Compare commits

..

1 Commits

Author SHA1 Message Date
Reinier van der Leer
f19148777f fix(backend/chat): Use distributed locks for chat session mutations 2026-01-26 19:14:07 +01:00
619 changed files with 16149 additions and 45377 deletions

View File

@@ -29,7 +29,8 @@
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install"
"cd autogpt_platform/frontend && pnpm install",
"cd docs && pip install -r requirements.txt"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false

View File

@@ -5,13 +5,42 @@
!docs/
# Platform - Libs
!autogpt_platform/autogpt_libs/
!autogpt_platform/autogpt_libs/autogpt_libs/
!autogpt_platform/autogpt_libs/pyproject.toml
!autogpt_platform/autogpt_libs/poetry.lock
!autogpt_platform/autogpt_libs/README.md
# Platform - Backend
!autogpt_platform/backend/
!autogpt_platform/backend/backend/
!autogpt_platform/backend/test/e2e_test_data.py
!autogpt_platform/backend/migrations/
!autogpt_platform/backend/schema.prisma
!autogpt_platform/backend/pyproject.toml
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
!autogpt_platform/backend/.env
!autogpt_platform/backend/gen_prisma_types_stub.py
# Platform - Market
!autogpt_platform/market/market/
!autogpt_platform/market/scripts.py
!autogpt_platform/market/schema.prisma
!autogpt_platform/market/pyproject.toml
!autogpt_platform/market/poetry.lock
!autogpt_platform/market/README.md
# Platform - Frontend
!autogpt_platform/frontend/
!autogpt_platform/frontend/src/
!autogpt_platform/frontend/public/
!autogpt_platform/frontend/scripts/
!autogpt_platform/frontend/package.json
!autogpt_platform/frontend/pnpm-lock.yaml
!autogpt_platform/frontend/tsconfig.json
!autogpt_platform/frontend/README.md
## config
!autogpt_platform/frontend/*.config.*
!autogpt_platform/frontend/.env.*
!autogpt_platform/frontend/.env
# Classic - AutoGPT
!classic/original_autogpt/autogpt/
@@ -35,38 +64,6 @@
# Classic - Frontend
!classic/frontend/build/web/
# Explicitly re-ignore unwanted files from whitelisted directories
# Note: These patterns MUST come after the whitelist rules to take effect
# Hidden files and directories (but keep frontend .env files needed for build)
**/.*
!autogpt_platform/frontend/.env
!autogpt_platform/frontend/.env.default
!autogpt_platform/frontend/.env.production
# Python artifacts
**/__pycache__/
**/*.pyc
**/*.pyo
**/.venv/
**/.ruff_cache/
**/.pytest_cache/
**/.coverage
**/htmlcov/
# Node artifacts
**/node_modules/
**/.next/
**/storybook-static/
**/playwright-report/
**/test-results/
# Build artifacts
**/dist/
**/build/
!autogpt_platform/frontend/src/**/build/
**/target/
# Logs and temp files
**/*.log
**/*.tmp
# Explicitly re-ignore some folders
.*
**/__pycache__

View File

@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
**Backend Entry Points:**
- `backend/backend/api/rest_api.py` - FastAPI application setup
- `backend/backend/server/server.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
### API Development
1. Update routes in `/backend/backend/api/features/`
1. Update routes in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside route files
4. For `data/*.py` changes, validate user ID checks
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)

View File

@@ -49,7 +49,7 @@ jobs:
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v8
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}

View File

@@ -22,7 +22,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
ref: ${{ github.event.workflow_run.head_branch }}
fetch-depth: 0
@@ -42,7 +42,7 @@ jobs:
- name: Get CI failure details
id: failure_details
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const run = await github.rest.actions.getWorkflowRun({

View File

@@ -30,7 +30,7 @@ jobs:
actions: read # Required for CI access
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1
@@ -41,7 +41,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -78,7 +78,7 @@ jobs:
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22"
@@ -91,7 +91,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -124,7 +124,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes
@@ -309,7 +309,6 @@ jobs:
uses: anthropics/claude-code-action@v1
with:
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
allowed_bots: "dependabot[bot]"
claude_args: |
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*)"
prompt: |

View File

@@ -40,7 +40,7 @@ jobs:
actions: read # Required for CI access
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1
@@ -57,7 +57,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -94,7 +94,7 @@ jobs:
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22"
@@ -107,7 +107,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -140,7 +140,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes

View File

@@ -58,7 +58,7 @@ jobs:
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL

View File

@@ -27,7 +27,7 @@ jobs:
# If you do not check out your code, Copilot will do this for you.
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
@@ -39,7 +39,7 @@ jobs:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
@@ -76,7 +76,7 @@ jobs:
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22"
@@ -89,7 +89,7 @@ jobs:
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
@@ -132,7 +132,7 @@ jobs:
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes

View File

@@ -23,7 +23,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1
@@ -33,7 +33,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -23,7 +23,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0
@@ -33,7 +33,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -28,7 +28,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 1
@@ -38,7 +38,7 @@ jobs:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -25,7 +25,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
ref: ${{ github.event.inputs.git_ref || github.ref_name }}
@@ -52,7 +52,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Trigger deploy workflow
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure

View File

@@ -17,7 +17,7 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
ref: ${{ github.ref_name || 'master' }}
@@ -45,7 +45,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Trigger deploy workflow
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure

View File

@@ -68,7 +68,7 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
@@ -88,7 +88,7 @@ jobs:
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Set up Python dependency cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}

View File

@@ -17,7 +17,7 @@ jobs:
- name: Check comment permissions and deployment status
id: check_status
if: github.event_name == 'issue_comment' && github.event.issue.pull_request
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const commentBody = context.payload.comment.body.trim();
@@ -55,7 +55,7 @@ jobs:
- name: Post permission denied comment
if: steps.check_status.outputs.permission_denied == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -68,7 +68,7 @@ jobs:
- name: Get PR details for deployment
id: pr_details
if: steps.check_status.outputs.should_deploy == 'true' || steps.check_status.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const pr = await github.rest.pulls.get({
@@ -82,7 +82,7 @@ jobs:
- name: Dispatch Deploy Event
if: steps.check_status.outputs.should_deploy == 'true'
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
@@ -98,7 +98,7 @@ jobs:
- name: Post deploy success comment
if: steps.check_status.outputs.should_deploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -110,7 +110,7 @@ jobs:
- name: Dispatch Undeploy Event (from comment)
if: steps.check_status.outputs.should_undeploy == 'true'
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
@@ -126,7 +126,7 @@ jobs:
- name: Post undeploy success comment
if: steps.check_status.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
@@ -139,7 +139,7 @@ jobs:
- name: Check deployment status on PR close
id: check_pr_close
if: github.event_name == 'pull_request' && github.event.action == 'closed'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
const comments = await github.rest.issues.listComments({
@@ -168,7 +168,7 @@ jobs:
github.event_name == 'pull_request' &&
github.event.action == 'closed' &&
steps.check_pr_close.outputs.should_undeploy == 'true'
uses: peter-evans/repository-dispatch@v4
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
@@ -187,7 +187,7 @@ jobs:
github.event_name == 'pull_request' &&
github.event.action == 'closed' &&
steps.check_pr_close.outputs.should_undeploy == 'true'
uses: actions/github-script@v8
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({

View File

@@ -26,31 +26,34 @@ jobs:
setup:
runs-on: ubuntu-latest
outputs:
components-changed: ${{ steps.filter.outputs.components }}
cache-key: ${{ steps.cache-key.outputs.key }}
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
- name: Check for component changes
uses: dorny/paths-filter@v3
id: filter
- name: Set up Node.js
uses: actions/setup-node@v4
with:
filters: |
components:
- 'autogpt_platform/frontend/src/components/**'
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Set up Node
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Generate cache key
id: cache-key
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Install dependencies to populate cache
- name: Cache dependencies
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
lint:
@@ -59,17 +62,24 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Set up Node
uses: actions/setup-node@v6
- name: Restore dependencies cache
uses: actions/cache@v4
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
@@ -80,27 +90,31 @@ jobs:
chromatic:
runs-on: ubuntu-latest
needs: setup
# Disabled: to re-enable, remove 'false &&' from the condition below
if: >-
false
&& (github.ref == 'refs/heads/dev' || github.base_ref == 'dev')
&& needs.setup.outputs.components-changed == 'true'
# Only run on dev branch pushes or PRs targeting dev
if: github.ref == 'refs/heads/dev' || github.base_ref == 'dev'
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Set up Node
uses: actions/setup-node@v6
- name: Restore dependencies cache
uses: actions/cache@v4
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
@@ -115,20 +129,30 @@ jobs:
exitOnceUploaded: true
e2e_test:
name: end-to-end tests
runs-on: big-boi
needs: setup
strategy:
fail-fast: false
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
submodules: recursive
- name: Set up Platform - Copy default supabase .env
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Copy default supabase .env
run: |
cp ../.env.default ../.env
- name: Set up Platform - Copy backend .env and set OpenAI API key
- name: Copy backend .env and set OpenAI API key
run: |
cp ../backend/.env.default ../backend/.env
echo "OPENAI_INTERNAL_API_KEY=${{ secrets.OPENAI_API_KEY }}" >> ../backend/.env
@@ -136,125 +160,77 @@ jobs:
# Used by E2E test data script to generate embeddings for approved store agents
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
- name: Set up Platform - Set up Docker Buildx
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Cache Docker layers
uses: actions/cache@v4
with:
driver: docker-container
driver-opts: network=host
path: /tmp/.buildx-cache
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
restore-keys: |
${{ runner.os }}-buildx-frontend-test-
- name: Set up Platform - Expose GHA cache to docker buildx CLI
uses: crazy-max/ghaction-github-runtime@v3
- name: Set up Platform - Build Docker images (with cache)
working-directory: autogpt_platform
- name: Run docker compose
run: |
pip install pyyaml
# Resolve extends and generate a flat compose file that bake can understand
docker compose -f docker-compose.yml config > docker-compose.resolved.yml
# Add cache configuration to the resolved compose file
python ../.github/workflows/scripts/docker-ci-fix-compose-build-cache.py \
--source docker-compose.resolved.yml \
--cache-from "type=gha" \
--cache-to "type=gha,mode=max" \
--backend-hash "${{ hashFiles('autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/poetry.lock', 'autogpt_platform/backend/backend') }}" \
--frontend-hash "${{ hashFiles('autogpt_platform/frontend/Dockerfile', 'autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/src') }}" \
--git-ref "${{ github.ref }}"
# Build with bake using the resolved compose file (now includes cache config)
docker buildx bake --allow=fs.read=.. -f docker-compose.resolved.yml --load
NEXT_PUBLIC_PW_TEST=true docker compose -f ../docker-compose.yml up -d
env:
NEXT_PUBLIC_PW_TEST: true
DOCKER_BUILDKIT: 1
BUILDX_CACHE_FROM: type=local,src=/tmp/.buildx-cache
BUILDX_CACHE_TO: type=local,dest=/tmp/.buildx-cache-new,mode=max
- name: Set up tests - Cache E2E test data
id: e2e-data-cache
uses: actions/cache@v5
with:
path: /tmp/e2e_test_data.sql
key: e2e-test-data-${{ hashFiles('autogpt_platform/backend/test/e2e_test_data.py', 'autogpt_platform/backend/migrations/**', '.github/workflows/platform-frontend-ci.yml') }}
- name: Set up Platform - Start Supabase DB + Auth
- name: Move cache
run: |
docker compose -f ../docker-compose.resolved.yml up -d db auth --no-build
echo "Waiting for database to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done'
echo "Waiting for auth service to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -c "SELECT 1 FROM auth.users LIMIT 1" 2>/dev/null; do sleep 2; done' || echo "Auth schema check timeout, continuing..."
rm -rf /tmp/.buildx-cache
if [ -d "/tmp/.buildx-cache-new" ]; then
mv /tmp/.buildx-cache-new /tmp/.buildx-cache
fi
- name: Set up Platform - Run migrations
- name: Wait for services to be ready
run: |
echo "Running migrations..."
docker compose -f ../docker-compose.resolved.yml run --rm migrate
echo "✅ Migrations completed"
env:
NEXT_PUBLIC_PW_TEST: true
- name: Set up tests - Load cached E2E test data
if: steps.e2e-data-cache.outputs.cache-hit == 'true'
run: |
echo "✅ Found cached E2E test data, restoring..."
{
echo "SET session_replication_role = 'replica';"
cat /tmp/e2e_test_data.sql
echo "SET session_replication_role = 'origin';"
} | docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -b
# Refresh materialized views after restore
docker compose -f ../docker-compose.resolved.yml exec -T db \
psql -U postgres -d postgres -b -c "SET search_path TO platform; SELECT refresh_store_materialized_views();" || true
echo "✅ E2E test data restored from cache"
- name: Set up Platform - Start (all other services)
run: |
docker compose -f ../docker-compose.resolved.yml up -d --no-build
echo "Waiting for rest_server to be ready..."
timeout 60 sh -c 'until curl -f http://localhost:8006/health 2>/dev/null; do sleep 2; done' || echo "Rest server health check timeout, continuing..."
env:
NEXT_PUBLIC_PW_TEST: true
echo "Waiting for database to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done' || echo "Database ready check timeout, continuing..."
- name: Set up tests - Create E2E test data
if: steps.e2e-data-cache.outputs.cache-hit != 'true'
- name: Create E2E test data
run: |
echo "Creating E2E test data..."
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.resolved.yml ps -q rest_server):/tmp/e2e_test_data.py
docker compose -f ../docker-compose.resolved.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.resolved.yml logs --tail=50 rest_server
exit 1
}
# First try to run the script from inside the container
if docker compose -f ../docker-compose.yml exec -T rest_server test -f /app/autogpt_platform/backend/test/e2e_test_data.py; then
echo "✅ Found e2e_test_data.py in container, running it..."
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python backend/test/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
exit 1
}
else
echo "⚠️ e2e_test_data.py not found in container, copying and running..."
# Copy the script into the container and run it
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.yml ps -q rest_server):/tmp/e2e_test_data.py || {
echo "❌ Failed to copy script to container"
exit 1
}
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
exit 1
}
fi
# Dump auth.users + platform schema for cache (two separate dumps)
echo "Dumping database for cache..."
{
docker compose -f ../docker-compose.resolved.yml exec -T db \
pg_dump -U postgres --data-only --column-inserts \
--table='auth.users' postgres
docker compose -f ../docker-compose.resolved.yml exec -T db \
pg_dump -U postgres --data-only --column-inserts \
--schema=platform \
--exclude-table='platform._prisma_migrations' \
--exclude-table='platform.apscheduler_jobs' \
--exclude-table='platform.apscheduler_jobs_batched_notifications' \
postgres
} > /tmp/e2e_test_data.sql
echo "✅ Database dump created for caching ($(wc -l < /tmp/e2e_test_data.sql) lines)"
- name: Set up tests - Enable corepack
run: corepack enable
- name: Set up tests - Set up Node
uses: actions/setup-node@v6
- name: Restore dependencies cache
uses: actions/cache@v4
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Set up tests - Install dependencies
- name: Install dependencies
run: pnpm install --frozen-lockfile
- name: Set up tests - Install browser 'chromium'
- name: Install Browser 'chromium'
run: pnpm playwright install --with-deps chromium
- name: Run Playwright tests
@@ -281,7 +257,7 @@ jobs:
- name: Print Final Docker Compose logs
if: always()
run: docker compose -f ../docker-compose.resolved.yml logs
run: docker compose -f ../docker-compose.yml logs
integration_test:
runs-on: ubuntu-latest
@@ -289,19 +265,26 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Set up Node
uses: actions/setup-node@v6
- name: Restore dependencies cache
uses: actions/cache@v4
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile

View File

@@ -29,10 +29,10 @@ jobs:
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -44,7 +44,7 @@ jobs:
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
@@ -56,19 +56,19 @@ jobs:
run: pnpm install --frozen-lockfile
types:
runs-on: big-boi
runs-on: ubuntu-latest
needs: setup
strategy:
fail-fast: false
steps:
- name: Checkout repository
uses: actions/checkout@v6
uses: actions/checkout@v4
with:
submodules: recursive
- name: Set up Node.js
uses: actions/setup-node@v6
uses: actions/setup-node@v4
with:
node-version: "22.18.0"
@@ -85,10 +85,10 @@ jobs:
- name: Run docker compose
run: |
docker compose -f ../docker-compose.yml --profile local up -d deps_backend
docker compose -f ../docker-compose.yml --profile local --profile deps_backend up -d
- name: Restore dependencies cache
uses: actions/cache@v5
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}

View File

@@ -11,7 +11,7 @@ jobs:
steps:
# - name: Wait some time for all actions to start
# run: sleep 30
- uses: actions/checkout@v6
- uses: actions/checkout@v4
# with:
# fetch-depth: 0
- name: Set up Python

View File

@@ -1,195 +0,0 @@
#!/usr/bin/env python3
"""
Add cache configuration to a resolved docker-compose file for all services
that have a build key, and ensure image names match what docker compose expects.
"""
import argparse
import yaml
DEFAULT_BRANCH = "dev"
CACHE_BUILDS_FOR_COMPONENTS = ["backend", "frontend"]
def main():
parser = argparse.ArgumentParser(
description="Add cache config to a resolved compose file"
)
parser.add_argument(
"--source",
required=True,
help="Source compose file to read (should be output of `docker compose config`)",
)
parser.add_argument(
"--cache-from",
default="type=gha",
help="Cache source configuration",
)
parser.add_argument(
"--cache-to",
default="type=gha,mode=max",
help="Cache destination configuration",
)
for component in CACHE_BUILDS_FOR_COMPONENTS:
parser.add_argument(
f"--{component}-hash",
default="",
help=f"Hash for {component} cache scope (e.g., from hashFiles())",
)
parser.add_argument(
"--git-ref",
default="",
help="Git ref for branch-based cache scope (e.g., refs/heads/master)",
)
args = parser.parse_args()
# Normalize git ref to a safe scope name (e.g., refs/heads/master -> master)
git_ref_scope = ""
if args.git_ref:
git_ref_scope = args.git_ref.replace("refs/heads/", "").replace("/", "-")
with open(args.source, "r") as f:
compose = yaml.safe_load(f)
# Get project name from compose file or default
project_name = compose.get("name", "autogpt_platform")
def get_image_name(dockerfile: str, target: str) -> str:
"""Generate image name based on Dockerfile folder and build target."""
dockerfile_parts = dockerfile.replace("\\", "/").split("/")
if len(dockerfile_parts) >= 2:
folder_name = dockerfile_parts[-2] # e.g., "backend" or "frontend"
else:
folder_name = "app"
return f"{project_name}-{folder_name}:{target}"
def get_build_key(dockerfile: str, target: str) -> str:
"""Generate a unique key for a Dockerfile+target combination."""
return f"{dockerfile}:{target}"
def get_component(dockerfile: str) -> str | None:
"""Get component name (frontend/backend) from dockerfile path."""
for component in CACHE_BUILDS_FOR_COMPONENTS:
if component in dockerfile:
return component
return None
# First pass: collect all services with build configs and identify duplicates
# Track which (dockerfile, target) combinations we've seen
build_key_to_first_service: dict[str, str] = {}
services_to_build: list[str] = []
services_to_dedupe: list[str] = []
for service_name, service_config in compose.get("services", {}).items():
if "build" not in service_config:
continue
build_config = service_config["build"]
dockerfile = build_config.get("dockerfile", "Dockerfile")
target = build_config.get("target", "default")
build_key = get_build_key(dockerfile, target)
if build_key not in build_key_to_first_service:
# First service with this build config - it will do the actual build
build_key_to_first_service[build_key] = service_name
services_to_build.append(service_name)
else:
# Duplicate - will just use the image from the first service
services_to_dedupe.append(service_name)
# Second pass: configure builds and deduplicate
modified_services = []
for service_name, service_config in compose.get("services", {}).items():
if "build" not in service_config:
continue
build_config = service_config["build"]
dockerfile = build_config.get("dockerfile", "Dockerfile")
target = build_config.get("target", "latest")
image_name = get_image_name(dockerfile, target)
# Set image name for all services (needed for both builders and deduped)
service_config["image"] = image_name
if service_name in services_to_dedupe:
# Remove build config - this service will use the pre-built image
del service_config["build"]
continue
# This service will do the actual build - add cache config
cache_from_list = []
cache_to_list = []
component = get_component(dockerfile)
if not component:
# Skip services that don't clearly match frontend/backend
continue
# Get the hash for this component
component_hash = getattr(args, f"{component}_hash")
# Scope format: platform-{component}-{target}-{hash|ref}
# Example: platform-backend-server-abc123
if "type=gha" in args.cache_from:
# 1. Primary: exact hash match (most specific)
if component_hash:
hash_scope = f"platform-{component}-{target}-{component_hash}"
cache_from_list.append(f"{args.cache_from},scope={hash_scope}")
# 2. Fallback: branch-based cache
if git_ref_scope:
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
cache_from_list.append(f"{args.cache_from},scope={ref_scope}")
# 3. Fallback: dev branch cache (for PRs/feature branches)
if git_ref_scope and git_ref_scope != DEFAULT_BRANCH:
master_scope = f"platform-{component}-{target}-{DEFAULT_BRANCH}"
cache_from_list.append(f"{args.cache_from},scope={master_scope}")
if "type=gha" in args.cache_to:
# Write to both hash-based and branch-based scopes
if component_hash:
hash_scope = f"platform-{component}-{target}-{component_hash}"
cache_to_list.append(f"{args.cache_to},scope={hash_scope}")
if git_ref_scope:
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
cache_to_list.append(f"{args.cache_to},scope={ref_scope}")
# Ensure we have at least one cache source/target
if not cache_from_list:
cache_from_list.append(args.cache_from)
if not cache_to_list:
cache_to_list.append(args.cache_to)
build_config["cache_from"] = cache_from_list
build_config["cache_to"] = cache_to_list
modified_services.append(service_name)
# Write back to the same file
with open(args.source, "w") as f:
yaml.dump(compose, f, default_flow_style=False, sort_keys=False)
print(f"Added cache config to {len(modified_services)} services in {args.source}:")
for svc in modified_services:
svc_config = compose["services"][svc]
build_cfg = svc_config.get("build", {})
cache_from_list = build_cfg.get("cache_from", ["none"])
cache_to_list = build_cfg.get("cache_to", ["none"])
print(f" - {svc}")
print(f" image: {svc_config.get('image', 'N/A')}")
print(f" cache_from: {cache_from_list}")
print(f" cache_to: {cache_to_list}")
if services_to_dedupe:
print(
f"Deduplicated {len(services_to_dedupe)} services (will use pre-built images):"
)
for svc in services_to_dedupe:
print(f" - {svc} -> {compose['services'][svc].get('image', 'N/A')}")
if __name__ == "__main__":
main()

2
.gitignore vendored
View File

@@ -178,6 +178,4 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
.claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs
.next

View File

@@ -16,6 +16,7 @@ See `docs/content/platform/getting-started.md` for setup instructions.
- Format Python code with `poetry run format`.
- Format frontend code using `pnpm format`.
## Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
@@ -32,17 +33,14 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
## Testing
@@ -51,8 +49,22 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
Always run the relevant linters and tests before committing.
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
Types: - feat - fix - refactor - ci - dx (developer experience)
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
Types:
- feat
- fix
- refactor
- ci
- dx (developer experience)
Scopes:
- platform
- platform/library
- platform/marketplace
- backend
- backend/executor
- frontend
- frontend/library
- frontend/marketplace
- blocks
## Pull requests

View File

@@ -54,7 +54,7 @@ Before proceeding with the installation, ensure your system meets the following
### Updated Setup Instructions:
We've moved to a fully maintained and regularly updated documentation site.
👉 [Follow the official self-hosting guide here](https://agpt.co/docs/platform/getting-started/getting-started)
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
This tutorial assumes you have Docker, VSCode, git and npm installed.

View File

@@ -6,30 +6,152 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
AutoGPT Platform is a monorepo containing:
- **Backend** (`backend`): Python FastAPI server with async support
- **Frontend** (`frontend`): Next.js React application
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
- **Backend** (`/backend`): Python FastAPI server with async support
- **Frontend** (`/frontend`): Next.js React application
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
## Component Documentation
## Essential Commands
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
### Backend Development
## Key Concepts
```bash
# Install dependencies
cd backend && poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend server
poetry run serve
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in TESTING.md
#### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Frontend Development
```bash
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
### Backend Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
### Frontend Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
3. **Integrations**: OAuth and API connections stored per user
4. **Store**: Marketplace for sharing agent templates
5. **Virus Scanning**: ClamAV integration for file upload security
### Testing Approach
- Backend uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
- Frontend uses Playwright for E2E tests
- Component testing via Storybook
### Database Schema
Key models (defined in `/backend/schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
### Environment Configuration
#### Configuration Files
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
#### Docker Environment Loading Order
@@ -45,17 +167,83 @@ AutoGPT Platform is a monorepo containing:
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Branching Strategy
### Common Development Tasks
- **`dev`** is the main development branch. All PRs should target `dev`.
- **`master`** is the production branch. Only used for production releases.
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
### Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
### Security Implementation
**Cache Protection Middleware:**
- Located in `/backend/backend/server/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications
### Creating Pull Requests
- Create the PR against the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
- Use conventional commit messages (see below)
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
- Create the PR aginst the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
- Use conventional commit messages (see below)/
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
- Run the github pre-commit hooks to ensure code quality.
### Reviewing/Revising Pull Requests

File diff suppressed because it is too large Load Diff

View File

@@ -9,25 +9,25 @@ packages = [{ include = "autogpt_libs" }]
[tool.poetry.dependencies]
python = ">=3.10,<4.0"
colorama = "^0.4.6"
cryptography = "^46.0"
cryptography = "^45.0"
expiringdict = "^1.2.2"
fastapi = "^0.128.7"
google-cloud-logging = "^3.13.0"
launchdarkly-server-sdk = "^9.15.0"
pydantic = "^2.12.5"
pydantic-settings = "^2.12.0"
pyjwt = { version = "^2.11.0", extras = ["crypto"] }
fastapi = "^0.116.1"
google-cloud-logging = "^3.12.1"
launchdarkly-server-sdk = "^9.12.0"
pydantic = "^2.11.7"
pydantic-settings = "^2.10.1"
pyjwt = { version = "^2.10.1", extras = ["crypto"] }
redis = "^6.2.0"
supabase = "^2.28.0"
uvicorn = "^0.40.0"
supabase = "^2.16.0"
uvicorn = "^0.35.0"
[tool.poetry.group.dev.dependencies]
pyright = "^1.1.408"
pyright = "^1.1.404"
pytest = "^8.4.1"
pytest-asyncio = "^1.3.0"
pytest-mock = "^3.15.1"
pytest-cov = "^7.0.0"
ruff = "^0.15.0"
pytest-asyncio = "^1.1.0"
pytest-mock = "^3.14.1"
pytest-cov = "^6.2.1"
ruff = "^0.12.11"
[build-system]
requires = ["poetry-core"]

View File

@@ -152,7 +152,6 @@ REPLICATE_API_KEY=
REVID_API_KEY=
SCREENSHOTONE_API_KEY=
UNREAL_SPEECH_API_KEY=
ELEVENLABS_API_KEY=
# Data & Search Services
E2B_API_KEY=
@@ -179,10 +178,5 @@ AYRSHARE_JWT_KEY=
SMARTLEAD_API_KEY=
ZEROBOUNCE_API_KEY=
# PostHog Analytics
# Get API key from https://posthog.com - Project Settings > Project API Key
POSTHOG_API_KEY=
POSTHOG_HOST=https://eu.i.posthog.com
# Other Services
AUTOMOD_API_KEY=

View File

@@ -19,6 +19,3 @@ load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql
# Workspace files
workspaces/

