mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-01-12 16:48:06 -05:00
Compare commits
5 Commits
feat/ai-ge
...
hackathon-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5aaf07fbaf | ||
|
|
0d2996e501 | ||
|
|
9e37a66bca | ||
|
|
429a074848 | ||
|
|
7f1245dc42 |
@@ -1,37 +0,0 @@
|
||||
{
|
||||
"worktreeCopyPatterns": [
|
||||
".env*",
|
||||
".vscode/**",
|
||||
".auth/**",
|
||||
".claude/**",
|
||||
"autogpt_platform/.env*",
|
||||
"autogpt_platform/backend/.env*",
|
||||
"autogpt_platform/frontend/.env*",
|
||||
"autogpt_platform/frontend/.auth/**",
|
||||
"autogpt_platform/db/docker/.env*"
|
||||
],
|
||||
"worktreeCopyIgnores": [
|
||||
"**/node_modules/**",
|
||||
"**/dist/**",
|
||||
"**/.git/**",
|
||||
"**/Thumbs.db",
|
||||
"**/.DS_Store",
|
||||
"**/.next/**",
|
||||
"**/__pycache__/**",
|
||||
"**/.ruff_cache/**",
|
||||
"**/.pytest_cache/**",
|
||||
"**/*.pyc",
|
||||
"**/playwright-report/**",
|
||||
"**/logs/**",
|
||||
"**/site/**"
|
||||
],
|
||||
"worktreePathTemplate": "$BASE_PATH.worktree",
|
||||
"postCreateCmd": [
|
||||
"cd autogpt_platform/autogpt_libs && poetry install",
|
||||
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
|
||||
"cd autogpt_platform/frontend && pnpm install",
|
||||
"cd docs && pip install -r requirements.txt"
|
||||
],
|
||||
"terminalCommand": "code .",
|
||||
"deleteBranchWithWorktree": false
|
||||
}
|
||||
@@ -401,11 +401,28 @@ async def add_generated_agent_image(
|
||||
)
|
||||
|
||||
|
||||
def _initialize_graph_settings(graph: graph_db.GraphModel) -> GraphSettings:
|
||||
"""
|
||||
Initialize GraphSettings based on graph content.
|
||||
|
||||
Args:
|
||||
graph: The graph to analyze
|
||||
|
||||
Returns:
|
||||
GraphSettings with appropriate human_in_the_loop_safe_mode value
|
||||
"""
|
||||
if graph.has_human_in_the_loop:
|
||||
# Graph has HITL blocks - set safe mode to True by default
|
||||
return GraphSettings(human_in_the_loop_safe_mode=True)
|
||||
else:
|
||||
# Graph has no HITL blocks - keep None
|
||||
return GraphSettings(human_in_the_loop_safe_mode=None)
|
||||
|
||||
|
||||
async def create_library_agent(
|
||||
graph: graph_db.GraphModel,
|
||||
user_id: str,
|
||||
create_library_agents_for_sub_graphs: bool = True,
|
||||
is_ai_generated: bool = False,
|
||||
) -> list[library_model.LibraryAgent]:
|
||||
"""
|
||||
Adds an agent to the user's library (LibraryAgent table).
|
||||
@@ -414,7 +431,6 @@ async def create_library_agent(
|
||||
agent: The agent/Graph to add to the library.
|
||||
user_id: The user to whom the agent will be added.
|
||||
create_library_agents_for_sub_graphs: If True, creates LibraryAgent records for sub-graphs as well.
|
||||
is_ai_generated: Whether this graph was AI-generated.
|
||||
|
||||
Returns:
|
||||
The newly created LibraryAgent records.
|
||||
@@ -449,9 +465,7 @@ async def create_library_agent(
|
||||
}
|
||||
},
|
||||
settings=SafeJson(
|
||||
GraphSettings.from_graph(
|
||||
graph_entry, is_ai_generated=is_ai_generated
|
||||
).model_dump()
|
||||
_initialize_graph_settings(graph_entry).model_dump()
|
||||
),
|
||||
),
|
||||
include=library_agent_include(
|
||||
@@ -475,7 +489,7 @@ async def update_agent_version_in_library(
|
||||
agent_graph_version: int,
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Updates the agent version in the library for any agent owned by the user.
|
||||
Updates the agent version in the library if useGraphIsActiveVersion is True.
|
||||
|
||||
Args:
|
||||
user_id: Owner of the LibraryAgent.
|
||||
@@ -484,31 +498,20 @@ async def update_agent_version_in_library(
|
||||
|
||||
Raises:
|
||||
DatabaseError: If there's an error with the update.
|
||||
NotFoundError: If no library agent is found for this user and agent.
|
||||
"""
|
||||
logger.debug(
|
||||
f"Updating agent version in library for user #{user_id}, "
|
||||
f"agent #{agent_graph_id} v{agent_graph_version}"
|
||||
)
|
||||
async with transaction() as tx:
|
||||
library_agent = await prisma.models.LibraryAgent.prisma(tx).find_first_or_raise(
|
||||
try:
|
||||
library_agent = await prisma.models.LibraryAgent.prisma().find_first_or_raise(
|
||||
where={
|
||||
"userId": user_id,
|
||||
"agentGraphId": agent_graph_id,
|
||||
"useGraphIsActiveVersion": True,
|
||||
},
|
||||
)
|
||||
|
||||
# Delete any conflicting LibraryAgent for the target version
|
||||
await prisma.models.LibraryAgent.prisma(tx).delete_many(
|
||||
where={
|
||||
"userId": user_id,
|
||||
"agentGraphId": agent_graph_id,
|
||||
"agentGraphVersion": agent_graph_version,
|
||||
"id": {"not": library_agent.id},
|
||||
}
|
||||
)
|
||||
|
||||
lib = await prisma.models.LibraryAgent.prisma(tx).update(
|
||||
lib = await prisma.models.LibraryAgent.prisma().update(
|
||||
where={"id": library_agent.id},
|
||||
data={
|
||||
"AgentGraph": {
|
||||
@@ -522,13 +525,13 @@ async def update_agent_version_in_library(
|
||||
},
|
||||
include={"AgentGraph": True},
|
||||
)
|
||||
if lib is None:
|
||||
raise NotFoundError(f"Library agent {library_agent.id} not found")
|
||||
|
||||
if lib is None:
|
||||
raise NotFoundError(
|
||||
f"Failed to update library agent for {agent_graph_id} v{agent_graph_version}"
|
||||
)
|
||||
|
||||
return library_model.LibraryAgent.from_db(lib)
|
||||
return library_model.LibraryAgent.from_db(lib)
|
||||
except prisma.errors.PrismaError as e:
|
||||
logger.error(f"Database error updating agent version in library: {e}")
|
||||
raise DatabaseError("Failed to update agent version in library") from e
|
||||
|
||||
|
||||
async def update_library_agent(
|
||||
@@ -613,6 +616,33 @@ async def update_library_agent(
|
||||
raise DatabaseError("Failed to update library agent") from e
|
||||
|
||||
|
||||
async def update_library_agent_settings(
|
||||
user_id: str,
|
||||
agent_id: str,
|
||||
settings: GraphSettings,
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Updates the settings for a specific LibraryAgent.
|
||||
|
||||
Args:
|
||||
user_id: The owner of the LibraryAgent.
|
||||
agent_id: The ID of the LibraryAgent to update.
|
||||
settings: New GraphSettings to apply.
|
||||
|
||||
Returns:
|
||||
The updated LibraryAgent.
|
||||
|
||||
Raises:
|
||||
NotFoundError: If the specified LibraryAgent does not exist.
|
||||
DatabaseError: If there's an error in the update operation.
|
||||
"""
|
||||
return await update_library_agent(
|
||||
library_agent_id=agent_id,
|
||||
user_id=user_id,
|
||||
settings=settings,
|
||||
)
|
||||
|
||||
|
||||
async def delete_library_agent(
|
||||
library_agent_id: str, user_id: str, soft_delete: bool = True
|
||||
) -> None:
|
||||
@@ -795,11 +825,8 @@ async def add_store_agent_to_library(
|
||||
}
|
||||
},
|
||||
"isCreatedByUser": False,
|
||||
"useGraphIsActiveVersion": False,
|
||||
"settings": SafeJson(
|
||||
GraphSettings.from_graph(
|
||||
graph_model, is_ai_generated=False
|
||||
).model_dump()
|
||||
_initialize_graph_settings(graph_model).model_dump()
|
||||
),
|
||||
},
|
||||
include=library_agent_include(
|
||||
|
||||
@@ -0,0 +1,72 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
CLI script to backfill embeddings for store agents.
|
||||
|
||||
Usage:
|
||||
poetry run python -m backend.server.v2.store.backfill_embeddings [--batch-size N]
|
||||
"""
|
||||
|
||||
import argparse
|
||||
import asyncio
|
||||
import sys
|
||||
|
||||
import prisma
|
||||
|
||||
from backend.api.features.store.embeddings import (
|
||||
backfill_missing_embeddings,
|
||||
get_embedding_stats,
|
||||
)
|
||||
|
||||
|
||||
async def main(batch_size: int = 100) -> int:
|
||||
"""Run the backfill process."""
|
||||
# Initialize Prisma client
|
||||
client = prisma.Prisma()
|
||||
await client.connect()
|
||||
prisma.register(client)
|
||||
|
||||
try:
|
||||
# Get current stats
|
||||
print("Current embedding stats:")
|
||||
stats = await get_embedding_stats()
|
||||
print(f" Total approved: {stats['total_approved']}")
|
||||
print(f" With embeddings: {stats['with_embeddings']}")
|
||||
print(f" Without embeddings: {stats['without_embeddings']}")
|
||||
print(f" Coverage: {stats['coverage_percent']}%")
|
||||
|
||||
if stats["without_embeddings"] == 0:
|
||||
print("\nAll agents already have embeddings. Nothing to do.")
|
||||
return 0
|
||||
|
||||
# Run backfill
|
||||
print(f"\nBackfilling up to {batch_size} embeddings...")
|
||||
result = await backfill_missing_embeddings(batch_size=batch_size)
|
||||
print(f" Processed: {result['processed']}")
|
||||
print(f" Success: {result['success']}")
|
||||
print(f" Failed: {result['failed']}")
|
||||
|
||||
# Get final stats
|
||||
print("\nFinal embedding stats:")
|
||||
stats = await get_embedding_stats()
|
||||
print(f" Total approved: {stats['total_approved']}")
|
||||
print(f" With embeddings: {stats['with_embeddings']}")
|
||||
print(f" Without embeddings: {stats['without_embeddings']}")
|
||||
print(f" Coverage: {stats['coverage_percent']}%")
|
||||
|
||||
return 0 if result["failed"] == 0 else 1
|
||||
|
||||
finally:
|
||||
await client.disconnect()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Backfill embeddings for store agents")
|
||||
parser.add_argument(
|
||||
"--batch-size",
|
||||
type=int,
|
||||
default=100,
|
||||
help="Number of embeddings to generate (default: 100)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
sys.exit(asyncio.run(main(batch_size=args.batch_size)))
|
||||
@@ -1,6 +1,5 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import typing
|
||||
from datetime import datetime, timezone
|
||||
from typing import Literal
|
||||
|
||||
@@ -10,7 +9,7 @@ import prisma.errors
|
||||
import prisma.models
|
||||
import prisma.types
|
||||
|
||||
from backend.data.db import query_raw_with_schema, transaction
|
||||
from backend.data.db import transaction
|
||||
from backend.data.graph import (
|
||||
GraphMeta,
|
||||
GraphModel,
|
||||
@@ -30,6 +29,8 @@ from backend.util.settings import Settings
|
||||
|
||||
from . import exceptions as store_exceptions
|
||||
from . import model as store_model
|
||||
from .embeddings import ensure_embedding
|
||||
from .hybrid_search import hybrid_search
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
settings = Settings()
|
||||
@@ -56,122 +57,62 @@ async def get_store_agents(
|
||||
f"Getting store agents. featured={featured}, creators={creators}, sorted_by={sorted_by}, search={search_query}, category={category}, page={page}"
|
||||
)
|
||||
|
||||
search_used_hybrid = False
|
||||
store_agents: list[store_model.StoreAgent] = []
|
||||
total = 0
|
||||
total_pages = 0
|
||||
|
||||
try:
|
||||
# If search_query is provided, use full-text search
|
||||
# If search_query is provided, try hybrid search (embeddings + tsvector)
|
||||
if search_query:
|
||||
offset = (page - 1) * page_size
|
||||
try:
|
||||
# Use hybrid search combining semantic and lexical signals
|
||||
agents, total = await hybrid_search(
|
||||
query=search_query,
|
||||
featured=featured,
|
||||
creators=creators,
|
||||
category=category,
|
||||
sorted_by="relevance", # Use hybrid scoring for relevance
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
search_used_hybrid = True
|
||||
|
||||
# Whitelist allowed order_by columns
|
||||
ALLOWED_ORDER_BY = {
|
||||
"rating": "rating DESC, rank DESC",
|
||||
"runs": "runs DESC, rank DESC",
|
||||
"name": "agent_name ASC, rank ASC",
|
||||
"updated_at": "updated_at DESC, rank DESC",
|
||||
}
|
||||
# Convert hybrid search results (dict format)
|
||||
total_pages = (total + page_size - 1) // page_size
|
||||
store_agents: list[store_model.StoreAgent] = []
|
||||
for agent in agents:
|
||||
try:
|
||||
store_agent = store_model.StoreAgent(
|
||||
slug=agent["slug"],
|
||||
agent_name=agent["agent_name"],
|
||||
agent_image=(
|
||||
agent["agent_image"][0] if agent["agent_image"] else ""
|
||||
),
|
||||
creator=agent["creator_username"] or "Needs Profile",
|
||||
creator_avatar=agent["creator_avatar"] or "",
|
||||
sub_heading=agent["sub_heading"],
|
||||
description=agent["description"],
|
||||
runs=agent["runs"],
|
||||
rating=agent["rating"],
|
||||
)
|
||||
store_agents.append(store_agent)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error parsing Store agent from hybrid search results: {e}"
|
||||
)
|
||||
continue
|
||||
|
||||
# Validate and get order clause
|
||||
if sorted_by and sorted_by in ALLOWED_ORDER_BY:
|
||||
order_by_clause = ALLOWED_ORDER_BY[sorted_by]
|
||||
else:
|
||||
order_by_clause = "updated_at DESC, rank DESC"
|
||||
except Exception as hybrid_error:
|
||||
# If hybrid search fails (e.g., missing embeddings table),
|
||||
# fallback to basic search logic below
|
||||
logger.warning(
|
||||
f"Hybrid search failed, falling back to basic search: {hybrid_error}"
|
||||
)
|
||||
search_used_hybrid = False
|
||||
|
||||
# Build WHERE conditions and parameters list
|
||||
where_parts: list[str] = []
|
||||
params: list[typing.Any] = [search_query] # $1 - search term
|
||||
param_index = 2 # Start at $2 for next parameter
|
||||
|
||||
# Always filter for available agents
|
||||
where_parts.append("is_available = true")
|
||||
|
||||
if featured:
|
||||
where_parts.append("featured = true")
|
||||
|
||||
if creators and creators:
|
||||
# Use ANY with array parameter
|
||||
where_parts.append(f"creator_username = ANY(${param_index})")
|
||||
params.append(creators)
|
||||
param_index += 1
|
||||
|
||||
if category and category:
|
||||
where_parts.append(f"${param_index} = ANY(categories)")
|
||||
params.append(category)
|
||||
param_index += 1
|
||||
|
||||
sql_where_clause: str = " AND ".join(where_parts) if where_parts else "1=1"
|
||||
|
||||
# Add pagination params
|
||||
params.extend([page_size, offset])
|
||||
limit_param = f"${param_index}"
|
||||
offset_param = f"${param_index + 1}"
|
||||
|
||||
# Execute full-text search query with parameterized values
|
||||
sql_query = f"""
|
||||
SELECT
|
||||
slug,
|
||||
agent_name,
|
||||
agent_image,
|
||||
creator_username,
|
||||
creator_avatar,
|
||||
sub_heading,
|
||||
description,
|
||||
runs,
|
||||
rating,
|
||||
categories,
|
||||
featured,
|
||||
is_available,
|
||||
updated_at,
|
||||
ts_rank_cd(search, query) AS rank
|
||||
FROM {{schema_prefix}}"StoreAgent",
|
||||
plainto_tsquery('english', $1) AS query
|
||||
WHERE {sql_where_clause}
|
||||
AND search @@ query
|
||||
ORDER BY {order_by_clause}
|
||||
LIMIT {limit_param} OFFSET {offset_param}
|
||||
"""
|
||||
|
||||
# Count query for pagination - only uses search term parameter
|
||||
count_query = f"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM {{schema_prefix}}"StoreAgent",
|
||||
plainto_tsquery('english', $1) AS query
|
||||
WHERE {sql_where_clause}
|
||||
AND search @@ query
|
||||
"""
|
||||
|
||||
# Execute both queries with parameters
|
||||
agents = await query_raw_with_schema(sql_query, *params)
|
||||
|
||||
# For count, use params without pagination (last 2 params)
|
||||
count_params = params[:-2]
|
||||
count_result = await query_raw_with_schema(count_query, *count_params)
|
||||
|
||||
total = count_result[0]["count"] if count_result else 0
|
||||
total_pages = (total + page_size - 1) // page_size
|
||||
|
||||
# Convert raw results to StoreAgent models
|
||||
store_agents: list[store_model.StoreAgent] = []
|
||||
for agent in agents:
|
||||
try:
|
||||
store_agent = store_model.StoreAgent(
|
||||
slug=agent["slug"],
|
||||
agent_name=agent["agent_name"],
|
||||
agent_image=(
|
||||
agent["agent_image"][0] if agent["agent_image"] else ""
|
||||
),
|
||||
creator=agent["creator_username"] or "Needs Profile",
|
||||
creator_avatar=agent["creator_avatar"] or "",
|
||||
sub_heading=agent["sub_heading"],
|
||||
description=agent["description"],
|
||||
runs=agent["runs"],
|
||||
rating=agent["rating"],
|
||||
)
|
||||
store_agents.append(store_agent)
|
||||
except Exception as e:
|
||||
logger.error(f"Error parsing Store agent from search results: {e}")
|
||||
continue
|
||||
|
||||
else:
|
||||
# Non-search query path (original logic)
|
||||
if not search_used_hybrid:
|
||||
# Fallback path - use basic search or no search
|
||||
where_clause: prisma.types.StoreAgentWhereInput = {"is_available": True}
|
||||
if featured:
|
||||
where_clause["featured"] = featured
|
||||
@@ -180,6 +121,14 @@ async def get_store_agents(
|
||||
if category:
|
||||
where_clause["categories"] = {"has": category}
|
||||
|
||||
# Add basic text search if search_query provided but hybrid failed
|
||||
if search_query:
|
||||
where_clause["OR"] = [
|
||||
{"agent_name": {"contains": search_query, "mode": "insensitive"}},
|
||||
{"sub_heading": {"contains": search_query, "mode": "insensitive"}},
|
||||
{"description": {"contains": search_query, "mode": "insensitive"}},
|
||||
]
|
||||
|
||||
order_by = []
|
||||
if sorted_by == "rating":
|
||||
order_by.append({"rating": "desc"})
|
||||
@@ -1600,6 +1549,22 @@ async def review_store_submission(
|
||||
},
|
||||
)
|
||||
|
||||
# Generate embedding for approved listing (non-blocking)
|
||||
try:
|
||||
await ensure_embedding(
|
||||
version_id=store_listing_version_id,
|
||||
name=store_listing_version.name,
|
||||
description=store_listing_version.description,
|
||||
sub_heading=store_listing_version.subHeading,
|
||||
categories=store_listing_version.categories or [],
|
||||
)
|
||||
except Exception as e:
|
||||
# Don't fail approval if embedding generation fails
|
||||
logger.warning(
|
||||
f"Failed to generate embedding for approved listing "
|
||||
f"{store_listing_version_id}: {e}"
|
||||
)
|
||||
|
||||
# If rejecting an approved agent, update the StoreListing accordingly
|
||||
if is_rejecting_approved:
|
||||
# Check if there are other approved versions
|
||||
|
||||
@@ -0,0 +1,533 @@
|
||||
"""
|
||||
Unified Content Embeddings Service
|
||||
|
||||
Handles generation and storage of OpenAI embeddings for all content types
|
||||
(store listings, blocks, documentation, library agents) to enable semantic/hybrid search.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
import prisma
|
||||
from openai import OpenAI
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.util.json import dumps
|
||||
from backend.util.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# OpenAI embedding model configuration
|
||||
EMBEDDING_MODEL = "text-embedding-3-small"
|
||||
EMBEDDING_DIM = 1536
|
||||
|
||||
|
||||
def build_searchable_text(
|
||||
name: str,
|
||||
description: str,
|
||||
sub_heading: str,
|
||||
categories: list[str],
|
||||
) -> str:
|
||||
"""
|
||||
Build searchable text from listing version fields.
|
||||
|
||||
Combines relevant fields into a single string for embedding.
|
||||
"""
|
||||
parts = []
|
||||
|
||||
# Name is important - include it
|
||||
if name:
|
||||
parts.append(name)
|
||||
|
||||
# Sub-heading provides context
|
||||
if sub_heading:
|
||||
parts.append(sub_heading)
|
||||
|
||||
# Description is the main content
|
||||
if description:
|
||||
parts.append(description)
|
||||
|
||||
# Categories help with semantic matching
|
||||
if categories:
|
||||
parts.append(" ".join(categories))
|
||||
|
||||
return " ".join(parts)
|
||||
|
||||
|
||||
async def generate_embedding(text: str) -> list[float] | None:
|
||||
"""
|
||||
Generate embedding for text using OpenAI API.
|
||||
|
||||
Returns None if embedding generation fails.
|
||||
"""
|
||||
try:
|
||||
settings = Settings()
|
||||
api_key = settings.secrets.openai_internal_api_key
|
||||
if not api_key:
|
||||
logger.warning("openai_internal_api_key not set, cannot generate embedding")
|
||||
return None
|
||||
|
||||
client = OpenAI(api_key=api_key)
|
||||
|
||||
# Truncate text to avoid token limits (~32k chars for safety)
|
||||
truncated_text = text[:32000]
|
||||
|
||||
response = client.embeddings.create(
|
||||
model=EMBEDDING_MODEL,
|
||||
input=truncated_text,
|
||||
)
|
||||
|
||||
embedding = response.data[0].embedding
|
||||
logger.debug(f"Generated embedding with {len(embedding)} dimensions")
|
||||
return embedding
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate embedding: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def store_embedding(
|
||||
version_id: str,
|
||||
embedding: list[float],
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Store embedding in the database.
