Compare commits

...

48 Commits

Author SHA1 Message Date
Aarushi
e94654aa11 fix typo 2024-09-20 10:22:50 +01:00
Aarushi
e9de43b0d2 all paths 2024-09-20 10:20:14 +01:00
Aarushi
de8add92e7 psuh 2024-09-20 10:18:47 +01:00
Aarushi
597cbdcc58 updated docker ci file 2024-09-20 10:17:42 +01:00
Aarushi
e3f35d79c7 tweak(.github): Update pr template wording (#8103)
* update pr template wording

* add what and how

* Update .github/PULL_REQUEST_TEMPLATE.md

---------

Co-authored-by: Toran Bruce Richards <toran.richards@gmail.com>
2024-09-19 12:44:50 +00:00
Aarushi
0040495143 tweak(.github): Update PR template (#8100)
* update PR template

* Update .github/PULL_REQUEST_TEMPLATE.md

Co-authored-by: Krzysztof Czerwinski <34861343+kcze@users.noreply.github.com>

* add note

* typo

---------

Co-authored-by: Krzysztof Czerwinski <34861343+kcze@users.noreply.github.com>
2024-09-19 13:00:16 +01:00
Aarushi
d3eac86f9a fix(frontend): Update REST API port (#8096)
update server port to 8006

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
2024-09-19 01:06:04 +02:00
Zamil Majdy
c3cb90ac20 feat(rnd): Add initial block execution credit accounting UI on AutoGPT Builder (#8078) 2024-09-19 04:21:40 +07:00
matanm
9b5bf81d7c Fix typo in Groq setup docs (#8018)
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2024-09-18 20:22:57 +00:00
Nicholas Tindle
86db4deef9 feat(server): backend analytics endpoints (#8030) 2024-09-18 18:23:20 +00:00
Aarushi
d8f989daf8 docs(rnd): Update submodules info in readme (#8095)
update submodules info in readme
2024-09-18 18:59:23 +01:00
Aarushi
00f2b134cb tweak(rnd): add env var to docker compose so no messing with .env (#8091)
add env var to docker compose so no messing with .env
2024-09-18 16:39:15 +01:00
Aarushi
a3959712dc tweak(builder): Update .env.example server url with right port (#8090)
update server url with right port
2024-09-18 15:51:44 +01:00
Aarushi
8477b25c5a tweak(builder) Add local supabse credentials (#8089)
add local supabse credentials
2024-09-18 15:45:09 +01:00
Swifty
f133c9c1ef fix(rnd): incorrect docker image for migrate (#8086)
fix incorrect docker image for migrate
2024-09-18 15:21:38 +02:00
Aarushi
dc72ec97bc feat(rnd): Add support for supabase locally (#8077)
* add just auth for now

* add supabase script

* add to docker compose

* update docker compose

* tweak(rnd) Add prefix in logs (#8001)

* add prefix

* fix typos

* fix conflicts

* feat(rnd): Reduce container size remove dep with forge and autogpt (#8040)

* Remove forge and autogpt

* update lock files

* Update build process to reduce image size

* Reduced built image size

* fixed docker compose watch

* Updated logging

* updated env.example

* formatting

* linting issue

* linting not working in github actions..

* trying to get around github action linting issue

* updated version

* sleep for prisma issues

* add exp backoff on connection issues

* updated config based on review comments

* Sorting alphabetical

* updated default config

* updated depends checks

* fixed missing prisma binaries

* remove dead layer

* remove try

* remove dead layer

* updated lock file

* add to docker compose

* update for init

* add local supabase variables to docker compose

* wip supbase connectioon

* subabase submodule

* combined docker file wth new supbase url pointing to kong

* updated combined

* ngix

* updated docker compose without frontend

* updated docker compose

* update to remove frontend

* update docs

* update newline

* remove unescessary change

---------

Co-authored-by: Swifty <craigswift13@gmail.com>
2024-09-18 09:50:39 +01:00
Nicholas Tindle
0c915cb558 feat(server): anthropic updates, csv, sampling, and code blocks (#7803)
Co-authored-by: Bentlybro <tomnoon9@gmail.com>
2024-09-17 21:29:35 -05:00
Nicholas Tindle
f6ab15db47 feat(market): add filters to the market queries (#8064) 2024-09-17 14:59:25 +00:00
Krzysztof Czerwinski
80161decb9 feat(server): Add credentials API endpoints (#8024)
- Add two endpoints to OAuth `integrations.py`:
  - `GET /integrations/{provider}/credentials` - list all credentials for a provider, without secrets (metadata only)
   - `GET /integrations/{provider}/credentials/{cred_id}` - retrieve a set of credentials (including secrets)

- Add `username` property to `Credentials` types
   - Add logic to populate `username` in OAuth handlers

- Expand `CredentialsMetaResponse` and remove `credentials_` prefix from properties

- Fix `autogpt_libs` dependency caching issue

- Remove accidentally duplicated OAuth handler files in `autogpt_server/integrations`
2024-09-17 11:16:16 +00:00
Swifty
0bf8edcd96 fix(autogpt_server): Fix vulnerability in Dockerfile (#8071) 2024-09-17 11:37:22 +01:00
Zamil Majdy
b1347a92de fix(rnd): Fix execution error on non-saved agent (#8054) 2024-09-16 19:35:31 +00:00
Nicholas Tindle
22ce8e0047 feat(builder): sentry integration (#8053) 2024-09-16 23:19:52 +07:00
Bently
5a7193cfb7 Feat(Builder): Add Runner input and ouput screens (#8038)
* Feat(Builder): Add Runner input and ouput screens

* Fix run button not working

* prettier

* prettier again -- forgot flow

* fix input scaling + auto close on run

* removed "Runner Input" button to make it auto open runner input if input block is  + Fixed issue with output not showing in output UI

* replaced runner output icon and added a new icon for it

* replaced IconOutput icon with LogOut from lucide-react

* prettier

* fix type safety issue + add error handling for formatOutput

* Updates based on comments

* prettier for utils
2024-09-16 13:05:07 +02:00
Zamil Majdy
c1f301ab8b feat(rnd): Add initial credit accounting system for block execution (#8047)
### Background

We need a way to set an execution quota per user for each block execution.

### Changes 🏗️

* Introduced a `UserBlockCredit`, a transaction table tracking the block usage along with it cost/quota.
* The tracking is toggled by `ENABLE_CREDIT` config, default = false.
* Introduced  `BLOCK_COSTS` | `GET /blocks/costs` as a source of information for the cost on each block depending on the input configuration.

Improvements:
* Refactor logging in manager.py to always print a prefix and pass the metadata.
* Make executionStatus on AgentNodeExecution prisma enum. And add executionStatus on AgentGraphExecution.
* Use executionStatus from AgentGraphExecution to improve waiting logic on test_manager.py.
2024-09-14 23:47:28 +07:00
Zamil Majdy
f32244a112 fix(rnd): Fix broken save feature on Agent Builder (#8052) 2024-09-13 18:04:51 -05:00
Aarushi
9395706841 fix(rnd,market): Fix docker issues with market, and DB connection (#8050)
fix docker issues with market, and DB connection
2024-09-13 16:15:06 +01:00
SwiftyOS
a98677b79d Revert "updated lock file"
This reverts commit 056eb46c0f.
2024-09-12 17:59:39 +02:00
SwiftyOS
056eb46c0f updated lock file 2024-09-12 16:18:13 +02:00
Swifty
6fde030c37 feat(rnd): Reduce container size remove dep with forge and autogpt (#8040)
* Remove forge and autogpt

* update lock files

* Update build process to reduce image size

* Reduced built image size

* fixed docker compose watch

* Updated logging

* updated env.example

* formatting

* linting issue

* linting not working in github actions..

* trying to get around github action linting issue

* updated version

* sleep for prisma issues

* add exp backoff on connection issues

* updated config based on review comments

* Sorting alphabetical

* updated default config

* updated depends checks

* fixed missing prisma binaries

* remove dead layer

* remove try

* remove dead layer
2024-09-12 13:03:37 +02:00
Aarushi
bf1e01d423 tweak(rnd) Add prefix in logs (#8001)
* add prefix

* fix typos

* fix conflicts
2024-09-12 11:48:47 +01:00
Zamil Majdy
52c731abd6 fix(rnd): Fix decorator function type hint (#8043) 2024-09-12 05:35:33 +07:00
Aarushi
c8fbce643e fix(rnd): Add connection timeout (#8041)
add connection timeout
2024-09-11 18:32:07 +01:00
Swifty
6c001bd595 Create Input Node Custom UI Node (#8016) 2024-09-11 14:14:03 +02:00
Aarushi
f5b89672f8 feat(rnd): Add k8s default health check (#8037)
add k8s default health check
2024-09-11 12:30:34 +01:00
Aarushi
76480ffa03 fix(rnd): Update port in market (#8036)
update port
2024-09-11 12:19:11 +01:00
Aarushi
ab60a57379 tweak(rnd): Ignore .env in market (#8035)
ignore .env
2024-09-11 11:01:34 +01:00
Aarushi
1d9b01fc77 tweak(rnd): Use docker compose not docker-compose (#8034)
* use docker compose not docker-compose

* linting
2024-09-11 10:20:31 +01:00
Swifty
e81d9f9f0b docker nits (#8033) 2024-09-11 10:31:12 +02:00
Bentlybro
0d5d0270ea Merge branch 'master' of https://github.com/Significant-Gravitas/AutoGPT 2024-09-10 18:24:53 +01:00
SwiftyOS
bd25f9223c expose schedular port and fix marketplace port 2024-09-10 17:09:39 +02:00
SwiftyOS
07305b55ff fix(rnd) use migrate deploy 2024-09-10 16:18:42 +02:00
SwiftyOS
cdfe3e5fbc Updated rnd/README.md 2024-09-10 16:16:16 +02:00
Swifty
e992cdf8c2 Fixing docker setup for local testing (#8026)
* Fixing docker setup

* Updated docker compose setup

* update helm charts

* Corrected agent server host name
2024-09-10 15:46:22 +02:00
Aarushi
ebd2ecd84c docs(server): Update docs (#8031)
update docs
2024-09-10 10:24:54 +01:00
Aarushi
0b919522ae feat(rnd): Split Execution Manager (#8008)
* split execution manager and removed ns and use direct uri with k8s and docker specific dns

* formating

* split execution manager

* refactor(builder): Fix linting warning and errors (#8021)

* Fix lint errors

* Fix dependency loop

* address feedback

* docker compose

* remove ns entirely

* remove yarn lock changes

* update readme

* remove ref

* dockerfile and log

* update log

* debug

* rename to executor

* remove execution from rest

* exec.py

* linting

* udpate tests to use config

* fix test

---------

Co-authored-by: Krzysztof Czerwinski <34861343+kcze@users.noreply.github.com>
2024-09-10 10:05:31 +01:00
Nicholas Tindle
ef691359b7 feat: document the use of isolation better (#8028) 2024-09-09 20:55:05 +00:00
Aarushi
f8815c3053 fix(builder): Use escaped apostrophe (#8027)
* use escaped apostrophe

* linter
2024-09-09 18:08:32 +00:00
Reinier van der Leer
a60ed21404 feat(server): Add OAuth flow endpoints for integrations (#7872)
- feat(server): Initial draft of OAuth init and exchange endpoints
  - Add `supabase` dependency
  - Add Supabase credentials to `Secrets`
  - Add `get_supabase` utility to `.server.utils`
  - Add `.server.integrations` API segment with initial implementations for OAuth init and exchange endpoints
- Move integration OAuth handlers to `autogpt_server.integrations.oauth`
- Change constructor of `SupabaseIntegrationCredentialsStore` to take a Supabase client
- Fix type issues in `GoogleOAuthHandler`
2024-09-09 17:21:56 +02:00
126 changed files with 7660 additions and 5496 deletions

View File

@@ -37,3 +37,4 @@ rnd/autogpt_builder/.env.local
rnd/autogpt_server/.env
rnd/autogpt_server/.venv/
rnd/market/.env

View File

@@ -6,26 +6,18 @@
<!-- Concisely describe all of the changes made in this pull request: -->
### PR Quality Scorecard ✨
### Testing 🔍
> [!NOTE]
Only for the new autogpt platform, currently in rnd/
<!--
Check out our contribution guide:
https://github.com/Significant-Gravitas/AutoGPT/wiki/Contributing
1. Avoid duplicate work, issues, PRs etc.
2. Also consider contributing something other than code; see the [contribution guide]
for options.
3. Clearly explain your changes.
4. Avoid making unnecessary changes, especially if they're purely based on personal
preferences. Doing so is the maintainers' job. ;-)
Please make sure your changes have been tested and are in good working condition.
Here is a list of our critical paths, if you need some inspiration on what and how to test:
-->
- [x] Have you used the PR description template? &ensp; `+2 pts`
- [ ] Is your pull request atomic, focusing on a single change? &ensp; `+5 pts`
- [ ] Have you linked the GitHub issue(s) that this PR addresses? &ensp; `+5 pts`
- [ ] Have you documented your changes clearly and comprehensively? &ensp; `+5 pts`
- [ ] Have you changed or added a feature? &ensp; `-4 pts`
- [ ] Have you added/updated corresponding documentation? &ensp; `+4 pts`
- [ ] Have you added/updated corresponding integration tests? &ensp; `+5 pts`
- [ ] Have you changed the behavior of AutoGPT? &ensp; `-5 pts`
- [ ] Have you also run `agbenchmark` to verify that these changes do not regress performance? &ensp; `+10 pts`
- Create from scratch and execute an agent with at least 3 blocks
- Import an agent from file upload, and confirm it executes correctly
- Upload agent to marketplace
- Import an agent from marketplace and confirm it executes correctly
- Edit an agent from monitor, and confirm it executes correctly

View File

@@ -0,0 +1,41 @@
name: AutoGPT Server Docker Build & Push
on:
push:
branches: [ updated-docker-ci ]
paths:
- '**'
defaults:
run:
shell: bash
working-directory: AutoGPT
env:
PROJECT_ID: agpt-dev
IMAGE_NAME: agpt-server-dev
REGION: us-central1
jobs:
build-and-push:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v2
- name: Set up Cloud SDK
uses: google-github-actions/setup-gcloud@v0.2.1
with:
project_id: ${{ env.PROJECT_ID }}
service_account_key: ${{ secrets.GCP_SA_KEY }}
export_default_credentials: true
- name: Configure Docker
run: gcloud auth configure-docker ${{ env.REGION }}-docker.pkg.dev
- name: Build Docker image
run: docker build -t ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/${{ env.IMAGE_NAME }}:${{ github.sha }} -f rnd/autogpt_server/Dockerfile .
- name: Push Docker image
run: docker push ${{ env.REGION }}-docker.pkg.dev/${{ env.PROJECT_ID }}/${{ env.IMAGE_NAME }}:${{ github.sha }}

3
.gitmodules vendored
View File

@@ -1,3 +1,6 @@
[submodule "forge/tests/vcr_cassettes"]
path = forge/tests/vcr_cassettes
url = https://github.com/Significant-Gravitas/Auto-GPT-test-cassettes
[submodule "rnd/supabase"]
path = rnd/supabase
url = https://github.com/supabase/supabase.git

View File

@@ -185,7 +185,7 @@ If you don't know which to choose, you can safely go with OpenAI*.
1. Get your Groq API key from [Settings > API keys][groq/api-keys]
2. Open `.env`
3. Find the line that says `GROQ_API_KEY=`
4. Insert your Anthropic API Key directly after = without quotes or spaces:
4. Insert your Groq API Key directly after = without quotes or spaces:
```ini
GROQ_API_KEY=gsk_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
```

View File

@@ -69,6 +69,8 @@ Lets the agent execute non-interactive Shell commands and Python code. Python ex
| `shell_denylist` | List of prohibited shell commands | `List[str]` | `[]` |
| `docker_container_name` | Name of the Docker container used for code execution | `str` | `"agent_sandbox"` |
All shell command configurations are expected to be for convience only. This component is not secure and should not be used in production environments. It is recommended to use more appropriate sandboxing.
### CommandProvider
- `execute_shell` execute shell command