View File

@@ -1,170 +0,0 @@
# CLAUDE.md - Backend
This file provides guidance to Claude Code when working with the backend.
## Essential Commands
To run something with Python package dependencies you MUST use `poetry run ...`.
```bash
# Install dependencies
poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend as a whole
poetry run app
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in @TESTING.md
### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
## Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
## Testing Approach
- Uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
## Database Schema
Key models (defined in `schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
## Environment Configuration
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
## Common Development Tasks
### Adding a new block
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
#### Handling files in blocks with `store_media_file()`
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
### Modifying the API
1. Update route in `backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
## Security Implementation
### Cache Protection Middleware
- Located in `backend/api/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications

View File

@@ -1,5 +1,3 @@
# ============================ DEPENDENCY BUILDER ============================ #
FROM debian:13-slim AS builder
# Set environment variables
@@ -53,9 +51,7 @@ COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/parti
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
# ============================== BACKEND SERVER ============================== #
FROM debian:13-slim AS server
FROM debian:13-slim AS server_dependencies
WORKDIR /app
@@ -66,21 +62,14 @@ ENV POETRY_HOME=/opt/poetry \
DEBIAN_FRONTEND=noninteractive
ENV PATH=/opt/poetry/bin:$PATH
# Install Python, FFmpeg, ImageMagick, and CLI tools for agent use.
# bubblewrap provides OS-level sandbox (whitelist-only FS + no network)
# for the bash_exec MCP tool.
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
RUN apt-get update && apt-get install -y --no-install-recommends \
# Install Python without upgrading system-managed packages
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
jq \
ripgrep \
tree \
bubblewrap \
&& rm -rf /var/lib/apt/lists/*
# Copy only necessary files from builder
COPY --from=builder /app /app
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
# Copy Node.js installation for Prisma
@@ -90,54 +79,30 @@ COPY --from=builder /usr/bin/npm /usr/bin/npm
COPY --from=builder /usr/bin/npx /usr/bin/npx
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
WORKDIR /app/autogpt_platform/backend
# Copy only the .venv from builder (not the entire /app directory)
# The .venv includes the generated Prisma client
COPY --from=builder /app/autogpt_platform/backend/.venv ./.venv
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
# Copy dependency files + autogpt_libs (path dependency)
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml ./
RUN mkdir -p /app/autogpt_platform/autogpt_libs
RUN mkdir -p /app/autogpt_platform/backend
# Copy backend code + docs (for Copilot docs search)
COPY autogpt_platform/backend ./
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
WORKDIR /app/autogpt_platform/backend
FROM server_dependencies AS migrate
# Migration stage only needs schema and migrations - much lighter than full backend
COPY autogpt_platform/backend/schema.prisma /app/autogpt_platform/backend/
COPY autogpt_platform/backend/backend/data/partial_types.py /app/autogpt_platform/backend/backend/data/partial_types.py
COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migrations
FROM server_dependencies AS server
COPY autogpt_platform/backend /app/autogpt_platform/backend
COPY docs /app/docs
RUN poetry install --no-ansi --only-root
ENV PORT=8000
CMD ["poetry", "run", "rest"]
# =============================== DB MIGRATOR =============================== #
# Lightweight migrate stage - only needs Prisma CLI, not full Python environment
FROM debian:13-slim AS migrate
WORKDIR /app/autogpt_platform/backend
ENV DEBIAN_FRONTEND=noninteractive
# Install only what's needed for prisma migrate: Node.js and minimal Python for prisma-python
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.13 \
python3-pip \
ca-certificates \
&& rm -rf /var/lib/apt/lists/*
# Copy Node.js from builder (needed for Prisma CLI)
COPY --from=builder /usr/bin/node /usr/bin/node
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
COPY --from=builder /usr/bin/npm /usr/bin/npm
# Copy Prisma binaries
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
# Install prisma-client-py directly (much smaller than copying full venv)
RUN pip3 install prisma>=0.15.0 --break-system-packages
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
COPY autogpt_platform/backend/migrations ./migrations

View File

@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
#### Using Global Auth Fixtures
Two global auth fixtures are provided by `backend/api/conftest.py`:
Two global auth fixtures are provided by `backend/server/conftest.py`:
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")

View File

@@ -10,7 +10,7 @@ from typing_extensions import TypedDict
import backend.api.features.store.cache as store_cache
import backend.api.features.store.model as store_model
import backend.blocks
import backend.data.block
from backend.api.external.middleware import require_permission
from backend.data import execution as execution_db
from backend.data import graph as graph_db
@@ -67,7 +67,7 @@ async def get_user_info(
dependencies=[Security(require_permission(APIKeyPermission.READ_BLOCK))],
)
async def get_graph_blocks() -> Sequence[dict[Any, Any]]:
blocks = [block() for block in backend.blocks.get_blocks().values()]
blocks = [block() for block in backend.data.block.get_blocks().values()]
return [b.to_dict() for b in blocks if not b.disabled]
@@ -83,11 +83,9 @@ async def execute_graph_block(
require_permission(APIKeyPermission.EXECUTE_BLOCK)
),
) -> CompletedBlockOutput:
obj = backend.blocks.get_block(block_id)
obj = backend.data.block.get_block(block_id)
if not obj:
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
if obj.disabled:
raise HTTPException(status_code=403, detail=f"Block #{block_id} is disabled.")
output = defaultdict(list)
async for name, data in obj.execute(data):

View File

@@ -10,15 +10,10 @@ import backend.api.features.library.db as library_db
import backend.api.features.library.model as library_model
import backend.api.features.store.db as store_db
import backend.api.features.store.model as store_model
import backend.data.block
from backend.blocks import load_all_blocks
from backend.blocks._base import (
AnyBlockSchema,
BlockCategory,
BlockInfo,
BlockSchema,
BlockType,
)
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
from backend.data.db import query_raw_with_schema
from backend.integrations.providers import ProviderName
from backend.util.cache import cached
@@ -27,7 +22,7 @@ from backend.util.models import Pagination
from .model import (
BlockCategoryResponse,
BlockResponse,
BlockTypeFilter,
BlockType,
CountResponse,
FilterType,
Provider,
@@ -93,7 +88,7 @@ def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse
def get_blocks(
*,
category: str | None = None,
type: BlockTypeFilter | None = None,
type: BlockType | None = None,
provider: ProviderName | None = None,
page: int = 1,
page_size: int = 50,
@@ -674,9 +669,9 @@ async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
if block.disabled or block.block_type in (
BlockType.INPUT,
BlockType.OUTPUT,
BlockType.AGENT,
backend.data.block.BlockType.INPUT,
backend.data.block.BlockType.OUTPUT,
backend.data.block.BlockType.AGENT,
):
continue
# Find the execution count for this block

View File

@@ -4,7 +4,7 @@ from pydantic import BaseModel
import backend.api.features.library.model as library_model
import backend.api.features.store.model as store_model
from backend.blocks._base import BlockInfo
from backend.data.block import BlockInfo
from backend.integrations.providers import ProviderName
from backend.util.models import Pagination
@@ -15,7 +15,7 @@ FilterType = Literal[
"my_agents",
]
BlockTypeFilter = Literal["all", "input", "action", "output"]
BlockType = Literal["all", "input", "action", "output"]
class SearchEntry(BaseModel):

View File

@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
)
# Taken from backend/api/features/store/db.py
# Taken from backend/server/v2/store/db.py
def sanitize_query(query: str | None) -> str | None:
if query is None:
return query
@@ -88,7 +88,7 @@ async def get_block_categories(
)
async def get_blocks(
category: Annotated[str | None, fastapi.Query()] = None,
type: Annotated[builder_model.BlockTypeFilter | None, fastapi.Query()] = None,
type: Annotated[builder_model.BlockType | None, fastapi.Query()] = None,
provider: Annotated[ProviderName | None, fastapi.Query()] = None,
page: Annotated[int, fastapi.Query()] = 1,
page_size: Annotated[int, fastapi.Query()] = 50,

View File

@@ -1,368 +0,0 @@
"""Redis Streams consumer for operation completion messages.
This module provides a consumer (ChatCompletionConsumer) that listens for
completion notifications (OperationCompleteMessage) from external services
(like Agent Generator) and triggers the appropriate stream registry and
chat service updates via process_operation_success/process_operation_failure.
Why Redis Streams instead of RabbitMQ?
--------------------------------------
While the project typically uses RabbitMQ for async task queues (e.g., execution
queue), Redis Streams was chosen for chat completion notifications because:
1. **Unified Infrastructure**: The SSE reconnection feature already uses Redis
Streams (via stream_registry) for message persistence and replay. Using Redis
Streams for completion notifications keeps all chat streaming infrastructure
in one system, simplifying operations and reducing cross-system coordination.
2. **Message Replay**: Redis Streams support XREAD with arbitrary message IDs,
allowing consumers to replay missed messages after reconnection. This aligns
with the SSE reconnection pattern where clients can resume from last_message_id.
3. **Consumer Groups with XAUTOCLAIM**: Redis consumer groups provide automatic
load balancing across pods with explicit message claiming (XAUTOCLAIM) for
recovering from dead consumers - ideal for the completion callback pattern.
4. **Lower Latency**: For real-time SSE updates, Redis (already in-memory for
stream_registry) provides lower latency than an additional RabbitMQ hop.
5. **Atomicity with Task State**: Completion processing often needs to update
task metadata stored in Redis. Keeping both in Redis enables simpler
transactional semantics without distributed coordination.
The consumer uses Redis Streams with consumer groups for reliable message
processing across multiple platform pods, with XAUTOCLAIM for reclaiming
stale pending messages from dead consumers.
"""
import asyncio
import logging
import os
import uuid
from typing import Any
import orjson
from prisma import Prisma
from pydantic import BaseModel
from redis.exceptions import ResponseError
from backend.data.redis_client import get_redis_async
from . import stream_registry
from .completion_handler import process_operation_failure, process_operation_success
from .config import ChatConfig
logger = logging.getLogger(__name__)
config = ChatConfig()
class OperationCompleteMessage(BaseModel):
"""Message format for operation completion notifications."""
operation_id: str
task_id: str
success: bool
result: dict | str | None = None
error: str | None = None
class ChatCompletionConsumer:
"""Consumer for chat operation completion messages from Redis Streams.
This consumer initializes its own Prisma client in start() to ensure
database operations work correctly within this async context.
Uses Redis consumer groups to allow multiple platform pods to consume
messages reliably with automatic redelivery on failure.
"""
def __init__(self):
self._consumer_task: asyncio.Task | None = None
self._running = False
self._prisma: Prisma | None = None
self._consumer_name = f"consumer-{uuid.uuid4().hex[:8]}"
async def start(self) -> None:
"""Start the completion consumer."""
if self._running:
logger.warning("Completion consumer already running")
return
# Create consumer group if it doesn't exist
try:
redis = await get_redis_async()
await redis.xgroup_create(
config.stream_completion_name,
config.stream_consumer_group,
id="0",
mkstream=True,
)
logger.info(
f"Created consumer group '{config.stream_consumer_group}' "
f"on stream '{config.stream_completion_name}'"
)
except ResponseError as e:
if "BUSYGROUP" in str(e):
logger.debug(
f"Consumer group '{config.stream_consumer_group}' already exists"
)
else:
raise
self._running = True
self._consumer_task = asyncio.create_task(self._consume_messages())
logger.info(
f"Chat completion consumer started (consumer: {self._consumer_name})"
)
async def _ensure_prisma(self) -> Prisma:
"""Lazily initialize Prisma client on first use."""
if self._prisma is None:
database_url = os.getenv("DATABASE_URL", "postgresql://localhost:5432")
self._prisma = Prisma(datasource={"url": database_url})
await self._prisma.connect()
logger.info("[COMPLETION] Consumer Prisma client connected (lazy init)")
return self._prisma
async def stop(self) -> None:
"""Stop the completion consumer."""
self._running = False
if self._consumer_task:
self._consumer_task.cancel()
try:
await self._consumer_task
except asyncio.CancelledError:
pass
self._consumer_task = None
if self._prisma:
await self._prisma.disconnect()
self._prisma = None
logger.info("[COMPLETION] Consumer Prisma client disconnected")
logger.info("Chat completion consumer stopped")
async def _consume_messages(self) -> None:
"""Main message consumption loop with retry logic."""
max_retries = 10
retry_delay = 5 # seconds
retry_count = 0
block_timeout = 5000 # milliseconds
while self._running and retry_count < max_retries:
try:
redis = await get_redis_async()
# Reset retry count on successful connection
retry_count = 0
while self._running:
# First, claim any stale pending messages from dead consumers
# Redis does NOT auto-redeliver pending messages; we must explicitly
# claim them using XAUTOCLAIM
try:
claimed_result = await redis.xautoclaim(
name=config.stream_completion_name,
groupname=config.stream_consumer_group,
consumername=self._consumer_name,
min_idle_time=config.stream_claim_min_idle_ms,
start_id="0-0",
count=10,
)
# xautoclaim returns: (next_start_id, [(id, data), ...], [deleted_ids])
if claimed_result and len(claimed_result) >= 2:
claimed_entries = claimed_result[1]
if claimed_entries:
logger.info(
f"Claimed {len(claimed_entries)} stale pending messages"
)
for entry_id, data in claimed_entries:
if not self._running:
return
await self._process_entry(redis, entry_id, data)
except Exception as e:
logger.warning(f"XAUTOCLAIM failed (non-fatal): {e}")
# Read new messages from the stream
messages = await redis.xreadgroup(
groupname=config.stream_consumer_group,
consumername=self._consumer_name,
streams={config.stream_completion_name: ">"},
block=block_timeout,
count=10,
)
if not messages:
continue
for stream_name, entries in messages:
for entry_id, data in entries:
if not self._running:
return
await self._process_entry(redis, entry_id, data)
except asyncio.CancelledError:
logger.info("Consumer cancelled")
return
except Exception as e:
retry_count += 1
logger.error(
f"Consumer error (retry {retry_count}/{max_retries}): {e}",
exc_info=True,
)
if self._running and retry_count < max_retries:
await asyncio.sleep(retry_delay)
else:
logger.error("Max retries reached, stopping consumer")
return
async def _process_entry(
self, redis: Any, entry_id: str, data: dict[str, Any]
) -> None:
"""Process a single stream entry and acknowledge it on success.
Args:
redis: Redis client connection
entry_id: The stream entry ID
data: The entry data dict
"""
try:
# Handle the message
message_data = data.get("data")
if message_data:
await self._handle_message(
message_data.encode()
if isinstance(message_data, str)
else message_data
)
# Acknowledge the message after successful processing
await redis.xack(
config.stream_completion_name,
config.stream_consumer_group,
entry_id,
)
except Exception as e:
logger.error(
f"Error processing completion message {entry_id}: {e}",
exc_info=True,
)
# Message remains in pending state and will be claimed by
# XAUTOCLAIM after min_idle_time expires
async def _handle_message(self, body: bytes) -> None:
"""Handle a completion message using our own Prisma client."""
try:
data = orjson.loads(body)
message = OperationCompleteMessage(**data)
except Exception as e:
logger.error(f"Failed to parse completion message: {e}")
return
logger.info(
f"[COMPLETION] Received completion for operation {message.operation_id} "
f"(task_id={message.task_id}, success={message.success})"
)
# Find task in registry
task = await stream_registry.find_task_by_operation_id(message.operation_id)
if task is None:
task = await stream_registry.get_task(message.task_id)
if task is None:
logger.warning(
f"[COMPLETION] Task not found for operation {message.operation_id} "
f"(task_id={message.task_id})"
)
return
logger.info(
f"[COMPLETION] Found task: task_id={task.task_id}, "
f"session_id={task.session_id}, tool_call_id={task.tool_call_id}"
)
# Guard against empty task fields
if not task.task_id or not task.session_id or not task.tool_call_id:
logger.error(
f"[COMPLETION] Task has empty critical fields! "
f"task_id={task.task_id!r}, session_id={task.session_id!r}, "
f"tool_call_id={task.tool_call_id!r}"
)
return
if message.success:
await self._handle_success(task, message)
else:
await self._handle_failure(task, message)
async def _handle_success(
self,
task: stream_registry.ActiveTask,
message: OperationCompleteMessage,
) -> None:
"""Handle successful operation completion."""
prisma = await self._ensure_prisma()
await process_operation_success(task, message.result, prisma)
async def _handle_failure(
self,
task: stream_registry.ActiveTask,
message: OperationCompleteMessage,
) -> None:
"""Handle failed operation completion."""
prisma = await self._ensure_prisma()
await process_operation_failure(task, message.error, prisma)
# Module-level consumer instance
_consumer: ChatCompletionConsumer | None = None
async def start_completion_consumer() -> None:
"""Start the global completion consumer."""
global _consumer
if _consumer is None:
_consumer = ChatCompletionConsumer()
await _consumer.start()
async def stop_completion_consumer() -> None:
"""Stop the global completion consumer."""
global _consumer
if _consumer:
await _consumer.stop()
_consumer = None
async def publish_operation_complete(
operation_id: str,
task_id: str,
success: bool,
result: dict | str | None = None,
error: str | None = None,
) -> None:
"""Publish an operation completion message to Redis Streams.
Args:
operation_id: The operation ID that completed.
task_id: The task ID associated with the operation.
success: Whether the operation succeeded.
result: The result data (for success).
error: The error message (for failure).
"""
message = OperationCompleteMessage(
operation_id=operation_id,
task_id=task_id,
success=success,
result=result,
error=error,
)
redis = await get_redis_async()
await redis.xadd(
config.stream_completion_name,
{"data": message.model_dump_json()},
maxlen=config.stream_max_length,
)
logger.info(f"Published completion for operation {operation_id}")

View File

@@ -1,344 +0,0 @@
"""Shared completion handling for operation success and failure.
This module provides common logic for handling operation completion from both:
- The Redis Streams consumer (completion_consumer.py)
- The HTTP webhook endpoint (routes.py)
"""
import logging
from typing import Any
import orjson
from prisma import Prisma
from . import service as chat_service
from . import stream_registry
from .response_model import StreamError, StreamToolOutputAvailable
from .tools.models import ErrorResponse
logger = logging.getLogger(__name__)
# Tools that produce agent_json that needs to be saved to library
AGENT_GENERATION_TOOLS = {"create_agent", "edit_agent"}
# Keys that should be stripped from agent_json when returning in error responses
SENSITIVE_KEYS = frozenset(
{
"api_key",
"apikey",
"api_secret",
"password",
"secret",
"credentials",
"credential",
"token",
"access_token",
"refresh_token",
"private_key",
"privatekey",
"auth",
"authorization",
}
)
def _sanitize_agent_json(obj: Any) -> Any:
"""Recursively sanitize agent_json by removing sensitive keys.
Args:
obj: The object to sanitize (dict, list, or primitive)
Returns:
Sanitized copy with sensitive keys removed/redacted
"""
if isinstance(obj, dict):
return {
k: "[REDACTED]" if k.lower() in SENSITIVE_KEYS else _sanitize_agent_json(v)
for k, v in obj.items()
}
elif isinstance(obj, list):
return [_sanitize_agent_json(item) for item in obj]
else:
return obj
class ToolMessageUpdateError(Exception):
"""Raised when updating a tool message in the database fails."""
pass
async def _update_tool_message(
session_id: str,
tool_call_id: str,
content: str,
prisma_client: Prisma | None,
) -> None:
"""Update tool message in database.
Args:
session_id: The session ID
tool_call_id: The tool call ID to update
content: The new content for the message
prisma_client: Optional Prisma client. If None, uses chat_service.
Raises:
ToolMessageUpdateError: If the database update fails. The caller should
handle this to avoid marking the task as completed with inconsistent state.
"""
try:
if prisma_client:
# Use provided Prisma client (for consumer with its own connection)
updated_count = await prisma_client.chatmessage.update_many(
where={
"sessionId": session_id,
"toolCallId": tool_call_id,
},
data={"content": content},
)
# Check if any rows were updated - 0 means message not found
if updated_count == 0:
raise ToolMessageUpdateError(
f"No message found with tool_call_id={tool_call_id} in session {session_id}"
)
else:
# Use service function (for webhook endpoint)
await chat_service._update_pending_operation(
session_id=session_id,
tool_call_id=tool_call_id,
result=content,
)
except ToolMessageUpdateError:
raise
except Exception as e:
logger.error(f"[COMPLETION] Failed to update tool message: {e}", exc_info=True)
raise ToolMessageUpdateError(
f"Failed to update tool message for tool_call_id={tool_call_id}: {e}"
) from e
def serialize_result(result: dict | list | str | int | float | bool | None) -> str:
"""Serialize result to JSON string with sensible defaults.
Args:
result: The result to serialize. Can be a dict, list, string,
number, boolean, or None.
Returns:
JSON string representation of the result. Returns '{"status": "completed"}'
only when result is explicitly None.
"""
if isinstance(result, str):
return result
if result is None:
return '{"status": "completed"}'
return orjson.dumps(result).decode("utf-8")
async def _save_agent_from_result(
result: dict[str, Any],
user_id: str | None,
tool_name: str,
) -> dict[str, Any]:
"""Save agent to library if result contains agent_json.
Args:
result: The result dict that may contain agent_json
user_id: The user ID to save the agent for
tool_name: The tool name (create_agent or edit_agent)
Returns:
Updated result dict with saved agent details, or original result if no agent_json
"""
if not user_id:
logger.warning("[COMPLETION] Cannot save agent: no user_id in task")
return result
agent_json = result.get("agent_json")
if not agent_json:
logger.warning(
f"[COMPLETION] {tool_name} completed but no agent_json in result"
)
return result
try:
from .tools.agent_generator import save_agent_to_library
is_update = tool_name == "edit_agent"
created_graph, library_agent = await save_agent_to_library(
agent_json, user_id, is_update=is_update
)
logger.info(
f"[COMPLETION] Saved agent '{created_graph.name}' to library "
f"(graph_id={created_graph.id}, library_agent_id={library_agent.id})"
)
# Return a response similar to AgentSavedResponse
return {
"type": "agent_saved",
"message": f"Agent '{created_graph.name}' has been saved to your library!",
"agent_id": created_graph.id,
"agent_name": created_graph.name,
"library_agent_id": library_agent.id,
"library_agent_link": f"/library/agents/{library_agent.id}",
"agent_page_link": f"/build?flowID={created_graph.id}",
}
except Exception as e:
logger.error(
f"[COMPLETION] Failed to save agent to library: {e}",
exc_info=True,
)
# Return error but don't fail the whole operation
# Sanitize agent_json to remove sensitive keys before returning
return {
"type": "error",
"message": f"Agent was generated but failed to save: {str(e)}",
"error": str(e),
"agent_json": _sanitize_agent_json(agent_json),
}
async def process_operation_success(
task: stream_registry.ActiveTask,
result: dict | str | None,
prisma_client: Prisma | None = None,
) -> None:
"""Handle successful operation completion.
Publishes the result to the stream registry, updates the database,
generates LLM continuation, and marks the task as completed.
Args:
task: The active task that completed
result: The result data from the operation
prisma_client: Optional Prisma client for database operations.
If None, uses chat_service._update_pending_operation instead.
Raises:
ToolMessageUpdateError: If the database update fails. The task will be
marked as failed instead of completed to avoid inconsistent state.
"""
# For agent generation tools, save the agent to library
if task.tool_name in AGENT_GENERATION_TOOLS and isinstance(result, dict):
result = await _save_agent_from_result(result, task.user_id, task.tool_name)
# Serialize result for output (only substitute default when result is exactly None)
result_output = result if result is not None else {"status": "completed"}
output_str = (
result_output
if isinstance(result_output, str)
else orjson.dumps(result_output).decode("utf-8")
)
# Publish result to stream registry
await stream_registry.publish_chunk(
task.task_id,
StreamToolOutputAvailable(
toolCallId=task.tool_call_id,
toolName=task.tool_name,
output=output_str,
success=True,
),
)
# Update pending operation in database
# If this fails, we must not continue to mark the task as completed
result_str = serialize_result(result)
try:
await _update_tool_message(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
content=result_str,
prisma_client=prisma_client,
)
except ToolMessageUpdateError:
# DB update failed - mark task as failed to avoid inconsistent state
logger.error(
f"[COMPLETION] DB update failed for task {task.task_id}, "
"marking as failed instead of completed"
)
await stream_registry.publish_chunk(
task.task_id,
StreamError(errorText="Failed to save operation result to database"),
)
await stream_registry.mark_task_completed(task.task_id, status="failed")
raise
# Generate LLM continuation with streaming
try:
await chat_service._generate_llm_continuation_with_streaming(
session_id=task.session_id,
user_id=task.user_id,
task_id=task.task_id,
)
except Exception as e:
logger.error(
f"[COMPLETION] Failed to generate LLM continuation: {e}",
exc_info=True,
)
# Mark task as completed and release Redis lock
await stream_registry.mark_task_completed(task.task_id, status="completed")
try:
await chat_service._mark_operation_completed(task.tool_call_id)
except Exception as e:
logger.error(f"[COMPLETION] Failed to mark operation completed: {e}")
logger.info(
f"[COMPLETION] Successfully processed completion for task {task.task_id}"
)
async def process_operation_failure(
task: stream_registry.ActiveTask,
error: str | None,
prisma_client: Prisma | None = None,
) -> None:
"""Handle failed operation completion.
Publishes the error to the stream registry, updates the database with
the error response, and marks the task as failed.
Args:
task: The active task that failed
error: The error message from the operation
prisma_client: Optional Prisma client for database operations.
If None, uses chat_service._update_pending_operation instead.
"""
error_msg = error or "Operation failed"
# Publish error to stream registry
await stream_registry.publish_chunk(
task.task_id,
StreamError(errorText=error_msg),
)
# Update pending operation with error
# If this fails, we still continue to mark the task as failed
error_response = ErrorResponse(
message=error_msg,
error=error,
)
try:
await _update_tool_message(
session_id=task.session_id,
tool_call_id=task.tool_call_id,
content=error_response.model_dump_json(),
prisma_client=prisma_client,
)
except ToolMessageUpdateError:
# DB update failed - log but continue with cleanup
logger.error(
f"[COMPLETION] DB update failed while processing failure for task {task.task_id}, "
"continuing with cleanup"
)
# Mark task as failed and release Redis lock
await stream_registry.mark_task_completed(task.task_id, status="failed")
try:
await chat_service._mark_operation_completed(task.tool_call_id)
except Exception as e:
logger.error(f"[COMPLETION] Failed to mark operation completed: {e}")
logger.info(f"[COMPLETION] Processed failure for task {task.task_id}: {error_msg}")

View File

@@ -11,7 +11,7 @@ class ChatConfig(BaseSettings):
# OpenAI API Configuration
model: str = Field(
default="anthropic/claude-opus-4.6", description="Default model to use"
default="anthropic/claude-opus-4.5", description="Default model to use"
)
title_model: str = Field(
default="openai/gpt-4o-mini",
@@ -27,62 +27,15 @@ class ChatConfig(BaseSettings):
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
# Streaming Configuration
max_context_messages: int = Field(
default=50, ge=1, le=200, description="Maximum context messages"
)
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
max_retries: int = Field(
default=3,
description="Max retries for fallback path (SDK handles retries internally)",
)
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
max_retries: int = Field(default=3, description="Maximum number of retries")
max_agent_runs: int = Field(default=3, description="Maximum number of agent runs")
max_agent_schedules: int = Field(
default=30, description="Maximum number of agent schedules"
)
# Long-running operation configuration
long_running_operation_ttl: int = Field(
default=600,
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
)
# Stream registry configuration for SSE reconnection
stream_ttl: int = Field(
default=3600,
description="TTL in seconds for stream data in Redis (1 hour)",
)
stream_max_length: int = Field(
default=10000,
description="Maximum number of messages to store per stream",
)
# Redis Streams configuration for completion consumer
stream_completion_name: str = Field(
default="chat:completions",
description="Redis Stream name for operation completions",
)
stream_consumer_group: str = Field(
default="chat_consumers",
description="Consumer group name for completion stream",
)
stream_claim_min_idle_ms: int = Field(
default=60000,
description="Minimum idle time in milliseconds before claiming pending messages from dead consumers",
)
# Redis key prefixes for stream registry
task_meta_prefix: str = Field(
default="chat:task:meta:",
description="Prefix for task metadata hash keys",
)
task_stream_prefix: str = Field(
default="chat:stream:",
description="Prefix for task message stream keys",
)
task_op_prefix: str = Field(
default="chat:task:op:",
description="Prefix for operation ID to task ID mapping keys",
)
internal_api_key: str | None = Field(
default=None,
description="API key for internal webhook callbacks (env: CHAT_INTERNAL_API_KEY)",
default=3, description="Maximum number of agent schedules"
)
# Langfuse Prompt Management Configuration
@@ -92,37 +45,6 @@ class ChatConfig(BaseSettings):
description="Name of the prompt in Langfuse to fetch",
)
# Claude Agent SDK Configuration
use_claude_agent_sdk: bool = Field(
default=True,
description="Use Claude Agent SDK for chat completions",
)
claude_agent_model: str | None = Field(
default=None,
description="Model for the Claude Agent SDK path. If None, derives from "
"the `model` field by stripping the OpenRouter provider prefix.",
)
claude_agent_max_buffer_size: int = Field(
default=10 * 1024 * 1024, # 10MB (default SDK is 1MB)
description="Max buffer size in bytes for Claude Agent SDK JSON message parsing. "
"Increase if tool outputs exceed the limit.",
)
claude_agent_max_subtasks: int = Field(
default=10,
description="Max number of sub-agent Tasks the SDK can spawn per session.",
)
claude_agent_use_resume: bool = Field(
default=True,
description="Use --resume for multi-turn conversations instead of "
"history compression. Falls back to compression when unavailable.",
)
# Extended thinking configuration for Claude models
thinking_enabled: bool = Field(
default=True,
description="Enable adaptive thinking for Claude models via OpenRouter",
)
@field_validator("api_key", mode="before")
@classmethod
def get_api_key(cls, v):
@@ -154,25 +76,6 @@ class ChatConfig(BaseSettings):
v = "https://openrouter.ai/api/v1"
return v
@field_validator("internal_api_key", mode="before")
@classmethod
def get_internal_api_key(cls, v):
"""Get internal API key from environment if not provided."""
if v is None:
v = os.getenv("CHAT_INTERNAL_API_KEY")
return v
@field_validator("use_claude_agent_sdk", mode="before")
@classmethod
def get_use_claude_agent_sdk(cls, v):
"""Get use_claude_agent_sdk from environment if not provided."""
# Check environment variable - default to True if not set
env_val = os.getenv("CHAT_USE_CLAUDE_AGENT_SDK", "").lower()
if env_val:
return env_val in ("true", "1", "yes", "on")
# Default to True (SDK enabled by default)
return True if v is None else v
# Prompt paths for different contexts
PROMPT_PATHS: dict[str, str] = {
"default": "prompts/chat_system.md",

View File

@@ -45,7 +45,10 @@ async def create_chat_session(
successfulAgentRuns=SafeJson({}),
successfulAgentSchedules=SafeJson({}),
)
return await PrismaChatSession.prisma().create(data=data)
return await PrismaChatSession.prisma().create(
data=data,
include={"Messages": True},
)
async def update_chat_session(
@@ -244,45 +247,3 @@ async def get_chat_session_message_count(session_id: str) -> int:
"""Get the number of messages in a chat session."""
count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id})
return count
async def update_tool_message_content(
session_id: str,
tool_call_id: str,
new_content: str,
) -> bool:
"""Update the content of a tool message in chat history.
Used by background tasks to update pending operation messages with final results.
Args:
session_id: The chat session ID.
tool_call_id: The tool call ID to find the message.
new_content: The new content to set.
Returns:
True if a message was updated, False otherwise.
"""
try:
result = await PrismaChatMessage.prisma().update_many(
where={
"sessionId": session_id,
"toolCallId": tool_call_id,
},
data={
"content": new_content,
},
)
if result == 0:
logger.warning(
f"No message found to update for session {session_id}, "
f"tool_call_id {tool_call_id}"
)
return False
return True
except Exception as e:
logger.error(
f"Failed to update tool message for session {session_id}, "
f"tool_call_id {tool_call_id}: {e}"
)
return False

View File

@@ -1,9 +1,8 @@
import asyncio
import logging
import uuid
from contextlib import asynccontextmanager
from datetime import UTC, datetime
from typing import Any, cast
from weakref import WeakValueDictionary
from typing import Any
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
@@ -52,28 +51,36 @@ def _get_session_cache_key(session_id: str) -> str:
return f"{CHAT_SESSION_CACHE_PREFIX}{session_id}"
# Session-level locks to prevent race conditions during concurrent upserts.
# Uses WeakValueDictionary to automatically garbage collect locks when no longer referenced,
# preventing unbounded memory growth while maintaining lock semantics for active sessions.
# Invalidation: Locks are auto-removed by GC when no coroutine holds a reference (after
# async with lock: completes). Explicit cleanup also occurs in delete_chat_session().
_session_locks: WeakValueDictionary[str, asyncio.Lock] = WeakValueDictionary()
_session_locks_mutex = asyncio.Lock()
CHAT_SESSION_LOCK_PREFIX = "chat:session_lock:"
CHAT_SESSION_LOCK_TIMEOUT = 60 # seconds
async def _get_session_lock(session_id: str) -> asyncio.Lock:
"""Get or create a lock for a specific session to prevent concurrent upserts.
@asynccontextmanager
async def _session_lock(session_id: str):
"""Distributed lock for a chat session using Redis.
Uses WeakValueDictionary for automatic cleanup: locks are garbage collected
when no coroutine holds a reference to them, preventing memory leaks from
unbounded growth of session locks.
Provides system-wide locking across horizontally scaled backend instances
to prevent race conditions during concurrent session mutations.
"""
async with _session_locks_mutex:
lock = _session_locks.get(session_id)
if lock is None:
lock = asyncio.Lock()
_session_locks[session_id] = lock
return lock
async_redis = await get_redis_async()
lock_key = _get_session_lock_key(session_id)
lock = async_redis.lock(lock_key, timeout=CHAT_SESSION_LOCK_TIMEOUT)
try:
await lock.acquire()
yield
finally:
if await lock.locked() and await lock.owned():
try:
await lock.release()
except Exception as e:
logger.warning(
f"Failed to release lock for chat session #{session_id}: {e}"
)
def _get_session_lock_key(session_id: str) -> str:
"""Get the Redis lock key for a chat session."""
return f"{CHAT_SESSION_LOCK_PREFIX}{session_id}"
class ChatMessage(BaseModel):
@@ -104,26 +111,6 @@ class ChatSession(BaseModel):
successful_agent_runs: dict[str, int] = {}
successful_agent_schedules: dict[str, int] = {}
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
"""Attach a tool_call to the current turn's assistant message.
Searches backwards for the most recent assistant message (stopping at
any user message boundary). If found, appends the tool_call to it.
Otherwise creates a new assistant message with the tool_call.
"""
for msg in reversed(self.messages):
if msg.role == "user":
break
if msg.role == "assistant":
if not msg.tool_calls:
msg.tool_calls = []
msg.tool_calls.append(tool_call)
return
self.messages.append(
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
)
@staticmethod
def new(user_id: str) -> "ChatSession":
return ChatSession(
@@ -192,47 +179,6 @@ class ChatSession(BaseModel):
successful_agent_schedules=successful_agent_schedules,
)
@staticmethod
def _merge_consecutive_assistant_messages(
messages: list[ChatCompletionMessageParam],
) -> list[ChatCompletionMessageParam]:
"""Merge consecutive assistant messages into single messages.
Long-running tool flows can create split assistant messages: one with
text content and another with tool_calls. Anthropic's API requires
tool_result blocks to reference a tool_use in the immediately preceding
assistant message, so these splits cause 400 errors via OpenRouter.
"""
if len(messages) < 2:
return messages
result: list[ChatCompletionMessageParam] = [messages[0]]
for msg in messages[1:]:
prev = result[-1]
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
result.append(msg)
continue
prev = cast(ChatCompletionAssistantMessageParam, prev)
curr = cast(ChatCompletionAssistantMessageParam, msg)
curr_content = curr.get("content") or ""
if curr_content:
prev_content = prev.get("content") or ""
prev["content"] = (
f"{prev_content}\n{curr_content}" if prev_content else curr_content
)
curr_tool_calls = curr.get("tool_calls")
if curr_tool_calls:
prev_tool_calls = prev.get("tool_calls")
prev["tool_calls"] = (
list(prev_tool_calls) + list(curr_tool_calls)
if prev_tool_calls
else list(curr_tool_calls)
)
return result
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
messages = []
for message in self.messages:
@@ -319,7 +265,7 @@ class ChatSession(BaseModel):
name=message.name or "",
)
)
return self._merge_consecutive_assistant_messages(messages)
return messages
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
@@ -334,8 +280,9 @@ async def _get_session_from_cache(session_id: str) -> ChatSession | None:
try:
session = ChatSession.model_validate_json(raw_session)
logger.info(
f"[CACHE] Loaded session {session_id}: {len(session.messages)} messages, "
f"last_roles={[m.role for m in session.messages[-3:]]}" # Last 3 roles
f"Loading session {session_id} from cache: "
f"message_count={len(session.messages)}, "
f"roles={[m.role for m in session.messages]}"
)
return session
except Exception as e:
@@ -355,21 +302,6 @@ async def cache_chat_session(session: ChatSession) -> None:
await _cache_session(session)
async def invalidate_session_cache(session_id: str) -> None:
"""Invalidate a chat session from Redis cache.
Used by background tasks to ensure fresh data is loaded on next access.
This is best-effort - Redis failures are logged but don't fail the operation.
"""
try:
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
# Best-effort: log but don't fail - cache will expire naturally
logger.warning(f"Failed to invalidate session cache for {session_id}: {e}")
async def _get_session_from_db(session_id: str) -> ChatSession | None:
"""Get a chat session from the database."""
prisma_session = await chat_db.get_chat_session(session_id)
@@ -377,9 +309,11 @@ async def _get_session_from_db(session_id: str) -> ChatSession | None:
return None
messages = prisma_session.Messages
logger.debug(
f"[DB] Loaded session {session_id}: {len(messages) if messages else 0} messages, "
f"roles={[m.role for m in messages[-3:]] if messages else []}" # Last 3 roles
logger.info(
f"Loading session {session_id} from DB: "
f"has_messages={messages is not None}, "
f"message_count={len(messages) if messages else 0}, "
f"roles={[m.role for m in messages] if messages else []}"
)
return ChatSession.from_db(prisma_session, messages)
@@ -430,9 +364,10 @@ async def _save_session_to_db(
"function_call": msg.function_call,
}
)
logger.debug(
f"[DB] Saving {len(new_messages)} messages to session {session.session_id}, "
f"roles={[m['role'] for m in messages_data]}"
logger.info(
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
f"roles={[m['role'] for m in messages_data]}, "
f"start_sequence={existing_message_count}"
)
await chat_db.add_chat_messages_batch(
session_id=session.session_id,
@@ -472,7 +407,7 @@ async def get_chat_session(
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
# Fall back to database
logger.debug(f"Session {session_id} not in cache, checking database")
logger.info(f"Session {session_id} not in cache, checking database")
session = await _get_session_from_db(session_id)
if session is None:
@@ -489,6 +424,7 @@ async def get_chat_session(
# Cache the session from DB
try:
await _cache_session(session)
logger.info(f"Cached session {session_id} from database")
except Exception as e:
logger.warning(f"Failed to cache session {session_id}: {e}")
@@ -510,10 +446,8 @@ async def upsert_chat_session(
callers are aware of the persistence failure.
RedisError: If the cache write fails (after successful DB write).
"""
# Acquire session-specific lock to prevent concurrent upserts
lock = await _get_session_lock(session.session_id)
async with lock:
# Acquire distributed session-specific lock to prevent concurrent upserts
async with _session_lock(session.session_id):
# Get existing message count from DB for incremental saves
existing_message_count = await chat_db.get_chat_session_message_count(
session.session_id
@@ -553,40 +487,6 @@ async def upsert_chat_session(
return session
async def append_and_save_message(session_id: str, message: ChatMessage) -> ChatSession:
"""Atomically append a message to a session and persist it.
Acquires the session lock, re-fetches the latest session state,
appends the message, and saves — preventing message loss when
concurrent requests modify the same session.
"""
lock = await _get_session_lock(session_id)
async with lock:
session = await get_chat_session(session_id)
if session is None:
raise ValueError(f"Session {session_id} not found")
session.messages.append(message)
existing_message_count = await chat_db.get_chat_session_message_count(
session_id
)
try:
await _save_session_to_db(session, existing_message_count)
except Exception as e:
raise DatabaseError(
f"Failed to persist message to session {session_id}"
) from e
try:
await _cache_session(session)
except Exception as e:
logger.warning(f"Cache write failed for session {session_id}: {e}")
return session
async def create_chat_session(user_id: str) -> ChatSession:
"""Create a new chat session and persist it.
@@ -658,7 +558,7 @@ async def delete_chat_session(session_id: str, user_id: str | None = None) -> bo
if not deleted:
return False
# Only invalidate cache and clean up lock after DB confirms deletion
# Invalidate cache after DB confirms deletion
try:
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
@@ -666,10 +566,6 @@ async def delete_chat_session(session_id: str, user_id: str | None = None) -> bo
except Exception as e:
logger.warning(f"Failed to delete session {session_id} from cache: {e}")
# Clean up session lock (belt-and-suspenders with WeakValueDictionary)
async with _session_locks_mutex:
_session_locks.pop(session_id, None)
return True
@@ -693,19 +589,13 @@ async def update_session_title(session_id: str, title: str) -> bool:
logger.warning(f"Session {session_id} not found for title update")
return False
# Update title in cache if it exists (instead of invalidating).
# This prevents race conditions where cache invalidation causes
# the frontend to see stale DB data while streaming is still in progress.
# Invalidate cache so next fetch gets updated title
try:
cached = await _get_session_from_cache(session_id)
if cached:
cached.title = title
await _cache_session(cached)
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
# Not critical - title will be correct on next full cache refresh
logger.warning(
f"Failed to update title in cache for session {session_id}: {e}"
)
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
return True
except Exception as e:

View File

@@ -1,16 +1,4 @@
from typing import cast
import pytest
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
ChatCompletionMessageParam,
ChatCompletionToolMessageParam,
ChatCompletionUserMessageParam,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
ChatCompletionMessageToolCallParam,
Function,
)
from .model import (
ChatMessage,
@@ -129,205 +117,3 @@ async def test_chatsession_db_storage(setup_test_user, test_user_id):
loaded.tool_calls is not None
), f"Tool calls missing for {orig.role} message"
assert len(orig.tool_calls) == len(loaded.tool_calls)
# --------------------------------------------------------------------------- #
# _merge_consecutive_assistant_messages #
# --------------------------------------------------------------------------- #
_tc = ChatCompletionMessageToolCallParam(
id="tc1", type="function", function=Function(name="do_stuff", arguments="{}")
)
_tc2 = ChatCompletionMessageToolCallParam(
id="tc2", type="function", function=Function(name="other", arguments="{}")
)
def test_merge_noop_when_no_consecutive_assistants():
"""Messages without consecutive assistants are returned unchanged."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="hi"),
ChatCompletionAssistantMessageParam(role="assistant", content="hello"),
ChatCompletionUserMessageParam(role="user", content="bye"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert [m["role"] for m in merged] == ["user", "assistant", "user"]
def test_merge_splits_text_and_tool_calls():
"""The exact bug scenario: text-only assistant followed by tool_calls-only assistant."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="build agent"),
ChatCompletionAssistantMessageParam(
role="assistant", content="Let me build that"
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
ChatCompletionToolMessageParam(role="tool", content="ok", tool_call_id="tc1"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert merged[0]["role"] == "user"
assert merged[2]["role"] == "tool"
a = cast(ChatCompletionAssistantMessageParam, merged[1])
assert a["role"] == "assistant"
assert a.get("content") == "Let me build that"
assert a.get("tool_calls") == [_tc]
def test_merge_combines_tool_calls_from_both():
"""Both consecutive assistants have tool_calls — they get merged."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(
role="assistant", content="text", tool_calls=[_tc]
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc2]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("tool_calls") == [_tc, _tc2]
assert a.get("content") == "text"
def test_merge_three_consecutive_assistants():
"""Three consecutive assistants collapse into one."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(role="assistant", content="a"),
ChatCompletionAssistantMessageParam(role="assistant", content="b"),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("content") == "a\nb"
assert a.get("tool_calls") == [_tc]
def test_merge_empty_and_single_message():
"""Edge cases: empty list and single message."""
assert ChatSession._merge_consecutive_assistant_messages([]) == []
single: list[ChatCompletionMessageParam] = [
ChatCompletionUserMessageParam(role="user", content="hi")
]
assert ChatSession._merge_consecutive_assistant_messages(single) == single
# --------------------------------------------------------------------------- #
# add_tool_call_to_current_turn #
# --------------------------------------------------------------------------- #
_raw_tc = {
"id": "tc1",
"type": "function",
"function": {"name": "f", "arguments": "{}"},
}
_raw_tc2 = {
"id": "tc2",
"type": "function",
"function": {"name": "g", "arguments": "{}"},
}
def test_add_tool_call_appends_to_existing_assistant():
"""When the last assistant is from the current turn, tool_call is added to it."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="working on it"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2 # no new message created
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_creates_assistant_when_none_exists():
"""When there's no current-turn assistant, a new one is created."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2
assert session.messages[1].role == "assistant"
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_does_not_cross_user_boundary():
"""A user message acts as a boundary — previous assistant is not modified."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="assistant", content="old turn"),
ChatMessage(role="user", content="new message"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 3 # new assistant was created
assert session.messages[0].tool_calls is None # old assistant untouched
assert session.messages[2].role == "assistant"
assert session.messages[2].tool_calls == [_raw_tc]
def test_add_tool_call_multiple_times():
"""Multiple long-running tool calls accumulate on the same assistant."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="doing stuff"),
]
session.add_tool_call_to_current_turn(_raw_tc)
# Simulate a pending tool result in between (like _yield_tool_call does)
session.messages.append(
ChatMessage(role="tool", content="pending", tool_call_id="tc1")
)
session.add_tool_call_to_current_turn(_raw_tc2)
assert len(session.messages) == 3 # user, assistant, tool — no extra assistant
assert session.messages[1].tool_calls == [_raw_tc, _raw_tc2]
def test_to_openai_messages_merges_split_assistants():
"""End-to-end: session with split assistants produces valid OpenAI messages."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="build agent"),
ChatMessage(role="assistant", content="Let me build that"),
ChatMessage(
role="assistant",
content="",
tool_calls=[
{
"id": "tc1",
"type": "function",
"function": {"name": "create_agent", "arguments": "{}"},
}
],
),
ChatMessage(role="tool", content="done", tool_call_id="tc1"),
ChatMessage(role="assistant", content="Saved!"),
ChatMessage(role="user", content="show me an example run"),
]
openai_msgs = session.to_openai_messages()
# The two consecutive assistants at index 1,2 should be merged
roles = [m["role"] for m in openai_msgs]
assert roles == ["user", "assistant", "tool", "assistant", "user"]
# The merged assistant should have both content and tool_calls
merged = cast(ChatCompletionAssistantMessageParam, openai_msgs[1])
assert merged.get("content") == "Let me build that"
tc_list = merged.get("tool_calls")
assert tc_list is not None and len(list(tc_list)) == 1
assert list(tc_list)[0]["id"] == "tc1"

View File

@@ -10,8 +10,6 @@ from typing import Any
from pydantic import BaseModel, Field
from backend.util.json import dumps as json_dumps
class ResponseType(str, Enum):
"""Types of streaming responses following AI SDK protocol."""
@@ -20,10 +18,6 @@ class ResponseType(str, Enum):
START = "start"
FINISH = "finish"
# Step lifecycle (one LLM API call within a message)
START_STEP = "start-step"
FINISH_STEP = "finish-step"
# Text streaming
TEXT_START = "text-start"
TEXT_DELTA = "text-delta"
@@ -37,7 +31,6 @@ class ResponseType(str, Enum):
# Other
ERROR = "error"
USAGE = "usage"
HEARTBEAT = "heartbeat"
class StreamBaseResponse(BaseModel):
@@ -58,20 +51,6 @@ class StreamStart(StreamBaseResponse):
type: ResponseType = ResponseType.START
messageId: str = Field(..., description="Unique message ID")
taskId: str | None = Field(
default=None,
description="Task ID for SSE reconnection. Clients can reconnect using GET /tasks/{taskId}/stream",
)
def to_sse(self) -> str:
"""Convert to SSE format, excluding non-protocol fields like taskId."""
import json
data: dict[str, Any] = {
"type": self.type.value,
"messageId": self.messageId,
}
return f"data: {json.dumps(data)}\n\n"
class StreamFinish(StreamBaseResponse):
@@ -80,26 +59,6 @@ class StreamFinish(StreamBaseResponse):