|
||||
|
||||
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
|
||||
Uses raw SQL since Prisma doesn't natively support pgvector.
|
||||
"""
|
||||
return await store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id=version_id,
|
||||
embedding=embedding,
|
||||
searchable_text="", # Will be populated from existing data
|
||||
metadata=None,
|
||||
user_id=None, # Store agents are public
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
|
||||
async def store_content_embedding(
|
||||
content_type: ContentType,
|
||||
content_id: str,
|
||||
embedding: list[float],
|
||||
searchable_text: str,
|
||||
metadata: dict | None = None,
|
||||
user_id: str | None = None,
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Store embedding in the unified content embeddings table.
|
||||
|
||||
New function for unified content embedding storage.
|
||||
Uses raw SQL since Prisma doesn't natively support pgvector.
|
||||
"""
|
||||
try:
|
||||
client = tx if tx else prisma.get_client()
|
||||
|
||||
# Convert embedding to PostgreSQL vector format
|
||||
embedding_str = "[" + ",".join(str(x) for x in embedding) + "]"
|
||||
metadata_json = dumps(metadata or {})
|
||||
|
||||
# Upsert the embedding
|
||||
await client.execute_raw(
|
||||
"""
|
||||
INSERT INTO platform."UnifiedContentEmbedding" (
|
||||
"contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
|
||||
)
|
||||
VALUES ($1, $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
|
||||
ON CONFLICT ("contentType", "contentId", "userId")
|
||||
DO UPDATE SET
|
||||
"embedding" = $4::vector,
|
||||
"searchableText" = $5,
|
||||
"metadata" = $6::jsonb,
|
||||
"updatedAt" = NOW()
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
embedding_str,
|
||||
searchable_text,
|
||||
metadata_json,
|
||||
)
|
||||
|
||||
logger.info(f"Stored embedding for {content_type}:{content_id}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to store embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def get_embedding(version_id: str) -> dict[str, Any] | None:
|
||||
"""
|
||||
Retrieve embedding record for a listing version.
|
||||
|
||||
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
|
||||
Returns dict with storeListingVersionId, embedding, timestamps or None if not found.
|
||||
"""
|
||||
result = await get_content_embedding(
|
||||
ContentType.STORE_AGENT, version_id, user_id=None
|
||||
)
|
||||
if result:
|
||||
# Transform to old format for backward compatibility
|
||||
return {
|
||||
"storeListingVersionId": result["contentId"],
|
||||
"embedding": result["embedding"],
|
||||
"createdAt": result["createdAt"],
|
||||
"updatedAt": result["updatedAt"],
|
||||
}
|
||||
return None
|
||||
|
||||
|
||||
async def get_content_embedding(
|
||||
content_type: ContentType, content_id: str, user_id: str | None = None
|
||||
) -> dict[str, Any] | None:
|
||||
"""
|
||||
Retrieve embedding record for any content type.
|
||||
|
||||
New function for unified content embedding retrieval.
|
||||
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
|
||||
"""
|
||||
try:
|
||||
client = prisma.get_client()
|
||||
|
||||
result = await client.query_raw(
|
||||
"""
|
||||
SELECT
|
||||
"contentType",
|
||||
"contentId",
|
||||
"userId",
|
||||
"embedding"::text as "embedding",
|
||||
"searchableText",
|
||||
"metadata",
|
||||
"createdAt",
|
||||
"updatedAt"
|
||||
FROM platform."UnifiedContentEmbedding"
|
||||
WHERE "contentType" = $1 AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
)
|
||||
|
||||
if result and len(result) > 0:
|
||||
return result[0]
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get embedding for {content_type}:{content_id}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def ensure_embedding(
|
||||
version_id: str,
|
||||
name: str,
|
||||
description: str,
|
||||
sub_heading: str,
|
||||
categories: list[str],
|
||||
force: bool = False,
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Ensure an embedding exists for the listing version.
|
||||
|
||||
Creates embedding if missing. Use force=True to regenerate.
|
||||
Backward-compatible wrapper for store listings.
|
||||
|
||||
Args:
|
||||
version_id: The StoreListingVersion ID
|
||||
name: Agent name
|
||||
description: Agent description
|
||||
sub_heading: Agent sub-heading
|
||||
categories: Agent categories
|
||||
force: Force regeneration even if embedding exists
|
||||
tx: Optional transaction client
|
||||
|
||||
Returns:
|
||||
True if embedding exists/was created, False on failure
|
||||
"""
|
||||
try:
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_embedding(version_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(f"Embedding for version {version_id} already exists")
|
||||
return True
|
||||
|
||||
# Build searchable text for embedding
|
||||
searchable_text = build_searchable_text(
|
||||
name, description, sub_heading, categories
|
||||
)
|
||||
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
if embedding is None:
|
||||
logger.warning(f"Could not generate embedding for version {version_id}")
|
||||
return False
|
||||
|
||||
# Store the embedding with metadata using new function
|
||||
metadata = {
|
||||
"name": name,
|
||||
"subHeading": sub_heading,
|
||||
"categories": categories,
|
||||
}
|
||||
return await store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id=version_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata,
|
||||
user_id=None, # Store agents are public
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def delete_embedding(version_id: str) -> bool:
|
||||
"""
|
||||
Delete embedding for a listing version.
|
||||
|
||||
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
|
||||
Note: This is usually handled automatically by CASCADE delete,
|
||||
but provided for manual cleanup if needed.
|
||||
"""
|
||||
return await delete_content_embedding(ContentType.STORE_AGENT, version_id)
|
||||
|
||||
|
||||
async def delete_content_embedding(content_type: ContentType, content_id: str) -> bool:
|
||||
"""
|
||||
Delete embedding for any content type.
|
||||
|
||||
New function for unified content embedding deletion.
|
||||
Note: This is usually handled automatically by CASCADE delete,
|
||||
but provided for manual cleanup if needed.
|
||||
"""
|
||||
try:
|
||||
client = prisma.get_client()
|
||||
|
||||
await client.execute_raw(
|
||||
"""
|
||||
DELETE FROM platform."UnifiedContentEmbedding"
|
||||
WHERE "contentType" = $1 AND "contentId" = $2
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
)
|
||||
|
||||
logger.info(f"Deleted embedding for {content_type}:{content_id}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def get_embedding_stats() -> dict[str, Any]:
|
||||
"""
|
||||
Get statistics about embedding coverage.
|
||||
|
||||
Returns counts of:
|
||||
- Total approved listing versions
|
||||
- Versions with embeddings
|
||||
- Versions without embeddings
|
||||
"""
|
||||
try:
|
||||
client = prisma.get_client()
|
||||
|
||||
# Count approved versions
|
||||
approved_result = await client.query_raw(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM platform."StoreListingVersion"
|
||||
WHERE "submissionStatus" = 'APPROVED'
|
||||
AND "isDeleted" = false
|
||||
"""
|
||||
)
|
||||
total_approved = approved_result[0]["count"] if approved_result else 0
|
||||
|
||||
# Count versions with embeddings
|
||||
embedded_result = await client.query_raw(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM platform."StoreListingVersion" slv
|
||||
JOIN platform."UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'
|
||||
WHERE slv."submissionStatus" = 'APPROVED'
|
||||
AND slv."isDeleted" = false
|
||||
"""
|
||||
)
|
||||
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
|
||||
|
||||
return {
|
||||
"total_approved": total_approved,
|
||||
"with_embeddings": with_embeddings,
|
||||
"without_embeddings": total_approved - with_embeddings,
|
||||
"coverage_percent": (
|
||||
round(with_embeddings / total_approved * 100, 1)
|
||||
if total_approved > 0
|
||||
else 0
|
||||
),
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get embedding stats: {e}")
|
||||
return {
|
||||
"total_approved": 0,
|
||||
"with_embeddings": 0,
|
||||
"without_embeddings": 0,
|
||||
"coverage_percent": 0,
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
|
||||
async def backfill_missing_embeddings(batch_size: int = 10) -> dict[str, Any]:
|
||||
"""
|
||||
Generate embeddings for approved listings that don't have them.
|
||||
|
||||
Args:
|
||||
batch_size: Number of embeddings to generate in one call
|
||||
|
||||
Returns:
|
||||
Dict with success/failure counts
|
||||
"""
|
||||
try:
|
||||
client = prisma.get_client()
|
||||
|
||||
# Find approved versions without embeddings
|
||||
missing = await client.query_raw(
|
||||
"""
|
||||
SELECT
|
||||
slv.id,
|
||||
slv.name,
|
||||
slv.description,
|
||||
slv."subHeading",
|
||||
slv.categories
|
||||
FROM platform."StoreListingVersion" slv
|
||||
LEFT JOIN platform."UnifiedContentEmbedding" uce
|
||||
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'
|
||||
WHERE slv."submissionStatus" = 'APPROVED'
|
||||
AND slv."isDeleted" = false
|
||||
AND uce."contentId" IS NULL
|
||||
LIMIT $1
|
||||
""",
|
||||
batch_size,
|
||||
)
|
||||
|
||||
if not missing:
|
||||
return {
|
||||
"processed": 0,
|
||||
"success": 0,
|
||||
"failed": 0,
|
||||
"message": "No missing embeddings",
|
||||
}
|
||||
|
||||
# Process embeddings concurrently for better performance
|
||||
embedding_tasks = [
|
||||
ensure_embedding(
|
||||
version_id=row["id"],
|
||||
name=row["name"],
|
||||
description=row["description"],
|
||||
sub_heading=row["subHeading"],
|
||||
categories=row["categories"] or [],
|
||||
)
|
||||
for row in missing
|
||||
]
|
||||
|
||||
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
|
||||
|
||||
success = sum(1 for result in results if result is True)
|
||||
failed = len(results) - success
|
||||
|
||||
return {
|
||||
"processed": len(missing),
|
||||
"success": success,
|
||||
"failed": failed,
|
||||
"message": f"Backfilled {success} embeddings, {failed} failed",
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to backfill embeddings: {e}")
|
||||
return {
|
||||
"processed": 0,
|
||||
"success": 0,
|
||||
"failed": 0,
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
|
||||
async def embed_query(query: str) -> list[float] | None:
|
||||
"""
|
||||
Generate embedding for a search query.
|
||||
|
||||
Same as generate_embedding but with clearer intent.
|
||||
"""
|
||||
return await generate_embedding(query)
|
||||
|
||||
|
||||
def embedding_to_vector_string(embedding: list[float]) -> str:
|
||||
"""Convert embedding list to PostgreSQL vector string format."""
|
||||
return "[" + ",".join(str(x) for x in embedding) + "]"
|
||||
|
||||
|
||||
async def ensure_content_embedding(
|
||||
content_type: ContentType,
|
||||
content_id: str,
|
||||
searchable_text: str,
|
||||
metadata: dict | None = None,
|
||||
user_id: str | None = None,
|
||||
force: bool = False,
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Ensure an embedding exists for any content type.
|
||||
|
||||
Generic function for creating embeddings for store agents, blocks, docs, etc.
|
||||
|
||||
Args:
|
||||
content_type: ContentType enum value (STORE_AGENT, BLOCK, etc.)
|
||||
content_id: Unique identifier for the content
|
||||
searchable_text: Combined text for embedding generation
|
||||
metadata: Optional metadata to store with embedding
|
||||
force: Force regeneration even if embedding exists
|
||||
tx: Optional transaction client
|
||||
|
||||
Returns:
|
||||
True if embedding exists/was created, False on failure
|
||||
"""
|
||||
try:
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_content_embedding(content_type, content_id, user_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(
|
||||
f"Embedding for {content_type}:{content_id} already exists"
|
||||
)
|
||||
return True
|
||||
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
if embedding is None:
|
||||
logger.warning(
|
||||
f"Could not generate embedding for {content_type}:{content_id}"
|
||||
)
|
||||
return False
|
||||
|
||||
# Store the embedding
|
||||
return await store_content_embedding(
|
||||
content_type=content_type,
|
||||
content_id=content_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata or {},
|
||||
user_id=user_id,
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
@@ -0,0 +1,359 @@
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import prisma
|
||||
import pytest
|
||||
from prisma import Prisma
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.api.features.store import embeddings
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
async def setup_prisma():
|
||||
"""Setup Prisma client for tests."""
|
||||
try:
|
||||
Prisma()
|
||||
except prisma.errors.ClientAlreadyRegisteredError:
|
||||
pass
|
||||
yield
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_build_searchable_text():
|
||||
"""Test searchable text building from listing fields."""
|
||||
result = embeddings.build_searchable_text(
|
||||
name="AI Assistant",
|
||||
description="A helpful AI assistant for productivity",
|
||||
sub_heading="Boost your productivity",
|
||||
categories=["AI", "Productivity"],
|
||||
)
|
||||
|
||||
expected = "AI Assistant Boost your productivity A helpful AI assistant for productivity AI Productivity"
|
||||
assert result == expected
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_build_searchable_text_empty_fields():
|
||||
"""Test searchable text building with empty fields."""
|
||||
result = embeddings.build_searchable_text(
|
||||
name="", description="Test description", sub_heading="", categories=[]
|
||||
)
|
||||
|
||||
assert result == "Test description"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.OpenAI")
|
||||
async def test_generate_embedding_success(mock_openai_class):
|
||||
"""Test successful embedding generation."""
|
||||
# Mock OpenAI response
|
||||
mock_client = MagicMock()
|
||||
mock_response = MagicMock()
|
||||
mock_response.data = [MagicMock()]
|
||||
mock_response.data[0].embedding = [0.1, 0.2, 0.3] * 512 # 1536 dimensions
|
||||
mock_client.embeddings.create.return_value = mock_response
|
||||
mock_openai_class.return_value = mock_client
|
||||
|
||||
with patch("backend.api.features.store.embeddings.Settings") as mock_settings:
|
||||
mock_settings.return_value.secrets.openai_internal_api_key = "test-key"
|
||||
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is not None
|
||||
assert len(result) == 1536
|
||||
assert result[0] == 0.1
|
||||
|
||||
mock_client.embeddings.create.assert_called_once_with(
|
||||
model="text-embedding-3-small", input="test text"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.OpenAI")
|
||||
async def test_generate_embedding_no_api_key(mock_openai_class):
|
||||
"""Test embedding generation without API key."""
|
||||
with patch("backend.api.features.store.embeddings.Settings") as mock_settings:
|
||||
mock_settings.return_value.secrets.openai_internal_api_key = ""
|
||||
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is None
|
||||
mock_openai_class.assert_not_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.OpenAI")
|
||||
async def test_generate_embedding_api_error(mock_openai_class):
|
||||
"""Test embedding generation with API error."""
|
||||
mock_client = MagicMock()
|
||||
mock_client.embeddings.create.side_effect = Exception("API Error")
|
||||
mock_openai_class.return_value = mock_client
|
||||
|
||||
with patch("backend.api.features.store.embeddings.Settings") as mock_settings:
|
||||
mock_settings.return_value.secrets.openai_internal_api_key = "test-key"
|
||||
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.OpenAI")
|
||||
async def test_generate_embedding_text_truncation(mock_openai_class):
|
||||
"""Test that long text is properly truncated."""
|
||||
mock_client = MagicMock()
|
||||
mock_response = MagicMock()
|
||||
mock_response.data = [MagicMock()]
|
||||
mock_response.data[0].embedding = [0.1] * 1536
|
||||
mock_client.embeddings.create.return_value = mock_response
|
||||
mock_openai_class.return_value = mock_client
|
||||
|
||||
# Create text longer than 32k chars
|
||||
long_text = "a" * 35000
|
||||
|
||||
with patch("backend.api.features.store.embeddings.Settings") as mock_settings:
|
||||
mock_settings.return_value.secrets.openai_internal_api_key = "test-key"
|
||||
|
||||
await embeddings.generate_embedding(long_text)
|
||||
|
||||
# Verify truncated text was sent to API
|
||||
call_args = mock_client.embeddings.create.call_args
|
||||
assert len(call_args.kwargs["input"]) == 32000
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_store_embedding_success(mocker):
|
||||
"""Test successful embedding storage."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_client.execute_raw = mocker.AsyncMock()
|
||||
|
||||
embedding = [0.1, 0.2, 0.3]
|
||||
|
||||
result = await embeddings.store_embedding(
|
||||
version_id="test-version-id", embedding=embedding, tx=mock_client
|
||||
)
|
||||
|
||||
assert result is True
|
||||
mock_client.execute_raw.assert_called_once()
|
||||
call_args = mock_client.execute_raw.call_args[0]
|
||||
assert "test-version-id" in call_args
|
||||
assert "[0.1,0.2,0.3]" in call_args
|
||||
assert None in call_args # userId should be None for store agents
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_store_embedding_database_error(mocker):
|
||||
"""Test embedding storage with database error."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_client.execute_raw.side_effect = Exception("Database error")
|
||||
|
||||
embedding = [0.1, 0.2, 0.3]
|
||||
|
||||
result = await embeddings.store_embedding(
|
||||
version_id="test-version-id", embedding=embedding, tx=mock_client
|
||||
)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_get_embedding_success(mocker):
|
||||
"""Test successful embedding retrieval."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_result = [
|
||||
{
|
||||
"contentType": "STORE_AGENT",
|
||||
"contentId": "test-version-id",
|
||||
"embedding": "[0.1,0.2,0.3]",
|
||||
"searchableText": "Test text",
|
||||
"metadata": {},
|
||||
"createdAt": "2024-01-01T00:00:00Z",
|
||||
"updatedAt": "2024-01-01T00:00:00Z",
|
||||
}
|
||||
]
|
||||
mock_client.query_raw.return_value = mock_result
|
||||
|
||||
with patch("prisma.get_client", return_value=mock_client):
|
||||
result = await embeddings.get_embedding("test-version-id")
|
||||
|
||||
assert result is not None
|
||||
assert result["storeListingVersionId"] == "test-version-id"
|
||||
assert result["embedding"] == "[0.1,0.2,0.3]"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_get_embedding_not_found(mocker):
|
||||
"""Test embedding retrieval when not found."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_client.query_raw.return_value = []
|
||||
|
||||
with patch("prisma.get_client", return_value=mock_client):
|
||||
result = await embeddings.get_embedding("test-version-id")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.generate_embedding")
|
||||
@patch("backend.api.features.store.embeddings.store_embedding")
|
||||
@patch("backend.api.features.store.embeddings.get_embedding")
|
||||
async def test_ensure_embedding_already_exists(mock_get, mock_store, mock_generate):
|
||||
"""Test ensure_embedding when embedding already exists."""
|
||||
mock_get.return_value = {"embedding": "[0.1,0.2,0.3]"}
|
||||
|
||||
result = await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
|
||||
assert result is True
|
||||
mock_generate.assert_not_called()
|
||||
mock_store.assert_not_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.generate_embedding")
|
||||
@patch("backend.api.features.store.embeddings.store_content_embedding")
|
||||
@patch("backend.api.features.store.embeddings.get_embedding")
|
||||
async def test_ensure_embedding_create_new(mock_get, mock_store, mock_generate):
|
||||
"""Test ensure_embedding creating new embedding."""
|
||||
mock_get.return_value = None
|
||||
mock_generate.return_value = [0.1, 0.2, 0.3]
|
||||
mock_store.return_value = True
|
||||
|
||||
result = await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
|
||||
assert result is True
|
||||
mock_generate.assert_called_once_with("Test Test heading Test description test")
|
||||
mock_store.assert_called_once_with(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
embedding=[0.1, 0.2, 0.3],
|
||||
searchable_text="Test Test heading Test description test",
|
||||
metadata={"name": "Test", "subHeading": "Test heading", "categories": ["test"]},
|
||||
user_id=None,
|
||||
tx=None,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.generate_embedding")
|
||||
@patch("backend.api.features.store.embeddings.get_embedding")
|
||||
async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
|
||||
"""Test ensure_embedding when generation fails."""
|
||||
mock_get.return_value = None
|
||||
mock_generate.return_value = None
|
||||
|
||||
result = await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_get_embedding_stats(mocker):
|
||||
"""Test embedding statistics retrieval."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
|
||||
# Mock approved count query
|
||||
mock_approved_result = [{"count": 100}]
|
||||
# Mock embedded count query
|
||||
mock_embedded_result = [{"count": 75}]
|
||||
|
||||
mock_client.query_raw.side_effect = [mock_approved_result, mock_embedded_result]
|
||||
|
||||
with patch("prisma.get_client", return_value=mock_client):
|
||||
result = await embeddings.get_embedding_stats()
|
||||
|
||||
assert result["total_approved"] == 100
|
||||
assert result["with_embeddings"] == 75
|
||||
assert result["without_embeddings"] == 25
|
||||
assert result["coverage_percent"] == 75.0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.ensure_embedding")
|
||||
async def test_backfill_missing_embeddings_success(mock_ensure, mocker):
|
||||
"""Test backfill with successful embedding generation."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
|
||||
# Mock missing embeddings query
|
||||
mock_missing = [
|
||||
{
|
||||
"id": "version-1",
|
||||
"name": "Agent 1",
|
||||
"description": "Description 1",
|
||||
"subHeading": "Heading 1",
|
||||
"categories": ["AI"],
|
||||
},
|
||||
{
|
||||
"id": "version-2",
|
||||
"name": "Agent 2",
|
||||
"description": "Description 2",
|
||||
"subHeading": "Heading 2",
|
||||
"categories": ["Productivity"],
|
||||
},
|
||||
]
|
||||
mock_client.query_raw.return_value = mock_missing
|
||||
|
||||
# Mock ensure_embedding to succeed for first, fail for second
|
||||
mock_ensure.side_effect = [True, False]
|
||||
|
||||
with patch("prisma.get_client", return_value=mock_client):
|
||||
result = await embeddings.backfill_missing_embeddings(batch_size=5)
|
||||
|
||||
assert result["processed"] == 2
|
||||
assert result["success"] == 1
|
||||
assert result["failed"] == 1
|
||||
assert mock_ensure.call_count == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_backfill_missing_embeddings_no_missing(mocker):
|
||||
"""Test backfill when no embeddings are missing."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_client.query_raw.return_value = []
|
||||
|
||||
with patch("prisma.get_client", return_value=mock_client):
|
||||
result = await embeddings.backfill_missing_embeddings(batch_size=5)
|
||||
|
||||
assert result["processed"] == 0
|
||||
assert result["success"] == 0
|
||||
assert result["failed"] == 0
|
||||
assert result["message"] == "No missing embeddings"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_embedding_to_vector_string():
|
||||
"""Test embedding to PostgreSQL vector string conversion."""
|
||||
embedding = [0.1, 0.2, 0.3, -0.4]
|
||||
result = embeddings.embedding_to_vector_string(embedding)
|
||||
assert result == "[0.1,0.2,0.3,-0.4]"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_embed_query():
|
||||
"""Test embed_query function (alias for generate_embedding)."""
