mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-12 07:45:14 -05:00
Compare commits
5 Commits
feat/dummy
...
pwuts/spee
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7cdbbdd65e | ||
|
|
6191ac0b1e | ||
|
|
b51e87bc53 | ||
|
|
71f764f3d0 | ||
|
|
a78145505b |
49
.github/workflows/platform-frontend-ci.yml
vendored
49
.github/workflows/platform-frontend-ci.yml
vendored
@@ -142,9 +142,6 @@ jobs:
|
||||
|
||||
e2e_test:
|
||||
runs-on: big-boi
|
||||
needs: setup
|
||||
strategy:
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
@@ -174,29 +171,29 @@ jobs:
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Cache Docker layers
|
||||
uses: actions/cache@v5
|
||||
with:
|
||||
path: /tmp/.buildx-cache
|
||||
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-buildx-frontend-test-
|
||||
driver-opts: network=host
|
||||
|
||||
- name: Build Docker images with cache
|
||||
working-directory: autogpt_platform
|
||||
run: |
|
||||
pip install pyyaml
|
||||
python ../.github/workflows/scripts/generate-docker-ci-compose.py \
|
||||
--source docker-compose.platform.yml \
|
||||
--output docker-compose.ci.yml \
|
||||
--cache-from "type=gha" \
|
||||
--cache-to "type=gha,mode=max" \
|
||||
--backend-scope "platform-backend-${{ hashFiles('autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/poetry.lock', 'autogpt_platform/backend/backend') }}" \
|
||||
--frontend-scope "platform-frontend-${{ hashFiles('autogpt_platform/frontend/Dockerfile', 'autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/src') }}"
|
||||
|
||||
docker buildx bake --allow=fs.read=.. -f docker-compose.yml -f docker-compose.ci.yml --load
|
||||
env:
|
||||
NEXT_PUBLIC_PW_TEST: true
|
||||
|
||||
- name: Run docker compose
|
||||
run: |
|
||||
NEXT_PUBLIC_PW_TEST=true docker compose -f ../docker-compose.yml up -d
|
||||
run: docker compose -f ../docker-compose.yml up -d --no-build
|
||||
env:
|
||||
DOCKER_BUILDKIT: 1
|
||||
BUILDX_CACHE_FROM: type=local,src=/tmp/.buildx-cache
|
||||
BUILDX_CACHE_TO: type=local,dest=/tmp/.buildx-cache-new,mode=max
|
||||
|
||||
- name: Move cache
|
||||
run: |
|
||||
rm -rf /tmp/.buildx-cache
|
||||
if [ -d "/tmp/.buildx-cache-new" ]; then
|
||||
mv /tmp/.buildx-cache-new /tmp/.buildx-cache
|
||||
fi
|
||||
NEXT_PUBLIC_PW_TEST: true
|
||||
|
||||
- name: Wait for services to be ready
|
||||
run: |
|
||||
@@ -230,14 +227,14 @@ jobs:
|
||||
}
|
||||
fi
|
||||
|
||||
- name: Restore dependencies cache
|
||||
- name: Cache pnpm store
|
||||
uses: actions/cache@v5
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
# Use separate cache key for big-boi runner since it doesn't share cache with ubuntu-latest
|
||||
key: big-boi-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
big-boi-pnpm-
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
93
.github/workflows/scripts/generate-docker-ci-compose.py
vendored
Normal file
93
.github/workflows/scripts/generate-docker-ci-compose.py
vendored
Normal file
@@ -0,0 +1,93 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Generate a docker-compose.ci.yml with cache configuration for all services
|
||||
that have a build key in the source compose file.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Generate docker-compose cache override file"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--source",
|
||||
default="docker-compose.platform.yml",
|
||||
help="Source compose file to read (default: docker-compose.platform.yml)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output",
|
||||
default="docker-compose.ci.yml",
|
||||
help="Output compose file to write (default: docker-compose.ci.yml)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cache-from",
|
||||
default="type=local,src=/tmp/.buildx-cache",
|
||||
help="Cache source configuration",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cache-to",
|
||||