type: ResponseType = ResponseType.FINISH
class StreamStartStep(StreamBaseResponse):
"""Start of a step (one LLM API call within a message).
The AI SDK uses this to add a step-start boundary to message.parts,
enabling visual separation between multiple LLM calls in a single message.
"""
type: ResponseType = ResponseType.START_STEP
class StreamFinishStep(StreamBaseResponse):
"""End of a step (one LLM API call within a message).
The AI SDK uses this to reset activeTextParts and activeReasoningParts,
so the next LLM call in a tool-call continuation starts with clean state.
"""
type: ResponseType = ResponseType.FINISH_STEP
# ========== Text Streaming ==========
@@ -153,7 +112,7 @@ class StreamToolOutputAvailable(StreamBaseResponse):
type: ResponseType = ResponseType.TOOL_OUTPUT_AVAILABLE
toolCallId: str = Field(..., description="Tool call ID this responds to")
output: str | dict[str, Any] = Field(..., description="Tool execution output")
# Keep these for internal backend use
# Additional fields for internal use (not part of AI SDK spec but useful)
toolName: str | None = Field(
default=None, description="Name of the tool that was executed"
)
@@ -161,17 +120,6 @@ class StreamToolOutputAvailable(StreamBaseResponse):
default=True, description="Whether the tool execution succeeded"
)
def to_sse(self) -> str:
"""Convert to SSE format, excluding non-spec fields."""
import json
data = {
"type": self.type.value,
"toolCallId": self.toolCallId,
"output": self.output,
}
return f"data: {json.dumps(data)}\n\n"
# ========== Other ==========
@@ -194,32 +142,3 @@ class StreamError(StreamBaseResponse):
details: dict[str, Any] | None = Field(
default=None, description="Additional error details"
)
def to_sse(self) -> str:
"""Convert to SSE format, only emitting fields required by AI SDK protocol.
The AI SDK uses z.strictObject({type, errorText}) which rejects
any extra fields like `code` or `details`.
"""
data = {
"type": self.type.value,
"errorText": self.errorText,
}
return f"data: {json_dumps(data)}\n\n"
class StreamHeartbeat(StreamBaseResponse):
"""Heartbeat to keep SSE connection alive during long-running operations.
Uses SSE comment format (: comment) which is ignored by clients but keeps
the connection alive through proxies and load balancers.
"""
type: ResponseType = ResponseType.HEARTBEAT
toolCallId: str | None = Field(
default=None, description="Tool call ID if heartbeat is for a specific tool"
)
def to_sse(self) -> str:
"""Convert to SSE comment format to keep connection alive."""
return ": heartbeat\n\n"

View File

@@ -1,57 +1,19 @@
"""Chat API routes for chat session management and streaming via SSE."""
import asyncio
import logging
import uuid as uuid_module
from collections.abc import AsyncGenerator
from typing import Annotated
from autogpt_libs import auth
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Response, Security
from fastapi import APIRouter, Depends, Query, Security
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from backend.util.exceptions import NotFoundError
from backend.util.feature_flag import Flag, is_feature_enabled
from . import service as chat_service
from . import stream_registry
from .completion_handler import process_operation_failure, process_operation_success
from .config import ChatConfig
from .model import (
ChatMessage,
ChatSession,
append_and_save_message,
create_chat_session,
get_chat_session,
get_user_sessions,
)
from .response_model import StreamError, StreamFinish, StreamHeartbeat, StreamStart
from .sdk import service as sdk_service
from .tools.models import (
AgentDetailsResponse,
AgentOutputResponse,
AgentPreviewResponse,
AgentSavedResponse,
AgentsFoundResponse,
BlockDetailsResponse,
BlockListResponse,
BlockOutputResponse,
ClarificationNeededResponse,
DocPageResponse,
DocSearchResultsResponse,
ErrorResponse,
ExecutionStartedResponse,
InputValidationErrorResponse,
NeedLoginResponse,
NoResultsResponse,
OperationInProgressResponse,
OperationPendingResponse,
OperationStartedResponse,
SetupRequirementsResponse,
UnderstandingUpdatedResponse,
)
from .tracking import track_user_message
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
config = ChatConfig()
@@ -93,15 +55,6 @@ class CreateSessionResponse(BaseModel):
user_id: str | None
class ActiveStreamInfo(BaseModel):
"""Information about an active stream for reconnection."""
task_id: str
last_message_id: str # Redis Stream message ID for resumption
operation_id: str # Operation ID for completion tracking
tool_name: str # Name of the tool being executed
class SessionDetailResponse(BaseModel):
"""Response model providing complete details for a chat session, including messages."""
@@ -110,7 +63,6 @@ class SessionDetailResponse(BaseModel):
updated_at: str
user_id: str | None
messages: list[dict]
active_stream: ActiveStreamInfo | None = None # Present if stream is still active
class SessionSummaryResponse(BaseModel):
@@ -129,14 +81,6 @@ class ListSessionsResponse(BaseModel):
total: int
class OperationCompleteRequest(BaseModel):
"""Request model for external completion webhook."""
success: bool
result: dict | str | None = None
error: str | None = None
# ========== Routes ==========
@@ -222,14 +166,13 @@ async def get_session(
Retrieve the details of a specific chat session.
Looks up a chat session by ID for the given user (if authenticated) and returns all session data including messages.
If there's an active stream for this session, returns the task_id for reconnection.
Args:
session_id: The unique identifier for the desired chat session.
user_id: The optional authenticated user ID, or None for anonymous access.
Returns:
SessionDetailResponse: Details for the requested session, including active_stream info if applicable.
SessionDetailResponse: Details for the requested session, or None if not found.
"""
session = await get_chat_session(session_id, user_id)
@@ -237,32 +180,11 @@ async def get_session(
raise NotFoundError(f"Session {session_id} not found.")
messages = [message.model_dump() for message in session.messages]
# Check if there's an active stream for this session
active_stream_info = None
active_task, last_message_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
logger.info(
f"[GET_SESSION] session={session_id}, active_task={active_task is not None}, "
f"msg_count={len(messages)}, last_role={messages[-1].get('role') if messages else 'none'}"
f"Returning session {session_id}: "
f"message_count={len(messages)}, "
f"roles={[m.get('role') for m in messages]}"
)
if active_task:
# Filter out the in-progress assistant message from the session response.
# The client will receive the complete assistant response through the SSE
# stream replay instead, preventing duplicate content.
if messages and messages[-1].get("role") == "assistant":
messages = messages[:-1]
# Use "0-0" as last_message_id to replay the stream from the beginning.
# Since we filtered out the cached assistant message, the client needs
# the full stream to reconstruct the response.
active_stream_info = ActiveStreamInfo(
task_id=active_task.task_id,
last_message_id="0-0",
operation_id=active_task.operation_id,
tool_name=active_task.tool_name,
)
return SessionDetailResponse(
id=session.session_id,
@@ -270,7 +192,6 @@ async def get_session(
updated_at=session.updated_at.isoformat(),
user_id=session.user_id or None,
messages=messages,
active_stream=active_stream_info,
)
@@ -290,331 +211,49 @@ async def stream_chat_post(
- Tool call UI elements (if invoked)
- Tool execution results
The AI generation runs in a background task that continues even if the client disconnects.
All chunks are written to Redis for reconnection support. If the client disconnects,
they can reconnect using GET /tasks/{task_id}/stream to resume from where they left off.
Args:
session_id: The chat session identifier to associate with the streamed messages.
request: Request body containing message, is_user_message, and optional context.
user_id: Optional authenticated user ID.
Returns:
StreamingResponse: SSE-formatted response chunks. First chunk is a "start" event
containing the task_id for reconnection.
StreamingResponse: SSE-formatted response chunks.
"""
import asyncio
import time
stream_start_time = time.perf_counter()
log_meta = {"component": "ChatStream", "session_id": session_id}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] stream_chat_post STARTED, session={session_id}, "
f"user={user_id}, message_len={len(request.message)}",
extra={"json_fields": log_meta},
)
session = await _validate_and_get_session(session_id, user_id)
logger.info(
f"[TIMING] session validated in {(time.perf_counter() - stream_start_time) * 1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"duration_ms": (time.perf_counter() - stream_start_time) * 1000,
}
},
)
# Atomically append user message to session BEFORE creating task to avoid
# race condition where GET_SESSION sees task as "running" but message isn't
# saved yet. append_and_save_message re-fetches inside a lock to prevent
# message loss from concurrent requests.
if request.message:
message = ChatMessage(
role="user" if request.is_user_message else "assistant",
content=request.message,
)
if request.is_user_message:
track_user_message(
user_id=user_id,
session_id=session_id,
message_length=len(request.message),
)
logger.info(f"[STREAM] Saving user message to session {session_id}")
session = await append_and_save_message(session_id, message)
logger.info(f"[STREAM] User message saved for session {session_id}")
# Create a task in the stream registry for reconnection support
task_id = str(uuid_module.uuid4())
operation_id = str(uuid_module.uuid4())
log_meta["task_id"] = task_id
task_create_start = time.perf_counter()
await stream_registry.create_task(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id="chat_stream", # Not a tool call, but needed for the model
tool_name="chat",
operation_id=operation_id,
)
logger.info(
f"[TIMING] create_task completed in {(time.perf_counter() - task_create_start) * 1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"duration_ms": (time.perf_counter() - task_create_start) * 1000,
}
},
)
# Background task that runs the AI generation independently of SSE connection
async def run_ai_generation():
import time as time_module
gen_start_time = time_module.perf_counter()
logger.info(
f"[TIMING] run_ai_generation STARTED, task={task_id}, session={session_id}, user={user_id}",
extra={"json_fields": log_meta},
)
first_chunk_time, ttfc = None, None
chunk_count = 0
try:
# Emit a start event with task_id for reconnection
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
await stream_registry.publish_chunk(task_id, start_chunk)
logger.info(
f"[TIMING] StreamStart published at {(time_module.perf_counter() - gen_start_time) * 1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": (time_module.perf_counter() - gen_start_time)
* 1000,
}
},
)
# Choose service based on LaunchDarkly flag (falls back to config default)
use_sdk = await is_feature_enabled(
Flag.COPILOT_SDK,
user_id or "anonymous",
default=config.use_claude_agent_sdk,
)
stream_fn = (
sdk_service.stream_chat_completion_sdk
if use_sdk
else chat_service.stream_chat_completion
)
logger.info(
f"[TIMING] Calling {'sdk' if use_sdk else 'standard'} stream_chat_completion",
extra={"json_fields": log_meta},
)
# Pass message=None since we already added it to the session above
async for chunk in stream_fn(
session_id,
None, # Message already in session
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass session with message already added
context=request.context,
):
# Skip duplicate StreamStart — we already published one above
if isinstance(chunk, StreamStart):
continue
chunk_count += 1
if first_chunk_time is None:
first_chunk_time = time_module.perf_counter()
ttfc = first_chunk_time - gen_start_time
logger.info(
f"[TIMING] FIRST AI CHUNK at {ttfc:.2f}s, type={type(chunk).__name__}",
extra={
"json_fields": {
**log_meta,
"chunk_type": type(chunk).__name__,
"time_to_first_chunk_ms": ttfc * 1000,
}
},
)
# Write to Redis (subscribers will receive via XREAD)
await stream_registry.publish_chunk(task_id, chunk)
gen_end_time = time_module.perf_counter()
total_time = (gen_end_time - gen_start_time) * 1000
logger.info(
f"[TIMING] run_ai_generation FINISHED in {total_time / 1000:.1f}s; "
f"task={task_id}, session={session_id}, "
f"ttfc={ttfc or -1:.2f}s, n_chunks={chunk_count}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"time_to_first_chunk_ms": (
ttfc * 1000 if ttfc is not None else None
),
"n_chunks": chunk_count,
}
},
)
await stream_registry.mark_task_completed(task_id, "completed")
except Exception as e:
elapsed = time_module.perf_counter() - gen_start_time
logger.error(
f"[TIMING] run_ai_generation ERROR after {elapsed:.2f}s: {e}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed * 1000,
"error": str(e),
}
},
)
# Publish a StreamError so the frontend can display an error message
try:
await stream_registry.publish_chunk(
task_id,
StreamError(
errorText="An error occurred. Please try again.",
code="stream_error",
),
)
except Exception:
pass # Best-effort; mark_task_completed will publish StreamFinish
await stream_registry.mark_task_completed(task_id, "failed")
# Start the AI generation in a background task
bg_task = asyncio.create_task(run_ai_generation())
await stream_registry.set_task_asyncio_task(task_id, bg_task)
setup_time = (time.perf_counter() - stream_start_time) * 1000
logger.info(
f"[TIMING] Background task started, setup={setup_time:.1f}ms",
extra={"json_fields": {**log_meta, "setup_time_ms": setup_time}},
)
# SSE endpoint that subscribes to the task's stream
async def event_generator() -> AsyncGenerator[str, None]:
import time as time_module
event_gen_start = time_module.perf_counter()
chunk_count = 0
first_chunk_type: str | None = None
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
f"[TIMING] event_generator STARTED, task={task_id}, session={session_id}, "
f"user={user_id}",
extra={"json_fields": log_meta},
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
subscriber_queue = None
first_chunk_yielded = False
chunks_yielded = 0
try:
# Subscribe to the task stream (this replays existing messages + live updates)
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_message_id="0-0", # Get all messages from the beginning
)
if subscriber_queue is None:
yield StreamFinish().to_sse()
yield "data: [DONE]\n\n"
return
# Read from the subscriber queue and yield to SSE
logger.info(
"[TIMING] Starting to read from subscriber_queue",
extra={"json_fields": log_meta},
)
while True:
try:
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
chunks_yielded += 1
if not first_chunk_yielded:
first_chunk_yielded = True
elapsed = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] FIRST CHUNK from queue at {elapsed:.2f}s, "
f"type={type(chunk).__name__}",
extra={
"json_fields": {
**log_meta,
"chunk_type": type(chunk).__name__,
"elapsed_ms": elapsed * 1000,
}
},
)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
total_time = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] StreamFinish received in {total_time:.2f}s; "
f"n_chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"chunks_yielded": chunks_yielded,
"total_time_ms": total_time * 1000,
}
},
)
break
except asyncio.TimeoutError:
yield StreamHeartbeat().to_sse()
except GeneratorExit:
logger.info(
f"[TIMING] GeneratorExit (client disconnected), chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"chunks_yielded": chunks_yielded,
"reason": "client_disconnect",
}
},
)
pass # Client disconnected - background task continues
except Exception as e:
elapsed = (time_module.perf_counter() - event_gen_start) * 1000
logger.error(
f"[TIMING] event_generator ERROR after {elapsed:.1f}ms: {e}",
extra={
"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}
},
)
# Surface error to frontend so it doesn't appear stuck
yield StreamError(
errorText="An error occurred. Please try again.",
code="stream_error",
).to_sse()
yield StreamFinish().to_sse()
finally:
# Unsubscribe when client disconnects or stream ends
if subscriber_queue is not None:
try:
await stream_registry.unsubscribe_from_task(
task_id, subscriber_queue
)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {task_id}: {unsub_err}",
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
total_time = time_module.perf_counter() - event_gen_start
logger.info(
f"[TIMING] event_generator FINISHED in {total_time:.2f}s; "
f"task={task_id}, session={session_id}, n_chunks={chunks_yielded}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time * 1000,
"chunks_yielded": chunks_yielded,
}
},
)
yield "data: [DONE]\n\n"
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
@@ -631,90 +270,63 @@ async def stream_chat_post(
@router.get(
"/sessions/{session_id}/stream",
)
async def resume_session_stream(
async def stream_chat_get(
session_id: str,
message: Annotated[str, Query(min_length=1, max_length=10000)],
user_id: str | None = Depends(auth.get_user_id),
is_user_message: bool = Query(default=True),
):
"""
Resume an active stream for a session.
Stream chat responses for a session (GET - legacy endpoint).
Called by the AI SDK's ``useChat(resume: true)`` on page load.
Checks for an active (in-progress) task on the session and either replays
the full SSE stream or returns 204 No Content if nothing is running.
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
- Text fragments as they are generated
- Tool call UI elements (if invoked)
- Tool execution results
Args:
session_id: The chat session identifier.
session_id: The chat session identifier to associate with the streamed messages.
message: The user's new message to process.
user_id: Optional authenticated user ID.
is_user_message: Whether the message is a user message.
Returns:
StreamingResponse (SSE) when an active stream exists,
or 204 No Content when there is nothing to resume.
StreamingResponse: SSE-formatted response chunks.
"""
import asyncio
active_task, _last_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
if not active_task:
return Response(status_code=204)
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=active_task.task_id,
user_id=user_id,
last_message_id="0-0", # Full replay so useChat rebuilds the message
)
if subscriber_queue is None:
return Response(status_code=204)
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
chunk_count = 0
first_chunk_type: str | None = None
try:
while True:
try:
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
if chunk_count < 3:
logger.info(
"Resume stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
yield StreamHeartbeat().to_sse()
except GeneratorExit:
pass
except Exception as e:
logger.error(f"Error in resume stream for session {session_id}: {e}")
finally:
try:
await stream_registry.unsubscribe_from_task(
active_task.task_id, subscriber_queue
async for chunk in chat_service.stream_chat_completion(
session_id,
message,
is_user_message=is_user_message,
user_id=user_id,
session=session, # Pass pre-fetched session to avoid double-fetch
):
if chunk_count < 3:
logger.info(
"Chat stream chunk",
extra={
"session_id": session_id,
"chunk_type": str(chunk.type),
},
)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {active_task.task_id}: {unsub_err}",
exc_info=True,
)
logger.info(
"Resume stream completed",
extra={
"session_id": session_id,
"n_chunks": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
yield "data: [DONE]\n\n"
if not first_chunk_type:
first_chunk_type = str(chunk.type)
chunk_count += 1
yield chunk.to_sse()
logger.info(
"Chat stream completed",
extra={
"session_id": session_id,
"chunk_count": chunk_count,
"first_chunk_type": first_chunk_type,
},
)
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
@@ -722,8 +334,8 @@ async def resume_session_stream(
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -754,249 +366,6 @@ async def session_assign_user(
return {"status": "ok"}
# ========== Task Streaming (SSE Reconnection) ==========
@router.get(
"/tasks/{task_id}/stream",
)
async def stream_task(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
last_message_id: str = Query(
default="0-0",
description="Last Redis Stream message ID received (e.g., '1706540123456-0'). Use '0-0' for full replay.",
),
):
"""
Reconnect to a long-running task's SSE stream.
When a long-running operation (like agent generation) starts, the client
receives a task_id. If the connection drops, the client can reconnect
using this endpoint to resume receiving updates.
Args:
task_id: The task ID from the operation_started response.
user_id: Authenticated user ID for ownership validation.
last_message_id: Last Redis Stream message ID received ("0-0" for full replay).
Returns:
StreamingResponse: SSE-formatted response chunks starting after last_message_id.
Raises:
HTTPException: 404 if task not found, 410 if task expired, 403 if access denied.
"""
# Check task existence and expiry before subscribing
task, error_code = await stream_registry.get_task_with_expiry_info(task_id)
if error_code == "TASK_EXPIRED":
raise HTTPException(
status_code=410,
detail={
"code": "TASK_EXPIRED",
"message": "This operation has expired. Please try again.",
},
)
if error_code == "TASK_NOT_FOUND":
raise HTTPException(
status_code=404,
detail={
"code": "TASK_NOT_FOUND",
"message": f"Task {task_id} not found.",
},
)
# Validate ownership if task has an owner
if task and task.user_id and user_id != task.user_id:
raise HTTPException(
status_code=403,
detail={
"code": "ACCESS_DENIED",
"message": "You do not have access to this task.",
},
)
# Get subscriber queue from stream registry
subscriber_queue = await stream_registry.subscribe_to_task(
task_id=task_id,
user_id=user_id,
last_message_id=last_message_id,
)
if subscriber_queue is None:
raise HTTPException(
status_code=404,
detail={
"code": "TASK_NOT_FOUND",
"message": f"Task {task_id} not found or access denied.",
},
)
async def event_generator() -> AsyncGenerator[str, None]:
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
try:
while True:
try:
# Wait for next chunk with timeout for heartbeats
chunk = await asyncio.wait_for(
subscriber_queue.get(), timeout=heartbeat_interval
)
yield chunk.to_sse()
# Check for finish signal
if isinstance(chunk, StreamFinish):
break
except asyncio.TimeoutError:
# Send heartbeat to keep connection alive
yield StreamHeartbeat().to_sse()
except Exception as e:
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
finally:
# Unsubscribe when client disconnects or stream ends
try:
await stream_registry.unsubscribe_from_task(task_id, subscriber_queue)
except Exception as unsub_err:
logger.error(
f"Error unsubscribing from task {task_id}: {unsub_err}",
exc_info=True,
)
# AI SDK protocol termination - always yield even if unsubscribe fails
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
"x-vercel-ai-ui-message-stream": "v1",
},
)
@router.get(
"/tasks/{task_id}",
)
async def get_task_status(
task_id: str,
user_id: str | None = Depends(auth.get_user_id),
) -> dict:
"""
Get the status of a long-running task.
Args:
task_id: The task ID to check.
user_id: Authenticated user ID for ownership validation.
Returns:
dict: Task status including task_id, status, tool_name, and operation_id.
Raises:
NotFoundError: If task_id is not found or user doesn't have access.
"""
task = await stream_registry.get_task(task_id)
if task is None:
raise NotFoundError(f"Task {task_id} not found.")
# Validate ownership - if task has an owner, requester must match
if task.user_id and user_id != task.user_id:
raise NotFoundError(f"Task {task_id} not found.")
return {
"task_id": task.task_id,
"session_id": task.session_id,
"status": task.status,
"tool_name": task.tool_name,
"operation_id": task.operation_id,
"created_at": task.created_at.isoformat(),
}
# ========== External Completion Webhook ==========
@router.post(
"/operations/{operation_id}/complete",
status_code=200,
)
async def complete_operation(
operation_id: str,
request: OperationCompleteRequest,
x_api_key: str | None = Header(default=None),
) -> dict:
"""
External completion webhook for long-running operations.
Called by Agent Generator (or other services) when an operation completes.
This triggers the stream registry to publish completion and continue LLM generation.
Args:
operation_id: The operation ID to complete.
request: Completion payload with success status and result/error.
x_api_key: Internal API key for authentication.
Returns:
dict: Status of the completion.
Raises:
HTTPException: If API key is invalid or operation not found.
"""
# Validate internal API key - reject if not configured or invalid
if not config.internal_api_key:
logger.error(
"Operation complete webhook rejected: CHAT_INTERNAL_API_KEY not configured"
)
raise HTTPException(
status_code=503,
detail="Webhook not available: internal API key not configured",
)
if x_api_key != config.internal_api_key:
raise HTTPException(status_code=401, detail="Invalid API key")
# Find task by operation_id
task = await stream_registry.find_task_by_operation_id(operation_id)
if task is None:
raise HTTPException(
status_code=404,
detail=f"Operation {operation_id} not found",
)
logger.info(
f"Received completion webhook for operation {operation_id} "
f"(task_id={task.task_id}, success={request.success})"
)
if request.success:
await process_operation_success(task, request.result)
else:
await process_operation_failure(task, request.error)
return {"status": "ok", "task_id": task.task_id}
# ========== Configuration ==========
@router.get("/config/ttl", status_code=200)
async def get_ttl_config() -> dict:
"""
Get the stream TTL configuration.
Returns the Time-To-Live settings for chat streams, which determines
how long clients can reconnect to an active stream.
Returns:
dict: TTL configuration with seconds and milliseconds values.
"""
return {
"stream_ttl_seconds": config.stream_ttl,
"stream_ttl_ms": config.stream_ttl * 1000,
}
# ========== Health Check ==========
@@ -1033,43 +402,3 @@ async def health_check() -> dict:
"service": "chat",
"version": "0.1.0",
}
# ========== Schema Export (for OpenAPI / Orval codegen) ==========
ToolResponseUnion = (
AgentsFoundResponse
| NoResultsResponse
| AgentDetailsResponse
| SetupRequirementsResponse
| ExecutionStartedResponse
| NeedLoginResponse
| ErrorResponse
| InputValidationErrorResponse
| AgentOutputResponse
| UnderstandingUpdatedResponse
| AgentPreviewResponse
| AgentSavedResponse
| ClarificationNeededResponse
| BlockListResponse
| BlockDetailsResponse
| BlockOutputResponse
| DocSearchResultsResponse
| DocPageResponse
| OperationStartedResponse
| OperationPendingResponse
| OperationInProgressResponse
)
@router.get(
"/schema/tool-responses",
response_model=ToolResponseUnion,
include_in_schema=True,
summary="[Dummy] Tool response type export for codegen",
description="This endpoint is not meant to be called. It exists solely to "
"expose tool response models in the OpenAPI schema for frontend codegen.",
)
async def _tool_response_schema() -> ToolResponseUnion: # type: ignore[return]
"""Never called at runtime. Exists only so Orval generates TS types."""
raise HTTPException(status_code=501, detail="Schema-only endpoint")

View File

@@ -1,14 +0,0 @@
"""Claude Agent SDK integration for CoPilot.
This module provides the integration layer between the Claude Agent SDK
and the existing CoPilot tool system, enabling drop-in replacement of
the current LLM orchestration with the battle-tested Claude Agent SDK.
"""
from .service import stream_chat_completion_sdk
from .tool_adapter import create_copilot_mcp_server
__all__ = [
"stream_chat_completion_sdk",
"create_copilot_mcp_server",
]

View File

@@ -1,203 +0,0 @@
"""Response adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
This module provides the adapter layer that converts streaming messages from
the Claude Agent SDK into the Vercel AI SDK UI Stream Protocol format that
the frontend expects.
"""
import json
import logging
import uuid
from claude_agent_sdk import (
AssistantMessage,
Message,
ResultMessage,
SystemMessage,
TextBlock,
ToolResultBlock,
ToolUseBlock,
UserMessage,
)
from backend.api.features.chat.response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamFinishStep,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
)
from backend.api.features.chat.sdk.tool_adapter import (
MCP_TOOL_PREFIX,
pop_pending_tool_output,
)
logger = logging.getLogger(__name__)
class SDKResponseAdapter:
"""Adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
This class maintains state during a streaming session to properly track
text blocks, tool calls, and message lifecycle.
"""
def __init__(self, message_id: str | None = None):
self.message_id = message_id or str(uuid.uuid4())
self.text_block_id = str(uuid.uuid4())
self.has_started_text = False
self.has_ended_text = False
self.current_tool_calls: dict[str, dict[str, str]] = {}
self.task_id: str | None = None
self.step_open = False
def set_task_id(self, task_id: str) -> None:
"""Set the task ID for reconnection support."""
self.task_id = task_id
def convert_message(self, sdk_message: Message) -> list[StreamBaseResponse]:
"""Convert a single SDK message to Vercel AI SDK format."""
responses: list[StreamBaseResponse] = []
if isinstance(sdk_message, SystemMessage):
if sdk_message.subtype == "init":
responses.append(
StreamStart(messageId=self.message_id, taskId=self.task_id)
)
# Open the first step (matches non-SDK: StreamStart then StreamStartStep)
responses.append(StreamStartStep())
self.step_open = True
elif isinstance(sdk_message, AssistantMessage):
# After tool results, the SDK sends a new AssistantMessage for the
# next LLM turn. Open a new step if the previous one was closed.
if not self.step_open:
responses.append(StreamStartStep())
self.step_open = True
for block in sdk_message.content:
if isinstance(block, TextBlock):
if block.text:
self._ensure_text_started(responses)
responses.append(
StreamTextDelta(id=self.text_block_id, delta=block.text)
)
elif isinstance(block, ToolUseBlock):
self._end_text_if_open(responses)
# Strip MCP prefix so frontend sees "find_block"
# instead of "mcp__copilot__find_block".
tool_name = block.name.removeprefix(MCP_TOOL_PREFIX)
responses.append(
StreamToolInputStart(toolCallId=block.id, toolName=tool_name)
)
responses.append(
StreamToolInputAvailable(
toolCallId=block.id,
toolName=tool_name,
input=block.input,
)
)
self.current_tool_calls[block.id] = {"name": tool_name}
elif isinstance(sdk_message, UserMessage):
# UserMessage carries tool results back from tool execution.
content = sdk_message.content
blocks = content if isinstance(content, list) else []
for block in blocks:
if isinstance(block, ToolResultBlock) and block.tool_use_id:
tool_info = self.current_tool_calls.get(block.tool_use_id, {})
tool_name = tool_info.get("name", "unknown")
# Prefer the stashed full output over the SDK's
# (potentially truncated) ToolResultBlock content.
# The SDK truncates large results, writing them to disk,
# which breaks frontend widget parsing.
output = pop_pending_tool_output(tool_name) or (
_extract_tool_output(block.content)
)
responses.append(
StreamToolOutputAvailable(
toolCallId=block.tool_use_id,
toolName=tool_name,
output=output,
success=not (block.is_error or False),
)
)
# Close the current step after tool results — the next
# AssistantMessage will open a new step for the continuation.
if self.step_open:
responses.append(StreamFinishStep())
self.step_open = False
elif isinstance(sdk_message, ResultMessage):
self._end_text_if_open(responses)
# Close the step before finishing.
if self.step_open:
responses.append(StreamFinishStep())
self.step_open = False
if sdk_message.subtype == "success":
responses.append(StreamFinish())
elif sdk_message.subtype in ("error", "error_during_execution"):
error_msg = getattr(sdk_message, "result", None) or "Unknown error"
responses.append(
StreamError(errorText=str(error_msg), code="sdk_error")
)
responses.append(StreamFinish())
else:
logger.warning(
f"Unexpected ResultMessage subtype: {sdk_message.subtype}"
)
responses.append(StreamFinish())
else:
logger.debug(f"Unhandled SDK message type: {type(sdk_message).__name__}")
return responses
def _ensure_text_started(self, responses: list[StreamBaseResponse]) -> None:
"""Start (or restart) a text block if needed."""
if not self.has_started_text or self.has_ended_text:
if self.has_ended_text:
self.text_block_id = str(uuid.uuid4())
self.has_ended_text = False
responses.append(StreamTextStart(id=self.text_block_id))
self.has_started_text = True
def _end_text_if_open(self, responses: list[StreamBaseResponse]) -> None:
"""End the current text block if one is open."""
if self.has_started_text and not self.has_ended_text:
responses.append(StreamTextEnd(id=self.text_block_id))
self.has_ended_text = True
def _extract_tool_output(content: str | list[dict[str, str]] | None) -> str:
"""Extract a string output from a ToolResultBlock's content field."""
if isinstance(content, str):
return content
if isinstance(content, list):
parts = [item.get("text", "") for item in content if item.get("type") == "text"]
if parts:
return "".join(parts)
try:
return json.dumps(content)
except (TypeError, ValueError):
return str(content)
if content is None:
return ""
try:
return json.dumps(content)
except (TypeError, ValueError):
return str(content)

View File

@@ -1,366 +0,0 @@
"""Unit tests for the SDK response adapter."""
from claude_agent_sdk import (
AssistantMessage,
ResultMessage,
SystemMessage,
TextBlock,
ToolResultBlock,
ToolUseBlock,
UserMessage,
)
from backend.api.features.chat.response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamFinishStep,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
)
from .response_adapter import SDKResponseAdapter
from .tool_adapter import MCP_TOOL_PREFIX
def _adapter() -> SDKResponseAdapter:
a = SDKResponseAdapter(message_id="msg-1")
a.set_task_id("task-1")
return a
# -- SystemMessage -----------------------------------------------------------
def test_system_init_emits_start_and_step():
adapter = _adapter()
results = adapter.convert_message(SystemMessage(subtype="init", data={}))
assert len(results) == 2
assert isinstance(results[0], StreamStart)
assert results[0].messageId == "msg-1"
assert results[0].taskId == "task-1"
assert isinstance(results[1], StreamStartStep)
def test_system_non_init_emits_nothing():
adapter = _adapter()
results = adapter.convert_message(SystemMessage(subtype="other", data={}))
assert results == []
# -- AssistantMessage with TextBlock -----------------------------------------
def test_text_block_emits_step_start_and_delta():
adapter = _adapter()
msg = AssistantMessage(content=[TextBlock(text="hello")], model="test")
results = adapter.convert_message(msg)
assert len(results) == 3
assert isinstance(results[0], StreamStartStep)
assert isinstance(results[1], StreamTextStart)
assert isinstance(results[2], StreamTextDelta)
assert results[2].delta == "hello"
def test_empty_text_block_emits_only_step():
adapter = _adapter()
msg = AssistantMessage(content=[TextBlock(text="")], model="test")
results = adapter.convert_message(msg)
# Empty text skipped, but step still opens
assert len(results) == 1
assert isinstance(results[0], StreamStartStep)
def test_multiple_text_deltas_reuse_block_id():
adapter = _adapter()
msg1 = AssistantMessage(content=[TextBlock(text="a")], model="test")
msg2 = AssistantMessage(content=[TextBlock(text="b")], model="test")
r1 = adapter.convert_message(msg1)
r2 = adapter.convert_message(msg2)
# First gets step+start+delta, second only delta (block & step already started)
assert len(r1) == 3
assert isinstance(r1[0], StreamStartStep)
assert isinstance(r1[1], StreamTextStart)
assert len(r2) == 1
assert isinstance(r2[0], StreamTextDelta)
assert r1[1].id == r2[0].id # same block ID
# -- AssistantMessage with ToolUseBlock --------------------------------------
def test_tool_use_emits_input_start_and_available():
"""Tool names arrive with MCP prefix and should be stripped for the frontend."""
adapter = _adapter()
msg = AssistantMessage(
content=[
ToolUseBlock(
id="tool-1",
name=f"{MCP_TOOL_PREFIX}find_agent",
input={"q": "x"},
)
],
model="test",
)
results = adapter.convert_message(msg)
assert len(results) == 3
assert isinstance(results[0], StreamStartStep)
assert isinstance(results[1], StreamToolInputStart)
assert results[1].toolCallId == "tool-1"
assert results[1].toolName == "find_agent" # prefix stripped
assert isinstance(results[2], StreamToolInputAvailable)
assert results[2].toolName == "find_agent" # prefix stripped
assert results[2].input == {"q": "x"}
def test_text_then_tool_ends_text_block():
adapter = _adapter()
text_msg = AssistantMessage(content=[TextBlock(text="thinking...")], model="test")
tool_msg = AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
model="test",
)
adapter.convert_message(text_msg) # opens step + text
results = adapter.convert_message(tool_msg)
# Step already open, so: TextEnd, ToolInputStart, ToolInputAvailable
assert len(results) == 3
assert isinstance(results[0], StreamTextEnd)
assert isinstance(results[1], StreamToolInputStart)
# -- UserMessage with ToolResultBlock ----------------------------------------
def test_tool_result_emits_output_and_finish_step():
adapter = _adapter()
# First register the tool call (opens step) — SDK sends prefixed name
tool_msg = AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}find_agent", input={})],
model="test",
)
adapter.convert_message(tool_msg)
# Now send tool result
result_msg = UserMessage(
content=[ToolResultBlock(tool_use_id="t1", content="found 3 agents")]
)
results = adapter.convert_message(result_msg)
assert len(results) == 2
assert isinstance(results[0], StreamToolOutputAvailable)
assert results[0].toolCallId == "t1"
assert results[0].toolName == "find_agent" # prefix stripped
assert results[0].output == "found 3 agents"
assert results[0].success is True
assert isinstance(results[1], StreamFinishStep)
def test_tool_result_error():
adapter = _adapter()
adapter.convert_message(
AssistantMessage(
content=[
ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}run_agent", input={})
],
model="test",
)
)
result_msg = UserMessage(
content=[ToolResultBlock(tool_use_id="t1", content="timeout", is_error=True)]
)
results = adapter.convert_message(result_msg)
assert isinstance(results[0], StreamToolOutputAvailable)
assert results[0].success is False
assert isinstance(results[1], StreamFinishStep)
def test_tool_result_list_content():
adapter = _adapter()
adapter.convert_message(
AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
model="test",
)
)
result_msg = UserMessage(
content=[
ToolResultBlock(
tool_use_id="t1",
content=[
{"type": "text", "text": "line1"},
{"type": "text", "text": "line2"},
],
)
]
)
results = adapter.convert_message(result_msg)
assert isinstance(results[0], StreamToolOutputAvailable)
assert results[0].output == "line1line2"
assert isinstance(results[1], StreamFinishStep)
def test_string_user_message_ignored():
"""A plain string UserMessage (not tool results) produces no output."""
adapter = _adapter()
results = adapter.convert_message(UserMessage(content="hello"))
assert results == []
# -- ResultMessage -----------------------------------------------------------
def test_result_success_emits_finish_step_and_finish():
adapter = _adapter()
# Start some text first (opens step)
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="done")], model="test")
)
msg = ResultMessage(
subtype="success",
duration_ms=100,
duration_api_ms=50,
is_error=False,
num_turns=1,
session_id="s1",
)
results = adapter.convert_message(msg)
# TextEnd + FinishStep + StreamFinish
assert len(results) == 3
assert isinstance(results[0], StreamTextEnd)
assert isinstance(results[1], StreamFinishStep)
assert isinstance(results[2], StreamFinish)
def test_result_error_emits_error_and_finish():
adapter = _adapter()
msg = ResultMessage(
subtype="error",
duration_ms=100,
duration_api_ms=50,
is_error=True,
num_turns=0,
session_id="s1",
result="API rate limited",
)
results = adapter.convert_message(msg)
# No step was open, so no FinishStep — just Error + Finish
assert len(results) == 2
assert isinstance(results[0], StreamError)
assert "API rate limited" in results[0].errorText
assert isinstance(results[1], StreamFinish)
# -- Text after tools (new block ID) ----------------------------------------
def test_text_after_tool_gets_new_block_id():
adapter = _adapter()
# Text -> Tool -> ToolResult -> Text should get a new text block ID and step
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="before")], model="test")
)
adapter.convert_message(
AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
model="test",
)
)
# Send tool result (closes step)
adapter.convert_message(
UserMessage(content=[ToolResultBlock(tool_use_id="t1", content="ok")])
)
results = adapter.convert_message(
AssistantMessage(content=[TextBlock(text="after")], model="test")
)
# Should get StreamStartStep (new step) + StreamTextStart (new block) + StreamTextDelta
assert len(results) == 3
assert isinstance(results[0], StreamStartStep)
assert isinstance(results[1], StreamTextStart)
assert isinstance(results[2], StreamTextDelta)
assert results[2].delta == "after"
# -- Full conversation flow --------------------------------------------------
def test_full_conversation_flow():
"""Simulate a complete conversation: init -> text -> tool -> result -> text -> finish."""
adapter = _adapter()
all_responses: list[StreamBaseResponse] = []
# 1. Init
all_responses.extend(
adapter.convert_message(SystemMessage(subtype="init", data={}))
)
# 2. Assistant text
all_responses.extend(
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="Let me search")], model="test")
)
)
# 3. Tool use
all_responses.extend(
adapter.convert_message(
AssistantMessage(
content=[
ToolUseBlock(
id="t1",
name=f"{MCP_TOOL_PREFIX}find_agent",
input={"query": "email"},
)
],
model="test",
)
)
)
# 4. Tool result
all_responses.extend(
adapter.convert_message(
UserMessage(
content=[ToolResultBlock(tool_use_id="t1", content="Found 2 agents")]
)
)
)
# 5. More text
all_responses.extend(
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="I found 2")], model="test")
)
)
# 6. Result
all_responses.extend(
adapter.convert_message(
ResultMessage(
subtype="success",
duration_ms=500,
duration_api_ms=400,
is_error=False,
num_turns=2,
session_id="s1",
)
)
)
types = [type(r).__name__ for r in all_responses]
assert types == [
"StreamStart",
"StreamStartStep", # step 1: text + tool call
"StreamTextStart",
"StreamTextDelta", # "Let me search"
"StreamTextEnd", # closed before tool
"StreamToolInputStart",
"StreamToolInputAvailable",
"StreamToolOutputAvailable", # tool result
"StreamFinishStep", # step 1 closed after tool result
"StreamStartStep", # step 2: continuation text
"StreamTextStart", # new block after tool
"StreamTextDelta", # "I found 2"
"StreamTextEnd", # closed by result
"StreamFinishStep", # step 2 closed
"StreamFinish",
]

View File

@@ -1,335 +0,0 @@
"""Security hooks for Claude Agent SDK integration.
This module provides security hooks that validate tool calls before execution,
ensuring multi-user isolation and preventing unauthorized operations.
"""
import json
import logging
import os
import re
from collections.abc import Callable
from typing import Any, cast
from backend.api.features.chat.sdk.tool_adapter import MCP_TOOL_PREFIX
logger = logging.getLogger(__name__)
# Tools that are blocked entirely (CLI/system access).
# "Bash" (capital) is the SDK built-in — it's NOT in allowed_tools but blocked
# here as defence-in-depth. The agent uses mcp__copilot__bash_exec instead,
# which has kernel-level network isolation (unshare --net).
BLOCKED_TOOLS = {
"Bash",
"bash",
"shell",
"exec",
"terminal",
"command",
}
# Tools allowed only when their path argument stays within the SDK workspace.
# The SDK uses these to handle oversized tool results (writes to tool-results/
# files, then reads them back) and for workspace file operations.
WORKSPACE_SCOPED_TOOLS = {"Read", "Write", "Edit", "Glob", "Grep"}
# Dangerous patterns in tool inputs
DANGEROUS_PATTERNS = [
r"sudo",
r"rm\s+-rf",
r"dd\s+if=",
r"/etc/passwd",
r"/etc/shadow",
r"chmod\s+777",
r"curl\s+.*\|.*sh",
r"wget\s+.*\|.*sh",
r"eval\s*\(",
r"exec\s*\(",
r"__import__",
r"os\.system",
r"subprocess",
]
def _deny(reason: str) -> dict[str, Any]:
"""Return a hook denial response."""
return {
"hookSpecificOutput": {
"hookEventName": "PreToolUse",
"permissionDecision": "deny",
"permissionDecisionReason": reason,
}
}
def _validate_workspace_path(
tool_name: str, tool_input: dict[str, Any], sdk_cwd: str | None
) -> dict[str, Any]:
"""Validate that a workspace-scoped tool only accesses allowed paths.
Allowed directories:
- The SDK working directory (``/tmp/copilot-<session>/``)
- The SDK tool-results directory (``~/.claude/projects/…/tool-results/``)
"""
path = tool_input.get("file_path") or tool_input.get("path") or ""
if not path:
# Glob/Grep without a path default to cwd which is already sandboxed
return {}
# Resolve relative paths against sdk_cwd (the SDK sets cwd so the LLM
# naturally uses relative paths like "test.txt" instead of absolute ones).
# Tilde paths (~/) are home-dir references, not relative — expand first.
if path.startswith("~"):
resolved = os.path.realpath(os.path.expanduser(path))
elif not os.path.isabs(path) and sdk_cwd:
resolved = os.path.realpath(os.path.join(sdk_cwd, path))
else:
resolved = os.path.realpath(path)
# Allow access within the SDK working directory
if sdk_cwd:
norm_cwd = os.path.realpath(sdk_cwd)
if resolved.startswith(norm_cwd + os.sep) or resolved == norm_cwd:
return {}
# Allow access to ~/.claude/projects/*/tool-results/ (big tool results)
claude_dir = os.path.realpath(os.path.expanduser("~/.claude/projects"))
tool_results_seg = os.sep + "tool-results" + os.sep
if resolved.startswith(claude_dir + os.sep) and tool_results_seg in resolved:
return {}
logger.warning(
f"Blocked {tool_name} outside workspace: {path} (resolved={resolved})"
)
workspace_hint = f" Allowed workspace: {sdk_cwd}" if sdk_cwd else ""
return _deny(
f"[SECURITY] Tool '{tool_name}' can only access files within the workspace "
f"directory.{workspace_hint} "
"This is enforced by the platform and cannot be bypassed."
)
def _validate_tool_access(
tool_name: str, tool_input: dict[str, Any], sdk_cwd: str | None = None
) -> dict[str, Any]:
"""Validate that a tool call is allowed.
Returns:
Empty dict to allow, or dict with hookSpecificOutput to deny
"""
# Block forbidden tools
if tool_name in BLOCKED_TOOLS:
logger.warning(f"Blocked tool access attempt: {tool_name}")
return _deny(
f"[SECURITY] Tool '{tool_name}' is blocked for security. "
"This is enforced by the platform and cannot be bypassed. "
"Use the CoPilot-specific MCP tools instead."
)
# Workspace-scoped tools: allowed only within the SDK workspace directory
if tool_name in WORKSPACE_SCOPED_TOOLS:
return _validate_workspace_path(tool_name, tool_input, sdk_cwd)
# Check for dangerous patterns in tool input
# Use json.dumps for predictable format (str() produces Python repr)
input_str = json.dumps(tool_input) if tool_input else ""
for pattern in DANGEROUS_PATTERNS:
if re.search(pattern, input_str, re.IGNORECASE):
logger.warning(
f"Blocked dangerous pattern in tool input: {pattern} in {tool_name}"
)
return _deny(
"[SECURITY] Input contains a blocked pattern. "
"This is enforced by the platform and cannot be bypassed."
)
return {}
def _validate_user_isolation(
tool_name: str, tool_input: dict[str, Any], user_id: str | None
) -> dict[str, Any]:
"""Validate that tool calls respect user isolation."""
# For workspace file tools, ensure path doesn't escape
if "workspace" in tool_name.lower():
path = tool_input.get("path", "") or tool_input.get("file_path", "")
if path:
# Check for path traversal
if ".." in path or path.startswith("/"):
logger.warning(
f"Blocked path traversal attempt: {path} by user {user_id}"
)
return {
"hookSpecificOutput": {
"hookEventName": "PreToolUse",
"permissionDecision": "deny",
"permissionDecisionReason": "Path traversal not allowed",
}
}
return {}
def create_security_hooks(
user_id: str | None,
sdk_cwd: str | None = None,
max_subtasks: int = 3,
on_stop: Callable[[str, str], None] | None = None,
) -> dict[str, Any]:
"""Create the security hooks configuration for Claude Agent SDK.
Includes security validation and observability hooks:
- PreToolUse: Security validation before tool execution
- PostToolUse: Log successful tool executions
- PostToolUseFailure: Log and handle failed tool executions
- PreCompact: Log context compaction events (SDK handles compaction automatically)
- Stop: Capture transcript path for stateless resume (when *on_stop* is provided)
Args:
user_id: Current user ID for isolation validation
sdk_cwd: SDK working directory for workspace-scoped tool validation
max_subtasks: Maximum Task (sub-agent) spawns allowed per session
on_stop: Callback ``(transcript_path, sdk_session_id)`` invoked when
the SDK finishes processing — used to read the JSONL transcript
before the CLI process exits.
Returns:
Hooks configuration dict for ClaudeAgentOptions
"""
try:
from claude_agent_sdk import HookMatcher
from claude_agent_sdk.types import HookContext, HookInput, SyncHookJSONOutput
# Per-session counter for Task sub-agent spawns
task_spawn_count = 0
async def pre_tool_use_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Combined pre-tool-use validation hook."""
nonlocal task_spawn_count
_ = context # unused but required by signature
tool_name = cast(str, input_data.get("tool_name", ""))
tool_input = cast(dict[str, Any], input_data.get("tool_input", {}))
# Rate-limit Task (sub-agent) spawns per session
if tool_name == "Task":
task_spawn_count += 1
if task_spawn_count > max_subtasks:
logger.warning(
f"[SDK] Task limit reached ({max_subtasks}), user={user_id}"
)
return cast(
SyncHookJSONOutput,
_deny(
f"Maximum {max_subtasks} sub-tasks per session. "
"Please continue in the main conversation."
),
)
# Strip MCP prefix for consistent validation
is_copilot_tool = tool_name.startswith(MCP_TOOL_PREFIX)
clean_name = tool_name.removeprefix(MCP_TOOL_PREFIX)
# Only block non-CoPilot tools; our MCP-registered tools
# (including Read for oversized results) are already sandboxed.
if not is_copilot_tool:
result = _validate_tool_access(clean_name, tool_input, sdk_cwd)
if result:
return cast(SyncHookJSONOutput, result)
# Validate user isolation
result = _validate_user_isolation(clean_name, tool_input, user_id)
if result:
return cast(SyncHookJSONOutput, result)
logger.debug(f"[SDK] Tool start: {tool_name}, user={user_id}")
return cast(SyncHookJSONOutput, {})
async def post_tool_use_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log successful tool executions for observability."""
_ = context
tool_name = cast(str, input_data.get("tool_name", ""))
logger.debug(f"[SDK] Tool success: {tool_name}, tool_use_id={tool_use_id}")
return cast(SyncHookJSONOutput, {})
async def post_tool_failure_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log failed tool executions for debugging."""
_ = context
tool_name = cast(str, input_data.get("tool_name", ""))
error = input_data.get("error", "Unknown error")
logger.warning(
f"[SDK] Tool failed: {tool_name}, error={error}, "
f"user={user_id}, tool_use_id={tool_use_id}"
)
return cast(SyncHookJSONOutput, {})
async def pre_compact_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log when SDK triggers context compaction.
The SDK automatically compacts conversation history when it grows too large.
This hook provides visibility into when compaction happens.
"""
_ = context, tool_use_id
trigger = input_data.get("trigger", "auto")
logger.info(
f"[SDK] Context compaction triggered: {trigger}, user={user_id}"
)
return cast(SyncHookJSONOutput, {})
# --- Stop hook: capture transcript path for stateless resume ---
async def stop_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Capture transcript path when SDK finishes processing.
The Stop hook fires while the CLI process is still alive, giving us
a reliable window to read the JSONL transcript before SIGTERM.
"""
_ = context, tool_use_id
transcript_path = cast(str, input_data.get("transcript_path", ""))
sdk_session_id = cast(str, input_data.get("session_id", ""))
if transcript_path and on_stop:
logger.info(
f"[SDK] Stop hook: transcript_path={transcript_path}, "
f"sdk_session_id={sdk_session_id[:12]}..."
)
on_stop(transcript_path, sdk_session_id)
return cast(SyncHookJSONOutput, {})
hooks: dict[str, Any] = {
"PreToolUse": [HookMatcher(matcher="*", hooks=[pre_tool_use_hook])],
"PostToolUse": [HookMatcher(matcher="*", hooks=[post_tool_use_hook])],
"PostToolUseFailure": [
HookMatcher(matcher="*", hooks=[post_tool_failure_hook])
],
"PreCompact": [HookMatcher(matcher="*", hooks=[pre_compact_hook])],
}
if on_stop is not None:
hooks["Stop"] = [HookMatcher(matcher=None, hooks=[stop_hook])]
return hooks
except ImportError:
# Fallback for when SDK isn't available - return empty hooks
logger.warning("claude-agent-sdk not available, security hooks disabled")
return {}

View File

@@ -1,165 +0,0 @@
"""Unit tests for SDK security hooks."""
import os
from .security_hooks import _validate_tool_access, _validate_user_isolation
SDK_CWD = "/tmp/copilot-abc123"
def _is_denied(result: dict) -> bool:
hook = result.get("hookSpecificOutput", {})
return hook.get("permissionDecision") == "deny"
# -- Blocked tools -----------------------------------------------------------
def test_blocked_tools_denied():
for tool in ("bash", "shell", "exec", "terminal", "command"):
result = _validate_tool_access(tool, {})
