Compare commits

..

38 Commits

Author SHA1 Message Date
Nicholas Tindle
69618a5e05 Merge branch 'dev' into ntindle/waitlist 2026-02-04 19:02:00 -06:00
Nicholas Tindle
3610be3e83 Merge branch 'dev' into ntindle/waitlist 2026-01-20 17:47:02 -06:00
Nicholas Tindle
9e1f7c9415 Merge branch 'dev' into ntindle/waitlist 2026-01-19 01:12:14 -06:00
Nicholas Tindle
0d03ebb43c fix: lint 2026-01-16 11:34:00 -06:00
Nicholas Tindle
1b37bd6da9 Merge branch 'dev' into ntindle/waitlist 2026-01-16 11:32:05 -06:00
Nicholas Tindle
db989a5eed fix: lint 2026-01-15 15:58:33 -06:00
Nicholas Tindle
e3a8c57a35 Merge branch 'dev' into ntindle/waitlist
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 15:54:38 -06:00
Nicholas Tindle
dfc8e53386 fix(backend): add assertions to fix type errors in waitlist admin functions
Prisma's update() returns T | None but we verify existence before updating,
so assert the result is not None to satisfy the type checker.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 15:48:30 -06:00
Nicholas Tindle
b5b7e5da92 fix(backend): don't mark waitlist DONE if email-only users pending
The notify_waitlist_users_on_launch function was marking waitlists as
DONE after notifying registered users, but ignoring unaffiliatedEmailUsers
who haven't been notified yet. Since DONE waitlists are excluded from
future notification queries, those email users would never receive
notifications when that functionality is implemented.

Now the waitlist remains in an active state if there are pending
email-only signups that still need notifications.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 15:41:31 -06:00
Nicholas Tindle
07ea2c2ab7 fix(backend): check waitlist existence before update in update_waitlist_admin
Added find_unique check before update() call to properly return 404 when
waitlist doesn't exist, following the established pattern used in other
waitlist admin functions.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 15:37:19 -06:00
Nicholas Tindle
9c873a0158 fix(backend): add exception handling to add_self_to_waitlist route
The public waitlist join route was missing exception handling, causing
500 errors for all failures. Now properly returns:
- 404 for waitlist not found
- 400 for closed/unavailable waitlists
- 500 for unexpected errors

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 15:30:54 -06:00
Nicholas Tindle
ed634db8f7 fix(backend): validate waitlist status enum at API boundary
Changed WaitlistUpdateRequest.status from str to the actual enum type.
Pydantic now validates the status value, returning 422 for invalid
values instead of a misleading 404 "Waitlist not found" error.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 15:26:26 -06:00
Nicholas Tindle
398197f3ea fix(frontend): add title attribute to YouTube iframe for accessibility
Screen readers need a title attribute on iframes to describe their
content. Added "YouTube video player" title to the embedded video.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 15:23:52 -06:00
Nicholas Tindle
b7df4cfdbf fix(backend): align migration FK with schema (SET NULL not CASCADE)
The migration had ON DELETE CASCADE for WaitlistEntry.storeListingId,
but the Prisma schema specifies onDelete: SetNull. This mismatch would
cause waitlist entries and all signup data to be deleted when a store
listing is removed, instead of just unlinking them.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 15:18:03 -06:00
Nicholas Tindle
5d8dd46759 fix(backend): align waitlist admin functions with established patterns
- delete_waitlist_admin: add find_unique check before update, raise
  ValueError if not found, add except ValueError: raise
- link_waitlist_to_listing_admin: add find_unique check for waitlist
  before update, remove dead code
- delete_waitlist route: add except ValueError: → 404, remove dead
  code bool check pattern

All waitlist admin functions now follow the consistent pattern:
1. find_unique to check existence
2. raise ValueError if not found
3. except ValueError: raise to bubble up
4. except Exception: raise DatabaseError

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 14:54:53 -06:00
Nicholas Tindle
f9518b6f8b fix(frontend): use generated query key for waitlist cache invalidation
The hardcoded query key string didn't match the actual generated key,
causing cache invalidation to fail after joining a waitlist. Now uses
the generated getGetV2GetWaitlistIdsTheCurrentUserHasJoinedQueryKey()
function for correct cache invalidation.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 14:44:35 -06:00
Nicholas Tindle
205b220e90 fix(backend): filter out DONE/CANCELED waitlists before sending notifications
The notify_waitlist_users_on_launch function was not filtering by
waitlist status, which could cause duplicate notifications when an
agent is re-approved. Now excludes DONE and CANCELED waitlists,
consistent with get_waitlist() and add_user_to_waitlist().

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 14:41:37 -06:00
Nicholas Tindle
29a232fcb4 fix(frontend): add URL validation and sandbox to video player
- Add getYouTubeVideoId() to extract video IDs from YouTube URLs
- Add isValidVideoUrl() to validate video URLs before rendering
- Create VideoPlayer component that:
  - Embeds YouTube videos via iframe with safe embed URL
  - Adds sandbox attribute to restrict iframe capabilities
  - Adds proper allow attributes for media playback
  - Falls back to native video element for valid non-YouTube URLs
  - Shows error state for invalid URLs

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 14:29:10 -06:00
Nicholas Tindle
a53f261812 feat(frontend): add TODO warning for email-only waitlist notifications
Adds a warning banner on the admin waitlist page indicating that
notifications for email-only signups (non-logged-in users) have not
been implemented yet.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 14:05:21 -06:00
Nicholas Tindle
00a20f77be feat(backend): add waitlist_launch email notification template
The WAITLIST_LAUNCH notification type was referencing a template that
didn't exist, causing FileNotFoundError when trying to notify users
that an agent they waitlisted has launched.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-12 16:38:04 -06:00
Nicholas Tindle
4d49536a40 Discard changes to autogpt_platform/frontend/src/lib/autogpt-server-api/types.ts 2026-01-12 15:28:37 -07:00
Nicholas Tindle
6028a2528c refactor(frontend): consolidate waitlist modals and align with Figma design
- Merge JoinWaitlistModal into WaitlistDetailModal for unified experience
- Add MediaCarousel component supporting videos and images with play overlay
- Update WaitlistCard styling to match Figma (rounded-large, line-clamp-5, zinc-800 button)
- Update success state with party emoji and Close button per Figma design
- Add sticky footer for buttons during modal scroll
- Support email input for non-logged-in users

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-12 16:27:09 -06:00
Nicholas Tindle
b31cd05675 fix(backend): correct typo in unaffiliatedEmailUsers field name
- Rename unafilliatedEmailUsers -> unaffiliatedEmailUsers in schema.prisma
- Update migration SQL to use correct column name
- Update all references in db.py and model.py

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-12 15:33:38 -06:00
Nicholas Tindle
128366772f refactor(backend): remove apscheduler tables from prisma schema
- Remove apscheduler_jobs and apscheduler_jobs_batched_notifications models
- Delete migration 20260107000001_add_apscheduler_tables
- Remove index rename statements from waitlist migration

APScheduler tables are managed at runtime by APScheduler itself and
should not be part of the Prisma schema.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-12 15:29:17 -06:00
Nicholas Tindle
764cdf17fe refactor(frontend): migrate waitlist admin components to generated API hooks
- Convert WaitlistTable to use generated React Query hooks directly
- Convert CreateWaitlistButton to use generated hooks
- Update WaitlistDetailModal to use generated types and design system Dialog
- Remove deprecated waitlist types from types.ts
- Remove deprecated waitlist methods from BackendAPI client
- Delete actions.ts server actions (no longer needed)
- Replace lucide-react icons with Phosphor icons

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-12 15:26:34 -06:00
Nicholas Tindle
1dd83b4cf8 fix(frontend): add text color to status badge fallback in WaitlistTable
Ensures unknown status values have readable text contrast by adding
text-gray-700 to the fallback className.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-12 15:09:44 -06:00
Nicholas Tindle
24a34f7ce5 Merge branch 'dev' into ntindle/waitlist 2026-01-12 14:08:48 -07:00
Nicholas Tindle
20fe2c3877 fix(backend): remove PII-exposing fields from public waitlist model
Remove `owner` (User type) and `storeListing` (StoreListingWithVersions)
fields from StoreWaitlistEntry. These fields were never populated but
exposed PII types (email, stripe_customer_id, etc.) in the OpenAPI schema.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-12 14:52:51 -06:00
Nicholas Tindle
738c7e2bef fix(platform): address remaining PR review feedback for waitlist
Backend fixes:
- Fix optional field clearing by using model_fields_set
- Re-fetch waitlist data after join operation
- Only mark waitlist as DONE if all notifications succeed
- Fix race condition in email removal with transaction
- Rename waitlist_id to waitlistId for naming consistency

Frontend fixes:
- Migrate useWaitlistSection to generated API hooks
- Migrate JoinWaitlistModal to design system + generated hooks
- Migrate WaitlistSignupsDialog to design system + generated hooks
- Replace lucide-react icons with Phosphor in WaitlistTable
- Add proper error state in WaitlistSignupsDialog
- Update waitlistId naming across components

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-12 14:43:10 -06:00
Nicholas Tindle
9edfe0fb97 refactor(frontend): migrate EditWaitlistDialog to design system and generated API
- Replace legacy Dialog components with molecules/Dialog
- Replace legacy Input/Label/Textarea with atoms/Input
- Replace legacy Select with atoms/Select
- Replace @/lib/autogpt-server-api/types with @/app/api/__generated__/models
- Replace updateWaitlist action with usePutV2UpdateWaitlist hook
- Remove dependency on BackendAPI in favor of generated React Query hooks

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-09 16:49:35 -07:00
Nicholas Tindle
4aabe71001 fix(platform): address PR review feedback for waitlist feature
Backend fixes:
- Fix creator_username null check in store URL construction
- Add embed=True to link_waitlist_to_listing endpoint body param
- Fix race condition in email list with transaction wrapper
- Replace str(e) with generic error messages in admin ValueError handlers
- Add validation requiring user_id or email in waitlist join
- Configure WAITLIST_LAUNCH in notification system (data type, queue, template, subject)
- Change StoreListing cascade delete to SetNull to preserve waitlist data

Frontend fixes:
- Escape internal quotes in CSV export for proper RFC 4180 compliance
- Remove incorrect 'use server' directive from page.tsx
- Replace lucide-react Check icon with Phosphor Icons

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-09 16:40:35 -07:00
Nicholas Tindle
b3999669f2 refactor(platform): simplify waitlist code and remove type duplication
- Backend: Extract _waitlist_to_store_entry helper to reduce duplication
- Backend: Use dict comprehension in update_waitlist_admin for cleaner code
- Frontend: Import types directly from shared types file instead of re-exporting
- Frontend: Remove redundant isMember check in WaitlistCard handleJoinClick

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-09 16:25:27 -07:00
Swifty
8c45a5ee98 Merge branch 'dev' into ntindle/waitlist 2026-01-08 12:38:46 +01:00
Nicholas Tindle
4b654c7e9f fix(frontend): Fix lint and type errors in waitlist admin components
- Remove unused WaitlistSignup import
- Change button size from "sm" to "small"

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-07 22:48:53 -07:00
Nicholas Tindle
8d82e3b633 fix(backend): Use Prisma connect pattern for waitlist-listing relation
Use StoreListing relation with connect pattern instead of directly
setting storeListingId, which doesn't work with Prisma's typed update.

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-07 22:01:18 -07:00
Nicholas Tindle
d4ecdb64ed feat(platform): Show "On the waitlist" status for joined users
- Add GET /api/store/waitlist/my-memberships endpoint to fetch user's joined waitlists
- Add get_user_waitlist_memberships() db function
- Update useWaitlistSection hook to fetch memberships when logged in
- Update WaitlistCard to show green "On the waitlist" button for members
- Update WaitlistDetailModal to show member status
- Add onSuccess callback to JoinWaitlistModal for optimistic UI updates

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-07 21:15:03 -07:00
Nicholas Tindle
a73fb8f114 feat(platform): Add waitlist feature with admin management and user notifications
Backend:
- Add waitlist admin API routes for CRUD operations
- Add admin functions for waitlist management (create, update, delete, list)
- Add WaitlistLaunchData notification type for user notifications
- Integrate waitlist notifications into store submission approval flow
- Auto-notify waitlist users when linked agent is approved

Frontend:
- Add admin waitlist management page with table, create/edit dialogs
- Add WaitlistSection component to marketplace homepage
- Add WaitlistCard, WaitlistDetailModal, JoinWaitlistModal components
- Add API client methods and types for waitlist operations

Database:
- Add WAITLIST_LAUNCH notification type enum
- Add baseline migration for APScheduler tables

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-07 20:38:15 -07:00
Nicholas Tindle
2c60aa64ef wip: adding waitlist 2026-01-06 22:13:35 -07:00
82 changed files with 3783 additions and 3227 deletions

View File

@@ -152,7 +152,6 @@ REPLICATE_API_KEY=
REVID_API_KEY=
SCREENSHOTONE_API_KEY=
UNREAL_SPEECH_API_KEY=
ELEVENLABS_API_KEY=
# Data & Search Services
E2B_API_KEY=

View File

@@ -19,6 +19,3 @@ load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql
# Workspace files
workspaces/

View File

@@ -157,16 +157,6 @@ yield "image_url", result_url
3. Write tests alongside the route file
4. Run `poetry run test` to verify
## Workspace & Media Files
**Read [Workspace & Media Architecture](../../docs/platform/workspace-media-architecture.md) when:**
- Working on CoPilot file upload/download features
- Building blocks that handle `MediaFileType` inputs/outputs
- Modifying `WorkspaceManager` or `store_media_file()`
- Debugging file persistence or virus scanning issues
Covers: `WorkspaceManager` (persistent storage with session scoping), `store_media_file()` (media normalization pipeline), and responsibility boundaries for virus scanning and persistence.
## Security Implementation
### Cache Protection Middleware

View File

@@ -62,12 +62,10 @@ ENV POETRY_HOME=/opt/poetry \
DEBIAN_FRONTEND=noninteractive
ENV PATH=/opt/poetry/bin:$PATH
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
# Install Python without upgrading system-managed packages
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
&& rm -rf /var/lib/apt/lists/*
# Copy only necessary files from builder

View File

@@ -0,0 +1,251 @@
import logging
import autogpt_libs.auth
import fastapi
import fastapi.responses
import backend.api.features.store.db as store_db
import backend.api.features.store.model as store_model
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
prefix="/admin/waitlist",
tags=["store", "admin", "waitlist"],
dependencies=[fastapi.Security(autogpt_libs.auth.requires_admin_user)],
)
@router.post(
"",
summary="Create Waitlist",
response_model=store_model.WaitlistAdminResponse,
)
async def create_waitlist(
request: store_model.WaitlistCreateRequest,
user_id: str = fastapi.Security(autogpt_libs.auth.get_user_id),
):
"""
Create a new waitlist (admin only).
Args:
request: Waitlist creation details
user_id: Authenticated admin user creating the waitlist
Returns:
WaitlistAdminResponse with the created waitlist details
"""
try:
waitlist = await store_db.create_waitlist_admin(
admin_user_id=user_id,
data=request,
)
return waitlist
except Exception as e:
logger.exception("Error creating waitlist: %s", e)
return fastapi.responses.JSONResponse(
status_code=500,
content={"detail": "An error occurred while creating the waitlist"},
)
@router.get(
"",
summary="List All Waitlists",
response_model=store_model.WaitlistAdminListResponse,
)
async def list_waitlists():
"""
Get all waitlists with admin details (admin only).
Returns:
WaitlistAdminListResponse with all waitlists
"""
try:
return await store_db.get_waitlists_admin()
except Exception as e:
logger.exception("Error listing waitlists: %s", e)
return fastapi.responses.JSONResponse(
status_code=500,
content={"detail": "An error occurred while fetching waitlists"},
)
@router.get(
"/{waitlist_id}",
summary="Get Waitlist Details",
response_model=store_model.WaitlistAdminResponse,
)
async def get_waitlist(
waitlist_id: str = fastapi.Path(..., description="The ID of the waitlist"),
):
"""
Get a single waitlist with admin details (admin only).
Args:
waitlist_id: ID of the waitlist to retrieve
Returns:
WaitlistAdminResponse with waitlist details
"""
try:
return await store_db.get_waitlist_admin(waitlist_id)
except ValueError:
logger.warning("Waitlist not found: %s", waitlist_id)
return fastapi.responses.JSONResponse(
status_code=404,
content={"detail": "Waitlist not found"},
)
except Exception as e:
logger.exception("Error fetching waitlist: %s", e)
return fastapi.responses.JSONResponse(
status_code=500,
content={"detail": "An error occurred while fetching the waitlist"},
)
@router.put(
"/{waitlist_id}",
summary="Update Waitlist",
response_model=store_model.WaitlistAdminResponse,
)
async def update_waitlist(
request: store_model.WaitlistUpdateRequest,
waitlist_id: str = fastapi.Path(..., description="The ID of the waitlist"),
):
"""
Update a waitlist (admin only).
Args:
waitlist_id: ID of the waitlist to update
request: Fields to update
Returns:
WaitlistAdminResponse with updated waitlist details
"""
try:
return await store_db.update_waitlist_admin(waitlist_id, request)
except ValueError:
logger.warning("Waitlist not found for update: %s", waitlist_id)
return fastapi.responses.JSONResponse(
status_code=404,
content={"detail": "Waitlist not found"},
)
except Exception as e:
logger.exception("Error updating waitlist: %s", e)
return fastapi.responses.JSONResponse(
status_code=500,
content={"detail": "An error occurred while updating the waitlist"},
)
@router.delete(
"/{waitlist_id}",
summary="Delete Waitlist",
)
async def delete_waitlist(
waitlist_id: str = fastapi.Path(..., description="The ID of the waitlist"),
):
"""
Soft delete a waitlist (admin only).
Args:
waitlist_id: ID of the waitlist to delete
Returns:
Success message
"""
try:
await store_db.delete_waitlist_admin(waitlist_id)
return {"message": "Waitlist deleted successfully"}
except ValueError:
logger.warning(f"Waitlist not found for deletion: {waitlist_id}")
return fastapi.responses.JSONResponse(
status_code=404,
content={"detail": "Waitlist not found"},
)
except Exception as e:
logger.exception("Error deleting waitlist: %s", e)
return fastapi.responses.JSONResponse(
status_code=500,
content={"detail": "An error occurred while deleting the waitlist"},
)
@router.get(
"/{waitlist_id}/signups",
summary="Get Waitlist Signups",
response_model=store_model.WaitlistSignupListResponse,
)
async def get_waitlist_signups(
waitlist_id: str = fastapi.Path(..., description="The ID of the waitlist"),
):
"""
Get all signups for a waitlist (admin only).
Args:
waitlist_id: ID of the waitlist
Returns:
WaitlistSignupListResponse with all signups
"""
try:
return await store_db.get_waitlist_signups_admin(waitlist_id)
except ValueError:
logger.warning("Waitlist not found for signups: %s", waitlist_id)
return fastapi.responses.JSONResponse(
status_code=404,
content={"detail": "Waitlist not found"},
)
except Exception as e:
logger.exception("Error fetching waitlist signups: %s", e)
return fastapi.responses.JSONResponse(
status_code=500,
content={"detail": "An error occurred while fetching waitlist signups"},
)
@router.post(
"/{waitlist_id}/link",
summary="Link Waitlist to Store Listing",
response_model=store_model.WaitlistAdminResponse,
)
async def link_waitlist_to_listing(
waitlist_id: str = fastapi.Path(..., description="The ID of the waitlist"),
store_listing_id: str = fastapi.Body(
..., embed=True, description="The ID of the store listing"
),
):
"""
Link a waitlist to a store listing (admin only).
When the linked store listing is approved/published, waitlist users
will be automatically notified.
Args:
waitlist_id: ID of the waitlist
store_listing_id: ID of the store listing to link
Returns:
WaitlistAdminResponse with updated waitlist details
"""
try:
return await store_db.link_waitlist_to_listing_admin(
waitlist_id, store_listing_id
)
except ValueError:
logger.warning(
"Link failed - waitlist or listing not found: %s, %s",
waitlist_id,
store_listing_id,
)
return fastapi.responses.JSONResponse(
status_code=404,
content={"detail": "Waitlist or store listing not found"},
)
except Exception as e:
logger.exception("Error linking waitlist to listing: %s", e)
return fastapi.responses.JSONResponse(
status_code=500,
content={"detail": "An error occurred while linking the waitlist"},
)

View File

@@ -11,7 +11,7 @@ class ChatConfig(BaseSettings):
# OpenAI API Configuration
model: str = Field(
default="anthropic/claude-opus-4.6", description="Default model to use"
default="anthropic/claude-opus-4.5", description="Default model to use"
)
title_model: str = Field(
default="openai/gpt-4o-mini",

View File

@@ -33,7 +33,7 @@ from backend.data.understanding import (
get_business_understanding,
)
from backend.util.exceptions import NotFoundError
from backend.util.settings import AppEnvironment, Settings
from backend.util.settings import Settings
from . import db as chat_db
from . import stream_registry
@@ -222,18 +222,8 @@ async def _get_system_prompt_template(context: str) -> str:
try:
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
# Use asyncio.to_thread to avoid blocking the event loop
# In non-production environments, fetch the latest prompt version
# instead of the production-labeled version for easier testing
label = (
None
if settings.config.app_env == AppEnvironment.PRODUCTION
else "latest"
)
prompt = await asyncio.to_thread(
langfuse.get_prompt,
config.langfuse_prompt_name,
label=label,
cache_ttl_seconds=0,
langfuse.get_prompt, config.langfuse_prompt_name, cache_ttl_seconds=0
)
return prompt.compile(users_information=context)
except Exception as e:
@@ -628,9 +618,6 @@ async def stream_chat_completion(
total_tokens=chunk.totalTokens,
)
)
elif isinstance(chunk, StreamHeartbeat):
# Pass through heartbeat to keep SSE connection alive
yield chunk
else:
logger.error(f"Unknown chunk type: {type(chunk)}", exc_info=True)

View File

@@ -7,7 +7,15 @@ from typing import Any, NotRequired, TypedDict
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data.graph import Graph, Link, Node, get_graph, get_store_listed_graphs
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
get_store_listed_graphs,
)
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import (
@@ -20,6 +28,8 @@ from .service import (
logger = logging.getLogger(__name__)
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
@@ -659,6 +669,45 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
)
def _reassign_node_ids(graph: Graph) -> None:
"""Reassign all node and link IDs to new UUIDs.
This is needed when creating a new version to avoid unique constraint violations.
"""
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
for node in graph.nodes:
node.id = id_map[node.id]
for link in graph.links:
link.id = str(uuid.uuid4())
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
"""Populate user_id in AgentExecutorBlock nodes.
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
This function fills in the actual user_id so sub-agents run with correct permissions.
Args:
agent_json: Agent JSON dict (modified in place)
user_id: User ID to set
"""
for node in agent_json.get("nodes", []):
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
input_default = node.get("input_default") or {}
if not input_default.get("user_id"):
input_default["user_id"] = user_id
node["input_default"] = input_default
logger.debug(
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
)
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -672,10 +721,35 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
# Populate user_id in AgentExecutorBlock nodes before conversion
_populate_agent_executor_user_ids(agent_json, user_id)
graph = json_to_graph(agent_json)
if is_update:
return await library_db.update_graph_in_library(graph, user_id)
return await library_db.create_graph_in_library(graph, user_id)
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
graph.id = str(uuid.uuid4())
graph.version = 1
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
created_graph = await create_graph(graph, user_id)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
return created_graph, library_agents[0]
def graph_to_json(graph: Graph) -> dict[str, Any]:

View File

@@ -206,9 +206,9 @@ async def search_agents(
]
)
no_results_msg = (
f"No agents found matching '{query}'. Let the user know they can try different keywords or browse the marketplace. Also let them know you can create a custom agent for them based on their needs."
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
if source == "marketplace"
else f"No agents matching '{query}' found in your library. Let the user know you can create a custom agent for them based on their needs."
else f"No agents matching '{query}' found in your library."
)
return NoResultsResponse(
message=no_results_msg, session_id=session_id, suggestions=suggestions
@@ -224,10 +224,10 @@ async def search_agents(
message = (
"Now you have found some options for the user to choose from. "
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
"Please ask the user if they would like to use any of these agents. Let the user know we can create a custom agent for them based on their needs."
"Please ask the user if they would like to use any of these agents."
if source == "marketplace"
else "Found agents in the user's library. You can provide a link to view an agent at: "
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute. Let the user know we can create a custom agent for them based on their needs."
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
)
return AgentsFoundResponse(

View File

@@ -19,10 +19,7 @@ from backend.data.graph import GraphSettings
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import (
on_graph_activate,
on_graph_deactivate,
)
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.json import SafeJson
@@ -540,92 +537,6 @@ async def update_agent_version_in_library(
return library_model.LibraryAgent.from_db(lib)
async def create_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new graph and add it to the user's library."""
graph.version = 1
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=True)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agents = await create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
return created_graph, library_agents[0]
async def update_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new version of an existing graph and update the library entry."""
existing_versions = await graph_db.get_graph_all_versions(graph.id, user_id)
current_active_version = (
next((v for v in existing_versions if v.is_active), None)
if existing_versions
else None
)
graph.version = (
max(v.version for v in existing_versions) + 1 if existing_versions else 1
)
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=False)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agent = await get_library_agent_by_graph_id(user_id, created_graph.id)
if not library_agent:
raise NotFoundError(f"Library agent not found for graph {created_graph.id}")
library_agent = await update_library_agent_version_and_settings(
user_id, created_graph
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
await graph_db.set_graph_active_version(
graph_id=created_graph.id,
version=created_graph.version,
user_id=user_id,
)
if current_active_version:
await on_graph_deactivate(current_active_version, user_id=user_id)
return created_graph, library_agent
async def update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
"""Update library agent to point to new graph version and sync settings."""
library = await update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
async def update_library_agent(
library_agent_id: str,
user_id: str,