View File

@@ -73,6 +73,7 @@ Once you have installed Yarn and Poetry, you can run the following command to in
```bash
cd rnd/autogpt_server
cp .env.example .env
poetry install
```
@@ -90,7 +91,7 @@ Once you have installed the dependencies, you can proceed to the next step.
In order to setup the database, you need to run the following commands, in the same terminal you ran the `poetry install` command:
```sh
docker compose up postgres -d
docker compose up postgres redis -d
poetry run prisma migrate dev
```
After deploying the migration, to ensure that the database schema is correctly mapped to your codebase, allowing the application to interact with the database properly, you need to generate the Prisma database model:
@@ -101,16 +102,17 @@ poetry run prisma generate
Without running this command, the necessary Python modules (prisma.models) won't be available, leading to a `ModuleNotFoundError`.
### Running the server
### Running the server
To run the server, you can run the following commands in the same terminal you ran the `poetry install` command:
```bash
docker compose build
docker compose up
cp supabase/docker/.env.example .env
docker compose -f docker-compose.combined.yml build
docker compose -f docker-compose.combined.yml up -d
```
In the other terminal, you can run the following command to start the frontend:
In the other terminal from autogpt_builder, you can run the following command to start the frontend:
```bash
yarn dev
@@ -119,3 +121,10 @@ yarn dev
### Checking if the server is running
You can check if the server is running by visiting [http://localhost:3000](http://localhost:3000) in your browser.
### Notes:
By default the daemons for different services run on the following ports:
Execution Manager Daemon: 8002
Execution Scheduler Daemon: 8003
Rest Server Daemon: 8004

View File

@@ -1,36 +1,133 @@
This is a guide to setting up and running the AutoGPT Server and Builder. This tutorial will cover downloading the necessary files, setting up the server, and testing the system.
# AutoGPT Platform
https://github.com/user-attachments/assets/fd0d0f35-3155-4263-b575-ba3efb126cb4
Welcome to the AutoGPT Platform - a powerful system for creating and running AI agents to solve business problems. This platform enables you to harness the power of artificial intelligence to automate tasks, analyze data, and generate insights for your organization.
1. Navigate to the AutoGPT GitHub repository.
2. Click the "Code" button, then select "Download ZIP".
3. Once downloaded, extract the ZIP file to a folder of your choice.
## Getting Started
4. Open the extracted folder and navigate to the "rnd" directory.
5. Enter the "AutoGPT server" folder.
6. Open a terminal window in this directory.
7. Locate and open the README file in the AutoGPT server folder: [doc](./autogpt_server/README.md#setup).
8. Copy and paste each command from the setup section in the README into your terminal.
- Important: Wait for each command to finish before running the next one.
9. If all commands run without errors, enter the final command: `poetry run app`
10. You should now see the server running in your terminal.
### Prerequisites
- Docker
- Docker Compose V2 (comes with Docker Desktop, or can be installed separately)
### Running the System
To run the AutoGPT Platform, follow these steps:
1. Clone this repository to your local machine.
2. Navigate to rnd/supabase
3. Run the following command:
```
git submodule update --init --recursive
```
4. Navigate back to rnd (cd ..)
5. Run the following command:
```
cp supabase/docker/.env.example .env
```
6. Run the following command:
```
docker compose -f docker-compose.combined.yml up -d
```
This command will start all the necessary backend services defined in the `docker-compose.combined.yml` file in detached mode.
7. Navigate to rnd/autogpt_builder.
8. Run the following command:
```
cp .env.example .env.local
```
9. Run the following command:
```
yarn dev
```
### Docker Compose Commands
Here are some useful Docker Compose commands for managing your AutoGPT Platform:
- `docker compose -f docker-compose.combined.yml up -d`: Start the services in detached mode.
- `docker compose -f docker-compose.combined.yml stop`: Stop the running services without removing them.
- `docker compose rm`: Remove stopped service containers.
- `docker compose build`: Build or rebuild services.
- `docker compose down`: Stop and remove containers, networks, and volumes.
- `docker compose watch`: Watch for changes in your services and automatically update them.
### Sample Scenarios
Here are some common scenarios where you might use multiple Docker Compose commands:
1. Updating and restarting a specific service:
```
docker compose build api_srv
docker compose up -d --no-deps api_srv
```
This rebuilds the `api_srv` service and restarts it without affecting other services.
2. Viewing logs for troubleshooting:
```
docker compose logs -f api_srv ws_srv
```
This shows and follows the logs for both `api_srv` and `ws_srv` services.
3. Scaling a service for increased load:
```
docker compose up -d --scale executor=3
```
This scales the `executor` service to 3 instances to handle increased load.
4. Stopping the entire system for maintenance:
```
docker compose stop
docker compose rm -f
docker compose pull
docker compose up -d
```
This stops all services, removes containers, pulls the latest images, and restarts the system.
5. Developing with live updates:
```
docker compose watch
```
This watches for changes in your code and automatically updates the relevant services.
6. Checking the status of services:
```
docker compose ps
```
This shows the current status of all services defined in your docker-compose.yml file.
These scenarios demonstrate how to use Docker Compose commands in combination to manage your AutoGPT Platform effectively.
### Persisting Data
To persist data for PostgreSQL and Redis, you can modify the `docker-compose.yml` file to add volumes. Here's how:
1. Open the `docker-compose.yml` file in a text editor.
2. Add volume configurations for PostgreSQL and Redis services:
```yaml
services:
postgres:
# ... other configurations ...
volumes:
- postgres_data:/var/lib/postgresql/data
redis:
# ... other configurations ...
volumes:
- redis_data:/data
volumes:
postgres_data:
redis_data:
```
3. Save the file and run `docker compose up -d` to apply the changes.
This configuration will create named volumes for PostgreSQL and Redis, ensuring that your data persists across container restarts.
11. Navigate back to the "rnd" folder.
12. Open the "AutoGPT builder" folder.
13. Open the README file in this folder: [doc](./autogpt_builder/README.md#getting-started).
14. In your terminal, run the following commands:
```
npm install
```
```
npm run dev
```
15. Once the front-end is running, click the link to navigate to `localhost:3000`.
16. Click on the "Build" option.
17. Add a few blocks to test the functionality.
18. Connect the blocks together.
19. Click "Run".
20. Check your terminal window - you should see that the server has received the request, is processing it, and has executed it.
And there you have it! You've successfully set up and tested AutoGPT.

View File

@@ -1,12 +1,12 @@
NEXT_PUBLIC_AGPT_SERVER_URL=http://localhost:8000/api
NEXT_PUBLIC_AUTH_CALLBACK_URL=http://localhost:8006/auth/callback
NEXT_PUBLIC_AGPT_SERVER_URL=http://localhost:8006/api
NEXT_PUBLIC_AGPT_WS_SERVER_URL=ws://localhost:8001/ws
NEXT_PUBLIC_AGPT_MARKETPLACE_URL=http://localhost:8001/api/v1/market
NEXT_PUBLIC_AGPT_MARKETPLACE_URL=http://localhost:8015/api/v1/market
## Supabase credentials
## YOU ONLY NEED THEM IF YOU WANT TO USE SUPABASE USER AUTHENTICATION
## If you're using self-hosted version then you most likely don't need to set this
# NEXT_PUBLIC_SUPABASE_URL=your-project-url
# NEXT_PUBLIC_SUPABASE_ANON_KEY=your-anon-key
NEXT_PUBLIC_SUPABASE_URL=http://localhost:8000
NEXT_PUBLIC_SUPABASE_ANON_KEY=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyAgCiAgICAicm9sZSI6ICJhbm9uIiwKICAgICJpc3MiOiAic3VwYWJhc2UtZGVtbyIsCiAgICAiaWF0IjogMTY0MTc2OTIwMCwKICAgICJleHAiOiAxNzk5NTM1NjAwCn0.dc_X5iR_VP_qT0zsiyj_I_OZ2T9FtRU2BBNWN8Bu4GE
## OAuth Callback URL
## This should be {domain}/auth/callback

View File

@@ -34,3 +34,6 @@ yarn-error.log*
# typescript
*.tsbuildinfo
next-env.d.ts
# Sentry Config File
.env.sentry-build-plugin

View File

@@ -1,19 +1,19 @@
# Base stage for both dev and prod
FROM node:21-alpine AS base
WORKDIR /app
COPY autogpt_builder/package.json autogpt_builder/yarn.lock ./
COPY rnd/autogpt_builder/package.json rnd/autogpt_builder/yarn.lock ./
RUN yarn install --frozen-lockfile
# Dev stage
FROM base AS dev
ENV NODE_ENV=development
COPY autogpt_builder/ .
COPY rnd/autogpt_builder/ .
EXPOSE 3000
CMD ["npm", "run", "dev"]
CMD ["yarn", "run", "dev"]
# Build stage for prod
FROM base AS build
COPY autogpt_builder/ .
COPY rnd/autogpt_builder/ .
RUN npm run build
# Prod stage

View File

@@ -1,3 +1,4 @@
import { withSentryConfig } from "@sentry/nextjs";
import dotenv from "dotenv";
// Load environment variables
@@ -28,4 +29,56 @@ const nextConfig = {
},
};
export default nextConfig;
export default withSentryConfig(nextConfig, {
// For all available options, see:
// https://github.com/getsentry/sentry-webpack-plugin#options
org: "significant-gravitas",
project: "builder",
// Only print logs for uploading source maps in CI
silent: !process.env.CI,
// For all available options, see:
// https://docs.sentry.io/platforms/javascript/guides/nextjs/manual-setup/
// Upload a larger set of source maps for prettier stack traces (increases build time)
widenClientFileUpload: true,
// Automatically annotate React components to show their full name in breadcrumbs and session replay
reactComponentAnnotation: {
enabled: true,
},
// Route browser requests to Sentry through a Next.js rewrite to circumvent ad-blockers.
// This can increase your server load as well as your hosting bill.
// Note: Check that the configured route will not match with your Next.js middleware, otherwise reporting of client-
// side errors will fail.
tunnelRoute: "/monitoring",
// Hides source maps from generated client bundles
hideSourceMaps: true,
// Automatically tree-shake Sentry logger statements to reduce bundle size
disableLogger: true,
// Enables automatic instrumentation of Vercel Cron Monitors. (Does not yet work with App Router route handlers.)
// See the following for more information:
// https://docs.sentry.io/product/crons/
// https://vercel.com/docs/cron-jobs
automaticVercelMonitors: true,
async headers() {
return [
{
source: "/:path*",
headers: [
{
key: "Document-Policy",
value: "js-profiling",
},
],
},
];
},
});

View File

@@ -27,6 +27,7 @@
"@radix-ui/react-switch": "^1.1.0",
"@radix-ui/react-toast": "^1.2.1",
"@radix-ui/react-tooltip": "^1.1.2",
"@sentry/nextjs": "^8",
"@supabase/ssr": "^0.4.0",
"@supabase/supabase-js": "^2.45.0",
"@tanstack/react-table": "^8.20.5",

View File

@@ -0,0 +1,57 @@
// This file configures the initialization of Sentry on the client.
// The config you add here will be used whenever a users loads a page in their browser.
// https://docs.sentry.io/platforms/javascript/guides/nextjs/
import * as Sentry from "@sentry/nextjs";
Sentry.init({
dsn: "https://fe4e4aa4a283391808a5da396da20159@o4505260022104064.ingest.us.sentry.io/4507946746380288",
// Add optional integrations for additional features
integrations: [
Sentry.replayIntegration(),
Sentry.httpClientIntegration(),
Sentry.replayCanvasIntegration(),
Sentry.reportingObserverIntegration(),
Sentry.browserProfilingIntegration(),
// Sentry.feedbackIntegration({
// // Additional SDK configuration goes in here, for example:
// colorScheme: "system",
// }),
],
// Define how likely traces are sampled. Adjust this value in production, or use tracesSampler for greater control.
tracesSampleRate: 1,
// Set `tracePropagationTargets` to control for which URLs trace propagation should be enabled
tracePropagationTargets: [
"localhost",
/^https:\/\/dev\-builder\.agpt\.co\/api/,
],
beforeSend(event, hint) {
// Check if it is an exception, and if so, show the report dialog
if (event.exception && event.event_id) {
Sentry.showReportDialog({ eventId: event.event_id });
}
return event;
},
// Define how likely Replay events are sampled.
// This sets the sample rate to be 10%. You may want this to be 100% while
// in development and sample at a lower rate in production
replaysSessionSampleRate: 0.1,
// Define how likely Replay events are sampled when an error occurs.
replaysOnErrorSampleRate: 1.0,
// Setting this option to true will print useful information to the console while you're setting up Sentry.
debug: false,
// Set profilesSampleRate to 1.0 to profile every transaction.
// Since profilesSampleRate is relative to tracesSampleRate,
// the final profiling rate can be computed as tracesSampleRate * profilesSampleRate
// For example, a tracesSampleRate of 0.5 and profilesSampleRate of 0.5 would
// result in 25% of transactions being profiled (0.5*0.5=0.25)
profilesSampleRate: 1.0,
});

View File

@@ -0,0 +1,16 @@
// This file configures the initialization of Sentry for edge features (middleware, edge routes, and so on).
// The config you add here will be used whenever one of the edge features is loaded.
// Note that this config is unrelated to the Vercel Edge Runtime and is also required when running locally.
// https://docs.sentry.io/platforms/javascript/guides/nextjs/
import * as Sentry from "@sentry/nextjs";
Sentry.init({
dsn: "https://fe4e4aa4a283391808a5da396da20159@o4505260022104064.ingest.us.sentry.io/4507946746380288",
// Define how likely traces are sampled. Adjust this value in production, or use tracesSampler for greater control.
tracesSampleRate: 1,
// Setting this option to true will print useful information to the console while you're setting up Sentry.
debug: false,
});

View File

@@ -0,0 +1,23 @@
// This file configures the initialization of Sentry on the server.
// The config you add here will be used whenever the server handles a request.
// https://docs.sentry.io/platforms/javascript/guides/nextjs/
import * as Sentry from "@sentry/nextjs";
// import { NodeProfilingIntegration } from "@sentry/profiling-node";
Sentry.init({
dsn: "https://fe4e4aa4a283391808a5da396da20159@o4505260022104064.ingest.us.sentry.io/4507946746380288",
// Define how likely traces are sampled. Adjust this value in production, or use tracesSampler for greater control.
tracesSampleRate: 1,
// Setting this option to true will print useful information to the console while you're setting up Sentry.
debug: false,
// Integrations
integrations: [
Sentry.anrIntegration(),
// NodeProfilingIntegration,
// Sentry.fsIntegration(),
],
});

View File

@@ -0,0 +1,27 @@
"use client";
import * as Sentry from "@sentry/nextjs";
import NextError from "next/error";
import { useEffect } from "react";
export default function GlobalError({
error,
}: {
error: Error & { digest?: string };
}) {
useEffect(() => {
Sentry.captureException(error);
}, [error]);
return (
<html>
<body>
{/* `NextError` is the default Next.js error page component. Its type
definition requires a `statusCode` prop. However, since the App Router
does not expose status codes for errors, we simply pass 0 to render a
generic error message. */}
<NextError statusCode={0} />
</body>
</html>
);
}

View File

@@ -3,6 +3,7 @@ import { revalidatePath } from "next/cache";
import { redirect } from "next/navigation";
import { createServerClient } from "@/lib/supabase/server";
import { z } from "zod";
import * as Sentry from "@sentry/nextjs";
const loginFormSchema = z.object({
email: z.string().email().min(2).max(64),
@@ -10,45 +11,54 @@ const loginFormSchema = z.object({
});
export async function login(values: z.infer<typeof loginFormSchema>) {
const supabase = createServerClient();
return await Sentry.withServerActionInstrumentation("login", {}, async () => {
const supabase = createServerClient();
if (!supabase) {
redirect("/error");
}
if (!supabase) {
redirect("/error");
}
// We are sure that the values are of the correct type because zod validates the form
const { data, error } = await supabase.auth.signInWithPassword(values);
// We are sure that the values are of the correct type because zod validates the form
const { data, error } = await supabase.auth.signInWithPassword(values);
if (error) {
return error.message;
}
if (error) {
return error.message;
}
if (data.session) {
await supabase.auth.setSession(data.session);
}
if (data.session) {
await supabase.auth.setSession(data.session);
}
revalidatePath("/", "layout");
redirect("/profile");
revalidatePath("/", "layout");
redirect("/profile");
});
}
export async function signup(values: z.infer<typeof loginFormSchema>) {
const supabase = createServerClient();
"use server";
return await Sentry.withServerActionInstrumentation(
"signup",
{},
async () => {
const supabase = createServerClient();
if (!supabase) {
redirect("/error");
}
if (!supabase) {
redirect("/error");
}
// We are sure that the values are of the correct type because zod validates the form
const { data, error } = await supabase.auth.signUp(values);
// We are sure that the values are of the correct type because zod validates the form
const { data, error } = await supabase.auth.signUp(values);
if (error) {
return error.message;
}
if (error) {
return error.message;
}
if (data.session) {
await supabase.auth.setSession(data.session);
}
if (data.session) {
await supabase.auth.setSession(data.session);
}
revalidatePath("/", "layout");
redirect("/profile");
revalidatePath("/", "layout");
redirect("/profile");
},
);
}

View File

@@ -7,7 +7,7 @@ import AgentDetailContent from "@/components/marketplace/AgentDetailContent";
async function getAgentDetails(id: string): Promise<AgentDetailResponse> {
const apiUrl =
process.env.NEXT_PUBLIC_AGPT_MARKETPLACE_URL ||
"http://localhost:8001/api/v1/market";
"http://localhost:8015/api/v1/market";
const api = new MarketplaceAPI(apiUrl);
try {
console.log(`Fetching agent details for id: ${id}`);

View File

@@ -185,7 +185,7 @@ const Pagination: React.FC<{
const Marketplace: React.FC = () => {
const apiUrl =
process.env.NEXT_PUBLIC_AGPT_MARKETPLACE_URL ||
"http://localhost:8001/api/v1/market";
"http://localhost:8015/api/v1/market";
const api = useMemo(() => new MarketplaceAPI(apiUrl), [apiUrl]);
const [searchValue, setSearchValue] = useState("");

View File

@@ -0,0 +1,32 @@
"use client";
import { useState, useEffect } from "react";
import { Button } from "@/components/ui/button";
import { IconRefresh } from "@/components/ui/icons";
import AutoGPTServerAPI from "@/lib/autogpt-server-api";
export default function CreditButton() {
const [credit, setCredit] = useState<number | null>(null);
const api = new AutoGPTServerAPI();
const fetchCredit = async () => {
const response = await api.getUserCredit();
setCredit(response.credits);
};
useEffect(() => {
fetchCredit();
}, [api]);
return (
credit !== null && (
<Button
onClick={fetchCredit}
variant="outline"
className="flex items-center space-x-2 text-muted-foreground"
>
<span>Credits: {credit}</span>
<IconRefresh />
</Button>
)
);
}

View File

@@ -12,8 +12,11 @@ import InputModalComponent from "./InputModalComponent";
import OutputModalComponent from "./OutputModalComponent";
import {
BlockIORootSchema,
BlockIOStringSubSchema,
Category,
NodeExecutionResult,
BlockUIType,
BlockCost,
} from "@/lib/autogpt-server-api/types";
import { beautifyString, cn, setNestedProperty } from "@/lib/utils";
import { Button } from "@/components/ui/button";
@@ -21,7 +24,10 @@ import { Switch } from "@/components/ui/switch";
import { Copy, Trash2 } from "lucide-react";
import { history } from "./history";
import NodeHandle from "./NodeHandle";
import { NodeGenericInputField } from "./node-input-components";
import {
NodeGenericInputField,
NodeTextBoxInput,
} from "./node-input-components";
import SchemaTooltip from "./SchemaTooltip";
import { getPrimaryCategoryColor } from "@/lib/utils";
import { FlowContext } from "./Flow";
@@ -40,6 +46,7 @@ export type ConnectionData = Array<{
export type CustomNodeData = {
blockType: string;
blockCosts: BlockCost[];
title: string;
description: string;
categories: Category[];
@@ -59,6 +66,7 @@ export type CustomNodeData = {
backend_id?: string;
errors?: { [key: string]: string };
isOutputStatic?: boolean;
uiType: BlockUIType;
};
export type CustomNode = Node<CustomNodeData, "custom">;
@@ -118,8 +126,16 @@ export function CustomNode({ data, id, width, height }: NodeProps<CustomNode>) {
setIsAdvancedOpen(checked);
};
const generateOutputHandles = (schema: BlockIORootSchema) => {
if (!schema?.properties) return null;
const generateOutputHandles = (
schema: BlockIORootSchema,
nodeType: BlockUIType,
) => {
if (
!schema?.properties ||
nodeType === BlockUIType.OUTPUT ||
nodeType === BlockUIType.NOTE
)
return null;
const keys = Object.keys(schema.properties);
return keys.map((key) => (
<div key={key}>
@@ -133,6 +149,137 @@ export function CustomNode({ data, id, width, height }: NodeProps<CustomNode>) {
));
};
const generateInputHandles = (
schema: BlockIORootSchema,
nodeType: BlockUIType,
) => {
if (!schema?.properties) return null;
let keys = Object.entries(schema.properties);
switch (nodeType) {
case BlockUIType.INPUT:
// For INPUT blocks, dont include connection handles
return keys.map(([propKey, propSchema]) => {
const isRequired = data.inputSchema.required?.includes(propKey);
const isConnected = isHandleConnected(propKey);
const isAdvanced = propSchema.advanced;
return (
(isRequired || isAdvancedOpen || !isAdvanced) && (
<div key={propKey}>
<span className="text-m green -mb-1 text-gray-900">
{propSchema.title || beautifyString(propKey)}
</span>
<div key={propKey} onMouseOver={() => {}}>
{!isConnected && (
<NodeGenericInputField
className="mb-2 mt-1"
propKey={propKey}
propSchema={propSchema}
currentValue={getValue(propKey)}
connections={data.connections}
handleInputChange={handleInputChange}
handleInputClick={handleInputClick}
errors={data.errors ?? {}}
displayName={propSchema.title || beautifyString(propKey)}
/>
)}
</div>
</div>
)
);
});
case BlockUIType.NOTE:
// For NOTE blocks, don't render any input handles
const [noteKey, noteSchema] = keys[0];
return (
<div key={noteKey}>
<NodeTextBoxInput
className=""
selfKey={noteKey}
schema={noteSchema as BlockIOStringSubSchema}
value={getValue(noteKey)}
handleInputChange={handleInputChange}
handleInputClick={handleInputClick}
error={data.errors?.[noteKey] ?? ""}
displayName={noteSchema.title || beautifyString(noteKey)}
/>
</div>
);
case BlockUIType.OUTPUT:
// For OUTPUT blocks, only show the 'value' property
return keys.map(([propKey, propSchema]) => {
const isRequired = data.inputSchema.required?.includes(propKey);
const isConnected = isHandleConnected(propKey);
const isAdvanced = propSchema.advanced;
return (
(isRequired || isAdvancedOpen || !isAdvanced) && (
<div key={propKey} onMouseOver={() => {}}>
{propKey !== "value" ? (
<span className="text-m green -mb-1 text-gray-900">
{propSchema.title || beautifyString(propKey)}
</span>
) : (
<NodeHandle
keyName={propKey}
isConnected={isConnected}
isRequired={isRequired}
schema={propSchema}
side="left"
/>
)}
{!isConnected && (
<NodeGenericInputField
className="mb-2 mt-1"
propKey={propKey}
propSchema={propSchema}
currentValue={getValue(propKey)}
connections={data.connections}
handleInputChange={handleInputChange}
handleInputClick={handleInputClick}
errors={data.errors ?? {}}
displayName={propSchema.title || beautifyString(propKey)}
/>
)}
</div>
)
);
});
default:
return keys.map(([propKey, propSchema]) => {
const isRequired = data.inputSchema.required?.includes(propKey);
const isConnected = isHandleConnected(propKey);
const isAdvanced = propSchema.advanced;
return (
(isRequired || isAdvancedOpen || isConnected || !isAdvanced) && (
<div key={propKey} onMouseOver={() => {}}>
<NodeHandle
keyName={propKey}
isConnected={isConnected}
isRequired={isRequired}
schema={propSchema}
side="left"
/>
{!isConnected && (
<NodeGenericInputField
className="mb-2 mt-1"
propKey={propKey}
propSchema={propSchema}
currentValue={getValue(propKey)}
connections={data.connections}
handleInputChange={handleInputChange}
handleInputClick={handleInputClick}
errors={data.errors ?? {}}
displayName={propSchema.title || beautifyString(propKey)}
/>
)}
</div>
)
);
});
}
};
const handleInputChange = (path: string, value: any) => {
const keys = parseKeys(path);
const newValues = JSON.parse(JSON.stringify(data.hardcodedValues));
@@ -376,15 +523,27 @@ export function CustomNode({ data, id, width, height }: NodeProps<CustomNode>) {
);
});
const inputValues = data.hardcodedValues;
const blockCost =
data.blockCosts &&
data.blockCosts.find((cost) =>
Object.entries(cost.cost_filter).every(
// Undefined, null, or empty values are considered equal
([key, value]) =>
value === inputValues[key] || (!value && !inputValues[key]),
),
);
console.debug(`Block cost ${inputValues}|${data.blockCosts}=${blockCost}`);
return (
<div
className={`${blockClasses} ${errorClass} ${statusClass}`}
className={`${data.uiType === BlockUIType.NOTE ? "w-[300px]" : "w-[500px]"} ${blockClasses} ${errorClass} ${statusClass} ${data.uiType === BlockUIType.NOTE ? "bg-yellow-100" : "bg-white"}`}
onMouseEnter={handleHovered}
onMouseLeave={handleMouseLeave}
data-id={`custom-node-${id}`}
>
<div
className={`mb-2 p-3 ${getPrimaryCategoryColor(data.categories)} rounded-t-xl`}
className={`mb-2 p-3 ${data.uiType === BlockUIType.NOTE ? "bg-yellow-100" : getPrimaryCategoryColor(data.categories)} rounded-t-xl`}
>
<div className="flex items-center justify-between">
<div className="font-roboto p-3 text-lg font-semibold">