default="type=local,dest=/tmp/.buildx-cache-new,mode=max",
|
||||
help="Cache destination configuration",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--backend-scope",
|
||||
default="",
|
||||
help="GHA cache scope for backend services (e.g., platform-backend-{hash})",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--frontend-scope",
|
||||
default="",
|
||||
help="GHA cache scope for frontend service (e.g., platform-frontend-{hash})",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
with open(args.source, "r") as f:
|
||||
compose = yaml.safe_load(f)
|
||||
|
||||
ci_compose = {"services": {}}
|
||||
for service_name, service_config in compose.get("services", {}).items():
|
||||
if "build" not in service_config:
|
||||
continue
|
||||
|
||||
cache_from = args.cache_from
|
||||
cache_to = args.cache_to
|
||||
|
||||
# Determine scope based on Dockerfile path
|
||||
if "type=gha" in args.cache_from or "type=gha" in args.cache_to:
|
||||
dockerfile = service_config["build"].get("dockerfile", "Dockerfile")
|
||||
if "frontend" in dockerfile:
|
||||
scope = args.frontend_scope
|
||||
elif "backend" in dockerfile:
|
||||
scope = args.backend_scope
|
||||
else:
|
||||
# Skip services that don't clearly match frontend/backend
|
||||
continue
|
||||
|
||||
if scope:
|
||||
if "type=gha" in args.cache_from:
|
||||
cache_from = f"{args.cache_from},scope={scope}"
|
||||
if "type=gha" in args.cache_to:
|
||||
cache_to = f"{args.cache_to},scope={scope}"
|
||||
|
||||
ci_compose["services"][service_name] = {
|
||||
"build": {
|
||||
"cache_from": [cache_from],
|
||||
"cache_to": [cache_to],
|
||||
}
|
||||
}
|
||||
|
||||
with open(args.output, "w") as f:
|
||||
yaml.dump(ci_compose, f, default_flow_style=False)
|
||||
|
||||
services = list(ci_compose["services"].keys())
|
||||
print(f"Generated {args.output} with cache config for {len(services)} services:")
|
||||
for svc in services:
|
||||
print(f" - {svc}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -2,7 +2,7 @@ import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
from datetime import UTC, datetime
|
||||
from typing import Any
|
||||
from typing import Any, cast
|
||||
from weakref import WeakValueDictionary
|
||||
|
||||
from openai.types.chat import (
|
||||
@@ -104,6 +104,26 @@ class ChatSession(BaseModel):
|
||||
successful_agent_runs: dict[str, int] = {}
|
||||
successful_agent_schedules: dict[str, int] = {}
|
||||
|
||||
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
|
||||
"""Attach a tool_call to the current turn's assistant message.
|
||||
|
||||
Searches backwards for the most recent assistant message (stopping at
|
||||
any user message boundary). If found, appends the tool_call to it.
|
||||
Otherwise creates a new assistant message with the tool_call.
|
||||
"""
|
||||
for msg in reversed(self.messages):
|
||||
if msg.role == "user":
|
||||
break
|
||||
if msg.role == "assistant":
|
||||
if not msg.tool_calls:
|
||||
msg.tool_calls = []
|
||||
msg.tool_calls.append(tool_call)
|
||||
return
|
||||
|
||||
self.messages.append(
|
||||
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def new(user_id: str) -> "ChatSession":
|
||||
return ChatSession(
|
||||
@@ -172,6 +192,47 @@ class ChatSession(BaseModel):
|
||||
successful_agent_schedules=successful_agent_schedules,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _merge_consecutive_assistant_messages(
|
||||
messages: list[ChatCompletionMessageParam],
|
||||
) -> list[ChatCompletionMessageParam]:
|
||||
"""Merge consecutive assistant messages into single messages.
|
||||
|
||||
Long-running tool flows can create split assistant messages: one with
|
||||
text content and another with tool_calls. Anthropic's API requires
|
||||
tool_result blocks to reference a tool_use in the immediately preceding
|
||||
assistant message, so these splits cause 400 errors via OpenRouter.
