assert stats
assert block.execution_stats is not None

View File

@@ -216,8 +216,17 @@ async def test_smart_decision_maker_tracks_llm_stats():
}
# Mock the _create_function_signature method to avoid database calls
with patch("backend.blocks.llm.llm_call", return_value=mock_response), patch.object(
SmartDecisionMakerBlock, "_create_function_signature", return_value=[]
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=[],
):
# Create test input
@@ -249,3 +258,471 @@ async def test_smart_decision_maker_tracks_llm_stats():
# Verify outputs
assert "finished" in outputs # Should have finished since no tool calls
assert outputs["finished"] == "I need to think about this."
@pytest.mark.asyncio
async def test_smart_decision_maker_parameter_validation():
"""Test that SmartDecisionMakerBlock correctly validates tool call parameters."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool functions with specific parameter schema
mock_tool_functions = [
{
"type": "function",
"function": {
"name": "search_keywords",
"description": "Search for keywords with difficulty filtering",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "Search query"},
"max_keyword_difficulty": {
"type": "integer",
"description": "Maximum keyword difficulty (required)",
},
"optional_param": {
"type": "string",
"description": "Optional parameter with default",
"default": "default_value",
},
},
"required": ["query", "max_keyword_difficulty"],
},
},
}
]
# Test case 1: Tool call with TYPO in parameter name (should retry and eventually fail)
mock_tool_call_with_typo = MagicMock()
mock_tool_call_with_typo.function.name = "search_keywords"
mock_tool_call_with_typo.function.arguments = '{"query": "test", "maximum_keyword_difficulty": 50}' # TYPO: maximum instead of max
mock_response_with_typo = MagicMock()
mock_response_with_typo.response = None
mock_response_with_typo.tool_calls = [mock_tool_call_with_typo]
mock_response_with_typo.prompt_tokens = 50
mock_response_with_typo.completion_tokens = 25
mock_response_with_typo.reasoning = None
mock_response_with_typo.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_with_typo,
) as mock_llm_call, patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2, # Set retry to 2 for testing
)
# Should raise ValueError after retries due to typo'd parameter name
with pytest.raises(ValueError) as exc_info:
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
# Verify error message contains details about the typo
error_msg = str(exc_info.value)
assert "Tool call 'search_keywords' has parameter errors" in error_msg
assert "Unknown parameters: ['maximum_keyword_difficulty']" in error_msg
# Verify that LLM was called the expected number of times (retries)
assert mock_llm_call.call_count == 2 # Should retry based on input_data.retry
# Test case 2: Tool call missing REQUIRED parameter (should raise ValueError)
mock_tool_call_missing_required = MagicMock()
mock_tool_call_missing_required.function.name = "search_keywords"
mock_tool_call_missing_required.function.arguments = (
'{"query": "test"}' # Missing required max_keyword_difficulty
)
mock_response_missing_required = MagicMock()
mock_response_missing_required.response = None
mock_response_missing_required.tool_calls = [mock_tool_call_missing_required]
mock_response_missing_required.prompt_tokens = 50
mock_response_missing_required.completion_tokens = 25
mock_response_missing_required.reasoning = None
mock_response_missing_required.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_missing_required,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
)
# Should raise ValueError due to missing required parameter
with pytest.raises(ValueError) as exc_info:
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
error_msg = str(exc_info.value)
assert "Tool call 'search_keywords' has parameter errors" in error_msg
assert "Missing required parameters: ['max_keyword_difficulty']" in error_msg
# Test case 3: Valid tool call with OPTIONAL parameter missing (should succeed)
mock_tool_call_valid = MagicMock()
mock_tool_call_valid.function.name = "search_keywords"
mock_tool_call_valid.function.arguments = '{"query": "test", "max_keyword_difficulty": 50}' # optional_param missing, but that's OK
mock_response_valid = MagicMock()
mock_response_valid.response = None
mock_response_valid.tool_calls = [mock_tool_call_valid]
mock_response_valid.prompt_tokens = 50
mock_response_valid.completion_tokens = 25
mock_response_valid.reasoning = None
mock_response_valid.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_valid,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
)
# Should succeed - optional parameter missing is OK
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
# Verify tool outputs were generated correctly
assert "tools_^_search_keywords_~_query" in outputs
assert outputs["tools_^_search_keywords_~_query"] == "test"
assert "tools_^_search_keywords_~_max_keyword_difficulty" in outputs
assert outputs["tools_^_search_keywords_~_max_keyword_difficulty"] == 50
# Optional parameter should be None when not provided
assert "tools_^_search_keywords_~_optional_param" in outputs
assert outputs["tools_^_search_keywords_~_optional_param"] is None
# Test case 4: Valid tool call with ALL parameters (should succeed)
mock_tool_call_all_params = MagicMock()
mock_tool_call_all_params.function.name = "search_keywords"
mock_tool_call_all_params.function.arguments = '{"query": "test", "max_keyword_difficulty": 50, "optional_param": "custom_value"}'
mock_response_all_params = MagicMock()
mock_response_all_params.response = None
mock_response_all_params.tool_calls = [mock_tool_call_all_params]
mock_response_all_params.prompt_tokens = 50
mock_response_all_params.completion_tokens = 25
mock_response_all_params.reasoning = None
mock_response_all_params.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_all_params,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
)
# Should succeed with all parameters
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
# Verify all tool outputs were generated correctly
assert outputs["tools_^_search_keywords_~_query"] == "test"
assert outputs["tools_^_search_keywords_~_max_keyword_difficulty"] == 50
assert outputs["tools_^_search_keywords_~_optional_param"] == "custom_value"
@pytest.mark.asyncio
async def test_smart_decision_maker_raw_response_conversion():
"""Test that SmartDecisionMaker correctly handles different raw_response types with retry mechanism."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool functions
mock_tool_functions = [
{
"type": "function",
"function": {
"name": "test_tool",
"parameters": {
"type": "object",
"properties": {"param": {"type": "string"}},
"required": ["param"],
},
},
}
]
# Test case 1: Simulate ChatCompletionMessage raw_response that caused the original error
class MockChatCompletionMessage:
"""Simulate OpenAI's ChatCompletionMessage object that lacks .get() method"""
def __init__(self, role, content, tool_calls=None):
self.role = role
self.content = content
self.tool_calls = tool_calls or []
# This is what caused the error - no .get() method
# def get(self, key, default=None): # Intentionally missing
# First response: has invalid parameter name (triggers retry)
mock_tool_call_invalid = MagicMock()
mock_tool_call_invalid.function.name = "test_tool"
mock_tool_call_invalid.function.arguments = (
'{"wrong_param": "test_value"}' # Invalid parameter name
)
mock_response_retry = MagicMock()
mock_response_retry.response = None
mock_response_retry.tool_calls = [mock_tool_call_invalid]
mock_response_retry.prompt_tokens = 50
mock_response_retry.completion_tokens = 25
mock_response_retry.reasoning = None
# This would cause the original error without our fix
mock_response_retry.raw_response = MockChatCompletionMessage(
role="assistant", content=None, tool_calls=[mock_tool_call_invalid]
)
# Second response: successful (correct parameter name)
mock_tool_call_valid = MagicMock()
mock_tool_call_valid.function.name = "test_tool"
mock_tool_call_valid.function.arguments = (
'{"param": "test_value"}' # Correct parameter name
)
mock_response_success = MagicMock()
mock_response_success.response = None
mock_response_success.tool_calls = [mock_tool_call_valid]
mock_response_success.prompt_tokens = 50
mock_response_success.completion_tokens = 25
mock_response_success.reasoning = None
mock_response_success.raw_response = MockChatCompletionMessage(
role="assistant", content=None, tool_calls=[mock_tool_call_valid]
)
# Mock llm_call to return different responses on different calls
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call", new_callable=AsyncMock
) as mock_llm_call, patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
# First call returns response that will trigger retry due to validation error
# Second call returns successful response
mock_llm_call.side_effect = [mock_response_retry, mock_response_success]
input_data = SmartDecisionMakerBlock.Input(
prompt="Test prompt",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2,
)
# Should succeed after retry, demonstrating our helper function works
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
# Verify the tool output was generated successfully
assert "tools_^_test_tool_~_param" in outputs
assert outputs["tools_^_test_tool_~_param"] == "test_value"
# Verify conversation history was properly maintained
assert "conversations" in outputs
conversations = outputs["conversations"]
assert len(conversations) > 0
# The conversations should contain properly converted raw_response objects as dicts
# This would have failed with the original bug due to ChatCompletionMessage.get() error
for msg in conversations:
assert isinstance(msg, dict), f"Expected dict, got {type(msg)}"
if msg.get("role") == "assistant":
# Should have been converted from ChatCompletionMessage to dict
assert "role" in msg
# Verify LLM was called twice (initial + 1 retry)
assert mock_llm_call.call_count == 2
# Test case 2: Test with different raw_response types (Ollama string, dict)
# Test Ollama string response
mock_response_ollama = MagicMock()
mock_response_ollama.response = "I'll help you with that."
mock_response_ollama.tool_calls = None
mock_response_ollama.prompt_tokens = 30
mock_response_ollama.completion_tokens = 15
mock_response_ollama.reasoning = None
mock_response_ollama.raw_response = (
"I'll help you with that." # Ollama returns string
)
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_ollama,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=[], # No tools for this test
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Simple prompt",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
)
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
# Should finish since no tool calls
assert "finished" in outputs
assert outputs["finished"] == "I'll help you with that."
# Test case 3: Test with dict raw_response (some providers/tests)
mock_response_dict = MagicMock()
mock_response_dict.response = "Test response"
mock_response_dict.tool_calls = None
mock_response_dict.prompt_tokens = 25
mock_response_dict.completion_tokens = 10
mock_response_dict.reasoning = None
mock_response_dict.raw_response = {
"role": "assistant",
"content": "Test response",
} # Dict format
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_dict,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=[],
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Another test",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
)
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
assert "finished" in outputs
assert outputs["finished"] == "Test response"

View File

@@ -48,16 +48,24 @@ async def test_smart_decision_maker_handles_dynamic_dict_fields():
assert "parameters" in signature["function"]
assert "properties" in signature["function"]["parameters"]
# Check that dynamic fields are handled
# Check that dynamic fields are handled with original names
properties = signature["function"]["parameters"]["properties"]
assert len(properties) == 3 # Should have all three fields
# Each dynamic field should have proper schema
for prop_value in properties.values():
# Check that field names are cleaned (for Anthropic API compatibility)
assert "values___name" in properties
assert "values___age" in properties
assert "values___city" in properties
# Each dynamic field should have proper schema with descriptive text
for field_name, prop_value in properties.items():
assert "type" in prop_value
assert prop_value["type"] == "string" # Dynamic fields get string type
assert "description" in prop_value
assert "Dynamic value for" in prop_value["description"]
# Check that descriptions properly explain the dynamic field
if field_name == "values___name":
assert "Dictionary field 'name'" in prop_value["description"]
assert "values['name']" in prop_value["description"]
@pytest.mark.asyncio
@@ -96,10 +104,18 @@ async def test_smart_decision_maker_handles_dynamic_list_fields():
properties = signature["function"]["parameters"]["properties"]
assert len(properties) == 2 # Should have both list items
# Each dynamic field should have proper schema
for prop_value in properties.values():
# Check that field names are cleaned (for Anthropic API compatibility)
assert "entries___0" in properties
assert "entries___1" in properties
# Each dynamic field should have proper schema with descriptive text
for field_name, prop_value in properties.items():
assert prop_value["type"] == "string"
assert "Dynamic value for" in prop_value["description"]
assert "description" in prop_value
# Check that descriptions properly explain the list field
if field_name == "entries___0":
assert "List item 0" in prop_value["description"]
assert "entries[0]" in prop_value["description"]
@pytest.mark.asyncio

View File

@@ -0,0 +1,553 @@
"""Comprehensive tests for SmartDecisionMakerBlock dynamic field handling."""
import json
from unittest.mock import AsyncMock, Mock, patch
import pytest
from backend.blocks.data_manipulation import AddToListBlock, CreateDictionaryBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.blocks.text import MatchTextPatternBlock
from backend.data.dynamic_fields import get_dynamic_field_description
@pytest.mark.asyncio
async def test_dynamic_field_description_generation():
"""Test that dynamic field descriptions are generated correctly."""
# Test dictionary field description
desc = get_dynamic_field_description("values_#_name")
assert "Dictionary field 'name' for base field 'values'" in desc
assert "values['name']" in desc
# Test list field description
desc = get_dynamic_field_description("items_$_0")
assert "List item 0 for base field 'items'" in desc
assert "items[0]" in desc
# Test object field description
desc = get_dynamic_field_description("user_@_email")
assert "Object attribute 'email' for base field 'user'" in desc
assert "user.email" in desc
# Test regular field fallback
desc = get_dynamic_field_description("regular_field")
assert desc == "Value for regular_field"
@pytest.mark.asyncio
async def test_create_block_function_signature_with_dict_fields():
"""Test that function signatures are created correctly for dictionary dynamic fields."""
block = SmartDecisionMakerBlock()
# Create a mock node for CreateDictionaryBlock
mock_node = Mock()
mock_node.block = CreateDictionaryBlock()
mock_node.block_id = CreateDictionaryBlock().id
mock_node.input_default = {}
# Create mock links with dynamic dictionary fields (source sanitized, sink original)
mock_links = [
Mock(
source_name="tools_^_create_dict_~_values___name", # Sanitized source
sink_name="values_#_name", # Original sink
sink_id="dict_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_create_dict_~_values___age", # Sanitized source
sink_name="values_#_age", # Original sink
sink_id="dict_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_create_dict_~_values___email", # Sanitized source
sink_name="values_#_email", # Original sink
sink_id="dict_node_id",
source_id="smart_decision_node_id",
),
]
# Generate function signature
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
# Verify the signature structure
assert signature["type"] == "function"
assert "function" in signature
assert "parameters" in signature["function"]
assert "properties" in signature["function"]["parameters"]
# Check that dynamic fields are handled with original names
properties = signature["function"]["parameters"]["properties"]
assert len(properties) == 3
# Check cleaned field names (for Anthropic API compatibility)
assert "values___name" in properties
assert "values___age" in properties
assert "values___email" in properties
# Check descriptions mention they are dictionary fields
assert "Dictionary field" in properties["values___name"]["description"]
assert "values['name']" in properties["values___name"]["description"]
assert "Dictionary field" in properties["values___age"]["description"]
assert "values['age']" in properties["values___age"]["description"]
assert "Dictionary field" in properties["values___email"]["description"]
assert "values['email']" in properties["values___email"]["description"]
@pytest.mark.asyncio
async def test_create_block_function_signature_with_list_fields():
"""Test that function signatures are created correctly for list dynamic fields."""
block = SmartDecisionMakerBlock()
# Create a mock node for AddToListBlock
mock_node = Mock()
mock_node.block = AddToListBlock()
mock_node.block_id = AddToListBlock().id
mock_node.input_default = {}
# Create mock links with dynamic list fields
mock_links = [
Mock(
source_name="tools_^_add_list_~_0",
sink_name="entries_$_0", # Dynamic list field
sink_id="list_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_add_list_~_1",
sink_name="entries_$_1", # Dynamic list field
sink_id="list_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_add_list_~_2",
sink_name="entries_$_2", # Dynamic list field
sink_id="list_node_id",
source_id="smart_decision_node_id",
),
]
# Generate function signature
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
# Verify the signature structure
assert signature["type"] == "function"
properties = signature["function"]["parameters"]["properties"]
# Check cleaned field names (for Anthropic API compatibility)
assert "entries___0" in properties
assert "entries___1" in properties
assert "entries___2" in properties
# Check descriptions mention they are list items
assert "List item 0" in properties["entries___0"]["description"]
assert "entries[0]" in properties["entries___0"]["description"]
assert "List item 1" in properties["entries___1"]["description"]
assert "entries[1]" in properties["entries___1"]["description"]
@pytest.mark.asyncio
async def test_create_block_function_signature_with_object_fields():
"""Test that function signatures are created correctly for object dynamic fields."""
block = SmartDecisionMakerBlock()
# Create a mock node for MatchTextPatternBlock (simulating object fields)
mock_node = Mock()
mock_node.block = MatchTextPatternBlock()
mock_node.block_id = MatchTextPatternBlock().id
mock_node.input_default = {}
# Create mock links with dynamic object fields
mock_links = [
Mock(
source_name="tools_^_extract_~_user_name",
sink_name="data_@_user_name", # Dynamic object field
sink_id="extract_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_extract_~_user_email",
sink_name="data_@_user_email", # Dynamic object field
sink_id="extract_node_id",
source_id="smart_decision_node_id",
),
]
# Generate function signature
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
# Verify the signature structure
properties = signature["function"]["parameters"]["properties"]
# Check cleaned field names (for Anthropic API compatibility)
assert "data___user_name" in properties
assert "data___user_email" in properties
# Check descriptions mention they are object attributes
assert "Object attribute" in properties["data___user_name"]["description"]
assert "data.user_name" in properties["data___user_name"]["description"]
@pytest.mark.asyncio
async def test_create_function_signature():
"""Test that the mapping between sanitized and original field names is built correctly."""
block = SmartDecisionMakerBlock()
# Mock the database client and connected nodes
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
) as mock_db:
mock_client = AsyncMock()
mock_db.return_value = mock_client
# Create mock nodes and links
mock_dict_node = Mock()
mock_dict_node.block = CreateDictionaryBlock()
mock_dict_node.block_id = CreateDictionaryBlock().id
mock_dict_node.input_default = {}
mock_list_node = Mock()
mock_list_node.block = AddToListBlock()
mock_list_node.block_id = AddToListBlock().id
mock_list_node.input_default = {}
# Mock links with dynamic fields
dict_link1 = Mock(
source_name="tools_^_create_dictionary_~_name",
sink_name="values_#_name",
sink_id="dict_node_id",
source_id="test_node_id",
)
dict_link2 = Mock(
source_name="tools_^_create_dictionary_~_age",
sink_name="values_#_age",
sink_id="dict_node_id",
source_id="test_node_id",
)
list_link = Mock(
source_name="tools_^_add_to_list_~_0",
sink_name="entries_$_0",
sink_id="list_node_id",
source_id="test_node_id",
)
mock_client.get_connected_output_nodes.return_value = [
(dict_link1, mock_dict_node),
(dict_link2, mock_dict_node),
(list_link, mock_list_node),
]
# Call the method that builds signatures
tool_functions = await block._create_function_signature("test_node_id")
# Verify we got 2 tool functions (one for dict, one for list)
assert len(tool_functions) == 2
# Verify the tool functions contain the dynamic field names
dict_tool = next(
(
tool
for tool in tool_functions
if tool["function"]["name"] == "createdictionaryblock"
),
None,
)
assert dict_tool is not None
dict_properties = dict_tool["function"]["parameters"]["properties"]
assert "values___name" in dict_properties
assert "values___age" in dict_properties
list_tool = next(
(
tool
for tool in tool_functions
if tool["function"]["name"] == "addtolistblock"
),
None,
)
assert list_tool is not None
list_properties = list_tool["function"]["parameters"]["properties"]
assert "entries___0" in list_properties
@pytest.mark.asyncio
async def test_output_yielding_with_dynamic_fields():
"""Test that outputs are yielded correctly with dynamic field names mapped back."""
block = SmartDecisionMakerBlock()
# No more sanitized mapping needed since we removed sanitization
# Mock LLM response with tool calls
mock_response = Mock()
mock_response.tool_calls = [
Mock(
function=Mock(
arguments=json.dumps(
{
"values___name": "Alice",
"values___age": 30,
"values___email": "alice@example.com",
}
),
)
)
]
# Ensure function name is a real string, not a Mock name
mock_response.tool_calls[0].function.name = "createdictionaryblock"
mock_response.reasoning = "Creating a dictionary with user information"
mock_response.raw_response = {"role": "assistant", "content": "test"}
mock_response.prompt_tokens = 100
mock_response.completion_tokens = 50
# Mock the LLM call
with patch(
"backend.blocks.smart_decision_maker.llm.llm_call", new_callable=AsyncMock
) as mock_llm:
mock_llm.return_value = mock_response
# Mock the function signature creation
with patch.object(
block, "_create_function_signature", new_callable=AsyncMock
) as mock_sig:
mock_sig.return_value = [
{
"type": "function",
"function": {
"name": "createdictionaryblock",
"parameters": {
"type": "object",
"properties": {
"values___name": {"type": "string"},
"values___age": {"type": "number"},
"values___email": {"type": "string"},
},
},
},
}
]
# Create input data
from backend.blocks import llm
input_data = block.input_schema(
prompt="Create a user dictionary",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
)
# Run the block
outputs = {}
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
):
outputs[output_name] = output_value
# Verify the outputs use sanitized field names (matching frontend normalizeToolName)
assert "tools_^_createdictionaryblock_~_values___name" in outputs
assert outputs["tools_^_createdictionaryblock_~_values___name"] == "Alice"
assert "tools_^_createdictionaryblock_~_values___age" in outputs
assert outputs["tools_^_createdictionaryblock_~_values___age"] == 30
assert "tools_^_createdictionaryblock_~_values___email" in outputs
assert (
outputs["tools_^_createdictionaryblock_~_values___email"]
== "alice@example.com"
)
@pytest.mark.asyncio
async def test_mixed_regular_and_dynamic_fields():
"""Test handling of blocks with both regular and dynamic fields."""
block = SmartDecisionMakerBlock()
# Create a mock node
mock_node = Mock()
mock_node.block = Mock()
mock_node.block.name = "TestBlock"
mock_node.block.description = "A test block"
mock_node.block.input_schema = Mock()
# Mock the get_field_schema to return a proper schema for regular fields
def get_field_schema(field_name):
if field_name == "regular_field":
return {"type": "string", "description": "A regular field"}
elif field_name == "values":
return {"type": "object", "description": "A dictionary field"}
else:
raise KeyError(f"Field {field_name} not found")
mock_node.block.input_schema.get_field_schema = get_field_schema
mock_node.block.input_schema.jsonschema = Mock(
return_value={"properties": {}, "required": []}
)
# Create links with both regular and dynamic fields
mock_links = [
Mock(
source_name="tools_^_test_~_regular",
sink_name="regular_field", # Regular field
sink_id="test_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_test_~_dict_key",
sink_name="values_#_key1", # Dynamic dict field
sink_id="test_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_test_~_dict_key2",
sink_name="values_#_key2", # Dynamic dict field
sink_id="test_node_id",
source_id="smart_decision_node_id",
),
]
# Generate function signature
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
# Check properties
properties = signature["function"]["parameters"]["properties"]
assert len(properties) == 3
# Regular field should have its original schema
assert "regular_field" in properties
assert properties["regular_field"]["description"] == "A regular field"
# Dynamic fields should have generated descriptions
assert "values___key1" in properties
assert "Dictionary field" in properties["values___key1"]["description"]
assert "values___key2" in properties
assert "Dictionary field" in properties["values___key2"]["description"]
@pytest.mark.asyncio
async def test_validation_errors_dont_pollute_conversation():
"""Test that validation errors are only used during retries and don't pollute the conversation."""
block = SmartDecisionMakerBlock()
# Track conversation history changes
conversation_snapshots = []
# Mock response with invalid tool call (missing required parameter)
invalid_response = Mock()
invalid_response.tool_calls = [
Mock(
function=Mock(
arguments=json.dumps({"wrong_param": "value"}), # Wrong parameter name
)
)
]
# Ensure function name is a real string, not a Mock name
invalid_response.tool_calls[0].function.name = "test_tool"
invalid_response.reasoning = None
invalid_response.raw_response = {"role": "assistant", "content": "invalid"}
invalid_response.prompt_tokens = 100
invalid_response.completion_tokens = 50
# Mock valid response after retry
valid_response = Mock()
valid_response.tool_calls = [
Mock(function=Mock(arguments=json.dumps({"correct_param": "value"})))
]
# Ensure function name is a real string, not a Mock name
valid_response.tool_calls[0].function.name = "test_tool"
valid_response.reasoning = None
valid_response.raw_response = {"role": "assistant", "content": "valid"}
valid_response.prompt_tokens = 100
valid_response.completion_tokens = 50
call_count = 0
async def mock_llm_call(**kwargs):
nonlocal call_count
# Capture conversation state
conversation_snapshots.append(kwargs.get("prompt", []).copy())
call_count += 1
if call_count == 1:
return invalid_response
else:
return valid_response
# Mock the LLM call
with patch(
"backend.blocks.smart_decision_maker.llm.llm_call", new_callable=AsyncMock
) as mock_llm:
mock_llm.side_effect = mock_llm_call
# Mock the function signature creation
with patch.object(
block, "_create_function_signature", new_callable=AsyncMock
) as mock_sig:
mock_sig.return_value = [
{
"type": "function",
"function": {
"name": "test_tool",
"parameters": {
"type": "object",
"properties": {
"correct_param": {
"type": "string",
"description": "The correct parameter",
}
},
"required": ["correct_param"],
},
},
}
]
# Create input data
from backend.blocks import llm
input_data = block.input_schema(
prompt="Test prompt",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
retry=3, # Allow retries
)
# Run the block
outputs = {}
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
):
outputs[output_name] = output_value
# Verify we had 2 LLM calls (initial + retry)
assert call_count == 2
# Check the final conversation output
final_conversation = outputs.get("conversations", [])
# The final conversation should NOT contain the validation error message
error_messages = [
msg
for msg in final_conversation
if msg.get("role") == "user"
and "parameter errors" in msg.get("content", "")
]
assert (
len(error_messages) == 0
), "Validation error leaked into final conversation"
# The final conversation should only have the successful response
assert final_conversation[-1]["content"] == "valid"

View File

@@ -0,0 +1,131 @@
import pytest
from backend.blocks.io import AgentTableInputBlock
from backend.util.test import execute_block_test
@pytest.mark.asyncio
async def test_table_input_block():
"""Test the AgentTableInputBlock with basic input/output."""
block = AgentTableInputBlock()
await execute_block_test(block)
@pytest.mark.asyncio
async def test_table_input_with_data():
"""Test AgentTableInputBlock with actual table data."""
block = AgentTableInputBlock()
input_data = block.Input(
name="test_table",
column_headers=["Name", "Age", "City"],
value=[
{"Name": "John", "Age": "30", "City": "New York"},
{"Name": "Jane", "Age": "25", "City": "London"},
{"Name": "Bob", "Age": "35", "City": "Paris"},
],
)
output_data = []
async for output_name, output_value in block.run(input_data):
output_data.append((output_name, output_value))
assert len(output_data) == 1
assert output_data[0][0] == "result"
result = output_data[0][1]
assert len(result) == 3
assert result[0]["Name"] == "John"
assert result[1]["Age"] == "25"
assert result[2]["City"] == "Paris"
@pytest.mark.asyncio
async def test_table_input_empty_data():
"""Test AgentTableInputBlock with empty data."""
block = AgentTableInputBlock()
input_data = block.Input(
name="empty_table", column_headers=["Col1", "Col2"], value=[]
)
output_data = []
async for output_name, output_value in block.run(input_data):
output_data.append((output_name, output_value))
assert len(output_data) == 1
assert output_data[0][0] == "result"
assert output_data[0][1] == []
@pytest.mark.asyncio
async def test_table_input_with_missing_columns():
"""Test AgentTableInputBlock passes through data with missing columns as-is."""
block = AgentTableInputBlock()
input_data = block.Input(
name="partial_table",
column_headers=["Name", "Age", "City"],
value=[
{"Name": "John", "Age": "30"}, # Missing City
{"Name": "Jane", "City": "London"}, # Missing Age
{"Age": "35", "City": "Paris"}, # Missing Name
],
)
output_data = []
async for output_name, output_value in block.run(input_data):
output_data.append((output_name, output_value))
result = output_data[0][1]
assert len(result) == 3
# Check data is passed through as-is
assert result[0] == {"Name": "John", "Age": "30"}
assert result[1] == {"Name": "Jane", "City": "London"}
assert result[2] == {"Age": "35", "City": "Paris"}
@pytest.mark.asyncio
async def test_table_input_none_value():
"""Test AgentTableInputBlock with None value returns empty list."""
block = AgentTableInputBlock()
input_data = block.Input(
name="none_table", column_headers=["Name", "Age"], value=None
)
output_data = []
async for output_name, output_value in block.run(input_data):
output_data.append((output_name, output_value))
assert len(output_data) == 1
assert output_data[0][0] == "result"
assert output_data[0][1] == []
@pytest.mark.asyncio
async def test_table_input_with_default_headers():
"""Test AgentTableInputBlock with default column headers."""
block = AgentTableInputBlock()
# Don't specify column_headers, should use defaults
input_data = block.Input(
name="default_headers_table",
value=[
{"Column 1": "A", "Column 2": "B", "Column 3": "C"},
{"Column 1": "D", "Column 2": "E", "Column 3": "F"},
],
)
output_data = []
async for output_name, output_value in block.run(input_data):
output_data.append((output_name, output_value))
assert len(output_data) == 1
assert output_data[0][0] == "result"
result = output_data[0][1]
assert len(result) == 2
assert result[0]["Column 1"] == "A"
assert result[1]["Column 3"] == "F"