View File

@@ -22,6 +22,7 @@ from backend.data.notifications import (
AgentApprovalData,
AgentRejectionData,
NotificationEventModel,
WaitlistLaunchData,
)
from backend.notifications.notifications import queue_notification_async
from backend.util.exceptions import DatabaseError
@@ -1713,6 +1714,29 @@ async def review_store_submission(
# Don't fail the review process if email sending fails
pass
# Notify waitlist users if this is an approval and has a linked waitlist
if is_approved and submission.StoreListing:
try:
frontend_base_url = (
settings.config.frontend_base_url
or settings.config.platform_base_url
)
store_agent = (
await prisma.models.StoreAgent.prisma().find_first_or_raise(
where={"storeListingVersionId": submission.id}
)
)
creator_username = store_agent.creator_username or "unknown"
store_url = f"{frontend_base_url}/marketplace/agent/{creator_username}/{store_agent.slug}"
await notify_waitlist_users_on_launch(
store_listing_id=submission.StoreListing.id,
agent_name=submission.name,
store_url=store_url,
)
except Exception as e:
logger.error(f"Failed to notify waitlist users on agent approval: {e}")
# Don't fail the approval process
# Convert to Pydantic model for consistency
return store_model.StoreSubmission(
listing_id=(submission.StoreListing.id if submission.StoreListing else ""),
@@ -1960,3 +1984,552 @@ async def get_agent_as_admin(
)
return graph
def _waitlist_to_store_entry(
waitlist: prisma.models.WaitlistEntry,
) -> store_model.StoreWaitlistEntry:
"""Convert a WaitlistEntry to StoreWaitlistEntry for public display."""
return store_model.StoreWaitlistEntry(
waitlistId=waitlist.id,
slug=waitlist.slug,
name=waitlist.name,
subHeading=waitlist.subHeading,
videoUrl=waitlist.videoUrl,
agentOutputDemoUrl=waitlist.agentOutputDemoUrl,
imageUrls=waitlist.imageUrls or [],
description=waitlist.description,
categories=waitlist.categories,
)
async def get_waitlist() -> list[store_model.StoreWaitlistEntry]:
"""Get all active waitlists for public display."""
try:
waitlists = await prisma.models.WaitlistEntry.prisma().find_many(
where=prisma.types.WaitlistEntryWhereInput(isDeleted=False),
)
# Filter out closed/done waitlists and sort by votes (descending)
excluded_statuses = {
prisma.enums.WaitlistExternalStatus.CANCELED,
prisma.enums.WaitlistExternalStatus.DONE,
}
active_waitlists = [w for w in waitlists if w.status not in excluded_statuses]
sorted_list = sorted(active_waitlists, key=lambda x: x.votes, reverse=True)
return [_waitlist_to_store_entry(w) for w in sorted_list]
except Exception as e:
logger.error(f"Error fetching waitlists: {e}")
raise DatabaseError("Failed to fetch waitlists") from e
async def get_user_waitlist_memberships(user_id: str) -> list[str]:
"""Get all waitlist IDs that a user has joined."""
try:
user = await prisma.models.User.prisma().find_unique(
where={"id": user_id},
include={"joinedWaitlists": True},
)
if not user or not user.joinedWaitlists:
return []
return [w.id for w in user.joinedWaitlists]
except Exception as e:
logger.error(f"Error fetching user waitlist memberships: {e}")
raise DatabaseError("Failed to fetch waitlist memberships") from e
async def add_user_to_waitlist(
waitlist_id: str, user_id: str | None, email: str | None
) -> store_model.StoreWaitlistEntry:
"""
Add a user to a waitlist.
For logged-in users: connects via joinedUsers relation
For anonymous users: adds email to unaffiliatedEmailUsers array
"""
if not user_id and not email:
raise ValueError("Either user_id or email must be provided")
try:
# Find the waitlist
waitlist = await prisma.models.WaitlistEntry.prisma().find_unique(
where={"id": waitlist_id},
include={"joinedUsers": True},
)
if not waitlist:
raise ValueError(f"Waitlist {waitlist_id} not found")
if waitlist.isDeleted:
raise ValueError(f"Waitlist {waitlist_id} is no longer available")
if waitlist.status in [
prisma.enums.WaitlistExternalStatus.CANCELED,
prisma.enums.WaitlistExternalStatus.DONE,
]:
raise ValueError(f"Waitlist {waitlist_id} is closed")
if user_id:
# Check if user already joined
joined_user_ids = [u.id for u in (waitlist.joinedUsers or [])]
if user_id in joined_user_ids:
# Already joined - return waitlist info
logger.debug(f"User {user_id} already joined waitlist {waitlist_id}")
else:
# Connect user to waitlist
await prisma.models.WaitlistEntry.prisma().update(
where={"id": waitlist_id},
data={"joinedUsers": {"connect": [{"id": user_id}]}},
)
logger.info(f"User {user_id} joined waitlist {waitlist_id}")
# If user was previously in email list, remove them
# Use transaction to prevent race conditions
if email:
async with transaction() as tx:
current_waitlist = await tx.waitlistentry.find_unique(
where={"id": waitlist_id}
)
if current_waitlist and email in (
current_waitlist.unaffiliatedEmailUsers or []
):
updated_emails: list[str] = [
e
for e in (current_waitlist.unaffiliatedEmailUsers or [])
if e != email
]
await tx.waitlistentry.update(
where={"id": waitlist_id},
data={"unaffiliatedEmailUsers": updated_emails},
)
elif email:
# Add email to unaffiliated list if not already present
# Use transaction to prevent race conditions with concurrent signups
async with transaction() as tx:
# Re-fetch within transaction to get latest state
current_waitlist = await tx.waitlistentry.find_unique(
where={"id": waitlist_id}
)
if current_waitlist:
current_emails: list[str] = list(
current_waitlist.unaffiliatedEmailUsers or []
)
if email not in current_emails:
current_emails.append(email)
await tx.waitlistentry.update(
where={"id": waitlist_id},
data={"unaffiliatedEmailUsers": current_emails},
)
logger.info(f"Email {email} added to waitlist {waitlist_id}")
else:
logger.debug(f"Email {email} already on waitlist {waitlist_id}")
# Re-fetch to return updated data
updated_waitlist = await prisma.models.WaitlistEntry.prisma().find_unique(
where={"id": waitlist_id}
)
return _waitlist_to_store_entry(updated_waitlist or waitlist)
except ValueError:
raise
except Exception as e:
logger.error(f"Error adding user to waitlist: {e}")
raise DatabaseError("Failed to add user to waitlist") from e
# ============== Admin Waitlist Functions ==============
def _waitlist_to_admin_response(
waitlist: prisma.models.WaitlistEntry,
) -> store_model.WaitlistAdminResponse:
"""Convert a WaitlistEntry to WaitlistAdminResponse."""
joined_count = len(waitlist.joinedUsers) if waitlist.joinedUsers else 0
email_count = (
len(waitlist.unaffiliatedEmailUsers) if waitlist.unaffiliatedEmailUsers else 0
)
return store_model.WaitlistAdminResponse(
id=waitlist.id,
createdAt=waitlist.createdAt.isoformat() if waitlist.createdAt else "",
updatedAt=waitlist.updatedAt.isoformat() if waitlist.updatedAt else "",
slug=waitlist.slug,
name=waitlist.name,
subHeading=waitlist.subHeading,
description=waitlist.description,
categories=waitlist.categories,
imageUrls=waitlist.imageUrls or [],
videoUrl=waitlist.videoUrl,
agentOutputDemoUrl=waitlist.agentOutputDemoUrl,
status=waitlist.status or prisma.enums.WaitlistExternalStatus.NOT_STARTED,
votes=waitlist.votes,
signupCount=joined_count + email_count,
storeListingId=waitlist.storeListingId,
owningUserId=waitlist.owningUserId,
)
async def create_waitlist_admin(
admin_user_id: str,
data: store_model.WaitlistCreateRequest,
) -> store_model.WaitlistAdminResponse:
"""Create a new waitlist (admin only)."""
logger.info(f"Admin {admin_user_id} creating waitlist: {data.name}")
try:
waitlist = await prisma.models.WaitlistEntry.prisma().create(
data=prisma.types.WaitlistEntryCreateInput(
name=data.name,
slug=data.slug,
subHeading=data.subHeading,
description=data.description,
categories=data.categories,
imageUrls=data.imageUrls,
videoUrl=data.videoUrl,
agentOutputDemoUrl=data.agentOutputDemoUrl,
owningUserId=admin_user_id,
status=prisma.enums.WaitlistExternalStatus.NOT_STARTED,
),
include={"joinedUsers": True},
)
return _waitlist_to_admin_response(waitlist)
except Exception as e:
logger.error(f"Error creating waitlist: {e}")
raise DatabaseError("Failed to create waitlist") from e
async def get_waitlists_admin() -> store_model.WaitlistAdminListResponse:
"""Get all waitlists with admin details."""
try:
waitlists = await prisma.models.WaitlistEntry.prisma().find_many(
where=prisma.types.WaitlistEntryWhereInput(isDeleted=False),
include={"joinedUsers": True},
order={"createdAt": "desc"},
)
return store_model.WaitlistAdminListResponse(
waitlists=[_waitlist_to_admin_response(w) for w in waitlists],
totalCount=len(waitlists),
)
except Exception as e:
logger.error(f"Error fetching waitlists for admin: {e}")
raise DatabaseError("Failed to fetch waitlists") from e
async def get_waitlist_admin(
waitlist_id: str,
) -> store_model.WaitlistAdminResponse:
"""Get a single waitlist with admin details."""
try:
waitlist = await prisma.models.WaitlistEntry.prisma().find_unique(
where={"id": waitlist_id},
include={"joinedUsers": True},
)
if not waitlist:
raise ValueError(f"Waitlist {waitlist_id} not found")
if waitlist.isDeleted:
raise ValueError(f"Waitlist {waitlist_id} has been deleted")
return _waitlist_to_admin_response(waitlist)
except ValueError:
raise
except Exception as e:
logger.error(f"Error fetching waitlist {waitlist_id}: {e}")
raise DatabaseError("Failed to fetch waitlist") from e
async def update_waitlist_admin(
waitlist_id: str,
data: store_model.WaitlistUpdateRequest,
) -> store_model.WaitlistAdminResponse:
"""Update a waitlist (admin only)."""
logger.info(f"Updating waitlist {waitlist_id}")
try:
# Check if waitlist exists first
existing = await prisma.models.WaitlistEntry.prisma().find_unique(
where={"id": waitlist_id}
)
if not existing:
raise ValueError(f"Waitlist {waitlist_id} not found")
if existing.isDeleted:
raise ValueError(f"Waitlist {waitlist_id} has been deleted")
# Build update data from explicitly provided fields
# Use model_fields_set to allow clearing fields by setting them to None
field_mappings = {
"name": data.name,
"slug": data.slug,
"subHeading": data.subHeading,
"description": data.description,
"categories": data.categories,
"imageUrls": data.imageUrls,
"videoUrl": data.videoUrl,
"agentOutputDemoUrl": data.agentOutputDemoUrl,
"storeListingId": data.storeListingId,
}
update_data: dict[str, Any] = {
k: v for k, v in field_mappings.items() if k in data.model_fields_set
}
# Add status if provided (already validated as enum by Pydantic)
if "status" in data.model_fields_set and data.status is not None:
update_data["status"] = data.status
if not update_data:
# No updates, just return current data
return await get_waitlist_admin(waitlist_id)
waitlist = await prisma.models.WaitlistEntry.prisma().update(
where={"id": waitlist_id},
data=prisma.types.WaitlistEntryUpdateInput(**update_data),
include={"joinedUsers": True},
)
# We already verified existence above, so this should never be None
assert waitlist is not None
return _waitlist_to_admin_response(waitlist)
except ValueError:
raise
except Exception as e:
logger.error(f"Error updating waitlist {waitlist_id}: {e}")
raise DatabaseError("Failed to update waitlist") from e
async def delete_waitlist_admin(waitlist_id: str) -> None:
"""Soft delete a waitlist (admin only)."""
logger.info(f"Soft deleting waitlist {waitlist_id}")
try:
# Check if waitlist exists first
waitlist = await prisma.models.WaitlistEntry.prisma().find_unique(
where={"id": waitlist_id},
)
if not waitlist:
raise ValueError(f"Waitlist {waitlist_id} not found")
if waitlist.isDeleted:
raise ValueError(f"Waitlist {waitlist_id} has already been deleted")
await prisma.models.WaitlistEntry.prisma().update(
where={"id": waitlist_id},
data={"isDeleted": True},
)
except ValueError:
raise
except Exception as e:
logger.error(f"Error deleting waitlist {waitlist_id}: {e}")
raise DatabaseError("Failed to delete waitlist") from e
async def get_waitlist_signups_admin(
waitlist_id: str,
) -> store_model.WaitlistSignupListResponse:
"""Get all signups for a waitlist (admin only)."""
try:
waitlist = await prisma.models.WaitlistEntry.prisma().find_unique(
where={"id": waitlist_id},
include={"joinedUsers": True},
)
if not waitlist:
raise ValueError(f"Waitlist {waitlist_id} not found")
signups: list[store_model.WaitlistSignup] = []
# Add user signups
for user in waitlist.joinedUsers or []:
signups.append(
store_model.WaitlistSignup(
type="user",
userId=user.id,
email=user.email,
username=user.name,
)
)
# Add email signups
for email in waitlist.unaffiliatedEmailUsers or []:
signups.append(
store_model.WaitlistSignup(
type="email",
email=email,
)
)
return store_model.WaitlistSignupListResponse(
waitlistId=waitlist_id,
signups=signups,
totalCount=len(signups),
)
except ValueError:
raise
except Exception as e:
logger.error(f"Error fetching signups for waitlist {waitlist_id}: {e}")
raise DatabaseError("Failed to fetch waitlist signups") from e
async def link_waitlist_to_listing_admin(
waitlist_id: str,
store_listing_id: str,
) -> store_model.WaitlistAdminResponse:
"""Link a waitlist to a store listing (admin only)."""
logger.info(f"Linking waitlist {waitlist_id} to listing {store_listing_id}")
try:
# Verify the waitlist exists
waitlist = await prisma.models.WaitlistEntry.prisma().find_unique(
where={"id": waitlist_id}
)
if not waitlist:
raise ValueError(f"Waitlist {waitlist_id} not found")
if waitlist.isDeleted:
raise ValueError(f"Waitlist {waitlist_id} has been deleted")
# Verify the store listing exists
listing = await prisma.models.StoreListing.prisma().find_unique(
where={"id": store_listing_id}
)
if not listing:
raise ValueError(f"Store listing {store_listing_id} not found")
updated_waitlist = await prisma.models.WaitlistEntry.prisma().update(
where={"id": waitlist_id},
data={"StoreListing": {"connect": {"id": store_listing_id}}},
include={"joinedUsers": True},
)
# We already verified existence above, so this should never be None
assert updated_waitlist is not None
return _waitlist_to_admin_response(updated_waitlist)
except ValueError:
raise
except Exception as e:
logger.error(f"Error linking waitlist to listing: {e}")
raise DatabaseError("Failed to link waitlist to listing") from e
async def notify_waitlist_users_on_launch(
store_listing_id: str,
agent_name: str,
store_url: str,
) -> int:
"""
Notify all users on waitlists linked to a store listing when the agent is launched.
Args:
store_listing_id: The ID of the store listing that was approved
agent_name: The name of the approved agent
store_url: The URL to the agent's store page
Returns:
The number of notifications sent
"""
logger.info(f"Notifying waitlist users for store listing {store_listing_id}")
try:
# Find all active waitlists linked to this store listing
# Exclude DONE and CANCELED to prevent duplicate notifications on re-approval
waitlists = await prisma.models.WaitlistEntry.prisma().find_many(
where={
"storeListingId": store_listing_id,
"isDeleted": False,
"status": {
"not_in": [
prisma.enums.WaitlistExternalStatus.DONE,
prisma.enums.WaitlistExternalStatus.CANCELED,
]
},
},
include={"joinedUsers": True},
)
if not waitlists:
logger.info(
f"No active waitlists found for store listing {store_listing_id}"
)
return 0
notification_count = 0
launched_at = datetime.now(tz=timezone.utc)
for waitlist in waitlists:
# Track notification results for this waitlist
users_to_notify = waitlist.joinedUsers or []
failed_user_ids: list[str] = []
# Notify registered users
for user in users_to_notify:
try:
notification_data = WaitlistLaunchData(
agent_name=agent_name,
waitlist_name=waitlist.name,
store_url=store_url,
launched_at=launched_at,
)
notification_event = NotificationEventModel[WaitlistLaunchData](
user_id=user.id,
type=prisma.enums.NotificationType.WAITLIST_LAUNCH,
data=notification_data,
)
await queue_notification_async(notification_event)
notification_count += 1
except Exception as e:
logger.error(
f"Failed to send waitlist launch notification to user {user.id}: {e}"
)
failed_user_ids.append(user.id)
# Note: For unaffiliated email users, you would need to send emails directly
# since they don't have user IDs for the notification system.
# This could be done via a separate email service.
# For now, we log these for potential manual follow-up or future implementation.
has_pending_email_users = bool(waitlist.unaffiliatedEmailUsers)
if has_pending_email_users:
logger.info(
f"Waitlist {waitlist.id} has {len(waitlist.unaffiliatedEmailUsers)} "
f"unaffiliated email users that need email notifications"
)
# Only mark waitlist as DONE if all registered user notifications succeeded
# AND there are no unaffiliated email users still waiting for notifications
if not failed_user_ids and not has_pending_email_users:
await prisma.models.WaitlistEntry.prisma().update(
where={"id": waitlist.id},
data={"status": prisma.enums.WaitlistExternalStatus.DONE},
)
logger.info(f"Updated waitlist {waitlist.id} status to DONE")
elif failed_user_ids:
logger.warning(
f"Waitlist {waitlist.id} not marked as DONE due to "
f"{len(failed_user_ids)} failed notifications"
)
elif has_pending_email_users:
logger.warning(
f"Waitlist {waitlist.id} not marked as DONE due to "
f"{len(waitlist.unaffiliatedEmailUsers)} pending email-only users"
)
logger.info(
f"Sent {notification_count} waitlist launch notifications for store listing {store_listing_id}"
)
return notification_count
except Exception as e:
logger.error(
f"Error notifying waitlist users for store listing {store_listing_id}: {e}"
)
# Don't raise - we don't want to fail the approval process
return 0

View File

@@ -224,6 +224,102 @@ class ReviewSubmissionRequest(pydantic.BaseModel):
internal_comments: str | None = None # Private admin notes
class StoreWaitlistEntry(pydantic.BaseModel):
"""Public waitlist entry - no PII fields exposed."""
waitlistId: str
slug: str
# Content fields
name: str
subHeading: str
videoUrl: str | None = None
agentOutputDemoUrl: str | None = None
imageUrls: list[str]
description: str
categories: list[str]
class StoreWaitlistsAllResponse(pydantic.BaseModel):
listings: list[StoreWaitlistEntry]
# Admin Waitlist Models
class WaitlistCreateRequest(pydantic.BaseModel):
"""Request model for creating a new waitlist."""
name: str
slug: str
subHeading: str
description: str
categories: list[str] = []
imageUrls: list[str] = []
videoUrl: str | None = None
agentOutputDemoUrl: str | None = None
class WaitlistUpdateRequest(pydantic.BaseModel):
"""Request model for updating a waitlist."""
name: str | None = None
slug: str | None = None
subHeading: str | None = None
description: str | None = None
categories: list[str] | None = None
imageUrls: list[str] | None = None
videoUrl: str | None = None
agentOutputDemoUrl: str | None = None
status: prisma.enums.WaitlistExternalStatus | None = None
storeListingId: str | None = None # Link to a store listing
class WaitlistAdminResponse(pydantic.BaseModel):
"""Admin response model with full waitlist details including internal data."""
id: str
createdAt: str
updatedAt: str
slug: str
name: str
subHeading: str
description: str
categories: list[str]
imageUrls: list[str]
videoUrl: str | None = None
agentOutputDemoUrl: str | None = None
status: prisma.enums.WaitlistExternalStatus
votes: int
signupCount: int # Total count of joinedUsers + unaffiliatedEmailUsers
storeListingId: str | None = None
owningUserId: str
class WaitlistSignup(pydantic.BaseModel):
"""Individual signup entry for a waitlist."""
type: str # "user" or "email"
userId: str | None = None
email: str | None = None
username: str | None = None # For user signups
class WaitlistSignupListResponse(pydantic.BaseModel):
"""Response model for listing waitlist signups."""
waitlistId: str
signups: list[WaitlistSignup]
totalCount: int
class WaitlistAdminListResponse(pydantic.BaseModel):
"""Response model for listing all waitlists (admin view)."""
waitlists: list[WaitlistAdminResponse]
totalCount: int
class UnifiedSearchResult(pydantic.BaseModel):
"""A single result from unified hybrid search across all content types."""

View File

@@ -8,6 +8,7 @@ import autogpt_libs.auth
import fastapi
import fastapi.responses
import prisma.enums
from autogpt_libs.auth.dependencies import get_optional_user_id
import backend.data.graph
import backend.util.json
@@ -81,6 +82,74 @@ async def update_or_create_profile(
return updated_profile
##############################################
############## Waitlist Endpoints ############
##############################################
@router.get(
"/waitlist",
summary="Get the agent waitlist",
tags=["store", "public"],
response_model=store_model.StoreWaitlistsAllResponse,
)
async def get_waitlist():
"""
Get all active waitlists for public display.
"""
waitlists = await store_db.get_waitlist()
return store_model.StoreWaitlistsAllResponse(listings=waitlists)
@router.get(
"/waitlist/my-memberships",
summary="Get waitlist IDs the current user has joined",
tags=["store", "private"],
)
async def get_my_waitlist_memberships(
user_id: str = fastapi.Security(autogpt_libs.auth.get_user_id),
) -> list[str]:
"""Returns list of waitlist IDs the authenticated user has joined."""
return await store_db.get_user_waitlist_memberships(user_id)
@router.post(
path="/waitlist/{waitlist_id}/join",
summary="Add self to the agent waitlist",
tags=["store", "public"],
response_model=store_model.StoreWaitlistEntry,
)
async def add_self_to_waitlist(
user_id: str | None = fastapi.Security(get_optional_user_id),
waitlist_id: str = fastapi.Path(..., description="The ID of the waitlist to join"),
email: str | None = fastapi.Body(
default=None, embed=True, description="Email address for unauthenticated users"
),
):
"""
Add the current user to the agent waitlist.
"""
if not user_id and not email:
raise fastapi.HTTPException(
status_code=400,
detail="Either user authentication or email address is required",
)
try:
waitlist_entry = await store_db.add_user_to_waitlist(
waitlist_id=waitlist_id, user_id=user_id, email=email
)
return waitlist_entry
except ValueError as e:
error_msg = str(e)
if "not found" in error_msg:
raise fastapi.HTTPException(status_code=404, detail="Waitlist not found")
# Waitlist exists but is closed or unavailable
raise fastapi.HTTPException(status_code=400, detail=error_msg)
except Exception:
raise fastapi.HTTPException(
status_code=500, detail="An error occurred while joining the waitlist"
)
##############################################
############### Agent Endpoints ##############
##############################################

View File

@@ -101,6 +101,7 @@ from backend.util.timezone_utils import (
from backend.util.virus_scanner import scan_content_safe
from .library import db as library_db
from .library import model as library_model
from .store.model import StoreAgentDetails
@@ -822,16 +823,18 @@ async def update_graph(
graph: graph_db.Graph,
user_id: Annotated[str, Security(get_user_id)],
) -> graph_db.GraphModel:
# Sanity check
if graph.id and graph.id != graph_id:
raise HTTPException(400, detail="Graph ID does not match ID in URI")
# Determine new version
existing_versions = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
if not existing_versions:
raise HTTPException(404, detail=f"Graph #{graph_id} not found")
latest_version_number = max(g.version for g in existing_versions)
graph.version = latest_version_number + 1
graph.version = max(g.version for g in existing_versions) + 1
current_active_version = next((v for v in existing_versions if v.is_active), None)
graph = graph_db.make_graph_model(graph, user_id)
graph.reassign_ids(user_id=user_id, reassign_graph_id=False)
graph.validate_graph(for_run=False)
@@ -839,23 +842,27 @@ async def update_graph(
new_graph_version = await graph_db.create_graph(graph, user_id=user_id)
if new_graph_version.is_active:
await library_db.update_library_agent_version_and_settings(
user_id, new_graph_version
)
# Keep the library agent up to date with the new active version
await _update_library_agent_version_and_settings(user_id, new_graph_version)
# Handle activation of the new graph first to ensure continuity
new_graph_version = await on_graph_activate(new_graph_version, user_id=user_id)
# Ensure new version is the only active version
await graph_db.set_graph_active_version(
graph_id=graph_id, version=new_graph_version.version, user_id=user_id
)
if current_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_version, user_id=user_id)
# Fetch new graph version *with sub-graphs* (needed for credentials input schema)
new_graph_version_with_subgraphs = await graph_db.get_graph(
graph_id,
new_graph_version.version,
user_id=user_id,
include_subgraphs=True,
)
assert new_graph_version_with_subgraphs
assert new_graph_version_with_subgraphs # make type checker happy
return new_graph_version_with_subgraphs
@@ -893,15 +900,33 @@ async def set_graph_active_version(
)
# Keep the library agent up to date with the new active version
await library_db.update_library_agent_version_and_settings(
user_id, new_active_graph
)
await _update_library_agent_version_and_settings(user_id, new_active_graph)
if current_active_graph and current_active_graph.version != new_active_version:
# Handle deactivation of the previously active version
await on_graph_deactivate(current_active_graph, user_id=user_id)
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
@v1_router.patch(
path="/graphs/{graph_id}/settings",
summary="Update graph settings",

View File

@@ -19,6 +19,7 @@ from prisma.errors import PrismaError
import backend.api.features.admin.credit_admin_routes
import backend.api.features.admin.execution_analytics_routes
import backend.api.features.admin.store_admin_routes
import backend.api.features.admin.waitlist_admin_routes
import backend.api.features.builder
import backend.api.features.builder.routes
import backend.api.features.chat.routes as chat_routes
@@ -306,6 +307,11 @@ app.include_router(
tags=["v2", "admin"],
prefix="/api/store",
)
app.include_router(
backend.api.features.admin.waitlist_admin_routes.router,
tags=["v2", "admin"],
prefix="/api/store",
)
app.include_router(
backend.api.features.admin.credit_admin_routes.router,
tags=["v2", "admin"],

View File

@@ -1,28 +0,0 @@
"""ElevenLabs integration blocks - test credentials and shared utilities."""
from typing import Literal
from pydantic import SecretStr
from backend.data.model import APIKeyCredentials, CredentialsMetaInput
from backend.integrations.providers import ProviderName
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="elevenlabs",
api_key=SecretStr("mock-elevenlabs-api-key"),
title="Mock ElevenLabs API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
ElevenLabsCredentials = APIKeyCredentials
ElevenLabsCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.ELEVENLABS], Literal["api_key"]
]

View File

@@ -1,77 +0,0 @@
"""Text encoding block for converting special characters to escape sequences."""
import codecs
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
class TextEncoderBlock(Block):
"""
Encodes a string by converting special characters into escape sequences.
This block is the inverse of TextDecoderBlock. It takes text containing
special characters (like newlines, tabs, etc.) and converts them into
their escape sequence representations (e.g., newline becomes \\n).
"""
class Input(BlockSchemaInput):
"""Input schema for TextEncoderBlock."""
text: str = SchemaField(
description="A string containing special characters to be encoded",
placeholder="Your text with newlines and quotes to encode",
)
class Output(BlockSchemaOutput):
"""Output schema for TextEncoderBlock."""
encoded_text: str = SchemaField(
description="The encoded text with special characters converted to escape sequences"
)
error: str = SchemaField(description="Error message if encoding fails")
def __init__(self):
super().__init__(
id="5185f32e-4b65-4ecf-8fbb-873f003f09d6",
description="Encodes a string by converting special characters into escape sequences",
categories={BlockCategory.TEXT},
input_schema=TextEncoderBlock.Input,
output_schema=TextEncoderBlock.Output,
test_input={
"text": """Hello
World!
This is a "quoted" string."""
},
test_output=[
(
"encoded_text",
"""Hello\\nWorld!\\nThis is a "quoted" string.""",
)
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
"""
Encode the input text by converting special characters to escape sequences.
Args:
input_data: The input containing the text to encode.
**kwargs: Additional keyword arguments (unused).
Yields:
The encoded text with escape sequences, or an error message if encoding fails.
"""
try:
encoded_text = codecs.encode(input_data.text, "unicode_escape").decode(
"utf-8"
)
yield "encoded_text", encoded_text
except Exception as e:
yield "error", f"Encoding error: {str(e)}"