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.generate_embedding"
|
||||
) as mock_generate:
|
||||
mock_generate.return_value = [0.1, 0.2, 0.3]
|
||||
|
||||
result = await embeddings.embed_query("test query")
|
||||
|
||||
assert result == [0.1, 0.2, 0.3]
|
||||
mock_generate.assert_called_once_with("test query")
|
||||
@@ -0,0 +1,377 @@
|
||||
"""
|
||||
Hybrid Search for Store Agents
|
||||
|
||||
Combines semantic (embedding) search with lexical (tsvector) search
|
||||
for improved relevance in marketplace agent discovery.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Any, Literal
|
||||
|
||||
from backend.api.features.store.embeddings import (
|
||||
embed_query,
|
||||
embedding_to_vector_string,
|
||||
)
|
||||
from backend.data.db import query_raw_with_schema
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class HybridSearchWeights:
|
||||
"""Weights for combining search signals."""
|
||||
|
||||
semantic: float = 0.35 # Embedding cosine similarity
|
||||
lexical: float = 0.35 # tsvector ts_rank_cd score
|
||||
category: float = 0.20 # Category match boost
|
||||
recency: float = 0.10 # Newer agents ranked higher
|
||||
|
||||
|
||||
DEFAULT_WEIGHTS = HybridSearchWeights()
|
||||
|
||||
# Minimum relevance score threshold - agents below this are filtered out
|
||||
# With weights (0.35 semantic + 0.35 lexical + 0.20 category + 0.10 recency):
|
||||
# - 0.20 means at least ~50% semantic match OR strong lexical match required
|
||||
# - Ensures only genuinely relevant results are returned
|
||||
# - Recency alone (0.10 max) won't pass the threshold
|
||||
DEFAULT_MIN_SCORE = 0.20
|
||||
|
||||
|
||||
@dataclass
|
||||
class HybridSearchResult:
|
||||
"""A single search result with score breakdown."""
|
||||
|
||||
slug: str
|
||||
agent_name: str
|
||||
agent_image: str
|
||||
creator_username: str
|
||||
creator_avatar: str
|
||||
sub_heading: str
|
||||
description: str
|
||||
runs: int
|
||||
rating: float
|
||||
categories: list[str]
|
||||
featured: bool
|
||||
is_available: bool
|
||||
updated_at: datetime
|
||||
|
||||
# Score breakdown (for debugging/tuning)
|
||||
combined_score: float
|
||||
semantic_score: float = 0.0
|
||||
lexical_score: float = 0.0
|
||||
category_score: float = 0.0
|
||||
recency_score: float = 0.0
|
||||
|
||||
|
||||
async def hybrid_search(
|
||||
query: str,
|
||||
featured: bool = False,
|
||||
creators: list[str] | None = None,
|
||||
category: str | None = None,
|
||||
sorted_by: (
|
||||
Literal["relevance", "rating", "runs", "name", "updated_at"] | None
|
||||
) = None,
|
||||
page: int = 1,
|
||||
page_size: int = 20,
|
||||
weights: HybridSearchWeights | None = None,
|
||||
min_score: float | None = None,
|
||||
) -> tuple[list[dict[str, Any]], int]:
|
||||
"""
|
||||
Perform hybrid search combining semantic and lexical signals.
|
||||
|
||||
Args:
|
||||
query: Search query string
|
||||
featured: Filter for featured agents only
|
||||
creators: Filter by creator usernames
|
||||
category: Filter by category
|
||||
sorted_by: Sort order (relevance uses hybrid scoring)
|
||||
page: Page number (1-indexed)
|
||||
page_size: Results per page
|
||||
weights: Custom weights for search signals
|
||||
min_score: Minimum relevance score threshold (0-1). Results below
|
||||
this score are filtered out. Defaults to DEFAULT_MIN_SCORE.
|
||||
|
||||
Returns:
|
||||
Tuple of (results list, total count). Returns empty list if no
|
||||
results meet the minimum relevance threshold.
|
||||
"""
|
||||
if weights is None:
|
||||
weights = DEFAULT_WEIGHTS
|
||||
if min_score is None:
|
||||
min_score = DEFAULT_MIN_SCORE
|
||||
|
||||
offset = (page - 1) * page_size
|
||||
|
||||
# Generate query embedding
|
||||
query_embedding = await embed_query(query)
|
||||
|
||||
# Build WHERE clause conditions
|
||||
where_parts: list[str] = ["sa.is_available = true"]
|
||||
params: list[Any] = []
|
||||
param_index = 1
|
||||
|
||||
# Add search query for lexical matching
|
||||
params.append(query)
|
||||
query_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
# Add lowercased query for category matching
|
||||
params.append(query.lower())
|
||||
query_lower_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
if featured:
|
||||
where_parts.append("sa.featured = true")
|
||||
|
||||
if creators:
|
||||
where_parts.append(f"sa.creator_username = ANY(${param_index})")
|
||||
params.append(creators)
|
||||
param_index += 1
|
||||
|
||||
if category:
|
||||
where_parts.append(f"${param_index} = ANY(sa.categories)")
|
||||
params.append(category)
|
||||
param_index += 1
|
||||
|
||||
where_clause = " AND ".join(where_parts)
|
||||
|
||||
# Determine if we can use hybrid search (have query embedding)
|
||||
use_hybrid = query_embedding is not None
|
||||
|
||||
if use_hybrid:
|
||||
# Add embedding parameter
|
||||
embedding_str = embedding_to_vector_string(query_embedding)
|
||||
params.append(embedding_str)
|
||||
embedding_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
# Optimized hybrid search query:
|
||||
# 1. Direct join to UnifiedContentEmbedding via contentId=storeListingVersionId (no redundant JOINs)
|
||||
# 2. UNION ALL approach to enable index usage for both lexical and semantic branches
|
||||
# 3. COUNT(*) OVER() to get total count in single query
|
||||
# 4. Simplified category matching with array_to_string
|
||||
sql_query = f"""
|
||||
WITH candidates AS (
|
||||
-- Lexical matches (uses GIN index on search column)
|
||||
SELECT DISTINCT sa."storeListingVersionId"
|
||||
FROM {{schema_prefix}}"StoreAgent" sa
|
||||
WHERE {where_clause}
|
||||
AND sa.search @@ plainto_tsquery('english', {query_param})
|
||||
|
||||
UNION
|
||||
|
||||
-- Semantic matches (uses HNSW index on embedding)
|
||||
SELECT DISTINCT sa."storeListingVersionId"
|
||||
FROM {{schema_prefix}}"StoreAgent" sa
|
||||
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
|
||||
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'
|
||||
WHERE {where_clause}
|
||||
),
|
||||
search_scores AS (
|
||||
SELECT
|
||||
sa.slug,
|
||||
sa.agent_name,
|
||||
sa.agent_image,
|
||||
sa.creator_username,
|
||||
sa.creator_avatar,
|
||||
sa.sub_heading,
|
||||
sa.description,
|
||||
sa.runs,
|
||||
sa.rating,
|
||||
sa.categories,
|
||||
sa.featured,
|
||||
sa.is_available,
|
||||
sa.updated_at,
|
||||
-- Semantic score: cosine similarity (1 - distance)
|
||||
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
|
||||
-- Lexical score: ts_rank_cd (will be normalized later)
|
||||
COALESCE(ts_rank_cd(sa.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
|
||||
-- Category match: check if query appears in any category
|
||||
CASE
|
||||
WHEN LOWER(array_to_string(sa.categories, ' ')) LIKE '%' || {query_lower_param} || '%'
|
||||
THEN 1.0
|
||||
ELSE 0.0
|
||||
END as category_score,
|
||||
-- Recency score: exponential decay over 90 days
|
||||
EXP(-EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score
|
||||
FROM candidates c
|
||||
INNER JOIN {{schema_prefix}}"StoreAgent" sa
|
||||
ON c."storeListingVersionId" = sa."storeListingVersionId"
|
||||
LEFT JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
|
||||
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'
|
||||
),
|
||||
normalized AS (
|
||||
SELECT
|
||||
*,
|
||||
-- Normalize lexical score by max in result set
|
||||
CASE
|
||||
WHEN MAX(lexical_raw) OVER () > 0
|
||||
THEN lexical_raw / MAX(lexical_raw) OVER ()
|
||||
ELSE 0
|
||||
END as lexical_score
|
||||
FROM search_scores
|
||||
),
|
||||
scored AS (
|
||||
SELECT
|
||||
slug,
|
||||
agent_name,
|
||||
agent_image,
|
||||
creator_username,
|
||||
creator_avatar,
|
||||
sub_heading,
|
||||
description,
|
||||
runs,
|
||||
rating,
|
||||
categories,
|
||||
featured,
|
||||
is_available,
|
||||
updated_at,
|
||||
semantic_score,
|
||||
lexical_score,
|
||||
category_score,
|
||||
recency_score,
|
||||
(
|
||||
{weights.semantic} * semantic_score +
|
||||
{weights.lexical} * lexical_score +
|
||||
{weights.category} * category_score +
|
||||
{weights.recency} * recency_score
|
||||
) as combined_score
|
||||
FROM normalized
|
||||
),
|
||||
filtered AS (
|
||||
SELECT
|
||||
*,
|
||||
COUNT(*) OVER () as total_count
|
||||
FROM scored
|
||||
WHERE combined_score >= {min_score}
|
||||
)
|
||||
SELECT * FROM filtered
|
||||
ORDER BY combined_score DESC
|
||||
LIMIT ${param_index} OFFSET ${param_index + 1}
|
||||
"""
|
||||
|
||||
# Add pagination params
|
||||
params.extend([page_size, offset])
|
||||
|
||||
else:
|
||||
# Fallback to lexical-only search (existing behavior)
|
||||
logger.warning("Falling back to lexical-only search (no query embedding)")
|
||||
|
||||
sql_query = f"""
|
||||
WITH lexical_scores AS (
|
||||
SELECT
|
||||
slug,
|
||||
agent_name,
|
||||
agent_image,
|
||||
creator_username,
|
||||
creator_avatar,
|
||||
sub_heading,
|
||||
description,
|
||||
runs,
|
||||
rating,
|
||||
categories,
|
||||
featured,
|
||||
is_available,
|
||||
updated_at,
|
||||
0.0 as semantic_score,
|
||||
ts_rank_cd(search, plainto_tsquery('english', {query_param})) as lexical_raw,
|
||||
CASE
|
||||
WHEN LOWER(array_to_string(categories, ' ')) LIKE '%' || {query_lower_param} || '%'
|
||||
THEN 1.0
|
||||
ELSE 0.0
|
||||
END as category_score,
|
||||
EXP(-EXTRACT(EPOCH FROM (NOW() - updated_at)) / (90 * 24 * 3600)) as recency_score
|
||||
FROM {{schema_prefix}}"StoreAgent" sa
|
||||
WHERE {where_clause}
|
||||
AND search @@ plainto_tsquery('english', {query_param})
|
||||
),
|
||||
normalized AS (
|
||||
SELECT
|
||||
*,
|
||||
CASE
|
||||
WHEN MAX(lexical_raw) OVER () > 0
|
||||
THEN lexical_raw / MAX(lexical_raw) OVER ()
|
||||
ELSE 0
|
||||
END as lexical_score
|
||||
FROM lexical_scores
|
||||
),
|
||||
scored AS (
|
||||
SELECT
|
||||
slug,
|
||||
agent_name,
|
||||
agent_image,
|
||||
creator_username,
|
||||
creator_avatar,
|
||||
sub_heading,
|
||||
description,
|
||||
runs,
|
||||
rating,
|
||||
categories,
|
||||
featured,
|
||||
is_available,
|
||||
updated_at,
|
||||
semantic_score,
|
||||
lexical_score,
|
||||
category_score,
|
||||
recency_score,
|
||||
(
|
||||
{weights.lexical} * lexical_score +
|
||||
{weights.category} * category_score +
|
||||
{weights.recency} * recency_score
|
||||
) as combined_score
|
||||
FROM normalized
|
||||
),
|
||||
filtered AS (
|
||||
SELECT
|
||||
*,
|
||||
COUNT(*) OVER () as total_count
|
||||
FROM scored
|
||||
WHERE combined_score >= {min_score}
|
||||
)
|
||||
SELECT * FROM filtered
|
||||
ORDER BY combined_score DESC
|
||||
LIMIT ${param_index} OFFSET ${param_index + 1}
|
||||
"""
|
||||
|
||||
params.extend([page_size, offset])
|
||||
|
||||
try:
|
||||
# Execute search query - includes total_count via window function
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
|
||||
# Extract total count from first result (all rows have same count)
|
||||
total = results[0]["total_count"] if results else 0
|
||||
|
||||
# Remove total_count from results before returning
|
||||
for result in results:
|
||||
result.pop("total_count", None)
|
||||
|
||||
logger.info(
|
||||
f"Hybrid search for '{query}': {len(results)} results, {total} total "
|
||||
f"(hybrid={use_hybrid})"
|
||||
)
|
||||
|
||||
return results, total
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Hybrid search failed: {e}")
|
||||
raise
|
||||
|
||||
|
||||
async def hybrid_search_simple(
|
||||
query: str,
|
||||
page: int = 1,
|
||||
page_size: int = 20,
|
||||
) -> tuple[list[dict[str, Any]], int]:
|
||||
"""
|
||||
Simplified hybrid search for common use cases.
|
||||
|
||||
Uses default weights and no filters.
|
||||
"""
|
||||
return await hybrid_search(
|
||||
query=query,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
@@ -762,10 +762,10 @@ async def create_new_graph(
|
||||
graph.reassign_ids(user_id=user_id, reassign_graph_id=True)
|
||||
graph.validate_graph(for_run=False)
|
||||
|
||||
# The return value of the create graph & library function is intentionally not used here,
|
||||
# as the graph already valid and no sub-graphs are returned back.
|
||||
await graph_db.create_graph(graph, user_id=user_id)
|
||||
await library_db.create_library_agent(
|
||||
graph, user_id=user_id, is_ai_generated=create_graph.is_ai_generated
|
||||
)
|
||||
await library_db.create_library_agent(graph, user_id=user_id)
|
||||
activated_graph = await on_graph_activate(graph, user_id=user_id)
|
||||
|
||||
if create_graph.source == "builder":
|
||||
@@ -889,17 +889,21 @@ async def set_graph_active_version(
|
||||
async def _update_library_agent_version_and_settings(
|
||||
user_id: str, agent_graph: graph_db.GraphModel
|
||||
) -> library_model.LibraryAgent:
|
||||
# Keep the library agent up to date with the new active version
|
||||
library = await library_db.update_agent_version_in_library(
|
||||
user_id, agent_graph.id, agent_graph.version
|
||||
)
|
||||
updated_settings = GraphSettings.from_graph(
|
||||
agent_graph, is_ai_generated=library.settings.is_ai_generated_graph
|
||||
)
|
||||
if updated_settings != library.settings:
|
||||
library = await library_db.update_library_agent(
|
||||
library_agent_id=library.id,
|
||||
# If the graph has HITL node, initialize the setting if it's not already set.
|
||||
if (
|
||||
agent_graph.has_human_in_the_loop
|
||||
and library.settings.human_in_the_loop_safe_mode is None
|
||||
):
|
||||
await library_db.update_library_agent_settings(
|
||||
user_id=user_id,
|
||||
settings=updated_settings,
|
||||
agent_id=library.id,
|
||||
settings=library.settings.model_copy(
|
||||
update={"human_in_the_loop_safe_mode": True}
|
||||
),
|
||||
)
|
||||
return library
|
||||
|
||||
@@ -916,18 +920,21 @@ async def update_graph_settings(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> GraphSettings:
|
||||
"""Update graph settings for the user's library agent."""
|
||||
# Get the library agent for this graph
|
||||
library_agent = await library_db.get_library_agent_by_graph_id(
|
||||
graph_id=graph_id, user_id=user_id
|
||||
)
|
||||
if not library_agent:
|
||||
raise HTTPException(404, f"Graph #{graph_id} not found in user's library")
|
||||
|
||||
updated_agent = await library_db.update_library_agent(
|
||||
library_agent_id=library_agent.id,
|
||||
# Update the library agent settings
|
||||
updated_agent = await library_db.update_library_agent_settings(
|
||||
user_id=user_id,
|
||||
agent_id=library_agent.id,
|
||||
settings=settings,
|
||||
)
|
||||
|
||||
# Return the updated settings
|
||||
return GraphSettings.model_validate(updated_agent.settings)
|
||||
|
||||
|
||||
|
||||
@@ -43,7 +43,6 @@ GraphExecutionSource = Literal["builder", "library", "onboarding"]
|
||||
class CreateGraph(pydantic.BaseModel):
|
||||
graph: Graph
|
||||
source: GraphCreationSource | None = None
|
||||
is_ai_generated: bool = False
|
||||
|
||||
|
||||
class CreateAPIKeyRequest(pydantic.BaseModel):
|
||||
|
||||
@@ -1,184 +0,0 @@
|
||||
"""
|
||||
Shared helpers for Human-In-The-Loop (HITL) review functionality.
|
||||
Used by both the dedicated HumanInTheLoopBlock and blocks that require human review.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
from prisma.enums import ReviewStatus
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.execution import ExecutionContext, ExecutionStatus
|
||||
from backend.data.human_review import ReviewResult
|
||||
from backend.executor.manager import async_update_node_execution_status
|
||||
from backend.util.clients import get_database_manager_async_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ReviewDecision(BaseModel):
|
||||
"""Result of a review decision."""
|
||||
|
||||
should_proceed: bool
|
||||
message: str
|
||||
review_result: ReviewResult
|
||||
|
||||
|
||||
class HITLReviewHelper:
|
||||
"""Helper class for Human-In-The-Loop review operations."""
|
||||
|
||||
@staticmethod
|
||||
async def get_or_create_human_review(**kwargs) -> Optional[ReviewResult]:
|
||||
"""Create or retrieve a human review from the database."""
|
||||
return await get_database_manager_async_client().get_or_create_human_review(
|
||||
**kwargs
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def update_node_execution_status(**kwargs) -> None:
|
||||
"""Update the execution status of a node."""
|
||||
await async_update_node_execution_status(
|
||||
db_client=get_database_manager_async_client(), **kwargs
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def update_review_processed_status(
|
||||
node_exec_id: str, processed: bool
|
||||
) -> None:
|
||||
"""Update the processed status of a review."""
|
||||
return await get_database_manager_async_client().update_review_processed_status(
|
||||
node_exec_id, processed
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def _handle_review_request(
|
||||
input_data: Any,
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
block_name: str = "Block",
|
||||
editable: bool = False,
|
||||
) -> Optional[ReviewResult]:
|
||||
"""
|
||||
Handle a review request for a block that requires human review.
|
||||
|
||||
Args:
|
||||
input_data: The input data to be reviewed
|
||||
user_id: ID of the user requesting the review
|
||||
node_exec_id: ID of the node execution
|
||||
graph_exec_id: ID of the graph execution
|
||||
graph_id: ID of the graph
|
||||
graph_version: Version of the graph
|
||||
execution_context: Current execution context
|
||||
block_name: Name of the block requesting review
|
||||
editable: Whether the reviewer can edit the data
|
||||
|
||||
Returns:
|
||||
ReviewResult if review is complete, None if waiting for human input
|
||||
|
||||
Raises:
|
||||
Exception: If review creation or status update fails
|
||||
"""
|
||||
# Skip review if safe mode is disabled - return auto-approved result
|
||||
if not execution_context.safe_mode:
|
||||
logger.info(
|
||||
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
|
||||
)
|
||||
return ReviewResult(
|
||||
data=input_data,
|
||||
status=ReviewStatus.APPROVED,
|
||||
message="Auto-approved (safe mode disabled)",
|
||||
processed=True,
|
||||
node_exec_id=node_exec_id,
|
||||
)
|
||||
|
||||
result = await HITLReviewHelper.get_or_create_human_review(
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
input_data=input_data,
|
||||
message=f"Review required for {block_name} execution",
|
||||
editable=editable,
|
||||
)
|
||||
|
||||
if result is None:
|
||||
logger.info(
|
||||
f"Block {block_name} pausing execution for node {node_exec_id} - awaiting human review"
|
||||
)
|
||||
await HITLReviewHelper.update_node_execution_status(
|
||||
exec_id=node_exec_id,
|
||||
status=ExecutionStatus.REVIEW,
|
||||
)
|
||||
return None # Signal that execution should pause
|
||||
|
||||
# Mark review as processed if not already done
|
||||
if not result.processed:
|
||||
await HITLReviewHelper.update_review_processed_status(
|
||||
node_exec_id=node_exec_id, processed=True
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
async def handle_review_decision(
|
||||
input_data: Any,
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
block_name: str = "Block",
|
||||
editable: bool = False,
|
||||
) -> Optional[ReviewDecision]:
|
||||
"""
|
||||
Handle a review request and return the decision in a single call.
