mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-17 10:12:02 -05:00
Compare commits
12 Commits
feat/fix-h
...
secrt-1862
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
088a59ede3 | ||
|
|
253482ae64 | ||
|
|
fdb7ff8111 | ||
|
|
0e42efb7d5 | ||
|
|
f2d82d8802 | ||
|
|
446c71fec8 | ||
|
|
ec4c2caa14 | ||
|
|
516e8b4b25 | ||
|
|
e7e118b5a8 | ||
|
|
92a7a7e6d6 | ||
|
|
e16995347f | ||
|
|
234d3acb4c |
@@ -29,7 +29,8 @@
|
||||
"postCreateCmd": [
|
||||
"cd autogpt_platform/autogpt_libs && poetry install",
|
||||
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
|
||||
"cd autogpt_platform/frontend && pnpm install"
|
||||
"cd autogpt_platform/frontend && pnpm install",
|
||||
"cd docs && pip install -r requirements.txt"
|
||||
],
|
||||
"terminalCommand": "code .",
|
||||
"deleteBranchWithWorktree": false
|
||||
|
||||
@@ -5,13 +5,42 @@
|
||||
!docs/
|
||||
|
||||
# Platform - Libs
|
||||
!autogpt_platform/autogpt_libs/
|
||||
!autogpt_platform/autogpt_libs/autogpt_libs/
|
||||
!autogpt_platform/autogpt_libs/pyproject.toml
|
||||
!autogpt_platform/autogpt_libs/poetry.lock
|
||||
!autogpt_platform/autogpt_libs/README.md
|
||||
|
||||
# Platform - Backend
|
||||
!autogpt_platform/backend/
|
||||
!autogpt_platform/backend/backend/
|
||||
!autogpt_platform/backend/test/e2e_test_data.py
|
||||
!autogpt_platform/backend/migrations/
|
||||
!autogpt_platform/backend/schema.prisma
|
||||
!autogpt_platform/backend/pyproject.toml
|
||||
!autogpt_platform/backend/poetry.lock
|
||||
!autogpt_platform/backend/README.md
|
||||
!autogpt_platform/backend/.env
|
||||
!autogpt_platform/backend/gen_prisma_types_stub.py
|
||||
|
||||
# Platform - Market
|
||||
!autogpt_platform/market/market/
|
||||
!autogpt_platform/market/scripts.py
|
||||
!autogpt_platform/market/schema.prisma
|
||||
!autogpt_platform/market/pyproject.toml
|
||||
!autogpt_platform/market/poetry.lock
|
||||
!autogpt_platform/market/README.md
|
||||
|
||||
# Platform - Frontend
|
||||
!autogpt_platform/frontend/
|
||||
!autogpt_platform/frontend/src/
|
||||
!autogpt_platform/frontend/public/
|
||||
!autogpt_platform/frontend/scripts/
|
||||
!autogpt_platform/frontend/package.json
|
||||
!autogpt_platform/frontend/pnpm-lock.yaml
|
||||
!autogpt_platform/frontend/tsconfig.json
|
||||
!autogpt_platform/frontend/README.md
|
||||
## config
|
||||
!autogpt_platform/frontend/*.config.*
|
||||
!autogpt_platform/frontend/.env.*
|
||||
!autogpt_platform/frontend/.env
|
||||
|
||||
# Classic - AutoGPT
|
||||
!classic/original_autogpt/autogpt/
|
||||
@@ -35,38 +64,6 @@
|
||||
# Classic - Frontend
|
||||
!classic/frontend/build/web/
|
||||
|
||||
# Explicitly re-ignore unwanted files from whitelisted directories
|
||||
# Note: These patterns MUST come after the whitelist rules to take effect
|
||||
|
||||
# Hidden files and directories (but keep frontend .env files needed for build)
|
||||
**/.*
|
||||
!autogpt_platform/frontend/.env
|
||||
!autogpt_platform/frontend/.env.default
|
||||
!autogpt_platform/frontend/.env.production
|
||||
|
||||
# Python artifacts
|
||||
**/__pycache__/
|
||||
**/*.pyc
|
||||
**/*.pyo
|
||||
**/.venv/
|
||||
**/.ruff_cache/
|
||||
**/.pytest_cache/
|
||||
**/.coverage
|
||||
**/htmlcov/
|
||||
|
||||
# Node artifacts
|
||||
**/node_modules/
|
||||
**/.next/
|
||||
**/storybook-static/
|
||||
**/playwright-report/
|
||||
**/test-results/
|
||||
|
||||
# Build artifacts
|
||||
**/dist/
|
||||
**/build/
|
||||
!autogpt_platform/frontend/src/**/build/
|
||||
**/target/
|
||||
|
||||
# Logs and temp files
|
||||
**/*.log
|
||||
**/*.tmp
|
||||
# Explicitly re-ignore some folders
|
||||
.*
|
||||
**/__pycache__
|
||||
|
||||
6
.github/copilot-instructions.md
vendored
6
.github/copilot-instructions.md
vendored
@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
|
||||
|
||||
**Backend Entry Points:**
|
||||
|
||||
- `backend/backend/api/rest_api.py` - FastAPI application setup
|
||||
- `backend/backend/server/server.py` - FastAPI application setup
|
||||
- `backend/backend/data/` - Database models and user management
|
||||
- `backend/blocks/` - Agent execution blocks and logic
|
||||
|
||||
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### API Development
|
||||
|
||||
1. Update routes in `/backend/backend/api/features/`
|
||||
1. Update routes in `/backend/backend/server/routers/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside route files
|
||||
4. For `data/*.py` changes, validate user ID checks
|
||||
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### Security Guidelines
|
||||
|
||||
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
|
||||
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
|
||||
|
||||
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)
|
||||
|
||||
1229
.github/scripts/detect_overlaps.py
vendored
1229
.github/scripts/detect_overlaps.py
vendored
File diff suppressed because it is too large
Load Diff
2
.github/workflows/classic-frontend-ci.yml
vendored
2
.github/workflows/classic-frontend-ci.yml
vendored
@@ -49,7 +49,7 @@ jobs:
|
||||
|
||||
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
|
||||
if: github.event_name == 'push'
|
||||
uses: peter-evans/create-pull-request@v8
|
||||
uses: peter-evans/create-pull-request@v7
|
||||
with:
|
||||
add-paths: classic/frontend/build/web
|
||||
base: ${{ github.ref_name }}
|
||||
|
||||
46
.github/workflows/claude-ci-failure-auto-fix.yml
vendored
46
.github/workflows/claude-ci-failure-auto-fix.yml
vendored
@@ -22,7 +22,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event.workflow_run.head_branch }}
|
||||
fetch-depth: 0
|
||||
@@ -40,51 +40,9 @@ jobs:
|
||||
git checkout -b "$BRANCH_NAME"
|
||||
echo "branch_name=$BRANCH_NAME" >> $GITHUB_OUTPUT
|
||||
|
||||
# Backend Python/Poetry setup (so Claude can run linting/tests)
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
- name: Install Poetry
|
||||
run: |
|
||||
cd autogpt_platform/backend
|
||||
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
|
||||
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
|
||||
echo "$HOME/.local/bin" >> $GITHUB_PATH
|
||||
|
||||
- name: Install Python dependencies
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry install
|
||||
|
||||
- name: Generate Prisma Client
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (so Claude can run linting/tests)
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: "22"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
|
||||
- name: Install JavaScript dependencies
|
||||
working-directory: autogpt_platform/frontend
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
- name: Get CI failure details
|
||||
id: failure_details
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const run = await github.rest.actions.getWorkflowRun({
|
||||
|
||||
29
.github/workflows/claude-dependabot.yml
vendored
29
.github/workflows/claude-dependabot.yml
vendored
@@ -30,7 +30,7 @@ jobs:
|
||||
actions: read # Required for CI access
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
|
||||
@@ -41,7 +41,7 @@ jobs:
|
||||
python-version: "3.11" # Use standard version matching CI
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -77,15 +77,27 @@ jobs:
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
- name: Set pnpm store directory
|
||||
run: |
|
||||
pnpm config set store-dir ~/.pnpm-store
|
||||
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache frontend dependencies
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install JavaScript dependencies
|
||||
working-directory: autogpt_platform/frontend
|
||||
@@ -112,7 +124,7 @@ jobs:
|
||||
# Phase 1: Cache and load Docker images for faster setup
|
||||
- name: Set up Docker image cache
|
||||
id: docker-cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/docker-cache
|
||||
# Use a versioned key for cache invalidation when image list changes
|
||||
@@ -297,7 +309,6 @@ jobs:
|
||||
uses: anthropics/claude-code-action@v1
|
||||
with:
|
||||
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
|
||||
allowed_bots: "dependabot[bot]"
|
||||
claude_args: |
|
||||
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*)"
|
||||
prompt: |
|
||||
|
||||
28
.github/workflows/claude.yml
vendored
28
.github/workflows/claude.yml
vendored
@@ -40,7 +40,7 @@ jobs:
|
||||
actions: read # Required for CI access
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
|
||||
@@ -57,7 +57,7 @@ jobs:
|
||||
python-version: "3.11" # Use standard version matching CI
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -93,15 +93,27 @@ jobs:
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
- name: Set pnpm store directory
|
||||
run: |
|
||||
pnpm config set store-dir ~/.pnpm-store
|
||||
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache frontend dependencies
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install JavaScript dependencies
|
||||
working-directory: autogpt_platform/frontend
|
||||
@@ -128,7 +140,7 @@ jobs:
|
||||
# Phase 1: Cache and load Docker images for faster setup
|
||||
- name: Set up Docker image cache
|
||||
id: docker-cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/docker-cache
|
||||
# Use a versioned key for cache invalidation when image list changes
|
||||
|
||||
6
.github/workflows/codeql.yml
vendored
6
.github/workflows/codeql.yml
vendored
@@ -58,11 +58,11 @@ jobs:
|
||||
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
|
||||
# Initializes the CodeQL tools for scanning.
|
||||
- name: Initialize CodeQL
|
||||
uses: github/codeql-action/init@v4
|
||||
uses: github/codeql-action/init@v3
|
||||
with:
|
||||
languages: ${{ matrix.language }}
|
||||
build-mode: ${{ matrix.build-mode }}
|
||||
@@ -93,6 +93,6 @@ jobs:
|
||||
exit 1
|
||||
|
||||
- name: Perform CodeQL Analysis
|
||||
uses: github/codeql-action/analyze@v4
|
||||
uses: github/codeql-action/analyze@v3
|
||||
with:
|
||||
category: "/language:${{matrix.language}}"
|
||||
|
||||
10
.github/workflows/copilot-setup-steps.yml
vendored
10
.github/workflows/copilot-setup-steps.yml
vendored
@@ -27,7 +27,7 @@ jobs:
|
||||
# If you do not check out your code, Copilot will do this for you.
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
submodules: true
|
||||
@@ -39,7 +39,7 @@ jobs:
|
||||
python-version: "3.11" # Use standard version matching CI
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -76,7 +76,7 @@ jobs:
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
|
||||
@@ -89,7 +89,7 @@ jobs:
|
||||
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache frontend dependencies
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
|
||||
@@ -132,7 +132,7 @@ jobs:
|
||||
# Phase 1: Cache and load Docker images for faster setup
|
||||
- name: Set up Docker image cache
|
||||
id: docker-cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/docker-cache
|
||||
# Use a versioned key for cache invalidation when image list changes
|
||||
|
||||
4
.github/workflows/docs-block-sync.yml
vendored
4
.github/workflows/docs-block-sync.yml
vendored
@@ -23,7 +23,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
|
||||
@@ -33,7 +33,7 @@ jobs:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
38
.github/workflows/docs-claude-review.yml
vendored
38
.github/workflows/docs-claude-review.yml
vendored
@@ -7,10 +7,6 @@ on:
|
||||
- "docs/integrations/**"
|
||||
- "autogpt_platform/backend/backend/blocks/**"
|
||||
|
||||
concurrency:
|
||||
group: claude-docs-review-${{ github.event.pull_request.number }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
claude-review:
|
||||
# Only run for PRs from members/collaborators
|
||||
@@ -27,7 +23,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -37,7 +33,7 @@ jobs:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -95,35 +91,5 @@ jobs:
|
||||
3. Read corresponding documentation files to verify accuracy
|
||||
4. Provide your feedback as a PR comment
|
||||
|
||||
## IMPORTANT: Comment Marker
|
||||
Start your PR comment with exactly this HTML comment marker on its own line:
|
||||
<!-- CLAUDE_DOCS_REVIEW -->
|
||||
|
||||
This marker is used to identify and replace your comment on subsequent runs.
|
||||
|
||||
Be constructive and specific. If everything looks good, say so!
|
||||
If there are issues, explain what's wrong and suggest how to fix it.
|
||||
|
||||
- name: Delete old Claude review comments
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
run: |
|
||||
# Get all comment IDs with our marker, sorted by creation date (oldest first)
|
||||
COMMENT_IDS=$(gh api \
|
||||
repos/${{ github.repository }}/issues/${{ github.event.pull_request.number }}/comments \
|
||||
--jq '[.[] | select(.body | contains("<!-- CLAUDE_DOCS_REVIEW -->"))] | sort_by(.created_at) | .[].id')
|
||||
|
||||
# Count comments
|
||||
COMMENT_COUNT=$(echo "$COMMENT_IDS" | grep -c . || true)
|
||||
|
||||
if [ "$COMMENT_COUNT" -gt 1 ]; then
|
||||
# Delete all but the last (newest) comment
|
||||
echo "$COMMENT_IDS" | head -n -1 | while read -r COMMENT_ID; do
|
||||
if [ -n "$COMMENT_ID" ]; then
|
||||
echo "Deleting old review comment: $COMMENT_ID"
|
||||
gh api -X DELETE repos/${{ github.repository }}/issues/comments/$COMMENT_ID
|
||||
fi
|
||||
done
|
||||
else
|
||||
echo "No old review comments to clean up"
|
||||
fi
|
||||
|
||||
4
.github/workflows/docs-enhance.yml
vendored
4
.github/workflows/docs-enhance.yml
vendored
@@ -28,7 +28,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
|
||||
@@ -38,7 +38,7 @@ jobs:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
@@ -25,7 +25,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event.inputs.git_ref || github.ref_name }}
|
||||
|
||||
@@ -52,7 +52,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Trigger deploy workflow
|
||||
uses: peter-evans/repository-dispatch@v4
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ secrets.DEPLOY_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
|
||||
@@ -17,7 +17,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.ref_name || 'master' }}
|
||||
|
||||
@@ -45,7 +45,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Trigger deploy workflow
|
||||
uses: peter-evans/repository-dispatch@v4
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ secrets.DEPLOY_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
|
||||
4
.github/workflows/platform-backend-ci.yml
vendored
4
.github/workflows/platform-backend-ci.yml
vendored
@@ -68,7 +68,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
submodules: true
|
||||
@@ -88,7 +88,7 @@ jobs:
|
||||
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
@@ -17,7 +17,7 @@ jobs:
|
||||
- name: Check comment permissions and deployment status
|
||||
id: check_status
|
||||
if: github.event_name == 'issue_comment' && github.event.issue.pull_request
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const commentBody = context.payload.comment.body.trim();
|
||||
@@ -55,7 +55,7 @@ jobs:
|
||||
|
||||
- name: Post permission denied comment
|
||||
if: steps.check_status.outputs.permission_denied == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
@@ -68,7 +68,7 @@ jobs:
|
||||
- name: Get PR details for deployment
|
||||
id: pr_details
|
||||
if: steps.check_status.outputs.should_deploy == 'true' || steps.check_status.outputs.should_undeploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const pr = await github.rest.pulls.get({
|
||||
@@ -82,7 +82,7 @@ jobs:
|
||||
|
||||
- name: Dispatch Deploy Event
|
||||
if: steps.check_status.outputs.should_deploy == 'true'
|
||||
uses: peter-evans/repository-dispatch@v4
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ secrets.DISPATCH_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
@@ -98,7 +98,7 @@ jobs:
|
||||
|
||||
- name: Post deploy success comment
|
||||
if: steps.check_status.outputs.should_deploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
@@ -110,7 +110,7 @@ jobs:
|
||||
|
||||
- name: Dispatch Undeploy Event (from comment)
|
||||
if: steps.check_status.outputs.should_undeploy == 'true'
|
||||
uses: peter-evans/repository-dispatch@v4
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ secrets.DISPATCH_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
@@ -126,7 +126,7 @@ jobs:
|
||||
|
||||
- name: Post undeploy success comment
|
||||
if: steps.check_status.outputs.should_undeploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
@@ -139,7 +139,7 @@ jobs:
|
||||
- name: Check deployment status on PR close
|
||||
id: check_pr_close
|
||||
if: github.event_name == 'pull_request' && github.event.action == 'closed'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const comments = await github.rest.issues.listComments({
|
||||
@@ -168,7 +168,7 @@ jobs:
|
||||
github.event_name == 'pull_request' &&
|
||||
github.event.action == 'closed' &&
|
||||
steps.check_pr_close.outputs.should_undeploy == 'true'
|
||||
uses: peter-evans/repository-dispatch@v4
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ secrets.DISPATCH_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
@@ -187,7 +187,7 @@ jobs:
|
||||
github.event_name == 'pull_request' &&
|
||||
github.event.action == 'closed' &&
|
||||
steps.check_pr_close.outputs.should_undeploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
|
||||
269
.github/workflows/platform-frontend-ci.yml
vendored
269
.github/workflows/platform-frontend-ci.yml
vendored
@@ -26,31 +26,34 @@ jobs:
|
||||
setup:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
components-changed: ${{ steps.filter.outputs.components }}
|
||||
cache-key: ${{ steps.cache-key.outputs.key }}
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Check for component changes
|
||||
uses: dorny/paths-filter@v3
|
||||
id: filter
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
filters: |
|
||||
components:
|
||||
- 'autogpt_platform/frontend/src/components/**'
|
||||
node-version: "22.18.0"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
- name: Generate cache key
|
||||
id: cache-key
|
||||
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Install dependencies to populate cache
|
||||
- name: Cache dependencies
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ steps.cache-key.outputs.key }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
lint:
|
||||
@@ -59,17 +62,24 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node
|
||||
uses: actions/setup-node@v6
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
@@ -80,27 +90,31 @@ jobs:
|
||||
chromatic:
|
||||
runs-on: ubuntu-latest
|
||||
needs: setup
|
||||
# Disabled: to re-enable, remove 'false &&' from the condition below
|
||||
if: >-
|
||||
false
|
||||
&& (github.ref == 'refs/heads/dev' || github.base_ref == 'dev')
|
||||
&& needs.setup.outputs.components-changed == 'true'
|
||||
# Only run on dev branch pushes or PRs targeting dev
|
||||
if: github.ref == 'refs/heads/dev' || github.base_ref == 'dev'
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node
|
||||
uses: actions/setup-node@v6
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
@@ -115,20 +129,30 @@ jobs:
|
||||
exitOnceUploaded: true
|
||||
|
||||
e2e_test:
|
||||
name: end-to-end tests
|
||||
runs-on: big-boi
|
||||
needs: setup
|
||||
strategy:
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
- name: Set up Platform - Copy default supabase .env
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Copy default supabase .env
|
||||
run: |
|
||||
cp ../.env.default ../.env
|
||||
|
||||
- name: Set up Platform - Copy backend .env and set OpenAI API key
|
||||
- name: Copy backend .env and set OpenAI API key
|
||||
run: |
|
||||
cp ../backend/.env.default ../backend/.env
|
||||
echo "OPENAI_INTERNAL_API_KEY=${{ secrets.OPENAI_API_KEY }}" >> ../backend/.env
|
||||
@@ -136,125 +160,77 @@ jobs:
|
||||
# Used by E2E test data script to generate embeddings for approved store agents
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
|
||||
- name: Set up Platform - Set up Docker Buildx
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Cache Docker layers
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
driver: docker-container
|
||||
driver-opts: network=host
|
||||
path: /tmp/.buildx-cache
|
||||
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-buildx-frontend-test-
|
||||
|
||||
- name: Set up Platform - Expose GHA cache to docker buildx CLI
|
||||
uses: crazy-max/ghaction-github-runtime@v3
|
||||
|
||||
- name: Set up Platform - Build Docker images (with cache)
|
||||
working-directory: autogpt_platform
|
||||
- name: Run docker compose
|
||||
run: |
|
||||
pip install pyyaml
|
||||
|
||||
# Resolve extends and generate a flat compose file that bake can understand
|
||||
docker compose -f docker-compose.yml config > docker-compose.resolved.yml
|
||||
|
||||
# Add cache configuration to the resolved compose file
|
||||
python ../.github/workflows/scripts/docker-ci-fix-compose-build-cache.py \
|
||||
--source docker-compose.resolved.yml \
|
||||
--cache-from "type=gha" \
|
||||
--cache-to "type=gha,mode=max" \
|
||||
--backend-hash "${{ hashFiles('autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/poetry.lock', 'autogpt_platform/backend/backend') }}" \
|
||||
--frontend-hash "${{ hashFiles('autogpt_platform/frontend/Dockerfile', 'autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/src') }}" \
|
||||
--git-ref "${{ github.ref }}"
|
||||
|
||||
# Build with bake using the resolved compose file (now includes cache config)
|
||||
docker buildx bake --allow=fs.read=.. -f docker-compose.resolved.yml --load
|
||||
NEXT_PUBLIC_PW_TEST=true docker compose -f ../docker-compose.yml up -d
|
||||
env:
|
||||
NEXT_PUBLIC_PW_TEST: true
|
||||
DOCKER_BUILDKIT: 1
|
||||
BUILDX_CACHE_FROM: type=local,src=/tmp/.buildx-cache
|
||||
BUILDX_CACHE_TO: type=local,dest=/tmp/.buildx-cache-new,mode=max
|
||||
|
||||
- name: Set up tests - Cache E2E test data
|
||||
id: e2e-data-cache
|
||||
uses: actions/cache@v5
|
||||
with:
|
||||
path: /tmp/e2e_test_data.sql
|
||||
key: e2e-test-data-${{ hashFiles('autogpt_platform/backend/test/e2e_test_data.py', 'autogpt_platform/backend/migrations/**', '.github/workflows/platform-frontend-ci.yml') }}
|
||||
|
||||
- name: Set up Platform - Start Supabase DB + Auth
|
||||
- name: Move cache
|
||||
run: |
|
||||
docker compose -f ../docker-compose.resolved.yml up -d db auth --no-build
|
||||
echo "Waiting for database to be ready..."
|
||||
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done'
|
||||
echo "Waiting for auth service to be ready..."
|
||||
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -c "SELECT 1 FROM auth.users LIMIT 1" 2>/dev/null; do sleep 2; done' || echo "Auth schema check timeout, continuing..."
|
||||
rm -rf /tmp/.buildx-cache
|
||||
if [ -d "/tmp/.buildx-cache-new" ]; then
|
||||
mv /tmp/.buildx-cache-new /tmp/.buildx-cache
|
||||
fi
|
||||
|
||||
- name: Set up Platform - Run migrations
|
||||
- name: Wait for services to be ready
|
||||
run: |
|
||||
echo "Running migrations..."
|
||||
docker compose -f ../docker-compose.resolved.yml run --rm migrate
|
||||
echo "✅ Migrations completed"
|
||||
env:
|
||||
NEXT_PUBLIC_PW_TEST: true
|
||||
|
||||
- name: Set up tests - Load cached E2E test data
|
||||
if: steps.e2e-data-cache.outputs.cache-hit == 'true'
|
||||
run: |
|
||||
echo "✅ Found cached E2E test data, restoring..."
|
||||
{
|
||||
echo "SET session_replication_role = 'replica';"
|
||||
cat /tmp/e2e_test_data.sql
|
||||
echo "SET session_replication_role = 'origin';"
|
||||
} | docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -b
|
||||
# Refresh materialized views after restore
|
||||
docker compose -f ../docker-compose.resolved.yml exec -T db \
|
||||
psql -U postgres -d postgres -b -c "SET search_path TO platform; SELECT refresh_store_materialized_views();" || true
|
||||
|
||||
echo "✅ E2E test data restored from cache"
|
||||
|
||||
- name: Set up Platform - Start (all other services)
|
||||
run: |
|
||||
docker compose -f ../docker-compose.resolved.yml up -d --no-build
|
||||
echo "Waiting for rest_server to be ready..."
|
||||
timeout 60 sh -c 'until curl -f http://localhost:8006/health 2>/dev/null; do sleep 2; done' || echo "Rest server health check timeout, continuing..."
|
||||
env:
|
||||
NEXT_PUBLIC_PW_TEST: true
|
||||
echo "Waiting for database to be ready..."
|
||||
timeout 60 sh -c 'until docker compose -f ../docker-compose.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done' || echo "Database ready check timeout, continuing..."
|
||||
|
||||
- name: Set up tests - Create E2E test data
|
||||
if: steps.e2e-data-cache.outputs.cache-hit != 'true'
|
||||
- name: Create E2E test data
|
||||
run: |
|
||||
echo "Creating E2E test data..."
|
||||
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.resolved.yml ps -q rest_server):/tmp/e2e_test_data.py
|
||||
docker compose -f ../docker-compose.resolved.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
|
||||
echo "❌ E2E test data creation failed!"
|
||||
docker compose -f ../docker-compose.resolved.yml logs --tail=50 rest_server
|
||||
exit 1
|
||||
}
|
||||
# First try to run the script from inside the container
|
||||
if docker compose -f ../docker-compose.yml exec -T rest_server test -f /app/autogpt_platform/backend/test/e2e_test_data.py; then
|
||||
echo "✅ Found e2e_test_data.py in container, running it..."
|
||||
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python backend/test/e2e_test_data.py" || {
|
||||
echo "❌ E2E test data creation failed!"
|
||||
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
|
||||
exit 1
|
||||
}
|
||||
else
|
||||
echo "⚠️ e2e_test_data.py not found in container, copying and running..."
|
||||
# Copy the script into the container and run it
|
||||
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.yml ps -q rest_server):/tmp/e2e_test_data.py || {
|
||||
echo "❌ Failed to copy script to container"
|
||||
exit 1
|
||||
}
|
||||
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
|
||||
echo "❌ E2E test data creation failed!"
|
||||
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
|
||||
exit 1
|
||||
}
|
||||
fi
|
||||
|
||||
# Dump auth.users + platform schema for cache (two separate dumps)
|
||||
echo "Dumping database for cache..."
|
||||
{
|
||||
docker compose -f ../docker-compose.resolved.yml exec -T db \
|
||||
pg_dump -U postgres --data-only --column-inserts \
|
||||
--table='auth.users' postgres
|
||||
docker compose -f ../docker-compose.resolved.yml exec -T db \
|
||||
pg_dump -U postgres --data-only --column-inserts \
|
||||
--schema=platform \
|
||||
--exclude-table='platform._prisma_migrations' \
|
||||
--exclude-table='platform.apscheduler_jobs' \
|
||||
--exclude-table='platform.apscheduler_jobs_batched_notifications' \
|
||||
postgres
|
||||
} > /tmp/e2e_test_data.sql
|
||||
|
||||
echo "✅ Database dump created for caching ($(wc -l < /tmp/e2e_test_data.sql) lines)"
|
||||
|
||||
- name: Set up tests - Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up tests - Set up Node
|
||||
uses: actions/setup-node@v6
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Set up tests - Install dependencies
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
- name: Set up tests - Install browser 'chromium'
|
||||
- name: Install Browser 'chromium'
|
||||
run: pnpm playwright install --with-deps chromium
|
||||
|
||||
- name: Run Playwright tests
|
||||
@@ -281,7 +257,7 @@ jobs:
|
||||
|
||||
- name: Print Final Docker Compose logs
|
||||
if: always()
|
||||
run: docker compose -f ../docker-compose.resolved.yml logs
|
||||
run: docker compose -f ../docker-compose.yml logs
|
||||
|
||||
integration_test:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -289,19 +265,26 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node
|
||||
uses: actions/setup-node@v6
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
16
.github/workflows/platform-fullstack-ci.yml
vendored
16
.github/workflows/platform-fullstack-ci.yml
vendored
@@ -29,10 +29,10 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
@@ -44,7 +44,7 @@ jobs:
|
||||
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Cache dependencies
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ steps.cache-key.outputs.key }}
|
||||
@@ -56,19 +56,19 @@ jobs:
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
types:
|
||||
runs-on: big-boi
|
||||
runs-on: ubuntu-latest
|
||||
needs: setup
|
||||
strategy:
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
@@ -85,10 +85,10 @@ jobs:
|
||||
|
||||
- name: Run docker compose
|
||||
run: |
|
||||
docker compose -f ../docker-compose.yml --profile local up -d deps_backend
|
||||
docker compose -f ../docker-compose.yml --profile local --profile deps_backend up -d
|
||||
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
|
||||
39
.github/workflows/pr-overlap-check.yml
vendored
39
.github/workflows/pr-overlap-check.yml
vendored
@@ -1,39 +0,0 @@
|
||||
name: PR Overlap Detection
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
branches:
|
||||
- dev
|
||||
- master
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
|
||||
jobs:
|
||||
check-overlaps:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0 # Need full history for merge testing
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Configure git
|
||||
run: |
|
||||
git config user.email "github-actions[bot]@users.noreply.github.com"
|
||||
git config user.name "github-actions[bot]"
|
||||
|
||||
- name: Run overlap detection
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
# Always succeed - this check informs contributors, it shouldn't block merging
|
||||
continue-on-error: true
|
||||
run: |
|
||||
python .github/scripts/detect_overlaps.py ${{ github.event.pull_request.number }}
|
||||
2
.github/workflows/repo-workflow-checker.yml
vendored
2
.github/workflows/repo-workflow-checker.yml
vendored
@@ -11,7 +11,7 @@ jobs:
|
||||
steps:
|
||||
# - name: Wait some time for all actions to start
|
||||
# run: sleep 30
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v4
|
||||
# with:
|
||||
# fetch-depth: 0
|
||||
- name: Set up Python
|
||||
|
||||
@@ -1,195 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Add cache configuration to a resolved docker-compose file for all services
|
||||
that have a build key, and ensure image names match what docker compose expects.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
DEFAULT_BRANCH = "dev"
|
||||
CACHE_BUILDS_FOR_COMPONENTS = ["backend", "frontend"]
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Add cache config to a resolved compose file"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--source",
|
||||
required=True,
|
||||
help="Source compose file to read (should be output of `docker compose config`)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cache-from",
|
||||
default="type=gha",
|
||||
help="Cache source configuration",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cache-to",
|
||||
default="type=gha,mode=max",
|
||||
help="Cache destination configuration",
|
||||
)
|
||||
for component in CACHE_BUILDS_FOR_COMPONENTS:
|
||||
parser.add_argument(
|
||||
f"--{component}-hash",
|
||||
default="",
|
||||
help=f"Hash for {component} cache scope (e.g., from hashFiles())",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--git-ref",
|
||||
default="",
|
||||
help="Git ref for branch-based cache scope (e.g., refs/heads/master)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Normalize git ref to a safe scope name (e.g., refs/heads/master -> master)
|
||||
git_ref_scope = ""
|
||||
if args.git_ref:
|
||||
git_ref_scope = args.git_ref.replace("refs/heads/", "").replace("/", "-")
|
||||
|
||||
with open(args.source, "r") as f:
|
||||
compose = yaml.safe_load(f)
|
||||
|
||||
# Get project name from compose file or default
|
||||
project_name = compose.get("name", "autogpt_platform")
|
||||
|
||||
def get_image_name(dockerfile: str, target: str) -> str:
|
||||
"""Generate image name based on Dockerfile folder and build target."""