@@ -417,53 +576,29 @@ export function CustomNode({ data, id, width, height }: NodeProps<CustomNode>) {
)}
</div>
</div>
<div className="flex items-start justify-between gap-2 p-3">
{blockCost && (
<div className="p-3 text-right font-semibold">
Cost: {blockCost.cost_amount} / {blockCost.cost_type}
</div>
)}
{data.uiType !== BlockUIType.NOTE ? (
<div className="flex items-start justify-between p-3">
<div>
{data.inputSchema &&
generateInputHandles(data.inputSchema, data.uiType)}
</div>
<div className="flex-none">
{data.outputSchema &&
generateOutputHandles(data.outputSchema, data.uiType)}
</div>
</div>
) : (
<div>
{data.inputSchema &&
Object.entries(data.inputSchema.properties).map(
([propKey, propSchema]) => {
const isRequired = data.inputSchema.required?.includes(propKey);
const isConnected = isHandleConnected(propKey);
const isAdvanced = propSchema.advanced;
return (
(isRequired ||
isAdvancedOpen ||
isConnected ||
!isAdvanced) && (
<div key={propKey} onMouseOver={() => {}}>
<NodeHandle
keyName={propKey}
isConnected={isConnected}
isRequired={isRequired}
schema={propSchema}
side="left"
/>
{!isConnected && (
<NodeGenericInputField
className="mb-2 mt-1"
propKey={propKey}
propSchema={propSchema}
currentValue={getValue(propKey)}
connections={data.connections}
handleInputChange={handleInputChange}
handleInputClick={handleInputClick}
errors={data.errors ?? {}}
displayName={
propSchema.title || beautifyString(propKey)
}
/>
)}
</div>
)
);
},
)}
generateInputHandles(data.inputSchema, data.uiType)}
</div>
<div className="flex-none">
{data.outputSchema && generateOutputHandles(data.outputSchema)}
</div>
</div>
{isOutputOpen && (
)}
{isOutputOpen && data.uiType !== BlockUIType.NOTE && (
<div
data-id="latest-output"
className="nodrag m-3 break-words rounded-md border-[1.5px] p-2"
@@ -486,25 +621,27 @@ export function CustomNode({ data, id, width, height }: NodeProps<CustomNode>) {
)}
</div>
)}
<div className="mt-2.5 flex items-center pb-4 pl-4">
<Switch checked={isOutputOpen} onCheckedChange={toggleOutput} />
<span className="m-1 mr-4">Output</span>
{hasAdvancedFields && (
<>
<Switch onCheckedChange={toggleAdvancedSettings} />
<span className="m-1">Advanced</span>
</>
)}
{data.status && (
<Badge
variant="outline"
data-id={`badge-${id}-${data.status}`}
className={cn(data.status.toLowerCase(), "ml-auto mr-5")}
>
{data.status}
</Badge>
)}
</div>
{data.uiType !== BlockUIType.NOTE && (
<div className="mt-2.5 flex items-center pb-4 pl-4">
<Switch checked={isOutputOpen} onCheckedChange={toggleOutput} />
<span className="m-1 mr-4">Output</span>
{hasAdvancedFields && (
<>
<Switch onCheckedChange={toggleAdvancedSettings} />
<span className="m-1">Advanced</span>
</>
)}
{data.status && (
<Badge
variant="outline"
data-id={`badge-${id}-${data.status}`}
className={cn(data.status.toLowerCase(), "ml-auto mr-5")}
>
{data.status}
</Badge>
)}
</div>
)}
<InputModalComponent
title={activeKey ? `Enter ${beautifyString(activeKey)}` : undefined}
isOpen={isModalOpen}

View File

@@ -27,7 +27,7 @@ import "@xyflow/react/dist/style.css";
import { CustomNode } from "./CustomNode";
import "./flow.css";
import { Link } from "@/lib/autogpt-server-api";
import { getTypeColor } from "@/lib/utils";
import { getTypeColor, filterBlocksByType } from "@/lib/utils";
import { history } from "./history";
import { CustomEdge } from "./CustomEdge";
import ConnectionLine from "./ConnectionLine";
@@ -36,14 +36,19 @@ import { SaveControl } from "@/components/edit/control/SaveControl";
import { BlocksControl } from "@/components/edit/control/BlocksControl";
import {
IconPlay,
IconUndo2,
IconRedo2,
IconSquare,
IconUndo2,
IconOutput,
} from "@/components/ui/icons";
import { startTutorial } from "./tutorial";
import useAgentGraph from "@/hooks/useAgentGraph";
import { v4 as uuidv4 } from "uuid";
import { useRouter, usePathname, useSearchParams } from "next/navigation";
import { LogOut } from "lucide-react";
import RunnerUIWrapper, {
RunnerUIWrapperRef,
} from "@/components/RunnerUIWrapper";
// This is for the history, this is the minimum distance a block must move before it is logged
// It helps to prevent spamming the history with small movements especially when pressing on a input in a block
@@ -101,6 +106,8 @@ const FlowEditor: React.FC<{
// State to control if blocks menu should be pinned open
const [pinBlocksPopover, setPinBlocksPopover] = useState(false);
const runnerUIRef = useRef<RunnerUIWrapperRef>(null);
useEffect(() => {
const params = new URLSearchParams(window.location.search);
@@ -407,6 +414,7 @@ const FlowEditor: React.FC<{
position: viewportCenter, // Set the position to the calculated viewport center
data: {
blockType: nodeType,
blockCosts: nodeSchema.costs,
title: `${nodeType} ${nodeId}`,
description: nodeSchema.description,
categories: nodeSchema.categories,
@@ -417,6 +425,7 @@ const FlowEditor: React.FC<{
isOutputOpen: false,
block_id: blockId,
isOutputStatic: nodeSchema.staticOutput,
uiType: nodeSchema.uiType,
},
};
@@ -549,9 +558,21 @@ const FlowEditor: React.FC<{
onClick: handleRedo,
},
{
label: !isRunning ? "Run" : "Stop",
label: !savedAgent
? "Please save the agent to run"
: !isRunning
? "Run"
: "Stop",
icon: !isRunning ? <IconPlay /> : <IconSquare />,
onClick: !isRunning ? requestSaveAndRun : requestStopRun,
onClick: !isRunning
? () => runnerUIRef.current?.runOrOpenInput()
: requestStopRun,
disabled: !savedAgent,
},
{
label: "Runner Output",
icon: <LogOut size={18} strokeWidth={1.8} />,
onClick: () => runnerUIRef.current?.openRunnerOutput(),
},
];
@@ -587,12 +608,21 @@ const FlowEditor: React.FC<{
<SaveControl
agentMeta={savedAgent}
onSave={(isTemplate) => requestSave(isTemplate ?? false)}
agentDescription={agentDescription}
onDescriptionChange={setAgentDescription}
agentName={agentName}
onNameChange={setAgentName}
/>
</ControlPanel>
</ReactFlow>
</div>
<RunnerUIWrapper
ref={runnerUIRef}
nodes={nodes}
setNodes={setNodes}
isRunning={isRunning}
requestSaveAndRun={requestSaveAndRun}
/>
</FlowContext.Provider>
);
};

View File

@@ -9,9 +9,12 @@ import {
IconCircleUser,
IconMenu,
IconPackage2,
IconRefresh,
IconSquareActivity,
IconWorkFlow,
} from "@/components/ui/icons";
import AutoGPTServerAPI from "@/lib/autogpt-server-api";
import CreditButton from "@/components/CreditButton";
export async function NavBar() {
const isAvailable = Boolean(
@@ -96,6 +99,8 @@ export async function NavBar() {
</a>
</div>
<div className="flex flex-1 items-center justify-end gap-4">
{isAvailable && user && <CreditButton />}
{isAvailable && !user && (
<Link
href="/login"

View File

@@ -0,0 +1,141 @@
import React, {
useState,
useCallback,
forwardRef,
useImperativeHandle,
} from "react";
import RunnerInputUI from "./runner-ui/RunnerInputUI";
import RunnerOutputUI from "./runner-ui/RunnerOutputUI";
import { Node } from "@xyflow/react";
import { filterBlocksByType } from "@/lib/utils";
import { BlockIORootSchema } from "@/lib/autogpt-server-api/types";
interface RunnerUIWrapperProps {
nodes: Node[];
setNodes: React.Dispatch<React.SetStateAction<Node[]>>;
isRunning: boolean;
requestSaveAndRun: () => void;
}
export interface RunnerUIWrapperRef {
openRunnerInput: () => void;
openRunnerOutput: () => void;
runOrOpenInput: () => void;
}
const RunnerUIWrapper = forwardRef<RunnerUIWrapperRef, RunnerUIWrapperProps>(
({ nodes, setNodes, isRunning, requestSaveAndRun }, ref) => {
const [isRunnerInputOpen, setIsRunnerInputOpen] = useState(false);
const [isRunnerOutputOpen, setIsRunnerOutputOpen] = useState(false);
const getBlockInputsAndOutputs = useCallback(() => {
const inputBlocks = filterBlocksByType(
nodes,
(node) => node.data.block_id === "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
);
const outputBlocks = filterBlocksByType(
nodes,
(node) => node.data.block_id === "363ae599-353e-4804-937e-b2ee3cef3da4",
);
const inputs = inputBlocks.map((node) => ({
id: node.id,
type: "input" as const,
inputSchema: node.data.inputSchema as BlockIORootSchema,
hardcodedValues: {
name: (node.data.hardcodedValues as any).name || "",
description: (node.data.hardcodedValues as any).description || "",
value: (node.data.hardcodedValues as any).value,
placeholder_values:
(node.data.hardcodedValues as any).placeholder_values || [],
limit_to_placeholder_values:
(node.data.hardcodedValues as any).limit_to_placeholder_values ||
false,
},
}));
const outputs = outputBlocks.map((node) => ({
id: node.id,
type: "output" as const,
outputSchema: node.data.outputSchema as BlockIORootSchema,
hardcodedValues: {
name: (node.data.hardcodedValues as any).name || "Output",
description:
(node.data.hardcodedValues as any).description ||
"Output from the agent",
value: (node.data.hardcodedValues as any).value,
},
result: (node.data.executionResults as any)?.at(-1)?.data?.output,
}));
return { inputs, outputs };
}, [nodes]);
const handleInputChange = useCallback(
(nodeId: string, field: string, value: string) => {
setNodes((nds) =>
nds.map((node) => {
if (node.id === nodeId) {
return {
...node,
data: {
...node.data,
hardcodedValues: {
...(node.data.hardcodedValues as any),
[field]: value,
},
},
};
}
return node;
}),
);
},
[setNodes],
);
const openRunnerInput = () => setIsRunnerInputOpen(true);
const openRunnerOutput = () => setIsRunnerOutputOpen(true);
const runOrOpenInput = () => {
const { inputs } = getBlockInputsAndOutputs();
if (inputs.length > 0) {
openRunnerInput();
} else {
requestSaveAndRun();
}
};
useImperativeHandle(ref, () => ({
openRunnerInput,
openRunnerOutput,
runOrOpenInput,
}));
return (
<>
<RunnerInputUI
isOpen={isRunnerInputOpen}
onClose={() => setIsRunnerInputOpen(false)}
blockInputs={getBlockInputsAndOutputs().inputs}
onInputChange={handleInputChange}
onRun={() => {
setIsRunnerInputOpen(false);
requestSaveAndRun();
}}
isRunning={isRunning}
/>
<RunnerOutputUI
isOpen={isRunnerOutputOpen}
onClose={() => setIsRunnerOutputOpen(false)}
blockOutputs={getBlockInputsAndOutputs().outputs}
/>
</>
);
},
);
RunnerUIWrapper.displayName = "RunnerUIWrapper";
export default RunnerUIWrapper;

View File

@@ -9,6 +9,7 @@ import {
import FeaturedAgentsTable from "./FeaturedAgentsTable";
import { AdminAddFeaturedAgentDialog } from "./AdminAddFeaturedAgentDialog";
import { revalidatePath } from "next/cache";
import * as Sentry from "@sentry/nextjs";
export default async function AdminFeaturedAgentsControl({
className,
@@ -55,9 +56,15 @@ export default async function AdminFeaturedAgentsControl({
component: <Button>Remove</Button>,
action: async (rows) => {
"use server";
const all = rows.map((row) => removeFeaturedAgent(row.id));
await Promise.all(all);
revalidatePath("/marketplace");
return await Sentry.withServerActionInstrumentation(
"removeFeaturedAgent",
{},
async () => {
const all = rows.map((row) => removeFeaturedAgent(row.id));
await Promise.all(all);
revalidatePath("/marketplace");
},
);
},
},
]}

View File

@@ -1,17 +1,23 @@
"use server";
import AutoGPTServerAPI from "@/lib/autogpt-server-api";
import MarketplaceAPI from "@/lib/marketplace-api";
import { revalidatePath } from "next/cache";
import * as Sentry from "@sentry/nextjs";
export async function approveAgent(
agentId: string,
version: number,
comment: string,
) {
const api = new MarketplaceAPI();
await api.approveAgentSubmission(agentId, version, comment);
console.debug(`Approving agent ${agentId}`);
revalidatePath("/marketplace");
return await Sentry.withServerActionInstrumentation(
"approveAgent",
{},
async () => {
const api = new MarketplaceAPI();
await api.approveAgentSubmission(agentId, version, comment);
console.debug(`Approving agent ${agentId}`);
revalidatePath("/marketplace");
},
);
}
export async function rejectAgent(
@@ -19,67 +25,117 @@ export async function rejectAgent(
version: number,
comment: string,
) {
const api = new MarketplaceAPI();
await api.rejectAgentSubmission(agentId, version, comment);
console.debug(`Rejecting agent ${agentId}`);
revalidatePath("/marketplace");
return await Sentry.withServerActionInstrumentation(
"rejectAgent",
{},
async () => {
const api = new MarketplaceAPI();
await api.rejectAgentSubmission(agentId, version, comment);
console.debug(`Rejecting agent ${agentId}`);
revalidatePath("/marketplace");
},
);
}
export async function getReviewableAgents() {
const api = new MarketplaceAPI();
return api.getAgentSubmissions();
return await Sentry.withServerActionInstrumentation(
"getReviewableAgents",
{},
async () => {
const api = new MarketplaceAPI();
return api.getAgentSubmissions();
},
);
}
export async function getFeaturedAgents(
page: number = 1,
pageSize: number = 10,
) {
const api = new MarketplaceAPI();
const featured = await api.getFeaturedAgents(page, pageSize);
console.debug(`Getting featured agents ${featured.agents.length}`);
return featured;
return await Sentry.withServerActionInstrumentation(
"getFeaturedAgents",
{},
async () => {
const api = new MarketplaceAPI();
const featured = await api.getFeaturedAgents(page, pageSize);
console.debug(`Getting featured agents ${featured.agents.length}`);
return featured;
},
);
}
export async function getFeaturedAgent(agentId: string) {
const api = new MarketplaceAPI();
const featured = await api.getFeaturedAgent(agentId);
console.debug(`Getting featured agent ${featured.agentId}`);
return featured;
return await Sentry.withServerActionInstrumentation(
"getFeaturedAgent",
{},
async () => {
const api = new MarketplaceAPI();
const featured = await api.getFeaturedAgent(agentId);
console.debug(`Getting featured agent ${featured.agentId}`);
return featured;
},
);
}
export async function addFeaturedAgent(
agentId: string,
categories: string[] = ["featured"],
) {
const api = new MarketplaceAPI();
await api.addFeaturedAgent(agentId, categories);
console.debug(`Adding featured agent ${agentId}`);
revalidatePath("/marketplace");
return await Sentry.withServerActionInstrumentation(
"addFeaturedAgent",
{},
async () => {
const api = new MarketplaceAPI();
await api.addFeaturedAgent(agentId, categories);
console.debug(`Adding featured agent ${agentId}`);
revalidatePath("/marketplace");
},
);
}
export async function removeFeaturedAgent(
agentId: string,
categories: string[] = ["featured"],
) {
const api = new MarketplaceAPI();
await api.removeFeaturedAgent(agentId, categories);
console.debug(`Removing featured agent ${agentId}`);
revalidatePath("/marketplace");
return await Sentry.withServerActionInstrumentation(
"removeFeaturedAgent",
{},
async () => {
const api = new MarketplaceAPI();
await api.removeFeaturedAgent(agentId, categories);
console.debug(`Removing featured agent ${agentId}`);
revalidatePath("/marketplace");
},
);
}
export async function getCategories() {
const api = new MarketplaceAPI();
const categories = await api.getCategories();
console.debug(`Getting categories ${categories.unique_categories.length}`);
return categories;
return await Sentry.withServerActionInstrumentation(
"getCategories",
{},
async () => {
const api = new MarketplaceAPI();
const categories = await api.getCategories();
console.debug(
`Getting categories ${categories.unique_categories.length}`,
);
return categories;
},
);
}
export async function getNotFeaturedAgents(
page: number = 1,
pageSize: number = 100,
) {
const api = new MarketplaceAPI();
const agents = await api.getNotFeaturedAgents(page, pageSize);
console.debug(`Getting not featured agents ${agents.agents.length}`);
return agents;
return await Sentry.withServerActionInstrumentation(
"getNotFeaturedAgents",
{},
async () => {
const api = new MarketplaceAPI();
const agents = await api.getNotFeaturedAgents(page, pageSize);
console.debug(`Getting not featured agents ${agents.agents.length}`);
return agents;
},
);
}

View File

@@ -1,6 +1,5 @@
.custom-node {
color: #000000;
width: 500px;
box-sizing: border-box;
transition: border-color 0.3s ease-in-out;
}

View File

@@ -19,6 +19,7 @@ import React from "react";
export type Control = {
icon: React.ReactNode;
label: string;
disabled?: boolean;
onClick: () => void;
};
@@ -50,15 +51,18 @@ export const ControlPanel = ({
{controls.map((control, index) => (
<Tooltip key={index} delayDuration={500}>
<TooltipTrigger asChild>
<Button
variant="ghost"
size="icon"
onClick={() => control.onClick()}
data-id={`control-button-${index}`}
>
{control.icon}
<span className="sr-only">{control.label}</span>
</Button>
<div>
<Button
variant="ghost"
size="icon"
onClick={() => control.onClick()}
data-id={`control-button-${index}`}
disabled={control.disabled || false}
>
{control.icon}
<span className="sr-only">{control.label}</span>
</Button>
</div>
</TooltipTrigger>
<TooltipContent side="right">{control.label}</TooltipContent>
</Tooltip>

View File

@@ -18,6 +18,8 @@ import {
interface SaveControlProps {
agentMeta: GraphMeta | null;
agentName: string;
agentDescription: string;
onSave: (isTemplate: boolean | undefined) => void;
onNameChange: (name: string) => void;
onDescriptionChange: (description: string) => void;
@@ -35,7 +37,9 @@ interface SaveControlProps {
export const SaveControl = ({
agentMeta,
onSave,
agentName,
onNameChange,
agentDescription,
onDescriptionChange,
}: SaveControlProps) => {
/**
@@ -75,7 +79,7 @@ export const SaveControl = ({
id="name"
placeholder="Enter your agent name"
className="col-span-3"
defaultValue={agentMeta?.name || ""}
value={agentName}
onChange={(e) => onNameChange(e.target.value)}
/>
<Label htmlFor="description">Description</Label>
@@ -83,9 +87,21 @@ export const SaveControl = ({
id="description"
placeholder="Your agent description"
className="col-span-3"
defaultValue={agentMeta?.description || ""}
value={agentDescription}
onChange={(e) => onDescriptionChange(e.target.value)}
/>
{agentMeta?.version && (
<>
<Label htmlFor="version">Version</Label>
<Input
id="version"
placeholder="Version"
className="col-span-3"
value={agentMeta?.version || "-"}
disabled
/>
</>
)}
</div>
</CardContent>
<CardFooter className="flex flex-col items-stretch gap-2">

View File

@@ -81,7 +81,7 @@ function convertGraphToReactFlow(graph: any): { nodes: Node[]; edges: Edge[] } {
async function installGraph(id: string): Promise<void> {
const apiUrl =
process.env.NEXT_PUBLIC_AGPT_MARKETPLACE_URL ||
"http://localhost:8001/api/v1/market";
"http://localhost:8015/api/v1/market";
const api = new MarketplaceAPI(apiUrl);
const serverAPIUrl = process.env.AGPT_SERVER_API_URL;

View File

@@ -1,9 +1,16 @@
"use server";
import * as Sentry from "@sentry/nextjs";
import MarketplaceAPI, { AnalyticsEvent } from "@/lib/marketplace-api";
export async function makeAnalyticsEvent(event: AnalyticsEvent) {
const apiUrl = process.env.AGPT_SERVER_API_URL;
const api = new MarketplaceAPI();
await api.makeAnalyticsEvent(event);
return await Sentry.withServerActionInstrumentation(
"makeAnalyticsEvent",
{},
async () => {
const apiUrl = process.env.AGPT_SERVER_API_URL;
const api = new MarketplaceAPI();
await api.makeAnalyticsEvent(event);
},
);
}

View File

@@ -10,7 +10,7 @@ import {
BlockIONumberSubSchema,
BlockIOBooleanSubSchema,
} from "@/lib/autogpt-server-api/types";
import { FC, useCallback, useEffect, useState } from "react";
import React, { FC, useCallback, useEffect, useState } from "react";
import { Button } from "./ui/button";
import { Switch } from "./ui/switch";
import {
@@ -380,7 +380,7 @@ const NodeKeyValueInput: FC<{
<Input
type="text"
placeholder="Value"
value={value ?? ""}
defaultValue={value ?? ""}
onBlur={(e) =>
updateKeyValuePairs(
keyValuePairs.toSpliced(index, 1, {
@@ -563,7 +563,7 @@ const NodeStringInput: FC<{
<Input
type="text"
id={selfKey}
value={schema.secret && value ? "********" : value}
defaultValue={schema.secret && value ? "********" : value}
readOnly={schema.secret}
placeholder={
schema?.placeholder || `Enter ${beautifyString(displayName)}`
@@ -587,6 +587,52 @@ const NodeStringInput: FC<{
);
};
export const NodeTextBoxInput: FC<{
selfKey: string;
schema: BlockIOStringSubSchema;
value?: string;
error?: string;
handleInputChange: NodeObjectInputTreeProps["handleInputChange"];
handleInputClick: NodeObjectInputTreeProps["handleInputClick"];
className?: string;
displayName: string;
}> = ({
selfKey,
schema,
value = "",
error,
handleInputChange,
handleInputClick,
className,
displayName,
}) => {
return (
<div className={className}>
<div
className="nodrag relative m-0 h-[200px] w-full bg-yellow-100 p-4"
onClick={schema.secret ? () => handleInputClick(selfKey) : undefined}
>
<textarea
id={selfKey}
value={schema.secret && value ? "********" : value}
readOnly={schema.secret}
placeholder={
schema?.placeholder || `Enter ${beautifyString(displayName)}`
}
onChange={(e) => handleInputChange(selfKey, e.target.value)}
onBlur={(e) => handleInputChange(selfKey, e.target.value)}
className="h-full w-full resize-none overflow-hidden border-none bg-transparent text-lg text-black outline-none"
style={{
fontSize: "min(1em, 16px)",
lineHeight: "1.2",
}}
/>
</div>
{error && <span className="error-message">{error}</span>}
</div>
);
};
const NodeNumberInput: FC<{
selfKey: string;
schema: BlockIONumberSubSchema;
@@ -612,7 +658,7 @@ const NodeNumberInput: FC<{
<Input
type="number"
id={selfKey}
value={value}
defaultValue={value}
onBlur={(e) => handleInputChange(selfKey, parseFloat(e.target.value))}
placeholder={
schema.placeholder || `Enter ${beautifyString(displayName)}`

View File

@@ -0,0 +1,61 @@
import React from "react";
import { Input } from "@/components/ui/input";
import {
Select,
SelectContent,
SelectItem,
SelectTrigger,
SelectValue,
} from "@/components/ui/select";
interface InputBlockProps {
id: string;
name: string;
description?: string;
value: string;
placeholder_values?: any[];
onInputChange: (id: string, field: string, value: string) => void;
}
export function InputBlock({
id,
name,
description,
value,
placeholder_values,
onInputChange,
}: InputBlockProps) {
return (
<div className="space-y-1">
<h3 className="text-base font-semibold">{name || "Unnamed Input"}</h3>
{description && <p className="text-sm text-gray-600">{description}</p>}
<div>
{placeholder_values && placeholder_values.length > 1 ? (
<Select
onValueChange={(value) => onInputChange(id, "value", value)}
value={value}
>
<SelectTrigger className="w-full">
<SelectValue placeholder="Select a value" />
</SelectTrigger>
<SelectContent>
{placeholder_values.map((placeholder, index) => (
<SelectItem key={index} value={placeholder.toString()}>
{placeholder.toString()}
</SelectItem>
))}
</SelectContent>
</Select>
) : (
<Input
id={`${id}-Value`}
value={value}
onChange={(e) => onInputChange(id, "value", e.target.value)}
placeholder={placeholder_values?.[0]?.toString() || "Enter value"}
className="w-full"
/>
)}
</div>
</div>
);
}

View File

@@ -0,0 +1,33 @@
import React from "react";
import { ScrollArea } from "@/components/ui/scroll-area";
import { InputBlock } from "./RunnerInputBlock";
import { BlockInput } from "./RunnerInputUI";
interface InputListProps {
blockInputs: BlockInput[];
onInputChange: (nodeId: string, field: string, value: string) => void;
}
export function InputList({ blockInputs, onInputChange }: InputListProps) {
return (
<ScrollArea className="h-[20vh] overflow-auto pr-4 sm:h-[30vh] md:h-[40vh] lg:h-[50vh]">
<div className="space-y-4">
{blockInputs && blockInputs.length > 0 ? (
blockInputs.map((block) => (
<InputBlock
key={block.id}
id={block.id}
name={block.hardcodedValues.name}
description={block.hardcodedValues.description}
value={block.hardcodedValues.value?.toString() || ""}
placeholder_values={block.hardcodedValues.placeholder_values}
onInputChange={onInputChange}
/>
))
) : (
<p>No input blocks available.</p>
)}
</div>
</ScrollArea>
);
}

View File

@@ -0,0 +1,74 @@
import React from "react";
import {
Dialog,
DialogContent,
DialogHeader,
DialogTitle,
DialogDescription,
DialogFooter,
} from "@/components/ui/dialog";
import { Button } from "@/components/ui/button";
import { BlockIORootSchema } from "@/lib/autogpt-server-api/types";
import { InputList } from "./RunnerInputList";
export interface BlockInput {
id: string;
inputSchema: BlockIORootSchema;
hardcodedValues: {
name: string;
description: string;
value: any;
placeholder_values?: any[];
limit_to_placeholder_values?: boolean;
};
}
interface RunSettingsUiProps {
isOpen: boolean;
onClose: () => void;
blockInputs: BlockInput[];
onInputChange: (nodeId: string, field: string, value: string) => void;
onRun: () => void;
isRunning: boolean;
}
export function RunnerInputUI({
isOpen,
onClose,
blockInputs,
onInputChange,
onRun,
isRunning,
}: RunSettingsUiProps) {
const handleRun = () => {
onRun();
onClose();
};
return (
<Dialog open={isOpen} onOpenChange={onClose}>
<DialogContent className="flex max-h-[80vh] flex-col overflow-hidden sm:max-w-[400px] md:max-w-[500px] lg:max-w-[600px]">
<DialogHeader className="px-4 py-4">
<DialogTitle className="text-2xl">Run Settings</DialogTitle>
<DialogDescription className="mt-2 text-sm">
Configure settings for running your agent.
</DialogDescription>
</DialogHeader>
<div className="flex-grow overflow-y-auto px-4 py-4">
<InputList blockInputs={blockInputs} onInputChange={onInputChange} />
</div>
<DialogFooter className="px-6 py-4">
<Button
onClick={handleRun}
className="px-8 py-2 text-lg"
disabled={isRunning}
>
{isRunning ? "Running..." : "Run"}
</Button>
</DialogFooter>
</DialogContent>
</Dialog>
);
}
export default RunnerInputUI;

View File

@@ -0,0 +1,94 @@
import React from "react";
import {
Sheet,
SheetContent,
SheetHeader,
SheetTitle,
SheetDescription,
} from "@/components/ui/sheet";
import { ScrollArea } from "@/components/ui/scroll-area";
import { BlockIORootSchema } from "@/lib/autogpt-server-api/types";
import { Label } from "@/components/ui/label";
import { Textarea } from "@/components/ui/textarea";
interface BlockOutput {
id: string;
outputSchema: BlockIORootSchema;
hardcodedValues: {
name: string;
description: string;
};
result?: any;
}
interface OutputModalProps {