View File

@@ -115,7 +115,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_4_6_OPUS = "claude-opus-4-6"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
@@ -271,9 +270,6 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
), # claude-opus-4-6
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101

View File

@@ -0,0 +1,246 @@
import os
import tempfile
from typing import Optional
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
# 2) Load the clip
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
yield "duration", clip.duration
class LoopVideoBlock(Block):
"""
Block for looping (repeating) a video clip until a given duration or number of loops.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
# Provide EITHER a `duration` or `n_loops` or both. We'll demonstrate `duration`.
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. If omitted, defaults to no looping.",
default=None,
ge=0.0,
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. If omitted, defaults to 1 (no repeat).",
default=None,
ge=1,
)
class Output(BlockSchemaOutput):
video_out: str = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# 2) Load the clip
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
looped_clip = clip
if input_data.duration:
# Loop until we reach the specified duration
looped_clip = looped_clip.with_effects([Loop(duration=input_data.duration)])
elif input_data.n_loops:
looped_clip = looped_clip.with_effects([Loop(n=input_data.n_loops)])
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
assert isinstance(looped_clip, VideoFileClip)
# 4) Save the looped output
output_filename = MediaFileType(
f"{node_exec_id}_looped_{os.path.basename(local_video_path)}"
)
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out
class AddAudioToVideoBlock(Block):
"""
Block that adds (attaches) an audio track to an existing video.
Optionally scale the volume of the new track.
"""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
video_abspath = os.path.join(abs_temp_dir, local_video_path)
audio_abspath = os.path.join(abs_temp_dir, local_audio_path)
# 2) Load video + audio with moviepy
video_clip = VideoFileClip(video_abspath)
audio_clip = AudioFileClip(audio_abspath)
# Optionally scale volume
if input_data.volume != 1.0:
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_clip)
# 4) Write to output file
output_filename = MediaFileType(
f"{node_exec_id}_audio_attached_{os.path.basename(local_video_path)}"
)
output_abspath = os.path.join(abs_temp_dir, output_filename)
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -1,77 +0,0 @@
import pytest
from backend.blocks.encoder_block import TextEncoderBlock
@pytest.mark.asyncio
async def test_text_encoder_basic():
"""Test basic encoding of newlines and special characters."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello\nWorld")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == "Hello\\nWorld"
@pytest.mark.asyncio
async def test_text_encoder_multiple_escapes():
"""Test encoding of multiple escape sequences."""
block = TextEncoderBlock()
result = []
async for output in block.run(
TextEncoderBlock.Input(text="Line1\nLine2\tTabbed\rCarriage")
):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert "\\n" in result[0][1]
assert "\\t" in result[0][1]
assert "\\r" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_unicode():
"""Test that unicode characters are handled correctly."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="Hello 世界\n")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
# Unicode characters should be escaped as \uXXXX sequences
assert "\\n" in result[0][1]
@pytest.mark.asyncio
async def test_text_encoder_empty_string():
"""Test encoding of an empty string."""
block = TextEncoderBlock()
result = []
async for output in block.run(TextEncoderBlock.Input(text="")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "encoded_text"
assert result[0][1] == ""
@pytest.mark.asyncio
async def test_text_encoder_error_handling():
"""Test that encoding errors are handled gracefully."""
from unittest.mock import patch
block = TextEncoderBlock()
result = []
with patch("codecs.encode", side_effect=Exception("Mocked encoding error")):
async for output in block.run(TextEncoderBlock.Input(text="test")):
result.append(output)
assert len(result) == 1
assert result[0][0] == "error"
assert "Mocked encoding error" in result[0][1]

View File

@@ -1,37 +0,0 @@
"""Video editing blocks for AutoGPT Platform.
This module provides blocks for:
- Downloading videos from URLs (YouTube, Vimeo, news sites, direct links)
- Clipping/trimming video segments
- Concatenating multiple videos
- Adding text overlays
- Adding AI-generated narration
- Getting media duration
- Looping videos
- Adding audio to videos
Dependencies:
- yt-dlp: For video downloading
- moviepy: For video editing operations
- elevenlabs: For AI narration (optional)
"""
from backend.blocks.video.add_audio import AddAudioToVideoBlock
from backend.blocks.video.clip import VideoClipBlock
from backend.blocks.video.concat import VideoConcatBlock
from backend.blocks.video.download import VideoDownloadBlock
from backend.blocks.video.duration import MediaDurationBlock
from backend.blocks.video.loop import LoopVideoBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.blocks.video.text_overlay import VideoTextOverlayBlock
__all__ = [
"AddAudioToVideoBlock",
"LoopVideoBlock",
"MediaDurationBlock",
"VideoClipBlock",
"VideoConcatBlock",
"VideoDownloadBlock",
"VideoNarrationBlock",
"VideoTextOverlayBlock",
]

View File

@@ -1,131 +0,0 @@
"""Shared utilities for video blocks."""
from __future__ import annotations
import logging
import os
import re
import subprocess
from pathlib import Path
logger = logging.getLogger(__name__)
# Known operation tags added by video blocks
_VIDEO_OPS = (
r"(?:clip|overlay|narrated|looped|concat|audio_attached|with_audio|narration)"
)
# Matches: {node_exec_id}_{operation}_ where node_exec_id contains a UUID
_BLOCK_PREFIX_RE = re.compile(
r"^[a-zA-Z0-9_-]*"
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
r"[a-zA-Z0-9_-]*"
r"_" + _VIDEO_OPS + r"_"
)
# Matches: a lone {node_exec_id}_ prefix (no operation keyword, e.g. download output)
_UUID_PREFIX_RE = re.compile(
r"^[a-zA-Z0-9_-]*"
r"[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}"
r"[a-zA-Z0-9_-]*_"
)
def extract_source_name(input_path: str, max_length: int = 50) -> str:
"""Extract the original source filename by stripping block-generated prefixes.
Iteratively removes {node_exec_id}_{operation}_ prefixes that accumulate
when chaining video blocks, recovering the original human-readable name.
Safe for plain filenames (no UUID -> no stripping).
Falls back to "video" if everything is stripped.
"""
stem = Path(input_path).stem
# Pass 1: strip {node_exec_id}_{operation}_ prefixes iteratively
while _BLOCK_PREFIX_RE.match(stem):
stem = _BLOCK_PREFIX_RE.sub("", stem, count=1)
# Pass 2: strip a lone {node_exec_id}_ prefix (e.g. from download block)
if _UUID_PREFIX_RE.match(stem):
stem = _UUID_PREFIX_RE.sub("", stem, count=1)
if not stem:
return "video"
return stem[:max_length]
def get_video_codecs(output_path: str) -> tuple[str, str]:
"""Get appropriate video and audio codecs based on output file extension.
Args:
output_path: Path to the output file (used to determine extension)
Returns:
Tuple of (video_codec, audio_codec)
Codec mappings:
- .mp4: H.264 + AAC (universal compatibility)
- .webm: VP8 + Vorbis (web streaming)
- .mkv: H.264 + AAC (container supports many codecs)
- .mov: H.264 + AAC (Apple QuickTime, widely compatible)
- .m4v: H.264 + AAC (Apple iTunes/devices)
- .avi: MPEG-4 + MP3 (legacy Windows)
"""
ext = os.path.splitext(output_path)[1].lower()
codec_map: dict[str, tuple[str, str]] = {
".mp4": ("libx264", "aac"),
".webm": ("libvpx", "libvorbis"),
".mkv": ("libx264", "aac"),
".mov": ("libx264", "aac"),
".m4v": ("libx264", "aac"),
".avi": ("mpeg4", "libmp3lame"),
}
return codec_map.get(ext, ("libx264", "aac"))
def strip_chapters_inplace(video_path: str) -> None:
"""Strip chapter metadata from a media file in-place using ffmpeg.
MoviePy 2.x crashes with IndexError when parsing files with embedded
chapter metadata (https://github.com/Zulko/moviepy/issues/2419).
This strips chapters without re-encoding.
Args:
video_path: Absolute path to the media file to strip chapters from.
"""
base, ext = os.path.splitext(video_path)
tmp_path = base + ".tmp" + ext
try:
result = subprocess.run(
[
"ffmpeg",
"-y",
"-i",
video_path,
"-map_chapters",
"-1",
"-codec",
"copy",
tmp_path,
],
capture_output=True,
text=True,
timeout=300,
)
if result.returncode != 0:
logger.warning(
"ffmpeg chapter strip failed (rc=%d): %s",
result.returncode,
result.stderr,
)
return
os.replace(tmp_path, video_path)
except FileNotFoundError:
logger.warning("ffmpeg not found; skipping chapter strip")
finally:
if os.path.exists(tmp_path):
os.unlink(tmp_path)

View File

@@ -1,113 +0,0 @@
"""AddAudioToVideoBlock - Attach an audio track to a video file."""
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class AddAudioToVideoBlock(Block):
"""Add (attach) an audio track to an existing video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Video input (URL, data URI, or local path)."
)
audio_in: MediaFileType = SchemaField(
description="Audio input (URL, data URI, or local path)."
)
volume: float = SchemaField(
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Final video (with attached audio), as a path or data URI."
)
def __init__(self):
super().__init__(
id="3503748d-62b6-4425-91d6-725b064af509",
description="Block to attach an audio file to a video file using moviepy.",
categories={BlockCategory.MULTIMEDIA},
input_schema=AddAudioToVideoBlock.Input,
output_schema=AddAudioToVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
file=input_data.audio_in,
execution_context=execution_context,
return_format="for_local_processing",
)
video_abspath = get_exec_file_path(graph_exec_id, local_video_path)
audio_abspath = get_exec_file_path(graph_exec_id, local_audio_path)
# 2) Load video + audio with moviepy
strip_chapters_inplace(video_abspath)
strip_chapters_inplace(audio_abspath)
video_clip = None
audio_clip = None
final_clip = None
try:
video_clip = VideoFileClip(video_abspath)
audio_clip = AudioFileClip(audio_abspath)
# Optionally scale volume
if input_data.volume != 1.0:
audio_clip = audio_clip.with_volume_scaled(input_data.volume)
# 3) Attach the new audio track
final_clip = video_clip.with_audio(audio_clip)
# 4) Write to output file
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_with_audio_{source}.mp4")
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
final_clip.write_videofile(
output_abspath, codec="libx264", audio_codec="aac"
)
finally:
if final_clip:
final_clip.close()
if audio_clip:
audio_clip.close()
if video_clip:
video_clip.close()
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -1,167 +0,0 @@
"""VideoClipBlock - Extract a segment from a video file."""
from typing import Literal
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoClipBlock(Block):
"""Extract a time segment from a video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
start_time: float = SchemaField(description="Start time in seconds", ge=0.0)
end_time: float = SchemaField(description="End time in seconds", ge=0.0)
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Clipped video file (path or data URI)"
)
duration: float = SchemaField(description="Clip duration in seconds")
def __init__(self):
super().__init__(
id="8f539119-e580-4d86-ad41-86fbcb22abb1",
description="Extract a time segment from a video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"video_in": "/tmp/test.mp4",
"start_time": 0.0,
"end_time": 10.0,
},
test_output=[("video_out", str), ("duration", float)],
test_mock={
"_clip_video": lambda *args: 10.0,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "clip_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _clip_video(
self,
video_abspath: str,
output_abspath: str,
start_time: float,
end_time: float,
) -> float:
"""Extract a clip from a video. Extracted for testability."""
clip = None
subclip = None
try:
strip_chapters_inplace(video_abspath)
clip = VideoFileClip(video_abspath)
subclip = clip.subclipped(start_time, end_time)
video_codec, audio_codec = get_video_codecs(output_abspath)
subclip.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
return subclip.duration
finally:
if subclip:
subclip.close()
if clip:
clip.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range
if input_data.end_time <= input_data.start_time:
raise BlockExecutionError(
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Build output path
source = extract_source_name(local_video_path)
output_filename = MediaFileType(
f"{node_exec_id}_clip_{source}.{input_data.output_format}"
)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
duration = self._clip_video(
video_abspath,
output_abspath,
input_data.start_time,
input_data.end_time,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
yield "duration", duration
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to clip video: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,227 +0,0 @@
"""VideoConcatBlock - Concatenate multiple video clips into one."""
from typing import Literal
from moviepy import concatenate_videoclips
from moviepy.video.fx import CrossFadeIn, CrossFadeOut, FadeIn, FadeOut
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoConcatBlock(Block):
"""Merge multiple video clips into one continuous video."""
class Input(BlockSchemaInput):
videos: list[MediaFileType] = SchemaField(
description="List of video files to concatenate (in order)"
)
transition: Literal["none", "crossfade", "fade_black"] = SchemaField(
description="Transition between clips", default="none"
)
transition_duration: int = SchemaField(
description="Transition duration in seconds",
default=1,
ge=0,
advanced=True,
)
output_format: Literal["mp4", "webm", "mkv", "mov"] = SchemaField(
description="Output format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Concatenated video file (path or data URI)"
)
total_duration: float = SchemaField(description="Total duration in seconds")
def __init__(self):
super().__init__(
id="9b0f531a-1118-487f-aeec-3fa63ea8900a",
description="Merge multiple video clips into one continuous video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"videos": ["/tmp/a.mp4", "/tmp/b.mp4"],
},
test_output=[
("video_out", str),
("total_duration", float),
],
test_mock={
"_concat_videos": lambda *args: 20.0,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "concat_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _concat_videos(
self,
video_abspaths: list[str],
output_abspath: str,
transition: str,
transition_duration: int,
) -> float:
"""Concatenate videos. Extracted for testability.
Returns:
Total duration of the concatenated video.
"""
clips = []
faded_clips = []
final = None
try:
# Load clips
for v in video_abspaths:
strip_chapters_inplace(v)
clips.append(VideoFileClip(v))
# Validate transition_duration against shortest clip
if transition in {"crossfade", "fade_black"} and transition_duration > 0:
min_duration = min(c.duration for c in clips)
if transition_duration >= min_duration:
raise BlockExecutionError(
message=(
f"transition_duration ({transition_duration}s) must be "
f"shorter than the shortest clip ({min_duration:.2f}s)"
),
block_name=self.name,
block_id=str(self.id),
)
if transition == "crossfade":
for i, clip in enumerate(clips):
effects = []
if i > 0:
effects.append(CrossFadeIn(transition_duration))
if i < len(clips) - 1:
effects.append(CrossFadeOut(transition_duration))
if effects:
clip = clip.with_effects(effects)
faded_clips.append(clip)
final = concatenate_videoclips(
faded_clips,
method="compose",
padding=-transition_duration,
)
elif transition == "fade_black":
for clip in clips:
faded = clip.with_effects(
[FadeIn(transition_duration), FadeOut(transition_duration)]
)
faded_clips.append(faded)
final = concatenate_videoclips(faded_clips)
else:
final = concatenate_videoclips(clips)
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
return final.duration
finally:
if final:
final.close()
for clip in faded_clips:
clip.close()
for clip in clips:
clip.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate minimum clips
if len(input_data.videos) < 2:
raise BlockExecutionError(
message="At least 2 videos are required for concatenation",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store all input videos locally
video_abspaths = []
for video in input_data.videos:
local_path = await self._store_input_video(execution_context, video)
video_abspaths.append(
get_exec_file_path(execution_context.graph_exec_id, local_path)
)
# Build output path
source = (
extract_source_name(video_abspaths[0]) if video_abspaths else "video"
)
output_filename = MediaFileType(
f"{node_exec_id}_concat_{source}.{input_data.output_format}"
)
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
total_duration = self._concat_videos(
video_abspaths,
output_abspath,
input_data.transition,
input_data.transition_duration,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
yield "total_duration", total_duration
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to concatenate videos: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,172 +0,0 @@
"""VideoDownloadBlock - Download video from URL (YouTube, Vimeo, news sites, direct links)."""
import os
import typing
from typing import Literal
import yt_dlp
if typing.TYPE_CHECKING:
from yt_dlp import _Params
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoDownloadBlock(Block):
"""Download video from URL using yt-dlp."""
class Input(BlockSchemaInput):
url: str = SchemaField(
description="URL of the video to download (YouTube, Vimeo, direct link, etc.)",
placeholder="https://www.youtube.com/watch?v=...",
)
quality: Literal["best", "1080p", "720p", "480p", "audio_only"] = SchemaField(
description="Video quality preference", default="720p"
)
output_format: Literal["mp4", "webm", "mkv"] = SchemaField(
description="Output video format", default="mp4", advanced=True
)
class Output(BlockSchemaOutput):
video_file: MediaFileType = SchemaField(
description="Downloaded video (path or data URI)"
)
duration: float = SchemaField(description="Video duration in seconds")
title: str = SchemaField(description="Video title from source")
source_url: str = SchemaField(description="Original source URL")
def __init__(self):
super().__init__(
id="c35daabb-cd60-493b-b9ad-51f1fe4b50c4",
description="Download video from URL (YouTube, Vimeo, news sites, direct links)",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
disabled=True, # Disable until we can sandbox yt-dlp and handle security implications
test_input={
"url": "https://www.youtube.com/watch?v=dQw4w9WgXcQ",
"quality": "480p",
},
test_output=[
("video_file", str),
("duration", float),
("title", str),
("source_url", str),
],
test_mock={
"_download_video": lambda *args: (
"video.mp4",
212.0,
"Test Video",
),
"_store_output_video": lambda *args, **kwargs: "video.mp4",
},
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _get_format_string(self, quality: str) -> str:
formats = {
"best": "bestvideo+bestaudio/best",
"1080p": "bestvideo[height<=1080]+bestaudio/best[height<=1080]",
"720p": "bestvideo[height<=720]+bestaudio/best[height<=720]",
"480p": "bestvideo[height<=480]+bestaudio/best[height<=480]",
"audio_only": "bestaudio/best",
}
return formats.get(quality, formats["720p"])
def _download_video(
self,
url: str,
quality: str,
output_format: str,
output_dir: str,
node_exec_id: str,
) -> tuple[str, float, str]:
"""Download video. Extracted for testability."""
output_template = os.path.join(
output_dir, f"{node_exec_id}_%(title).50s.%(ext)s"
)
ydl_opts: "_Params" = {
"format": f"{self._get_format_string(quality)}/best",
"outtmpl": output_template,
"merge_output_format": output_format,
"quiet": True,
"no_warnings": True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
video_path = ydl.prepare_filename(info)
# Handle format conversion in filename
if not video_path.endswith(f".{output_format}"):
video_path = video_path.rsplit(".", 1)[0] + f".{output_format}"
# Return just the filename, not the full path
filename = os.path.basename(video_path)
return (
filename,
info.get("duration") or 0.0,
info.get("title") or "Unknown",
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Get the exec file directory
output_dir = get_exec_file_path(execution_context.graph_exec_id, "")
os.makedirs(output_dir, exist_ok=True)
filename, duration, title = self._download_video(
input_data.url,
input_data.quality,
input_data.output_format,
output_dir,
node_exec_id,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, MediaFileType(filename)
)
yield "video_file", video_out
yield "duration", duration
yield "title", title
yield "source_url", input_data.url
except Exception as e:
raise BlockExecutionError(
message=f"Failed to download video: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,77 +0,0 @@
"""MediaDurationBlock - Get the duration of a media file."""
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class MediaDurationBlock(Block):
"""Get the duration of a media file (video or audio)."""
class Input(BlockSchemaInput):
media_in: MediaFileType = SchemaField(
description="Media input (URL, data URI, or local path)."
)
is_video: bool = SchemaField(
description="Whether the media is a video (True) or audio (False).",
default=True,
)
class Output(BlockSchemaOutput):
duration: float = SchemaField(
description="Duration of the media file (in seconds)."
)
def __init__(self):
super().__init__(
id="d8b91fd4-da26-42d4-8ecb-8b196c6d84b6",
description="Block to get the duration of a media file.",
categories={BlockCategory.MULTIMEDIA},
input_schema=MediaDurationBlock.Input,
output_schema=MediaDurationBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
file=input_data.media_in,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
# 2) Strip chapters to avoid MoviePy crash, then load the clip
strip_chapters_inplace(media_abspath)
clip = None
try:
if input_data.is_video:
clip = VideoFileClip(media_abspath)
else:
clip = AudioFileClip(media_abspath)
duration = clip.duration
finally:
if clip:
clip.close()
yield "duration", duration

View File

@@ -1,115 +0,0 @@
"""LoopVideoBlock - Loop a video to a given duration or number of repeats."""
from typing import Optional
from moviepy.video.fx.Loop import Loop
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import extract_source_name, strip_chapters_inplace
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class LoopVideoBlock(Block):
"""Loop (repeat) a video clip until a given duration or number of loops."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="The input video (can be a URL, data URI, or local path)."
)
duration: Optional[float] = SchemaField(
description="Target duration (in seconds) to loop the video to. Either duration or n_loops must be provided.",
default=None,
ge=0.0,
le=3600.0, # Max 1 hour to prevent disk exhaustion
)
n_loops: Optional[int] = SchemaField(
description="Number of times to repeat the video. Either n_loops or duration must be provided.",
default=None,
ge=1,
le=10, # Max 10 loops to prevent disk exhaustion
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Looped video returned either as a relative path or a data URI."
)
def __init__(self):
super().__init__(
id="8bf9eef6-5451-4213-b265-25306446e94b",
description="Block to loop a video to a given duration or number of repeats.",
categories={BlockCategory.MULTIMEDIA},
input_schema=LoopVideoBlock.Input,
output_schema=LoopVideoBlock.Output,
)
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
file=input_data.video_in,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
# 2) Load the clip
strip_chapters_inplace(input_abspath)
clip = None
looped_clip = None
try:
clip = VideoFileClip(input_abspath)
# 3) Apply the loop effect
if input_data.duration:
# Loop until we reach the specified duration
looped_clip = clip.with_effects([Loop(duration=input_data.duration)])
elif input_data.n_loops:
looped_clip = clip.with_effects([Loop(n=input_data.n_loops)])
else:
raise ValueError("Either 'duration' or 'n_loops' must be provided.")
assert isinstance(looped_clip, VideoFileClip)
# 4) Save the looped output
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_looped_{source}.mp4")
output_abspath = get_exec_file_path(graph_exec_id, output_filename)
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(
output_abspath, codec="libx264", audio_codec="aac"
)
finally:
if looped_clip:
looped_clip.close()
if clip:
clip.close()
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
file=output_filename,
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -1,267 +0,0 @@
"""VideoNarrationBlock - Generate AI voice narration and add to video."""
import os
from typing import Literal
from elevenlabs import ElevenLabs
from moviepy import CompositeAudioClip
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.elevenlabs._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
ElevenLabsCredentials,
ElevenLabsCredentialsInput,
)
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsField, SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoNarrationBlock(Block):
"""Generate AI narration and add to video."""
class Input(BlockSchemaInput):
credentials: ElevenLabsCredentialsInput = CredentialsField(
description="ElevenLabs API key for voice synthesis"
)
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
script: str = SchemaField(description="Narration script text")
voice_id: str = SchemaField(
description="ElevenLabs voice ID", default="21m00Tcm4TlvDq8ikWAM" # Rachel
)
model_id: Literal[
"eleven_multilingual_v2",
"eleven_flash_v2_5",
"eleven_turbo_v2_5",
"eleven_turbo_v2",
] = SchemaField(
description="ElevenLabs TTS model",
default="eleven_multilingual_v2",
)
mix_mode: Literal["replace", "mix", "ducking"] = SchemaField(
description="How to combine with original audio. 'ducking' applies stronger attenuation than 'mix'.",
default="ducking",
)
narration_volume: float = SchemaField(
description="Narration volume (0.0 to 2.0)",
default=1.0,
ge=0.0,
le=2.0,
advanced=True,
)
original_volume: float = SchemaField(
description="Original audio volume when mixing (0.0 to 1.0)",
default=0.3,
ge=0.0,
le=1.0,
advanced=True,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Video with narration (path or data URI)"
)
audio_file: MediaFileType = SchemaField(
description="Generated audio file (path or data URI)"
)
def __init__(self):
super().__init__(
id="3d036b53-859c-4b17-9826-ca340f736e0e",
description="Generate AI narration and add to video",
categories={BlockCategory.MULTIMEDIA, BlockCategory.AI},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"video_in": "/tmp/test.mp4",
"script": "Hello world",
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("video_out", str), ("audio_file", str)],
test_mock={
"_generate_narration_audio": lambda *args: b"mock audio content",
"_add_narration_to_video": lambda *args: None,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "narrated_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _generate_narration_audio(
self, api_key: str, script: str, voice_id: str, model_id: str
) -> bytes:
"""Generate narration audio via ElevenLabs API."""
client = ElevenLabs(api_key=api_key)
audio_generator = client.text_to_speech.convert(
voice_id=voice_id,
text=script,
model_id=model_id,
)
# The SDK returns a generator, collect all chunks
return b"".join(audio_generator)
def _add_narration_to_video(
self,
video_abspath: str,
audio_abspath: str,
output_abspath: str,
mix_mode: str,
narration_volume: float,
original_volume: float,
) -> None:
"""Add narration audio to video. Extracted for testability."""
video = None
final = None
narration_original = None
narration_scaled = None
original = None
try:
strip_chapters_inplace(video_abspath)
video = VideoFileClip(video_abspath)
narration_original = AudioFileClip(audio_abspath)
narration_scaled = narration_original.with_volume_scaled(narration_volume)
narration = narration_scaled
if mix_mode == "replace":
final_audio = narration
elif mix_mode == "mix":
if video.audio:
original = video.audio.with_volume_scaled(original_volume)
final_audio = CompositeAudioClip([original, narration])
else:
final_audio = narration
else: # ducking - apply stronger attenuation
if video.audio:
# Ducking uses a much lower volume for original audio
ducking_volume = original_volume * 0.3
original = video.audio.with_volume_scaled(ducking_volume)
final_audio = CompositeAudioClip([original, narration])
else:
final_audio = narration
final = video.with_audio(final_audio)
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
finally:
if original:
original.close()
if narration_scaled:
narration_scaled.close()
if narration_original:
narration_original.close()
if final:
final.close()
if video:
video.close()
async def run(
self,
input_data: Input,
*,
credentials: ElevenLabsCredentials,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Generate narration audio via ElevenLabs
audio_content = self._generate_narration_audio(
credentials.api_key.get_secret_value(),
input_data.script,
input_data.voice_id,
input_data.model_id,
)
# Save audio to exec file path
audio_filename = MediaFileType(f"{node_exec_id}_narration.mp3")
audio_abspath = get_exec_file_path(
execution_context.graph_exec_id, audio_filename
)
os.makedirs(os.path.dirname(audio_abspath), exist_ok=True)
with open(audio_abspath, "wb") as f:
f.write(audio_content)
# Add narration to video
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_narrated_{source}.mp4")
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_narration_to_video(
video_abspath,
audio_abspath,
output_abspath,
input_data.mix_mode,
input_data.narration_volume,
input_data.original_volume,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
audio_out = await self._store_output_video(
execution_context, audio_filename
)
yield "video_out", video_out
yield "audio_file", audio_out
except Exception as e:
raise BlockExecutionError(
message=f"Failed to add narration: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -1,231 +0,0 @@
"""VideoTextOverlayBlock - Add text overlay to video."""
from typing import Literal
from moviepy import CompositeVideoClip, TextClip
from moviepy.video.io.VideoFileClip import VideoFileClip
from backend.blocks.video._utils import (
extract_source_name,
get_video_codecs,
strip_chapters_inplace,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
class VideoTextOverlayBlock(Block):
"""Add text overlay/caption to video."""
class Input(BlockSchemaInput):
video_in: MediaFileType = SchemaField(
description="Input video (URL, data URI, or local path)"
)
text: str = SchemaField(description="Text to overlay on video")
position: Literal[
"top",
"center",
"bottom",
"top-left",
"top-right",
"bottom-left",
"bottom-right",
] = SchemaField(description="Position of text on screen", default="bottom")
start_time: float | None = SchemaField(
description="When to show text (seconds). None = entire video",
default=None,
advanced=True,
)
end_time: float | None = SchemaField(
description="When to hide text (seconds). None = until end",
default=None,
advanced=True,
)
font_size: int = SchemaField(
description="Font size", default=48, ge=12, le=200, advanced=True
)
font_color: str = SchemaField(
description="Font color (hex or name)", default="white", advanced=True
)
bg_color: str | None = SchemaField(
description="Background color behind text (None for transparent)",
default=None,
advanced=True,
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
description="Video with text overlay (path or data URI)"
)
def __init__(self):
super().__init__(
id="8ef14de6-cc90-430a-8cfa-3a003be92454",
description="Add text overlay/caption to video",
categories={BlockCategory.MULTIMEDIA},
input_schema=self.Input,
output_schema=self.Output,
disabled=True, # Disable until we can lockdown imagemagick security policy
test_input={"video_in": "/tmp/test.mp4", "text": "Hello World"},
test_output=[("video_out", str)],
test_mock={
"_add_text_overlay": lambda *args: None,
"_store_input_video": lambda *args, **kwargs: "test.mp4",
"_store_output_video": lambda *args, **kwargs: "overlay_test.mp4",
},
)
async def _store_input_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store input video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_local_processing",
)
async def _store_output_video(
self, execution_context: ExecutionContext, file: MediaFileType
) -> MediaFileType:
"""Store output video. Extracted for testability."""
return await store_media_file(
file=file,
execution_context=execution_context,
return_format="for_block_output",
)
def _add_text_overlay(
self,
video_abspath: str,
output_abspath: str,
text: str,
position: str,
start_time: float | None,
end_time: float | None,
font_size: int,
font_color: str,
bg_color: str | None,
) -> None:
"""Add text overlay to video. Extracted for testability."""
video = None
final = None
txt_clip = None
try:
strip_chapters_inplace(video_abspath)
video = VideoFileClip(video_abspath)
txt_clip = TextClip(
text=text,
font_size=font_size,
color=font_color,
bg_color=bg_color,
)
# Position mapping
pos_map = {
"top": ("center", "top"),
"center": ("center", "center"),
"bottom": ("center", "bottom"),
"top-left": ("left", "top"),
"top-right": ("right", "top"),
"bottom-left": ("left", "bottom"),
"bottom-right": ("right", "bottom"),
}
txt_clip = txt_clip.with_position(pos_map[position])
# Set timing
start = start_time or 0
end = end_time or video.duration
duration = max(0, end - start)
txt_clip = txt_clip.with_start(start).with_end(end).with_duration(duration)
final = CompositeVideoClip([video, txt_clip])
video_codec, audio_codec = get_video_codecs(output_abspath)
final.write_videofile(
output_abspath, codec=video_codec, audio_codec=audio_codec
)
finally:
if txt_clip:
txt_clip.close()
if final:
final.close()
if video:
video.close()
async def run(
self,
input_data: Input,
*,
execution_context: ExecutionContext,
node_exec_id: str,
**kwargs,
) -> BlockOutput:
# Validate time range if both are provided
if (
input_data.start_time is not None
and input_data.end_time is not None
and input_data.end_time <= input_data.start_time
):
raise BlockExecutionError(
message=f"end_time ({input_data.end_time}) must be greater than start_time ({input_data.start_time})",
block_name=self.name,
block_id=str(self.id),
)
try:
assert execution_context.graph_exec_id is not None
# Store the input video locally
local_video_path = await self._store_input_video(
execution_context, input_data.video_in
)
video_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_video_path
)
# Build output path
source = extract_source_name(local_video_path)
output_filename = MediaFileType(f"{node_exec_id}_overlay_{source}.mp4")
output_abspath = get_exec_file_path(
execution_context.graph_exec_id, output_filename
)
self._add_text_overlay(
video_abspath,
output_abspath,
input_data.text,
input_data.position,
input_data.start_time,
input_data.end_time,
input_data.font_size,
input_data.font_color,
input_data.bg_color,
)
# Return as workspace path or data URI based on context
video_out = await self._store_output_video(
execution_context, output_filename
)
yield "video_out", video_out
except BlockExecutionError:
raise
except Exception as e:
raise BlockExecutionError(
message=f"Failed to add text overlay: {e}",
block_name=self.name,
block_id=str(self.id),
) from e