|
||||
dockerfile_parts = dockerfile.replace("\\", "/").split("/")
|
||||
if len(dockerfile_parts) >= 2:
|
||||
folder_name = dockerfile_parts[-2] # e.g., "backend" or "frontend"
|
||||
else:
|
||||
folder_name = "app"
|
||||
return f"{project_name}-{folder_name}:{target}"
|
||||
|
||||
def get_build_key(dockerfile: str, target: str) -> str:
|
||||
"""Generate a unique key for a Dockerfile+target combination."""
|
||||
return f"{dockerfile}:{target}"
|
||||
|
||||
def get_component(dockerfile: str) -> str | None:
|
||||
"""Get component name (frontend/backend) from dockerfile path."""
|
||||
for component in CACHE_BUILDS_FOR_COMPONENTS:
|
||||
if component in dockerfile:
|
||||
return component
|
||||
return None
|
||||
|
||||
# First pass: collect all services with build configs and identify duplicates
|
||||
# Track which (dockerfile, target) combinations we've seen
|
||||
build_key_to_first_service: dict[str, str] = {}
|
||||
services_to_build: list[str] = []
|
||||
services_to_dedupe: list[str] = []
|
||||
|
||||
for service_name, service_config in compose.get("services", {}).items():
|
||||
if "build" not in service_config:
|
||||
continue
|
||||
|
||||
build_config = service_config["build"]
|
||||
dockerfile = build_config.get("dockerfile", "Dockerfile")
|
||||
target = build_config.get("target", "default")
|
||||
build_key = get_build_key(dockerfile, target)
|
||||
|
||||
if build_key not in build_key_to_first_service:
|
||||
# First service with this build config - it will do the actual build
|
||||
build_key_to_first_service[build_key] = service_name
|
||||
services_to_build.append(service_name)
|
||||
else:
|
||||
# Duplicate - will just use the image from the first service
|
||||
services_to_dedupe.append(service_name)
|
||||
|
||||
# Second pass: configure builds and deduplicate
|
||||
modified_services = []
|
||||
for service_name, service_config in compose.get("services", {}).items():
|
||||
if "build" not in service_config:
|
||||
continue
|
||||
|
||||
build_config = service_config["build"]
|
||||
dockerfile = build_config.get("dockerfile", "Dockerfile")
|
||||
target = build_config.get("target", "latest")
|
||||
image_name = get_image_name(dockerfile, target)
|
||||
|
||||
# Set image name for all services (needed for both builders and deduped)
|
||||
service_config["image"] = image_name
|
||||
|
||||
if service_name in services_to_dedupe:
|
||||
# Remove build config - this service will use the pre-built image
|
||||
del service_config["build"]
|
||||
continue
|
||||
|
||||
# This service will do the actual build - add cache config
|
||||
cache_from_list = []
|
||||
cache_to_list = []
|
||||
|
||||
component = get_component(dockerfile)
|
||||
if not component:
|
||||
# Skip services that don't clearly match frontend/backend
|
||||
continue
|
||||
|
||||
# Get the hash for this component
|
||||
component_hash = getattr(args, f"{component}_hash")
|
||||
|
||||
# Scope format: platform-{component}-{target}-{hash|ref}
|
||||
# Example: platform-backend-server-abc123
|
||||
|
||||
if "type=gha" in args.cache_from:
|
||||
# 1. Primary: exact hash match (most specific)
|
||||
if component_hash:
|
||||
hash_scope = f"platform-{component}-{target}-{component_hash}"
|
||||
cache_from_list.append(f"{args.cache_from},scope={hash_scope}")
|
||||
|
||||
# 2. Fallback: branch-based cache
|
||||
if git_ref_scope:
|
||||
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
|
||||
cache_from_list.append(f"{args.cache_from},scope={ref_scope}")
|
||||
|
||||
# 3. Fallback: dev branch cache (for PRs/feature branches)
|
||||
if git_ref_scope and git_ref_scope != DEFAULT_BRANCH:
|
||||
master_scope = f"platform-{component}-{target}-{DEFAULT_BRANCH}"
|
||||
cache_from_list.append(f"{args.cache_from},scope={master_scope}")
|
||||
|
||||
if "type=gha" in args.cache_to:
|
||||
# Write to both hash-based and branch-based scopes
|
||||
if component_hash:
|
||||
hash_scope = f"platform-{component}-{target}-{component_hash}"
|
||||
cache_to_list.append(f"{args.cache_to},scope={hash_scope}")
|
||||
|
||||
if git_ref_scope:
|
||||
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
|
||||
cache_to_list.append(f"{args.cache_to},scope={ref_scope}")
|
||||
|
||||
# Ensure we have at least one cache source/target
|
||||
if not cache_from_list:
|
||||
cache_from_list.append(args.cache_from)
|
||||
if not cache_to_list:
|
||||
cache_to_list.append(args.cache_to)
|
||||
|
||||
build_config["cache_from"] = cache_from_list
|
||||
build_config["cache_to"] = cache_to_list
|
||||
modified_services.append(service_name)
|
||||
|
||||
# Write back to the same file
|
||||
with open(args.source, "w") as f:
|
||||
yaml.dump(compose, f, default_flow_style=False, sort_keys=False)
|
||||
|
||||
print(f"Added cache config to {len(modified_services)} services in {args.source}:")
|
||||
for svc in modified_services:
|
||||
svc_config = compose["services"][svc]
|
||||
build_cfg = svc_config.get("build", {})
|
||||
cache_from_list = build_cfg.get("cache_from", ["none"])
|
||||
cache_to_list = build_cfg.get("cache_to", ["none"])
|
||||
print(f" - {svc}")
|
||||
print(f" image: {svc_config.get('image', 'N/A')}")
|
||||
print(f" cache_from: {cache_from_list}")
|
||||
print(f" cache_to: {cache_to_list}")
|
||||
if services_to_dedupe:
|
||||
print(
|
||||
f"Deduplicated {len(services_to_dedupe)} services (will use pre-built images):"
|
||||
)
|
||||
for svc in services_to_dedupe:
|
||||
print(f" - {svc} -> {compose['services'][svc].get('image', 'N/A')}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -178,6 +178,4 @@ autogpt_platform/backend/settings.py
|
||||
*.ign.*
|
||||
.test-contents
|
||||
.claude/settings.local.json
|
||||
CLAUDE.local.md
|
||||
/autogpt_platform/backend/logs
|
||||
.next
|
||||
24
AGENTS.md
24
AGENTS.md
@@ -16,6 +16,7 @@ See `docs/content/platform/getting-started.md` for setup instructions.
|
||||
- Format Python code with `poetry run format`.
|
||||
- Format frontend code using `pnpm format`.
|
||||
|
||||
|
||||
## Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
@@ -32,17 +33,14 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
|
||||
- Do not type hook returns, let Typescript infer as much as possible
|
||||
- Never type with `any`, if not types available use `unknown`
|
||||
|
||||
## Testing
|
||||
|
||||
@@ -51,8 +49,22 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
Always run the relevant linters and tests before committing.
|
||||
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
|
||||
Types: - feat - fix - refactor - ci - dx (developer experience)
|
||||
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
|
||||
Types:
|
||||
- feat
|
||||
- fix
|
||||
- refactor
|
||||
- ci
|
||||
- dx (developer experience)
|
||||
Scopes:
|
||||
- platform
|
||||
- platform/library
|
||||
- platform/marketplace
|
||||
- backend
|
||||
- backend/executor
|
||||
- frontend
|
||||
- frontend/library
|
||||
- frontend/marketplace
|
||||
- blocks
|
||||
|
||||
## Pull requests
|
||||
|
||||
|
||||
@@ -54,7 +54,7 @@ Before proceeding with the installation, ensure your system meets the following
|
||||
### Updated Setup Instructions:
|
||||
We've moved to a fully maintained and regularly updated documentation site.
|
||||
|
||||
👉 [Follow the official self-hosting guide here](https://agpt.co/docs/platform/getting-started/getting-started)
|
||||
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
|
||||
|
||||
|
||||
This tutorial assumes you have Docker, VSCode, git and npm installed.
|
||||
|
||||
@@ -6,30 +6,152 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
|
||||
|
||||
AutoGPT Platform is a monorepo containing:
|
||||
|
||||
- **Backend** (`backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`frontend`): Next.js React application
|
||||
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
|
||||
- **Backend** (`/backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`/frontend`): Next.js React application
|
||||
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
|
||||
|
||||
## Component Documentation
|
||||
## Essential Commands
|
||||
|
||||
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
|
||||
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
|
||||
### Backend Development
|
||||
|
||||
## Key Concepts
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd backend && poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend server
|
||||
poetry run serve
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in TESTING.md
|
||||
|
||||
#### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
### Frontend Development
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd frontend && pnpm i
|
||||
|
||||
# Generate API client from OpenAPI spec
|
||||
pnpm generate:api
|
||||
|
||||
# Start development server
|
||||
pnpm dev
|
||||
|
||||
# Run E2E tests
|
||||
pnpm test
|
||||
|
||||
# Run Storybook for component development
|
||||
pnpm storybook
|
||||
|
||||
# Build production
|
||||
pnpm build
|
||||
|
||||
# Format and lint
|
||||
pnpm format
|
||||
|
||||
# Type checking
|
||||
pnpm types
|
||||
```
|
||||
|
||||
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
|
||||
|
||||
**Key Frontend Conventions:**
|
||||
|
||||
- Separate render logic from data/behavior in components
|
||||
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Use function declarations (not arrow functions) for components/handlers
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Only use Phosphor Icons
|
||||
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
### Backend Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
### Frontend Architecture
|
||||
|
||||
- **Framework**: Next.js 15 App Router (client-first approach)
|
||||
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
|
||||
- **State Management**: React Query for server state, co-located UI state in components/hooks
|
||||
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
|
||||
- **Workflow Builder**: Visual graph editor using @xyflow/react
|
||||
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
|
||||
- **Icons**: Phosphor Icons only
|
||||
- **Feature Flags**: LaunchDarkly integration
|
||||
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
|
||||
- **Testing**: Playwright for E2E, Storybook for component development
|
||||
|
||||
### Key Concepts
|
||||
|
||||
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
|
||||
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
|
||||
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
|
||||
3. **Integrations**: OAuth and API connections stored per user
|
||||
4. **Store**: Marketplace for sharing agent templates
|
||||
5. **Virus Scanning**: ClamAV integration for file upload security
|
||||
|
||||
### Testing Approach
|
||||
|
||||
- Backend uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
- Frontend uses Playwright for E2E tests
|
||||
- Component testing via Storybook
|
||||
|
||||
### Database Schema
|
||||
|
||||
Key models (defined in `/backend/schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
### Environment Configuration
|
||||
|
||||
#### Configuration Files
|
||||
|
||||
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
|
||||
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
|
||||
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
|
||||
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
|
||||
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
|
||||
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
|
||||
|
||||
#### Docker Environment Loading Order
|
||||
|
||||
@@ -45,17 +167,83 @@ AutoGPT Platform is a monorepo containing:
|
||||
- Backend/Frontend services use YAML anchors for consistent configuration
|
||||
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
|
||||
|
||||
### Branching Strategy
|
||||
### Common Development Tasks
|
||||
|
||||
- **`dev`** is the main development branch. All PRs should target `dev`.
|
||||
- **`master`** is the production branch. Only used for production releases.
|
||||
**Adding a new block:**
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `/backend/backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
**Modifying the API:**
|
||||
|
||||
1. Update route in `/backend/backend/server/routers/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
### Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
|
||||
- Add `usePageName.ts` hook for logic
|
||||
- Put sub-components in local `components/` folder
|
||||
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Never use `src/components/__legacy__/*`
|
||||
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Regenerate with `pnpm generate:api`
|
||||
- Pattern: `use{Method}{Version}{OperationName}`
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
|
||||
### Security Implementation
|
||||
|
||||
**Cache Protection Middleware:**
|
||||
|
||||
- Located in `/backend/backend/server/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
|
||||
### Creating Pull Requests
|
||||
|
||||
- Create the PR against the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
|
||||
- Use conventional commit messages (see below)
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
|
||||
- Create the PR aginst the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
|
||||
- Use conventional commit messages (see below)/
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
|
||||
- Run the github pre-commit hooks to ensure code quality.
|
||||
|
||||
### Reviewing/Revising Pull Requests
|
||||
|
||||
1857
autogpt_platform/autogpt_libs/poetry.lock
generated
1857
autogpt_platform/autogpt_libs/poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -9,25 +9,25 @@ packages = [{ include = "autogpt_libs" }]
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<4.0"
|
||||
colorama = "^0.4.6"
|
||||
cryptography = "^46.0"
|
||||
cryptography = "^45.0"
|
||||
expiringdict = "^1.2.2"
|
||||
fastapi = "^0.128.7"
|
||||
google-cloud-logging = "^3.13.0"
|
||||
launchdarkly-server-sdk = "^9.15.0"
|
||||
pydantic = "^2.12.5"
|
||||
pydantic-settings = "^2.12.0"
|
||||
pyjwt = { version = "^2.11.0", extras = ["crypto"] }
|
||||
fastapi = "^0.116.1"
|
||||
google-cloud-logging = "^3.12.1"
|
||||
launchdarkly-server-sdk = "^9.12.0"
|
||||
pydantic = "^2.11.7"
|
||||
pydantic-settings = "^2.10.1"
|
||||
pyjwt = { version = "^2.10.1", extras = ["crypto"] }
|
||||
redis = "^6.2.0"
|
||||
supabase = "^2.28.0"
|
||||
uvicorn = "^0.40.0"
|
||||
supabase = "^2.16.0"
|
||||
uvicorn = "^0.35.0"
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pyright = "^1.1.408"
|
||||
pyright = "^1.1.404"
|
||||
pytest = "^8.4.1"
|
||||
pytest-asyncio = "^1.3.0"
|
||||
pytest-mock = "^3.15.1"
|
||||
pytest-cov = "^7.0.0"
|
||||
ruff = "^0.15.0"
|
||||
pytest-asyncio = "^1.1.0"
|
||||
pytest-mock = "^3.14.1"
|
||||
pytest-cov = "^6.2.1"
|
||||
ruff = "^0.12.11"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
|
||||
@@ -104,12 +104,6 @@ TWITTER_CLIENT_SECRET=
|
||||
# Make a new workspace for your OAuth APP -- trust me
|
||||
# https://linear.app/settings/api/applications/new
|
||||
# Callback URL: http://localhost:3000/auth/integrations/oauth_callback
|
||||
LINEAR_API_KEY=
|
||||
# Linear project and team IDs for the feature request tracker.
|
||||
# Find these in your Linear workspace URL: linear.app/<workspace>/project/<project-id>
|
||||
# and in team settings. Used by the chat copilot to file and search feature requests.
|
||||
LINEAR_FEATURE_REQUEST_PROJECT_ID=
|
||||
LINEAR_FEATURE_REQUEST_TEAM_ID=
|
||||
LINEAR_CLIENT_ID=
|
||||
LINEAR_CLIENT_SECRET=
|
||||
|
||||
@@ -158,7 +152,6 @@ REPLICATE_API_KEY=
|
||||
REVID_API_KEY=
|
||||
SCREENSHOTONE_API_KEY=
|
||||
UNREAL_SPEECH_API_KEY=
|
||||
ELEVENLABS_API_KEY=
|
||||
|
||||
# Data & Search Services
|
||||
E2B_API_KEY=
|
||||
@@ -185,10 +178,5 @@ AYRSHARE_JWT_KEY=
|
||||
SMARTLEAD_API_KEY=
|
||||
ZEROBOUNCE_API_KEY=
|
||||
|
||||
# PostHog Analytics
|
||||
# Get API key from https://posthog.com - Project Settings > Project API Key
|
||||
POSTHOG_API_KEY=
|
||||
POSTHOG_HOST=https://eu.i.posthog.com
|
||||
|
||||
# Other Services
|
||||
AUTOMOD_API_KEY=
|
||||
|
||||
3
autogpt_platform/backend/.gitignore
vendored
3
autogpt_platform/backend/.gitignore
vendored
@@ -19,6 +19,3 @@ load-tests/*.json
|
||||
load-tests/*.log
|
||||
load-tests/node_modules/*
|
||||
migrations/*/rollback*.sql
|
||||
|
||||
# Workspace files
|
||||
workspaces/
|
||||
|
||||
@@ -1,170 +0,0 @@
|
||||
# CLAUDE.md - Backend
|
||||
|
||||
This file provides guidance to Claude Code when working with the backend.
|
||||
|
||||
## Essential Commands
|
||||
|
||||
To run something with Python package dependencies you MUST use `poetry run ...`.
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend as a whole
|
||||
poetry run app
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in @TESTING.md
|
||||
|
||||
### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
## Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
## Testing Approach
|
||||
|
||||
- Uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
|
||||
## Database Schema
|
||||
|
||||
Key models (defined in `schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
## Environment Configuration
|
||||
|
||||
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
|
||||
|
||||
## Common Development Tasks
|
||||
|
||||
### Adding a new block
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
#### Handling files in blocks with `store_media_file()`
|
||||
|
||||
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
|
||||
|
||||
| Format | Use When | Returns |
|
||||
|--------|----------|---------|
|
||||
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
|
||||
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
|
||||
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
|
||||
|
||||
**Examples:**
|
||||
|
||||
```python
|
||||
# INPUT: Need to process file locally with ffmpeg
|
||||
local_path = await store_media_file(
|
||||
file=input_data.video,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
# local_path = "video.mp4" - use with Path/ffmpeg/etc
|
||||
|
||||
# INPUT: Need to send to external API like Replicate
|
||||
image_b64 = await store_media_file(
|
||||
file=input_data.image,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api",
|
||||
)
|
||||
# image_b64 = "..." - send to API
|
||||
|
||||
# OUTPUT: Returning result from block
|
||||
result_url = await store_media_file(
|
||||
file=generated_image_url,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", result_url
|
||||
# In CoPilot: result_url = "workspace://abc123"
|
||||
# In graphs: result_url = "data:image/png;base64,..."
|
||||
```
|
||||
|
||||
**Key points:**
|
||||
|
||||
- `for_block_output` is the ONLY format that auto-adapts to execution context
|
||||
- Always use `for_block_output` for block outputs unless you have a specific reason not to
|
||||
- Never hardcode workspace checks - let `for_block_output` handle it
|
||||
|
||||
### Modifying the API
|
||||
|
||||
1. Update route in `backend/api/features/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
## Security Implementation
|
||||
|
||||
### Cache Protection Middleware
|
||||
|
||||
- Located in `backend/api/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
@@ -1,5 +1,3 @@
|
||||
# ============================ DEPENDENCY BUILDER ============================ #
|
||||
|
||||
FROM debian:13-slim AS builder
|
||||
|
||||
# Set environment variables
|
||||
@@ -53,9 +51,7 @@ COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/parti
|
||||
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
|
||||
RUN poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# ============================== BACKEND SERVER ============================== #
|
||||
|
||||
FROM debian:13-slim AS server
|
||||
FROM debian:13-slim AS server_dependencies
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
@@ -66,21 +62,14 @@ ENV POETRY_HOME=/opt/poetry \
|
||||
DEBIAN_FRONTEND=noninteractive
|
||||
ENV PATH=/opt/poetry/bin:$PATH
|
||||
|
||||
# Install Python, FFmpeg, ImageMagick, and CLI tools for agent use.
|
||||
# bubblewrap provides OS-level sandbox (whitelist-only FS + no network)
|
||||
# for the bash_exec MCP tool.
|
||||
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
# Install Python without upgrading system-managed packages
|
||||
RUN apt-get update && apt-get install -y \
|
||||
python3.13 \
|
||||
python3-pip \
|
||||
ffmpeg \
|
||||
imagemagick \
|
||||
jq \
|
||||
ripgrep \
|
||||
tree \
|
||||
bubblewrap \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Copy only necessary files from builder
|
||||
COPY --from=builder /app /app
|
||||
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
|
||||
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
|
||||
# Copy Node.js installation for Prisma
|
||||
@@ -90,54 +79,30 @@ COPY --from=builder /usr/bin/npm /usr/bin/npm
|
||||
COPY --from=builder /usr/bin/npx /usr/bin/npx
|
||||
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
|
||||
|
||||
WORKDIR /app/autogpt_platform/backend
|
||||
|
||||
# Copy only the .venv from builder (not the entire /app directory)
|
||||
# The .venv includes the generated Prisma client
|
||||
COPY --from=builder /app/autogpt_platform/backend/.venv ./.venv
|
||||
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
|
||||
|
||||
# Copy dependency files + autogpt_libs (path dependency)
|
||||
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
|
||||
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml ./
|
||||
RUN mkdir -p /app/autogpt_platform/autogpt_libs
|
||||
RUN mkdir -p /app/autogpt_platform/backend
|
||||
|
||||
# Copy backend code + docs (for Copilot docs search)
|
||||
COPY autogpt_platform/backend ./
|
||||
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
|
||||
|
||||
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
|
||||
|
||||
WORKDIR /app/autogpt_platform/backend
|
||||
|
||||
FROM server_dependencies AS migrate
|
||||
|
||||
# Migration stage only needs schema and migrations - much lighter than full backend
|
||||
COPY autogpt_platform/backend/schema.prisma /app/autogpt_platform/backend/
|
||||
COPY autogpt_platform/backend/backend/data/partial_types.py /app/autogpt_platform/backend/backend/data/partial_types.py
|
||||
COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migrations
|
||||
|
||||
FROM server_dependencies AS server
|
||||
|
||||
COPY autogpt_platform/backend /app/autogpt_platform/backend
|
||||
COPY docs /app/docs
|
||||
RUN poetry install --no-ansi --only-root
|
||||
|
||||
ENV PORT=8000
|
||||
|
||||
CMD ["poetry", "run", "rest"]
|
||||
|
||||
# =============================== DB MIGRATOR =============================== #
|
||||
|
||||
# Lightweight migrate stage - only needs Prisma CLI, not full Python environment
|
||||
FROM debian:13-slim AS migrate
|
||||
|
||||
WORKDIR /app/autogpt_platform/backend
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Install only what's needed for prisma migrate: Node.js and minimal Python for prisma-python
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
python3.13 \
|
||||
python3-pip \
|
||||
ca-certificates \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Copy Node.js from builder (needed for Prisma CLI)
|
||||
COPY --from=builder /usr/bin/node /usr/bin/node
|
||||
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
|
||||
COPY --from=builder /usr/bin/npm /usr/bin/npm
|
||||
|
||||
# Copy Prisma binaries
|
||||
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
|
||||
|
||||
# Install prisma-client-py directly (much smaller than copying full venv)
|
||||
RUN pip3 install prisma>=0.15.0 --break-system-packages
|
||||
|
||||
COPY autogpt_platform/backend/schema.prisma ./
|
||||
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
|
||||
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
|
||||
COPY autogpt_platform/backend/migrations ./migrations
|
||||
|
||||
@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
|
||||
|
||||
#### Using Global Auth Fixtures
|
||||
|
||||
Two global auth fixtures are provided by `backend/api/conftest.py`:
|
||||
Two global auth fixtures are provided by `backend/server/conftest.py`:
|
||||
|
||||
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
|
||||
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")
|
||||
|
||||
@@ -10,7 +10,7 @@ from typing_extensions import TypedDict
|
||||
|
||||
import backend.api.features.store.cache as store_cache
|
||||
import backend.api.features.store.model as store_model
|
||||
import backend.blocks
|
||||
import backend.data.block
|
||||
from backend.api.external.middleware import require_permission
|
||||
from backend.data import execution as execution_db
|
||||
from backend.data import graph as graph_db
|
||||
@@ -67,7 +67,7 @@ async def get_user_info(
|
||||
dependencies=[Security(require_permission(APIKeyPermission.READ_BLOCK))],
|
||||
)
|
||||
async def get_graph_blocks() -> Sequence[dict[Any, Any]]:
|
||||
blocks = [block() for block in backend.blocks.get_blocks().values()]
|
||||
blocks = [block() for block in backend.data.block.get_blocks().values()]
|
||||
return [b.to_dict() for b in blocks if not b.disabled]
|
||||
|
||||
|
||||
@@ -83,11 +83,9 @@ async def execute_graph_block(
|
||||
require_permission(APIKeyPermission.EXECUTE_BLOCK)
|
||||
),
|
||||
) -> CompletedBlockOutput:
|
||||
obj = backend.blocks.get_block(block_id)
|
||||
obj = backend.data.block.get_block(block_id)
|
||||
if not obj:
|
||||
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
|
||||
if obj.disabled:
|
||||
raise HTTPException(status_code=403, detail=f"Block #{block_id} is disabled.")
|
||||
|
||||
output = defaultdict(list)
|
||||
async for name, data in obj.execute(data):
|
||||
|
||||
@@ -10,15 +10,10 @@ import backend.api.features.library.db as library_db
|
||||
import backend.api.features.library.model as library_model
|
||||
import backend.api.features.store.db as store_db
|
||||
import backend.api.features.store.model as store_model
|
||||
import backend.data.block
|
||||
from backend.blocks import load_all_blocks
|
||||
from backend.blocks._base import (
|
||||
AnyBlockSchema,
|
||||
BlockCategory,
|
||||
BlockInfo,
|
||||
BlockSchema,
|
||||
BlockType,
|
||||
)
|
||||
from backend.blocks.llm import LlmModel
|
||||
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
|
||||
from backend.data.db import query_raw_with_schema
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.cache import cached
|
||||
@@ -27,7 +22,7 @@ from backend.util.models import Pagination
|
||||
from .model import (
|
||||
BlockCategoryResponse,
|
||||
BlockResponse,
|
||||
BlockTypeFilter,
|
||||
BlockType,
|
||||
CountResponse,
|
||||
FilterType,
|
||||
Provider,
|
||||
@@ -93,7 +88,7 @@ def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse
|
||||
def get_blocks(
|
||||
*,
|
||||
category: str | None = None,
|
||||
type: BlockTypeFilter | None = None,
|
||||
type: BlockType | None = None,
|
||||
provider: ProviderName | None = None,
|
||||
page: int = 1,
|
||||
page_size: int = 50,
|
||||
@@ -674,9 +669,9 @@ async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
|
||||
for block_type in load_all_blocks().values():
|
||||
block: AnyBlockSchema = block_type()
|
||||
if block.disabled or block.block_type in (
|
||||
BlockType.INPUT,
|
||||
BlockType.OUTPUT,
|
||||
BlockType.AGENT,
|
||||
backend.data.block.BlockType.INPUT,
|
||||
backend.data.block.BlockType.OUTPUT,
|
||||
backend.data.block.BlockType.AGENT,
|
||||
):
|
||||
continue
|
||||
# Find the execution count for this block
|
||||
|
||||
@@ -4,7 +4,7 @@ from pydantic import BaseModel
|
||||
|
||||
import backend.api.features.library.model as library_model
|
||||
import backend.api.features.store.model as store_model
|
||||
from backend.blocks._base import BlockInfo
|
||||
from backend.data.block import BlockInfo
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.models import Pagination
|
||||
|
||||
@@ -15,7 +15,7 @@ FilterType = Literal[
|
||||
"my_agents",
|
||||
]
|
||||
|
||||
BlockTypeFilter = Literal["all", "input", "action", "output"]
|
||||
BlockType = Literal["all", "input", "action", "output"]
|
||||
|
||||
|
||||
class SearchEntry(BaseModel):
|
||||
|
||||
@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
|
||||
)
|
||||
|
||||
|
||||
# Taken from backend/api/features/store/db.py
|
||||
# Taken from backend/server/v2/store/db.py
|
||||
def sanitize_query(query: str | None) -> str | None:
|
||||
if query is None:
|
||||
return query
|
||||
@@ -88,7 +88,7 @@ async def get_block_categories(
|
||||
)
|
||||
async def get_blocks(
|
||||
category: Annotated[str | None, fastapi.Query()] = None,
|
||||
type: Annotated[builder_model.BlockTypeFilter | None, fastapi.Query()] = None,
|
||||
type: Annotated[builder_model.BlockType | None, fastapi.Query()] = None,
|
||||
provider: Annotated[ProviderName | None, fastapi.Query()] = None,
|
||||
page: Annotated[int, fastapi.Query()] = 1,
|
||||
page_size: Annotated[int, fastapi.Query()] = 50,
|
||||
|
||||
@@ -1,368 +0,0 @@
|
||||
"""Redis Streams consumer for operation completion messages.
|
||||
|
||||
This module provides a consumer (ChatCompletionConsumer) that listens for
|
||||
completion notifications (OperationCompleteMessage) from external services
|
||||
(like Agent Generator) and triggers the appropriate stream registry and
|
||||
chat service updates via process_operation_success/process_operation_failure.
|
||||
|
||||
Why Redis Streams instead of RabbitMQ?
|
||||
--------------------------------------
|
||||
While the project typically uses RabbitMQ for async task queues (e.g., execution
|
||||
queue), Redis Streams was chosen for chat completion notifications because:
|
||||
|
||||
1. **Unified Infrastructure**: The SSE reconnection feature already uses Redis
|
||||
Streams (via stream_registry) for message persistence and replay. Using Redis
|
||||
Streams for completion notifications keeps all chat streaming infrastructure
|
||||
in one system, simplifying operations and reducing cross-system coordination.
|
||||
|
||||
2. **Message Replay**: Redis Streams support XREAD with arbitrary message IDs,
|
||||
allowing consumers to replay missed messages after reconnection. This aligns
|
||||
with the SSE reconnection pattern where clients can resume from last_message_id.
|
||||
|
||||
3. **Consumer Groups with XAUTOCLAIM**: Redis consumer groups provide automatic
|
||||
load balancing across pods with explicit message claiming (XAUTOCLAIM) for
|
||||
recovering from dead consumers - ideal for the completion callback pattern.
|
||||
|
||||
4. **Lower Latency**: For real-time SSE updates, Redis (already in-memory for
|
||||
stream_registry) provides lower latency than an additional RabbitMQ hop.
|
||||
|
||||
5. **Atomicity with Task State**: Completion processing often needs to update
|
||||
task metadata stored in Redis. Keeping both in Redis enables simpler
|
||||
transactional semantics without distributed coordination.
|
||||
|
||||
The consumer uses Redis Streams with consumer groups for reliable message
|
||||
processing across multiple platform pods, with XAUTOCLAIM for reclaiming
|
||||
stale pending messages from dead consumers.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
import orjson
|
||||
from prisma import Prisma
|
||||
from pydantic import BaseModel
|
||||
from redis.exceptions import ResponseError
|
||||
|
||||
from backend.data.redis_client import get_redis_async
|
||||
|
||||
from . import stream_registry
|
||||
from .completion_handler import process_operation_failure, process_operation_success
|
||||
from .config import ChatConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
config = ChatConfig()
|
||||
|
||||
|
||||
class OperationCompleteMessage(BaseModel):
|
||||
"""Message format for operation completion notifications."""
|
||||
|
||||
operation_id: str
|
||||
task_id: str
|
||||
success: bool
|
||||
result: dict | str | None = None
|
||||
error: str | None = None
|
||||
|
||||
|
||||
class ChatCompletionConsumer:
|
||||
"""Consumer for chat operation completion messages from Redis Streams.
|
||||
|
||||
This consumer initializes its own Prisma client in start() to ensure
|
||||
database operations work correctly within this async context.
|
||||
|
||||
Uses Redis consumer groups to allow multiple platform pods to consume
|
||||
messages reliably with automatic redelivery on failure.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self._consumer_task: asyncio.Task | None = None
|
||||
self._running = False
|
||||
self._prisma: Prisma | None = None
|
||||
self._consumer_name = f"consumer-{uuid.uuid4().hex[:8]}"
|
||||
|
||||
async def start(self) -> None:
|
||||
"""Start the completion consumer."""