assert _is_denied(result), f"{tool} should be blocked"
def test_unknown_tool_allowed():
result = _validate_tool_access("SomeCustomTool", {})
assert result == {}
# -- Workspace-scoped tools --------------------------------------------------
def test_read_within_workspace_allowed():
result = _validate_tool_access(
"Read", {"file_path": f"{SDK_CWD}/file.txt"}, sdk_cwd=SDK_CWD
)
assert result == {}
def test_write_within_workspace_allowed():
result = _validate_tool_access(
"Write", {"file_path": f"{SDK_CWD}/output.json"}, sdk_cwd=SDK_CWD
)
assert result == {}
def test_edit_within_workspace_allowed():
result = _validate_tool_access(
"Edit", {"file_path": f"{SDK_CWD}/src/main.py"}, sdk_cwd=SDK_CWD
)
assert result == {}
def test_glob_within_workspace_allowed():
result = _validate_tool_access("Glob", {"path": f"{SDK_CWD}/src"}, sdk_cwd=SDK_CWD)
assert result == {}
def test_grep_within_workspace_allowed():
result = _validate_tool_access("Grep", {"path": f"{SDK_CWD}/src"}, sdk_cwd=SDK_CWD)
assert result == {}
def test_read_outside_workspace_denied():
result = _validate_tool_access(
"Read", {"file_path": "/etc/passwd"}, sdk_cwd=SDK_CWD
)
assert _is_denied(result)
def test_write_outside_workspace_denied():
result = _validate_tool_access(
"Write", {"file_path": "/home/user/secrets.txt"}, sdk_cwd=SDK_CWD
)
assert _is_denied(result)
def test_traversal_attack_denied():
result = _validate_tool_access(
"Read",
{"file_path": f"{SDK_CWD}/../../etc/passwd"},
sdk_cwd=SDK_CWD,
)
assert _is_denied(result)
def test_no_path_allowed():
"""Glob/Grep without a path argument defaults to cwd — should pass."""
result = _validate_tool_access("Glob", {}, sdk_cwd=SDK_CWD)
assert result == {}
def test_read_no_cwd_denies_absolute():
"""If no sdk_cwd is set, absolute paths are denied."""
result = _validate_tool_access("Read", {"file_path": "/tmp/anything"})
assert _is_denied(result)
# -- Tool-results directory --------------------------------------------------
def test_read_tool_results_allowed():
home = os.path.expanduser("~")
path = f"{home}/.claude/projects/-tmp-copilot-abc123/tool-results/12345.txt"
result = _validate_tool_access("Read", {"file_path": path}, sdk_cwd=SDK_CWD)
assert result == {}
def test_read_claude_projects_without_tool_results_denied():
home = os.path.expanduser("~")
path = f"{home}/.claude/projects/-tmp-copilot-abc123/settings.json"
result = _validate_tool_access("Read", {"file_path": path}, sdk_cwd=SDK_CWD)
assert _is_denied(result)
# -- Built-in Bash is blocked (use bash_exec MCP tool instead) ---------------
def test_bash_builtin_always_blocked():
"""SDK built-in Bash is blocked — bash_exec MCP tool with bubblewrap is used instead."""
result = _validate_tool_access("Bash", {"command": "echo hello"}, sdk_cwd=SDK_CWD)
assert _is_denied(result)
# -- Dangerous patterns ------------------------------------------------------
def test_dangerous_pattern_blocked():
result = _validate_tool_access("SomeTool", {"cmd": "sudo rm -rf /"})
assert _is_denied(result)
def test_subprocess_pattern_blocked():
result = _validate_tool_access("SomeTool", {"code": "subprocess.run(...)"})
assert _is_denied(result)
# -- User isolation ----------------------------------------------------------
def test_workspace_path_traversal_blocked():
result = _validate_user_isolation(
"workspace_read", {"path": "../../../etc/shadow"}, user_id="user-1"
)
assert _is_denied(result)
def test_workspace_absolute_path_blocked():
result = _validate_user_isolation(
"workspace_read", {"path": "/etc/passwd"}, user_id="user-1"
)
assert _is_denied(result)
def test_workspace_normal_path_allowed():
result = _validate_user_isolation(
"workspace_read", {"path": "src/main.py"}, user_id="user-1"
)
assert result == {}
def test_non_workspace_tool_passes_isolation():
result = _validate_user_isolation(
"find_agent", {"query": "email"}, user_id="user-1"
)
assert result == {}

View File

@@ -1,751 +0,0 @@
"""Claude Agent SDK service layer for CoPilot chat completions."""
import asyncio
import json
import logging
import os
import uuid
from collections.abc import AsyncGenerator
from dataclasses import dataclass
from typing import Any
from backend.util.exceptions import NotFoundError
from .. import stream_registry
from ..config import ChatConfig
from ..model import (
ChatMessage,
ChatSession,
get_chat_session,
update_session_title,
upsert_chat_session,
)
from ..response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamStart,
StreamTextDelta,
StreamToolInputAvailable,
StreamToolOutputAvailable,
)
from ..service import (
_build_system_prompt,
_execute_long_running_tool_with_streaming,
_generate_session_title,
)
from ..tools.models import OperationPendingResponse, OperationStartedResponse
from ..tools.sandbox import WORKSPACE_PREFIX, make_session_path
from ..tracking import track_user_message
from .response_adapter import SDKResponseAdapter
from .security_hooks import create_security_hooks
from .tool_adapter import (
COPILOT_TOOL_NAMES,
LongRunningCallback,
create_copilot_mcp_server,
set_execution_context,
)
from .transcript import (
download_transcript,
read_transcript_file,
upload_transcript,
validate_transcript,
write_transcript_to_tempfile,
)
logger = logging.getLogger(__name__)
config = ChatConfig()
# Set to hold background tasks to prevent garbage collection
_background_tasks: set[asyncio.Task[Any]] = set()
@dataclass
class CapturedTranscript:
"""Info captured by the SDK Stop hook for stateless --resume."""
path: str = ""
sdk_session_id: str = ""
@property
def available(self) -> bool:
return bool(self.path)
_SDK_CWD_PREFIX = WORKSPACE_PREFIX
# Appended to the system prompt to inform the agent about available tools.
# The SDK built-in Bash is NOT available — use mcp__copilot__bash_exec instead,
# which has kernel-level network isolation (unshare --net).
_SDK_TOOL_SUPPLEMENT = """
## Tool notes
- The SDK built-in Bash tool is NOT available. Use the `bash_exec` MCP tool
for shell commands — it runs in a network-isolated sandbox.
- **Shared workspace**: The SDK Read/Write tools and `bash_exec` share the
same working directory. Files created by one are readable by the other.
These files are **ephemeral** — they exist only for the current session.
- **Persistent storage**: Use `write_workspace_file` / `read_workspace_file`
for files that should persist across sessions (stored in cloud storage).
- Long-running tools (create_agent, edit_agent, etc.) are handled
asynchronously. You will receive an immediate response; the actual result
is delivered to the user via a background stream.
"""
def _build_long_running_callback(user_id: str | None) -> LongRunningCallback:
"""Build a callback that delegates long-running tools to the non-SDK infrastructure.
Long-running tools (create_agent, edit_agent, etc.) are delegated to the
existing background infrastructure: stream_registry (Redis Streams),
database persistence, and SSE reconnection. This means results survive
page refreshes / pod restarts, and the frontend shows the proper loading
widget with progress updates.
The returned callback matches the ``LongRunningCallback`` signature:
``(tool_name, args, session) -> MCP response dict``.
"""
async def _callback(
tool_name: str, args: dict[str, Any], session: ChatSession
) -> dict[str, Any]:
operation_id = str(uuid.uuid4())
task_id = str(uuid.uuid4())
tool_call_id = f"sdk-{uuid.uuid4().hex[:12]}"
session_id = session.session_id
# --- Build user-friendly messages (matches non-SDK service) ---
if tool_name == "create_agent":
desc = args.get("description", "")
desc_preview = (desc[:100] + "...") if len(desc) > 100 else desc
pending_msg = (
f"Creating your agent: {desc_preview}"
if desc_preview
else "Creating agent... This may take a few minutes."
)
started_msg = (
"Agent creation started. You can close this tab - "
"check your library in a few minutes."
)
elif tool_name == "edit_agent":
changes = args.get("changes", "")
changes_preview = (changes[:100] + "...") if len(changes) > 100 else changes
pending_msg = (
f"Editing agent: {changes_preview}"
if changes_preview
else "Editing agent... This may take a few minutes."
)
started_msg = (
"Agent edit started. You can close this tab - "
"check your library in a few minutes."
)
else:
pending_msg = f"Running {tool_name}... This may take a few minutes."
started_msg = (
f"{tool_name} started. You can close this tab - "
"check back in a few minutes."
)
# --- Register task in Redis for SSE reconnection ---
await stream_registry.create_task(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id=tool_call_id,
tool_name=tool_name,
operation_id=operation_id,
)
# --- Save OperationPendingResponse to chat history ---
pending_message = ChatMessage(
role="tool",
content=OperationPendingResponse(
message=pending_msg,
operation_id=operation_id,
tool_name=tool_name,
).model_dump_json(),
tool_call_id=tool_call_id,
)
session.messages.append(pending_message)
await upsert_chat_session(session)
# --- Spawn background task (reuses non-SDK infrastructure) ---
bg_task = asyncio.create_task(
_execute_long_running_tool_with_streaming(
tool_name=tool_name,
parameters=args,
tool_call_id=tool_call_id,
operation_id=operation_id,
task_id=task_id,
session_id=session_id,
user_id=user_id,
)
)
_background_tasks.add(bg_task)
bg_task.add_done_callback(_background_tasks.discard)
await stream_registry.set_task_asyncio_task(task_id, bg_task)
logger.info(
f"[SDK] Long-running tool {tool_name} delegated to background "
f"(operation_id={operation_id}, task_id={task_id})"
)
# --- Return OperationStartedResponse as MCP tool result ---
# This flows through SDK → response adapter → frontend, triggering
# the loading widget with SSE reconnection support.
started_json = OperationStartedResponse(
message=started_msg,
operation_id=operation_id,
tool_name=tool_name,
task_id=task_id,
).model_dump_json()
return {
"content": [{"type": "text", "text": started_json}],
"isError": False,
}
return _callback
def _resolve_sdk_model() -> str | None:
"""Resolve the model name for the Claude Agent SDK CLI.
Uses ``config.claude_agent_model`` if set, otherwise derives from
``config.model`` by stripping the OpenRouter provider prefix (e.g.,
``"anthropic/claude-opus-4.6"`` → ``"claude-opus-4.6"``).
"""
if config.claude_agent_model:
return config.claude_agent_model
model = config.model
if "/" in model:
return model.split("/", 1)[1]
return model
def _build_sdk_env() -> dict[str, str]:
"""Build env vars for the SDK CLI process.
Routes API calls through OpenRouter (or a custom base_url) using
the same ``config.api_key`` / ``config.base_url`` as the non-SDK path.
This gives per-call token and cost tracking on the OpenRouter dashboard.
Only overrides ``ANTHROPIC_API_KEY`` when a valid proxy URL and auth
token are both present — otherwise returns an empty dict so the SDK
falls back to its default credentials.
"""
env: dict[str, str] = {}
if config.api_key and config.base_url:
# Strip /v1 suffix — SDK expects the base URL without a version path
base = config.base_url.rstrip("/")
if base.endswith("/v1"):
base = base[:-3]
if not base or not base.startswith("http"):
# Invalid base_url — don't override SDK defaults
return env
env["ANTHROPIC_BASE_URL"] = base
env["ANTHROPIC_AUTH_TOKEN"] = config.api_key
# Must be explicitly empty so the CLI uses AUTH_TOKEN instead
env["ANTHROPIC_API_KEY"] = ""
return env
def _make_sdk_cwd(session_id: str) -> str:
"""Create a safe, session-specific working directory path.
Delegates to :func:`~backend.api.features.chat.tools.sandbox.make_session_path`
(single source of truth for path sanitization) and adds a defence-in-depth
assertion.
"""
cwd = make_session_path(session_id)
# Defence-in-depth: normpath + startswith is a CodeQL-recognised sanitizer
cwd = os.path.normpath(cwd)
if not cwd.startswith(_SDK_CWD_PREFIX):
raise ValueError(f"SDK cwd escaped prefix: {cwd}")
return cwd
def _cleanup_sdk_tool_results(cwd: str) -> None:
"""Remove SDK tool-result files for a specific session working directory.
The SDK creates tool-result files under ~/.claude/projects/<encoded-cwd>/tool-results/.
We clean only the specific cwd's results to avoid race conditions between
concurrent sessions.
Security: cwd MUST be created by _make_sdk_cwd() which sanitizes session_id.
"""
import shutil
# Validate cwd is under the expected prefix
normalized = os.path.normpath(cwd)
if not normalized.startswith(_SDK_CWD_PREFIX):
logger.warning(f"[SDK] Rejecting cleanup for path outside workspace: {cwd}")
return
# SDK encodes the cwd path by replacing '/' with '-'
encoded_cwd = normalized.replace("/", "-")
# Construct the project directory path (known-safe home expansion)
claude_projects = os.path.expanduser("~/.claude/projects")
project_dir = os.path.join(claude_projects, encoded_cwd)
# Security check 3: Validate project_dir is under ~/.claude/projects
project_dir = os.path.normpath(project_dir)
if not project_dir.startswith(claude_projects):
logger.warning(
f"[SDK] Rejecting cleanup for escaped project path: {project_dir}"
)
return
results_dir = os.path.join(project_dir, "tool-results")
if os.path.isdir(results_dir):
for filename in os.listdir(results_dir):
file_path = os.path.join(results_dir, filename)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except OSError:
pass
# Also clean up the temp cwd directory itself
try:
shutil.rmtree(normalized, ignore_errors=True)
except OSError:
pass
async def _compress_conversation_history(
session: ChatSession,
) -> list[ChatMessage]:
"""Compress prior conversation messages if they exceed the token threshold.
Uses the shared compress_context() from prompt.py which supports:
- LLM summarization of old messages (keeps recent ones intact)
- Progressive content truncation as fallback
- Middle-out deletion as last resort
Returns the compressed prior messages (everything except the current message).
"""
prior = session.messages[:-1]
if len(prior) < 2:
return prior
from backend.util.prompt import compress_context
# Convert ChatMessages to dicts for compress_context
messages_dict = []
for msg in prior:
msg_dict: dict[str, Any] = {"role": msg.role}
if msg.content:
msg_dict["content"] = msg.content
if msg.tool_calls:
msg_dict["tool_calls"] = msg.tool_calls
if msg.tool_call_id:
msg_dict["tool_call_id"] = msg.tool_call_id
messages_dict.append(msg_dict)
try:
import openai
async with openai.AsyncOpenAI(
api_key=config.api_key, base_url=config.base_url, timeout=30.0
) as client:
result = await compress_context(
messages=messages_dict,
model=config.model,
client=client,
)
except Exception as e:
logger.warning(f"[SDK] Context compression with LLM failed: {e}")
# Fall back to truncation-only (no LLM summarization)
result = await compress_context(
messages=messages_dict,
model=config.model,
client=None,
)
if result.was_compacted:
logger.info(
f"[SDK] Context compacted: {result.original_token_count} -> "
f"{result.token_count} tokens "
f"({result.messages_summarized} summarized, "
f"{result.messages_dropped} dropped)"
)
# Convert compressed dicts back to ChatMessages
return [
ChatMessage(
role=m["role"],
content=m.get("content"),
tool_calls=m.get("tool_calls"),
tool_call_id=m.get("tool_call_id"),
)
for m in result.messages
]
return prior
def _format_conversation_context(messages: list[ChatMessage]) -> str | None:
"""Format conversation messages into a context prefix for the user message.
Returns a string like:
<conversation_history>
User: hello
You responded: Hi! How can I help?
</conversation_history>
Returns None if there are no messages to format.
"""
if not messages:
return None
lines: list[str] = []
for msg in messages:
if not msg.content:
continue
if msg.role == "user":
lines.append(f"User: {msg.content}")
elif msg.role == "assistant":
lines.append(f"You responded: {msg.content}")
# Skip tool messages — they're internal details
if not lines:
return None
return "<conversation_history>\n" + "\n".join(lines) + "\n</conversation_history>"
async def stream_chat_completion_sdk(
session_id: str,
message: str | None = None,
tool_call_response: str | None = None, # noqa: ARG001
is_user_message: bool = True,
user_id: str | None = None,
retry_count: int = 0, # noqa: ARG001
session: ChatSession | None = None,
context: dict[str, str] | None = None, # noqa: ARG001
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Stream chat completion using Claude Agent SDK.
Drop-in replacement for stream_chat_completion with improved reliability.
"""
if session is None:
session = await get_chat_session(session_id, user_id)
if not session:
raise NotFoundError(
f"Session {session_id} not found. Please create a new session first."
)
if message:
session.messages.append(
ChatMessage(
role="user" if is_user_message else "assistant", content=message
)
)
if is_user_message:
track_user_message(
user_id=user_id, session_id=session_id, message_length=len(message)
)
session = await upsert_chat_session(session)
# Generate title for new sessions (first user message)
if is_user_message and not session.title:
user_messages = [m for m in session.messages if m.role == "user"]
if len(user_messages) == 1:
first_message = user_messages[0].content or message or ""
if first_message:
task = asyncio.create_task(
_update_title_async(session_id, first_message, user_id)
)
_background_tasks.add(task)
task.add_done_callback(_background_tasks.discard)
# Build system prompt (reuses non-SDK path with Langfuse support)
has_history = len(session.messages) > 1
system_prompt, _ = await _build_system_prompt(
user_id, has_conversation_history=has_history
)
system_prompt += _SDK_TOOL_SUPPLEMENT
message_id = str(uuid.uuid4())
task_id = str(uuid.uuid4())
yield StreamStart(messageId=message_id, taskId=task_id)
stream_completed = False
# Initialise sdk_cwd before the try so the finally can reference it
# even if _make_sdk_cwd raises (in that case it stays as "").
sdk_cwd = ""
use_resume = False
try:
# Use a session-specific temp dir to avoid cleanup race conditions
# between concurrent sessions.
sdk_cwd = _make_sdk_cwd(session_id)
os.makedirs(sdk_cwd, exist_ok=True)
set_execution_context(
user_id,
session,
long_running_callback=_build_long_running_callback(user_id),
)
try:
from claude_agent_sdk import ClaudeAgentOptions, ClaudeSDKClient
# Fail fast when no API credentials are available at all
sdk_env = _build_sdk_env()
if not sdk_env and not os.environ.get("ANTHROPIC_API_KEY"):
raise RuntimeError(
"No API key configured. Set OPEN_ROUTER_API_KEY "
"(or CHAT_API_KEY) for OpenRouter routing, "
"or ANTHROPIC_API_KEY for direct Anthropic access."
)
mcp_server = create_copilot_mcp_server()
sdk_model = _resolve_sdk_model()
# --- Transcript capture via Stop hook ---
captured_transcript = CapturedTranscript()
def _on_stop(transcript_path: str, sdk_session_id: str) -> None:
captured_transcript.path = transcript_path
captured_transcript.sdk_session_id = sdk_session_id
security_hooks = create_security_hooks(
user_id,
sdk_cwd=sdk_cwd,
max_subtasks=config.claude_agent_max_subtasks,
on_stop=_on_stop if config.claude_agent_use_resume else None,
)
# --- Resume strategy: download transcript from bucket ---
resume_file: str | None = None
use_resume = False
if config.claude_agent_use_resume and user_id and len(session.messages) > 1:
transcript_content = await download_transcript(user_id, session_id)
if transcript_content and validate_transcript(transcript_content):
resume_file = write_transcript_to_tempfile(
transcript_content, session_id, sdk_cwd
)
if resume_file:
use_resume = True
logger.info(
f"[SDK] Using --resume with transcript "
f"({len(transcript_content)} bytes)"
)
sdk_options_kwargs: dict[str, Any] = {
"system_prompt": system_prompt,
"mcp_servers": {"copilot": mcp_server},
"allowed_tools": COPILOT_TOOL_NAMES,
"disallowed_tools": ["Bash"],
"hooks": security_hooks,
"cwd": sdk_cwd,
"max_buffer_size": config.claude_agent_max_buffer_size,
}
if sdk_env:
sdk_options_kwargs["model"] = sdk_model
sdk_options_kwargs["env"] = sdk_env
if use_resume and resume_file:
sdk_options_kwargs["resume"] = resume_file
options = ClaudeAgentOptions(**sdk_options_kwargs) # type: ignore[arg-type]
adapter = SDKResponseAdapter(message_id=message_id)
adapter.set_task_id(task_id)
async with ClaudeSDKClient(options=options) as client:
current_message = message or ""
if not current_message and session.messages:
last_user = [m for m in session.messages if m.role == "user"]
if last_user:
current_message = last_user[-1].content or ""
if not current_message.strip():
yield StreamError(
errorText="Message cannot be empty.",
code="empty_prompt",
)
yield StreamFinish()
return
# Build query: with --resume the CLI already has full
# context, so we only send the new message. Without
# resume, compress history into a context prefix.
query_message = current_message
if not use_resume and len(session.messages) > 1:
logger.warning(
f"[SDK] Using compression fallback for session "
f"{session_id} ({len(session.messages)} messages) — "
f"no transcript available for --resume"
)
compressed = await _compress_conversation_history(session)
history_context = _format_conversation_context(compressed)
if history_context:
query_message = (
f"{history_context}\n\n"
f"Now, the user says:\n{current_message}"
)
logger.info(
f"[SDK] Sending query ({len(session.messages)} msgs in session)"
)
logger.debug(f"[SDK] Query preview: {current_message[:80]!r}")
await client.query(query_message, session_id=session_id)
assistant_response = ChatMessage(role="assistant", content="")
accumulated_tool_calls: list[dict[str, Any]] = []
has_appended_assistant = False
has_tool_results = False
async for sdk_msg in client.receive_messages():
logger.debug(
f"[SDK] Received: {type(sdk_msg).__name__} "
f"{getattr(sdk_msg, 'subtype', '')}"
)
for response in adapter.convert_message(sdk_msg):
if isinstance(response, StreamStart):
continue
yield response
if isinstance(response, StreamTextDelta):
delta = response.delta or ""
# After tool results, start a new assistant
# message for the post-tool text.
if has_tool_results and has_appended_assistant:
assistant_response = ChatMessage(
role="assistant", content=delta
)
accumulated_tool_calls = []
has_appended_assistant = False
has_tool_results = False
session.messages.append(assistant_response)
has_appended_assistant = True
else:
assistant_response.content = (
assistant_response.content or ""
) + delta
if not has_appended_assistant:
session.messages.append(assistant_response)
has_appended_assistant = True
elif isinstance(response, StreamToolInputAvailable):
accumulated_tool_calls.append(
{
"id": response.toolCallId,
"type": "function",
"function": {
"name": response.toolName,
"arguments": json.dumps(response.input or {}),
},
}
)
assistant_response.tool_calls = accumulated_tool_calls
if not has_appended_assistant:
session.messages.append(assistant_response)
has_appended_assistant = True
elif isinstance(response, StreamToolOutputAvailable):
session.messages.append(
ChatMessage(
role="tool",
content=(
response.output
if isinstance(response.output, str)
else str(response.output)
),
tool_call_id=response.toolCallId,
)
)
has_tool_results = True
elif isinstance(response, StreamFinish):
stream_completed = True
if stream_completed:
break
if (
assistant_response.content or assistant_response.tool_calls
) and not has_appended_assistant:
session.messages.append(assistant_response)
# --- Capture transcript while CLI is still alive ---
# Must happen INSIDE async with: close() sends SIGTERM
# which kills the CLI before it can flush the JSONL.
if (
config.claude_agent_use_resume
and user_id
and captured_transcript.available
):
# Give CLI time to flush JSONL writes before we read
await asyncio.sleep(0.5)
raw_transcript = read_transcript_file(captured_transcript.path)
if raw_transcript:
task = asyncio.create_task(
_upload_transcript_bg(user_id, session_id, raw_transcript)
)
_background_tasks.add(task)
task.add_done_callback(_background_tasks.discard)
else:
logger.debug("[SDK] Stop hook fired but transcript not usable")
except ImportError:
raise RuntimeError(
"claude-agent-sdk is not installed. "
"Disable SDK mode (CHAT_USE_CLAUDE_AGENT_SDK=false) "
"to use the OpenAI-compatible fallback."
)
await upsert_chat_session(session)
logger.debug(
f"[SDK] Session {session_id} saved with {len(session.messages)} messages"
)
if not stream_completed:
yield StreamFinish()
except Exception as e:
logger.error(f"[SDK] Error: {e}", exc_info=True)
try:
await upsert_chat_session(session)
except Exception as save_err:
logger.error(f"[SDK] Failed to save session on error: {save_err}")
yield StreamError(
errorText="An error occurred. Please try again.",
code="sdk_error",
)
yield StreamFinish()
finally:
if sdk_cwd:
_cleanup_sdk_tool_results(sdk_cwd)
async def _upload_transcript_bg(
user_id: str, session_id: str, raw_content: str
) -> None:
"""Background task to strip progress entries and upload transcript."""
try:
await upload_transcript(user_id, session_id, raw_content)
except Exception as e:
logger.error(f"[SDK] Failed to upload transcript for {session_id}: {e}")
async def _update_title_async(
session_id: str, message: str, user_id: str | None = None
) -> None:
"""Background task to update session title."""
try:
title = await _generate_session_title(
message, user_id=user_id, session_id=session_id
)
if title:
await update_session_title(session_id, title)
logger.debug(f"[SDK] Generated title for {session_id}: {title}")
except Exception as e:
logger.warning(f"[SDK] Failed to update session title: {e}")

View File

@@ -1,325 +0,0 @@
"""Tool adapter for wrapping existing CoPilot tools as Claude Agent SDK MCP tools.
This module provides the adapter layer that converts existing BaseTool implementations
into in-process MCP tools that can be used with the Claude Agent SDK.
Long-running tools (``is_long_running=True``) are delegated to the non-SDK
background infrastructure (stream_registry, Redis persistence, SSE reconnection)
via a callback provided by the service layer. This avoids wasteful SDK polling
and makes results survive page refreshes.
"""
import json
import logging
import os
import uuid
from collections.abc import Awaitable, Callable
from contextvars import ContextVar
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools import TOOL_REGISTRY
from backend.api.features.chat.tools.base import BaseTool
logger = logging.getLogger(__name__)
# Allowed base directory for the Read tool (SDK saves oversized tool results here).
# Restricted to ~/.claude/projects/ and further validated to require "tool-results"
# in the path — prevents reading settings, credentials, or other sensitive files.
_SDK_PROJECTS_DIR = os.path.expanduser("~/.claude/projects/")
# MCP server naming - the SDK prefixes tool names as "mcp__{server_name}__{tool}"
MCP_SERVER_NAME = "copilot"
MCP_TOOL_PREFIX = f"mcp__{MCP_SERVER_NAME}__"
# Context variables to pass user/session info to tool execution
_current_user_id: ContextVar[str | None] = ContextVar("current_user_id", default=None)
_current_session: ContextVar[ChatSession | None] = ContextVar(
"current_session", default=None
)
# Stash for MCP tool outputs before the SDK potentially truncates them.
# Keyed by tool_name → full output string. Consumed (popped) by the
# response adapter when it builds StreamToolOutputAvailable.
_pending_tool_outputs: ContextVar[dict[str, str]] = ContextVar(
"pending_tool_outputs", default=None # type: ignore[arg-type]
)
# Callback type for delegating long-running tools to the non-SDK infrastructure.
# Args: (tool_name, arguments, session) → MCP-formatted response dict.
LongRunningCallback = Callable[
[str, dict[str, Any], ChatSession], Awaitable[dict[str, Any]]
]
# ContextVar so the service layer can inject the callback per-request.
_long_running_callback: ContextVar[LongRunningCallback | None] = ContextVar(
"long_running_callback", default=None
)
def set_execution_context(
user_id: str | None,
session: ChatSession,
long_running_callback: LongRunningCallback | None = None,
) -> None:
"""Set the execution context for tool calls.
This must be called before streaming begins to ensure tools have access
to user_id and session information.
Args:
user_id: Current user's ID.
session: Current chat session.
long_running_callback: Optional callback to delegate long-running tools
to the non-SDK background infrastructure (stream_registry + Redis).
"""
_current_user_id.set(user_id)
_current_session.set(session)
_pending_tool_outputs.set({})
_long_running_callback.set(long_running_callback)
def get_execution_context() -> tuple[str | None, ChatSession | None]:
"""Get the current execution context."""
return (
_current_user_id.get(),
_current_session.get(),
)
def pop_pending_tool_output(tool_name: str) -> str | None:
"""Pop and return the stashed full output for *tool_name*.
The SDK CLI may truncate large tool results (writing them to disk and
replacing the content with a file reference). This stash keeps the
original MCP output so the response adapter can forward it to the
frontend for proper widget rendering.
Returns ``None`` if nothing was stashed for *tool_name*.
"""
pending = _pending_tool_outputs.get(None)
if pending is None:
return None
return pending.pop(tool_name, None)
async def _execute_tool_sync(
base_tool: BaseTool,
user_id: str | None,
session: ChatSession,
args: dict[str, Any],
) -> dict[str, Any]:
"""Execute a tool synchronously and return MCP-formatted response."""
effective_id = f"sdk-{uuid.uuid4().hex[:12]}"
result = await base_tool.execute(
user_id=user_id,
session=session,
tool_call_id=effective_id,
**args,
)
text = (
result.output if isinstance(result.output, str) else json.dumps(result.output)
)
# Stash the full output before the SDK potentially truncates it.
pending = _pending_tool_outputs.get(None)
if pending is not None:
pending[base_tool.name] = text
return {
"content": [{"type": "text", "text": text}],
"isError": not result.success,
}
def _mcp_error(message: str) -> dict[str, Any]:
return {
"content": [
{"type": "text", "text": json.dumps({"error": message, "type": "error"})}
],
"isError": True,
}
def create_tool_handler(base_tool: BaseTool):
"""Create an async handler function for a BaseTool.
This wraps the existing BaseTool._execute method to be compatible
with the Claude Agent SDK MCP tool format.
Long-running tools (``is_long_running=True``) are delegated to the
non-SDK background infrastructure via a callback set in the execution
context. The callback persists the operation in Redis (stream_registry)
so results survive page refreshes and pod restarts.
"""
async def tool_handler(args: dict[str, Any]) -> dict[str, Any]:
"""Execute the wrapped tool and return MCP-formatted response."""
user_id, session = get_execution_context()
if session is None:
return _mcp_error("No session context available")
# --- Long-running: delegate to non-SDK background infrastructure ---
if base_tool.is_long_running:
callback = _long_running_callback.get(None)
if callback:
try:
return await callback(base_tool.name, args, session)
except Exception as e:
logger.error(
f"Long-running callback failed for {base_tool.name}: {e}",
exc_info=True,
)
return _mcp_error(f"Failed to start {base_tool.name}: {e}")
# No callback — fall through to synchronous execution
logger.warning(
f"[SDK] No long-running callback for {base_tool.name}, "
f"executing synchronously (may block)"
)
# --- Normal (fast) tool: execute synchronously ---
try:
return await _execute_tool_sync(base_tool, user_id, session, args)
except Exception as e:
logger.error(f"Error executing tool {base_tool.name}: {e}", exc_info=True)
return _mcp_error(f"Failed to execute {base_tool.name}: {e}")
return tool_handler
def _build_input_schema(base_tool: BaseTool) -> dict[str, Any]:
"""Build a JSON Schema input schema for a tool."""
return {
"type": "object",
"properties": base_tool.parameters.get("properties", {}),
"required": base_tool.parameters.get("required", []),
}
async def _read_file_handler(args: dict[str, Any]) -> dict[str, Any]:
"""Read a file with optional offset/limit. Restricted to SDK working directory.
After reading, the file is deleted to prevent accumulation in long-running pods.
"""
file_path = args.get("file_path", "")
offset = args.get("offset", 0)
limit = args.get("limit", 2000)
# Security: only allow reads under ~/.claude/projects/**/tool-results/
real_path = os.path.realpath(file_path)
if not real_path.startswith(_SDK_PROJECTS_DIR) or "tool-results" not in real_path:
return {
"content": [{"type": "text", "text": f"Access denied: {file_path}"}],
"isError": True,
}
try:
with open(real_path) as f:
lines = f.readlines()
selected = lines[offset : offset + limit]
content = "".join(selected)
# Clean up to prevent accumulation in long-running pods
try:
os.remove(real_path)
except OSError:
pass
return {"content": [{"type": "text", "text": content}], "isError": False}
except FileNotFoundError:
return {
"content": [{"type": "text", "text": f"File not found: {file_path}"}],
"isError": True,
}
except Exception as e:
return {
"content": [{"type": "text", "text": f"Error reading file: {e}"}],
"isError": True,
}
_READ_TOOL_NAME = "Read"
_READ_TOOL_DESCRIPTION = (
"Read a file from the local filesystem. "
"Use offset and limit to read specific line ranges for large files."
)
_READ_TOOL_SCHEMA = {
"type": "object",
"properties": {
"file_path": {
"type": "string",
"description": "The absolute path to the file to read",
},
"offset": {
"type": "integer",
"description": "Line number to start reading from (0-indexed). Default: 0",
},
"limit": {
"type": "integer",
"description": "Number of lines to read. Default: 2000",
},
},
"required": ["file_path"],
}
# Create the MCP server configuration
def create_copilot_mcp_server():
"""Create an in-process MCP server configuration for CoPilot tools.
This can be passed to ClaudeAgentOptions.mcp_servers.
Note: The actual SDK MCP server creation depends on the claude-agent-sdk
package being available. This function returns the configuration that
can be used with the SDK.
"""
try:
from claude_agent_sdk import create_sdk_mcp_server, tool
# Create decorated tool functions
sdk_tools = []
for tool_name, base_tool in TOOL_REGISTRY.items():
handler = create_tool_handler(base_tool)
decorated = tool(
tool_name,
base_tool.description,
_build_input_schema(base_tool),
)(handler)
sdk_tools.append(decorated)
# Add the Read tool so the SDK can read back oversized tool results
read_tool = tool(
_READ_TOOL_NAME,
_READ_TOOL_DESCRIPTION,
_READ_TOOL_SCHEMA,
)(_read_file_handler)
sdk_tools.append(read_tool)
server = create_sdk_mcp_server(
name=MCP_SERVER_NAME,
version="1.0.0",
tools=sdk_tools,
)
return server
except ImportError:
# Let ImportError propagate so service.py handles the fallback
raise
# SDK built-in tools allowed within the workspace directory.
# Security hooks validate that file paths stay within sdk_cwd.
# Bash is NOT included — use the sandboxed MCP bash_exec tool instead,
# which provides kernel-level network isolation via unshare --net.
# Task allows spawning sub-agents (rate-limited by security hooks).
_SDK_BUILTIN_TOOLS = ["Read", "Write", "Edit", "Glob", "Grep", "Task"]
# List of tool names for allowed_tools configuration
# Include MCP tools, the MCP Read tool for oversized results,
# and SDK built-in file tools for workspace operations.
COPILOT_TOOL_NAMES = [
*[f"{MCP_TOOL_PREFIX}{name}" for name in TOOL_REGISTRY.keys()],
f"{MCP_TOOL_PREFIX}{_READ_TOOL_NAME}",
*_SDK_BUILTIN_TOOLS,
]

View File

@@ -1,355 +0,0 @@
"""JSONL transcript management for stateless multi-turn resume.
The Claude Code CLI persists conversations as JSONL files (one JSON object per
line). When the SDK's ``Stop`` hook fires we read this file, strip bloat
(progress entries, metadata), and upload the result to bucket storage. On the
next turn we download the transcript, write it to a temp file, and pass
``--resume`` so the CLI can reconstruct the full conversation.
Storage is handled via ``WorkspaceStorageBackend`` (GCS in prod, local
filesystem for self-hosted) — no DB column needed.
"""
import json
import logging
import os
import re
logger = logging.getLogger(__name__)
# UUIDs are hex + hyphens; strip everything else to prevent path injection.
_SAFE_ID_RE = re.compile(r"[^0-9a-fA-F-]")
# Entry types that can be safely removed from the transcript without breaking
# the parentUuid conversation tree that ``--resume`` relies on.
# - progress: UI progress ticks, no message content (avg 97KB for agent_progress)
# - file-history-snapshot: undo tracking metadata
# - queue-operation: internal queue bookkeeping
# - summary: session summaries
# - pr-link: PR link metadata
STRIPPABLE_TYPES = frozenset(
{"progress", "file-history-snapshot", "queue-operation", "summary", "pr-link"}
)
# Workspace storage constants — deterministic path from session_id.
TRANSCRIPT_STORAGE_PREFIX = "chat-transcripts"
# ---------------------------------------------------------------------------
# Progress stripping
# ---------------------------------------------------------------------------
def strip_progress_entries(content: str) -> str:
"""Remove progress/metadata entries from a JSONL transcript.
Removes entries whose ``type`` is in ``STRIPPABLE_TYPES`` and reparents
any remaining child entries so the ``parentUuid`` chain stays intact.
Typically reduces transcript size by ~30%.
"""
lines = content.strip().split("\n")
entries: list[dict] = []
for line in lines:
try:
entries.append(json.loads(line))
except json.JSONDecodeError:
# Keep unparseable lines as-is (safety)
entries.append({"_raw": line})
stripped_uuids: set[str] = set()
uuid_to_parent: dict[str, str] = {}
kept: list[dict] = []
for entry in entries:
if "_raw" in entry:
kept.append(entry)
continue
uid = entry.get("uuid", "")
parent = entry.get("parentUuid", "")
entry_type = entry.get("type", "")
if uid:
uuid_to_parent[uid] = parent
if entry_type in STRIPPABLE_TYPES:
if uid:
stripped_uuids.add(uid)
else:
kept.append(entry)
# Reparent: walk up chain through stripped entries to find surviving ancestor
for entry in kept:
if "_raw" in entry:
continue
parent = entry.get("parentUuid", "")
original_parent = parent
while parent in stripped_uuids:
parent = uuid_to_parent.get(parent, "")
if parent != original_parent:
entry["parentUuid"] = parent
result_lines: list[str] = []
for entry in kept:
if "_raw" in entry:
result_lines.append(entry["_raw"])
else:
result_lines.append(json.dumps(entry, separators=(",", ":")))
return "\n".join(result_lines) + "\n"
# ---------------------------------------------------------------------------
# Local file I/O (read from CLI's JSONL, write temp file for --resume)
# ---------------------------------------------------------------------------
def read_transcript_file(transcript_path: str) -> str | None:
"""Read a JSONL transcript file from disk.
Returns the raw JSONL content, or ``None`` if the file is missing, empty,
or only contains metadata (≤2 lines with no conversation messages).
"""
if not transcript_path or not os.path.isfile(transcript_path):
logger.debug(f"[Transcript] File not found: {transcript_path}")
return None
try:
with open(transcript_path) as f:
content = f.read()
if not content.strip():
logger.debug(f"[Transcript] Empty file: {transcript_path}")
return None
lines = content.strip().split("\n")
if len(lines) < 2:
# Metadata-only files have 1 line (single queue-operation or snapshot).
logger.debug(
f"[Transcript] Too few lines ({len(lines)}): {transcript_path}"
)
return None
# Quick structural validation — parse first and last lines.
json.loads(lines[0])
json.loads(lines[-1])
logger.info(
f"[Transcript] Read {len(lines)} lines, "
f"{len(content)} bytes from {transcript_path}"
)
return content
except (json.JSONDecodeError, OSError) as e:
logger.warning(f"[Transcript] Failed to read {transcript_path}: {e}")
return None
def _sanitize_id(raw_id: str, max_len: int = 36) -> str:
"""Sanitize an ID for safe use in file paths.
Session/user IDs are expected to be UUIDs (hex + hyphens). Strip
everything else and truncate to *max_len* so the result cannot introduce
path separators or other special characters.
"""
cleaned = _SAFE_ID_RE.sub("", raw_id or "")[:max_len]
return cleaned or "unknown"
_SAFE_CWD_PREFIX = os.path.realpath("/tmp/copilot-")
def write_transcript_to_tempfile(
transcript_content: str,
session_id: str,
cwd: str,
) -> str | None:
"""Write JSONL transcript to a temp file inside *cwd* for ``--resume``.
The file lives in the session working directory so it is cleaned up
automatically when the session ends.
Returns the absolute path to the file, or ``None`` on failure.
"""
# Validate cwd is under the expected sandbox prefix (CodeQL sanitizer).
real_cwd = os.path.realpath(cwd)
if not real_cwd.startswith(_SAFE_CWD_PREFIX):
logger.warning(f"[Transcript] cwd outside sandbox: {cwd}")
return None
try:
os.makedirs(real_cwd, exist_ok=True)
safe_id = _sanitize_id(session_id, max_len=8)
jsonl_path = os.path.realpath(
os.path.join(real_cwd, f"transcript-{safe_id}.jsonl")
)
if not jsonl_path.startswith(real_cwd):
logger.warning(f"[Transcript] Path escaped cwd: {jsonl_path}")
return None
with open(jsonl_path, "w") as f:
f.write(transcript_content)
logger.info(f"[Transcript] Wrote resume file: {jsonl_path}")
return jsonl_path
except OSError as e:
logger.warning(f"[Transcript] Failed to write resume file: {e}")
return None
def validate_transcript(content: str | None) -> bool:
"""Check that a transcript has actual conversation messages.
A valid transcript for resume needs at least one user message and one
assistant message (not just queue-operation / file-history-snapshot
metadata).
"""
if not content or not content.strip():
return False
lines = content.strip().split("\n")
if len(lines) < 2:
return False
has_user = False
has_assistant = False
for line in lines:
try:
entry = json.loads(line)
msg_type = entry.get("type")
if msg_type == "user":
has_user = True
elif msg_type == "assistant":
has_assistant = True
except json.JSONDecodeError:
return False
return has_user and has_assistant
# ---------------------------------------------------------------------------
# Bucket storage (GCS / local via WorkspaceStorageBackend)
# ---------------------------------------------------------------------------
def _storage_path_parts(user_id: str, session_id: str) -> tuple[str, str, str]:
"""Return (workspace_id, file_id, filename) for a session's transcript.
Path structure: ``chat-transcripts/{user_id}/{session_id}.jsonl``
IDs are sanitized to hex+hyphen to prevent path traversal.
"""
return (
TRANSCRIPT_STORAGE_PREFIX,
_sanitize_id(user_id),
f"{_sanitize_id(session_id)}.jsonl",
)
def _build_storage_path(user_id: str, session_id: str, backend: object) -> str:
"""Build the full storage path string that ``retrieve()`` expects.
``store()`` returns a path like ``gcs://bucket/workspaces/...`` or
``local://workspace_id/file_id/filename``. Since we use deterministic
arguments we can reconstruct the same path for download/delete without
having stored the return value.
"""
from backend.util.workspace_storage import GCSWorkspaceStorage
wid, fid, fname = _storage_path_parts(user_id, session_id)
if isinstance(backend, GCSWorkspaceStorage):
blob = f"workspaces/{wid}/{fid}/{fname}"
return f"gcs://{backend.bucket_name}/{blob}"
else:
# LocalWorkspaceStorage returns local://{relative_path}
return f"local://{wid}/{fid}/{fname}"
async def upload_transcript(user_id: str, session_id: str, content: str) -> None:
"""Strip progress entries and upload transcript to bucket storage.
Safety: only overwrites when the new (stripped) transcript is larger than
what is already stored. Since JSONL is append-only, the latest transcript
is always the longest. This prevents a slow/stale background task from
clobbering a newer upload from a concurrent turn.
"""
from backend.util.workspace_storage import get_workspace_storage
stripped = strip_progress_entries(content)
if not validate_transcript(stripped):
logger.warning(
f"[Transcript] Skipping upload — stripped content is not a valid "
f"transcript for session {session_id}"
)
return
storage = await get_workspace_storage()
wid, fid, fname = _storage_path_parts(user_id, session_id)
encoded = stripped.encode("utf-8")
new_size = len(encoded)
# Check existing transcript size to avoid overwriting newer with older
path = _build_storage_path(user_id, session_id, storage)
try:
existing = await storage.retrieve(path)
if len(existing) >= new_size:
logger.info(
f"[Transcript] Skipping upload — existing transcript "
f"({len(existing)}B) >= new ({new_size}B) for session "
f"{session_id}"
)
return
except (FileNotFoundError, Exception):
pass # No existing transcript or retrieval error — proceed with upload
await storage.store(
workspace_id=wid,
file_id=fid,
filename=fname,
content=encoded,
)
logger.info(
f"[Transcript] Uploaded {new_size} bytes "
f"(stripped from {len(content)}) for session {session_id}"
)
async def download_transcript(user_id: str, session_id: str) -> str | None:
"""Download transcript from bucket storage.
Returns the JSONL content string, or ``None`` if not found.
"""
from backend.util.workspace_storage import get_workspace_storage
storage = await get_workspace_storage()
path = _build_storage_path(user_id, session_id, storage)
try:
data = await storage.retrieve(path)
content = data.decode("utf-8")
logger.info(
f"[Transcript] Downloaded {len(content)} bytes for session {session_id}"
)
return content
except FileNotFoundError:
logger.debug(f"[Transcript] No transcript in storage for {session_id}")
return None
except Exception as e:
logger.warning(f"[Transcript] Failed to download transcript: {e}")
return None
async def delete_transcript(user_id: str, session_id: str) -> None:
"""Delete transcript from bucket storage (e.g. after resume failure)."""
from backend.util.workspace_storage import get_workspace_storage
storage = await get_workspace_storage()
path = _build_storage_path(user_id, session_id, storage)
try:
await storage.delete(path)
logger.info(f"[Transcript] Deleted transcript for session {session_id}")
except Exception as e:
logger.warning(f"[Transcript] Failed to delete transcript: {e}")

File diff suppressed because it is too large Load Diff

View File

@@ -1,4 +1,3 @@
import asyncio
import logging
from os import getenv
@@ -12,8 +11,6 @@ from .response_model import (
StreamTextDelta,
StreamToolOutputAvailable,
)
from .sdk import service as sdk_service
from .sdk.transcript import download_transcript
logger = logging.getLogger(__name__)
@@ -83,96 +80,3 @@ async def test_stream_chat_completion_with_tool_calls(setup_test_user, test_user
session = await get_chat_session(session.session_id)
assert session, "Session not found"
assert session.usage, "Usage is empty"
@pytest.mark.asyncio(loop_scope="session")
async def test_sdk_resume_multi_turn(setup_test_user, test_user_id):
"""Test that the SDK --resume path captures and uses transcripts across turns.
Turn 1: Send a message containing a unique keyword.
Turn 2: Ask the model to recall that keyword — proving the transcript was
persisted and restored via --resume.
"""
api_key: str | None = getenv("OPEN_ROUTER_API_KEY")
if not api_key:
return pytest.skip("OPEN_ROUTER_API_KEY is not set, skipping test")
from .config import ChatConfig
cfg = ChatConfig()
if not cfg.claude_agent_use_resume:
return pytest.skip("CLAUDE_AGENT_USE_RESUME is not enabled, skipping test")
session = await create_chat_session(test_user_id)
session = await upsert_chat_session(session)
# --- Turn 1: send a message with a unique keyword ---
keyword = "ZEPHYR42"
turn1_msg = (
f"Please remember this special keyword: {keyword}. "
"Just confirm you've noted it, keep your response brief."
)
turn1_text = ""
turn1_errors: list[str] = []
turn1_ended = False
async for chunk in sdk_service.stream_chat_completion_sdk(
session.session_id,
turn1_msg,
user_id=test_user_id,
):
if isinstance(chunk, StreamTextDelta):
turn1_text += chunk.delta
elif isinstance(chunk, StreamError):
turn1_errors.append(chunk.errorText)
elif isinstance(chunk, StreamFinish):
turn1_ended = True
assert turn1_ended, "Turn 1 did not finish"
assert not turn1_errors, f"Turn 1 errors: {turn1_errors}"
assert turn1_text, "Turn 1 produced no text"
# Wait for background upload task to complete (retry up to 5s)
transcript = None
for _ in range(10):
await asyncio.sleep(0.5)
transcript = await download_transcript(test_user_id, session.session_id)
if transcript:
break
assert transcript, (
"Transcript was not uploaded to bucket after turn 1 — "
"Stop hook may not have fired or transcript was too small"
)
logger.info(f"Turn 1 transcript uploaded: {len(transcript)} bytes")
# Reload session for turn 2
session = await get_chat_session(session.session_id, test_user_id)
assert session, "Session not found after turn 1"
# --- Turn 2: ask model to recall the keyword ---
turn2_msg = "What was the special keyword I asked you to remember?"
turn2_text = ""
turn2_errors: list[str] = []
turn2_ended = False
async for chunk in sdk_service.stream_chat_completion_sdk(
session.session_id,
turn2_msg,
user_id=test_user_id,
session=session,
):
if isinstance(chunk, StreamTextDelta):
turn2_text += chunk.delta
elif isinstance(chunk, StreamError):
turn2_errors.append(chunk.errorText)
elif isinstance(chunk, StreamFinish):
turn2_ended = True
assert turn2_ended, "Turn 2 did not finish"
assert not turn2_errors, f"Turn 2 errors: {turn2_errors}"
assert turn2_text, "Turn 2 produced no text"
assert keyword in turn2_text, (
f"Model did not recall keyword '{keyword}' in turn 2. "
f"Response: {turn2_text[:200]}"
)
logger.info(f"Turn 2 recalled keyword successfully: {turn2_text[:100]}")

View File

@@ -1,989 +0,0 @@
"""Stream registry for managing reconnectable SSE streams.
This module provides a registry for tracking active streaming tasks and their
messages. It uses Redis for all state management (no in-memory state), making
pods stateless and horizontally scalable.
Architecture:
- Redis Stream: Persists all messages for replay and real-time delivery
- Redis Hash: Task metadata (status, session_id, etc.)
Subscribers:
1. Replay missed messages from Redis Stream (XREAD)
2. Listen for live updates via blocking XREAD
3. No in-memory state required on the subscribing pod
"""
import asyncio
import logging
from dataclasses import dataclass, field
from datetime import datetime, timezone
from typing import Any, Literal
import orjson
from backend.data.redis_client import get_redis_async
from .config import ChatConfig
from .response_model import StreamBaseResponse, StreamError, StreamFinish
logger = logging.getLogger(__name__)
config = ChatConfig()
# Track background tasks for this pod (just the asyncio.Task reference, not subscribers)
_local_tasks: dict[str, asyncio.Task] = {}
# Track listener tasks per subscriber queue for cleanup
# Maps queue id() to (task_id, asyncio.Task) for proper cleanup on unsubscribe
_listener_tasks: dict[int, tuple[str, asyncio.Task]] = {}
# Timeout for putting chunks into subscriber queues (seconds)
# If the queue is full and doesn't drain within this time, send an overflow error
QUEUE_PUT_TIMEOUT = 5.0
# Lua script for atomic compare-and-swap status update (idempotent completion)
# Returns 1 if status was updated, 0 if already completed/failed
COMPLETE_TASK_SCRIPT = """
local current = redis.call("HGET", KEYS[1], "status")
if current == "running" then
redis.call("HSET", KEYS[1], "status", ARGV[1])
return 1
end
return 0
"""
@dataclass
class ActiveTask:
"""Represents an active streaming task (metadata only, no in-memory queues)."""
task_id: str
session_id: str
user_id: str | None
tool_call_id: str
tool_name: str
operation_id: str
status: Literal["running", "completed", "failed"] = "running"
created_at: datetime = field(default_factory=lambda: datetime.now(timezone.utc))
asyncio_task: asyncio.Task | None = None
def _get_task_meta_key(task_id: str) -> str:
"""Get Redis key for task metadata."""
return f"{config.task_meta_prefix}{task_id}"
def _get_task_stream_key(task_id: str) -> str:
"""Get Redis key for task message stream."""
return f"{config.task_stream_prefix}{task_id}"
def _get_operation_mapping_key(operation_id: str) -> str:
"""Get Redis key for operation_id to task_id mapping."""
return f"{config.task_op_prefix}{operation_id}"
async def create_task(
task_id: str,
session_id: str,
user_id: str | None,
tool_call_id: str,
tool_name: str,
operation_id: str,
) -> ActiveTask:
"""Create a new streaming task in Redis.
Args:
task_id: Unique identifier for the task
session_id: Chat session ID
user_id: User ID (may be None for anonymous)
tool_call_id: Tool call ID from the LLM
tool_name: Name of the tool being executed
operation_id: Operation ID for webhook callbacks
Returns:
The created ActiveTask instance (metadata only)
"""
import time
start_time = time.perf_counter()
# Build log metadata for structured logging
log_meta = {
"component": "StreamRegistry",
"task_id": task_id,
"session_id": session_id,
}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] create_task STARTED, task={task_id}, session={session_id}, user={user_id}",
extra={"json_fields": log_meta},
)
task = ActiveTask(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id=tool_call_id,
tool_name=tool_name,
operation_id=operation_id,
)
# Store metadata in Redis
redis_start = time.perf_counter()
redis = await get_redis_async()
redis_time = (time.perf_counter() - redis_start) * 1000
logger.info(
f"[TIMING] get_redis_async took {redis_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": redis_time}},
)
meta_key = _get_task_meta_key(task_id)
op_key = _get_operation_mapping_key(operation_id)
hset_start = time.perf_counter()
await redis.hset( # type: ignore[misc]
meta_key,
mapping={
"task_id": task_id,
"session_id": session_id,
"user_id": user_id or "",
"tool_call_id": tool_call_id,
"tool_name": tool_name,