|
||||
"""
|
||||
if len(messages) < 2:
|
||||
return messages
|
||||
|
||||
result: list[ChatCompletionMessageParam] = [messages[0]]
|
||||
for msg in messages[1:]:
|
||||
prev = result[-1]
|
||||
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
|
||||
result.append(msg)
|
||||
continue
|
||||
|
||||
prev = cast(ChatCompletionAssistantMessageParam, prev)
|
||||
curr = cast(ChatCompletionAssistantMessageParam, msg)
|
||||
|
||||
curr_content = curr.get("content") or ""
|
||||
if curr_content:
|
||||
prev_content = prev.get("content") or ""
|
||||
prev["content"] = (
|
||||
f"{prev_content}\n{curr_content}" if prev_content else curr_content
|
||||
)
|
||||
|
||||
curr_tool_calls = curr.get("tool_calls")
|
||||
if curr_tool_calls:
|
||||
prev_tool_calls = prev.get("tool_calls")
|
||||
prev["tool_calls"] = (
|
||||
list(prev_tool_calls) + list(curr_tool_calls)
|
||||
if prev_tool_calls
|
||||
else list(curr_tool_calls)
|
||||
)
|
||||
return result
|
||||
|
||||
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
|
||||
messages = []
|
||||
for message in self.messages:
|
||||
@@ -258,7 +319,7 @@ class ChatSession(BaseModel):
|
||||
name=message.name or "",
|
||||
)
|
||||
)
|
||||
return messages
|
||||
return self._merge_consecutive_assistant_messages(messages)
|
||||
|
||||
|
||||
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
|
||||
|
||||
@@ -1,4 +1,16 @@
|
||||
from typing import cast
|
||||
|
||||
import pytest
|
||||
from openai.types.chat import (
|
||||
ChatCompletionAssistantMessageParam,
|
||||
ChatCompletionMessageParam,
|
||||
ChatCompletionToolMessageParam,
|
||||
ChatCompletionUserMessageParam,
|
||||
)
|
||||
from openai.types.chat.chat_completion_message_tool_call_param import (
|
||||
ChatCompletionMessageToolCallParam,
|
||||
Function,
|
||||
)
|
||||
|
||||
from .model import (
|
||||
ChatMessage,
|
||||
@@ -117,3 +129,205 @@ async def test_chatsession_db_storage(setup_test_user, test_user_id):
|
||||
loaded.tool_calls is not None
|
||||
), f"Tool calls missing for {orig.role} message"
|
||||
assert len(orig.tool_calls) == len(loaded.tool_calls)
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# _merge_consecutive_assistant_messages #
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
_tc = ChatCompletionMessageToolCallParam(
|
||||
id="tc1", type="function", function=Function(name="do_stuff", arguments="{}")
|
||||
)
|
||||
_tc2 = ChatCompletionMessageToolCallParam(
|
||||
id="tc2", type="function", function=Function(name="other", arguments="{}")
|
||||
)
|
||||
|
||||
|
||||
def test_merge_noop_when_no_consecutive_assistants():
|
||||
"""Messages without consecutive assistants are returned unchanged."""
|
||||
msgs = [
|
||||
ChatCompletionUserMessageParam(role="user", content="hi"),
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="hello"),
|
||||
ChatCompletionUserMessageParam(role="user", content="bye"),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
|
||||
assert len(merged) == 3
|
||||
assert [m["role"] for m in merged] == ["user", "assistant", "user"]
|
||||
|
||||
|
||||
def test_merge_splits_text_and_tool_calls():
|
||||
"""The exact bug scenario: text-only assistant followed by tool_calls-only assistant."""
|
||||
msgs = [
|
||||
ChatCompletionUserMessageParam(role="user", content="build agent"),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="Let me build that"
|
||||
),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc]
|
||||
),
|
||||
ChatCompletionToolMessageParam(role="tool", content="ok", tool_call_id="tc1"),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
|
||||
|
||||
assert len(merged) == 3
|
||||
assert merged[0]["role"] == "user"
|
||||
assert merged[2]["role"] == "tool"
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[1])
|
||||
assert a["role"] == "assistant"
|
||||
assert a.get("content") == "Let me build that"
|
||||
assert a.get("tool_calls") == [_tc]
|
||||
|
||||
|
||||
def test_merge_combines_tool_calls_from_both():
|
||||
"""Both consecutive assistants have tool_calls — they get merged."""
|
||||
msgs: list[ChatCompletionAssistantMessageParam] = [
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="text", tool_calls=[_tc]
|
||||
),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc2]
|
||||
),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
|
||||
|
||||
assert len(merged) == 1
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[0])
|
||||
assert a.get("tool_calls") == [_tc, _tc2]
|
||||
assert a.get("content") == "text"
|
||||
|
||||
|
||||
def test_merge_three_consecutive_assistants():
|
||||
"""Three consecutive assistants collapse into one."""
|
||||
msgs: list[ChatCompletionAssistantMessageParam] = [
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="a"),
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="b"),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc]
|
||||
),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
|
||||
|
||||
assert len(merged) == 1
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[0])
|
||||
assert a.get("content") == "a\nb"
|
||||
assert a.get("tool_calls") == [_tc]
|
||||
|
||||
|
||||
def test_merge_empty_and_single_message():
|
||||
"""Edge cases: empty list and single message."""