View File

@@ -2,6 +2,8 @@ import re
from pathlib import Path
from typing import Any
import regex # Has built-in timeout support
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util import json, text
@@ -137,6 +139,11 @@ class ExtractTextInformationBlock(Block):
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Security fix: Add limits to prevent ReDoS and memory exhaustion
MAX_TEXT_LENGTH = 1_000_000 # 1MB character limit
MAX_MATCHES = 1000 # Maximum number of matches to prevent memory exhaustion
MAX_MATCH_LENGTH = 10_000 # Maximum length per match
flags = 0
if not input_data.case_sensitive:
flags = flags | re.IGNORECASE
@@ -148,20 +155,85 @@ class ExtractTextInformationBlock(Block):
else:
txt = json.dumps(input_data.text)
matches = [
match.group(input_data.group)
for match in re.finditer(input_data.pattern, txt, flags)
if input_data.group <= len(match.groups())
]
if not input_data.find_all:
matches = matches[:1]
for match in matches:
yield "positive", match
if not matches:
yield "negative", input_data.text
# Limit text size to prevent DoS
if len(txt) > MAX_TEXT_LENGTH:
txt = txt[:MAX_TEXT_LENGTH]
yield "matched_results", matches
yield "matched_count", len(matches)
# Validate regex pattern to prevent dangerous patterns
dangerous_patterns = [
r".*\+.*\+", # Nested quantifiers
r".*\*.*\*", # Nested quantifiers
r"(?=.*\+)", # Lookahead with quantifier
r"(?=.*\*)", # Lookahead with quantifier
r"\(.+\)\+", # Group with nested quantifier
r"\(.+\)\*", # Group with nested quantifier
r"\([^)]+\+\)\+", # Nested quantifiers like (a+)+
r"\([^)]+\*\)\*", # Nested quantifiers like (a*)*
]
# Check if pattern is potentially dangerous
is_dangerous = any(
re.search(dangerous, input_data.pattern) for dangerous in dangerous_patterns
)
# Use regex module with timeout for dangerous patterns
# For safe patterns, use standard re module for compatibility
try:
matches = []
match_count = 0
if is_dangerous:
# Use regex module with timeout (5 seconds) for dangerous patterns
# The regex module supports timeout parameter in finditer
try:
for match in regex.finditer(
input_data.pattern, txt, flags=flags, timeout=5.0
):
if match_count >= MAX_MATCHES:
break
if input_data.group <= len(match.groups()):
match_text = match.group(input_data.group)
# Limit match length to prevent memory exhaustion
if len(match_text) > MAX_MATCH_LENGTH:
match_text = match_text[:MAX_MATCH_LENGTH]
matches.append(match_text)
match_count += 1
except regex.error as e:
# Timeout occurred or regex error
if "timeout" in str(e).lower():
# Timeout - return empty results
pass
else:
# Other regex error
raise
else:
# Use standard re module for non-dangerous patterns
for match in re.finditer(input_data.pattern, txt, flags):
if match_count >= MAX_MATCHES:
break
if input_data.group <= len(match.groups()):
match_text = match.group(input_data.group)
# Limit match length to prevent memory exhaustion
if len(match_text) > MAX_MATCH_LENGTH:
match_text = match_text[:MAX_MATCH_LENGTH]
matches.append(match_text)
match_count += 1
if not input_data.find_all:
matches = matches[:1]
for match in matches:
yield "positive", match
if not matches:
yield "negative", input_data.text
yield "matched_results", matches
yield "matched_count", len(matches)
except Exception:
# Return empty results on any regex error
yield "negative", input_data.text
yield "matched_results", []
yield "matched_count", 0
class FillTextTemplateBlock(Block):
@@ -172,6 +244,11 @@ class FillTextTemplateBlock(Block):
format: str = SchemaField(
description="Template to format the text using `values`. Use Jinja2 syntax."
)
escape_html: bool = SchemaField(
default=False,
advanced=True,
description="Whether to escape special characters in the inserted values to be HTML-safe. Enable for HTML output, disable for plain text.",
)
class Output(BlockSchema):
output: str = SchemaField(description="Formatted text")
@@ -205,6 +282,7 @@ class FillTextTemplateBlock(Block):
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
formatter = text.TextFormatter(autoescape=input_data.escape_html)
yield "output", formatter.format_string(input_data.format, input_data.values)

View File

@@ -270,13 +270,17 @@ class GetCurrentDateBlock(Block):
test_output=[
(
"date",
lambda t: abs(datetime.now() - datetime.strptime(t, "%Y-%m-%d"))
< timedelta(days=8), # 7 days difference + 1 day error margin.
lambda t: abs(
datetime.now().date() - datetime.strptime(t, "%Y-%m-%d").date()
)
<= timedelta(days=8), # 7 days difference + 1 day error margin.
),
(
"date",
lambda t: abs(datetime.now() - datetime.strptime(t, "%m/%d/%Y"))
< timedelta(days=8),
lambda t: abs(
datetime.now().date() - datetime.strptime(t, "%m/%d/%Y").date()
)
<= timedelta(days=8),
# 7 days difference + 1 day error margin.
),
(
@@ -382,7 +386,7 @@ class GetCurrentDateAndTimeBlock(Block):
lambda t: abs(
datetime.now().date() - datetime.strptime(t, "%Y/%m/%d").date()
)
< timedelta(days=1), # Date format only, no time component
<= timedelta(days=1), # Date format only, no time component
),
(
"date_time",

View File

@@ -26,6 +26,14 @@ class XMLParserBlock(Block):
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Security fix: Add size limits to prevent XML bomb attacks
MAX_XML_SIZE = 10 * 1024 * 1024 # 10MB limit for XML input
if len(input_data.input_xml) > MAX_XML_SIZE:
raise ValueError(
f"XML too large: {len(input_data.input_xml)} bytes > {MAX_XML_SIZE} bytes"
)
try:
tokens = tokenize(input_data.input_xml)
parser = Parser(tokens)

View File

@@ -1,6 +1,7 @@
from urllib.parse import parse_qs, urlparse
from youtube_transcript_api._api import YouTubeTranscriptApi
from youtube_transcript_api._errors import NoTranscriptFound
from youtube_transcript_api._transcripts import FetchedTranscript
from youtube_transcript_api.formatters import TextFormatter
@@ -64,7 +65,29 @@ class TranscribeYoutubeVideoBlock(Block):
@staticmethod
def get_transcript(video_id: str) -> FetchedTranscript:
return YouTubeTranscriptApi().fetch(video_id=video_id)
"""
Get transcript for a video, preferring English but falling back to any available language.
:param video_id: The YouTube video ID
:return: The fetched transcript
:raises: Any exception except NoTranscriptFound for requested languages
"""
api = YouTubeTranscriptApi()
try:
# Try to get English transcript first (default behavior)
return api.fetch(video_id=video_id)
except NoTranscriptFound:
# If English is not available, get the first available transcript
transcript_list = api.list(video_id)
# Try manually created transcripts first, then generated ones
available_transcripts = list(
transcript_list._manually_created_transcripts.values()
) + list(transcript_list._generated_transcripts.values())
if available_transcripts:
# Fetch the first available transcript
return available_transcripts[0].fetch()
# If no transcripts at all, re-raise the original error
raise
@staticmethod
def format_transcript(transcript: FetchedTranscript) -> str:

View File

@@ -45,9 +45,6 @@ class MainApp(AppProcess):
app.main(silent=True)
def cleanup(self):
pass
@click.group()
def main():

View File

@@ -9,6 +9,7 @@ from prisma.models import APIKey as PrismaAPIKey
from prisma.types import APIKeyWhereUniqueInput
from pydantic import BaseModel, Field
from backend.data.includes import MAX_USER_API_KEYS_FETCH
from backend.util.exceptions import NotAuthorizedError, NotFoundError
logger = logging.getLogger(__name__)
@@ -178,9 +179,13 @@ async def revoke_api_key(key_id: str, user_id: str) -> APIKeyInfo:
return APIKeyInfo.from_db(updated_api_key)
async def list_user_api_keys(user_id: str) -> list[APIKeyInfo]:
async def list_user_api_keys(
user_id: str, limit: int = MAX_USER_API_KEYS_FETCH
) -> list[APIKeyInfo]:
api_keys = await PrismaAPIKey.prisma().find_many(
where={"userId": user_id}, order={"createdAt": "desc"}
where={"userId": user_id},
order={"createdAt": "desc"},
take=limit,
)
return [APIKeyInfo.from_db(key) for key in api_keys]

View File

@@ -1,4 +1,3 @@
import functools
import inspect
import logging
import os
@@ -28,6 +27,7 @@ from pydantic import BaseModel
from backend.data.model import NodeExecutionStats
from backend.integrations.providers import ProviderName
from backend.util import json
from backend.util.cache import cached
from backend.util.settings import Config
from .model import (
@@ -722,7 +722,7 @@ def get_block(block_id: str) -> Block[BlockSchema, BlockSchema] | None:
return cls() if cls else None
@functools.cache
@cached(ttl_seconds=3600)
def get_webhook_block_ids() -> Sequence[str]:
return [
id
@@ -731,7 +731,7 @@ def get_webhook_block_ids() -> Sequence[str]:
]
@functools.cache
@cached(ttl_seconds=3600)
def get_io_block_ids() -> Sequence[str]:
return [
id

View File

@@ -1,7 +1,11 @@
from typing import Type
from backend.blocks.ai_music_generator import AIMusicGeneratorBlock
from backend.blocks.ai_shortform_video_block import AIShortformVideoCreatorBlock
from backend.blocks.ai_shortform_video_block import (
AIAdMakerVideoCreatorBlock,
AIScreenshotToVideoAdBlock,
AIShortformVideoCreatorBlock,
)
from backend.blocks.apollo.organization import SearchOrganizationsBlock
from backend.blocks.apollo.people import SearchPeopleBlock
from backend.blocks.apollo.person import GetPersonDetailBlock
@@ -69,9 +73,9 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.CLAUDE_4_1_OPUS: 21,
LlmModel.CLAUDE_4_OPUS: 21,
LlmModel.CLAUDE_4_SONNET: 5,
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_SONNET: 9,
LlmModel.CLAUDE_3_7_SONNET: 5,
LlmModel.CLAUDE_3_5_SONNET: 4,
LlmModel.CLAUDE_3_5_HAIKU: 1, # $0.80 / $4.00
LlmModel.CLAUDE_3_HAIKU: 1,
LlmModel.AIML_API_QWEN2_5_72B: 1,
LlmModel.AIML_API_LLAMA3_1_70B: 1,
@@ -321,7 +325,31 @@ BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
],
AIShortformVideoCreatorBlock: [
BlockCost(
cost_amount=50,
cost_amount=307,
cost_filter={
"credentials": {
"id": revid_credentials.id,
"provider": revid_credentials.provider,
"type": revid_credentials.type,
}
},
)
],
AIAdMakerVideoCreatorBlock: [
BlockCost(
cost_amount=714,
cost_filter={
"credentials": {
"id": revid_credentials.id,
"provider": revid_credentials.provider,
"type": revid_credentials.type,
}
},
)
],
AIScreenshotToVideoAdBlock: [
BlockCost(
cost_amount=612,
cost_filter={
"credentials": {
"id": revid_credentials.id,

View File

@@ -5,7 +5,6 @@ from datetime import datetime, timezone
from typing import TYPE_CHECKING, Any, cast
import stripe
from prisma import Json
from prisma.enums import (
CreditRefundRequestStatus,
CreditTransactionType,
@@ -13,16 +12,13 @@ from prisma.enums import (
OnboardingStep,
)
from prisma.errors import UniqueViolationError
from prisma.models import CreditRefundRequest, CreditTransaction, User
from prisma.types import (
CreditRefundRequestCreateInput,
CreditTransactionCreateInput,
CreditTransactionWhereInput,
)
from prisma.models import CreditRefundRequest, CreditTransaction, User, UserBalance
from prisma.types import CreditRefundRequestCreateInput, CreditTransactionWhereInput
from pydantic import BaseModel
from backend.data import db
from backend.data.block_cost_config import BLOCK_COSTS
from backend.data.db import query_raw_with_schema
from backend.data.includes import MAX_CREDIT_REFUND_REQUESTS_FETCH
from backend.data.model import (
AutoTopUpConfig,
RefundRequest,
@@ -35,7 +31,8 @@ from backend.data.user import get_user_by_id, get_user_email_by_id
from backend.notifications.notifications import queue_notification_async
from backend.server.v2.admin.model import UserHistoryResponse
from backend.util.exceptions import InsufficientBalanceError
from backend.util.json import SafeJson
from backend.util.feature_flag import Flag, is_feature_enabled
from backend.util.json import SafeJson, dumps
from backend.util.models import Pagination
from backend.util.retry import func_retry
from backend.util.settings import Settings
@@ -48,6 +45,10 @@ stripe.api_key = settings.secrets.stripe_api_key
logger = logging.getLogger(__name__)
base_url = settings.config.frontend_base_url or settings.config.platform_base_url
# Constants for test compatibility
POSTGRES_INT_MAX = 2147483647
POSTGRES_INT_MIN = -2147483648
class UsageTransactionMetadata(BaseModel):
graph_exec_id: str | None = None
@@ -138,14 +139,20 @@ class UserCreditBase(ABC):
pass
@abstractmethod
async def onboarding_reward(self, user_id: str, credits: int, step: OnboardingStep):
async def onboarding_reward(
self, user_id: str, credits: int, step: OnboardingStep
) -> bool:
"""
Reward the user with credits for completing an onboarding step.
Won't reward if the user has already received credits for the step.
Args:
user_id (str): The user ID.
credits (int): The amount to reward.
step (OnboardingStep): The onboarding step.
Returns:
bool: True if rewarded, False if already rewarded.
"""
pass
@@ -235,6 +242,12 @@ class UserCreditBase(ABC):
"""
Returns the current balance of the user & the latest balance snapshot time.
"""
# Check UserBalance first for efficiency and consistency
user_balance = await UserBalance.prisma().find_unique(where={"userId": user_id})
if user_balance:
return user_balance.balance, user_balance.updatedAt
# Fallback to transaction history computation if UserBalance doesn't exist
top_time = self.time_now()
snapshot = await CreditTransaction.prisma().find_first(
where={
@@ -249,72 +262,86 @@ class UserCreditBase(ABC):
snapshot_balance = snapshot.runningBalance or 0 if snapshot else 0
snapshot_time = snapshot.createdAt if snapshot else datetime_min
# Get transactions after the snapshot, this should not exist, but just in case.
transactions = await CreditTransaction.prisma().group_by(
by=["userId"],
sum={"amount": True},
max={"createdAt": True},
where={
"userId": user_id,
"createdAt": {
"gt": snapshot_time,
"lte": top_time,
},
"isActive": True,
},
)
transaction_balance = (
int(transactions[0].get("_sum", {}).get("amount", 0) + snapshot_balance)
if transactions
else snapshot_balance
)
transaction_time = (
datetime.fromisoformat(
str(transactions[0].get("_max", {}).get("createdAt", datetime_min))
)
if transactions
else snapshot_time
)
return transaction_balance, transaction_time
return snapshot_balance, snapshot_time
@func_retry
async def _enable_transaction(
self,
transaction_key: str,
user_id: str,
metadata: Json,
metadata: SafeJson,
new_transaction_key: str | None = None,
):
transaction = await CreditTransaction.prisma().find_first_or_raise(
where={"transactionKey": transaction_key, "userId": user_id}
# First check if transaction exists and is inactive (safety check)
transaction = await CreditTransaction.prisma().find_first(
where={
"transactionKey": transaction_key,
"userId": user_id,
"isActive": False,
}
)
if transaction.isActive:
return
if not transaction:
# Transaction doesn't exist or is already active, return early
return None
async with db.locked_transaction(f"usr_trx_{user_id}"):
transaction = await CreditTransaction.prisma().find_first_or_raise(
where={"transactionKey": transaction_key, "userId": user_id}
# Atomic operation to enable transaction and update user balance using UserBalance
result = await query_raw_with_schema(
"""
WITH user_balance_lock AS (
SELECT
$2::text as userId,
COALESCE(
(SELECT balance FROM {schema_prefix}"UserBalance" WHERE "userId" = $2 FOR UPDATE),
-- Fallback: compute balance from transaction history if UserBalance doesn't exist
(SELECT COALESCE(ct."runningBalance", 0)
FROM {schema_prefix}"CreditTransaction" ct
WHERE ct."userId" = $2
AND ct."isActive" = true
AND ct."runningBalance" IS NOT NULL
ORDER BY ct."createdAt" DESC
LIMIT 1),
0
) as balance
),
transaction_check AS (
SELECT * FROM {schema_prefix}"CreditTransaction"
WHERE "transactionKey" = $1 AND "userId" = $2 AND "isActive" = false
),
balance_update AS (
INSERT INTO {schema_prefix}"UserBalance" ("userId", "balance", "updatedAt")
SELECT
$2::text,
user_balance_lock.balance + transaction_check.amount,
CURRENT_TIMESTAMP
FROM user_balance_lock, transaction_check
ON CONFLICT ("userId") DO UPDATE SET
"balance" = EXCLUDED."balance",
"updatedAt" = EXCLUDED."updatedAt"
RETURNING "balance", "updatedAt"
),
transaction_update AS (
UPDATE {schema_prefix}"CreditTransaction"
SET "transactionKey" = COALESCE($4, $1),
"isActive" = true,
"runningBalance" = balance_update.balance,
"createdAt" = balance_update."updatedAt",
"metadata" = $3::jsonb
FROM balance_update, transaction_check
WHERE {schema_prefix}"CreditTransaction"."transactionKey" = transaction_check."transactionKey"
AND {schema_prefix}"CreditTransaction"."userId" = transaction_check."userId"
RETURNING {schema_prefix}"CreditTransaction"."runningBalance"
)
if transaction.isActive:
return
SELECT "runningBalance" as balance FROM transaction_update;
""",
transaction_key, # $1
user_id, # $2
dumps(metadata.data), # $3 - use pre-serialized JSON string for JSONB
new_transaction_key, # $4
)
user_balance, _ = await self._get_credits(user_id)
await CreditTransaction.prisma().update(
where={
"creditTransactionIdentifier": {
"transactionKey": transaction_key,
"userId": user_id,
}
},
data={
"transactionKey": new_transaction_key or transaction_key,
"isActive": True,
"runningBalance": user_balance + transaction.amount,
"createdAt": self.time_now(),
"metadata": metadata,
},
)
if result:
# UserBalance is already updated by the CTE
return result[0]["balance"]
async def _add_transaction(
self,
@@ -325,12 +352,54 @@ class UserCreditBase(ABC):
transaction_key: str | None = None,
ceiling_balance: int | None = None,
fail_insufficient_credits: bool = True,
metadata: Json = SafeJson({}),
metadata: SafeJson = SafeJson({}),
) -> tuple[int, str]:
"""
Add a new transaction for the user.
This is the only method that should be used to add a new transaction.
ATOMIC OPERATION DESIGN DECISION:
================================
This method uses PostgreSQL row-level locking (FOR UPDATE) for atomic credit operations.
After extensive analysis of concurrency patterns and correctness requirements, we determined
that the FOR UPDATE approach is necessary despite the latency overhead.
WHY FOR UPDATE LOCKING IS REQUIRED:
----------------------------------
1. **Data Consistency**: Credit operations must be ACID-compliant. The balance check,
calculation, and update must be atomic to prevent race conditions where:
- Multiple spend operations could exceed available balance
- Lost update problems could occur with concurrent top-ups
- Refunds could create negative balances incorrectly
2. **Serializability**: FOR UPDATE ensures operations are serialized at the database level,
guaranteeing that each transaction sees a consistent view of the balance before applying changes.
3. **Correctness Over Performance**: Financial operations require absolute correctness.
The ~10-50ms latency increase from row locking is acceptable for the guarantee that
no user will ever have an incorrect balance due to race conditions.
4. **PostgreSQL Optimization**: Modern PostgreSQL versions optimize row locks efficiently.
The performance cost is minimal compared to the complexity and risk of lock-free approaches.
ALTERNATIVES CONSIDERED AND REJECTED:
------------------------------------
- **Optimistic Concurrency**: Using version numbers or timestamps would require complex
retry logic and could still fail under high contention scenarios.
- **Application-Level Locking**: Redis locks or similar would add network overhead and
single points of failure while being less reliable than database locks.
- **Event Sourcing**: Would require complete architectural changes and eventual consistency
models that don't fit our real-time balance requirements.
PERFORMANCE CHARACTERISTICS:
---------------------------
- Single user operations: 10-50ms latency (acceptable for financial operations)
- Concurrent operations on same user: Serialized (prevents data corruption)
- Concurrent operations on different users: Fully parallel (no blocking)
This design prioritizes correctness and data integrity over raw performance,
which is the appropriate choice for a credit/payment system.
Args:
user_id (str): The user ID.
amount (int): The amount of credits to add.
@@ -344,40 +413,142 @@ class UserCreditBase(ABC):
Returns:
tuple[int, str]: The new balance & the transaction key.
"""
async with db.locked_transaction(f"usr_trx_{user_id}"):
# Get latest balance snapshot
user_balance, _ = await self._get_credits(user_id)
if ceiling_balance and amount > 0 and user_balance >= ceiling_balance:
# Quick validation for ceiling balance to avoid unnecessary database operations
if ceiling_balance and amount > 0:
current_balance, _ = await self._get_credits(user_id)
if current_balance >= ceiling_balance:
raise ValueError(
f"You already have enough balance of ${user_balance/100}, top-up is not required when you already have at least ${ceiling_balance/100}"
f"You already have enough balance of ${current_balance/100}, top-up is not required when you already have at least ${ceiling_balance/100}"
)
if amount < 0 and user_balance + amount < 0:
if fail_insufficient_credits:
raise InsufficientBalanceError(
message=f"Insufficient balance of ${user_balance/100}, where this will cost ${abs(amount)/100}",
user_id=user_id,
balance=user_balance,
amount=amount,
# Single unified atomic operation for all transaction types using UserBalance
try:
result = await query_raw_with_schema(
"""
WITH user_balance_lock AS (
SELECT
$1::text as userId,
-- CRITICAL: FOR UPDATE lock prevents concurrent modifications to the same user's balance
-- This ensures atomic read-modify-write operations and prevents race conditions
COALESCE(
(SELECT balance FROM {schema_prefix}"UserBalance" WHERE "userId" = $1 FOR UPDATE),
-- Fallback: compute balance from transaction history if UserBalance doesn't exist
(SELECT COALESCE(ct."runningBalance", 0)
FROM {schema_prefix}"CreditTransaction" ct
WHERE ct."userId" = $1
AND ct."isActive" = true
AND ct."runningBalance" IS NOT NULL
ORDER BY ct."createdAt" DESC
LIMIT 1),
0
) as balance
),
balance_update AS (
INSERT INTO {schema_prefix}"UserBalance" ("userId", "balance", "updatedAt")
SELECT
$1::text,
CASE
-- For inactive transactions: Don't update balance
WHEN $5::boolean = false THEN user_balance_lock.balance
-- For ceiling balance (amount > 0): Apply ceiling
WHEN $2 > 0 AND $7::int IS NOT NULL AND user_balance_lock.balance > $7::int - $2 THEN $7::int
-- For regular operations: Apply with overflow/underflow protection
WHEN user_balance_lock.balance + $2 > $6::int THEN $6::int
WHEN user_balance_lock.balance + $2 < $10::int THEN $10::int
ELSE user_balance_lock.balance + $2
END,
CURRENT_TIMESTAMP
FROM user_balance_lock
WHERE (
$5::boolean = false OR -- Allow inactive transactions
$2 >= 0 OR -- Allow positive amounts (top-ups, grants)
$8::boolean = false OR -- Allow when insufficient balance check is disabled
user_balance_lock.balance + $2 >= 0 -- Allow spending only when sufficient balance
)
ON CONFLICT ("userId") DO UPDATE SET
"balance" = EXCLUDED."balance",
"updatedAt" = EXCLUDED."updatedAt"
RETURNING "balance", "updatedAt"
),
transaction_insert AS (
INSERT INTO {schema_prefix}"CreditTransaction" (
"userId", "amount", "type", "runningBalance",
"metadata", "isActive", "createdAt", "transactionKey"
)
SELECT
$1::text,
$2::int,
$3::text::{schema_prefix}"CreditTransactionType",
CASE
-- For inactive transactions: Set runningBalance to original balance (don't apply the change yet)
WHEN $5::boolean = false THEN user_balance_lock.balance
ELSE COALESCE(balance_update.balance, user_balance_lock.balance)
END,
$4::jsonb,
$5::boolean,
COALESCE(balance_update."updatedAt", CURRENT_TIMESTAMP),
COALESCE($9, gen_random_uuid()::text)
FROM user_balance_lock
LEFT JOIN balance_update ON true
WHERE (
$5::boolean = false OR -- Allow inactive transactions
$2 >= 0 OR -- Allow positive amounts (top-ups, grants)
$8::boolean = false OR -- Allow when insufficient balance check is disabled
user_balance_lock.balance + $2 >= 0 -- Allow spending only when sufficient balance
)
RETURNING "runningBalance", "transactionKey"
)
SELECT "runningBalance" as balance, "transactionKey" FROM transaction_insert;
""",
user_id, # $1
amount, # $2
transaction_type.value, # $3
dumps(metadata.data), # $4 - use pre-serialized JSON string for JSONB
is_active, # $5
POSTGRES_INT_MAX, # $6 - overflow protection
ceiling_balance, # $7 - ceiling balance (nullable)
fail_insufficient_credits, # $8 - check balance for spending
transaction_key, # $9 - transaction key (nullable)
POSTGRES_INT_MIN, # $10 - underflow protection
)
except Exception as e:
# Convert raw SQL unique constraint violations to UniqueViolationError
# for consistent exception handling throughout the codebase
error_str = str(e).lower()
if (
"already exists" in error_str
or "duplicate key" in error_str
or "unique constraint" in error_str
):
# Extract table and constraint info for better error messages
# Re-raise as a UniqueViolationError but with proper format
# Create a minimal data structure that the error constructor expects
raise UniqueViolationError({"error": str(e), "user_facing_error": {}})
# For any other error, re-raise as-is
raise
amount = min(-user_balance, 0)
if result:
new_balance, tx_key = result[0]["balance"], result[0]["transactionKey"]
# UserBalance is already updated by the CTE
return new_balance, tx_key
# Create the transaction
transaction_data: CreditTransactionCreateInput = {
"userId": user_id,
"amount": amount,
"runningBalance": user_balance + amount,
"type": transaction_type,
"metadata": metadata,
"isActive": is_active,
"createdAt": self.time_now(),
}
if transaction_key:
transaction_data["transactionKey"] = transaction_key
tx = await CreditTransaction.prisma().create(data=transaction_data)
return user_balance + amount, tx.transactionKey
# If no result, either user doesn't exist or insufficient balance
user = await User.prisma().find_unique(where={"id": user_id})
if not user:
raise ValueError(f"User {user_id} not found")
# Must be insufficient balance for spending operation
if amount < 0 and fail_insufficient_credits:
current_balance, _ = await self._get_credits(user_id)
raise InsufficientBalanceError(
message=f"Insufficient balance of ${current_balance/100}, where this will cost ${abs(amount)/100}",
user_id=user_id,
balance=current_balance,
amount=amount,
)
# Unexpected case
raise ValueError(f"Transaction failed for user {user_id}, amount {amount}")
class UserCredit(UserCreditBase):
@@ -452,9 +623,10 @@ class UserCredit(UserCreditBase):
{"reason": f"Reward for completing {step.value} onboarding step."}
),
)
return True
except UniqueViolationError:
# Already rewarded for this step
pass
# User already received this reward
return False
async def top_up_refund(
self, user_id: str, transaction_key: str, metadata: dict[str, str]
@@ -643,7 +815,7 @@ class UserCredit(UserCreditBase):
):
# init metadata, without sharing it with the world
metadata = metadata or {}
if not metadata["reason"]:
if not metadata.get("reason"):
match top_up_type:
case TopUpType.MANUAL:
metadata["reason"] = {"reason": f"Top up credits for {user_id}"}
@@ -905,7 +1077,9 @@ class UserCredit(UserCreditBase):
),
)
async def get_refund_requests(self, user_id: str) -> list[RefundRequest]:
async def get_refund_requests(
self, user_id: str, limit: int = MAX_CREDIT_REFUND_REQUESTS_FETCH
) -> list[RefundRequest]:
return [
RefundRequest(
id=r.id,
@@ -921,6 +1095,7 @@ class UserCredit(UserCreditBase):
for r in await CreditRefundRequest.prisma().find_many(
where={"userId": user_id},
order={"createdAt": "desc"},
take=limit,
)
]
@@ -970,8 +1145,8 @@ class DisabledUserCredit(UserCreditBase):
async def top_up_credits(self, *args, **kwargs):
pass
async def onboarding_reward(self, *args, **kwargs):
pass
async def onboarding_reward(self, *args, **kwargs) -> bool:
return True
async def top_up_intent(self, *args, **kwargs) -> str:
return ""
@@ -989,14 +1164,31 @@ class DisabledUserCredit(UserCreditBase):
pass
def get_user_credit_model() -> UserCreditBase:
async def get_user_credit_model(user_id: str) -> UserCreditBase:
"""
Get the credit model for a user, considering LaunchDarkly flags.
Args:
user_id (str): The user ID to check flags for.
Returns:
UserCreditBase: The appropriate credit model for the user
"""
if not settings.config.enable_credit:
return DisabledUserCredit()
if settings.config.enable_beta_monthly_credit:
return BetaUserCredit(settings.config.num_user_credits_refill)
# Check LaunchDarkly flag for payment pilot users
# Default to False (beta monthly credit behavior) to maintain current behavior
is_payment_enabled = await is_feature_enabled(
Flag.ENABLE_PLATFORM_PAYMENT, user_id, default=False
)
return UserCredit()
if is_payment_enabled:
# Payment enabled users get UserCredit (no monthly refills, enable payments)
return UserCredit()
else:
# Default behavior: users get beta monthly credits
return BetaUserCredit(settings.config.num_user_credits_refill)
def get_block_costs() -> dict[str, list["BlockCost"]]:
@@ -1086,7 +1278,8 @@ async def admin_get_user_history(
)
reason = metadata.get("reason", "No reason provided")
balance, last_update = await get_user_credit_model()._get_credits(tx.userId)
user_credit_model = await get_user_credit_model(tx.userId)
balance, _ = await user_credit_model._get_credits(tx.userId)
history.append(
UserTransaction(