|
||||
|
||||
Args:
|
||||
input_data: The input data to be reviewed
|
||||
user_id: ID of the user requesting the review
|
||||
node_exec_id: ID of the node execution
|
||||
graph_exec_id: ID of the graph execution
|
||||
graph_id: ID of the graph
|
||||
graph_version: Version of the graph
|
||||
execution_context: Current execution context
|
||||
block_name: Name of the block requesting review
|
||||
editable: Whether the reviewer can edit the data
|
||||
|
||||
Returns:
|
||||
ReviewDecision if review is complete (approved/rejected),
|
||||
None if execution should pause (awaiting review)
|
||||
"""
|
||||
review_result = await HITLReviewHelper._handle_review_request(
|
||||
input_data=input_data,
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
block_name=block_name,
|
||||
editable=editable,
|
||||
)
|
||||
|
||||
if review_result is None:
|
||||
# Still awaiting review - return None to pause execution
|
||||
return None
|
||||
|
||||
# Review is complete, determine outcome
|
||||
should_proceed = review_result.status == ReviewStatus.APPROVED
|
||||
message = review_result.message or (
|
||||
"Execution approved by reviewer"
|
||||
if should_proceed
|
||||
else "Execution rejected by reviewer"
|
||||
)
|
||||
|
||||
return ReviewDecision(
|
||||
should_proceed=should_proceed, message=message, review_result=review_result
|
||||
)
|
||||
@@ -3,7 +3,6 @@ from typing import Any
|
||||
|
||||
from prisma.enums import ReviewStatus
|
||||
|
||||
from backend.blocks.helpers.review import HITLReviewHelper
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
@@ -12,9 +11,11 @@ from backend.data.block import (
|
||||
BlockSchemaOutput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.execution import ExecutionContext, ExecutionStatus
|
||||
from backend.data.human_review import ReviewResult
|
||||
from backend.data.model import SchemaField
|
||||
from backend.executor.manager import async_update_node_execution_status
|
||||
from backend.util.clients import get_database_manager_async_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -71,26 +72,32 @@ class HumanInTheLoopBlock(Block):
|
||||
("approved_data", {"name": "John Doe", "age": 30}),
|
||||
],
|
||||
test_mock={
|
||||
"handle_review_decision": lambda **kwargs: type(
|
||||
"ReviewDecision",
|
||||
(),
|
||||
{
|
||||
"should_proceed": True,
|
||||
"message": "Test approval message",
|
||||
"review_result": ReviewResult(
|
||||
data={"name": "John Doe", "age": 30},
|
||||
status=ReviewStatus.APPROVED,
|
||||
message="",
|
||||
processed=False,
|
||||
node_exec_id="test-node-exec-id",
|
||||
),
|
||||
},
|
||||
)(),
|
||||
"get_or_create_human_review": lambda *_args, **_kwargs: ReviewResult(
|
||||
data={"name": "John Doe", "age": 30},
|
||||
status=ReviewStatus.APPROVED,
|
||||
message="",
|
||||
processed=False,
|
||||
node_exec_id="test-node-exec-id",
|
||||
),
|
||||
"update_node_execution_status": lambda *_args, **_kwargs: None,
|
||||
"update_review_processed_status": lambda *_args, **_kwargs: None,
|
||||
},
|
||||
)
|
||||
|
||||
async def handle_review_decision(self, **kwargs):
|
||||
return await HITLReviewHelper.handle_review_decision(**kwargs)
|
||||
async def get_or_create_human_review(self, **kwargs):
|
||||
return await get_database_manager_async_client().get_or_create_human_review(
|
||||
**kwargs
|
||||
)
|
||||
|
||||
async def update_node_execution_status(self, **kwargs):
|
||||
return await async_update_node_execution_status(
|
||||
db_client=get_database_manager_async_client(), **kwargs
|
||||
)
|
||||
|
||||
async def update_review_processed_status(self, node_exec_id: str, processed: bool):
|
||||
return await get_database_manager_async_client().update_review_processed_status(
|
||||
node_exec_id, processed
|
||||
)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
@@ -102,7 +109,7 @@ class HumanInTheLoopBlock(Block):
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
**_kwargs,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
if not execution_context.safe_mode:
|
||||
logger.info(
|
||||
@@ -112,28 +119,48 @@ class HumanInTheLoopBlock(Block):
|
||||
yield "review_message", "Auto-approved (safe mode disabled)"
|
||||
return
|
||||
|
||||
decision = await self.handle_review_decision(
|
||||
input_data=input_data.data,
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
block_name=self.name,
|
||||
editable=input_data.editable,
|
||||
)
|
||||
try:
|
||||
result = await self.get_or_create_human_review(
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
input_data=input_data.data,
|
||||
message=input_data.name,
|
||||
editable=input_data.editable,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in HITL block for node {node_exec_id}: {str(e)}")
|
||||
raise
|
||||
|
||||
if decision is None:
|
||||
return
|
||||
if result is None:
|
||||
logger.info(
|
||||
f"HITL block pausing execution for node {node_exec_id} - awaiting human review"
|
||||
)
|
||||
try:
|
||||
await self.update_node_execution_status(
|
||||
exec_id=node_exec_id,
|
||||
status=ExecutionStatus.REVIEW,
|
||||
)
|
||||
return
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to update node status for HITL block {node_exec_id}: {str(e)}"
|
||||
)
|
||||
raise
|
||||
|
||||
status = decision.review_result.status
|
||||
if status == ReviewStatus.APPROVED:
|
||||
yield "approved_data", decision.review_result.data
|
||||
elif status == ReviewStatus.REJECTED:
|
||||
yield "rejected_data", decision.review_result.data
|
||||
else:
|
||||
raise RuntimeError(f"Unexpected review status: {status}")
|
||||
if not result.processed:
|
||||
await self.update_review_processed_status(
|
||||
node_exec_id=node_exec_id, processed=True
|
||||
)
|
||||
|
||||
if decision.message:
|
||||
yield "review_message", decision.message
|
||||
if result.status == ReviewStatus.APPROVED:
|
||||
yield "approved_data", result.data
|
||||
if result.message:
|
||||
yield "review_message", result.message
|
||||
|
||||
elif result.status == ReviewStatus.REJECTED:
|
||||
yield "rejected_data", result.data
|
||||
if result.message:
|
||||
yield "review_message", result.message
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -391,12 +391,8 @@ class SmartDecisionMakerBlock(Block):
|
||||
"""
|
||||
block = sink_node.block
|
||||
|
||||
# Use custom name from node metadata if set, otherwise fall back to block.name
|
||||
custom_name = sink_node.metadata.get("customized_name")
|
||||
tool_name = custom_name if custom_name else block.name
|
||||
|
||||
tool_function: dict[str, Any] = {
|
||||
"name": SmartDecisionMakerBlock.cleanup(tool_name),
|
||||
"name": SmartDecisionMakerBlock.cleanup(block.name),
|
||||
"description": block.description,
|
||||
}
|
||||
sink_block_input_schema = block.input_schema
|
||||
@@ -493,24 +489,14 @@ class SmartDecisionMakerBlock(Block):
|
||||
f"Sink graph metadata not found: {graph_id} {graph_version}"
|
||||
)
|
||||
|
||||
# Use custom name from node metadata if set, otherwise fall back to graph name
|
||||
custom_name = sink_node.metadata.get("customized_name")
|
||||
tool_name = custom_name if custom_name else sink_graph_meta.name
|
||||
|
||||
tool_function: dict[str, Any] = {
|
||||
"name": SmartDecisionMakerBlock.cleanup(tool_name),
|
||||
"name": SmartDecisionMakerBlock.cleanup(sink_graph_meta.name),
|
||||
"description": sink_graph_meta.description,
|
||||
}
|
||||
|
||||
properties = {}
|
||||
field_mapping = {}
|
||||
|
||||
for link in links:
|
||||
field_name = link.sink_name
|
||||
|
||||
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
|
||||
field_mapping[clean_field_name] = field_name
|
||||
|
||||
sink_block_input_schema = sink_node.input_default["input_schema"]
|
||||
sink_block_properties = sink_block_input_schema.get("properties", {}).get(
|
||||
link.sink_name, {}
|
||||
@@ -520,7 +506,7 @@ class SmartDecisionMakerBlock(Block):
|
||||
if "description" in sink_block_properties
|
||||
else f"The {link.sink_name} of the tool"
|
||||
)
|
||||
properties[clean_field_name] = {
|
||||
properties[link.sink_name] = {
|
||||
"type": "string",
|
||||
"description": description,
|
||||
"default": json.dumps(sink_block_properties.get("default", None)),
|
||||
@@ -533,7 +519,7 @@ class SmartDecisionMakerBlock(Block):
|
||||
"strict": True,
|
||||
}
|
||||
|
||||
tool_function["_field_mapping"] = field_mapping
|
||||
# Store node info for later use in output processing
|
||||
tool_function["_sink_node_id"] = sink_node.id
|
||||
|
||||
return {"type": "function", "function": tool_function}
|
||||
@@ -1161,9 +1147,8 @@ class SmartDecisionMakerBlock(Block):
|
||||
original_field_name = field_mapping.get(clean_arg_name, clean_arg_name)
|
||||
arg_value = tool_args.get(clean_arg_name)
|
||||
|
||||
# Use original_field_name directly (not sanitized) to match link sink_name
|
||||
# The field_mapping already translates from LLM's cleaned names to original names
|
||||
emit_key = f"tools_^_{sink_node_id}_~_{original_field_name}"
|
||||
sanitized_arg_name = self.cleanup(original_field_name)
|
||||
emit_key = f"tools_^_{sink_node_id}_~_{sanitized_arg_name}"
|
||||
|
||||
logger.debug(
|
||||
"[SmartDecisionMakerBlock|geid:%s|neid:%s] emit %s",
|
||||
|
||||
@@ -1057,153 +1057,3 @@ async def test_smart_decision_maker_traditional_mode_default():
|
||||
) # Should yield individual tool parameters
|
||||
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
|
||||
assert "conversations" in outputs
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_uses_customized_name_for_blocks():
|
||||
"""Test that SmartDecisionMakerBlock uses customized_name from node metadata for tool names."""
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from backend.blocks.basic import StoreValueBlock
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node with customized_name in metadata
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-node-id"
|
||||
mock_node.block_id = StoreValueBlock().id
|
||||
mock_node.metadata = {"customized_name": "My Custom Tool Name"}
|
||||
mock_node.block = StoreValueBlock()
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "input"
|
||||
|
||||
# Call the function directly
|
||||
result = await SmartDecisionMakerBlock._create_block_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the customized name (cleaned up)
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "my_custom_tool_name" # Cleaned version
|
||||
assert result["function"]["_sink_node_id"] == "test-node-id"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_falls_back_to_block_name():
|
||||
"""Test that SmartDecisionMakerBlock falls back to block.name when no customized_name."""
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from backend.blocks.basic import StoreValueBlock
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node without customized_name
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-node-id"
|
||||
mock_node.block_id = StoreValueBlock().id
|
||||
mock_node.metadata = {} # No customized_name
|
||||
mock_node.block = StoreValueBlock()
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "input"
|
||||
|
||||
# Call the function directly
|
||||
result = await SmartDecisionMakerBlock._create_block_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the block's default name
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "storevalueblock" # Default block name cleaned
|
||||
assert result["function"]["_sink_node_id"] == "test-node-id"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_uses_customized_name_for_agents():
|
||||
"""Test that SmartDecisionMakerBlock uses customized_name from metadata for agent nodes."""
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node with customized_name in metadata
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-agent-node-id"
|
||||
mock_node.metadata = {"customized_name": "My Custom Agent"}
|
||||
mock_node.input_default = {
|
||||
"graph_id": "test-graph-id",
|
||||
"graph_version": 1,
|
||||
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
|
||||
}
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "test_input"
|
||||
|
||||
# Mock the database client
|
||||
mock_graph_meta = MagicMock()
|
||||
mock_graph_meta.name = "Original Agent Name"
|
||||
mock_graph_meta.description = "Agent description"
|
||||
|
||||
mock_db_client = AsyncMock()
|
||||
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
|
||||
|
||||
with patch(
|
||||
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
|
||||
return_value=mock_db_client,
|
||||
):
|
||||
result = await SmartDecisionMakerBlock._create_agent_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the customized name (cleaned up)
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "my_custom_agent" # Cleaned version
|
||||
assert result["function"]["_sink_node_id"] == "test-agent-node-id"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_agent_falls_back_to_graph_name():
|
||||
"""Test that agent node falls back to graph name when no customized_name."""
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node without customized_name
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-agent-node-id"
|
||||
mock_node.metadata = {} # No customized_name
|
||||
mock_node.input_default = {
|
||||
"graph_id": "test-graph-id",
|
||||
"graph_version": 1,
|
||||
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
|
||||
}
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "test_input"
|
||||
|
||||
# Mock the database client
|
||||
mock_graph_meta = MagicMock()
|
||||
mock_graph_meta.name = "Original Agent Name"
|
||||
mock_graph_meta.description = "Agent description"
|
||||
|
||||
mock_db_client = AsyncMock()
|
||||
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
|
||||
|
||||
with patch(
|
||||
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
|
||||
return_value=mock_db_client,
|
||||
):
|
||||
result = await SmartDecisionMakerBlock._create_agent_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the graph's default name
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "original_agent_name" # Graph name cleaned
|
||||
assert result["function"]["_sink_node_id"] == "test-agent-node-id"
|
||||
|
||||
@@ -15,7 +15,6 @@ async def test_smart_decision_maker_handles_dynamic_dict_fields():
|
||||
mock_node.block = CreateDictionaryBlock()
|
||||
mock_node.block_id = CreateDictionaryBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic dictionary fields
|
||||
mock_links = [
|
||||
@@ -78,7 +77,6 @@ async def test_smart_decision_maker_handles_dynamic_list_fields():
|
||||
mock_node.block = AddToListBlock()
|
||||
mock_node.block_id = AddToListBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic list fields
|
||||
mock_links = [
|
||||
|
||||
@@ -44,7 +44,6 @@ async def test_create_block_function_signature_with_dict_fields():
|
||||
mock_node.block = CreateDictionaryBlock()
|
||||
mock_node.block_id = CreateDictionaryBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic dictionary fields (source sanitized, sink original)
|
||||
mock_links = [
|
||||
@@ -107,7 +106,6 @@ async def test_create_block_function_signature_with_list_fields():
|
||||
mock_node.block = AddToListBlock()
|
||||
mock_node.block_id = AddToListBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic list fields
|
||||
mock_links = [
|
||||
@@ -161,7 +159,6 @@ async def test_create_block_function_signature_with_object_fields():
|
||||
mock_node.block = MatchTextPatternBlock()
|
||||
mock_node.block_id = MatchTextPatternBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic object fields
|
||||
mock_links = [
|
||||
@@ -211,13 +208,11 @@ async def test_create_tool_node_signatures():
|
||||
mock_dict_node.block = CreateDictionaryBlock()
|
||||
mock_dict_node.block_id = CreateDictionaryBlock().id
|
||||
mock_dict_node.input_default = {}
|
||||
mock_dict_node.metadata = {}
|
||||
|
||||
mock_list_node = Mock()
|
||||
mock_list_node.block = AddToListBlock()
|
||||
mock_list_node.block_id = AddToListBlock().id
|
||||
mock_list_node.input_default = {}
|
||||
mock_list_node.metadata = {}
|
||||
|
||||
# Mock links with dynamic fields
|
||||
dict_link1 = Mock(
|
||||
@@ -428,7 +423,6 @@ async def test_mixed_regular_and_dynamic_fields():
|
||||
mock_node.block.name = "TestBlock"
|
||||
mock_node.block.description = "A test block"
|
||||
mock_node.block.input_schema = Mock()
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Mock the get_field_schema to return a proper schema for regular fields
|
||||
def get_field_schema(field_name):
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
from .blog import WordPressCreatePostBlock, WordPressGetAllPostsBlock
|
||||
from .blog import WordPressCreatePostBlock
|
||||
|
||||
__all__ = ["WordPressCreatePostBlock", "WordPressGetAllPostsBlock"]
|
||||
__all__ = ["WordPressCreatePostBlock"]
|
||||
|
||||
@@ -161,7 +161,7 @@ async def oauth_exchange_code_for_tokens(
|
||||
grant_type="authorization_code",
|
||||
).model_dump(exclude_none=True)
|
||||
|
||||
response = await Requests(raise_for_status=False).post(
|
||||
response = await Requests().post(
|
||||
f"{WORDPRESS_BASE_URL}oauth2/token",
|
||||
headers=headers,
|
||||
data=data,
|
||||
@@ -205,7 +205,7 @@ async def oauth_refresh_tokens(
|
||||
grant_type="refresh_token",
|
||||
).model_dump(exclude_none=True)
|
||||
|
||||
response = await Requests(raise_for_status=False).post(
|
||||
response = await Requests().post(
|
||||
f"{WORDPRESS_BASE_URL}oauth2/token",
|
||||
headers=headers,
|
||||
data=data,
|
||||
@@ -252,7 +252,7 @@ async def validate_token(
|
||||
"token": token,
|
||||
}
|
||||
|
||||
response = await Requests(raise_for_status=False).get(
|
||||
response = await Requests().get(
|
||||
f"{WORDPRESS_BASE_URL}oauth2/token-info",
|
||||
params=params,
|
||||
)
|
||||
@@ -296,7 +296,7 @@ async def make_api_request(
|
||||
|
||||
url = f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}"
|
||||
|
||||
request_method = getattr(Requests(raise_for_status=False), method.lower())
|
||||
request_method = getattr(Requests(), method.lower())
|
||||
response = await request_method(
|
||||
url,
|
||||
headers=headers,
|
||||
@@ -476,7 +476,6 @@ async def create_post(
|
||||
data["tags"] = ",".join(str(t) for t in data["tags"])
|
||||
|
||||
# Make the API request
|
||||
site = normalize_site(site)
|
||||
endpoint = f"/rest/v1.1/sites/{site}/posts/new"
|
||||
|
||||
headers = {
|
||||
@@ -484,7 +483,7 @@ async def create_post(
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
}
|
||||
|
||||
response = await Requests(raise_for_status=False).post(
|
||||
response = await Requests().post(
|
||||
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
|
||||
headers=headers,
|
||||
data=data,
|
||||
@@ -500,132 +499,3 @@ async def create_post(
|
||||
)
|
||||
error_message = error_data.get("message", response.text)
|
||||
raise ValueError(f"Failed to create post: {response.status} - {error_message}")
|
||||
|
||||
|
||||
class Post(BaseModel):
|
||||
"""Response model for individual posts in a posts list response.
|
||||
|
||||
This is a simplified version compared to PostResponse, as the list endpoint
|
||||
returns less detailed information than the create/get single post endpoints.
|
||||
"""
|
||||
|
||||
ID: int
|
||||
site_ID: int
|
||||
author: PostAuthor
|
||||
date: datetime
|
||||
modified: datetime
|
||||
title: str
|
||||
URL: str
|
||||
short_URL: str
|
||||
content: str | None = None
|
||||
excerpt: str | None = None
|
||||
slug: str
|
||||
guid: str
|
||||
status: str
|
||||
sticky: bool
|
||||
password: str | None = ""
|
||||
parent: Union[Dict[str, Any], bool, None] = None
|
||||
type: str
|
||||
discussion: Dict[str, Union[str, bool, int]] | None = None
|
||||
likes_enabled: bool | None = None
|
||||
sharing_enabled: bool | None = None
|
||||
like_count: int | None = None
|
||||
i_like: bool | None = None
|
||||
is_reblogged: bool | None = None
|
||||
is_following: bool | None = None
|
||||
global_ID: str | None = None
|
||||
featured_image: str | None = None
|
||||
post_thumbnail: Dict[str, Any] | None = None
|
||||
format: str | None = None
|
||||
geo: Union[Dict[str, Any], bool, None] = None
|
||||
menu_order: int | None = None
|
||||
page_template: str | None = None
|
||||
publicize_URLs: List[str] | None = None
|
||||
terms: Dict[str, Dict[str, Any]] | None = None
|
||||
tags: Dict[str, Dict[str, Any]] | None = None
|
||||
categories: Dict[str, Dict[str, Any]] | None = None
|
||||
attachments: Dict[str, Dict[str, Any]] | None = None
|
||||
attachment_count: int | None = None
|
||||
metadata: List[Dict[str, Any]] | None = None
|
||||
meta: Dict[str, Any] | None = None
|
||||
capabilities: Dict[str, bool] | None = None
|
||||
revisions: List[int] | None = None
|
||||
other_URLs: Dict[str, Any] | None = None
|
||||
|
||||
|
||||
class PostsResponse(BaseModel):
|
||||
"""Response model for WordPress posts list."""
|
||||
|
||||
found: int
|
||||
posts: List[Post]
|
||||
meta: Dict[str, Any]
|
||||
|
||||
|
||||
def normalize_site(site: str) -> str:
|
||||
"""
|
||||
Normalize a site identifier by stripping protocol and trailing slashes.
|
||||
|
||||
Args:
|
||||
site: Site URL, domain, or ID (e.g., "https://myblog.wordpress.com/", "myblog.wordpress.com", "123456789")
|
||||
|
||||
Returns:
|
||||
Normalized site identifier (domain or ID only)
|
||||
"""
|
||||
site = site.strip()
|
||||
if site.startswith("https://"):
|
||||
site = site[8:]
|
||||
elif site.startswith("http://"):
|
||||
site = site[7:]
|
||||
return site.rstrip("/")
|
||||
|
||||
|
||||
async def get_posts(
|
||||
credentials: Credentials,
|
||||
site: str,
|
||||
status: PostStatus | None = None,
|
||||
number: int = 100,
|
||||
offset: int = 0,
|
||||
) -> PostsResponse:
|
||||
"""
|
||||
Get posts from a WordPress site.