"operation_id": operation_id,
"status": task.status,
"created_at": task.created_at.isoformat(),
},
)
hset_time = (time.perf_counter() - hset_start) * 1000
logger.info(
f"[TIMING] redis.hset took {hset_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": hset_time}},
)
await redis.expire(meta_key, config.stream_ttl)
# Create operation_id -> task_id mapping for webhook lookups
await redis.set(op_key, task_id, ex=config.stream_ttl)
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] create_task COMPLETED in {total_time:.1f}ms; task={task_id}, session={session_id}",
extra={"json_fields": {**log_meta, "total_time_ms": total_time}},
)
return task
async def publish_chunk(
task_id: str,
chunk: StreamBaseResponse,
) -> str:
"""Publish a chunk to Redis Stream.
All delivery is via Redis Streams - no in-memory state.
Args:
task_id: Task ID to publish to
chunk: The stream response chunk to publish
Returns:
The Redis Stream message ID
"""
import time
start_time = time.perf_counter()
chunk_type = type(chunk).__name__
chunk_json = chunk.model_dump_json()
message_id = "0-0"
# Build log metadata
log_meta = {
"component": "StreamRegistry",
"task_id": task_id,
"chunk_type": chunk_type,
}
try:
redis = await get_redis_async()
stream_key = _get_task_stream_key(task_id)
# Write to Redis Stream for persistence and real-time delivery
xadd_start = time.perf_counter()
raw_id = await redis.xadd(
stream_key,
{"data": chunk_json},
maxlen=config.stream_max_length,
)
xadd_time = (time.perf_counter() - xadd_start) * 1000
message_id = raw_id if isinstance(raw_id, str) else raw_id.decode()
# Set TTL on stream to match task metadata TTL
await redis.expire(stream_key, config.stream_ttl)
total_time = (time.perf_counter() - start_time) * 1000
# Only log timing for significant chunks or slow operations
if (
chunk_type
in ("StreamStart", "StreamFinish", "StreamTextStart", "StreamTextEnd")
or total_time > 50
):
logger.info(
f"[TIMING] publish_chunk {chunk_type} in {total_time:.1f}ms (xadd={xadd_time:.1f}ms)",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"xadd_time_ms": xadd_time,
"message_id": message_id,
}
},
)
except Exception as e:
elapsed = (time.perf_counter() - start_time) * 1000
logger.error(
f"[TIMING] Failed to publish chunk {chunk_type} after {elapsed:.1f}ms: {e}",
extra={"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}},
exc_info=True,
)
return message_id
async def subscribe_to_task(
task_id: str,
user_id: str | None,
last_message_id: str = "0-0",
) -> asyncio.Queue[StreamBaseResponse] | None:
"""Subscribe to a task's stream with replay of missed messages.
This is fully stateless - uses Redis Stream for replay and pub/sub for live updates.
Args:
task_id: Task ID to subscribe to
user_id: User ID for ownership validation
last_message_id: Last Redis Stream message ID received ("0-0" for full replay)
Returns:
An asyncio Queue that will receive stream chunks, or None if task not found
or user doesn't have access
"""
import time
start_time = time.perf_counter()
# Build log metadata
log_meta = {"component": "StreamRegistry", "task_id": task_id}
if user_id:
log_meta["user_id"] = user_id
logger.info(
f"[TIMING] subscribe_to_task STARTED, task={task_id}, user={user_id}, last_msg={last_message_id}",
extra={"json_fields": {**log_meta, "last_message_id": last_message_id}},
)
redis_start = time.perf_counter()
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
hgetall_time = (time.perf_counter() - redis_start) * 1000
logger.info(
f"[TIMING] Redis hgetall took {hgetall_time:.1f}ms",
extra={"json_fields": {**log_meta, "duration_ms": hgetall_time}},
)
if not meta:
elapsed = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] Task not found in Redis after {elapsed:.1f}ms",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"reason": "task_not_found",
}
},
)
return None
# Note: Redis client uses decode_responses=True, so keys are strings
task_status = meta.get("status", "")
task_user_id = meta.get("user_id", "") or None
log_meta["session_id"] = meta.get("session_id", "")
# Validate ownership - if task has an owner, requester must match
if task_user_id:
if user_id != task_user_id:
logger.warning(
f"[TIMING] Access denied: user {user_id} tried to access task owned by {task_user_id}",
extra={
"json_fields": {
**log_meta,
"task_owner": task_user_id,
"reason": "access_denied",
}
},
)
return None
subscriber_queue: asyncio.Queue[StreamBaseResponse] = asyncio.Queue()
stream_key = _get_task_stream_key(task_id)
# Step 1: Replay messages from Redis Stream
xread_start = time.perf_counter()
messages = await redis.xread({stream_key: last_message_id}, block=0, count=1000)
xread_time = (time.perf_counter() - xread_start) * 1000
logger.info(
f"[TIMING] Redis xread (replay) took {xread_time:.1f}ms, status={task_status}",
extra={
"json_fields": {
**log_meta,
"duration_ms": xread_time,
"task_status": task_status,
}
},
)
replayed_count = 0
replay_last_id = last_message_id
if messages:
for _stream_name, stream_messages in messages:
for msg_id, msg_data in stream_messages:
replay_last_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
# Note: Redis client uses decode_responses=True, so keys are strings
if "data" in msg_data:
try:
chunk_data = orjson.loads(msg_data["data"])
chunk = _reconstruct_chunk(chunk_data)
if chunk:
await subscriber_queue.put(chunk)
replayed_count += 1
except Exception as e:
logger.warning(f"Failed to replay message: {e}")
logger.info(
f"[TIMING] Replayed {replayed_count} messages, last_id={replay_last_id}",
extra={
"json_fields": {
**log_meta,
"n_messages_replayed": replayed_count,
"replay_last_id": replay_last_id,
}
},
)
# Step 2: If task is still running, start stream listener for live updates
if task_status == "running":
logger.info(
"[TIMING] Task still running, starting _stream_listener",
extra={"json_fields": {**log_meta, "task_status": task_status}},
)
listener_task = asyncio.create_task(
_stream_listener(task_id, subscriber_queue, replay_last_id, log_meta)
)
# Track listener task for cleanup on unsubscribe
_listener_tasks[id(subscriber_queue)] = (task_id, listener_task)
else:
# Task is completed/failed - add finish marker
logger.info(
f"[TIMING] Task already {task_status}, adding StreamFinish",
extra={"json_fields": {**log_meta, "task_status": task_status}},
)
await subscriber_queue.put(StreamFinish())
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] subscribe_to_task COMPLETED in {total_time:.1f}ms; task={task_id}, "
f"n_messages_replayed={replayed_count}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"n_messages_replayed": replayed_count,
}
},
)
return subscriber_queue
async def _stream_listener(
task_id: str,
subscriber_queue: asyncio.Queue[StreamBaseResponse],
last_replayed_id: str,
log_meta: dict | None = None,
) -> None:
"""Listen to Redis Stream for new messages using blocking XREAD.
This approach avoids the duplicate message issue that can occur with pub/sub
when messages are published during the gap between replay and subscription.
Args:
task_id: Task ID to listen for
subscriber_queue: Queue to deliver messages to
last_replayed_id: Last message ID from replay (continue from here)
log_meta: Structured logging metadata
"""
import time
start_time = time.perf_counter()
# Use provided log_meta or build minimal one
if log_meta is None:
log_meta = {"component": "StreamRegistry", "task_id": task_id}
logger.info(
f"[TIMING] _stream_listener STARTED, task={task_id}, last_id={last_replayed_id}",
extra={"json_fields": {**log_meta, "last_replayed_id": last_replayed_id}},
)
queue_id = id(subscriber_queue)
# Track the last successfully delivered message ID for recovery hints
last_delivered_id = last_replayed_id
messages_delivered = 0
first_message_time = None
xread_count = 0
try:
redis = await get_redis_async()
stream_key = _get_task_stream_key(task_id)
current_id = last_replayed_id
while True:
# Block for up to 30 seconds waiting for new messages
# This allows periodic checking if task is still running
xread_start = time.perf_counter()
xread_count += 1
messages = await redis.xread(
{stream_key: current_id}, block=30000, count=100
)
xread_time = (time.perf_counter() - xread_start) * 1000
if messages:
msg_count = sum(len(msgs) for _, msgs in messages)
logger.info(
f"[TIMING] xread #{xread_count} returned {msg_count} messages in {xread_time:.1f}ms",
extra={
"json_fields": {
**log_meta,
"xread_count": xread_count,
"n_messages": msg_count,
"duration_ms": xread_time,
}
},
)
elif xread_time > 1000:
# Only log timeouts (30s blocking)
logger.info(
f"[TIMING] xread #{xread_count} timeout after {xread_time:.1f}ms",
extra={
"json_fields": {
**log_meta,
"xread_count": xread_count,
"duration_ms": xread_time,
"reason": "timeout",
}
},
)
if not messages:
# Timeout - check if task is still running
meta_key = _get_task_meta_key(task_id)
status = await redis.hget(meta_key, "status") # type: ignore[misc]
if status and status != "running":
try:
await asyncio.wait_for(
subscriber_queue.put(StreamFinish()),
timeout=QUEUE_PUT_TIMEOUT,
)
except asyncio.TimeoutError:
logger.warning(
f"Timeout delivering finish event for task {task_id}"
)
break
continue
for _stream_name, stream_messages in messages:
for msg_id, msg_data in stream_messages:
current_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
if "data" not in msg_data:
continue
try:
chunk_data = orjson.loads(msg_data["data"])
chunk = _reconstruct_chunk(chunk_data)
if chunk:
try:
await asyncio.wait_for(
subscriber_queue.put(chunk),
timeout=QUEUE_PUT_TIMEOUT,
)
# Update last delivered ID on successful delivery
last_delivered_id = current_id
messages_delivered += 1
if first_message_time is None:
first_message_time = time.perf_counter()
elapsed = (first_message_time - start_time) * 1000
logger.info(
f"[TIMING] FIRST live message at {elapsed:.1f}ms, type={type(chunk).__name__}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"chunk_type": type(chunk).__name__,
}
},
)
except asyncio.TimeoutError:
logger.warning(
f"[TIMING] Subscriber queue full, delivery timed out after {QUEUE_PUT_TIMEOUT}s",
extra={
"json_fields": {
**log_meta,
"timeout_s": QUEUE_PUT_TIMEOUT,
"reason": "queue_full",
}
},
)
# Send overflow error with recovery info
try:
overflow_error = StreamError(
errorText="Message delivery timeout - some messages may have been missed",
code="QUEUE_OVERFLOW",
details={
"last_delivered_id": last_delivered_id,
"recovery_hint": f"Reconnect with last_message_id={last_delivered_id}",
},
)
subscriber_queue.put_nowait(overflow_error)
except asyncio.QueueFull:
# Queue is completely stuck, nothing more we can do
logger.error(
f"Cannot deliver overflow error for task {task_id}, "
"queue completely blocked"
)
# Stop listening on finish
if isinstance(chunk, StreamFinish):
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] StreamFinish received in {total_time/1000:.1f}s; delivered={messages_delivered}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"messages_delivered": messages_delivered,
}
},
)
return
except Exception as e:
logger.warning(
f"Error processing stream message: {e}",
extra={"json_fields": {**log_meta, "error": str(e)}},
)
except asyncio.CancelledError:
elapsed = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] _stream_listener CANCELLED after {elapsed:.1f}ms, delivered={messages_delivered}",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": elapsed,
"messages_delivered": messages_delivered,
"reason": "cancelled",
}
},
)
raise # Re-raise to propagate cancellation
except Exception as e:
elapsed = (time.perf_counter() - start_time) * 1000
logger.error(
f"[TIMING] _stream_listener ERROR after {elapsed:.1f}ms: {e}",
extra={"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}},
)
# On error, send finish to unblock subscriber
try:
await asyncio.wait_for(
subscriber_queue.put(StreamFinish()),
timeout=QUEUE_PUT_TIMEOUT,
)
except (asyncio.TimeoutError, asyncio.QueueFull):
logger.warning(
"Could not deliver finish event after error",
extra={"json_fields": log_meta},
)
finally:
# Clean up listener task mapping on exit
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] _stream_listener FINISHED in {total_time/1000:.1f}s; task={task_id}, "
f"delivered={messages_delivered}, xread_count={xread_count}",
extra={
"json_fields": {
**log_meta,
"total_time_ms": total_time,
"messages_delivered": messages_delivered,
"xread_count": xread_count,
}
},
)
_listener_tasks.pop(queue_id, None)
async def mark_task_completed(
task_id: str,
status: Literal["completed", "failed"] = "completed",
) -> bool:
"""Mark a task as completed and publish finish event.
This is idempotent - calling multiple times with the same task_id is safe.
Uses atomic compare-and-swap via Lua script to prevent race conditions.
Status is updated first (source of truth), then finish event is published (best-effort).
Args:
task_id: Task ID to mark as completed
status: Final status ("completed" or "failed")
Returns:
True if task was newly marked completed, False if already completed/failed
"""
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
# Atomic compare-and-swap: only update if status is "running"
# This prevents race conditions when multiple callers try to complete simultaneously
result = await redis.eval(COMPLETE_TASK_SCRIPT, 1, meta_key, status) # type: ignore[misc]
if result == 0:
logger.debug(f"Task {task_id} already completed/failed, skipping")
return False
# THEN publish finish event (best-effort - listeners can detect via status polling)
try:
await publish_chunk(task_id, StreamFinish())
except Exception as e:
logger.error(
f"Failed to publish finish event for task {task_id}: {e}. "
"Listeners will detect completion via status polling."
)
# Clean up local task reference if exists
_local_tasks.pop(task_id, None)
return True
async def find_task_by_operation_id(operation_id: str) -> ActiveTask | None:
"""Find a task by its operation ID.
Used by webhook callbacks to locate the task to update.
Args:
operation_id: Operation ID to search for
Returns:
ActiveTask if found, None otherwise
"""
redis = await get_redis_async()
op_key = _get_operation_mapping_key(operation_id)
task_id = await redis.get(op_key)
if not task_id:
return None
task_id_str = task_id.decode() if isinstance(task_id, bytes) else task_id
return await get_task(task_id_str)
async def get_task(task_id: str) -> ActiveTask | None:
"""Get a task by its ID from Redis.
Args:
task_id: Task ID to look up
Returns:
ActiveTask if found, None otherwise
"""
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
if not meta:
return None
# Note: Redis client uses decode_responses=True, so keys/values are strings
return ActiveTask(
task_id=meta.get("task_id", ""),
session_id=meta.get("session_id", ""),
user_id=meta.get("user_id", "") or None,
tool_call_id=meta.get("tool_call_id", ""),
tool_name=meta.get("tool_name", ""),
operation_id=meta.get("operation_id", ""),
status=meta.get("status", "running"), # type: ignore[arg-type]
)
async def get_task_with_expiry_info(
task_id: str,
) -> tuple[ActiveTask | None, str | None]:
"""Get a task by its ID with expiration detection.
Returns (task, error_code) where error_code is:
- None if task found
- "TASK_EXPIRED" if stream exists but metadata is gone (TTL expired)
- "TASK_NOT_FOUND" if neither exists
Args:
task_id: Task ID to look up
Returns:
Tuple of (ActiveTask or None, error_code or None)
"""
redis = await get_redis_async()
meta_key = _get_task_meta_key(task_id)
stream_key = _get_task_stream_key(task_id)
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
if not meta:
# Check if stream still has data (metadata expired but stream hasn't)
stream_len = await redis.xlen(stream_key)
if stream_len > 0:
return None, "TASK_EXPIRED"
return None, "TASK_NOT_FOUND"
# Note: Redis client uses decode_responses=True, so keys/values are strings
return (
ActiveTask(
task_id=meta.get("task_id", ""),
session_id=meta.get("session_id", ""),
user_id=meta.get("user_id", "") or None,
tool_call_id=meta.get("tool_call_id", ""),
tool_name=meta.get("tool_name", ""),
operation_id=meta.get("operation_id", ""),
status=meta.get("status", "running"), # type: ignore[arg-type]
),
None,
)
async def get_active_task_for_session(
session_id: str,
user_id: str | None = None,
) -> tuple[ActiveTask | None, str]:
"""Get the active (running) task for a session, if any.
Scans Redis for tasks matching the session_id with status="running".
Args:
session_id: Session ID to look up
user_id: User ID for ownership validation (optional)
Returns:
Tuple of (ActiveTask if found and running, last_message_id from Redis Stream)
"""
redis = await get_redis_async()
# Scan Redis for task metadata keys
cursor = 0
tasks_checked = 0
while True:
cursor, keys = await redis.scan(
cursor, match=f"{config.task_meta_prefix}*", count=100
)
for key in keys:
tasks_checked += 1
meta: dict[Any, Any] = await redis.hgetall(key) # type: ignore[misc]
if not meta:
continue
# Note: Redis client uses decode_responses=True, so keys/values are strings
task_session_id = meta.get("session_id", "")
task_status = meta.get("status", "")
task_user_id = meta.get("user_id", "") or None
task_id = meta.get("task_id", "")
if task_session_id == session_id and task_status == "running":
# Validate ownership - if task has an owner, requester must match
if task_user_id and user_id != task_user_id:
continue
# Auto-expire stale tasks that exceeded stream_timeout
created_at_str = meta.get("created_at", "")
if created_at_str:
try:
created_at = datetime.fromisoformat(created_at_str)
age_seconds = (
datetime.now(timezone.utc) - created_at
).total_seconds()
if age_seconds > config.stream_timeout:
logger.warning(
f"[TASK_LOOKUP] Auto-expiring stale task {task_id[:8]}... "
f"(age={age_seconds:.0f}s > timeout={config.stream_timeout}s)"
)
await mark_task_completed(task_id, "failed")
continue
except (ValueError, TypeError):
pass
logger.info(
f"[TASK_LOOKUP] Found running task {task_id[:8]}... for session {session_id[:8]}..."
)
# Get the last message ID from Redis Stream
stream_key = _get_task_stream_key(task_id)
last_id = "0-0"
try:
messages = await redis.xrevrange(stream_key, count=1)
if messages:
msg_id = messages[0][0]
last_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
except Exception as e:
logger.warning(f"Failed to get last message ID: {e}")
return (
ActiveTask(
task_id=task_id,
session_id=task_session_id,
user_id=task_user_id,
tool_call_id=meta.get("tool_call_id", ""),
tool_name=meta.get("tool_name", ""),
operation_id=meta.get("operation_id", ""),
status="running",
),
last_id,
)
if cursor == 0:
break
return None, "0-0"
def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
"""Reconstruct a StreamBaseResponse from JSON data.
Args:
chunk_data: Parsed JSON data from Redis
Returns:
Reconstructed response object, or None if unknown type
"""
from .response_model import (
ResponseType,
StreamError,
StreamFinish,
StreamFinishStep,
StreamHeartbeat,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
StreamUsage,
)
# Map response types to their corresponding classes
type_to_class: dict[str, type[StreamBaseResponse]] = {
ResponseType.START.value: StreamStart,
ResponseType.FINISH.value: StreamFinish,
ResponseType.START_STEP.value: StreamStartStep,
ResponseType.FINISH_STEP.value: StreamFinishStep,
ResponseType.TEXT_START.value: StreamTextStart,
ResponseType.TEXT_DELTA.value: StreamTextDelta,
ResponseType.TEXT_END.value: StreamTextEnd,
ResponseType.TOOL_INPUT_START.value: StreamToolInputStart,
ResponseType.TOOL_INPUT_AVAILABLE.value: StreamToolInputAvailable,
ResponseType.TOOL_OUTPUT_AVAILABLE.value: StreamToolOutputAvailable,
ResponseType.ERROR.value: StreamError,
ResponseType.USAGE.value: StreamUsage,
ResponseType.HEARTBEAT.value: StreamHeartbeat,
}
chunk_type = chunk_data.get("type")
chunk_class = type_to_class.get(chunk_type) # type: ignore[arg-type]
if chunk_class is None:
logger.warning(f"Unknown chunk type: {chunk_type}")
return None
try:
return chunk_class(**chunk_data)
except Exception as e:
logger.warning(f"Failed to reconstruct chunk of type {chunk_type}: {e}")
return None
async def set_task_asyncio_task(task_id: str, asyncio_task: asyncio.Task) -> None:
"""Track the asyncio.Task for a task (local reference only).
This is just for cleanup purposes - the task state is in Redis.
Args:
task_id: Task ID
asyncio_task: The asyncio Task to track
"""
_local_tasks[task_id] = asyncio_task
async def unsubscribe_from_task(
task_id: str,
subscriber_queue: asyncio.Queue[StreamBaseResponse],
) -> None:
"""Clean up when a subscriber disconnects.
Cancels the XREAD-based listener task associated with this subscriber queue
to prevent resource leaks.
Args:
task_id: Task ID
subscriber_queue: The subscriber's queue used to look up the listener task
"""
queue_id = id(subscriber_queue)
listener_entry = _listener_tasks.pop(queue_id, None)
if listener_entry is None:
logger.debug(
f"No listener task found for task {task_id} queue {queue_id} "
"(may have already completed)"
)
return
stored_task_id, listener_task = listener_entry
if stored_task_id != task_id:
logger.warning(
f"Task ID mismatch in unsubscribe: expected {task_id}, "
f"found {stored_task_id}"
)
if listener_task.done():
logger.debug(f"Listener task for task {task_id} already completed")
return
# Cancel the listener task
listener_task.cancel()
try:
# Wait for the task to be cancelled with a timeout
await asyncio.wait_for(listener_task, timeout=5.0)
except asyncio.CancelledError:
# Expected - the task was successfully cancelled
pass
except asyncio.TimeoutError:
logger.warning(
f"Timeout waiting for listener task cancellation for task {task_id}"
)
except Exception as e:
logger.error(f"Error during listener task cancellation for task {task_id}: {e}")
logger.debug(f"Successfully unsubscribed from task {task_id}")

View File

@@ -1,79 +0,0 @@
# CoPilot Tools - Future Ideas
## Multimodal Image Support for CoPilot
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
**Backend Solution:**
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
```python
# Before sending to LLM, scan for workspace image references
# and inject them as image content parts
# Example message transformation:
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
# TO: {"role": "assistant", "content": [
# {"type": "text", "text": "Generated image: workspace://abc123"},
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
# ]}
```
**Where to implement:**
- In the chat stream handler before calling the LLM
- Or in a message preprocessing step
- Need to fetch image from workspace, convert to base64, add as image content
**Considerations:**
- Only do this for image MIME types (image/png, image/jpeg, etc.)
- May want a size limit (don't pass 10MB images)
- Track which images were "shown" to the AI for frontend indicator
- Cost implications - vision API calls are more expensive
**Frontend Solution:**
Show visual indicator on workspace files in chat:
- If AI saw the image: normal display
- If AI didn't see it: overlay icon saying "AI can't see this image"
Requires response metadata indicating which `workspace://` refs were passed to the model.
---
## Output Post-Processing Layer for run_block
**Problem:** Many blocks produce large outputs that:
- Consume massive context (100KB base64 image = ~133KB tokens)
- Can't fit in conversation
- Break things and cause high LLM costs
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
**Benefits:**
1. **Centralized** - one place to handle all output processing
2. **Future-proof** - new blocks automatically get output processing
3. **Keeps blocks pure** - they don't need to know about context constraints
4. **Handles all large outputs** - not just images
**Processing Rules:**
- Detect base64 data URIs → save to workspace, return `workspace://` reference
- Truncate very long strings (>N chars) with truncation note
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
- Handle nested large outputs in dicts recursively
- Cap total output size
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
**Example:**
```python
def _process_outputs_for_context(
outputs: dict[str, list[Any]],
workspace_manager: WorkspaceManager,
max_string_length: int = 10000,
max_array_preview: int = 5,
) -> dict[str, list[Any]]:
"""Process block outputs to prevent context bloat."""
processed = {}
for name, values in outputs.items():
processed[name] = [_process_value(v, workspace_manager) for v in values]
return processed
```

View File

@@ -1,18 +1,13 @@
import logging
from typing import TYPE_CHECKING, Any
from openai.types.chat import ChatCompletionToolParam
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tracking import track_tool_called
from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
from .base import BaseTool
from .bash_exec import BashExecTool
from .check_operation_status import CheckOperationStatusTool
from .create_agent import CreateAgentTool
from .customize_agent import CustomizeAgentTool
from .edit_agent import EditAgentTool
from .find_agent import FindAgentTool
from .find_block import FindBlockTool
@@ -21,24 +16,14 @@ from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
from .web_fetch import WebFetchTool
from .workspace_files import (
DeleteWorkspaceFileTool,
ListWorkspaceFilesTool,
ReadWorkspaceFileTool,
WriteWorkspaceFileTool,
)
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable
logger = logging.getLogger(__name__)
# Single source of truth for all tools
TOOL_REGISTRY: dict[str, BaseTool] = {
"add_understanding": AddUnderstandingTool(),
"create_agent": CreateAgentTool(),
"customize_agent": CustomizeAgentTool(),
"edit_agent": EditAgentTool(),
"find_agent": FindAgentTool(),
"find_block": FindBlockTool(),
@@ -46,18 +31,8 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"run_agent": RunAgentTool(),
"run_block": RunBlockTool(),
"view_agent_output": AgentOutputTool(),
"check_operation_status": CheckOperationStatusTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Web fetch for safe URL retrieval
"web_fetch": WebFetchTool(),
# Sandboxed code execution (bubblewrap)
"bash_exec": BashExecTool(),
# Persistent workspace tools (cloud storage, survives across sessions)
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),
"write_workspace_file": WriteWorkspaceFileTool(),
"delete_workspace_file": DeleteWorkspaceFileTool(),
}
# Export individual tool instances for backwards compatibility
@@ -70,11 +45,6 @@ tools: list[ChatCompletionToolParam] = [
]
def get_tool(tool_name: str) -> BaseTool | None:
"""Get a tool instance by name."""
return TOOL_REGISTRY.get(tool_name)
async def execute_tool(
tool_name: str,
parameters: dict[str, Any],
@@ -83,20 +53,7 @@ async def execute_tool(
tool_call_id: str,
) -> "StreamToolOutputAvailable":
"""Execute a tool by name."""
tool = get_tool(tool_name)
tool = TOOL_REGISTRY.get(tool_name)
if not tool:
raise ValueError(f"Tool {tool_name} not found")
# Track tool call in PostHog
logger.info(
f"Tracking tool call: tool={tool_name}, user={user_id}, "
f"session={session.session_id}, call_id={tool_call_id}"
)
track_tool_called(
user_id=user_id,
session_id=session.session_id,
tool_name=tool_name,
tool_call_id=tool_call_id,
)
return await tool.execute(user_id, session, tool_call_id, **parameters)

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.understanding import (
BusinessUnderstandingInput,
@@ -59,6 +61,7 @@ and automations for the user's specific needs."""
"""Requires authentication to store user-specific data."""
return True
@observe(as_type="tool", name="add_understanding")
async def _execute(
self,
user_id: str | None,

View File

@@ -2,58 +2,27 @@
from .core import (
AgentGeneratorNotConfiguredError,
AgentJsonValidationError,
AgentSummary,
DecompositionResult,
DecompositionStep,
LibraryAgentSummary,
MarketplaceAgentSummary,
customize_template,
decompose_goal,
enrich_library_agents_from_steps,
extract_search_terms_from_steps,
extract_uuids_from_text,
generate_agent,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_library_agent_by_graph_id,
get_library_agent_by_id,
get_library_agents_for_generation,
graph_to_json,
json_to_graph,
save_agent_to_library,
search_marketplace_agents_for_generation,
)
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
__all__ = [
"AgentGeneratorNotConfiguredError",
"AgentJsonValidationError",
"AgentSummary",
"DecompositionResult",
"DecompositionStep",
"LibraryAgentSummary",
"MarketplaceAgentSummary",
"check_external_service_health",
"customize_template",
# Core functions
"decompose_goal",
"enrich_library_agents_from_steps",
"extract_search_terms_from_steps",
"extract_uuids_from_text",
"generate_agent",
"generate_agent_patch",
"get_agent_as_json",
"get_all_relevant_agents_for_generation",
"get_library_agent_by_graph_id",
"get_library_agent_by_id",
"get_library_agents_for_generation",
"get_user_message_for_error",
"graph_to_json",
"is_external_service_configured",
"json_to_graph",
"save_agent_to_library",
"search_marketplace_agents_for_generation",
"get_agent_as_json",
"json_to_graph",
# Exceptions
"AgentGeneratorNotConfiguredError",
# Service
"is_external_service_configured",
"check_external_service_health",
]

View File

@@ -1,17 +1,13 @@
"""Core agent generation functions."""
import logging
import re
import uuid
from typing import Any, NotRequired, TypedDict
from typing import Any
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.data.graph import Graph, Link, Node, get_graph, get_store_listed_graphs
from backend.util.exceptions import DatabaseError, NotFoundError
from backend.data.graph import Graph, Link, Node, create_graph
from .service import (
customize_template_external,
decompose_goal_external,
generate_agent_external,
generate_agent_patch_external,
@@ -21,72 +17,6 @@ from .service import (
logger = logging.getLogger(__name__)
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
status: str
correctness_score: NotRequired[float]
activity_summary: NotRequired[str]
class LibraryAgentSummary(TypedDict):
"""Summary of a library agent for sub-agent composition.
Includes recent executions to help the LLM decide whether to use this agent.
Each execution shows status, correctness_score (0-1), and activity_summary.
"""
graph_id: str
graph_version: int
name: str
description: str
input_schema: dict[str, Any]
output_schema: dict[str, Any]
recent_executions: NotRequired[list[ExecutionSummary]]
class MarketplaceAgentSummary(TypedDict):
"""Summary of a marketplace agent for sub-agent composition."""
name: str
description: str
sub_heading: str
creator: str
is_marketplace_agent: bool
class DecompositionStep(TypedDict, total=False):
"""A single step in decomposed instructions."""
description: str
action: str
block_name: str
tool: str
name: str
class DecompositionResult(TypedDict, total=False):
"""Result from decompose_goal - can be instructions, questions, or error."""
type: str
steps: list[DecompositionStep]
questions: list[dict[str, Any]]
error: str
error_type: str
AgentSummary = LibraryAgentSummary | MarketplaceAgentSummary | dict[str, Any]
def _to_dict_list(
agents: list[AgentSummary] | list[dict[str, Any]] | None,
) -> list[dict[str, Any]] | None:
"""Convert typed agent summaries to plain dicts for external service calls."""
if agents is None:
return None
return [dict(a) for a in agents]
class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured."""
@@ -106,422 +36,15 @@ def _check_service_configured() -> None:
)
_UUID_PATTERN = re.compile(
r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}",
re.IGNORECASE,
)
def extract_uuids_from_text(text: str) -> list[str]:
"""Extract all UUID v4 strings from text.
Args:
text: Text that may contain UUIDs (e.g., user's goal description)
Returns:
List of unique UUIDs found in the text (lowercase)
"""
matches = _UUID_PATTERN.findall(text)
return list({m.lower() for m in matches})
async def get_library_agent_by_id(
user_id: str, agent_id: str
) -> LibraryAgentSummary | None:
"""Fetch a specific library agent by its ID (library agent ID or graph_id).
This function tries multiple lookup strategies:
1. First tries to find by graph_id (AgentGraph primary key)
2. If not found, tries to find by library agent ID (LibraryAgent primary key)
This handles both cases:
- User provides graph_id (e.g., from AgentExecutorBlock)
- User provides library agent ID (e.g., from library URL)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
LibraryAgentSummary if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except DatabaseError:
raise
except Exception as e:
logger.debug(f"Could not fetch library agent by graph_id {agent_id}: {e}")
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
get_library_agent_by_graph_id = get_library_agent_by_id
async def get_library_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
max_results: int = 15,
) -> list[LibraryAgentSummary]:
"""Fetch user's library agents formatted for Agent Generator.
Uses search-based fetching to return relevant agents instead of all agents.
This is more scalable for users with large libraries.
Includes recent_executions list to help the LLM assess agent quality:
- Each execution has status, correctness_score (0-1), and activity_summary
- This gives the LLM concrete examples of recent performance
Args:
user_id: The user ID
search_query: Optional search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
max_results: Maximum number of agents to return (default 15)
Returns:
List of LibraryAgentSummary with schemas and recent executions for sub-agent composition
"""
try:
response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query,
page=1,
page_size=max_results,
include_executions=True,
)
results: list[LibraryAgentSummary] = []
for agent in response.agents:
if exclude_graph_id is not None and agent.graph_id == exclude_graph_id:
continue
summary = LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
if agent.recent_executions:
exec_summaries: list[ExecutionSummary] = []
for ex in agent.recent_executions:
exec_sum = ExecutionSummary(status=ex.status)
if ex.correctness_score is not None:
exec_sum["correctness_score"] = ex.correctness_score
if ex.activity_summary:
exec_sum["activity_summary"] = ex.activity_summary
exec_summaries.append(exec_sum)
summary["recent_executions"] = exec_summaries
results.append(summary)
return results
except DatabaseError:
raise
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
return []
async def search_marketplace_agents_for_generation(
search_query: str,
max_results: int = 10,
) -> list[LibraryAgentSummary]:
"""Search marketplace agents formatted for Agent Generator.
Fetches marketplace agents and their full schemas so they can be used
as sub-agents in generated workflows.
Args:
search_query: Search term to find relevant public agents
max_results: Maximum number of agents to return (default 10)
Returns:
List of LibraryAgentSummary with full input/output schemas
"""
try:
response = await store_db.get_store_agents(
search_query=search_query,
page=1,
page_size=max_results,
)
agents_with_graphs = [
agent for agent in response.agents if agent.agent_graph_id
]
if not agents_with_graphs:
return []
graph_ids = [agent.agent_graph_id for agent in agents_with_graphs]
graphs = await get_store_listed_graphs(*graph_ids)
results: list[LibraryAgentSummary] = []
for agent in agents_with_graphs:
graph_id = agent.agent_graph_id
if graph_id and graph_id in graphs:
graph = graphs[graph_id]
results.append(
LibraryAgentSummary(
graph_id=graph.id,
graph_version=graph.version,
name=agent.agent_name,
description=agent.description,
input_schema=graph.input_schema,
output_schema=graph.output_schema,
)
)
return results
except Exception as e:
logger.warning(f"Failed to search marketplace agents: {e}")
return []
async def get_all_relevant_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
include_library: bool = True,
include_marketplace: bool = True,
max_library_results: int = 15,
max_marketplace_results: int = 10,
) -> list[AgentSummary]:
"""Fetch relevant agents from library and/or marketplace.
Searches both user's library and marketplace by default.
Explicitly mentioned UUIDs in the search query are always looked up.
Args:
user_id: The user ID
search_query: Search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
include_library: Whether to search user's library (default True)
include_marketplace: Whether to also search marketplace (default True)
max_library_results: Max library agents to return (default 15)
max_marketplace_results: Max marketplace agents to return (default 10)
Returns:
List of AgentSummary with full schemas (both library and marketplace agents)
"""
agents: list[AgentSummary] = []
seen_graph_ids: set[str] = set()
if search_query:
mentioned_uuids = extract_uuids_from_text(search_query)
for graph_id in mentioned_uuids:
if graph_id == exclude_graph_id:
continue
agent = await get_library_agent_by_graph_id(user_id, graph_id)
agent_graph_id = agent.get("graph_id") if agent else None
if agent and agent_graph_id and agent_graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(agent_graph_id)
logger.debug(
f"Found explicitly mentioned agent: {agent.get('name') or 'Unknown'}"
)
if include_library:
library_agents = await get_library_agents_for_generation(
user_id=user_id,
search_query=search_query,
exclude_graph_id=exclude_graph_id,
max_results=max_library_results,
)
for agent in library_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
if include_marketplace and search_query:
marketplace_agents = await search_marketplace_agents_for_generation(
search_query=search_query,
max_results=max_marketplace_results,
)
for agent in marketplace_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
return agents
def extract_search_terms_from_steps(
decomposition_result: DecompositionResult | dict[str, Any],
) -> list[str]:
"""Extract search terms from decomposed instruction steps.
Analyzes the decomposition result to extract relevant keywords
for additional library agent searches.
Args:
decomposition_result: Result from decompose_goal containing steps
Returns:
List of unique search terms extracted from steps
"""
search_terms: list[str] = []
if decomposition_result.get("type") != "instructions":
return search_terms
steps = decomposition_result.get("steps", [])
if not steps:
return search_terms
step_keys: list[str] = ["description", "action", "block_name", "tool", "name"]
for step in steps:
for key in step_keys:
value = step.get(key) # type: ignore[union-attr]
if isinstance(value, str) and len(value) > 3:
search_terms.append(value)
seen: set[str] = set()
unique_terms: list[str] = []
for term in search_terms:
term_lower = term.lower()
if term_lower not in seen:
seen.add(term_lower)
unique_terms.append(term)
return unique_terms
async def enrich_library_agents_from_steps(
user_id: str,
decomposition_result: DecompositionResult | dict[str, Any],
existing_agents: list[AgentSummary] | list[dict[str, Any]],
exclude_graph_id: str | None = None,
include_marketplace: bool = True,
max_additional_results: int = 10,
) -> list[AgentSummary] | list[dict[str, Any]]:
"""Enrich library agents list with additional searches based on decomposed steps.
This implements two-phase search: after decomposition, we search for additional
relevant agents based on the specific steps identified.
Args:
user_id: The user ID
decomposition_result: Result from decompose_goal containing steps
existing_agents: Already fetched library agents from initial search
exclude_graph_id: Optional graph ID to exclude
include_marketplace: Whether to also search marketplace
max_additional_results: Max additional agents per search term (default 10)
Returns:
Combined list of library agents (existing + newly discovered)
"""
search_terms = extract_search_terms_from_steps(decomposition_result)
if not search_terms:
return existing_agents
existing_ids: set[str] = set()
existing_names: set[str] = set()
for agent in existing_agents:
agent_name = agent.get("name")
if agent_name and isinstance(agent_name, str):
existing_names.add(agent_name.lower())
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
all_agents: list[AgentSummary] | list[dict[str, Any]] = list(existing_agents)
for term in search_terms[:3]:
try:
additional_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=term,
exclude_graph_id=exclude_graph_id,
include_marketplace=include_marketplace,
max_library_results=max_additional_results,
max_marketplace_results=5,
)
for agent in additional_agents:
agent_name = agent.get("name")
if not agent_name or not isinstance(agent_name, str):
continue
agent_name_lower = agent_name.lower()
if agent_name_lower in existing_names:
continue
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and graph_id in existing_ids:
continue
all_agents.append(agent)
existing_names.add(agent_name_lower)
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
except DatabaseError:
logger.error(f"Database error searching for agents with term '{term}'")
raise
except Exception as e:
logger.warning(
f"Failed to search for additional agents with term '{term}': {e}"
)
logger.debug(
f"Enriched library agents: {len(existing_agents)} initial + "
f"{len(all_agents) - len(existing_agents)} additional = {len(all_agents)} total"
)
return all_agents
async def decompose_goal(
description: str,
context: str = "",
library_agents: list[AgentSummary] | None = None,
) -> DecompositionResult | None:
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
"""Break down a goal into steps or return clarifying questions.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
DecompositionResult with either:
Dict with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
@@ -531,47 +54,26 @@ async def decompose_goal(
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal")
result = await decompose_goal_external(
description, context, _to_dict_list(library_agents)
)
return result # type: ignore[return-value]
return await decompose_goal_external(description, context)
async def generate_agent(
instructions: DecompositionResult | dict[str, Any],
library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any] | None:
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
"""Generate agent JSON from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables Redis Streams
completion notification)
task_id: Task ID for async processing (enables Redis Streams persistence
and SSE delivery)
Returns:
Agent JSON dict, {"status": "accepted"} for async, error dict {"type": "error", ...}, or None on error
Agent JSON dict or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(
dict(instructions), _to_dict_list(library_agents), operation_id, task_id
)
# Don't modify async response
if result and result.get("status") == "accepted":
return result
result = await generate_agent_external(instructions)
if result:
if isinstance(result, dict) and result.get("type") == "error":
return result
# Ensure required fields
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
@@ -581,12 +83,6 @@ async def generate_agent(
return result
class AgentJsonValidationError(Exception):
"""Raised when agent JSON is invalid or missing required fields."""
pass
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
"""Convert agent JSON dict to Graph model.
@@ -595,55 +91,25 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
Returns:
Graph ready for saving
Raises:
AgentJsonValidationError: If required fields are missing from nodes or links
"""
nodes = []
for idx, n in enumerate(agent_json.get("nodes", [])):
block_id = n.get("block_id")
if not block_id:
node_id = n.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Node '{node_id}' is missing required field 'block_id'"
)
for n in agent_json.get("nodes", []):
node = Node(
id=n.get("id", str(uuid.uuid4())),
block_id=block_id,
block_id=n["block_id"],
input_default=n.get("input_default", {}),
metadata=n.get("metadata", {}),
)
nodes.append(node)
links = []
for idx, link_data in enumerate(agent_json.get("links", [])):
source_id = link_data.get("source_id")
sink_id = link_data.get("sink_id")
source_name = link_data.get("source_name")
sink_name = link_data.get("sink_name")
missing_fields = []
if not source_id:
missing_fields.append("source_id")
if not sink_id:
missing_fields.append("sink_id")
if not source_name:
missing_fields.append("source_name")
if not sink_name:
missing_fields.append("sink_name")
if missing_fields:
link_id = link_data.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Link '{link_id}' is missing required fields: {', '.join(missing_fields)}"
)
for link_data in agent_json.get("links", []):
link = Link(
id=link_data.get("id", str(uuid.uuid4())),
source_id=source_id,
sink_id=sink_id,
source_name=source_name,
sink_name=sink_name,
source_id=link_data["source_id"],
sink_id=link_data["sink_id"],
source_name=link_data["source_name"],
sink_name=link_data["sink_name"],
is_static=link_data.get("is_static", False),
)
links.append(link)
@@ -659,6 +125,27 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
)
def _reassign_node_ids(graph: Graph) -> None:
"""Reassign all node and link IDs to new UUIDs.
This is needed when creating a new version to avoid unique constraint violations.
"""
# Create mapping from old node IDs to new UUIDs
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
# Reassign node IDs
for node in graph.nodes:
node.id = id_map[node.id]
# Update link references to use new node IDs
for link in graph.links:
link.id = str(uuid.uuid4()) # Also give links new IDs
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -672,21 +159,63 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
from backend.data.graph import get_graph_all_versions
graph = json_to_graph(agent_json)
if is_update:
return await library_db.update_graph_in_library(graph, user_id)
return await library_db.create_graph_in_library(graph, user_id)
# For updates, keep the same graph ID but increment version
# and reassign node/link IDs to avoid conflicts
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
# Reassign node IDs (but keep graph ID the same)
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
# For new agents, always generate a fresh UUID to avoid collisions
graph.id = str(uuid.uuid4())
graph.version = 1
# Reassign all node IDs as well
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
# Save to database
created_graph = await create_graph(graph, user_id)
# Add to user's library (or update existing library agent)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
return created_graph, library_agents[0]
def graph_to_json(graph: Graph) -> dict[str, Any]:
"""Convert a Graph object to JSON format for the agent generator.
async def get_agent_as_json(
graph_id: str, user_id: str | None
) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing.
Args:
graph: Graph object to convert
graph_id: Graph ID or library agent ID
user_id: User ID
Returns:
Agent as JSON dict
Agent as JSON dict or None if not found
"""
from backend.data.graph import get_graph
# Try to get the graph (version=None gets the active version)
graph = await get_graph(graph_id, version=None, user_id=user_id)
if not graph:
return None
# Convert to JSON format
nodes = []
for node in graph.nodes:
nodes.append(
@@ -723,41 +252,8 @@ def graph_to_json(graph: Graph) -> dict[str, Any]:
}
async def get_agent_as_json(
agent_id: str, user_id: str | None
) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing.
Args:
agent_id: Graph ID or library agent ID
user_id: User ID
Returns:
Agent as JSON dict or None if not found
"""
graph = await get_graph(agent_id, version=None, user_id=user_id)
if not graph and user_id:
try:
library_agent = await library_db.get_library_agent(agent_id, user_id)
graph = await get_graph(
library_agent.graph_id, version=None, user_id=user_id
)
except NotFoundError:
pass
if not graph:
return None
return graph_to_json(graph)
async def generate_agent_patch(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[AgentSummary] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Update an existing agent using natural language.
@@ -769,57 +265,13 @@ async def generate_agent_patch(
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables Redis Streams callback)
task_id: Task ID for async processing (enables Redis Streams callback)
Returns:
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
{"status": "accepted"} for async, error dict {"type": "error", ...}, or None on error
Updated agent JSON, clarifying questions dict, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(
update_request,
current_agent,
_to_dict_list(library_agents),
operation_id,
task_id,
)
async def customize_template(
template_agent: dict[str, Any],
modification_request: str,
context: str = "",
) -> dict[str, Any] | None:
"""Customize a template/marketplace agent using natural language.
This is used when users want to modify a template or marketplace agent
to fit their specific needs before adding it to their library.
The external Agent Generator service handles:
- Understanding the modification request
- Applying changes to the template
- Fixing and validating the result
Args:
template_agent: The template agent JSON to customize
modification_request: Natural language description of customizations
context: Additional context (e.g., answers to previous questions)
Returns:
Customized agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
error dict {"type": "error", ...}, or None on unexpected error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for customize_template")
return await customize_template_external(
template_agent, modification_request, context
)
return await generate_agent_patch_external(update_request, current_agent)

View File

@@ -1,154 +0,0 @@
"""Dummy Agent Generator for testing.
Returns mock responses matching the format expected from the external service.
Enable via AGENTGENERATOR_USE_DUMMY=true in settings.
WARNING: This is for testing only. Do not use in production.
"""
import asyncio
import logging
import uuid
from typing import Any
logger = logging.getLogger(__name__)
# Dummy decomposition result (instructions type)
DUMMY_DECOMPOSITION_RESULT: dict[str, Any] = {
"type": "instructions",
"steps": [
{
"description": "Get input from user",
"action": "input",
"block_name": "AgentInputBlock",
},
{
"description": "Process the input",
"action": "process",
"block_name": "TextFormatterBlock",
},
{
"description": "Return output to user",
"action": "output",
"block_name": "AgentOutputBlock",
},
],
}
# Block IDs from backend/blocks/io.py
AGENT_INPUT_BLOCK_ID = "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b"
AGENT_OUTPUT_BLOCK_ID = "363ae599-353e-4804-937e-b2ee3cef3da4"
def _generate_dummy_agent_json() -> dict[str, Any]:
"""Generate a minimal valid agent JSON for testing."""
input_node_id = str(uuid.uuid4())
output_node_id = str(uuid.uuid4())
return {
"id": str(uuid.uuid4()),
"version": 1,
"is_active": True,
"name": "Dummy Test Agent",
"description": "A dummy agent generated for testing purposes",
"nodes": [
{
"id": input_node_id,
"block_id": AGENT_INPUT_BLOCK_ID,
"input_default": {
"name": "input",
"title": "Input",
"description": "Enter your input",
"placeholder_values": [],
},
"metadata": {"position": {"x": 0, "y": 0}},
},
{
"id": output_node_id,
"block_id": AGENT_OUTPUT_BLOCK_ID,
"input_default": {
"name": "output",
"title": "Output",
"description": "Agent output",
"format": "{output}",
},
"metadata": {"position": {"x": 400, "y": 0}},
},
],
"links": [
{
"id": str(uuid.uuid4()),
"source_id": input_node_id,
"sink_id": output_node_id,
"source_name": "result",
"sink_name": "value",
"is_static": False,
},
],
}
async def decompose_goal_dummy(
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any]:
"""Return dummy decomposition result."""
logger.info("Using dummy agent generator for decompose_goal")
return DUMMY_DECOMPOSITION_RESULT.copy()
async def generate_agent_dummy(
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any]:
"""Return dummy agent JSON after a simulated delay."""
logger.info("Using dummy agent generator for generate_agent (30s delay)")
await asyncio.sleep(30)
return _generate_dummy_agent_json()
async def generate_agent_patch_dummy(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any]:
"""Return dummy patched agent (returns the current agent with updated description)."""
logger.info("Using dummy agent generator for generate_agent_patch")
patched = current_agent.copy()
patched["description"] = (
f"{current_agent.get('description', '')} (updated: {update_request})"
)
return patched
async def customize_template_dummy(
template_agent: dict[str, Any],
modification_request: str,
context: str = "",
) -> dict[str, Any]:
"""Return dummy customized template (returns template with updated description)."""
logger.info("Using dummy agent generator for customize_template")
customized = template_agent.copy()
customized["description"] = (
f"{template_agent.get('description', '')} (customized: {modification_request})"
)
return customized
async def get_blocks_dummy() -> list[dict[str, Any]]:
"""Return dummy blocks list."""
logger.info("Using dummy agent generator for get_blocks")
return [
{"id": AGENT_INPUT_BLOCK_ID, "name": "AgentInputBlock"},
{"id": AGENT_OUTPUT_BLOCK_ID, "name": "AgentOutputBlock"},
]
async def health_check_dummy() -> bool:
"""Always returns healthy for dummy service."""
return True

View File

@@ -1,95 +0,0 @@
"""Error handling utilities for agent generator."""
import re
def _sanitize_error_details(details: str) -> str:
"""Sanitize error details to remove sensitive information.
Strips common patterns that could expose internal system info:
- File paths (Unix and Windows)
- Database connection strings
- URLs with credentials
- Stack trace internals
Args:
details: Raw error details string
Returns:
Sanitized error details safe for user display
"""