View File

@@ -0,0 +1,172 @@
"""
Test ceiling balance functionality to ensure auto top-up limits work correctly.
This test was added to cover a previously untested code path that could lead to
incorrect balance capping behavior.
"""
from uuid import uuid4
import pytest
from prisma.enums import CreditTransactionType
from prisma.errors import UniqueViolationError
from prisma.models import CreditTransaction, User, UserBalance
from backend.data.credit import UserCredit
from backend.util.json import SafeJson
from backend.util.test import SpinTestServer
async def create_test_user(user_id: str) -> None:
"""Create a test user for ceiling tests."""
try:
await User.prisma().create(
data={
"id": user_id,
"email": f"test-{user_id}@example.com",
"name": f"Test User {user_id[:8]}",
}
)
except UniqueViolationError:
# User already exists, continue
pass
await UserBalance.prisma().upsert(
where={"userId": user_id},
data={"create": {"userId": user_id, "balance": 0}, "update": {"balance": 0}},
)
async def cleanup_test_user(user_id: str) -> None:
"""Clean up test user and their transactions."""
try:
await CreditTransaction.prisma().delete_many(where={"userId": user_id})
await User.prisma().delete_many(where={"id": user_id})
except Exception as e:
# Log cleanup failures but don't fail the test
print(f"Warning: Failed to cleanup test user {user_id}: {e}")
@pytest.mark.asyncio(loop_scope="session")
async def test_ceiling_balance_rejects_when_above_threshold(server: SpinTestServer):
"""Test that ceiling balance correctly rejects top-ups when balance is above threshold."""
credit_system = UserCredit()
user_id = f"ceiling-test-{uuid4()}"
await create_test_user(user_id)
try:
# Give user balance of 1000 ($10) using internal method (bypasses Stripe)
await credit_system._add_transaction(
user_id=user_id,
amount=1000,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "initial_balance"}),
)
current_balance = await credit_system.get_credits(user_id)
assert current_balance == 1000
# Try to add 200 more with ceiling of 800 (should reject since 1000 > 800)
with pytest.raises(ValueError, match="You already have enough balance"):
await credit_system._add_transaction(
user_id=user_id,
amount=200,
transaction_type=CreditTransactionType.TOP_UP,
ceiling_balance=800, # Ceiling lower than current balance
)
# Balance should remain unchanged
final_balance = await credit_system.get_credits(user_id)
assert final_balance == 1000, f"Balance should remain 1000, got {final_balance}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_ceiling_balance_clamps_when_would_exceed(server: SpinTestServer):
"""Test that ceiling balance correctly clamps amounts that would exceed the ceiling."""
credit_system = UserCredit()
user_id = f"ceiling-clamp-test-{uuid4()}"
await create_test_user(user_id)
try:
# Give user balance of 500 ($5) using internal method (bypasses Stripe)
await credit_system._add_transaction(
user_id=user_id,
amount=500,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "initial_balance"}),
)
# Add 800 more with ceiling of 1000 (should clamp to 1000, not reach 1300)
final_balance, _ = await credit_system._add_transaction(
user_id=user_id,
amount=800,
transaction_type=CreditTransactionType.TOP_UP,
ceiling_balance=1000, # Ceiling should clamp 500 + 800 = 1300 to 1000
)
# Balance should be clamped to ceiling
assert (
final_balance == 1000
), f"Balance should be clamped to 1000, got {final_balance}"
# Verify with get_credits too
stored_balance = await credit_system.get_credits(user_id)
assert (
stored_balance == 1000
), f"Stored balance should be 1000, got {stored_balance}"
# Verify transaction shows the clamped amount
transactions = await CreditTransaction.prisma().find_many(
where={"userId": user_id, "type": CreditTransactionType.TOP_UP},
order={"createdAt": "desc"},
)
# Should have 2 transactions: 500 + (500 to reach ceiling of 1000)
assert len(transactions) == 2
# The second transaction should show it only added 500, not 800
second_tx = transactions[0] # Most recent
assert second_tx.runningBalance == 1000
# The actual amount recorded could be 800 (what was requested) but balance was clamped
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_ceiling_balance_allows_when_under_threshold(server: SpinTestServer):
"""Test that ceiling balance allows top-ups when balance is under threshold."""
credit_system = UserCredit()
user_id = f"ceiling-under-test-{uuid4()}"
await create_test_user(user_id)
try:
# Give user balance of 300 ($3) using internal method (bypasses Stripe)
await credit_system._add_transaction(
user_id=user_id,
amount=300,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "initial_balance"}),
)
# Add 200 more with ceiling of 1000 (should succeed: 300 + 200 = 500 < 1000)
final_balance, _ = await credit_system._add_transaction(
user_id=user_id,
amount=200,
transaction_type=CreditTransactionType.TOP_UP,
ceiling_balance=1000,
)
# Balance should be exactly 500
assert final_balance == 500, f"Balance should be 500, got {final_balance}"
# Verify with get_credits too
stored_balance = await credit_system.get_credits(user_id)
assert (
stored_balance == 500
), f"Stored balance should be 500, got {stored_balance}"
finally:
await cleanup_test_user(user_id)

View File

@@ -0,0 +1,737 @@
"""
Concurrency and atomicity tests for the credit system.
These tests ensure the credit system handles high-concurrency scenarios correctly
without race conditions, deadlocks, or inconsistent state.
"""
import asyncio
import random
from uuid import uuid4
import prisma.enums
import pytest
from prisma.enums import CreditTransactionType
from prisma.errors import UniqueViolationError
from prisma.models import CreditTransaction, User, UserBalance
from backend.data.credit import POSTGRES_INT_MAX, UsageTransactionMetadata, UserCredit
from backend.util.exceptions import InsufficientBalanceError
from backend.util.json import SafeJson
from backend.util.test import SpinTestServer
# Test with both UserCredit and BetaUserCredit if needed
credit_system = UserCredit()
async def create_test_user(user_id: str) -> None:
"""Create a test user with initial balance."""
try:
await User.prisma().create(
data={
"id": user_id,
"email": f"test-{user_id}@example.com",
"name": f"Test User {user_id[:8]}",
}
)
except UniqueViolationError:
# User already exists, continue
pass
# Ensure UserBalance record exists
await UserBalance.prisma().upsert(
where={"userId": user_id},
data={"create": {"userId": user_id, "balance": 0}, "update": {"balance": 0}},
)
async def cleanup_test_user(user_id: str) -> None:
"""Clean up test user and their transactions."""
try:
await CreditTransaction.prisma().delete_many(where={"userId": user_id})
await UserBalance.prisma().delete_many(where={"userId": user_id})
await User.prisma().delete_many(where={"id": user_id})
except Exception as e:
# Log cleanup failures but don't fail the test
print(f"Warning: Failed to cleanup test user {user_id}: {e}")
@pytest.mark.asyncio(loop_scope="session")
async def test_concurrent_spends_same_user(server: SpinTestServer):
"""Test multiple concurrent spends from the same user don't cause race conditions."""
user_id = f"concurrent-test-{uuid4()}"
await create_test_user(user_id)
try:
# Give user initial balance using internal method (bypasses Stripe)
await credit_system._add_transaction(
user_id=user_id,
amount=1000,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "initial_balance"}),
)
# Try to spend 10 x $1 concurrently
async def spend_one_dollar(idx: int):
try:
return await credit_system.spend_credits(
user_id,
100, # $1
UsageTransactionMetadata(
graph_exec_id=f"concurrent-{idx}",
reason=f"Concurrent spend {idx}",
),
)
except InsufficientBalanceError:
return None
# Run 10 concurrent spends
results = await asyncio.gather(
*[spend_one_dollar(i) for i in range(10)], return_exceptions=True
)
# Count successful spends
successful = [
r for r in results if r is not None and not isinstance(r, Exception)
]
failed = [r for r in results if isinstance(r, InsufficientBalanceError)]
# All 10 should succeed since we have exactly $10
assert len(successful) == 10, f"Expected 10 successful, got {len(successful)}"
assert len(failed) == 0, f"Expected 0 failures, got {len(failed)}"
# Final balance should be exactly 0
final_balance = await credit_system.get_credits(user_id)
assert final_balance == 0, f"Expected balance 0, got {final_balance}"
# Verify transaction history is consistent
transactions = await CreditTransaction.prisma().find_many(
where={"userId": user_id, "type": prisma.enums.CreditTransactionType.USAGE}
)
assert (
len(transactions) == 10
), f"Expected 10 transactions, got {len(transactions)}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_concurrent_spends_insufficient_balance(server: SpinTestServer):
"""Test that concurrent spends correctly enforce balance limits."""
user_id = f"insufficient-test-{uuid4()}"
await create_test_user(user_id)
try:
# Give user limited balance using internal method (bypasses Stripe)
await credit_system._add_transaction(
user_id=user_id,
amount=500,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "limited_balance"}),
)
# Try to spend 10 x $1 concurrently (but only have $5)
async def spend_one_dollar(idx: int):
try:
return await credit_system.spend_credits(
user_id,
100, # $1
UsageTransactionMetadata(
graph_exec_id=f"insufficient-{idx}",
reason=f"Insufficient spend {idx}",
),
)
except InsufficientBalanceError:
return "FAILED"
# Run 10 concurrent spends
results = await asyncio.gather(
*[spend_one_dollar(i) for i in range(10)], return_exceptions=True
)
# Count successful vs failed
successful = [
r
for r in results
if r not in ["FAILED", None] and not isinstance(r, Exception)
]
failed = [r for r in results if r == "FAILED"]
# Exactly 5 should succeed, 5 should fail
assert len(successful) == 5, f"Expected 5 successful, got {len(successful)}"
assert len(failed) == 5, f"Expected 5 failures, got {len(failed)}"
# Final balance should be exactly 0
final_balance = await credit_system.get_credits(user_id)
assert final_balance == 0, f"Expected balance 0, got {final_balance}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_concurrent_mixed_operations(server: SpinTestServer):
"""Test concurrent mix of spends, top-ups, and balance checks."""
user_id = f"mixed-test-{uuid4()}"
await create_test_user(user_id)
try:
# Initial balance using internal method (bypasses Stripe)
await credit_system._add_transaction(
user_id=user_id,
amount=1000,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "initial_balance"}),
)
# Mix of operations
async def mixed_operations():
operations = []
# 5 spends of $1 each
for i in range(5):
operations.append(
credit_system.spend_credits(
user_id,
100,
UsageTransactionMetadata(reason=f"Mixed spend {i}"),
)
)
# 3 top-ups of $2 each using internal method
for i in range(3):
operations.append(
credit_system._add_transaction(
user_id=user_id,
amount=200,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": f"concurrent_topup_{i}"}),
)
)
# 10 balance checks
for i in range(10):
operations.append(credit_system.get_credits(user_id))
return await asyncio.gather(*operations, return_exceptions=True)
results = await mixed_operations()
# Check no exceptions occurred
exceptions = [
r
for r in results
if isinstance(r, Exception) and not isinstance(r, InsufficientBalanceError)
]
assert len(exceptions) == 0, f"Unexpected exceptions: {exceptions}"
# Final balance should be: 1000 - 500 + 600 = 1100
final_balance = await credit_system.get_credits(user_id)
assert final_balance == 1100, f"Expected balance 1100, got {final_balance}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_race_condition_exact_balance(server: SpinTestServer):
"""Test spending exact balance amount concurrently doesn't go negative."""
user_id = f"exact-balance-{uuid4()}"
await create_test_user(user_id)
try:
# Give exact amount using internal method (bypasses Stripe)
await credit_system._add_transaction(
user_id=user_id,
amount=100,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "exact_amount"}),
)
# Try to spend $1 twice concurrently
async def spend_exact():
try:
return await credit_system.spend_credits(
user_id, 100, UsageTransactionMetadata(reason="Exact spend")
)
except InsufficientBalanceError:
return "FAILED"
# Both try to spend the full balance
result1, result2 = await asyncio.gather(spend_exact(), spend_exact())
# Exactly one should succeed
results = [result1, result2]
successful = [
r for r in results if r != "FAILED" and not isinstance(r, Exception)
]
failed = [r for r in results if r == "FAILED"]
assert len(successful) == 1, f"Expected 1 success, got {len(successful)}"
assert len(failed) == 1, f"Expected 1 failure, got {len(failed)}"
# Balance should be exactly 0, never negative
final_balance = await credit_system.get_credits(user_id)
assert final_balance == 0, f"Expected balance 0, got {final_balance}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_onboarding_reward_idempotency(server: SpinTestServer):
"""Test that onboarding rewards are idempotent (can't be claimed twice)."""
user_id = f"onboarding-test-{uuid4()}"
await create_test_user(user_id)
try:
# Use WELCOME step which is defined in the OnboardingStep enum
# Try to claim same reward multiple times concurrently
async def claim_reward():
try:
result = await credit_system.onboarding_reward(
user_id, 500, prisma.enums.OnboardingStep.WELCOME
)
return "SUCCESS" if result else "DUPLICATE"
except Exception as e:
print(f"Claim reward failed: {e}")
return "FAILED"
# Try 5 concurrent claims of the same reward
results = await asyncio.gather(*[claim_reward() for _ in range(5)])
# Count results
success_count = results.count("SUCCESS")
failed_count = results.count("FAILED")
# At least one should succeed, others should be duplicates
assert success_count >= 1, f"At least one claim should succeed, got {results}"
assert failed_count == 0, f"No claims should fail, got {results}"
# Check balance - should only have 500, not 2500
final_balance = await credit_system.get_credits(user_id)
assert final_balance == 500, f"Expected balance 500, got {final_balance}"
# Check only one transaction exists
transactions = await CreditTransaction.prisma().find_many(
where={
"userId": user_id,
"type": prisma.enums.CreditTransactionType.GRANT,
"transactionKey": f"REWARD-{user_id}-WELCOME",
}
)
assert (
len(transactions) == 1
), f"Expected 1 reward transaction, got {len(transactions)}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_integer_overflow_protection(server: SpinTestServer):
"""Test that integer overflow is prevented by clamping to POSTGRES_INT_MAX."""
user_id = f"overflow-test-{uuid4()}"
await create_test_user(user_id)
try:
# Try to add amount that would overflow
max_int = POSTGRES_INT_MAX
# First, set balance near max
await UserBalance.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id, "balance": max_int - 100},
"update": {"balance": max_int - 100},
},
)
# Try to add more than possible - should clamp to POSTGRES_INT_MAX
await credit_system._add_transaction(
user_id=user_id,
amount=200,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "overflow_protection"}),
)
# Balance should be clamped to max_int, not overflowed
final_balance = await credit_system.get_credits(user_id)
assert (
final_balance == max_int
), f"Balance should be clamped to {max_int}, got {final_balance}"
# Verify transaction was created with clamped amount
transactions = await CreditTransaction.prisma().find_many(
where={
"userId": user_id,
"type": prisma.enums.CreditTransactionType.TOP_UP,
},
order={"createdAt": "desc"},
)
assert len(transactions) > 0, "Transaction should be created"
assert (
transactions[0].runningBalance == max_int
), "Transaction should show clamped balance"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_high_concurrency_stress(server: SpinTestServer):
"""Stress test with many concurrent operations."""
user_id = f"stress-test-{uuid4()}"
await create_test_user(user_id)
try:
# Initial balance using internal method (bypasses Stripe)
initial_balance = 10000 # $100
await credit_system._add_transaction(
user_id=user_id,
amount=initial_balance,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "stress_test_balance"}),
)
# Run many concurrent operations
async def random_operation(idx: int):
operation = random.choice(["spend", "check"])
if operation == "spend":
amount = random.randint(1, 50) # $0.01 to $0.50
try:
return (
"spend",
amount,
await credit_system.spend_credits(
user_id,
amount,
UsageTransactionMetadata(reason=f"Stress {idx}"),
),
)
except InsufficientBalanceError:
return ("spend_failed", amount, None)
else:
balance = await credit_system.get_credits(user_id)
return ("check", 0, balance)
# Run 100 concurrent operations
results = await asyncio.gather(
*[random_operation(i) for i in range(100)], return_exceptions=True
)
# Calculate expected final balance
total_spent = sum(
r[1]
for r in results
if not isinstance(r, Exception) and isinstance(r, tuple) and r[0] == "spend"
)
expected_balance = initial_balance - total_spent
# Verify final balance
final_balance = await credit_system.get_credits(user_id)
assert (
final_balance == expected_balance
), f"Expected {expected_balance}, got {final_balance}"
assert final_balance >= 0, "Balance went negative!"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_concurrent_multiple_spends_sufficient_balance(server: SpinTestServer):
"""Test multiple concurrent spends when there's sufficient balance for all."""
user_id = f"multi-spend-test-{uuid4()}"
await create_test_user(user_id)
try:
# Give user 150 balance ($1.50) using internal method (bypasses Stripe)
await credit_system._add_transaction(
user_id=user_id,
amount=150,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "sufficient_balance"}),
)
# Track individual timing to see serialization
timings = {}
async def spend_with_detailed_timing(amount: int, label: str):
start = asyncio.get_event_loop().time()
try:
await credit_system.spend_credits(
user_id,
amount,
UsageTransactionMetadata(
graph_exec_id=f"concurrent-{label}",
reason=f"Concurrent spend {label}",
),
)
end = asyncio.get_event_loop().time()
timings[label] = {"start": start, "end": end, "duration": end - start}
return f"{label}-SUCCESS"
except Exception as e:
end = asyncio.get_event_loop().time()
timings[label] = {
"start": start,
"end": end,
"duration": end - start,
"error": str(e),
}
return f"{label}-FAILED: {e}"
# Run concurrent spends: 10, 20, 30 (total 60, well under 150)
overall_start = asyncio.get_event_loop().time()
results = await asyncio.gather(
spend_with_detailed_timing(10, "spend-10"),
spend_with_detailed_timing(20, "spend-20"),
spend_with_detailed_timing(30, "spend-30"),
return_exceptions=True,
)
overall_end = asyncio.get_event_loop().time()
print(f"Results: {results}")
print(f"Overall duration: {overall_end - overall_start:.4f}s")
# Analyze timing to detect serialization vs true concurrency
print("\nTiming analysis:")
for label, timing in timings.items():
print(
f" {label}: started at {timing['start']:.4f}, ended at {timing['end']:.4f}, duration {timing['duration']:.4f}s"
)
# Check if operations overlapped (true concurrency) or were serialized
sorted_timings = sorted(timings.items(), key=lambda x: x[1]["start"])
print("\nExecution order by start time:")
for i, (label, timing) in enumerate(sorted_timings):
print(f" {i+1}. {label}: {timing['start']:.4f} -> {timing['end']:.4f}")
# Check for overlap (true concurrency) vs serialization
overlaps = []
for i in range(len(sorted_timings) - 1):
current = sorted_timings[i]
next_op = sorted_timings[i + 1]
if current[1]["end"] > next_op[1]["start"]:
overlaps.append(f"{current[0]} overlaps with {next_op[0]}")
if overlaps:
print(f"✅ TRUE CONCURRENCY detected: {overlaps}")
else:
print("🔒 SERIALIZATION detected: No overlapping execution times")
# Check final balance
final_balance = await credit_system.get_credits(user_id)
print(f"Final balance: {final_balance}")
# Count successes/failures
successful = [r for r in results if "SUCCESS" in str(r)]
failed = [r for r in results if "FAILED" in str(r)]
print(f"Successful: {len(successful)}, Failed: {len(failed)}")
# All should succeed since 150 - (10 + 20 + 30) = 90 > 0
assert (
len(successful) == 3
), f"Expected all 3 to succeed, got {len(successful)} successes: {results}"
assert final_balance == 90, f"Expected balance 90, got {final_balance}"
# Check transaction timestamps to confirm database-level serialization
transactions = await CreditTransaction.prisma().find_many(
where={"userId": user_id, "type": prisma.enums.CreditTransactionType.USAGE},
order={"createdAt": "asc"},
)
print("\nDatabase transaction order (by createdAt):")
for i, tx in enumerate(transactions):
print(
f" {i+1}. Amount {tx.amount}, Running balance: {tx.runningBalance}, Created: {tx.createdAt}"
)
# Verify running balances are chronologically consistent (ordered by createdAt)
actual_balances = [
tx.runningBalance for tx in transactions if tx.runningBalance is not None
]
print(f"Running balances: {actual_balances}")
# The balances should be valid intermediate states regardless of execution order
# Starting balance: 150, spending 10+20+30=60, so final should be 90
# The intermediate balances depend on execution order but should all be valid
expected_possible_balances = {
# If order is 10, 20, 30: [140, 120, 90]
# If order is 10, 30, 20: [140, 110, 90]
# If order is 20, 10, 30: [130, 120, 90]
# If order is 20, 30, 10: [130, 100, 90]
# If order is 30, 10, 20: [120, 110, 90]
# If order is 30, 20, 10: [120, 100, 90]
90,
100,
110,
120,
130,
140, # All possible intermediate balances
}
# Verify all balances are valid intermediate states
for balance in actual_balances:
assert (
balance in expected_possible_balances
), f"Invalid balance {balance}, expected one of {expected_possible_balances}"
# Final balance should always be 90 (150 - 60)
assert (
min(actual_balances) == 90
), f"Final balance should be 90, got {min(actual_balances)}"
# The final transaction should always have balance 90
# The other transactions should have valid intermediate balances
assert (
90 in actual_balances
), f"Final balance 90 should be in actual_balances: {actual_balances}"
# All balances should be >= 90 (the final state)
assert all(
balance >= 90 for balance in actual_balances
), f"All balances should be >= 90, got {actual_balances}"
# CRITICAL: Transactions are atomic but can complete in any order
# What matters is that all running balances are valid intermediate states
# Each balance should be between 90 (final) and 140 (after first transaction)
for balance in actual_balances:
assert (
90 <= balance <= 140
), f"Balance {balance} is outside valid range [90, 140]"
# Final balance (minimum) should always be 90
assert (
min(actual_balances) == 90
), f"Final balance should be 90, got {min(actual_balances)}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_prove_database_locking_behavior(server: SpinTestServer):
"""Definitively prove whether database locking causes waiting vs failures."""
user_id = f"locking-test-{uuid4()}"
await create_test_user(user_id)
try:
# Set balance to exact amount that can handle all spends using internal method (bypasses Stripe)
await credit_system._add_transaction(
user_id=user_id,
amount=60, # Exactly 10+20+30
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "exact_amount_test"}),
)
async def spend_with_precise_timing(amount: int, label: str):
request_start = asyncio.get_event_loop().time()
db_operation_start = asyncio.get_event_loop().time()
try:
# Add a small delay to increase chance of true concurrency
await asyncio.sleep(0.001)
db_operation_start = asyncio.get_event_loop().time()
await credit_system.spend_credits(
user_id,
amount,
UsageTransactionMetadata(
graph_exec_id=f"locking-{label}",
reason=f"Locking test {label}",
),
)
db_operation_end = asyncio.get_event_loop().time()
return {
"label": label,
"status": "SUCCESS",
"request_start": request_start,
"db_start": db_operation_start,
"db_end": db_operation_end,
"db_duration": db_operation_end - db_operation_start,
}
except Exception as e:
db_operation_end = asyncio.get_event_loop().time()
return {
"label": label,
"status": "FAILED",
"error": str(e),
"request_start": request_start,
"db_start": db_operation_start,
"db_end": db_operation_end,
"db_duration": db_operation_end - db_operation_start,
}
# Launch all requests simultaneously
results = await asyncio.gather(
spend_with_precise_timing(10, "A"),
spend_with_precise_timing(20, "B"),
spend_with_precise_timing(30, "C"),
return_exceptions=True,
)
print("\n🔍 LOCKING BEHAVIOR ANALYSIS:")
print("=" * 50)
successful = [
r for r in results if isinstance(r, dict) and r.get("status") == "SUCCESS"
]
failed = [
r for r in results if isinstance(r, dict) and r.get("status") == "FAILED"
]
print(f"✅ Successful operations: {len(successful)}")
print(f"❌ Failed operations: {len(failed)}")
if len(failed) > 0:
print(
"\n🚫 CONCURRENT FAILURES - Some requests failed due to insufficient balance:"
)
for result in failed:
if isinstance(result, dict):
print(
f" {result['label']}: {result.get('error', 'Unknown error')}"
)
if len(successful) == 3:
print(
"\n🔒 SERIALIZATION CONFIRMED - All requests succeeded, indicating they were queued:"
)
# Sort by actual execution time to see order
dict_results = [r for r in results if isinstance(r, dict)]
sorted_results = sorted(dict_results, key=lambda x: x["db_start"])
for i, result in enumerate(sorted_results):
print(
f" {i+1}. {result['label']}: DB operation took {result['db_duration']:.4f}s"
)
# Check if any operations overlapped at the database level
print("\n⏱️ Database operation timeline:")
for result in sorted_results:
print(
f" {result['label']}: {result['db_start']:.4f} -> {result['db_end']:.4f}"
)
# Verify final state
final_balance = await credit_system.get_credits(user_id)
print(f"\n💰 Final balance: {final_balance}")
if len(successful) == 3:
assert (
final_balance == 0
), f"If all succeeded, balance should be 0, got {final_balance}"
print(
"✅ CONCLUSION: Database row locking causes requests to WAIT and execute serially"
)
else:
print(
"❌ CONCLUSION: Some requests failed, indicating different concurrency behavior"
)
finally:
await cleanup_test_user(user_id)