|
||||
if self._running:
|
||||
logger.warning("Completion consumer already running")
|
||||
return
|
||||
|
||||
# Create consumer group if it doesn't exist
|
||||
try:
|
||||
redis = await get_redis_async()
|
||||
await redis.xgroup_create(
|
||||
config.stream_completion_name,
|
||||
config.stream_consumer_group,
|
||||
id="0",
|
||||
mkstream=True,
|
||||
)
|
||||
logger.info(
|
||||
f"Created consumer group '{config.stream_consumer_group}' "
|
||||
f"on stream '{config.stream_completion_name}'"
|
||||
)
|
||||
except ResponseError as e:
|
||||
if "BUSYGROUP" in str(e):
|
||||
logger.debug(
|
||||
f"Consumer group '{config.stream_consumer_group}' already exists"
|
||||
)
|
||||
else:
|
||||
raise
|
||||
|
||||
self._running = True
|
||||
self._consumer_task = asyncio.create_task(self._consume_messages())
|
||||
logger.info(
|
||||
f"Chat completion consumer started (consumer: {self._consumer_name})"
|
||||
)
|
||||
|
||||
async def _ensure_prisma(self) -> Prisma:
|
||||
"""Lazily initialize Prisma client on first use."""
|
||||
if self._prisma is None:
|
||||
database_url = os.getenv("DATABASE_URL", "postgresql://localhost:5432")
|
||||
self._prisma = Prisma(datasource={"url": database_url})
|
||||
await self._prisma.connect()
|
||||
logger.info("[COMPLETION] Consumer Prisma client connected (lazy init)")
|
||||
return self._prisma
|
||||
|
||||
async def stop(self) -> None:
|
||||
"""Stop the completion consumer."""
|
||||
self._running = False
|
||||
|
||||
if self._consumer_task:
|
||||
self._consumer_task.cancel()
|
||||
try:
|
||||
await self._consumer_task
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
self._consumer_task = None
|
||||
|
||||
if self._prisma:
|
||||
await self._prisma.disconnect()
|
||||
self._prisma = None
|
||||
logger.info("[COMPLETION] Consumer Prisma client disconnected")
|
||||
|
||||
logger.info("Chat completion consumer stopped")
|
||||
|
||||
async def _consume_messages(self) -> None:
|
||||
"""Main message consumption loop with retry logic."""
|
||||
max_retries = 10
|
||||
retry_delay = 5 # seconds
|
||||
retry_count = 0
|
||||
block_timeout = 5000 # milliseconds
|
||||
|
||||
while self._running and retry_count < max_retries:
|
||||
try:
|
||||
redis = await get_redis_async()
|
||||
|
||||
# Reset retry count on successful connection
|
||||
retry_count = 0
|
||||
|
||||
while self._running:
|
||||
# First, claim any stale pending messages from dead consumers
|
||||
# Redis does NOT auto-redeliver pending messages; we must explicitly
|
||||
# claim them using XAUTOCLAIM
|
||||
try:
|
||||
claimed_result = await redis.xautoclaim(
|
||||
name=config.stream_completion_name,
|
||||
groupname=config.stream_consumer_group,
|
||||
consumername=self._consumer_name,
|
||||
min_idle_time=config.stream_claim_min_idle_ms,
|
||||
start_id="0-0",
|
||||
count=10,
|
||||
)
|
||||
# xautoclaim returns: (next_start_id, [(id, data), ...], [deleted_ids])
|
||||
if claimed_result and len(claimed_result) >= 2:
|
||||
claimed_entries = claimed_result[1]
|
||||
if claimed_entries:
|
||||
logger.info(
|
||||
f"Claimed {len(claimed_entries)} stale pending messages"
|
||||
)
|
||||
for entry_id, data in claimed_entries:
|
||||
if not self._running:
|
||||
return
|
||||
await self._process_entry(redis, entry_id, data)
|
||||
except Exception as e:
|
||||
logger.warning(f"XAUTOCLAIM failed (non-fatal): {e}")
|
||||
|
||||
# Read new messages from the stream
|
||||
messages = await redis.xreadgroup(
|
||||
groupname=config.stream_consumer_group,
|
||||
consumername=self._consumer_name,
|
||||
streams={config.stream_completion_name: ">"},
|
||||
block=block_timeout,
|
||||
count=10,
|
||||
)
|
||||
|
||||
if not messages:
|
||||
continue
|
||||
|
||||
for stream_name, entries in messages:
|
||||
for entry_id, data in entries:
|
||||
if not self._running:
|
||||
return
|
||||
await self._process_entry(redis, entry_id, data)
|
||||
|
||||
except asyncio.CancelledError:
|
||||
logger.info("Consumer cancelled")
|
||||
return
|
||||
except Exception as e:
|
||||
retry_count += 1
|
||||
logger.error(
|
||||
f"Consumer error (retry {retry_count}/{max_retries}): {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
if self._running and retry_count < max_retries:
|
||||
await asyncio.sleep(retry_delay)
|
||||
else:
|
||||
logger.error("Max retries reached, stopping consumer")
|
||||
return
|
||||
|
||||
async def _process_entry(
|
||||
self, redis: Any, entry_id: str, data: dict[str, Any]
|
||||
) -> None:
|
||||
"""Process a single stream entry and acknowledge it on success.
|
||||
|
||||
Args:
|
||||
redis: Redis client connection
|
||||
entry_id: The stream entry ID
|
||||
data: The entry data dict
|
||||
"""
|
||||
try:
|
||||
# Handle the message
|
||||
message_data = data.get("data")
|
||||
if message_data:
|
||||
await self._handle_message(
|
||||
message_data.encode()
|
||||
if isinstance(message_data, str)
|
||||
else message_data
|
||||
)
|
||||
|
||||
# Acknowledge the message after successful processing
|
||||
await redis.xack(
|
||||
config.stream_completion_name,
|
||||
config.stream_consumer_group,
|
||||
entry_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error processing completion message {entry_id}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
# Message remains in pending state and will be claimed by
|
||||
# XAUTOCLAIM after min_idle_time expires
|
||||
|
||||
async def _handle_message(self, body: bytes) -> None:
|
||||
"""Handle a completion message using our own Prisma client."""
|
||||
try:
|
||||
data = orjson.loads(body)
|
||||
message = OperationCompleteMessage(**data)
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to parse completion message: {e}")
|
||||
return
|
||||
|
||||
logger.info(
|
||||
f"[COMPLETION] Received completion for operation {message.operation_id} "
|
||||
f"(task_id={message.task_id}, success={message.success})"
|
||||
)
|
||||
|
||||
# Find task in registry
|
||||
task = await stream_registry.find_task_by_operation_id(message.operation_id)
|
||||
if task is None:
|
||||
task = await stream_registry.get_task(message.task_id)
|
||||
|
||||
if task is None:
|
||||
logger.warning(
|
||||
f"[COMPLETION] Task not found for operation {message.operation_id} "
|
||||
f"(task_id={message.task_id})"
|
||||
)
|
||||
return
|
||||
|
||||
logger.info(
|
||||
f"[COMPLETION] Found task: task_id={task.task_id}, "
|
||||
f"session_id={task.session_id}, tool_call_id={task.tool_call_id}"
|
||||
)
|
||||
|
||||
# Guard against empty task fields
|
||||
if not task.task_id or not task.session_id or not task.tool_call_id:
|
||||
logger.error(
|
||||
f"[COMPLETION] Task has empty critical fields! "
|
||||
f"task_id={task.task_id!r}, session_id={task.session_id!r}, "
|
||||
f"tool_call_id={task.tool_call_id!r}"
|
||||
)
|
||||
return
|
||||
|
||||
if message.success:
|
||||
await self._handle_success(task, message)
|
||||
else:
|
||||
await self._handle_failure(task, message)
|
||||
|
||||
async def _handle_success(
|
||||
self,
|
||||
task: stream_registry.ActiveTask,
|
||||
message: OperationCompleteMessage,
|
||||
) -> None:
|
||||
"""Handle successful operation completion."""
|
||||
prisma = await self._ensure_prisma()
|
||||
await process_operation_success(task, message.result, prisma)
|
||||
|
||||
async def _handle_failure(
|
||||
self,
|
||||
task: stream_registry.ActiveTask,
|
||||
message: OperationCompleteMessage,
|
||||
) -> None:
|
||||
"""Handle failed operation completion."""
|
||||
prisma = await self._ensure_prisma()
|
||||
await process_operation_failure(task, message.error, prisma)
|
||||
|
||||
|
||||
# Module-level consumer instance
|
||||
_consumer: ChatCompletionConsumer | None = None
|
||||
|
||||
|
||||
async def start_completion_consumer() -> None:
|
||||
"""Start the global completion consumer."""
|
||||
global _consumer
|
||||
if _consumer is None:
|
||||
_consumer = ChatCompletionConsumer()
|
||||
await _consumer.start()
|
||||
|
||||
|
||||
async def stop_completion_consumer() -> None:
|
||||
"""Stop the global completion consumer."""
|
||||
global _consumer
|
||||
if _consumer:
|
||||
await _consumer.stop()
|
||||
_consumer = None
|
||||
|
||||
|
||||
async def publish_operation_complete(
|
||||
operation_id: str,
|
||||
task_id: str,
|
||||
success: bool,
|
||||
result: dict | str | None = None,
|
||||
error: str | None = None,
|
||||
) -> None:
|
||||
"""Publish an operation completion message to Redis Streams.
|
||||
|
||||
Args:
|
||||
operation_id: The operation ID that completed.
|
||||
task_id: The task ID associated with the operation.
|
||||
success: Whether the operation succeeded.
|
||||
result: The result data (for success).
|
||||
error: The error message (for failure).
|
||||
"""
|
||||
message = OperationCompleteMessage(
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
success=success,
|
||||
result=result,
|
||||
error=error,
|
||||
)
|
||||
|
||||
redis = await get_redis_async()
|
||||
await redis.xadd(
|
||||
config.stream_completion_name,
|
||||
{"data": message.model_dump_json()},
|
||||
maxlen=config.stream_max_length,
|
||||
)
|
||||
logger.info(f"Published completion for operation {operation_id}")
|
||||
@@ -1,344 +0,0 @@
|
||||
"""Shared completion handling for operation success and failure.
|
||||
|
||||
This module provides common logic for handling operation completion from both:
|
||||
- The Redis Streams consumer (completion_consumer.py)
|
||||
- The HTTP webhook endpoint (routes.py)
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
import orjson
|
||||
from prisma import Prisma
|
||||
|
||||
from . import service as chat_service
|
||||
from . import stream_registry
|
||||
from .response_model import StreamError, StreamToolOutputAvailable
|
||||
from .tools.models import ErrorResponse
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Tools that produce agent_json that needs to be saved to library
|
||||
AGENT_GENERATION_TOOLS = {"create_agent", "edit_agent"}
|
||||
|
||||
# Keys that should be stripped from agent_json when returning in error responses
|
||||
SENSITIVE_KEYS = frozenset(
|
||||
{
|
||||
"api_key",
|
||||
"apikey",
|
||||
"api_secret",
|
||||
"password",
|
||||
"secret",
|
||||
"credentials",
|
||||
"credential",
|
||||
"token",
|
||||
"access_token",
|
||||
"refresh_token",
|
||||
"private_key",
|
||||
"privatekey",
|
||||
"auth",
|
||||
"authorization",
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
def _sanitize_agent_json(obj: Any) -> Any:
|
||||
"""Recursively sanitize agent_json by removing sensitive keys.
|
||||
|
||||
Args:
|
||||
obj: The object to sanitize (dict, list, or primitive)
|
||||
|
||||
Returns:
|
||||
Sanitized copy with sensitive keys removed/redacted
|
||||
"""
|
||||
if isinstance(obj, dict):
|
||||
return {
|
||||
k: "[REDACTED]" if k.lower() in SENSITIVE_KEYS else _sanitize_agent_json(v)
|
||||
for k, v in obj.items()
|
||||
}
|
||||
elif isinstance(obj, list):
|
||||
return [_sanitize_agent_json(item) for item in obj]
|
||||
else:
|
||||
return obj
|
||||
|
||||
|
||||
class ToolMessageUpdateError(Exception):
|
||||
"""Raised when updating a tool message in the database fails."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
async def _update_tool_message(
|
||||
session_id: str,
|
||||
tool_call_id: str,
|
||||
content: str,
|
||||
prisma_client: Prisma | None,
|
||||
) -> None:
|
||||
"""Update tool message in database.
|
||||
|
||||
Args:
|
||||
session_id: The session ID
|
||||
tool_call_id: The tool call ID to update
|
||||
content: The new content for the message
|
||||
prisma_client: Optional Prisma client. If None, uses chat_service.
|
||||
|
||||
Raises:
|
||||
ToolMessageUpdateError: If the database update fails. The caller should
|
||||
handle this to avoid marking the task as completed with inconsistent state.
|
||||
"""
|
||||
try:
|
||||
if prisma_client:
|
||||
# Use provided Prisma client (for consumer with its own connection)
|
||||
updated_count = await prisma_client.chatmessage.update_many(
|
||||
where={
|
||||
"sessionId": session_id,
|
||||
"toolCallId": tool_call_id,
|
||||
},
|
||||
data={"content": content},
|
||||
)
|
||||
# Check if any rows were updated - 0 means message not found
|
||||
if updated_count == 0:
|
||||
raise ToolMessageUpdateError(
|
||||
f"No message found with tool_call_id={tool_call_id} in session {session_id}"
|
||||
)
|
||||
else:
|
||||
# Use service function (for webhook endpoint)
|
||||
await chat_service._update_pending_operation(
|
||||
session_id=session_id,
|
||||
tool_call_id=tool_call_id,
|
||||
result=content,
|
||||
)
|
||||
except ToolMessageUpdateError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"[COMPLETION] Failed to update tool message: {e}", exc_info=True)
|
||||
raise ToolMessageUpdateError(
|
||||
f"Failed to update tool message for tool_call_id={tool_call_id}: {e}"
|
||||
) from e
|
||||
|
||||
|
||||
def serialize_result(result: dict | list | str | int | float | bool | None) -> str:
|
||||
"""Serialize result to JSON string with sensible defaults.
|
||||
|
||||
Args:
|
||||
result: The result to serialize. Can be a dict, list, string,
|
||||
number, boolean, or None.
|
||||
|
||||
Returns:
|
||||
JSON string representation of the result. Returns '{"status": "completed"}'
|
||||
only when result is explicitly None.
|
||||
"""
|
||||
if isinstance(result, str):
|
||||
return result
|
||||
if result is None:
|
||||
return '{"status": "completed"}'
|
||||
return orjson.dumps(result).decode("utf-8")
|
||||
|
||||
|
||||
async def _save_agent_from_result(
|
||||
result: dict[str, Any],
|
||||
user_id: str | None,
|
||||
tool_name: str,
|
||||
) -> dict[str, Any]:
|
||||
"""Save agent to library if result contains agent_json.
|
||||
|
||||
Args:
|
||||
result: The result dict that may contain agent_json
|
||||
user_id: The user ID to save the agent for
|
||||
tool_name: The tool name (create_agent or edit_agent)
|
||||
|
||||
Returns:
|
||||
Updated result dict with saved agent details, or original result if no agent_json
|
||||
"""
|
||||
if not user_id:
|
||||
logger.warning("[COMPLETION] Cannot save agent: no user_id in task")
|
||||
return result
|
||||
|
||||
agent_json = result.get("agent_json")
|
||||
if not agent_json:
|
||||
logger.warning(
|
||||
f"[COMPLETION] {tool_name} completed but no agent_json in result"
|
||||
)
|
||||
return result
|
||||
|
||||
try:
|
||||
from .tools.agent_generator import save_agent_to_library
|
||||
|
||||
is_update = tool_name == "edit_agent"
|
||||
created_graph, library_agent = await save_agent_to_library(
|
||||
agent_json, user_id, is_update=is_update
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"[COMPLETION] Saved agent '{created_graph.name}' to library "
|
||||
f"(graph_id={created_graph.id}, library_agent_id={library_agent.id})"
|
||||
)
|
||||
|
||||
# Return a response similar to AgentSavedResponse
|
||||
return {
|
||||
"type": "agent_saved",
|
||||
"message": f"Agent '{created_graph.name}' has been saved to your library!",
|
||||
"agent_id": created_graph.id,
|
||||
"agent_name": created_graph.name,
|
||||
"library_agent_id": library_agent.id,
|
||||
"library_agent_link": f"/library/agents/{library_agent.id}",
|
||||
"agent_page_link": f"/build?flowID={created_graph.id}",
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"[COMPLETION] Failed to save agent to library: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
# Return error but don't fail the whole operation
|
||||
# Sanitize agent_json to remove sensitive keys before returning
|
||||
return {
|
||||
"type": "error",
|
||||
"message": f"Agent was generated but failed to save: {str(e)}",
|
||||
"error": str(e),
|
||||
"agent_json": _sanitize_agent_json(agent_json),
|
||||
}
|
||||
|
||||
|
||||
async def process_operation_success(
|
||||
task: stream_registry.ActiveTask,
|
||||
result: dict | str | None,
|
||||
prisma_client: Prisma | None = None,
|
||||
) -> None:
|
||||
"""Handle successful operation completion.
|
||||
|
||||
Publishes the result to the stream registry, updates the database,
|
||||
generates LLM continuation, and marks the task as completed.
|
||||
|
||||
Args:
|
||||
task: The active task that completed
|
||||
result: The result data from the operation
|
||||
prisma_client: Optional Prisma client for database operations.
|
||||
If None, uses chat_service._update_pending_operation instead.
|
||||
|
||||
Raises:
|
||||
ToolMessageUpdateError: If the database update fails. The task will be
|
||||
marked as failed instead of completed to avoid inconsistent state.
|
||||
"""
|
||||
# For agent generation tools, save the agent to library
|
||||
if task.tool_name in AGENT_GENERATION_TOOLS and isinstance(result, dict):
|
||||
result = await _save_agent_from_result(result, task.user_id, task.tool_name)
|
||||
|
||||
# Serialize result for output (only substitute default when result is exactly None)
|
||||
result_output = result if result is not None else {"status": "completed"}
|
||||
output_str = (
|
||||
result_output
|
||||
if isinstance(result_output, str)
|
||||
else orjson.dumps(result_output).decode("utf-8")
|
||||
)
|
||||
|
||||
# Publish result to stream registry
|
||||
await stream_registry.publish_chunk(
|
||||
task.task_id,
|
||||
StreamToolOutputAvailable(
|
||||
toolCallId=task.tool_call_id,
|
||||
toolName=task.tool_name,
|
||||
output=output_str,
|
||||
success=True,
|
||||
),
|
||||
)
|
||||
|
||||
# Update pending operation in database
|
||||
# If this fails, we must not continue to mark the task as completed
|
||||
result_str = serialize_result(result)
|
||||
try:
|
||||
await _update_tool_message(
|
||||
session_id=task.session_id,
|
||||
tool_call_id=task.tool_call_id,
|
||||
content=result_str,
|
||||
prisma_client=prisma_client,
|
||||
)
|
||||
except ToolMessageUpdateError:
|
||||
# DB update failed - mark task as failed to avoid inconsistent state
|
||||
logger.error(
|
||||
f"[COMPLETION] DB update failed for task {task.task_id}, "
|
||||
"marking as failed instead of completed"
|
||||
)
|
||||
await stream_registry.publish_chunk(
|
||||
task.task_id,
|
||||
StreamError(errorText="Failed to save operation result to database"),
|
||||
)
|
||||
await stream_registry.mark_task_completed(task.task_id, status="failed")
|
||||
raise
|
||||
|
||||
# Generate LLM continuation with streaming
|
||||
try:
|
||||
await chat_service._generate_llm_continuation_with_streaming(
|
||||
session_id=task.session_id,
|
||||
user_id=task.user_id,
|
||||
task_id=task.task_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"[COMPLETION] Failed to generate LLM continuation: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
# Mark task as completed and release Redis lock
|
||||
await stream_registry.mark_task_completed(task.task_id, status="completed")
|
||||
try:
|
||||
await chat_service._mark_operation_completed(task.tool_call_id)
|
||||
except Exception as e:
|
||||
logger.error(f"[COMPLETION] Failed to mark operation completed: {e}")
|
||||
|
||||
logger.info(
|
||||
f"[COMPLETION] Successfully processed completion for task {task.task_id}"
|
||||
)
|
||||
|
||||
|
||||
async def process_operation_failure(
|
||||
task: stream_registry.ActiveTask,
|
||||
error: str | None,
|
||||
prisma_client: Prisma | None = None,
|
||||
) -> None:
|
||||
"""Handle failed operation completion.
|
||||
|
||||
Publishes the error to the stream registry, updates the database with
|
||||
the error response, and marks the task as failed.
|
||||
|
||||
Args:
|
||||
task: The active task that failed
|
||||
error: The error message from the operation
|
||||
prisma_client: Optional Prisma client for database operations.
|
||||
If None, uses chat_service._update_pending_operation instead.
|
||||
"""
|
||||
error_msg = error or "Operation failed"
|
||||
|
||||
# Publish error to stream registry
|
||||
await stream_registry.publish_chunk(
|
||||
task.task_id,
|
||||
StreamError(errorText=error_msg),
|
||||
)
|
||||
|
||||
# Update pending operation with error
|
||||
# If this fails, we still continue to mark the task as failed
|
||||
error_response = ErrorResponse(
|
||||
message=error_msg,
|
||||
error=error,
|
||||
)
|
||||
try:
|
||||
await _update_tool_message(
|
||||
session_id=task.session_id,
|
||||
tool_call_id=task.tool_call_id,
|
||||
content=error_response.model_dump_json(),
|
||||
prisma_client=prisma_client,
|
||||
)
|
||||
except ToolMessageUpdateError:
|
||||
# DB update failed - log but continue with cleanup
|
||||
logger.error(
|
||||
f"[COMPLETION] DB update failed while processing failure for task {task.task_id}, "
|
||||
"continuing with cleanup"
|
||||
)
|
||||
|
||||
# Mark task as failed and release Redis lock
|
||||
await stream_registry.mark_task_completed(task.task_id, status="failed")
|
||||
try:
|
||||
await chat_service._mark_operation_completed(task.tool_call_id)
|
||||
except Exception as e:
|
||||
logger.error(f"[COMPLETION] Failed to mark operation completed: {e}")
|
||||
|
||||
logger.info(f"[COMPLETION] Processed failure for task {task.task_id}: {error_msg}")
|
||||
@@ -11,7 +11,7 @@ class ChatConfig(BaseSettings):
|
||||
|
||||
# OpenAI API Configuration
|
||||
model: str = Field(
|
||||
default="anthropic/claude-opus-4.6", description="Default model to use"
|
||||
default="anthropic/claude-opus-4.5", description="Default model to use"
|
||||
)
|
||||
title_model: str = Field(
|
||||
default="openai/gpt-4o-mini",
|
||||
@@ -27,62 +27,15 @@ class ChatConfig(BaseSettings):
|
||||
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
|
||||
|
||||
# Streaming Configuration
|
||||
max_context_messages: int = Field(
|
||||
default=50, ge=1, le=200, description="Maximum context messages"
|
||||
)
|
||||
|
||||
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
|
||||
max_retries: int = Field(
|
||||
default=3,
|
||||
description="Max retries for fallback path (SDK handles retries internally)",
|
||||
)
|
||||
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
|
||||
max_retries: int = Field(default=3, description="Maximum number of retries")
|
||||
max_agent_runs: int = Field(default=3, description="Maximum number of agent runs")
|
||||
max_agent_schedules: int = Field(
|
||||
default=30, description="Maximum number of agent schedules"
|
||||
)
|
||||
|
||||
# Long-running operation configuration
|
||||
long_running_operation_ttl: int = Field(
|
||||
default=600,
|
||||
description="TTL in seconds for long-running operation tracking in Redis (safety net if pod dies)",
|
||||
)
|
||||
|
||||
# Stream registry configuration for SSE reconnection
|
||||
stream_ttl: int = Field(
|
||||
default=3600,
|
||||
description="TTL in seconds for stream data in Redis (1 hour)",
|
||||
)
|
||||
stream_max_length: int = Field(
|
||||
default=10000,
|
||||
description="Maximum number of messages to store per stream",
|
||||
)
|
||||
|
||||
# Redis Streams configuration for completion consumer
|
||||
stream_completion_name: str = Field(
|
||||
default="chat:completions",
|
||||
description="Redis Stream name for operation completions",
|
||||
)
|
||||
stream_consumer_group: str = Field(
|
||||
default="chat_consumers",
|
||||
description="Consumer group name for completion stream",
|
||||
)
|
||||
stream_claim_min_idle_ms: int = Field(
|
||||
default=60000,
|
||||
description="Minimum idle time in milliseconds before claiming pending messages from dead consumers",
|
||||
)
|
||||
|
||||
# Redis key prefixes for stream registry
|
||||
task_meta_prefix: str = Field(
|
||||
default="chat:task:meta:",
|
||||
description="Prefix for task metadata hash keys",
|
||||
)
|
||||
task_stream_prefix: str = Field(
|
||||
default="chat:stream:",
|
||||
description="Prefix for task message stream keys",
|
||||
)
|
||||
task_op_prefix: str = Field(
|
||||
default="chat:task:op:",
|
||||
description="Prefix for operation ID to task ID mapping keys",
|
||||
)
|
||||
internal_api_key: str | None = Field(
|
||||
default=None,
|
||||
description="API key for internal webhook callbacks (env: CHAT_INTERNAL_API_KEY)",
|
||||
default=3, description="Maximum number of agent schedules"
|
||||
)
|
||||
|
||||
# Langfuse Prompt Management Configuration
|
||||
@@ -92,37 +45,6 @@ class ChatConfig(BaseSettings):
|
||||
description="Name of the prompt in Langfuse to fetch",
|
||||
)
|
||||
|
||||
# Claude Agent SDK Configuration
|
||||
use_claude_agent_sdk: bool = Field(
|
||||
default=True,
|
||||
description="Use Claude Agent SDK for chat completions",
|
||||
)
|
||||
claude_agent_model: str | None = Field(
|
||||
default=None,
|
||||
description="Model for the Claude Agent SDK path. If None, derives from "
|
||||
"the `model` field by stripping the OpenRouter provider prefix.",
|
||||
)
|
||||
claude_agent_max_buffer_size: int = Field(
|
||||
default=10 * 1024 * 1024, # 10MB (default SDK is 1MB)
|
||||
description="Max buffer size in bytes for Claude Agent SDK JSON message parsing. "
|
||||
"Increase if tool outputs exceed the limit.",
|
||||
)
|
||||
claude_agent_max_subtasks: int = Field(
|
||||
default=10,
|
||||
description="Max number of sub-agent Tasks the SDK can spawn per session.",
|
||||
)
|
||||
claude_agent_use_resume: bool = Field(
|
||||
default=True,
|
||||
description="Use --resume for multi-turn conversations instead of "
|
||||
"history compression. Falls back to compression when unavailable.",
|
||||
)
|
||||
|
||||
# Extended thinking configuration for Claude models
|
||||
thinking_enabled: bool = Field(
|
||||
default=True,
|
||||
description="Enable adaptive thinking for Claude models via OpenRouter",
|
||||
)
|
||||
|
||||
@field_validator("api_key", mode="before")
|
||||
@classmethod
|
||||
def get_api_key(cls, v):
|
||||
@@ -154,25 +76,6 @@ class ChatConfig(BaseSettings):
|
||||
v = "https://openrouter.ai/api/v1"
|
||||
return v
|
||||
|
||||
@field_validator("internal_api_key", mode="before")
|
||||
@classmethod
|
||||
def get_internal_api_key(cls, v):
|
||||
"""Get internal API key from environment if not provided."""
|
||||
if v is None:
|
||||
v = os.getenv("CHAT_INTERNAL_API_KEY")
|
||||
return v
|
||||
|
||||
@field_validator("use_claude_agent_sdk", mode="before")
|
||||
@classmethod
|
||||
def get_use_claude_agent_sdk(cls, v):
|
||||
"""Get use_claude_agent_sdk from environment if not provided."""
|
||||
# Check environment variable - default to True if not set
|
||||
env_val = os.getenv("CHAT_USE_CLAUDE_AGENT_SDK", "").lower()
|
||||
if env_val:
|
||||
return env_val in ("true", "1", "yes", "on")
|
||||
# Default to True (SDK enabled by default)
|
||||
return True if v is None else v
|
||||
|
||||
# Prompt paths for different contexts
|
||||
PROMPT_PATHS: dict[str, str] = {
|
||||
"default": "prompts/chat_system.md",
|
||||
|
||||
@@ -45,7 +45,10 @@ async def create_chat_session(
|
||||
successfulAgentRuns=SafeJson({}),
|
||||
successfulAgentSchedules=SafeJson({}),
|
||||
)
|
||||
return await PrismaChatSession.prisma().create(data=data)
|
||||
return await PrismaChatSession.prisma().create(
|
||||
data=data,
|
||||
include={"Messages": True},
|
||||
)
|
||||
|
||||
|
||||
async def update_chat_session(
|
||||
@@ -244,45 +247,3 @@ async def get_chat_session_message_count(session_id: str) -> int:
|
||||
"""Get the number of messages in a chat session."""
|
||||
count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id})
|
||||
return count
|
||||
|
||||
|
||||
async def update_tool_message_content(
|
||||
session_id: str,
|
||||
tool_call_id: str,
|
||||
new_content: str,
|
||||
) -> bool:
|
||||
"""Update the content of a tool message in chat history.
|
||||
|
||||
Used by background tasks to update pending operation messages with final results.
|
||||
|
||||
Args:
|
||||
session_id: The chat session ID.
|
||||
tool_call_id: The tool call ID to find the message.
|
||||
new_content: The new content to set.
|
||||
|
||||
Returns:
|
||||
True if a message was updated, False otherwise.
|
||||
"""
|
||||
try:
|
||||
result = await PrismaChatMessage.prisma().update_many(
|
||||
where={
|
||||
"sessionId": session_id,
|
||||
"toolCallId": tool_call_id,
|
||||
},
|
||||
data={
|
||||
"content": new_content,
|
||||
},
|
||||
)
|
||||
if result == 0:
|
||||
logger.warning(
|
||||
f"No message found to update for session {session_id}, "
|
||||
f"tool_call_id {tool_call_id}"
|
||||
)
|
||||
return False
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to update tool message for session {session_id}, "
|
||||
f"tool_call_id {tool_call_id}: {e}"
|
||||
)
|
||||
return False
|
||||
|
||||
@@ -2,7 +2,7 @@ import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
from datetime import UTC, datetime
|
||||
from typing import Any, cast
|
||||
from typing import Any
|
||||
from weakref import WeakValueDictionary
|
||||
|
||||
from openai.types.chat import (
|
||||
@@ -104,26 +104,6 @@ class ChatSession(BaseModel):
|
||||
successful_agent_runs: dict[str, int] = {}
|
||||
successful_agent_schedules: dict[str, int] = {}
|
||||
|
||||
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
|
||||
"""Attach a tool_call to the current turn's assistant message.
|
||||
|
||||
Searches backwards for the most recent assistant message (stopping at
|
||||
any user message boundary). If found, appends the tool_call to it.
|
||||
Otherwise creates a new assistant message with the tool_call.