sanitized = re.sub(
r"/[a-zA-Z0-9_./\-]+\.(py|js|ts|json|yaml|yml)", "[path]", details
)
sanitized = re.sub(r"[A-Z]:\\[a-zA-Z0-9_\\.\\-]+", "[path]", sanitized)
sanitized = re.sub(
r"(postgres|mysql|mongodb|redis)://[^\s]+", "[database_url]", sanitized
)
sanitized = re.sub(r"https?://[^:]+:[^@]+@[^\s]+", "[url]", sanitized)
sanitized = re.sub(r", line \d+", "", sanitized)
sanitized = re.sub(r'File "[^"]+",?', "", sanitized)
return sanitized.strip()
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
error_details: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
This function maps internal error types to user-friendly messages,
providing a consistent experience across different agent operations.
Args:
error_type: The error type from the external service
(e.g., "llm_parse_error", "timeout", "rate_limit")
operation: Description of what operation failed, used in the default
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
error_details: Optional additional details about the error
Returns:
User-friendly error message suitable for display to the user
"""
base_message = ""
if error_type == "llm_parse_error":
base_message = (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
base_message = (
validation_message
or "The generated agent failed validation. "
"This usually happens when the agent structure doesn't match "
"what the platform expects. Please try simplifying your goal "
"or breaking it into smaller parts."
)
elif error_type == "patch_error":
base_message = (
"Failed to apply the changes. The modification couldn't be "
"validated. Please try a different approach or simplify the change."
)
elif error_type in ("timeout", "llm_timeout"):
base_message = (
"The request took too long to process. This can happen with "
"complex agents. Please try again or simplify your goal."
)
elif error_type in ("rate_limit", "llm_rate_limit"):
base_message = "The service is currently busy. Please try again in a moment."
else:
base_message = f"Failed to {operation}. Please try again."
if error_details:
details = _sanitize_error_details(error_details)
if len(details) > 200:
details = details[:200] + "..."
base_message += f"\n\nTechnical details: {details}"
return base_message

View File

@@ -12,83 +12,8 @@ import httpx
from backend.util.settings import Settings
from .dummy import (
customize_template_dummy,
decompose_goal_dummy,
generate_agent_dummy,
generate_agent_patch_dummy,
get_blocks_dummy,
health_check_dummy,
)
logger = logging.getLogger(__name__)
_dummy_mode_warned = False
def _create_error_response(
error_message: str,
error_type: str = "unknown",
details: dict[str, Any] | None = None,
) -> dict[str, Any]:
"""Create a standardized error response dict.
Args:
error_message: Human-readable error message
error_type: Machine-readable error type
details: Optional additional error details
Returns:
Error dict with type="error" and error details
"""
response: dict[str, Any] = {
"type": "error",
"error": error_message,
"error_type": error_type,
}
if details:
response["details"] = details
return response
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
"""Classify an HTTP error into error_type and message.
Args:
e: The HTTP status error
Returns:
Tuple of (error_type, error_message)
"""
status = e.response.status_code
if status == 429:
return "rate_limit", f"Agent Generator rate limited: {e}"
elif status == 503:
return "service_unavailable", f"Agent Generator unavailable: {e}"
elif status == 504 or status == 408:
return "timeout", f"Agent Generator timed out: {e}"
else:
return "http_error", f"HTTP error calling Agent Generator: {e}"
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
"""Classify a request error into error_type and message.
Args:
e: The request error
Returns:
Tuple of (error_type, error_message)
"""
error_str = str(e).lower()
if "timeout" in error_str or "timed out" in error_str:
return "timeout", f"Agent Generator request timed out: {e}"
elif "connect" in error_str:
return "connection_error", f"Could not connect to Agent Generator: {e}"
else:
return "request_error", f"Request error calling Agent Generator: {e}"
_client: httpx.AsyncClient | None = None
_settings: Settings | None = None
@@ -101,26 +26,10 @@ def _get_settings() -> Settings:
return _settings
def _is_dummy_mode() -> bool:
"""Check if dummy mode is enabled for testing."""
global _dummy_mode_warned
settings = _get_settings()
is_dummy = bool(settings.config.agentgenerator_use_dummy)
if is_dummy and not _dummy_mode_warned:
logger.warning(
"Agent Generator running in DUMMY MODE - returning mock responses. "
"Do not use in production!"
)
_dummy_mode_warned = True
return is_dummy
def is_external_service_configured() -> bool:
"""Check if external Agent Generator service is configured (or dummy mode)."""
"""Check if external Agent Generator service is configured."""
settings = _get_settings()
return bool(settings.config.agentgenerator_host) or bool(
settings.config.agentgenerator_use_dummy
)
return bool(settings.config.agentgenerator_host)
def _get_base_url() -> str:
@@ -144,16 +53,13 @@ def _get_client() -> httpx.AsyncClient:
async def decompose_goal_external(
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
description: str, context: str = ""
) -> dict[str, Any] | None:
"""Call the external service to decompose a goal.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
Dict with either:
@@ -161,20 +67,15 @@ async def decompose_goal_external(
- {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...}
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
Or None on error
"""
if _is_dummy_mode():
return await decompose_goal_dummy(description, context, library_agents)
client = _get_client()
if context:
description = f"{description}\n\nAdditional context from user:\n{context}"
# Build the request payload
payload: dict[str, Any] = {"description": description}
if library_agents:
payload["library_agents"] = library_agents
if context:
# The external service uses user_instruction for additional context
payload["user_instruction"] = context
try:
response = await client.post("/api/decompose-description", json=payload)
@@ -182,13 +83,8 @@ async def decompose_goal_external(
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator decomposition failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
logger.error(f"External service returned error: {data.get('error')}")
return None
# Map the response to the expected format
response_type = data.get("type")
@@ -210,172 +106,88 @@ async def decompose_goal_external(
"type": "vague_goal",
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "error":
# Pass through error from the service
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
else:
logger.error(
f"Unknown response type from external service: {response_type}"
)
return _create_error_response(
f"Unknown response type from Agent Generator: {response_type}",
"invalid_response",
)
return None
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_external(
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
instructions: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables Redis Streams callback)
task_id: Task ID for async processing (enables Redis Streams callback)
Returns:
Agent JSON dict, {"status": "accepted"} for async, or error dict {"type": "error", ...} on error
Agent JSON dict or None on error
"""
if _is_dummy_mode():
return await generate_agent_dummy(
instructions, library_agents, operation_id, task_id
)
client = _get_client()
# Build request payload
payload: dict[str, Any] = {"instructions": instructions}
if library_agents:
payload["library_agents"] = library_agents
if operation_id and task_id:
payload["operation_id"] = operation_id
payload["task_id"] = task_id
try:
response = await client.post("/api/generate-agent", json=payload)
# Handle 202 Accepted for async processing
if response.status_code == 202:
logger.info(
f"Agent Generator accepted async request "
f"(operation_id={operation_id}, task_id={task_id})"
)
return {
"status": "accepted",
"operation_id": operation_id,
"task_id": task_id,
}
response = await client.post(
"/api/generate-agent", json={"instructions": instructions}
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} (type: {error_type})"
)
return _create_error_response(error_msg, error_type)
logger.error(f"External service returned error: {data.get('error')}")
return None
return data.get("agent_json")
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def generate_agent_patch_external(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
operation_id: Operation ID for async processing (enables Redis Streams callback)
task_id: Task ID for async processing (enables Redis Streams callback)
Returns:
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or error dict on error
Updated agent JSON, clarifying questions dict, or None on error
"""
if _is_dummy_mode():
return await generate_agent_patch_dummy(
update_request, current_agent, library_agents, operation_id, task_id
)
client = _get_client()
# Build request payload
payload: dict[str, Any] = {
"update_request": update_request,
"current_agent_json": current_agent,
}
if library_agents:
payload["library_agents"] = library_agents
if operation_id and task_id:
payload["operation_id"] = operation_id
payload["task_id"] = task_id
try:
response = await client.post("/api/update-agent", json=payload)
# Handle 202 Accepted for async processing
if response.status_code == 202:
logger.info(
f"Agent Generator accepted async update request "
f"(operation_id={operation_id}, task_id={task_id})"
)
return {
"status": "accepted",
"operation_id": operation_id,
"task_id": task_id,
}
response = await client.post(
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response.raise_for_status()
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator patch generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
logger.error(f"External service returned error: {data.get('error')}")
return None
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
@@ -384,104 +196,18 @@ async def generate_agent_patch_external(
"questions": data.get("questions", []),
}
# Check if it's an error passed through
if data.get("type") == "error":
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
# Otherwise return the updated agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"HTTP error calling external agent generator: {e}")
return None
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
logger.error(f"Request error calling external agent generator: {e}")
return None
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def customize_template_external(
template_agent: dict[str, Any],
modification_request: str,
context: str = "",
) -> dict[str, Any] | None:
"""Call the external service to customize a template/marketplace agent.
Args:
template_agent: The template agent JSON to customize
modification_request: Natural language description of customizations
context: Additional context (e.g., answers to previous questions)
Returns:
Customized agent JSON, clarifying questions dict, or error dict on error
"""
if _is_dummy_mode():
return await customize_template_dummy(
template_agent, modification_request, context
)
client = _get_client()
request = modification_request
if context:
request = f"{modification_request}\n\nAdditional context from user:\n{context}"
payload: dict[str, Any] = {
"template_agent_json": template_agent,
"modification_request": request,
}
try:
response = await client.post("/api/template-modification", json=payload)
response.raise_for_status()
data = response.json()
if not data.get("success"):
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator template customization failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
return {
"type": "clarifying_questions",
"questions": data.get("questions", []),
}
# Check if it's an error passed through
if data.get("type") == "error":
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
# Otherwise return the customized agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
async def get_blocks_external() -> list[dict[str, Any]] | None:
@@ -490,9 +216,6 @@ async def get_blocks_external() -> list[dict[str, Any]] | None:
Returns:
List of block info dicts or None on error
"""
if _is_dummy_mode():
return await get_blocks_dummy()
client = _get_client()
try:
@@ -526,9 +249,6 @@ async def health_check() -> bool:
if not is_external_service_configured():
return False
if _is_dummy_mode():
return await health_check_dummy()
client = _get_client()
try:

View File

@@ -5,6 +5,7 @@ import re
from datetime import datetime, timedelta, timezone
from typing import Any
from langfuse import observe
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
@@ -328,6 +329,7 @@ class AgentOutputTool(BaseTool):
total_executions=len(available_executions) if available_executions else 1,
)
@observe(as_type="tool", name="view_agent_output")
async def _execute(
self,
user_id: str | None,

View File

@@ -1,7 +1,6 @@
"""Shared agent search functionality for find_agent and find_library_agent tools."""
import logging
import re
from typing import Literal
from backend.api.features.library import db as library_db
@@ -20,85 +19,6 @@ logger = logging.getLogger(__name__)
SearchSource = Literal["marketplace", "library"]
_UUID_PATTERN = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$",
re.IGNORECASE,
)
def _is_uuid(text: str) -> bool:
"""Check if text is a valid UUID v4."""
return bool(_UUID_PATTERN.match(text.strip()))
async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | None:
"""Fetch a library agent by ID (library agent ID or graph_id).
Tries multiple lookup strategies:
1. First by graph_id (AgentGraph primary key)
2. Then by library agent ID (LibraryAgent primary key)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
AgentInfo if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by graph_id {agent_id}: {e}",
exc_info=True,
)
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
async def search_agents(
query: str,
@@ -149,37 +69,29 @@ async def search_agents(
is_featured=False,
)
)
else:
if _is_uuid(query):
logger.info(f"Query looks like UUID, trying direct lookup: {query}")
agent = await _get_library_agent_by_id(user_id, query) # type: ignore[arg-type]
if agent:
agents.append(agent)
logger.info(f"Found agent by direct ID lookup: {agent.name}")
if not agents:
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
else: # library
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
)
logger.info(f"Found {len(agents)} agents in {source}")
except NotFoundError:
pass
@@ -206,9 +118,9 @@ async def search_agents(
]
)
no_results_msg = (
f"No agents found matching '{query}'. Let the user know they can try different keywords or browse the marketplace. Also let them know you can create a custom agent for them based on their needs."
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
if source == "marketplace"
else f"No agents matching '{query}' found in your library. Let the user know you can create a custom agent for them based on their needs."
else f"No agents matching '{query}' found in your library."
)
return NoResultsResponse(
message=no_results_msg, session_id=session_id, suggestions=suggestions
@@ -224,10 +136,10 @@ async def search_agents(
message = (
"Now you have found some options for the user to choose from. "
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
"Please ask the user if they would like to use any of these agents. Let the user know we can create a custom agent for them based on their needs."
"Please ask the user if they would like to use any of these agents."
if source == "marketplace"
else "Found agents in the user's library. You can provide a link to view an agent at: "
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute. Let the user know we can create a custom agent for them based on their needs."
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
)
return AgentsFoundResponse(

View File

@@ -36,16 +36,6 @@ class BaseTool:
"""Whether this tool requires authentication."""
return False
@property
def is_long_running(self) -> bool:
"""Whether this tool is long-running and should execute in background.
Long-running tools (like agent generation) are executed via background
tasks to survive SSE disconnections. The result is persisted to chat
history and visible when the user refreshes.
"""
return False
def as_openai_tool(self) -> ChatCompletionToolParam:
"""Convert to OpenAI tool format."""
return ChatCompletionToolParam(

View File

@@ -1,131 +0,0 @@
"""Bash execution tool — run shell commands in a bubblewrap sandbox.
Full Bash scripting is allowed (loops, conditionals, pipes, functions, etc.).
Safety comes from OS-level isolation (bubblewrap): only system dirs visible
read-only, writable workspace only, clean env, no network.
Requires bubblewrap (``bwrap``) — the tool is disabled when bwrap is not
available (e.g. macOS development).
"""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
BashExecResponse,
ErrorResponse,
ToolResponseBase,
)
from backend.api.features.chat.tools.sandbox import (
get_workspace_dir,
has_full_sandbox,
run_sandboxed,
)
logger = logging.getLogger(__name__)
class BashExecTool(BaseTool):
"""Execute Bash commands in a bubblewrap sandbox."""
@property
def name(self) -> str:
return "bash_exec"
@property
def description(self) -> str:
if not has_full_sandbox():
return (
"Bash execution is DISABLED — bubblewrap sandbox is not "
"available on this platform. Do not call this tool."
)
return (
"Execute a Bash command or script in a bubblewrap sandbox. "
"Full Bash scripting is supported (loops, conditionals, pipes, "
"functions, etc.). "
"The sandbox shares the same working directory as the SDK Read/Write "
"tools — files created by either are accessible to both. "
"SECURITY: Only system directories (/usr, /bin, /lib, /etc) are "
"visible read-only, the per-session workspace is the only writable "
"path, environment variables are wiped (no secrets), all network "
"access is blocked at the kernel level, and resource limits are "
"enforced (max 64 processes, 512MB memory, 50MB file size). "
"Application code, configs, and other directories are NOT accessible. "
"To fetch web content, use the web_fetch tool instead. "
"Execution is killed after the timeout (default 30s, max 120s). "
"Returns stdout and stderr. "
"Useful for file manipulation, data processing with Unix tools "
"(grep, awk, sed, jq, etc.), and running shell scripts."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"command": {
"type": "string",
"description": "Bash command or script to execute.",
},
"timeout": {
"type": "integer",
"description": (
"Max execution time in seconds (default 30, max 120)."
),
"default": 30,
},
},
"required": ["command"],
}
@property
def requires_auth(self) -> bool:
return False
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs: Any,
) -> ToolResponseBase:
session_id = session.session_id if session else None
if not has_full_sandbox():
return ErrorResponse(
message="bash_exec requires bubblewrap sandbox (Linux only).",
error="sandbox_unavailable",
session_id=session_id,
)
command: str = (kwargs.get("command") or "").strip()
timeout: int = kwargs.get("timeout", 30)
if not command:
return ErrorResponse(
message="No command provided.",
error="empty_command",
session_id=session_id,
)
workspace = get_workspace_dir(session_id or "default")
stdout, stderr, exit_code, timed_out = await run_sandboxed(
command=["bash", "-c", command],
cwd=workspace,
timeout=timeout,
)
return BashExecResponse(
message=(
"Execution timed out"
if timed_out
else f"Command executed (exit {exit_code})"
),
stdout=stdout,
stderr=stderr,
exit_code=exit_code,
timed_out=timed_out,
session_id=session_id,
)

View File

@@ -1,127 +0,0 @@
"""CheckOperationStatusTool — query the status of a long-running operation."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
ResponseType,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
class OperationStatusResponse(ToolResponseBase):
"""Response for check_operation_status tool."""
type: ResponseType = ResponseType.OPERATION_STATUS
task_id: str
operation_id: str
status: str # "running", "completed", "failed"
tool_name: str | None = None
message: str = ""
class CheckOperationStatusTool(BaseTool):
"""Check the status of a long-running operation (create_agent, edit_agent, etc.).
The CoPilot uses this tool to report back to the user whether an
operation that was started earlier has completed, failed, or is still
running.
"""
@property
def name(self) -> str:
return "check_operation_status"
@property
def description(self) -> str:
return (
"Check the current status of a long-running operation such as "
"create_agent or edit_agent. Accepts either an operation_id or "
"task_id from a previous operation_started response. "
"Returns the current status: running, completed, or failed."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"operation_id": {
"type": "string",
"description": (
"The operation_id from an operation_started response."
),
},
"task_id": {
"type": "string",
"description": (
"The task_id from an operation_started response. "
"Used as fallback if operation_id is not provided."
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return False
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
from backend.api.features.chat import stream_registry
operation_id = (kwargs.get("operation_id") or "").strip()
task_id = (kwargs.get("task_id") or "").strip()
if not operation_id and not task_id:
return ErrorResponse(
message="Please provide an operation_id or task_id.",
error="missing_parameter",
)
task = None
if operation_id:
task = await stream_registry.find_task_by_operation_id(operation_id)
if task is None and task_id:
task = await stream_registry.get_task(task_id)
if task is None:
# Task not in Redis — it may have already expired (TTL).
# Check conversation history for the result instead.
return ErrorResponse(
message=(
"Operation not found — it may have already completed and "
"expired from the status tracker. Check the conversation "
"history for the result."
),
error="not_found",
)
status_messages = {
"running": (
f"The {task.tool_name or 'operation'} is still running. "
"Please wait for it to complete."
),
"completed": (
f"The {task.tool_name or 'operation'} has completed successfully."
),
"failed": f"The {task.tool_name or 'operation'} has failed.",
}
return OperationStatusResponse(
task_id=task.task_id,
operation_id=task.operation_id,
status=task.status,
tool_name=task.tool_name,
message=status_messages.get(task.status, f"Status: {task.status}"),
)

View File

@@ -3,22 +3,20 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
decompose_goal,
enrich_library_agents_from_steps,
generate_agent,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
AsyncProcessingResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
@@ -46,10 +44,6 @@ class CreateAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
@@ -81,6 +75,7 @@ class CreateAgentTool(BaseTool):
"required": ["description"],
}
@observe(as_type="tool", name="create_agent")
async def _execute(
self,
user_id: str | None,
@@ -99,10 +94,6 @@ class CreateAgentTool(BaseTool):
save = kwargs.get("save", True)
session_id = session.session_id if session else None
# Extract async processing params (passed by long-running tool handler)
operation_id = kwargs.get("_operation_id")
task_id = kwargs.get("_task_id")
if not description:
return ErrorResponse(
message="Please provide a description of what the agent should do.",
@@ -110,24 +101,9 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
library_agents = None
if user_id:
try:
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=description,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
# Step 1: Decompose goal into steps
try:
decomposition_result = await decompose_goal(
description, context, library_agents
)
decomposition_result = await decompose_goal(description, context)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -140,31 +116,12 @@ class CreateAgentTool(BaseTool):
if decomposition_result is None:
return ErrorResponse(
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
error="decomposition_failed",
details={"description": description[:100]},
session_id=session_id,
)
if decomposition_result.get("type") == "error":
error_msg = decomposition_result.get("error", "Unknown error")
error_type = decomposition_result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="analyze the goal",
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"decomposition_failed:{error_type}",
details={
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
message="Failed to analyze the goal. Please try rephrasing.",
error="Decomposition failed",
session_id=session_id,
)
# Check if LLM returned clarifying questions
if decomposition_result.get("type") == "clarifying_questions":
questions = decomposition_result.get("questions", [])
return ClarificationNeededResponse(
@@ -183,6 +140,7 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check for unachievable/vague goals
if decomposition_result.get("type") == "unachievable_goal":
suggested = decomposition_result.get("suggested_goal", "")
reason = decomposition_result.get("reason", "")
@@ -209,27 +167,9 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
if user_id and library_agents is not None:
try:
library_agents = await enrich_library_agents_from_steps(
user_id=user_id,
decomposition_result=decomposition_result,
existing_agents=library_agents,
include_marketplace=True,
)
logger.debug(
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to enrich library agents from steps: {e}")
# Step 2: Generate agent JSON (external service handles fixing and validation)
try:
agent_json = await generate_agent(
decomposition_result,
library_agents,
operation_id=operation_id,
task_id=task_id,
)
agent_json = await generate_agent(decomposition_result)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -242,47 +182,8 @@ class CreateAgentTool(BaseTool):
if agent_json is None:
return ErrorResponse(
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
error="generation_failed",
details={"description": description[:100]},
session_id=session_id,
)
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
error_msg = agent_json.get("error", "Unknown error")
error_type = agent_json.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message=(
"I wasn't able to create a valid agent for this request. "
"The generated workflow had some structural issues. "
"Please try simplifying your goal or breaking it into smaller steps."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"generation_failed:{error_type}",
details={
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
# Check if Agent Generator accepted for async processing
if agent_json.get("status") == "accepted":
logger.info(
f"Agent generation delegated to async processing "
f"(operation_id={operation_id}, task_id={task_id})"
)
return AsyncProcessingResponse(
message="Agent generation started. You'll be notified when it's complete.",
operation_id=operation_id,
task_id=task_id,
message="Failed to generate the agent. Please try again.",
error="Generation failed",
session_id=session_id,
)
@@ -291,6 +192,7 @@ class CreateAgentTool(BaseTool):
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -305,6 +207,7 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Save to library
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -322,7 +225,7 @@ class CreateAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/agents/{library_agent.id}",
library_agent_link=f"/library/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -1,337 +0,0 @@
"""CustomizeAgentTool - Customizes marketplace/template agents using natural language."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.store import db as store_db
from backend.api.features.store.exceptions import AgentNotFoundError
from .agent_generator import (
AgentGeneratorNotConfiguredError,
customize_template,
get_user_message_for_error,
graph_to_json,
save_agent_to_library,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
class CustomizeAgentTool(BaseTool):
"""Tool for customizing marketplace/template agents using natural language."""
@property
def name(self) -> str:
return "customize_agent"
@property
def description(self) -> str:
return (
"Customize a marketplace or template agent using natural language. "
"Takes an existing agent from the marketplace and modifies it based on "
"the user's requirements before adding to their library."
)
@property
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"agent_id": {
"type": "string",
"description": (
"The marketplace agent ID in format 'creator/slug' "
"(e.g., 'autogpt/newsletter-writer'). "
"Get this from find_agent results."
),
},
"modifications": {
"type": "string",
"description": (
"Natural language description of how to customize the agent. "
"Be specific about what changes you want to make."
),
},
"context": {
"type": "string",
"description": (
"Additional context or answers to previous clarifying questions."
),
},
"save": {
"type": "boolean",
"description": (
"Whether to save the customized agent to the user's library. "
"Default is true. Set to false for preview only."
),
"default": True,
},
},
"required": ["agent_id", "modifications"],
}
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute the customize_agent tool.
Flow:
1. Parse the agent ID to get creator/slug
2. Fetch the template agent from the marketplace
3. Call customize_template with the modification request
4. Preview or save based on the save parameter
"""
agent_id = kwargs.get("agent_id", "").strip()
modifications = kwargs.get("modifications", "").strip()
context = kwargs.get("context", "")
save = kwargs.get("save", True)
session_id = session.session_id if session else None
if not agent_id:
return ErrorResponse(
message="Please provide the marketplace agent ID (e.g., 'creator/agent-name').",
error="missing_agent_id",
session_id=session_id,
)
if not modifications:
return ErrorResponse(
message="Please describe how you want to customize this agent.",
error="missing_modifications",
session_id=session_id,
)
# Parse agent_id in format "creator/slug"
parts = [p.strip() for p in agent_id.split("/")]
if len(parts) != 2 or not parts[0] or not parts[1]:
return ErrorResponse(
message=(
f"Invalid agent ID format: '{agent_id}'. "
"Expected format is 'creator/agent-name' "
"(e.g., 'autogpt/newsletter-writer')."
),
error="invalid_agent_id_format",
session_id=session_id,
)
creator_username, agent_slug = parts
# Fetch the marketplace agent details
try:
agent_details = await store_db.get_store_agent_details(
username=creator_username, agent_name=agent_slug
)
except AgentNotFoundError:
return ErrorResponse(
message=(
f"Could not find marketplace agent '{agent_id}'. "
"Please check the agent ID and try again."
),
error="agent_not_found",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error fetching marketplace agent {agent_id}: {e}")
return ErrorResponse(
message="Failed to fetch the marketplace agent. Please try again.",
error="fetch_error",
session_id=session_id,
)
if not agent_details.store_listing_version_id:
return ErrorResponse(
message=(
f"The agent '{agent_id}' does not have an available version. "
"Please try a different agent."
),
error="no_version_available",
session_id=session_id,
)
# Get the full agent graph
try:
graph = await store_db.get_agent(agent_details.store_listing_version_id)
template_agent = graph_to_json(graph)
except Exception as e:
logger.error(f"Error fetching agent graph for {agent_id}: {e}")
return ErrorResponse(
message="Failed to fetch the agent configuration. Please try again.",
error="graph_fetch_error",
session_id=session_id,
)
# Call customize_template
try:
result = await customize_template(
template_agent=template_agent,
modification_request=modifications,
context=context,
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
"Agent customization is not available. "
"The Agent Generator service is not configured."
),
error="service_not_configured",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error calling customize_template for {agent_id}: {e}")
return ErrorResponse(
message=(
"Failed to customize the agent due to a service error. "
"Please try again."
),
error="customization_service_error",
session_id=session_id,
)
if result is None:
return ErrorResponse(
message=(
"Failed to customize the agent. "
"The agent generation service may be unavailable or timed out. "
"Please try again."
),
error="customization_failed",
session_id=session_id,
)
# Handle error response
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="customize the agent",
llm_parse_message=(
"The AI had trouble customizing the agent. "
"Please try again or simplify your request."
),
validation_message=(
"The customized agent failed validation. "
"Please try rephrasing your request."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"customization_failed:{error_type}",
session_id=session_id,
)
# Handle clarifying questions
if isinstance(result, dict) and result.get("type") == "clarifying_questions":
questions = result.get("questions") or []
if not isinstance(questions, list):
logger.error(
f"Unexpected clarifying questions format: {type(questions)}"
)
questions = []
return ClarificationNeededResponse(
message=(
"I need some more information to customize this agent. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
if isinstance(q, dict)
],
session_id=session_id,
)
# Result should be the customized agent JSON
if not isinstance(result, dict):
logger.error(f"Unexpected customize_template response type: {type(result)}")
return ErrorResponse(
message="Failed to customize the agent due to an unexpected response.",
error="unexpected_response_type",
session_id=session_id,
)
customized_agent = result
agent_name = customized_agent.get(
"name", f"Customized {agent_details.agent_name}"
)
agent_description = customized_agent.get("description", "")
nodes = customized_agent.get("nodes")
links = customized_agent.get("links")
node_count = len(nodes) if isinstance(nodes, list) else 0
link_count = len(links) if isinstance(links, list) else 0
if not save:
return AgentPreviewResponse(
message=(
f"I've customized the agent '{agent_details.agent_name}'. "
f"The customized agent has {node_count} blocks. "
f"Review it and call customize_agent with save=true to save it."
),
agent_json=customized_agent,
agent_name=agent_name,
description=agent_description,
node_count=node_count,
link_count=link_count,
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
error="auth_required",
session_id=session_id,
)
# Save to user's library
try:
created_graph, library_agent = await save_agent_to_library(
customized_agent, user_id, is_update=False
)
return AgentSavedResponse(
message=(
f"Customized agent '{created_graph.name}' "
f"(based on '{agent_details.agent_name}') "
f"has been saved to your library!"
),
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error saving customized agent: {e}")
return ErrorResponse(
message="Failed to save the customized agent. Please try again.",
error="save_failed",
session_id=session_id,
)

View File

@@ -3,21 +3,20 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
AsyncProcessingResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
@@ -45,10 +44,6 @@ class EditAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@property
def is_long_running(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
@@ -86,6 +81,7 @@ class EditAgentTool(BaseTool):
"required": ["agent_id", "changes"],
}
@observe(as_type="tool", name="edit_agent")
async def _execute(
self,
user_id: str | None,
@@ -105,10 +101,6 @@ class EditAgentTool(BaseTool):
save = kwargs.get("save", True)
session_id = session.session_id if session else None
# Extract async processing params (passed by long-running tool handler)
operation_id = kwargs.get("_operation_id")
task_id = kwargs.get("_task_id")
if not agent_id:
return ErrorResponse(
message="Please provide the agent ID to edit.",
@@ -123,6 +115,7 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Step 1: Fetch current agent
current_agent = await get_agent_as_json(agent_id, user_id)
if current_agent is None:
@@ -132,34 +125,14 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
library_agents = None
if user_id:
try:
graph_id = current_agent.get("id")
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=changes,
exclude_graph_id=graph_id,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
# Build the update request with context
update_request = changes
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(
update_request,
current_agent,
library_agents,
operation_id=operation_id,
task_id=task_id,
)
result = await generate_agent_patch(update_request, current_agent)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -172,48 +145,12 @@ class EditAgentTool(BaseTool):
if result is None:
return ErrorResponse(
message="Failed to generate changes. The agent generation service may be unavailable or timed out. Please try again.",
error="update_generation_failed",
details={"agent_id": agent_id, "changes": changes[:100]},
session_id=session_id,
)
# Check if Agent Generator accepted for async processing
if result.get("status") == "accepted":
logger.info(
f"Agent edit delegated to async processing "
f"(operation_id={operation_id}, task_id={task_id})"
)
return AsyncProcessingResponse(
message="Agent edit started. You'll be notified when it's complete.",
operation_id=operation_id,
task_id=task_id,
session_id=session_id,
)
# Check if the result is an error from the external service
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the changes",
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
validation_message="The generated changes failed validation. Please try rephrasing your request.",
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
error=f"update_generation_failed:{error_type}",
details={
"agent_id": agent_id,
"changes": changes[:100],
"service_error": error_msg,
"error_type": error_type,
},
message="Failed to generate changes. Please try rephrasing.",
error="Update generation failed",
session_id=session_id,
)
# Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])
return ClarificationNeededResponse(
@@ -232,6 +169,7 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Result is the updated agent JSON
updated_agent = result
agent_name = updated_agent.get("name", "Updated Agent")
@@ -239,6 +177,7 @@ class EditAgentTool(BaseTool):
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -254,6 +193,7 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Save to library (creates a new version)
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -271,7 +211,7 @@ class EditAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/agents/{library_agent.id}",
library_agent_link=f"/library/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -2,6 +2,8 @@
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -35,6 +37,7 @@ class FindAgentTool(BaseTool):
"required": ["query"],
}
@observe(as_type="tool", name="find_agent")
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:

View File

@@ -1,44 +1,23 @@
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
from backend.api.features.chat.tools.models import (
BlockInfoSummary,
BlockInputFieldInfo,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.blocks import get_block
from backend.blocks._base import BlockType
from backend.data.block import get_block
logger = logging.getLogger(__name__)
_TARGET_RESULTS = 10
# Over-fetch to compensate for post-hoc filtering of graph-only blocks.
# 40 is 2x current removed; speed of query 10 vs 40 is minimial
_OVERFETCH_PAGE_SIZE = 40
# Block types that only work within graphs and cannot run standalone in CoPilot.
COPILOT_EXCLUDED_BLOCK_TYPES = {
BlockType.INPUT, # Graph interface definition - data enters via chat, not graph inputs
BlockType.OUTPUT, # Graph interface definition - data exits via chat, not graph outputs
BlockType.WEBHOOK, # Wait for external events - would hang forever in CoPilot
BlockType.WEBHOOK_MANUAL, # Same as WEBHOOK
BlockType.NOTE, # Visual annotation only - no runtime behavior
BlockType.HUMAN_IN_THE_LOOP, # Pauses for human approval - CoPilot IS human-in-the-loop
BlockType.AGENT, # AgentExecutorBlock requires execution_context - use run_agent tool
}
# Specific block IDs excluded from CoPilot (STANDARD type but still require graph context)
COPILOT_EXCLUDED_BLOCK_IDS = {
# SmartDecisionMakerBlock - dynamically discovers downstream blocks via graph topology
"3b191d9f-356f-482d-8238-ba04b6d18381",
}
class FindBlockTool(BaseTool):
"""Tool for searching available blocks."""
@@ -54,8 +33,7 @@ class FindBlockTool(BaseTool):
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
"The response includes each block's id, name, and description. "
"Call run_block with the block's id **with no inputs** to see detailed inputs/outputs and execute it."
"The response includes each block's id, required_inputs, and input_schema."
)
@property
@@ -78,6 +56,7 @@ class FindBlockTool(BaseTool):
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_block")
async def _execute(
self,
user_id: str | None,
@@ -111,7 +90,7 @@ class FindBlockTool(BaseTool):
query=query,
content_types=[ContentType.BLOCK],
page=1,
page_size=_OVERFETCH_PAGE_SIZE,
page_size=10,
)
if not results:
@@ -124,44 +103,66 @@ class FindBlockTool(BaseTool):
session_id=session_id,
)
# Enrich results with block information
# Enrich results with full block information
blocks: list[BlockInfoSummary] = []
for result in results:
block_id = result["content_id"]
block = get_block(block_id)
# Skip disabled blocks
if not block or block.disabled:
continue
if block:
# Get input/output schemas
input_schema = {}
output_schema = {}
try:
input_schema = block.input_schema.jsonschema()
except Exception:
pass
try:
output_schema = block.output_schema.jsonschema()
except Exception:
pass
# Skip blocks excluded from CoPilot (graph-only blocks)
if (
block.block_type in COPILOT_EXCLUDED_BLOCK_TYPES
or block.id in COPILOT_EXCLUDED_BLOCK_IDS
):
continue
# Get categories from block instance
categories = []
if hasattr(block, "categories") and block.categories:
categories = [cat.value for cat in block.categories]
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=[c.value for c in block.categories],
# Extract required inputs for easier use
required_inputs: list[BlockInputFieldInfo] = []
if input_schema:
properties = input_schema.get("properties", {})
required_fields = set(input_schema.get("required", []))
# Get credential field names to exclude from required inputs
credentials_fields = set(
block.input_schema.get_credentials_fields().keys()
)
for field_name, field_schema in properties.items():
# Skip credential fields - they're handled separately
if field_name in credentials_fields:
continue
required_inputs.append(
BlockInputFieldInfo(
name=field_name,
type=field_schema.get("type", "string"),
description=field_schema.get("description", ""),
required=field_name in required_fields,
default=field_schema.get("default"),
)
)
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=categories,
input_schema=input_schema,
output_schema=output_schema,
required_inputs=required_inputs,
)
)
)
if len(blocks) >= _TARGET_RESULTS:
break
if blocks and len(blocks) < _TARGET_RESULTS:
logger.debug(
"find_block returned %d/%d results for query '%s' "
"(filtered %d excluded/disabled blocks)",
len(blocks),
_TARGET_RESULTS,
query,
len(results) - len(blocks),
)
if not blocks:
return NoResultsResponse(
@@ -175,7 +176,8 @@ class FindBlockTool(BaseTool):
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
"To see a block's inputs/outputs and execute it, use run_block with the block's 'id' - providing no inputs."
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
),
blocks=blocks,
count=len(blocks),

View File

@@ -1,386 +0,0 @@
"""Tests for block filtering in FindBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.find_block import (
COPILOT_EXCLUDED_BLOCK_IDS,
COPILOT_EXCLUDED_BLOCK_TYPES,
FindBlockTool,
)
from backend.api.features.chat.tools.models import BlockListResponse
from backend.blocks._base import BlockType
from ._test_data import make_session
_TEST_USER_ID = "test-user-find-block"
def make_mock_block(
block_id: str,
name: str,
block_type: BlockType,
disabled: bool = False,
input_schema: dict | None = None,
output_schema: dict | None = None,
credentials_fields: dict | None = None,
):
"""Create a mock block for testing."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.description = f"{name} description"
mock.block_type = block_type
mock.disabled = disabled
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = input_schema or {
"properties": {},
"required": [],
}
mock.input_schema.get_credentials_fields.return_value = credentials_fields or {}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = output_schema or {}
mock.categories = []
return mock
class TestFindBlockFiltering:
"""Tests for block filtering in FindBlockTool."""
def test_excluded_block_types_contains_expected_types(self):
"""Verify COPILOT_EXCLUDED_BLOCK_TYPES contains all graph-only types."""
assert BlockType.INPUT in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.OUTPUT in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.WEBHOOK in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.WEBHOOK_MANUAL in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.NOTE in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.HUMAN_IN_THE_LOOP in COPILOT_EXCLUDED_BLOCK_TYPES
assert BlockType.AGENT in COPILOT_EXCLUDED_BLOCK_TYPES
def test_excluded_block_ids_contains_smart_decision_maker(self):
"""Verify SmartDecisionMakerBlock is in COPILOT_EXCLUDED_BLOCK_IDS."""
assert "3b191d9f-356f-482d-8238-ba04b6d18381" in COPILOT_EXCLUDED_BLOCK_IDS
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_type_filtered_from_results(self):
"""Verify blocks with excluded BlockTypes are filtered from search results."""
session = make_session(user_id=_TEST_USER_ID)
# Mock search returns an INPUT block (excluded) and a STANDARD block (included)
search_results = [
{"content_id": "input-block-id", "score": 0.9},
{"content_id": "standard-block-id", "score": 0.8},
]
input_block = make_mock_block("input-block-id", "Input Block", BlockType.INPUT)
standard_block = make_mock_block(
"standard-block-id", "HTTP Request", BlockType.STANDARD
)
def mock_get_block(block_id):
return {
"input-block-id": input_block,
"standard-block-id": standard_block,
}.get(block_id)
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, 2),
):
with patch(
"backend.api.features.chat.tools.find_block.get_block",
side_effect=mock_get_block,
):
tool = FindBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
# Should only return the standard block, not the INPUT block
assert isinstance(response, BlockListResponse)
assert len(response.blocks) == 1
assert response.blocks[0].id == "standard-block-id"
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_id_filtered_from_results(self):
"""Verify SmartDecisionMakerBlock is filtered from search results."""
session = make_session(user_id=_TEST_USER_ID)
smart_decision_id = "3b191d9f-356f-482d-8238-ba04b6d18381"
search_results = [
{"content_id": smart_decision_id, "score": 0.9},
{"content_id": "normal-block-id", "score": 0.8},
]
# SmartDecisionMakerBlock has STANDARD type but is excluded by ID
smart_block = make_mock_block(
smart_decision_id, "Smart Decision Maker", BlockType.STANDARD
)
normal_block = make_mock_block(
"normal-block-id", "Normal Block", BlockType.STANDARD
)
def mock_get_block(block_id):
return {
smart_decision_id: smart_block,
"normal-block-id": normal_block,
}.get(block_id)
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, 2),
):
with patch(
"backend.api.features.chat.tools.find_block.get_block",
side_effect=mock_get_block,
):
tool = FindBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="decision"
)
# Should only return normal block, not SmartDecisionMakerBlock
assert isinstance(response, BlockListResponse)
assert len(response.blocks) == 1
assert response.blocks[0].id == "normal-block-id"
@pytest.mark.asyncio(loop_scope="session")
async def test_response_size_average_chars_per_block(self):
"""Measure average chars per block in the serialized response."""
session = make_session(user_id=_TEST_USER_ID)
# Realistic block definitions modeled after real blocks
block_defs = [
{
"id": "http-block-id",
"name": "Send Web Request",
"input_schema": {
"properties": {
"url": {
"type": "string",
"description": "The URL to send the request to",
},
"method": {
"type": "string",
"description": "The HTTP method to use",
},
"headers": {
"type": "object",
"description": "Headers to include in the request",
},
"json_format": {
"type": "boolean",
"description": "If true, send the body as JSON",
},
"body": {
"type": "object",
"description": "Form/JSON body payload",
},
"credentials": {
"type": "object",
"description": "HTTP credentials",
},
},
"required": ["url", "method"],
},
"output_schema": {
"properties": {
"response": {
"type": "object",
"description": "The response from the server",
},
"client_error": {
"type": "object",
"description": "Errors on 4xx status codes",
},
"server_error": {
"type": "object",
"description": "Errors on 5xx status codes",
},
"error": {
"type": "string",
"description": "Errors for all other exceptions",
},
},
},
"credentials_fields": {"credentials": True},
},
{
"id": "email-block-id",
"name": "Send Email",
"input_schema": {
"properties": {
"to_email": {
"type": "string",
"description": "Recipient email address",
},
"subject": {
"type": "string",
"description": "Subject of the email",
},
"body": {
"type": "string",
"description": "Body of the email",
},
"config": {
"type": "object",
"description": "SMTP Config",
},
"credentials": {
"type": "object",
"description": "SMTP credentials",
},
},
"required": ["to_email", "subject", "body", "credentials"],
},
"output_schema": {
"properties": {
"status": {
"type": "string",
"description": "Status of the email sending operation",
},
"error": {
"type": "string",
"description": "Error message if sending failed",
},
},
},
"credentials_fields": {"credentials": True},
},
{
"id": "claude-code-block-id",
"name": "Claude Code",
"input_schema": {
"properties": {
"e2b_credentials": {
"type": "object",
"description": "API key for E2B platform",
},
"anthropic_credentials": {
"type": "object",
"description": "API key for Anthropic",
},
"prompt": {
"type": "string",
"description": "Task or instruction for Claude Code",
},
"timeout": {
"type": "integer",
"description": "Sandbox timeout in seconds",
},
"setup_commands": {
"type": "array",
"description": "Shell commands to run before execution",
},
"working_directory": {
"type": "string",
"description": "Working directory for Claude Code",
},
"session_id": {
"type": "string",
"description": "Session ID to resume a conversation",
},
"sandbox_id": {
"type": "string",
"description": "Sandbox ID to reconnect to",
},
"conversation_history": {
"type": "string",
"description": "Previous conversation history",
},
"dispose_sandbox": {
"type": "boolean",
"description": "Whether to dispose sandbox after execution",
},
},
"required": [
"e2b_credentials",
"anthropic_credentials",
"prompt",
],
},
"output_schema": {
"properties": {
"response": {
"type": "string",
"description": "Output from Claude Code execution",
},
"files": {
"type": "array",
"description": "Files created/modified by Claude Code",
},
"conversation_history": {
"type": "string",
"description": "Full conversation history",
},
"session_id": {
"type": "string",
"description": "Session ID for this conversation",
},
"sandbox_id": {
"type": "string",
"description": "ID of the sandbox instance",
},
"error": {
"type": "string",
"description": "Error message if execution failed",
},
},
},
"credentials_fields": {
"e2b_credentials": True,
"anthropic_credentials": True,
},
},
]
search_results = [
{"content_id": d["id"], "score": 0.9 - i * 0.1}
for i, d in enumerate(block_defs)
]
mock_blocks = {
d["id"]: make_mock_block(
block_id=d["id"],
name=d["name"],
block_type=BlockType.STANDARD,
input_schema=d["input_schema"],
output_schema=d["output_schema"],
credentials_fields=d["credentials_fields"],
)
for d in block_defs
}
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, len(search_results)),
), patch(
"backend.api.features.chat.tools.find_block.get_block",
side_effect=lambda bid: mock_blocks.get(bid),
):
tool = FindBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(response, BlockListResponse)
assert response.count == len(block_defs)
total_chars = len(response.model_dump_json())
avg_chars = total_chars // response.count
# Print for visibility in test output
print(f"\nTotal response size: {total_chars} chars")
print(f"Number of blocks: {response.count}")
print(f"Average chars per block: {avg_chars}")
# The old response was ~90K for 10 blocks (~9K per block).
# Previous optimization reduced it to ~1.5K per block (no raw JSON schemas).
# Now with only id/name/description, we expect ~300 chars per block.
assert avg_chars < 500, (
f"Average chars per block ({avg_chars}) exceeds 500. "
f"Total response: {total_chars} chars for {response.count} blocks."
)

View File

@@ -2,6 +2,8 @@
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_search import search_agents
@@ -41,6 +43,7 @@ class FindLibraryAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_library_agent")
async def _execute(
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:

View File

@@ -4,6 +4,8 @@ import logging
from pathlib import Path
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
@@ -71,6 +73,7 @@ class GetDocPageTool(BaseTool):