View File

@@ -165,13 +165,10 @@ class TranscribeYoutubeVideoBlock(Block):
credentials: WebshareProxyCredentials,
**kwargs,
) -> BlockOutput:
try:
video_id = self.extract_video_id(input_data.youtube_url)
transcript = self.get_transcript(video_id, credentials)
transcript_text = self.format_transcript(transcript=transcript)
video_id = self.extract_video_id(input_data.youtube_url)
yield "video_id", video_id
# Only yield after all operations succeed
yield "video_id", video_id
yield "transcript", transcript_text
except Exception as e:
yield "error", str(e)
transcript = self.get_transcript(video_id, credentials)
transcript_text = self.format_transcript(transcript=transcript)
yield "transcript", transcript_text

View File

@@ -36,14 +36,12 @@ from backend.blocks.replicate.replicate_block import ReplicateModelBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.blocks.talking_head import CreateTalkingAvatarVideoBlock
from backend.blocks.text_to_speech_block import UnrealTextToSpeechBlock
from backend.blocks.video.narration import VideoNarrationBlock
from backend.data.block import Block, BlockCost, BlockCostType
from backend.integrations.credentials_store import (
aiml_api_credentials,
anthropic_credentials,
apollo_credentials,
did_credentials,
elevenlabs_credentials,
enrichlayer_credentials,
groq_credentials,
ideogram_credentials,
@@ -80,7 +78,6 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.CLAUDE_4_1_OPUS: 21,
LlmModel.CLAUDE_4_OPUS: 21,
LlmModel.CLAUDE_4_SONNET: 5,
LlmModel.CLAUDE_4_6_OPUS: 14,
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9,
@@ -642,16 +639,4 @@ BLOCK_COSTS: dict[Type[Block], list[BlockCost]] = {
},
),
],
VideoNarrationBlock: [
BlockCost(
cost_amount=5, # ElevenLabs TTS cost
cost_filter={
"credentials": {
"id": elevenlabs_credentials.id,
"provider": elevenlabs_credentials.provider,
"type": elevenlabs_credentials.type,
}
},
)
],
}

View File

@@ -134,16 +134,6 @@ async def test_block_credit_reset(server: SpinTestServer):
month1 = datetime.now(timezone.utc).replace(month=1, day=1)
user_credit.time_now = lambda: month1
# IMPORTANT: Set updatedAt to December of previous year to ensure it's
# in a different month than month1 (January). This fixes a timing bug
# where if the test runs in early February, 35 days ago would be January,
# matching the mocked month1 and preventing the refill from triggering.
dec_previous_year = month1.replace(year=month1.year - 1, month=12, day=15)
await UserBalance.prisma().update(
where={"userId": DEFAULT_USER_ID},
data={"updatedAt": dec_previous_year},
)
# First call in month 1 should trigger refill
balance = await user_credit.get_credits(DEFAULT_USER_ID)
assert balance == REFILL_VALUE # Should get 1000 credits

View File

@@ -211,6 +211,22 @@ class AgentRejectionData(BaseNotificationData):
return value
class WaitlistLaunchData(BaseNotificationData):
"""Notification data for when an agent from a waitlist is launched."""
agent_name: str
waitlist_name: str
store_url: str
launched_at: datetime
@field_validator("launched_at")
@classmethod
def validate_timezone(cls, value: datetime):
if value.tzinfo is None:
raise ValueError("datetime must have timezone information")
return value
NotificationData = Annotated[
Union[
AgentRunData,
@@ -223,6 +239,7 @@ NotificationData = Annotated[
DailySummaryData,
RefundRequestData,
BaseSummaryData,
WaitlistLaunchData,
],
Field(discriminator="type"),
]
@@ -273,6 +290,7 @@ def get_notif_data_type(
NotificationType.REFUND_PROCESSED: RefundRequestData,
NotificationType.AGENT_APPROVED: AgentApprovalData,
NotificationType.AGENT_REJECTED: AgentRejectionData,
NotificationType.WAITLIST_LAUNCH: WaitlistLaunchData,
}[notification_type]
@@ -318,6 +336,7 @@ class NotificationTypeOverride:
NotificationType.REFUND_PROCESSED: QueueType.ADMIN,
NotificationType.AGENT_APPROVED: QueueType.IMMEDIATE,
NotificationType.AGENT_REJECTED: QueueType.IMMEDIATE,
NotificationType.WAITLIST_LAUNCH: QueueType.IMMEDIATE,
}
return BATCHING_RULES.get(self.notification_type, QueueType.IMMEDIATE)
@@ -337,6 +356,7 @@ class NotificationTypeOverride:
NotificationType.REFUND_PROCESSED: "refund_processed.html",
NotificationType.AGENT_APPROVED: "agent_approved.html",
NotificationType.AGENT_REJECTED: "agent_rejected.html",
NotificationType.WAITLIST_LAUNCH: "waitlist_launch.html",
}[self.notification_type]
@property
@@ -354,6 +374,7 @@ class NotificationTypeOverride:
NotificationType.REFUND_PROCESSED: "Refund for ${{data.amount / 100}} to {{data.user_name}} has been processed",
NotificationType.AGENT_APPROVED: "🎉 Your agent '{{data.agent_name}}' has been approved!",
NotificationType.AGENT_REJECTED: "Your agent '{{data.agent_name}}' needs some updates",
NotificationType.WAITLIST_LAUNCH: "🚀 {{data.agent_name}} is now available!",
}[self.notification_type]

View File

@@ -224,14 +224,6 @@ openweathermap_credentials = APIKeyCredentials(
expires_at=None,
)
elevenlabs_credentials = APIKeyCredentials(
id="f4a8b6c2-3d1e-4f5a-9b8c-7d6e5f4a3b2c",
provider="elevenlabs",
api_key=SecretStr(settings.secrets.elevenlabs_api_key),
title="Use Credits for ElevenLabs",
expires_at=None,
)
DEFAULT_CREDENTIALS = [
ollama_credentials,
revid_credentials,
@@ -260,7 +252,6 @@ DEFAULT_CREDENTIALS = [
v0_credentials,
webshare_proxy_credentials,
openweathermap_credentials,
elevenlabs_credentials,
]
SYSTEM_CREDENTIAL_IDS = {cred.id for cred in DEFAULT_CREDENTIALS}
@@ -375,8 +366,6 @@ class IntegrationCredentialsStore:
all_credentials.append(webshare_proxy_credentials)
if settings.secrets.openweathermap_api_key:
all_credentials.append(openweathermap_credentials)
if settings.secrets.elevenlabs_api_key:
all_credentials.append(elevenlabs_credentials)
return all_credentials
async def get_creds_by_id(

View File

@@ -18,7 +18,6 @@ class ProviderName(str, Enum):
DISCORD = "discord"
D_ID = "d_id"
E2B = "e2b"
ELEVENLABS = "elevenlabs"
FAL = "fal"
GITHUB = "github"
GOOGLE = "google"

View File

@@ -0,0 +1,59 @@
{# Waitlist Launch Notification Email Template #}
{#
Template variables:
data.agent_name: the name of the launched agent
data.waitlist_name: the name of the waitlist the user joined
data.store_url: URL to view the agent in the store
data.launched_at: when the agent was launched
Subject: {{ data.agent_name }} is now available!
#}
{% block content %}
<h1 style="color: #7c3aed; font-size: 32px; font-weight: 700; margin: 0 0 24px 0; text-align: center;">
The wait is over!
</h1>
<p style="color: #586069; font-size: 18px; text-align: center; margin: 0 0 24px 0;">
<strong>'{{ data.agent_name }}'</strong> is now live in the AutoGPT Store!
</p>
<div style="height: 32px; background: transparent;"></div>
<div style="background: #f3e8ff; border: 1px solid #d8b4fe; border-radius: 8px; padding: 20px; margin: 0;">
<h3 style="color: #6b21a8; font-size: 16px; font-weight: 600; margin: 0 0 12px 0;">
You're one of the first to know!
</h3>
<p style="color: #6b21a8; margin: 0; font-size: 16px; line-height: 1.5;">
You signed up for the <strong>{{ data.waitlist_name }}</strong> waitlist, and we're excited to let you know that this agent is now ready for you to use.
</p>
</div>
<div style="height: 32px; background: transparent;"></div>
<div style="text-align: center; margin: 24px 0;">
<a href="{{ data.store_url }}" style="display: inline-block; background: linear-gradient(135deg, #7c3aed 0%, #5b21b6 100%); color: white; text-decoration: none; padding: 14px 28px; border-radius: 6px; font-weight: 600; font-size: 16px;">
Get {{ data.agent_name }} Now
</a>
</div>
<div style="height: 32px; background: transparent;"></div>
<div style="background: #d1ecf1; border: 1px solid #bee5eb; border-radius: 8px; padding: 20px; margin: 0;">
<h3 style="color: #0c5460; font-size: 16px; font-weight: 600; margin: 0 0 12px 0;">
What can you do now?
</h3>
<ul style="color: #0c5460; margin: 0; padding-left: 18px; font-size: 16px; line-height: 1.6;">
<li>Visit the store to learn more about what this agent can do</li>
<li>Install and start using the agent right away</li>
<li>Share it with others who might find it useful</li>
</ul>
</div>
<div style="height: 32px; background: transparent;"></div>
<p style="color: #6a737d; font-size: 14px; text-align: center; margin: 24px 0;">
Thank you for helping us prioritize what to build! Your interest made this happen.
</p>
{% endblock %}

View File

@@ -8,8 +8,6 @@ from pathlib import Path
from typing import TYPE_CHECKING, Literal
from urllib.parse import urlparse
from pydantic import BaseModel
from backend.util.cloud_storage import get_cloud_storage_handler
from backend.util.request import Requests
from backend.util.settings import Config
@@ -19,35 +17,6 @@ from backend.util.virus_scanner import scan_content_safe
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
class WorkspaceUri(BaseModel):
"""Parsed workspace:// URI."""
file_ref: str # File ID or path (e.g. "abc123" or "/path/to/file.txt")
mime_type: str | None = None # MIME type from fragment (e.g. "video/mp4")
is_path: bool = False # True if file_ref is a path (starts with "/")
def parse_workspace_uri(uri: str) -> WorkspaceUri:
"""Parse a workspace:// URI into its components.
Examples:
"workspace://abc123" → WorkspaceUri(file_ref="abc123", mime_type=None, is_path=False)
"workspace://abc123#video/mp4" → WorkspaceUri(file_ref="abc123", mime_type="video/mp4", is_path=False)
"workspace:///path/to/file.txt" → WorkspaceUri(file_ref="/path/to/file.txt", mime_type=None, is_path=True)
"""
raw = uri.removeprefix("workspace://")
mime_type: str | None = None
if "#" in raw:
raw, fragment = raw.split("#", 1)
mime_type = fragment or None
return WorkspaceUri(
file_ref=raw,
mime_type=mime_type,
is_path=raw.startswith("/"),
)
# Return format options for store_media_file
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
@@ -214,20 +183,22 @@ async def store_media_file(
"This file type is only available in CoPilot sessions."
)
# Parse workspace reference (strips #mimeType fragment from file ID)
ws = parse_workspace_uri(file)
# Parse workspace reference
# workspace://abc123 - by file ID
# workspace:///path/to/file.txt - by virtual path
file_ref = file[12:] # Remove "workspace://"
if ws.is_path:
# Path reference: workspace:///path/to/file.txt
workspace_content = await workspace_manager.read_file(ws.file_ref)
file_info = await workspace_manager.get_file_info_by_path(ws.file_ref)
if file_ref.startswith("/"):
# Path reference
workspace_content = await workspace_manager.read_file(file_ref)
file_info = await workspace_manager.get_file_info_by_path(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
else:
# ID reference: workspace://abc123 or workspace://abc123#video/mp4
workspace_content = await workspace_manager.read_file_by_id(ws.file_ref)
file_info = await workspace_manager.get_file_info(ws.file_ref)
# ID reference
workspace_content = await workspace_manager.read_file_by_id(file_ref)
file_info = await workspace_manager.get_file_info(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
@@ -363,21 +334,7 @@ async def store_media_file(
# Don't re-save if input was already from workspace
if is_from_workspace:
# Return original workspace reference, ensuring MIME type fragment
ws = parse_workspace_uri(file)
if not ws.mime_type:
# Add MIME type fragment if missing (older refs without it)
try:
if ws.is_path:
info = await workspace_manager.get_file_info_by_path(
ws.file_ref
)
else:
info = await workspace_manager.get_file_info(ws.file_ref)
if info:
return MediaFileType(f"{file}#{info.mimeType}")
except Exception:
pass
# Return original workspace reference
return MediaFileType(file)
# Save new content to workspace
@@ -389,7 +346,7 @@ async def store_media_file(
filename=filename,
overwrite=True,
)
return MediaFileType(f"workspace://{file_record.id}#{file_record.mimeType}")
return MediaFileType(f"workspace://{file_record.id}")
else:
raise ValueError(f"Invalid return_format: {return_format}")

View File

@@ -656,7 +656,6 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
e2b_api_key: str = Field(default="", description="E2B API key")
nvidia_api_key: str = Field(default="", description="Nvidia API key")
mem0_api_key: str = Field(default="", description="Mem0 API key")
elevenlabs_api_key: str = Field(default="", description="ElevenLabs API key")
linear_client_id: str = Field(default="", description="Linear client ID")
linear_client_secret: str = Field(default="", description="Linear client secret")

View File

@@ -0,0 +1,53 @@
-- CreateEnum
CREATE TYPE "WaitlistExternalStatus" AS ENUM ('DONE', 'NOT_STARTED', 'CANCELED', 'WORK_IN_PROGRESS');
-- AlterEnum
ALTER TYPE "NotificationType" ADD VALUE 'WAITLIST_LAUNCH';
-- CreateTable
CREATE TABLE "WaitlistEntry" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"storeListingId" TEXT,
"owningUserId" TEXT NOT NULL,
"slug" TEXT NOT NULL,
"search" tsvector DEFAULT ''::tsvector,
"name" TEXT NOT NULL,
"subHeading" TEXT NOT NULL,
"videoUrl" TEXT,
"agentOutputDemoUrl" TEXT,
"imageUrls" TEXT[],
"description" TEXT NOT NULL,
"categories" TEXT[],
"status" "WaitlistExternalStatus" NOT NULL DEFAULT 'NOT_STARTED',
"votes" INTEGER NOT NULL DEFAULT 0,
"unaffiliatedEmailUsers" TEXT[] DEFAULT ARRAY[]::TEXT[],
"isDeleted" BOOLEAN NOT NULL DEFAULT false,
CONSTRAINT "WaitlistEntry_pkey" PRIMARY KEY ("id")
);
-- CreateTable
CREATE TABLE "_joinedWaitlists" (
"A" TEXT NOT NULL,
"B" TEXT NOT NULL
);
-- CreateIndex
CREATE UNIQUE INDEX "_joinedWaitlists_AB_unique" ON "_joinedWaitlists"("A", "B");
-- CreateIndex
CREATE INDEX "_joinedWaitlists_B_index" ON "_joinedWaitlists"("B");
-- AddForeignKey
ALTER TABLE "WaitlistEntry" ADD CONSTRAINT "WaitlistEntry_storeListingId_fkey" FOREIGN KEY ("storeListingId") REFERENCES "StoreListing"("id") ON DELETE SET NULL ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "WaitlistEntry" ADD CONSTRAINT "WaitlistEntry_owningUserId_fkey" FOREIGN KEY ("owningUserId") REFERENCES "User"("id") ON DELETE RESTRICT ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "_joinedWaitlists" ADD CONSTRAINT "_joinedWaitlists_A_fkey" FOREIGN KEY ("A") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "_joinedWaitlists" ADD CONSTRAINT "_joinedWaitlists_B_fkey" FOREIGN KEY ("B") REFERENCES "WaitlistEntry"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -1169,29 +1169,6 @@ attrs = ">=21.3.0"
e2b = ">=1.5.4,<2.0.0"
httpx = ">=0.20.0,<1.0.0"
[[package]]
name = "elevenlabs"
version = "1.59.0"
description = ""
optional = false
python-versions = "<4.0,>=3.8"
groups = ["main"]
files = [
{file = "elevenlabs-1.59.0-py3-none-any.whl", hash = "sha256:468145db81a0bc867708b4a8619699f75583e9481b395ec1339d0b443da771ed"},
{file = "elevenlabs-1.59.0.tar.gz", hash = "sha256:16e735bd594e86d415dd445d249c8cc28b09996cfd627fbc10102c0a84698859"},
]
[package.dependencies]
httpx = ">=0.21.2"
pydantic = ">=1.9.2"
pydantic-core = ">=2.18.2,<3.0.0"
requests = ">=2.20"
typing_extensions = ">=4.0.0"
websockets = ">=11.0"
[package.extras]
pyaudio = ["pyaudio (>=0.2.14)"]
[[package]]
name = "email-validator"
version = "2.2.0"
@@ -7384,28 +7361,6 @@ files = [
defusedxml = ">=0.7.1,<0.8.0"
requests = "*"
[[package]]
name = "yt-dlp"
version = "2025.12.8"
description = "A feature-rich command-line audio/video downloader"
optional = false
python-versions = ">=3.10"
groups = ["main"]
files = [
{file = "yt_dlp-2025.12.8-py3-none-any.whl", hash = "sha256:36e2584342e409cfbfa0b5e61448a1c5189e345cf4564294456ee509e7d3e065"},
{file = "yt_dlp-2025.12.8.tar.gz", hash = "sha256:b773c81bb6b71cb2c111cfb859f453c7a71cf2ef44eff234ff155877184c3e4f"},
]
[package.extras]
build = ["build", "hatchling (>=1.27.0)", "pip", "setuptools (>=71.0.2)", "wheel"]
curl-cffi = ["curl-cffi (>=0.5.10,<0.6.dev0 || >=0.10.dev0,<0.14) ; implementation_name == \"cpython\""]
default = ["brotli ; implementation_name == \"cpython\"", "brotlicffi ; implementation_name != \"cpython\"", "certifi", "mutagen", "pycryptodomex", "requests (>=2.32.2,<3)", "urllib3 (>=2.0.2,<3)", "websockets (>=13.0)", "yt-dlp-ejs (==0.3.2)"]
dev = ["autopep8 (>=2.0,<3.0)", "pre-commit", "pytest (>=8.1,<9.0)", "pytest-rerunfailures (>=14.0,<15.0)", "ruff (>=0.14.0,<0.15.0)"]
pyinstaller = ["pyinstaller (>=6.17.0)"]
secretstorage = ["cffi", "secretstorage"]
static-analysis = ["autopep8 (>=2.0,<3.0)", "ruff (>=0.14.0,<0.15.0)"]
test = ["pytest (>=8.1,<9.0)", "pytest-rerunfailures (>=14.0,<15.0)"]
[[package]]
name = "zerobouncesdk"
version = "1.1.2"
@@ -7557,4 +7512,4 @@ cffi = ["cffi (>=1.11)"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<3.14"
content-hash = "8239323f9ae6713224dffd1fe8ba8b449fe88b6c3c7a90940294a74f43a0387a"
content-hash = "ee5742dc1a9df50dfc06d4b26a1682cbb2b25cab6b79ce5625ec272f93e4f4bf"

View File

@@ -20,7 +20,6 @@ click = "^8.2.0"
cryptography = "^45.0"
discord-py = "^2.5.2"
e2b-code-interpreter = "^1.5.2"
elevenlabs = "^1.50.0"
fastapi = "^0.116.1"
feedparser = "^6.0.11"
flake8 = "^7.3.0"
@@ -72,7 +71,6 @@ tweepy = "^4.16.0"
uvicorn = { extras = ["standard"], version = "^0.35.0" }
websockets = "^15.0"
youtube-transcript-api = "^1.2.1"
yt-dlp = "2025.12.08"
zerobouncesdk = "^1.1.2"
# NOTE: please insert new dependencies in their alphabetical location
pytest-snapshot = "^0.9.0"

View File

@@ -70,6 +70,10 @@ model User {
OAuthAuthorizationCodes OAuthAuthorizationCode[]
OAuthAccessTokens OAuthAccessToken[]
OAuthRefreshTokens OAuthRefreshToken[]
// Waitlist relations
waitlistEntries WaitlistEntry[]
joinedWaitlists WaitlistEntry[] @relation("joinedWaitlists")
}
enum OnboardingStep {
@@ -344,6 +348,7 @@ enum NotificationType {
REFUND_PROCESSED
AGENT_APPROVED
AGENT_REJECTED
WAITLIST_LAUNCH
}
model NotificationEvent {
@@ -948,7 +953,8 @@ model StoreListing {
OwningUser User @relation(fields: [owningUserId], references: [id])
// Relations
Versions StoreListingVersion[] @relation("ListingVersions")
Versions StoreListingVersion[] @relation("ListingVersions")
waitlistEntries WaitlistEntry[]
// Unique index on agentId to ensure only one listing per agent, regardless of number of versions the agent has.
@@unique([agentGraphId])
@@ -1080,6 +1086,47 @@ model StoreListingReview {
@@index([reviewByUserId])
}
enum WaitlistExternalStatus {
DONE
NOT_STARTED
CANCELED
WORK_IN_PROGRESS
}
model WaitlistEntry {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
storeListingId String?
StoreListing StoreListing? @relation(fields: [storeListingId], references: [id], onDelete: SetNull)
owningUserId String
OwningUser User @relation(fields: [owningUserId], references: [id])
slug String
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
// Content fields
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
categories String[]
//Waitlist specific fields
status WaitlistExternalStatus @default(NOT_STARTED)
votes Int @default(0) // Hide from frontend api
joinedUsers User[] @relation("joinedWaitlists")
// NOTE: DO NOT DOUBLE SEND TO THESE USERS, IF THEY HAVE SIGNED UP SINCE THEY MAY HAVE ALREADY RECEIVED AN EMAIL
// DOUBLE CHECK WHEN SENDING THAT THEY ARE NOT IN THE JOINED USERS LIST ALSO
unaffiliatedEmailUsers String[] @default([])
isDeleted Boolean @default(false)
}
enum SubmissionStatus {
DRAFT // Being prepared, not yet submitted
PENDING // Submitted, awaiting review