isOpen: boolean;
onClose: () => void;
blockOutputs: BlockOutput[];
}
const formatOutput = (output: any): string => {
if (typeof output === "object") {
try {
return JSON.stringify(output, null, 2);
} catch (error) {
return `Error formatting output: ${(error as Error).message}`;
}
}
return String(output);
};
export function RunnerOutputUI({
isOpen,
onClose,
blockOutputs,
}: OutputModalProps) {
return (
<Sheet open={isOpen} onOpenChange={onClose}>
<SheetContent
side="right"
className="flex h-full w-full flex-col overflow-hidden sm:max-w-[500px]"
>
<SheetHeader className="px-2 py-2">
<SheetTitle className="text-xl">Run Outputs</SheetTitle>
<SheetDescription className="mt-1 text-sm">
View the outputs from your agent run.
</SheetDescription>
</SheetHeader>
<div className="flex-grow overflow-y-auto px-2 py-2">
<ScrollArea className="h-full overflow-auto pr-4">
<div className="space-y-4">
{blockOutputs && blockOutputs.length > 0 ? (
blockOutputs.map((block) => (
<div key={block.id} className="space-y-1">
<Label className="text-base font-semibold">
{block.hardcodedValues.name || "Unnamed Output"}
</Label>
{block.hardcodedValues.description && (
<Label className="block text-sm text-gray-600">
{block.hardcodedValues.description}
</Label>
)}
<div className="rounded-md bg-gray-100 p-2">
<Textarea
readOnly
value={formatOutput(block.result ?? "No output yet")}
className="resize-none whitespace-pre-wrap break-words border-none bg-transparent text-sm"
/>
</div>
</div>
))
) : (
<p>No output blocks available.</p>
)}
</div>
</ScrollArea>
</div>
</SheetContent>
</Sheet>
);
}
export default RunnerOutputUI;

View File

@@ -1,3 +1,4 @@
import { sendGAEvent } from "@next/third-parties/google";
import Shepherd from "shepherd.js";
import "shepherd.js/dist/css/shepherd.css";
@@ -493,6 +494,15 @@ export const startTutorial = (
localStorage.setItem("shepherd-tour", "completed"); // Optionally mark the tutorial as completed
});
for (const step of tour.steps) {
step.on("show", () => {
"use client";
console.debug("sendTutorialStep");
sendGAEvent("event", "tutorial_step_shown", { value: step.id });
});
}
tour.on("cancel", () => {
setPinBlocksPopover(false);
localStorage.setItem("shepherd-tour", "canceled"); // Optionally mark the tutorial as canceled

View File

@@ -264,6 +264,43 @@ export const IconCircleUser = createIcon((props) => (
</svg>
));
/**
* Refresh icon component.
*
* @component IconRefresh
* @param {IconProps} props - The props object containing additional attributes and event handlers for the icon.
* @returns {JSX.Element} - The refresh icon.
*
* @example
* // Default usage this is the standard usage
* <IconRefresh />
*
* @example
* // With custom color and size these should be used sparingly and only when necessary
* <IconRefresh className="text-primary" size="lg" />
*
* @example
* // With custom size and onClick handler
* <IconRefresh size="sm" onClick={handleOnClick} />
*/
export const IconRefresh = createIcon((props) => (
<svg
xmlns="http://www.w3.org/2000/svg"
viewBox="0 0 24 24"
fill="none"
stroke="currentColor"
strokeWidth="2"
strokeLinecap="round"
strokeLinejoin="round"
{...props}
>
<polyline points="23 4 23 10 17 10" />
<polyline points="1 20 1 14 7 14" />
<path d="M3.51 9a9 9 0 0 1 14.136 -5.36L23 10" />
<path d="M20.49 15a9 9 0 0 1 -14.136 5.36L1 14" />
</svg>
));
/**
* Menu icon component.
*

View File

@@ -6,20 +6,7 @@ export interface InputProps
extends React.InputHTMLAttributes<HTMLInputElement> {}
const Input = React.forwardRef<HTMLInputElement, InputProps>(
({ className, type, value, ...props }, ref) => {
// This ref allows the `Input` component to be both controlled and uncontrolled.
// The HTMLvalue will only be updated if the value prop changes, but the user can still type in the input.
ref = ref || React.createRef<HTMLInputElement>();
React.useEffect(() => {
if (
ref &&
ref.current &&
ref.current.value !== value &&
type !== "file"
) {
ref.current.value = value;
}
}, [value, type, ref]);
({ className, type, ...props }, ref) => {
return (
<input
type={type}
@@ -29,7 +16,6 @@ const Input = React.forwardRef<HTMLInputElement, InputProps>(
className,
)}
ref={ref}
defaultValue={type !== "file" ? value : undefined}
{...props}
/>
);

View File

@@ -16,6 +16,7 @@ import {
import { Connection, MarkerType } from "@xyflow/react";
import Ajv from "ajv";
import { useCallback, useEffect, useMemo, useRef, useState } from "react";
import { useRouter, useSearchParams, usePathname } from "next/navigation";
const ajv = new Ajv({ strict: false, allErrors: true });
@@ -24,6 +25,11 @@ export default function useAgentGraph(
template?: boolean,
passDataToBeads?: boolean,
) {
const [router, searchParams, pathname] = [
useRouter(),
useSearchParams(),
usePathname(),
];
const [savedAgent, setSavedAgent] = useState<Graph | null>(null);
const [agentDescription, setAgentDescription] = useState<string>("");
const [agentName, setAgentName] = useState<string>("");
@@ -133,12 +139,13 @@ export default function useAgentGraph(
id: node.id,
type: "custom",
position: {
x: node.metadata.position.x,
y: node.metadata.position.y,
x: node?.metadata?.position?.x || 0,
y: node?.metadata?.position?.y || 0,
},
data: {
block_id: block.id,
blockType: block.name,
blockCosts: block.costs,
categories: block.categories,
description: block.description,
title: `${block.name} ${node.id}`,
@@ -307,7 +314,7 @@ export default function useAgentGraph(
(template ? api.getTemplate(flowID) : api.getGraph(flowID)).then(
(graph) => {
console.log("Loading graph");
console.debug("Loading graph");
loadGraph(graph);
},
);
@@ -638,31 +645,59 @@ export default function useAgentGraph(
links: links,
};
if (savedAgent && deepEquals(payload, savedAgent)) {
console.debug(
"No need to save: Graph is the same as version on server",
);
// Trigger state change
setSavedAgent(savedAgent);
return;
// To avoid saving the same graph, we compare the payload with the saved agent.
// Differences in IDs are ignored.
const comparedPayload = {
...(({ id, ...rest }) => rest)(payload),
nodes: payload.nodes.map(
({ id, data, input_nodes, output_nodes, ...rest }) => rest,
),
links: payload.links.map(({ source_id, sink_id, ...rest }) => rest),
};
const comparedSavedAgent = {
name: savedAgent?.name,
description: savedAgent?.description,
nodes: savedAgent?.nodes.map((v) => ({
block_id: v.block_id,
input_default: v.input_default,
metadata: v.metadata,
})),
links: savedAgent?.links.map((v) => ({
sink_name: v.sink_name,
source_name: v.source_name,
})),
};
let newSavedAgent = null;
if (savedAgent && deepEquals(comparedPayload, comparedSavedAgent)) {
console.warn("No need to save: Graph is the same as version on server");
newSavedAgent = savedAgent;
} else {
console.debug(
"Saving new Graph version; old vs new:",
savedAgent,
comparedPayload,
payload,
);
setNodesSyncedWithSavedAgent(false);
newSavedAgent = savedAgent
? await (savedAgent.is_template
? api.updateTemplate(savedAgent.id, payload)
: api.updateGraph(savedAgent.id, payload))
: await (asTemplate
? api.createTemplate(payload)
: api.createGraph(payload));
console.debug("Response from the API:", newSavedAgent);
}
setNodesSyncedWithSavedAgent(false);
const newSavedAgent = savedAgent
? await (savedAgent.is_template
? api.updateTemplate(savedAgent.id, payload)
: api.updateGraph(savedAgent.id, payload))
: await (asTemplate
? api.createTemplate(payload)
: api.createGraph(payload));
console.debug("Response from the API:", newSavedAgent);
// Route the URL to the new flow ID if it's a new agent.
if (!savedAgent) {
const path = new URLSearchParams(searchParams);
path.set("flowID", newSavedAgent.id);
router.push(`${pathname}?${path.toString()}`);
return;
}
// Update the node IDs on the frontend
setSavedAgent(newSavedAgent);

View File

@@ -0,0 +1,13 @@
import * as Sentry from "@sentry/nextjs";
export async function register() {
if (process.env.NEXT_RUNTIME === "nodejs") {
await import("../sentry.server.config");
}
if (process.env.NEXT_RUNTIME === "edge") {
await import("../sentry.edge.config");
}
}
export const onRequestError = Sentry.captureRequestError;

View File

@@ -0,0 +1,321 @@
import { SupabaseClient } from "@supabase/supabase-js";
import {
Block,
Graph,
GraphCreatable,
GraphUpdateable,
GraphMeta,
GraphExecuteResponse,
NodeExecutionResult,
User,
AnalyticsMetrics,
AnalyticsDetails,
} from "./types";
export default class BaseAutoGPTServerAPI {
private baseUrl: string;
private wsUrl: string;
private webSocket: WebSocket | null = null;
private wsConnecting: Promise<void> | null = null;
private wsMessageHandlers: Record<string, Set<(data: any) => void>> = {};
private supabaseClient: SupabaseClient | null = null;
constructor(
baseUrl: string = process.env.NEXT_PUBLIC_AGPT_SERVER_URL ||
"http://localhost:8006/api",
wsUrl: string = process.env.NEXT_PUBLIC_AGPT_WS_SERVER_URL ||
"ws://localhost:8001/ws",
supabaseClient: SupabaseClient | null = null,
) {
this.baseUrl = baseUrl;
this.wsUrl = wsUrl;
this.supabaseClient = supabaseClient;
}
async createUser(): Promise<User> {
return this._request("POST", "/auth/user", {});
}
async getUserCredit(): Promise<{ credits: number }> {
return this._get(`/credits`);
}
async getBlocks(): Promise<Block[]> {
return await this._get("/blocks");
}
async listGraphs(): Promise<GraphMeta[]> {
return this._get("/graphs");
}
async listTemplates(): Promise<GraphMeta[]> {
return this._get("/templates");
}
async getGraph(id: string, version?: number): Promise<Graph> {
const query = version !== undefined ? `?version=${version}` : "";
return this._get(`/graphs/${id}` + query);
}
async getTemplate(id: string, version?: number): Promise<Graph> {
const query = version !== undefined ? `?version=${version}` : "";
return this._get(`/templates/${id}` + query);
}
async getGraphAllVersions(id: string): Promise<Graph[]> {
return this._get(`/graphs/${id}/versions`);
}
async getTemplateAllVersions(id: string): Promise<Graph[]> {
return this._get(`/templates/${id}/versions`);
}
async createGraph(graphCreateBody: GraphCreatable): Promise<Graph>;
async createGraph(
fromTemplateID: string,
templateVersion: number,
): Promise<Graph>;
async createGraph(
graphOrTemplateID: GraphCreatable | string,
templateVersion?: number,
): Promise<Graph> {
let requestBody: GraphCreateRequestBody;
if (typeof graphOrTemplateID == "string") {
if (templateVersion == undefined) {
throw new Error("templateVersion not specified");
}
requestBody = {
template_id: graphOrTemplateID,
template_version: templateVersion,
};
} else {
requestBody = { graph: graphOrTemplateID };
}
return this._request("POST", "/graphs", requestBody);
}
async createTemplate(templateCreateBody: GraphCreatable): Promise<Graph> {
const requestBody: GraphCreateRequestBody = { graph: templateCreateBody };
return this._request("POST", "/templates", requestBody);
}
async updateGraph(id: string, graph: GraphUpdateable): Promise<Graph> {
return await this._request("PUT", `/graphs/${id}`, graph);
}
async updateTemplate(id: string, template: GraphUpdateable): Promise<Graph> {
return await this._request("PUT", `/templates/${id}`, template);
}
async setGraphActiveVersion(id: string, version: number): Promise<Graph> {
return this._request("PUT", `/graphs/${id}/versions/active`, {
active_graph_version: version,
});
}
async executeGraph(
id: string,
inputData: { [key: string]: any } = {},
): Promise<GraphExecuteResponse> {
return this._request("POST", `/graphs/${id}/execute`, inputData);
}
async listGraphRunIDs(
graphID: string,
graphVersion?: number,
): Promise<string[]> {
const query =
graphVersion !== undefined ? `?graph_version=${graphVersion}` : "";
return this._get(`/graphs/${graphID}/executions` + query);
}
async getGraphExecutionInfo(
graphID: string,
runID: string,
): Promise<NodeExecutionResult[]> {
return (await this._get(`/graphs/${graphID}/executions/${runID}`)).map(
parseNodeExecutionResultTimestamps,
);
}
async stopGraphExecution(
graphID: string,
runID: string,
): Promise<NodeExecutionResult[]> {
return (
await this._request("POST", `/graphs/${graphID}/executions/${runID}/stop`)
).map(parseNodeExecutionResultTimestamps);
}
async logMetric(metric: AnalyticsMetrics) {
return this._request("POST", "/analytics/log_raw_metric", metric);
}
async logAnalytic(analytic: AnalyticsDetails) {
return this._request("POST", "/analytics/log_raw_analytics", analytic);
}
private async _get(path: string) {
return this._request("GET", path);
}
private async _request(
method: "GET" | "POST" | "PUT" | "PATCH",
path: string,
payload?: { [key: string]: any },
) {
if (method != "GET") {
console.debug(`${method} ${path} payload:`, payload);
}
const token =
(await this.supabaseClient?.auth.getSession())?.data.session
?.access_token || "";
const response = await fetch(this.baseUrl + path, {
method,
headers:
method != "GET"
? {
"Content-Type": "application/json",
Authorization: token ? `Bearer ${token}` : "",
}
: {
Authorization: token ? `Bearer ${token}` : "",
},
body: JSON.stringify(payload),
});
const response_data = await response.json();
if (!response.ok) {
console.warn(
`${method} ${path} returned non-OK response:`,
response_data.detail,
response,
);
throw new Error(`HTTP error ${response.status}! ${response_data.detail}`);
}
return response_data;
}
async connectWebSocket(): Promise<void> {
this.wsConnecting ??= new Promise(async (resolve, reject) => {
try {
const token =
(await this.supabaseClient?.auth.getSession())?.data.session
?.access_token || "";
const wsUrlWithToken = `${this.wsUrl}?token=${token}`;
this.webSocket = new WebSocket(wsUrlWithToken);
this.webSocket.onopen = () => {
console.debug("WebSocket connection established");
resolve();
};
this.webSocket.onclose = (event) => {
console.debug("WebSocket connection closed", event);
this.webSocket = null;
};
this.webSocket.onerror = (error) => {
console.error("WebSocket error:", error);
reject(error);
};
this.webSocket.onmessage = (event) => {
const message: WebsocketMessage = JSON.parse(event.data);
if (message.method == "execution_event") {
message.data = parseNodeExecutionResultTimestamps(message.data);
}
this.wsMessageHandlers[message.method]?.forEach((handler) =>
handler(message.data),
);
};
} catch (error) {
console.error("Error connecting to WebSocket:", error);
reject(error);
}
});
return this.wsConnecting;
}
disconnectWebSocket() {
if (this.webSocket && this.webSocket.readyState === WebSocket.OPEN) {
this.webSocket.close();
}
}
sendWebSocketMessage<M extends keyof WebsocketMessageTypeMap>(
method: M,
data: WebsocketMessageTypeMap[M],
callCount = 0,
) {
if (this.webSocket && this.webSocket.readyState === WebSocket.OPEN) {
this.webSocket.send(JSON.stringify({ method, data }));
} else {
this.connectWebSocket().then(() => {
callCount == 0
? this.sendWebSocketMessage(method, data, callCount + 1)
: setTimeout(
() => {
this.sendWebSocketMessage(method, data, callCount + 1);
},
2 ** (callCount - 1) * 1000,
);
});
}
}
onWebSocketMessage<M extends keyof WebsocketMessageTypeMap>(
method: M,
handler: (data: WebsocketMessageTypeMap[M]) => void,
): () => void {
this.wsMessageHandlers[method] ??= new Set();
this.wsMessageHandlers[method].add(handler);
// Return detacher
return () => this.wsMessageHandlers[method].delete(handler);
}
subscribeToExecution(graphId: string) {
this.sendWebSocketMessage("subscribe", { graph_id: graphId });
}
}
/* *** UTILITY TYPES *** */
type GraphCreateRequestBody =
| {
template_id: string;
template_version: number;
}
| {
graph: GraphCreatable;
};
type WebsocketMessageTypeMap = {
subscribe: { graph_id: string };
execution_event: NodeExecutionResult;
};
type WebsocketMessage = {
[M in keyof WebsocketMessageTypeMap]: {
method: M;
data: WebsocketMessageTypeMap[M];
};
}[keyof WebsocketMessageTypeMap];
/* *** HELPER FUNCTIONS *** */
function parseNodeExecutionResultTimestamps(result: any): NodeExecutionResult {
return {
...result,
add_time: new Date(result.add_time),
queue_time: result.queue_time ? new Date(result.queue_time) : undefined,
start_time: result.start_time ? new Date(result.start_time) : undefined,
end_time: result.end_time ? new Date(result.end_time) : undefined,
};
}

View File

@@ -1,305 +1,14 @@
import { createClient } from "../supabase/client";
import {
Block,
Graph,
GraphCreatable,
GraphUpdateable,
GraphMeta,
GraphExecuteResponse,
NodeExecutionResult,
User,
} from "./types";
export default class AutoGPTServerAPI {
private baseUrl: string;
private wsUrl: string;
private webSocket: WebSocket | null = null;
private wsConnecting: Promise<void> | null = null;
private wsMessageHandlers: Record<string, Set<(data: any) => void>> = {};
private supabaseClient = createClient();
import BaseAutoGPTServerAPI from "./baseClient";
export default class AutoGPTServerAPI extends BaseAutoGPTServerAPI {
constructor(
baseUrl: string = process.env.NEXT_PUBLIC_AGPT_SERVER_URL ||
"http://localhost:8000/api",
"http://localhost:8006/api",
wsUrl: string = process.env.NEXT_PUBLIC_AGPT_WS_SERVER_URL ||
"ws://localhost:8001/ws",
) {
this.baseUrl = baseUrl;
this.wsUrl = wsUrl;
}
async createUser(): Promise<User> {
return this._request("POST", "/auth/user", {});
}
async getBlocks(): Promise<Block[]> {
return await this._get("/blocks");
}
async listGraphs(): Promise<GraphMeta[]> {
return this._get("/graphs");
}
async listTemplates(): Promise<GraphMeta[]> {
return this._get("/templates");
}
async getGraph(id: string, version?: number): Promise<Graph> {
const query = version !== undefined ? `?version=${version}` : "";
return this._get(`/graphs/${id}` + query);
}
async getTemplate(id: string, version?: number): Promise<Graph> {
const query = version !== undefined ? `?version=${version}` : "";
return this._get(`/templates/${id}` + query);
}
async getGraphAllVersions(id: string): Promise<Graph[]> {
return this._get(`/graphs/${id}/versions`);
}
async getTemplateAllVersions(id: string): Promise<Graph[]> {
return this._get(`/templates/${id}/versions`);
}
async createGraph(graphCreateBody: GraphCreatable): Promise<Graph>;
async createGraph(
fromTemplateID: string,
templateVersion: number,
): Promise<Graph>;
async createGraph(
graphOrTemplateID: GraphCreatable | string,
templateVersion?: number,
): Promise<Graph> {
let requestBody: GraphCreateRequestBody;
if (typeof graphOrTemplateID == "string") {
if (templateVersion == undefined) {
throw new Error("templateVersion not specified");
}
requestBody = {
template_id: graphOrTemplateID,
template_version: templateVersion,
};
} else {
requestBody = { graph: graphOrTemplateID };
}
return this._request("POST", "/graphs", requestBody);
}
async createTemplate(templateCreateBody: GraphCreatable): Promise<Graph> {
const requestBody: GraphCreateRequestBody = { graph: templateCreateBody };
return this._request("POST", "/templates", requestBody);
}
async updateGraph(id: string, graph: GraphUpdateable): Promise<Graph> {
return await this._request("PUT", `/graphs/${id}`, graph);
}
async updateTemplate(id: string, template: GraphUpdateable): Promise<Graph> {
return await this._request("PUT", `/templates/${id}`, template);
}
async setGraphActiveVersion(id: string, version: number): Promise<Graph> {
return this._request("PUT", `/graphs/${id}/versions/active`, {
active_graph_version: version,
});
}
async executeGraph(
id: string,
inputData: { [key: string]: any } = {},
): Promise<GraphExecuteResponse> {
return this._request("POST", `/graphs/${id}/execute`, inputData);
}
async listGraphRunIDs(
graphID: string,
graphVersion?: number,
): Promise<string[]> {
const query =
graphVersion !== undefined ? `?graph_version=${graphVersion}` : "";
return this._get(`/graphs/${graphID}/executions` + query);
}
async getGraphExecutionInfo(
graphID: string,
runID: string,
): Promise<NodeExecutionResult[]> {
return (await this._get(`/graphs/${graphID}/executions/${runID}`)).map(
parseNodeExecutionResultTimestamps,
);
}
async stopGraphExecution(
graphID: string,
runID: string,
): Promise<NodeExecutionResult[]> {
return (
await this._request("POST", `/graphs/${graphID}/executions/${runID}/stop`)
).map(parseNodeExecutionResultTimestamps);
}
private async _get(path: string) {
return this._request("GET", path);
}
private async _request(
method: "GET" | "POST" | "PUT" | "PATCH",
path: string,
payload?: { [key: string]: any },
) {
if (method != "GET") {
console.debug(`${method} ${path} payload:`, payload);
}
const token =
(await this.supabaseClient?.auth.getSession())?.data.session
?.access_token || "";
const response = await fetch(this.baseUrl + path, {
method,
headers:
method != "GET"
? {
"Content-Type": "application/json",
Authorization: token ? `Bearer ${token}` : "",
}
: {
Authorization: token ? `Bearer ${token}` : "",
},
body: JSON.stringify(payload),
});
const response_data = await response.json();
if (!response.ok) {
console.warn(
`${method} ${path} returned non-OK response:`,
response_data.detail,
response,
);
throw new Error(`HTTP error ${response.status}! ${response_data.detail}`);
}
return response_data;
}
async connectWebSocket(): Promise<void> {
this.wsConnecting ??= new Promise(async (resolve, reject) => {
try {
const token =
(await this.supabaseClient?.auth.getSession())?.data.session
?.access_token || "";
const wsUrlWithToken = `${this.wsUrl}?token=${token}`;
this.webSocket = new WebSocket(wsUrlWithToken);
this.webSocket.onopen = () => {
console.debug("WebSocket connection established");
resolve();
};
this.webSocket.onclose = (event) => {
console.debug("WebSocket connection closed", event);
this.webSocket = null;
};
this.webSocket.onerror = (error) => {
console.error("WebSocket error:", error);
reject(error);
};
this.webSocket.onmessage = (event) => {
const message: WebsocketMessage = JSON.parse(event.data);
if (message.method == "execution_event") {
message.data = parseNodeExecutionResultTimestamps(message.data);
}
this.wsMessageHandlers[message.method]?.forEach((handler) =>
handler(message.data),
);
};
} catch (error) {
console.error("Error connecting to WebSocket:", error);
reject(error);
}
});
return this.wsConnecting;
}
disconnectWebSocket() {
if (this.webSocket && this.webSocket.readyState === WebSocket.OPEN) {
this.webSocket.close();
}
}
sendWebSocketMessage<M extends keyof WebsocketMessageTypeMap>(
method: M,
data: WebsocketMessageTypeMap[M],
callCount = 0,
) {
if (this.webSocket && this.webSocket.readyState === WebSocket.OPEN) {
this.webSocket.send(JSON.stringify({ method, data }));
} else {
this.connectWebSocket().then(() => {
callCount == 0
? this.sendWebSocketMessage(method, data, callCount + 1)
: setTimeout(
() => {
this.sendWebSocketMessage(method, data, callCount + 1);
},
2 ** (callCount - 1) * 1000,
);
});
}
}
onWebSocketMessage<M extends keyof WebsocketMessageTypeMap>(
method: M,
handler: (data: WebsocketMessageTypeMap[M]) => void,
): () => void {
this.wsMessageHandlers[method] ??= new Set();
this.wsMessageHandlers[method].add(handler);
// Return detacher
return () => this.wsMessageHandlers[method].delete(handler);
}
subscribeToExecution(graphId: string) {
this.sendWebSocketMessage("subscribe", { graph_id: graphId });
const supabaseClient = createClient();
super(baseUrl, wsUrl, supabaseClient);
}
}
/* *** UTILITY TYPES *** */
type GraphCreateRequestBody =
| {
template_id: string;
template_version: number;
}
| {
graph: GraphCreatable;
};
type WebsocketMessageTypeMap = {
subscribe: { graph_id: string };
execution_event: NodeExecutionResult;
};
type WebsocketMessage = {
[M in keyof WebsocketMessageTypeMap]: {
method: M;
data: WebsocketMessageTypeMap[M];
};
}[keyof WebsocketMessageTypeMap];
/* *** HELPER FUNCTIONS *** */
function parseNodeExecutionResultTimestamps(result: any): NodeExecutionResult {
return {
...result,
add_time: new Date(result.add_time),
queue_time: result.queue_time ? new Date(result.queue_time) : undefined,
start_time: result.start_time ? new Date(result.start_time) : undefined,
end_time: result.end_time ? new Date(result.end_time) : undefined,
};
}

View File

@@ -0,0 +1,14 @@
import { createServerClient } from "../supabase/server";
import BaseAutoGPTServerAPI from "./baseClient";
export default class AutoGPTServerAPIServerSide extends BaseAutoGPTServerAPI {
constructor(
baseUrl: string = process.env.NEXT_PUBLIC_AGPT_SERVER_URL ||
"http://localhost:8006/api",
wsUrl: string = process.env.NEXT_PUBLIC_AGPT_WS_SERVER_URL ||
"ws://localhost:8001/ws",
) {
const supabaseClient = createServerClient();
super(baseUrl, wsUrl, supabaseClient);
}
}

View File

@@ -5,6 +5,18 @@ export type Category = {
description: string;
};
export enum BlockCostType {
RUN = "run",
BYTE = "byte",
SECOND = "second",
}
export type BlockCost = {
cost_amount: number;
cost_type: BlockCostType;
cost_filter: { [key: string]: any };
};
export type Block = {
id: string;
name: string;
@@ -13,6 +25,8 @@ export type Block = {
inputSchema: BlockIORootSchema;
outputSchema: BlockIORootSchema;
staticOutput: boolean;
uiType: BlockUIType;
costs: BlockCost[];
};
export type BlockIORootSchema = {
@@ -182,3 +196,22 @@ export type User = {
id: string;
email: string;
};
export enum BlockUIType {
STANDARD = "Standard",
INPUT = "Input",
OUTPUT = "Output",
NOTE = "Note",
}
export type AnalyticsMetrics = {
metric_name: string;
metric_value: number;
data_string: string;
};
export type AnalyticsDetails = {
type: string;
data: { [key: string]: any };
index: string;
};

View File

@@ -17,7 +17,7 @@ export default class MarketplaceAPI {
constructor(
baseUrl: string = process.env.NEXT_PUBLIC_AGPT_MARKETPLACE_URL ||
"http://localhost:8001/api/v1/market",
"http://localhost:8015/api/v1/market",
) {
this.baseUrl = baseUrl;
}

View File

@@ -7,6 +7,7 @@ export function createClient() {
process.env.NEXT_PUBLIC_SUPABASE_ANON_KEY!,
);
} catch (error) {
console.error("error creating client", error);
return null;
}
}

View File