|
||||
"""
|
||||
for msg in reversed(self.messages):
|
||||
if msg.role == "user":
|
||||
break
|
||||
if msg.role == "assistant":
|
||||
if not msg.tool_calls:
|
||||
msg.tool_calls = []
|
||||
msg.tool_calls.append(tool_call)
|
||||
return
|
||||
|
||||
self.messages.append(
|
||||
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def new(user_id: str) -> "ChatSession":
|
||||
return ChatSession(
|
||||
@@ -192,47 +172,6 @@ class ChatSession(BaseModel):
|
||||
successful_agent_schedules=successful_agent_schedules,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _merge_consecutive_assistant_messages(
|
||||
messages: list[ChatCompletionMessageParam],
|
||||
) -> list[ChatCompletionMessageParam]:
|
||||
"""Merge consecutive assistant messages into single messages.
|
||||
|
||||
Long-running tool flows can create split assistant messages: one with
|
||||
text content and another with tool_calls. Anthropic's API requires
|
||||
tool_result blocks to reference a tool_use in the immediately preceding
|
||||
assistant message, so these splits cause 400 errors via OpenRouter.
|
||||
"""
|
||||
if len(messages) < 2:
|
||||
return messages
|
||||
|
||||
result: list[ChatCompletionMessageParam] = [messages[0]]
|
||||
for msg in messages[1:]:
|
||||
prev = result[-1]
|
||||
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
|
||||
result.append(msg)
|
||||
continue
|
||||
|
||||
prev = cast(ChatCompletionAssistantMessageParam, prev)
|
||||
curr = cast(ChatCompletionAssistantMessageParam, msg)
|
||||
|
||||
curr_content = curr.get("content") or ""
|
||||
if curr_content:
|
||||
prev_content = prev.get("content") or ""
|
||||
prev["content"] = (
|
||||
f"{prev_content}\n{curr_content}" if prev_content else curr_content
|
||||
)
|
||||
|
||||
curr_tool_calls = curr.get("tool_calls")
|
||||
if curr_tool_calls:
|
||||
prev_tool_calls = prev.get("tool_calls")
|
||||
prev["tool_calls"] = (
|
||||
list(prev_tool_calls) + list(curr_tool_calls)
|
||||
if prev_tool_calls
|
||||
else list(curr_tool_calls)
|
||||
)
|
||||
return result
|
||||
|
||||
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
|
||||
messages = []
|
||||
for message in self.messages:
|
||||
@@ -319,7 +258,7 @@ class ChatSession(BaseModel):
|
||||
name=message.name or "",
|
||||
)
|
||||
)
|
||||
return self._merge_consecutive_assistant_messages(messages)
|
||||
return messages
|
||||
|
||||
|
||||
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
|
||||
@@ -334,8 +273,9 @@ async def _get_session_from_cache(session_id: str) -> ChatSession | None:
|
||||
try:
|
||||
session = ChatSession.model_validate_json(raw_session)
|
||||
logger.info(
|
||||
f"[CACHE] Loaded session {session_id}: {len(session.messages)} messages, "
|
||||
f"last_roles={[m.role for m in session.messages[-3:]]}" # Last 3 roles
|
||||
f"Loading session {session_id} from cache: "
|
||||
f"message_count={len(session.messages)}, "
|
||||
f"roles={[m.role for m in session.messages]}"
|
||||
)
|
||||
return session
|
||||
except Exception as e:
|
||||
@@ -355,21 +295,6 @@ async def cache_chat_session(session: ChatSession) -> None:
|
||||
await _cache_session(session)
|
||||
|
||||
|
||||
async def invalidate_session_cache(session_id: str) -> None:
|
||||
"""Invalidate a chat session from Redis cache.
|
||||
|
||||
Used by background tasks to ensure fresh data is loaded on next access.
|
||||
This is best-effort - Redis failures are logged but don't fail the operation.
|
||||
"""
|
||||
try:
|
||||
redis_key = _get_session_cache_key(session_id)
|
||||
async_redis = await get_redis_async()
|
||||
await async_redis.delete(redis_key)
|
||||
except Exception as e:
|
||||
# Best-effort: log but don't fail - cache will expire naturally
|
||||
logger.warning(f"Failed to invalidate session cache for {session_id}: {e}")
|
||||
|
||||
|
||||
async def _get_session_from_db(session_id: str) -> ChatSession | None:
|
||||
"""Get a chat session from the database."""
|
||||
prisma_session = await chat_db.get_chat_session(session_id)
|
||||
@@ -377,9 +302,11 @@ async def _get_session_from_db(session_id: str) -> ChatSession | None:
|
||||
return None
|
||||
|
||||
messages = prisma_session.Messages
|
||||
logger.debug(
|
||||
f"[DB] Loaded session {session_id}: {len(messages) if messages else 0} messages, "
|
||||
f"roles={[m.role for m in messages[-3:]] if messages else []}" # Last 3 roles
|
||||
logger.info(
|
||||
f"Loading session {session_id} from DB: "
|
||||
f"has_messages={messages is not None}, "
|
||||
f"message_count={len(messages) if messages else 0}, "
|
||||
f"roles={[m.role for m in messages] if messages else []}"
|
||||
)
|
||||
|
||||
return ChatSession.from_db(prisma_session, messages)
|
||||
@@ -430,9 +357,10 @@ async def _save_session_to_db(
|
||||
"function_call": msg.function_call,
|
||||
}
|
||||
)
|
||||
logger.debug(
|
||||
f"[DB] Saving {len(new_messages)} messages to session {session.session_id}, "
|
||||
f"roles={[m['role'] for m in messages_data]}"
|
||||
logger.info(
|
||||
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
|
||||
f"roles={[m['role'] for m in messages_data]}, "
|
||||
f"start_sequence={existing_message_count}"
|
||||
)
|
||||
await chat_db.add_chat_messages_batch(
|
||||
session_id=session.session_id,
|
||||
@@ -472,7 +400,7 @@ async def get_chat_session(
|
||||
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
|
||||
|
||||
# Fall back to database
|
||||
logger.debug(f"Session {session_id} not in cache, checking database")
|
||||
logger.info(f"Session {session_id} not in cache, checking database")
|
||||
session = await _get_session_from_db(session_id)
|
||||
|
||||
if session is None:
|
||||
@@ -489,6 +417,7 @@ async def get_chat_session(
|
||||
# Cache the session from DB
|
||||
try:
|
||||
await _cache_session(session)
|
||||
logger.info(f"Cached session {session_id} from database")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to cache session {session_id}: {e}")
|
||||
|
||||
@@ -553,40 +482,6 @@ async def upsert_chat_session(
|
||||
return session
|
||||
|
||||
|
||||
async def append_and_save_message(session_id: str, message: ChatMessage) -> ChatSession:
|
||||
"""Atomically append a message to a session and persist it.
|
||||
|
||||
Acquires the session lock, re-fetches the latest session state,
|
||||
appends the message, and saves — preventing message loss when
|
||||
concurrent requests modify the same session.
|
||||
"""
|
||||
lock = await _get_session_lock(session_id)
|
||||
|
||||
async with lock:
|
||||
session = await get_chat_session(session_id)
|
||||
if session is None:
|
||||
raise ValueError(f"Session {session_id} not found")
|
||||
|
||||
session.messages.append(message)
|
||||
existing_message_count = await chat_db.get_chat_session_message_count(
|
||||
session_id
|
||||
)
|
||||
|
||||
try:
|
||||
await _save_session_to_db(session, existing_message_count)
|
||||
except Exception as e:
|
||||
raise DatabaseError(
|
||||
f"Failed to persist message to session {session_id}"
|
||||
) from e
|
||||
|
||||
try:
|
||||
await _cache_session(session)
|
||||
except Exception as e:
|
||||
logger.warning(f"Cache write failed for session {session_id}: {e}")
|
||||
|
||||
return session
|
||||
|
||||
|
||||
async def create_chat_session(user_id: str) -> ChatSession:
|
||||
"""Create a new chat session and persist it.
|
||||
|
||||
@@ -693,19 +588,13 @@ async def update_session_title(session_id: str, title: str) -> bool:
|
||||
logger.warning(f"Session {session_id} not found for title update")
|
||||
return False
|
||||
|
||||
# Update title in cache if it exists (instead of invalidating).
|
||||
# This prevents race conditions where cache invalidation causes
|
||||
# the frontend to see stale DB data while streaming is still in progress.
|
||||
# Invalidate cache so next fetch gets updated title
|
||||
try:
|
||||
cached = await _get_session_from_cache(session_id)
|
||||
if cached:
|
||||
cached.title = title
|
||||
await _cache_session(cached)
|
||||
redis_key = _get_session_cache_key(session_id)
|
||||
async_redis = await get_redis_async()
|
||||
await async_redis.delete(redis_key)
|
||||
except Exception as e:
|
||||
# Not critical - title will be correct on next full cache refresh
|
||||
logger.warning(
|
||||
f"Failed to update title in cache for session {session_id}: {e}"
|
||||
)
|
||||
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
|
||||
|
||||
return True
|
||||
except Exception as e:
|
||||
|
||||
@@ -1,16 +1,4 @@
|
||||
from typing import cast
|
||||
|
||||
import pytest
|
||||
from openai.types.chat import (
|
||||
ChatCompletionAssistantMessageParam,
|
||||
ChatCompletionMessageParam,
|
||||
ChatCompletionToolMessageParam,
|
||||
ChatCompletionUserMessageParam,
|
||||
)
|
||||
from openai.types.chat.chat_completion_message_tool_call_param import (
|
||||
ChatCompletionMessageToolCallParam,
|
||||
Function,
|
||||
)
|
||||
|
||||
from .model import (
|
||||
ChatMessage,
|
||||
@@ -129,205 +117,3 @@ async def test_chatsession_db_storage(setup_test_user, test_user_id):
|
||||
loaded.tool_calls is not None
|
||||
), f"Tool calls missing for {orig.role} message"
|
||||
assert len(orig.tool_calls) == len(loaded.tool_calls)
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# _merge_consecutive_assistant_messages #
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
_tc = ChatCompletionMessageToolCallParam(
|
||||
id="tc1", type="function", function=Function(name="do_stuff", arguments="{}")
|
||||
)
|
||||
_tc2 = ChatCompletionMessageToolCallParam(
|
||||
id="tc2", type="function", function=Function(name="other", arguments="{}")
|
||||
)
|
||||
|
||||
|
||||
def test_merge_noop_when_no_consecutive_assistants():
|
||||
"""Messages without consecutive assistants are returned unchanged."""
|
||||
msgs = [
|
||||
ChatCompletionUserMessageParam(role="user", content="hi"),
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="hello"),
|
||||
ChatCompletionUserMessageParam(role="user", content="bye"),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
|
||||
assert len(merged) == 3
|
||||
assert [m["role"] for m in merged] == ["user", "assistant", "user"]
|
||||
|
||||
|
||||
def test_merge_splits_text_and_tool_calls():
|
||||
"""The exact bug scenario: text-only assistant followed by tool_calls-only assistant."""
|
||||
msgs = [
|
||||
ChatCompletionUserMessageParam(role="user", content="build agent"),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="Let me build that"
|
||||
),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc]
|
||||
),
|
||||
ChatCompletionToolMessageParam(role="tool", content="ok", tool_call_id="tc1"),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
|
||||
|
||||
assert len(merged) == 3
|
||||
assert merged[0]["role"] == "user"
|
||||
assert merged[2]["role"] == "tool"
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[1])
|
||||
assert a["role"] == "assistant"
|
||||
assert a.get("content") == "Let me build that"
|
||||
assert a.get("tool_calls") == [_tc]
|
||||
|
||||
|
||||
def test_merge_combines_tool_calls_from_both():
|
||||
"""Both consecutive assistants have tool_calls — they get merged."""
|
||||
msgs: list[ChatCompletionAssistantMessageParam] = [
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="text", tool_calls=[_tc]
|
||||
),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc2]
|
||||
),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
|
||||
|
||||
assert len(merged) == 1
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[0])
|
||||
assert a.get("tool_calls") == [_tc, _tc2]
|
||||
assert a.get("content") == "text"
|
||||
|
||||
|
||||
def test_merge_three_consecutive_assistants():
|
||||
"""Three consecutive assistants collapse into one."""
|
||||
msgs: list[ChatCompletionAssistantMessageParam] = [
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="a"),
|
||||
ChatCompletionAssistantMessageParam(role="assistant", content="b"),
|
||||
ChatCompletionAssistantMessageParam(
|
||||
role="assistant", content="", tool_calls=[_tc]
|
||||
),
|
||||
]
|
||||
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
|
||||
|
||||
assert len(merged) == 1
|
||||
a = cast(ChatCompletionAssistantMessageParam, merged[0])
|
||||
assert a.get("content") == "a\nb"
|
||||
assert a.get("tool_calls") == [_tc]
|
||||
|
||||
|
||||
def test_merge_empty_and_single_message():
|
||||
"""Edge cases: empty list and single message."""
|
||||
assert ChatSession._merge_consecutive_assistant_messages([]) == []
|
||||
|
||||
single: list[ChatCompletionMessageParam] = [
|
||||
ChatCompletionUserMessageParam(role="user", content="hi")
|
||||
]
|
||||
assert ChatSession._merge_consecutive_assistant_messages(single) == single
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# add_tool_call_to_current_turn #
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
_raw_tc = {
|
||||
"id": "tc1",
|
||||
"type": "function",
|
||||
"function": {"name": "f", "arguments": "{}"},
|
||||
}
|
||||
_raw_tc2 = {
|
||||
"id": "tc2",
|
||||
"type": "function",
|
||||
"function": {"name": "g", "arguments": "{}"},
|
||||
}
|
||||
|
||||
|
||||
def test_add_tool_call_appends_to_existing_assistant():
|
||||
"""When the last assistant is from the current turn, tool_call is added to it."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
ChatMessage(role="assistant", content="working on it"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 2 # no new message created
|
||||
assert session.messages[1].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_creates_assistant_when_none_exists():
|
||||
"""When there's no current-turn assistant, a new one is created."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 2
|
||||
assert session.messages[1].role == "assistant"
|
||||
assert session.messages[1].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_does_not_cross_user_boundary():
|
||||
"""A user message acts as a boundary — previous assistant is not modified."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="assistant", content="old turn"),
|
||||
ChatMessage(role="user", content="new message"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
|
||||
assert len(session.messages) == 3 # new assistant was created
|
||||
assert session.messages[0].tool_calls is None # old assistant untouched
|
||||
assert session.messages[2].role == "assistant"
|
||||
assert session.messages[2].tool_calls == [_raw_tc]
|
||||
|
||||
|
||||
def test_add_tool_call_multiple_times():
|
||||
"""Multiple long-running tool calls accumulate on the same assistant."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="hi"),
|
||||
ChatMessage(role="assistant", content="doing stuff"),
|
||||
]
|
||||
session.add_tool_call_to_current_turn(_raw_tc)
|
||||
# Simulate a pending tool result in between (like _yield_tool_call does)
|
||||
session.messages.append(
|
||||
ChatMessage(role="tool", content="pending", tool_call_id="tc1")
|
||||
)
|
||||
session.add_tool_call_to_current_turn(_raw_tc2)
|
||||
|
||||
assert len(session.messages) == 3 # user, assistant, tool — no extra assistant
|
||||
assert session.messages[1].tool_calls == [_raw_tc, _raw_tc2]
|
||||
|
||||
|
||||
def test_to_openai_messages_merges_split_assistants():
|
||||
"""End-to-end: session with split assistants produces valid OpenAI messages."""
|
||||
session = ChatSession.new(user_id="u")
|
||||
session.messages = [
|
||||
ChatMessage(role="user", content="build agent"),
|
||||
ChatMessage(role="assistant", content="Let me build that"),
|
||||
ChatMessage(
|
||||
role="assistant",
|
||||
content="",
|
||||
tool_calls=[
|
||||
{
|
||||
"id": "tc1",
|
||||
"type": "function",
|
||||
"function": {"name": "create_agent", "arguments": "{}"},
|
||||
}
|
||||
],
|
||||
),
|
||||
ChatMessage(role="tool", content="done", tool_call_id="tc1"),
|
||||
ChatMessage(role="assistant", content="Saved!"),
|
||||
ChatMessage(role="user", content="show me an example run"),
|
||||
]
|
||||
openai_msgs = session.to_openai_messages()
|
||||
|
||||
# The two consecutive assistants at index 1,2 should be merged
|
||||
roles = [m["role"] for m in openai_msgs]
|
||||
assert roles == ["user", "assistant", "tool", "assistant", "user"]
|
||||
|
||||
# The merged assistant should have both content and tool_calls
|
||||
merged = cast(ChatCompletionAssistantMessageParam, openai_msgs[1])
|
||||
assert merged.get("content") == "Let me build that"
|
||||
tc_list = merged.get("tool_calls")
|
||||
assert tc_list is not None and len(list(tc_list)) == 1
|
||||
assert list(tc_list)[0]["id"] == "tc1"
|
||||
|
||||
@@ -10,8 +10,6 @@ from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from backend.util.json import dumps as json_dumps
|
||||
|
||||
|
||||
class ResponseType(str, Enum):
|
||||
"""Types of streaming responses following AI SDK protocol."""
|
||||
@@ -20,10 +18,6 @@ class ResponseType(str, Enum):
|
||||
START = "start"
|
||||
FINISH = "finish"
|
||||
|
||||
# Step lifecycle (one LLM API call within a message)
|
||||
START_STEP = "start-step"
|
||||
FINISH_STEP = "finish-step"
|
||||
|
||||
# Text streaming
|
||||
TEXT_START = "text-start"
|
||||
TEXT_DELTA = "text-delta"
|
||||
@@ -37,7 +31,6 @@ class ResponseType(str, Enum):
|
||||
# Other
|
||||
ERROR = "error"
|
||||
USAGE = "usage"
|
||||
HEARTBEAT = "heartbeat"
|
||||
|
||||
|
||||
class StreamBaseResponse(BaseModel):
|
||||
@@ -58,20 +51,6 @@ class StreamStart(StreamBaseResponse):
|
||||
|
||||
type: ResponseType = ResponseType.START
|
||||
messageId: str = Field(..., description="Unique message ID")
|
||||
taskId: str | None = Field(
|
||||
default=None,
|
||||
description="Task ID for SSE reconnection. Clients can reconnect using GET /tasks/{taskId}/stream",
|
||||
)
|
||||
|
||||
def to_sse(self) -> str:
|
||||
"""Convert to SSE format, excluding non-protocol fields like taskId."""
|
||||
import json
|
||||
|
||||
data: dict[str, Any] = {
|
||||
"type": self.type.value,
|
||||
"messageId": self.messageId,
|
||||
}
|
||||
return f"data: {json.dumps(data)}\n\n"
|
||||
|
||||
|
||||
class StreamFinish(StreamBaseResponse):
|
||||
@@ -80,26 +59,6 @@ class StreamFinish(StreamBaseResponse):
|
||||
type: ResponseType = ResponseType.FINISH
|
||||
|
||||
|
||||
class StreamStartStep(StreamBaseResponse):
|
||||
"""Start of a step (one LLM API call within a message).
|
||||
|
||||
The AI SDK uses this to add a step-start boundary to message.parts,
|
||||
enabling visual separation between multiple LLM calls in a single message.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.START_STEP
|
||||
|
||||
|
||||
class StreamFinishStep(StreamBaseResponse):
|
||||
"""End of a step (one LLM API call within a message).
|
||||
|
||||
The AI SDK uses this to reset activeTextParts and activeReasoningParts,
|
||||
so the next LLM call in a tool-call continuation starts with clean state.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.FINISH_STEP
|
||||
|
||||
|
||||
# ========== Text Streaming ==========
|
||||
|
||||
|
||||
@@ -153,7 +112,7 @@ class StreamToolOutputAvailable(StreamBaseResponse):
|
||||
type: ResponseType = ResponseType.TOOL_OUTPUT_AVAILABLE
|
||||
toolCallId: str = Field(..., description="Tool call ID this responds to")
|
||||
output: str | dict[str, Any] = Field(..., description="Tool execution output")
|
||||
# Keep these for internal backend use
|
||||
# Additional fields for internal use (not part of AI SDK spec but useful)
|
||||
toolName: str | None = Field(
|
||||
default=None, description="Name of the tool that was executed"
|
||||
)
|
||||
@@ -161,17 +120,6 @@ class StreamToolOutputAvailable(StreamBaseResponse):
|
||||
default=True, description="Whether the tool execution succeeded"
|
||||
)
|
||||
|
||||
def to_sse(self) -> str:
|
||||
"""Convert to SSE format, excluding non-spec fields."""
|
||||
import json
|
||||
|
||||
data = {
|
||||
"type": self.type.value,
|
||||
"toolCallId": self.toolCallId,
|
||||
"output": self.output,
|
||||
}
|
||||
return f"data: {json.dumps(data)}\n\n"
|
||||
|
||||
|
||||
# ========== Other ==========
|
||||
|
||||
@@ -194,32 +142,3 @@ class StreamError(StreamBaseResponse):
|
||||
details: dict[str, Any] | None = Field(
|
||||
default=None, description="Additional error details"
|
||||
)
|
||||
|
||||
def to_sse(self) -> str:
|
||||
"""Convert to SSE format, only emitting fields required by AI SDK protocol.
|
||||
|
||||
The AI SDK uses z.strictObject({type, errorText}) which rejects
|
||||
any extra fields like `code` or `details`.
|
||||
"""
|
||||
data = {
|
||||
"type": self.type.value,
|
||||
"errorText": self.errorText,
|
||||
}
|
||||
return f"data: {json_dumps(data)}\n\n"
|
||||
|
||||
|
||||
class StreamHeartbeat(StreamBaseResponse):
|
||||
"""Heartbeat to keep SSE connection alive during long-running operations.
|
||||
|
||||
Uses SSE comment format (: comment) which is ignored by clients but keeps
|
||||
the connection alive through proxies and load balancers.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.HEARTBEAT
|
||||
toolCallId: str | None = Field(
|
||||
default=None, description="Tool call ID if heartbeat is for a specific tool"
|
||||
)
|
||||
|
||||
def to_sse(self) -> str:
|
||||
"""Convert to SSE comment format to keep connection alive."""
|
||||
return ": heartbeat\n\n"
|
||||
|
||||
@@ -1,58 +1,19 @@
|
||||
"""Chat API routes for chat session management and streaming via SSE."""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import uuid as uuid_module
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Annotated
|
||||
|
||||
from autogpt_libs import auth
|
||||
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Response, Security
|
||||
from fastapi import APIRouter, Depends, Query, Security
|
||||
from fastapi.responses import StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.util.exceptions import NotFoundError
|
||||
from backend.util.feature_flag import Flag, is_feature_enabled
|
||||
|
||||
from . import service as chat_service
|
||||
from . import stream_registry
|
||||
from .completion_handler import process_operation_failure, process_operation_success
|
||||
from .config import ChatConfig
|
||||
from .model import (
|
||||
ChatMessage,
|
||||
ChatSession,
|
||||
append_and_save_message,
|
||||
create_chat_session,
|
||||
get_chat_session,
|
||||
get_user_sessions,
|
||||
)
|
||||
from .response_model import StreamError, StreamFinish, StreamHeartbeat, StreamStart
|
||||
from .sdk import service as sdk_service
|
||||
from .tools.models import (
|
||||
AgentDetailsResponse,
|
||||
AgentOutputResponse,
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
AgentsFoundResponse,
|
||||
BlockDetailsResponse,
|
||||
BlockListResponse,
|
||||
BlockOutputResponse,
|
||||
ClarificationNeededResponse,
|
||||
DocPageResponse,
|
||||
DocSearchResultsResponse,
|
||||
ErrorResponse,
|
||||
ExecutionStartedResponse,
|
||||
InputValidationErrorResponse,
|
||||
NeedLoginResponse,
|
||||
NoResultsResponse,
|
||||
OperationInProgressResponse,
|
||||
OperationPendingResponse,
|
||||
OperationStartedResponse,
|
||||
SetupRequirementsResponse,
|
||||
SuggestedGoalResponse,
|
||||
UnderstandingUpdatedResponse,
|
||||
)
|
||||
from .tracking import track_user_message
|
||||
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
|
||||
|
||||
config = ChatConfig()
|
||||
|
||||
@@ -94,15 +55,6 @@ class CreateSessionResponse(BaseModel):
|
||||
user_id: str | None
|
||||
|
||||
|
||||
class ActiveStreamInfo(BaseModel):
|
||||
"""Information about an active stream for reconnection."""
|
||||
|
||||
task_id: str
|
||||
last_message_id: str # Redis Stream message ID for resumption
|
||||
operation_id: str # Operation ID for completion tracking
|
||||
tool_name: str # Name of the tool being executed
|
||||
|
||||
|
||||
class SessionDetailResponse(BaseModel):
|
||||
"""Response model providing complete details for a chat session, including messages."""
|
||||
|
||||
@@ -111,7 +63,6 @@ class SessionDetailResponse(BaseModel):
|
||||
updated_at: str
|
||||
user_id: str | None
|
||||
messages: list[dict]
|
||||
active_stream: ActiveStreamInfo | None = None # Present if stream is still active
|
||||
|
||||
|
||||
class SessionSummaryResponse(BaseModel):
|
||||
@@ -130,14 +81,6 @@ class ListSessionsResponse(BaseModel):
|
||||
total: int
|
||||
|
||||
|
||||
class OperationCompleteRequest(BaseModel):
|
||||
"""Request model for external completion webhook."""
|
||||
|
||||
success: bool
|
||||
result: dict | str | None = None
|
||||
error: str | None = None
|
||||
|
||||
|
||||
# ========== Routes ==========
|
||||
|
||||
|
||||
@@ -223,14 +166,13 @@ async def get_session(
|
||||
Retrieve the details of a specific chat session.
|
||||
|
||||
Looks up a chat session by ID for the given user (if authenticated) and returns all session data including messages.
|
||||
If there's an active stream for this session, returns the task_id for reconnection.
|
||||
|
||||
Args:
|
||||
session_id: The unique identifier for the desired chat session.
|
||||
user_id: The optional authenticated user ID, or None for anonymous access.
|
||||
|
||||
Returns:
|
||||
SessionDetailResponse: Details for the requested session, including active_stream info if applicable.
|
||||
SessionDetailResponse: Details for the requested session, or None if not found.
|
||||
|
||||
"""
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
@@ -238,32 +180,11 @@ async def get_session(
|
||||
raise NotFoundError(f"Session {session_id} not found.")
|
||||
|
||||
messages = [message.model_dump() for message in session.messages]
|
||||
|
||||
# Check if there's an active stream for this session
|
||||
active_stream_info = None
|
||||
active_task, last_message_id = await stream_registry.get_active_task_for_session(
|
||||
session_id, user_id
|
||||
)
|
||||
logger.info(
|
||||
f"[GET_SESSION] session={session_id}, active_task={active_task is not None}, "
|
||||
f"msg_count={len(messages)}, last_role={messages[-1].get('role') if messages else 'none'}"
|
||||
f"Returning session {session_id}: "
|
||||
f"message_count={len(messages)}, "
|
||||
f"roles={[m.get('role') for m in messages]}"
|
||||
)
|
||||
if active_task:
|
||||
# Filter out the in-progress assistant message from the session response.
|
||||
# The client will receive the complete assistant response through the SSE
|
||||
# stream replay instead, preventing duplicate content.
|
||||
if messages and messages[-1].get("role") == "assistant":
|
||||
messages = messages[:-1]
|
||||
|
||||
# Use "0-0" as last_message_id to replay the stream from the beginning.
|
||||
# Since we filtered out the cached assistant message, the client needs
|
||||
# the full stream to reconstruct the response.
|
||||
active_stream_info = ActiveStreamInfo(
|
||||
task_id=active_task.task_id,
|
||||
last_message_id="0-0",
|
||||
operation_id=active_task.operation_id,
|
||||
tool_name=active_task.tool_name,
|
||||
)
|
||||
|
||||
return SessionDetailResponse(
|
||||
id=session.session_id,
|
||||
@@ -271,7 +192,6 @@ async def get_session(
|
||||
updated_at=session.updated_at.isoformat(),
|
||||
user_id=session.user_id or None,
|
||||
messages=messages,
|
||||
active_stream=active_stream_info,
|
||||
)
|
||||
|
||||
|
||||
@@ -291,331 +211,49 @@ async def stream_chat_post(
|
||||
- Tool call UI elements (if invoked)
|
||||
- Tool execution results
|
||||
|
||||
The AI generation runs in a background task that continues even if the client disconnects.
|
||||
All chunks are written to Redis for reconnection support. If the client disconnects,
|
||||
they can reconnect using GET /tasks/{task_id}/stream to resume from where they left off.
|
||||
|
||||
Args:
|
||||
session_id: The chat session identifier to associate with the streamed messages.
|
||||
request: Request body containing message, is_user_message, and optional context.
|
||||
user_id: Optional authenticated user ID.
|
||||
Returns:
|
||||
StreamingResponse: SSE-formatted response chunks. First chunk is a "start" event
|
||||
containing the task_id for reconnection.
|
||||
StreamingResponse: SSE-formatted response chunks.