View File

@@ -1,5 +1,5 @@
import { Sidebar } from "@/components/__legacy__/Sidebar";
import { Users, DollarSign, UserSearch, FileText } from "lucide-react";
import { Users, DollarSign, UserSearch, FileText, Clock } from "lucide-react";
import { IconSliders } from "@/components/__legacy__/ui/icons";
@@ -11,6 +11,11 @@ const sidebarLinkGroups = [
href: "/admin/marketplace",
icon: <Users className="h-6 w-6" />,
},
{
text: "Waitlist Management",
href: "/admin/waitlist",
icon: <Clock className="h-6 w-6" />,
},
{
text: "User Spending",
href: "/admin/spending",

View File

@@ -0,0 +1,217 @@
"use client";
import { useState } from "react";
import { useQueryClient } from "@tanstack/react-query";
import { Button } from "@/components/atoms/Button/Button";
import { Input } from "@/components/atoms/Input/Input";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import {
usePostV2CreateWaitlist,
getGetV2ListAllWaitlistsQueryKey,
} from "@/app/api/__generated__/endpoints/admin/admin";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { Plus } from "@phosphor-icons/react";
export function CreateWaitlistButton() {
const [open, setOpen] = useState(false);
const { toast } = useToast();
const queryClient = useQueryClient();
const createWaitlistMutation = usePostV2CreateWaitlist({
mutation: {
onSuccess: (response) => {
if (response.status === 200) {
toast({
title: "Success",
description: "Waitlist created successfully",
});
setOpen(false);
setFormData({
name: "",
slug: "",
subHeading: "",
description: "",
categories: "",
imageUrls: "",
videoUrl: "",
agentOutputDemoUrl: "",
});
queryClient.invalidateQueries({
queryKey: getGetV2ListAllWaitlistsQueryKey(),
});
} else {
toast({
variant: "destructive",
title: "Error",
description: "Failed to create waitlist",
});
}
},
onError: (error) => {
console.error("Error creating waitlist:", error);
toast({
variant: "destructive",
title: "Error",
description: "Failed to create waitlist",
});
},
},
});
const [formData, setFormData] = useState({
name: "",
slug: "",
subHeading: "",
description: "",
categories: "",
imageUrls: "",
videoUrl: "",
agentOutputDemoUrl: "",
});
function handleInputChange(id: string, value: string) {
setFormData((prev) => ({
...prev,
[id]: value,
}));
}
function generateSlug(name: string) {
return name
.toLowerCase()
.replace(/[^a-z0-9]+/g, "-")
.replace(/^-|-$/g, "");
}
function handleSubmit(e: React.FormEvent) {
e.preventDefault();
createWaitlistMutation.mutate({
data: {
name: formData.name,
slug: formData.slug || generateSlug(formData.name),
subHeading: formData.subHeading,
description: formData.description,
categories: formData.categories
? formData.categories.split(",").map((c) => c.trim())
: [],
imageUrls: formData.imageUrls
? formData.imageUrls.split(",").map((u) => u.trim())
: [],
videoUrl: formData.videoUrl || null,
agentOutputDemoUrl: formData.agentOutputDemoUrl || null,
},
});
}
return (
<>
<Button onClick={() => setOpen(true)}>
<Plus size={16} className="mr-2" />
Create Waitlist
</Button>
<Dialog
title="Create New Waitlist"
controlled={{
isOpen: open,
set: async (isOpen) => setOpen(isOpen),
}}
onClose={() => setOpen(false)}
styling={{ maxWidth: "600px" }}
>
<Dialog.Content>
<p className="mb-4 text-sm text-zinc-500">
Create a new waitlist for an upcoming agent. Users can sign up to be
notified when it launches.
</p>
<form onSubmit={handleSubmit} className="flex flex-col gap-2">
<Input
id="name"
label="Name"
value={formData.name}
onChange={(e) => handleInputChange("name", e.target.value)}
placeholder="SEO Analysis Agent"
required
/>
<Input
id="slug"
label="Slug"
value={formData.slug}
onChange={(e) => handleInputChange("slug", e.target.value)}
placeholder="seo-analysis-agent (auto-generated if empty)"
/>
<Input
id="subHeading"
label="Subheading"
value={formData.subHeading}
onChange={(e) => handleInputChange("subHeading", e.target.value)}
placeholder="Analyze your website's SEO in minutes"
required
/>
<Input
id="description"
label="Description"
type="textarea"
value={formData.description}
onChange={(e) => handleInputChange("description", e.target.value)}
placeholder="Detailed description of what this agent does..."
rows={4}
required
/>
<Input
id="categories"
label="Categories (comma-separated)"
value={formData.categories}
onChange={(e) => handleInputChange("categories", e.target.value)}
placeholder="SEO, Marketing, Analysis"
/>
<Input
id="imageUrls"
label="Image URLs (comma-separated)"
value={formData.imageUrls}
onChange={(e) => handleInputChange("imageUrls", e.target.value)}
placeholder="https://example.com/image1.jpg, https://example.com/image2.jpg"
/>
<Input
id="videoUrl"
label="Video URL (optional)"
value={formData.videoUrl}
onChange={(e) => handleInputChange("videoUrl", e.target.value)}
placeholder="https://youtube.com/watch?v=..."
/>
<Input
id="agentOutputDemoUrl"
label="Output Demo URL (optional)"
value={formData.agentOutputDemoUrl}
onChange={(e) =>
handleInputChange("agentOutputDemoUrl", e.target.value)
}
placeholder="https://example.com/demo-output.mp4"
/>
<Dialog.Footer>
<Button
type="button"
variant="secondary"
onClick={() => setOpen(false)}
>
Cancel
</Button>
<Button type="submit" loading={createWaitlistMutation.isPending}>
Create Waitlist
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
</>
);
}

View File

@@ -0,0 +1,221 @@
"use client";
import { useState } from "react";
import { Button } from "@/components/atoms/Button/Button";
import { Input } from "@/components/atoms/Input/Input";
import { Select } from "@/components/atoms/Select/Select";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { usePutV2UpdateWaitlist } from "@/app/api/__generated__/endpoints/admin/admin";
import type { WaitlistAdminResponse } from "@/app/api/__generated__/models/waitlistAdminResponse";
import type { WaitlistUpdateRequest } from "@/app/api/__generated__/models/waitlistUpdateRequest";
import { WaitlistExternalStatus } from "@/app/api/__generated__/models/waitlistExternalStatus";
type EditWaitlistDialogProps = {
waitlist: WaitlistAdminResponse;
onClose: () => void;
onSave: () => void;
};
const STATUS_OPTIONS = [
{ value: WaitlistExternalStatus.NOT_STARTED, label: "Not Started" },
{ value: WaitlistExternalStatus.WORK_IN_PROGRESS, label: "Work In Progress" },
{ value: WaitlistExternalStatus.DONE, label: "Done" },
{ value: WaitlistExternalStatus.CANCELED, label: "Canceled" },
];
export function EditWaitlistDialog({
waitlist,
onClose,
onSave,
}: EditWaitlistDialogProps) {
const { toast } = useToast();
const updateWaitlistMutation = usePutV2UpdateWaitlist();
const [formData, setFormData] = useState({
name: waitlist.name,
slug: waitlist.slug,
subHeading: waitlist.subHeading,
description: waitlist.description,
categories: waitlist.categories.join(", "),
imageUrls: waitlist.imageUrls.join(", "),
videoUrl: waitlist.videoUrl || "",
agentOutputDemoUrl: waitlist.agentOutputDemoUrl || "",
status: waitlist.status,
storeListingId: waitlist.storeListingId || "",
});
function handleInputChange(id: string, value: string) {
setFormData((prev) => ({
...prev,
[id]: value,
}));
}
function handleStatusChange(value: string) {
setFormData((prev) => ({
...prev,
status: value as WaitlistExternalStatus,
}));
}
async function handleSubmit(e: React.FormEvent) {
e.preventDefault();
const updateData: WaitlistUpdateRequest = {
name: formData.name,
slug: formData.slug,
subHeading: formData.subHeading,
description: formData.description,
categories: formData.categories
? formData.categories.split(",").map((c) => c.trim())
: [],
imageUrls: formData.imageUrls
? formData.imageUrls.split(",").map((u) => u.trim())
: [],
videoUrl: formData.videoUrl || null,
agentOutputDemoUrl: formData.agentOutputDemoUrl || null,
status: formData.status,
storeListingId: formData.storeListingId || null,
};
updateWaitlistMutation.mutate(
{ waitlistId: waitlist.id, data: updateData },
{
onSuccess: (response) => {
if (response.status === 200) {
toast({
title: "Success",
description: "Waitlist updated successfully",
});
onSave();
} else {
toast({
variant: "destructive",
title: "Error",
description: "Failed to update waitlist",
});
}
},
onError: () => {
toast({
variant: "destructive",
title: "Error",
description: "Failed to update waitlist",
});
},
},
);
}
return (
<Dialog
title="Edit Waitlist"
controlled={{
isOpen: true,
set: async (open) => {
if (!open) onClose();
},
}}
onClose={onClose}
styling={{ maxWidth: "600px" }}
>
<Dialog.Content>
<p className="mb-4 text-sm text-zinc-500">
Update the waitlist details. Changes will be reflected immediately.
</p>
<form onSubmit={handleSubmit} className="flex flex-col gap-2">
<Input
id="name"
label="Name"
value={formData.name}
onChange={(e) => handleInputChange("name", e.target.value)}
required
/>
<Input
id="slug"
label="Slug"
value={formData.slug}
onChange={(e) => handleInputChange("slug", e.target.value)}
/>
<Input
id="subHeading"
label="Subheading"
value={formData.subHeading}
onChange={(e) => handleInputChange("subHeading", e.target.value)}
required
/>
<Input
id="description"
label="Description"
type="textarea"
value={formData.description}
onChange={(e) => handleInputChange("description", e.target.value)}
rows={4}
required
/>
<Select
id="status"
label="Status"
value={formData.status}
onValueChange={handleStatusChange}
options={STATUS_OPTIONS}
/>
<Input
id="categories"
label="Categories (comma-separated)"
value={formData.categories}
onChange={(e) => handleInputChange("categories", e.target.value)}
/>
<Input
id="imageUrls"
label="Image URLs (comma-separated)"
value={formData.imageUrls}
onChange={(e) => handleInputChange("imageUrls", e.target.value)}
/>
<Input
id="videoUrl"
label="Video URL"
value={formData.videoUrl}
onChange={(e) => handleInputChange("videoUrl", e.target.value)}
/>
<Input
id="agentOutputDemoUrl"
label="Output Demo URL"
value={formData.agentOutputDemoUrl}
onChange={(e) =>
handleInputChange("agentOutputDemoUrl", e.target.value)
}
/>
<Input
id="storeListingId"
label="Store Listing ID (for linking)"
value={formData.storeListingId}
onChange={(e) =>
handleInputChange("storeListingId", e.target.value)
}
placeholder="Leave empty if not linked"
/>
<Dialog.Footer>
<Button type="button" variant="secondary" onClick={onClose}>
Cancel
</Button>
<Button type="submit" loading={updateWaitlistMutation.isPending}>
Save Changes
</Button>
</Dialog.Footer>
</form>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -0,0 +1,156 @@
"use client";
import { Button } from "@/components/atoms/Button/Button";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { User, Envelope, DownloadSimple } from "@phosphor-icons/react";
import { useGetV2GetWaitlistSignups } from "@/app/api/__generated__/endpoints/admin/admin";
type WaitlistSignupsDialogProps = {
waitlistId: string;
onClose: () => void;
};
export function WaitlistSignupsDialog({
waitlistId,
onClose,
}: WaitlistSignupsDialogProps) {
const {
data: signupsResponse,
isLoading,
isError,
} = useGetV2GetWaitlistSignups(waitlistId);
const signups = signupsResponse?.status === 200 ? signupsResponse.data : null;
function exportToCSV() {
if (!signups) return;
const headers = ["Type", "Email", "User ID", "Username"];
const rows = signups.signups.map((signup) => [
signup.type,
signup.email || "",
signup.userId || "",
signup.username || "",
]);
const escapeCell = (cell: string) => `"${cell.replace(/"/g, '""')}"`;
const csvContent = [
headers.join(","),
...rows.map((row) => row.map(escapeCell).join(",")),
].join("\n");
const blob = new Blob([csvContent], { type: "text/csv" });
const url = window.URL.createObjectURL(blob);
const a = document.createElement("a");
a.href = url;
a.download = `waitlist-${waitlistId}-signups.csv`;
a.click();
window.URL.revokeObjectURL(url);
}
function renderContent() {
if (isLoading) {
return <div className="py-10 text-center">Loading signups...</div>;
}
if (isError) {
return (
<div className="py-10 text-center text-red-500">
Failed to load signups. Please try again.
</div>
);
}
if (!signups || signups.signups.length === 0) {
return (
<div className="py-10 text-center text-gray-500">
No signups yet for this waitlist.
</div>
);
}
return (
<>
<div className="flex justify-end">
<Button variant="secondary" size="small" onClick={exportToCSV}>
<DownloadSimple className="mr-2 h-4 w-4" size={16} />
Export CSV
</Button>
</div>
<div className="max-h-[400px] overflow-y-auto rounded-md border">
<table className="w-full">
<thead className="bg-gray-50 dark:bg-gray-800">
<tr>
<th className="px-4 py-3 text-left text-sm font-medium">
Type
</th>
<th className="px-4 py-3 text-left text-sm font-medium">
Email / Username
</th>
<th className="px-4 py-3 text-left text-sm font-medium">
User ID
</th>
</tr>
</thead>
<tbody className="divide-y">
{signups.signups.map((signup, index) => (
<tr key={index}>
<td className="px-4 py-3">
{signup.type === "user" ? (
<span className="flex items-center gap-1 text-blue-600">
<User className="h-4 w-4" size={16} /> User
</span>
) : (
<span className="flex items-center gap-1 text-gray-600">
<Envelope className="h-4 w-4" size={16} /> Email
</span>
)}
</td>
<td className="px-4 py-3">
{signup.type === "user"
? signup.username || signup.email
: signup.email}
</td>
<td className="px-4 py-3 font-mono text-sm">
{signup.userId || "-"}
</td>
</tr>
))}
</tbody>
</table>
</div>
</>
);
}
return (
<Dialog
title="Waitlist Signups"
controlled={{
isOpen: true,
set: async (open) => {
if (!open) onClose();
},
}}
onClose={onClose}
styling={{ maxWidth: "700px" }}
>
<Dialog.Content>
<p className="mb-4 text-sm text-zinc-500">
{signups
? `${signups.totalCount} total signups`
: "Loading signups..."}
</p>
{renderContent()}
<Dialog.Footer>
<Button variant="secondary" onClick={onClose}>
Close
</Button>
</Dialog.Footer>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -0,0 +1,206 @@
"use client";
import { useState } from "react";
import { useQueryClient } from "@tanstack/react-query";
import {
Table,
TableBody,
TableCell,
TableHead,
TableHeader,
TableRow,
} from "@/components/__legacy__/ui/table";
import { Button } from "@/components/atoms/Button/Button";
import {
useGetV2ListAllWaitlists,
useDeleteV2DeleteWaitlist,
getGetV2ListAllWaitlistsQueryKey,
} from "@/app/api/__generated__/endpoints/admin/admin";
import type { WaitlistAdminResponse } from "@/app/api/__generated__/models/waitlistAdminResponse";
import { EditWaitlistDialog } from "./EditWaitlistDialog";
import { WaitlistSignupsDialog } from "./WaitlistSignupsDialog";
import { Trash, PencilSimple, Users, Link } from "@phosphor-icons/react";
import { useToast } from "@/components/molecules/Toast/use-toast";
export function WaitlistTable() {
const [editingWaitlist, setEditingWaitlist] =
useState<WaitlistAdminResponse | null>(null);
const [viewingSignups, setViewingSignups] = useState<string | null>(null);
const { toast } = useToast();
const queryClient = useQueryClient();
const { data: response, isLoading, error } = useGetV2ListAllWaitlists();
const deleteWaitlistMutation = useDeleteV2DeleteWaitlist({
mutation: {
onSuccess: () => {
toast({
title: "Success",
description: "Waitlist deleted successfully",
});
queryClient.invalidateQueries({
queryKey: getGetV2ListAllWaitlistsQueryKey(),
});
},
onError: (error) => {
console.error("Error deleting waitlist:", error);
toast({
variant: "destructive",
title: "Error",
description: "Failed to delete waitlist",
});
},
},
});
function handleDelete(waitlistId: string) {
if (!confirm("Are you sure you want to delete this waitlist?")) return;
deleteWaitlistMutation.mutate({ waitlistId });
}
function handleWaitlistSaved() {
setEditingWaitlist(null);
queryClient.invalidateQueries({
queryKey: getGetV2ListAllWaitlistsQueryKey(),
});
}
function formatStatus(status: string) {
const statusColors: Record<string, string> = {
NOT_STARTED: "bg-gray-100 text-gray-800",
WORK_IN_PROGRESS: "bg-blue-100 text-blue-800",
DONE: "bg-green-100 text-green-800",
CANCELED: "bg-red-100 text-red-800",
};
return (
<span
className={`rounded-full px-2 py-1 text-xs font-medium ${statusColors[status] || "bg-gray-100 text-gray-700"}`}
>
{status.replace(/_/g, " ")}
</span>
);
}
function formatDate(dateStr: string) {
if (!dateStr) return "-";
return new Intl.DateTimeFormat("en-US", {
month: "short",
day: "numeric",
year: "numeric",
}).format(new Date(dateStr));
}
if (isLoading) {
return <div className="py-10 text-center">Loading waitlists...</div>;
}
if (error) {
return (
<div className="py-10 text-center text-red-500">
Error loading waitlists. Please try again.
</div>
);
}
const waitlists = response?.status === 200 ? response.data.waitlists : [];
if (waitlists.length === 0) {
return (
<div className="py-10 text-center text-gray-500">
No waitlists found. Create one to get started!
</div>
);
}
return (
<>
<div className="rounded-md border bg-white">
<Table>
<TableHeader className="bg-gray-50">
<TableRow>
<TableHead className="font-medium">Name</TableHead>
<TableHead className="font-medium">Status</TableHead>
<TableHead className="font-medium">Signups</TableHead>
<TableHead className="font-medium">Votes</TableHead>
<TableHead className="font-medium">Created</TableHead>
<TableHead className="font-medium">Linked Agent</TableHead>
<TableHead className="font-medium">Actions</TableHead>
</TableRow>
</TableHeader>
<TableBody>
{waitlists.map((waitlist) => (
<TableRow key={waitlist.id}>
<TableCell>
<div>
<div className="font-medium">{waitlist.name}</div>
<div className="text-sm text-gray-500">
{waitlist.subHeading}
</div>
</div>
</TableCell>
<TableCell>{formatStatus(waitlist.status)}</TableCell>
<TableCell>{waitlist.signupCount}</TableCell>
<TableCell>{waitlist.votes}</TableCell>
<TableCell>{formatDate(waitlist.createdAt)}</TableCell>
<TableCell>
{waitlist.storeListingId ? (
<span className="text-green-600">
<Link size={16} className="inline" /> Linked
</span>
) : (
<span className="text-gray-400">Not linked</span>
)}
</TableCell>
<TableCell>
<div className="flex gap-2">
<Button
variant="ghost"
size="small"
onClick={() => setViewingSignups(waitlist.id)}
title="View signups"
>
<Users size={16} />
</Button>
<Button
variant="ghost"
size="small"
onClick={() => setEditingWaitlist(waitlist)}
title="Edit"
>
<PencilSimple size={16} />
</Button>
<Button
variant="ghost"
size="small"
onClick={() => handleDelete(waitlist.id)}
title="Delete"
disabled={deleteWaitlistMutation.isPending}
>
<Trash size={16} className="text-red-500" />
</Button>
</div>
</TableCell>
</TableRow>
))}
</TableBody>
</Table>
</div>
{editingWaitlist && (
<EditWaitlistDialog
waitlist={editingWaitlist}
onClose={() => setEditingWaitlist(null)}
onSave={handleWaitlistSaved}
/>
)}
{viewingSignups && (
<WaitlistSignupsDialog
waitlistId={viewingSignups}
onClose={() => setViewingSignups(null)}
/>
)}
</>
);
}

View File

@@ -0,0 +1,52 @@
import { withRoleAccess } from "@/lib/withRoleAccess";
import { Suspense } from "react";
import { WaitlistTable } from "./components/WaitlistTable";
import { CreateWaitlistButton } from "./components/CreateWaitlistButton";
import { Warning } from "@phosphor-icons/react/dist/ssr";
function WaitlistDashboard() {
return (
<div className="mx-auto p-6">
<div className="flex flex-col gap-4">
<div className="flex items-center justify-between">
<div>
<h1 className="text-3xl font-bold">Waitlist Management</h1>
<p className="text-gray-500">
Manage upcoming agent waitlists and track signups
</p>
</div>
<CreateWaitlistButton />
</div>
<div className="flex items-start gap-3 rounded-lg border border-amber-300 bg-amber-50 p-4 dark:border-amber-700 dark:bg-amber-950">
<Warning
className="mt-0.5 h-5 w-5 flex-shrink-0 text-amber-600 dark:text-amber-400"
weight="fill"
/>
<div className="text-sm text-amber-800 dark:text-amber-200">
<p className="font-medium">TODO: Email-only signup notifications</p>
<p className="mt-1 text-amber-700 dark:text-amber-300">
Notifications for email-only signups (users who weren&apos;t
logged in) have not been implemented yet. Currently only
registered users will receive launch emails.
</p>
</div>
</div>
<Suspense
fallback={
<div className="py-10 text-center">Loading waitlists...</div>
}
>
<WaitlistTable />
</Suspense>
</div>
</div>
);
}
export default async function WaitlistDashboardPage() {
const withAdminAccess = await withRoleAccess(["admin"]);
const ProtectedWaitlistDashboard = await withAdminAccess(WaitlistDashboard);
return <ProtectedWaitlistDashboard />;
}

View File

@@ -1,6 +1,6 @@
import { beautifyString } from "@/lib/utils";
import { Clipboard, Maximize2 } from "lucide-react";
import React, { useMemo, useState } from "react";
import React, { useState } from "react";
import { Button } from "../../../../../components/__legacy__/ui/button";
import { ContentRenderer } from "../../../../../components/__legacy__/ui/render";
import {
@@ -11,12 +11,6 @@ import {
TableHeader,
TableRow,
} from "../../../../../components/__legacy__/ui/table";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import {
globalRegistry,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { useToast } from "../../../../../components/molecules/Toast/use-toast";
import ExpandableOutputDialog from "./ExpandableOutputDialog";
@@ -32,9 +26,6 @@ export default function DataTable({
data,
}: DataTableProps) {
const { toast } = useToast();
const enableEnhancedOutputHandling = useGetFlag(
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
);
const [expandedDialog, setExpandedDialog] = useState<{
isOpen: boolean;
execId: string;
@@ -42,15 +33,6 @@ export default function DataTable({
data: any[];
} | null>(null);
// Prepare renderers for each item when enhanced mode is enabled
const getItemRenderer = useMemo(() => {
if (!enableEnhancedOutputHandling) return null;
return (item: unknown) => {
const metadata: OutputMetadata = {};
return globalRegistry.getRenderer(item, metadata);
};
}, [enableEnhancedOutputHandling]);
const copyData = (pin: string, data: string) => {
navigator.clipboard.writeText(data).then(() => {
toast({
@@ -120,31 +102,15 @@ export default function DataTable({
<Clipboard size={18} />
</Button>
</div>
{value.map((item, index) => {
const renderer = getItemRenderer?.(item);
if (enableEnhancedOutputHandling && renderer) {
const metadata: OutputMetadata = {};
return (
<React.Fragment key={index}>
<OutputItem
value={item}
metadata={metadata}
renderer={renderer}
/>
{index < value.length - 1 && ", "}
</React.Fragment>
);
}
return (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < value.length - 1 && ", "}
</React.Fragment>
);
})}
{value.map((item, index) => (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < value.length - 1 && ", "}
</React.Fragment>
))}
</div>
</TableCell>
</TableRow>

View File

@@ -1,14 +1,8 @@
import React, { useContext, useMemo, useState } from "react";
import React, { useContext, useState } from "react";
import { Button } from "@/components/__legacy__/ui/button";
import { Maximize2 } from "lucide-react";
import * as Separator from "@radix-ui/react-separator";
import { ContentRenderer } from "@/components/__legacy__/ui/render";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import {
globalRegistry,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { beautifyString } from "@/lib/utils";
@@ -27,9 +21,6 @@ export default function NodeOutputs({
data,
}: NodeOutputsProps) {
const builderContext = useContext(BuilderContext);
const enableEnhancedOutputHandling = useGetFlag(
Flag.ENABLE_ENHANCED_OUTPUT_HANDLING,
);
const [expandedDialog, setExpandedDialog] = useState<{
isOpen: boolean;
@@ -46,15 +37,6 @@ export default function NodeOutputs({
const { getNodeTitle } = builderContext;
// Prepare renderers for each item when enhanced mode is enabled
const getItemRenderer = useMemo(() => {
if (!enableEnhancedOutputHandling) return null;
return (item: unknown) => {
const metadata: OutputMetadata = {};
return globalRegistry.getRenderer(item, metadata);
};
}, [enableEnhancedOutputHandling]);
const getBeautifiedPinName = (pin: string) => {
if (!pin.startsWith("tools_^_")) {
return beautifyString(pin);
@@ -105,31 +87,15 @@ export default function NodeOutputs({
<div className="mt-2">
<strong className="mr-2">Data:</strong>
<div className="mt-1">
{dataArray.slice(0, 10).map((item, index) => {
const renderer = getItemRenderer?.(item);
if (enableEnhancedOutputHandling && renderer) {
const metadata: OutputMetadata = {};
return (
<React.Fragment key={index}>
<OutputItem
value={item}
metadata={metadata}
renderer={renderer}
/>
{index < Math.min(dataArray.length, 10) - 1 && ", "}
</React.Fragment>
);
}
return (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < Math.min(dataArray.length, 10) - 1 && ", "}
</React.Fragment>
);
})}
{dataArray.slice(0, 10).map((item, index) => (
<React.Fragment key={index}>
<ContentRenderer
value={item}
truncateLongData={truncateLongData}
/>
{index < Math.min(dataArray.length, 10) - 1 && ", "}
</React.Fragment>
))}
{dataArray.length > 10 && (
<span style={{ color: "#888" }}>
<br />