@@ -24,15 +24,16 @@ export function deepEquals(x: any, y: any): boolean {
const ok = Object.keys,
tx = typeof x,
ty = typeof y;
return (
const res =
x &&
y &&
tx === ty &&
(tx === "object"
? ok(x).length === ok(y).length &&
ok(x).every((key) => deepEquals(x[key], y[key]))
: x === y)
);
: x === y);
return res;
}
/** Get tailwind text color class from type name */
@@ -184,7 +185,7 @@ export const categoryColorMap: Record<string, string> = {
SEARCH: "bg-blue-300/[.7]",
BASIC: "bg-purple-300/[.7]",
INPUT: "bg-cyan-300/[.7]",
OUTPUT: "bg-brown-300/[.7]",
OUTPUT: "bg-red-300/[.7]",
LOGIC: "bg-teal-300/[.7]",
};
@@ -194,3 +195,10 @@ export function getPrimaryCategoryColor(categories: Category[]): string {
}
return categoryColorMap[categories[0].category] || "bg-gray-300/[.7]";
}
export function filterBlocksByType<T>(
blocks: T[],
predicate: (block: T) => boolean,
): T[] {
return blocks.filter(predicate);
}

View File

@@ -1,16 +1,23 @@
import { redirect } from "next/navigation";
import getServerUser from "@/hooks/getServerUser";
import React from "react";
import * as Sentry from "@sentry/nextjs";
export async function withRoleAccess(allowedRoles: string[]) {
"use server";
return async function <T extends React.ComponentType<any>>(Component: T) {
const { user, role, error } = await getServerUser();
return await Sentry.withServerActionInstrumentation(
"withRoleAccess",
{},
async () => {
return async function <T extends React.ComponentType<any>>(Component: T) {
const { user, role, error } = await getServerUser();
if (error || !user || !role || !allowedRoles.includes(role)) {
redirect("/unauthorized");
}
if (error || !user || !role || !allowedRoles.includes(role)) {
redirect("/unauthorized");
}
return Component;
};
return Component;
};
},
);
}

File diff suppressed because it is too large Load Diff

View File

@@ -1,6 +1,6 @@
import pytest
from .depends import verify_user, requires_admin_user, requires_user
from .depends import requires_admin_user, requires_user, verify_user
def test_verify_user_no_payload():

View File

@@ -0,0 +1,9 @@
from .config import configure_logging
from .filters import BelowLevelFilter
from .formatters import FancyConsoleFormatter
__all__ = [
"configure_logging",
"BelowLevelFilter",
"FancyConsoleFormatter",
]

View File

@@ -0,0 +1,166 @@
"""Logging module for Auto-GPT."""
import logging
import sys
from pathlib import Path
from pydantic import Field, field_validator
from pydantic_settings import BaseSettings, SettingsConfigDict
from .filters import BelowLevelFilter
from .formatters import AGPTFormatter, StructuredLoggingFormatter
LOG_DIR = Path(__file__).parent.parent.parent.parent / "logs"
LOG_FILE = "activity.log"
DEBUG_LOG_FILE = "debug.log"
ERROR_LOG_FILE = "error.log"
SIMPLE_LOG_FORMAT = "%(asctime)s %(levelname)s %(title)s%(message)s"
DEBUG_LOG_FORMAT = (
"%(asctime)s %(levelname)s %(filename)s:%(lineno)d" " %(title)s%(message)s"
)
class LoggingConfig(BaseSettings):
level: str = Field(
default="INFO",
description="Logging level",
validation_alias="LOG_LEVEL",
)
enable_cloud_logging: bool = Field(
default=False,
description="Enable logging to Google Cloud Logging",
)
enable_file_logging: bool = Field(
default=False,
description="Enable logging to file",
)
# File output
log_dir: Path = Field(
default=LOG_DIR,
description="Log directory",
)
model_config = SettingsConfigDict(
env_prefix="",
env_file=".env",
env_file_encoding="utf-8",
extra="ignore",
)
@field_validator("level", mode="before")
@classmethod
def parse_log_level(cls, v):
if isinstance(v, str):
v = v.upper()
if v not in ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"]:
raise ValueError(f"Invalid log level: {v}")
return v
return v
def configure_logging(force_cloud_logging: bool = False) -> None:
"""Configure the native logging module based on the LoggingConfig settings.
This function sets up logging handlers and formatters according to the
configuration specified in the LoggingConfig object. It supports various
logging outputs including console, file, cloud, and JSON logging.
The function uses the LoggingConfig object to determine which logging
features to enable and how to configure them. This includes setting
log levels, log formats, and output destinations.
No arguments are required as the function creates its own LoggingConfig
instance internally.
Note: This function is typically called at the start of the application
to set up the logging infrastructure.
"""
config = LoggingConfig()
log_handlers: list[logging.Handler] = []
# Cloud logging setup
if config.enable_cloud_logging or force_cloud_logging:
import google.cloud.logging
from google.cloud.logging.handlers import CloudLoggingHandler
from google.cloud.logging_v2.handlers.transports.sync import SyncTransport
client = google.cloud.logging.Client()
cloud_handler = CloudLoggingHandler(
client,
name="autogpt_logs",
transport=SyncTransport,
)
cloud_handler.setLevel(config.level)
cloud_handler.setFormatter(StructuredLoggingFormatter())
log_handlers.append(cloud_handler)
print("Cloud logging enabled")
else:
# Console output handlers
stdout = logging.StreamHandler(stream=sys.stdout)
stdout.setLevel(config.level)
stdout.addFilter(BelowLevelFilter(logging.WARNING))
if config.level == logging.DEBUG:
stdout.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stdout.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
stderr = logging.StreamHandler()
stderr.setLevel(logging.WARNING)
if config.level == logging.DEBUG:
stderr.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stderr.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
log_handlers += [stdout, stderr]
print("Console logging enabled")
# File logging setup
if config.enable_file_logging:
# create log directory if it doesn't exist
if not config.log_dir.exists():
config.log_dir.mkdir(parents=True, exist_ok=True)
print(f"Log directory: {config.log_dir}")
# Activity log handler (INFO and above)
activity_log_handler = logging.FileHandler(
config.log_dir / LOG_FILE, "a", "utf-8"
)
activity_log_handler.setLevel(config.level)
activity_log_handler.setFormatter(
AGPTFormatter(SIMPLE_LOG_FORMAT, no_color=True)
)
log_handlers.append(activity_log_handler)
if config.level == logging.DEBUG:
# Debug log handler (all levels)
debug_log_handler = logging.FileHandler(
config.log_dir / DEBUG_LOG_FILE, "a", "utf-8"
)
debug_log_handler.setLevel(logging.DEBUG)
debug_log_handler.setFormatter(
AGPTFormatter(DEBUG_LOG_FORMAT, no_color=True)
)
log_handlers.append(debug_log_handler)
# Error log handler (ERROR and above)
error_log_handler = logging.FileHandler(
config.log_dir / ERROR_LOG_FILE, "a", "utf-8"
)
error_log_handler.setLevel(logging.ERROR)
error_log_handler.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT, no_color=True))
log_handlers.append(error_log_handler)
print("File logging enabled")
# Configure the root logger
logging.basicConfig(
format=DEBUG_LOG_FORMAT if config.level == logging.DEBUG else SIMPLE_LOG_FORMAT,
level=config.level,
handlers=log_handlers,
)

View File

@@ -0,0 +1,12 @@
import logging
class BelowLevelFilter(logging.Filter):
"""Filter for logging levels below a certain threshold."""
def __init__(self, below_level: int):
super().__init__()
self.below_level = below_level
def filter(self, record: logging.LogRecord):
return record.levelno < self.below_level

View File

@@ -0,0 +1,95 @@
import logging
from colorama import Fore, Style
from google.cloud.logging_v2.handlers import CloudLoggingFilter, StructuredLogHandler
from .utils import remove_color_codes
class FancyConsoleFormatter(logging.Formatter):
"""
A custom logging formatter designed for console output.
This formatter enhances the standard logging output with color coding. The color
coding is based on the level of the log message, making it easier to distinguish
between different types of messages in the console output.
The color for each level is defined in the LEVEL_COLOR_MAP class attribute.
"""
# level -> (level & text color, title color)
LEVEL_COLOR_MAP = {
logging.DEBUG: Fore.LIGHTBLACK_EX,
logging.INFO: Fore.BLUE,
logging.WARNING: Fore.YELLOW,
logging.ERROR: Fore.RED,
logging.CRITICAL: Fore.RED + Style.BRIGHT,
}
def format(self, record: logging.LogRecord) -> str:
# Make sure `msg` is a string
if not hasattr(record, "msg"):
record.msg = ""
elif type(record.msg) is not str:
record.msg = str(record.msg)
# Determine default color based on error level
level_color = ""
if record.levelno in self.LEVEL_COLOR_MAP:
level_color = self.LEVEL_COLOR_MAP[record.levelno]
record.levelname = f"{level_color}{record.levelname}{Style.RESET_ALL}"
# Determine color for message
color = getattr(record, "color", level_color)
color_is_specified = hasattr(record, "color")
# Don't color INFO messages unless the color is explicitly specified.
if color and (record.levelno != logging.INFO or color_is_specified):
record.msg = f"{color}{record.msg}{Style.RESET_ALL}"
return super().format(record)
class AGPTFormatter(FancyConsoleFormatter):
def __init__(self, *args, no_color: bool = False, **kwargs):
super().__init__(*args, **kwargs)
self.no_color = no_color
def format(self, record: logging.LogRecord) -> str:
# Make sure `msg` is a string
if not hasattr(record, "msg"):
record.msg = ""
elif type(record.msg) is not str:
record.msg = str(record.msg)
# Strip color from the message to prevent color spoofing
if record.msg and not getattr(record, "preserve_color", False):
record.msg = remove_color_codes(record.msg)
# Determine color for title
title = getattr(record, "title", "")
title_color = getattr(record, "title_color", "") or self.LEVEL_COLOR_MAP.get(
record.levelno, ""
)
if title and title_color:
title = f"{title_color + Style.BRIGHT}{title}{Style.RESET_ALL}"
# Make sure record.title is set, and padded with a space if not empty
record.title = f"{title} " if title else ""
if self.no_color:
return remove_color_codes(super().format(record))
else:
return super().format(record)
class StructuredLoggingFormatter(StructuredLogHandler, logging.Formatter):
def __init__(self):
# Set up CloudLoggingFilter to add diagnostic info to the log records
self.cloud_logging_filter = CloudLoggingFilter()
# Init StructuredLogHandler
super().__init__()
def format(self, record: logging.LogRecord) -> str:
self.cloud_logging_filter.filter(record)
return super().format(record)

View File

@@ -0,0 +1,14 @@
from __future__ import annotations
import json
import logging
class JsonFileHandler(logging.FileHandler):
def format(self, record: logging.LogRecord) -> str:
record.json_data = json.loads(record.getMessage())
return json.dumps(getattr(record, "json_data"), ensure_ascii=False, indent=4)
def emit(self, record: logging.LogRecord) -> None:
with open(self.baseFilename, "w", encoding="utf-8") as f:
f.write(self.format(record))

View File

@@ -0,0 +1,36 @@
import pytest
from .utils import remove_color_codes
@pytest.mark.parametrize(
"raw_text, clean_text",
[
(
"COMMAND = \x1b[36mbrowse_website\x1b[0m "
"ARGUMENTS = \x1b[36m{'url': 'https://www.google.com',"
" 'question': 'What is the capital of France?'}\x1b[0m",
"COMMAND = browse_website "
"ARGUMENTS = {'url': 'https://www.google.com',"
" 'question': 'What is the capital of France?'}",
),
(
"{'Schaue dir meine Projekte auf github () an, als auch meine Webseiten': "
"'https://github.com/Significant-Gravitas/AutoGPT,"
" https://discord.gg/autogpt und https://twitter.com/Auto_GPT'}",
"{'Schaue dir meine Projekte auf github () an, als auch meine Webseiten': "
"'https://github.com/Significant-Gravitas/AutoGPT,"
" https://discord.gg/autogpt und https://twitter.com/Auto_GPT'}",
),
("", ""),
("hello", "hello"),
("hello\x1B[31m world", "hello world"),
("\x1B[36mHello,\x1B[32m World!", "Hello, World!"),
(
"\x1B[1m\x1B[31mError:\x1B[0m\x1B[31m file not found",
"Error: file not found",
),
],
)
def test_remove_color_codes(raw_text, clean_text):
assert remove_color_codes(raw_text) == clean_text

View File

@@ -0,0 +1,27 @@
import logging
import re
from typing import Any
from colorama import Fore
def remove_color_codes(s: str) -> str:
return re.sub(r"\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])", "", s)
def fmt_kwargs(kwargs: dict) -> str:
return ", ".join(f"{n}={repr(v)}" for n, v in kwargs.items())
def print_attribute(
title: str, value: Any, title_color: str = Fore.GREEN, value_color: str = ""
) -> None:
logger = logging.getLogger()
logger.info(
str(value),
extra={
"title": f"{title.rstrip(':')}:",
"title_color": title_color,
"color": value_color,
},
)

View File

@@ -1,13 +1,21 @@
import secrets
from datetime import datetime, timedelta, timezone
from typing import cast
from supabase import Client, create_client
from supabase import Client
from .types import Credentials, OAuth2Credentials, UserMetadata, UserMetadataRaw
from .types import (
Credentials,
OAuth2Credentials,
OAuthState,
UserMetadata,
UserMetadataRaw,
)
class SupabaseIntegrationCredentialsStore:
def __init__(self, url: str, key: str):
self.supabase: Client = create_client(url, key)
def __init__(self, supabase: Client):
self.supabase = supabase
def add_creds(self, user_id: str, credentials: Credentials) -> None:
if self.get_creds_by_id(user_id, credentials.id):
@@ -73,6 +81,52 @@ class SupabaseIntegrationCredentialsStore:
]
self._set_user_integration_creds(user_id, filtered_credentials)
async def store_state_token(self, user_id: str, provider: str) -> str:
token = secrets.token_urlsafe(32)
expires_at = datetime.now(timezone.utc) + timedelta(minutes=10)
state = OAuthState(
token=token, provider=provider, expires_at=int(expires_at.timestamp())
)
user_metadata = self._get_user_metadata(user_id)
oauth_states = user_metadata.get("integration_oauth_states", [])
oauth_states.append(state.model_dump())
user_metadata["integration_oauth_states"] = oauth_states
self.supabase.auth.admin.update_user_by_id(
user_id, {"user_metadata": user_metadata}
)
return token
async def verify_state_token(self, user_id: str, token: str, provider: str) -> bool:
user_metadata = self._get_user_metadata(user_id)
oauth_states = user_metadata.get("integration_oauth_states", [])
now = datetime.now(timezone.utc)
valid_state = next(
(
state
for state in oauth_states
if state["token"] == token
and state["provider"] == provider
and state["expires_at"] > now.timestamp()
),
None,
)
if valid_state:
# Remove the used state
oauth_states.remove(valid_state)
user_metadata["integration_oauth_states"] = oauth_states
self.supabase.auth.admin.update_user_by_id(
user_id, {"user_metadata": user_metadata}
)
return True
return False
def _set_user_integration_creds(
self, user_id: str, credentials: list[Credentials]
) -> None:

View File

@@ -7,7 +7,7 @@ from pydantic import BaseModel, Field, SecretStr, field_serializer
class _BaseCredentials(BaseModel):
id: str = Field(default_factory=lambda: str(uuid4()))
provider: str
title: str
title: Optional[str]
@field_serializer("*")
def dump_secret_strings(value: Any, _info):
@@ -18,10 +18,14 @@ class _BaseCredentials(BaseModel):
class OAuth2Credentials(_BaseCredentials):
type: Literal["oauth2"] = "oauth2"
username: Optional[str]
"""Username of the third-party service user that these credentials belong to"""
access_token: SecretStr
access_token_expires_at: Optional[int] # seconds
access_token_expires_at: Optional[int]
"""Unix timestamp (seconds) indicating when the access token expires (if at all)"""
refresh_token: Optional[SecretStr]
refresh_token_expires_at: Optional[int] # seconds
refresh_token_expires_at: Optional[int]
"""Unix timestamp (seconds) indicating when the refresh token expires (if at all)"""
scopes: list[str]
metadata: dict[str, Any] = Field(default_factory=dict)
@@ -29,7 +33,8 @@ class OAuth2Credentials(_BaseCredentials):
class APIKeyCredentials(_BaseCredentials):
type: Literal["api_key"] = "api_key"
api_key: SecretStr
expires_at: Optional[int] # seconds
expires_at: Optional[int]
"""Unix timestamp (seconds) indicating when the API key expires (if at all)"""
Credentials = Annotated[
@@ -38,9 +43,18 @@ Credentials = Annotated[
]
class OAuthState(BaseModel):
token: str
provider: str
expires_at: int
"""Unix timestamp (seconds) indicating when this OAuth state expires"""
class UserMetadata(BaseModel):
integration_credentials: list[Credentials] = Field(default_factory=list)
integration_oauth_states: list[OAuthState] = Field(default_factory=list)
class UserMetadataRaw(TypedDict, total=False):
integration_credentials: list[dict]
integration_oauth_states: list[dict]

File diff suppressed because it is too large Load Diff

View File

@@ -1,19 +1,21 @@
[tool.poetry]
name = "autogpt-libs"
version = "0.1.0"
version = "0.2.0"
description = "Shared libraries across NextGen AutoGPT"
authors = ["Aarushi <aarushik93@gmail.com>"]
readme = "README.md"
packages = [{ include = "autogpt_libs" }]
[tool.poetry.dependencies]
python = ">=3.10,<4.0"
colorama = "^0.4.6"
google-cloud-logging = "^3.8.0"
pydantic = "^2.8.2"
pydantic-settings = "^2.5.2"
pyjwt = "^2.8.0"
python = ">=3.10,<4.0"
python-dotenv = "^1.0.1"
supabase = "^2.7.2"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -1,7 +1,7 @@
DB_USER=agpt_user
DB_PASS=pass123
DB_NAME=agpt_local
DB_PORT=5432
DB_PORT=5433
DATABASE_URL="postgresql://${DB_USER}:${DB_PASS}@localhost:${DB_PORT}/${DB_NAME}"
PRISMA_SCHEMA="postgres/schema.prisma"
@@ -9,9 +9,13 @@ REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_PASSWORD=password
AUTH_ENABLED=false
ENABLE_AUTH=false
ENABLE_CREDIT=false
APP_ENV="local"
PYRO_HOST=localhost
SENTRY_DSN=
# This is needed when ENABLE_AUTH is true
SUPABASE_JWT_SECRET=
## ===== OPTIONAL API KEYS ===== ##
@@ -50,3 +54,11 @@ SMTP_PASSWORD=
# Medium
MEDIUM_API_KEY=
MEDIUM_AUTHOR_ID=
# Logging Configuration
LOG_LEVEL=INFO
ENABLE_CLOUD_LOGGING=false
ENABLE_FILE_LOGGING=false
# Use to manually set the log directory
# LOG_DIR=./logs

View File

@@ -1,3 +1,6 @@
{
"python.analysis.typeCheckingMode": "basic",
"python.testing.pytestArgs": ["test"],
"python.testing.unittestEnabled": false,
"python.testing.pytestEnabled": true
}

View File

@@ -1,46 +1,79 @@
FROM python:3.11-slim-buster as server_base
FROM python:3.11-slim-buster AS builder
# Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1
WORKDIR /app
# Install build dependencies
RUN apt-get update \
&& apt-get install -y build-essential curl ffmpeg wget libcurl4-gnutls-dev libexpat1-dev gettext libz-dev libssl-dev \
&& apt-get install -y build-essential curl ffmpeg wget libcurl4-gnutls-dev libexpat1-dev gettext libz-dev libssl-dev postgresql-client git \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/* \
&& wget https://github.com/git/git/archive/v2.28.0.tar.gz -O git.tar.gz \
&& tar -zxf git.tar.gz \
&& cd git-* \
&& make prefix=/usr all \
&& make prefix=/usr install
&& rm -rf /var/lib/apt/lists/*
ENV POETRY_VERSION=1.8.3 \
POETRY_HOME="/opt/poetry" \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=false \
PATH="$POETRY_HOME/bin:$PATH"
# Upgrade pip and setuptools to fix security vulnerabilities
RUN pip3 install --upgrade pip setuptools
RUN pip3 install poetry
COPY autogpt /app/autogpt
COPY forge /app/forge
# Copy and install dependencies
COPY rnd/autogpt_libs /app/rnd/autogpt_libs
COPY rnd/autogpt_server/poetry.lock rnd/autogpt_server/pyproject.toml /app/rnd/autogpt_server/
WORKDIR /app/rnd/autogpt_server
RUN poetry config virtualenvs.create false \
&& poetry install --no-interaction --no-ansi
# Generate Prisma client
COPY rnd/autogpt_server/schema.prisma ./
RUN poetry config virtualenvs.create false \
&& poetry run prisma generate
FROM python:3.11-slim-buster AS server_dependencies
WORKDIR /app
ENV POETRY_VERSION=1.8.3 \
POETRY_HOME="/opt/poetry" \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=false \
PATH="$POETRY_HOME/bin:$PATH"
# Upgrade pip and setuptools to fix security vulnerabilities
RUN pip3 install --upgrade pip setuptools
# Copy only necessary files from builder
COPY --from=builder /app /app
COPY --from=builder /usr/local/lib/python3.11 /usr/local/lib/python3.11
COPY --from=builder /usr/local/bin /usr/local/bin
# Copy Prisma binaries
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
ENV PATH="/app/.venv/bin:$PATH"
RUN mkdir -p /app/rnd/autogpt_libs
RUN mkdir -p /app/rnd/autogpt_server
COPY rnd/autogpt_libs /app/rnd/autogpt_libs
COPY rnd/autogpt_server/poetry.lock rnd/autogpt_server/pyproject.toml /app/rnd/autogpt_server/
WORKDIR /app/rnd/autogpt_server
COPY rnd/autogpt_server/pyproject.toml rnd/autogpt_server/poetry.lock ./
RUN poetry install --no-interaction --no-ansi
COPY rnd/autogpt_server/schema.prisma ./
RUN poetry run prisma generate
FROM server_dependencies AS server
COPY rnd/autogpt_server /app/rnd/autogpt_server
FROM server_base as server
ENV PORT=8000
ENV DATABASE_URL=""
ENV PORT=8000
CMD ["poetry", "run", "rest"]

View File

@@ -1,48 +0,0 @@
FROM python:3.11-slim-buster as server_base
# Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1
WORKDIR /app
RUN apt-get update \
&& apt-get install -y build-essential curl ffmpeg wget libcurl4-gnutls-dev libexpat1-dev gettext libz-dev libssl-dev \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/* \
&& wget https://github.com/git/git/archive/v2.28.0.tar.gz -O git.tar.gz \
&& tar -zxf git.tar.gz \
&& cd git-* \
&& make prefix=/usr all \
&& make prefix=/usr install
ENV POETRY_VERSION=1.8.3 \
POETRY_HOME="/opt/poetry" \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=false \
PATH="$POETRY_HOME/bin:$PATH"
RUN pip3 install poetry
COPY autogpt /app/autogpt
COPY forge /app/forge
COPY rnd/autogpt_libs /app/rnd/autogpt_libs
WORKDIR /app/rnd/autogpt_server
COPY rnd/autogpt_server/pyproject.toml rnd/autogpt_server/poetry.lock ./
RUN poetry install --no-interaction --no-ansi
COPY rnd/autogpt_server/schema.prisma ./
RUN poetry run prisma generate
COPY rnd/autogpt_server /app/rnd/autogpt_server
FROM server_base as server
FROM server_base as server
ENV PORT=8001
ENV DATABASE_URL=""
CMD ["poetry", "run", "ws"]

View File

@@ -101,7 +101,7 @@ docker compose down
If you run into issues with dangling orphans, try:
```sh
docker-compose down --volumes --remove-orphans && docker-compose up --force-recreate --renew-anon-volumes --remove-orphans
docker compose down --volumes --remove-orphans && docker-compose up --force-recreate --renew-anon-volumes --remove-orphans
```
## Testing
@@ -183,6 +183,13 @@ A communication layer (`service.py`) is created to decouple the communication li
Currently, the IPC is done using Pyro5 and abstracted in a way that allows a function decorated with `@expose` to be called from a different process.
By default the daemons run on the following ports:
Execution Manager Daemon: 8002
Execution Scheduler Daemon: 8003
Rest Server Daemon: 8004
## Adding a New Agent Block
To add a new agent block, you need to create a new class that inherits from `Block` and provides the following information:

View File

@@ -26,10 +26,8 @@ def main(**kwargs):
from autogpt_server.executor import ExecutionManager, ExecutionScheduler
from autogpt_server.server import AgentServer, WebsocketServer
from autogpt_server.util.service import PyroNameServer
run_processes(
PyroNameServer(),
ExecutionManager(),
ExecutionScheduler(),
WebsocketServer(),

View File

@@ -55,15 +55,15 @@ for cls in all_subclasses(Block):
raise ValueError(f"Block ID {block.name} error: {block.id} is already in use")
# Prevent duplicate field name in input_schema and output_schema
duplicate_field_names = set(block.input_schema.__fields__.keys()) & set(
block.output_schema.__fields__.keys()
duplicate_field_names = set(block.input_schema.model_fields.keys()) & set(
block.output_schema.model_fields.keys()
)
if duplicate_field_names:
raise ValueError(
f"{block.name} has duplicate field names in input_schema and output_schema: {duplicate_field_names}"
)
for field in block.input_schema.__fields__.values():
for field in block.input_schema.model_fields.values():
if field.annotation is bool and field.default not in (True, False):
raise ValueError(f"{block.name} has a boolean field with no default value")

View File

@@ -1,190 +0,0 @@
from __future__ import annotations
import asyncio
import logging
from pathlib import Path
from typing import TYPE_CHECKING, Iterator
from autogpt.agents.agent import Agent, AgentSettings
from autogpt.app.config import ConfigBuilder
from forge.agent.components import AgentComponent
from forge.agent.protocols import CommandProvider
from forge.command import command
from forge.command.command import Command
from forge.file_storage import FileStorageBackendName, get_storage
from forge.file_storage.base import FileStorage
from forge.llm.providers import MultiProvider
from forge.llm.providers.openai import OpenAICredentials, OpenAIProvider
from forge.llm.providers.schema import ModelProviderName
from forge.models.json_schema import JSONSchema
from pydantic import Field, SecretStr
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import BlockSecret, SchemaField, SecretField
if TYPE_CHECKING:
from autogpt.app.config import AppConfig
logger = logging.getLogger(__name__)
class BlockAgentSettings(AgentSettings):
enabled_components: list[str] = Field(default_factory=list)
class OutputComponent(CommandProvider):
def get_commands(self) -> Iterator[Command]:
yield self.output
@command(
parameters={
"output": JSONSchema(
type=JSONSchema.Type.STRING,
description="Output data to be returned.",
required=True,
),
},
)
def output(self, output: str) -> str:
"""Use this to output the result."""
return output
class BlockAgent(Agent):
def __init__(
self,
settings: BlockAgentSettings,
llm_provider: MultiProvider,
file_storage: FileStorage,
app_config: AppConfig,
):
super().__init__(settings, llm_provider, file_storage, app_config)
self.output = OutputComponent()
# Disable components
for attr_name in list(self.__dict__.keys()):
attr_value = getattr(self, attr_name)