|
||||
|
||||
"""
|
||||
import asyncio
|
||||
import time
|
||||
|
||||
stream_start_time = time.perf_counter()
|
||||
log_meta = {"component": "ChatStream", "session_id": session_id}
|
||||
if user_id:
|
||||
log_meta["user_id"] = user_id
|
||||
|
||||
logger.info(
|
||||
f"[TIMING] stream_chat_post STARTED, session={session_id}, "
|
||||
f"user={user_id}, message_len={len(request.message)}",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
logger.info(
|
||||
f"[TIMING] session validated in {(time.perf_counter() - stream_start_time) * 1000:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"duration_ms": (time.perf_counter() - stream_start_time) * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# Atomically append user message to session BEFORE creating task to avoid
|
||||
# race condition where GET_SESSION sees task as "running" but message isn't
|
||||
# saved yet. append_and_save_message re-fetches inside a lock to prevent
|
||||
# message loss from concurrent requests.
|
||||
if request.message:
|
||||
message = ChatMessage(
|
||||
role="user" if request.is_user_message else "assistant",
|
||||
content=request.message,
|
||||
)
|
||||
if request.is_user_message:
|
||||
track_user_message(
|
||||
user_id=user_id,
|
||||
session_id=session_id,
|
||||
message_length=len(request.message),
|
||||
)
|
||||
logger.info(f"[STREAM] Saving user message to session {session_id}")
|
||||
session = await append_and_save_message(session_id, message)
|
||||
logger.info(f"[STREAM] User message saved for session {session_id}")
|
||||
|
||||
# Create a task in the stream registry for reconnection support
|
||||
task_id = str(uuid_module.uuid4())
|
||||
operation_id = str(uuid_module.uuid4())
|
||||
log_meta["task_id"] = task_id
|
||||
|
||||
task_create_start = time.perf_counter()
|
||||
await stream_registry.create_task(
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
tool_call_id="chat_stream", # Not a tool call, but needed for the model
|
||||
tool_name="chat",
|
||||
operation_id=operation_id,
|
||||
)
|
||||
logger.info(
|
||||
f"[TIMING] create_task completed in {(time.perf_counter() - task_create_start) * 1000:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"duration_ms": (time.perf_counter() - task_create_start) * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# Background task that runs the AI generation independently of SSE connection
|
||||
async def run_ai_generation():
|
||||
import time as time_module
|
||||
|
||||
gen_start_time = time_module.perf_counter()
|
||||
logger.info(
|
||||
f"[TIMING] run_ai_generation STARTED, task={task_id}, session={session_id}, user={user_id}",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
first_chunk_time, ttfc = None, None
|
||||
chunk_count = 0
|
||||
try:
|
||||
# Emit a start event with task_id for reconnection
|
||||
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
|
||||
await stream_registry.publish_chunk(task_id, start_chunk)
|
||||
logger.info(
|
||||
f"[TIMING] StreamStart published at {(time_module.perf_counter() - gen_start_time) * 1000:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"elapsed_ms": (time_module.perf_counter() - gen_start_time)
|
||||
* 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# Choose service based on LaunchDarkly flag (falls back to config default)
|
||||
use_sdk = await is_feature_enabled(
|
||||
Flag.COPILOT_SDK,
|
||||
user_id or "anonymous",
|
||||
default=config.use_claude_agent_sdk,
|
||||
)
|
||||
stream_fn = (
|
||||
sdk_service.stream_chat_completion_sdk
|
||||
if use_sdk
|
||||
else chat_service.stream_chat_completion
|
||||
)
|
||||
logger.info(
|
||||
f"[TIMING] Calling {'sdk' if use_sdk else 'standard'} stream_chat_completion",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
# Pass message=None since we already added it to the session above
|
||||
async for chunk in stream_fn(
|
||||
session_id,
|
||||
None, # Message already in session
|
||||
is_user_message=request.is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass session with message already added
|
||||
context=request.context,
|
||||
):
|
||||
# Skip duplicate StreamStart — we already published one above
|
||||
if isinstance(chunk, StreamStart):
|
||||
continue
|
||||
chunk_count += 1
|
||||
if first_chunk_time is None:
|
||||
first_chunk_time = time_module.perf_counter()
|
||||
ttfc = first_chunk_time - gen_start_time
|
||||
logger.info(
|
||||
f"[TIMING] FIRST AI CHUNK at {ttfc:.2f}s, type={type(chunk).__name__}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"chunk_type": type(chunk).__name__,
|
||||
"time_to_first_chunk_ms": ttfc * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
# Write to Redis (subscribers will receive via XREAD)
|
||||
await stream_registry.publish_chunk(task_id, chunk)
|
||||
|
||||
gen_end_time = time_module.perf_counter()
|
||||
total_time = (gen_end_time - gen_start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] run_ai_generation FINISHED in {total_time / 1000:.1f}s; "
|
||||
f"task={task_id}, session={session_id}, "
|
||||
f"ttfc={ttfc or -1:.2f}s, n_chunks={chunk_count}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"total_time_ms": total_time,
|
||||
"time_to_first_chunk_ms": (
|
||||
ttfc * 1000 if ttfc is not None else None
|
||||
),
|
||||
"n_chunks": chunk_count,
|
||||
}
|
||||
},
|
||||
)
|
||||
await stream_registry.mark_task_completed(task_id, "completed")
|
||||
except Exception as e:
|
||||
elapsed = time_module.perf_counter() - gen_start_time
|
||||
logger.error(
|
||||
f"[TIMING] run_ai_generation ERROR after {elapsed:.2f}s: {e}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"elapsed_ms": elapsed * 1000,
|
||||
"error": str(e),
|
||||
}
|
||||
},
|
||||
)
|
||||
# Publish a StreamError so the frontend can display an error message
|
||||
try:
|
||||
await stream_registry.publish_chunk(
|
||||
task_id,
|
||||
StreamError(
|
||||
errorText="An error occurred. Please try again.",
|
||||
code="stream_error",
|
||||
),
|
||||
)
|
||||
except Exception:
|
||||
pass # Best-effort; mark_task_completed will publish StreamFinish
|
||||
await stream_registry.mark_task_completed(task_id, "failed")
|
||||
|
||||
# Start the AI generation in a background task
|
||||
bg_task = asyncio.create_task(run_ai_generation())
|
||||
await stream_registry.set_task_asyncio_task(task_id, bg_task)
|
||||
setup_time = (time.perf_counter() - stream_start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] Background task started, setup={setup_time:.1f}ms",
|
||||
extra={"json_fields": {**log_meta, "setup_time_ms": setup_time}},
|
||||
)
|
||||
|
||||
# SSE endpoint that subscribes to the task's stream
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
import time as time_module
|
||||
|
||||
event_gen_start = time_module.perf_counter()
|
||||
chunk_count = 0
|
||||
first_chunk_type: str | None = None
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session_id,
|
||||
request.message,
|
||||
is_user_message=request.is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
context=request.context,
|
||||
):
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Chat stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
logger.info(
|
||||
f"[TIMING] event_generator STARTED, task={task_id}, session={session_id}, "
|
||||
f"user={user_id}",
|
||||
extra={"json_fields": log_meta},
|
||||
"Chat stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_count": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
subscriber_queue = None
|
||||
first_chunk_yielded = False
|
||||
chunks_yielded = 0
|
||||
try:
|
||||
# Subscribe to the task stream (this replays existing messages + live updates)
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=task_id,
|
||||
user_id=user_id,
|
||||
last_message_id="0-0", # Get all messages from the beginning
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
yield StreamFinish().to_sse()
|
||||
yield "data: [DONE]\n\n"
|
||||
return
|
||||
|
||||
# Read from the subscriber queue and yield to SSE
|
||||
logger.info(
|
||||
"[TIMING] Starting to read from subscriber_queue",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
while True:
|
||||
try:
|
||||
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
|
||||
chunks_yielded += 1
|
||||
|
||||
if not first_chunk_yielded:
|
||||
first_chunk_yielded = True
|
||||
elapsed = time_module.perf_counter() - event_gen_start
|
||||
logger.info(
|
||||
f"[TIMING] FIRST CHUNK from queue at {elapsed:.2f}s, "
|
||||
f"type={type(chunk).__name__}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"chunk_type": type(chunk).__name__,
|
||||
"elapsed_ms": elapsed * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
yield chunk.to_sse()
|
||||
|
||||
# Check for finish signal
|
||||
if isinstance(chunk, StreamFinish):
|
||||
total_time = time_module.perf_counter() - event_gen_start
|
||||
logger.info(
|
||||
f"[TIMING] StreamFinish received in {total_time:.2f}s; "
|
||||
f"n_chunks={chunks_yielded}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"chunks_yielded": chunks_yielded,
|
||||
"total_time_ms": total_time * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
break
|
||||
except asyncio.TimeoutError:
|
||||
yield StreamHeartbeat().to_sse()
|
||||
|
||||
except GeneratorExit:
|
||||
logger.info(
|
||||
f"[TIMING] GeneratorExit (client disconnected), chunks={chunks_yielded}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"chunks_yielded": chunks_yielded,
|
||||
"reason": "client_disconnect",
|
||||
}
|
||||
},
|
||||
)
|
||||
pass # Client disconnected - background task continues
|
||||
except Exception as e:
|
||||
elapsed = (time_module.perf_counter() - event_gen_start) * 1000
|
||||
logger.error(
|
||||
f"[TIMING] event_generator ERROR after {elapsed:.1f}ms: {e}",
|
||||
extra={
|
||||
"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}
|
||||
},
|
||||
)
|
||||
# Surface error to frontend so it doesn't appear stuck
|
||||
yield StreamError(
|
||||
errorText="An error occurred. Please try again.",
|
||||
code="stream_error",
|
||||
).to_sse()
|
||||
yield StreamFinish().to_sse()
|
||||
finally:
|
||||
# Unsubscribe when client disconnects or stream ends
|
||||
if subscriber_queue is not None:
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(
|
||||
task_id, subscriber_queue
|
||||
)
|
||||
except Exception as unsub_err:
|
||||
logger.error(
|
||||
f"Error unsubscribing from task {task_id}: {unsub_err}",
|
||||
exc_info=True,
|
||||
)
|
||||
# AI SDK protocol termination - always yield even if unsubscribe fails
|
||||
total_time = time_module.perf_counter() - event_gen_start
|
||||
logger.info(
|
||||
f"[TIMING] event_generator FINISHED in {total_time:.2f}s; "
|
||||
f"task={task_id}, session={session_id}, n_chunks={chunks_yielded}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"total_time_ms": total_time * 1000,
|
||||
"chunks_yielded": chunks_yielded,
|
||||
}
|
||||
},
|
||||
)
|
||||
yield "data: [DONE]\n\n"
|
||||
# AI SDK protocol termination
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(
|
||||
event_generator(),
|
||||
@@ -632,90 +270,63 @@ async def stream_chat_post(
|
||||
@router.get(
|
||||
"/sessions/{session_id}/stream",
|
||||
)
|
||||
async def resume_session_stream(
|
||||
async def stream_chat_get(
|
||||
session_id: str,
|
||||
message: Annotated[str, Query(min_length=1, max_length=10000)],
|
||||
user_id: str | None = Depends(auth.get_user_id),
|
||||
is_user_message: bool = Query(default=True),
|
||||
):
|
||||
"""
|
||||
Resume an active stream for a session.
|
||||
Stream chat responses for a session (GET - legacy endpoint).
|
||||
|
||||
Called by the AI SDK's ``useChat(resume: true)`` on page load.
|
||||
Checks for an active (in-progress) task on the session and either replays
|
||||
the full SSE stream or returns 204 No Content if nothing is running.
|
||||
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
|
||||
- Text fragments as they are generated
|
||||
- Tool call UI elements (if invoked)
|
||||
- Tool execution results
|
||||
|
||||
Args:
|
||||
session_id: The chat session identifier.
|
||||
session_id: The chat session identifier to associate with the streamed messages.
|
||||
message: The user's new message to process.
|
||||
user_id: Optional authenticated user ID.
|
||||
|
||||
is_user_message: Whether the message is a user message.
|
||||
Returns:
|
||||
StreamingResponse (SSE) when an active stream exists,
|
||||
or 204 No Content when there is nothing to resume.
|
||||
StreamingResponse: SSE-formatted response chunks.
|
||||
|
||||
"""
|
||||
import asyncio
|
||||
|
||||
active_task, _last_id = await stream_registry.get_active_task_for_session(
|
||||
session_id, user_id
|
||||
)
|
||||
|
||||
if not active_task:
|
||||
return Response(status_code=204)
|
||||
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=active_task.task_id,
|
||||
user_id=user_id,
|
||||
last_message_id="0-0", # Full replay so useChat rebuilds the message
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
return Response(status_code=204)
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
chunk_count = 0
|
||||
first_chunk_type: str | None = None
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Resume stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
|
||||
if isinstance(chunk, StreamFinish):
|
||||
break
|
||||
except asyncio.TimeoutError:
|
||||
yield StreamHeartbeat().to_sse()
|
||||
except GeneratorExit:
|
||||
pass
|
||||
except Exception as e:
|
||||
logger.error(f"Error in resume stream for session {session_id}: {e}")
|
||||
finally:
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(
|
||||
active_task.task_id, subscriber_queue
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session_id,
|
||||
message,
|
||||
is_user_message=is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
):
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Chat stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
except Exception as unsub_err:
|
||||
logger.error(
|
||||
f"Error unsubscribing from task {active_task.task_id}: {unsub_err}",
|
||||
exc_info=True,
|
||||
)
|
||||
logger.info(
|
||||
"Resume stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"n_chunks": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
yield "data: [DONE]\n\n"
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
logger.info(
|
||||
"Chat stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_count": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
# AI SDK protocol termination
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(
|
||||
event_generator(),
|
||||
@@ -723,8 +334,8 @@ async def resume_session_stream(
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
"x-vercel-ai-ui-message-stream": "v1",
|
||||
"X-Accel-Buffering": "no", # Disable nginx buffering
|
||||
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
|
||||
},
|
||||
)
|
||||
|
||||
@@ -755,249 +366,6 @@ async def session_assign_user(
|
||||
return {"status": "ok"}
|
||||
|
||||
|
||||
# ========== Task Streaming (SSE Reconnection) ==========
|
||||
|
||||
|
||||
@router.get(
|
||||
"/tasks/{task_id}/stream",
|
||||
)
|
||||
async def stream_task(
|
||||
task_id: str,
|
||||
user_id: str | None = Depends(auth.get_user_id),
|
||||
last_message_id: str = Query(
|
||||
default="0-0",
|
||||
description="Last Redis Stream message ID received (e.g., '1706540123456-0'). Use '0-0' for full replay.",
|
||||
),
|
||||
):
|
||||
"""
|
||||
Reconnect to a long-running task's SSE stream.
|
||||
|
||||
When a long-running operation (like agent generation) starts, the client
|
||||
receives a task_id. If the connection drops, the client can reconnect
|
||||
using this endpoint to resume receiving updates.
|
||||
|
||||
Args:
|
||||
task_id: The task ID from the operation_started response.
|
||||
user_id: Authenticated user ID for ownership validation.
|
||||
last_message_id: Last Redis Stream message ID received ("0-0" for full replay).
|
||||
|
||||
Returns:
|
||||
StreamingResponse: SSE-formatted response chunks starting after last_message_id.
|
||||
|
||||
Raises:
|
||||
HTTPException: 404 if task not found, 410 if task expired, 403 if access denied.
|
||||
"""
|
||||
# Check task existence and expiry before subscribing
|
||||
task, error_code = await stream_registry.get_task_with_expiry_info(task_id)
|
||||
|
||||
if error_code == "TASK_EXPIRED":
|
||||
raise HTTPException(
|
||||
status_code=410,
|
||||
detail={
|
||||
"code": "TASK_EXPIRED",
|
||||
"message": "This operation has expired. Please try again.",
|
||||
},
|
||||
)
|
||||
|
||||
if error_code == "TASK_NOT_FOUND":
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={
|
||||
"code": "TASK_NOT_FOUND",
|
||||
"message": f"Task {task_id} not found.",
|
||||
},
|
||||
)
|
||||
|
||||
# Validate ownership if task has an owner
|
||||
if task and task.user_id and user_id != task.user_id:
|
||||
raise HTTPException(
|
||||
status_code=403,
|
||||
detail={
|
||||
"code": "ACCESS_DENIED",
|
||||
"message": "You do not have access to this task.",
|
||||
},
|
||||
)
|
||||
|
||||
# Get subscriber queue from stream registry
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=task_id,
|
||||
user_id=user_id,
|
||||
last_message_id=last_message_id,
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={
|
||||
"code": "TASK_NOT_FOUND",
|
||||
"message": f"Task {task_id} not found or access denied.",
|
||||
},
|
||||
)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
# Wait for next chunk with timeout for heartbeats
|
||||
chunk = await asyncio.wait_for(
|
||||
subscriber_queue.get(), timeout=heartbeat_interval
|
||||
)
|
||||
yield chunk.to_sse()
|
||||
|
||||
# Check for finish signal
|
||||
if isinstance(chunk, StreamFinish):
|
||||
break
|
||||
except asyncio.TimeoutError:
|
||||
# Send heartbeat to keep connection alive
|
||||
yield StreamHeartbeat().to_sse()
|
||||
except Exception as e:
|
||||
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
|
||||
finally:
|
||||
# Unsubscribe when client disconnects or stream ends
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(task_id, subscriber_queue)
|
||||
except Exception as unsub_err:
|
||||
logger.error(
|
||||
f"Error unsubscribing from task {task_id}: {unsub_err}",
|
||||
exc_info=True,
|
||||
)
|
||||
# AI SDK protocol termination - always yield even if unsubscribe fails
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(
|
||||
event_generator(),
|
||||
media_type="text/event-stream",
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
"x-vercel-ai-ui-message-stream": "v1",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/tasks/{task_id}",
|
||||
)
|
||||
async def get_task_status(
|
||||
task_id: str,
|
||||
user_id: str | None = Depends(auth.get_user_id),
|
||||
) -> dict:
|
||||
"""
|
||||
Get the status of a long-running task.
|
||||
|
||||
Args:
|
||||
task_id: The task ID to check.
|
||||
user_id: Authenticated user ID for ownership validation.
|
||||
|
||||
Returns:
|
||||
dict: Task status including task_id, status, tool_name, and operation_id.
|
||||
|
||||
Raises:
|
||||
NotFoundError: If task_id is not found or user doesn't have access.
|
||||
"""
|
||||
task = await stream_registry.get_task(task_id)
|
||||
|
||||
if task is None:
|
||||
raise NotFoundError(f"Task {task_id} not found.")
|
||||
|
||||
# Validate ownership - if task has an owner, requester must match
|
||||
if task.user_id and user_id != task.user_id:
|
||||
raise NotFoundError(f"Task {task_id} not found.")
|
||||
|
||||
return {
|
||||
"task_id": task.task_id,
|
||||
"session_id": task.session_id,
|
||||
"status": task.status,
|
||||
"tool_name": task.tool_name,
|
||||
"operation_id": task.operation_id,
|
||||
"created_at": task.created_at.isoformat(),
|
||||
}
|
||||
|
||||
|
||||
# ========== External Completion Webhook ==========
|
||||
|
||||
|
||||
@router.post(
|
||||
"/operations/{operation_id}/complete",
|
||||
status_code=200,
|
||||
)
|
||||
async def complete_operation(
|
||||
operation_id: str,
|
||||
request: OperationCompleteRequest,
|
||||
x_api_key: str | None = Header(default=None),
|
||||
) -> dict:
|
||||
"""
|
||||
External completion webhook for long-running operations.
|
||||
|
||||
Called by Agent Generator (or other services) when an operation completes.
|
||||
This triggers the stream registry to publish completion and continue LLM generation.
|
||||
|
||||
Args:
|
||||
operation_id: The operation ID to complete.
|
||||
request: Completion payload with success status and result/error.
|
||||
x_api_key: Internal API key for authentication.
|
||||
|
||||
Returns:
|
||||
dict: Status of the completion.
|
||||
|
||||
Raises:
|
||||
HTTPException: If API key is invalid or operation not found.
|
||||
"""
|
||||
# Validate internal API key - reject if not configured or invalid
|
||||
if not config.internal_api_key:
|
||||
logger.error(
|
||||
"Operation complete webhook rejected: CHAT_INTERNAL_API_KEY not configured"
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=503,
|
||||
detail="Webhook not available: internal API key not configured",
|
||||
)
|
||||
if x_api_key != config.internal_api_key:
|
||||
raise HTTPException(status_code=401, detail="Invalid API key")
|
||||
|
||||
# Find task by operation_id
|
||||
task = await stream_registry.find_task_by_operation_id(operation_id)
|
||||
if task is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail=f"Operation {operation_id} not found",
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Received completion webhook for operation {operation_id} "
|
||||
f"(task_id={task.task_id}, success={request.success})"
|
||||
)
|
||||
|
||||
if request.success:
|
||||
await process_operation_success(task, request.result)
|
||||
else:
|
||||
await process_operation_failure(task, request.error)
|
||||
|
||||
return {"status": "ok", "task_id": task.task_id}
|
||||
|
||||
|
||||
# ========== Configuration ==========
|
||||
|
||||
|
||||
@router.get("/config/ttl", status_code=200)
|
||||
async def get_ttl_config() -> dict:
|
||||
"""
|
||||
Get the stream TTL configuration.
|
||||
|
||||
Returns the Time-To-Live settings for chat streams, which determines
|
||||
how long clients can reconnect to an active stream.
|
||||
|
||||
Returns:
|
||||
dict: TTL configuration with seconds and milliseconds values.
|
||||
"""
|
||||
return {
|
||||
"stream_ttl_seconds": config.stream_ttl,
|
||||
"stream_ttl_ms": config.stream_ttl * 1000,
|
||||
}
|
||||
|
||||
|
||||
# ========== Health Check ==========
|
||||
|
||||
|
||||
@@ -1034,44 +402,3 @@ async def health_check() -> dict:
|
||||
"service": "chat",
|
||||
"version": "0.1.0",
|
||||
}
|
||||
|
||||
|
||||
# ========== Schema Export (for OpenAPI / Orval codegen) ==========
|
||||
|
||||
ToolResponseUnion = (
|
||||
AgentsFoundResponse
|
||||
| NoResultsResponse
|
||||
| AgentDetailsResponse
|
||||
| SetupRequirementsResponse
|
||||
| ExecutionStartedResponse
|
||||
| NeedLoginResponse
|
||||
| ErrorResponse
|
||||
| InputValidationErrorResponse
|
||||
| AgentOutputResponse
|
||||
| UnderstandingUpdatedResponse
|
||||
| AgentPreviewResponse
|
||||
| AgentSavedResponse
|
||||
| ClarificationNeededResponse
|
||||
| SuggestedGoalResponse
|
||||
| BlockListResponse
|
||||
| BlockDetailsResponse
|
||||
| BlockOutputResponse
|
||||
| DocSearchResultsResponse
|
||||
| DocPageResponse
|
||||
| OperationStartedResponse
|
||||
| OperationPendingResponse
|
||||
| OperationInProgressResponse
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/schema/tool-responses",
|
||||
response_model=ToolResponseUnion,
|
||||
include_in_schema=True,
|
||||
summary="[Dummy] Tool response type export for codegen",
|
||||
description="This endpoint is not meant to be called. It exists solely to "
|
||||
"expose tool response models in the OpenAPI schema for frontend codegen.",
|
||||
)
|
||||
async def _tool_response_schema() -> ToolResponseUnion: # type: ignore[return]
|
||||
"""Never called at runtime. Exists only so Orval generates TS types."""
|
||||
raise HTTPException(status_code=501, detail="Schema-only endpoint")
|
||||
|
||||
@@ -1,14 +0,0 @@
|
||||
"""Claude Agent SDK integration for CoPilot.
|
||||
|
||||
This module provides the integration layer between the Claude Agent SDK
|
||||
and the existing CoPilot tool system, enabling drop-in replacement of
|
||||
the current LLM orchestration with the battle-tested Claude Agent SDK.
|
||||
"""
|
||||
|
||||
from .service import stream_chat_completion_sdk
|
||||
from .tool_adapter import create_copilot_mcp_server
|
||||
|
||||
__all__ = [
|
||||
"stream_chat_completion_sdk",
|
||||
"create_copilot_mcp_server",
|
||||
]
|
||||
@@ -1,203 +0,0 @@
|
||||
"""Response adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
|
||||
|
||||
This module provides the adapter layer that converts streaming messages from
|
||||
the Claude Agent SDK into the Vercel AI SDK UI Stream Protocol format that
|
||||
the frontend expects.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
|
||||
from claude_agent_sdk import (
|
||||
AssistantMessage,
|
||||
Message,
|
||||
ResultMessage,
|
||||
SystemMessage,
|
||||
TextBlock,
|
||||
ToolResultBlock,
|
||||
ToolUseBlock,
|
||||
UserMessage,
|
||||
)
|
||||
|
||||
from backend.api.features.chat.response_model import (
|
||||
StreamBaseResponse,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamFinishStep,
|
||||
StreamStart,
|
||||
StreamStartStep,
|
||||
StreamTextDelta,
|
||||
StreamTextEnd,
|
||||
StreamTextStart,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolInputStart,
|
||||
StreamToolOutputAvailable,
|
||||
)
|
||||
from backend.api.features.chat.sdk.tool_adapter import (
|
||||
MCP_TOOL_PREFIX,
|
||||
pop_pending_tool_output,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SDKResponseAdapter:
|
||||
"""Adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
|
||||
|
||||
This class maintains state during a streaming session to properly track
|
||||
text blocks, tool calls, and message lifecycle.
|
||||
"""
|
||||
|
||||
def __init__(self, message_id: str | None = None):
|
||||
self.message_id = message_id or str(uuid.uuid4())
|
||||
self.text_block_id = str(uuid.uuid4())
|
||||
self.has_started_text = False
|
||||
self.has_ended_text = False
|
||||
self.current_tool_calls: dict[str, dict[str, str]] = {}
|
||||
self.task_id: str | None = None
|
||||
self.step_open = False
|
||||
|
||||
def set_task_id(self, task_id: str) -> None:
|
||||
"""Set the task ID for reconnection support."""
|
||||
self.task_id = task_id
|
||||
|
||||
def convert_message(self, sdk_message: Message) -> list[StreamBaseResponse]:
|
||||
"""Convert a single SDK message to Vercel AI SDK format."""
|
||||
responses: list[StreamBaseResponse] = []
|
||||
|
||||
if isinstance(sdk_message, SystemMessage):
|
||||
if sdk_message.subtype == "init":
|
||||
responses.append(
|
||||
StreamStart(messageId=self.message_id, taskId=self.task_id)
|
||||
)
|
||||
# Open the first step (matches non-SDK: StreamStart then StreamStartStep)
|
||||
responses.append(StreamStartStep())
|
||||
self.step_open = True
|
||||
|
||||
elif isinstance(sdk_message, AssistantMessage):
|
||||
# After tool results, the SDK sends a new AssistantMessage for the
|
||||
# next LLM turn. Open a new step if the previous one was closed.
|
||||
if not self.step_open:
|
||||
responses.append(StreamStartStep())
|
||||
self.step_open = True
|
||||
|
||||
for block in sdk_message.content:
|
||||
if isinstance(block, TextBlock):
|
||||
if block.text:
|
||||
self._ensure_text_started(responses)
|
||||
responses.append(
|
||||
StreamTextDelta(id=self.text_block_id, delta=block.text)
|
||||
)
|
||||
|
||||
elif isinstance(block, ToolUseBlock):
|
||||
self._end_text_if_open(responses)
|
||||
|
||||
# Strip MCP prefix so frontend sees "find_block"
|
||||
# instead of "mcp__copilot__find_block".
|
||||
tool_name = block.name.removeprefix(MCP_TOOL_PREFIX)
|
||||
|
||||
responses.append(
|
||||
StreamToolInputStart(toolCallId=block.id, toolName=tool_name)
|
||||
)
|
||||
responses.append(
|
||||
StreamToolInputAvailable(
|
||||
toolCallId=block.id,
|
||||
toolName=tool_name,
|
||||
input=block.input,
|
||||
)
|
||||
)
|
||||
self.current_tool_calls[block.id] = {"name": tool_name}
|
||||
|
||||
elif isinstance(sdk_message, UserMessage):
|
||||
# UserMessage carries tool results back from tool execution.
|
||||
content = sdk_message.content
|
||||
blocks = content if isinstance(content, list) else []
|
||||
for block in blocks:
|
||||
if isinstance(block, ToolResultBlock) and block.tool_use_id:
|
||||
tool_info = self.current_tool_calls.get(block.tool_use_id, {})
|
||||
tool_name = tool_info.get("name", "unknown")
|
||||
|
||||
# Prefer the stashed full output over the SDK's
|
||||
# (potentially truncated) ToolResultBlock content.
|
||||
# The SDK truncates large results, writing them to disk,
|
||||
# which breaks frontend widget parsing.
|
||||
output = pop_pending_tool_output(tool_name) or (
|
||||
_extract_tool_output(block.content)
|
||||
)
|
||||
|
||||
responses.append(
|
||||
StreamToolOutputAvailable(
|
||||
toolCallId=block.tool_use_id,
|
||||
toolName=tool_name,
|
||||
output=output,
|
||||
success=not (block.is_error or False),
|
||||
)
|
||||
)
|
||||
|
||||
# Close the current step after tool results — the next
|
||||
# AssistantMessage will open a new step for the continuation.
|
||||
if self.step_open:
|
||||
responses.append(StreamFinishStep())
|
||||
self.step_open = False
|
||||
|
||||
elif isinstance(sdk_message, ResultMessage):
|
||||
self._end_text_if_open(responses)
|
||||
# Close the step before finishing.
|
||||
if self.step_open:
|
||||
responses.append(StreamFinishStep())
|
||||
self.step_open = False
|
||||
|
||||
if sdk_message.subtype == "success":
|
||||
responses.append(StreamFinish())
|
||||
elif sdk_message.subtype in ("error", "error_during_execution"):
|
||||
error_msg = getattr(sdk_message, "result", None) or "Unknown error"
|
||||
responses.append(
|
||||
StreamError(errorText=str(error_msg), code="sdk_error")
|
||||
)
|
||||
responses.append(StreamFinish())
|
||||
else:
|
||||
logger.warning(
|
||||
f"Unexpected ResultMessage subtype: {sdk_message.subtype}"
|
||||
)
|
||||
responses.append(StreamFinish())
|
||||
|
||||
else:
|
||||
logger.debug(f"Unhandled SDK message type: {type(sdk_message).__name__}")
|
||||
|
||||
return responses
|
||||
|
||||
def _ensure_text_started(self, responses: list[StreamBaseResponse]) -> None:
|
||||
"""Start (or restart) a text block if needed."""
|
||||
if not self.has_started_text or self.has_ended_text:
|
||||
if self.has_ended_text:
|
||||
self.text_block_id = str(uuid.uuid4())
|
||||
self.has_ended_text = False
|
||||
responses.append(StreamTextStart(id=self.text_block_id))
|
||||
self.has_started_text = True
|
||||
|
||||
def _end_text_if_open(self, responses: list[StreamBaseResponse]) -> None:
|
||||
"""End the current text block if one is open."""
|
||||
if self.has_started_text and not self.has_ended_text:
|
||||
responses.append(StreamTextEnd(id=self.text_block_id))
|
||||
self.has_ended_text = True
|
||||
|
||||
|
||||
def _extract_tool_output(content: str | list[dict[str, str]] | None) -> str:
|
||||
"""Extract a string output from a ToolResultBlock's content field."""