View File

@@ -8,6 +8,7 @@ import { useMainMarketplacePage } from "./useMainMarketplacePage";
import { FeaturedCreators } from "../FeaturedCreators/FeaturedCreators";
import { MainMarketplacePageLoading } from "../MainMarketplacePageLoading";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { WaitlistSection } from "../WaitlistSection/WaitlistSection";
export const MainMarkeplacePage = () => {
const { featuredAgents, topAgents, featuredCreators, isLoading, hasError } =
@@ -46,6 +47,10 @@ export const MainMarkeplacePage = () => {
{/* 100px margin because our featured sections button are placed 40px below the container */}
<Separator className="mb-6 mt-24" />
{/* Waitlist Section - "Help Shape What's Next" */}
<WaitlistSection />
<Separator className="mb-6 mt-12" />
{topAgents && (
<AgentsSection sectionTitle="Top Agents" agents={topAgents.agents} />
)}

View File

@@ -0,0 +1,105 @@
"use client";
import Image from "next/image";
import { Button } from "@/components/atoms/Button/Button";
import { Check } from "@phosphor-icons/react";
interface WaitlistCardProps {
name: string;
subHeading: string;
description: string;
imageUrl: string | null;
isMember?: boolean;
onCardClick: () => void;
onJoinClick: (e: React.MouseEvent) => void;
}
export function WaitlistCard({
name,
subHeading,
description,
imageUrl,
isMember = false,
onCardClick,
onJoinClick,
}: WaitlistCardProps) {
function handleJoinClick(e: React.MouseEvent) {
e.stopPropagation();
onJoinClick(e);
}
return (
<div
className="flex h-[24rem] w-full max-w-md cursor-pointer flex-col items-start rounded-3xl bg-white transition-all duration-300 hover:shadow-lg dark:bg-zinc-900 dark:hover:shadow-gray-700"
onClick={onCardClick}
data-testid="waitlist-card"
role="button"
tabIndex={0}
aria-label={`${name} waitlist card`}
onKeyDown={(e) => {
if (e.key === "Enter" || e.key === " ") {
onCardClick();
}
}}
>
{/* Image Section */}
<div className="relative aspect-[2/1.2] w-full overflow-hidden rounded-large md:aspect-[2.17/1]">
{imageUrl ? (
<Image
src={imageUrl}
alt={`${name} preview image`}
fill
className="object-cover"
/>
) : (
<div className="flex h-full w-full items-center justify-center bg-gradient-to-br from-neutral-200 to-neutral-300 dark:from-neutral-700 dark:to-neutral-800">
<span className="text-4xl font-bold text-neutral-400 dark:text-neutral-500">
{name.charAt(0)}
</span>
</div>
)}
</div>
<div className="mt-3 flex w-full flex-1 flex-col px-4">
{/* Name and Subheading */}
<div className="flex w-full flex-col">
<h3 className="line-clamp-1 font-poppins text-xl font-semibold text-[#272727] dark:text-neutral-100">
{name}
</h3>
<p className="mt-1 line-clamp-1 text-sm text-neutral-500 dark:text-neutral-400">
{subHeading}
</p>
</div>
{/* Description */}
<div className="mt-2 flex w-full flex-col">
<p className="line-clamp-5 text-sm font-normal leading-relaxed text-neutral-600 dark:text-neutral-400">
{description}
</p>
</div>
<div className="flex-grow" />
{/* Join Waitlist Button */}
<div className="mt-4 w-full pb-4">
{isMember ? (
<Button
disabled
className="w-full rounded-full bg-green-600 text-white hover:bg-green-600 dark:bg-green-700 dark:hover:bg-green-700"
>
<Check className="mr-2" size={16} weight="bold" />
On the waitlist
</Button>
) : (
<Button
onClick={handleJoinClick}
className="w-full rounded-full bg-zinc-800 text-white hover:bg-zinc-700 dark:bg-zinc-700 dark:hover:bg-zinc-600"
>
Join waitlist
</Button>
)}
</div>
</div>
</div>
);
}

View File

@@ -0,0 +1,356 @@
"use client";
import { useState } from "react";
import Image from "next/image";
import { Button } from "@/components/atoms/Button/Button";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { Input } from "@/components/atoms/Input/Input";
import {
Carousel,
CarouselContent,
CarouselItem,
CarouselNext,
CarouselPrevious,
} from "@/components/__legacy__/ui/carousel";
import type { StoreWaitlistEntry } from "@/app/api/__generated__/models/storeWaitlistEntry";
import { Check, Play } from "@phosphor-icons/react";
import { useSupabaseStore } from "@/lib/supabase/hooks/useSupabaseStore";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { usePostV2AddSelfToTheAgentWaitlist } from "@/app/api/__generated__/endpoints/store/store";
interface MediaItem {
type: "image" | "video";
url: string;
label?: string;
}
// Extract YouTube video ID from various URL formats
function getYouTubeVideoId(url: string): string | null {
const regExp =
/^.*((youtu.be\/)|(v\/)|(\/u\/\w\/)|(embed\/)|(watch\?))\??v?=?([^#&?]*).*/;
const match = url.match(regExp);
return match && match[7].length === 11 ? match[7] : null;
}
// Validate video URL for security
function isValidVideoUrl(url: string): boolean {
if (url.startsWith("data:video")) {
return true;
}
const videoExtensions = /\.(mp4|webm|ogg)$/i;
const youtubeRegex = /^(https?:\/\/)?(www\.)?(youtube\.com|youtu\.?be)\/.+$/;
const validUrl = /^(https?:\/\/)/i;
const cleanedUrl = url.split("?")[0];
return (
(validUrl.test(url) && videoExtensions.test(cleanedUrl)) ||
youtubeRegex.test(url)
);
}
// Video player with YouTube embed support
function VideoPlayer({
url,
autoPlay = false,
className = "",
}: {
url: string;
autoPlay?: boolean;
className?: string;
}) {
const youtubeId = getYouTubeVideoId(url);
if (youtubeId) {
return (
<iframe
src={`https://www.youtube.com/embed/${youtubeId}${autoPlay ? "?autoplay=1" : ""}`}
title="YouTube video player"
className={className}
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture"
sandbox="allow-same-origin allow-scripts allow-presentation"
allowFullScreen
/>
);
}
if (!isValidVideoUrl(url)) {
return (
<div
className={`flex items-center justify-center bg-zinc-800 ${className}`}
>
<span className="text-sm text-zinc-400">Invalid video URL</span>
</div>
);
}
return <video src={url} controls autoPlay={autoPlay} className={className} />;
}
function MediaCarousel({ waitlist }: { waitlist: StoreWaitlistEntry }) {
const [activeVideo, setActiveVideo] = useState<string | null>(null);
// Build media items array: videos first, then images
const mediaItems: MediaItem[] = [
...(waitlist.videoUrl
? [{ type: "video" as const, url: waitlist.videoUrl, label: "Video" }]
: []),
...(waitlist.agentOutputDemoUrl
? [
{
type: "video" as const,
url: waitlist.agentOutputDemoUrl,
label: "Demo",
},
]
: []),
...waitlist.imageUrls.map((url) => ({ type: "image" as const, url })),
];
if (mediaItems.length === 0) return null;
// Single item - no carousel needed
if (mediaItems.length === 1) {
const item = mediaItems[0];
return (
<div className="relative aspect-[350/196] w-full overflow-hidden rounded-large">
{item.type === "image" ? (
<Image
src={item.url}
alt={`${waitlist.name} preview`}
fill
className="object-cover"
/>
) : (
<VideoPlayer url={item.url} className="h-full w-full object-cover" />
)}
</div>
);
}
// Multiple items - use carousel
return (
<Carousel className="w-full">
<CarouselContent>
{mediaItems.map((item, index) => (
<CarouselItem key={index}>
<div className="relative aspect-[350/196] w-full overflow-hidden rounded-large">
{item.type === "image" ? (
<Image
src={item.url}
alt={`${waitlist.name} preview ${index + 1}`}
fill
className="object-cover"
/>
) : activeVideo === item.url ? (
<VideoPlayer
url={item.url}
autoPlay
className="h-full w-full object-cover"
/>
) : (
<button
onClick={() => setActiveVideo(item.url)}
className="group relative h-full w-full bg-zinc-900"
>
<div className="absolute inset-0 flex items-center justify-center">
<div className="flex h-16 w-16 items-center justify-center rounded-full bg-white/90 transition-transform group-hover:scale-110">
<Play size={32} weight="fill" className="text-zinc-800" />
</div>
</div>
<span className="absolute bottom-3 left-3 text-sm text-white">
{item.label}
</span>
</button>
)}
</div>
</CarouselItem>
))}
</CarouselContent>
<CarouselPrevious className="left-2 top-1/2 -translate-y-1/2" />
<CarouselNext className="right-2 top-1/2 -translate-y-1/2" />
</Carousel>
);
}
interface WaitlistDetailModalProps {
waitlist: StoreWaitlistEntry;
isMember?: boolean;
onClose: () => void;
onJoinSuccess?: (waitlistId: string) => void;
}
export function WaitlistDetailModal({
waitlist,
isMember = false,
onClose,
onJoinSuccess,
}: WaitlistDetailModalProps) {
const { user } = useSupabaseStore();
const [email, setEmail] = useState("");
const [success, setSuccess] = useState(false);
const { toast } = useToast();
const joinWaitlistMutation = usePostV2AddSelfToTheAgentWaitlist();
function handleJoin() {
joinWaitlistMutation.mutate(
{
waitlistId: waitlist.waitlistId,
data: { email: user ? undefined : email },
},
{
onSuccess: (response) => {
if (response.status === 200) {
setSuccess(true);
toast({
title: "You're on the waitlist!",
description: `We'll notify you when ${waitlist.name} goes live.`,
});
onJoinSuccess?.(waitlist.waitlistId);
} else {
toast({
variant: "destructive",
title: "Error",
description: "Failed to join waitlist. Please try again.",
});
}
},
onError: () => {
toast({
variant: "destructive",
title: "Error",
description: "Failed to join waitlist. Please try again.",
});
},
},
);
}
// Success state
if (success) {
return (
<Dialog
title=""
controlled={{
isOpen: true,
set: async (open) => {
if (!open) onClose();
},
}}
onClose={onClose}
styling={{ maxWidth: "500px" }}
>
<Dialog.Content>
<div className="flex flex-col items-center justify-center py-4 text-center">
{/* Party emoji */}
<span className="mb-2 text-5xl">🎉</span>
{/* Title */}
<h2 className="mb-2 font-poppins text-[22px] font-medium leading-7 text-zinc-900 dark:text-zinc-100">
You&apos;re on the waitlist
</h2>
{/* Subtitle */}
<p className="text-base leading-[26px] text-zinc-600 dark:text-zinc-400">
Thanks for helping us prioritize which agents to build next.
We&apos;ll notify you when this agent goes live in the
marketplace.
</p>
</div>
{/* Close button */}
<Dialog.Footer className="flex justify-center pb-2 pt-4">
<Button
variant="secondary"
onClick={onClose}
className="rounded-full border border-zinc-700 bg-white px-4 py-3 text-zinc-900 hover:bg-zinc-100 dark:border-zinc-500 dark:bg-zinc-800 dark:text-zinc-100 dark:hover:bg-zinc-700"
>
Close
</Button>
</Dialog.Footer>
</Dialog.Content>
</Dialog>
);
}
// Main modal - handles both member and non-member states
return (
<Dialog
title="Join the waitlist"
controlled={{
isOpen: true,
set: async (open) => {
if (!open) onClose();
},
}}
onClose={onClose}
styling={{ maxWidth: "500px" }}
>
<Dialog.Content>
{/* Subtitle */}
<p className="mb-6 text-center text-base text-zinc-600 dark:text-zinc-400">
Help us decide what to build next and get notified when this agent
is ready
</p>
{/* Media Carousel */}
<MediaCarousel waitlist={waitlist} />
{/* Agent Name */}
<h3 className="mt-4 font-poppins text-[22px] font-medium leading-7 text-zinc-800 dark:text-zinc-100">
{waitlist.name}
</h3>
{/* Agent Description */}
<p className="mt-2 line-clamp-5 text-sm leading-[22px] text-zinc-500 dark:text-zinc-400">
{waitlist.description}
</p>
{/* Email input for non-logged-in users who haven't joined */}
{!isMember && !user && (
<div className="mt-4 pr-1">
<Input
id="email"
label="Email address"
type="email"
placeholder="you@example.com"
value={email}
onChange={(e) => setEmail(e.target.value)}
required
/>
</div>
)}
{/* Footer buttons */}
<Dialog.Footer className="sticky bottom-0 mt-6 flex justify-center gap-3 bg-white pb-2 pt-4 dark:bg-zinc-900">
{isMember ? (
<Button
disabled
className="rounded-full bg-green-600 px-4 py-3 text-white hover:bg-green-600 dark:bg-green-700 dark:hover:bg-green-700"
>
<Check size={16} className="mr-2" />
You&apos;re on the waitlist
</Button>
) : (
<>
<Button
onClick={handleJoin}
loading={joinWaitlistMutation.isPending}
disabled={!user && !email}
className="rounded-full bg-zinc-800 px-4 py-3 text-white hover:bg-zinc-700 dark:bg-zinc-700 dark:hover:bg-zinc-600"
>
Join waitlist
</Button>
<Button
type="button"
variant="secondary"
onClick={onClose}
className="rounded-full bg-zinc-200 px-4 py-3 text-zinc-900 hover:bg-zinc-300 dark:bg-zinc-700 dark:text-zinc-100 dark:hover:bg-zinc-600"
>
Not now
</Button>
</>
)}
</Dialog.Footer>
</Dialog.Content>
</Dialog>
);
}

View File

@@ -0,0 +1,102 @@
"use client";
import { useState } from "react";
import {
Carousel,
CarouselContent,
CarouselItem,
} from "@/components/__legacy__/ui/carousel";
import { WaitlistCard } from "../WaitlistCard/WaitlistCard";
import { WaitlistDetailModal } from "../WaitlistDetailModal/WaitlistDetailModal";
import type { StoreWaitlistEntry } from "@/app/api/__generated__/models/storeWaitlistEntry";
import { useWaitlistSection } from "./useWaitlistSection";
export function WaitlistSection() {
const { waitlists, joinedWaitlistIds, isLoading, hasError, markAsJoined } =
useWaitlistSection();
const [selectedWaitlist, setSelectedWaitlist] =
useState<StoreWaitlistEntry | null>(null);
function handleOpenModal(waitlist: StoreWaitlistEntry) {
setSelectedWaitlist(waitlist);
}
function handleJoinSuccess(waitlistId: string) {
markAsJoined(waitlistId);
}
// Don't render if loading, error, or no waitlists
if (isLoading || hasError || !waitlists || waitlists.length === 0) {
return null;
}
return (
<div className="flex flex-col items-center justify-center">
<div className="w-full max-w-[1360px]">
{/* Section Header */}
<div className="mb-6">
<h2 className="font-poppins text-2xl font-semibold text-[#282828] dark:text-neutral-200">
Help Shape What&apos;s Next
</h2>
<p className="mt-2 text-base text-neutral-600 dark:text-neutral-400">
These agents are in development. Your interest helps us prioritize
what gets built and we&apos;ll notify you when they&apos;re ready.
</p>
</div>
{/* Mobile Carousel View */}
<Carousel
className="md:hidden"
opts={{
loop: true,
}}
>
<CarouselContent>
{waitlists.map((waitlist) => (
<CarouselItem
key={waitlist.waitlistId}
className="min-w-64 max-w-71"
>
<WaitlistCard
name={waitlist.name}
subHeading={waitlist.subHeading}
description={waitlist.description}
imageUrl={waitlist.imageUrls[0] || null}
isMember={joinedWaitlistIds.has(waitlist.waitlistId)}
onCardClick={() => handleOpenModal(waitlist)}
onJoinClick={() => handleOpenModal(waitlist)}
/>
</CarouselItem>
))}
</CarouselContent>
</Carousel>
{/* Desktop Grid View */}
<div className="hidden grid-cols-1 place-items-center gap-6 md:grid md:grid-cols-2 lg:grid-cols-3">
{waitlists.map((waitlist) => (
<WaitlistCard
key={waitlist.waitlistId}
name={waitlist.name}
subHeading={waitlist.subHeading}
description={waitlist.description}
imageUrl={waitlist.imageUrls[0] || null}
isMember={joinedWaitlistIds.has(waitlist.waitlistId)}
onCardClick={() => handleOpenModal(waitlist)}
onJoinClick={() => handleOpenModal(waitlist)}
/>
))}
</div>
</div>
{/* Single Modal for both viewing and joining */}
{selectedWaitlist && (
<WaitlistDetailModal
waitlist={selectedWaitlist}
isMember={joinedWaitlistIds.has(selectedWaitlist.waitlistId)}
onClose={() => setSelectedWaitlist(null)}
onJoinSuccess={handleJoinSuccess}
/>
)}
</div>
);
}

View File

@@ -0,0 +1,58 @@
"use client";
import { useMemo } from "react";
import { useSupabaseStore } from "@/lib/supabase/hooks/useSupabaseStore";
import {
useGetV2GetTheAgentWaitlist,
useGetV2GetWaitlistIdsTheCurrentUserHasJoined,
getGetV2GetWaitlistIdsTheCurrentUserHasJoinedQueryKey,
} from "@/app/api/__generated__/endpoints/store/store";
import type { StoreWaitlistEntry } from "@/app/api/__generated__/models/storeWaitlistEntry";
import { useQueryClient } from "@tanstack/react-query";
export function useWaitlistSection() {
const { user } = useSupabaseStore();
const queryClient = useQueryClient();
// Fetch waitlists
const {
data: waitlistsResponse,
isLoading: waitlistsLoading,
isError: waitlistsError,
} = useGetV2GetTheAgentWaitlist();
// Fetch memberships if logged in
const { data: membershipsResponse, isLoading: membershipsLoading } =
useGetV2GetWaitlistIdsTheCurrentUserHasJoined({
query: {
enabled: !!user,
},
});
const waitlists: StoreWaitlistEntry[] = useMemo(() => {
if (waitlistsResponse?.status === 200) {
return waitlistsResponse.data.listings;
}
return [];
}, [waitlistsResponse]);
const joinedWaitlistIds: Set<string> = useMemo(() => {
if (membershipsResponse?.status === 200) {
return new Set(membershipsResponse.data);
}
return new Set();
}, [membershipsResponse]);
const isLoading = waitlistsLoading || (!!user && membershipsLoading);
const hasError = waitlistsError;
// Function to add a waitlist ID to joined set (called after successful join)
function markAsJoined(_waitlistId: string) {
// Invalidate the memberships query to refetch
queryClient.invalidateQueries({
queryKey: getGetV2GetWaitlistIdsTheCurrentUserHasJoinedQueryKey(),
});
}
return { waitlists, joinedWaitlistIds, isLoading, hasError, markAsJoined };
}

View File

@@ -5234,6 +5234,301 @@
}
}
},
"/api/store/admin/waitlist": {
"get": {
"tags": ["v2", "admin", "store", "admin", "waitlist"],
"summary": "List All Waitlists",
"description": "Get all waitlists with admin details (admin only).\n\nReturns:\n WaitlistAdminListResponse with all waitlists",
"operationId": "getV2List all waitlists",
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/WaitlistAdminListResponse"
}
}
}
},
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
}
},
"security": [{ "HTTPBearerJWT": [] }]
},
"post": {
"tags": ["v2", "admin", "store", "admin", "waitlist"],
"summary": "Create Waitlist",
"description": "Create a new waitlist (admin only).\n\nArgs:\n request: Waitlist creation details\n user_id: Authenticated admin user creating the waitlist\n\nReturns:\n WaitlistAdminResponse with the created waitlist details",
"operationId": "postV2Create waitlist",
"requestBody": {
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/WaitlistCreateRequest" }
}
},
"required": true
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/WaitlistAdminResponse"
}
}
}
},
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
}
},
"security": [{ "HTTPBearerJWT": [] }]
}
},
"/api/store/admin/waitlist/{waitlist_id}": {
"delete": {
"tags": ["v2", "admin", "store", "admin", "waitlist"],
"summary": "Delete Waitlist",
"description": "Soft delete a waitlist (admin only).\n\nArgs:\n waitlist_id: ID of the waitlist to delete\n\nReturns:\n Success message",
"operationId": "deleteV2Delete waitlist",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
{
"name": "waitlist_id",
"in": "path",
"required": true,
"schema": {
"type": "string",
"description": "The ID of the waitlist",
"title": "Waitlist Id"
},
"description": "The ID of the waitlist"
}
],
"responses": {
"200": {
"description": "Successful Response",
"content": { "application/json": { "schema": {} } }
},
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
}
}
},
"get": {
"tags": ["v2", "admin", "store", "admin", "waitlist"],
"summary": "Get Waitlist Details",
"description": "Get a single waitlist with admin details (admin only).\n\nArgs:\n waitlist_id: ID of the waitlist to retrieve\n\nReturns:\n WaitlistAdminResponse with waitlist details",
"operationId": "getV2Get waitlist details",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
{
"name": "waitlist_id",
"in": "path",
"required": true,
"schema": {
"type": "string",
"description": "The ID of the waitlist",
"title": "Waitlist Id"
},
"description": "The ID of the waitlist"
}
],
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/WaitlistAdminResponse"
}
}
}
},
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
}
}
},
"put": {
"tags": ["v2", "admin", "store", "admin", "waitlist"],
"summary": "Update Waitlist",
"description": "Update a waitlist (admin only).\n\nArgs:\n waitlist_id: ID of the waitlist to update\n request: Fields to update\n\nReturns:\n WaitlistAdminResponse with updated waitlist details",
"operationId": "putV2Update waitlist",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
{
"name": "waitlist_id",
"in": "path",
"required": true,
"schema": {
"type": "string",
"description": "The ID of the waitlist",
"title": "Waitlist Id"
},
"description": "The ID of the waitlist"
}
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/WaitlistUpdateRequest" }
}
}
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/WaitlistAdminResponse"
}
}
}
},
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
}
}
}
},
"/api/store/admin/waitlist/{waitlist_id}/link": {
"post": {
"tags": ["v2", "admin", "store", "admin", "waitlist"],
"summary": "Link Waitlist to Store Listing",
"description": "Link a waitlist to a store listing (admin only).\n\nWhen the linked store listing is approved/published, waitlist users\nwill be automatically notified.\n\nArgs:\n waitlist_id: ID of the waitlist\n store_listing_id: ID of the store listing to link\n\nReturns:\n WaitlistAdminResponse with updated waitlist details",
"operationId": "postV2Link waitlist to store listing",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
{
"name": "waitlist_id",
"in": "path",
"required": true,
"schema": {
"type": "string",
"description": "The ID of the waitlist",
"title": "Waitlist Id"
},
"description": "The ID of the waitlist"
}
],
"requestBody": {
"required": true,
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Body_postV2Link_waitlist_to_store_listing"
}
}
}
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/WaitlistAdminResponse"
}
}
}
},
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
}
}
}
},
"/api/store/admin/waitlist/{waitlist_id}/signups": {
"get": {
"tags": ["v2", "admin", "store", "admin", "waitlist"],
"summary": "Get Waitlist Signups",
"description": "Get all signups for a waitlist (admin only).\n\nArgs:\n waitlist_id: ID of the waitlist\n\nReturns:\n WaitlistSignupListResponse with all signups",
"operationId": "getV2Get waitlist signups",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
{
"name": "waitlist_id",
"in": "path",
"required": true,
"schema": {
"type": "string",
"description": "The ID of the waitlist",
"title": "Waitlist Id"
},
"description": "The ID of the waitlist"
}
],
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/WaitlistSignupListResponse"
}
}
}
},
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
}
}
}
},
"/api/store/agents": {
"get": {
"tags": ["v2", "store", "public"],
@@ -6079,6 +6374,89 @@
}
}
},
"/api/store/waitlist": {
"get": {
"tags": ["v2", "store", "public"],
"summary": "Get the agent waitlist",
"description": "Get all active waitlists for public display.",
"operationId": "getV2Get the agent waitlist",
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/StoreWaitlistsAllResponse"
}
}
}
}
}
}
},
"/api/store/waitlist/my-memberships": {
"get": {
"tags": ["v2", "store", "private"],
"summary": "Get waitlist IDs the current user has joined",
"description": "Returns list of waitlist IDs the authenticated user has joined.",
"operationId": "getV2Get waitlist ids the current user has joined",
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"items": { "type": "string" },
"type": "array",
"title": "Response Getv2Get Waitlist Ids The Current User Has Joined"
}
}
}
},
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
}
},
"security": [{ "HTTPBearerJWT": [] }]
}
},
"/api/store/waitlist/{waitlist_id}/join": {
"post": {
"tags": ["v2", "store", "public"],
"summary": "Add self to the agent waitlist",
"description": "Add the current user to the agent waitlist.",
"operationId": "postV2Add self to the agent waitlist",
"security": [{ "HTTPBearer": [] }],
"parameters": [
{
"name": "waitlist_id",
"in": "path",
"required": true,
"schema": {
"type": "string",
"description": "The ID of the waitlist to join",
"title": "Waitlist Id"
},
"description": "The ID of the waitlist to join"
}
],
"requestBody": {
"content": {
"application/json": {
"schema": {
"$ref": "#/components/schemas/Body_postV2Add_self_to_the_agent_waitlist"
}
}
}
},
"responses": {
"200": {
"description": "Successful Response",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/StoreWaitlistEntry" }
}
}
"/api/workspace/files/{file_id}/download": {
"get": {
"tags": ["workspace"],
@@ -6878,6 +7256,17 @@
"required": ["store_listing_version_id"],
"title": "Body_postV2Add marketplace agent"
},
"Body_postV2Add_self_to_the_agent_waitlist": {
"properties": {
"email": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Email",
"description": "Email address for unauthenticated users"
}
},
"type": "object",
"title": "Body_postV2Add self to the agent waitlist"
},
"Body_postV2Execute_a_preset": {
"properties": {
"inputs": {
@@ -6896,6 +7285,18 @@
"type": "object",
"title": "Body_postV2Execute a preset"
},
"Body_postV2Link_waitlist_to_store_listing": {
"properties": {
"store_listing_id": {
"type": "string",
"title": "Store Listing Id",
"description": "The ID of the store listing"
}
},
"type": "object",
"required": ["store_listing_id"],
"title": "Body_postV2Link waitlist to store listing"
},
"Body_postV2Upload_submission_media": {
"properties": {
"file": { "type": "string", "format": "binary", "title": "File" }
@@ -8824,7 +9225,8 @@
"REFUND_REQUEST",
"REFUND_PROCESSED",
"AGENT_APPROVED",
"AGENT_REJECTED"
"AGENT_REJECTED",
"WAITLIST_LAUNCH"
],
"title": "NotificationType"
},
@@ -10459,6 +10861,57 @@
"required": ["submissions", "pagination"],
"title": "StoreSubmissionsResponse"
},
"StoreWaitlistEntry": {
"properties": {
"waitlistId": { "type": "string", "title": "Waitlistid" },
"slug": { "type": "string", "title": "Slug" },
"name": { "type": "string", "title": "Name" },
"subHeading": { "type": "string", "title": "Subheading" },
"videoUrl": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Videourl"
},
"agentOutputDemoUrl": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Agentoutputdemourl"
},
"imageUrls": {
"items": { "type": "string" },
"type": "array",
"title": "Imageurls"
},
"description": { "type": "string", "title": "Description" },
"categories": {
"items": { "type": "string" },
"type": "array",
"title": "Categories"
}
},
"type": "object",
"required": [
"waitlistId",
"slug",
"name",
"subHeading",
"imageUrls",
"description",
"categories"
],
"title": "StoreWaitlistEntry",
"description": "Public waitlist entry - no PII fields exposed."
},
"StoreWaitlistsAllResponse": {
"properties": {
"listings": {
"items": { "$ref": "#/components/schemas/StoreWaitlistEntry" },
"type": "array",
"title": "Listings"
}
},
"type": "object",
"required": ["listings"],
"title": "StoreWaitlistsAllResponse"
},
"StreamChatRequest": {
"properties": {
"message": { "type": "string", "title": "Message" },
@@ -12278,6 +12731,203 @@
"required": ["loc", "msg", "type"],
"title": "ValidationError"
},
"WaitlistAdminListResponse": {
"properties": {
"waitlists": {
"items": { "$ref": "#/components/schemas/WaitlistAdminResponse" },
"type": "array",
"title": "Waitlists"
},
"totalCount": { "type": "integer", "title": "Totalcount" }
},
"type": "object",
"required": ["waitlists", "totalCount"],
"title": "WaitlistAdminListResponse",
"description": "Response model for listing all waitlists (admin view)."
},
"WaitlistAdminResponse": {
"properties": {
"id": { "type": "string", "title": "Id" },
"createdAt": { "type": "string", "title": "Createdat" },
"updatedAt": { "type": "string", "title": "Updatedat" },
"slug": { "type": "string", "title": "Slug" },
"name": { "type": "string", "title": "Name" },
"subHeading": { "type": "string", "title": "Subheading" },
"description": { "type": "string", "title": "Description" },
"categories": {
"items": { "type": "string" },
"type": "array",
"title": "Categories"
},
"imageUrls": {
"items": { "type": "string" },
"type": "array",
"title": "Imageurls"
},
"videoUrl": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Videourl"
},
"agentOutputDemoUrl": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Agentoutputdemourl"
},
"status": { "$ref": "#/components/schemas/WaitlistExternalStatus" },
"votes": { "type": "integer", "title": "Votes" },
"signupCount": { "type": "integer", "title": "Signupcount" },
"storeListingId": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Storelistingid"
},
"owningUserId": { "type": "string", "title": "Owninguserid" }
},
"type": "object",
"required": [
"id",
"createdAt",
"updatedAt",
"slug",
"name",
"subHeading",
"description",
"categories",
"imageUrls",
"status",
"votes",
"signupCount",
"owningUserId"
],
"title": "WaitlistAdminResponse",
"description": "Admin response model with full waitlist details including internal data."
},
"WaitlistCreateRequest": {
"properties": {
"name": { "type": "string", "title": "Name" },
"slug": { "type": "string", "title": "Slug" },
"subHeading": { "type": "string", "title": "Subheading" },
"description": { "type": "string", "title": "Description" },
"categories": {
"items": { "type": "string" },
"type": "array",
"title": "Categories",
"default": []
},
"imageUrls": {
"items": { "type": "string" },
"type": "array",
"title": "Imageurls",
"default": []
},
"videoUrl": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Videourl"
},
"agentOutputDemoUrl": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Agentoutputdemourl"
}
},
"type": "object",
"required": ["name", "slug", "subHeading", "description"],
"title": "WaitlistCreateRequest",
"description": "Request model for creating a new waitlist."
},
"WaitlistExternalStatus": {
"type": "string",
"enum": ["DONE", "NOT_STARTED", "CANCELED", "WORK_IN_PROGRESS"],
"title": "WaitlistExternalStatus"
},
"WaitlistSignup": {
"properties": {
"type": { "type": "string", "title": "Type" },
"userId": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Userid"
},
"email": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Email"
},
"username": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Username"
}
},
"type": "object",
"required": ["type"],
"title": "WaitlistSignup",
"description": "Individual signup entry for a waitlist."
},
"WaitlistSignupListResponse": {
"properties": {
"waitlistId": { "type": "string", "title": "Waitlistid" },
"signups": {
"items": { "$ref": "#/components/schemas/WaitlistSignup" },
"type": "array",
"title": "Signups"
},
"totalCount": { "type": "integer", "title": "Totalcount" }
},
"type": "object",
"required": ["waitlistId", "signups", "totalCount"],
"title": "WaitlistSignupListResponse",
"description": "Response model for listing waitlist signups."
},
"WaitlistUpdateRequest": {
"properties": {
"name": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Name"
},
"slug": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Slug"
},
"subHeading": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Subheading"
},
"description": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Description"
},
"categories": {
"anyOf": [
{ "items": { "type": "string" }, "type": "array" },
{ "type": "null" }
],
"title": "Categories"
},
"imageUrls": {
"anyOf": [
{ "items": { "type": "string" }, "type": "array" },
{ "type": "null" }
],
"title": "Imageurls"
},
"videoUrl": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Videourl"
},
"agentOutputDemoUrl": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Agentoutputdemourl"
},
"status": {
"anyOf": [
{ "$ref": "#/components/schemas/WaitlistExternalStatus" },
{ "type": "null" }
]
},
"storeListingId": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Storelistingid"
}
},
"type": "object",
"title": "WaitlistUpdateRequest",
"description": "Request model for updating a waitlist."
},
"Webhook": {
"properties": {
"id": { "type": "string", "title": "Id" },