if not isinstance(attr_value, AgentComponent):
continue
component_name = type(attr_value).__name__
if (
component_name != "SystemComponent"
and component_name not in settings.enabled_components
):
delattr(self, attr_name)
class AutoGPTAgentBlock(Block):
class Input(BlockSchema):
task: str = SchemaField(
description="Task description for the agent.",
placeholder="Calculate and use Output command",
)
input: str = SchemaField(
description="Input data for the task",
placeholder="8 + 5",
)
openai_api_key: BlockSecret = SecretField(
key="openai_api_key", description="OpenAI API key"
)
enabled_components: list[str] = Field(
default_factory=lambda: [OutputComponent.__name__],
description="List of [AgentComponents](https://docs.agpt.co/forge/components/built-in-components/) enabled for the agent.",
)
disabled_commands: list[str] = Field(
default_factory=list,
description="List of commands from enabled components to disable.",
)
fast_mode: bool = Field(
False,
description="If true uses fast llm, otherwise uses smart and slow llm.",
)
class Output(BlockSchema):
result: str
def __init__(self):
super().__init__(
id="d2e2ecd2-9ae6-422d-8dfe-ceca500ce6a6",
description="AutoGPT agent, it utilizes a Large Language Model and enabled components/tools to perform a task.",
categories={BlockCategory.AI},
input_schema=AutoGPTAgentBlock.Input,
output_schema=AutoGPTAgentBlock.Output,
test_input={
"task": "Make calculations and use output command to output the result",
"input": "5 + 3",
"openai_api_key": "openai_api_key",
"enabled_components": [OutputComponent.__name__],
"disabled_commands": ["finish"],
"fast_mode": True,
},
test_output=[
("result", "8"),
],
test_mock={
"get_provider": lambda _: MultiProvider(),
"get_result": lambda _: "8",
},
)
@staticmethod
def get_provider(openai_api_key: str) -> MultiProvider:
# LLM provider
settings = OpenAIProvider.default_settings.model_copy()
settings.credentials = OpenAICredentials(api_key=SecretStr(openai_api_key))
openai_provider = OpenAIProvider(settings=settings)
multi_provider = MultiProvider()
# HACK: Add OpenAI provider to the multi provider with api key
multi_provider._provider_instances[ModelProviderName.OPENAI] = openai_provider
return multi_provider
@staticmethod
def get_result(agent: BlockAgent) -> str:
error: Exception | None = None
for tries in range(3):
try:
proposal = asyncio.run(agent.propose_action())
result = asyncio.run(agent.execute(proposal))
return str(result)
except Exception as e:
error = e
raise error or Exception("Failed to get result")
def run(self, input_data: Input) -> BlockOutput:
# Set up configuration
config = ConfigBuilder.build_config_from_env()
# Disable commands
config.disabled_commands.extend(input_data.disabled_commands)
# Storage
local = config.file_storage_backend == FileStorageBackendName.LOCAL
restrict_to_root = not local or config.restrict_to_workspace
file_storage = get_storage(
config.file_storage_backend,
root_path=Path("data"),
restrict_to_root=restrict_to_root,
)
file_storage.initialize()
# State
state = BlockAgentSettings(
agent_id="TemporaryAgentID",
name="WrappedAgent",
description="Wrapped agent for the Agent Server.",
task=f"Your task: {input_data.task}\n" f"Input data: {input_data.input}",
enabled_components=input_data.enabled_components,
)
# Switch big brain mode
state.config.big_brain = not input_data.fast_mode
provider = self.get_provider(input_data.openai_api_key.get_secret_value())
agent = BlockAgent(state, provider, file_storage, config)
result = self.get_result(agent)
yield "result", result

View File

@@ -1,5 +1,7 @@
import re
from typing import Any, List
from jinja2 import BaseLoader, Environment
from pydantic import Field
from autogpt_server.data.block import (
@@ -12,6 +14,8 @@ from autogpt_server.data.block import (
from autogpt_server.data.model import SchemaField
from autogpt_server.util.mock import MockObject
jinja = Environment(loader=BaseLoader())
class StoreValueBlock(Block):
"""
@@ -136,7 +140,7 @@ class FindInDictionaryBlock(Block):
yield "missing", input_data.input
class InputBlock(Block):
class AgentInputBlock(Block):
"""
This block is used to provide input to the graph.
@@ -148,13 +152,20 @@ class InputBlock(Block):
class Input(BlockSchema):
value: Any = SchemaField(description="The value to be passed as input.")
name: str = SchemaField(description="The name of the input.")
description: str = SchemaField(description="The description of the input.")
description: str = SchemaField(
description="The description of the input.",
default="",
advanced=True,
)
placeholder_values: List[Any] = SchemaField(
description="The placeholder values to be passed as input."
description="The placeholder values to be passed as input.",
default=[],
advanced=True,
)
limit_to_placeholder_values: bool = SchemaField(
description="Whether to limit the selection to placeholder values.",
default=False,
advanced=True,
)
class Output(BlockSchema):
@@ -164,8 +175,8 @@ class InputBlock(Block):
super().__init__(
id="c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
description="This block is used to provide input to the graph.",
input_schema=InputBlock.Input,
output_schema=InputBlock.Output,
input_schema=AgentInputBlock.Input,
output_schema=AgentInputBlock.Output,
test_input=[
{
"value": "Hello, World!",
@@ -194,7 +205,7 @@ class InputBlock(Block):
yield "result", input_data.value
class OutputBlock(Block):
class AgentOutputBlock(Block):
"""
Records the output of the graph for users to see.
@@ -215,13 +226,17 @@ class OutputBlock(Block):
"""
class Input(BlockSchema):
recorded_value: Any = SchemaField(
description="The value to be recorded as output."
)
value: Any = SchemaField(description="The value to be recorded as output.")
name: str = SchemaField(description="The name of the output.")
description: str = SchemaField(description="The description of the output.")
fmt_string: str = SchemaField(
description="The format string to be used to format the recorded_value."
description: str = SchemaField(
description="The description of the output.",
default="",
advanced=True,
)
format: str = SchemaField(
description="The format string to be used to format the recorded_value.",
default="",
advanced=True,
)
class Output(BlockSchema):
@@ -238,31 +253,31 @@ class OutputBlock(Block):
"This block is key for capturing and presenting final results or "
"important intermediate outputs of the graph execution."
),
input_schema=OutputBlock.Input,
output_schema=OutputBlock.Output,
input_schema=AgentOutputBlock.Input,
output_schema=AgentOutputBlock.Output,
test_input=[
{
"recorded_value": "Hello, World!",
"value": "Hello, World!",
"name": "output_1",
"description": "This is a test output.",
"fmt_string": "{value}",
"format": "{{ output_1 }}!!",
},
{
"recorded_value": 42,
"value": "42",
"name": "output_2",
"description": "This is another test output.",
"fmt_string": "{value}",
"format": "{{ output_2 }}",
},
{
"recorded_value": MockObject(value="!!", key="key"),
"value": MockObject(value="!!", key="key"),
"name": "output_3",
"description": "This is a test output with a mock object.",
"fmt_string": "{value}",
"format": "{{ output_3 }}",
},
],
test_output=[
("output", "Hello, World!"),
("output", 42),
("output", "Hello, World!!!"),
("output", "42"),
("output", MockObject(value="!!", key="key")),
],
categories={BlockCategory.OUTPUT, BlockCategory.BASIC},
@@ -274,13 +289,15 @@ class OutputBlock(Block):
Attempts to format the recorded_value using the fmt_string if provided.
If formatting fails or no fmt_string is given, returns the original recorded_value.
"""
if input_data.fmt_string:
if input_data.format:
try:
yield "output", input_data.fmt_string.format(input_data.recorded_value)
except Exception:
yield "output", input_data.recorded_value
fmt = re.sub(r"(?<!{){[ a-zA-Z0-9_]+}", r"{\g<0>}", input_data.format)
template = jinja.from_string(fmt)
yield "output", template.render({input_data.name: input_data.value})
except Exception as e:
yield "output", f"Error: {e}, {input_data.value}"
else:
yield "output", input_data.recorded_value
yield "output", input_data.value
class AddToDictionaryBlock(Block):
@@ -422,7 +439,8 @@ class NoteBlock(Block):
class Input(BlockSchema):
text: str = SchemaField(description="The text to display in the sticky note.")
class Output(BlockSchema): ...
class Output(BlockSchema):
output: str = SchemaField(description="The text to display in the sticky note.")
def __init__(self):
super().__init__(
@@ -432,8 +450,11 @@ class NoteBlock(Block):
input_schema=NoteBlock.Input,
output_schema=NoteBlock.Output,
test_input={"text": "Hello, World!"},
test_output=None,
test_output=[
("output", "Hello, World!"),
],
ui_type=BlockUIType.NOTE,
)
def run(self, input_data: Input) -> BlockOutput: ...
def run(self, input_data: Input) -> BlockOutput:
yield "output", input_data.text

View File

@@ -14,7 +14,8 @@ class ReadCsvBlock(Block):
skip_columns: list[str] = []
class Output(BlockSchema):
data: dict[str, str]
row: dict[str, str]
all_data: list[dict[str, str]]
def __init__(self):
super().__init__(
@@ -27,8 +28,15 @@ class ReadCsvBlock(Block):
"contents": "a, b, c\n1,2,3\n4,5,6",
},
test_output=[
("data", {"a": "1", "b": "2", "c": "3"}),
("data", {"a": "4", "b": "5", "c": "6"}),
("row", {"a": "1", "b": "2", "c": "3"}),
("row", {"a": "4", "b": "5", "c": "6"}),
(
"all_data",
[
{"a": "1", "b": "2", "c": "3"},
{"a": "4", "b": "5", "c": "6"},
],
),
],
)
@@ -53,8 +61,7 @@ class ReadCsvBlock(Block):
for _ in range(input_data.skip_rows):
next(reader)
# join the data with the header
for row in reader:
def process_row(row):
data = {}
for i, value in enumerate(row):
if i not in input_data.skip_columns:
@@ -62,4 +69,12 @@ class ReadCsvBlock(Block):
data[header[i]] = value.strip() if input_data.strip else value
else:
data[str(i)] = value.strip() if input_data.strip else value
yield "data", data
return data
all_data = []
for row in reader:
processed_row = process_row(row)
all_data.append(processed_row)
yield "row", processed_row
yield "all_data", all_data

View File

@@ -1,6 +1,7 @@
import logging
from enum import Enum
from typing import List, NamedTuple
from json import JSONDecodeError
from typing import Any, List, NamedTuple
import anthropic
import ollama
@@ -24,6 +25,7 @@ LlmApiKeys = {
class ModelMetadata(NamedTuple):
provider: str
context_window: int
cost_factor: int
class LlmModel(str, Enum):
@@ -55,26 +57,29 @@ class LlmModel(str, Enum):
MODEL_METADATA = {
LlmModel.GPT4O_MINI: ModelMetadata("openai", 128000),
LlmModel.GPT4O: ModelMetadata("openai", 128000),
LlmModel.GPT4_TURBO: ModelMetadata("openai", 128000),
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385),
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata("anthropic", 200000),
LlmModel.CLAUDE_3_HAIKU: ModelMetadata("anthropic", 200000),
LlmModel.LLAMA3_8B: ModelMetadata("groq", 8192),
LlmModel.LLAMA3_70B: ModelMetadata("groq", 8192),
LlmModel.MIXTRAL_8X7B: ModelMetadata("groq", 32768),
LlmModel.GEMMA_7B: ModelMetadata("groq", 8192),
LlmModel.GEMMA2_9B: ModelMetadata("groq", 8192),
LlmModel.LLAMA3_1_405B: ModelMetadata(
"groq", 8192
), # Limited to 16k during preview
LlmModel.LLAMA3_1_70B: ModelMetadata("groq", 131072),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 131072),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192),
LlmModel.GPT4O_MINI: ModelMetadata("openai", 128000, cost_factor=10),
LlmModel.GPT4O: ModelMetadata("openai", 128000, cost_factor=12),
LlmModel.GPT4_TURBO: ModelMetadata("openai", 128000, cost_factor=11),
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, cost_factor=8),
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata("anthropic", 200000, cost_factor=14),
LlmModel.CLAUDE_3_HAIKU: ModelMetadata("anthropic", 200000, cost_factor=13),
LlmModel.LLAMA3_8B: ModelMetadata("groq", 8192, cost_factor=6),
LlmModel.LLAMA3_70B: ModelMetadata("groq", 8192, cost_factor=9),
LlmModel.MIXTRAL_8X7B: ModelMetadata("groq", 32768, cost_factor=7),
LlmModel.GEMMA_7B: ModelMetadata("groq", 8192, cost_factor=6),
LlmModel.GEMMA2_9B: ModelMetadata("groq", 8192, cost_factor=7),
LlmModel.LLAMA3_1_405B: ModelMetadata("groq", 8192, cost_factor=10),
# Limited to 16k during preview
LlmModel.LLAMA3_1_70B: ModelMetadata("groq", 131072, cost_factor=15),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 131072, cost_factor=13),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, cost_factor=7),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, cost_factor=11),
}
for model in LlmModel:
if model not in MODEL_METADATA:
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
class AIStructuredResponseGeneratorBlock(Block):
class Input(BlockSchema):
@@ -89,7 +94,7 @@ class AIStructuredResponseGeneratorBlock(Block):
)
class Output(BlockSchema):
response: dict[str, str]
response: dict[str, Any]
error: str
def __init__(self):
@@ -135,16 +140,33 @@ class AIStructuredResponseGeneratorBlock(Block):
)
return response.choices[0].message.content or ""
elif provider == "anthropic":
sysprompt = "".join([p["content"] for p in prompt if p["role"] == "system"])
usrprompt = [p for p in prompt if p["role"] == "user"]
system_messages = [p["content"] for p in prompt if p["role"] == "system"]
sysprompt = " ".join(system_messages)
messages = []
last_role = None
for p in prompt:
if p["role"] in ["user", "assistant"]:
if p["role"] != last_role:
messages.append({"role": p["role"], "content": p["content"]})
last_role = p["role"]
else:
# If the role is the same as the last one, combine the content
messages[-1]["content"] += "\n" + p["content"]
client = anthropic.Anthropic(api_key=api_key)
response = client.messages.create(
model=model.value,
max_tokens=4096,
system=sysprompt,
messages=usrprompt, # type: ignore
)
return response.content[0].text if response.content else ""
try:
response = client.messages.create(
model=model.value,
max_tokens=4096,
system=sysprompt,
messages=messages,
)
return response.content[0].text if response.content else ""
except anthropic.APIError as e:
error_message = f"Anthropic API error: {str(e)}"
logger.error(error_message)
raise ValueError(error_message)
elif provider == "groq":
client = Groq(api_key=api_key)
response_format = {"type": "json_object"} if json_format else None
@@ -195,14 +217,16 @@ class AIStructuredResponseGeneratorBlock(Block):
prompt.append({"role": "user", "content": input_data.prompt})
def parse_response(resp: str) -> tuple[dict[str, str], str | None]:
def parse_response(resp: str) -> tuple[dict[str, Any], str | None]:
try:
parsed = json.loads(resp)
if not isinstance(parsed, dict):
return {}, f"Expected a dictionary, but got {type(parsed)}"
miss_keys = set(input_data.expected_format.keys()) - set(parsed.keys())
if miss_keys:
return parsed, f"Missing keys: {miss_keys}"
return parsed, None
except Exception as e:
except JSONDecodeError as e:
return {}, f"JSON decode error: {e}"
logger.info(f"LLM request: {prompt}")
@@ -226,7 +250,16 @@ class AIStructuredResponseGeneratorBlock(Block):
if input_data.expected_format:
parsed_dict, parsed_error = parse_response(response_text)
if not parsed_error:
yield "response", {k: str(v) for k, v in parsed_dict.items()}
yield "response", {
k: (
json.loads(v)
if isinstance(v, str)
and v.startswith("[")
and v.endswith("]")
else (", ".join(v) if isinstance(v, list) else v)
)
for k, v in parsed_dict.items()
}
return
else:
yield "response", {"response": response_text}
@@ -301,7 +334,7 @@ class AITextGeneratorBlock(Block):
yield "error", str(e)
class TextSummarizerBlock(Block):
class AITextSummarizerBlock(Block):
class Input(BlockSchema):
text: str
model: LlmModel = LlmModel.GPT4_TURBO
@@ -319,8 +352,8 @@ class TextSummarizerBlock(Block):
id="c3d4e5f6-7g8h-9i0j-1k2l-m3n4o5p6q7r8",
description="Utilize a Large Language Model (LLM) to summarize a long text.",
categories={BlockCategory.AI, BlockCategory.TEXT},
input_schema=TextSummarizerBlock.Input,
output_schema=TextSummarizerBlock.Output,
input_schema=AITextSummarizerBlock.Input,
output_schema=AITextSummarizerBlock.Output,
test_input={"text": "Lorem ipsum..." * 100},
test_output=("summary", "Final summary of a long text"),
test_mock={
@@ -412,7 +445,7 @@ class TextSummarizerBlock(Block):
else:
# If combined summaries are still too long, recursively summarize
return self._run(
TextSummarizerBlock.Input(
AITextSummarizerBlock.Input(
text=combined_text,
api_key=input_data.api_key,
model=input_data.model,
@@ -438,7 +471,7 @@ class Message(BlockSchema):
class AIConversationBlock(Block):
class Input(BlockSchema):
messages: List[Message] = SchemaField(
description="List of messages in the conversation.", min_items=1
description="List of messages in the conversation.", min_length=1
)
model: LlmModel = SchemaField(
default=LlmModel.GPT4_TURBO,

View File

@@ -0,0 +1,264 @@
import random
from collections import defaultdict
from enum import Enum
from typing import Any, Dict, List, Optional, Union
from autogpt_server.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from autogpt_server.data.model import SchemaField
class SamplingMethod(str, Enum):
RANDOM = "random"
SYSTEMATIC = "systematic"
TOP = "top"
BOTTOM = "bottom"
STRATIFIED = "stratified"
WEIGHTED = "weighted"
RESERVOIR = "reservoir"
CLUSTER = "cluster"
class DataSamplingBlock(Block):
class Input(BlockSchema):
data: Union[Dict[str, Any], List[Union[dict, List[Any]]]] = SchemaField(
description="The dataset to sample from. Can be a single dictionary, a list of dictionaries, or a list of lists.",
placeholder="{'id': 1, 'value': 'a'} or [{'id': 1, 'value': 'a'}, {'id': 2, 'value': 'b'}, ...]",
)
sample_size: int = SchemaField(
description="The number of samples to take from the dataset.",
placeholder="10",
default=10,
)
sampling_method: SamplingMethod = SchemaField(
description="The method to use for sampling.",
default=SamplingMethod.RANDOM,
)
accumulate: bool = SchemaField(
description="Whether to accumulate data before sampling.",
default=False,
)
random_seed: Optional[int] = SchemaField(
description="Seed for random number generator (optional).",
default=None,
)
stratify_key: Optional[str] = SchemaField(
description="Key to use for stratified sampling (required for stratified sampling).",
default=None,
)
weight_key: Optional[str] = SchemaField(
description="Key to use for weighted sampling (required for weighted sampling).",
default=None,
)
cluster_key: Optional[str] = SchemaField(
description="Key to use for cluster sampling (required for cluster sampling).",
default=None,
)
class Output(BlockSchema):
sampled_data: List[Union[dict, List[Any]]] = SchemaField(
description="The sampled subset of the input data."
)
sample_indices: List[int] = SchemaField(
description="The indices of the sampled data in the original dataset."
)
def __init__(self):
super().__init__(
id="4a448883-71fa-49cf-91cf-70d793bd7d87",
description="This block samples data from a given dataset using various sampling methods.",
categories={BlockCategory.LOGIC},
input_schema=DataSamplingBlock.Input,
output_schema=DataSamplingBlock.Output,
test_input={
"data": [
{"id": i, "value": chr(97 + i), "group": i % 3} for i in range(10)
],
"sample_size": 3,
"sampling_method": SamplingMethod.STRATIFIED,
"accumulate": False,
"random_seed": 42,
"stratify_key": "group",
},
test_output=[
(
"sampled_data",
[
{"id": 0, "value": "a", "group": 0},
{"id": 1, "value": "b", "group": 1},
{"id": 8, "value": "i", "group": 2},
],
),
("sample_indices", [0, 1, 8]),
],
)
self.accumulated_data = []
def run(self, input_data: Input) -> BlockOutput:
if input_data.accumulate:
if isinstance(input_data.data, dict):
self.accumulated_data.append(input_data.data)
elif isinstance(input_data.data, list):
self.accumulated_data.extend(input_data.data)
else:
raise ValueError(f"Unsupported data type: {type(input_data.data)}")
# If we don't have enough data yet, return without sampling
if len(self.accumulated_data) < input_data.sample_size:
return
data_to_sample = self.accumulated_data
else:
# If not accumulating, use the input data directly
data_to_sample = (
input_data.data
if isinstance(input_data.data, list)
else [input_data.data]
)
if input_data.random_seed is not None:
random.seed(input_data.random_seed)
data_size = len(data_to_sample)
if input_data.sample_size > data_size:
raise ValueError(
f"Sample size ({input_data.sample_size}) cannot be larger than the dataset size ({data_size})."
)
indices = []
if input_data.sampling_method == SamplingMethod.RANDOM:
indices = random.sample(range(data_size), input_data.sample_size)
elif input_data.sampling_method == SamplingMethod.SYSTEMATIC:
step = data_size // input_data.sample_size
start = random.randint(0, step - 1)
indices = list(range(start, data_size, step))[: input_data.sample_size]
elif input_data.sampling_method == SamplingMethod.TOP:
indices = list(range(input_data.sample_size))
elif input_data.sampling_method == SamplingMethod.BOTTOM:
indices = list(range(data_size - input_data.sample_size, data_size))
elif input_data.sampling_method == SamplingMethod.STRATIFIED:
if not input_data.stratify_key:
raise ValueError(
"Stratify key must be provided for stratified sampling."
)
strata = defaultdict(list)
for i, item in enumerate(data_to_sample):
if isinstance(item, dict):
strata_value = item.get(input_data.stratify_key)
elif hasattr(item, input_data.stratify_key):
strata_value = getattr(item, input_data.stratify_key)
else:
raise ValueError(
f"Stratify key '{input_data.stratify_key}' not found in item {item}"
)
if strata_value is None:
raise ValueError(
f"Stratify value for key '{input_data.stratify_key}' is None"
)
strata[str(strata_value)].append(i)
# Calculate the number of samples to take from each stratum
stratum_sizes = {
k: max(1, int(len(v) / data_size * input_data.sample_size))
for k, v in strata.items()
}
# Adjust sizes to ensure we get exactly sample_size samples
while sum(stratum_sizes.values()) != input_data.sample_size:
if sum(stratum_sizes.values()) < input_data.sample_size:
stratum_sizes[
max(stratum_sizes, key=lambda k: stratum_sizes[k])
] += 1
else:
stratum_sizes[
max(stratum_sizes, key=lambda k: stratum_sizes[k])
] -= 1
for stratum, size in stratum_sizes.items():
indices.extend(random.sample(strata[stratum], size))
elif input_data.sampling_method == SamplingMethod.WEIGHTED:
if not input_data.weight_key:
raise ValueError("Weight key must be provided for weighted sampling.")
weights = []
for item in data_to_sample:
if isinstance(item, dict):
weight = item.get(input_data.weight_key)
elif hasattr(item, input_data.weight_key):
weight = getattr(item, input_data.weight_key)
else:
raise ValueError(
f"Weight key '{input_data.weight_key}' not found in item {item}"
)
if weight is None:
raise ValueError(
f"Weight value for key '{input_data.weight_key}' is None"
)
try:
weights.append(float(weight))
except ValueError:
raise ValueError(
f"Weight value '{weight}' cannot be converted to a number"
)
if not weights:
raise ValueError(
f"No valid weights found using key '{input_data.weight_key}'"
)
indices = random.choices(
range(data_size), weights=weights, k=input_data.sample_size
)
elif input_data.sampling_method == SamplingMethod.RESERVOIR:
indices = list(range(input_data.sample_size))
for i in range(input_data.sample_size, data_size):
j = random.randint(0, i)
if j < input_data.sample_size:
indices[j] = i
elif input_data.sampling_method == SamplingMethod.CLUSTER:
if not input_data.cluster_key:
raise ValueError("Cluster key must be provided for cluster sampling.")
clusters = defaultdict(list)
for i, item in enumerate(data_to_sample):
if isinstance(item, dict):
cluster_value = item.get(input_data.cluster_key)
elif hasattr(item, input_data.cluster_key):
cluster_value = getattr(item, input_data.cluster_key)
else:
raise TypeError(
f"Item {item} does not have the cluster key '{input_data.cluster_key}'"
)
clusters[str(cluster_value)].append(i)
# Randomly select clusters until we have enough samples
selected_clusters = []
while (
sum(len(clusters[c]) for c in selected_clusters)
< input_data.sample_size
):
available_clusters = [c for c in clusters if c not in selected_clusters]
if not available_clusters:
break
selected_clusters.append(random.choice(available_clusters))
for cluster in selected_clusters:
indices.extend(clusters[cluster])
# If we have more samples than needed, randomly remove some
if len(indices) > input_data.sample_size:
indices = random.sample(indices, input_data.sample_size)
else:
raise ValueError(f"Unknown sampling method: {input_data.sampling_method}")
sampled_data = [data_to_sample[i] for i in indices]
# Clear accumulated data after sampling if accumulation is enabled
if input_data.accumulate:
self.accumulated_data = []
yield "sampled_data", sampled_data
yield "sample_indices", indices

View File

@@ -0,0 +1,43 @@
import logging
import prisma.types
logger = logging.getLogger(__name__)
async def log_raw_analytics(
user_id: str,
type: str,
data: dict,
data_index: str,
):
details = await prisma.models.AnalyticsDetails.prisma().create(
data={
"userId": user_id,
"type": type,
"data": prisma.Json(data),
"dataIndex": data_index,
}
)
return details
async def log_raw_metric(
user_id: str,
metric_name: str,
metric_value: float,
data_string: str,
):
if metric_value < 0:
raise ValueError("metric_value must be non-negative")
result = await prisma.models.AnalyticsMetrics.prisma().create(
data={
"value": metric_value,
"analyticMetric": metric_name,
"userId": user_id,
"dataString": data_string,
},
)
return result

View File

@@ -0,0 +1,274 @@
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from enum import Enum
from typing import Any, Optional, Type
import prisma.errors
from prisma import Json
from prisma.enums import UserBlockCreditType
from prisma.models import UserBlockCredit
from pydantic import BaseModel