View File

@@ -0,0 +1,277 @@
"""
Integration tests for credit system to catch SQL enum casting issues.
These tests run actual database operations to ensure SQL queries work correctly,
which would have caught the CreditTransactionType enum casting bug.
"""
import pytest
from prisma.enums import CreditTransactionType
from prisma.models import CreditTransaction, User, UserBalance
from backend.data.credit import (
AutoTopUpConfig,
BetaUserCredit,
UsageTransactionMetadata,
get_auto_top_up,
set_auto_top_up,
)
from backend.util.json import SafeJson
@pytest.fixture
async def cleanup_test_user():
"""Clean up test user data before and after tests."""
import uuid
user_id = str(uuid.uuid4()) # Use unique user ID for each test
# Create the user first
try:
await User.prisma().create(
data={
"id": user_id,
"email": f"test-{user_id}@example.com",
"topUpConfig": SafeJson({}),
"timezone": "UTC",
}
)
except Exception:
# User might already exist, that's fine
pass
yield user_id
# Cleanup after test
await CreditTransaction.prisma().delete_many(where={"userId": user_id})
await UserBalance.prisma().delete_many(where={"userId": user_id})
# Clear auto-top-up config before deleting user
await User.prisma().update(
where={"id": user_id}, data={"topUpConfig": SafeJson({})}
)
await User.prisma().delete(where={"id": user_id})
@pytest.mark.asyncio(loop_scope="session")
async def test_credit_transaction_enum_casting_integration(cleanup_test_user):
"""
Integration test to verify CreditTransactionType enum casting works in SQL queries.
This test would have caught the enum casting bug where PostgreSQL expected
platform."CreditTransactionType" but got "CreditTransactionType".
"""
user_id = cleanup_test_user
credit_system = BetaUserCredit(1000)
# Test each transaction type to ensure enum casting works
test_cases = [
(CreditTransactionType.TOP_UP, 100, "Test top-up"),
(CreditTransactionType.USAGE, -50, "Test usage"),
(CreditTransactionType.GRANT, 200, "Test grant"),
(CreditTransactionType.REFUND, -25, "Test refund"),
(CreditTransactionType.CARD_CHECK, 0, "Test card check"),
]
for transaction_type, amount, reason in test_cases:
metadata = SafeJson({"reason": reason, "test": "enum_casting"})
# This call would fail with enum casting error before the fix
balance, tx_key = await credit_system._add_transaction(
user_id=user_id,
amount=amount,
transaction_type=transaction_type,
metadata=metadata,
is_active=True,
)
# Verify transaction was created with correct type
transaction = await CreditTransaction.prisma().find_first(
where={"userId": user_id, "transactionKey": tx_key}
)
assert transaction is not None
assert transaction.type == transaction_type
assert transaction.amount == amount
assert transaction.metadata is not None
# Verify metadata content
assert transaction.metadata["reason"] == reason
assert transaction.metadata["test"] == "enum_casting"
@pytest.mark.asyncio(loop_scope="session")
async def test_auto_top_up_integration(cleanup_test_user, monkeypatch):
"""
Integration test for auto-top-up functionality that triggers enum casting.
This tests the complete auto-top-up flow which involves SQL queries with
CreditTransactionType enums, ensuring enum casting works end-to-end.
"""
# Enable credits for this test
from backend.data.credit import settings
monkeypatch.setattr(settings.config, "enable_credit", True)
monkeypatch.setattr(settings.config, "enable_beta_monthly_credit", True)
monkeypatch.setattr(settings.config, "num_user_credits_refill", 1000)
user_id = cleanup_test_user
credit_system = BetaUserCredit(1000)
# First add some initial credits so we can test the configuration and subsequent behavior
balance, _ = await credit_system._add_transaction(
user_id=user_id,
amount=50, # Below threshold that we'll set
transaction_type=CreditTransactionType.GRANT,
metadata=SafeJson({"reason": "Initial credits before auto top-up config"}),
)
assert balance == 50
# Configure auto top-up with threshold above current balance
config = AutoTopUpConfig(threshold=100, amount=500)
await set_auto_top_up(user_id, config)
# Verify configuration was saved but no immediate top-up occurred
current_balance = await credit_system.get_credits(user_id)
assert current_balance == 50 # Balance should be unchanged
# Simulate spending credits that would trigger auto top-up
# This involves multiple SQL operations with enum casting
try:
metadata = UsageTransactionMetadata(reason="Test spend to trigger auto top-up")
await credit_system.spend_credits(user_id=user_id, cost=10, metadata=metadata)
# The auto top-up mechanism should have been triggered
# Verify the transaction types were handled correctly
transactions = await CreditTransaction.prisma().find_many(
where={"userId": user_id}, order={"createdAt": "desc"}
)
# Should have at least: GRANT (initial), USAGE (spend), and TOP_UP (auto top-up)
assert len(transactions) >= 3
# Verify different transaction types exist and enum casting worked
transaction_types = {t.type for t in transactions}
assert CreditTransactionType.GRANT in transaction_types
assert CreditTransactionType.USAGE in transaction_types
assert (
CreditTransactionType.TOP_UP in transaction_types
) # Auto top-up should have triggered
except Exception as e:
# If this fails with enum casting error, the test successfully caught the bug
if "CreditTransactionType" in str(e) and (
"cast" in str(e).lower() or "type" in str(e).lower()
):
pytest.fail(f"Enum casting error detected: {e}")
else:
# Re-raise other unexpected errors
raise
@pytest.mark.asyncio(loop_scope="session")
async def test_enable_transaction_enum_casting_integration(cleanup_test_user):
"""
Integration test for _enable_transaction with enum casting.
Tests the scenario where inactive transactions are enabled, which also
involves SQL queries with CreditTransactionType enum casting.
"""
user_id = cleanup_test_user
credit_system = BetaUserCredit(1000)
# Create an inactive transaction
balance, tx_key = await credit_system._add_transaction(
user_id=user_id,
amount=100,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"reason": "Inactive transaction test"}),
is_active=False, # Create as inactive
)
# Balance should be 0 since transaction is inactive
assert balance == 0
# Enable the transaction with new metadata
enable_metadata = SafeJson(
{
"payment_method": "test_payment",
"activation_reason": "Integration test activation",
}
)
# This would fail with enum casting error before the fix
final_balance = await credit_system._enable_transaction(
transaction_key=tx_key,
user_id=user_id,
metadata=enable_metadata,
)
# Now balance should reflect the activated transaction
assert final_balance == 100
# Verify transaction was properly enabled with correct enum type
transaction = await CreditTransaction.prisma().find_first(
where={"userId": user_id, "transactionKey": tx_key}
)
assert transaction is not None
assert transaction.isActive is True
assert transaction.type == CreditTransactionType.TOP_UP
assert transaction.runningBalance == 100
# Verify metadata was updated
assert transaction.metadata is not None
assert transaction.metadata["payment_method"] == "test_payment"
assert transaction.metadata["activation_reason"] == "Integration test activation"
@pytest.mark.asyncio(loop_scope="session")
async def test_auto_top_up_configuration_storage(cleanup_test_user, monkeypatch):
"""
Test that auto-top-up configuration is properly stored and retrieved.
The immediate top-up logic is handled by the API routes, not the core
set_auto_top_up function. This test verifies the configuration is correctly
saved and can be retrieved.
"""
# Enable credits for this test
from backend.data.credit import settings
monkeypatch.setattr(settings.config, "enable_credit", True)
monkeypatch.setattr(settings.config, "enable_beta_monthly_credit", True)
monkeypatch.setattr(settings.config, "num_user_credits_refill", 1000)
user_id = cleanup_test_user
credit_system = BetaUserCredit(1000)
# Set initial balance
balance, _ = await credit_system._add_transaction(
user_id=user_id,
amount=50,
transaction_type=CreditTransactionType.GRANT,
metadata=SafeJson({"reason": "Initial balance for config test"}),
)
assert balance == 50
# Configure auto top-up
config = AutoTopUpConfig(threshold=100, amount=200)
await set_auto_top_up(user_id, config)
# Verify the configuration was saved
retrieved_config = await get_auto_top_up(user_id)
assert retrieved_config.threshold == config.threshold
assert retrieved_config.amount == config.amount
# Verify balance is unchanged (no immediate top-up from set_auto_top_up)
final_balance = await credit_system.get_credits(user_id)
assert final_balance == 50 # Should be unchanged
# Verify no immediate auto-top-up transaction was created by set_auto_top_up
transactions = await CreditTransaction.prisma().find_many(
where={"userId": user_id}, order={"createdAt": "desc"}
)
# Should only have the initial GRANT transaction
assert len(transactions) == 1
assert transactions[0].type == CreditTransactionType.GRANT

View File

@@ -0,0 +1,141 @@
"""
Tests for credit system metadata handling to ensure JSON casting works correctly.
This test verifies that metadata parameters are properly serialized when passed
to raw SQL queries with JSONB columns.
"""
# type: ignore
from typing import Any
import pytest
from prisma.enums import CreditTransactionType
from prisma.models import CreditTransaction, UserBalance
from backend.data.credit import BetaUserCredit
from backend.data.user import DEFAULT_USER_ID
from backend.util.json import SafeJson
@pytest.fixture
async def setup_test_user():
"""Setup test user and cleanup after test."""
user_id = DEFAULT_USER_ID
# Cleanup before test
await CreditTransaction.prisma().delete_many(where={"userId": user_id})
await UserBalance.prisma().delete_many(where={"userId": user_id})
yield user_id
# Cleanup after test
await CreditTransaction.prisma().delete_many(where={"userId": user_id})
await UserBalance.prisma().delete_many(where={"userId": user_id})
@pytest.mark.asyncio(loop_scope="session")
async def test_metadata_json_serialization(setup_test_user):
"""Test that metadata is properly serialized for JSONB column in raw SQL."""
user_id = setup_test_user
credit_system = BetaUserCredit(1000)
# Test with complex metadata that would fail if not properly serialized
complex_metadata = SafeJson(
{
"graph_exec_id": "test-12345",
"reason": "Testing metadata serialization",
"nested_data": {
"key1": "value1",
"key2": ["array", "of", "values"],
"key3": {"deeply": {"nested": "object"}},
},
"special_chars": "Testing 'quotes' and \"double quotes\" and unicode: 🚀",
}
)
# This should work without throwing a JSONB casting error
balance, tx_key = await credit_system._add_transaction(
user_id=user_id,
amount=500, # $5 top-up
transaction_type=CreditTransactionType.TOP_UP,
metadata=complex_metadata,
is_active=True,
)
# Verify the transaction was created successfully
assert balance == 500
# Verify the metadata was stored correctly in the database
transaction = await CreditTransaction.prisma().find_first(
where={"userId": user_id, "transactionKey": tx_key}
)
assert transaction is not None
assert transaction.metadata is not None
# Verify the metadata contains our complex data
metadata_dict: dict[str, Any] = dict(transaction.metadata) # type: ignore
assert metadata_dict["graph_exec_id"] == "test-12345"
assert metadata_dict["reason"] == "Testing metadata serialization"
assert metadata_dict["nested_data"]["key1"] == "value1"
assert metadata_dict["nested_data"]["key3"]["deeply"]["nested"] == "object"
assert (
metadata_dict["special_chars"]
== "Testing 'quotes' and \"double quotes\" and unicode: 🚀"
)
@pytest.mark.asyncio(loop_scope="session")
async def test_enable_transaction_metadata_serialization(setup_test_user):
"""Test that _enable_transaction also handles metadata JSON serialization correctly."""
user_id = setup_test_user
credit_system = BetaUserCredit(1000)
# First create an inactive transaction
balance, tx_key = await credit_system._add_transaction(
user_id=user_id,
amount=300,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"initial": "inactive_transaction"}),
is_active=False, # Create as inactive
)
# Initial balance should be 0 because transaction is inactive
assert balance == 0
# Now enable the transaction with new metadata
enable_metadata = SafeJson(
{
"payment_method": "stripe",
"payment_intent": "pi_test_12345",
"activation_reason": "Payment confirmed",
"complex_data": {"array": [1, 2, 3], "boolean": True, "null_value": None},
}
)
# This should work without JSONB casting errors
final_balance = await credit_system._enable_transaction(
transaction_key=tx_key,
user_id=user_id,
metadata=enable_metadata,
)
# Now balance should reflect the activated transaction
assert final_balance == 300
# Verify the metadata was updated correctly
transaction = await CreditTransaction.prisma().find_first(
where={"userId": user_id, "transactionKey": tx_key}
)
assert transaction is not None
assert transaction.isActive is True
# Verify the metadata was updated with enable_metadata
metadata_dict: dict[str, Any] = dict(transaction.metadata) # type: ignore
assert metadata_dict["payment_method"] == "stripe"
assert metadata_dict["payment_intent"] == "pi_test_12345"
assert metadata_dict["complex_data"]["array"] == [1, 2, 3]
assert metadata_dict["complex_data"]["boolean"] is True
assert metadata_dict["complex_data"]["null_value"] is None

View File

@@ -0,0 +1,372 @@
"""
Tests for credit system refund and dispute operations.
These tests ensure that refund operations (deduct_credits, handle_dispute)
are atomic and maintain data consistency.
"""
from datetime import datetime, timezone
from unittest.mock import MagicMock, patch
import pytest
import stripe
from prisma.enums import CreditTransactionType
from prisma.models import CreditRefundRequest, CreditTransaction, User, UserBalance
from backend.data.credit import UserCredit
from backend.util.json import SafeJson
from backend.util.test import SpinTestServer
credit_system = UserCredit()
# Test user ID for refund tests
REFUND_TEST_USER_ID = "refund-test-user"
async def setup_test_user_with_topup():
"""Create a test user with initial balance and a top-up transaction."""
# Clean up any existing data
await CreditRefundRequest.prisma().delete_many(
where={"userId": REFUND_TEST_USER_ID}
)
await CreditTransaction.prisma().delete_many(where={"userId": REFUND_TEST_USER_ID})
await UserBalance.prisma().delete_many(where={"userId": REFUND_TEST_USER_ID})
await User.prisma().delete_many(where={"id": REFUND_TEST_USER_ID})
# Create user
await User.prisma().create(
data={
"id": REFUND_TEST_USER_ID,
"email": f"{REFUND_TEST_USER_ID}@example.com",
"name": "Refund Test User",
}
)
# Create user balance
await UserBalance.prisma().create(
data={
"userId": REFUND_TEST_USER_ID,
"balance": 1000, # $10
}
)
# Create a top-up transaction that can be refunded
topup_tx = await CreditTransaction.prisma().create(
data={
"userId": REFUND_TEST_USER_ID,
"amount": 1000,
"type": CreditTransactionType.TOP_UP,
"transactionKey": "pi_test_12345",
"runningBalance": 1000,
"isActive": True,
"metadata": SafeJson({"stripe_payment_intent": "pi_test_12345"}),
}
)
return topup_tx
async def cleanup_test_user():
"""Clean up test data."""
await CreditRefundRequest.prisma().delete_many(
where={"userId": REFUND_TEST_USER_ID}
)
await CreditTransaction.prisma().delete_many(where={"userId": REFUND_TEST_USER_ID})
await UserBalance.prisma().delete_many(where={"userId": REFUND_TEST_USER_ID})
await User.prisma().delete_many(where={"id": REFUND_TEST_USER_ID})
@pytest.mark.asyncio(loop_scope="session")
async def test_deduct_credits_atomic(server: SpinTestServer):
"""Test that deduct_credits is atomic and creates transaction correctly."""
topup_tx = await setup_test_user_with_topup()
try:
# Create a mock refund object
refund = MagicMock(spec=stripe.Refund)
refund.id = "re_test_refund_123"
refund.payment_intent = topup_tx.transactionKey
refund.amount = 500 # Refund $5 of the $10 top-up
refund.status = "succeeded"
refund.reason = "requested_by_customer"
refund.created = int(datetime.now(timezone.utc).timestamp())
# Create refund request record (simulating webhook flow)
await CreditRefundRequest.prisma().create(
data={
"userId": REFUND_TEST_USER_ID,
"amount": 500,
"transactionKey": topup_tx.transactionKey, # Should match the original transaction
"reason": "Test refund",
}
)
# Call deduct_credits
await credit_system.deduct_credits(refund)
# Verify the user's balance was deducted
user_balance = await UserBalance.prisma().find_unique(
where={"userId": REFUND_TEST_USER_ID}
)
assert user_balance is not None
assert (
user_balance.balance == 500
), f"Expected balance 500, got {user_balance.balance}"
# Verify refund transaction was created
refund_tx = await CreditTransaction.prisma().find_first(
where={
"userId": REFUND_TEST_USER_ID,
"type": CreditTransactionType.REFUND,
"transactionKey": refund.id,
}
)
assert refund_tx is not None
assert refund_tx.amount == -500
assert refund_tx.runningBalance == 500
assert refund_tx.isActive
# Verify refund request was updated
refund_request = await CreditRefundRequest.prisma().find_first(
where={
"userId": REFUND_TEST_USER_ID,
"transactionKey": topup_tx.transactionKey,
}
)
assert refund_request is not None
assert (
refund_request.result
== "The refund request has been approved, the amount will be credited back to your account."
)
finally:
await cleanup_test_user()
@pytest.mark.asyncio(loop_scope="session")
async def test_deduct_credits_user_not_found(server: SpinTestServer):
"""Test that deduct_credits raises error if transaction not found (which means user doesn't exist)."""
# Create a mock refund object that references a non-existent payment intent
refund = MagicMock(spec=stripe.Refund)
refund.id = "re_test_refund_nonexistent"
refund.payment_intent = "pi_test_nonexistent" # This payment intent doesn't exist
refund.amount = 500
refund.status = "succeeded"
refund.reason = "requested_by_customer"
refund.created = int(datetime.now(timezone.utc).timestamp())
# Should raise error for missing transaction
with pytest.raises(Exception): # Should raise NotFoundError for missing transaction
await credit_system.deduct_credits(refund)
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.data.credit.settings")
@patch("stripe.Dispute.modify")
@patch("backend.data.credit.get_user_by_id")
async def test_handle_dispute_with_sufficient_balance(
mock_get_user, mock_stripe_modify, mock_settings, server: SpinTestServer
):
"""Test handling dispute when user has sufficient balance (dispute gets closed)."""
topup_tx = await setup_test_user_with_topup()
try:
# Mock settings to have a low tolerance threshold
mock_settings.config.refund_credit_tolerance_threshold = 0
# Mock the user lookup
mock_user = MagicMock()
mock_user.email = f"{REFUND_TEST_USER_ID}@example.com"
mock_get_user.return_value = mock_user
# Create a mock dispute object for small amount (user has 1000, disputing 100)
dispute = MagicMock(spec=stripe.Dispute)
dispute.id = "dp_test_dispute_123"
dispute.payment_intent = topup_tx.transactionKey
dispute.amount = 100 # Small dispute amount
dispute.status = "pending"
dispute.reason = "fraudulent"
dispute.created = int(datetime.now(timezone.utc).timestamp())
# Mock the close method to prevent real API calls
dispute.close = MagicMock()
# Handle the dispute
await credit_system.handle_dispute(dispute)
# Verify dispute.close() was called (since user has sufficient balance)
dispute.close.assert_called_once()
# Verify no stripe evidence was added since dispute was closed
mock_stripe_modify.assert_not_called()
# Verify the user's balance was NOT deducted (dispute was closed)
user_balance = await UserBalance.prisma().find_unique(
where={"userId": REFUND_TEST_USER_ID}
)
assert user_balance is not None
assert (
user_balance.balance == 1000
), f"Balance should remain 1000, got {user_balance.balance}"
finally:
await cleanup_test_user()
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.data.credit.settings")
@patch("stripe.Dispute.modify")
@patch("backend.data.credit.get_user_by_id")
async def test_handle_dispute_with_insufficient_balance(
mock_get_user, mock_stripe_modify, mock_settings, server: SpinTestServer
):
"""Test handling dispute when user has insufficient balance (evidence gets added)."""
topup_tx = await setup_test_user_with_topup()
# Save original method for restoration before any try blocks
original_get_history = credit_system.get_transaction_history
try:
# Mock settings to have a high tolerance threshold so dispute isn't closed
mock_settings.config.refund_credit_tolerance_threshold = 2000
# Mock the user lookup
mock_user = MagicMock()
mock_user.email = f"{REFUND_TEST_USER_ID}@example.com"
mock_get_user.return_value = mock_user
# Mock the transaction history method to return an async result
from unittest.mock import AsyncMock
mock_history = MagicMock()
mock_history.transactions = []
credit_system.get_transaction_history = AsyncMock(return_value=mock_history)
# Create a mock dispute object for full amount (user has 1000, disputing 1000)
dispute = MagicMock(spec=stripe.Dispute)
dispute.id = "dp_test_dispute_pending"
dispute.payment_intent = topup_tx.transactionKey
dispute.amount = 1000
dispute.status = "warning_needs_response"
dispute.created = int(datetime.now(timezone.utc).timestamp())
# Mock the close method to prevent real API calls
dispute.close = MagicMock()
# Handle the dispute (evidence should be added)
await credit_system.handle_dispute(dispute)
# Verify dispute.close() was NOT called (insufficient balance after tolerance)
dispute.close.assert_not_called()
# Verify stripe evidence was added since dispute wasn't closed
mock_stripe_modify.assert_called_once()
# Verify the user's balance was NOT deducted (handle_dispute doesn't deduct credits)
user_balance = await UserBalance.prisma().find_unique(
where={"userId": REFUND_TEST_USER_ID}
)
assert user_balance is not None
assert user_balance.balance == 1000, "Balance should remain unchanged"
finally:
credit_system.get_transaction_history = original_get_history
await cleanup_test_user()
@pytest.mark.asyncio(loop_scope="session")
async def test_concurrent_refunds(server: SpinTestServer):
"""Test that concurrent refunds are handled atomically."""
import asyncio
topup_tx = await setup_test_user_with_topup()
try:
# Create multiple refund requests
refund_requests = []
for i in range(5):
req = await CreditRefundRequest.prisma().create(
data={
"userId": REFUND_TEST_USER_ID,
"amount": 100, # $1 each
"transactionKey": topup_tx.transactionKey,
"reason": f"Test refund {i}",
}
)
refund_requests.append(req)
# Create refund tasks to run concurrently
async def process_refund(index: int):
refund = MagicMock(spec=stripe.Refund)
refund.id = f"re_test_concurrent_{index}"
refund.payment_intent = topup_tx.transactionKey
refund.amount = 100 # $1 refund
refund.status = "succeeded"
refund.reason = "requested_by_customer"
refund.created = int(datetime.now(timezone.utc).timestamp())
try:
await credit_system.deduct_credits(refund)
return "success"
except Exception as e:
return f"error: {e}"
# Run refunds concurrently
results = await asyncio.gather(
*[process_refund(i) for i in range(5)], return_exceptions=True
)
# All should succeed
assert all(r == "success" for r in results), f"Some refunds failed: {results}"
# Verify final balance - with non-atomic implementation, this will demonstrate race condition
# EXPECTED BEHAVIOR: Due to race conditions, not all refunds will be properly processed
# The balance will be incorrect (higher than expected) showing lost updates
user_balance = await UserBalance.prisma().find_unique(
where={"userId": REFUND_TEST_USER_ID}
)
assert user_balance is not None
# With atomic implementation, this should be 500 (1000 - 5*100)
# With current non-atomic implementation, this will likely be wrong due to race conditions
print(f"DEBUG: Final balance = {user_balance.balance}, expected = 500")
# With atomic implementation, all 5 refunds should process correctly
assert (
user_balance.balance == 500
), f"Expected balance 500 after 5 refunds of 100 each, got {user_balance.balance}"
# Verify all refund transactions exist
refund_txs = await CreditTransaction.prisma().find_many(
where={
"userId": REFUND_TEST_USER_ID,
"type": CreditTransactionType.REFUND,
}
)
assert (
len(refund_txs) == 5
), f"Expected 5 refund transactions, got {len(refund_txs)}"
running_balances: set[int] = {
tx.runningBalance for tx in refund_txs if tx.runningBalance is not None
}
# Verify all balances are valid intermediate states
for balance in running_balances:
assert (
500 <= balance <= 1000
), f"Invalid balance {balance}, should be between 500 and 1000"
# Final balance should be present
assert (
500 in running_balances
), f"Final balance 500 should be in {running_balances}"
# All balances should be unique and form a valid sequence
sorted_balances = sorted(running_balances, reverse=True)
assert (
len(sorted_balances) == 5
), f"Expected 5 unique balances, got {len(sorted_balances)}"
finally:
await cleanup_test_user()

View File

@@ -1,8 +1,8 @@
from datetime import datetime, timezone
from datetime import datetime, timedelta, timezone
import pytest
from prisma.enums import CreditTransactionType
from prisma.models import CreditTransaction
from prisma.models import CreditTransaction, UserBalance
from backend.blocks.llm import AITextGeneratorBlock
from backend.data.block import get_block
@@ -19,14 +19,24 @@ user_credit = BetaUserCredit(REFILL_VALUE)
async def disable_test_user_transactions():
await CreditTransaction.prisma().delete_many(where={"userId": DEFAULT_USER_ID})
# Also reset the balance to 0 and set updatedAt to old date to trigger monthly refill
old_date = datetime.now(timezone.utc) - timedelta(days=35) # More than a month ago
await UserBalance.prisma().upsert(
where={"userId": DEFAULT_USER_ID},
data={
"create": {"userId": DEFAULT_USER_ID, "balance": 0},
"update": {"balance": 0, "updatedAt": old_date},
},
)
async def top_up(amount: int):
await user_credit._add_transaction(
balance, _ = await user_credit._add_transaction(
DEFAULT_USER_ID,
amount,
CreditTransactionType.TOP_UP,
)
return balance
async def spend_credits(entry: NodeExecutionEntry) -> int:
@@ -111,29 +121,90 @@ async def test_block_credit_top_up(server: SpinTestServer):
@pytest.mark.asyncio(loop_scope="session")
async def test_block_credit_reset(server: SpinTestServer):
"""Test that BetaUserCredit provides monthly refills correctly."""
await disable_test_user_transactions()
month1 = 1
month2 = 2
# set the calendar to month 2 but use current time from now
user_credit.time_now = lambda: datetime.now(timezone.utc).replace(
month=month2, day=1
)
month2credit = await user_credit.get_credits(DEFAULT_USER_ID)
# Save original time_now function for restoration
original_time_now = user_credit.time_now
# Month 1 result should only affect month 1
user_credit.time_now = lambda: datetime.now(timezone.utc).replace(
month=month1, day=1
)
month1credit = await user_credit.get_credits(DEFAULT_USER_ID)
await top_up(100)
assert await user_credit.get_credits(DEFAULT_USER_ID) == month1credit + 100
try:
# Test month 1 behavior
month1 = datetime.now(timezone.utc).replace(month=1, day=1)
user_credit.time_now = lambda: month1
# Month 2 balance is unaffected
user_credit.time_now = lambda: datetime.now(timezone.utc).replace(
month=month2, day=1
)
assert await user_credit.get_credits(DEFAULT_USER_ID) == month2credit
# First call in month 1 should trigger refill
balance = await user_credit.get_credits(DEFAULT_USER_ID)
assert balance == REFILL_VALUE # Should get 1000 credits
# Manually create a transaction with month 1 timestamp to establish history
await CreditTransaction.prisma().create(
data={
"userId": DEFAULT_USER_ID,
"amount": 100,
"type": CreditTransactionType.TOP_UP,
"runningBalance": 1100,
"isActive": True,
"createdAt": month1, # Set specific timestamp
}
)
# Update user balance to match
await UserBalance.prisma().upsert(
where={"userId": DEFAULT_USER_ID},
data={
"create": {"userId": DEFAULT_USER_ID, "balance": 1100},
"update": {"balance": 1100},
},
)
# Now test month 2 behavior
month2 = datetime.now(timezone.utc).replace(month=2, day=1)
user_credit.time_now = lambda: month2
# In month 2, since balance (1100) > refill (1000), no refill should happen
month2_balance = await user_credit.get_credits(DEFAULT_USER_ID)
assert month2_balance == 1100 # Balance persists, no reset
# Now test the refill behavior when balance is low
# Set balance below refill threshold
await UserBalance.prisma().update(
where={"userId": DEFAULT_USER_ID}, data={"balance": 400}
)
# Create a month 2 transaction to update the last transaction time
await CreditTransaction.prisma().create(
data={
"userId": DEFAULT_USER_ID,
"amount": -700, # Spent 700 to get to 400
"type": CreditTransactionType.USAGE,
"runningBalance": 400,
"isActive": True,
"createdAt": month2,
}
)
# Move to month 3
month3 = datetime.now(timezone.utc).replace(month=3, day=1)
user_credit.time_now = lambda: month3
# Should get refilled since balance (400) < refill value (1000)
month3_balance = await user_credit.get_credits(DEFAULT_USER_ID)
assert month3_balance == REFILL_VALUE # Should be refilled to 1000
# Verify the refill transaction was created
refill_tx = await CreditTransaction.prisma().find_first(
where={
"userId": DEFAULT_USER_ID,
"type": CreditTransactionType.GRANT,
"transactionKey": {"contains": "MONTHLY-CREDIT-TOP-UP"},
},
order={"createdAt": "desc"},
)
assert refill_tx is not None, "Monthly refill transaction should be created"
assert refill_tx.amount == 600, "Refill should be 600 (1000 - 400)"
finally:
# Restore original time_now function
user_credit.time_now = original_time_now
@pytest.mark.asyncio(loop_scope="session")