View File

@@ -22,7 +22,7 @@ const isValidVideoUrl = (url: string): boolean => {
if (url.startsWith("data:video")) {
return true;
}
const videoExtensions = /\.(mp4|webm|ogg|mov|avi|mkv|m4v)$/i;
const videoExtensions = /\.(mp4|webm|ogg)$/i;
const youtubeRegex = /^(https?:\/\/)?(www\.)?(youtube\.com|youtu\.?be)\/.+$/;
const cleanedUrl = url.split("?")[0];
return (
@@ -44,29 +44,11 @@ const isValidAudioUrl = (url: string): boolean => {
if (url.startsWith("data:audio")) {
return true;
}
const audioExtensions = /\.(mp3|wav|ogg|m4a|aac|flac)$/i;
const audioExtensions = /\.(mp3|wav)$/i;
const cleanedUrl = url.split("?")[0];
return isValidMediaUri(url) && audioExtensions.test(cleanedUrl);
};
const getVideoMimeType = (url: string): string => {
if (url.startsWith("data:video/")) {
const match = url.match(/^data:(video\/[^;]+)/);
return match?.[1] || "video/mp4";
}
const extension = url.split("?")[0].split(".").pop()?.toLowerCase();
const mimeMap: Record<string, string> = {
mp4: "video/mp4",
webm: "video/webm",
ogg: "video/ogg",
mov: "video/quicktime",
avi: "video/x-msvideo",
mkv: "video/x-matroska",
m4v: "video/mp4",
};
return mimeMap[extension || ""] || "video/mp4";
};
const VideoRenderer: React.FC<{ videoUrl: string }> = ({ videoUrl }) => {
const videoId = getYouTubeVideoId(videoUrl);
return (
@@ -81,7 +63,7 @@ const VideoRenderer: React.FC<{ videoUrl: string }> = ({ videoUrl }) => {
></iframe>
) : (
<video controls width="100%" height="315">
<source src={videoUrl} type={getVideoMimeType(videoUrl)} />
<source src={videoUrl} type="video/mp4" />
Your browser does not support the video tag.
</video>
)}

View File

@@ -346,7 +346,6 @@ export function ChatMessage({
toolId={message.toolId}
toolName={message.toolName}
result={message.result}
onSendMessage={onSendMessage}
/>
</div>
);

View File

@@ -3,7 +3,7 @@
import { getGetWorkspaceDownloadFileByIdUrl } from "@/app/api/__generated__/endpoints/workspace/workspace";
import { cn } from "@/lib/utils";
import { EyeSlash } from "@phosphor-icons/react";
import React, { useState } from "react";
import React from "react";
import ReactMarkdown from "react-markdown";
import remarkGfm from "remark-gfm";
@@ -48,9 +48,7 @@ interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
*/
function resolveWorkspaceUrl(src: string): string {
if (src.startsWith("workspace://")) {
// Strip MIME type fragment if present (e.g., workspace://abc123#video/mp4 → abc123)
const withoutPrefix = src.replace("workspace://", "");
const fileId = withoutPrefix.split("#")[0];
const fileId = src.replace("workspace://", "");
// Use the generated API URL helper to get the correct path
const apiPath = getGetWorkspaceDownloadFileByIdUrl(fileId);
// Route through the Next.js proxy (same pattern as customMutator for client-side)
@@ -67,49 +65,13 @@ function isWorkspaceImage(src: string | undefined): boolean {
return src?.includes("/workspace/files/") ?? false;
}
/**
* Renders a workspace video with controls and an optional "AI cannot see" badge.
*/
function WorkspaceVideo({
src,
aiCannotSee,
}: {
src: string;
aiCannotSee: boolean;
}) {
return (
<span className="relative my-2 inline-block">
<video
controls
className="h-auto max-w-full rounded-md border border-zinc-200"
preload="metadata"
>
<source src={src} />
Your browser does not support the video tag.
</video>
{aiCannotSee && (
<span
className="absolute bottom-2 right-2 flex items-center gap-1 rounded bg-black/70 px-2 py-1 text-xs text-white"
title="The AI cannot see this video"
>
<EyeSlash size={14} />
<span>AI cannot see this video</span>
</span>
)}
</span>
);
}
/**
* Custom image component that shows an indicator when the AI cannot see the image.
* Also handles the "video:" alt-text prefix convention to render <video> elements.
* For workspace files with unknown types, falls back to <video> if <img> fails.
* Note: src is already transformed by urlTransform, so workspace:// is now /api/workspace/...
*/
function MarkdownImage(props: Record<string, unknown>) {
const src = props.src as string | undefined;
const alt = props.alt as string | undefined;
const [imgFailed, setImgFailed] = useState(false);
const aiCannotSee = isWorkspaceImage(src);
@@ -122,18 +84,6 @@ function MarkdownImage(props: Record<string, unknown>) {
);
}
// Detect video: prefix in alt text (set by formatOutputValue in helpers.ts)
if (alt?.startsWith("video:")) {
return <WorkspaceVideo src={src} aiCannotSee={aiCannotSee} />;
}
// If the <img> failed to load and this is a workspace file, try as video.
// This handles generic output keys like "file_out" where the MIME type
// isn't known from the key name alone.
if (imgFailed && aiCannotSee) {
return <WorkspaceVideo src={src} aiCannotSee={aiCannotSee} />;
}
return (
<span className="relative my-2 inline-block">
{/* eslint-disable-next-line @next/next/no-img-element */}
@@ -142,9 +92,6 @@ function MarkdownImage(props: Record<string, unknown>) {
alt={alt || "Image"}
className="h-auto max-w-full rounded-md border border-zinc-200"
loading="lazy"
onError={() => {
if (aiCannotSee) setImgFailed(true);
}}
/>
{aiCannotSee && (
<span

View File

@@ -73,7 +73,6 @@ export function MessageList({
key={index}
message={message}
prevMessage={messages[index - 1]}
onSendMessage={onSendMessage}
/>
);
}

View File

@@ -5,13 +5,11 @@ import { shouldSkipAgentOutput } from "../../helpers";
export interface LastToolResponseProps {
message: ChatMessageData;
prevMessage: ChatMessageData | undefined;
onSendMessage?: (content: string) => void;
}
export function LastToolResponse({
message,
prevMessage,
onSendMessage,
}: LastToolResponseProps) {
if (message.type !== "tool_response") return null;
@@ -23,7 +21,6 @@ export function LastToolResponse({
toolId={message.toolId}
toolName={message.toolName}
result={message.result}
onSendMessage={onSendMessage}
/>
</div>
);

View File

@@ -1,8 +1,6 @@
import { Progress } from "@/components/atoms/Progress/Progress";
import { cn } from "@/lib/utils";
import { useEffect, useRef, useState } from "react";
import { AIChatBubble } from "../AIChatBubble/AIChatBubble";
import { useAsymptoticProgress } from "../ToolCallMessage/useAsymptoticProgress";
export interface ThinkingMessageProps {
className?: string;
@@ -13,19 +11,18 @@ export function ThinkingMessage({ className }: ThinkingMessageProps) {
const [showCoffeeMessage, setShowCoffeeMessage] = useState(false);
const timerRef = useRef<NodeJS.Timeout | null>(null);
const coffeeTimerRef = useRef<NodeJS.Timeout | null>(null);
const progress = useAsymptoticProgress(showCoffeeMessage);
useEffect(() => {
if (timerRef.current === null) {
timerRef.current = setTimeout(() => {
setShowSlowLoader(true);
}, 3000);
}, 8000);
}
if (coffeeTimerRef.current === null) {
coffeeTimerRef.current = setTimeout(() => {
setShowCoffeeMessage(true);
}, 8000);
}, 10000);
}
return () => {
@@ -52,18 +49,9 @@ export function ThinkingMessage({ className }: ThinkingMessageProps) {
<AIChatBubble>
<div className="transition-all duration-500 ease-in-out">
{showCoffeeMessage ? (
<div className="flex flex-col items-center gap-3">
<div className="flex w-full max-w-[280px] flex-col gap-1.5">
<div className="flex items-center justify-between text-xs text-neutral-500">
<span>Working on it...</span>
<span>{Math.round(progress)}%</span>
</div>
<Progress value={progress} className="h-2 w-full" />
</div>
<span className="inline-block animate-shimmer bg-gradient-to-r from-neutral-400 via-neutral-600 to-neutral-400 bg-[length:200%_100%] bg-clip-text text-transparent">
This could take a few minutes, grab a coffee
</span>
</div>
<span className="inline-block animate-shimmer bg-gradient-to-r from-neutral-400 via-neutral-600 to-neutral-400 bg-[length:200%_100%] bg-clip-text text-transparent">
This could take a few minutes, grab a coffee
</span>
) : showSlowLoader ? (
<span className="inline-block animate-shimmer bg-gradient-to-r from-neutral-400 via-neutral-600 to-neutral-400 bg-[length:200%_100%] bg-clip-text text-transparent">
Taking a bit more time...

View File

@@ -1,50 +0,0 @@
import { useEffect, useRef, useState } from "react";
/**
* Hook that returns a progress value that starts fast and slows down,
* asymptotically approaching but never reaching the max value.
*
* Uses a half-life formula: progress = max * (1 - 0.5^(time/halfLife))
* This creates the "game loading bar" effect where:
* - 50% is reached at halfLifeSeconds
* - 75% is reached at 2 * halfLifeSeconds
* - 87.5% is reached at 3 * halfLifeSeconds
* - and so on...
*
* @param isActive - Whether the progress should be animating
* @param halfLifeSeconds - Time in seconds to reach 50% progress (default: 30)
* @param maxProgress - Maximum progress value to approach (default: 100)
* @param intervalMs - Update interval in milliseconds (default: 100)
* @returns Current progress value (0-maxProgress)
*/
export function useAsymptoticProgress(
isActive: boolean,
halfLifeSeconds = 30,
maxProgress = 100,
intervalMs = 100,
) {
const [progress, setProgress] = useState(0);
const elapsedTimeRef = useRef(0);
useEffect(() => {
if (!isActive) {
setProgress(0);
elapsedTimeRef.current = 0;
return;
}
const interval = setInterval(() => {
elapsedTimeRef.current += intervalMs / 1000;
// Half-life approach: progress = max * (1 - 0.5^(time/halfLife))
// At t=halfLife: 50%, at t=2*halfLife: 75%, at t=3*halfLife: 87.5%, etc.
const newProgress =
maxProgress *
(1 - Math.pow(0.5, elapsedTimeRef.current / halfLifeSeconds));
setProgress(newProgress);
}, intervalMs);
return () => clearInterval(interval);
}, [isActive, halfLifeSeconds, maxProgress, intervalMs]);
return progress;
}

View File

@@ -1,128 +0,0 @@
"use client";
import { useGetV2GetLibraryAgent } from "@/app/api/__generated__/endpoints/library/library";
import { GraphExecutionJobInfo } from "@/app/api/__generated__/models/graphExecutionJobInfo";
import { GraphExecutionMeta } from "@/app/api/__generated__/models/graphExecutionMeta";
import { RunAgentModal } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/RunAgentModal/RunAgentModal";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import {
CheckCircleIcon,
PencilLineIcon,
PlayIcon,
} from "@phosphor-icons/react";
import { AIChatBubble } from "../AIChatBubble/AIChatBubble";
interface Props {
agentName: string;
libraryAgentId: string;
onSendMessage?: (content: string) => void;
}
export function AgentCreatedPrompt({
agentName,
libraryAgentId,
onSendMessage,
}: Props) {
// Fetch library agent eagerly so modal is ready when user clicks
const { data: libraryAgentResponse, isLoading } = useGetV2GetLibraryAgent(
libraryAgentId,
{
query: {
enabled: !!libraryAgentId,
},
},
);
const libraryAgent =
libraryAgentResponse?.status === 200 ? libraryAgentResponse.data : null;
function handleRunWithPlaceholders() {
onSendMessage?.(
`Run the agent "${agentName}" with placeholder/example values so I can test it.`,
);
}
function handleRunCreated(execution: GraphExecutionMeta) {
onSendMessage?.(
`I've started the agent "${agentName}". The execution ID is ${execution.id}. Please monitor its progress and let me know when it completes.`,
);
}
function handleScheduleCreated(schedule: GraphExecutionJobInfo) {
const scheduleInfo = schedule.cron
? `with cron schedule "${schedule.cron}"`
: "to run on the specified schedule";
onSendMessage?.(
`I've scheduled the agent "${agentName}" ${scheduleInfo}. The schedule ID is ${schedule.id}.`,
);
}
return (
<AIChatBubble>
<div className="flex flex-col gap-4">
<div className="flex items-center gap-2">
<div className="flex h-8 w-8 items-center justify-center rounded-full bg-green-100">
<CheckCircleIcon
size={18}
weight="fill"
className="text-green-600"
/>
</div>
<div>
<Text variant="body-medium" className="text-neutral-900">
Agent Created Successfully
</Text>
<Text variant="small" className="text-neutral-500">
&quot;{agentName}&quot; is ready to test
</Text>
</div>
</div>
<div className="flex flex-col gap-2">
<Text variant="small-medium" className="text-neutral-700">
Ready to test?
</Text>
<div className="flex flex-wrap gap-2">
<Button
variant="outline"
size="small"
onClick={handleRunWithPlaceholders}
className="gap-2"
>
<PlayIcon size={16} />
Run with example values
</Button>
{libraryAgent ? (
<RunAgentModal
triggerSlot={
<Button variant="outline" size="small" className="gap-2">
<PencilLineIcon size={16} />
Run with my inputs
</Button>
}
agent={libraryAgent}
onRunCreated={handleRunCreated}
onScheduleCreated={handleScheduleCreated}
/>
) : (
<Button
variant="outline"
size="small"
loading={isLoading}
disabled
className="gap-2"
>
<PencilLineIcon size={16} />
Run with my inputs
</Button>
)}
</div>
<Text variant="small" className="text-neutral-500">
or just ask me
</Text>
</div>
</div>
</AIChatBubble>
);
}

View File

@@ -2,13 +2,11 @@ import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import type { ToolResult } from "@/types/chat";
import { WarningCircleIcon } from "@phosphor-icons/react";
import { AgentCreatedPrompt } from "./AgentCreatedPrompt";
import { AIChatBubble } from "../AIChatBubble/AIChatBubble";
import { MarkdownContent } from "../MarkdownContent/MarkdownContent";
import {
formatToolResponse,
getErrorMessage,
isAgentSavedResponse,
isErrorResponse,
} from "./helpers";
@@ -18,7 +16,6 @@ export interface ToolResponseMessageProps {
result?: ToolResult;
success?: boolean;
className?: string;
onSendMessage?: (content: string) => void;
}
export function ToolResponseMessage({
@@ -27,7 +24,6 @@ export function ToolResponseMessage({
result,
success: _success,
className,
onSendMessage,
}: ToolResponseMessageProps) {
if (isErrorResponse(result)) {
const errorMessage = getErrorMessage(result);
@@ -47,18 +43,6 @@ export function ToolResponseMessage({
);
}
// Check for agent_saved response - show special prompt
const agentSavedData = isAgentSavedResponse(result);
if (agentSavedData.isSaved) {
return (
<AgentCreatedPrompt
agentName={agentSavedData.agentName}
libraryAgentId={agentSavedData.libraryAgentId}
onSendMessage={onSendMessage}
/>
);
}
const formattedText = formatToolResponse(result, toolName);
return (

View File

@@ -6,43 +6,6 @@ function stripInternalReasoning(content: string): string {
.trim();
}
export interface AgentSavedData {
isSaved: boolean;
agentName: string;
agentId: string;
libraryAgentId: string;
libraryAgentLink: string;
}
export function isAgentSavedResponse(result: unknown): AgentSavedData {
if (typeof result !== "object" || result === null) {
return {
isSaved: false,
agentName: "",
agentId: "",
libraryAgentId: "",
libraryAgentLink: "",
};
}
const response = result as Record<string, unknown>;
if (response.type === "agent_saved") {
return {
isSaved: true,
agentName: (response.agent_name as string) || "Agent",
agentId: (response.agent_id as string) || "",
libraryAgentId: (response.library_agent_id as string) || "",
libraryAgentLink: (response.library_agent_link as string) || "",
};
}
return {
isSaved: false,
agentName: "",
agentId: "",
libraryAgentId: "",
libraryAgentLink: "",
};
}
export function isErrorResponse(result: unknown): boolean {
if (typeof result === "string") {
const lower = result.toLowerCase();
@@ -76,101 +39,69 @@ export function getErrorMessage(result: unknown): string {
/**
* Check if a value is a workspace file reference.
* Format: workspace://{fileId} or workspace://{fileId}#{mimeType}
*/
function isWorkspaceRef(value: unknown): value is string {
return typeof value === "string" && value.startsWith("workspace://");
}
/**
* Extract MIME type from a workspace reference fragment.
* e.g., "workspace://abc123#video/mp4" → "video/mp4"
* Returns undefined if no fragment is present.
* Check if a workspace reference appears to be an image based on common patterns.
* Since workspace refs don't have extensions, we check the context or assume image
* for certain block types.
*
* TODO: Replace keyword matching with MIME type encoded in workspace ref.
* e.g., workspace://abc123#image/png or workspace://abc123#video/mp4
* This would let frontend render correctly without fragile keyword matching.
*/
function getWorkspaceMimeType(value: string): string | undefined {
const hashIndex = value.indexOf("#");
if (hashIndex === -1) return undefined;
return value.slice(hashIndex + 1) || undefined;
}
function isLikelyImageRef(value: string, outputKey?: string): boolean {
if (!isWorkspaceRef(value)) return false;
/**
* Determine the media category of a workspace ref or data URI.
* Uses the MIME type fragment on workspace refs when available,
* falls back to output key keyword matching for older refs without it.
*/
function getMediaCategory(
value: string,
outputKey?: string,
): "video" | "image" | "audio" | "unknown" {
// Data URIs carry their own MIME type
if (value.startsWith("data:video/")) return "video";
if (value.startsWith("data:image/")) return "image";
if (value.startsWith("data:audio/")) return "audio";
// Workspace refs: prefer MIME type fragment
if (isWorkspaceRef(value)) {
const mime = getWorkspaceMimeType(value);
if (mime) {
if (mime.startsWith("video/")) return "video";
if (mime.startsWith("image/")) return "image";
if (mime.startsWith("audio/")) return "audio";
return "unknown";
// Check output key name for video-related hints (these are NOT images)
const videoKeywords = ["video", "mp4", "mov", "avi", "webm", "movie", "clip"];
if (outputKey) {
const lowerKey = outputKey.toLowerCase();
if (videoKeywords.some((kw) => lowerKey.includes(kw))) {
return false;
}
// Fallback: keyword matching on output key for older refs without fragment
if (outputKey) {
const lowerKey = outputKey.toLowerCase();
const videoKeywords = [
"video",
"mp4",
"mov",
"avi",
"webm",
"movie",
"clip",
];
if (videoKeywords.some((kw) => lowerKey.includes(kw))) return "video";
const imageKeywords = [
"image",
"img",
"photo",
"picture",
"thumbnail",
"avatar",
"icon",
"screenshot",
];
if (imageKeywords.some((kw) => lowerKey.includes(kw))) return "image";
}
// Default to image for backward compatibility
return "image";
}
return "unknown";
// Check output key name for image-related hints
const imageKeywords = [
"image",
"img",
"photo",
"picture",
"thumbnail",
"avatar",
"icon",
"screenshot",
];
if (outputKey) {
const lowerKey = outputKey.toLowerCase();
if (imageKeywords.some((kw) => lowerKey.includes(kw))) {
return true;
}
}
// Default to treating workspace refs as potential images
// since that's the most common case for generated content
return true;
}
/**
* Format a single output value, converting workspace refs to markdown images/videos.
* Videos use a "video:" alt-text prefix so the MarkdownContent renderer can
* distinguish them from images and render a <video> element.
* Format a single output value, converting workspace refs to markdown images.
*/
function formatOutputValue(value: unknown, outputKey?: string): string {
if (isWorkspaceRef(value) && isLikelyImageRef(value, outputKey)) {
// Format as markdown image
return `![${outputKey || "Generated image"}](${value})`;
}
if (typeof value === "string") {
const category = getMediaCategory(value, outputKey);
if (category === "video") {
// Format with "video:" prefix so MarkdownContent renders <video>
return `![video:${outputKey || "Video"}](${value})`;
}
if (category === "image") {
// Check for data URIs (images)
if (value.startsWith("data:image/")) {
return `![${outputKey || "Generated image"}](${value})`;
}
// For audio, unknown workspace refs, data URIs, etc. - return as-is
return value;
}

View File

@@ -26,7 +26,6 @@ export const providerIcons: Partial<
nvidia: fallbackIcon,
discord: FaDiscord,
d_id: fallbackIcon,
elevenlabs: fallbackIcon,
google_maps: FaGoogle,
jina: fallbackIcon,
ideogram: fallbackIcon,

View File

@@ -47,7 +47,7 @@ export function Navbar() {
const actualLoggedInLinks = [
{ name: "Home", href: homeHref },
...(isChatEnabled === true ? [{ name: "Agents", href: "/library" }] : []),
...(isChatEnabled === true ? [{ name: "Tasks", href: "/library" }] : []),
...loggedInLinks,
];