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="get_doc_page")
async def _execute(
self,
user_id: str | None,

View File

@@ -1,29 +0,0 @@
"""Shared helpers for chat tools."""
from typing import Any
def get_inputs_from_schema(
input_schema: dict[str, Any],
exclude_fields: set[str] | None = None,
) -> list[dict[str, Any]]:
"""Extract input field info from JSON schema."""
if not isinstance(input_schema, dict):
return []
exclude = exclude_fields or set()
properties = input_schema.get("properties", {})
required = set(input_schema.get("required", []))
return [
{
"name": name,
"title": schema.get("title", name),
"type": schema.get("type", "string"),
"description": schema.get("description", ""),
"required": name in required,
"default": schema.get("default"),
}
for name, schema in properties.items()
if name not in exclude
]

View File

@@ -25,28 +25,9 @@ class ResponseType(str, Enum):
AGENT_SAVED = "agent_saved"
CLARIFICATION_NEEDED = "clarification_needed"
BLOCK_LIST = "block_list"
BLOCK_DETAILS = "block_details"
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
# Workspace response types
WORKSPACE_FILE_LIST = "workspace_file_list"
WORKSPACE_FILE_CONTENT = "workspace_file_content"
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
# Long-running operation types
OPERATION_STARTED = "operation_started"
OPERATION_PENDING = "operation_pending"
OPERATION_IN_PROGRESS = "operation_in_progress"
# Input validation
INPUT_VALIDATION_ERROR = "input_validation_error"
# Web fetch
WEB_FETCH = "web_fetch"
# Code execution
BASH_EXEC = "bash_exec"
# Operation status check
OPERATION_STATUS = "operation_status"
# Base response model
@@ -77,10 +58,6 @@ class AgentInfo(BaseModel):
has_external_trigger: bool | None = None
new_output: bool | None = None
graph_id: str | None = None
inputs: dict[str, Any] | None = Field(
default=None,
description="Input schema for the agent, including field names, types, and defaults",
)
class AgentsFoundResponse(ToolResponseBase):
@@ -207,20 +184,6 @@ class ErrorResponse(ToolResponseBase):
details: dict[str, Any] | None = None
class InputValidationErrorResponse(ToolResponseBase):
"""Response when run_agent receives unknown input fields."""
type: ResponseType = ResponseType.INPUT_VALIDATION_ERROR
unrecognized_fields: list[str] = Field(
description="List of input field names that were not recognized"
)
inputs: dict[str, Any] = Field(
description="The agent's valid input schema for reference"
)
graph_id: str | None = None
graph_version: int | None = None
# Agent output models
class ExecutionOutputInfo(BaseModel):
"""Summary of a single execution's outputs."""
@@ -342,17 +305,11 @@ class BlockInfoSummary(BaseModel):
name: str
description: str
categories: list[str]
input_schema: dict[str, Any] = Field(
default_factory=dict,
description="Full JSON schema for block inputs",
)
output_schema: dict[str, Any] = Field(
default_factory=dict,
description="Full JSON schema for block outputs",
)
input_schema: dict[str, Any]
output_schema: dict[str, Any]
required_inputs: list[BlockInputFieldInfo] = Field(
default_factory=list,
description="List of input fields for this block",
description="List of required input fields for this block",
)
@@ -365,29 +322,10 @@ class BlockListResponse(ToolResponseBase):
query: str
usage_hint: str = Field(
default="To execute a block, call run_block with block_id set to the block's "
"'id' field and input_data containing the fields listed in required_inputs."
"'id' field and input_data containing the required fields from input_schema."
)
class BlockDetails(BaseModel):
"""Detailed block information."""
id: str
name: str
description: str
inputs: dict[str, Any] = {}
outputs: dict[str, Any] = {}
credentials: list[CredentialsMetaInput] = []
class BlockDetailsResponse(ToolResponseBase):
"""Response for block details (first run_block attempt)."""
type: ResponseType = ResponseType.BLOCK_DETAILS
block: BlockDetails
user_authenticated: bool = False
class BlockOutputResponse(ToolResponseBase):
"""Response for run_block tool."""
@@ -396,81 +334,3 @@ class BlockOutputResponse(ToolResponseBase):
block_name: str
outputs: dict[str, list[Any]]
success: bool = True
# Long-running operation models
class OperationStartedResponse(ToolResponseBase):
"""Response when a long-running operation has been started in the background.
This is returned immediately to the client while the operation continues
to execute. The user can close the tab and check back later.
The task_id can be used to reconnect to the SSE stream via
GET /chat/tasks/{task_id}/stream?last_idx=0
"""
type: ResponseType = ResponseType.OPERATION_STARTED
operation_id: str
tool_name: str
task_id: str | None = None # For SSE reconnection
class OperationPendingResponse(ToolResponseBase):
"""Response stored in chat history while a long-running operation is executing.
This is persisted to the database so users see a pending state when they
refresh before the operation completes.
"""
type: ResponseType = ResponseType.OPERATION_PENDING
operation_id: str
tool_name: str
class OperationInProgressResponse(ToolResponseBase):
"""Response when an operation is already in progress.
Returned for idempotency when the same tool_call_id is requested again
while the background task is still running.
"""
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
tool_call_id: str
class AsyncProcessingResponse(ToolResponseBase):
"""Response when an operation has been delegated to async processing.
This is returned by tools when the external service accepts the request
for async processing (HTTP 202 Accepted). The Redis Streams completion
consumer will handle the result when the external service completes.
The status field is specifically "accepted" to allow the long-running tool
handler to detect this response and skip LLM continuation.
"""
type: ResponseType = ResponseType.OPERATION_STARTED
status: str = "accepted" # Must be "accepted" for detection
operation_id: str | None = None
task_id: str | None = None
class WebFetchResponse(ToolResponseBase):
"""Response for web_fetch tool."""
type: ResponseType = ResponseType.WEB_FETCH
url: str
status_code: int
content_type: str
content: str
truncated: bool = False
class BashExecResponse(ToolResponseBase):
"""Response for bash_exec tool."""
type: ResponseType = ResponseType.BASH_EXEC
stdout: str
stderr: str
exit_code: int
timed_out: bool = False

View File

@@ -3,14 +3,11 @@
import logging
from typing import Any
from langfuse import observe
from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tracking import (
track_agent_run_success,
track_agent_scheduled,
)
from backend.api.features.library import db as library_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
@@ -24,14 +21,12 @@ from backend.util.timezone_utils import (
)
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
AgentDetails,
AgentDetailsResponse,
ErrorResponse,
ExecutionOptions,
ExecutionStartedResponse,
InputValidationErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
@@ -160,6 +155,7 @@ class RunAgentTool(BaseTool):
"""All operations require authentication."""
return True
@observe(as_type="tool", name="run_agent")
async def _execute(
self,
user_id: str | None,
@@ -262,7 +258,7 @@ class RunAgentTool(BaseTool):
),
requirements={
"credentials": requirements_creds_list,
"inputs": get_inputs_from_schema(graph.input_schema),
"inputs": self._get_inputs_list(graph.input_schema),
"execution_modes": self._get_execution_modes(graph),
},
),
@@ -275,22 +271,6 @@ class RunAgentTool(BaseTool):
input_properties = graph.input_schema.get("properties", {})
required_fields = set(graph.input_schema.get("required", []))
provided_inputs = set(params.inputs.keys())
valid_fields = set(input_properties.keys())
# Check for unknown input fields
unrecognized_fields = provided_inputs - valid_fields
if unrecognized_fields:
return InputValidationErrorResponse(
message=(
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
f"Agent was not executed. Please use the correct field names from the schema."
),
session_id=session_id,
unrecognized_fields=sorted(unrecognized_fields),
inputs=graph.input_schema,
graph_id=graph.id,
graph_version=graph.version,
)
# If agent has inputs but none were provided AND use_defaults is not set,
# always show what's available first so user can decide
@@ -370,6 +350,22 @@ class RunAgentTool(BaseTool):
session_id=session_id,
)
def _get_inputs_list(self, input_schema: dict[str, Any]) -> list[dict[str, Any]]:
"""Extract inputs list from schema."""
inputs_list = []
if isinstance(input_schema, dict) and "properties" in input_schema:
for field_name, field_schema in input_schema["properties"].items():
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in input_schema.get("required", []),
}
)
return inputs_list
def _get_execution_modes(self, graph: GraphModel) -> list[str]:
"""Get available execution modes for the graph."""
trigger_info = graph.trigger_setup_info
@@ -383,7 +379,7 @@ class RunAgentTool(BaseTool):
suffix: str,
) -> str:
"""Build a message describing available inputs for an agent."""
inputs_list = get_inputs_from_schema(graph.input_schema)
inputs_list = self._get_inputs_list(graph.input_schema)
required_names = [i["name"] for i in inputs_list if i["required"]]
optional_names = [i["name"] for i in inputs_list if not i["required"]]
@@ -457,16 +453,6 @@ class RunAgentTool(BaseTool):
session.successful_agent_runs.get(library_agent.graph_id, 0) + 1
)
# Track in PostHog
track_agent_run_success(
user_id=user_id,
session_id=session_id,
graph_id=library_agent.graph_id,
graph_name=library_agent.name,
execution_id=execution.id,
library_agent_id=library_agent.id,
)
library_agent_link = f"/library/agents/{library_agent.id}"
return ExecutionStartedResponse(
message=(
@@ -548,18 +534,6 @@ class RunAgentTool(BaseTool):
session.successful_agent_schedules.get(library_agent.graph_id, 0) + 1
)
# Track in PostHog
track_agent_scheduled(
user_id=user_id,
session_id=session_id,
graph_id=library_agent.graph_id,
graph_name=library_agent.name,
schedule_id=result.id,
schedule_name=schedule_name,
cron=cron,
library_agent_id=library_agent.id,
)
library_agent_link = f"/library/agents/{library_agent.id}"
return ExecutionStartedResponse(
message=(

View File

@@ -402,42 +402,3 @@ async def test_run_agent_schedule_without_name(setup_test_data):
# Should return error about missing schedule_name
assert result_data.get("type") == "error"
assert "schedule_name" in result_data["message"].lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_rejects_unknown_input_fields(setup_test_data):
"""Test that run_agent returns input_validation_error for unknown input fields."""
user = setup_test_data["user"]
store_submission = setup_test_data["store_submission"]
tool = RunAgentTool()
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
session = make_session(user_id=user.id)
# Execute with unknown input field names
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug=agent_marketplace_id,
inputs={
"unknown_field": "some value",
"another_unknown": "another value",
},
session=session,
)
assert response is not None
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return input_validation_error type with unrecognized fields
assert result_data.get("type") == "input_validation_error"
assert "unrecognized_fields" in result_data
assert set(result_data["unrecognized_fields"]) == {
"another_unknown",
"unknown_field",
}
assert "inputs" in result_data # Contains the valid schema
assert "Agent was not executed" in result_data["message"]

View File

@@ -1,42 +1,28 @@
"""Tool for executing blocks directly."""
import logging
import uuid
from collections import defaultdict
from typing import Any
from pydantic_core import PydanticUndefined
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.find_block import (
COPILOT_EXCLUDED_BLOCK_IDS,
COPILOT_EXCLUDED_BLOCK_TYPES,
)
from backend.blocks import get_block
from backend.blocks._base import AnyBlockSchema
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
BlockDetails,
BlockDetailsResponse,
BlockOutputResponse,
ErrorResponse,
InputValidationErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
UserReadiness,
)
from .utils import (
build_missing_credentials_from_field_info,
match_credentials_to_requirements,
)
from .utils import build_missing_credentials_from_field_info
logger = logging.getLogger(__name__)
@@ -54,8 +40,8 @@ class RunBlockTool(BaseTool):
"Execute a specific block with the provided input data. "
"IMPORTANT: You MUST call find_block first to get the block's 'id' - "
"do NOT guess or make up block IDs. "
"On first attempt (without input_data), returns detailed schema showing "
"required inputs and outputs. Then call again with proper input_data to execute."
"Use the 'id' from find_block results and provide input_data "
"matching the block's required_inputs."
)
@property
@@ -70,19 +56,11 @@ class RunBlockTool(BaseTool):
"NEVER guess this - always get it from find_block first."
),
},
"block_name": {
"type": "string",
"description": (
"The block's human-readable name from find_block results. "
"Used for display purposes in the UI."
),
},
"input_data": {
"type": "object",
"description": (
"Input values for the block. "
"First call with empty {} to see the block's schema, "
"then call again with proper values to execute."
"Input values for the block. Use the 'required_inputs' field "
"from find_block to see what fields are needed."
),
},
},
@@ -93,6 +71,66 @@ class RunBlockTool(BaseTool):
def requires_auth(self) -> bool:
return True
async def _check_block_credentials(
self,
user_id: str,
block: Any,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Check if user has required credentials for a block.
Returns:
tuple[matched_credentials, missing_credentials]
"""
matched_credentials: dict[str, CredentialsMetaInput] = {}
missing_credentials: list[CredentialsMetaInput] = []
# Get credential field info from block's input schema
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return matched_credentials, missing_credentials
# Get user's available credentials
creds_manager = IntegrationCredentialsManager()
available_creds = await creds_manager.store.get_all_creds(user_id)
for field_name, field_info in credentials_fields_info.items():
# field_info.provider is a frozenset of acceptable providers
# field_info.supported_types is a frozenset of acceptable types
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in field_info.provider
and cred.type in field_info.supported_types
),
None,
)
if matching_cred:
matched_credentials[field_name] = CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
else:
# Create a placeholder for the missing credential
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing_credentials.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched_credentials, missing_credentials
@observe(as_type="tool", name="run_block")
async def _execute(
self,
user_id: str | None,
@@ -141,60 +179,15 @@ class RunBlockTool(BaseTool):
message=f"Block '{block_id}' not found",
session_id=session_id,
)
if block.disabled:
return ErrorResponse(
message=f"Block '{block_id}' is disabled",
session_id=session_id,
)
# Check if block is excluded from CoPilot (graph-only blocks)
if (
block.block_type in COPILOT_EXCLUDED_BLOCK_TYPES
or block.id in COPILOT_EXCLUDED_BLOCK_IDS
):
return ErrorResponse(
message=(
f"Block '{block.name}' cannot be run directly in CoPilot. "
"This block is designed for use within graphs only."
),
session_id=session_id,
)
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
# Check credentials
creds_manager = IntegrationCredentialsManager()
matched_credentials, missing_credentials = (
await self._resolve_block_credentials(user_id, block, input_data)
matched_credentials, missing_credentials = await self._check_block_credentials(
user_id, block
)
# Get block schemas for details/validation
try:
input_schema: dict[str, Any] = block.input_schema.jsonschema()
except Exception as e:
logger.warning(
"Failed to generate input schema for block %s: %s",
block_id,
e,
)
return ErrorResponse(
message=f"Block '{block.name}' has an invalid input schema",
error=str(e),
session_id=session_id,
)
try:
output_schema: dict[str, Any] = block.output_schema.jsonschema()
except Exception as e:
logger.warning(
"Failed to generate output schema for block %s: %s",
block_id,
e,
)
return ErrorResponse(
message=f"Block '{block.name}' has an invalid output schema",
error=str(e),
session_id=session_id,
)
if missing_credentials:
# Return setup requirements response with missing credentials
credentials_fields_info = block.input_schema.get_credentials_fields_info()
@@ -227,96 +220,12 @@ class RunBlockTool(BaseTool):
graph_version=None,
)
# Check if this is a first attempt (required inputs missing)
# Return block details so user can see what inputs are needed
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
required_keys = set(input_schema.get("required", []))
required_non_credential_keys = required_keys - credentials_fields
provided_input_keys = set(input_data.keys()) - credentials_fields
# Check for unknown input fields
valid_fields = (
set(input_schema.get("properties", {}).keys()) - credentials_fields
)
unrecognized_fields = provided_input_keys - valid_fields
if unrecognized_fields:
return InputValidationErrorResponse(
message=(
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
f"Block was not executed. Please use the correct field names from the schema."
),
session_id=session_id,
unrecognized_fields=sorted(unrecognized_fields),
inputs=input_schema,
)
# Show details when not all required non-credential inputs are provided
if not (required_non_credential_keys <= provided_input_keys):
# Get credentials info for the response
credentials_meta = []
for field_name, cred_meta in matched_credentials.items():
credentials_meta.append(cred_meta)
return BlockDetailsResponse(
message=(
f"Block '{block.name}' details. "
"Provide input_data matching the inputs schema to execute the block."
),
session_id=session_id,
block=BlockDetails(
id=block_id,
name=block.name,
description=block.description or "",
inputs=input_schema,
outputs=output_schema,
credentials=credentials_meta,
),
user_authenticated=True,
)
try:
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)
# Generate synthetic IDs for CoPilot context
# Each chat session is treated as its own agent with one continuous run
# This means:
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
# - node_exec_id = unique per block execution
synthetic_graph_id = f"copilot-session-{session.session_id}"
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
synthetic_node_id = f"copilot-node-{block_id}"
synthetic_node_exec_id = (
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
)
# Create unified execution context with all required fields
execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=synthetic_graph_id,
graph_exec_id=synthetic_graph_exec_id,
graph_version=1, # Versions are 1-indexed
node_id=synthetic_node_id,
node_exec_id=synthetic_node_exec_id,
# Workspace with session scoping
workspace_id=workspace.id,
session_id=session.session_id,
)
# Prepare kwargs for block execution
# Keep individual kwargs for backwards compatibility with existing blocks
# Fetch actual credentials and prepare kwargs for block execution
# Create execution context with defaults (blocks may require it)
exec_kwargs: dict[str, Any] = {
"user_id": user_id,
"execution_context": execution_context,
# Legacy: individual kwargs for blocks not yet using execution_context
"workspace_id": workspace.id,
"graph_exec_id": synthetic_graph_exec_id,
"node_exec_id": synthetic_node_exec_id,
"node_id": synthetic_node_id,
"graph_version": 1, # Versions are 1-indexed
"graph_id": synthetic_graph_id,
"execution_context": ExecutionContext(),
}
for field_name, cred_meta in matched_credentials.items():
@@ -368,75 +277,29 @@ class RunBlockTool(BaseTool):
session_id=session_id,
)
async def _resolve_block_credentials(
self,
user_id: str,
block: AnyBlockSchema,
input_data: dict[str, Any] | None = None,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Resolve credentials for a block by matching user's available credentials.
Args:
user_id: User ID
block: Block to resolve credentials for
input_data: Input data for the block (used to determine provider via discriminator)
Returns:
tuple of (matched_credentials, missing_credentials) - matched credentials
are used for block execution, missing ones indicate setup requirements.
"""
input_data = input_data or {}
requirements = self._resolve_discriminated_credentials(block, input_data)
if not requirements:
return {}, []
return await match_credentials_to_requirements(user_id, requirements)
def _get_inputs_list(self, block: AnyBlockSchema) -> list[dict[str, Any]]:
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
"""Extract non-credential inputs from block schema."""
inputs_list = []
schema = block.input_schema.jsonschema()
properties = schema.get("properties", {})
required_fields = set(schema.get("required", []))
# Get credential field names to exclude
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
return get_inputs_from_schema(schema, exclude_fields=credentials_fields)
def _resolve_discriminated_credentials(
self,
block: AnyBlockSchema,
input_data: dict[str, Any],
) -> dict[str, CredentialsFieldInfo]:
"""Resolve credential requirements, applying discriminator logic where needed."""
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return {}
for field_name, field_schema in properties.items():
# Skip credential fields
if field_name in credentials_fields:
continue
resolved: dict[str, CredentialsFieldInfo] = {}
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in required_fields,
}
)
for field_name, field_info in credentials_fields_info.items():
effective_field_info = field_info
if field_info.discriminator and field_info.discriminator_mapping:
discriminator_value = input_data.get(field_info.discriminator)
if discriminator_value is None:
field = block.input_schema.model_fields.get(
field_info.discriminator
)
if field and field.default is not PydanticUndefined:
discriminator_value = field.default
if (
discriminator_value
and discriminator_value in field_info.discriminator_mapping
):
effective_field_info = field_info.discriminate(discriminator_value)
# For host-scoped credentials, add the discriminator value
# (e.g., URL) so _credential_is_for_host can match it
effective_field_info.discriminator_values.add(discriminator_value)
logger.debug(
f"Discriminated provider for {field_name}: "
f"{discriminator_value} -> {effective_field_info.provider}"
)
resolved[field_name] = effective_field_info
return resolved
return inputs_list

View File

@@ -1,362 +0,0 @@
"""Tests for block execution guards and input validation in RunBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import (
BlockDetailsResponse,
BlockOutputResponse,
ErrorResponse,
InputValidationErrorResponse,
)
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from ._test_data import make_session
_TEST_USER_ID = "test-user-run-block"
def make_mock_block(
block_id: str, name: str, block_type: BlockType, disabled: bool = False
):
"""Create a mock block for testing."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.block_type = block_type
mock.disabled = disabled
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {"properties": {}, "required": []}
mock.input_schema.get_credentials_fields_info.return_value = []
return mock
def make_mock_block_with_schema(
block_id: str,
name: str,
input_properties: dict,
required_fields: list[str],
output_properties: dict | None = None,
):
"""Create a mock block with a defined input/output schema for validation tests."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.block_type = BlockType.STANDARD
mock.disabled = False
mock.description = f"Test block: {name}"
input_schema = {
"properties": input_properties,
"required": required_fields,
}
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = input_schema
mock.input_schema.get_credentials_fields_info.return_value = {}
mock.input_schema.get_credentials_fields.return_value = {}
output_schema = {
"properties": output_properties or {"result": {"type": "string"}},
}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = output_schema
return mock
class TestRunBlockFiltering:
"""Tests for block execution guards in RunBlockTool."""
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_type_returns_error(self):
"""Attempting to execute a block with excluded BlockType returns error."""
session = make_session(user_id=_TEST_USER_ID)
input_block = make_mock_block("input-block-id", "Input Block", BlockType.INPUT)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=input_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="input-block-id",
input_data={},
)
assert isinstance(response, ErrorResponse)
assert "cannot be run directly in CoPilot" in response.message
assert "designed for use within graphs only" in response.message
@pytest.mark.asyncio(loop_scope="session")
async def test_excluded_block_id_returns_error(self):
"""Attempting to execute SmartDecisionMakerBlock returns error."""
session = make_session(user_id=_TEST_USER_ID)
smart_decision_id = "3b191d9f-356f-482d-8238-ba04b6d18381"
smart_block = make_mock_block(
smart_decision_id, "Smart Decision Maker", BlockType.STANDARD
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=smart_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id=smart_decision_id,
input_data={},
)
assert isinstance(response, ErrorResponse)
assert "cannot be run directly in CoPilot" in response.message
@pytest.mark.asyncio(loop_scope="session")
async def test_non_excluded_block_passes_guard(self):
"""Non-excluded blocks pass the filtering guard (may fail later for other reasons)."""
session = make_session(user_id=_TEST_USER_ID)
standard_block = make_mock_block(
"standard-id", "HTTP Request", BlockType.STANDARD
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=standard_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="standard-id",
input_data={},
)
# Should NOT be an ErrorResponse about CoPilot exclusion
# (may be other errors like missing credentials, but not the exclusion guard)
if isinstance(response, ErrorResponse):
assert "cannot be run directly in CoPilot" not in response.message
class TestRunBlockInputValidation:
"""Tests for input field validation in RunBlockTool.
run_block rejects unknown input field names with InputValidationErrorResponse,
preventing silent failures where incorrect keys would be ignored and the block
would execute with default values instead of the caller's intended values.
"""
@pytest.mark.asyncio(loop_scope="session")
async def test_unknown_input_fields_are_rejected(self):
"""run_block rejects unknown input fields instead of silently ignoring them.
Scenario: The AI Text Generator block has a field called 'model' (for LLM model
selection), but the LLM calling the tool guesses wrong and sends 'LLM_Model'
instead. The block should reject the request and return the valid schema.
"""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string", "description": "The prompt to send"},
"model": {
"type": "string",
"description": "The LLM model to use",
"default": "gpt-4o-mini",
},
"sys_prompt": {
"type": "string",
"description": "System prompt",
"default": "",
},
},
required_fields=["prompt"],
output_properties={"response": {"type": "string"}},
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# Provide 'prompt' (correct) but 'LLM_Model' instead of 'model' (wrong key)
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Write a haiku about coding",
"LLM_Model": "claude-opus-4-6", # WRONG KEY - should be 'model'
},
)
assert isinstance(response, InputValidationErrorResponse)
assert "LLM_Model" in response.unrecognized_fields
assert "Block was not executed" in response.message
assert "inputs" in response.model_dump() # valid schema included
@pytest.mark.asyncio(loop_scope="session")
async def test_multiple_wrong_keys_are_all_reported(self):
"""All unrecognized field names are reported in a single error response."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
"sys_prompt": {"type": "string", "default": ""},
"retry": {"type": "integer", "default": 3},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Hello", # correct
"llm_model": "claude-opus-4-6", # WRONG - should be 'model'
"system_prompt": "Be helpful", # WRONG - should be 'sys_prompt'
"retries": 5, # WRONG - should be 'retry'
},
)
assert isinstance(response, InputValidationErrorResponse)
assert set(response.unrecognized_fields) == {
"llm_model",
"system_prompt",
"retries",
}
assert "Block was not executed" in response.message
@pytest.mark.asyncio(loop_scope="session")
async def test_unknown_fields_rejected_even_with_missing_required(self):
"""Unknown fields are caught before the missing-required-fields check."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# 'prompt' is missing AND 'LLM_Model' is an unknown field
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"LLM_Model": "claude-opus-4-6", # wrong key, and 'prompt' is missing
},
)
# Unknown fields are caught first
assert isinstance(response, InputValidationErrorResponse)
assert "LLM_Model" in response.unrecognized_fields
@pytest.mark.asyncio(loop_scope="session")
async def test_correct_inputs_still_execute(self):
"""Correct input field names pass validation and the block executes."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
async def mock_execute(input_data, **kwargs):
yield "response", "Generated text"
mock_block.execute = mock_execute
with (
patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
),
patch(
"backend.api.features.chat.tools.run_block.get_or_create_workspace",
new_callable=AsyncMock,
return_value=MagicMock(id="test-workspace-id"),
),
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Write a haiku",
"model": "gpt-4o-mini", # correct field name
},
)
assert isinstance(response, BlockOutputResponse)
assert response.success is True
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_required_fields_returns_details(self):
"""Missing required fields returns BlockDetailsResponse with schema."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# Only provide valid optional field, missing required 'prompt'
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"model": "gpt-4o-mini", # valid but optional
},
)
assert isinstance(response, BlockDetailsResponse)

View File

@@ -1,265 +0,0 @@
"""Sandbox execution utilities for code execution tools.
Provides filesystem + network isolated command execution using **bubblewrap**
(``bwrap``): whitelist-only filesystem (only system dirs visible read-only),
writable workspace only, clean environment, network blocked.
Tools that call :func:`run_sandboxed` must first check :func:`has_full_sandbox`
and refuse to run if bubblewrap is not available.
"""
import asyncio
import logging
import os
import platform
import shutil
logger = logging.getLogger(__name__)
_DEFAULT_TIMEOUT = 30
_MAX_TIMEOUT = 120
# ---------------------------------------------------------------------------
# Sandbox capability detection (cached at first call)
# ---------------------------------------------------------------------------
_BWRAP_AVAILABLE: bool | None = None
def has_full_sandbox() -> bool:
"""Return True if bubblewrap is available (filesystem + network isolation).
On non-Linux platforms (macOS), always returns False.
"""
global _BWRAP_AVAILABLE
if _BWRAP_AVAILABLE is None:
_BWRAP_AVAILABLE = (
platform.system() == "Linux" and shutil.which("bwrap") is not None
)
return _BWRAP_AVAILABLE
WORKSPACE_PREFIX = "/tmp/copilot-"
def make_session_path(session_id: str) -> str:
"""Build a sanitized, session-specific path under :data:`WORKSPACE_PREFIX`.
Shared by both the SDK working-directory setup and the sandbox tools so
they always resolve to the same directory for a given session.
Steps:
1. Strip all characters except ``[A-Za-z0-9-]``.
2. Construct ``/tmp/copilot-<safe_id>``.
3. Validate via ``os.path.normpath`` + ``startswith`` (CodeQL-recognised
sanitizer) to prevent path traversal.
Raises:
ValueError: If the resulting path escapes the prefix.
"""
import re
safe_id = re.sub(r"[^A-Za-z0-9-]", "", session_id)
if not safe_id:
safe_id = "default"
path = os.path.normpath(f"{WORKSPACE_PREFIX}{safe_id}")
if not path.startswith(WORKSPACE_PREFIX):
raise ValueError(f"Session path escaped prefix: {path}")
return path
def get_workspace_dir(session_id: str) -> str:
"""Get or create the workspace directory for a session.
Uses :func:`make_session_path` — the same path the SDK uses — so that
bash_exec shares the workspace with the SDK file tools.
"""
workspace = make_session_path(session_id)
os.makedirs(workspace, exist_ok=True)
return workspace
# ---------------------------------------------------------------------------
# Bubblewrap command builder
# ---------------------------------------------------------------------------
# System directories mounted read-only inside the sandbox.
# ONLY these are visible — /app, /root, /home, /opt, /var etc. are NOT accessible.
_SYSTEM_RO_BINDS = [
"/usr", # binaries, libraries, Python interpreter
"/etc", # system config: ld.so, locale, passwd, alternatives
]
# Compat paths: symlinks to /usr/* on modern Debian, real dirs on older systems.
# On Debian 13 these are symlinks (e.g. /bin -> usr/bin). bwrap --ro-bind
# can't create a symlink target, so we detect and use --symlink instead.
# /lib64 is critical: the ELF dynamic linker lives at /lib64/ld-linux-x86-64.so.2.
_COMPAT_PATHS = [
("/bin", "usr/bin"), # -> /usr/bin on Debian 13
("/sbin", "usr/sbin"), # -> /usr/sbin on Debian 13
("/lib", "usr/lib"), # -> /usr/lib on Debian 13
("/lib64", "usr/lib64"), # 64-bit libraries / ELF interpreter
]
# Resource limits to prevent fork bombs, memory exhaustion, and disk abuse.
# Applied via ulimit inside the sandbox before exec'ing the user command.
_RESOURCE_LIMITS = (
"ulimit -u 64" # max 64 processes (prevents fork bombs)
" -v 524288" # 512 MB virtual memory
" -f 51200" # 50 MB max file size (1024-byte blocks)
" -n 256" # 256 open file descriptors
" 2>/dev/null"
)
def _build_bwrap_command(
command: list[str], cwd: str, env: dict[str, str]
) -> list[str]:
"""Build a bubblewrap command with strict filesystem + network isolation.
Security model:
- **Whitelist-only filesystem**: only system directories (``/usr``, ``/etc``,
``/bin``, ``/lib``) are mounted read-only. Application code (``/app``),
home directories, ``/var``, ``/opt``, etc. are NOT accessible at all.
- **Writable workspace only**: the per-session workspace is the sole
writable path.
- **Clean environment**: ``--clearenv`` wipes all inherited env vars.
Only the explicitly-passed safe env vars are set inside the sandbox.
- **Network isolation**: ``--unshare-net`` blocks all network access.
- **Resource limits**: ulimit caps on processes (64), memory (512MB),
file size (50MB), and open FDs (256) to prevent fork bombs and abuse.
- **New session**: prevents terminal control escape.
- **Die with parent**: prevents orphaned sandbox processes.
"""
cmd = [
"bwrap",
# Create a new user namespace so bwrap can set up sandboxing
# inside unprivileged Docker containers (no CAP_SYS_ADMIN needed).
"--unshare-user",
# Wipe all inherited environment variables (API keys, secrets, etc.)
"--clearenv",
]
# Set only the safe env vars inside the sandbox
for key, value in env.items():
cmd.extend(["--setenv", key, value])
# System directories: read-only
for path in _SYSTEM_RO_BINDS:
cmd.extend(["--ro-bind", path, path])
# Compat paths: use --symlink when host path is a symlink (Debian 13),
# --ro-bind when it's a real directory (older distros).
for path, symlink_target in _COMPAT_PATHS:
if os.path.islink(path):
cmd.extend(["--symlink", symlink_target, path])
elif os.path.exists(path):
cmd.extend(["--ro-bind", path, path])
# Wrap the user command with resource limits:
# sh -c 'ulimit ...; exec "$@"' -- <original command>
# `exec "$@"` replaces the shell so there's no extra process overhead,
# and properly handles arguments with spaces.
limited_command = [
"sh",
"-c",
f'{_RESOURCE_LIMITS}; exec "$@"',
"--",
*command,
]
cmd.extend(
[
# Fresh virtual filesystems
"--dev",
"/dev",
"--proc",
"/proc",
"--tmpfs",
"/tmp",
# Workspace bind AFTER --tmpfs /tmp so it's visible through the tmpfs.
# (workspace lives under /tmp/copilot-<session>)
"--bind",
cwd,
cwd,
# Isolation
"--unshare-net",
"--die-with-parent",
"--new-session",
"--chdir",
cwd,
"--",
*limited_command,
]
)
return cmd
# ---------------------------------------------------------------------------
# Public API
# ---------------------------------------------------------------------------
async def run_sandboxed(
command: list[str],
cwd: str,
timeout: int = _DEFAULT_TIMEOUT,
env: dict[str, str] | None = None,
) -> tuple[str, str, int, bool]:
"""Run a command inside a bubblewrap sandbox.
Callers **must** check :func:`has_full_sandbox` before calling this
function. If bubblewrap is not available, this function raises
:class:`RuntimeError` rather than running unsandboxed.
Returns:
(stdout, stderr, exit_code, timed_out)
"""
if not has_full_sandbox():
raise RuntimeError(
"run_sandboxed() requires bubblewrap but bwrap is not available. "
"Callers must check has_full_sandbox() before calling this function."
)
timeout = min(max(timeout, 1), _MAX_TIMEOUT)
safe_env = {
"PATH": "/usr/local/bin:/usr/bin:/bin",
"HOME": cwd,
"TMPDIR": cwd,
"LANG": "en_US.UTF-8",
"PYTHONDONTWRITEBYTECODE": "1",
"PYTHONIOENCODING": "utf-8",
}
if env:
safe_env.update(env)
full_command = _build_bwrap_command(command, cwd, safe_env)
try:
proc = await asyncio.create_subprocess_exec(
*full_command,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
cwd=cwd,
env=safe_env,
)
try:
stdout_bytes, stderr_bytes = await asyncio.wait_for(
proc.communicate(), timeout=timeout
)
stdout = stdout_bytes.decode("utf-8", errors="replace")
stderr = stderr_bytes.decode("utf-8", errors="replace")
return stdout, stderr, proc.returncode or 0, False
except asyncio.TimeoutError:
proc.kill()
await proc.communicate()
return "", f"Execution timed out after {timeout}s", -1, True
except RuntimeError:
raise
except Exception as e:
return "", f"Sandbox error: {e}", -1, False

View File

@@ -3,6 +3,7 @@
import logging
from typing import Any
from langfuse import observe
from prisma.enums import ContentType
from backend.api.features.chat.model import ChatSession
@@ -87,6 +88,7 @@ class SearchDocsTool(BaseTool):
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="search_docs")
async def _execute(
self,
user_id: str | None,

View File

@@ -1,153 +0,0 @@
"""Tests for BlockDetailsResponse in RunBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import BlockDetailsResponse
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from backend.data.model import CredentialsMetaInput
from backend.integrations.providers import ProviderName
from ._test_data import make_session
_TEST_USER_ID = "test-user-run-block-details"
def make_mock_block_with_inputs(
block_id: str, name: str, description: str = "Test description"
):
"""Create a mock block with input/output schemas for testing."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.description = description
mock.block_type = BlockType.STANDARD
mock.disabled = False
# Input schema with non-credential fields
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {
"properties": {
"url": {"type": "string", "description": "URL to fetch"},
"method": {"type": "string", "description": "HTTP method"},
},
"required": ["url"],
}
mock.input_schema.get_credentials_fields.return_value = {}
mock.input_schema.get_credentials_fields_info.return_value = {}
# Output schema
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {
"properties": {
"response": {"type": "object", "description": "HTTP response"},
"error": {"type": "string", "description": "Error message"},
}
}
return mock
@pytest.mark.asyncio(loop_scope="session")
async def test_run_block_returns_details_when_no_input_provided():
"""When run_block is called without input_data, it should return BlockDetailsResponse."""
session = make_session(user_id=_TEST_USER_ID)
# Create a block with inputs
http_block = make_mock_block_with_inputs(
"http-block-id", "HTTP Request", "Send HTTP requests"
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=http_block,
):
# Mock credentials check to return no missing credentials
with patch.object(
RunBlockTool,
"_resolve_block_credentials",
new_callable=AsyncMock,
return_value=({}, []), # (matched_credentials, missing_credentials)
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="http-block-id",
input_data={}, # Empty input data
)
# Should return BlockDetailsResponse showing the schema
assert isinstance(response, BlockDetailsResponse)
assert response.block.id == "http-block-id"
assert response.block.name == "HTTP Request"
assert response.block.description == "Send HTTP requests"
assert "url" in response.block.inputs["properties"]
assert "method" in response.block.inputs["properties"]
assert "response" in response.block.outputs["properties"]
assert response.user_authenticated is True
@pytest.mark.asyncio(loop_scope="session")
async def test_run_block_returns_details_when_only_credentials_provided():
"""When only credentials are provided (no actual input), should return details."""
session = make_session(user_id=_TEST_USER_ID)
# Create a block with both credential and non-credential inputs
mock = MagicMock()
mock.id = "api-block-id"
mock.name = "API Call"
mock.description = "Make API calls"
mock.block_type = BlockType.STANDARD
mock.disabled = False
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {
"properties": {
"credentials": {"type": "object", "description": "API credentials"},
"endpoint": {"type": "string", "description": "API endpoint"},
},
"required": ["credentials", "endpoint"],
}
mock.input_schema.get_credentials_fields.return_value = {"credentials": True}
mock.input_schema.get_credentials_fields_info.return_value = {}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {
"properties": {"result": {"type": "object"}}
}
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock,
):
with patch.object(
RunBlockTool,
"_resolve_block_credentials",
new_callable=AsyncMock,
return_value=(
{
"credentials": CredentialsMetaInput(
id="cred-id",
provider=ProviderName("test_provider"),
type="api_key",
title="Test Credential",
)
},
[],
),
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="api-block-id",
input_data={"credentials": {"some": "cred"}}, # Only credential
)
# Should return details because no non-credential inputs provided
assert isinstance(response, BlockDetailsResponse)
assert response.block.id == "api-block-id"
assert response.block.name == "API Call"

View File

@@ -6,14 +6,9 @@ from typing import Any
from backend.api.features.library import db as library_db
from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import (
Credentials,
CredentialsFieldInfo,
CredentialsMetaInput,
HostScopedCredentials,
OAuth2Credentials,
)
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -44,8 +39,14 @@ async def fetch_graph_from_store_slug(
return None, None
# Get the graph from store listing version
graph = await store_db.get_available_graph(
store_agent.store_listing_version_id, hide_nodes=False
graph_meta = await store_db.get_available_graph(
store_agent.store_listing_version_id
)
graph = await graph_db.get_graph(
graph_id=graph_meta.id,
version=graph_meta.version,
user_id=None, # Public access
include_subgraphs=True,
)
return graph, store_agent
@@ -122,7 +123,7 @@ def build_missing_credentials_from_graph(
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, (field_info, _, _) in aggregated_fields.items()
for field_key, (field_info, _node_fields) in aggregated_fields.items()
if field_key not in matched_keys
}
@@ -224,99 +225,6 @@ async def get_or_create_library_agent(
return library_agents[0]
async def match_credentials_to_requirements(
user_id: str,
requirements: dict[str, CredentialsFieldInfo],
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Match user's credentials against a dictionary of credential requirements.
This is the core matching logic shared by both graph and block credential matching.
"""
matched: dict[str, CredentialsMetaInput] = {}
missing: list[CredentialsMetaInput] = []
if not requirements:
return matched, missing
available_creds = await get_user_credentials(user_id)
for field_name, field_info in requirements.items():
matching_cred = find_matching_credential(available_creds, field_info)
if matching_cred:
try:
matched[field_name] = create_credential_meta_from_match(matching_cred)
except Exception as e:
logger.error(
f"Failed to create CredentialsMetaInput for field '{field_name}': "
f"provider={matching_cred.provider}, type={matching_cred.type}, "
f"credential_id={matching_cred.id}",
exc_info=True,
)
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=f"{field_name} (validation failed: {e})",
)
)
else:
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched, missing
async def get_user_credentials(user_id: str) -> list[Credentials]:
"""Get all available credentials for a user."""
creds_manager = IntegrationCredentialsManager()
return await creds_manager.store.get_all_creds(user_id)
def find_matching_credential(
available_creds: list[Credentials],
field_info: CredentialsFieldInfo,
) -> Credentials | None:
"""Find a credential that matches the required provider, type, scopes, and host."""
for cred in available_creds:
if cred.provider not in field_info.provider:
continue
if cred.type not in field_info.supported_types:
continue
if cred.type == "oauth2" and not _credential_has_required_scopes(
cred, field_info
):
continue
if cred.type == "host_scoped" and not _credential_is_for_host(cred, field_info):
continue
return cred
return None
def create_credential_meta_from_match(
matching_cred: Credentials,
) -> CredentialsMetaInput:
"""Create a CredentialsMetaInput from a matched credential."""
return CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
async def match_user_credentials_to_graph(
user_id: str,
graph: GraphModel,
@@ -356,24 +264,15 @@ async def match_user_credentials_to_graph(
# provider is in the set of acceptable providers.
for credential_field_name, (
credential_requirements,
_,
_,
_node_fields,
) in aggregated_creds.items():
# Find first matching credential by provider, type, and scopes
# Find first matching credential by provider and type
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in credential_requirements.provider
and cred.type in credential_requirements.supported_types
and (
cred.type != "oauth2"
or _credential_has_required_scopes(cred, credential_requirements)
)
and (
cred.type != "host_scoped"
or _credential_is_for_host(cred, credential_requirements)
)
),
None,
)
@@ -397,17 +296,10 @@ async def match_user_credentials_to_graph(
f"{credential_field_name} (validation failed: {e})"
)
else:
# Build a helpful error message including scope requirements
error_parts = [
f"provider in {list(credential_requirements.provider)}",
f"type in {list(credential_requirements.supported_types)}",
]
if credential_requirements.required_scopes:
error_parts.append(
f"scopes including {list(credential_requirements.required_scopes)}"
)
missing_creds.append(
f"{credential_field_name} (requires {', '.join(error_parts)})"
f"{credential_field_name} "
f"(requires provider in {list(credential_requirements.provider)}, "
f"type in {list(credential_requirements.supported_types)})"
)
logger.info(
@@ -417,33 +309,6 @@ async def match_user_credentials_to_graph(
return graph_credentials_inputs, missing_creds
def _credential_has_required_scopes(
credential: OAuth2Credentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""Check if an OAuth2 credential has all the scopes required by the input."""
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
return set(credential.scopes).issuperset(requirements.required_scopes)
def _credential_is_for_host(
credential: HostScopedCredentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""Check if a host-scoped credential matches the host required by the input."""
# We need to know the host to match host-scoped credentials to.
# Graph.aggregate_credentials_inputs() adds the node's set URL value (if any)
# to discriminator_values. No discriminator_values -> no host to match against.
if not requirements.discriminator_values:
return True
# Check that credential host matches required host.
# Host-scoped credential inputs are grouped by host, so any item from the set works.
return credential.matches_url(list(requirements.discriminator_values)[0])
async def check_user_has_required_credentials(
user_id: str,
required_credentials: list[CredentialsMetaInput],

View File

@@ -1,151 +0,0 @@
"""Web fetch tool — safely retrieve public web page content."""
import logging
from typing import Any
import aiohttp
import html2text
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
ToolResponseBase,
WebFetchResponse,
)
from backend.util.request import Requests
logger = logging.getLogger(__name__)
# Limits
_MAX_CONTENT_BYTES = 102_400 # 100 KB download cap
_REQUEST_TIMEOUT = aiohttp.ClientTimeout(total=15)
# Content types we'll read as text
_TEXT_CONTENT_TYPES = {
"text/html",
"text/plain",
"text/xml",
"text/csv",
"text/markdown",
"application/json",
"application/xml",
"application/xhtml+xml",
"application/rss+xml",
"application/atom+xml",
}
def _is_text_content(content_type: str) -> bool:
base = content_type.split(";")[0].strip().lower()
return base in _TEXT_CONTENT_TYPES or base.startswith("text/")
def _html_to_text(html: str) -> str:
h = html2text.HTML2Text()
h.ignore_links = False
h.ignore_images = True
h.body_width = 0
return h.handle(html)
class WebFetchTool(BaseTool):
"""Safely fetch content from a public URL using SSRF-protected HTTP."""
@property
def name(self) -> str:
return "web_fetch"
@property
def description(self) -> str:
return (
"Fetch the content of a public web page by URL. "
"Returns readable text extracted from HTML by default. "
"Useful for reading documentation, articles, and API responses. "
"Only supports HTTP/HTTPS GET requests to public URLs "
"(private/internal network addresses are blocked)."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "The public HTTP/HTTPS URL to fetch.",
},
"extract_text": {
"type": "boolean",
"description": (
"If true (default), extract readable text from HTML. "
"If false, return raw content."
),
"default": True,
},
},
"required": ["url"],
}
@property
def requires_auth(self) -> bool:
return False
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs: Any,
) -> ToolResponseBase:
url: str = (kwargs.get("url") or "").strip()
extract_text: bool = kwargs.get("extract_text", True)
session_id = session.session_id if session else None
if not url:
return ErrorResponse(
message="Please provide a URL to fetch.",
error="missing_url",
session_id=session_id,
)
try:
client = Requests(raise_for_status=False, retry_max_attempts=1)
response = await client.get(url, timeout=_REQUEST_TIMEOUT)
except ValueError as e:
# validate_url raises ValueError for SSRF / blocked IPs
return ErrorResponse(
message=f"URL blocked: {e}",
error="url_blocked",
session_id=session_id,
)
except Exception as e:
logger.warning(f"[web_fetch] Request failed for {url}: {e}")
return ErrorResponse(
message=f"Failed to fetch URL: {e}",
error="fetch_failed",
session_id=session_id,
)
content_type = response.headers.get("content-type", "")
if not _is_text_content(content_type):
return ErrorResponse(
message=f"Non-text content type: {content_type.split(';')[0]}",
error="unsupported_content_type",
session_id=session_id,
)
raw = response.content[:_MAX_CONTENT_BYTES]
text = raw.decode("utf-8", errors="replace")
if extract_text and "html" in content_type.lower():
text = _html_to_text(text)
return WebFetchResponse(
message=f"Fetched {url}",
url=response.url,
status_code=response.status,
content_type=content_type.split(";")[0].strip(),
content=text,
truncated=False,
session_id=session_id,
)

View File

@@ -1,626 +0,0 @@
"""CoPilot tools for workspace file operations."""
import base64
import logging
from typing import Any, Optional
from pydantic import BaseModel
from backend.api.features.chat.model import ChatSession
from backend.data.workspace import get_or_create_workspace
from backend.util.settings import Config
from backend.util.virus_scanner import scan_content_safe
from backend.util.workspace import WorkspaceManager
from .base import BaseTool
from .models import ErrorResponse, ResponseType, ToolResponseBase
logger = logging.getLogger(__name__)
class WorkspaceFileInfoData(BaseModel):
"""Data model for workspace file information (not a response itself)."""
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
class WorkspaceFileListResponse(ToolResponseBase):
"""Response containing list of workspace files."""
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
files: list[WorkspaceFileInfoData]
total_count: int
class WorkspaceFileContentResponse(ToolResponseBase):
"""Response containing workspace file content (legacy, for small text files)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
file_id: str
name: str
path: str
mime_type: str
content_base64: str
class WorkspaceFileMetadataResponse(ToolResponseBase):
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
download_url: str
preview: str | None = None # First 500 chars for text files
class WorkspaceWriteResponse(ToolResponseBase):
"""Response after writing a file to workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
file_id: str
name: str
path: str
size_bytes: int
class WorkspaceDeleteResponse(ToolResponseBase):