View File

@@ -0,0 +1,361 @@
"""
Test underflow protection for cumulative refunds and negative transactions.
This test ensures that when multiple large refunds are processed, the user balance
doesn't underflow below POSTGRES_INT_MIN, which could cause integer wraparound issues.
"""
import asyncio
from uuid import uuid4
import pytest
from prisma.enums import CreditTransactionType
from prisma.errors import UniqueViolationError
from prisma.models import CreditTransaction, User, UserBalance
from backend.data.credit import POSTGRES_INT_MIN, UserCredit
from backend.util.test import SpinTestServer
async def create_test_user(user_id: str) -> None:
"""Create a test user for underflow tests."""
try:
await User.prisma().create(
data={
"id": user_id,
"email": f"test-{user_id}@example.com",
"name": f"Test User {user_id[:8]}",
}
)
except UniqueViolationError:
# User already exists, continue
pass
await UserBalance.prisma().upsert(
where={"userId": user_id},
data={"create": {"userId": user_id, "balance": 0}, "update": {"balance": 0}},
)
async def cleanup_test_user(user_id: str) -> None:
"""Clean up test user and their transactions."""
try:
await CreditTransaction.prisma().delete_many(where={"userId": user_id})
await UserBalance.prisma().delete_many(where={"userId": user_id})
await User.prisma().delete_many(where={"id": user_id})
except Exception as e:
# Log cleanup failures but don't fail the test
print(f"Warning: Failed to cleanup test user {user_id}: {e}")
@pytest.mark.asyncio(loop_scope="session")
async def test_debug_underflow_step_by_step(server: SpinTestServer):
"""Debug underflow behavior step by step."""
credit_system = UserCredit()
user_id = f"debug-underflow-{uuid4()}"
await create_test_user(user_id)
try:
print(f"POSTGRES_INT_MIN: {POSTGRES_INT_MIN}")
# Test 1: Set up balance close to underflow threshold
print("\n=== Test 1: Setting up balance close to underflow threshold ===")
# First, manually set balance to a value very close to POSTGRES_INT_MIN
# We'll set it to POSTGRES_INT_MIN + 100, then try to subtract 200
# This should trigger underflow protection: (POSTGRES_INT_MIN + 100) + (-200) = POSTGRES_INT_MIN - 100
initial_balance_target = POSTGRES_INT_MIN + 100
# Use direct database update to set the balance close to underflow
from prisma.models import UserBalance
await UserBalance.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id, "balance": initial_balance_target},
"update": {"balance": initial_balance_target},
},
)
current_balance = await credit_system.get_credits(user_id)
print(f"Set balance to: {current_balance}")
assert current_balance == initial_balance_target
# Test 2: Apply amount that should cause underflow
print("\n=== Test 2: Testing underflow protection ===")
test_amount = (
-200
) # This should cause underflow: (POSTGRES_INT_MIN + 100) + (-200) = POSTGRES_INT_MIN - 100
expected_without_protection = current_balance + test_amount
print(f"Current balance: {current_balance}")
print(f"Test amount: {test_amount}")
print(f"Without protection would be: {expected_without_protection}")
print(f"Should be clamped to POSTGRES_INT_MIN: {POSTGRES_INT_MIN}")
# Apply the amount that should trigger underflow protection
balance_result, _ = await credit_system._add_transaction(
user_id=user_id,
amount=test_amount,
transaction_type=CreditTransactionType.REFUND,
fail_insufficient_credits=False,
)
print(f"Actual result: {balance_result}")
# Check if underflow protection worked
assert (
balance_result == POSTGRES_INT_MIN
), f"Expected underflow protection to clamp balance to {POSTGRES_INT_MIN}, got {balance_result}"
# Test 3: Edge case - exactly at POSTGRES_INT_MIN
print("\n=== Test 3: Testing exact POSTGRES_INT_MIN boundary ===")
# Set balance to exactly POSTGRES_INT_MIN
await UserBalance.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id, "balance": POSTGRES_INT_MIN},
"update": {"balance": POSTGRES_INT_MIN},
},
)
edge_balance = await credit_system.get_credits(user_id)
print(f"Balance set to exactly POSTGRES_INT_MIN: {edge_balance}")
# Try to subtract 1 - should stay at POSTGRES_INT_MIN
edge_result, _ = await credit_system._add_transaction(
user_id=user_id,
amount=-1,
transaction_type=CreditTransactionType.REFUND,
fail_insufficient_credits=False,
)
print(f"After subtracting 1: {edge_result}")
assert (
edge_result == POSTGRES_INT_MIN
), f"Expected balance to remain clamped at {POSTGRES_INT_MIN}, got {edge_result}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_underflow_protection_large_refunds(server: SpinTestServer):
"""Test that large cumulative refunds don't cause integer underflow."""
credit_system = UserCredit()
user_id = f"underflow-test-{uuid4()}"
await create_test_user(user_id)
try:
# Set up balance close to underflow threshold to test the protection
# Set balance to POSTGRES_INT_MIN + 1000, then try to subtract 2000
# This should trigger underflow protection
from prisma.models import UserBalance
test_balance = POSTGRES_INT_MIN + 1000
await UserBalance.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id, "balance": test_balance},
"update": {"balance": test_balance},
},
)
current_balance = await credit_system.get_credits(user_id)
assert current_balance == test_balance
# Try to deduct amount that would cause underflow: test_balance + (-2000) = POSTGRES_INT_MIN - 1000
underflow_amount = -2000
expected_without_protection = (
current_balance + underflow_amount
) # Should be POSTGRES_INT_MIN - 1000
# Use _add_transaction directly with amount that would cause underflow
final_balance, _ = await credit_system._add_transaction(
user_id=user_id,
amount=underflow_amount,
transaction_type=CreditTransactionType.REFUND,
fail_insufficient_credits=False, # Allow going negative for refunds
)
# Balance should be clamped to POSTGRES_INT_MIN, not the calculated underflow value
assert (
final_balance == POSTGRES_INT_MIN
), f"Balance should be clamped to {POSTGRES_INT_MIN}, got {final_balance}"
assert (
final_balance > expected_without_protection
), f"Balance should be greater than underflow result {expected_without_protection}, got {final_balance}"
# Verify with get_credits too
stored_balance = await credit_system.get_credits(user_id)
assert (
stored_balance == POSTGRES_INT_MIN
), f"Stored balance should be {POSTGRES_INT_MIN}, got {stored_balance}"
# Verify transaction was created with the underflow-protected balance
transactions = await CreditTransaction.prisma().find_many(
where={"userId": user_id, "type": CreditTransactionType.REFUND},
order={"createdAt": "desc"},
)
assert len(transactions) > 0, "Refund transaction should be created"
assert (
transactions[0].runningBalance == POSTGRES_INT_MIN
), f"Transaction should show clamped balance {POSTGRES_INT_MIN}, got {transactions[0].runningBalance}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_multiple_large_refunds_cumulative_underflow(server: SpinTestServer):
"""Test that multiple large refunds applied sequentially don't cause underflow."""
credit_system = UserCredit()
user_id = f"cumulative-underflow-test-{uuid4()}"
await create_test_user(user_id)
try:
# Set up balance close to underflow threshold
from prisma.models import UserBalance
initial_balance = POSTGRES_INT_MIN + 500 # Close to minimum but with some room
await UserBalance.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id, "balance": initial_balance},
"update": {"balance": initial_balance},
},
)
# Apply multiple refunds that would cumulatively underflow
refund_amount = -300 # Each refund that would cause underflow when cumulative
# First refund: (POSTGRES_INT_MIN + 500) + (-300) = POSTGRES_INT_MIN + 200 (still above minimum)
balance_1, _ = await credit_system._add_transaction(
user_id=user_id,
amount=refund_amount,
transaction_type=CreditTransactionType.REFUND,
fail_insufficient_credits=False,
)
# Should be above minimum for first refund
expected_balance_1 = (
initial_balance + refund_amount
) # Should be POSTGRES_INT_MIN + 200
assert (
balance_1 == expected_balance_1
), f"First refund should result in {expected_balance_1}, got {balance_1}"
assert (
balance_1 >= POSTGRES_INT_MIN
), f"First refund should not go below {POSTGRES_INT_MIN}, got {balance_1}"
# Second refund: (POSTGRES_INT_MIN + 200) + (-300) = POSTGRES_INT_MIN - 100 (would underflow)
balance_2, _ = await credit_system._add_transaction(
user_id=user_id,
amount=refund_amount,
transaction_type=CreditTransactionType.REFUND,
fail_insufficient_credits=False,
)
# Should be clamped to minimum due to underflow protection
assert (
balance_2 == POSTGRES_INT_MIN
), f"Second refund should be clamped to {POSTGRES_INT_MIN}, got {balance_2}"
# Third refund: Should stay at minimum
balance_3, _ = await credit_system._add_transaction(
user_id=user_id,
amount=refund_amount,
transaction_type=CreditTransactionType.REFUND,
fail_insufficient_credits=False,
)
# Should still be at minimum
assert (
balance_3 == POSTGRES_INT_MIN
), f"Third refund should stay at {POSTGRES_INT_MIN}, got {balance_3}"
# Final balance check
final_balance = await credit_system.get_credits(user_id)
assert (
final_balance == POSTGRES_INT_MIN
), f"Final balance should be {POSTGRES_INT_MIN}, got {final_balance}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_concurrent_large_refunds_no_underflow(server: SpinTestServer):
"""Test that concurrent large refunds don't cause race condition underflow."""
credit_system = UserCredit()
user_id = f"concurrent-underflow-test-{uuid4()}"
await create_test_user(user_id)
try:
# Set up balance close to underflow threshold
from prisma.models import UserBalance
initial_balance = POSTGRES_INT_MIN + 1000 # Close to minimum
await UserBalance.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id, "balance": initial_balance},
"update": {"balance": initial_balance},
},
)
async def large_refund(amount: int, label: str):
try:
return await credit_system._add_transaction(
user_id=user_id,
amount=-amount,
transaction_type=CreditTransactionType.REFUND,
fail_insufficient_credits=False,
)
except Exception as e:
return f"FAILED-{label}: {e}"
# Run concurrent refunds that would cause underflow if not protected
# Each refund of 500 would cause underflow: initial_balance + (-500) could go below POSTGRES_INT_MIN
refund_amount = 500
results = await asyncio.gather(
large_refund(refund_amount, "A"),
large_refund(refund_amount, "B"),
large_refund(refund_amount, "C"),
return_exceptions=True,
)
# Check all results are valid and no underflow occurred
valid_results = []
for i, result in enumerate(results):
if isinstance(result, tuple):
balance, _ = result
assert (
balance >= POSTGRES_INT_MIN
), f"Result {i} balance {balance} underflowed below {POSTGRES_INT_MIN}"
valid_results.append(balance)
elif isinstance(result, str) and "FAILED" in result:
# Some operations might fail due to validation, that's okay
pass
else:
# Unexpected exception
assert not isinstance(
result, Exception
), f"Unexpected exception in result {i}: {result}"
# At least one operation should succeed
assert (
len(valid_results) > 0
), f"At least one refund should succeed, got results: {results}"
# All successful results should be >= POSTGRES_INT_MIN
for balance in valid_results:
assert (
balance >= POSTGRES_INT_MIN
), f"Balance {balance} should not be below {POSTGRES_INT_MIN}"
# Final balance should be valid and at or above POSTGRES_INT_MIN
final_balance = await credit_system.get_credits(user_id)
assert (
final_balance >= POSTGRES_INT_MIN
), f"Final balance {final_balance} should not underflow below {POSTGRES_INT_MIN}"
finally:
await cleanup_test_user(user_id)

View File

@@ -0,0 +1,217 @@
"""
Integration test to verify complete migration from User.balance to UserBalance table.
This test ensures that:
1. No User.balance queries exist in the system
2. All balance operations go through UserBalance table
3. User and UserBalance stay synchronized properly
"""
import asyncio
from datetime import datetime
import pytest
from prisma.enums import CreditTransactionType
from prisma.errors import UniqueViolationError
from prisma.models import CreditTransaction, User, UserBalance
from backend.data.credit import UsageTransactionMetadata, UserCredit
from backend.util.json import SafeJson
from backend.util.test import SpinTestServer
async def create_test_user(user_id: str) -> None:
"""Create a test user for migration tests."""
try:
await User.prisma().create(
data={
"id": user_id,
"email": f"test-{user_id}@example.com",
"name": f"Test User {user_id[:8]}",
}
)
except UniqueViolationError:
# User already exists, continue
pass
async def cleanup_test_user(user_id: str) -> None:
"""Clean up test user and their data."""
try:
await CreditTransaction.prisma().delete_many(where={"userId": user_id})
await UserBalance.prisma().delete_many(where={"userId": user_id})
await User.prisma().delete_many(where={"id": user_id})
except Exception as e:
# Log cleanup failures but don't fail the test
print(f"Warning: Failed to cleanup test user {user_id}: {e}")
@pytest.mark.asyncio(loop_scope="session")
async def test_user_balance_migration_complete(server: SpinTestServer):
"""Test that User table balance is never used and UserBalance is source of truth."""
credit_system = UserCredit()
user_id = f"migration-test-{datetime.now().timestamp()}"
await create_test_user(user_id)
try:
# 1. Verify User table does NOT have balance set initially
user = await User.prisma().find_unique(where={"id": user_id})
assert user is not None
# User.balance should not exist or should be None/0 if it exists
user_balance_attr = getattr(user, "balance", None)
if user_balance_attr is not None:
assert (
user_balance_attr == 0 or user_balance_attr is None
), f"User.balance should be 0 or None, got {user_balance_attr}"
# 2. Perform various credit operations using internal method (bypasses Stripe)
await credit_system._add_transaction(
user_id=user_id,
amount=1000,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "migration_test"}),
)
balance1 = await credit_system.get_credits(user_id)
assert balance1 == 1000
await credit_system.spend_credits(
user_id,
300,
UsageTransactionMetadata(
graph_exec_id="test", reason="Migration test spend"
),
)
balance2 = await credit_system.get_credits(user_id)
assert balance2 == 700
# 3. Verify UserBalance table has correct values
user_balance = await UserBalance.prisma().find_unique(where={"userId": user_id})
assert user_balance is not None
assert (
user_balance.balance == 700
), f"UserBalance should be 700, got {user_balance.balance}"
# 4. CRITICAL: Verify User.balance is NEVER updated during operations
user_after = await User.prisma().find_unique(where={"id": user_id})
assert user_after is not None
user_balance_after = getattr(user_after, "balance", None)
if user_balance_after is not None:
# If User.balance exists, it should still be 0 (never updated)
assert (
user_balance_after == 0 or user_balance_after is None
), f"User.balance should remain 0/None after operations, got {user_balance_after}. This indicates User.balance is still being used!"
# 5. Verify get_credits always returns UserBalance value, not User.balance
final_balance = await credit_system.get_credits(user_id)
assert (
final_balance == user_balance.balance
), f"get_credits should return UserBalance value {user_balance.balance}, got {final_balance}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_detect_stale_user_balance_queries(server: SpinTestServer):
"""Test to detect if any operations are still using User.balance instead of UserBalance."""
credit_system = UserCredit()
user_id = f"stale-query-test-{datetime.now().timestamp()}"
await create_test_user(user_id)
try:
# Create UserBalance with specific value
await UserBalance.prisma().create(
data={"userId": user_id, "balance": 5000} # $50
)
# Verify that get_credits returns UserBalance value (5000), not any stale User.balance value
balance = await credit_system.get_credits(user_id)
assert (
balance == 5000
), f"Expected get_credits to return 5000 from UserBalance, got {balance}"
# Verify all operations use UserBalance using internal method (bypasses Stripe)
await credit_system._add_transaction(
user_id=user_id,
amount=1000,
transaction_type=CreditTransactionType.TOP_UP,
metadata=SafeJson({"test": "final_verification"}),
)
final_balance = await credit_system.get_credits(user_id)
assert final_balance == 6000, f"Expected 6000, got {final_balance}"
# Verify UserBalance table has the correct value
user_balance = await UserBalance.prisma().find_unique(where={"userId": user_id})
assert user_balance is not None
assert (
user_balance.balance == 6000
), f"UserBalance should be 6000, got {user_balance.balance}"
finally:
await cleanup_test_user(user_id)
@pytest.mark.asyncio(loop_scope="session")
async def test_concurrent_operations_use_userbalance_only(server: SpinTestServer):
"""Test that concurrent operations all use UserBalance locking, not User.balance."""
credit_system = UserCredit()
user_id = f"concurrent-userbalance-test-{datetime.now().timestamp()}"
await create_test_user(user_id)
try:
# Set initial balance in UserBalance
await UserBalance.prisma().create(data={"userId": user_id, "balance": 1000})
# Run concurrent operations to ensure they all use UserBalance atomic operations
async def concurrent_spend(amount: int, label: str):
try:
await credit_system.spend_credits(
user_id,
amount,
UsageTransactionMetadata(
graph_exec_id=f"concurrent-{label}",
reason=f"Concurrent test {label}",
),
)
return f"{label}-SUCCESS"
except Exception as e:
return f"{label}-FAILED: {e}"
# Run concurrent operations
results = await asyncio.gather(
concurrent_spend(100, "A"),
concurrent_spend(200, "B"),
concurrent_spend(300, "C"),
return_exceptions=True,
)
# All should succeed (1000 >= 100+200+300)
successful = [r for r in results if "SUCCESS" in str(r)]
assert len(successful) == 3, f"All operations should succeed, got {results}"
# Final balance should be 1000 - 600 = 400
final_balance = await credit_system.get_credits(user_id)
assert final_balance == 400, f"Expected final balance 400, got {final_balance}"
# Verify UserBalance has correct value
user_balance = await UserBalance.prisma().find_unique(where={"userId": user_id})
assert user_balance is not None
assert (
user_balance.balance == 400
), f"UserBalance should be 400, got {user_balance.balance}"
# Critical: If User.balance exists and was used, it might have wrong value
try:
user = await User.prisma().find_unique(where={"id": user_id})
user_balance_attr = getattr(user, "balance", None)
if user_balance_attr is not None:
# If User.balance exists, it should NOT be used for operations
# The fact that our final balance is correct from UserBalance proves the system is working
print(
f"✅ User.balance exists ({user_balance_attr}) but UserBalance ({user_balance.balance}) is being used correctly"
)
except Exception:
print("✅ User.balance column doesn't exist - migration is complete")
finally:
await cleanup_test_user(user_id)

View File

@@ -83,7 +83,7 @@ async def disconnect():
# Transaction timeout constant (in milliseconds)
TRANSACTION_TIMEOUT = 15000 # 15 seconds - Increased from 5s to prevent timeout errors
TRANSACTION_TIMEOUT = 30000 # 30 seconds - Increased from 15s to prevent timeout errors during graph creation under load
@asynccontextmanager
@@ -98,42 +98,6 @@ async def transaction(timeout: int = TRANSACTION_TIMEOUT):
yield tx
@asynccontextmanager
async def locked_transaction(key: str, timeout: int = TRANSACTION_TIMEOUT):
"""
Create a transaction and take a per-key advisory *transaction* lock.
- Uses a 64-bit lock id via hashtextextended(key, 0) to avoid 32-bit collisions.
- Bound by lock_timeout and statement_timeout so it won't block indefinitely.
- Lock is held for the duration of the transaction and auto-released on commit/rollback.
Args:
key: String lock key (e.g., "usr_trx_<uuid>").
timeout: Transaction/lock/statement timeout in milliseconds.
"""
async with transaction(timeout=timeout) as tx:
# Ensure we don't wait longer than desired
# Note: SET LOCAL doesn't support parameterized queries, must use string interpolation
await tx.execute_raw(f"SET LOCAL statement_timeout = '{int(timeout)}ms'") # type: ignore[arg-type]
await tx.execute_raw(f"SET LOCAL lock_timeout = '{int(timeout)}ms'") # type: ignore[arg-type]
# Block until acquired or lock_timeout hits
try:
await tx.execute_raw(
"SELECT pg_advisory_xact_lock(hashtextextended($1, 0))",
key,
)
except Exception as e:
# Normalize PG's lock timeout error to TimeoutError for callers
if "lock timeout" in str(e).lower():
raise TimeoutError(
f"Could not acquire lock for key={key!r} within {timeout}ms"
) from e
raise
yield tx
def get_database_schema() -> str:
"""Extract database schema from DATABASE_URL."""
parsed_url = urlparse(DATABASE_URL)

View File

@@ -0,0 +1,284 @@
"""
Utilities for handling dynamic field names with special delimiters.
Dynamic fields allow graphs to connect complex data structures using special delimiters:
- _#_ for dictionary keys (e.g., "values_#_name" → values["name"])
- _$_ for list indices (e.g., "items_$_0" → items[0])
- _@_ for object attributes (e.g., "obj_@_attr" → obj.attr)
"""
from typing import Any
from backend.util.mock import MockObject
# Dynamic field delimiters
LIST_SPLIT = "_$_"
DICT_SPLIT = "_#_"
OBJC_SPLIT = "_@_"
DYNAMIC_DELIMITERS = (LIST_SPLIT, DICT_SPLIT, OBJC_SPLIT)
def extract_base_field_name(field_name: str) -> str:
"""
Extract the base field name from a dynamic field name by removing all dynamic suffixes.
Examples:
extract_base_field_name("values_#_name") → "values"
extract_base_field_name("items_$_0") → "items"
extract_base_field_name("obj_@_attr") → "obj"
extract_base_field_name("regular_field") → "regular_field"
Args:
field_name: The field name that may contain dynamic delimiters
Returns:
The base field name without any dynamic suffixes
"""
base_name = field_name
for delimiter in DYNAMIC_DELIMITERS:
if delimiter in base_name:
base_name = base_name.split(delimiter)[0]
return base_name
def is_dynamic_field(field_name: str) -> bool:
"""
Check if a field name contains dynamic delimiters.
Args:
field_name: The field name to check
Returns:
True if the field contains any dynamic delimiters, False otherwise
"""
return any(delimiter in field_name for delimiter in DYNAMIC_DELIMITERS)
def get_dynamic_field_description(field_name: str) -> str:
"""
Generate a description for a dynamic field based on its structure.
Args:
field_name: The full dynamic field name (e.g., "values_#_name")
Returns:
A descriptive string explaining what this dynamic field represents
"""
base_name = extract_base_field_name(field_name)
if DICT_SPLIT in field_name:
# Extract the key part after _#_
parts = field_name.split(DICT_SPLIT)
if len(parts) > 1:
key = parts[1].split("_")[0] if "_" in parts[1] else parts[1]
return f"Dictionary field '{key}' for base field '{base_name}' ({base_name}['{key}'])"
elif LIST_SPLIT in field_name:
# Extract the index part after _$_
parts = field_name.split(LIST_SPLIT)
if len(parts) > 1:
index = parts[1].split("_")[0] if "_" in parts[1] else parts[1]
return (
f"List item {index} for base field '{base_name}' ({base_name}[{index}])"
)
elif OBJC_SPLIT in field_name:
# Extract the attribute part after _@_
parts = field_name.split(OBJC_SPLIT)
if len(parts) > 1:
# Get the full attribute name (everything after _@_)
attr = parts[1]
return f"Object attribute '{attr}' for base field '{base_name}' ({base_name}.{attr})"
return f"Value for {field_name}"
# --------------------------------------------------------------------------- #
# Dynamic field parsing and merging utilities
# --------------------------------------------------------------------------- #
def _next_delim(s: str) -> tuple[str | None, int]:
"""
Return the *earliest* delimiter appearing in `s` and its index.
If none present → (None, -1).
"""
first: str | None = None
pos = len(s) # sentinel: larger than any real index
for d in DYNAMIC_DELIMITERS:
i = s.find(d)
if 0 <= i < pos:
first, pos = d, i
return first, (pos if first else -1)
def _tokenise(path: str) -> list[tuple[str, str]] | None:
"""
Convert the raw path string (starting with a delimiter) into
[ (delimiter, identifier), … ] or None if the syntax is malformed.
"""
tokens: list[tuple[str, str]] = []
while path:
# 1. Which delimiter starts this chunk?
delim = next((d for d in DYNAMIC_DELIMITERS if path.startswith(d)), None)
if delim is None:
return None # invalid syntax
# 2. Slice off the delimiter, then up to the next delimiter (or EOS)
path = path[len(delim) :]
nxt_delim, pos = _next_delim(path)
token, path = (
path[: pos if pos != -1 else len(path)],
path[pos if pos != -1 else len(path) :],
)
if token == "":
return None # empty identifier is invalid
tokens.append((delim, token))
return tokens
def parse_execution_output(output: tuple[str, Any], name: str) -> Any:
"""
Retrieve a nested value out of `output` using the flattened *name*.
On any failure (wrong name, wrong type, out-of-range, bad path)
returns **None**.
Args:
output: Tuple of (base_name, data) representing a block output entry
name: The flattened field name to extract from the output data
Returns:
The value at the specified path, or None if not found/invalid
"""
base_name, data = output
# Exact match → whole object
if name == base_name:
return data
# Must start with the expected name
if not name.startswith(base_name):
return None
path = name[len(base_name) :]
if not path:
return None # nothing left to parse
tokens = _tokenise(path)
if tokens is None:
return None
cur: Any = data
for delim, ident in tokens:
if delim == LIST_SPLIT:
# list[index]
try:
idx = int(ident)
except ValueError:
return None
if not isinstance(cur, list) or idx >= len(cur):
return None
cur = cur[idx]
elif delim == DICT_SPLIT:
if not isinstance(cur, dict) or ident not in cur:
return None
cur = cur[ident]
elif delim == OBJC_SPLIT:
if not hasattr(cur, ident):
return None
cur = getattr(cur, ident)
else:
return None # unreachable
return cur
def _assign(container: Any, tokens: list[tuple[str, str]], value: Any) -> Any:
"""
Recursive helper that *returns* the (possibly new) container with
`value` assigned along the remaining `tokens` path.
"""
if not tokens:
return value # leaf reached
delim, ident = tokens[0]
rest = tokens[1:]
# ---------- list ----------
if delim == LIST_SPLIT:
try:
idx = int(ident)
except ValueError:
raise ValueError("index must be an integer")
if container is None:
container = []
elif not isinstance(container, list):
container = list(container) if hasattr(container, "__iter__") else []
while len(container) <= idx:
container.append(None)
container[idx] = _assign(container[idx], rest, value)
return container
# ---------- dict ----------
if delim == DICT_SPLIT:
if container is None:
container = {}
elif not isinstance(container, dict):
container = dict(container) if hasattr(container, "items") else {}
container[ident] = _assign(container.get(ident), rest, value)
return container
# ---------- object ----------
if delim == OBJC_SPLIT:
if container is None:
container = MockObject()
elif not hasattr(container, "__dict__"):
# If it's not an object, create a new one
container = MockObject()
setattr(
container,
ident,
_assign(getattr(container, ident, None), rest, value),
)
return container
return value # unreachable
def merge_execution_input(data: dict[str, Any]) -> dict[str, Any]:
"""
Reconstruct nested objects from a *flattened* dict of key → value.
Raises ValueError on syntactically invalid list indices.
Args:
data: Dictionary with potentially flattened dynamic field keys
Returns:
Dictionary with nested objects reconstructed from flattened keys
"""
merged: dict[str, Any] = {}
for key, value in data.items():
# Split off the base name (before the first delimiter, if any)
delim, pos = _next_delim(key)
if delim is None:
merged[key] = value
continue
base, path = key[:pos], key[pos:]
tokens = _tokenise(path)
if tokens is None:
# Invalid key; treat as scalar under the raw name
merged[key] = value
continue
merged[base] = _assign(merged.get(base), tokens, value)
data.update(merged)
return data

View File

@@ -38,8 +38,8 @@ from prisma.types import (
from pydantic import BaseModel, ConfigDict, JsonValue, ValidationError
from pydantic.fields import Field
from backend.server.v2.store.exceptions import DatabaseError
from backend.util import type as type_utils
from backend.util.exceptions import DatabaseError
from backend.util.json import SafeJson
from backend.util.models import Pagination
from backend.util.retry import func_retry
@@ -478,6 +478,48 @@ async def get_graph_executions(
return [GraphExecutionMeta.from_db(execution) for execution in executions]
async def get_graph_executions_count(
user_id: Optional[str] = None,
graph_id: Optional[str] = None,
statuses: Optional[list[ExecutionStatus]] = None,
created_time_gte: Optional[datetime] = None,
created_time_lte: Optional[datetime] = None,
) -> int:
"""
Get count of graph executions with optional filters.
Args:
user_id: Optional user ID to filter by
graph_id: Optional graph ID to filter by
statuses: Optional list of execution statuses to filter by
created_time_gte: Optional minimum creation time
created_time_lte: Optional maximum creation time
Returns:
Count of matching graph executions
"""
where_filter: AgentGraphExecutionWhereInput = {
"isDeleted": False,
}
if user_id:
where_filter["userId"] = user_id
if graph_id:
where_filter["agentGraphId"] = graph_id
if created_time_gte or created_time_lte:
where_filter["createdAt"] = {
"gte": created_time_gte or datetime.min.replace(tzinfo=timezone.utc),
"lte": created_time_lte or datetime.max.replace(tzinfo=timezone.utc),
}
if statuses:
where_filter["OR"] = [{"executionStatus": status} for status in statuses]
count = await AgentGraphExecution.prisma().count(where=where_filter)
return count
class GraphExecutionsPaginated(BaseModel):
"""Response schema for paginated graph executions."""