View File

@@ -192,7 +192,6 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| [Get Current Time](block-integrations/text.md#get-current-time) | This block outputs the current time |
| [Match Text Pattern](block-integrations/text.md#match-text-pattern) | Matches text against a regex pattern and forwards data to positive or negative output based on the match |
| [Text Decoder](block-integrations/text.md#text-decoder) | Decodes a string containing escape sequences into actual text |
| [Text Encoder](block-integrations/text.md#text-encoder) | Encodes a string by converting special characters into escape sequences |
| [Text Replace](block-integrations/text.md#text-replace) | This block is used to replace a text with a new text |
| [Text Split](block-integrations/text.md#text-split) | This block is used to split a text into a list of strings |
| [Word Character Count](block-integrations/text.md#word-character-count) | Counts the number of words and characters in a given text |
@@ -233,7 +232,6 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| [Stagehand Extract](block-integrations/stagehand/blocks.md#stagehand-extract) | Extract structured data from a webpage |
| [Stagehand Observe](block-integrations/stagehand/blocks.md#stagehand-observe) | Find suggested actions for your workflows |
| [Unreal Text To Speech](block-integrations/llm.md#unreal-text-to-speech) | Converts text to speech using the Unreal Speech API |
| [Video Narration](block-integrations/video/narration.md#video-narration) | Generate AI narration and add to video |
## Search and Information Retrieval
@@ -473,13 +471,9 @@ Below is a comprehensive list of all available blocks, categorized by their prim
| Block Name | Description |
|------------|-------------|
| [Add Audio To Video](block-integrations/video/add_audio.md#add-audio-to-video) | Block to attach an audio file to a video file using moviepy |
| [Loop Video](block-integrations/video/loop.md#loop-video) | Block to loop a video to a given duration or number of repeats |
| [Media Duration](block-integrations/video/duration.md#media-duration) | Block to get the duration of a media file |
| [Video Clip](block-integrations/video/clip.md#video-clip) | Extract a time segment from a video |
| [Video Concat](block-integrations/video/concat.md#video-concat) | Merge multiple video clips into one continuous video |
| [Video Download](block-integrations/video/download.md#video-download) | Download video from URL (YouTube, Vimeo, news sites, direct links) |
| [Video Text Overlay](block-integrations/video/text_overlay.md#video-text-overlay) | Add text overlay/caption to video |
| [Add Audio To Video](block-integrations/multimedia.md#add-audio-to-video) | Block to attach an audio file to a video file using moviepy |
| [Loop Video](block-integrations/multimedia.md#loop-video) | Block to loop a video to a given duration or number of repeats |
| [Media Duration](block-integrations/multimedia.md#media-duration) | Block to get the duration of a media file |
## Productivity

View File

@@ -85,6 +85,7 @@
* [LLM](block-integrations/llm.md)
* [Logic](block-integrations/logic.md)
* [Misc](block-integrations/misc.md)
* [Multimedia](block-integrations/multimedia.md)
* [Notion Create Page](block-integrations/notion/create_page.md)
* [Notion Read Database](block-integrations/notion/read_database.md)
* [Notion Read Page](block-integrations/notion/read_page.md)
@@ -128,13 +129,5 @@
* [Twitter Timeline](block-integrations/twitter/timeline.md)
* [Twitter Tweet Lookup](block-integrations/twitter/tweet_lookup.md)
* [Twitter User Lookup](block-integrations/twitter/user_lookup.md)
* [Video Add Audio](block-integrations/video/add_audio.md)
* [Video Clip](block-integrations/video/clip.md)
* [Video Concat](block-integrations/video/concat.md)
* [Video Download](block-integrations/video/download.md)
* [Video Duration](block-integrations/video/duration.md)
* [Video Loop](block-integrations/video/loop.md)
* [Video Narration](block-integrations/video/narration.md)
* [Video Text Overlay](block-integrations/video/text_overlay.md)
* [Wolfram LLM API](block-integrations/wolfram/llm_api.md)
* [Zerobounce Validate Emails](block-integrations/zerobounce/validate_emails.md)

View File

@@ -65,7 +65,7 @@ The result routes data to yes_output or no_output, enabling intelligent branchin
| condition | A plaintext English description of the condition to evaluate | str | Yes |
| yes_value | (Optional) Value to output if the condition is true. If not provided, input_value will be used. | Yes Value | No |
| no_value | (Optional) Value to output if the condition is false. If not provided, input_value will be used. | No Value | No |
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
### Outputs
@@ -103,7 +103,7 @@ The block sends the entire conversation history to the chosen LLM, including sys
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | No |
| messages | List of messages in the conversation. | List[Any] | Yes |
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
| ollama_host | Ollama host for local models | str | No |
@@ -257,7 +257,7 @@ The block formulates a prompt based on the given focus or source data, sends it
|-------|-------------|------|----------|
| focus | The focus of the list to generate. | str | No |
| source_data | The data to generate the list from. | str | No |
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_retries | Maximum number of retries for generating a valid list. | int | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -424,7 +424,7 @@ The block sends the input prompt to a chosen LLM, along with any system prompts
| prompt | The prompt to send to the language model. | str | Yes |
| expected_format | Expected format of the response. If provided, the response will be validated against this format. The keys should be the expected fields in the response, and the values should be the description of the field. | Dict[str, str] | Yes |
| list_result | Whether the response should be a list of objects in the expected format. | bool | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
@@ -464,7 +464,7 @@ The block sends the input prompt to a chosen LLM, processes the response, and re
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. You can use any of the {keys} from Prompt Values to fill in the prompt with values from the prompt values dictionary by putting them in curly braces. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| retry | Number of times to retry the LLM call if the response does not match the expected format. | int | No |
| prompt_values | Values used to fill in the prompt. The values can be used in the prompt by putting them in a double curly braces, e.g. {{variable_name}}. | Dict[str, str] | No |
@@ -501,7 +501,7 @@ The block splits the input text into smaller chunks, sends each chunk to an LLM
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| text | The text to summarize. | str | Yes |
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| focus | The topic to focus on in the summary | str | No |
| style | The style of the summary to generate. | "concise" \| "detailed" \| "bullet points" \| "numbered list" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -763,7 +763,7 @@ Configure agent_mode_max_iterations to control loop behavior: 0 for single decis
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-opus-4-6" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| multiple_tool_calls | Whether to allow multiple tool calls in a single response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |

View File

@@ -380,42 +380,6 @@ This is useful when working with data from APIs or files where escape sequences
---
## Text Encoder
### What it is
Encodes a string by converting special characters into escape sequences
### How it works
<!-- MANUAL: how_it_works -->
The Text Encoder takes the input string and applies Python's `unicode_escape` encoding (equivalent to `codecs.encode(text, "unicode_escape").decode("utf-8")`) to transform special characters like newlines, tabs, and backslashes into their escaped forms.
The block relies on the input schema to ensure the value is a string; non-string inputs are rejected by validation, and any encoding failures surface as block errors. Non-ASCII characters are emitted as `\uXXXX` sequences, which is useful for ASCII-only payloads.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| text | A string containing special characters to be encoded | str | Yes |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if encoding fails | str |
| encoded_text | The encoded text with special characters converted to escape sequences | str |
### Possible use case
<!-- MANUAL: use_case -->
**JSON Payload Preparation**: Encode multiline or quoted text before embedding it in JSON string fields to ensure proper escaping.
**Config/ENV Generation**: Convert template text into escaped strings for `.env` or YAML values that require special character handling.
**Snapshot Fixtures**: Produce stable escaped strings for golden files or API tests where consistent text representation is needed.
<!-- END MANUAL -->
---
## Text Replace
### What it is

View File

@@ -1,39 +0,0 @@
# Video Add Audio
<!-- MANUAL: file_description -->
This block allows you to attach a separate audio track to a video file, replacing or combining with the original audio.
<!-- END MANUAL -->
## Add Audio To Video
### What it is
Block to attach an audio file to a video file using moviepy.
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy to combine video and audio files. It loads the video and audio inputs (which can be URLs, data URIs, or local paths), optionally scales the audio volume, then writes the combined result to a new video file using H.264 video codec and AAC audio codec.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| video_in | Video input (URL, data URI, or local path). | str (file) | Yes |
| audio_in | Audio input (URL, data URI, or local path). | str (file) | Yes |
| volume | Volume scale for the newly attached audio track (1.0 = original). | float | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Final video (with attached audio), as a path or data URI. | str (file) |
### Possible use case
<!-- MANUAL: use_case -->
- Adding background music to a silent screen recording
- Replacing original audio with a voiceover or translated audio track
- Combining AI-generated speech with stock footage
- Adding sound effects to video content
<!-- END MANUAL -->
---

View File

@@ -1,41 +0,0 @@
# Video Clip
<!-- MANUAL: file_description -->
This block extracts a specific time segment from a video file, allowing you to trim videos to precise start and end times.
<!-- END MANUAL -->
## Video Clip
### What it is
Extract a time segment from a video
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy's `subclipped` function to extract a portion of the video between specified start and end times. It validates that end time is greater than start time, then creates a new video file containing only the selected segment. The output is encoded with H.264 video codec and AAC audio codec, preserving both video and audio from the original clip.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| video_in | Input video (URL, data URI, or local path) | str (file) | Yes |
| start_time | Start time in seconds | float | Yes |
| end_time | End time in seconds | float | Yes |
| output_format | Output format | "mp4" \| "webm" \| "mkv" \| "mov" | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Clipped video file (path or data URI) | str (file) |
| duration | Clip duration in seconds | float |
### Possible use case
<!-- MANUAL: use_case -->
- Extracting highlights from a longer video
- Trimming intro/outro from recorded content
- Creating short clips for social media from longer videos
- Isolating specific segments for further processing in a workflow
<!-- END MANUAL -->
---

View File

@@ -1,41 +0,0 @@
# Video Concat
<!-- MANUAL: file_description -->
This block merges multiple video clips into a single continuous video, with optional transitions between clips.
<!-- END MANUAL -->
## Video Concat
### What it is
Merge multiple video clips into one continuous video
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy's `concatenate_videoclips` function to join multiple videos in sequence. It supports three transition modes: **none** (direct concatenation), **crossfade** (smooth blending where clips overlap), and **fade_black** (each clip fades out to black and the next fades in). At least 2 videos are required. The output is encoded with H.264 video codec and AAC audio codec.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| videos | List of video files to concatenate (in order) | List[str (file)] | Yes |
| transition | Transition between clips | "none" \| "crossfade" \| "fade_black" | No |
| transition_duration | Transition duration in seconds | int | No |
| output_format | Output format | "mp4" \| "webm" \| "mkv" \| "mov" | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Concatenated video file (path or data URI) | str (file) |
| total_duration | Total duration in seconds | float |
### Possible use case
<!-- MANUAL: use_case -->
- Combining multiple clips into a compilation video
- Assembling intro, main content, and outro segments
- Creating montages from multiple source videos
- Building video playlists or slideshows with transitions
<!-- END MANUAL -->
---

View File

@@ -1,42 +0,0 @@
# Video Download
<!-- MANUAL: file_description -->
This block downloads videos from URLs, supporting a wide range of video platforms and direct links.
<!-- END MANUAL -->
## Video Download
### What it is
Download video from URL (YouTube, Vimeo, news sites, direct links)
### How it works
<!-- MANUAL: how_it_works -->
The block uses yt-dlp, a powerful video downloading library that supports over 1000 websites. It accepts a URL, quality preference, and output format, then downloads the video while merging the best available video and audio streams for the selected quality. Quality options: **best** (highest available), **1080p/720p/480p** (maximum resolution at that height), **audio_only** (extracts just the audio track).
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| url | URL of the video to download (YouTube, Vimeo, direct link, etc.) | str | Yes |
| quality | Video quality preference | "best" \| "1080p" \| "720p" \| "480p" \| "audio_only" | No |
| output_format | Output video format | "mp4" \| "webm" \| "mkv" | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_file | Downloaded video (path or data URI) | str (file) |
| duration | Video duration in seconds | float |
| title | Video title from source | str |
| source_url | Original source URL | str |
### Possible use case
<!-- MANUAL: use_case -->
- Downloading source videos for editing or remixing
- Archiving video content for offline processing
- Extracting audio from videos for transcription or podcast creation
- Gathering video content for automated content pipelines
<!-- END MANUAL -->
---

View File

@@ -1,38 +0,0 @@
# Video Duration
<!-- MANUAL: file_description -->
This block retrieves the duration of video or audio files, useful for planning and conditional logic in media workflows.
<!-- END MANUAL -->
## Media Duration
### What it is
Block to get the duration of a media file.
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy to load the media file and extract its duration property. It supports both video files (using VideoFileClip) and audio files (using AudioFileClip), determined by the `is_video` flag. The media can be provided as a URL, data URI, or local file path. The duration is returned in seconds as a floating-point number.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| media_in | Media input (URL, data URI, or local path). | str (file) | Yes |
| is_video | Whether the media is a video (True) or audio (False). | bool | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| duration | Duration of the media file (in seconds). | float |
### Possible use case
<!-- MANUAL: use_case -->
- Checking video length before processing to avoid timeout issues
- Calculating how many times to loop a video to reach a target duration
- Validating that uploaded content meets length requirements
- Building conditional workflows based on media duration
<!-- END MANUAL -->
---

View File

@@ -1,39 +0,0 @@
# Video Loop
<!-- MANUAL: file_description -->
This block repeats a video to extend its duration, either to a specific length or a set number of repetitions.
<!-- END MANUAL -->
## Loop Video
### What it is
Block to loop a video to a given duration or number of repeats.
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy's Loop effect to repeat a video clip. You can specify either a target duration (the video will repeat until reaching that length) or a number of loops (the video will repeat that many times). The Loop effect handles both video and audio looping automatically, maintaining sync. Either `duration` or `n_loops` must be provided. The output is encoded with H.264 video codec and AAC audio codec.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| video_in | The input video (can be a URL, data URI, or local path). | str (file) | Yes |
| duration | Target duration (in seconds) to loop the video to. Either duration or n_loops must be provided. | float | No |
| n_loops | Number of times to repeat the video. Either n_loops or duration must be provided. | int | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Looped video returned either as a relative path or a data URI. | str (file) |
### Possible use case
<!-- MANUAL: use_case -->
- Extending a short background video to match the length of narration audio
- Creating seamless looping content for digital signage
- Repeating a product demo video multiple times for emphasis
- Extending short clips to meet minimum duration requirements for platforms
<!-- END MANUAL -->
---

View File

@@ -1,44 +0,0 @@
# Video Narration
<!-- MANUAL: file_description -->
This block generates AI voiceover narration using ElevenLabs and adds it to a video, with flexible audio mixing options.
<!-- END MANUAL -->
## Video Narration
### What it is
Generate AI narration and add to video
### How it works
<!-- MANUAL: how_it_works -->
The block uses ElevenLabs text-to-speech API to generate natural-sounding narration from your script. It then combines the narration with the video using MoviePy. Three audio mixing modes are available: **replace** (completely replaces original audio), **mix** (blends narration with original audio at configurable volumes), and **ducking** (similar to mix but applies stronger attenuation to original audio, making narration more prominent). The block outputs both the final video and the generated audio file separately.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| video_in | Input video (URL, data URI, or local path) | str (file) | Yes |
| script | Narration script text | str | Yes |
| voice_id | ElevenLabs voice ID | str | No |
| model_id | ElevenLabs TTS model | "eleven_multilingual_v2" \| "eleven_flash_v2_5" \| "eleven_turbo_v2_5" \| "eleven_turbo_v2" | No |
| mix_mode | How to combine with original audio. 'ducking' applies stronger attenuation than 'mix'. | "replace" \| "mix" \| "ducking" | No |
| narration_volume | Narration volume (0.0 to 2.0) | float | No |
| original_volume | Original audio volume when mixing (0.0 to 1.0) | float | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Video with narration (path or data URI) | str (file) |
| audio_file | Generated audio file (path or data URI) | str (file) |
### Possible use case
<!-- MANUAL: use_case -->
- Adding professional voiceover to product demos or tutorials
- Creating narrated explainer videos from screen recordings
- Generating multi-language versions of video content
- Adding commentary to gameplay or walkthrough videos
<!-- END MANUAL -->
---

View File

@@ -1,44 +0,0 @@
# Video Text Overlay
<!-- MANUAL: file_description -->
This block adds customizable text captions or titles to videos, with control over positioning, timing, and styling.
<!-- END MANUAL -->
## Video Text Overlay
### What it is
Add text overlay/caption to video
### How it works
<!-- MANUAL: how_it_works -->
The block uses MoviePy's TextClip and CompositeVideoClip to render text onto video frames. The text is created as a separate clip with configurable font size, color, and optional background color, then composited over the video at the specified position. Timing can be controlled to show text only during specific portions of the video. Position options include center alignments (top, center, bottom) and corner positions (top-left, top-right, bottom-left, bottom-right). The output is encoded with H.264 video codec and AAC audio codec.
<!-- END MANUAL -->
### Inputs
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| video_in | Input video (URL, data URI, or local path) | str (file) | Yes |
| text | Text to overlay on video | str | Yes |
| position | Position of text on screen | "top" \| "center" \| "bottom" \| "top-left" \| "top-right" \| "bottom-left" \| "bottom-right" | No |
| start_time | When to show text (seconds). None = entire video | float | No |
| end_time | When to hide text (seconds). None = until end | float | No |
| font_size | Font size | int | No |
| font_color | Font color (hex or name) | str | No |
| bg_color | Background color behind text (None for transparent) | str | No |
### Outputs
| Output | Description | Type |
|--------|-------------|------|
| error | Error message if the operation failed | str |
| video_out | Video with text overlay (path or data URI) | str (file) |
### Possible use case
<!-- MANUAL: use_case -->
- Adding titles or chapter headings to video content
- Creating lower-thirds with speaker names or captions
- Watermarking videos with branding text
- Adding call-to-action text at specific moments in a video
<!-- END MANUAL -->
---

View File

@@ -1,328 +0,0 @@
# Workspace & Media File Architecture
This document describes the architecture for handling user files in AutoGPT Platform, covering persistent user storage (Workspace) and ephemeral media processing pipelines.
## Overview
The platform has two distinct file-handling layers:
| Layer | Purpose | Persistence | Scope |
|-------|---------|-------------|-------|
| **Workspace** | Long-term user file storage | Persistent (DB + GCS/local) | Per-user, session-scoped access |
| **Media Pipeline** | Ephemeral file processing for blocks | Temporary (local disk) | Per-execution |
## Database Models
### UserWorkspace
Represents a user's file storage space. Created on-demand (one per user).
```prisma
model UserWorkspace {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
userId String @unique
Files UserWorkspaceFile[]
}
```
**Key points:**
- One workspace per user (enforced by `@unique` on `userId`)
- Created lazily via `get_or_create_workspace()`
- Uses upsert to handle race conditions
### UserWorkspaceFile
Represents a file stored in a user's workspace.
```prisma
model UserWorkspaceFile {
id String @id @default(uuid())
workspaceId String
name String // User-visible filename
path String // Virtual path (e.g., "/sessions/abc123/image.png")
storagePath String // Actual storage path (gcs://... or local://...)
mimeType String
sizeBytes BigInt
checksum String? // SHA256 for integrity
isDeleted Boolean @default(false)
deletedAt DateTime?
metadata Json @default("{}")
@@unique([workspaceId, path]) // Enforce unique paths within workspace
}
```
**Key points:**
- `path` is a virtual path for organizing files (not actual filesystem path)
- `storagePath` contains the actual GCS or local storage location
- Soft-delete pattern: `isDeleted` flag with `deletedAt` timestamp
- Path is modified on delete to free up the virtual path for reuse
---
## WorkspaceManager
**Location:** `backend/util/workspace.py`
High-level API for workspace file operations. Combines storage backend operations with database record management.
### Initialization
```python
from backend.util.workspace import WorkspaceManager
# Basic usage
manager = WorkspaceManager(user_id="user-123", workspace_id="ws-456")
# With session scoping (CoPilot sessions)
manager = WorkspaceManager(
user_id="user-123",
workspace_id="ws-456",
session_id="session-789"
)
```
### Session Scoping
When `session_id` is provided, files are isolated to `/sessions/{session_id}/`:
```python
# With session_id="abc123":
manager.write_file(content, "image.png")
# → stored at /sessions/abc123/image.png
# Cross-session access is explicit:
manager.read_file("/sessions/other-session/file.txt") # Works
```
**Why session scoping?**
- CoPilot conversations need file isolation
- Prevents file collisions between concurrent sessions
- Allows session cleanup without affecting other sessions
### Core Methods
| Method | Description |
|--------|-------------|
| `write_file(content, filename, path?, mime_type?, overwrite?)` | Write file to workspace |
| `read_file(path)` | Read file by virtual path |
| `read_file_by_id(file_id)` | Read file by ID |
| `list_files(path?, limit?, offset?, include_all_sessions?)` | List files |
| `delete_file(file_id)` | Soft-delete a file |
| `get_download_url(file_id, expires_in?)` | Get signed download URL |
| `get_file_info(file_id)` | Get file metadata |
| `get_file_count(path?, include_all_sessions?)` | Count files |
### Storage Backends
WorkspaceManager delegates to `WorkspaceStorageBackend`:
| Backend | When Used | Storage Path Format |
|---------|-----------|---------------------|
| `GCSWorkspaceStorage` | `media_gcs_bucket_name` is configured | `gcs://bucket/workspaces/{ws_id}/{file_id}/{filename}` |
| `LocalWorkspaceStorage` | No GCS bucket configured | `local://{ws_id}/{file_id}/{filename}` |
---
## store_media_file()
**Location:** `backend/util/file.py`
The media normalization pipeline. Handles various input types and normalizes them for processing or output.
### Purpose
Blocks receive files in many formats (URLs, data URIs, workspace references, local paths). `store_media_file()` normalizes these to a consistent format based on what the block needs.
### Input Types Handled
| Input Format | Example | How It's Processed |
|--------------|---------|-------------------|
| Data URI | `...` | Decoded, virus scanned, written locally |
| HTTP(S) URL | `https://example.com/image.png` | Downloaded, virus scanned, written locally |
| Workspace URI | `workspace://abc123` or `workspace:///path/to/file` | Read from workspace, virus scanned, written locally |
| Cloud path | `gcs://bucket/path` | Downloaded, virus scanned, written locally |
| Local path | `image.png` | Verified to exist in exec_file directory |
### Return Formats
The `return_format` parameter determines what you get back:
```python
from backend.util.file import store_media_file
# For local processing (ffmpeg, MoviePy, PIL)
local_path = await store_media_file(
file=input_file,
execution_context=ctx,
return_format="for_local_processing"
)
# Returns: "image.png" (relative path in exec_file dir)
# For external APIs (Replicate, OpenAI, etc.)
data_uri = await store_media_file(
file=input_file,
execution_context=ctx,
return_format="for_external_api"
)
# Returns: "..."
# For block output (adapts to execution context)
output = await store_media_file(
file=input_file,
execution_context=ctx,
return_format="for_block_output"
)
# In CoPilot: Returns "workspace://file-id#image/png"
# In graphs: Returns "data:image/png;base64,..."
```
### Execution Context
`store_media_file()` requires an `ExecutionContext` with:
- `graph_exec_id` - Required for temp file location
- `user_id` - Required for workspace access
- `workspace_id` - Optional; enables workspace features
- `session_id` - Optional; for session scoping in CoPilot
---
## Responsibility Boundaries
### Virus Scanning
| Component | Scans? | Notes |
|-----------|--------|-------|
| `store_media_file()` | ✅ Yes | Scans **all** content before writing to local disk |
| `WorkspaceManager.write_file()` | ❌ No | Assumes caller has already scanned |
| Upload API endpoints | ✅ Yes | Must scan before calling WorkspaceManager |
**The rule:** Content is scanned at ingestion boundaries:
1. `store_media_file()` scans everything it downloads/decodes
2. API endpoints scan uploads before persisting
3. WorkspaceManager trusts its callers
### Persistence
| Component | Persists To | Lifecycle |
|-----------|-------------|-----------|
| `store_media_file()` | Temp dir (`/tmp/exec_file/{exec_id}/`) | Cleaned after execution |
| `WorkspaceManager` | GCS or local storage + DB | Persistent until deleted |
**Automatic cleanup:** `clean_exec_files(graph_exec_id)` removes temp files after execution completes.
---
## Decision Tree: WorkspaceManager vs store_media_file
```
┌─────────────────────────────────────────────────────┐
│ What do you need to do with the file? │
└─────────────────────────────────────────────────────┘
┌─────────────┴─────────────┐
▼ ▼
Process in a block Store for user access
(ffmpeg, PIL, etc.) (CoPilot files, uploads)
│ │
▼ ▼
store_media_file() WorkspaceManager
with appropriate
return_format
┌──────┴──────┐
▼ ▼
"for_local_ "for_block_
processing" output"
│ │
▼ ▼
Get local Auto-saves to
path for workspace in
tools CoPilot context
```
### Quick Reference
| Scenario | Use |
|----------|-----|
| Block needs to process a file with ffmpeg | `store_media_file(..., return_format="for_local_processing")` |
| Block needs to send file to external API | `store_media_file(..., return_format="for_external_api")` |
| Block returning a generated file | `store_media_file(..., return_format="for_block_output")` |
| API endpoint handling file upload | `WorkspaceManager.write_file()` (after virus scan) |
| API endpoint serving file download | `WorkspaceManager.get_download_url()` |
| Listing user's files | `WorkspaceManager.list_files()` |
---
## Key Files Reference
| File | Purpose |
|------|---------|
| `backend/data/workspace.py` | Database CRUD operations for UserWorkspace and UserWorkspaceFile |
| `backend/util/workspace.py` | `WorkspaceManager` class - high-level workspace API |
| `backend/util/workspace_storage.py` | Storage backends (GCS, local) and `WorkspaceStorageBackend` interface |
| `backend/util/file.py` | `store_media_file()` and media processing utilities |
| `backend/util/virus_scanner.py` | `VirusScannerService` and `scan_content_safe()` |
| `schema.prisma` | Database model definitions |
---
## Common Patterns
### Block Processing a User's File
```python
async def run(self, input_data, *, execution_context, **kwargs):
# Normalize input to local path
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# Process with local tools
output_path = process_video(local_path)
# Return (auto-saves to workspace in CoPilot)
result = await store_media_file(
file=output_path,
execution_context=execution_context,
return_format="for_block_output",
)
yield "output", result
```
### API Upload Endpoint
```python
async def upload_file(file: UploadFile, user_id: str, workspace_id: str):
content = await file.read()
# 1. Virus scan first
await scan_content_safe(content, filename=file.filename)
# 2. Store in workspace
manager = WorkspaceManager(user_id, workspace_id)
workspace_file = await manager.write_file(
content=content,
filename=file.filename,
)
return {"file_id": workspace_file.id}
```
---
## Configuration
| Setting | Purpose | Default |
|---------|---------|---------|
| `media_gcs_bucket_name` | GCS bucket for workspace storage | None (uses local) |
| `workspace_storage_dir` | Local storage directory | `{app_data}/workspaces` |
| `max_file_size_mb` | Maximum file size in MB | 100 |
| `clamav_service_enabled` | Enable virus scanning | true |
| `clamav_service_host` | ClamAV daemon host | localhost |
| `clamav_service_port` | ClamAV daemon port | 3310 |