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
if isinstance(content, list):
|
||||
parts = [item.get("text", "") for item in content if item.get("type") == "text"]
|
||||
if parts:
|
||||
return "".join(parts)
|
||||
try:
|
||||
return json.dumps(content)
|
||||
except (TypeError, ValueError):
|
||||
return str(content)
|
||||
if content is None:
|
||||
return ""
|
||||
try:
|
||||
return json.dumps(content)
|
||||
except (TypeError, ValueError):
|
||||
return str(content)
|
||||
@@ -1,366 +0,0 @@
|
||||
"""Unit tests for the SDK response adapter."""
|
||||
|
||||
from claude_agent_sdk import (
|
||||
AssistantMessage,
|
||||
ResultMessage,
|
||||
SystemMessage,
|
||||
TextBlock,
|
||||
ToolResultBlock,
|
||||
ToolUseBlock,
|
||||
UserMessage,
|
||||
)
|
||||
|
||||
from backend.api.features.chat.response_model import (
|
||||
StreamBaseResponse,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamFinishStep,
|
||||
StreamStart,
|
||||
StreamStartStep,
|
||||
StreamTextDelta,
|
||||
StreamTextEnd,
|
||||
StreamTextStart,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolInputStart,
|
||||
StreamToolOutputAvailable,
|
||||
)
|
||||
|
||||
from .response_adapter import SDKResponseAdapter
|
||||
from .tool_adapter import MCP_TOOL_PREFIX
|
||||
|
||||
|
||||
def _adapter() -> SDKResponseAdapter:
|
||||
a = SDKResponseAdapter(message_id="msg-1")
|
||||
a.set_task_id("task-1")
|
||||
return a
|
||||
|
||||
|
||||
# -- SystemMessage -----------------------------------------------------------
|
||||
|
||||
|
||||
def test_system_init_emits_start_and_step():
|
||||
adapter = _adapter()
|
||||
results = adapter.convert_message(SystemMessage(subtype="init", data={}))
|
||||
assert len(results) == 2
|
||||
assert isinstance(results[0], StreamStart)
|
||||
assert results[0].messageId == "msg-1"
|
||||
assert results[0].taskId == "task-1"
|
||||
assert isinstance(results[1], StreamStartStep)
|
||||
|
||||
|
||||
def test_system_non_init_emits_nothing():
|
||||
adapter = _adapter()
|
||||
results = adapter.convert_message(SystemMessage(subtype="other", data={}))
|
||||
assert results == []
|
||||
|
||||
|
||||
# -- AssistantMessage with TextBlock -----------------------------------------
|
||||
|
||||
|
||||
def test_text_block_emits_step_start_and_delta():
|
||||
adapter = _adapter()
|
||||
msg = AssistantMessage(content=[TextBlock(text="hello")], model="test")
|
||||
results = adapter.convert_message(msg)
|
||||
assert len(results) == 3
|
||||
assert isinstance(results[0], StreamStartStep)
|
||||
assert isinstance(results[1], StreamTextStart)
|
||||
assert isinstance(results[2], StreamTextDelta)
|
||||
assert results[2].delta == "hello"
|
||||
|
||||
|
||||
def test_empty_text_block_emits_only_step():
|
||||
adapter = _adapter()
|
||||
msg = AssistantMessage(content=[TextBlock(text="")], model="test")
|
||||
results = adapter.convert_message(msg)
|
||||
# Empty text skipped, but step still opens
|
||||
assert len(results) == 1
|
||||
assert isinstance(results[0], StreamStartStep)
|
||||
|
||||
|
||||
def test_multiple_text_deltas_reuse_block_id():
|
||||
adapter = _adapter()
|
||||
msg1 = AssistantMessage(content=[TextBlock(text="a")], model="test")
|
||||
msg2 = AssistantMessage(content=[TextBlock(text="b")], model="test")
|
||||
r1 = adapter.convert_message(msg1)
|
||||
r2 = adapter.convert_message(msg2)
|
||||
# First gets step+start+delta, second only delta (block & step already started)
|
||||
assert len(r1) == 3
|
||||
assert isinstance(r1[0], StreamStartStep)
|
||||
assert isinstance(r1[1], StreamTextStart)
|
||||
assert len(r2) == 1
|
||||
assert isinstance(r2[0], StreamTextDelta)
|
||||
assert r1[1].id == r2[0].id # same block ID
|
||||
|
||||
|
||||
# -- AssistantMessage with ToolUseBlock --------------------------------------
|
||||
|
||||
|
||||
def test_tool_use_emits_input_start_and_available():
|
||||
"""Tool names arrive with MCP prefix and should be stripped for the frontend."""
|
||||
adapter = _adapter()
|
||||
msg = AssistantMessage(
|
||||
content=[
|
||||
ToolUseBlock(
|
||||
id="tool-1",
|
||||
name=f"{MCP_TOOL_PREFIX}find_agent",
|
||||
input={"q": "x"},
|
||||
)
|
||||
],
|
||||
model="test",
|
||||
)
|
||||
results = adapter.convert_message(msg)
|
||||
assert len(results) == 3
|
||||
assert isinstance(results[0], StreamStartStep)
|
||||
assert isinstance(results[1], StreamToolInputStart)
|
||||
assert results[1].toolCallId == "tool-1"
|
||||
assert results[1].toolName == "find_agent" # prefix stripped
|
||||
assert isinstance(results[2], StreamToolInputAvailable)
|
||||
assert results[2].toolName == "find_agent" # prefix stripped
|
||||
assert results[2].input == {"q": "x"}
|
||||
|
||||
|
||||
def test_text_then_tool_ends_text_block():
|
||||
adapter = _adapter()
|
||||
text_msg = AssistantMessage(content=[TextBlock(text="thinking...")], model="test")
|
||||
tool_msg = AssistantMessage(
|
||||
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
|
||||
model="test",
|
||||
)
|
||||
adapter.convert_message(text_msg) # opens step + text
|
||||
results = adapter.convert_message(tool_msg)
|
||||
# Step already open, so: TextEnd, ToolInputStart, ToolInputAvailable
|
||||
assert len(results) == 3
|
||||
assert isinstance(results[0], StreamTextEnd)
|
||||
assert isinstance(results[1], StreamToolInputStart)
|
||||
|
||||
|
||||
# -- UserMessage with ToolResultBlock ----------------------------------------
|
||||
|
||||
|
||||
def test_tool_result_emits_output_and_finish_step():
|
||||
adapter = _adapter()
|
||||
# First register the tool call (opens step) — SDK sends prefixed name
|
||||
tool_msg = AssistantMessage(
|
||||
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}find_agent", input={})],
|
||||
model="test",
|
||||
)
|
||||
adapter.convert_message(tool_msg)
|
||||
|
||||
# Now send tool result
|
||||
result_msg = UserMessage(
|
||||
content=[ToolResultBlock(tool_use_id="t1", content="found 3 agents")]
|
||||
)
|
||||
results = adapter.convert_message(result_msg)
|
||||
assert len(results) == 2
|
||||
assert isinstance(results[0], StreamToolOutputAvailable)
|
||||
assert results[0].toolCallId == "t1"
|
||||
assert results[0].toolName == "find_agent" # prefix stripped
|
||||
assert results[0].output == "found 3 agents"
|
||||
assert results[0].success is True
|
||||
assert isinstance(results[1], StreamFinishStep)
|
||||
|
||||
|
||||
def test_tool_result_error():
|
||||
adapter = _adapter()
|
||||
adapter.convert_message(
|
||||
AssistantMessage(
|
||||
content=[
|
||||
ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}run_agent", input={})
|
||||
],
|
||||
model="test",
|
||||
)
|
||||
)
|
||||
result_msg = UserMessage(
|
||||
content=[ToolResultBlock(tool_use_id="t1", content="timeout", is_error=True)]
|
||||
)
|
||||
results = adapter.convert_message(result_msg)
|
||||
assert isinstance(results[0], StreamToolOutputAvailable)
|
||||
assert results[0].success is False
|
||||
assert isinstance(results[1], StreamFinishStep)
|
||||
|
||||
|
||||
def test_tool_result_list_content():
|
||||
adapter = _adapter()
|
||||
adapter.convert_message(
|
||||
AssistantMessage(
|
||||
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
|
||||
model="test",
|
||||
)
|
||||
)
|
||||
result_msg = UserMessage(
|
||||
content=[
|
||||
ToolResultBlock(
|
||||
tool_use_id="t1",
|
||||
content=[
|
||||
{"type": "text", "text": "line1"},
|
||||
{"type": "text", "text": "line2"},
|
||||
],
|
||||
)
|
||||
]
|
||||
)
|
||||
results = adapter.convert_message(result_msg)
|
||||
assert isinstance(results[0], StreamToolOutputAvailable)
|
||||
assert results[0].output == "line1line2"
|
||||
assert isinstance(results[1], StreamFinishStep)
|
||||
|
||||
|
||||
def test_string_user_message_ignored():
|
||||
"""A plain string UserMessage (not tool results) produces no output."""
|
||||
adapter = _adapter()
|
||||
results = adapter.convert_message(UserMessage(content="hello"))
|
||||
assert results == []
|
||||
|
||||
|
||||
# -- ResultMessage -----------------------------------------------------------
|
||||
|
||||
|
||||
def test_result_success_emits_finish_step_and_finish():
|
||||
adapter = _adapter()
|
||||
# Start some text first (opens step)
|
||||
adapter.convert_message(
|
||||
AssistantMessage(content=[TextBlock(text="done")], model="test")
|
||||
)
|
||||
msg = ResultMessage(
|
||||
subtype="success",
|
||||
duration_ms=100,
|
||||
duration_api_ms=50,
|
||||
is_error=False,
|
||||
num_turns=1,
|
||||
session_id="s1",
|
||||
)
|
||||
results = adapter.convert_message(msg)
|
||||
# TextEnd + FinishStep + StreamFinish
|
||||
assert len(results) == 3
|
||||
assert isinstance(results[0], StreamTextEnd)
|
||||
assert isinstance(results[1], StreamFinishStep)
|
||||
assert isinstance(results[2], StreamFinish)
|
||||
|
||||
|
||||
def test_result_error_emits_error_and_finish():
|
||||
adapter = _adapter()
|
||||
msg = ResultMessage(
|
||||
subtype="error",
|
||||
duration_ms=100,
|
||||
duration_api_ms=50,
|
||||
is_error=True,
|
||||
num_turns=0,
|
||||
session_id="s1",
|
||||
result="API rate limited",
|
||||
)
|
||||
results = adapter.convert_message(msg)
|
||||
# No step was open, so no FinishStep — just Error + Finish
|
||||
assert len(results) == 2
|
||||
assert isinstance(results[0], StreamError)
|
||||
assert "API rate limited" in results[0].errorText
|
||||
assert isinstance(results[1], StreamFinish)
|
||||
|
||||
|
||||
# -- Text after tools (new block ID) ----------------------------------------
|
||||
|
||||
|
||||
def test_text_after_tool_gets_new_block_id():
|
||||
adapter = _adapter()
|
||||
# Text -> Tool -> ToolResult -> Text should get a new text block ID and step
|
||||
adapter.convert_message(
|
||||
AssistantMessage(content=[TextBlock(text="before")], model="test")
|
||||
)
|
||||
adapter.convert_message(
|
||||
AssistantMessage(
|
||||
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
|
||||
model="test",
|
||||
)
|
||||
)
|
||||
# Send tool result (closes step)
|
||||
adapter.convert_message(
|
||||
UserMessage(content=[ToolResultBlock(tool_use_id="t1", content="ok")])
|
||||
)
|
||||
results = adapter.convert_message(
|
||||
AssistantMessage(content=[TextBlock(text="after")], model="test")
|
||||
)
|
||||
# Should get StreamStartStep (new step) + StreamTextStart (new block) + StreamTextDelta
|
||||
assert len(results) == 3
|
||||
assert isinstance(results[0], StreamStartStep)
|
||||
assert isinstance(results[1], StreamTextStart)
|
||||
assert isinstance(results[2], StreamTextDelta)
|
||||
assert results[2].delta == "after"
|
||||
|
||||
|
||||
# -- Full conversation flow --------------------------------------------------
|
||||
|
||||
|
||||
def test_full_conversation_flow():
|
||||
"""Simulate a complete conversation: init -> text -> tool -> result -> text -> finish."""
|
||||
adapter = _adapter()
|
||||
all_responses: list[StreamBaseResponse] = []
|
||||
|
||||
# 1. Init
|
||||
all_responses.extend(
|
||||
adapter.convert_message(SystemMessage(subtype="init", data={}))
|
||||
)
|
||||
# 2. Assistant text
|
||||
all_responses.extend(
|
||||
adapter.convert_message(
|
||||
AssistantMessage(content=[TextBlock(text="Let me search")], model="test")
|
||||
)
|
||||
)
|
||||
# 3. Tool use
|
||||
all_responses.extend(
|
||||
adapter.convert_message(
|
||||
AssistantMessage(
|
||||
content=[
|
||||
ToolUseBlock(
|
||||
id="t1",
|
||||
name=f"{MCP_TOOL_PREFIX}find_agent",
|
||||
input={"query": "email"},
|
||||
)
|
||||
],
|
||||
model="test",
|
||||
)
|
||||
)
|
||||
)
|
||||
# 4. Tool result
|
||||
all_responses.extend(
|
||||
adapter.convert_message(
|
||||
UserMessage(
|
||||
content=[ToolResultBlock(tool_use_id="t1", content="Found 2 agents")]
|
||||
)
|
||||
)
|
||||
)
|
||||
# 5. More text
|
||||
all_responses.extend(
|
||||
adapter.convert_message(
|
||||
AssistantMessage(content=[TextBlock(text="I found 2")], model="test")
|
||||
)
|
||||
)
|
||||
# 6. Result
|
||||
all_responses.extend(
|
||||
adapter.convert_message(
|
||||
ResultMessage(
|
||||
subtype="success",
|
||||
duration_ms=500,
|
||||
duration_api_ms=400,
|
||||
is_error=False,
|
||||
num_turns=2,
|
||||
session_id="s1",
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
types = [type(r).__name__ for r in all_responses]
|
||||
assert types == [
|
||||
"StreamStart",
|
||||
"StreamStartStep", # step 1: text + tool call
|
||||
"StreamTextStart",
|
||||
"StreamTextDelta", # "Let me search"
|
||||
"StreamTextEnd", # closed before tool
|
||||
"StreamToolInputStart",
|
||||
"StreamToolInputAvailable",
|
||||
"StreamToolOutputAvailable", # tool result
|
||||
"StreamFinishStep", # step 1 closed after tool result
|
||||
"StreamStartStep", # step 2: continuation text
|
||||
"StreamTextStart", # new block after tool
|
||||
"StreamTextDelta", # "I found 2"
|
||||
"StreamTextEnd", # closed by result
|
||||
"StreamFinishStep", # step 2 closed
|
||||
"StreamFinish",
|
||||
]
|
||||
@@ -1,305 +0,0 @@
|
||||
"""Security hooks for Claude Agent SDK integration.
|
||||
|
||||
This module provides security hooks that validate tool calls before execution,
|
||||
ensuring multi-user isolation and preventing unauthorized operations.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
from collections.abc import Callable
|
||||
from typing import Any, cast
|
||||
|
||||
from backend.api.features.chat.sdk.tool_adapter import (
|
||||
BLOCKED_TOOLS,
|
||||
DANGEROUS_PATTERNS,
|
||||
MCP_TOOL_PREFIX,
|
||||
WORKSPACE_SCOPED_TOOLS,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _deny(reason: str) -> dict[str, Any]:
|
||||
"""Return a hook denial response."""
|
||||
return {
|
||||
"hookSpecificOutput": {
|
||||
"hookEventName": "PreToolUse",
|
||||
"permissionDecision": "deny",
|
||||
"permissionDecisionReason": reason,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def _validate_workspace_path(
|
||||
tool_name: str, tool_input: dict[str, Any], sdk_cwd: str | None
|
||||
) -> dict[str, Any]:
|
||||
"""Validate that a workspace-scoped tool only accesses allowed paths.
|
||||
|
||||
Allowed directories:
|
||||
- The SDK working directory (``/tmp/copilot-<session>/``)
|
||||
- The SDK tool-results directory (``~/.claude/projects/…/tool-results/``)
|
||||
"""
|
||||
path = tool_input.get("file_path") or tool_input.get("path") or ""
|
||||
if not path:
|
||||
# Glob/Grep without a path default to cwd which is already sandboxed
|
||||
return {}
|
||||
|
||||
# Resolve relative paths against sdk_cwd (the SDK sets cwd so the LLM
|
||||
# naturally uses relative paths like "test.txt" instead of absolute ones).
|
||||
# Tilde paths (~/) are home-dir references, not relative — expand first.
|
||||
if path.startswith("~"):
|
||||
resolved = os.path.realpath(os.path.expanduser(path))
|
||||
elif not os.path.isabs(path) and sdk_cwd:
|
||||
resolved = os.path.realpath(os.path.join(sdk_cwd, path))
|
||||
else:
|
||||
resolved = os.path.realpath(path)
|
||||
|
||||
# Allow access within the SDK working directory
|
||||
if sdk_cwd:
|
||||
norm_cwd = os.path.realpath(sdk_cwd)
|
||||
if resolved.startswith(norm_cwd + os.sep) or resolved == norm_cwd:
|
||||
return {}
|
||||
|
||||
# Allow access to ~/.claude/projects/*/tool-results/ (big tool results)
|
||||
claude_dir = os.path.realpath(os.path.expanduser("~/.claude/projects"))
|
||||
tool_results_seg = os.sep + "tool-results" + os.sep
|
||||
if resolved.startswith(claude_dir + os.sep) and tool_results_seg in resolved:
|
||||
return {}
|
||||
|
||||
logger.warning(
|
||||
f"Blocked {tool_name} outside workspace: {path} (resolved={resolved})"
|
||||
)
|
||||
workspace_hint = f" Allowed workspace: {sdk_cwd}" if sdk_cwd else ""
|
||||
return _deny(
|
||||
f"[SECURITY] Tool '{tool_name}' can only access files within the workspace "
|
||||
f"directory.{workspace_hint} "
|
||||
"This is enforced by the platform and cannot be bypassed."
|
||||
)
|
||||
|
||||
|
||||
def _validate_tool_access(
|
||||
tool_name: str, tool_input: dict[str, Any], sdk_cwd: str | None = None
|
||||
) -> dict[str, Any]:
|
||||
"""Validate that a tool call is allowed.
|
||||
|
||||
Returns:
|
||||
Empty dict to allow, or dict with hookSpecificOutput to deny
|
||||
"""
|
||||
# Block forbidden tools
|
||||
if tool_name in BLOCKED_TOOLS:
|
||||
logger.warning(f"Blocked tool access attempt: {tool_name}")
|
||||
return _deny(
|
||||
f"[SECURITY] Tool '{tool_name}' is blocked for security. "
|
||||
"This is enforced by the platform and cannot be bypassed. "
|
||||
"Use the CoPilot-specific MCP tools instead."
|
||||
)
|
||||
|
||||
# Workspace-scoped tools: allowed only within the SDK workspace directory
|
||||
if tool_name in WORKSPACE_SCOPED_TOOLS:
|
||||
return _validate_workspace_path(tool_name, tool_input, sdk_cwd)
|
||||
|
||||
# Check for dangerous patterns in tool input
|
||||
# Use json.dumps for predictable format (str() produces Python repr)
|
||||
input_str = json.dumps(tool_input) if tool_input else ""
|
||||
|
||||
for pattern in DANGEROUS_PATTERNS:
|
||||
if re.search(pattern, input_str, re.IGNORECASE):
|
||||
logger.warning(
|
||||
f"Blocked dangerous pattern in tool input: {pattern} in {tool_name}"
|
||||
)
|
||||
return _deny(
|
||||
"[SECURITY] Input contains a blocked pattern. "
|
||||
"This is enforced by the platform and cannot be bypassed."
|
||||
)
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def _validate_user_isolation(
|
||||
tool_name: str, tool_input: dict[str, Any], user_id: str | None
|
||||
) -> dict[str, Any]:
|
||||
"""Validate that tool calls respect user isolation."""
|
||||
# For workspace file tools, ensure path doesn't escape
|
||||
if "workspace" in tool_name.lower():
|
||||
path = tool_input.get("path", "") or tool_input.get("file_path", "")
|
||||
if path:
|
||||
# Check for path traversal
|
||||
if ".." in path or path.startswith("/"):
|
||||
logger.warning(
|
||||
f"Blocked path traversal attempt: {path} by user {user_id}"
|
||||
)
|
||||
return {
|
||||
"hookSpecificOutput": {
|
||||
"hookEventName": "PreToolUse",
|
||||
"permissionDecision": "deny",
|
||||
"permissionDecisionReason": "Path traversal not allowed",
|
||||
}
|
||||
}
|
||||
|
||||
return {}
|
||||
|
||||
|
||||
def create_security_hooks(
|
||||
user_id: str | None,
|
||||
sdk_cwd: str | None = None,
|
||||
max_subtasks: int = 3,
|
||||
on_stop: Callable[[str, str], None] | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Create the security hooks configuration for Claude Agent SDK.
|
||||
|
||||
Includes security validation and observability hooks:
|
||||
- PreToolUse: Security validation before tool execution
|
||||
- PostToolUse: Log successful tool executions
|
||||
- PostToolUseFailure: Log and handle failed tool executions
|
||||
- PreCompact: Log context compaction events (SDK handles compaction automatically)
|
||||
- Stop: Capture transcript path for stateless resume (when *on_stop* is provided)
|
||||
|
||||
Args:
|
||||
user_id: Current user ID for isolation validation
|
||||
sdk_cwd: SDK working directory for workspace-scoped tool validation
|
||||
max_subtasks: Maximum Task (sub-agent) spawns allowed per session
|
||||
on_stop: Callback ``(transcript_path, sdk_session_id)`` invoked when
|
||||
the SDK finishes processing — used to read the JSONL transcript
|
||||
before the CLI process exits.
|
||||
|
||||
Returns:
|
||||
Hooks configuration dict for ClaudeAgentOptions
|
||||
"""
|
||||
try:
|
||||
from claude_agent_sdk import HookMatcher
|
||||
from claude_agent_sdk.types import HookContext, HookInput, SyncHookJSONOutput
|
||||
|
||||
# Per-session counter for Task sub-agent spawns
|
||||
task_spawn_count = 0
|
||||
|
||||
async def pre_tool_use_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Combined pre-tool-use validation hook."""
|
||||
nonlocal task_spawn_count
|
||||
_ = context # unused but required by signature
|
||||
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||
tool_input = cast(dict[str, Any], input_data.get("tool_input", {}))
|
||||
|
||||
# Rate-limit Task (sub-agent) spawns per session
|
||||
if tool_name == "Task":
|
||||
task_spawn_count += 1
|
||||
if task_spawn_count > max_subtasks:
|
||||
logger.warning(
|
||||
f"[SDK] Task limit reached ({max_subtasks}), user={user_id}"
|
||||
)
|
||||
return cast(
|
||||
SyncHookJSONOutput,
|
||||
_deny(
|
||||
f"Maximum {max_subtasks} sub-tasks per session. "
|
||||
"Please continue in the main conversation."
|
||||
),
|
||||
)
|
||||
|
||||
# Strip MCP prefix for consistent validation
|
||||
is_copilot_tool = tool_name.startswith(MCP_TOOL_PREFIX)
|
||||
clean_name = tool_name.removeprefix(MCP_TOOL_PREFIX)
|
||||
|
||||
# Only block non-CoPilot tools; our MCP-registered tools
|
||||
# (including Read for oversized results) are already sandboxed.
|
||||
if not is_copilot_tool:
|
||||
result = _validate_tool_access(clean_name, tool_input, sdk_cwd)
|
||||
if result:
|
||||
return cast(SyncHookJSONOutput, result)
|
||||
|
||||
# Validate user isolation
|
||||
result = _validate_user_isolation(clean_name, tool_input, user_id)
|
||||
if result:
|
||||
return cast(SyncHookJSONOutput, result)
|
||||
|
||||
logger.debug(f"[SDK] Tool start: {tool_name}, user={user_id}")
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
async def post_tool_use_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Log successful tool executions for observability."""
|
||||
_ = context
|
||||
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||
logger.debug(f"[SDK] Tool success: {tool_name}, tool_use_id={tool_use_id}")
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
async def post_tool_failure_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Log failed tool executions for debugging."""
|
||||
_ = context
|
||||
tool_name = cast(str, input_data.get("tool_name", ""))
|
||||
error = input_data.get("error", "Unknown error")
|
||||
logger.warning(
|
||||
f"[SDK] Tool failed: {tool_name}, error={error}, "
|
||||
f"user={user_id}, tool_use_id={tool_use_id}"
|
||||
)
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
async def pre_compact_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Log when SDK triggers context compaction.
|
||||
|
||||
The SDK automatically compacts conversation history when it grows too large.
|
||||
This hook provides visibility into when compaction happens.
|
||||
"""
|
||||
_ = context, tool_use_id
|
||||
trigger = input_data.get("trigger", "auto")
|
||||
logger.info(
|
||||
f"[SDK] Context compaction triggered: {trigger}, user={user_id}"
|
||||
)
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
# --- Stop hook: capture transcript path for stateless resume ---
|
||||
async def stop_hook(
|
||||
input_data: HookInput,
|
||||
tool_use_id: str | None,
|
||||
context: HookContext,
|
||||
) -> SyncHookJSONOutput:
|
||||
"""Capture transcript path when SDK finishes processing.
|
||||
|
||||
The Stop hook fires while the CLI process is still alive, giving us
|
||||
a reliable window to read the JSONL transcript before SIGTERM.
|
||||
"""
|
||||
_ = context, tool_use_id
|
||||
transcript_path = cast(str, input_data.get("transcript_path", ""))
|
||||
sdk_session_id = cast(str, input_data.get("session_id", ""))
|
||||
|
||||
if transcript_path and on_stop:
|
||||
logger.info(
|
||||
f"[SDK] Stop hook: transcript_path={transcript_path}, "
|
||||
f"sdk_session_id={sdk_session_id[:12]}..."
|
||||
)
|
||||
on_stop(transcript_path, sdk_session_id)
|
||||
|
||||
return cast(SyncHookJSONOutput, {})
|
||||
|
||||
hooks: dict[str, Any] = {
|
||||
"PreToolUse": [HookMatcher(matcher="*", hooks=[pre_tool_use_hook])],
|
||||
"PostToolUse": [HookMatcher(matcher="*", hooks=[post_tool_use_hook])],
|
||||
"PostToolUseFailure": [
|
||||
HookMatcher(matcher="*", hooks=[post_tool_failure_hook])
|
||||
],
|
||||
"PreCompact": [HookMatcher(matcher="*", hooks=[pre_compact_hook])],
|
||||
}
|
||||
|
||||
if on_stop is not None:
|
||||
hooks["Stop"] = [HookMatcher(matcher=None, hooks=[stop_hook])]
|
||||
|
||||
return hooks
|
||||
except ImportError:
|
||||
# Fallback for when SDK isn't available - return empty hooks
|
||||
logger.warning("claude-agent-sdk not available, security hooks disabled")
|
||||
return {}
|
||||
@@ -1,165 +0,0 @@
|
||||
"""Unit tests for SDK security hooks."""
|
||||
|
||||
import os
|
||||
|
||||
from .security_hooks import _validate_tool_access, _validate_user_isolation
|
||||
|
||||
SDK_CWD = "/tmp/copilot-abc123"
|
||||
|
||||
|
||||
def _is_denied(result: dict) -> bool:
|
||||
hook = result.get("hookSpecificOutput", {})
|
||||
return hook.get("permissionDecision") == "deny"
|
||||
|
||||
|
||||
# -- Blocked tools -----------------------------------------------------------
|
||||
|
||||
|
||||
def test_blocked_tools_denied():
|
||||
for tool in ("bash", "shell", "exec", "terminal", "command"):
|
||||
result = _validate_tool_access(tool, {})
|
||||
assert _is_denied(result), f"{tool} should be blocked"
|
||||
|
||||
|
||||
def test_unknown_tool_allowed():
|
||||
result = _validate_tool_access("SomeCustomTool", {})
|
||||
assert result == {}
|
||||
|
||||
|
||||
# -- Workspace-scoped tools --------------------------------------------------
|
||||
|
||||
|
||||
def test_read_within_workspace_allowed():
|
||||
result = _validate_tool_access(
|
||||
"Read", {"file_path": f"{SDK_CWD}/file.txt"}, sdk_cwd=SDK_CWD
|
||||
)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_write_within_workspace_allowed():
|
||||
result = _validate_tool_access(
|
||||
"Write", {"file_path": f"{SDK_CWD}/output.json"}, sdk_cwd=SDK_CWD
|
||||
)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_edit_within_workspace_allowed():
|
||||
result = _validate_tool_access(
|
||||
"Edit", {"file_path": f"{SDK_CWD}/src/main.py"}, sdk_cwd=SDK_CWD
|
||||
)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_glob_within_workspace_allowed():
|
||||
result = _validate_tool_access("Glob", {"path": f"{SDK_CWD}/src"}, sdk_cwd=SDK_CWD)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_grep_within_workspace_allowed():
|
||||
result = _validate_tool_access("Grep", {"path": f"{SDK_CWD}/src"}, sdk_cwd=SDK_CWD)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_read_outside_workspace_denied():
|
||||
result = _validate_tool_access(
|
||||
"Read", {"file_path": "/etc/passwd"}, sdk_cwd=SDK_CWD
|
||||
)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_write_outside_workspace_denied():
|
||||
result = _validate_tool_access(
|
||||
"Write", {"file_path": "/home/user/secrets.txt"}, sdk_cwd=SDK_CWD
|
||||
)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_traversal_attack_denied():
|
||||
result = _validate_tool_access(
|
||||
"Read",
|
||||
{"file_path": f"{SDK_CWD}/../../etc/passwd"},
|
||||
sdk_cwd=SDK_CWD,
|
||||
)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_no_path_allowed():
|
||||
"""Glob/Grep without a path argument defaults to cwd — should pass."""
|
||||
result = _validate_tool_access("Glob", {}, sdk_cwd=SDK_CWD)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_read_no_cwd_denies_absolute():
|
||||
"""If no sdk_cwd is set, absolute paths are denied."""
|
||||
result = _validate_tool_access("Read", {"file_path": "/tmp/anything"})
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
# -- Tool-results directory --------------------------------------------------
|
||||
|
||||
|
||||
def test_read_tool_results_allowed():
|
||||
home = os.path.expanduser("~")
|
||||
path = f"{home}/.claude/projects/-tmp-copilot-abc123/tool-results/12345.txt"
|
||||
result = _validate_tool_access("Read", {"file_path": path}, sdk_cwd=SDK_CWD)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_read_claude_projects_without_tool_results_denied():
|
||||
home = os.path.expanduser("~")
|
||||
path = f"{home}/.claude/projects/-tmp-copilot-abc123/settings.json"
|
||||
result = _validate_tool_access("Read", {"file_path": path}, sdk_cwd=SDK_CWD)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
# -- Built-in Bash is blocked (use bash_exec MCP tool instead) ---------------
|
||||
|
||||
|
||||
def test_bash_builtin_always_blocked():
|
||||
"""SDK built-in Bash is blocked — bash_exec MCP tool with bubblewrap is used instead."""
|
||||
result = _validate_tool_access("Bash", {"command": "echo hello"}, sdk_cwd=SDK_CWD)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
# -- Dangerous patterns ------------------------------------------------------
|
||||
|
||||
|
||||
def test_dangerous_pattern_blocked():
|
||||
result = _validate_tool_access("SomeTool", {"cmd": "sudo rm -rf /"})
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_subprocess_pattern_blocked():
|
||||
result = _validate_tool_access("SomeTool", {"code": "subprocess.run(...)"})
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
# -- User isolation ----------------------------------------------------------
|
||||
|
||||
|
||||
def test_workspace_path_traversal_blocked():
|
||||
result = _validate_user_isolation(
|
||||
"workspace_read", {"path": "../../../etc/shadow"}, user_id="user-1"
|
||||
)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_workspace_absolute_path_blocked():
|
||||
result = _validate_user_isolation(
|
||||
"workspace_read", {"path": "/etc/passwd"}, user_id="user-1"
|
||||
)
|
||||
assert _is_denied(result)
|
||||
|
||||
|
||||
def test_workspace_normal_path_allowed():
|
||||
result = _validate_user_isolation(
|
||||
"workspace_read", {"path": "src/main.py"}, user_id="user-1"
|
||||
)
|
||||
assert result == {}
|
||||
|
||||
|
||||
def test_non_workspace_tool_passes_isolation():
|
||||
result = _validate_user_isolation(
|
||||
"find_agent", {"query": "email"}, user_id="user-1"
|
||||
)
|
||||
assert result == {}
|
||||
@@ -1,752 +0,0 @@
|
||||
"""Claude Agent SDK service layer for CoPilot chat completions."""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from collections.abc import AsyncGenerator
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
from .. import stream_registry
|
||||
from ..config import ChatConfig
|
||||
from ..model import (
|
||||
ChatMessage,
|
||||
ChatSession,
|
||||
get_chat_session,
|
||||
update_session_title,
|
||||
upsert_chat_session,
|
||||
)
|
||||
from ..response_model import (
|
||||
StreamBaseResponse,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamStart,
|
||||
StreamTextDelta,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolOutputAvailable,
|
||||
)
|
||||
from ..service import (
|
||||
_build_system_prompt,
|
||||
_execute_long_running_tool_with_streaming,
|
||||
_generate_session_title,
|
||||
)
|
||||
from ..tools.models import OperationPendingResponse, OperationStartedResponse
|
||||
from ..tools.sandbox import WORKSPACE_PREFIX, make_session_path
|
||||
from ..tracking import track_user_message
|
||||
from .response_adapter import SDKResponseAdapter
|
||||
from .security_hooks import create_security_hooks
|
||||
from .tool_adapter import (
|
||||
COPILOT_TOOL_NAMES,
|
||||
SDK_DISALLOWED_TOOLS,
|
||||
LongRunningCallback,
|
||||
create_copilot_mcp_server,
|
||||
set_execution_context,
|
||||
)
|
||||
from .transcript import (
|
||||
download_transcript,
|
||||
read_transcript_file,
|
||||
upload_transcript,
|
||||
validate_transcript,
|
||||
write_transcript_to_tempfile,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
config = ChatConfig()
|
||||
|
||||
# Set to hold background tasks to prevent garbage collection
|
||||
_background_tasks: set[asyncio.Task[Any]] = set()
|
||||
|
||||
|
||||
@dataclass
|
||||
class CapturedTranscript:
|
||||
"""Info captured by the SDK Stop hook for stateless --resume."""