View File

@@ -7,7 +7,7 @@ from prisma.enums import AgentExecutionStatus
from backend.data.execution import get_graph_executions
from backend.data.graph import get_graph_metadata
from backend.data.model import UserExecutionSummaryStats
from backend.server.v2.store.exceptions import DatabaseError
from backend.util.exceptions import DatabaseError
from backend.util.logging import TruncatedLogger
logger = TruncatedLogger(logging.getLogger(__name__), prefix="[SummaryData]")

View File

@@ -20,6 +20,8 @@ from backend.blocks.agent import AgentExecutorBlock
from backend.blocks.io import AgentInputBlock, AgentOutputBlock
from backend.blocks.llm import LlmModel
from backend.data.db import prisma as db
from backend.data.dynamic_fields import extract_base_field_name
from backend.data.includes import MAX_GRAPH_VERSIONS_FETCH
from backend.data.model import (
CredentialsField,
CredentialsFieldInfo,
@@ -29,8 +31,17 @@ from backend.data.model import (
from backend.integrations.providers import ProviderName
from backend.util import type as type_utils
from backend.util.json import SafeJson
from backend.util.models import Pagination
from .block import Block, BlockInput, BlockSchema, BlockType, get_block, get_blocks
from .block import (
Block,
BlockInput,
BlockSchema,
BlockType,
EmptySchema,
get_block,
get_blocks,
)
from .db import BaseDbModel, query_raw_with_schema, transaction
from .includes import AGENT_GRAPH_INCLUDE, AGENT_NODE_INCLUDE
@@ -71,12 +82,15 @@ class Node(BaseDbModel):
output_links: list[Link] = []
@property
def block(self) -> Block[BlockSchema, BlockSchema]:
def block(self) -> "Block[BlockSchema, BlockSchema] | _UnknownBlockBase":
"""Get the block for this node. Returns UnknownBlock if block is deleted/missing."""
block = get_block(self.block_id)
if not block:
raise ValueError(
f"Block #{self.block_id} does not exist -> Node #{self.id} is invalid"
# Log warning but don't raise exception - return a placeholder block for deleted blocks
logger.warning(
f"Block #{self.block_id} does not exist for Node #{self.id} (deleted/missing block), using UnknownBlock"
)
return _UnknownBlockBase(self.block_id)
return block
@@ -115,17 +129,20 @@ class NodeModel(Node):
Returns a copy of the node model, stripped of any non-transferable properties
"""
stripped_node = self.model_copy(deep=True)
# Remove credentials from node input
# Remove credentials and other (possible) secrets from node input
if stripped_node.input_default:
stripped_node.input_default = NodeModel._filter_secrets_from_node_input(
stripped_node.input_default, self.block.input_schema.jsonschema()
)
# Remove default secret value from secret input nodes
if (
stripped_node.block.block_type == BlockType.INPUT
and stripped_node.input_default.get("secret", False) is True
and "value" in stripped_node.input_default
):
stripped_node.input_default["value"] = ""
del stripped_node.input_default["value"]
# Remove webhook info
stripped_node.webhook_id = None
@@ -142,8 +159,10 @@ class NodeModel(Node):
result = {}
for key, value in input_data.items():
field_schema: dict | None = field_schemas.get(key)
if (field_schema and field_schema.get("secret", False)) or any(
sensitive_key in key.lower() for sensitive_key in sensitive_keys
if (field_schema and field_schema.get("secret", False)) or (
any(sensitive_key in key.lower() for sensitive_key in sensitive_keys)
# Prevent removing `secret` flag on input nodes
and type(value) is not bool
):
# This is a secret value -> filter this key-value pair out
continue
@@ -728,7 +747,7 @@ def _is_tool_pin(name: str) -> bool:
def _sanitize_pin_name(name: str) -> str:
sanitized_name = name.split("_#_")[0].split("_@_")[0].split("_$_")[0]
sanitized_name = extract_base_field_name(name)
if _is_tool_pin(sanitized_name):
return "tools"
return sanitized_name
@@ -746,6 +765,13 @@ class GraphMeta(Graph):
return GraphMeta(**graph.model_dump())
class GraphsPaginated(BaseModel):
"""Response schema for paginated graphs."""
graphs: list[GraphMeta]
pagination: Pagination
# --------------------- CRUD functions --------------------- #
@@ -774,31 +800,42 @@ async def set_node_webhook(node_id: str, webhook_id: str | None) -> NodeModel:
return NodeModel.from_db(node)
async def list_graphs(
async def list_graphs_paginated(
user_id: str,
page: int = 1,
page_size: int = 25,
filter_by: Literal["active"] | None = "active",
) -> list[GraphMeta]:
) -> GraphsPaginated:
"""
Retrieves graph metadata objects.
Default behaviour is to get all currently active graphs.
Retrieves paginated graph metadata objects.
Args:
user_id: The ID of the user that owns the graphs.
page: Page number (1-based).
page_size: Number of graphs per page.
filter_by: An optional filter to either select graphs.
user_id: The ID of the user that owns the graph.
Returns:
list[GraphMeta]: A list of objects representing the retrieved graphs.
GraphsPaginated: Paginated list of graph metadata.
"""
where_clause: AgentGraphWhereInput = {"userId": user_id}
if filter_by == "active":
where_clause["isActive"] = True
# Get total count
total_count = await AgentGraph.prisma().count(where=where_clause)
total_pages = (total_count + page_size - 1) // page_size
# Get paginated results
offset = (page - 1) * page_size
graphs = await AgentGraph.prisma().find_many(
where=where_clause,
distinct=["id"],
order={"version": "desc"},
include=AGENT_GRAPH_INCLUDE,
skip=offset,
take=page_size,
)
graph_models: list[GraphMeta] = []
@@ -812,7 +849,15 @@ async def list_graphs(
logger.error(f"Error processing graph {graph.id}: {e}")
continue
return graph_models
return GraphsPaginated(
graphs=graph_models,
pagination=Pagination(
total_items=total_count,
total_pages=total_pages,
current_page=page,
page_size=page_size,
),
)
async def get_graph_metadata(graph_id: str, version: int | None = None) -> Graph | None:
@@ -1032,11 +1077,14 @@ async def set_graph_active_version(graph_id: str, version: int, user_id: str) ->
)
async def get_graph_all_versions(graph_id: str, user_id: str) -> list[GraphModel]:
async def get_graph_all_versions(
graph_id: str, user_id: str, limit: int = MAX_GRAPH_VERSIONS_FETCH
) -> list[GraphModel]:
graph_versions = await AgentGraph.prisma().find_many(
where={"id": graph_id, "userId": user_id},
order={"version": "desc"},
include=AGENT_GRAPH_INCLUDE,
take=limit,
)
if not graph_versions:
@@ -1285,3 +1333,34 @@ async def migrate_llm_models(migrate_to: LlmModel):
id,
path,
)
# Simple placeholder class for deleted/missing blocks
class _UnknownBlockBase(Block):
"""
Placeholder for deleted/missing blocks that inherits from Block
but uses a name that doesn't end with 'Block' to avoid auto-discovery.
"""
def __init__(self, block_id: str = "00000000-0000-0000-0000-000000000000"):
# Initialize with minimal valid Block parameters
super().__init__(
id=block_id,
description=f"Unknown or deleted block (original ID: {block_id})",
disabled=True,
input_schema=EmptySchema,
output_schema=EmptySchema,
categories=set(),
contributors=[],
static_output=False,
block_type=BlockType.STANDARD,
webhook_config=None,
)
@property
def name(self):
return "UnknownBlock"
async def run(self, input_data, **kwargs):
"""Always yield an error for missing blocks."""
yield "error", f"Block {self.id} no longer exists"

View File

@@ -201,25 +201,56 @@ async def test_get_input_schema(server: SpinTestServer, snapshot: Snapshot):
@pytest.mark.asyncio(loop_scope="session")
async def test_clean_graph(server: SpinTestServer):
"""
Test the clean_graph function that:
1. Clears input block values
2. Removes credentials from nodes
Test the stripped_for_export function that:
1. Removes sensitive/secret fields from node inputs
2. Removes webhook information
3. Preserves non-sensitive data including input block values
"""
# Create a graph with input blocks and credentials
# Create a graph with input blocks containing both sensitive and normal data
graph = Graph(
id="test_clean_graph",
name="Test Clean Graph",
description="Test graph cleaning",
nodes=[
Node(
id="input_node",
block_id=AgentInputBlock().id,
input_default={
"_test_id": "input_node",
"name": "test_input",
"value": "test value",
"value": "test value", # This should be preserved
"description": "Test input description",
},
),
Node(
block_id=AgentInputBlock().id,
input_default={
"_test_id": "input_node_secret",
"name": "secret_input",
"value": "another value",
"secret": True, # This makes the input secret
},
),
Node(
block_id=StoreValueBlock().id,
input_default={
"_test_id": "node_with_secrets",
"input": "normal_value",
"control_test_input": "should be preserved",
"api_key": "secret_api_key_123", # Should be filtered
"password": "secret_password_456", # Should be filtered
"token": "secret_token_789", # Should be filtered
"credentials": { # Should be filtered
"id": "fake-github-credentials-id",
"provider": "github",
"type": "api_key",
},
"anthropic_credentials": { # Should be filtered
"id": "fake-anthropic-credentials-id",
"provider": "anthropic",
"type": "api_key",
},
},
),
],
links=[],
)
@@ -231,15 +262,54 @@ async def test_clean_graph(server: SpinTestServer):
)
# Clean the graph
created_graph = await server.agent_server.test_get_graph(
cleaned_graph = await server.agent_server.test_get_graph(
created_graph.id, created_graph.version, DEFAULT_USER_ID, for_export=True
)
# # Verify input block value is cleared
# Verify sensitive fields are removed but normal fields are preserved
input_node = next(
n for n in created_graph.nodes if n.block_id == AgentInputBlock().id
n for n in cleaned_graph.nodes if n.input_default["_test_id"] == "input_node"
)
assert input_node.input_default["value"] == ""
# Non-sensitive fields should be preserved
assert input_node.input_default["name"] == "test_input"
assert input_node.input_default["value"] == "test value" # Should be preserved now
assert input_node.input_default["description"] == "Test input description"
# Sensitive fields should be filtered out
assert "api_key" not in input_node.input_default
assert "password" not in input_node.input_default
# Verify secret input node preserves non-sensitive fields but removes secret value
secret_node = next(
n
for n in cleaned_graph.nodes
if n.input_default["_test_id"] == "input_node_secret"
)
assert secret_node.input_default["name"] == "secret_input"
assert "value" not in secret_node.input_default # Secret default should be removed
assert secret_node.input_default["secret"] is True
# Verify sensitive fields are filtered from nodes with secrets
secrets_node = next(
n
for n in cleaned_graph.nodes
if n.input_default["_test_id"] == "node_with_secrets"
)
# Normal fields should be preserved
assert secrets_node.input_default["input"] == "normal_value"
assert secrets_node.input_default["control_test_input"] == "should be preserved"
# Sensitive fields should be filtered out
assert "api_key" not in secrets_node.input_default
assert "password" not in secrets_node.input_default
assert "token" not in secrets_node.input_default
assert "credentials" not in secrets_node.input_default
assert "anthropic_credentials" not in secrets_node.input_default
# Verify webhook info is removed (if any nodes had it)
for node in cleaned_graph.nodes:
assert node.webhook_id is None
assert node.webhook is None
@pytest.mark.asyncio(loop_scope="session")

View File

@@ -14,6 +14,7 @@ AGENT_GRAPH_INCLUDE: prisma.types.AgentGraphInclude = {
"Nodes": {"include": AGENT_NODE_INCLUDE}
}
EXECUTION_RESULT_ORDER: list[prisma.types.AgentNodeExecutionOrderByInput] = [
{"queuedTime": "desc"},
# Fallback: Incomplete execs has no queuedTime.
@@ -28,6 +29,13 @@ EXECUTION_RESULT_INCLUDE: prisma.types.AgentNodeExecutionInclude = {
}
MAX_NODE_EXECUTIONS_FETCH = 1000
MAX_LIBRARY_AGENT_EXECUTIONS_FETCH = 10
# Default limits for potentially large result sets
MAX_CREDIT_REFUND_REQUESTS_FETCH = 100
MAX_INTEGRATION_WEBHOOKS_FETCH = 100
MAX_USER_API_KEYS_FETCH = 500
MAX_GRAPH_VERSIONS_FETCH = 50
GRAPH_EXECUTION_INCLUDE_WITH_NODES: prisma.types.AgentGraphExecutionInclude = {
"NodeExecutions": {
@@ -71,13 +79,56 @@ INTEGRATION_WEBHOOK_INCLUDE: prisma.types.IntegrationWebhookInclude = {
}
def library_agent_include(user_id: str) -> prisma.types.LibraryAgentInclude:
return {
"AgentGraph": {
"include": {
**AGENT_GRAPH_INCLUDE,
"Executions": {"where": {"userId": user_id}},
}
},
"Creator": True,
def library_agent_include(
user_id: str,
include_nodes: bool = True,
include_executions: bool = True,
execution_limit: int = MAX_LIBRARY_AGENT_EXECUTIONS_FETCH,
) -> prisma.types.LibraryAgentInclude:
"""
Fully configurable includes for library agent queries with performance optimization.
Args:
user_id: User ID for filtering user-specific data
include_nodes: Whether to include graph nodes (default: True, needed for get_sub_graphs)
include_executions: Whether to include executions (default: True, safe with execution_limit)
execution_limit: Limit on executions to fetch (default: MAX_LIBRARY_AGENT_EXECUTIONS_FETCH)
Defaults maintain backward compatibility and safety - includes everything needed for all functionality.
For performance optimization, explicitly set include_nodes=False and include_executions=False
for listing views where frontend fetches data separately.
Performance impact:
- Default (full nodes + limited executions): Original performance, works everywhere
- Listing optimization (no nodes/executions): ~2s for 15 agents vs potential timeouts
- Unlimited executions: varies by user (thousands of executions = timeouts)
"""
result: prisma.types.LibraryAgentInclude = {
"Creator": True, # Always needed for creator info
}
# Build AgentGraph include based on requested options
if include_nodes or include_executions:
agent_graph_include = {}
# Add nodes if requested (always full nodes)
if include_nodes:
agent_graph_include.update(AGENT_GRAPH_INCLUDE) # Full nodes
# Add executions if requested
if include_executions:
agent_graph_include["Executions"] = {
"where": {"userId": user_id},
"order_by": {"createdAt": "desc"},
"take": execution_limit,
}
result["AgentGraph"] = cast(
prisma.types.AgentGraphArgsFromLibraryAgent,
{"include": agent_graph_include},
)
else:
# Default: Basic metadata only (fast - recommended for most use cases)
result["AgentGraph"] = True # Basic graph metadata (name, description, id)
return result

View File

@@ -11,7 +11,10 @@ from prisma.types import (
from pydantic import Field, computed_field
from backend.data.event_bus import AsyncRedisEventBus
from backend.data.includes import INTEGRATION_WEBHOOK_INCLUDE
from backend.data.includes import (
INTEGRATION_WEBHOOK_INCLUDE,
MAX_INTEGRATION_WEBHOOKS_FETCH,
)
from backend.integrations.providers import ProviderName
from backend.integrations.webhooks.utils import webhook_ingress_url
from backend.server.v2.library.model import LibraryAgentPreset
@@ -128,22 +131,36 @@ async def get_webhook(
@overload
async def get_all_webhooks_by_creds(
user_id: str, credentials_id: str, *, include_relations: Literal[True]
user_id: str,
credentials_id: str,
*,
include_relations: Literal[True],
limit: int = MAX_INTEGRATION_WEBHOOKS_FETCH,
) -> list[WebhookWithRelations]: ...
@overload
async def get_all_webhooks_by_creds(
user_id: str, credentials_id: str, *, include_relations: Literal[False] = False
user_id: str,
credentials_id: str,
*,
include_relations: Literal[False] = False,
limit: int = MAX_INTEGRATION_WEBHOOKS_FETCH,
) -> list[Webhook]: ...
async def get_all_webhooks_by_creds(
user_id: str, credentials_id: str, *, include_relations: bool = False
user_id: str,
credentials_id: str,
*,
include_relations: bool = False,
limit: int = MAX_INTEGRATION_WEBHOOKS_FETCH,
) -> list[Webhook] | list[WebhookWithRelations]:
if not credentials_id:
raise ValueError("credentials_id must not be empty")
webhooks = await IntegrationWebhook.prisma().find_many(
where={"userId": user_id, "credentialsId": credentials_id},
include=INTEGRATION_WEBHOOK_INCLUDE if include_relations else None,
order={"createdAt": "desc"},
take=limit,
)
return [
(WebhookWithRelations if include_relations else Webhook).from_db(webhook)

View File

@@ -270,6 +270,7 @@ def SchemaField(
min_length: Optional[int] = None,
max_length: Optional[int] = None,
discriminator: Optional[str] = None,
format: Optional[str] = None,
json_schema_extra: Optional[dict[str, Any]] = None,
) -> T:
if default is PydanticUndefined and default_factory is None:
@@ -285,6 +286,7 @@ def SchemaField(
"advanced": advanced,
"hidden": hidden,
"depends_on": depends_on,
"format": format,
**(json_schema_extra or {}),
}.items()
if v is not None
@@ -345,6 +347,9 @@ class APIKeyCredentials(_BaseCredentials):
"""Unix timestamp (seconds) indicating when the API key expires (if at all)"""
def auth_header(self) -> str:
# Linear API keys should not have Bearer prefix
if self.provider == "linear":
return self.api_key.get_secret_value()
return f"Bearer {self.api_key.get_secret_value()}"

View File

@@ -15,7 +15,7 @@ from prisma.types import (
# from backend.notifications.models import NotificationEvent
from pydantic import BaseModel, ConfigDict, EmailStr, Field, field_validator
from backend.server.v2.store.exceptions import DatabaseError
from backend.util.exceptions import DatabaseError
from backend.util.json import SafeJson
from backend.util.logging import TruncatedLogger
@@ -235,6 +235,7 @@ class BaseEventModel(BaseModel):
class NotificationEventModel(BaseEventModel, Generic[NotificationDataType_co]):
id: Optional[str] = None # None when creating, populated when reading from DB
data: NotificationDataType_co
@property
@@ -378,6 +379,7 @@ class NotificationPreference(BaseModel):
class UserNotificationEventDTO(BaseModel):
id: str # Added to track notifications for removal
type: NotificationType
data: dict
created_at: datetime
@@ -386,6 +388,7 @@ class UserNotificationEventDTO(BaseModel):
@staticmethod
def from_db(model: NotificationEvent) -> "UserNotificationEventDTO":
return UserNotificationEventDTO(
id=model.id,
type=model.type,
data=dict(model.data),
created_at=model.createdAt,
@@ -541,6 +544,79 @@ async def empty_user_notification_batch(
) from e
async def clear_all_user_notification_batches(user_id: str) -> None:
"""Clear ALL notification batches for a user across all types.
Used when user's email is bounced/inactive and we should stop
trying to send them ANY emails.
"""
try:
# Delete all notification events for this user
await NotificationEvent.prisma().delete_many(
where={"UserNotificationBatch": {"is": {"userId": user_id}}}
)
# Delete all batches for this user
await UserNotificationBatch.prisma().delete_many(where={"userId": user_id})
logger.info(f"Cleared all notification batches for user {user_id}")
except Exception as e:
raise DatabaseError(
f"Failed to clear all notification batches for user {user_id}: {e}"
) from e
async def remove_notifications_from_batch(
user_id: str, notification_type: NotificationType, notification_ids: list[str]
) -> None:
"""Remove specific notifications from a user's batch by their IDs.
This is used after successful sending to remove only the
sent notifications, preventing duplicates on retry.
"""
if not notification_ids:
return
try:
# Delete the specific notification events
deleted_count = await NotificationEvent.prisma().delete_many(
where={
"id": {"in": notification_ids},
"UserNotificationBatch": {
"is": {"userId": user_id, "type": notification_type}
},
}
)
logger.info(
f"Removed {deleted_count} notifications from batch for user {user_id}"
)
# Check if batch is now empty and delete it if so
remaining = await NotificationEvent.prisma().count(
where={
"UserNotificationBatch": {
"is": {"userId": user_id, "type": notification_type}
}
}
)
if remaining == 0:
await UserNotificationBatch.prisma().delete_many(
where=UserNotificationBatchWhereInput(
userId=user_id,
type=notification_type,
)
)
logger.info(
f"Deleted empty batch for user {user_id} and type {notification_type}"
)
except Exception as e:
raise DatabaseError(
f"Failed to remove notifications from batch for user {user_id} and type {notification_type}: {e}"
) from e
async def get_user_notification_batch(
user_id: str,
notification_type: NotificationType,

View File

@@ -1,4 +1,5 @@
import re
from datetime import datetime
from typing import Any, Optional
import prisma
@@ -9,9 +10,9 @@ from prisma.types import UserOnboardingCreateInput, UserOnboardingUpdateInput
from backend.data.block import get_blocks
from backend.data.credit import get_user_credit_model
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
from backend.server.v2.store.model import StoreAgentDetails
from backend.util.cache import cached
from backend.util.json import SafeJson
# Mapping from user reason id to categories to search for when choosing agent to show
@@ -25,12 +26,10 @@ REASON_MAPPING: dict[str, list[str]] = {
POINTS_AGENT_COUNT = 50 # Number of agents to calculate points for
MIN_AGENT_COUNT = 2 # Minimum number of marketplace agents to enable onboarding
user_credit = get_user_credit_model()
class UserOnboardingUpdate(pydantic.BaseModel):
completedSteps: Optional[list[OnboardingStep]] = None
notificationDot: Optional[bool] = None
walletShown: Optional[bool] = None
notified: Optional[list[OnboardingStep]] = None
usageReason: Optional[str] = None
integrations: Optional[list[str]] = None
@@ -39,6 +38,8 @@ class UserOnboardingUpdate(pydantic.BaseModel):
agentInput: Optional[dict[str, Any]] = None
onboardingAgentExecutionId: Optional[str] = None
agentRuns: Optional[int] = None
lastRunAt: Optional[datetime] = None
consecutiveRunDays: Optional[int] = None
async def get_user_onboarding(user_id: str):
@@ -57,16 +58,22 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
update["completedSteps"] = list(set(data.completedSteps))
for step in (
OnboardingStep.AGENT_NEW_RUN,
OnboardingStep.RUN_AGENTS,
OnboardingStep.MARKETPLACE_VISIT,
OnboardingStep.MARKETPLACE_ADD_AGENT,
OnboardingStep.MARKETPLACE_RUN_AGENT,
OnboardingStep.BUILDER_SAVE_AGENT,
OnboardingStep.BUILDER_RUN_AGENT,
OnboardingStep.RE_RUN_AGENT,
OnboardingStep.SCHEDULE_AGENT,
OnboardingStep.RUN_AGENTS,
OnboardingStep.RUN_3_DAYS,
OnboardingStep.TRIGGER_WEBHOOK,
OnboardingStep.RUN_14_DAYS,
OnboardingStep.RUN_AGENTS_100,
):
if step in data.completedSteps:
await reward_user(user_id, step)
if data.notificationDot is not None:
update["notificationDot"] = data.notificationDot
if data.walletShown is not None:
update["walletShown"] = data.walletShown
if data.notified is not None:
update["notified"] = list(set(data.notified))
if data.usageReason is not None:
@@ -83,6 +90,10 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
update["onboardingAgentExecutionId"] = data.onboardingAgentExecutionId
if data.agentRuns is not None:
update["agentRuns"] = data.agentRuns
if data.lastRunAt is not None:
update["lastRunAt"] = data.lastRunAt
if data.consecutiveRunDays is not None:
update["consecutiveRunDays"] = data.consecutiveRunDays
return await UserOnboarding.prisma().upsert(
where={"userId": user_id},
@@ -101,16 +112,28 @@ async def reward_user(user_id: str, step: OnboardingStep):
# This is seen as a reward for the GET_RESULTS step in the wallet
case OnboardingStep.AGENT_NEW_RUN:
reward = 300
case OnboardingStep.RUN_AGENTS:
reward = 300
case OnboardingStep.MARKETPLACE_VISIT:
reward = 100
case OnboardingStep.MARKETPLACE_ADD_AGENT:
reward = 100
case OnboardingStep.MARKETPLACE_RUN_AGENT:
reward = 100
case OnboardingStep.BUILDER_SAVE_AGENT:
reward = 100
case OnboardingStep.BUILDER_RUN_AGENT:
case OnboardingStep.RE_RUN_AGENT:
reward = 100
case OnboardingStep.SCHEDULE_AGENT:
reward = 100
case OnboardingStep.RUN_AGENTS:
reward = 300
case OnboardingStep.RUN_3_DAYS:
reward = 100
case OnboardingStep.TRIGGER_WEBHOOK:
reward = 100
case OnboardingStep.RUN_14_DAYS:
reward = 300
case OnboardingStep.RUN_AGENTS_100:
reward = 300
if reward == 0:
return
@@ -122,7 +145,8 @@ async def reward_user(user_id: str, step: OnboardingStep):
return
onboarding.rewardedFor.append(step)
await user_credit.onboarding_reward(user_id, reward, step)
user_credit_model = await get_user_credit_model(user_id)
await user_credit_model.onboarding_reward(user_id, reward, step)
await UserOnboarding.prisma().update(
where={"userId": user_id},
data={
@@ -132,6 +156,22 @@ async def reward_user(user_id: str, step: OnboardingStep):
)
async def complete_webhook_trigger_step(user_id: str):
"""
Completes the TRIGGER_WEBHOOK onboarding step for the user if not already completed.
"""
onboarding = await get_user_onboarding(user_id)
if OnboardingStep.TRIGGER_WEBHOOK not in onboarding.completedSteps:
await update_user_onboarding(
user_id,
UserOnboardingUpdate(
completedSteps=onboarding.completedSteps
+ [OnboardingStep.TRIGGER_WEBHOOK]
),
)
def clean_and_split(text: str) -> list[str]:
"""
Removes all special characters from a string, truncates it to 100 characters,
@@ -236,8 +276,14 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
for word in user_onboarding.integrations
]
where_clause["is_available"] = True
# Try to take only agents that are available and allowed for onboarding
storeAgents = await prisma.models.StoreAgent.prisma().find_many(
where=prisma.types.StoreAgentWhereInput(**where_clause),
where={
"is_available": True,
"useForOnboarding": True,
},
order=[
{"featured": "desc"},
{"runs": "desc"},
@@ -246,59 +292,16 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
take=100,
)
agentListings = await prisma.models.StoreListingVersion.prisma().find_many(
where={
"id": {"in": [agent.storeListingVersionId for agent in storeAgents]},
},
include={"AgentGraph": True},
)
for listing in agentListings:
agent = listing.AgentGraph
if agent is None:
continue
graph = GraphModel.from_db(agent)
# Remove agents with empty input schema
if not graph.input_schema:
storeAgents = [
a for a in storeAgents if a.storeListingVersionId != listing.id
]
continue
# Remove agents with empty credentials
# Get nodes from this agent that have credentials
nodes = await prisma.models.AgentNode.prisma().find_many(
where={
"agentGraphId": agent.id,
"agentBlockId": {"in": list(CREDENTIALS_FIELDS.keys())},
},
)
for node in nodes:
block_id = node.agentBlockId
field_name = CREDENTIALS_FIELDS[block_id]
# If there are no credentials or they are empty, remove the agent
# FIXME ignores default values
if (
field_name not in node.constantInput
or node.constantInput[field_name] is None
):
storeAgents = [
a for a in storeAgents if a.storeListingVersionId != listing.id
]
break
# If there are less than 2 agents, add more agents to the list
# If not enough agents found, relax the useForOnboarding filter
if len(storeAgents) < 2:
storeAgents += await prisma.models.StoreAgent.prisma().find_many(
where={
"listing_id": {"not_in": [agent.listing_id for agent in storeAgents]},
},
storeAgents = await prisma.models.StoreAgent.prisma().find_many(
where=prisma.types.StoreAgentWhereInput(**where_clause),
order=[
{"featured": "desc"},
{"runs": "desc"},
{"rating": "desc"},
],
take=2 - len(storeAgents),
take=100,
)
# Calculate points for the first X agents and choose the top 2
@@ -333,8 +336,13 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
]
@cached(maxsize=1, ttl_seconds=300) # Cache for 5 minutes since this rarely changes
async def onboarding_enabled() -> bool:
"""
Check if onboarding should be enabled based on store agent count.
Cached to prevent repeated slow database queries.
"""
# Use a more efficient query that stops counting after finding enough agents
count = await prisma.models.StoreAgent.prisma().count(take=MIN_AGENT_COUNT + 1)
# Onboading is enabled if there are at least 2 agents in the store
# Onboarding is enabled if there are at least 2 agents in the store
return count >= MIN_AGENT_COUNT

View File

@@ -0,0 +1,5 @@
import prisma.models
class StoreAgentWithRank(prisma.models.StoreAgent):
rank: float

View File

@@ -1,19 +1,18 @@
import logging
import os
from functools import cache
from autogpt_libs.utils.cache import thread_cached
from dotenv import load_dotenv
from redis import Redis
from redis.asyncio import Redis as AsyncRedis
from backend.util.cache import cached, thread_cached
from backend.util.retry import conn_retry
load_dotenv()
HOST = os.getenv("REDIS_HOST", "localhost")
PORT = int(os.getenv("REDIS_PORT", "6379"))
PASSWORD = os.getenv("REDIS_PASSWORD", "password")
PASSWORD = os.getenv("REDIS_PASSWORD", None)
logger = logging.getLogger(__name__)
@@ -35,7 +34,7 @@ def disconnect():
get_redis().close()
@cache
@cached(ttl_seconds=3600)
def get_redis() -> Redis:
return connect()