|
||||
|
||||
Args:
|
||||
credentials: OAuth credentials
|
||||
site: Site ID or domain (e.g., "myblog.wordpress.com" or "123456789")
|
||||
status: Filter by post status using PostStatus enum, or None for all
|
||||
number: Number of posts to retrieve (max 100)
|
||||
offset: Number of posts to skip (for pagination)
|
||||
|
||||
Returns:
|
||||
PostsResponse with the list of posts
|
||||
"""
|
||||
site = normalize_site(site)
|
||||
endpoint = f"/rest/v1.1/sites/{site}/posts"
|
||||
|
||||
headers = {
|
||||
"Authorization": credentials.auth_header(),
|
||||
}
|
||||
|
||||
params: Dict[str, Any] = {
|
||||
"number": max(1, min(number, 100)), # 1–100 posts per request
|
||||
"offset": offset,
|
||||
}
|
||||
|
||||
if status:
|
||||
params["status"] = status.value
|
||||
response = await Requests(raise_for_status=False).get(
|
||||
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
|
||||
headers=headers,
|
||||
params=params,
|
||||
)
|
||||
|
||||
if response.ok:
|
||||
return PostsResponse.model_validate(response.json())
|
||||
|
||||
error_data = (
|
||||
response.json()
|
||||
if response.headers.get("content-type", "").startswith("application/json")
|
||||
else {}
|
||||
)
|
||||
error_message = error_data.get("message", response.text)
|
||||
raise ValueError(f"Failed to get posts: {response.status} - {error_message}")
|
||||
|
||||
@@ -9,15 +9,7 @@ from backend.sdk import (
|
||||
SchemaField,
|
||||
)
|
||||
|
||||
from ._api import (
|
||||
CreatePostRequest,
|
||||
Post,
|
||||
PostResponse,
|
||||
PostsResponse,
|
||||
PostStatus,
|
||||
create_post,
|
||||
get_posts,
|
||||
)
|
||||
from ._api import CreatePostRequest, PostResponse, PostStatus, create_post
|
||||
from ._config import wordpress
|
||||
|
||||
|
||||
@@ -57,15 +49,8 @@ class WordPressCreatePostBlock(Block):
|
||||
media_urls: list[str] = SchemaField(
|
||||
description="URLs of images to sideload and attach to the post", default=[]
|
||||
)
|
||||
publish_as_draft: bool = SchemaField(
|
||||
description="If True, publishes the post as a draft. If False, publishes it publicly.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
site: str = SchemaField(
|
||||
description="The site ID or domain (pass-through for chaining with other blocks)"
|
||||
)
|
||||
post_id: int = SchemaField(description="The ID of the created post")
|
||||
post_url: str = SchemaField(description="The full URL of the created post")
|
||||
short_url: str = SchemaField(description="The shortened wp.me URL")
|
||||
@@ -93,9 +78,7 @@ class WordPressCreatePostBlock(Block):
|
||||
tags=input_data.tags,
|
||||
featured_image=input_data.featured_image,
|
||||
media_urls=input_data.media_urls,
|
||||
status=(
|
||||
PostStatus.DRAFT if input_data.publish_as_draft else PostStatus.PUBLISH
|
||||
),
|
||||
status=PostStatus.PUBLISH,
|
||||
)
|
||||
|
||||
post_response: PostResponse = await create_post(
|
||||
@@ -104,69 +87,7 @@ class WordPressCreatePostBlock(Block):
|
||||
post_data=post_request,
|
||||
)
|
||||
|
||||
yield "site", input_data.site
|
||||
yield "post_id", post_response.ID
|
||||
yield "post_url", post_response.URL
|
||||
yield "short_url", post_response.short_URL
|
||||
yield "post_data", post_response.model_dump()
|
||||
|
||||
|
||||
class WordPressGetAllPostsBlock(Block):
|
||||
"""
|
||||
Fetches all posts from a WordPress.com site or Jetpack-enabled site.
|
||||
Supports filtering by status and pagination.
|
||||
"""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
credentials: CredentialsMetaInput = wordpress.credentials_field()
|
||||
site: str = SchemaField(
|
||||
description="Site ID or domain (e.g., 'myblog.wordpress.com' or '123456789')"
|
||||
)
|
||||
status: PostStatus | None = SchemaField(
|
||||
description="Filter by post status, or None for all",
|
||||
default=None,
|
||||
)
|
||||
number: int = SchemaField(
|
||||
description="Number of posts to retrieve (max 100 per request)", default=20
|
||||
)
|
||||
offset: int = SchemaField(
|
||||
description="Number of posts to skip (for pagination)", default=0
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
site: str = SchemaField(
|
||||
description="The site ID or domain (pass-through for chaining with other blocks)"
|
||||
)
|
||||
found: int = SchemaField(description="Total number of posts found")
|
||||
posts: list[Post] = SchemaField(
|
||||
description="List of post objects with their details"
|
||||
)
|
||||
post: Post = SchemaField(
|
||||
description="Individual post object (yielded for each post)"
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="97728fa7-7f6f-4789-ba0c-f2c114119536",
|
||||
description="Fetch all posts from WordPress.com or Jetpack sites",
|
||||
categories={BlockCategory.SOCIAL},
|
||||
input_schema=self.Input,
|
||||
output_schema=self.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: Credentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
posts_response: PostsResponse = await get_posts(
|
||||
credentials=credentials,
|
||||
site=input_data.site,
|
||||
status=input_data.status,
|
||||
number=input_data.number,
|
||||
offset=input_data.offset,
|
||||
)
|
||||
|
||||
yield "site", input_data.site
|
||||
yield "found", posts_response.found
|
||||
yield "posts", posts_response.posts
|
||||
for post in posts_response.posts:
|
||||
yield "post", post
|
||||
|
||||
@@ -50,8 +50,6 @@ from .model import (
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
from .graph import Link
|
||||
|
||||
app_config = Config()
|
||||
@@ -474,7 +472,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
self.block_type = block_type
|
||||
self.webhook_config = webhook_config
|
||||
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
|
||||
self.requires_human_review: bool = False
|
||||
|
||||
if self.webhook_config:
|
||||
if isinstance(self.webhook_config, BlockWebhookConfig):
|
||||
@@ -617,80 +614,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
block_id=self.id,
|
||||
) from ex
|
||||
|
||||
async def is_block_exec_need_review(
|
||||
self,
|
||||
input_data: BlockInput,
|
||||
*,
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: "ExecutionContext",
|
||||
**kwargs,
|
||||
) -> tuple[bool, BlockInput]:
|
||||
"""
|
||||
Check if this block execution needs human review and handle the review process.
|
||||
|
||||
Returns:
|
||||
Tuple of (should_pause, input_data_to_use)
|
||||
- should_pause: True if execution should be paused for review
|
||||
- input_data_to_use: The input data to use (may be modified by reviewer)
|
||||
"""
|
||||
if not (
|
||||
self.requires_human_review
|
||||
and execution_context.safe_mode
|
||||
and execution_context.is_ai_generated_graph
|
||||
):
|
||||
return False, input_data
|
||||
|
||||
from backend.blocks.helpers.review import HITLReviewHelper
|
||||
|
||||
# Handle the review request and get decision
|
||||
decision = await HITLReviewHelper.handle_review_decision(
|
||||
input_data=input_data,
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
block_name=self.name,
|
||||
editable=True,
|
||||
)
|
||||
|
||||
if decision is None:
|
||||
# We're awaiting review - pause execution
|
||||
return True, input_data
|
||||
|
||||
if not decision.should_proceed:
|
||||
# Review was rejected, raise an error to stop execution
|
||||
raise BlockExecutionError(
|
||||
message=f"Block execution rejected by reviewer: {decision.message}",
|
||||
block_name=self.name,
|
||||
block_id=self.id,
|
||||
)
|
||||
|
||||
# Review was approved - use the potentially modified data
|
||||
# ReviewResult.data must be a dict for block inputs
|
||||
reviewed_data = decision.review_result.data
|
||||
if not isinstance(reviewed_data, dict):
|
||||
raise BlockExecutionError(
|
||||
message=f"Review data must be a dict for block input, got {type(reviewed_data).__name__}",
|
||||
block_name=self.name,
|
||||
block_id=self.id,
|
||||
)
|
||||
return False, reviewed_data
|
||||
|
||||
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
|
||||
# Check for review requirement and get potentially modified input data
|
||||
should_pause, input_data = await self.is_block_exec_need_review(
|
||||
input_data, **kwargs
|
||||
)
|
||||
if should_pause:
|
||||
return
|
||||
|
||||
# Validate the input data (original or reviewer-modified) once
|
||||
if error := self.input_schema.validate_data(input_data):
|
||||
raise BlockInputError(
|
||||
message=f"Unable to execute block with invalid input data: {error}",
|
||||
@@ -698,7 +622,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
block_id=self.id,
|
||||
)
|
||||
|
||||
# Use the validated input data
|
||||
async for output_name, output_data in self.run(
|
||||
self.input_schema(**{k: v for k, v in input_data.items() if v is not None}),
|
||||
**kwargs,
|
||||
|
||||
@@ -82,7 +82,6 @@ class ExecutionContext(BaseModel):
|
||||
"""
|
||||
|
||||
safe_mode: bool = True
|
||||
is_ai_generated_graph: bool = False
|
||||
user_timezone: str = "UTC"
|
||||
root_execution_id: Optional[str] = None
|
||||
parent_execution_id: Optional[str] = None
|
||||
|
||||
@@ -63,14 +63,6 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
class GraphSettings(BaseModel):
|
||||
human_in_the_loop_safe_mode: bool | None = None
|
||||
is_ai_generated_graph: bool = False
|
||||
|
||||
@classmethod
|
||||
def from_graph(cls, graph: "GraphModel", is_ai_generated: bool) -> "GraphSettings":
|
||||
return cls(
|
||||
human_in_the_loop_safe_mode=(True if graph.has_human_in_the_loop else None),
|
||||
is_ai_generated_graph=is_ai_generated,
|
||||
)
|
||||
|
||||
|
||||
class Link(BaseDbModel):
|
||||
@@ -252,10 +244,7 @@ class BaseGraph(BaseDbModel):
|
||||
return any(
|
||||
node.block_id
|
||||
for node in self.nodes
|
||||
if (
|
||||
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
or node.block.requires_human_review
|
||||
)
|
||||
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
)
|
||||
|
||||
@property
|
||||
|
||||
@@ -877,7 +877,6 @@ async def add_graph_execution(
|
||||
if settings.human_in_the_loop_safe_mode is not None
|
||||
else True
|
||||
),
|
||||
is_ai_generated_graph=settings.is_ai_generated_graph,
|
||||
user_timezone=(
|
||||
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
|
||||
),
|
||||
|
||||
@@ -8,7 +8,6 @@ from .discord import DiscordOAuthHandler
|
||||
from .github import GitHubOAuthHandler
|
||||
from .google import GoogleOAuthHandler
|
||||
from .notion import NotionOAuthHandler
|
||||
from .reddit import RedditOAuthHandler
|
||||
from .twitter import TwitterOAuthHandler
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -21,7 +20,6 @@ _ORIGINAL_HANDLERS = [
|
||||
GitHubOAuthHandler,
|
||||
GoogleOAuthHandler,
|
||||
NotionOAuthHandler,
|
||||
RedditOAuthHandler,
|
||||
TwitterOAuthHandler,
|
||||
TodoistOAuthHandler,
|
||||
]
|
||||
|
||||
@@ -1,208 +0,0 @@
|
||||
import time
|
||||
import urllib.parse
|
||||
from typing import ClassVar, Optional
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import OAuth2Credentials
|
||||
from backend.integrations.oauth.base import BaseOAuthHandler
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.request import Requests
|
||||
from backend.util.settings import Settings
|
||||
|
||||
settings = Settings()
|
||||
|
||||
|
||||
class RedditOAuthHandler(BaseOAuthHandler):
|
||||
"""
|
||||
Reddit OAuth 2.0 handler.
|
||||
|
||||
Based on the documentation at:
|
||||
- https://github.com/reddit-archive/reddit/wiki/OAuth2
|
||||
|
||||
Notes:
|
||||
- Reddit requires `duration=permanent` to get refresh tokens
|
||||
- Access tokens expire after 1 hour (3600 seconds)
|
||||
- Reddit requires HTTP Basic Auth for token requests
|
||||
- Reddit requires a unique User-Agent header
|
||||
"""
|
||||
|
||||
PROVIDER_NAME = ProviderName.REDDIT
|
||||
DEFAULT_SCOPES: ClassVar[list[str]] = [
|
||||
"identity", # Get username, verify auth
|
||||
"read", # Access posts and comments
|
||||
"submit", # Submit new posts and comments
|
||||
"edit", # Edit own posts and comments
|
||||
"history", # Access user's post history
|
||||
"privatemessages", # Access inbox and send private messages
|
||||
"flair", # Access and set flair on posts/subreddits
|
||||
]
|
||||
|
||||
AUTHORIZE_URL = "https://www.reddit.com/api/v1/authorize"
|
||||
TOKEN_URL = "https://www.reddit.com/api/v1/access_token"
|
||||
USERNAME_URL = "https://oauth.reddit.com/api/v1/me"
|
||||
REVOKE_URL = "https://www.reddit.com/api/v1/revoke_token"
|
||||
|
||||
def __init__(self, client_id: str, client_secret: str, redirect_uri: str):
|
||||
self.client_id = client_id
|
||||
self.client_secret = client_secret
|
||||
self.redirect_uri = redirect_uri
|
||||
|
||||
def get_login_url(
|
||||
self, scopes: list[str], state: str, code_challenge: Optional[str]
|
||||
) -> str:
|
||||
"""Generate Reddit OAuth 2.0 authorization URL"""
|
||||
scopes = self.handle_default_scopes(scopes)
|
||||
|
||||
params = {
|
||||
"response_type": "code",
|
||||
"client_id": self.client_id,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
"scope": " ".join(scopes),
|
||||
"state": state,
|
||||
"duration": "permanent", # Required for refresh tokens
|
||||
}
|
||||
|
||||
return f"{self.AUTHORIZE_URL}?{urllib.parse.urlencode(params)}"
|
||||
|
||||
async def exchange_code_for_tokens(
|
||||
self, code: str, scopes: list[str], code_verifier: Optional[str]
|
||||
) -> OAuth2Credentials:
|
||||
"""Exchange authorization code for access tokens"""
|
||||
scopes = self.handle_default_scopes(scopes)
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
data = {
|
||||
"grant_type": "authorization_code",
|
||||
"code": code,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
}
|
||||
|
||||
# Reddit requires HTTP Basic Auth for token requests
|
||||
auth = (self.client_id, self.client_secret)
|
||||
|
||||
response = await Requests().post(
|
||||
self.TOKEN_URL, headers=headers, data=data, auth=auth
|
||||
)
|
||||
|
||||
if not response.ok:
|
||||
error_text = response.text()
|
||||
raise ValueError(
|
||||
f"Reddit token exchange failed: {response.status} - {error_text}"
|
||||
)
|
||||
|
||||
tokens = response.json()
|
||||
|
||||
if "error" in tokens:
|
||||
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
|
||||
|
||||
username = await self._get_username(tokens["access_token"])
|
||||
|
||||
return OAuth2Credentials(
|
||||
provider=self.PROVIDER_NAME,
|
||||
title=None,
|
||||
username=username,
|
||||
access_token=tokens["access_token"],
|
||||
refresh_token=tokens.get("refresh_token"),
|
||||
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
|
||||
refresh_token_expires_at=None, # Reddit refresh tokens don't expire
|
||||
scopes=scopes,
|
||||
)
|
||||
|
||||
async def _get_username(self, access_token: str) -> str:
|
||||
"""Get the username from the access token"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {access_token}",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
response = await Requests().get(self.USERNAME_URL, headers=headers)
|
||||
|
||||
if not response.ok:
|
||||
raise ValueError(f"Failed to get Reddit username: {response.status}")
|
||||
|
||||
data = response.json()
|
||||
return data.get("name", "unknown")
|
||||
|
||||
async def _refresh_tokens(
|
||||
self, credentials: OAuth2Credentials
|
||||
) -> OAuth2Credentials:
|
||||
"""Refresh access tokens using refresh token"""
|
||||
if not credentials.refresh_token:
|
||||
raise ValueError("No refresh token available")
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
data = {
|
||||
"grant_type": "refresh_token",
|
||||
"refresh_token": credentials.refresh_token.get_secret_value(),
|
||||
}
|
||||
|
||||
auth = (self.client_id, self.client_secret)
|
||||
|
||||
response = await Requests().post(
|
||||
self.TOKEN_URL, headers=headers, data=data, auth=auth
|
||||
)
|
||||
|
||||
if not response.ok:
|
||||
error_text = response.text()
|
||||
raise ValueError(
|
||||
f"Reddit token refresh failed: {response.status} - {error_text}"
|
||||
)
|
||||
|
||||
tokens = response.json()
|
||||
|
||||
if "error" in tokens:
|
||||
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
|
||||
|
||||
username = await self._get_username(tokens["access_token"])
|
||||
|
||||
# Reddit may or may not return a new refresh token
|
||||
new_refresh_token = tokens.get("refresh_token")
|
||||
if new_refresh_token:
|
||||
refresh_token: SecretStr | None = SecretStr(new_refresh_token)
|
||||
elif credentials.refresh_token:
|
||||
# Keep the existing refresh token
|
||||
refresh_token = credentials.refresh_token
|
||||
else:
|
||||
refresh_token = None
|
||||
|
||||
return OAuth2Credentials(
|
||||
id=credentials.id,
|
||||
provider=self.PROVIDER_NAME,
|
||||
title=credentials.title,
|
||||
username=username,
|
||||
access_token=tokens["access_token"],
|
||||
refresh_token=refresh_token,
|
||||
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
|
||||
refresh_token_expires_at=None,
|
||||
scopes=credentials.scopes,
|
||||
)
|
||||
|
||||
async def revoke_tokens(self, credentials: OAuth2Credentials) -> bool:
|
||||
"""Revoke the access token"""
|
||||
headers = {
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
data = {
|
||||
"token": credentials.access_token.get_secret_value(),
|
||||
"token_type_hint": "access_token",
|
||||
}
|
||||
|
||||
auth = (self.client_id, self.client_secret)
|
||||
|
||||
response = await Requests().post(
|
||||
self.REVOKE_URL, headers=headers, data=data, auth=auth
|
||||
)
|
||||
|
||||
# Reddit returns 204 No Content on successful revocation
|
||||
return response.ok
|
||||
@@ -264,7 +264,7 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
)
|
||||
|
||||
reddit_user_agent: str = Field(
|
||||
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
|
||||
default="AutoGPT:1.0 (by /u/autogpt)",
|
||||
description="The user agent for the Reddit API",
|
||||
)
|
||||
|
||||
|
||||
@@ -0,0 +1,35 @@
|
||||
-- CreateExtension in public schema (standard location for pgvector)
|
||||
CREATE EXTENSION IF NOT EXISTS "vector" WITH SCHEMA "public";
|
||||
|
||||
-- Grant usage on public schema to platform users
|
||||
GRANT USAGE ON SCHEMA public TO postgres;
|
||||
|
||||
-- CreateEnum
|
||||
CREATE TYPE "ContentType" AS ENUM ('STORE_AGENT', 'BLOCK', 'INTEGRATION', 'DOCUMENTATION', 'LIBRARY_AGENT');
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "UnifiedContentEmbedding" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"contentType" "ContentType" NOT NULL,
|
||||
"contentId" TEXT NOT NULL,
|
||||
"userId" TEXT,
|
||||
"embedding" public.vector(1536) NOT NULL,
|
||||
"searchableText" TEXT NOT NULL,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}',
|
||||
|
||||
CONSTRAINT "UnifiedContentEmbedding_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UnifiedContentEmbedding_contentType_idx" ON "UnifiedContentEmbedding"("contentType");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UnifiedContentEmbedding_userId_idx" ON "UnifiedContentEmbedding"("userId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UnifiedContentEmbedding_contentType_userId_idx" ON "UnifiedContentEmbedding"("contentType", "userId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" ON "UnifiedContentEmbedding"("contentType", "contentId", "userId");
|
||||
@@ -1,14 +1,15 @@
|
||||
datasource db {
|
||||
provider = "postgresql"
|
||||
url = env("DATABASE_URL")
|
||||
directUrl = env("DIRECT_URL")
|
||||
provider = "postgresql"
|
||||
url = env("DATABASE_URL")
|
||||
directUrl = env("DIRECT_URL")
|
||||
extensions = [pgvector(map: "vector")]
|
||||
}
|
||||
|
||||
generator client {
|
||||
provider = "prisma-client-py"
|
||||
recursive_type_depth = -1
|
||||
interface = "asyncio"
|
||||
previewFeatures = ["views", "fullTextSearch"]
|
||||
previewFeatures = ["views", "fullTextSearch", "postgresqlExtensions"]
|
||||
partial_type_generator = "backend/data/partial_types.py"
|
||||
}
|
||||
|
||||
@@ -127,8 +128,8 @@ model BuilderSearchHistory {
|
||||
updatedAt DateTime @default(now()) @updatedAt
|
||||
|
||||
searchQuery String
|
||||
filter String[] @default([])
|
||||
byCreator String[] @default([])
|
||||
filter String[] @default([])
|
||||
byCreator String[] @default([])
|
||||
|
||||
userId String
|
||||
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
|
||||
@@ -721,26 +722,25 @@ view StoreAgent {
|
||||
storeListingVersionId String
|
||||
updated_at DateTime
|
||||
|
||||
slug String
|
||||
agent_name String
|
||||
agent_video String?
|
||||
agent_output_demo String?
|
||||
agent_image String[]
|
||||
slug String
|
||||
agent_name String
|
||||
agent_video String?
|
||||
agent_output_demo String?
|
||||
agent_image String[]
|
||||
|
||||
featured Boolean @default(false)
|
||||
creator_username String?
|
||||
creator_avatar String?
|
||||
sub_heading String
|
||||
description String
|
||||
categories String[]
|
||||
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
|
||||
runs Int
|
||||
rating Float
|
||||
versions String[]
|
||||
agentGraphVersions String[]
|
||||
agentGraphId String
|
||||
is_available Boolean @default(true)
|
||||
useForOnboarding Boolean @default(false)
|
||||
featured Boolean @default(false)
|
||||
creator_username String?
|
||||
creator_avatar String?
|
||||
sub_heading String
|
||||
description String
|
||||
categories String[]
|
||||
runs Int
|
||||
rating Float
|
||||
versions String[]
|
||||
agentGraphVersions String[]
|
||||
agentGraphId String
|
||||
is_available Boolean @default(true)
|
||||
useForOnboarding Boolean @default(false)
|
||||
|
||||
// Materialized views used (refreshed every 15 minutes via pg_cron):
|
||||
// - mv_agent_run_counts - Pre-aggregated agent execution counts by agentGraphId
|
||||
@@ -856,14 +856,14 @@ model StoreListingVersion {
|
||||
AgentGraph AgentGraph @relation(fields: [agentGraphId, agentGraphVersion], references: [id, version])
|
||||
|
||||
// Content fields
|
||||
name String
|
||||
subHeading String
|
||||
videoUrl String?
|
||||
agentOutputDemoUrl String?
|
||||
imageUrls String[]
|
||||
description String
|
||||
instructions String?
|
||||
categories String[]
|
||||
name String
|
||||
subHeading String
|
||||
videoUrl String?
|
||||
agentOutputDemoUrl String?