|
||||
|
||||
path: str = ""
|
||||
sdk_session_id: str = ""
|
||||
|
||||
@property
|
||||
def available(self) -> bool:
|
||||
return bool(self.path)
|
||||
|
||||
|
||||
_SDK_CWD_PREFIX = WORKSPACE_PREFIX
|
||||
|
||||
# Appended to the system prompt to inform the agent about available tools.
|
||||
# The SDK built-in Bash is NOT available — use mcp__copilot__bash_exec instead,
|
||||
# which has kernel-level network isolation (unshare --net).
|
||||
_SDK_TOOL_SUPPLEMENT = """
|
||||
|
||||
## Tool notes
|
||||
|
||||
- The SDK built-in Bash tool is NOT available. Use the `bash_exec` MCP tool
|
||||
for shell commands — it runs in a network-isolated sandbox.
|
||||
- **Shared workspace**: The SDK Read/Write tools and `bash_exec` share the
|
||||
same working directory. Files created by one are readable by the other.
|
||||
These files are **ephemeral** — they exist only for the current session.
|
||||
- **Persistent storage**: Use `write_workspace_file` / `read_workspace_file`
|
||||
for files that should persist across sessions (stored in cloud storage).
|
||||
- Long-running tools (create_agent, edit_agent, etc.) are handled
|
||||
asynchronously. You will receive an immediate response; the actual result
|
||||
is delivered to the user via a background stream.
|
||||
"""
|
||||
|
||||
|
||||
def _build_long_running_callback(user_id: str | None) -> LongRunningCallback:
|
||||
"""Build a callback that delegates long-running tools to the non-SDK infrastructure.
|
||||
|
||||
Long-running tools (create_agent, edit_agent, etc.) are delegated to the
|
||||
existing background infrastructure: stream_registry (Redis Streams),
|
||||
database persistence, and SSE reconnection. This means results survive
|
||||
page refreshes / pod restarts, and the frontend shows the proper loading
|
||||
widget with progress updates.
|
||||
|
||||
The returned callback matches the ``LongRunningCallback`` signature:
|
||||
``(tool_name, args, session) -> MCP response dict``.
|
||||
"""
|
||||
|
||||
async def _callback(
|
||||
tool_name: str, args: dict[str, Any], session: ChatSession
|
||||
) -> dict[str, Any]:
|
||||
operation_id = str(uuid.uuid4())
|
||||
task_id = str(uuid.uuid4())
|
||||
tool_call_id = f"sdk-{uuid.uuid4().hex[:12]}"
|
||||
session_id = session.session_id
|
||||
|
||||
# --- Build user-friendly messages (matches non-SDK service) ---
|
||||
if tool_name == "create_agent":
|
||||
desc = args.get("description", "")
|
||||
desc_preview = (desc[:100] + "...") if len(desc) > 100 else desc
|
||||
pending_msg = (
|
||||
f"Creating your agent: {desc_preview}"
|
||||
if desc_preview
|
||||
else "Creating agent... This may take a few minutes."
|
||||
)
|
||||
started_msg = (
|
||||
"Agent creation started. You can close this tab - "
|
||||
"check your library in a few minutes."
|
||||
)
|
||||
elif tool_name == "edit_agent":
|
||||
changes = args.get("changes", "")
|
||||
changes_preview = (changes[:100] + "...") if len(changes) > 100 else changes
|
||||
pending_msg = (
|
||||
f"Editing agent: {changes_preview}"
|
||||
if changes_preview
|
||||
else "Editing agent... This may take a few minutes."
|
||||
)
|
||||
started_msg = (
|
||||
"Agent edit started. You can close this tab - "
|
||||
"check your library in a few minutes."
|
||||
)
|
||||
else:
|
||||
pending_msg = f"Running {tool_name}... This may take a few minutes."
|
||||
started_msg = (
|
||||
f"{tool_name} started. You can close this tab - "
|
||||
"check back in a few minutes."
|
||||
)
|
||||
|
||||
# --- Register task in Redis for SSE reconnection ---
|
||||
await stream_registry.create_task(
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
tool_call_id=tool_call_id,
|
||||
tool_name=tool_name,
|
||||
operation_id=operation_id,
|
||||
)
|
||||
|
||||
# --- Save OperationPendingResponse to chat history ---
|
||||
pending_message = ChatMessage(
|
||||
role="tool",
|
||||
content=OperationPendingResponse(
|
||||
message=pending_msg,
|
||||
operation_id=operation_id,
|
||||
tool_name=tool_name,
|
||||
).model_dump_json(),
|
||||
tool_call_id=tool_call_id,
|
||||
)
|
||||
session.messages.append(pending_message)
|
||||
await upsert_chat_session(session)
|
||||
|
||||
# --- Spawn background task (reuses non-SDK infrastructure) ---
|
||||
bg_task = asyncio.create_task(
|
||||
_execute_long_running_tool_with_streaming(
|
||||
tool_name=tool_name,
|
||||
parameters=args,
|
||||
tool_call_id=tool_call_id,
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
)
|
||||
_background_tasks.add(bg_task)
|
||||
bg_task.add_done_callback(_background_tasks.discard)
|
||||
await stream_registry.set_task_asyncio_task(task_id, bg_task)
|
||||
|
||||
logger.info(
|
||||
f"[SDK] Long-running tool {tool_name} delegated to background "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
|
||||
# --- Return OperationStartedResponse as MCP tool result ---
|
||||
# This flows through SDK → response adapter → frontend, triggering
|
||||
# the loading widget with SSE reconnection support.
|
||||
started_json = OperationStartedResponse(
|
||||
message=started_msg,
|
||||
operation_id=operation_id,
|
||||
tool_name=tool_name,
|
||||
task_id=task_id,
|
||||
).model_dump_json()
|
||||
|
||||
return {
|
||||
"content": [{"type": "text", "text": started_json}],
|
||||
"isError": False,
|
||||
}
|
||||
|
||||
return _callback
|
||||
|
||||
|
||||
def _resolve_sdk_model() -> str | None:
|
||||
"""Resolve the model name for the Claude Agent SDK CLI.
|
||||
|
||||
Uses ``config.claude_agent_model`` if set, otherwise derives from
|
||||
``config.model`` by stripping the OpenRouter provider prefix (e.g.,
|
||||
``"anthropic/claude-opus-4.6"`` → ``"claude-opus-4.6"``).
|
||||
"""
|
||||
if config.claude_agent_model:
|
||||
return config.claude_agent_model
|
||||
model = config.model
|
||||
if "/" in model:
|
||||
return model.split("/", 1)[1]
|
||||
return model
|
||||
|
||||
|
||||
def _build_sdk_env() -> dict[str, str]:
|
||||
"""Build env vars for the SDK CLI process.
|
||||
|
||||
Routes API calls through OpenRouter (or a custom base_url) using
|
||||
the same ``config.api_key`` / ``config.base_url`` as the non-SDK path.
|
||||
This gives per-call token and cost tracking on the OpenRouter dashboard.
|
||||
|
||||
Only overrides ``ANTHROPIC_API_KEY`` when a valid proxy URL and auth
|
||||
token are both present — otherwise returns an empty dict so the SDK
|
||||
falls back to its default credentials.
|
||||
"""
|
||||
env: dict[str, str] = {}
|
||||
if config.api_key and config.base_url:
|
||||
# Strip /v1 suffix — SDK expects the base URL without a version path
|
||||
base = config.base_url.rstrip("/")
|
||||
if base.endswith("/v1"):
|
||||
base = base[:-3]
|
||||
if not base or not base.startswith("http"):
|
||||
# Invalid base_url — don't override SDK defaults
|
||||
return env
|
||||
env["ANTHROPIC_BASE_URL"] = base
|
||||
env["ANTHROPIC_AUTH_TOKEN"] = config.api_key
|
||||
# Must be explicitly empty so the CLI uses AUTH_TOKEN instead
|
||||
env["ANTHROPIC_API_KEY"] = ""
|
||||
return env
|
||||
|
||||
|
||||
def _make_sdk_cwd(session_id: str) -> str:
|
||||
"""Create a safe, session-specific working directory path.
|
||||
|
||||
Delegates to :func:`~backend.api.features.chat.tools.sandbox.make_session_path`
|
||||
(single source of truth for path sanitization) and adds a defence-in-depth
|
||||
assertion.
|
||||
"""
|
||||
cwd = make_session_path(session_id)
|
||||
# Defence-in-depth: normpath + startswith is a CodeQL-recognised sanitizer
|
||||
cwd = os.path.normpath(cwd)
|
||||
if not cwd.startswith(_SDK_CWD_PREFIX):
|
||||
raise ValueError(f"SDK cwd escaped prefix: {cwd}")
|
||||
return cwd
|
||||
|
||||
|
||||
def _cleanup_sdk_tool_results(cwd: str) -> None:
|
||||
"""Remove SDK tool-result files for a specific session working directory.
|
||||
|
||||
The SDK creates tool-result files under ~/.claude/projects/<encoded-cwd>/tool-results/.
|
||||
We clean only the specific cwd's results to avoid race conditions between
|
||||
concurrent sessions.
|
||||
|
||||
Security: cwd MUST be created by _make_sdk_cwd() which sanitizes session_id.
|
||||
"""
|
||||
import shutil
|
||||
|
||||
# Validate cwd is under the expected prefix
|
||||
normalized = os.path.normpath(cwd)
|
||||
if not normalized.startswith(_SDK_CWD_PREFIX):
|
||||
logger.warning(f"[SDK] Rejecting cleanup for path outside workspace: {cwd}")
|
||||
return
|
||||
|
||||
# SDK encodes the cwd path by replacing '/' with '-'
|
||||
encoded_cwd = normalized.replace("/", "-")
|
||||
|
||||
# Construct the project directory path (known-safe home expansion)
|
||||
claude_projects = os.path.expanduser("~/.claude/projects")
|
||||
project_dir = os.path.join(claude_projects, encoded_cwd)
|
||||
|
||||
# Security check 3: Validate project_dir is under ~/.claude/projects
|
||||
project_dir = os.path.normpath(project_dir)
|
||||
if not project_dir.startswith(claude_projects):
|
||||
logger.warning(
|
||||
f"[SDK] Rejecting cleanup for escaped project path: {project_dir}"
|
||||
)
|
||||
return
|
||||
|
||||
results_dir = os.path.join(project_dir, "tool-results")
|
||||
if os.path.isdir(results_dir):
|
||||
for filename in os.listdir(results_dir):
|
||||
file_path = os.path.join(results_dir, filename)
|
||||
try:
|
||||
if os.path.isfile(file_path):
|
||||
os.remove(file_path)
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
# Also clean up the temp cwd directory itself
|
||||
try:
|
||||
shutil.rmtree(normalized, ignore_errors=True)
|
||||
except OSError:
|
||||
pass
|
||||
|
||||
|
||||
async def _compress_conversation_history(
|
||||
session: ChatSession,
|
||||
) -> list[ChatMessage]:
|
||||
"""Compress prior conversation messages if they exceed the token threshold.
|
||||
|
||||
Uses the shared compress_context() from prompt.py which supports:
|
||||
- LLM summarization of old messages (keeps recent ones intact)
|
||||
- Progressive content truncation as fallback
|
||||
- Middle-out deletion as last resort
|
||||
|
||||
Returns the compressed prior messages (everything except the current message).
|
||||
"""
|
||||
prior = session.messages[:-1]
|
||||
if len(prior) < 2:
|
||||
return prior
|
||||
|
||||
from backend.util.prompt import compress_context
|
||||
|
||||
# Convert ChatMessages to dicts for compress_context
|
||||
messages_dict = []
|
||||
for msg in prior:
|
||||
msg_dict: dict[str, Any] = {"role": msg.role}
|
||||
if msg.content:
|
||||
msg_dict["content"] = msg.content
|
||||
if msg.tool_calls:
|
||||
msg_dict["tool_calls"] = msg.tool_calls
|
||||
if msg.tool_call_id:
|
||||
msg_dict["tool_call_id"] = msg.tool_call_id
|
||||
messages_dict.append(msg_dict)
|
||||
|
||||
try:
|
||||
import openai
|
||||
|
||||
async with openai.AsyncOpenAI(
|
||||
api_key=config.api_key, base_url=config.base_url, timeout=30.0
|
||||
) as client:
|
||||
result = await compress_context(
|
||||
messages=messages_dict,
|
||||
model=config.model,
|
||||
client=client,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"[SDK] Context compression with LLM failed: {e}")
|
||||
# Fall back to truncation-only (no LLM summarization)
|
||||
result = await compress_context(
|
||||
messages=messages_dict,
|
||||
model=config.model,
|
||||
client=None,
|
||||
)
|
||||
|
||||
if result.was_compacted:
|
||||
logger.info(
|
||||
f"[SDK] Context compacted: {result.original_token_count} -> "
|
||||
f"{result.token_count} tokens "
|
||||
f"({result.messages_summarized} summarized, "
|
||||
f"{result.messages_dropped} dropped)"
|
||||
)
|
||||
# Convert compressed dicts back to ChatMessages
|
||||
return [
|
||||
ChatMessage(
|
||||
role=m["role"],
|
||||
content=m.get("content"),
|
||||
tool_calls=m.get("tool_calls"),
|
||||
tool_call_id=m.get("tool_call_id"),
|
||||
)
|
||||
for m in result.messages
|
||||
]
|
||||
|
||||
return prior
|
||||
|
||||
|
||||
def _format_conversation_context(messages: list[ChatMessage]) -> str | None:
|
||||
"""Format conversation messages into a context prefix for the user message.
|
||||
|
||||
Returns a string like:
|
||||
<conversation_history>
|
||||
User: hello
|
||||
You responded: Hi! How can I help?
|
||||
</conversation_history>
|
||||
|
||||
Returns None if there are no messages to format.
|
||||
"""
|
||||
if not messages:
|
||||
return None
|
||||
|
||||
lines: list[str] = []
|
||||
for msg in messages:
|
||||
if not msg.content:
|
||||
continue
|
||||
if msg.role == "user":
|
||||
lines.append(f"User: {msg.content}")
|
||||
elif msg.role == "assistant":
|
||||
lines.append(f"You responded: {msg.content}")
|
||||
# Skip tool messages — they're internal details
|
||||
|
||||
if not lines:
|
||||
return None
|
||||
|
||||
return "<conversation_history>\n" + "\n".join(lines) + "\n</conversation_history>"
|
||||
|
||||
|
||||
async def stream_chat_completion_sdk(
|
||||
session_id: str,
|
||||
message: str | None = None,
|
||||
tool_call_response: str | None = None, # noqa: ARG001
|
||||
is_user_message: bool = True,
|
||||
user_id: str | None = None,
|
||||
retry_count: int = 0, # noqa: ARG001
|
||||
session: ChatSession | None = None,
|
||||
context: dict[str, str] | None = None, # noqa: ARG001
|
||||
) -> AsyncGenerator[StreamBaseResponse, None]:
|
||||
"""Stream chat completion using Claude Agent SDK.
|
||||
|
||||
Drop-in replacement for stream_chat_completion with improved reliability.
|
||||
"""
|
||||
|
||||
if session is None:
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
|
||||
if not session:
|
||||
raise NotFoundError(
|
||||
f"Session {session_id} not found. Please create a new session first."
|
||||
)
|
||||
|
||||
if message:
|
||||
session.messages.append(
|
||||
ChatMessage(
|
||||
role="user" if is_user_message else "assistant", content=message
|
||||
)
|
||||
)
|
||||
if is_user_message:
|
||||
track_user_message(
|
||||
user_id=user_id, session_id=session_id, message_length=len(message)
|
||||
)
|
||||
|
||||
session = await upsert_chat_session(session)
|
||||
|
||||
# Generate title for new sessions (first user message)
|
||||
if is_user_message and not session.title:
|
||||
user_messages = [m for m in session.messages if m.role == "user"]
|
||||
if len(user_messages) == 1:
|
||||
first_message = user_messages[0].content or message or ""
|
||||
if first_message:
|
||||
task = asyncio.create_task(
|
||||
_update_title_async(session_id, first_message, user_id)
|
||||
)
|
||||
_background_tasks.add(task)
|
||||
task.add_done_callback(_background_tasks.discard)
|
||||
|
||||
# Build system prompt (reuses non-SDK path with Langfuse support)
|
||||
has_history = len(session.messages) > 1
|
||||
system_prompt, _ = await _build_system_prompt(
|
||||
user_id, has_conversation_history=has_history
|
||||
)
|
||||
system_prompt += _SDK_TOOL_SUPPLEMENT
|
||||
message_id = str(uuid.uuid4())
|
||||
task_id = str(uuid.uuid4())
|
||||
|
||||
yield StreamStart(messageId=message_id, taskId=task_id)
|
||||
|
||||
stream_completed = False
|
||||
# Initialise sdk_cwd before the try so the finally can reference it
|
||||
# even if _make_sdk_cwd raises (in that case it stays as "").
|
||||
sdk_cwd = ""
|
||||
use_resume = False
|
||||
|
||||
try:
|
||||
# Use a session-specific temp dir to avoid cleanup race conditions
|
||||
# between concurrent sessions.
|
||||
sdk_cwd = _make_sdk_cwd(session_id)
|
||||
os.makedirs(sdk_cwd, exist_ok=True)
|
||||
|
||||
set_execution_context(
|
||||
user_id,
|
||||
session,
|
||||
long_running_callback=_build_long_running_callback(user_id),
|
||||
)
|
||||
try:
|
||||
from claude_agent_sdk import ClaudeAgentOptions, ClaudeSDKClient
|
||||
|
||||
# Fail fast when no API credentials are available at all
|
||||
sdk_env = _build_sdk_env()
|
||||
if not sdk_env and not os.environ.get("ANTHROPIC_API_KEY"):
|
||||
raise RuntimeError(
|
||||
"No API key configured. Set OPEN_ROUTER_API_KEY "
|
||||
"(or CHAT_API_KEY) for OpenRouter routing, "
|
||||
"or ANTHROPIC_API_KEY for direct Anthropic access."
|
||||
)
|
||||
|
||||
mcp_server = create_copilot_mcp_server()
|
||||
|
||||
sdk_model = _resolve_sdk_model()
|
||||
|
||||
# --- Transcript capture via Stop hook ---
|
||||
captured_transcript = CapturedTranscript()
|
||||
|
||||
def _on_stop(transcript_path: str, sdk_session_id: str) -> None:
|
||||
captured_transcript.path = transcript_path
|
||||
captured_transcript.sdk_session_id = sdk_session_id
|
||||
|
||||
security_hooks = create_security_hooks(
|
||||
user_id,
|
||||
sdk_cwd=sdk_cwd,
|
||||
max_subtasks=config.claude_agent_max_subtasks,
|
||||
on_stop=_on_stop if config.claude_agent_use_resume else None,
|
||||
)
|
||||
|
||||
# --- Resume strategy: download transcript from bucket ---
|
||||
resume_file: str | None = None
|
||||
use_resume = False
|
||||
|
||||
if config.claude_agent_use_resume and user_id and len(session.messages) > 1:
|
||||
transcript_content = await download_transcript(user_id, session_id)
|
||||
if transcript_content and validate_transcript(transcript_content):
|
||||
resume_file = write_transcript_to_tempfile(
|
||||
transcript_content, session_id, sdk_cwd
|
||||
)
|
||||
if resume_file:
|
||||
use_resume = True
|
||||
logger.info(
|
||||
f"[SDK] Using --resume with transcript "
|
||||
f"({len(transcript_content)} bytes)"
|
||||
)
|
||||
|
||||
sdk_options_kwargs: dict[str, Any] = {
|
||||
"system_prompt": system_prompt,
|
||||
"mcp_servers": {"copilot": mcp_server},
|
||||
"allowed_tools": COPILOT_TOOL_NAMES,
|
||||
"disallowed_tools": SDK_DISALLOWED_TOOLS,
|
||||
"hooks": security_hooks,
|
||||
"cwd": sdk_cwd,
|
||||
"max_buffer_size": config.claude_agent_max_buffer_size,
|
||||
}
|
||||
if sdk_env:
|
||||
sdk_options_kwargs["model"] = sdk_model
|
||||
sdk_options_kwargs["env"] = sdk_env
|
||||
if use_resume and resume_file:
|
||||
sdk_options_kwargs["resume"] = resume_file
|
||||
|
||||
options = ClaudeAgentOptions(**sdk_options_kwargs) # type: ignore[arg-type]
|
||||
|
||||
adapter = SDKResponseAdapter(message_id=message_id)
|
||||
adapter.set_task_id(task_id)
|
||||
|
||||
async with ClaudeSDKClient(options=options) as client:
|
||||
current_message = message or ""
|
||||
if not current_message and session.messages:
|
||||
last_user = [m for m in session.messages if m.role == "user"]
|
||||
if last_user:
|
||||
current_message = last_user[-1].content or ""
|
||||
|
||||
if not current_message.strip():
|
||||
yield StreamError(
|
||||
errorText="Message cannot be empty.",
|
||||
code="empty_prompt",
|
||||
)
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
# Build query: with --resume the CLI already has full
|
||||
# context, so we only send the new message. Without
|
||||
# resume, compress history into a context prefix.
|
||||
query_message = current_message
|
||||
if not use_resume and len(session.messages) > 1:
|
||||
logger.warning(
|
||||
f"[SDK] Using compression fallback for session "
|
||||
f"{session_id} ({len(session.messages)} messages) — "
|
||||
f"no transcript available for --resume"
|
||||
)
|
||||
compressed = await _compress_conversation_history(session)
|
||||
history_context = _format_conversation_context(compressed)
|
||||
if history_context:
|
||||
query_message = (
|
||||
f"{history_context}\n\n"
|
||||
f"Now, the user says:\n{current_message}"
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"[SDK] Sending query ({len(session.messages)} msgs in session)"
|
||||
)
|
||||
logger.debug(f"[SDK] Query preview: {current_message[:80]!r}")
|
||||
await client.query(query_message, session_id=session_id)
|
||||
|
||||
assistant_response = ChatMessage(role="assistant", content="")
|
||||
accumulated_tool_calls: list[dict[str, Any]] = []
|
||||
has_appended_assistant = False
|
||||
has_tool_results = False
|
||||
|
||||
async for sdk_msg in client.receive_messages():
|
||||
logger.debug(
|
||||
f"[SDK] Received: {type(sdk_msg).__name__} "
|
||||
f"{getattr(sdk_msg, 'subtype', '')}"
|
||||
)
|
||||
for response in adapter.convert_message(sdk_msg):
|
||||
if isinstance(response, StreamStart):
|
||||
continue
|
||||
|
||||
yield response
|
||||
|
||||
if isinstance(response, StreamTextDelta):
|
||||
delta = response.delta or ""
|
||||
# After tool results, start a new assistant
|
||||
# message for the post-tool text.
|
||||
if has_tool_results and has_appended_assistant:
|
||||
assistant_response = ChatMessage(
|
||||
role="assistant", content=delta
|
||||
)
|
||||
accumulated_tool_calls = []
|
||||
has_appended_assistant = False
|
||||
has_tool_results = False
|
||||
session.messages.append(assistant_response)
|
||||
has_appended_assistant = True
|
||||
else:
|
||||
assistant_response.content = (
|
||||
assistant_response.content or ""
|
||||
) + delta
|
||||
if not has_appended_assistant:
|
||||
session.messages.append(assistant_response)
|
||||
has_appended_assistant = True
|
||||
|
||||
elif isinstance(response, StreamToolInputAvailable):
|
||||
accumulated_tool_calls.append(
|
||||
{
|
||||
"id": response.toolCallId,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": response.toolName,
|
||||
"arguments": json.dumps(response.input or {}),
|
||||
},
|
||||
}
|
||||
)
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
if not has_appended_assistant:
|
||||
session.messages.append(assistant_response)
|
||||
has_appended_assistant = True
|
||||
|
||||
elif isinstance(response, StreamToolOutputAvailable):
|
||||
session.messages.append(
|
||||
ChatMessage(
|
||||
role="tool",
|
||||
content=(
|
||||
response.output
|
||||
if isinstance(response.output, str)
|
||||
else str(response.output)
|
||||
),
|
||||
tool_call_id=response.toolCallId,
|
||||
)
|
||||
)
|
||||
has_tool_results = True
|
||||
|
||||
elif isinstance(response, StreamFinish):
|
||||
stream_completed = True
|
||||
|
||||
if stream_completed:
|
||||
break
|
||||
|
||||
if (
|
||||
assistant_response.content or assistant_response.tool_calls
|
||||
) and not has_appended_assistant:
|
||||
session.messages.append(assistant_response)
|
||||
|
||||
# --- Capture transcript while CLI is still alive ---
|
||||
# Must happen INSIDE async with: close() sends SIGTERM
|
||||
# which kills the CLI before it can flush the JSONL.
|
||||
if (
|
||||
config.claude_agent_use_resume
|
||||
and user_id
|
||||
and captured_transcript.available
|
||||
):
|
||||
# Give CLI time to flush JSONL writes before we read
|
||||
await asyncio.sleep(0.5)
|
||||
raw_transcript = read_transcript_file(captured_transcript.path)
|
||||
if raw_transcript:
|
||||
task = asyncio.create_task(
|
||||
_upload_transcript_bg(user_id, session_id, raw_transcript)
|
||||
)
|
||||
_background_tasks.add(task)
|
||||
task.add_done_callback(_background_tasks.discard)
|
||||
else:
|
||||
logger.debug("[SDK] Stop hook fired but transcript not usable")
|
||||
|
||||
except ImportError:
|
||||
raise RuntimeError(
|
||||
"claude-agent-sdk is not installed. "
|
||||
"Disable SDK mode (CHAT_USE_CLAUDE_AGENT_SDK=false) "
|
||||
"to use the OpenAI-compatible fallback."
|
||||
)
|
||||
|
||||
await upsert_chat_session(session)
|
||||
logger.debug(
|
||||
f"[SDK] Session {session_id} saved with {len(session.messages)} messages"
|
||||
)
|
||||
if not stream_completed:
|
||||
yield StreamFinish()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"[SDK] Error: {e}", exc_info=True)
|
||||
try:
|
||||
await upsert_chat_session(session)
|
||||
except Exception as save_err:
|
||||
logger.error(f"[SDK] Failed to save session on error: {save_err}")
|
||||
yield StreamError(
|
||||
errorText="An error occurred. Please try again.",
|
||||
code="sdk_error",
|
||||
)
|
||||
yield StreamFinish()
|
||||
finally:
|
||||
if sdk_cwd:
|
||||
_cleanup_sdk_tool_results(sdk_cwd)
|
||||
|
||||
|
||||
async def _upload_transcript_bg(
|
||||
user_id: str, session_id: str, raw_content: str
|
||||
) -> None:
|
||||
"""Background task to strip progress entries and upload transcript."""
|
||||
try:
|
||||
await upload_transcript(user_id, session_id, raw_content)
|
||||
except Exception as e:
|
||||
logger.error(f"[SDK] Failed to upload transcript for {session_id}: {e}")
|
||||
|
||||
|
||||
async def _update_title_async(
|
||||
session_id: str, message: str, user_id: str | None = None
|
||||
) -> None:
|
||||
"""Background task to update session title."""
|
||||
try:
|
||||
title = await _generate_session_title(
|
||||
message, user_id=user_id, session_id=session_id
|
||||
)
|
||||
if title:
|
||||
await update_session_title(session_id, title)
|
||||
logger.debug(f"[SDK] Generated title for {session_id}: {title}")
|
||||
except Exception as e:
|
||||
logger.warning(f"[SDK] Failed to update session title: {e}")
|
||||
@@ -1,363 +0,0 @@
|
||||
"""Tool adapter for wrapping existing CoPilot tools as Claude Agent SDK MCP tools.
|
||||
|
||||
This module provides the adapter layer that converts existing BaseTool implementations
|
||||
into in-process MCP tools that can be used with the Claude Agent SDK.
|
||||
|
||||
Long-running tools (``is_long_running=True``) are delegated to the non-SDK
|
||||
background infrastructure (stream_registry, Redis persistence, SSE reconnection)
|
||||
via a callback provided by the service layer. This avoids wasteful SDK polling
|
||||
and makes results survive page refreshes.
|
||||
"""
|
||||
|
||||
import itertools
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import uuid
|
||||
from collections.abc import Awaitable, Callable
|
||||
from contextvars import ContextVar
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools import TOOL_REGISTRY
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Allowed base directory for the Read tool (SDK saves oversized tool results here).
|
||||
# Restricted to ~/.claude/projects/ and further validated to require "tool-results"
|
||||
# in the path — prevents reading settings, credentials, or other sensitive files.
|
||||
_SDK_PROJECTS_DIR = os.path.expanduser("~/.claude/projects/")
|
||||
|
||||
# MCP server naming - the SDK prefixes tool names as "mcp__{server_name}__{tool}"
|
||||
MCP_SERVER_NAME = "copilot"
|
||||
MCP_TOOL_PREFIX = f"mcp__{MCP_SERVER_NAME}__"
|
||||
|
||||
# Context variables to pass user/session info to tool execution
|
||||
_current_user_id: ContextVar[str | None] = ContextVar("current_user_id", default=None)
|
||||
_current_session: ContextVar[ChatSession | None] = ContextVar(
|
||||
"current_session", default=None
|
||||
)
|
||||
# Stash for MCP tool outputs before the SDK potentially truncates them.
|
||||
# Keyed by tool_name → full output string. Consumed (popped) by the
|
||||
# response adapter when it builds StreamToolOutputAvailable.
|
||||
_pending_tool_outputs: ContextVar[dict[str, str]] = ContextVar(
|
||||
"pending_tool_outputs", default=None # type: ignore[arg-type]
|
||||
)
|
||||
|
||||
# Callback type for delegating long-running tools to the non-SDK infrastructure.
|
||||
# Args: (tool_name, arguments, session) → MCP-formatted response dict.
|
||||
LongRunningCallback = Callable[
|
||||
[str, dict[str, Any], ChatSession], Awaitable[dict[str, Any]]
|
||||
]
|
||||
|
||||
# ContextVar so the service layer can inject the callback per-request.
|
||||
_long_running_callback: ContextVar[LongRunningCallback | None] = ContextVar(
|
||||
"long_running_callback", default=None
|
||||
)
|
||||
|
||||
|
||||
def set_execution_context(
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
long_running_callback: LongRunningCallback | None = None,
|
||||
) -> None:
|
||||
"""Set the execution context for tool calls.
|
||||
|
||||
This must be called before streaming begins to ensure tools have access
|
||||
to user_id and session information.
|
||||
|
||||
Args:
|
||||
user_id: Current user's ID.
|
||||
session: Current chat session.
|
||||
long_running_callback: Optional callback to delegate long-running tools
|
||||
to the non-SDK background infrastructure (stream_registry + Redis).
|
||||
"""
|
||||
_current_user_id.set(user_id)
|
||||
_current_session.set(session)
|
||||
_pending_tool_outputs.set({})
|
||||
_long_running_callback.set(long_running_callback)
|
||||
|
||||
|
||||
def get_execution_context() -> tuple[str | None, ChatSession | None]:
|
||||
"""Get the current execution context."""
|
||||
return (
|
||||
_current_user_id.get(),
|
||||
_current_session.get(),
|
||||
)
|
||||
|
||||
|
||||
def pop_pending_tool_output(tool_name: str) -> str | None:
|
||||
"""Pop and return the stashed full output for *tool_name*.
|
||||
|
||||
The SDK CLI may truncate large tool results (writing them to disk and
|
||||
replacing the content with a file reference). This stash keeps the
|
||||
original MCP output so the response adapter can forward it to the
|
||||
frontend for proper widget rendering.
|
||||
|
||||
Returns ``None`` if nothing was stashed for *tool_name*.
|
||||
"""
|
||||
pending = _pending_tool_outputs.get(None)
|
||||
if pending is None:
|
||||
return None
|
||||
return pending.pop(tool_name, None)
|
||||
|
||||
|
||||
async def _execute_tool_sync(
|
||||
base_tool: BaseTool,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
args: dict[str, Any],
|
||||
) -> dict[str, Any]:
|
||||
"""Execute a tool synchronously and return MCP-formatted response."""
|
||||
effective_id = f"sdk-{uuid.uuid4().hex[:12]}"
|
||||
result = await base_tool.execute(
|
||||
user_id=user_id,
|
||||
session=session,
|
||||
tool_call_id=effective_id,
|
||||
**args,
|
||||
)
|
||||
|
||||
text = (
|
||||
result.output if isinstance(result.output, str) else json.dumps(result.output)
|
||||
)
|
||||
|
||||
# Stash the full output before the SDK potentially truncates it.
|
||||
pending = _pending_tool_outputs.get(None)
|
||||
if pending is not None:
|
||||
pending[base_tool.name] = text
|
||||
|
||||
return {
|
||||
"content": [{"type": "text", "text": text}],
|
||||
"isError": not result.success,
|
||||
}
|
||||
|
||||
|
||||
def _mcp_error(message: str) -> dict[str, Any]:
|
||||
return {
|
||||
"content": [
|
||||
{"type": "text", "text": json.dumps({"error": message, "type": "error"})}
|
||||
],
|
||||
"isError": True,
|
||||
}
|
||||
|
||||
|
||||
def create_tool_handler(base_tool: BaseTool):
|
||||
"""Create an async handler function for a BaseTool.
|
||||
|
||||
This wraps the existing BaseTool._execute method to be compatible
|
||||
with the Claude Agent SDK MCP tool format.
|
||||
|
||||
Long-running tools (``is_long_running=True``) are delegated to the
|
||||
non-SDK background infrastructure via a callback set in the execution
|
||||
context. The callback persists the operation in Redis (stream_registry)
|
||||
so results survive page refreshes and pod restarts.
|
||||
"""
|
||||
|
||||
async def tool_handler(args: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Execute the wrapped tool and return MCP-formatted response."""
|
||||
user_id, session = get_execution_context()
|
||||
|
||||
if session is None:
|
||||
return _mcp_error("No session context available")
|
||||
|
||||
# --- Long-running: delegate to non-SDK background infrastructure ---
|
||||
if base_tool.is_long_running:
|
||||
callback = _long_running_callback.get(None)
|
||||
if callback:
|
||||
try:
|
||||
return await callback(base_tool.name, args, session)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Long-running callback failed for {base_tool.name}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
return _mcp_error(f"Failed to start {base_tool.name}: {e}")
|
||||
# No callback — fall through to synchronous execution
|
||||
logger.warning(
|
||||
f"[SDK] No long-running callback for {base_tool.name}, "
|
||||
f"executing synchronously (may block)"
|
||||
)
|
||||
|
||||
# --- Normal (fast) tool: execute synchronously ---
|
||||
try:
|
||||
return await _execute_tool_sync(base_tool, user_id, session, args)
|
||||
except Exception as e:
|
||||
logger.error(f"Error executing tool {base_tool.name}: {e}", exc_info=True)
|
||||
return _mcp_error(f"Failed to execute {base_tool.name}: {e}")
|
||||
|
||||
return tool_handler
|
||||
|
||||
|
||||
def _build_input_schema(base_tool: BaseTool) -> dict[str, Any]:
|
||||
"""Build a JSON Schema input schema for a tool."""