from autogpt_server.blocks.llm import (
MODEL_METADATA,
AIConversationBlock,
AIStructuredResponseGeneratorBlock,
AITextGeneratorBlock,
AITextSummarizerBlock,
LlmModel,
)
from autogpt_server.blocks.talking_head import CreateTalkingAvatarVideoBlock
from autogpt_server.data.block import Block, BlockInput
from autogpt_server.util.settings import Config
class BlockCostType(str, Enum):
RUN = "run" # cost X credits per run
BYTE = "byte" # cost X credits per byte
SECOND = "second" # cost X credits per second
class BlockCost(BaseModel):
cost_amount: int
cost_filter: BlockInput
cost_type: BlockCostType
def __init__(
self,
cost_amount: int,
cost_type: BlockCostType = BlockCostType.RUN,
cost_filter: Optional[BlockInput] = None,
**data: Any,
) -> None:
super().__init__(
cost_amount=cost_amount,
cost_filter=cost_filter or {},
cost_type=cost_type,
**data,
)
llm_cost = [
BlockCost(
cost_type=BlockCostType.RUN,
cost_filter={
"model": model,
"api_key": None, # Running LLM with user own API key is free.
},
cost_amount=metadata.cost_factor,
)
for model, metadata in MODEL_METADATA.items()
] + [
BlockCost(
# Default cost is running LlmModel.GPT4O.
cost_amount=MODEL_METADATA[LlmModel.GPT4O].cost_factor,
cost_filter={"api_key": None},
),
]
BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
AIConversationBlock: llm_cost,
AITextGeneratorBlock: llm_cost,
AIStructuredResponseGeneratorBlock: llm_cost,
AITextSummarizerBlock: llm_cost,
CreateTalkingAvatarVideoBlock: [
BlockCost(cost_amount=15, cost_filter={"api_key": None})
],
}
class UserCreditBase(ABC):
def __init__(self, num_user_credits_refill: int):
self.num_user_credits_refill = num_user_credits_refill
@abstractmethod
async def get_or_refill_credit(self, user_id: str) -> int:
"""
Get the current credit for the user and refill if no transaction has been made in the current cycle.
Returns:
int: The current credit for the user.
"""
pass
@abstractmethod
async def spend_credits(
self,
user_id: str,
user_credit: int,
block: Block,
input_data: BlockInput,
data_size: float,
run_time: float,
) -> int:
"""
Spend the credits for the user based on the block usage.
Args:
user_id (str): The user ID.
user_credit (int): The current credit for the user.
block (Block): The block that is being used.
input_data (BlockInput): The input data for the block.
data_size (float): The size of the data being processed.
run_time (float): The time taken to run the block.
Returns:
int: amount of credit spent
"""
pass
@abstractmethod
async def top_up_credits(self, user_id: str, amount: int):
"""
Top up the credits for the user.
Args:
user_id (str): The user ID.
amount (int): The amount to top up.
"""
pass
class UserCredit(UserCreditBase):
async def get_or_refill_credit(self, user_id: str) -> int:
cur_time = self.time_now()
cur_month = cur_time.replace(day=1, hour=0, minute=0, second=0, microsecond=0)
nxt_month = cur_month.replace(month=cur_month.month + 1)
user_credit = await UserBlockCredit.prisma().group_by(
by=["userId"],
sum={"amount": True},
where={
"userId": user_id,
"createdAt": {"gte": cur_month, "lt": nxt_month},
"isActive": True,
},
)
if user_credit:
credit_sum = user_credit[0].get("_sum") or {}
return credit_sum.get("amount", 0)
key = f"MONTHLY-CREDIT-TOP-UP-{cur_month}"
try:
await UserBlockCredit.prisma().create(
data={
"amount": self.num_user_credits_refill,
"type": UserBlockCreditType.TOP_UP,
"userId": user_id,
"transactionKey": key,
"createdAt": self.time_now(),
}
)
except prisma.errors.UniqueViolationError:
pass # Already refilled this month
return self.num_user_credits_refill
@staticmethod
def time_now():
return datetime.now(timezone.utc)
@staticmethod
def _block_usage_cost(
block: Block,
input_data: BlockInput,
data_size: float,
run_time: float,
) -> tuple[int, BlockInput]:
block_costs = BLOCK_COSTS.get(type(block))
if not block_costs:
return 0, {}
for block_cost in block_costs:
if all(
# None, [], {}, "", are considered the same value.
input_data.get(k) == b or (not input_data.get(k) and not b)
for k, b in block_cost.cost_filter.items()
):
if block_cost.cost_type == BlockCostType.RUN:
return block_cost.cost_amount, block_cost.cost_filter
if block_cost.cost_type == BlockCostType.SECOND:
return (
int(run_time * block_cost.cost_amount),
block_cost.cost_filter,
)
if block_cost.cost_type == BlockCostType.BYTE:
return (
int(data_size * block_cost.cost_amount),
block_cost.cost_filter,
)
return 0, {}
async def spend_credits(
self,
user_id: str,
user_credit: int,
block: Block,
input_data: BlockInput,
data_size: float,
run_time: float,
validate_balance: bool = True,
) -> int:
cost, matching_filter = self._block_usage_cost(
block=block, input_data=input_data, data_size=data_size, run_time=run_time
)
if cost <= 0:
return 0
if validate_balance and user_credit < cost:
raise ValueError(f"Insufficient credit: {user_credit} < {cost}")
await UserBlockCredit.prisma().create(
data={
"userId": user_id,
"amount": -cost,
"type": UserBlockCreditType.USAGE,
"blockId": block.id,
"metadata": Json(
{
"block": block.name,
"input": matching_filter,
}
),
"createdAt": self.time_now(),
}
)
return cost
async def top_up_credits(self, user_id: str, amount: int):
await UserBlockCredit.prisma().create(
data={
"userId": user_id,
"amount": amount,
"type": UserBlockCreditType.TOP_UP,
"createdAt": self.time_now(),
}
)
class DisabledUserCredit(UserCreditBase):
async def get_or_refill_credit(self, *args, **kwargs) -> int:
return 0
async def spend_credits(self, *args, **kwargs) -> int:
return 0
async def top_up_credits(self, *args, **kwargs):
pass
def get_user_credit_model() -> UserCreditBase:
config = Config()
if config.enable_credit.lower() == "true":
return UserCredit(config.num_user_credits_refill)
else:
return DisabledUserCredit(0)
def get_block_costs() -> dict[str, list[BlockCost]]:
return {block().id: costs for block, costs in BLOCK_COSTS.items()}

View File

@@ -31,7 +31,7 @@ async def connect(call_count=0):
except Exception as e:
if call_count <= 5:
logger.info(f"[Prisma-{conn_id}] Connection failed: {e}. Retrying now..")
await asyncio.sleep(call_count)
await asyncio.sleep(2**call_count)
await connect(call_count + 1)
else:
raise e

View File

@@ -1,9 +1,9 @@
from collections import defaultdict
from datetime import datetime, timezone
from enum import Enum
from multiprocessing import Manager
from typing import Any, Generic, TypeVar
from prisma.enums import AgentExecutionStatus
from prisma.models import (
AgentGraphExecution,
AgentNodeExecution,
@@ -21,12 +21,14 @@ from autogpt_server.util import json, mock
class GraphExecution(BaseModel):
user_id: str
graph_exec_id: str
start_node_execs: list["NodeExecution"]
graph_id: str
start_node_execs: list["NodeExecution"]
class NodeExecution(BaseModel):
user_id: str
graph_exec_id: str
graph_id: str
node_exec_id: str
@@ -34,13 +36,7 @@ class NodeExecution(BaseModel):
data: BlockInput
class ExecutionStatus(str, Enum):
INCOMPLETE = "INCOMPLETE"
QUEUED = "QUEUED"
RUNNING = "RUNNING"
COMPLETED = "COMPLETED"
FAILED = "FAILED"
ExecutionStatus = AgentExecutionStatus
T = TypeVar("T")
@@ -148,6 +144,7 @@ async def create_graph_execution(
data={
"agentGraphId": graph_id,
"agentGraphVersion": graph_version,
"executionStatus": ExecutionStatus.QUEUED,
"AgentNodeExecutions": {
"create": [ # type: ignore
{
@@ -259,10 +256,20 @@ async def upsert_execution_output(
)
async def update_graph_execution_start_time(graph_exec_id: str):
await AgentGraphExecution.prisma().update(
where={"id": graph_exec_id},
data={
"executionStatus": ExecutionStatus.RUNNING,
"startedAt": datetime.now(tz=timezone.utc),
},
)
async def update_graph_execution_stats(graph_exec_id: str, stats: dict[str, Any]):
await AgentGraphExecution.prisma().update(
where={"id": graph_exec_id},
data={"stats": json.dumps(stats)},
data={"executionStatus": ExecutionStatus.COMPLETED, "stats": json.dumps(stats)},
)

View File

@@ -9,7 +9,7 @@ from prisma.models import AgentGraph, AgentNode, AgentNodeLink
from pydantic import BaseModel, PrivateAttr
from pydantic_core import PydanticUndefinedType
from autogpt_server.blocks.basic import InputBlock, OutputBlock
from autogpt_server.blocks.basic import AgentInputBlock, AgentOutputBlock
from autogpt_server.data.block import BlockInput, get_block, get_blocks
from autogpt_server.data.db import BaseDbModel, transaction
from autogpt_server.data.user import DEFAULT_USER_ID
@@ -106,7 +106,9 @@ class Graph(GraphMeta):
def starting_nodes(self) -> list[Node]:
outbound_nodes = {link.sink_id for link in self.links}
input_nodes = {
v.id for v in self.nodes if isinstance(get_block(v.block_id), InputBlock)
v.id
for v in self.nodes
if isinstance(get_block(v.block_id), AgentInputBlock)
}
return [
node
@@ -116,7 +118,9 @@ class Graph(GraphMeta):
@property
def ending_nodes(self) -> list[Node]:
return [v for v in self.nodes if isinstance(get_block(v.block_id), OutputBlock)]
return [
v for v in self.nodes if isinstance(get_block(v.block_id), AgentOutputBlock)
]
@property
def subgraph_map(self) -> dict[str, str]:
@@ -179,7 +183,9 @@ class Graph(GraphMeta):
+ [sanitize(link.sink_name) for link in node.input_links]
)
for name in block.input_schema.get_required_fields():
if name not in provided_inputs and not isinstance(block, InputBlock):
if name not in provided_inputs and not isinstance(
block, AgentInputBlock
):
raise ValueError(
f"Node {block.name} #{node.id} required input missing: `{name}`"
)
@@ -193,7 +199,7 @@ class Graph(GraphMeta):
def is_input_output_block(nid: str) -> bool:
bid = node_map[nid].block_id
b = get_block(bid)
return isinstance(b, InputBlock) or isinstance(b, OutputBlock)
return isinstance(b, AgentInputBlock) or isinstance(b, AgentOutputBlock)
# subgraphs: all nodes in subgraph must be present in the graph.
for subgraph_id, node_ids in self.subgraphs.items():

View File

@@ -0,0 +1,15 @@
from autogpt_server.app import run_processes
from autogpt_server.executor import ExecutionManager
def main():
"""
Run all the processes required for the AutoGPT-server REST API.
"""
run_processes(
ExecutionManager(),
)
if __name__ == "__main__":
main()

View File

@@ -14,11 +14,13 @@ from typing import TYPE_CHECKING, Any, Coroutine, Generator, TypeVar
if TYPE_CHECKING:
from autogpt_server.server.rest_api import AgentServer
from autogpt_server.blocks.basic import InputBlock
from autogpt_server.blocks.basic import AgentInputBlock
from autogpt_server.data import db
from autogpt_server.data.block import Block, BlockData, BlockInput, get_block
from autogpt_server.data.credit import get_user_credit_model
from autogpt_server.data.execution import (
ExecutionQueue,
ExecutionResult,
ExecutionStatus,
GraphExecution,
NodeExecution,
@@ -45,21 +47,41 @@ from autogpt_server.util.type import convert
logger = logging.getLogger(__name__)
def get_log_metadata(
graph_eid: str,
graph_id: str,
node_eid: str,
node_id: str,
block_name: str,
) -> dict:
return {
"component": "ExecutionManager",
"graph_eid": graph_eid,
"graph_id": graph_id,
"node_eid": node_eid,
"node_id": node_id,
"block_name": block_name,
}
class LogMetadata:
def __init__(
self,
user_id: str,
graph_eid: str,
graph_id: str,
node_eid: str,
node_id: str,
block_name: str,
):
self.metadata = {
"component": "ExecutionManager",
"user_id": user_id,
"graph_eid": graph_eid,
"graph_id": graph_id,
"node_eid": node_eid,
"node_id": node_id,
"block_name": block_name,
}
self.prefix = f"[ExecutionManager|uid:{user_id}|gid:{graph_id}|nid:{node_id}]|geid:{graph_eid}|nid:{node_eid}|{block_name}]"
def info(self, msg: str, **extra):
logger.info(msg, extra={"json_fields": {**self.metadata, **extra}})
def warning(self, msg: str, **extra):
logger.warning(msg, extra={"json_fields": {**self.metadata, **extra}})
def error(self, msg: str, **extra):
logger.error(msg, extra={"json_fields": {**self.metadata, **extra}})
def debug(self, msg: str, **extra):
logger.debug(msg, extra={"json_fields": {**self.metadata, **extra}})
def exception(self, msg: str, **extra):
logger.exception(msg, extra={"json_fields": {**self.metadata, **extra}})
T = TypeVar("T")
@@ -85,6 +107,7 @@ def execute_node(
Returns:
The subsequent node to be enqueued, or None if there is no subsequent node.
"""
user_id = data.user_id
graph_exec_id = data.graph_exec_id
graph_id = data.graph_id
node_exec_id = data.node_exec_id
@@ -95,9 +118,10 @@ def execute_node(
def wait(f: Coroutine[Any, Any, T]) -> T:
return loop.run_until_complete(f)
def update_execution(status: ExecutionStatus):
def update_execution(status: ExecutionStatus) -> ExecutionResult:
exec_update = wait(update_execution_status(node_exec_id, status))
api_client.send_execution_update(exec_update.model_dump())
return exec_update
node = wait(get_node(node_id))
@@ -107,7 +131,8 @@ def execute_node(
return
# Sanity check: validate the execution input.
log_metadata = get_log_metadata(
log_metadata = LogMetadata(
user_id=user_id,
graph_eid=graph_exec_id,
graph_id=graph_id,
node_eid=node_exec_id,
@@ -116,29 +141,25 @@ def execute_node(
)
input_data, error = validate_exec(node, data.data, resolve_input=False)
if input_data is None:
logger.error(
"Skip execution, input validation error",
extra={"json_fields": {**log_metadata, "error": error}},
)
log_metadata.error(f"Skip execution, input validation error: {error}")
return
# Execute the node
input_data_str = json.dumps(input_data)
input_size = len(input_data_str)
logger.info(
"Executed node with input",
extra={"json_fields": {**log_metadata, "input": input_data_str}},
)
log_metadata.info("Executed node with input", input=input_data_str)
update_execution(ExecutionStatus.RUNNING)
user_credit = get_user_credit_model()
output_size = 0
try:
credit = wait(user_credit.get_or_refill_credit(user_id))
if credit < 0:
raise ValueError(f"Insufficient credit: {credit}")
for output_name, output_data in node_block.execute(input_data):
output_size += len(json.dumps(output_data))
logger.info(
"Node produced output",
extra={"json_fields": {**log_metadata, output_name: output_data}},
)
log_metadata.info("Node produced output", output_name=output_data)
wait(upsert_execution_output(node_exec_id, output_name, output_data))
for execution in _enqueue_next_nodes(
@@ -146,20 +167,25 @@ def execute_node(
loop=loop,
node=node,
output=(output_name, output_data),
user_id=user_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
log_metadata=log_metadata,
):
yield execution
update_execution(ExecutionStatus.COMPLETED)
r = update_execution(ExecutionStatus.COMPLETED)
s = input_size + output_size
t = (
(r.end_time - r.start_time).total_seconds()
if r.end_time and r.start_time
else 0
)
wait(user_credit.spend_credits(user_id, credit, node_block, input_data, s, t))
except Exception as e:
error_msg = f"{e.__class__.__name__}: {e}"
logger.exception(
"Node execution failed with error",
extra={"json_fields": {**log_metadata, error: error_msg}},
)
error_msg = str(e)
log_metadata.exception(f"Node execution failed with error {error_msg}")
wait(upsert_execution_output(node_exec_id, "error", error_msg))
update_execution(ExecutionStatus.FAILED)
@@ -185,9 +211,10 @@ def _enqueue_next_nodes(
loop: asyncio.AbstractEventLoop,
node: Node,
output: BlockData,
user_id: str,
graph_exec_id: str,
graph_id: str,
log_metadata: dict,
log_metadata: LogMetadata,
) -> list[NodeExecution]:
def wait(f: Coroutine[Any, Any, T]) -> T:
return loop.run_until_complete(f)
@@ -200,6 +227,7 @@ def _enqueue_next_nodes(
)
api_client.send_execution_update(exec_update.model_dump())
return NodeExecution(
user_id=user_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
node_exec_id=node_exec_id,
@@ -253,17 +281,11 @@ def _enqueue_next_nodes(
# Incomplete input data, skip queueing the execution.
if not next_node_input:
logger.warning(
f"Skipped queueing {suffix}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.warning(f"Skipped queueing {suffix}")
return enqueued_executions
# Input is complete, enqueue the execution.
logger.info(
f"Enqueued {suffix}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Enqueued {suffix}")
enqueued_executions.append(
add_enqueued_execution(next_node_exec_id, next_node_id, next_node_input)
)
@@ -289,11 +311,9 @@ def _enqueue_next_nodes(
idata, msg = validate_exec(next_node, idata)
suffix = f"{next_output_name}>{next_input_name}~{ineid}:{msg}"
if not idata:
logger.info(
f"{log_metadata} Enqueueing static-link skipped: {suffix}"
)
log_metadata.info(f"Enqueueing static-link skipped: {suffix}")
continue
logger.info(f"{log_metadata} Enqueueing static-link execution {suffix}")
log_metadata.info(f"Enqueueing static-link execution {suffix}")
enqueued_executions.append(
add_enqueued_execution(iexec.node_exec_id, next_node_id, idata)
)
@@ -364,7 +384,7 @@ def validate_exec(
def get_agent_server_client() -> "AgentServer":
from autogpt_server.server.rest_api import AgentServer
return get_service_client(AgentServer)
return get_service_client(AgentServer, Config().agent_server_port)
class Executor:
@@ -434,7 +454,8 @@ class Executor:
def on_node_execution(
cls, q: ExecutionQueue[NodeExecution], node_exec: NodeExecution
):
log_metadata = get_log_metadata(
log_metadata = LogMetadata(
user_id=node_exec.user_id,
graph_eid=node_exec.graph_exec_id,
graph_id=node_exec.graph_id,
node_eid=node_exec.node_exec_id,
@@ -459,28 +480,19 @@ class Executor:
cls,
q: ExecutionQueue[NodeExecution],
node_exec: NodeExecution,
log_metadata: dict,
log_metadata: LogMetadata,
stats: dict[str, Any] | None = None,
):
try:
logger.info(
f"Start node execution {node_exec.node_exec_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Start node execution {node_exec.node_exec_id}")
for execution in execute_node(
cls.loop, cls.agent_server_client, node_exec, stats
):
q.add(execution)
logger.info(
f"Finished node execution {node_exec.node_exec_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Finished node execution {node_exec.node_exec_id}")
except Exception as e:
logger.exception(
f"Failed node execution {node_exec.node_exec_id}: {e}",
extra={
**log_metadata,
},
log_metadata.exception(
f"Failed node execution {node_exec.node_exec_id}: {e}"
)
@classmethod
@@ -502,10 +514,12 @@ class Executor:
@classmethod
def on_graph_executor_stop(cls):
logger.info(
f"[on_graph_executor_stop {cls.pid}]Terminating node executor pool..."
)
prefix = f"[on_graph_executor_stop {cls.pid}]"
logger.info(f"{prefix}Disconnecting DB...")
cls.loop.run_until_complete(db.disconnect())
logger.info(f"{prefix} ⏳ Terminating node executor pool...")
cls.executor.terminate()
logger.info(f"{prefix} ✅ Finished cleanup")
@classmethod
def _init_node_executor_pool(cls):
@@ -517,7 +531,8 @@ class Executor:
@classmethod
@error_logged
def on_graph_execution(cls, graph_exec: GraphExecution, cancel: threading.Event):
log_metadata = get_log_metadata(
log_metadata = LogMetadata(
user_id=graph_exec.user_id,
graph_eid=graph_exec.graph_exec_id,
graph_id=graph_exec.graph_id,
node_id="*",
@@ -542,12 +557,12 @@ class Executor:
@classmethod
@time_measured
def _on_graph_execution(
cls, graph_exec: GraphExecution, cancel: threading.Event, log_metadata: dict
cls,
graph_exec: GraphExecution,
cancel: threading.Event,
log_metadata: LogMetadata,
) -> int:
logger.info(
f"Start graph execution {graph_exec.graph_exec_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Start graph execution {graph_exec.graph_exec_id}")
n_node_executions = 0
finished = False
@@ -557,10 +572,7 @@ class Executor:
if finished:
return
cls.executor.terminate()
logger.info(
f"Terminated graph execution {graph_exec.graph_exec_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Terminated graph execution {graph_exec.graph_exec_id}")
cls._init_node_executor_pool()
cancel_thread = threading.Thread(target=cancel_handler)
@@ -598,10 +610,9 @@ class Executor:
# Re-enqueueing the data back to the queue will disrupt the order.
execution.wait()
logger.debug(
log_metadata.debug(
f"Dispatching node execution {exec_data.node_exec_id} "
f"for node {exec_data.node_id}",
extra={**log_metadata},
)
running_executions[exec_data.node_id] = cls.executor.apply_async(
cls.on_node_execution,
@@ -611,10 +622,8 @@ class Executor:
# Avoid terminating graph execution when some nodes are still running.
while queue.empty() and running_executions:
logger.debug(
"Queue empty; running nodes: "
f"{list(running_executions.keys())}",
extra={"json_fields": {**log_metadata}},
log_metadata.debug(
f"Queue empty; running nodes: {list(running_executions.keys())}"
)
for node_id, execution in list(running_executions.items()):
if cancel.is_set():
@@ -623,20 +632,13 @@ class Executor:
if not queue.empty():
break # yield to parent loop to execute new queue items
logger.debug(
f"Waiting on execution of node {node_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.debug(f"Waiting on execution of node {node_id}")
execution.wait(3)
logger.info(
f"Finished graph execution {graph_exec.graph_exec_id}",
extra={"json_fields": {**log_metadata}},
)
log_metadata.info(f"Finished graph execution {graph_exec.graph_exec_id}")
except Exception as e:
logger.exception(
f"Failed graph execution {graph_exec.graph_exec_id}: {e}",
extra={"json_fields": {**log_metadata}},
log_metadata.exception(
f"Failed graph execution {graph_exec.graph_exec_id}: {e}"
)
finally:
if not cancel.is_set():
@@ -648,6 +650,7 @@ class Executor:
class ExecutionManager(AppService):
def __init__(self):
super().__init__(port=Config().execution_manager_port)
self.use_db = True
self.pool_size = Config().num_graph_workers
self.queue = ExecutionQueue[GraphExecution]()
@@ -698,7 +701,7 @@ class ExecutionManager(AppService):
nodes_input = []
for node in graph.starting_nodes:
input_data = {}
if isinstance(get_block(node.block_id), InputBlock):
if isinstance(get_block(node.block_id), AgentInputBlock):
name = node.input_default.get("name")
if name and name in data:
input_data = {"value": data[name]}
@@ -722,6 +725,7 @@ class ExecutionManager(AppService):
for node_exec in node_execs:
starting_node_execs.append(
NodeExecution(
user_id=user_id,
graph_exec_id=node_exec.graph_exec_id,
graph_id=node_exec.graph_id,
node_exec_id=node_exec.node_exec_id,
@@ -737,6 +741,7 @@ class ExecutionManager(AppService):
self.agent_server_client.send_execution_update(exec_update.model_dump())
graph_exec = GraphExecution(
user_id=user_id,
graph_id=graph_id,
graph_exec_id=graph_exec_id,
start_node_execs=starting_node_execs,

View File

@@ -9,6 +9,7 @@ from autogpt_server.data import schedule as model
from autogpt_server.data.block import BlockInput
from autogpt_server.executor.manager import ExecutionManager
from autogpt_server.util.service import AppService, expose, get_service_client
from autogpt_server.util.settings import Config
logger = logging.getLogger(__name__)
@@ -19,13 +20,15 @@ def log(msg, **kwargs):
class ExecutionScheduler(AppService):
def __init__(self, refresh_interval=10):
super().__init__(port=Config().execution_scheduler_port)
self.use_db = True
self.last_check = datetime.min
self.refresh_interval = refresh_interval
self.use_redis = False
@property
def execution_manager_client(self) -> ExecutionManager:
return get_service_client(ExecutionManager)
return get_service_client(ExecutionManager, Config().execution_manager_port)
def run_service(self):
scheduler = BackgroundScheduler()

View File

@@ -0,0 +1,15 @@
from .base import BaseOAuthHandler
from .github import GitHubOAuthHandler
from .google import GoogleOAuthHandler
from .notion import NotionOAuthHandler
HANDLERS_BY_NAME: dict[str, type[BaseOAuthHandler]] = {
handler.PROVIDER_NAME: handler
for handler in [
GitHubOAuthHandler,
GoogleOAuthHandler,
NotionOAuthHandler,
]
}
__all__ = ["HANDLERS_BY_NAME"]

View File

@@ -5,7 +5,7 @@ from urllib.parse import urlencode
import requests
from autogpt_libs.supabase_integration_credentials_store import OAuth2Credentials
from autogpt_server.integrations.oauth import BaseOAuthHandler
from .base import BaseOAuthHandler
class GitHubOAuthHandler(BaseOAuthHandler):
@@ -23,6 +23,7 @@ class GitHubOAuthHandler(BaseOAuthHandler):
""" # noqa
PROVIDER_NAME = "github"
EMAIL_ENDPOINT = "https://api.github.com/user/emails"
def __init__(self, client_id: str, client_secret: str, redirect_uri: str):
self.client_id = client_id
@@ -69,10 +70,13 @@ class GitHubOAuthHandler(BaseOAuthHandler):
response.raise_for_status()
token_data: dict = response.json()
username = self._request_username(token_data["access_token"])
now = int(time.time())
new_credentials = OAuth2Credentials(
provider=self.PROVIDER_NAME,
title=current_credentials.title if current_credentials else "GitHub",
title=current_credentials.title if current_credentials else None,
username=username,
access_token=token_data["access_token"],
# Token refresh responses have an empty `scope` property (see docs),
# so we have to get the scope from the existing credentials object.
@@ -97,3 +101,19 @@ class GitHubOAuthHandler(BaseOAuthHandler):
if current_credentials:
new_credentials.id = current_credentials.id
return new_credentials
def _request_username(self, access_token: str) -> str | None:
url = "https://api.github.com/user"
headers = {
"Accept": "application/vnd.github+json",
"Authorization": f"Bearer {access_token}",
"X-GitHub-Api-Version": "2022-11-28",
}
response = requests.get(url, headers=headers)
if not response.ok:
return None
# Get the login (username)
return response.json().get("login")

View File

@@ -1,10 +1,13 @@
from autogpt_libs.supabase_integration_credentials_store import OAuth2Credentials
from google.auth.transport.requests import Request
from google.auth.external_account_authorized_user import (
Credentials as ExternalAccountCredentials,
)
from google.auth.transport.requests import AuthorizedSession, Request
from google.oauth2.credentials import Credentials
from google_auth_oauthlib.flow import Flow
from pydantic import SecretStr
from .oauth import BaseOAuthHandler