|
||||
imageUrls String[]
|
||||
description String
|
||||
instructions String?
|
||||
categories String[]
|
||||
|
||||
isFeatured Boolean @default(false)
|
||||
|
||||
@@ -899,6 +899,9 @@ model StoreListingVersion {
|
||||
// Reviews for this specific version
|
||||
Reviews StoreListingReview[]
|
||||
|
||||
// Note: Embeddings now stored in UnifiedContentEmbedding table
|
||||
// Use contentType=STORE_AGENT and contentId=storeListingVersionId
|
||||
|
||||
@@unique([storeListingId, version])
|
||||
@@index([storeListingId, submissionStatus, isAvailable])
|
||||
@@index([submissionStatus])
|
||||
@@ -906,6 +909,42 @@ model StoreListingVersion {
|
||||
@@index([agentGraphId, agentGraphVersion]) // Non-unique index for efficient lookups
|
||||
}
|
||||
|
||||
|
||||
// Content type enum for unified search across store agents, blocks, docs
|
||||
// Note: BLOCK/INTEGRATION are file-based (Python classes), not DB records
|
||||
// DOCUMENTATION are file-based (.md files), not DB records
|
||||
// Only STORE_AGENT and LIBRARY_AGENT are stored in database
|
||||
enum ContentType {
|
||||
STORE_AGENT // Database: StoreListingVersion
|
||||
BLOCK // File-based: Python classes in /backend/blocks/
|
||||
INTEGRATION // File-based: Python classes (blocks with credentials)
|
||||
DOCUMENTATION // File-based: .md/.mdx files
|
||||
LIBRARY_AGENT // Database: User's personal agents
|
||||
}
|
||||
|
||||
// Unified embeddings table for all searchable content types
|
||||
// Supports both public content (userId=null) and user-specific content (userId=userID)
|
||||
model UnifiedContentEmbedding {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
// Content identification
|
||||
contentType ContentType
|
||||
contentId String // DB ID (storeListingVersionId) or file identifier (block.id, file_path)
|
||||
userId String? // NULL for public content (store, blocks, docs), userId for private content (library agents)
|
||||
|
||||
// Search data
|
||||
embedding Unsupported("public.vector(1536)") // pgvector embedding from public schema
|
||||
searchableText String // Combined text for search and fallback
|
||||
metadata Json @default("{}") // Content-specific metadata
|
||||
|
||||
@@unique([contentType, contentId, userId]) // Allow same content for different users
|
||||
@@index([contentType])
|
||||
@@index([userId])
|
||||
@@index([contentType, userId])
|
||||
}
|
||||
|
||||
model StoreListingReview {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
@@ -998,16 +1037,16 @@ model OAuthApplication {
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
// Application metadata
|
||||
name String
|
||||
description String?
|
||||
logoUrl String? // URL to app logo stored in GCS
|
||||
clientId String @unique
|
||||
clientSecret String // Hashed with Scrypt (same as API keys)
|
||||
clientSecretSalt String // Salt for Scrypt hashing
|
||||
name String
|
||||
description String?
|
||||
logoUrl String? // URL to app logo stored in GCS
|
||||
clientId String @unique
|
||||
clientSecret String // Hashed with Scrypt (same as API keys)
|
||||
clientSecretSalt String // Salt for Scrypt hashing
|
||||
|
||||
// OAuth configuration
|
||||
redirectUris String[] // Allowed callback URLs
|
||||
grantTypes String[] @default(["authorization_code", "refresh_token"])
|
||||
grantTypes String[] @default(["authorization_code", "refresh_token"])
|
||||
scopes APIKeyPermission[] // Which permissions the app can request
|
||||
|
||||
// Application management
|
||||
|
||||
@@ -68,10 +68,7 @@ export const NodeHeader = ({ data, nodeId }: Props) => {
|
||||
<Tooltip>
|
||||
<TooltipTrigger asChild>
|
||||
<div>
|
||||
<Text
|
||||
variant="large-semibold"
|
||||
className="line-clamp-1 hover:cursor-text"
|
||||
>
|
||||
<Text variant="large-semibold" className="line-clamp-1">
|
||||
{beautifyString(title).replace("Block", "").trim()}
|
||||
</Text>
|
||||
</div>
|
||||
|
||||
@@ -89,18 +89,6 @@ export function extractOptions(
|
||||
|
||||
// get display type and color for schema types [need for type display next to field name]
|
||||
export const getTypeDisplayInfo = (schema: any) => {
|
||||
if (
|
||||
schema?.type === "array" &&
|
||||
"format" in schema &&
|
||||
schema.format === "table"
|
||||
) {
|
||||
return {
|
||||
displayType: "table",
|
||||
colorClass: "!text-indigo-500",
|
||||
hexColor: "#6366f1",
|
||||
};
|
||||
}
|
||||
|
||||
if (schema?.type === "string" && schema?.format) {
|
||||
const formatMap: Record<
|
||||
string,
|
||||
|
||||
@@ -36,7 +36,6 @@ type Props = {
|
||||
readOnly?: boolean;
|
||||
isOptional?: boolean;
|
||||
showTitle?: boolean;
|
||||
variant?: "default" | "node";
|
||||
};
|
||||
|
||||
export function CredentialsInput({
|
||||
@@ -49,7 +48,6 @@ export function CredentialsInput({
|
||||
readOnly = false,
|
||||
isOptional = false,
|
||||
showTitle = true,
|
||||
variant = "default",
|
||||
}: Props) {
|
||||
const hookData = useCredentialsInput({
|
||||
schema,
|
||||
@@ -125,7 +123,6 @@ export function CredentialsInput({
|
||||
onClearCredential={() => onSelectCredential(undefined)}
|
||||
readOnly={readOnly}
|
||||
allowNone={isOptional}
|
||||
variant={variant}
|
||||
/>
|
||||
) : (
|
||||
<div className="mb-4 space-y-2">
|
||||
|
||||
@@ -30,8 +30,6 @@ type CredentialRowProps = {
|
||||
readOnly?: boolean;
|
||||
showCaret?: boolean;
|
||||
asSelectTrigger?: boolean;
|
||||
/** When "node", applies compact styling for node context */
|
||||
variant?: "default" | "node";
|
||||
};
|
||||
|
||||
export function CredentialRow({
|
||||
@@ -43,22 +41,14 @@ export function CredentialRow({
|
||||
readOnly = false,
|
||||
showCaret = false,
|
||||
asSelectTrigger = false,
|
||||
variant = "default",
|
||||
}: CredentialRowProps) {
|
||||
const ProviderIcon = providerIcons[provider] || fallbackIcon;
|
||||
const isNodeVariant = variant === "node";
|
||||
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
"flex items-center gap-3 rounded-medium border border-zinc-200 bg-white p-3 transition-colors",
|
||||
asSelectTrigger && isNodeVariant
|
||||
? "min-w-0 flex-1 overflow-hidden border-0 bg-transparent"
|
||||
: asSelectTrigger
|
||||
? "border-0 bg-transparent"
|
||||
: readOnly
|
||||
? "w-fit"
|
||||
: "",
|
||||
asSelectTrigger ? "border-0 bg-transparent" : readOnly ? "w-fit" : "",
|
||||
)}
|
||||
onClick={readOnly || showCaret || asSelectTrigger ? undefined : onSelect}
|
||||
style={
|
||||
@@ -71,31 +61,19 @@ export function CredentialRow({
|
||||
<ProviderIcon className="h-3 w-3 text-white" />
|
||||
</div>
|
||||
<IconKey className="h-5 w-5 shrink-0 text-zinc-800" />
|
||||
<div
|
||||
className={cn(
|
||||
"flex min-w-0 flex-1 flex-nowrap items-center gap-4",
|
||||
isNodeVariant && "overflow-hidden",
|
||||
)}
|
||||
>
|
||||
<div className="flex min-w-0 flex-1 flex-nowrap items-center gap-4">
|
||||
<Text
|
||||
variant="body"
|
||||
className={cn(
|
||||
"tracking-tight",
|
||||
isNodeVariant
|
||||
? "truncate"
|
||||
: "line-clamp-1 flex-[0_0_50%] text-ellipsis",
|
||||
)}
|
||||
className="line-clamp-1 flex-[0_0_50%] text-ellipsis tracking-tight"
|
||||
>
|
||||
{getCredentialDisplayName(credential, displayName)}
|
||||
</Text>
|
||||
{!(asSelectTrigger && isNodeVariant) && (
|
||||
<Text
|
||||
variant="large"
|
||||
className="relative top-1 hidden overflow-hidden whitespace-nowrap font-mono tracking-tight md:block"
|
||||
>
|
||||
{"*".repeat(MASKED_KEY_LENGTH)}
|
||||
</Text>
|
||||
)}
|
||||
<Text
|
||||
variant="large"
|
||||
className="lex-[0_0_40%] relative top-1 hidden overflow-hidden whitespace-nowrap font-mono tracking-tight md:block"
|
||||
>
|
||||
{"*".repeat(MASKED_KEY_LENGTH)}
|
||||
</Text>
|
||||
</div>
|
||||
{showCaret && !asSelectTrigger && (
|
||||
<CaretDown className="h-4 w-4 shrink-0 text-gray-400" />
|
||||
|
||||
@@ -7,7 +7,6 @@ import {
|
||||
} from "@/components/__legacy__/ui/select";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import { CredentialsMetaInput } from "@/lib/autogpt-server-api/types";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { useEffect } from "react";
|
||||
import { getCredentialDisplayName } from "../../helpers";
|
||||
import { CredentialRow } from "../CredentialRow/CredentialRow";
|
||||
@@ -27,8 +26,6 @@ interface Props {
|
||||
onClearCredential?: () => void;
|
||||
readOnly?: boolean;
|
||||
allowNone?: boolean;
|
||||
/** When "node", applies compact styling for node context */
|
||||
variant?: "default" | "node";
|
||||
}
|
||||
|
||||
export function CredentialsSelect({
|
||||
@@ -40,7 +37,6 @@ export function CredentialsSelect({
|
||||
onClearCredential,
|
||||
readOnly = false,
|
||||
allowNone = true,
|
||||
variant = "default",
|
||||
}: Props) {
|
||||
// Auto-select first credential if none is selected (only if allowNone is false)
|
||||
useEffect(() => {
|
||||
@@ -63,12 +59,7 @@ export function CredentialsSelect({
|
||||
value={selectedCredentials?.id || (allowNone ? "__none__" : "")}
|
||||
onValueChange={handleValueChange}
|
||||
>
|
||||
<SelectTrigger
|
||||
className={cn(
|
||||
"h-auto min-h-12 w-full rounded-medium border-zinc-200 p-0 pr-4 shadow-none",
|
||||
variant === "node" && "overflow-hidden",
|
||||
)}
|
||||
>
|
||||
<SelectTrigger className="h-auto min-h-12 w-full rounded-medium border-zinc-200 p-0 pr-4 shadow-none">
|
||||
{selectedCredentials ? (
|
||||
<SelectValue key={selectedCredentials.id} asChild>
|
||||
<CredentialRow
|
||||
@@ -84,7 +75,6 @@ export function CredentialsSelect({
|
||||
onDelete={() => {}}
|
||||
readOnly={readOnly}
|
||||
asSelectTrigger={true}
|
||||
variant={variant}
|
||||
/>
|
||||
</SelectValue>
|
||||
) : (
|
||||
|
||||
@@ -92,33 +92,29 @@ export function useMarketplaceUpdate({ agent }: UseMarketplaceUpdateProps) {
|
||||
|
||||
const isUserCreator = agent?.owner_user_id === user?.id;
|
||||
|
||||
// Check if there's a pending submission for this specific agent version
|
||||
const submissionsResponse = okData(submissionsData) as any;
|
||||
const agentSubmissions =
|
||||
submissionsResponse?.submissions?.filter(
|
||||
(submission: StoreSubmission) => submission.agent_id === agent.graph_id,
|
||||
) || [];
|
||||
|
||||
const highestSubmittedVersion =
|
||||
agentSubmissions.length > 0
|
||||
? Math.max(
|
||||
...agentSubmissions.map(
|
||||
(submission: StoreSubmission) => submission.agent_version,
|
||||
),
|
||||
)
|
||||
: 0;
|
||||
|
||||
const hasUnpublishedChanges =
|
||||
isUserCreator && agent.graph_version > highestSubmittedVersion;
|
||||
const hasPendingSubmissionForCurrentVersion =
|
||||
isUserCreator &&
|
||||
submissionsResponse?.submissions?.some(
|
||||
(submission: StoreSubmission) =>
|
||||
submission.agent_id === agent.graph_id &&
|
||||
submission.agent_version === agent.graph_version &&
|
||||
submission.status === "PENDING",
|
||||
);
|
||||
|
||||
if (!storeAgent) {
|
||||
return {
|
||||
hasUpdate: false,
|
||||
latestVersion: undefined,
|
||||
isUserCreator,
|
||||
hasPublishUpdate: agentSubmissions.length > 0 && hasUnpublishedChanges,
|
||||
hasPublishUpdate:
|
||||
isUserCreator && !hasPendingSubmissionForCurrentVersion,
|
||||
};
|
||||
}
|
||||
|
||||
// Get the latest version from the marketplace
|
||||
// agentGraphVersions array contains graph version numbers as strings, get the highest one
|
||||
const latestMarketplaceVersion =
|
||||
storeAgent.agentGraphVersions?.length > 0
|
||||
? Math.max(
|
||||
@@ -128,11 +124,18 @@ export function useMarketplaceUpdate({ agent }: UseMarketplaceUpdateProps) {
|
||||
)
|
||||
: undefined;
|
||||
|
||||
// Show publish update button if:
|
||||
// 1. User is the creator
|
||||
// 2. No pending submission for current version
|
||||
// 3. Either: agent not published yet OR local version is newer than marketplace
|
||||
const hasPublishUpdate =
|
||||
isUserCreator &&
|
||||
agent.graph_version >
|
||||
Math.max(latestMarketplaceVersion || 0, highestSubmittedVersion);
|
||||
!hasPendingSubmissionForCurrentVersion &&
|
||||
(latestMarketplaceVersion === undefined || // Not published yet
|
||||
agent.graph_version > latestMarketplaceVersion); // Or local version is newer
|
||||
|
||||
// If marketplace version is newer than user's version, show update banner
|
||||
// This applies to both creators and non-creators
|
||||
const hasMarketplaceUpdate =
|
||||
latestMarketplaceVersion !== undefined &&
|
||||
latestMarketplaceVersion > agent.graph_version;
|
||||
|
||||
@@ -133,7 +133,7 @@ export function EditAgentForm({
|
||||
<Input
|
||||
id={field.name}
|
||||
label="Changes Summary"
|
||||
type="textarea"
|
||||
type="text"
|
||||
placeholder="Briefly describe what you changed"
|
||||
error={form.formState.errors.changes_summary?.message}
|
||||
{...field}
|
||||
|
||||
@@ -47,7 +47,7 @@ export const useEditAgentForm = ({
|
||||
changes_summary: z
|
||||
.string()
|
||||
.min(1, "Changes summary is required")
|
||||
.max(500, "Changes summary must be less than 500 characters"),
|
||||
.max(200, "Changes summary must be less than 200 characters"),
|
||||
agentOutputDemo: z
|
||||
.string()
|
||||
.refine(validateYouTubeUrl, "Please enter a valid YouTube URL"),
|
||||
|
||||
@@ -53,24 +53,21 @@ export function useAgentInfoStep({
|
||||
useEffect(() => {
|
||||
if (initialData?.agent_id) {
|
||||
setAgentId(initialData.agent_id);
|
||||
setImages(
|
||||
Array.from(
|
||||
new Set([
|
||||
...(initialData?.thumbnailSrc ? [initialData.thumbnailSrc] : []),
|
||||
...(initialData.additionalImages || []),
|
||||
]),
|
||||
),
|
||||
);
|
||||
const initialImages = [
|
||||
...(initialData?.thumbnailSrc ? [initialData.thumbnailSrc] : []),
|
||||
...(initialData.additionalImages || []),
|
||||
];
|
||||
setImages(initialImages);
|
||||
|
||||
// Update form with initial data
|
||||
form.reset({
|
||||
changesSummary: isMarketplaceUpdate
|
||||
? ""
|
||||
: initialData.changesSummary || "",
|
||||
changesSummary: initialData.changesSummary || "",
|
||||
title: initialData.title,
|
||||
subheader: initialData.subheader,
|
||||
slug: initialData.slug.toLocaleLowerCase().trim(),
|
||||
youtubeLink: initialData.youtubeLink,
|
||||
category: initialData.category,
|
||||
description: isMarketplaceUpdate ? "" : initialData.description,
|
||||
description: initialData.description,
|
||||
recommendedScheduleCron: initialData.recommendedScheduleCron || "",
|
||||
instructions: initialData.instructions || "",
|
||||
agentOutputDemo: initialData.agentOutputDemo || "",
|
||||
@@ -152,7 +149,12 @@ export function useAgentInfoStep({
|
||||
agentId,
|
||||
images,
|
||||
isSubmitting,
|
||||
initialImages: images,
|
||||
initialImages: initialData
|
||||
? [
|
||||
...(initialData?.thumbnailSrc ? [initialData.thumbnailSrc] : []),
|
||||
...(initialData.additionalImages || []),
|
||||
]
|
||||
: [],
|
||||
initialSelectedImage: initialData?.thumbnailSrc || null,
|
||||
handleImagesChange,
|
||||
handleSubmit: form.handleSubmit(handleFormSubmit),
|
||||
|
||||
@@ -1,116 +0,0 @@
|
||||
import type { Meta, StoryObj } from "@storybook/nextjs";
|
||||
import { TooltipProvider } from "@/components/atoms/Tooltip/BaseTooltip";
|
||||
import { Table } from "./Table";
|
||||
|
||||
const meta = {
|
||||
title: "Molecules/Table",
|
||||
component: Table,
|
||||
decorators: [
|
||||
(Story) => (
|
||||
<TooltipProvider>
|
||||
<Story />
|
||||
</TooltipProvider>
|
||||
),
|
||||
],
|
||||
parameters: {
|
||||
layout: "centered",
|
||||
},
|
||||
tags: ["autodocs"],
|
||||
argTypes: {
|
||||
allowAddRow: {
|
||||
control: "boolean",
|
||||
description: "Whether to show the Add row button",
|
||||
},
|
||||
allowDeleteRow: {
|
||||
control: "boolean",
|
||||
description: "Whether to show delete buttons for each row",
|
||||
},
|
||||
readOnly: {
|
||||
control: "boolean",
|
||||
description:
|
||||
"Whether the table is read-only (renders text instead of inputs)",
|
||||
},
|
||||
addRowLabel: {
|
||||
control: "text",
|
||||
description: "Label for the Add row button",
|
||||
},
|
||||
},
|
||||
} satisfies Meta<typeof Table>;
|
||||
|
||||
export default meta;
|
||||
type Story = StoryObj<typeof meta>;
|
||||
|
||||
export const Default: Story = {
|
||||
args: {
|
||||
columns: ["name", "email", "role"],
|
||||
allowAddRow: true,
|
||||
allowDeleteRow: true,
|
||||
},
|
||||
};
|
||||
|
||||
export const WithDefaultValues: Story = {
|
||||
args: {
|
||||
columns: ["name", "email", "role"],
|
||||
defaultValues: [
|
||||
{ name: "John Doe", email: "john@example.com", role: "Admin" },
|
||||
{ name: "Jane Smith", email: "jane@example.com", role: "User" },
|
||||
{ name: "Bob Wilson", email: "bob@example.com", role: "Editor" },
|
||||
],
|
||||
allowAddRow: true,
|
||||
allowDeleteRow: true,
|
||||
},
|
||||
};
|
||||
|
||||
export const ReadOnly: Story = {
|
||||
args: {
|
||||
columns: ["name", "email"],
|
||||
defaultValues: [
|
||||
{ name: "John Doe", email: "john@example.com" },
|
||||
{ name: "Jane Smith", email: "jane@example.com" },
|
||||
],
|
||||
readOnly: true,
|
||||
},
|
||||
};
|
||||
|
||||
export const NoAddOrDelete: Story = {
|
||||
args: {
|
||||
columns: ["name", "email"],
|
||||
defaultValues: [
|
||||
{ name: "John Doe", email: "john@example.com" },
|
||||
{ name: "Jane Smith", email: "jane@example.com" },
|
||||
],
|
||||
allowAddRow: false,
|
||||
allowDeleteRow: false,
|
||||
},
|
||||
};
|
||||
|
||||
export const SingleColumn: Story = {
|
||||
args: {
|
||||
columns: ["item"],
|
||||
allowAddRow: true,
|
||||
allowDeleteRow: true,
|
||||
addRowLabel: "Add item",
|
||||
},
|
||||
};
|
||||
|
||||
export const CustomAddLabel: Story = {
|
||||
args: {
|
||||
columns: ["key", "value"],
|
||||
allowAddRow: true,
|
||||
allowDeleteRow: true,
|
||||
addRowLabel: "Add new entry",
|
||||
},
|
||||
};
|
||||
|
||||
export const KeyValuePairs: Story = {
|
||||
args: {
|
||||
columns: ["key", "value"],
|
||||
defaultValues: [
|
||||
{ key: "API_KEY", value: "sk-..." },
|
||||
{ key: "DATABASE_URL", value: "postgres://..." },
|
||||
],
|
||||
allowAddRow: true,
|
||||
allowDeleteRow: true,
|
||||
addRowLabel: "Add variable",
|
||||
},
|
||||
};
|
||||
@@ -1,133 +0,0 @@
|
||||
import * as React from "react";
|
||||
import {
|
||||
Table as BaseTable,
|
||||
TableBody,
|
||||
TableCell,
|
||||
TableHead,
|
||||
TableHeader,
|
||||
TableRow,
|
||||
} from "@/components/__legacy__/ui/table";
|
||||
import { Button } from "@/components/atoms/Button/Button";
|
||||
import { Input } from "@/components/atoms/Input/Input";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import { Plus, Trash2 } from "lucide-react";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { useTable, RowData } from "./useTable";
|
||||
import { formatColumnTitle, formatPlaceholder } from "./helpers";