"""Response after deleting a file from workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
file_id: str
success: bool
class ListWorkspaceFilesTool(BaseTool):
"""Tool for listing files in user's workspace."""
@property
def name(self) -> str:
return "list_workspace_files"
@property
def description(self) -> str:
return (
"List files in the user's persistent workspace (cloud storage). "
"These files survive across sessions. "
"For ephemeral session files, use the SDK Read/Glob tools instead. "
"Returns file names, paths, sizes, and metadata. "
"Optionally filter by path prefix."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path_prefix": {
"type": "string",
"description": (
"Optional path prefix to filter files "
"(e.g., '/documents/' to list only files in documents folder). "
"By default, only files from the current session are listed."
),
},
"limit": {
"type": "integer",
"description": "Maximum number of files to return (default 50, max 100)",
"minimum": 1,
"maximum": 100,
},
"include_all_sessions": {
"type": "boolean",
"description": (
"If true, list files from all sessions. "
"Default is false (only current session's files)."
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
path_prefix: Optional[str] = kwargs.get("path_prefix")
limit = min(kwargs.get("limit", 50), 100)
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
files = await manager.list_files(
path=path_prefix,
limit=limit,
include_all_sessions=include_all_sessions,
)
total = await manager.get_file_count(
path=path_prefix,
include_all_sessions=include_all_sessions,
)
file_infos = [
WorkspaceFileInfoData(
file_id=f.id,
name=f.name,
path=f.path,
mime_type=f.mimeType,
size_bytes=f.sizeBytes,
)
for f in files
]
scope_msg = "all sessions" if include_all_sessions else "current session"
return WorkspaceFileListResponse(
files=file_infos,
total_count=total,
message=f"Found {len(files)} files in workspace ({scope_msg})",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error listing workspace files: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to list workspace files: {str(e)}",
error=str(e),
session_id=session_id,
)
class ReadWorkspaceFileTool(BaseTool):
"""Tool for reading file content from workspace."""
# Size threshold for returning full content vs metadata+URL
# Files larger than this return metadata with download URL to prevent context bloat
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
# Preview size for text files
PREVIEW_SIZE = 500
@property
def name(self) -> str:
return "read_workspace_file"
@property
def description(self) -> str:
return (
"Read a file from the user's persistent workspace (cloud storage). "
"These files survive across sessions. "
"For ephemeral session files, use the SDK Read tool instead. "
"Specify either file_id or path to identify the file. "
"For small text files, returns content directly. "
"For large or binary files, returns metadata and a download URL. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
"force_download_url": {
"type": "boolean",
"description": (
"If true, always return metadata+URL instead of inline content. "
"Default is false (auto-selects based on file size/type)."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
def _is_text_mime_type(self, mime_type: str) -> bool:
"""Check if the MIME type is a text-based type."""
text_types = [
"text/",
"application/json",
"application/xml",
"application/javascript",
"application/x-python",
"application/x-sh",
]
return any(mime_type.startswith(t) for t in text_types)
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
force_download_url: bool = kwargs.get("force_download_url", False)
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Get file info
if file_id:
file_info = await manager.get_file_info(file_id)
if file_info is None:
return ErrorResponse(
message=f"File not found: {file_id}",
session_id=session_id,
)
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
# Decide whether to return inline content or metadata+URL
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
is_text_file = self._is_text_mime_type(file_info.mimeType)
# Return inline content for small text files (unless force_download_url)
if is_small_file and is_text_file and not force_download_url:
content = await manager.read_file_by_id(target_file_id)
content_b64 = base64.b64encode(content).decode("utf-8")
return WorkspaceFileContentResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
content_base64=content_b64,
message=f"Successfully read file: {file_info.name}",
session_id=session_id,
)
# Return metadata + workspace:// reference for large or binary files
# This prevents context bloat (100KB file = ~133KB as base64)
# Use workspace:// format so frontend urlTransform can add proxy prefix
download_url = f"workspace://{target_file_id}"
# Generate preview for text files
preview: str | None = None
if is_text_file:
try:
content = await manager.read_file_by_id(target_file_id)
preview_text = content[: self.PREVIEW_SIZE].decode(
"utf-8", errors="replace"
)
if len(content) > self.PREVIEW_SIZE:
preview_text += "..."
preview = preview_text
except Exception:
pass # Preview is optional
return WorkspaceFileMetadataResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
size_bytes=file_info.sizeBytes,
download_url=download_url,
preview=preview,
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
session_id=session_id,
)
except FileNotFoundError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error reading workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to read workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class WriteWorkspaceFileTool(BaseTool):
"""Tool for writing files to workspace."""
@property
def name(self) -> str:
return "write_workspace_file"
@property
def description(self) -> str:
return (
"Write or create a file in the user's persistent workspace (cloud storage). "
"These files survive across sessions. "
"For ephemeral session files, use the SDK Write tool instead. "
"Provide the content as a base64-encoded string. "
f"Maximum file size is {Config().max_file_size_mb}MB. "
"Files are saved to the current session's folder by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "Name for the file (e.g., 'report.pdf')",
},
"content_base64": {
"type": "string",
"description": "Base64-encoded file content",
},
"path": {
"type": "string",
"description": (
"Optional virtual path where to save the file "
"(e.g., '/documents/report.pdf'). "
"Defaults to '/{filename}'. Scoped to current session."
),
},
"mime_type": {
"type": "string",
"description": (
"Optional MIME type of the file. "
"Auto-detected from filename if not provided."
),
},
"overwrite": {
"type": "boolean",
"description": "Whether to overwrite if file exists at path (default: false)",
},
},
"required": ["filename", "content_base64"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
filename: str = kwargs.get("filename", "")
content_b64: str = kwargs.get("content_base64", "")
path: Optional[str] = kwargs.get("path")
mime_type: Optional[str] = kwargs.get("mime_type")
overwrite: bool = kwargs.get("overwrite", False)
if not filename:
return ErrorResponse(
message="Please provide a filename",
session_id=session_id,
)
if not content_b64:
return ErrorResponse(
message="Please provide content_base64",
session_id=session_id,
)
# Decode content
try:
content = base64.b64decode(content_b64)
except Exception:
return ErrorResponse(
message="Invalid base64-encoded content",
session_id=session_id,
)
# Check size
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
return ErrorResponse(
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
session_id=session_id,
)
try:
# Virus scan
await scan_content_safe(content, filename=filename)
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
file_record = await manager.write_file(
content=content,
filename=filename,
path=path,
mime_type=mime_type,
overwrite=overwrite,
)
return WorkspaceWriteResponse(
file_id=file_record.id,
name=file_record.name,
path=file_record.path,
size_bytes=file_record.sizeBytes,
message=f"Successfully wrote file: {file_record.name}",
session_id=session_id,
)
except ValueError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error writing workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to write workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class DeleteWorkspaceFileTool(BaseTool):
"""Tool for deleting files from workspace."""
@property
def name(self) -> str:
return "delete_workspace_file"
@property
def description(self) -> str:
return (
"Delete a file from the user's persistent workspace (cloud storage). "
"Specify either file_id or path to identify the file. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Determine the file_id to delete
target_file_id: str
if file_id:
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
success = await manager.delete_file(target_file_id)
if not success:
return ErrorResponse(
message=f"File not found: {target_file_id}",
session_id=session_id,
)
return WorkspaceDeleteResponse(
file_id=target_file_id,
success=True,
message="File deleted successfully",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to delete workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)

View File

@@ -1,250 +0,0 @@
"""PostHog analytics tracking for the chat system."""
import atexit
import logging
from typing import Any
from posthog import Posthog
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
settings = Settings()
# PostHog client instance (lazily initialized)
_posthog_client: Posthog | None = None
def _shutdown_posthog() -> None:
"""Flush and shutdown PostHog client on process exit."""
if _posthog_client is not None:
_posthog_client.flush()
_posthog_client.shutdown()
atexit.register(_shutdown_posthog)
def _get_posthog_client() -> Posthog | None:
"""Get or create the PostHog client instance."""
global _posthog_client
if _posthog_client is not None:
return _posthog_client
if not settings.secrets.posthog_api_key:
logger.debug("PostHog API key not configured, analytics disabled")
return None
_posthog_client = Posthog(
settings.secrets.posthog_api_key,
host=settings.secrets.posthog_host,
)
logger.info(
f"PostHog client initialized with host: {settings.secrets.posthog_host}"
)
return _posthog_client
def _get_base_properties() -> dict[str, Any]:
"""Get base properties included in all events."""
return {
"environment": settings.config.app_env.value,
"source": "chat_copilot",
}
def track_user_message(
user_id: str | None,
session_id: str,
message_length: int,
) -> None:
"""Track when a user sends a message in chat.
Args:
user_id: The user's ID (or None for anonymous)
session_id: The chat session ID
message_length: Length of the user's message
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"message_length": message_length,
}
client.capture(
distinct_id=user_id or f"anonymous_{session_id}",
event="copilot_message_sent",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track user message: {e}")
def track_tool_called(
user_id: str | None,
session_id: str,
tool_name: str,
tool_call_id: str,
) -> None:
"""Track when a tool is called in chat.
Args:
user_id: The user's ID (or None for anonymous)
session_id: The chat session ID
tool_name: Name of the tool being called
tool_call_id: Unique ID of the tool call
"""
client = _get_posthog_client()
if not client:
logger.info("PostHog client not available for tool tracking")
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"tool_name": tool_name,
"tool_call_id": tool_call_id,
}
distinct_id = user_id or f"anonymous_{session_id}"
logger.info(
f"Sending copilot_tool_called event to PostHog: distinct_id={distinct_id}, "
f"tool_name={tool_name}"
)
client.capture(
distinct_id=distinct_id,
event="copilot_tool_called",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track tool call: {e}")
def track_agent_run_success(
user_id: str,
session_id: str,
graph_id: str,
graph_name: str,
execution_id: str,
library_agent_id: str,
) -> None:
"""Track when an agent is successfully run.
Args:
user_id: The user's ID
session_id: The chat session ID
graph_id: ID of the agent graph
graph_name: Name of the agent
execution_id: ID of the execution
library_agent_id: ID of the library agent
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"graph_id": graph_id,
"graph_name": graph_name,
"execution_id": execution_id,
"library_agent_id": library_agent_id,
}
client.capture(
distinct_id=user_id,
event="copilot_agent_run_success",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track agent run: {e}")
def track_agent_scheduled(
user_id: str,
session_id: str,
graph_id: str,
graph_name: str,
schedule_id: str,
schedule_name: str,
cron: str,
library_agent_id: str,
) -> None:
"""Track when an agent is successfully scheduled.
Args:
user_id: The user's ID
session_id: The chat session ID
graph_id: ID of the agent graph
graph_name: Name of the agent
schedule_id: ID of the schedule
schedule_name: Name of the schedule
cron: Cron expression for the schedule
library_agent_id: ID of the library agent
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"graph_id": graph_id,
"graph_name": graph_name,
"schedule_id": schedule_id,
"schedule_name": schedule_name,
"cron": cron,
"library_agent_id": library_agent_id,
}
client.capture(
distinct_id=user_id,
event="copilot_agent_scheduled",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track agent schedule: {e}")
def track_trigger_setup(
user_id: str,
session_id: str,
graph_id: str,
graph_name: str,
trigger_type: str,
library_agent_id: str,
) -> None:
"""Track when a trigger is set up for an agent.
Args:
user_id: The user's ID
session_id: The chat session ID
graph_id: ID of the agent graph
graph_name: Name of the agent
trigger_type: Type of trigger (e.g., 'webhook')
library_agent_id: ID of the library agent
"""
client = _get_posthog_client()
if not client:
return
try:
properties = {
**_get_base_properties(),
"session_id": session_id,
"graph_id": graph_id,
"graph_name": graph_name,
"trigger_type": trigger_type,
"library_agent_id": library_agent_id,
}
client.capture(
distinct_id=user_id,
event="copilot_trigger_setup",
properties=properties,
)
except Exception as e:
logger.warning(f"Failed to track trigger setup: {e}")

View File

@@ -164,9 +164,9 @@ async def test_process_review_action_approve_success(
"""Test successful review approval"""
# Mock the route functions
# Mock get_reviews_by_node_exec_ids (called to find the graph_exec_id)
# Mock get_pending_reviews_by_node_exec_ids (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_reviews_by_node_exec_ids"
"backend.api.features.executions.review.routes.get_pending_reviews_by_node_exec_ids"
)
mock_get_reviews_for_user.return_value = {"test_node_123": sample_pending_review}
@@ -244,9 +244,9 @@ async def test_process_review_action_reject_success(
"""Test successful review rejection"""
# Mock the route functions
# Mock get_reviews_by_node_exec_ids (called to find the graph_exec_id)
# Mock get_pending_reviews_by_node_exec_ids (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_reviews_by_node_exec_ids"
"backend.api.features.executions.review.routes.get_pending_reviews_by_node_exec_ids"
)
mock_get_reviews_for_user.return_value = {"test_node_123": sample_pending_review}
@@ -339,9 +339,9 @@ async def test_process_review_action_mixed_success(
# Mock the route functions
# Mock get_reviews_by_node_exec_ids (called to find the graph_exec_id)
# Mock get_pending_reviews_by_node_exec_ids (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_reviews_by_node_exec_ids"
"backend.api.features.executions.review.routes.get_pending_reviews_by_node_exec_ids"
)
mock_get_reviews_for_user.return_value = {
"test_node_123": sample_pending_review,
@@ -463,9 +463,9 @@ async def test_process_review_action_review_not_found(
test_user_id: str,
) -> None:
"""Test error when review is not found"""
# Mock get_reviews_by_node_exec_ids (called to find the graph_exec_id)
# Mock get_pending_reviews_by_node_exec_ids (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_reviews_by_node_exec_ids"
"backend.api.features.executions.review.routes.get_pending_reviews_by_node_exec_ids"
)
# Return empty dict to simulate review not found
mock_get_reviews_for_user.return_value = {}
@@ -506,7 +506,7 @@ async def test_process_review_action_review_not_found(
response = await client.post("/api/review/action", json=request_data)
assert response.status_code == 404
assert "Review(s) not found" in response.json()["detail"]
assert "No pending review found" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
@@ -517,9 +517,9 @@ async def test_process_review_action_partial_failure(
test_user_id: str,
) -> None:
"""Test handling of partial failures in review processing"""
# Mock get_reviews_by_node_exec_ids (called to find the graph_exec_id)
# Mock get_pending_reviews_by_node_exec_ids (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_reviews_by_node_exec_ids"
"backend.api.features.executions.review.routes.get_pending_reviews_by_node_exec_ids"
)
mock_get_reviews_for_user.return_value = {"test_node_123": sample_pending_review}
@@ -567,9 +567,9 @@ async def test_process_review_action_invalid_node_exec_id(
test_user_id: str,
) -> None:
"""Test failure when trying to process review with invalid node execution ID"""
# Mock get_reviews_by_node_exec_ids (called to find the graph_exec_id)
# Mock get_pending_reviews_by_node_exec_ids (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_reviews_by_node_exec_ids"
"backend.api.features.executions.review.routes.get_pending_reviews_by_node_exec_ids"
)
# Return empty dict to simulate review not found
mock_get_reviews_for_user.return_value = {}
@@ -596,7 +596,7 @@ async def test_process_review_action_invalid_node_exec_id(
# Returns 404 when review is not found
assert response.status_code == 404
assert "Review(s) not found" in response.json()["detail"]
assert "No pending review found" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
@@ -607,9 +607,9 @@ async def test_process_review_action_auto_approve_creates_auto_approval_records(
test_user_id: str,
) -> None:
"""Test that auto_approve_future_actions flag creates auto-approval records"""
# Mock get_reviews_by_node_exec_ids (called to find the graph_exec_id)
# Mock get_pending_reviews_by_node_exec_ids (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_reviews_by_node_exec_ids"
"backend.api.features.executions.review.routes.get_pending_reviews_by_node_exec_ids"
)
mock_get_reviews_for_user.return_value = {"test_node_123": sample_pending_review}
@@ -737,9 +737,9 @@ async def test_process_review_action_without_auto_approve_still_loads_settings(
test_user_id: str,
) -> None:
"""Test that execution context is created with settings even without auto-approve"""
# Mock get_reviews_by_node_exec_ids (called to find the graph_exec_id)
# Mock get_pending_reviews_by_node_exec_ids (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_reviews_by_node_exec_ids"
"backend.api.features.executions.review.routes.get_pending_reviews_by_node_exec_ids"
)
mock_get_reviews_for_user.return_value = {"test_node_123": sample_pending_review}
@@ -885,9 +885,9 @@ async def test_process_review_action_auto_approve_only_applies_to_approved_revie
reviewed_at=FIXED_NOW,
)
# Mock get_reviews_by_node_exec_ids (called to find the graph_exec_id)
# Mock get_pending_reviews_by_node_exec_ids (called to find the graph_exec_id)
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_reviews_by_node_exec_ids"
"backend.api.features.executions.review.routes.get_pending_reviews_by_node_exec_ids"
)
# Need to return both reviews in WAITING state (before processing)
approved_review_waiting = PendingHumanReviewModel(
@@ -1031,9 +1031,9 @@ async def test_process_review_action_per_review_auto_approve_granularity(
test_user_id: str,
) -> None:
"""Test that auto-approval can be set per-review (granular control)"""
# Mock get_reviews_by_node_exec_ids - return different reviews based on node_exec_id
# Mock get_pending_reviews_by_node_exec_ids - return different reviews based on node_exec_id
mock_get_reviews_for_user = mocker.patch(
"backend.api.features.executions.review.routes.get_reviews_by_node_exec_ids"
"backend.api.features.executions.review.routes.get_pending_reviews_by_node_exec_ids"
)
# Create a mapping of node_exec_id to review

View File

@@ -14,9 +14,9 @@ from backend.data.execution import (
from backend.data.graph import get_graph_settings
from backend.data.human_review import (
create_auto_approval_record,
get_pending_reviews_by_node_exec_ids,
get_pending_reviews_for_execution,
get_pending_reviews_for_user,
get_reviews_by_node_exec_ids,
has_pending_reviews_for_graph_exec,
process_all_reviews_for_execution,
)
@@ -137,17 +137,17 @@ async def process_review_action(
detail="At least one review must be provided",
)
# Batch fetch all requested reviews (regardless of status for idempotent handling)
reviews_map = await get_reviews_by_node_exec_ids(
# Batch fetch all requested reviews
reviews_map = await get_pending_reviews_by_node_exec_ids(
list(all_request_node_ids), user_id
)
# Validate all reviews were found (must exist, any status is OK for now)
# Validate all reviews were found
missing_ids = all_request_node_ids - set(reviews_map.keys())
if missing_ids:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Review(s) not found: {', '.join(missing_ids)}",
detail=f"No pending review found for node execution(s): {', '.join(missing_ids)}",
)
# Validate all reviews belong to the same execution

View File

@@ -12,18 +12,16 @@ import backend.api.features.store.image_gen as store_image_gen
import backend.api.features.store.media as store_media
import backend.data.graph as graph_db
import backend.data.integrations as integrations_db
from backend.data.block import BlockInput
from backend.data.db import transaction
from backend.data.execution import get_graph_execution
from backend.data.graph import GraphSettings
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
from backend.data.model import CredentialsMetaInput, GraphInput
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import (
on_graph_activate,
on_graph_deactivate,
)
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
from backend.util.exceptions import DatabaseError, NotFoundError
from backend.util.json import SafeJson
from backend.util.models import Pagination
from backend.util.settings import Config
@@ -41,7 +39,6 @@ async def list_library_agents(
sort_by: library_model.LibraryAgentSort = library_model.LibraryAgentSort.UPDATED_AT,
page: int = 1,
page_size: int = 50,
include_executions: bool = False,
) -> library_model.LibraryAgentResponse:
"""
Retrieves a paginated list of LibraryAgent records for a given user.
@@ -52,9 +49,6 @@ async def list_library_agents(
sort_by: Sorting field (createdAt, updatedAt, isFavorite, isCreatedByUser).
page: Current page (1-indexed).
page_size: Number of items per page.
include_executions: Whether to include execution data for status calculation.
Defaults to False for performance (UI fetches status separately).
Set to True when accurate status/metrics are needed (e.g., agent generator).
Returns:
A LibraryAgentResponse containing the list of agents and pagination details.
@@ -70,11 +64,11 @@ async def list_library_agents(
if page < 1 or page_size < 1:
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
raise InvalidInputError("Invalid pagination input")
raise DatabaseError("Invalid pagination input")
if search_term and len(search_term.strip()) > 100:
logger.warning(f"Search term too long: {repr(search_term)}")
raise InvalidInputError("Search term is too long")
raise DatabaseError("Search term is too long")
where_clause: prisma.types.LibraryAgentWhereInput = {
"userId": user_id,
@@ -82,6 +76,7 @@ async def list_library_agents(
"isArchived": False,
}
# Build search filter if applicable
if search_term:
where_clause["OR"] = [
{
@@ -98,6 +93,7 @@ async def list_library_agents(
},
]
# Determine sorting
order_by: prisma.types.LibraryAgentOrderByInput | None = None
if sort_by == library_model.LibraryAgentSort.CREATED_AT:
@@ -109,7 +105,7 @@ async def list_library_agents(
library_agents = await prisma.models.LibraryAgent.prisma().find_many(
where=where_clause,
include=library_agent_include(
user_id, include_nodes=False, include_executions=include_executions
user_id, include_nodes=False, include_executions=False
),
order=order_by,
skip=(page - 1) * page_size,
@@ -179,7 +175,7 @@ async def list_favorite_library_agents(
if page < 1 or page_size < 1:
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
raise InvalidInputError("Invalid pagination input")
raise DatabaseError("Invalid pagination input")
where_clause: prisma.types.LibraryAgentWhereInput = {
"userId": user_id,
@@ -373,7 +369,7 @@ async def get_library_agent_by_graph_id(
async def add_generated_agent_image(
graph: graph_db.GraphBaseMeta,
graph: graph_db.BaseGraph,
user_id: str,
library_agent_id: str,
) -> Optional[prisma.models.LibraryAgent]:
@@ -539,92 +535,6 @@ async def update_agent_version_in_library(
return library_model.LibraryAgent.from_db(lib)
async def create_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new graph and add it to the user's library."""
graph.version = 1
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=True)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agents = await create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
return created_graph, library_agents[0]
async def update_graph_in_library(
graph: graph_db.Graph,
user_id: str,
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
"""Create a new version of an existing graph and update the library entry."""
existing_versions = await graph_db.get_graph_all_versions(graph.id, user_id)
current_active_version = (
next((v for v in existing_versions if v.is_active), None)
if existing_versions
else None
)
graph.version = (
max(v.version for v in existing_versions) + 1 if existing_versions else 1
)
graph_model = graph_db.make_graph_model(graph, user_id)
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=False)
created_graph = await graph_db.create_graph(graph_model, user_id)
library_agent = await get_library_agent_by_graph_id(user_id, created_graph.id)
if not library_agent:
raise NotFoundError(f"Library agent not found for graph {created_graph.id}")
library_agent = await update_library_agent_version_and_settings(
user_id, created_graph
)
if created_graph.is_active:
created_graph = await on_graph_activate(created_graph, user_id=user_id)
await graph_db.set_graph_active_version(
graph_id=created_graph.id,
version=created_graph.version,
user_id=user_id,
)
if current_active_version:
await on_graph_deactivate(current_active_version, user_id=user_id)
return created_graph, library_agent
async def update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
"""Update library agent to point to new graph version and sync settings."""
library = await update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await update_library_agent(
library_agent_id=library.id,
user_id=user_id,
settings=updated_settings,
)
return library
async def update_library_agent(
library_agent_id: str,
user_id: str,
@@ -1129,7 +1039,7 @@ async def create_preset_from_graph_execution(
async def update_preset(
user_id: str,
preset_id: str,
inputs: Optional[GraphInput] = None,
inputs: Optional[BlockInput] = None,
credentials: Optional[dict[str, CredentialsMetaInput]] = None,
name: Optional[str] = None,
description: Optional[str] = None,

View File

@@ -6,13 +6,9 @@ import prisma.enums
import prisma.models
import pydantic
from backend.data.block import BlockInput
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
from backend.data.model import (
CredentialsMetaInput,
GraphInput,
is_credentials_field_name,
)
from backend.util.json import loads as json_loads
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
from backend.util.models import Pagination
if TYPE_CHECKING:
@@ -20,10 +16,10 @@ if TYPE_CHECKING:
class LibraryAgentStatus(str, Enum):
COMPLETED = "COMPLETED"
HEALTHY = "HEALTHY"
WAITING = "WAITING"
ERROR = "ERROR"
COMPLETED = "COMPLETED" # All runs completed
HEALTHY = "HEALTHY" # Agent is running (not all runs have completed)
WAITING = "WAITING" # Agent is queued or waiting to start
ERROR = "ERROR" # Agent is in an error state
class MarketplaceListingCreator(pydantic.BaseModel):
@@ -43,30 +39,6 @@ class MarketplaceListing(pydantic.BaseModel):
creator: MarketplaceListingCreator
class RecentExecution(pydantic.BaseModel):
"""Summary of a recent execution for quality assessment.
Used by the LLM to understand the agent's recent performance with specific examples
rather than just aggregate statistics.
"""
status: str
correctness_score: float | None = None
activity_summary: str | None = None
def _parse_settings(settings: dict | str | None) -> GraphSettings:
"""Parse settings from database, handling both dict and string formats."""
if settings is None:
return GraphSettings()
try:
if isinstance(settings, str):
settings = json_loads(settings)
return GraphSettings.model_validate(settings)
except Exception:
return GraphSettings()
class LibraryAgent(pydantic.BaseModel):
"""
Represents an agent in the library, including metadata for display and
@@ -76,7 +48,7 @@ class LibraryAgent(pydantic.BaseModel):
id: str
graph_id: str
graph_version: int
owner_user_id: str
owner_user_id: str # ID of user who owns/created this agent graph
image_url: str | None
@@ -92,7 +64,7 @@ class LibraryAgent(pydantic.BaseModel):
description: str
instructions: str | None = None
input_schema: dict[str, Any]
input_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend
output_schema: dict[str, Any]
credentials_input_schema: dict[str, Any] | None = pydantic.Field(
description="Input schema for credentials required by the agent",
@@ -109,19 +81,25 @@ class LibraryAgent(pydantic.BaseModel):
)
trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs)
new_output: bool
execution_count: int = 0
success_rate: float | None = None
avg_correctness_score: float | None = None
recent_executions: list[RecentExecution] = pydantic.Field(
default_factory=list,
description="List of recent executions with status, score, and summary",
)
# Whether the user can access the underlying graph
can_access_graph: bool
# Indicates if this agent is the latest version
is_latest_version: bool
# Whether the agent is marked as favorite by the user
is_favorite: bool
# Recommended schedule cron (from marketplace agents)
recommended_schedule_cron: str | None = None
# User-specific settings for this library agent
settings: GraphSettings = pydantic.Field(default_factory=GraphSettings)
# Marketplace listing information if the agent has been published
marketplace_listing: Optional["MarketplaceListing"] = None
@staticmethod
@@ -145,6 +123,7 @@ class LibraryAgent(pydantic.BaseModel):
agent_updated_at = agent.AgentGraph.updatedAt
lib_agent_updated_at = agent.updatedAt
# Compute updated_at as the latest between library agent and graph
updated_at = (
max(agent_updated_at, lib_agent_updated_at)
if agent_updated_at
@@ -157,6 +136,7 @@ class LibraryAgent(pydantic.BaseModel):
creator_name = agent.Creator.name or "Unknown"
creator_image_url = agent.Creator.avatarUrl or ""
# Logic to calculate status and new_output
week_ago = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(
days=7
)
@@ -165,55 +145,13 @@ class LibraryAgent(pydantic.BaseModel):
status = status_result.status
new_output = status_result.new_output
execution_count = len(executions)
success_rate: float | None = None
avg_correctness_score: float | None = None
if execution_count > 0:
success_count = sum(
1
for e in executions
if e.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED
)
success_rate = (success_count / execution_count) * 100
correctness_scores = []
for e in executions:
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
correctness_scores.append(float(score))
if correctness_scores:
avg_correctness_score = sum(correctness_scores) / len(
correctness_scores
)
recent_executions: list[RecentExecution] = []
for e in executions:
exec_score: float | None = None
exec_summary: str | None = None
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
exec_score = float(score)
summary = e.stats.get("activity_status")
if summary is not None and isinstance(summary, str):
exec_summary = summary
exec_status = (
e.executionStatus.value
if hasattr(e.executionStatus, "value")
else str(e.executionStatus)
)
recent_executions.append(
RecentExecution(
status=exec_status,
correctness_score=exec_score,
activity_summary=exec_summary,
)
)
# Check if user can access the graph
can_access_graph = agent.AgentGraph.userId == agent.userId
# Hard-coded to True until a method to check is implemented
is_latest_version = True
# Build marketplace_listing if available
marketplace_listing_data = None
if store_listing and store_listing.ActiveVersion and profile:
creator_data = MarketplaceListingCreator(
@@ -252,15 +190,11 @@ class LibraryAgent(pydantic.BaseModel):
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
new_output=new_output,
execution_count=execution_count,
success_rate=success_rate,
avg_correctness_score=avg_correctness_score,
recent_executions=recent_executions,
can_access_graph=can_access_graph,
is_latest_version=is_latest_version,
is_favorite=agent.isFavorite,
recommended_schedule_cron=agent.AgentGraph.recommendedScheduleCron,
settings=_parse_settings(agent.settings),
settings=GraphSettings.model_validate(agent.settings),
marketplace_listing=marketplace_listing_data,
)
@@ -286,15 +220,18 @@ def _calculate_agent_status(
if not executions:
return AgentStatusResult(status=LibraryAgentStatus.COMPLETED, new_output=False)
# Track how many times each execution status appears
status_counts = {status: 0 for status in prisma.enums.AgentExecutionStatus}
new_output = False
for execution in executions:
# Check if there's a completed run more recent than `recent_threshold`
if execution.createdAt >= recent_threshold:
if execution.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED:
new_output = True
status_counts[execution.executionStatus] += 1
# Determine the final status based on counts
if status_counts[prisma.enums.AgentExecutionStatus.FAILED] > 0:
return AgentStatusResult(status=LibraryAgentStatus.ERROR, new_output=new_output)
elif status_counts[prisma.enums.AgentExecutionStatus.QUEUED] > 0:
@@ -326,7 +263,7 @@ class LibraryAgentPresetCreatable(pydantic.BaseModel):
graph_id: str
graph_version: int
inputs: GraphInput
inputs: BlockInput
credentials: dict[str, CredentialsMetaInput]
name: str
@@ -355,7 +292,7 @@ class LibraryAgentPresetUpdatable(pydantic.BaseModel):
Request model used when updating a preset for a library agent.
"""
inputs: Optional[GraphInput] = None
inputs: Optional[BlockInput] = None
credentials: Optional[dict[str, CredentialsMetaInput]] = None
name: Optional[str] = None
@@ -398,7 +335,7 @@ class LibraryAgentPreset(LibraryAgentPresetCreatable):
"Webhook must be included in AgentPreset query when webhookId is set"
)
input_data: GraphInput = {}
input_data: BlockInput = {}
input_credentials: dict[str, CredentialsMetaInput] = {}
for preset_input in preset.InputPresets:

View File

@@ -1,3 +1,4 @@
import logging
from typing import Literal, Optional
import autogpt_libs.auth as autogpt_auth_lib
@@ -5,11 +6,15 @@ from fastapi import APIRouter, Body, HTTPException, Query, Security, status
from fastapi.responses import Response
from prisma.enums import OnboardingStep
import backend.api.features.store.exceptions as store_exceptions
from backend.data.onboarding import complete_onboarding_step
from backend.util.exceptions import DatabaseError, NotFoundError
from .. import db as library_db
from .. import model as library_model
logger = logging.getLogger(__name__)
router = APIRouter(
prefix="/agents",
tags=["library", "private"],
@@ -21,6 +26,10 @@ router = APIRouter(
"",
summary="List Library Agents",
response_model=library_model.LibraryAgentResponse,
responses={
200: {"description": "List of library agents"},
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
@@ -44,19 +53,43 @@ async def list_library_agents(
) -> library_model.LibraryAgentResponse:
"""
Get all agents in the user's library (both created and saved).
Args:
user_id: ID of the authenticated user.
search_term: Optional search term to filter agents by name/description.
filter_by: List of filters to apply (favorites, created by user).
sort_by: List of sorting criteria (created date, updated date).
page: Page number to retrieve.
page_size: Number of agents per page.
Returns:
A LibraryAgentResponse containing agents and pagination metadata.
Raises:
HTTPException: If a server/database error occurs.
"""
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
try:
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
except Exception as e:
logger.error(f"Could not list library agents for user #{user_id}: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
@router.get(
"/favorites",
summary="List Favorite Library Agents",
responses={
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_favorite_library_agents(
user_id: str = Security(autogpt_auth_lib.get_user_id),
@@ -73,12 +106,30 @@ async def list_favorite_library_agents(
) -> library_model.LibraryAgentResponse:
"""
Get all favorite agents in the user's library.
Args:
user_id: ID of the authenticated user.
page: Page number to retrieve.
page_size: Number of agents per page.
Returns:
A LibraryAgentResponse containing favorite agents and pagination metadata.
Raises:
HTTPException: If a server/database error occurs.
"""
return await library_db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
try:
return await library_db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
except Exception as e:
logger.error(f"Could not list favorite library agents for user #{user_id}: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
@router.get("/{library_agent_id}", summary="Get Library Agent")
@@ -111,6 +162,10 @@ async def get_library_agent_by_graph_id(
summary="Get Agent By Store ID",
tags=["store", "library"],
response_model=library_model.LibraryAgent | None,
responses={
200: {"description": "Library agent found"},
404: {"description": "Agent not found"},
},
)
async def get_library_agent_by_store_listing_version_id(
store_listing_version_id: str,
@@ -119,15 +174,32 @@ async def get_library_agent_by_store_listing_version_id(
"""
Get Library Agent from Store Listing Version ID.
"""
return await library_db.get_library_agent_by_store_version_id(
store_listing_version_id, user_id
)
try:
return await library_db.get_library_agent_by_store_version_id(
store_listing_version_id, user_id
)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
)
except Exception as e:
logger.error(f"Could not fetch library agent from store version ID: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=str(e),
) from e
@router.post(
"",
summary="Add Marketplace Agent",
status_code=status.HTTP_201_CREATED,
responses={
201: {"description": "Agent added successfully"},
404: {"description": "Store listing version not found"},
500: {"description": "Server error"},
},
)
async def add_marketplace_agent_to_library(
store_listing_version_id: str = Body(embed=True),
@@ -138,19 +210,59 @@ async def add_marketplace_agent_to_library(
) -> library_model.LibraryAgent:
"""
Add an agent from the marketplace to the user's library.
Args:
store_listing_version_id: ID of the store listing version to add.
user_id: ID of the authenticated user.
Returns:
library_model.LibraryAgent: Agent added to the library
Raises:
HTTPException(404): If the listing version is not found.
HTTPException(500): If a server/database error occurs.
"""
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(user_id, OnboardingStep.MARKETPLACE_ADD_AGENT)
return agent
try:
agent = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
if source != "onboarding":
await complete_onboarding_step(
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
)
return agent
except store_exceptions.AgentNotFoundError as e:
logger.warning(
f"Could not find store listing version {store_listing_version_id} "
"to add to library"
)
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=str(e))
except DatabaseError as e:
logger.error(f"Database error while adding agent to library: {e}", e)
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Inspect DB logs for details."},
) from e
except Exception as e:
logger.error(f"Unexpected error while adding agent to library: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={
"message": str(e),
"hint": "Check server logs for more information.",
},
) from e
@router.patch(
"/{library_agent_id}",
summary="Update Library Agent",
responses={
200: {"description": "Agent updated successfully"},
500: {"description": "Server error"},
},
)
async def update_library_agent(
library_agent_id: str,
@@ -159,21 +271,52 @@ async def update_library_agent(
) -> library_model.LibraryAgent:
"""
Update the library agent with the given fields.
Args:
library_agent_id: ID of the library agent to update.
payload: Fields to update (auto_update_version, is_favorite, etc.).
user_id: ID of the authenticated user.
Raises:
HTTPException(500): If a server/database error occurs.
"""
return await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
graph_version=payload.graph_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
settings=payload.settings,
)
try:
return await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
graph_version=payload.graph_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
settings=payload.settings,
)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
) from e
except DatabaseError as e:
logger.error(f"Database error while updating library agent: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Verify DB connection."},
) from e
except Exception as e:
logger.error(f"Unexpected error while updating library agent: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail={"message": str(e), "hint": "Check server logs."},
) from e
@router.delete(
"/{library_agent_id}",
summary="Delete Library Agent",
responses={
204: {"description": "Agent deleted successfully"},
404: {"description": "Agent not found"},
500: {"description": "Server error"},
},
)
async def delete_library_agent(
library_agent_id: str,
@@ -181,11 +324,28 @@ async def delete_library_agent(
) -> Response:
"""
Soft-delete the specified library agent.
Args:
library_agent_id: ID of the library agent to delete.
user_id: ID of the authenticated user.
Returns:
204 No Content if successful.
Raises:
HTTPException(404): If the agent does not exist.
HTTPException(500): If a server/database error occurs.
"""
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
try:
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=str(e),
) from e
@router.post("/{library_agent_id}/fork", summary="Fork Library Agent")

View File

@@ -118,6 +118,21 @@ async def test_get_library_agents_success(
)
def test_get_library_agents_error(mocker: pytest_mock.MockFixture, test_user_id: str):
mock_db_call = mocker.patch("backend.api.features.library.db.list_library_agents")
mock_db_call.side_effect = Exception("Test error")
response = client.get("/agents?search_term=test")
assert response.status_code == 500
mock_db_call.assert_called_once_with(
user_id=test_user_id,
search_term="test",
sort_by=library_model.LibraryAgentSort.UPDATED_AT,
page=1,
page_size=15,
)
@pytest.mark.asyncio
async def test_get_favorite_library_agents_success(
mocker: pytest_mock.MockFixture,
@@ -175,6 +190,23 @@ async def test_get_favorite_library_agents_success(
)
def test_get_favorite_library_agents_error(
mocker: pytest_mock.MockFixture, test_user_id: str
):
mock_db_call = mocker.patch(
"backend.api.features.library.db.list_favorite_library_agents"
)
mock_db_call.side_effect = Exception("Test error")
response = client.get("/agents/favorites")
assert response.status_code == 500
mock_db_call.assert_called_once_with(
user_id=test_user_id,
page=1,
page_size=15,
)
def test_add_agent_to_library_success(
mocker: pytest_mock.MockFixture, test_user_id: str
):
@@ -226,3 +258,19 @@ def test_add_agent_to_library_success(
store_listing_version_id="test-version-id", user_id=test_user_id
)
mock_complete_onboarding.assert_awaited_once()
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):
mock_db_call = mocker.patch(
"backend.api.features.library.db.add_store_agent_to_library"
)
mock_db_call.side_effect = Exception("Test error")
response = client.post(
"/agents", json={"store_listing_version_id": "test-version-id"}
)
assert response.status_code == 500
assert "detail" in response.json() # Verify error response structure
mock_db_call.assert_called_once_with(
store_listing_version_id="test-version-id", user_id=test_user_id
)

View File

@@ -5,8 +5,8 @@ from typing import Optional
import aiohttp
from fastapi import HTTPException
from backend.blocks import get_block
from backend.data import graph as graph_db
from backend.data.block import get_block
from backend.util.settings import Settings
from .models import ApiResponse, ChatRequest, GraphData

View File

@@ -152,7 +152,7 @@ class BlockHandler(ContentHandler):
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch blocks without embeddings."""
from backend.blocks import get_blocks
from backend.data.block import get_blocks
# Get all available blocks
all_blocks = get_blocks()
@@ -188,10 +188,6 @@ class BlockHandler(ContentHandler):
try:
block_instance = block_cls()
# Skip disabled blocks - they shouldn't be indexed
if block_instance.disabled:
continue
# Build searchable text from block metadata
parts = []
if hasattr(block_instance, "name") and block_instance.name:
@@ -249,22 +245,15 @@ class BlockHandler(ContentHandler):
async def get_stats(self) -> dict[str, int]:
"""Get statistics about block embedding coverage."""
from backend.blocks import get_blocks
from backend.data.block import get_blocks
all_blocks = get_blocks()
# Filter out disabled blocks - they're not indexed
enabled_block_ids = [
block_id
for block_id, block_cls in all_blocks.items()
if not block_cls().disabled
]
total_blocks = len(enabled_block_ids)
total_blocks = len(all_blocks)
if total_blocks == 0:
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
block_ids = enabled_block_ids
block_ids = list(all_blocks.keys())
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
embedded_result = await query_raw_with_schema(

View File

@@ -81,7 +81,6 @@ async def test_block_handler_get_missing_items(mocker):
mock_block_instance.name = "Calculator Block"
mock_block_instance.description = "Performs calculations"
mock_block_instance.categories = [MagicMock(value="MATH")]
mock_block_instance.disabled = False
mock_block_instance.input_schema.model_json_schema.return_value = {
"properties": {"expression": {"description": "Math expression to evaluate"}}
}
@@ -93,7 +92,7 @@ async def test_block_handler_get_missing_items(mocker):
mock_existing = []
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -117,25 +116,18 @@ async def test_block_handler_get_stats(mocker):
"""Test BlockHandler returns correct stats."""
handler = BlockHandler()
# Mock get_blocks - each block class returns an instance with disabled=False
def make_mock_block_class():
mock_class = MagicMock()
mock_instance = MagicMock()
mock_instance.disabled = False
mock_class.return_value = mock_instance
return mock_class
# Mock get_blocks
mock_blocks = {
"block-1": make_mock_block_class(),
"block-2": make_mock_block_class(),
"block-3": make_mock_block_class(),
"block-1": MagicMock(),
"block-2": MagicMock(),
"block-3": MagicMock(),
}
# Mock embedded count query (2 blocks have embeddings)
mock_embedded = [{"count": 2}]
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -317,7 +309,6 @@ async def test_block_handler_handles_missing_attributes():
mock_block_class = MagicMock()
mock_block_instance = MagicMock()
mock_block_instance.name = "Minimal Block"
mock_block_instance.disabled = False
# No description, categories, or schema
del mock_block_instance.description
del mock_block_instance.categories
@@ -327,7 +318,7 @@ async def test_block_handler_handles_missing_attributes():
mock_blocks = {"block-minimal": mock_block_class}
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -351,7 +342,6 @@ async def test_block_handler_skips_failed_blocks():
good_instance.name = "Good Block"
good_instance.description = "Works fine"
good_instance.categories = []
good_instance.disabled = False
good_block.return_value = good_instance
bad_block = MagicMock()
@@ -360,7 +350,7 @@ async def test_block_handler_skips_failed_blocks():
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(

View File

@@ -1,7 +1,7 @@
import asyncio
import logging
from datetime import datetime, timezone
from typing import Any, Literal, overload
from typing import Any, Literal
import fastapi
import prisma.enums
@@ -11,8 +11,8 @@ import prisma.types
from backend.data.db import transaction
from backend.data.graph import (
GraphMeta,
GraphModel,
GraphModelWithoutNodes,
get_graph,
get_graph_as_admin,
get_sub_graphs,
@@ -112,7 +112,6 @@ async def get_store_agents(
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
agent_graph_id=agent.get("agentGraphId", ""),
)
store_agents.append(store_agent)
except Exception as e:
@@ -171,7 +170,6 @@ async def get_store_agents(
description=agent.description,
runs=agent.runs,
rating=agent.rating,
agent_graph_id=agent.agentGraphId,
)
# Add to the list only if creation was successful
store_agents.append(store_agent)
@@ -334,22 +332,7 @@ async def get_store_agent_details(
raise DatabaseError("Failed to fetch agent details") from e
@overload
async def get_available_graph(
store_listing_version_id: str, hide_nodes: Literal[False]
) -> GraphModel: ...
@overload
async def get_available_graph(
store_listing_version_id: str, hide_nodes: Literal[True] = True
) -> GraphModelWithoutNodes: ...
async def get_available_graph(
store_listing_version_id: str,
hide_nodes: bool = True,
) -> GraphModelWithoutNodes | GraphModel:
async def get_available_graph(store_listing_version_id: str) -> GraphMeta:
try:
# Get avaialble, non-deleted store listing version
store_listing_version = (
@@ -359,7 +342,7 @@ async def get_available_graph(
"isAvailable": True,
"isDeleted": False,
},
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
include={"AgentGraph": {"include": {"Nodes": True}}},
)
)
@@ -369,9 +352,7 @@ async def get_available_graph(
detail=f"Store listing version {store_listing_version_id} not found",
)
return (GraphModelWithoutNodes if hide_nodes else GraphModel).from_db(
store_listing_version.AgentGraph
)
return GraphModel.from_db(store_listing_version.AgentGraph).meta()
except Exception as e:
logger.error(f"Error getting agent: {e}")

View File

@@ -454,7 +454,6 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
total_processed = 0
total_success = 0
total_failed = 0
all_errors: dict[str, int] = {} # Aggregate errors across all content types
# Process content types in explicit order
processing_order = [
@@ -500,12 +499,23 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
success = sum(1 for result in results if result is True)
failed = len(results) - success
# Aggregate errors across all content types
# Aggregate unique errors to avoid Sentry spam
if failed > 0:
# Group errors by type and message
error_summary: dict[str, int] = {}
for result in results:
if isinstance(result, Exception):
error_key = f"{type(result).__name__}: {str(result)}"
all_errors[error_key] = all_errors.get(error_key, 0) + 1
error_summary[error_key] = error_summary.get(error_key, 0) + 1
# Log aggregated error summary
error_details = ", ".join(
f"{error} ({count}x)" for error, count in error_summary.items()
)
logger.error(
f"{content_type.value}: {failed}/{len(results)} embeddings failed. "
f"Errors: {error_details}"
)
results_by_type[content_type.value] = {
"processed": len(missing_items),
@@ -532,13 +542,6 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
"error": str(e),
}
# Log aggregated errors once at the end
if all_errors:
error_details = ", ".join(
f"{error} ({count}x)" for error, count in all_errors.items()
)
logger.error(f"Embedding backfill errors: {error_details}")
return {
"by_type": results_by_type,
"totals": {
@@ -662,7 +665,7 @@ async def cleanup_orphaned_embeddings() -> dict[str, Any]:
)
current_ids = {row["id"] for row in valid_agents}
elif content_type == ContentType.BLOCK:
from backend.blocks import get_blocks
from backend.data.block import get_blocks
current_ids = set(get_blocks().keys())
elif content_type == ContentType.DOCUMENTATION:

View File

@@ -454,9 +454,6 @@ async def test_unified_hybrid_search_pagination(
cleanup_embeddings: list,
):
"""Test unified search pagination works correctly."""
# Use a unique search term to avoid matching other test data
unique_term = f"xyzpagtest{uuid.uuid4().hex[:8]}"
# Create multiple items
content_ids = []
for i in range(5):
@@ -468,14 +465,14 @@ async def test_unified_hybrid_search_pagination(
content_type=ContentType.BLOCK,
content_id=content_id,
embedding=mock_embedding,
searchable_text=f"{unique_term} item number {i}",
searchable_text=f"pagination test item number {i}",
metadata={"index": i},
user_id=None,
)
# Get first page
page1_results, total1 = await unified_hybrid_search(
query=unique_term,
query="pagination test",
content_types=[ContentType.BLOCK],
page=1,
page_size=2,
@@ -483,7 +480,7 @@ async def test_unified_hybrid_search_pagination(
# Get second page
page2_results, total2 = await unified_hybrid_search(
query=unique_term,
query="pagination test",
content_types=[ContentType.BLOCK],
page=2,
page_size=2,

Some files were not shown because too many files have changed in this diff Show More