View File

@@ -15,15 +15,20 @@ from prisma.types import JsonFilter, UserCreateInput, UserUpdateInput
from backend.data.db import prisma
from backend.data.model import User, UserIntegrations, UserMetadata
from backend.data.notifications import NotificationPreference, NotificationPreferenceDTO
from backend.server.v2.store.exceptions import DatabaseError
from backend.util.cache import cached
from backend.util.encryption import JSONCryptor
from backend.util.exceptions import DatabaseError
from backend.util.json import SafeJson
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
settings = Settings()
# Cache decorator alias for consistent user lookup caching
cache_user_lookup = cached(maxsize=1000, ttl_seconds=300)
@cache_user_lookup
async def get_or_create_user(user_data: dict) -> User:
try:
user_id = user_data.get("sub")
@@ -49,6 +54,7 @@ async def get_or_create_user(user_data: dict) -> User:
raise DatabaseError(f"Failed to get or create user {user_data}: {e}") from e
@cache_user_lookup
async def get_user_by_id(user_id: str) -> User:
user = await prisma.user.find_unique(where={"id": user_id})
if not user:
@@ -64,6 +70,7 @@ async def get_user_email_by_id(user_id: str) -> Optional[str]:
raise DatabaseError(f"Failed to get user email for user {user_id}: {e}") from e
@cache_user_lookup
async def get_user_by_email(email: str) -> Optional[User]:
try:
user = await prisma.user.find_unique(where={"email": email})
@@ -74,7 +81,17 @@ async def get_user_by_email(email: str) -> Optional[User]:
async def update_user_email(user_id: str, email: str):
try:
# Get old email first for cache invalidation
old_user = await prisma.user.find_unique(where={"id": user_id})
old_email = old_user.email if old_user else None
await prisma.user.update(where={"id": user_id}, data={"email": email})
# Selectively invalidate only the specific user entries
get_user_by_id.cache_delete(user_id)
if old_email:
get_user_by_email.cache_delete(old_email)
get_user_by_email.cache_delete(email)
except Exception as e:
raise DatabaseError(
f"Failed to update user email for user {user_id}: {e}"
@@ -114,6 +131,8 @@ async def update_user_integrations(user_id: str, data: UserIntegrations):
where={"id": user_id},
data={"integrations": encrypted_data},
)
# Invalidate cache for this user
get_user_by_id.cache_delete(user_id)
async def migrate_and_encrypt_user_integrations():
@@ -285,6 +304,10 @@ async def update_user_notification_preference(
)
if not user:
raise ValueError(f"User not found with ID: {user_id}")
# Invalidate cache for this user since notification preferences are part of user data
get_user_by_id.cache_delete(user_id)
preferences: dict[NotificationType, bool] = {
NotificationType.AGENT_RUN: user.notifyOnAgentRun or True,
NotificationType.ZERO_BALANCE: user.notifyOnZeroBalance or True,
@@ -323,12 +346,44 @@ async def set_user_email_verification(user_id: str, verified: bool) -> None:
where={"id": user_id},
data={"emailVerified": verified},
)
# Invalidate cache for this user
get_user_by_id.cache_delete(user_id)
except Exception as e:
raise DatabaseError(
f"Failed to set email verification status for user {user_id}: {e}"
) from e
async def disable_all_user_notifications(user_id: str) -> None:
"""Disable all notification preferences for a user.
Used when user's email bounces/is inactive to prevent any future notifications.
"""
try:
await PrismaUser.prisma().update(
where={"id": user_id},
data={
"notifyOnAgentRun": False,
"notifyOnZeroBalance": False,
"notifyOnLowBalance": False,
"notifyOnBlockExecutionFailed": False,
"notifyOnContinuousAgentError": False,
"notifyOnDailySummary": False,
"notifyOnWeeklySummary": False,
"notifyOnMonthlySummary": False,
"notifyOnAgentApproved": False,
"notifyOnAgentRejected": False,
},
)
# Invalidate cache for this user
get_user_by_id.cache_delete(user_id)
logger.info(f"Disabled all notification preferences for user {user_id}")
except Exception as e:
raise DatabaseError(
f"Failed to disable notifications for user {user_id}: {e}"
) from e
async def get_user_email_verification(user_id: str) -> bool:
"""Get the email verification status for a user."""
try:
@@ -407,6 +462,10 @@ async def update_user_timezone(user_id: str, timezone: str) -> User:
)
if not user:
raise ValueError(f"User not found with ID: {user_id}")
# Invalidate cache for this user
get_user_by_id.cache_delete(user_id)
return User.from_db(user)
except Exception as e:
raise DatabaseError(f"Failed to update timezone for user {user_id}: {e}") from e

View File

@@ -4,7 +4,12 @@ Module for generating AI-based activity status for graph executions.
import json
import logging
from typing import TYPE_CHECKING, Any, NotRequired, TypedDict
from typing import TYPE_CHECKING, Any, TypedDict
try:
from typing import NotRequired
except ImportError:
from typing_extensions import NotRequired
from pydantic import SecretStr
@@ -146,17 +151,35 @@ async def generate_activity_status_for_execution(
"Focus on the ACTUAL TASK the user wanted done, not the internal workflow steps. "
"Avoid technical terms like 'workflow', 'execution', 'components', 'nodes', 'processing', etc. "
"Keep it to 3 sentences maximum. Be conversational and human-friendly.\n\n"
"UNDERSTAND THE INTENDED PURPOSE:\n"
"- FIRST: Read the graph description carefully to understand what the user wanted to accomplish\n"
"- The graph name and description tell you the main goal/intention of this automation\n"
"- Use this intended purpose as your PRIMARY criteria for success/failure evaluation\n"
"- Ask yourself: 'Did this execution actually accomplish what the graph was designed to do?'\n\n"
"CRITICAL OUTPUT ANALYSIS:\n"
"- Check if blocks that should produce user-facing results actually produced outputs\n"
"- Blocks with names containing 'Output', 'Post', 'Create', 'Send', 'Publish', 'Generate' are usually meant to produce final results\n"
"- If these critical blocks have NO outputs (empty recent_outputs), the task likely FAILED even if status shows 'completed'\n"
"- Sub-agents (AgentExecutorBlock) that produce no outputs usually indicate failed sub-tasks\n"
"- Most importantly: Does the execution result match what the graph description promised to deliver?\n\n"
"SUCCESS EVALUATION BASED ON INTENTION:\n"
"- If the graph is meant to 'create blog posts' → check if blog content was actually created\n"
"- If the graph is meant to 'send emails' → check if emails were actually sent\n"
"- If the graph is meant to 'analyze data' → check if analysis results were produced\n"
"- If the graph is meant to 'generate reports' → check if reports were generated\n"
"- Technical completion ≠ goal achievement. Focus on whether the USER'S INTENDED OUTCOME was delivered\n\n"
"IMPORTANT: Be HONEST about what actually happened:\n"
"- If the input was invalid/nonsensical, say so directly\n"
"- If the task failed, explain what went wrong in simple terms\n"
"- If errors occurred, focus on what the user needs to know\n"
"- Only claim success if the task was genuinely completed\n"
"- Don't sugar-coat failures or present them as helpful feedback\n\n"
"- Only claim success if the INTENDED PURPOSE was genuinely accomplished AND produced expected outputs\n"
"- Don't sugar-coat failures or present them as helpful feedback\n"
"- ESPECIALLY: If the graph's main purpose wasn't achieved, this is a failure regardless of 'completed' status\n\n"
"Understanding Errors:\n"
"- Node errors: Individual steps may fail but the overall task might still complete (e.g., one data source fails but others work)\n"
"- Graph error (in overall_status.graph_error): This means the entire execution failed and nothing was accomplished\n"
"- Even if execution shows 'completed', check if critical nodes failed that would prevent the desired outcome\n"
"- Focus on the end result the user wanted, not whether technical steps completed"
"- Missing outputs from critical blocks: Even if no errors, this means the task failed to produce expected results\n"
"- Focus on whether the graph's intended purpose was fulfilled, not whether technical steps completed"
),
},
{
@@ -165,15 +188,28 @@ async def generate_activity_status_for_execution(
f"A user ran '{graph_name}' to accomplish something. Based on this execution data, "
f"write what they achieved in simple, user-friendly terms:\n\n"
f"{json.dumps(execution_data, indent=2)}\n\n"
"CRITICAL: Check overall_status.graph_error FIRST - if present, the entire execution failed.\n"
"Then check individual node errors to understand partial failures.\n\n"
"ANALYSIS CHECKLIST:\n"
"1. READ graph_info.description FIRST - this tells you what the user intended to accomplish\n"
"2. Check overall_status.graph_error - if present, the entire execution failed\n"
"3. Look for nodes with 'Output', 'Post', 'Create', 'Send', 'Publish', 'Generate' in their block_name\n"
"4. Check if these critical blocks have empty recent_outputs arrays - this indicates failure\n"
"5. Look for AgentExecutorBlock (sub-agents) with no outputs - this suggests sub-task failures\n"
"6. Count how many nodes produced outputs vs total nodes - low ratio suggests problems\n"
"7. MOST IMPORTANT: Does the execution outcome match what graph_info.description promised?\n\n"
"INTENTION-BASED EVALUATION:\n"
"- If description mentions 'blog writing' → did it create blog content?\n"
"- If description mentions 'email automation' → were emails actually sent?\n"
"- If description mentions 'data analysis' → were analysis results produced?\n"
"- If description mentions 'content generation' → was content actually generated?\n"
"- If description mentions 'social media posting' → were posts actually made?\n"
"- Match the outputs to the stated intention, not just technical completion\n\n"
"Write 1-3 sentences about what the user accomplished, such as:\n"
"- 'I analyzed your resume and provided detailed feedback for the IT industry.'\n"
"- 'I couldn't analyze your resume because the input was just nonsensical text.'\n"
"- 'I failed to complete the task due to missing API access.'\n"
"- 'I couldn't complete the task because critical steps failed to produce any results.'\n"
"- 'I failed to generate the content you requested due to missing API access.'\n"
"- 'I extracted key information from your documents and organized it into a summary.'\n"
"- 'The task failed to run due to system configuration issues.'\n\n"
"Focus on what ACTUALLY happened, not what was attempted."
"- 'The task failed because the blog post creation step didn't produce any output.'\n\n"
"BE CRITICAL: If the graph's intended purpose (from description) wasn't achieved, report this as a failure even if status is 'completed'."
),
},
]
@@ -197,6 +233,7 @@ async def generate_activity_status_for_execution(
logger.debug(
f"Generated activity status for {graph_exec_id}: {activity_status}"
)
return activity_status
except Exception as e:
@@ -423,7 +460,6 @@ async def _call_llm_direct(
credentials=credentials,
llm_model=LlmModel.GPT4O_MINI,
prompt=prompt,
json_format=False,
max_tokens=150,
compress_prompt_to_fit=True,
)

View File

@@ -0,0 +1,115 @@
"""Redis-based distributed locking for cluster coordination."""
import logging
import time
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from redis import Redis
logger = logging.getLogger(__name__)
class ClusterLock:
"""Simple Redis-based distributed lock for preventing duplicate execution."""
def __init__(self, redis: "Redis", key: str, owner_id: str, timeout: int = 300):
self.redis = redis
self.key = key
self.owner_id = owner_id
self.timeout = timeout
self._last_refresh = 0.0
def try_acquire(self) -> str | None:
"""Try to acquire the lock.
Returns:
- owner_id (self.owner_id) if successfully acquired
- different owner_id if someone else holds the lock
- None if Redis is unavailable or other error
"""
try:
success = self.redis.set(self.key, self.owner_id, nx=True, ex=self.timeout)
if success:
self._last_refresh = time.time()
return self.owner_id # Successfully acquired
# Failed to acquire, get current owner
current_value = self.redis.get(self.key)
if current_value:
current_owner = (
current_value.decode("utf-8")
if isinstance(current_value, bytes)
else str(current_value)
)
return current_owner
# Key doesn't exist but we failed to set it - race condition or Redis issue
return None
except Exception as e:
logger.error(f"ClusterLock.try_acquire failed for key {self.key}: {e}")
return None
def refresh(self) -> bool:
"""Refresh lock TTL if we still own it.
Rate limited to at most once every timeout/10 seconds (minimum 1 second).
During rate limiting, still verifies lock existence but skips TTL extension.
Setting _last_refresh to 0 bypasses rate limiting for testing.
"""
# Calculate refresh interval: max(timeout // 10, 1)
refresh_interval = max(self.timeout // 10, 1)
current_time = time.time()
# Check if we're within the rate limit period
# _last_refresh == 0 forces a refresh (bypasses rate limiting for testing)
is_rate_limited = (
self._last_refresh > 0
and (current_time - self._last_refresh) < refresh_interval
)
try:
# Always verify lock existence, even during rate limiting
current_value = self.redis.get(self.key)
if not current_value:
self._last_refresh = 0
return False
stored_owner = (
current_value.decode("utf-8")
if isinstance(current_value, bytes)
else str(current_value)
)
if stored_owner != self.owner_id:
self._last_refresh = 0
return False
# If rate limited, return True but don't update TTL or timestamp
if is_rate_limited:
return True
# Perform actual refresh
if self.redis.expire(self.key, self.timeout):
self._last_refresh = current_time
return True
self._last_refresh = 0
return False
except Exception as e:
logger.error(f"ClusterLock.refresh failed for key {self.key}: {e}")
self._last_refresh = 0
return False
def release(self):
"""Release the lock."""
if self._last_refresh == 0:
return
try:
self.redis.delete(self.key)
except Exception:
pass
self._last_refresh = 0.0

View File

@@ -0,0 +1,507 @@
"""
Integration tests for ClusterLock - Redis-based distributed locking.
Tests the complete lock lifecycle without mocking Redis to ensure
real-world behavior is correct. Covers acquisition, refresh, expiry,
contention, and error scenarios.
"""
import logging
import time
import uuid
from threading import Thread
import pytest
import redis
from .cluster_lock import ClusterLock
logger = logging.getLogger(__name__)
@pytest.fixture
def redis_client():
"""Get Redis client for testing using same config as backend."""
from backend.data.redis_client import HOST, PASSWORD, PORT
# Use same config as backend but without decode_responses since ClusterLock needs raw bytes
client = redis.Redis(
host=HOST,
port=PORT,
password=PASSWORD,
decode_responses=False, # ClusterLock needs raw bytes for ownership verification
)
# Clean up any existing test keys
try:
for key in client.scan_iter(match="test_lock:*"):
client.delete(key)
except Exception:
pass # Ignore cleanup errors
return client
@pytest.fixture
def lock_key():
"""Generate unique lock key for each test."""
return f"test_lock:{uuid.uuid4()}"
@pytest.fixture
def owner_id():
"""Generate unique owner ID for each test."""
return str(uuid.uuid4())
class TestClusterLockBasic:
"""Basic lock acquisition and release functionality."""
def test_lock_acquisition_success(self, redis_client, lock_key, owner_id):
"""Test basic lock acquisition succeeds."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
# Lock should be acquired successfully
result = lock.try_acquire()
assert result == owner_id # Returns our owner_id when successfully acquired
assert lock._last_refresh > 0
# Lock key should exist in Redis
assert redis_client.exists(lock_key) == 1
assert redis_client.get(lock_key).decode("utf-8") == owner_id
def test_lock_acquisition_contention(self, redis_client, lock_key):
"""Test second acquisition fails when lock is held."""
owner1 = str(uuid.uuid4())
owner2 = str(uuid.uuid4())
lock1 = ClusterLock(redis_client, lock_key, owner1, timeout=60)
lock2 = ClusterLock(redis_client, lock_key, owner2, timeout=60)
# First lock should succeed
result1 = lock1.try_acquire()
assert result1 == owner1 # Successfully acquired, returns our owner_id
# Second lock should fail and return the first owner
result2 = lock2.try_acquire()
assert result2 == owner1 # Returns the current owner (first owner)
assert lock2._last_refresh == 0
def test_lock_release_deletes_redis_key(self, redis_client, lock_key, owner_id):
"""Test lock release deletes Redis key and marks locally as released."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
lock.try_acquire()
assert lock._last_refresh > 0
assert redis_client.exists(lock_key) == 1
# Release should delete Redis key and mark locally as released
lock.release()
assert lock._last_refresh == 0
assert lock._last_refresh == 0.0
# Redis key should be deleted for immediate release
assert redis_client.exists(lock_key) == 0
# Another lock should be able to acquire immediately
new_owner_id = str(uuid.uuid4())
new_lock = ClusterLock(redis_client, lock_key, new_owner_id, timeout=60)
assert new_lock.try_acquire() == new_owner_id
class TestClusterLockRefresh:
"""Lock refresh and TTL management."""
def test_lock_refresh_success(self, redis_client, lock_key, owner_id):
"""Test lock refresh extends TTL."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
lock.try_acquire()
original_ttl = redis_client.ttl(lock_key)
# Wait a bit then refresh
time.sleep(1)
lock._last_refresh = 0 # Force refresh past rate limit
assert lock.refresh() is True
# TTL should be reset to full timeout (allow for small timing differences)
new_ttl = redis_client.ttl(lock_key)
assert new_ttl >= original_ttl or new_ttl >= 58 # Allow for timing variance
def test_lock_refresh_rate_limiting(self, redis_client, lock_key, owner_id):
"""Test refresh is rate-limited to timeout/10."""
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=100
) # 100s timeout
lock.try_acquire()
# First refresh should work
assert lock.refresh() is True
first_refresh_time = lock._last_refresh
# Immediate second refresh should be skipped (rate limited) but verify key exists
assert lock.refresh() is True # Returns True but skips actual refresh
assert lock._last_refresh == first_refresh_time # Time unchanged
def test_lock_refresh_verifies_existence_during_rate_limit(
self, redis_client, lock_key, owner_id
):
"""Test refresh verifies lock existence even during rate limiting."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=100)
lock.try_acquire()
# Manually delete the key (simulates expiry or external deletion)
redis_client.delete(lock_key)
# Refresh should detect missing key even during rate limit period
assert lock.refresh() is False
assert lock._last_refresh == 0
def test_lock_refresh_ownership_lost(self, redis_client, lock_key, owner_id):
"""Test refresh fails when ownership is lost."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
lock.try_acquire()
# Simulate another process taking the lock
different_owner = str(uuid.uuid4())
redis_client.set(lock_key, different_owner, ex=60)
# Force refresh past rate limit and verify it fails
lock._last_refresh = 0 # Force refresh past rate limit
assert lock.refresh() is False
assert lock._last_refresh == 0
def test_lock_refresh_when_not_acquired(self, redis_client, lock_key, owner_id):
"""Test refresh fails when lock was never acquired."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
# Refresh without acquiring should fail
assert lock.refresh() is False
class TestClusterLockExpiry:
"""Lock expiry and timeout behavior."""
def test_lock_natural_expiry(self, redis_client, lock_key, owner_id):
"""Test lock expires naturally via Redis TTL."""
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=2
) # 2 second timeout
lock.try_acquire()
assert redis_client.exists(lock_key) == 1
# Wait for expiry
time.sleep(3)
assert redis_client.exists(lock_key) == 0
# New lock with same key should succeed
new_lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
assert new_lock.try_acquire() == owner_id
def test_lock_refresh_prevents_expiry(self, redis_client, lock_key, owner_id):
"""Test refreshing prevents lock from expiring."""
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=3
) # 3 second timeout
lock.try_acquire()
# Wait and refresh before expiry
time.sleep(1)
lock._last_refresh = 0 # Force refresh past rate limit
assert lock.refresh() is True
# Wait beyond original timeout
time.sleep(2.5)
assert redis_client.exists(lock_key) == 1 # Should still exist
class TestClusterLockConcurrency:
"""Concurrent access patterns."""
def test_multiple_threads_contention(self, redis_client, lock_key):
"""Test multiple threads competing for same lock."""
num_threads = 5
successful_acquisitions = []
def try_acquire_lock(thread_id):
owner_id = f"thread_{thread_id}"
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
if lock.try_acquire() == owner_id:
successful_acquisitions.append(thread_id)
time.sleep(0.1) # Hold lock briefly
lock.release()
threads = []
for i in range(num_threads):
thread = Thread(target=try_acquire_lock, args=(i,))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
# Only one thread should have acquired the lock
assert len(successful_acquisitions) == 1
def test_sequential_lock_reuse(self, redis_client, lock_key):
"""Test lock can be reused after natural expiry."""
owners = [str(uuid.uuid4()) for _ in range(3)]
for i, owner_id in enumerate(owners):
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=1) # 1 second
assert lock.try_acquire() == owner_id
time.sleep(1.5) # Wait for expiry
# Verify lock expired
assert redis_client.exists(lock_key) == 0
def test_refresh_during_concurrent_access(self, redis_client, lock_key):
"""Test lock refresh works correctly during concurrent access attempts."""
owner1 = str(uuid.uuid4())
owner2 = str(uuid.uuid4())
lock1 = ClusterLock(redis_client, lock_key, owner1, timeout=5)
lock2 = ClusterLock(redis_client, lock_key, owner2, timeout=5)
# Thread 1 holds lock and refreshes
assert lock1.try_acquire() == owner1
def refresh_continuously():
for _ in range(10):
lock1._last_refresh = 0 # Force refresh
lock1.refresh()
time.sleep(0.1)
def try_acquire_continuously():
attempts = 0
while attempts < 20:
if lock2.try_acquire() == owner2:
return True
time.sleep(0.1)
attempts += 1
return False
refresh_thread = Thread(target=refresh_continuously)
acquire_thread = Thread(target=try_acquire_continuously)
refresh_thread.start()
acquire_thread.start()
refresh_thread.join()
acquire_thread.join()
# Lock1 should still own the lock due to refreshes
assert lock1._last_refresh > 0
assert lock2._last_refresh == 0
class TestClusterLockErrorHandling:
"""Error handling and edge cases."""
def test_redis_connection_failure_on_acquire(self, lock_key, owner_id):
"""Test graceful handling when Redis is unavailable during acquisition."""
# Use invalid Redis connection
bad_redis = redis.Redis(
host="invalid_host", port=1234, socket_connect_timeout=1
)
lock = ClusterLock(bad_redis, lock_key, owner_id, timeout=60)
# Should return None for Redis connection failures
result = lock.try_acquire()
assert result is None # Returns None when Redis fails
assert lock._last_refresh == 0
def test_redis_connection_failure_on_refresh(
self, redis_client, lock_key, owner_id
):
"""Test graceful handling when Redis fails during refresh."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
# Acquire normally
assert lock.try_acquire() == owner_id
# Replace Redis client with failing one
lock.redis = redis.Redis(
host="invalid_host", port=1234, socket_connect_timeout=1
)
# Refresh should fail gracefully
lock._last_refresh = 0 # Force refresh
assert lock.refresh() is False
assert lock._last_refresh == 0
def test_invalid_lock_parameters(self, redis_client):
"""Test validation of lock parameters."""
owner_id = str(uuid.uuid4())
# All parameters are now simple - no validation needed
# Just test basic construction works
lock = ClusterLock(redis_client, "test_key", owner_id, timeout=60)
assert lock.key == "test_key"
assert lock.owner_id == owner_id
assert lock.timeout == 60
def test_refresh_after_redis_key_deleted(self, redis_client, lock_key, owner_id):
"""Test refresh behavior when Redis key is manually deleted."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
lock.try_acquire()
# Manually delete the key (simulates external deletion)
redis_client.delete(lock_key)
# Refresh should fail and mark as not acquired
lock._last_refresh = 0 # Force refresh
assert lock.refresh() is False
assert lock._last_refresh == 0
class TestClusterLockDynamicRefreshInterval:
"""Dynamic refresh interval based on timeout."""
def test_refresh_interval_calculation(self, redis_client, lock_key, owner_id):
"""Test refresh interval is calculated as max(timeout/10, 1)."""
test_cases = [
(5, 1), # 5/10 = 0, but minimum is 1
(10, 1), # 10/10 = 1
(30, 3), # 30/10 = 3
(100, 10), # 100/10 = 10
(200, 20), # 200/10 = 20
(1000, 100), # 1000/10 = 100
]
for timeout, expected_interval in test_cases:
lock = ClusterLock(
redis_client, f"{lock_key}_{timeout}", owner_id, timeout=timeout
)
lock.try_acquire()
# Calculate expected interval using same logic as implementation
refresh_interval = max(timeout // 10, 1)
assert refresh_interval == expected_interval
# Test rate limiting works with calculated interval
assert lock.refresh() is True
first_refresh_time = lock._last_refresh
# Sleep less than interval - should be rate limited
time.sleep(0.1)
assert lock.refresh() is True
assert lock._last_refresh == first_refresh_time # No actual refresh
class TestClusterLockRealWorldScenarios:
"""Real-world usage patterns."""
def test_execution_coordination_simulation(self, redis_client):
"""Simulate graph execution coordination across multiple pods."""
graph_exec_id = str(uuid.uuid4())
lock_key = f"execution:{graph_exec_id}"
# Simulate 3 pods trying to execute same graph
pods = [f"pod_{i}" for i in range(3)]
execution_results = {}
def execute_graph(pod_id):
"""Simulate graph execution with cluster lock."""
lock = ClusterLock(redis_client, lock_key, pod_id, timeout=300)
if lock.try_acquire() == pod_id:
# Simulate execution work
execution_results[pod_id] = "executed"
time.sleep(0.1)
lock.release()
else:
execution_results[pod_id] = "rejected"
threads = []
for pod_id in pods:
thread = Thread(target=execute_graph, args=(pod_id,))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
# Only one pod should have executed
executed_count = sum(
1 for result in execution_results.values() if result == "executed"
)
rejected_count = sum(
1 for result in execution_results.values() if result == "rejected"
)
assert executed_count == 1
assert rejected_count == 2
def test_long_running_execution_with_refresh(
self, redis_client, lock_key, owner_id
):
"""Test lock maintains ownership during long execution with periodic refresh."""
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=30
) # 30 second timeout, refresh interval = max(30//10, 1) = 3 seconds
def long_execution_with_refresh():
"""Simulate long-running execution with periodic refresh."""
assert lock.try_acquire() == owner_id
# Simulate 10 seconds of work with refreshes every 2 seconds
# This respects rate limiting - actual refreshes will happen at 0s, 3s, 6s, 9s
try:
for i in range(5): # 5 iterations * 2 seconds = 10 seconds total
time.sleep(2)
refresh_success = lock.refresh()
assert refresh_success is True, f"Refresh failed at iteration {i}"
return "completed"
finally:
lock.release()
# Should complete successfully without losing lock
result = long_execution_with_refresh()
assert result == "completed"
def test_graceful_degradation_pattern(self, redis_client, lock_key):
"""Test graceful degradation when Redis becomes unavailable."""
owner_id = str(uuid.uuid4())
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=3
) # Use shorter timeout
# Normal operation
assert lock.try_acquire() == owner_id
lock._last_refresh = 0 # Force refresh past rate limit
assert lock.refresh() is True
# Simulate Redis becoming unavailable
original_redis = lock.redis
lock.redis = redis.Redis(
host="invalid_host",
port=1234,
socket_connect_timeout=1,
decode_responses=False,
)
# Should degrade gracefully
lock._last_refresh = 0 # Force refresh past rate limit
assert lock.refresh() is False
assert lock._last_refresh == 0
# Restore Redis and verify can acquire again
lock.redis = original_redis
# Wait for original lock to expire (use longer wait for 3s timeout)
time.sleep(4)
new_lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
assert new_lock.try_acquire() == owner_id
if __name__ == "__main__":
# Run specific test for quick validation
pytest.main([__file__, "-v"])