from .base import BaseOAuthHandler
class GoogleOAuthHandler(BaseOAuthHandler):
@@ -13,6 +16,7 @@ class GoogleOAuthHandler(BaseOAuthHandler):
""" # noqa
PROVIDER_NAME = "google"
EMAIL_ENDPOINT = "https://www.googleapis.com/oauth2/v2/userinfo"
def __init__(self, client_id: str, client_secret: str, redirect_uri: str):
self.client_id = client_id
@@ -37,6 +41,8 @@ class GoogleOAuthHandler(BaseOAuthHandler):
flow.fetch_token(code=code)
google_creds = flow.credentials
username = self._request_email(google_creds)
# Google's OAuth library is poorly typed so we need some of these:
assert google_creds.token
assert google_creds.refresh_token
@@ -44,7 +50,8 @@ class GoogleOAuthHandler(BaseOAuthHandler):
assert google_creds.scopes
return OAuth2Credentials(
provider=self.PROVIDER_NAME,
title="Google",
title=None,
username=username,
access_token=SecretStr(google_creds.token),
refresh_token=SecretStr(google_creds.refresh_token),
access_token_expires_at=int(google_creds.expiry.timestamp()),
@@ -52,6 +59,15 @@ class GoogleOAuthHandler(BaseOAuthHandler):
scopes=google_creds.scopes,
)
def _request_email(
self, creds: Credentials | ExternalAccountCredentials
) -> str | None:
session = AuthorizedSession(creds)
response = session.get(self.EMAIL_ENDPOINT)
if not response.ok:
return None
return response.json()["email"]
def _refresh_tokens(self, credentials: OAuth2Credentials) -> OAuth2Credentials:
# Google credentials should ALWAYS have a refresh token
assert credentials.refresh_token
@@ -72,9 +88,10 @@ class GoogleOAuthHandler(BaseOAuthHandler):
assert google_creds.expiry
return OAuth2Credentials(
id=credentials.id,
provider=self.PROVIDER_NAME,
id=credentials.id,
title=credentials.title,
username=credentials.username,
access_token=SecretStr(google_creds.token),
refresh_token=SecretStr(google_creds.refresh_token),
access_token_expires_at=int(google_creds.expiry.timestamp()),

View File

@@ -4,7 +4,7 @@ from urllib.parse import urlencode
import requests
from autogpt_libs.supabase_integration_credentials_store import OAuth2Credentials
from autogpt_server.integrations.oauth import BaseOAuthHandler
from .base import BaseOAuthHandler
class NotionOAuthHandler(BaseOAuthHandler):
@@ -49,10 +49,18 @@ class NotionOAuthHandler(BaseOAuthHandler):
response = requests.post(self.token_url, json=request_body, headers=headers)
response.raise_for_status()
token_data = response.json()
# Email is only available for non-bot users
email = (
token_data["owner"]["person"]["email"]
if "person" in token_data["owner"]
and "email" in token_data["owner"]["person"]
else None
)
return OAuth2Credentials(
provider=self.PROVIDER_NAME,
title=token_data.get("workspace_name", "Notion"),
title=token_data.get("workspace_name"),
username=email,
access_token=token_data["access_token"],
refresh_token=None,
access_token_expires_at=None, # Notion tokens don't expire

View File

@@ -1,7 +1,6 @@
from autogpt_server.app import run_processes
from autogpt_server.executor import ExecutionManager, ExecutionScheduler
from autogpt_server.executor import ExecutionScheduler
from autogpt_server.server import AgentServer
from autogpt_server.util.service import PyroNameServer
def main():
@@ -9,8 +8,6 @@ def main():
Run all the processes required for the AutoGPT-server REST API.
"""
run_processes(
PyroNameServer(),
ExecutionManager(),
ExecutionScheduler(),
AgentServer(),
)

View File

@@ -15,14 +15,16 @@ from autogpt_server.data import execution as execution_db
from autogpt_server.data import graph as graph_db
from autogpt_server.data import user as user_db
from autogpt_server.data.block import BlockInput, CompletedBlockOutput
from autogpt_server.data.credit import get_block_costs, get_user_credit_model
from autogpt_server.data.queue import AsyncEventQueue, AsyncRedisEventQueue
from autogpt_server.data.user import get_or_create_user
from autogpt_server.executor import ExecutionManager, ExecutionScheduler
from autogpt_server.server.model import CreateGraph, SetGraphActiveVersion
from autogpt_server.util.auth import get_user_id
from autogpt_server.util.lock import KeyedMutex
from autogpt_server.util.service import AppService, expose, get_service_client
from autogpt_server.util.settings import Settings
from autogpt_server.util.settings import Config, Settings
from .utils import get_user_id
settings = Settings()
@@ -31,8 +33,10 @@ class AgentServer(AppService):
mutex = KeyedMutex()
use_redis = True
_test_dependency_overrides = {}
_user_credit_model = get_user_credit_model()
def __init__(self, event_queue: AsyncEventQueue | None = None):
super().__init__(port=Config().agent_server_port)
self.event_queue = event_queue or AsyncRedisEventQueue()
@asynccontextmanager
@@ -70,137 +74,184 @@ class AgentServer(AppService):
)
# Define the API routes
router = APIRouter(prefix="/api")
router.dependencies.append(Depends(auth_middleware))
api_router = APIRouter(prefix="/api")
api_router.dependencies.append(Depends(auth_middleware))
router.add_api_route(
# Import & Attach sub-routers
import autogpt_server.server.routers.analytics
import autogpt_server.server.routers.integrations
api_router.include_router(
autogpt_server.server.routers.integrations.router,
prefix="/integrations",
tags=["integrations"],
dependencies=[Depends(auth_middleware)],
)
api_router.include_router(
autogpt_server.server.routers.analytics.router,
prefix="/analytics",
tags=["analytics"],
dependencies=[Depends(auth_middleware)],
)
api_router.add_api_route(
path="/auth/user",
endpoint=self.get_or_create_user_route,
methods=["POST"],
tags=["auth"],
)
router.add_api_route(
api_router.add_api_route(
path="/blocks",
endpoint=self.get_graph_blocks,
methods=["GET"],
tags=["blocks"],
)
router.add_api_route(
api_router.add_api_route(
path="/blocks/{block_id}/execute",
endpoint=self.execute_graph_block,
methods=["POST"],
tags=["blocks"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs",
endpoint=self.get_graphs,
methods=["GET"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/templates",
endpoint=self.get_templates,
methods=["GET"],
tags=["templates", "graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs",
endpoint=self.create_new_graph,
methods=["POST"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/templates",
endpoint=self.create_new_template,
methods=["POST"],
tags=["templates", "graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}",
endpoint=self.get_graph,
methods=["GET"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/templates/{graph_id}",
endpoint=self.get_template,
methods=["GET"],
tags=["templates", "graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}",
endpoint=self.update_graph,
methods=["PUT"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/templates/{graph_id}",
endpoint=self.update_graph,
methods=["PUT"],
tags=["templates", "graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}/versions",
endpoint=self.get_graph_all_versions,
methods=["GET"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/templates/{graph_id}/versions",
endpoint=self.get_graph_all_versions,
methods=["GET"],
tags=["templates", "graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}/versions/{version}",
endpoint=self.get_graph,
methods=["GET"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}/versions/active",
endpoint=self.set_graph_active_version,
methods=["PUT"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}/input_schema",
endpoint=self.get_graph_input_schema,
methods=["GET"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}/execute",
endpoint=self.execute_graph,
methods=["POST"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}/executions",
endpoint=self.list_graph_runs,
methods=["GET"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}/executions/{graph_exec_id}",
endpoint=self.get_graph_run_node_execution_results,
methods=["GET"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}/executions/{graph_exec_id}/stop",
endpoint=self.stop_graph_run,
methods=["POST"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}/schedules",
endpoint=self.create_schedule,
methods=["POST"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/{graph_id}/schedules",
endpoint=self.get_execution_schedules,
methods=["GET"],
tags=["graphs"],
)
router.add_api_route(
api_router.add_api_route(
path="/graphs/schedules/{schedule_id}",
endpoint=self.update_schedule,
methods=["PUT"],
tags=["graphs"],
)
api_router.add_api_route(
path="/credits",
endpoint=self.get_user_credits,
methods=["GET"],
)
router.add_api_route(
api_router.add_api_route(
path="/settings",
endpoint=self.update_configuration,
methods=["POST"],
tags=["settings"],
)
app.add_exception_handler(500, self.handle_internal_http_error)
app.include_router(router)
app.include_router(api_router)
uvicorn.run(app, host="0.0.0.0", port=8000, log_config=None)
uvicorn.run(app, host="0.0.0.0", port=Config().agent_api_port, log_config=None)
def set_test_dependency_overrides(self, overrides: dict):
self._test_dependency_overrides = overrides
@@ -233,11 +284,11 @@ class AgentServer(AppService):
@property
def execution_manager_client(self) -> ExecutionManager:
return get_service_client(ExecutionManager)
return get_service_client(ExecutionManager, Config().execution_manager_port)
@property
def execution_scheduler_client(self) -> ExecutionScheduler:
return get_service_client(ExecutionScheduler)
return get_service_client(ExecutionScheduler, Config().execution_scheduler_port)
@classmethod
def handle_internal_http_error(cls, request: Request, exc: Exception):
@@ -256,7 +307,9 @@ class AgentServer(AppService):
@classmethod
def get_graph_blocks(cls) -> list[dict[Any, Any]]:
return [v.to_dict() for v in block.get_blocks().values()]
blocks = block.get_blocks()
costs = get_block_costs()
return [{**b.to_dict(), "costs": costs.get(b.id, [])} for b in blocks.values()]
@classmethod
def execute_graph_block(
@@ -474,6 +527,25 @@ class AgentServer(AppService):
return await execution_db.list_executions(graph_id, graph_version)
@classmethod
async def get_graph_run_status(
cls,
graph_id: str,
graph_exec_id: str,
user_id: Annotated[str, Depends(get_user_id)],
) -> execution_db.ExecutionStatus:
graph = await graph_db.get_graph(graph_id, user_id=user_id)
if not graph:
raise HTTPException(status_code=404, detail=f"Graph #{graph_id} not found.")
execution = await execution_db.get_graph_execution(graph_exec_id, user_id)
if not execution:
raise HTTPException(
status_code=404, detail=f"Execution #{graph_exec_id} not found."
)
return execution.executionStatus
@classmethod
async def get_graph_run_node_execution_results(
cls,
@@ -515,6 +587,11 @@ class AgentServer(AppService):
execution_scheduler.update_schedule(schedule_id, is_enabled, user_id=user_id)
return {"id": schedule_id}
async def get_user_credits(
self, user_id: Annotated[str, Depends(get_user_id)]
) -> dict[str, int]:
return {"credits": await self._user_credit_model.get_or_refill_credit(user_id)}
def get_execution_schedules(
self, graph_id: str, user_id: Annotated[str, Depends(get_user_id)]
) -> dict[str, str]:

View File

@@ -0,0 +1,49 @@
"""Analytics API"""
from typing import Annotated
import fastapi
import autogpt_server.data.analytics
from autogpt_server.server.utils import get_user_id
router = fastapi.APIRouter()
@router.post(path="/log_raw_metric")
async def log_raw_metric(
user_id: Annotated[str, fastapi.Depends(get_user_id)],
metric_name: Annotated[str, fastapi.Body(..., embed=True)],
metric_value: Annotated[float, fastapi.Body(..., embed=True)],
data_string: Annotated[str, fastapi.Body(..., embed=True)],
):
result = await autogpt_server.data.analytics.log_raw_metric(
user_id=user_id,
metric_name=metric_name,
metric_value=metric_value,
data_string=data_string,
)
return result.id
@router.post("/log_raw_analytics")
async def log_raw_analytics(
user_id: Annotated[str, fastapi.Depends(get_user_id)],
type: Annotated[str, fastapi.Body(..., embed=True)],
data: Annotated[
dict,
fastapi.Body(..., embed=True, description="The data to log"),
],
data_index: Annotated[
str,
fastapi.Body(
...,
embed=True,
description="Indexable field for any count based analytical measures like page order clicking, tutorial step completion, etc.",
),
],
):
result = await autogpt_server.data.analytics.log_raw_analytics(
user_id, type, data, data_index
)
return result.id

View File

@@ -0,0 +1,152 @@
import logging
from typing import Annotated, Literal
from autogpt_libs.supabase_integration_credentials_store import (
SupabaseIntegrationCredentialsStore,
)
from autogpt_libs.supabase_integration_credentials_store.types import (
Credentials,
OAuth2Credentials,
)
from fastapi import APIRouter, Body, Depends, HTTPException, Path, Query, Request
from pydantic import BaseModel
from supabase import Client
from autogpt_server.integrations.oauth import HANDLERS_BY_NAME, BaseOAuthHandler
from autogpt_server.util.settings import Settings
from ..utils import get_supabase, get_user_id
logger = logging.getLogger(__name__)
settings = Settings()
router = APIRouter()
def get_store(supabase: Client = Depends(get_supabase)):
return SupabaseIntegrationCredentialsStore(supabase)
class LoginResponse(BaseModel):
login_url: str
@router.get("/{provider}/login")
async def login(
provider: Annotated[str, Path(title="The provider to initiate an OAuth flow for")],
user_id: Annotated[str, Depends(get_user_id)],
request: Request,
store: Annotated[SupabaseIntegrationCredentialsStore, Depends(get_store)],
scopes: Annotated[
str, Query(title="Comma-separated list of authorization scopes")
] = "",
) -> LoginResponse:
handler = _get_provider_oauth_handler(request, provider)
# Generate and store a secure random state token
state = await store.store_state_token(user_id, provider)
requested_scopes = scopes.split(",") if scopes else []
login_url = handler.get_login_url(requested_scopes, state)
return LoginResponse(login_url=login_url)
class CredentialsMetaResponse(BaseModel):
id: str
type: Literal["oauth2", "api_key"]
title: str | None
scopes: list[str] | None
username: str | None
@router.post("/{provider}/callback")
async def callback(
provider: Annotated[str, Path(title="The target provider for this OAuth exchange")],
code: Annotated[str, Body(title="Authorization code acquired by user login")],
state_token: Annotated[str, Body(title="Anti-CSRF nonce")],
store: Annotated[SupabaseIntegrationCredentialsStore, Depends(get_store)],
user_id: Annotated[str, Depends(get_user_id)],
request: Request,
) -> CredentialsMetaResponse:
handler = _get_provider_oauth_handler(request, provider)
# Verify the state token
if not await store.verify_state_token(user_id, state_token, provider):
raise HTTPException(status_code=400, detail="Invalid or expired state token")
try:
credentials = handler.exchange_code_for_tokens(code)
except Exception as e:
logger.warning(f"Code->Token exchange failed for provider {provider}: {e}")
raise HTTPException(status_code=400, detail=str(e))
# TODO: Allow specifying `title` to set on `credentials`
store.add_creds(user_id, credentials)
return CredentialsMetaResponse(
id=credentials.id,
type=credentials.type,
title=credentials.title,
scopes=credentials.scopes,
username=credentials.username,
)
@router.get("/{provider}/credentials")
async def list_credentials(
provider: Annotated[str, Path(title="The provider to list credentials for")],
user_id: Annotated[str, Depends(get_user_id)],
store: Annotated[SupabaseIntegrationCredentialsStore, Depends(get_store)],
) -> list[CredentialsMetaResponse]:
credentials = store.get_creds_by_provider(user_id, provider)
return [
CredentialsMetaResponse(
id=cred.id,
type=cred.type,
title=cred.title,
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
)
for cred in credentials
]
@router.get("/{provider}/credentials/{cred_id}")
async def get_credential(
provider: Annotated[str, Path(title="The provider to retrieve credentials for")],
cred_id: Annotated[str, Path(title="The ID of the credentials to retrieve")],
user_id: Annotated[str, Depends(get_user_id)],
store: Annotated[SupabaseIntegrationCredentialsStore, Depends(get_store)],
) -> Credentials:
credential = store.get_creds_by_id(user_id, cred_id)
if not credential:
raise HTTPException(status_code=404, detail="Credentials not found")
if credential.provider != provider:
raise HTTPException(
status_code=404, detail="Credentials do not match the specified provider"
)
return credential
# -------- UTILITIES --------- #
def _get_provider_oauth_handler(req: Request, provider_name: str) -> BaseOAuthHandler:
if provider_name not in HANDLERS_BY_NAME:
raise HTTPException(
status_code=404, detail=f"Unknown provider '{provider_name}'"
)
client_id = getattr(settings.secrets, f"{provider_name}_client_id")
client_secret = getattr(settings.secrets, f"{provider_name}_client_secret")
if not (client_id and client_secret):
raise HTTPException(
status_code=501,
detail=f"Integration with provider '{provider_name}' is not configured",
)
handler_class = HANDLERS_BY_NAME[provider_name]
return handler_class(
client_id=client_id,
client_secret=client_secret,
redirect_uri=str(req.url_for("callback", provider=provider_name)),
)

View File

@@ -1,7 +1,11 @@
from autogpt_libs.auth import auth_middleware
from autogpt_libs.auth.middleware import auth_middleware
from fastapi import Depends, HTTPException
from supabase import Client, create_client
from autogpt_server.data.user import DEFAULT_USER_ID
from autogpt_server.util.settings import Settings
settings = Settings()
def get_user_id(payload: dict = Depends(auth_middleware)) -> str:
@@ -13,3 +17,7 @@ def get_user_id(payload: dict = Depends(auth_middleware)) -> str:
if not user_id:
raise HTTPException(status_code=401, detail="User ID not found in token")
return user_id
def get_supabase() -> Client:
return create_client(settings.secrets.supabase_url, settings.secrets.supabase_key)

View File

@@ -11,7 +11,7 @@ from autogpt_server.data.user import DEFAULT_USER_ID
from autogpt_server.server.conn_manager import ConnectionManager
from autogpt_server.server.model import ExecutionSubscription, Methods, WsMessage
from autogpt_server.util.service import AppProcess
from autogpt_server.util.settings import Settings
from autogpt_server.util.settings import Config, Settings
logger = logging.getLogger(__name__)
settings = Settings()
@@ -174,4 +174,4 @@ async def websocket_router(
class WebsocketServer(AppProcess):
def run(self):
uvicorn.run(app, host="0.0.0.0", port=8001)
uvicorn.run(app, host="0.0.0.0", port=Config().websocket_server_port)

View File

@@ -252,7 +252,6 @@ Here are a couple of sample of the Block class implementation:
async def block_autogen_agent():
async with SpinTestServer() as server:
test_manager = server.exec_manager
test_user = await create_test_user()
test_graph = await create_graph(create_test_graph(), user_id=test_user.id)
input_data = {"input": "Write me a block that writes a string into a file."}
@@ -261,10 +260,8 @@ async def block_autogen_agent():
)
print(response)
result = await wait_execution(
exec_manager=test_manager,
graph_id=test_graph.id,
graph_exec_id=response["id"],
num_execs=10,
timeout=1200,
user_id=test_user.id,
)

View File

@@ -153,7 +153,6 @@ async def create_test_user() -> User:
async def reddit_marketing_agent():
async with SpinTestServer() as server:
exec_man = server.exec_manager
test_user = await create_test_user()
test_graph = await create_graph(create_test_graph(), user_id=test_user.id)
input_data = {"subreddit": "AutoGPT"}
@@ -161,9 +160,7 @@ async def reddit_marketing_agent():
test_graph.id, input_data, test_user.id
)
print(response)
result = await wait_execution(
exec_man, test_user.id, test_graph.id, response["id"], 13, 120
)
result = await wait_execution(test_user.id, test_graph.id, response["id"], 120)
print(result)

View File

@@ -1,6 +1,6 @@
from prisma.models import User
from autogpt_server.blocks.basic import InputBlock, PrintToConsoleBlock
from autogpt_server.blocks.basic import AgentInputBlock, PrintToConsoleBlock
from autogpt_server.blocks.text import FillTextTemplateBlock
from autogpt_server.data import graph
from autogpt_server.data.graph import create_graph
@@ -28,22 +28,12 @@ def create_test_graph() -> graph.Graph:
"""
nodes = [
graph.Node(
block_id=InputBlock().id,
input_default={
"name": "input_1",
"description": "First input value",
"placeholder_values": [],
"limit_to_placeholder_values": False,
},
block_id=AgentInputBlock().id,
input_default={"name": "input_1"},
),
graph.Node(
block_id=InputBlock().id,
input_default={
"name": "input_2",
"description": "Second input value",
"placeholder_values": [],
"limit_to_placeholder_values": False,
},
block_id=AgentInputBlock().id,
input_default={"name": "input_2"},
),
graph.Node(
block_id=FillTextTemplateBlock().id,
@@ -85,7 +75,6 @@ def create_test_graph() -> graph.Graph:
async def sample_agent():
async with SpinTestServer() as server:
exec_man = server.exec_manager
test_user = await create_test_user()
test_graph = await create_graph(create_test_graph(), test_user.id)
input_data = {"input_1": "Hello", "input_2": "World"}
@@ -93,9 +82,7 @@ async def sample_agent():
test_graph.id, input_data, test_user.id
)
print(response)
result = await wait_execution(
exec_man, test_user.id, test_graph.id, response["id"], 4, 10
)
result = await wait_execution(test_user.id, test_graph.id, response["id"], 10)
print(result)

View File

@@ -2,7 +2,7 @@ import functools
import logging
import os
import time
from typing import Callable, Tuple, TypeVar
from typing import Callable, ParamSpec, Tuple, TypeVar
from pydantic import BaseModel
@@ -24,18 +24,19 @@ def _end_measurement(
return end_wall_time - start_wall_time, end_cpu_time - start_cpu_time
P = ParamSpec("P")
T = TypeVar("T")
logger = logging.getLogger(__name__)
def time_measured(func: Callable[..., T]) -> Callable[..., Tuple[TimingInfo, T]]:
def time_measured(func: Callable[P, T]) -> Callable[P, Tuple[TimingInfo, T]]:
"""
Decorator to measure the time taken by a function to execute.
"""
@functools.wraps(func)
def wrapper(*args, **kwargs) -> Tuple[TimingInfo, T]:
def wrapper(*args: P.args, **kwargs: P.kwargs) -> Tuple[TimingInfo, T]:
start_wall_time, start_cpu_time = _start_measurement()
try:
result = func(*args, **kwargs)
@@ -49,13 +50,13 @@ def time_measured(func: Callable[..., T]) -> Callable[..., Tuple[TimingInfo, T]]
return wrapper
def error_logged(func: Callable[..., T]) -> Callable[..., T | None]:
def error_logged(func: Callable[P, T]) -> Callable[P, T | None]:
"""
Decorator to suppress and log any exceptions raised by a function.
"""
@functools.wraps(func)
def wrapper(*args, **kwargs) -> T | None:
def wrapper(*args: P.args, **kwargs: P.kwargs) -> T | None:
try:
return func(*args, **kwargs)
except Exception as e:

View File

@@ -1,17 +1,15 @@
import os
from forge.logging.config import LogFormatName
def configure_logging():
import logging
from forge.logging import configure_logging
import autogpt_libs.logging.config
if os.getenv("APP_ENV") != "cloud":
configure_logging()
autogpt_libs.logging.config.configure_logging(force_cloud_logging=False)
else:
configure_logging(log_format=LogFormatName.STRUCTURED)
autogpt_libs.logging.config.configure_logging(force_cloud_logging=True)
# Silence httpx logger
logging.getLogger("httpx").setLevel(logging.WARNING)

View File

@@ -1,12 +1,13 @@
import asyncio
import logging
import os
import threading
import time
from abc import abstractmethod
from typing import Any, Callable, Coroutine, Type, TypeVar, cast
import Pyro5.api
from Pyro5 import api as pyro
from Pyro5 import nameserver
from autogpt_server.data import db
from autogpt_server.data.queue import AsyncEventQueue, AsyncRedisEventQueue
@@ -42,25 +43,16 @@ def expose(func: C) -> C:
return pyro.expose(wrapper) # type: ignore
class PyroNameServer(AppProcess):
def run(self):
nameserver.start_ns_loop(host=pyro_host, port=9090)
@conn_retry
def _wait_for_ns(self):
pyro.locate_ns(host="localhost", port=9090)
def health_check(self):
self._wait_for_ns()
logger.info(f"{__class__.__name__} is ready")
class AppService(AppProcess):
shared_event_loop: asyncio.AbstractEventLoop
event_queue: AsyncEventQueue = AsyncRedisEventQueue()
use_db: bool = False
use_redis: bool = False
def __init__(self, port):
self.port = port
self.uri = None
@classmethod
@property
def service_name(cls) -> str:
@@ -108,11 +100,10 @@ class AppService(AppProcess):
@conn_retry
def __start_pyro(self):
daemon = pyro.Daemon(host=pyro_host)
ns = pyro.locate_ns(host=pyro_host, port=9090)
uri = daemon.register(self)
ns.register(self.service_name, uri)
logger.info(f"[{self.service_name}] Connected to Pyro; URI = {uri}")
host = Config().pyro_host
daemon = Pyro5.api.Daemon(host=host, port=self.port)
self.uri = daemon.register(self, objectId=self.service_name)
logger.info(f"[{self.service_name}] Connected to Pyro; URI = {self.uri}")
daemon.requestLoop()
def __start_async_loop(self):
@@ -122,16 +113,19 @@ class AppService(AppProcess):
AS = TypeVar("AS", bound=AppService)
def get_service_client(service_type: Type[AS]) -> AS:
def get_service_client(service_type: Type[AS], port: int) -> AS:
service_name = service_type.service_name
class DynamicClient:
@conn_retry
def __init__(self):
ns = pyro.locate_ns()
uri = ns.lookup(service_name)
self.proxy = pyro.Proxy(uri)
host = os.environ.get(f"{service_name.upper()}_HOST", "localhost")
uri = f"PYRO:{service_type.service_name}@{host}:{port}"
logger.debug(f"Connecting to service [{service_name}]. URI = {uri}")
self.proxy = Pyro5.api.Proxy(uri)
# Attempt to bind to ensure the connection is established
self.proxy._pyroBind()
logger.debug(f"Successfully connected to service [{service_name}]")
def __getattr__(self, name: str) -> Callable[..., Any]:
return getattr(self.proxy, name)

Some files were not shown because too many files have changed in this diff Show More