|
||||
|
||||
export interface TableProps {
|
||||
columns: string[];
|
||||
defaultValues?: RowData[];
|
||||
onChange?: (rows: RowData[]) => void;
|
||||
allowAddRow?: boolean;
|
||||
allowDeleteRow?: boolean;
|
||||
addRowLabel?: string;
|
||||
className?: string;
|
||||
readOnly?: boolean;
|
||||
}
|
||||
|
||||
export function Table({
|
||||
columns,
|
||||
defaultValues,
|
||||
onChange,
|
||||
allowAddRow = true,
|
||||
allowDeleteRow = true,
|
||||
addRowLabel = "Add row",
|
||||
className,
|
||||
readOnly = false,
|
||||
}: TableProps) {
|
||||
const { rows, handleAddRow, handleDeleteRow, handleCellChange } = useTable({
|
||||
columns,
|
||||
defaultValues,
|
||||
onChange,
|
||||
});
|
||||
|
||||
const showDeleteColumn = allowDeleteRow && !readOnly;
|
||||
const showAddButton = allowAddRow && !readOnly;
|
||||
|
||||
return (
|
||||
<div className={cn("flex flex-col gap-3", className)}>
|
||||
<div className="overflow-hidden rounded-xl border border-zinc-200 bg-white">
|
||||
<BaseTable>
|
||||
<TableHeader>
|
||||
<TableRow className="border-b border-zinc-100 bg-zinc-50/50">
|
||||
{columns.map((column) => (
|
||||
<TableHead
|
||||
key={column}
|
||||
className="h-10 px-3 text-sm font-medium text-zinc-600"
|
||||
>
|
||||
{formatColumnTitle(column)}
|
||||
</TableHead>
|
||||
))}
|
||||
{showDeleteColumn && <TableHead className="w-[50px]" />}
|
||||
</TableRow>
|
||||
</TableHeader>
|
||||
<TableBody>
|
||||
{rows.map((row, rowIndex) => (
|
||||
<TableRow key={rowIndex} className="border-none">
|
||||
{columns.map((column) => (
|
||||
<TableCell key={`${rowIndex}-${column}`} className="p-2">
|
||||
{readOnly ? (
|
||||
<Text
|
||||
variant="body"
|
||||
className="px-3 py-2 text-sm text-zinc-800"
|
||||
>
|
||||
{row[column] || "-"}
|
||||
</Text>
|
||||
) : (
|
||||
<Input
|
||||
id={`table-${rowIndex}-${column}`}
|
||||
label={formatColumnTitle(column)}
|
||||
hideLabel
|
||||
value={row[column] ?? ""}
|
||||
onChange={(e) =>
|
||||
handleCellChange(rowIndex, column, e.target.value)
|
||||
}
|
||||
placeholder={formatPlaceholder(column)}
|
||||
size="small"
|
||||
wrapperClassName="mb-0"
|
||||
/>
|
||||
)}
|
||||
</TableCell>
|
||||
))}
|
||||
{showDeleteColumn && (
|
||||
<TableCell className="p-2">
|
||||
<Button
|
||||
variant="icon"
|
||||
size="icon"
|
||||
onClick={() => handleDeleteRow(rowIndex)}
|
||||
aria-label="Delete row"
|
||||
className="text-zinc-400 transition-colors hover:text-red-500"
|
||||
>
|
||||
<Trash2 className="h-4 w-4" />
|
||||
</Button>
|
||||
</TableCell>
|
||||
)}
|
||||
</TableRow>
|
||||
))}
|
||||
{showAddButton && (
|
||||
<TableRow>
|
||||
<TableCell
|
||||
colSpan={columns.length + (showDeleteColumn ? 1 : 0)}
|
||||
className="p-2"
|
||||
>
|
||||
<Button
|
||||
variant="outline"
|
||||
size="small"
|
||||
onClick={handleAddRow}
|
||||
leftIcon={<Plus className="h-4 w-4" />}
|
||||
className="w-fit"
|
||||
>
|
||||
{addRowLabel}
|
||||
</Button>
|
||||
</TableCell>
|
||||
</TableRow>
|
||||
)}
|
||||
</TableBody>
|
||||
</BaseTable>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
export { type RowData } from "./useTable";
|
||||
@@ -1,7 +0,0 @@
|
||||
export const formatColumnTitle = (key: string): string => {
|
||||
return key.charAt(0).toUpperCase() + key.slice(1);
|
||||
};
|
||||
|
||||
export const formatPlaceholder = (key: string): string => {
|
||||
return `Enter ${key.toLowerCase()}`;
|
||||
};
|
||||
@@ -1,81 +0,0 @@
|
||||
import { useState, useEffect } from "react";
|
||||
|
||||
export type RowData = Record<string, string>;
|
||||
|
||||
interface UseTableOptions {
|
||||
columns: string[];
|
||||
defaultValues?: RowData[];
|
||||
onChange?: (rows: RowData[]) => void;
|
||||
}
|
||||
|
||||
export function useTable({
|
||||
columns,
|
||||
defaultValues,
|
||||
onChange,
|
||||
}: UseTableOptions) {
|
||||
const createEmptyRow = (): RowData => {
|
||||
const emptyRow: RowData = {};
|
||||
columns.forEach((column) => {
|
||||
emptyRow[column] = "";
|
||||
});
|
||||
return emptyRow;
|
||||
};
|
||||
|
||||
const [rows, setRows] = useState<RowData[]>(() => {
|
||||
if (defaultValues && defaultValues.length > 0) {
|
||||
return defaultValues;
|
||||
}
|
||||
return [];
|
||||
});
|
||||
|
||||
useEffect(() => {
|
||||
if (defaultValues !== undefined) {
|
||||
setRows(defaultValues);
|
||||
}
|
||||
}, [defaultValues]);
|
||||
|
||||
const updateRows = (newRows: RowData[]) => {
|
||||
setRows(newRows);
|
||||
onChange?.(newRows);
|
||||
};
|
||||
|
||||
const handleAddRow = () => {
|
||||
const newRows = [...rows, createEmptyRow()];
|
||||
updateRows(newRows);
|
||||
};
|
||||
|
||||
const handleDeleteRow = (rowIndex: number) => {
|
||||
const newRows = rows.filter((_, index) => index !== rowIndex);
|
||||
updateRows(newRows);
|
||||
};
|
||||
|
||||
const handleCellChange = (
|
||||
rowIndex: number,
|
||||
columnKey: string,
|
||||
value: string,
|
||||
) => {
|
||||
const newRows = rows.map((row, index) => {
|
||||
if (index === rowIndex) {
|
||||
return {
|
||||
...row,
|
||||
[columnKey]: value,
|
||||
};
|
||||
}
|
||||
return row;
|
||||
});
|
||||
updateRows(newRows);
|
||||
};
|
||||
|
||||
const clearAll = () => {
|
||||
updateRows([]);
|
||||
};
|
||||
|
||||
return {
|
||||
rows,
|
||||
handleAddRow,
|
||||
handleDeleteRow,
|
||||
handleCellChange,
|
||||
clearAll,
|
||||
createEmptyRow,
|
||||
};
|
||||
}
|
||||
@@ -30,8 +30,6 @@ export const FormRenderer = ({
|
||||
return generateUiSchemaForCustomFields(preprocessedSchema, uiSchema);
|
||||
}, [preprocessedSchema, uiSchema]);
|
||||
|
||||
console.log("preprocessedSchema", preprocessedSchema);
|
||||
|
||||
return (
|
||||
<div className={"mb-6 mt-4"}>
|
||||
<Form
|
||||
|
||||
@@ -5,14 +5,19 @@ import { useAnyOfField } from "./useAnyOfField";
|
||||
import { getHandleId, updateUiOption } from "../../helpers";
|
||||
import { useEdgeStore } from "@/app/(platform)/build/stores/edgeStore";
|
||||
import { ANY_OF_FLAG } from "../../constants";
|
||||
import { findCustomFieldId } from "../../registry";
|
||||
|
||||
export const AnyOfField = (props: FieldProps) => {
|
||||
const { registry, schema } = props;
|
||||
const { fields } = registry;
|
||||
const { SchemaField: _SchemaField } = fields;
|
||||
const { nodeId } = registry.formContext;
|
||||
|
||||
const { isInputConnected } = useEdgeStore();
|
||||
|
||||
const uiOptions = getUiOptions(props.uiSchema, props.globalUiOptions);
|
||||
|
||||
const Widget = getWidget({ type: "string" }, "select", registry.widgets);
|
||||
|
||||
const {
|
||||
handleOptionChange,
|
||||
enumOptions,
|
||||
@@ -21,15 +26,6 @@ export const AnyOfField = (props: FieldProps) => {
|
||||
field_id,
|
||||
} = useAnyOfField(props);
|
||||
|
||||
const parentCustomFieldId = findCustomFieldId(schema);
|
||||
if (parentCustomFieldId) {
|
||||
return null;
|
||||
}
|
||||
|
||||
const uiOptions = getUiOptions(props.uiSchema, props.globalUiOptions);
|
||||
|
||||
const Widget = getWidget({ type: "string" }, "select", registry.widgets);
|
||||
|
||||
const handleId = getHandleId({
|
||||
uiOptions,
|
||||
id: field_id + ANY_OF_FLAG,
|
||||
@@ -44,21 +40,12 @@ export const AnyOfField = (props: FieldProps) => {
|
||||
|
||||
const isHandleConnected = isInputConnected(nodeId, handleId);
|
||||
|
||||
// Now anyOf can render - custom fields if the option schema matches a custom field
|
||||
const optionCustomFieldId = optionSchema
|
||||
? findCustomFieldId(optionSchema)
|
||||
: null;
|
||||
|
||||
const optionUiSchema = optionCustomFieldId
|
||||
? { ...updatedUiSchema, "ui:field": optionCustomFieldId }
|
||||
: updatedUiSchema;
|
||||
|
||||
const optionsSchemaField =
|
||||
(optionSchema && optionSchema.type !== "null" && (
|
||||
<_SchemaField
|
||||
{...props}
|
||||
schema={optionSchema}
|
||||
uiSchema={optionUiSchema}
|
||||
uiSchema={updatedUiSchema}
|
||||
/>
|
||||
)) ||
|
||||
null;
|
||||
|
||||
@@ -17,7 +17,6 @@ interface InputExpanderModalProps {
|
||||
defaultValue: string;
|
||||
description?: string;
|
||||
placeholder?: string;
|
||||
inputType?: "text" | "json";
|
||||
}
|
||||
|
||||
export const InputExpanderModal: FC<InputExpanderModalProps> = ({
|
||||
@@ -28,7 +27,6 @@ export const InputExpanderModal: FC<InputExpanderModalProps> = ({
|
||||
defaultValue,
|
||||
description,
|
||||
placeholder,
|
||||
inputType = "text",
|
||||
}) => {
|
||||
const [tempValue, setTempValue] = useState(defaultValue);
|
||||
const [isCopied, setIsCopied] = useState(false);
|
||||
@@ -80,10 +78,7 @@ export const InputExpanderModal: FC<InputExpanderModalProps> = ({
|
||||
hideLabel
|
||||
id="input-expander-modal"
|
||||
value={tempValue}
|
||||
className={cn(
|
||||
"!min-h-[300px] rounded-2xlarge",
|
||||
inputType === "json" && "font-mono text-sm",
|
||||
)}
|
||||
className="!min-h-[300px] rounded-2xlarge"
|
||||
onChange={(e) => setTempValue(e.target.value)}
|
||||
placeholder={placeholder || "Enter text..."}
|
||||
autoFocus
|
||||
|
||||
@@ -88,8 +88,6 @@ export const CredentialsField = (props: FieldProps) => {
|
||||
showTitle={false}
|
||||
readOnly={formContext?.readOnly}
|
||||
isOptional={!isRequired}
|
||||
className="w-full"
|
||||
variant="node"
|
||||
/>
|
||||
|
||||
{/* Optional credentials toggle - only show in builder canvas, not run dialogs */}
|
||||
|
||||
@@ -1,124 +0,0 @@
|
||||
"use client";
|
||||
|
||||
import { FieldProps, getTemplate, getUiOptions } from "@rjsf/utils";
|
||||
import { Input } from "@/components/atoms/Input/Input";
|
||||
import { Button } from "@/components/atoms/Button/Button";
|
||||
import {
|
||||
Tooltip,
|
||||
TooltipContent,
|
||||
TooltipTrigger,
|
||||
} from "@/components/atoms/Tooltip/BaseTooltip";
|
||||
import { ArrowsOutIcon } from "@phosphor-icons/react";
|
||||
import { InputExpanderModal } from "../../base/standard/widgets/TextInput/TextInputExpanderModal";
|
||||
import { getHandleId, updateUiOption } from "../../helpers";
|
||||
import { useJsonTextField } from "./useJsonTextField";
|
||||
import { getPlaceholder } from "./helpers";
|
||||
|
||||
export const JsonTextField = (props: FieldProps) => {
|
||||
const {
|
||||
formData,
|
||||
onChange,
|
||||
schema,
|
||||
registry,
|
||||
uiSchema,
|
||||
required,
|
||||
name,
|
||||
fieldPathId,
|
||||
} = props;
|
||||
|
||||
const uiOptions = getUiOptions(uiSchema);
|
||||
|
||||
const TitleFieldTemplate = getTemplate(
|
||||
"TitleFieldTemplate",
|
||||
registry,
|
||||
uiOptions,
|
||||
);
|
||||
|
||||
const fieldId = fieldPathId?.$id ?? props.id ?? "json-field";
|
||||
|
||||
const handleId = getHandleId({
|
||||
uiOptions,
|
||||
id: fieldId,
|
||||
schema: schema,
|
||||
});
|
||||
|
||||
const updatedUiSchema = updateUiOption(uiSchema, {
|
||||
handleId: handleId,
|
||||
});
|
||||
|
||||
const {
|
||||
textValue,
|
||||
isModalOpen,
|
||||
handleChange,
|
||||
handleModalOpen,
|
||||
handleModalClose,
|
||||
handleModalSave,
|
||||
} = useJsonTextField({
|
||||
formData,
|
||||
onChange,
|
||||
path: fieldPathId?.path,
|
||||
});
|
||||
|
||||
const placeholder = getPlaceholder(schema);
|
||||
const title = schema.title || name || "JSON Value";
|
||||
|
||||
return (
|
||||
<div className="flex flex-col gap-2">
|
||||
<TitleFieldTemplate
|
||||
id={fieldId}
|
||||
title={title}
|
||||
required={required}
|
||||
schema={schema}
|
||||
uiSchema={updatedUiSchema}
|
||||
registry={registry}
|
||||
/>
|
||||
<div className="nodrag relative flex items-center gap-2">
|
||||
<Input
|
||||
id={fieldId}
|
||||
hideLabel={true}
|
||||
type="textarea"
|
||||
label=""
|
||||
size="small"
|
||||
wrapperClassName="mb-0 flex-1 "
|
||||
value={textValue}
|
||||
onChange={handleChange}
|
||||
placeholder={placeholder}
|
||||
required={required}
|
||||
disabled={props.disabled}
|
||||
className="min-h-[60px] pr-8 font-mono text-xs"
|
||||
/>
|
||||
|
||||
<Tooltip delayDuration={0}>
|
||||
<TooltipTrigger asChild>
|
||||
<Button
|
||||
variant="ghost"
|
||||
size="icon"
|
||||
onClick={handleModalOpen}
|
||||
type="button"
|
||||
className="p-1"
|
||||
>
|
||||
<ArrowsOutIcon className="size-4" />
|
||||
</Button>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>Expand input</TooltipContent>
|
||||
</Tooltip>
|
||||
</div>
|
||||
{schema.description && (
|
||||
<span className="text-xs text-gray-500">{schema.description}</span>
|
||||
)}
|
||||
|
||||
<InputExpanderModal
|
||||
isOpen={isModalOpen}
|
||||
onClose={handleModalClose}
|
||||
onSave={handleModalSave}
|
||||
title={`Edit ${title}`}
|
||||
description={schema.description || "Enter valid JSON"}
|
||||
defaultValue={textValue}
|
||||
placeholder={placeholder}
|
||||
inputType="json"
|
||||
/>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
export default JsonTextField;
|
||||
@@ -1,67 +0,0 @@
|
||||
import { RJSFSchema } from "@rjsf/utils";
|
||||
|
||||
/**
|
||||
* Converts form data to a JSON string for display
|
||||
* @param formData - The data to stringify
|
||||
* @returns JSON string or empty string if data is null/undefined
|
||||
*/
|
||||
export function stringifyFormData(formData: unknown): string {
|
||||
if (formData === undefined || formData === null) {
|
||||
return "";
|
||||
}
|
||||
try {
|
||||
return JSON.stringify(formData, null, 2);
|
||||
} catch {
|
||||
return "";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Parses a JSON string into an object/array
|
||||
* @param value - The JSON string to parse
|
||||
* @returns Parsed value or undefined if parsing fails or empty
|
||||
*/
|
||||
export function parseJsonValue(value: string): unknown | undefined {
|
||||
const trimmed = value.trim();
|
||||
if (trimmed === "") {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
try {
|
||||
return JSON.parse(trimmed);
|
||||
} catch {
|
||||
return undefined;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the appropriate placeholder text based on schema type
|
||||
* @param schema - The JSON schema
|
||||
* @returns Placeholder string
|
||||
*/
|
||||
export function getPlaceholder(schema: RJSFSchema): string {
|
||||
if (schema.type === "array") {
|
||||
return '["item1", "item2"] or [{"key": "value"}]';
|
||||
}
|
||||
if (schema.type === "object") {
|
||||
return '{"key": "value"}';
|
||||
}
|
||||
return "Enter JSON value...";
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks if a JSON string is valid
|
||||
* @param value - The JSON string to validate
|
||||
* @returns true if valid JSON, false otherwise
|
||||
*/
|
||||
export function isValidJson(value: string): boolean {
|
||||
if (value.trim() === "") {
|
||||
return true; // Empty is considered valid (will be undefined)
|
||||
}
|
||||
try {
|
||||
JSON.parse(value);
|
||||
return true;
|
||||
} catch {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
@@ -1,107 +0,0 @@
|
||||
import { useState, useEffect, useCallback } from "react";
|
||||
import { FieldProps } from "@rjsf/utils";
|
||||
import { stringifyFormData, parseJsonValue, isValidJson } from "./helpers";
|
||||
|
||||
type FieldOnChange = FieldProps["onChange"];
|
||||
type FieldPathId = FieldProps["fieldPathId"];
|
||||
|
||||
interface UseJsonTextFieldOptions {
|
||||
formData: unknown;
|
||||
onChange: FieldOnChange;
|
||||
path?: FieldPathId["path"];
|
||||
}
|
||||
|
||||
interface UseJsonTextFieldReturn {
|
||||
textValue: string;
|
||||
isModalOpen: boolean;
|
||||
hasError: boolean;
|
||||
handleChange: (
|
||||
e: React.ChangeEvent<HTMLInputElement | HTMLTextAreaElement>,
|
||||
) => void;
|
||||
handleModalOpen: () => void;
|
||||
handleModalClose: () => void;
|
||||
handleModalSave: (value: string) => void;
|
||||
}
|
||||
|
||||
/**
|
||||
* Custom hook for managing JSON text field state and handlers
|
||||
*/
|
||||
export function useJsonTextField({
|
||||
formData,
|
||||
onChange,
|
||||
path,
|
||||
}: UseJsonTextFieldOptions): UseJsonTextFieldReturn {
|
||||
const [textValue, setTextValue] = useState(() => stringifyFormData(formData));
|
||||
const [isModalOpen, setIsModalOpen] = useState(false);
|
||||
const [hasError, setHasError] = useState(false);
|
||||
|
||||
// Update text value when formData changes externally
|
||||
useEffect(() => {
|
||||
const newValue = stringifyFormData(formData);
|
||||
setTextValue(newValue);
|
||||
setHasError(false);
|
||||
}, [formData]);
|
||||
|
||||
const handleChange = useCallback(
|
||||
(e: React.ChangeEvent<HTMLInputElement | HTMLTextAreaElement>) => {
|
||||
const value = e.target.value;
|
||||
setTextValue(value);
|
||||
|
||||
// Validate JSON and update error state
|
||||
const valid = isValidJson(value);
|
||||
setHasError(!valid);
|
||||
|
||||
// Try to parse and update formData
|
||||
if (value.trim() === "") {
|
||||
onChange(undefined, path ?? []);
|
||||
return;
|
||||
}
|
||||
|
||||
const parsed = parseJsonValue(value);
|
||||
if (parsed !== undefined) {
|
||||
onChange(parsed, path ?? []);
|
||||
}
|
||||
},
|
||||
[onChange, path],
|
||||
);
|
||||
|
||||
const handleModalOpen = useCallback(() => {
|
||||
setIsModalOpen(true);
|
||||
}, []);
|
||||
|
||||
const handleModalClose = useCallback(() => {
|
||||
setIsModalOpen(false);
|
||||
}, []);
|
||||
|
||||
const handleModalSave = useCallback(
|
||||
(value: string) => {
|
||||
setTextValue(value);
|
||||
setIsModalOpen(false);
|
||||
|
||||
// Validate and update
|
||||
const valid = isValidJson(value);
|
||||
setHasError(!valid);
|
||||
|
||||
if (value.trim() === "") {
|
||||
onChange(undefined, path ?? []);
|
||||
return;
|
||||
}
|
||||
|
||||
const parsed = parseJsonValue(value);
|
||||
if (parsed !== undefined) {
|
||||
onChange(parsed, path ?? []);
|
||||
}
|
||||
},
|
||||
[onChange, path],
|
||||
);
|
||||
|
||||
return {
|
||||
textValue,
|
||||
isModalOpen,
|
||||
hasError,
|
||||
handleChange,
|
||||
handleModalOpen,
|
||||
handleModalClose,
|
||||
handleModalSave,
|
||||
};
|
||||
}
|
||||
@@ -1,57 +0,0 @@
|
||||
import React from "react";
|
||||
import { FieldProps, getUiOptions } from "@rjsf/utils";
|
||||
import { BlockIOObjectSubSchema } from "@/lib/autogpt-server-api/types";
|
||||
import {
|
||||
MultiSelector,
|
||||
MultiSelectorContent,
|
||||
MultiSelectorInput,
|
||||
MultiSelectorItem,
|
||||
MultiSelectorList,
|
||||
MultiSelectorTrigger,
|
||||
} from "@/components/__legacy__/ui/multiselect";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { useMultiSelectField } from "./useMultiSelectField";
|
||||
|
||||
export const MultiSelectField = (props: FieldProps) => {
|
||||
const { schema, formData, onChange, fieldPathId } = props;
|
||||
const uiOptions = getUiOptions(props.uiSchema);
|
||||
|
||||
const { optionSchema, options, selection, createChangeHandler } =
|
||||
useMultiSelectField({
|
||||