View File

@@ -1,5 +1,6 @@
import logging
from typing import Callable, Concatenate, ParamSpec, TypeVar, cast
from contextlib import asynccontextmanager
from typing import TYPE_CHECKING, Callable, Concatenate, ParamSpec, TypeVar, cast
from backend.data import db
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model
@@ -9,6 +10,7 @@ from backend.data.execution import (
get_execution_kv_data,
get_graph_execution_meta,
get_graph_executions,
get_graph_executions_count,
get_latest_node_execution,
get_node_execution,
get_node_executions,
@@ -28,14 +30,17 @@ from backend.data.graph import (
get_node,
)
from backend.data.notifications import (
clear_all_user_notification_batches,
create_or_add_to_user_notification_batch,
empty_user_notification_batch,
get_all_batches_by_type,
get_user_notification_batch,
get_user_notification_oldest_message_in_batch,
remove_notifications_from_batch,
)
from backend.data.user import (
get_active_user_ids_in_timerange,
get_user_by_id,
get_user_email_by_id,
get_user_email_verification,
get_user_integrations,
@@ -53,8 +58,10 @@ from backend.util.service import (
)
from backend.util.settings import Config
if TYPE_CHECKING:
from fastapi import FastAPI
config = Config()
_user_credit_model = get_user_credit_model()
logger = logging.getLogger(__name__)
P = ParamSpec("P")
R = TypeVar("R")
@@ -63,28 +70,41 @@ R = TypeVar("R")
async def _spend_credits(
user_id: str, cost: int, metadata: UsageTransactionMetadata
) -> int:
return await _user_credit_model.spend_credits(user_id, cost, metadata)
user_credit_model = await get_user_credit_model(user_id)
return await user_credit_model.spend_credits(user_id, cost, metadata)
async def _get_credits(user_id: str) -> int:
return await _user_credit_model.get_credits(user_id)
user_credit_model = await get_user_credit_model(user_id)
return await user_credit_model.get_credits(user_id)
class DatabaseManager(AppService):
@asynccontextmanager
async def lifespan(self, app: "FastAPI"):
async with super().lifespan(app):
logger.info(f"[{self.service_name}] ⏳ Connecting to Database...")
await db.connect()
def run_service(self) -> None:
logger.info(f"[{self.service_name}] ⏳ Connecting to Database...")
self.run_and_wait(db.connect())
super().run_service()
logger.info(f"[{self.service_name}] ✅ Ready")
yield
def cleanup(self):
super().cleanup()
logger.info(f"[{self.service_name}] ⏳ Disconnecting Database...")
self.run_and_wait(db.disconnect())
logger.info(f"[{self.service_name}] ⏳ Disconnecting Database...")
await db.disconnect()
async def health_check(self) -> str:
if not db.is_connected():
raise UnhealthyServiceError("Database is not connected")
try:
# Test actual database connectivity by executing a simple query
# This will fail if Prisma query engine is not responding
result = await db.query_raw_with_schema("SELECT 1 as health_check")
if not result or result[0].get("health_check") != 1:
raise UnhealthyServiceError("Database query test failed")
except Exception as e:
raise UnhealthyServiceError(f"Database health check failed: {e}")
return await super().health_check()
@classmethod
@@ -101,6 +121,7 @@ class DatabaseManager(AppService):
# Executions
get_graph_executions = _(get_graph_executions)
get_graph_executions_count = _(get_graph_executions_count)
get_graph_execution_meta = _(get_graph_execution_meta)
create_graph_execution = _(create_graph_execution)
get_node_execution = _(get_node_execution)
@@ -132,15 +153,18 @@ class DatabaseManager(AppService):
# User Comms - async
get_active_user_ids_in_timerange = _(get_active_user_ids_in_timerange)
get_user_by_id = _(get_user_by_id)
get_user_email_by_id = _(get_user_email_by_id)
get_user_email_verification = _(get_user_email_verification)
get_user_notification_preference = _(get_user_notification_preference)
# Notifications - async
clear_all_user_notification_batches = _(clear_all_user_notification_batches)
create_or_add_to_user_notification_batch = _(
create_or_add_to_user_notification_batch
)
empty_user_notification_batch = _(empty_user_notification_batch)
remove_notifications_from_batch = _(remove_notifications_from_batch)
get_all_batches_by_type = _(get_all_batches_by_type)
get_user_notification_batch = _(get_user_notification_batch)
get_user_notification_oldest_message_in_batch = _(
@@ -169,6 +193,7 @@ class DatabaseManagerClient(AppServiceClient):
# Executions
get_graph_executions = _(d.get_graph_executions)
get_graph_executions_count = _(d.get_graph_executions_count)
get_graph_execution_meta = _(d.get_graph_execution_meta)
get_node_executions = _(d.get_node_executions)
update_node_execution_status = _(d.update_node_execution_status)
@@ -214,6 +239,7 @@ class DatabaseManagerAsyncClient(AppServiceClient):
get_node = d.get_node
get_node_execution = d.get_node_execution
get_node_executions = d.get_node_executions
get_user_by_id = d.get_user_by_id
get_user_integrations = d.get_user_integrations
upsert_execution_input = d.upsert_execution_input
upsert_execution_output = d.upsert_execution_output
@@ -231,10 +257,12 @@ class DatabaseManagerAsyncClient(AppServiceClient):
get_user_notification_preference = d.get_user_notification_preference
# Notifications
clear_all_user_notification_batches = d.clear_all_user_notification_batches
create_or_add_to_user_notification_batch = (
d.create_or_add_to_user_notification_batch
)
empty_user_notification_batch = d.empty_user_notification_batch
remove_notifications_from_batch = d.remove_notifications_from_batch
get_all_batches_by_type = d.get_all_batches_by_type
get_user_notification_batch = d.get_user_notification_batch
get_user_notification_oldest_message_in_batch = (

View File

@@ -3,16 +3,42 @@ import logging
import os
import threading
import time
import uuid
from collections import defaultdict
from concurrent.futures import Future, ThreadPoolExecutor
from contextlib import asynccontextmanager
from datetime import datetime, timedelta, timezone
from typing import TYPE_CHECKING, Any, Optional, TypeVar, cast
import sentry_sdk
from pika.adapters.blocking_connection import BlockingChannel
from pika.spec import Basic, BasicProperties
from redis.asyncio.lock import Lock as RedisLock
from prometheus_client import Gauge, start_http_server
from redis.asyncio.lock import Lock as AsyncRedisLock
from backend.blocks.agent import AgentExecutorBlock
from backend.blocks.io import AgentOutputBlock
from backend.data import redis_client as redis
from backend.data.block import (
BlockInput,
BlockOutput,
BlockOutputEntry,
BlockSchema,
get_block,
)
from backend.data.credit import UsageTransactionMetadata
from backend.data.dynamic_fields import parse_execution_output
from backend.data.execution import (
ExecutionQueue,
ExecutionStatus,
GraphExecution,
GraphExecutionEntry,
NodeExecutionEntry,
NodeExecutionResult,
NodesInputMasks,
UserContext,
)
from backend.data.graph import Link, Node
from backend.data.model import GraphExecutionStats, NodeExecutionStats
from backend.data.notifications import (
AgentRunData,
@@ -25,50 +51,21 @@ from backend.data.rabbitmq import SyncRabbitMQ
from backend.executor.activity_status_generator import (
generate_activity_status_for_execution,
)
from backend.executor.utils import LogMetadata
from backend.notifications.notifications import queue_notification
from backend.util.exceptions import InsufficientBalanceError, ModerationError
if TYPE_CHECKING:
from backend.executor import DatabaseManagerClient, DatabaseManagerAsyncClient
from prometheus_client import Gauge, start_http_server
from backend.blocks.agent import AgentExecutorBlock
from backend.data import redis_client as redis
from backend.data.block import (
BlockInput,
BlockOutput,
BlockOutputEntry,
BlockSchema,
get_block,
)
from backend.data.credit import UsageTransactionMetadata
from backend.data.execution import (
ExecutionQueue,
ExecutionStatus,
GraphExecution,
GraphExecutionEntry,
NodeExecutionEntry,
NodeExecutionResult,
NodesInputMasks,
UserContext,
)
from backend.data.graph import Link, Node
from backend.executor.utils import (
GRACEFUL_SHUTDOWN_TIMEOUT_SECONDS,
GRAPH_EXECUTION_CANCEL_QUEUE_NAME,
GRAPH_EXECUTION_QUEUE_NAME,
CancelExecutionEvent,
ExecutionOutputEntry,
LogMetadata,
NodeExecutionProgress,
block_usage_cost,
create_execution_queue_config,
execution_usage_cost,
parse_execution_output,
validate_exec,
)
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.notifications.notifications import queue_notification
from backend.server.v2.AutoMod.manager import automod_manager
from backend.util import json
from backend.util.clients import (
@@ -84,13 +81,24 @@ from backend.util.decorator import (
error_logged,
time_measured,
)
from backend.util.exceptions import InsufficientBalanceError, ModerationError
from backend.util.file import clean_exec_files
from backend.util.logging import TruncatedLogger, configure_logging
from backend.util.metrics import DiscordChannel
from backend.util.process import AppProcess, set_service_name
from backend.util.retry import continuous_retry, func_retry
from backend.util.retry import (
continuous_retry,
func_retry,
send_rate_limited_discord_alert,
)
from backend.util.settings import Settings
from .cluster_lock import ClusterLock
if TYPE_CHECKING:
from backend.executor import DatabaseManagerAsyncClient, DatabaseManagerClient
_logger = logging.getLogger(__name__)
logger = TruncatedLogger(_logger, prefix="[GraphExecutor]")
settings = Settings()
@@ -106,6 +114,7 @@ utilization_gauge = Gauge(
"Ratio of active graph runs to max graph workers",
)
# Thread-local storage for ExecutionProcessor instances
_tls = threading.local()
@@ -117,10 +126,14 @@ def init_worker():
def execute_graph(
graph_exec_entry: "GraphExecutionEntry", cancel_event: threading.Event
graph_exec_entry: "GraphExecutionEntry",
cancel_event: threading.Event,
cluster_lock: ClusterLock,
):
"""Execute graph using thread-local ExecutionProcessor instance"""
return _tls.processor.on_graph_execution(graph_exec_entry, cancel_event)
return _tls.processor.on_graph_execution(
graph_exec_entry, cancel_event, cluster_lock
)
T = TypeVar("T")
@@ -177,6 +190,7 @@ async def execute_node(
_input_data.inputs = input_data
if nodes_input_masks:
_input_data.nodes_input_masks = nodes_input_masks
_input_data.user_id = user_id
input_data = _input_data.model_dump()
data.inputs = input_data
@@ -211,14 +225,37 @@ async def execute_node(
extra_exec_kwargs[field_name] = credentials
output_size = 0
# sentry tracking nonsense to get user counts for blocks because isolation scopes don't work :(
scope = sentry_sdk.get_current_scope()
# save the tags
original_user = scope._user
original_tags = dict(scope._tags) if scope._tags else {}
# Set user ID for error tracking
scope.set_user({"id": user_id})
scope.set_tag("graph_id", graph_id)
scope.set_tag("node_id", node_id)
scope.set_tag("block_name", node_block.name)
scope.set_tag("block_id", node_block.id)
for k, v in (data.user_context or UserContext(timezone="UTC")).model_dump().items():
scope.set_tag(f"user_context.{k}", v)
try:
async for output_name, output_data in node_block.execute(
input_data, **extra_exec_kwargs
):
output_data = json.convert_pydantic_to_json(output_data)
output_data = json.to_dict(output_data)
output_size += len(json.dumps(output_data))
log_metadata.debug("Node produced output", **{output_name: output_data})
yield output_name, output_data
except Exception:
# Capture exception WITH context still set before restoring scope
sentry_sdk.capture_exception(scope=scope)
sentry_sdk.flush() # Ensure it's sent before we restore scope
# Re-raise to maintain normal error flow
raise
finally:
# Ensure credentials are released even if execution fails
if creds_lock and (await creds_lock.locked()) and (await creds_lock.owned()):
@@ -233,6 +270,10 @@ async def execute_node(
execution_stats.input_size = input_size
execution_stats.output_size = output_size
# Restore scope AFTER error has been captured
scope._user = original_user
scope._tags = original_tags
async def _enqueue_next_nodes(
db_client: "DatabaseManagerAsyncClient",
@@ -429,7 +470,7 @@ class ExecutionProcessor:
graph_id=node_exec.graph_id,
node_eid=node_exec.node_exec_id,
node_id=node_exec.node_id,
block_name="-",
block_name=b.name if (b := get_block(node_exec.block_id)) else "-",
)
db_client = get_db_async_client()
node = await db_client.get_node(node_exec.node_id)
@@ -557,7 +598,6 @@ class ExecutionProcessor:
await persist_output(
"error", str(stats.error) or type(stats.error).__name__
)
return status
@func_retry
@@ -583,6 +623,7 @@ class ExecutionProcessor:
self,
graph_exec: GraphExecutionEntry,
cancel: threading.Event,
cluster_lock: ClusterLock,
):
log_metadata = LogMetadata(
logger=_logger,
@@ -641,6 +682,7 @@ class ExecutionProcessor:
cancel=cancel,
log_metadata=log_metadata,
execution_stats=exec_stats,
cluster_lock=cluster_lock,
)
exec_stats.walltime += timing_info.wall_time
exec_stats.cputime += timing_info.cpu_time
@@ -742,6 +784,7 @@ class ExecutionProcessor:
cancel: threading.Event,
log_metadata: LogMetadata,
execution_stats: GraphExecutionStats,
cluster_lock: ClusterLock,
) -> ExecutionStatus:
"""
Returns:
@@ -927,7 +970,7 @@ class ExecutionProcessor:
and execution_queue.empty()
and (running_node_execution or running_node_evaluation)
):
# There is nothing to execute, and no output to process, let's relax for a while.
cluster_lock.refresh()
time.sleep(0.1)
# loop done --------------------------------------------------
@@ -969,16 +1012,31 @@ class ExecutionProcessor:
if isinstance(e, Exception)
else Exception(f"{e.__class__.__name__}: {e}")
)
if not execution_stats.error:
execution_stats.error = str(error)
known_errors = (InsufficientBalanceError, ModerationError)
if isinstance(error, known_errors):
execution_stats.error = str(error)
return ExecutionStatus.FAILED
execution_status = ExecutionStatus.FAILED
log_metadata.exception(
f"Failed graph execution {graph_exec.graph_exec_id}: {error}"
)
# Send rate-limited Discord alert for unknown/unexpected errors
send_rate_limited_discord_alert(
"graph_execution",
error,
"unknown_error",
f"🚨 **Unknown Graph Execution Error**\n"
f"User: {graph_exec.user_id}\n"
f"Graph ID: {graph_exec.graph_id}\n"
f"Execution ID: {graph_exec.graph_exec_id}\n"
f"Error Type: {type(error).__name__}\n"
f"Error: {str(error)[:200]}{'...' if len(str(error)) > 200 else ''}\n",
)
raise
finally:
@@ -1153,9 +1211,9 @@ class ExecutionProcessor:
f"❌ **Insufficient Funds Alert**\n"
f"User: {user_email or user_id}\n"
f"Agent: {metadata.name if metadata else 'Unknown Agent'}\n"
f"Current balance: ${e.balance/100:.2f}\n"
f"Attempted cost: ${abs(e.amount)/100:.2f}\n"
f"Shortfall: ${abs(shortfall)/100:.2f}\n"
f"Current balance: ${e.balance / 100:.2f}\n"
f"Attempted cost: ${abs(e.amount) / 100:.2f}\n"
f"Shortfall: ${abs(shortfall) / 100:.2f}\n"
f"[View User Details]({base_url}/admin/spending?search={user_email})"
)
@@ -1202,9 +1260,9 @@ class ExecutionProcessor:
alert_message = (
f"⚠️ **Low Balance Alert**\n"
f"User: {user_email or user_id}\n"
f"Balance dropped below ${LOW_BALANCE_THRESHOLD/100:.2f}\n"
f"Current balance: ${current_balance/100:.2f}\n"
f"Transaction cost: ${transaction_cost/100:.2f}\n"
f"Balance dropped below ${LOW_BALANCE_THRESHOLD / 100:.2f}\n"
f"Current balance: ${current_balance / 100:.2f}\n"
f"Transaction cost: ${transaction_cost / 100:.2f}\n"
f"[View User Details]({base_url}/admin/spending?search={user_email})"
)
get_notification_manager_client().discord_system_alert(
@@ -1219,6 +1277,7 @@ class ExecutionManager(AppProcess):
super().__init__()
self.pool_size = settings.config.num_graph_workers
self.active_graph_runs: dict[str, tuple[Future, threading.Event]] = {}
self.executor_id = str(uuid.uuid4())
self._executor = None
self._stop_consuming = None
@@ -1228,6 +1287,8 @@ class ExecutionManager(AppProcess):
self._run_thread = None
self._run_client = None
self._execution_locks = {}
@property
def cancel_thread(self) -> threading.Thread:
if self._cancel_thread is None:
@@ -1432,20 +1493,79 @@ class ExecutionManager(AppProcess):
return
graph_exec_id = graph_exec_entry.graph_exec_id
user_id = graph_exec_entry.user_id
graph_id = graph_exec_entry.graph_id
logger.info(
f"[{self.service_name}] Received RUN for graph_exec_id={graph_exec_id}"
f"[{self.service_name}] Received RUN for graph_exec_id={graph_exec_id}, user_id={user_id}"
)
if graph_exec_id in self.active_graph_runs:
# TODO: Make this check cluster-wide, prevent duplicate runs across executor pods.
logger.error(
f"[{self.service_name}] Graph {graph_exec_id} already running; rejecting duplicate run."
# Check user rate limit before processing
try:
# Only check executions from the last 24 hours for performance
current_running_count = get_db_client().get_graph_executions_count(
user_id=user_id,
graph_id=graph_id,
statuses=[ExecutionStatus.RUNNING],
created_time_gte=datetime.now(timezone.utc) - timedelta(hours=24),
)
_ack_message(reject=True, requeue=False)
if (
current_running_count
>= settings.config.max_concurrent_graph_executions_per_user
):
logger.warning(
f"[{self.service_name}] Rate limit exceeded for user {user_id} on graph {graph_id}: "
f"{current_running_count}/{settings.config.max_concurrent_graph_executions_per_user} running executions"
)
_ack_message(reject=True, requeue=True)
return
except Exception as e:
logger.error(
f"[{self.service_name}] Failed to check rate limit for user {user_id}: {e}, proceeding with execution"
)
# If rate limit check fails, proceed to avoid blocking executions
# Check for local duplicate execution first
if graph_exec_id in self.active_graph_runs:
logger.warning(
f"[{self.service_name}] Graph {graph_exec_id} already running locally; rejecting duplicate."
)
_ack_message(reject=True, requeue=True)
return
# Try to acquire cluster-wide execution lock
cluster_lock = ClusterLock(
redis=redis.get_redis(),
key=f"exec_lock:{graph_exec_id}",
owner_id=self.executor_id,
timeout=settings.config.cluster_lock_timeout,
)
current_owner = cluster_lock.try_acquire()
if current_owner != self.executor_id:
# Either someone else has it or Redis is unavailable
if current_owner is not None:
logger.warning(
f"[{self.service_name}] Graph {graph_exec_id} already running on pod {current_owner}"
)
_ack_message(reject=True, requeue=False)
else:
logger.warning(
f"[{self.service_name}] Could not acquire lock for {graph_exec_id} - Redis unavailable"
)
_ack_message(reject=True, requeue=True)
return
self._execution_locks[graph_exec_id] = cluster_lock
logger.info(
f"[{self.service_name}] Acquired cluster lock for {graph_exec_id} with executor {self.executor_id}"
)
cancel_event = threading.Event()
future = self.executor.submit(execute_graph, graph_exec_entry, cancel_event)
future = self.executor.submit(
execute_graph, graph_exec_entry, cancel_event, cluster_lock
)
self.active_graph_runs[graph_exec_id] = (future, cancel_event)
self._update_prompt_metrics()
@@ -1464,6 +1584,10 @@ class ExecutionManager(AppProcess):
f"[{self.service_name}] Error in run completion callback: {e}"
)
finally:
# Release the cluster-wide execution lock
if graph_exec_id in self._execution_locks:
self._execution_locks[graph_exec_id].release()
del self._execution_locks[graph_exec_id]
self._cleanup_completed_runs()
future.add_done_callback(_on_run_done)
@@ -1546,6 +1670,10 @@ class ExecutionManager(AppProcess):
f"{prefix} ⏳ Still waiting for {len(self.active_graph_runs)} executions: {ids}"
)
for graph_exec_id in self.active_graph_runs:
if lock := self._execution_locks.get(graph_exec_id):
lock.refresh()
time.sleep(wait_interval)
waited += wait_interval
@@ -1563,6 +1691,15 @@ class ExecutionManager(AppProcess):
except Exception as e:
logger.error(f"{prefix} ⚠️ Error during executor shutdown: {type(e)} {e}")
# Release remaining execution locks
try:
for lock in self._execution_locks.values():
lock.release()
self._execution_locks.clear()
logger.info(f"{prefix} ✅ Released execution locks")
except Exception as e:
logger.warning(f"{prefix} ⚠️ Failed to release all locks: {e}")
# Disconnect the run execution consumer
self._stop_message_consumers(
self.run_thread,
@@ -1577,6 +1714,8 @@ class ExecutionManager(AppProcess):
logger.info(f"{prefix} ✅ Finished GraphExec cleanup")
super().cleanup()
# ------- UTILITIES ------- #
@@ -1668,15 +1807,18 @@ def update_graph_execution_state(
@asynccontextmanager
async def synchronized(key: str, timeout: int = 60):
async def synchronized(key: str, timeout: int = settings.config.cluster_lock_timeout):
r = await redis.get_redis_async()
lock: RedisLock = r.lock(f"lock:{key}", timeout=timeout)
lock: AsyncRedisLock = r.lock(f"lock:{key}", timeout=timeout)
try:
await lock.acquire()
yield
finally:
if await lock.locked() and await lock.owned():
await lock.release()
try:
await lock.release()
except Exception as e:
logger.warning(f"Failed to release lock for key {key}: {e}")
def increment_execution_count(user_id: str) -> int:

View File

@@ -248,7 +248,7 @@ class Scheduler(AppService):
raise UnhealthyServiceError("Scheduler is still initializing")
# Check if we're in the middle of cleanup
if self.cleaned_up:
if self._shutting_down:
return await super().health_check()
# Normal operation - check if scheduler is running
@@ -375,7 +375,6 @@ class Scheduler(AppService):
super().run_service()
def cleanup(self):
super().cleanup()
if self.scheduler:
logger.info("⏳ Shutting down scheduler...")
self.scheduler.shutdown(wait=True)
@@ -390,7 +389,7 @@ class Scheduler(AppService):
logger.info("⏳ Waiting for event loop thread to finish...")
_event_loop_thread.join(timeout=SCHEDULER_OPERATION_TIMEOUT_SECONDS)
logger.info("Scheduler cleanup complete.")
super().cleanup()
@expose
def add_graph_execution_schedule(

View File

@@ -4,7 +4,7 @@ import threading
import time
from collections import defaultdict
from concurrent.futures import Future
from typing import Any, Mapping, Optional, cast
from typing import Mapping, Optional, cast
from pydantic import BaseModel, JsonValue, ValidationError
@@ -20,6 +20,9 @@ from backend.data.block import (
)
from backend.data.block_cost_config import BLOCK_COSTS
from backend.data.db import prisma
# Import dynamic field utilities from centralized location
from backend.data.dynamic_fields import merge_execution_input
from backend.data.execution import (
ExecutionStatus,
GraphExecutionStats,
@@ -31,6 +34,7 @@ from backend.data.graph import GraphModel, Node
from backend.data.model import CredentialsMetaInput
from backend.data.rabbitmq import Exchange, ExchangeType, Queue, RabbitMQConfig
from backend.data.user import get_user_by_id
from backend.util.cache import cached
from backend.util.clients import (
get_async_execution_event_bus,
get_async_execution_queue,
@@ -38,12 +42,12 @@ from backend.util.clients import (
get_integration_credentials_store,
)
from backend.util.exceptions import GraphValidationError, NotFoundError
from backend.util.logging import TruncatedLogger
from backend.util.mock import MockObject
from backend.util.logging import TruncatedLogger, is_structured_logging_enabled
from backend.util.settings import Config
from backend.util.type import convert
@cached(maxsize=1000, ttl_seconds=3600)
async def get_user_context(user_id: str) -> UserContext:
"""
Get UserContext for a user, always returns a valid context with timezone.
@@ -51,7 +55,11 @@ async def get_user_context(user_id: str) -> UserContext:
"""
user_context = UserContext(timezone="UTC") # Default to UTC
try:
user = await get_user_by_id(user_id)
if prisma.is_connected():
user = await get_user_by_id(user_id)
else:
user = await get_database_manager_async_client().get_user_by_id(user_id)
if user and user.timezone and user.timezone != "not-set":
user_context.timezone = user.timezone
logger.debug(f"Retrieved user context: timezone={user.timezone}")
@@ -91,7 +99,11 @@ class LogMetadata(TruncatedLogger):
"node_id": node_id,
"block_name": block_name,
}
prefix = f"[ExecutionManager|uid:{user_id}|gid:{graph_id}|nid:{node_id}]|geid:{graph_eid}|neid:{node_eid}|{block_name}]"
prefix = (
"[ExecutionManager]"
if is_structured_logging_enabled()
else f"[ExecutionManager|uid:{user_id}|gid:{graph_id}|nid:{node_id}]|geid:{graph_eid}|neid:{node_eid}|{block_name}]" # noqa
)
super().__init__(
logger,
max_length=max_length,
@@ -186,195 +198,7 @@ def _is_cost_filter_match(cost_filter: BlockInput, input_data: BlockInput) -> bo
# ============ Execution Input Helpers ============ #
# --------------------------------------------------------------------------- #
# Delimiters
# --------------------------------------------------------------------------- #
LIST_SPLIT = "_$_"
DICT_SPLIT = "_#_"
OBJC_SPLIT = "_@_"
_DELIMS = (LIST_SPLIT, DICT_SPLIT, OBJC_SPLIT)
# --------------------------------------------------------------------------- #
# Tokenisation utilities
# --------------------------------------------------------------------------- #
def _next_delim(s: str) -> tuple[str | None, int]:
"""
Return the *earliest* delimiter appearing in `s` and its index.
If none present → (None, -1).
"""
first: str | None = None
pos = len(s) # sentinel: larger than any real index
for d in _DELIMS:
i = s.find(d)
if 0 <= i < pos:
first, pos = d, i
return first, (pos if first else -1)
def _tokenise(path: str) -> list[tuple[str, str]] | None:
"""
Convert the raw path string (starting with a delimiter) into
[ (delimiter, identifier), … ] or None if the syntax is malformed.
"""
tokens: list[tuple[str, str]] = []
while path:
# 1. Which delimiter starts this chunk?
delim = next((d for d in _DELIMS if path.startswith(d)), None)
if delim is None:
return None # invalid syntax
# 2. Slice off the delimiter, then up to the next delimiter (or EOS)
path = path[len(delim) :]
nxt_delim, pos = _next_delim(path)
token, path = (
path[: pos if pos != -1 else len(path)],
path[pos if pos != -1 else len(path) :],
)
if token == "":
return None # empty identifier is invalid
tokens.append((delim, token))
return tokens
# --------------------------------------------------------------------------- #
# Public API parsing (flattened ➜ concrete)
# --------------------------------------------------------------------------- #
def parse_execution_output(output: BlockOutputEntry, name: str) -> JsonValue | None:
"""
Retrieve a nested value out of `output` using the flattened *name*.
On any failure (wrong name, wrong type, out-of-range, bad path)
returns **None**.
"""
base_name, data = output
# Exact match → whole object
if name == base_name:
return data
# Must start with the expected name
if not name.startswith(base_name):
return None
path = name[len(base_name) :]
if not path:
return None # nothing left to parse
tokens = _tokenise(path)
if tokens is None:
return None
cur: JsonValue = data
for delim, ident in tokens:
if delim == LIST_SPLIT:
# list[index]
try:
idx = int(ident)
except ValueError:
return None
if not isinstance(cur, list) or idx >= len(cur):
return None
cur = cur[idx]
elif delim == DICT_SPLIT:
if not isinstance(cur, dict) or ident not in cur:
return None
cur = cur[ident]
elif delim == OBJC_SPLIT:
if not hasattr(cur, ident):
return None
cur = getattr(cur, ident)
else:
return None # unreachable
return cur
def _assign(container: Any, tokens: list[tuple[str, str]], value: Any) -> Any:
"""
Recursive helper that *returns* the (possibly new) container with
`value` assigned along the remaining `tokens` path.
"""
if not tokens:
return value # leaf reached
delim, ident = tokens[0]
rest = tokens[1:]
# ---------- list ----------
if delim == LIST_SPLIT:
try:
idx = int(ident)
except ValueError:
raise ValueError("index must be an integer")
if container is None:
container = []
elif not isinstance(container, list):
container = list(container) if hasattr(container, "__iter__") else []
while len(container) <= idx:
container.append(None)
container[idx] = _assign(container[idx], rest, value)
return container
# ---------- dict ----------
if delim == DICT_SPLIT:
if container is None:
container = {}
elif not isinstance(container, dict):
container = dict(container) if hasattr(container, "items") else {}
container[ident] = _assign(container.get(ident), rest, value)
return container
# ---------- object ----------
if delim == OBJC_SPLIT:
if container is None or not isinstance(container, MockObject):
container = MockObject()
setattr(
container,
ident,
_assign(getattr(container, ident, None), rest, value),
)
return container
return value # unreachable
def merge_execution_input(data: BlockInput) -> BlockInput:
"""
Reconstruct nested objects from a *flattened* dict of key → value.
Raises ValueError on syntactically invalid list indices.
"""
merged: BlockInput = {}
for key, value in data.items():
# Split off the base name (before the first delimiter, if any)
delim, pos = _next_delim(key)
if delim is None:
merged[key] = value
continue
base, path = key[:pos], key[pos:]
tokens = _tokenise(path)
if tokens is None:
# Invalid key; treat as scalar under the raw name
merged[key] = value
continue
merged[base] = _assign(merged.get(base), tokens, value)
data.update(merged)
return data
# Dynamic field utilities are now imported from backend.data.dynamic_fields
def validate_exec(

View File

@@ -3,7 +3,7 @@ from typing import cast
import pytest
from pytest_mock import MockerFixture
from backend.executor.utils import merge_execution_input, parse_execution_output
from backend.data.dynamic_fields import merge_execution_input, parse_execution_output
from backend.util.mock import MockObject

Some files were not shown because too many files have changed in this diff Show More