|
||||
assert ChatSession._merge_consecutive_assistant_messages([]) == []
|
||||
|
||||
single: list[ChatCompletionMessageParam] = [
|
||||
ChatCompletionUserMessageParam(role="user", content="hi")
|
||||
]
|
||||
assert ChatSession._merge_consecutive_assistant_messages(single) == single
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# add_tool_call_to_current_turn #
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
_raw_tc = {
|
||||
"id": "tc1",
|
||||
"type": "function",
|
||||
"function": {"name": "f", "arguments": "{}"},
|
||||
}
|
||||
_raw_tc2 = {
|
||||
"id": "tc2",
|
||||
"type": "function",
|
||||
"function": {"name": "g", "arguments": "{}"},
|
||||
}
|
||||
|
||||
|
||||
def test_add_tool_call_appends_to_existing_assistant():
|
||||
"""When the last assistant is from the current turn, tool_call is added to it."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
ChatMessage(role="assistant", content="working on it"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 2 # no new message created
|
||||
assert session.messages[1].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_creates_assistant_when_none_exists():
|
||||
"""When there's no current-turn assistant, a new one is created."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 2
|
||||
assert session.messages[1].role == "assistant"
|
||||
assert session.messages[1].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_does_not_cross_user_boundary():
|
||||
"""A user message acts as a boundary — previous assistant is not modified."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="assistant", content="old turn"),
|
||||
ChatMessage(role="user", content="new message"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 3 # new assistant was created
|
||||
assert session.messages[0].tool_calls is None # old assistant untouched
|
||||
assert session.messages[2].role == "assistant"
|
||||
assert session.messages[2].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_multiple_times():
|
||||
"""Multiple long-running tool calls accumulate on the same assistant."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
ChatMessage(role="assistant", content="doing stuff"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
# Simulate a pending tool result in between (like _yield_tool_call does)
|
||||
session.messages.append(
|
||||
ChatMessage(role="tool", content="pending", tool_call_id="tc1")
|
||||
)
|
||||
session.add_tool_call_to_current_turn(_raw_tc2)
|
||||
|
||||
assert len(session.messages) == 3 # user, assistant, tool — no extra assistant
|
||||
assert session.messages[1].tool_calls == [_raw_tc, _raw_tc2]
|
||||
|
||||
|
||||
def test_to_openai_messages_merges_split_assistants():
|
||||
"""End-to-end: session with split assistants produces valid OpenAI messages."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="build agent"),
|
||||
ChatMessage(role="assistant", content="Let me build that"),
|
||||
ChatMessage(
|
||||
role="assistant",
|
||||
content="",
|
||||
tool_calls=[
|
||||
{
|
||||
"id": "tc1",
|
||||
"type": "function",
|
||||
"function": {"name": "create_agent", "arguments": "{}"},
|
||||
}
|
||||
],
|
||||
),
|
||||
ChatMessage(role="tool", content="done", tool_call_id="tc1"),
|
||||
ChatMessage(role="assistant", content="Saved!"),
|
||||
ChatMessage(role="user", content="show me an example run"),
|
||||
]
|
||||
openai_msgs = session.to_openai_messages()
|
||||
|
||||
# The two consecutive assistants at index 1,2 should be merged
|
||||
roles = [m["role"] for m in openai_msgs]
|
||||
assert roles == ["user", "assistant", "tool", "assistant", "user"]
|
||||
|
||||
# The merged assistant should have both content and tool_calls
|
||||
merged = cast(ChatCompletionAssistantMessageParam, openai_msgs[1])
|
||||
assert merged.get("content") == "Let me build that"
|
||||
tc_list = merged.get("tool_calls")
|
||||
assert tc_list is not None and len(list(tc_list)) == 1
|
||||
assert list(tc_list)[0]["id"] == "tc1"
|
||||
|
||||
@@ -800,9 +800,13 @@ async def stream_chat_completion(
|
||||
# Build the messages list in the correct order
|
||||
messages_to_save: list[ChatMessage] = []
|
||||
|
||||
# Add assistant message with tool_calls if any
|
||||
# Add assistant message with tool_calls if any.
|
||||
# Use extend (not assign) to preserve tool_calls already added by
|
||||
# _yield_tool_call for long-running tools.
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
if not assistant_response.tool_calls:
|
||||
assistant_response.tool_calls = []
|
||||
assistant_response.tool_calls.extend(accumulated_tool_calls)
|
||||
logger.info(
|
||||
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
|
||||
)
|
||||
@@ -1404,13 +1408,9 @@ async def _yield_tool_call(
|
||||
operation_id=operation_id,
|
||||
)
|
||||
|
||||
# Save assistant message with tool_call FIRST (required by LLM)
|
||||
assistant_message = ChatMessage(
|
||||
role="assistant",
|
||||
content="",
|
||||
tool_calls=[tool_calls[yield_idx]],
|
||||
)
|
||||
session.messages.append(assistant_message)
|
||||
# Attach the tool_call to the current turn's assistant message
|
||||
# (or create one if this is a tool-only response with no text).
|
||||
session.add_tool_call_to_current_turn(tool_calls[yield_idx])
|
||||
|
||||
# Then save pending tool result
|
||||
pending_message = ChatMessage(
|
||||
|
||||
Reference in New Issue
Block a user