schema: schema as BlockIOObjectSubSchema,
|
||||
formData,
|
||||
});
|
||||
|
||||
const handleValuesChange = createChangeHandler(onChange, fieldPathId);
|
||||
|
||||
const displayName = schema.title || "options";
|
||||
|
||||
return (
|
||||
<div className={cn("flex flex-col", uiOptions.className)}>
|
||||
<MultiSelector
|
||||
className="nodrag"
|
||||
values={selection}
|
||||
onValuesChange={handleValuesChange}
|
||||
>
|
||||
<MultiSelectorTrigger className="rounded-3xl border border-zinc-200 bg-white px-2 shadow-none">
|
||||
<MultiSelectorInput
|
||||
placeholder={
|
||||
(schema as any).placeholder ?? `Select ${displayName}...`
|
||||
}
|
||||
/>
|
||||
</MultiSelectorTrigger>
|
||||
<MultiSelectorContent className="nowheel">
|
||||
<MultiSelectorList>
|
||||
{options
|
||||
.map((key) => ({ ...optionSchema[key], key }))
|
||||
.map(({ key, title, description }) => (
|
||||
<MultiSelectorItem key={key} value={key} title={description}>
|
||||
{title ?? key}
|
||||
</MultiSelectorItem>
|
||||
))}
|
||||
</MultiSelectorList>
|
||||
</MultiSelectorContent>
|
||||
</MultiSelector>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
@@ -1 +0,0 @@
|
||||
export { MultiSelectField } from "./MultiSelectField";
|
||||
@@ -1,65 +0,0 @@
|
||||
import { FieldProps } from "@rjsf/utils";
|
||||
import { BlockIOObjectSubSchema } from "@/lib/autogpt-server-api/types";
|
||||
|
||||
type FormData = Record<string, boolean> | null | undefined;
|
||||
|
||||
interface UseMultiSelectFieldOptions {
|
||||
schema: BlockIOObjectSubSchema;
|
||||
formData: FormData;
|
||||
}
|
||||
|
||||
export function useMultiSelectField({
|
||||
schema,
|
||||
formData,
|
||||
}: UseMultiSelectFieldOptions) {
|
||||
const getOptionSchema = (): Record<string, BlockIOObjectSubSchema> => {
|
||||
if (schema.properties) {
|
||||
return schema.properties as Record<string, BlockIOObjectSubSchema>;
|
||||
}
|
||||
if (
|
||||
"anyOf" in schema &&
|
||||
Array.isArray(schema.anyOf) &&
|
||||
schema.anyOf.length > 0 &&
|
||||
"properties" in schema.anyOf[0]
|
||||
) {
|
||||
return (schema.anyOf[0] as BlockIOObjectSubSchema).properties as Record<
|
||||
string,
|
||||
BlockIOObjectSubSchema
|
||||
>;
|
||||
}
|
||||
return {};
|
||||
};
|
||||
|
||||
const optionSchema = getOptionSchema();
|
||||
const options = Object.keys(optionSchema);
|
||||
|
||||
const getSelection = (): string[] => {
|
||||
if (!formData || typeof formData !== "object") {
|
||||
return [];
|
||||
}
|
||||
return Object.entries(formData)
|
||||
.filter(([_, value]) => value === true)
|
||||
.map(([key]) => key);
|
||||
};
|
||||
|
||||
const selection = getSelection();
|
||||
|
||||
const createChangeHandler =
|
||||
(
|
||||
onChange: FieldProps["onChange"],
|
||||
fieldPathId: FieldProps["fieldPathId"],
|
||||
) =>
|
||||
(values: string[]) => {
|
||||
const newValue = Object.fromEntries(
|
||||
options.map((opt) => [opt, values.includes(opt)]),
|
||||
);
|
||||
onChange(newValue, fieldPathId?.path);
|
||||
};
|
||||
|
||||
return {
|
||||
optionSchema,
|
||||
options,
|
||||
selection,
|
||||
createChangeHandler,
|
||||
};
|
||||
}
|
||||
@@ -1,52 +0,0 @@
|
||||
import { descriptionId, FieldProps, getTemplate, titleId } from "@rjsf/utils";
|
||||
import { Table, RowData } from "@/components/molecules/Table/Table";
|
||||
import { useMemo } from "react";
|
||||
|
||||
export const TableField = (props: FieldProps) => {
|
||||
const { schema, formData, onChange, fieldPathId, registry, uiSchema } = props;
|
||||
|
||||
const itemSchema = schema.items as any;
|
||||
const properties = itemSchema?.properties || {};
|
||||
|
||||
const columns: string[] = useMemo(() => {
|
||||
return Object.keys(properties);
|
||||
}, [properties]);
|
||||
|
||||
const handleChange = (rows: RowData[]) => {
|
||||
onChange(rows, fieldPathId?.path.slice(0, -1));
|
||||
};
|
||||
|
||||
const TitleFieldTemplate = getTemplate("TitleFieldTemplate", registry);
|
||||
const DescriptionFieldTemplate = getTemplate(
|
||||
"DescriptionFieldTemplate",
|
||||
registry,
|
||||
);
|
||||
|
||||
return (
|
||||
<div className="flex flex-col gap-2">
|
||||
<TitleFieldTemplate
|
||||
id={titleId(fieldPathId)}
|
||||
title={schema.title || ""}
|
||||
required={true}
|
||||
schema={schema}
|
||||
uiSchema={uiSchema}
|
||||
registry={registry}
|
||||
/>
|
||||
<DescriptionFieldTemplate
|
||||
id={descriptionId(fieldPathId)}
|
||||
description={schema.description || ""}
|
||||
schema={schema}
|
||||
registry={registry}
|
||||
/>
|
||||
|
||||
<Table
|
||||
columns={columns}
|
||||
defaultValues={formData}
|
||||
onChange={handleChange}
|
||||
allowAddRow={true}
|
||||
allowDeleteRow={true}
|
||||
addRowLabel="Add row"
|
||||
/>
|
||||
</div>
|
||||
);
|
||||
};
|
||||
@@ -1,10 +1,6 @@
|
||||
import { FieldProps, RJSFSchema, RegistryFieldsType } from "@rjsf/utils";
|
||||
import { CredentialsField } from "./CredentialField/CredentialField";
|
||||
import { GoogleDrivePickerField } from "./GoogleDrivePickerField/GoogleDrivePickerField";
|
||||
import { JsonTextField } from "./JsonTextField/JsonTextField";
|
||||
import { MultiSelectField } from "./MultiSelectField/MultiSelectField";
|
||||
import { isMultiSelectSchema } from "../utils/schema-utils";
|
||||
import { TableField } from "./TableField/TableField";
|
||||
|
||||
export interface CustomFieldDefinition {
|
||||
id: string;
|
||||
@@ -12,9 +8,6 @@ export interface CustomFieldDefinition {
|
||||
component: (props: FieldProps<any, RJSFSchema, any>) => JSX.Element | null;
|
||||
}
|
||||
|
||||
/** Field ID for JsonTextField - used to render nested complex types as text input */
|
||||
export const JSON_TEXT_FIELD_ID = "custom/json_text_field";
|
||||
|
||||
export const CUSTOM_FIELDS: CustomFieldDefinition[] = [
|
||||
{
|
||||
id: "custom/credential_field",
|
||||
@@ -37,28 +30,6 @@ export const CUSTOM_FIELDS: CustomFieldDefinition[] = [
|
||||
},
|
||||
component: GoogleDrivePickerField,
|
||||
},
|
||||
{
|
||||
id: "custom/json_text_field",
|
||||
// Not matched by schema - assigned via uiSchema for nested complex types
|
||||
matcher: () => false,
|
||||
component: JsonTextField,
|
||||
},
|
||||
{
|
||||
id: "custom/multi_select_field",
|
||||
matcher: isMultiSelectSchema,
|
||||
component: MultiSelectField,
|
||||
},
|
||||
{
|
||||
id: "custom/table_field",
|
||||
matcher: (schema: any) => {
|
||||
return (
|
||||
schema.type === "array" &&
|
||||
"format" in schema &&
|
||||
schema.format === "table"
|
||||
);
|
||||
},
|
||||
component: TableField,
|
||||
},
|
||||
];
|
||||
|
||||
export function findCustomFieldId(schema: any): string | null {
|
||||
|
||||
@@ -1,46 +1,19 @@
|
||||
import { RJSFSchema, UiSchema } from "@rjsf/utils";
|
||||
import {
|
||||
findCustomFieldId,
|
||||
JSON_TEXT_FIELD_ID,
|
||||
} from "../custom/custom-registry";
|
||||
|
||||
function isComplexType(schema: RJSFSchema): boolean {
|
||||
return schema.type === "object" || schema.type === "array";
|
||||
}
|
||||
|
||||
function hasComplexAnyOfOptions(schema: RJSFSchema): boolean {
|
||||
const options = schema.anyOf || schema.oneOf;
|
||||
if (!Array.isArray(options)) return false;
|
||||
return options.some(
|
||||
(opt: any) =>
|
||||
opt &&
|
||||
typeof opt === "object" &&
|
||||
(opt.type === "object" || opt.type === "array"),
|
||||
);
|
||||
}
|
||||
import { findCustomFieldId } from "../custom/custom-registry";
|
||||
|
||||
/**
|
||||
* Generates uiSchema with ui:field settings for custom fields based on schema matchers.
|
||||
* This is the standard RJSF way to route fields to custom components.
|
||||
*
|
||||
* Nested complex types (arrays/objects inside arrays/objects) are rendered as JsonTextField
|
||||
* to avoid deeply nested form UIs. Users can enter raw JSON for these fields.
|
||||
*
|
||||
* @param schema - The JSON schema
|
||||
* @param existingUiSchema - Existing uiSchema to merge with
|
||||
* @param insideComplexType - Whether we're already inside a complex type (object/array)
|
||||
*/
|
||||
export function generateUiSchemaForCustomFields(
|
||||
schema: RJSFSchema,
|
||||
existingUiSchema: UiSchema = {},
|
||||
insideComplexType: boolean = false,
|
||||
): UiSchema {
|
||||
const uiSchema: UiSchema = { ...existingUiSchema };
|
||||
|
||||
if (schema.properties) {
|
||||
for (const [key, propSchema] of Object.entries(schema.properties)) {
|
||||
if (propSchema && typeof propSchema === "object") {
|
||||
// First check for custom field matchers (credentials, google drive, etc.)
|
||||
const customFieldId = findCustomFieldId(propSchema);
|
||||
|
||||
if (customFieldId) {
|
||||
@@ -48,33 +21,8 @@ export function generateUiSchemaForCustomFields(
|
||||
...(uiSchema[key] as object),
|
||||
"ui:field": customFieldId,
|
||||
};
|
||||
// Skip further processing for custom fields
|
||||
continue;
|
||||
}
|
||||
|
||||
// Handle nested complex types - render as JsonTextField
|
||||
if (insideComplexType && isComplexType(propSchema as RJSFSchema)) {
|
||||
uiSchema[key] = {
|
||||
...(uiSchema[key] as object),
|
||||
"ui:field": JSON_TEXT_FIELD_ID,
|
||||
};
|
||||
// Don't recurse further - this field is now a text input
|
||||
continue;
|
||||
}
|
||||
|
||||
// Handle anyOf/oneOf inside complex types
|
||||
if (
|
||||
insideComplexType &&
|
||||
hasComplexAnyOfOptions(propSchema as RJSFSchema)
|
||||
) {
|
||||
uiSchema[key] = {
|
||||
...(uiSchema[key] as object),
|
||||
"ui:field": JSON_TEXT_FIELD_ID,
|
||||
};
|
||||
continue;
|
||||
}
|
||||
|
||||
// Recurse into object properties
|
||||
if (
|
||||
propSchema.type === "object" &&
|
||||
propSchema.properties &&
|
||||
@@ -83,7 +31,6 @@ export function generateUiSchemaForCustomFields(
|
||||
const nestedUiSchema = generateUiSchemaForCustomFields(
|
||||
propSchema as RJSFSchema,
|
||||
(uiSchema[key] as UiSchema) || {},
|
||||
true, // Now inside a complex type
|
||||
);
|
||||
uiSchema[key] = {
|
||||
...(uiSchema[key] as object),
|
||||
@@ -91,11 +38,9 @@ export function generateUiSchemaForCustomFields(
|
||||
};
|
||||
}
|
||||
|
||||
// Handle arrays
|
||||
if (propSchema.type === "array" && propSchema.items) {
|
||||
const itemsSchema = propSchema.items as RJSFSchema;
|
||||
if (itemsSchema && typeof itemsSchema === "object") {
|
||||
// Check for custom field on array items
|
||||
const itemsCustomFieldId = findCustomFieldId(itemsSchema);
|
||||
if (itemsCustomFieldId) {
|
||||
uiSchema[key] = {
|
||||
@@ -104,28 +49,10 @@ export function generateUiSchemaForCustomFields(
|
||||
"ui:field": itemsCustomFieldId,
|
||||
},
|
||||
};
|
||||
} else if (isComplexType(itemsSchema)) {
|
||||
// Array items that are complex types become JsonTextField
|
||||
uiSchema[key] = {
|
||||
...(uiSchema[key] as object),
|
||||
items: {
|
||||
"ui:field": JSON_TEXT_FIELD_ID,
|
||||
},
|
||||
};
|
||||
} else if (hasComplexAnyOfOptions(itemsSchema)) {
|
||||
// Array items with anyOf containing complex types become JsonTextField
|
||||
uiSchema[key] = {
|
||||
...(uiSchema[key] as object),
|
||||
items: {
|
||||
"ui:field": JSON_TEXT_FIELD_ID,
|
||||
},
|
||||
};
|
||||
} else if (itemsSchema.properties) {
|
||||
// Recurse into object items (but they're now inside a complex type)
|
||||
const itemsUiSchema = generateUiSchemaForCustomFields(
|
||||
itemsSchema,
|
||||
((uiSchema[key] as UiSchema)?.items as UiSchema) || {},
|
||||
true, // Inside complex type (array)
|
||||
);
|
||||
if (Object.keys(itemsUiSchema).length > 0) {
|
||||
uiSchema[key] = {
|
||||
@@ -136,61 +63,6 @@ export function generateUiSchemaForCustomFields(
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Handle anyOf/oneOf at root level - process complex options
|
||||
if (!insideComplexType) {
|
||||
const anyOfOptions = propSchema.anyOf || propSchema.oneOf;
|
||||
|
||||
if (Array.isArray(anyOfOptions)) {
|
||||
for (let i = 0; i < anyOfOptions.length; i++) {
|
||||
const option = anyOfOptions[i] as RJSFSchema;
|
||||
if (option && typeof option === "object") {
|
||||
// Handle anyOf array options with complex items
|
||||
if (option.type === "array" && option.items) {
|
||||
const itemsSchema = option.items as RJSFSchema;
|
||||
if (itemsSchema && typeof itemsSchema === "object") {
|
||||
// Array items that are complex types become JsonTextField
|
||||
if (isComplexType(itemsSchema)) {
|
||||
uiSchema[key] = {
|
||||
...(uiSchema[key] as object),
|
||||
items: {
|
||||
"ui:field": JSON_TEXT_FIELD_ID,
|
||||
},
|
||||
};
|
||||
} else if (hasComplexAnyOfOptions(itemsSchema)) {
|
||||
uiSchema[key] = {
|
||||
...(uiSchema[key] as object),
|
||||
items: {
|
||||
"ui:field": JSON_TEXT_FIELD_ID,
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Recurse into anyOf object options with properties
|
||||
if (
|
||||
option.type === "object" &&
|
||||
option.properties &&
|
||||
typeof option.properties === "object"
|
||||
) {
|
||||
const optionUiSchema = generateUiSchemaForCustomFields(
|
||||
option,
|
||||
{},
|
||||
true, // Inside complex type (anyOf object option)
|
||||
);
|
||||
if (Object.keys(optionUiSchema).length > 0) {
|
||||
// Store under the property key - RJSF will apply it
|
||||
uiSchema[key] = {
|
||||
...(uiSchema[key] as object),
|
||||
...optionUiSchema,
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,11 +1,7 @@
|
||||
import { getUiOptions, RJSFSchema, UiSchema } from "@rjsf/utils";
|
||||
|
||||
export function isAnyOfSchema(schema: RJSFSchema | undefined): boolean {
|
||||
return (
|
||||
Array.isArray(schema?.anyOf) &&
|
||||
schema!.anyOf.length > 0 &&
|
||||
schema?.enum === undefined
|
||||
);
|
||||
return Array.isArray(schema?.anyOf) && schema!.anyOf.length > 0;
|
||||
}
|
||||
|
||||
export const isAnyOfChild = (
|
||||
@@ -37,21 +33,3 @@ export function isOptionalType(schema: RJSFSchema | undefined): {
|
||||
export function isAnyOfSelector(name: string) {
|
||||
return name.includes("anyof_select");
|
||||
}
|
||||
|
||||
export function isMultiSelectSchema(schema: RJSFSchema | undefined): boolean {
|
||||
if (typeof schema !== "object" || schema === null) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if ("anyOf" in schema || "oneOf" in schema) {
|
||||
return false;
|
||||
}
|
||||
|
||||
return !!(
|
||||
schema.type === "object" &&
|
||||
schema.properties &&
|
||||
Object.values(schema.properties).every(
|
||||
(prop: any) => prop.type === "boolean",
|
||||
)
|
||||
);
|
||||
}
|
||||
|
||||
16
docs/_javascript/mathjax.js
vendored
Normal file
16
docs/_javascript/mathjax.js
vendored
Normal file
@@ -0,0 +1,16 @@
|
||||
window.MathJax = {
|
||||
tex: {
|
||||
inlineMath: [["\\(", "\\)"]],
|
||||
displayMath: [["\\[", "\\]"]],
|
||||
processEscapes: true,
|
||||
processEnvironments: true
|
||||
},
|
||||
options: {
|
||||
ignoreHtmlClass: ".*|",
|
||||
processHtmlClass: "arithmatex"
|
||||
}
|
||||
};
|
||||
|
||||
document$.subscribe(() => {
|
||||
MathJax.typesetPromise()
|
||||
})
|
||||
6
docs/_javascript/tablesort.js
vendored
Normal file
6
docs/_javascript/tablesort.js
vendored
Normal file
@@ -0,0 +1,6 @@
|
||||
document$.subscribe(function () {
|
||||
var tables = document.querySelectorAll("article table:not([class])")
|
||||
tables.forEach(function (table) {
|
||||
new Tablesort(table)
|
||||
})
|
||||
})
|
||||
@@ -1,35 +1,48 @@
|
||||
# Contributing to the Docs
|
||||
|
||||
We welcome contributions to our documentation! Our docs are hosted on GitBook and synced with GitHub.
|
||||
We welcome contributions to our documentation! If you would like to contribute, please follow the steps below.
|
||||
|
||||
## How It Works
|
||||
## Setting up the Docs
|
||||
|
||||
- Documentation lives in the `docs/` directory on the `gitbook` branch
|
||||
- GitBook automatically syncs changes from GitHub
|
||||
- You can edit docs directly on GitHub or locally
|
||||
|
||||
## Editing Docs Locally
|
||||
|
||||
1. Clone the repository and switch to the gitbook branch:
|
||||
1. Clone the repository:
|
||||
|
||||
```shell
|
||||
git clone https://github.com/Significant-Gravitas/AutoGPT.git
|
||||
cd AutoGPT
|
||||
git checkout gitbook
|
||||
git clone github.com/Significant-Gravitas/AutoGPT.git
|
||||
```
|
||||
|
||||
2. Make your changes to markdown files in `docs/`
|
||||
1. Install the dependencies:
|
||||
|
||||
3. Preview changes:
|
||||
- Push to a branch and create a PR - GitBook will generate a preview
|
||||
- Or use any markdown preview tool locally
|
||||
```shell
|
||||
python -m pip install -r docs/requirements.txt
|
||||
```
|
||||
|
||||
## Adding a New Page
|
||||
or
|
||||
|
||||
1. Create a new markdown file in the appropriate `docs/` subdirectory
|
||||
2. Add the new page to the relevant `SUMMARY.md` file to include it in the navigation
|
||||
3. Submit a pull request to the `gitbook` branch
|
||||
```shell
|
||||
python3 -m pip install -r docs/requirements.txt
|
||||
```
|
||||
|
||||
1. Start iterating using mkdocs' live server:
|
||||
|
||||
```shell
|
||||
mkdocs serve
|
||||
```
|
||||
|
||||
1. Open your browser and navigate to `http://127.0.0.1:8000`.
|
||||
|
||||
1. The server will automatically reload the docs when you save your changes.
|
||||
|
||||
## Adding a new page
|
||||
|
||||
1. Create a new markdown file in the `docs/content` directory.
|
||||
1. Add the new page to the `nav` section in the `mkdocs.yml` file.
|
||||
1. Add the content to the new markdown file.
|
||||
1. Run `mkdocs serve` to see your changes.
|
||||
|
||||
## Checking links
|
||||
|
||||
To check for broken links in the documentation, run `mkdocs build` and look for warnings in the console output.
|
||||
|
||||
## Submitting a Pull Request
|
||||
|
||||
When you're ready to submit your changes, create a pull request targeting the `gitbook` branch. We will review your changes and merge them if appropriate.
|
||||
When you're ready to submit your changes, please create a pull request. We will review your changes and merge them if they are appropriate.
|
||||
|
||||
@@ -227,7 +227,7 @@ backend/blocks/my_provider/
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Error Handling**: Use `BlockInputError` for validation failures and `BlockExecutionError` for runtime errors (import from `backend.util.exceptions`). These inherit from `ValueError` so the executor treats them as user-fixable. See [Error Handling in new_blocks.md](new_blocks.md#error-handling) for details.
|
||||
1. **Error Handling**: Error output pin is already defined on BlockSchemaOutput
|
||||
2. **Credentials**: Use the provider's `credentials_field()` method
|
||||
3. **Validation**: Use SchemaField constraints (ge, le, min_length, etc.)
|
||||
4. **Categories**: Choose appropriate categories for discoverability
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user