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": base_tool.parameters.get("properties", {}),
|
||||
"required": base_tool.parameters.get("required", []),
|
||||
}
|
||||
|
||||
|
||||
async def _read_file_handler(args: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Read a file with optional offset/limit. Restricted to SDK working directory.
|
||||
|
||||
After reading, the file is deleted to prevent accumulation in long-running pods.
|
||||
"""
|
||||
file_path = args.get("file_path", "")
|
||||
offset = args.get("offset", 0)
|
||||
limit = args.get("limit", 2000)
|
||||
|
||||
# Security: only allow reads under ~/.claude/projects/**/tool-results/
|
||||
real_path = os.path.realpath(file_path)
|
||||
if not real_path.startswith(_SDK_PROJECTS_DIR) or "tool-results" not in real_path:
|
||||
return {
|
||||
"content": [{"type": "text", "text": f"Access denied: {file_path}"}],
|
||||
"isError": True,
|
||||
}
|
||||
|
||||
try:
|
||||
with open(real_path) as f:
|
||||
selected = list(itertools.islice(f, offset, offset + limit))
|
||||
content = "".join(selected)
|
||||
# Cleanup happens in _cleanup_sdk_tool_results after session ends;
|
||||
# don't delete here — the SDK may read in multiple chunks.
|
||||
return {"content": [{"type": "text", "text": content}], "isError": False}
|
||||
except FileNotFoundError:
|
||||
return {
|
||||
"content": [{"type": "text", "text": f"File not found: {file_path}"}],
|
||||
"isError": True,
|
||||
}
|
||||
except Exception as e:
|
||||
return {
|
||||
"content": [{"type": "text", "text": f"Error reading file: {e}"}],
|
||||
"isError": True,
|
||||
}
|
||||
|
||||
|
||||
_READ_TOOL_NAME = "Read"
|
||||
_READ_TOOL_DESCRIPTION = (
|
||||
"Read a file from the local filesystem. "
|
||||
"Use offset and limit to read specific line ranges for large files."
|
||||
)
|
||||
_READ_TOOL_SCHEMA = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_path": {
|
||||
"type": "string",
|
||||
"description": "The absolute path to the file to read",
|
||||
},
|
||||
"offset": {
|
||||
"type": "integer",
|
||||
"description": "Line number to start reading from (0-indexed). Default: 0",
|
||||
},
|
||||
"limit": {
|
||||
"type": "integer",
|
||||
"description": "Number of lines to read. Default: 2000",
|
||||
},
|
||||
},
|
||||
"required": ["file_path"],
|
||||
}
|
||||
|
||||
|
||||
# Create the MCP server configuration
|
||||
def create_copilot_mcp_server():
|
||||
"""Create an in-process MCP server configuration for CoPilot tools.
|
||||
|
||||
This can be passed to ClaudeAgentOptions.mcp_servers.
|
||||
|
||||
Note: The actual SDK MCP server creation depends on the claude-agent-sdk
|
||||
package being available. This function returns the configuration that
|
||||
can be used with the SDK.
|
||||
"""
|
||||
try:
|
||||
from claude_agent_sdk import create_sdk_mcp_server, tool
|
||||
|
||||
# Create decorated tool functions
|
||||
sdk_tools = []
|
||||
|
||||
for tool_name, base_tool in TOOL_REGISTRY.items():
|
||||
handler = create_tool_handler(base_tool)
|
||||
decorated = tool(
|
||||
tool_name,
|
||||
base_tool.description,
|
||||
_build_input_schema(base_tool),
|
||||
)(handler)
|
||||
sdk_tools.append(decorated)
|
||||
|
||||
# Add the Read tool so the SDK can read back oversized tool results
|
||||
read_tool = tool(
|
||||
_READ_TOOL_NAME,
|
||||
_READ_TOOL_DESCRIPTION,
|
||||
_READ_TOOL_SCHEMA,
|
||||
)(_read_file_handler)
|
||||
sdk_tools.append(read_tool)
|
||||
|
||||
server = create_sdk_mcp_server(
|
||||
name=MCP_SERVER_NAME,
|
||||
version="1.0.0",
|
||||
tools=sdk_tools,
|
||||
)
|
||||
|
||||
return server
|
||||
|
||||
except ImportError:
|
||||
# Let ImportError propagate so service.py handles the fallback
|
||||
raise
|
||||
|
||||
|
||||
# SDK built-in tools allowed within the workspace directory.
|
||||
# Security hooks validate that file paths stay within sdk_cwd.
|
||||
# Bash is NOT included — use the sandboxed MCP bash_exec tool instead,
|
||||
# which provides kernel-level network isolation via unshare --net.
|
||||
# Task allows spawning sub-agents (rate-limited by security hooks).
|
||||
# WebSearch uses Brave Search via Anthropic's API — safe, no SSRF risk.
|
||||
_SDK_BUILTIN_TOOLS = ["Read", "Write", "Edit", "Glob", "Grep", "Task", "WebSearch"]
|
||||
|
||||
# SDK built-in tools that must be explicitly blocked.
|
||||
# Bash: dangerous — agent uses mcp__copilot__bash_exec with kernel-level
|
||||
# network isolation (unshare --net) instead.
|
||||
# WebFetch: SSRF risk — can reach internal network (localhost, 10.x, etc.).
|
||||
# Agent uses the SSRF-protected mcp__copilot__web_fetch tool instead.
|
||||
SDK_DISALLOWED_TOOLS = ["Bash", "WebFetch"]
|
||||
|
||||
# Tools that are blocked entirely in security hooks (defence-in-depth).
|
||||
# Includes SDK_DISALLOWED_TOOLS plus common aliases/synonyms.
|
||||
BLOCKED_TOOLS = {
|
||||
*SDK_DISALLOWED_TOOLS,
|
||||
"bash",
|
||||
"shell",
|
||||
"exec",
|
||||
"terminal",
|
||||
"command",
|
||||
}
|
||||
|
||||
# Tools allowed only when their path argument stays within the SDK workspace.
|
||||
# The SDK uses these to handle oversized tool results (writes to tool-results/
|
||||
# files, then reads them back) and for workspace file operations.
|
||||
WORKSPACE_SCOPED_TOOLS = {"Read", "Write", "Edit", "Glob", "Grep"}
|
||||
|
||||
# Dangerous patterns in tool inputs
|
||||
DANGEROUS_PATTERNS = [
|
||||
r"sudo",
|
||||
r"rm\s+-rf",
|
||||
r"dd\s+if=",
|
||||
r"/etc/passwd",
|
||||
r"/etc/shadow",
|
||||
r"chmod\s+777",
|
||||
r"curl\s+.*\|.*sh",
|
||||
r"wget\s+.*\|.*sh",
|
||||
r"eval\s*\(",
|
||||
r"exec\s*\(",
|
||||
r"__import__",
|
||||
r"os\.system",
|
||||
r"subprocess",
|
||||
]
|
||||
|
||||
# List of tool names for allowed_tools configuration
|
||||
# Include MCP tools, the MCP Read tool for oversized results,
|
||||
# and SDK built-in file tools for workspace operations.
|
||||
COPILOT_TOOL_NAMES = [
|
||||
*[f"{MCP_TOOL_PREFIX}{name}" for name in TOOL_REGISTRY.keys()],
|
||||
f"{MCP_TOOL_PREFIX}{_READ_TOOL_NAME}",
|
||||
*_SDK_BUILTIN_TOOLS,
|
||||
]
|
||||
@@ -1,356 +0,0 @@
|
||||
"""JSONL transcript management for stateless multi-turn resume.
|
||||
|
||||
The Claude Code CLI persists conversations as JSONL files (one JSON object per
|
||||
line). When the SDK's ``Stop`` hook fires we read this file, strip bloat
|
||||
(progress entries, metadata), and upload the result to bucket storage. On the
|
||||
next turn we download the transcript, write it to a temp file, and pass
|
||||
``--resume`` so the CLI can reconstruct the full conversation.
|
||||
|
||||
Storage is handled via ``WorkspaceStorageBackend`` (GCS in prod, local
|
||||
filesystem for self-hosted) — no DB column needed.
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# UUIDs are hex + hyphens; strip everything else to prevent path injection.
|
||||
_SAFE_ID_RE = re.compile(r"[^0-9a-fA-F-]")
|
||||
|
||||
# Entry types that can be safely removed from the transcript without breaking
|
||||
# the parentUuid conversation tree that ``--resume`` relies on.
|
||||
# - progress: UI progress ticks, no message content (avg 97KB for agent_progress)
|
||||
# - file-history-snapshot: undo tracking metadata
|
||||
# - queue-operation: internal queue bookkeeping
|
||||
# - summary: session summaries
|
||||
# - pr-link: PR link metadata
|
||||
STRIPPABLE_TYPES = frozenset(
|
||||
{"progress", "file-history-snapshot", "queue-operation", "summary", "pr-link"}
|
||||
)
|
||||
|
||||
# Workspace storage constants — deterministic path from session_id.
|
||||
TRANSCRIPT_STORAGE_PREFIX = "chat-transcripts"
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Progress stripping
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
def strip_progress_entries(content: str) -> str:
|
||||
"""Remove progress/metadata entries from a JSONL transcript.
|
||||
|
||||
Removes entries whose ``type`` is in ``STRIPPABLE_TYPES`` and reparents
|
||||
any remaining child entries so the ``parentUuid`` chain stays intact.
|
||||
Typically reduces transcript size by ~30%.
|
||||
"""
|
||||
lines = content.strip().split("\n")
|
||||
|
||||
entries: list[dict] = []
|
||||
for line in lines:
|
||||
try:
|
||||
entries.append(json.loads(line))
|
||||
except json.JSONDecodeError:
|
||||
# Keep unparseable lines as-is (safety)
|
||||
entries.append({"_raw": line})
|
||||
|
||||
stripped_uuids: set[str] = set()
|
||||
uuid_to_parent: dict[str, str] = {}
|
||||
kept: list[dict] = []
|
||||
|
||||
for entry in entries:
|
||||
if "_raw" in entry:
|
||||
kept.append(entry)
|
||||
continue
|
||||
uid = entry.get("uuid", "")
|
||||
parent = entry.get("parentUuid", "")
|
||||
entry_type = entry.get("type", "")
|
||||
|
||||
if uid:
|
||||
uuid_to_parent[uid] = parent
|
||||
|
||||
if entry_type in STRIPPABLE_TYPES:
|
||||
if uid:
|
||||
stripped_uuids.add(uid)
|
||||
else:
|
||||
kept.append(entry)
|
||||
|
||||
# Reparent: walk up chain through stripped entries to find surviving ancestor
|
||||
for entry in kept:
|
||||
if "_raw" in entry:
|
||||
continue
|
||||
parent = entry.get("parentUuid", "")
|
||||
original_parent = parent
|
||||
while parent in stripped_uuids:
|
||||
parent = uuid_to_parent.get(parent, "")
|
||||
if parent != original_parent:
|
||||
entry["parentUuid"] = parent
|
||||
|
||||
result_lines: list[str] = []
|
||||
for entry in kept:
|
||||
if "_raw" in entry:
|
||||
result_lines.append(entry["_raw"])
|
||||
else:
|
||||
result_lines.append(json.dumps(entry, separators=(",", ":")))
|
||||
|
||||
return "\n".join(result_lines) + "\n"
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Local file I/O (read from CLI's JSONL, write temp file for --resume)
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
def read_transcript_file(transcript_path: str) -> str | None:
|
||||
"""Read a JSONL transcript file from disk.
|
||||
|
||||
Returns the raw JSONL content, or ``None`` if the file is missing, empty,
|
||||
or only contains metadata (≤2 lines with no conversation messages).
|
||||
"""
|
||||
if not transcript_path or not os.path.isfile(transcript_path):
|
||||
logger.debug(f"[Transcript] File not found: {transcript_path}")
|
||||
return None
|
||||
|
||||
try:
|
||||
with open(transcript_path) as f:
|
||||
content = f.read()
|
||||
|
||||
if not content.strip():
|
||||
logger.debug(f"[Transcript] Empty file: {transcript_path}")
|
||||
return None
|
||||
|
||||
lines = content.strip().split("\n")
|
||||
if len(lines) < 3:
|
||||
# Raw files with ≤2 lines are metadata-only
|
||||
# (queue-operation + file-history-snapshot, no conversation).
|
||||
logger.debug(
|
||||
f"[Transcript] Too few lines ({len(lines)}): {transcript_path}"
|
||||
)
|
||||
return None
|
||||
|
||||
# Quick structural validation — parse first and last lines.
|
||||
json.loads(lines[0])
|
||||
json.loads(lines[-1])
|
||||
|
||||
logger.info(
|
||||
f"[Transcript] Read {len(lines)} lines, "
|
||||
f"{len(content)} bytes from {transcript_path}"
|
||||
)
|
||||
return content
|
||||
|
||||
except (json.JSONDecodeError, OSError) as e:
|
||||
logger.warning(f"[Transcript] Failed to read {transcript_path}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def _sanitize_id(raw_id: str, max_len: int = 36) -> str:
|
||||
"""Sanitize an ID for safe use in file paths.
|
||||
|
||||
Session/user IDs are expected to be UUIDs (hex + hyphens). Strip
|
||||
everything else and truncate to *max_len* so the result cannot introduce
|
||||
path separators or other special characters.
|
||||
"""
|
||||
cleaned = _SAFE_ID_RE.sub("", raw_id or "")[:max_len]
|
||||
return cleaned or "unknown"
|
||||
|
||||
|
||||
_SAFE_CWD_PREFIX = os.path.realpath("/tmp/copilot-")
|
||||
|
||||
|
||||
def write_transcript_to_tempfile(
|
||||
transcript_content: str,
|
||||
session_id: str,
|
||||
cwd: str,
|
||||
) -> str | None:
|
||||
"""Write JSONL transcript to a temp file inside *cwd* for ``--resume``.
|
||||
|
||||
The file lives in the session working directory so it is cleaned up
|
||||
automatically when the session ends.
|
||||
|
||||
Returns the absolute path to the file, or ``None`` on failure.
|
||||
"""
|
||||
# Validate cwd is under the expected sandbox prefix (CodeQL sanitizer).
|
||||
real_cwd = os.path.realpath(cwd)
|
||||
if not real_cwd.startswith(_SAFE_CWD_PREFIX):
|
||||
logger.warning(f"[Transcript] cwd outside sandbox: {cwd}")
|
||||
return None
|
||||
|
||||
try:
|
||||
os.makedirs(real_cwd, exist_ok=True)
|
||||
safe_id = _sanitize_id(session_id, max_len=8)
|
||||
jsonl_path = os.path.realpath(
|
||||
os.path.join(real_cwd, f"transcript-{safe_id}.jsonl")
|
||||
)
|
||||
if not jsonl_path.startswith(real_cwd):
|
||||
logger.warning(f"[Transcript] Path escaped cwd: {jsonl_path}")
|
||||
return None
|
||||
|
||||
with open(jsonl_path, "w") as f:
|
||||
f.write(transcript_content)
|
||||
|
||||
logger.info(f"[Transcript] Wrote resume file: {jsonl_path}")
|
||||
return jsonl_path
|
||||
|
||||
except OSError as e:
|
||||
logger.warning(f"[Transcript] Failed to write resume file: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def validate_transcript(content: str | None) -> bool:
|
||||
"""Check that a transcript has actual conversation messages.
|
||||
|
||||
A valid transcript for resume needs at least one user message and one
|
||||
assistant message (not just queue-operation / file-history-snapshot
|
||||
metadata).
|
||||
"""
|
||||
if not content or not content.strip():
|
||||
return False
|
||||
|
||||
lines = content.strip().split("\n")
|
||||
if len(lines) < 2:
|
||||
return False
|
||||
|
||||
has_user = False
|
||||
has_assistant = False
|
||||
|
||||
for line in lines:
|
||||
try:
|
||||
entry = json.loads(line)
|
||||
msg_type = entry.get("type")
|
||||
if msg_type == "user":
|
||||
has_user = True
|
||||
elif msg_type == "assistant":
|
||||
has_assistant = True
|
||||
except json.JSONDecodeError:
|
||||
return False
|
||||
|
||||
return has_user and has_assistant
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Bucket storage (GCS / local via WorkspaceStorageBackend)
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
def _storage_path_parts(user_id: str, session_id: str) -> tuple[str, str, str]:
|
||||
"""Return (workspace_id, file_id, filename) for a session's transcript.
|
||||
|
||||
Path structure: ``chat-transcripts/{user_id}/{session_id}.jsonl``
|
||||
IDs are sanitized to hex+hyphen to prevent path traversal.
|
||||
"""
|
||||
return (
|
||||
TRANSCRIPT_STORAGE_PREFIX,
|
||||
_sanitize_id(user_id),
|
||||
f"{_sanitize_id(session_id)}.jsonl",
|
||||
)
|
||||
|
||||
|
||||
def _build_storage_path(user_id: str, session_id: str, backend: object) -> str:
|
||||
"""Build the full storage path string that ``retrieve()`` expects.
|
||||
|
||||
``store()`` returns a path like ``gcs://bucket/workspaces/...`` or
|
||||
``local://workspace_id/file_id/filename``. Since we use deterministic
|
||||
arguments we can reconstruct the same path for download/delete without
|
||||
having stored the return value.
|
||||
"""
|
||||
from backend.util.workspace_storage import GCSWorkspaceStorage
|
||||
|
||||
wid, fid, fname = _storage_path_parts(user_id, session_id)
|
||||
|
||||
if isinstance(backend, GCSWorkspaceStorage):
|
||||
blob = f"workspaces/{wid}/{fid}/{fname}"
|
||||
return f"gcs://{backend.bucket_name}/{blob}"
|
||||
else:
|
||||
# LocalWorkspaceStorage returns local://{relative_path}
|
||||
return f"local://{wid}/{fid}/{fname}"
|
||||
|
||||
|
||||
async def upload_transcript(user_id: str, session_id: str, content: str) -> None:
|
||||
"""Strip progress entries and upload transcript to bucket storage.
|
||||
|
||||
Safety: only overwrites when the new (stripped) transcript is larger than
|
||||
what is already stored. Since JSONL is append-only, the latest transcript
|
||||
is always the longest. This prevents a slow/stale background task from
|
||||
clobbering a newer upload from a concurrent turn.
|
||||
"""
|
||||
from backend.util.workspace_storage import get_workspace_storage
|
||||
|
||||
stripped = strip_progress_entries(content)
|
||||
if not validate_transcript(stripped):
|
||||
logger.warning(
|
||||
f"[Transcript] Skipping upload — stripped content is not a valid "
|
||||
f"transcript for session {session_id}"
|
||||
)
|
||||
return
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
wid, fid, fname = _storage_path_parts(user_id, session_id)
|
||||
encoded = stripped.encode("utf-8")
|
||||
new_size = len(encoded)
|
||||
|
||||
# Check existing transcript size to avoid overwriting newer with older
|
||||
path = _build_storage_path(user_id, session_id, storage)
|
||||
try:
|
||||
existing = await storage.retrieve(path)
|
||||
if len(existing) >= new_size:
|
||||
logger.info(
|
||||
f"[Transcript] Skipping upload — existing transcript "
|
||||
f"({len(existing)}B) >= new ({new_size}B) for session "
|
||||
f"{session_id}"
|
||||
)
|
||||
return
|
||||
except (FileNotFoundError, Exception):
|
||||
pass # No existing transcript or retrieval error — proceed with upload
|
||||
|
||||
await storage.store(
|
||||
workspace_id=wid,
|
||||
file_id=fid,
|
||||
filename=fname,
|
||||
content=encoded,
|
||||
)
|
||||
logger.info(
|
||||
f"[Transcript] Uploaded {new_size} bytes "
|
||||
f"(stripped from {len(content)}) for session {session_id}"
|
||||
)
|
||||
|
||||
|
||||
async def download_transcript(user_id: str, session_id: str) -> str | None:
|
||||
"""Download transcript from bucket storage.
|
||||
|
||||
Returns the JSONL content string, or ``None`` if not found.
|
||||
"""
|
||||
from backend.util.workspace_storage import get_workspace_storage
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
path = _build_storage_path(user_id, session_id, storage)
|
||||
|
||||
try:
|
||||
data = await storage.retrieve(path)
|
||||
content = data.decode("utf-8")
|
||||
logger.info(
|
||||
f"[Transcript] Downloaded {len(content)} bytes for session {session_id}"
|
||||
)
|
||||
return content
|
||||
except FileNotFoundError:
|
||||
logger.debug(f"[Transcript] No transcript in storage for {session_id}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.warning(f"[Transcript] Failed to download transcript: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def delete_transcript(user_id: str, session_id: str) -> None:
|
||||
"""Delete transcript from bucket storage (e.g. after resume failure)."""
|
||||
from backend.util.workspace_storage import get_workspace_storage
|
||||
|
||||
storage = await get_workspace_storage()
|
||||
path = _build_storage_path(user_id, session_id, storage)
|
||||
|
||||
try:
|
||||
await storage.delete(path)
|
||||
logger.info(f"[Transcript] Deleted transcript for session {session_id}")
|
||||
except Exception as e:
|
||||
logger.warning(f"[Transcript] Failed to delete transcript: {e}")
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,4 +1,3 @@
|
||||
import asyncio
|
||||
import logging
|
||||
from os import getenv
|
||||
|
||||
@@ -12,8 +11,6 @@ from .response_model import (
|
||||
StreamTextDelta,
|
||||
StreamToolOutputAvailable,
|
||||
)
|
||||
from .sdk import service as sdk_service
|
||||
from .sdk.transcript import download_transcript
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -83,96 +80,3 @@ async def test_stream_chat_completion_with_tool_calls(setup_test_user, test_user
|
||||
session = await get_chat_session(session.session_id)
|
||||
assert session, "Session not found"
|
||||
assert session.usage, "Usage is empty"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_sdk_resume_multi_turn(setup_test_user, test_user_id):
|
||||
"""Test that the SDK --resume path captures and uses transcripts across turns.
|
||||
|
||||
Turn 1: Send a message containing a unique keyword.
|
||||
Turn 2: Ask the model to recall that keyword — proving the transcript was
|
||||
persisted and restored via --resume.
|
||||
"""
|
||||
api_key: str | None = getenv("OPEN_ROUTER_API_KEY")
|
||||
if not api_key:
|
||||
return pytest.skip("OPEN_ROUTER_API_KEY is not set, skipping test")
|
||||
|
||||
from .config import ChatConfig
|
||||
|
||||
cfg = ChatConfig()
|
||||
if not cfg.claude_agent_use_resume:
|
||||
return pytest.skip("CLAUDE_AGENT_USE_RESUME is not enabled, skipping test")
|
||||
|
||||
session = await create_chat_session(test_user_id)
|
||||
session = await upsert_chat_session(session)
|
||||
|
||||
# --- Turn 1: send a message with a unique keyword ---
|
||||
keyword = "ZEPHYR42"
|
||||
turn1_msg = (
|
||||
f"Please remember this special keyword: {keyword}. "
|
||||
"Just confirm you've noted it, keep your response brief."
|
||||
)
|
||||
turn1_text = ""
|
||||
turn1_errors: list[str] = []
|
||||
turn1_ended = False
|
||||
|
||||
async for chunk in sdk_service.stream_chat_completion_sdk(
|
||||
session.session_id,
|
||||
turn1_msg,
|
||||
user_id=test_user_id,
|
||||
):
|
||||
if isinstance(chunk, StreamTextDelta):
|
||||
turn1_text += chunk.delta
|
||||
elif isinstance(chunk, StreamError):
|
||||
turn1_errors.append(chunk.errorText)
|
||||
elif isinstance(chunk, StreamFinish):
|
||||
turn1_ended = True
|
||||
|
||||
assert turn1_ended, "Turn 1 did not finish"
|
||||
assert not turn1_errors, f"Turn 1 errors: {turn1_errors}"
|
||||
assert turn1_text, "Turn 1 produced no text"
|
||||
|
||||
# Wait for background upload task to complete (retry up to 5s)
|
||||
transcript = None
|
||||
for _ in range(10):
|
||||
await asyncio.sleep(0.5)
|
||||
transcript = await download_transcript(test_user_id, session.session_id)
|
||||
if transcript:
|
||||
break
|
||||
assert transcript, (
|
||||
"Transcript was not uploaded to bucket after turn 1 — "
|
||||
"Stop hook may not have fired or transcript was too small"
|
||||
)
|
||||
logger.info(f"Turn 1 transcript uploaded: {len(transcript)} bytes")
|
||||
|
||||
# Reload session for turn 2
|
||||
session = await get_chat_session(session.session_id, test_user_id)
|
||||
assert session, "Session not found after turn 1"
|
||||
|
||||
# --- Turn 2: ask model to recall the keyword ---
|
||||
turn2_msg = "What was the special keyword I asked you to remember?"
|
||||
turn2_text = ""
|
||||
turn2_errors: list[str] = []
|
||||
turn2_ended = False
|
||||
|
||||
async for chunk in sdk_service.stream_chat_completion_sdk(
|
||||
session.session_id,
|
||||
turn2_msg,
|
||||
user_id=test_user_id,
|
||||
session=session,
|
||||
):
|
||||
if isinstance(chunk, StreamTextDelta):
|
||||
turn2_text += chunk.delta
|
||||
elif isinstance(chunk, StreamError):
|
||||
turn2_errors.append(chunk.errorText)
|
||||
elif isinstance(chunk, StreamFinish):
|
||||
turn2_ended = True
|
||||
|
||||
assert turn2_ended, "Turn 2 did not finish"
|
||||
assert not turn2_errors, f"Turn 2 errors: {turn2_errors}"
|
||||
assert turn2_text, "Turn 2 produced no text"
|
||||
assert keyword in turn2_text, (
|
||||
f"Model did not recall keyword '{keyword}' in turn 2. "
|
||||
f"Response: {turn2_text[:200]}"
|
||||
)
|
||||
logger.info(f"Turn 2 recalled keyword successfully: {turn2_text[:100]}")
|
||||
|
||||
@@ -1,989 +0,0 @@
|
||||
"""Stream registry for managing reconnectable SSE streams.
|
||||
|
||||
This module provides a registry for tracking active streaming tasks and their
|
||||
messages. It uses Redis for all state management (no in-memory state), making
|
||||
pods stateless and horizontally scalable.
|
||||
|
||||
Architecture:
|
||||
- Redis Stream: Persists all messages for replay and real-time delivery
|
||||
- Redis Hash: Task metadata (status, session_id, etc.)
|
||||
|
||||
Subscribers:
|
||||
1. Replay missed messages from Redis Stream (XREAD)
|
||||
2. Listen for live updates via blocking XREAD
|
||||
3. No in-memory state required on the subscribing pod
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from dataclasses import dataclass, field
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Literal
|
||||
|
||||
import orjson
|
||||
|
||||
from backend.data.redis_client import get_redis_async
|
||||
|
||||
from .config import ChatConfig
|
||||
from .response_model import StreamBaseResponse, StreamError, StreamFinish
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
config = ChatConfig()
|
||||
|
||||
# Track background tasks for this pod (just the asyncio.Task reference, not subscribers)
|
||||
_local_tasks: dict[str, asyncio.Task] = {}
|
||||
|
||||
# Track listener tasks per subscriber queue for cleanup
|
||||
# Maps queue id() to (task_id, asyncio.Task) for proper cleanup on unsubscribe
|
||||
_listener_tasks: dict[int, tuple[str, asyncio.Task]] = {}
|
||||
|
||||
# Timeout for putting chunks into subscriber queues (seconds)
|
||||
# If the queue is full and doesn't drain within this time, send an overflow error
|
||||
QUEUE_PUT_TIMEOUT = 5.0
|
||||
|
||||
# Lua script for atomic compare-and-swap status update (idempotent completion)
|
||||
# Returns 1 if status was updated, 0 if already completed/failed
|
||||
COMPLETE_TASK_SCRIPT = """
|
||||
local current = redis.call("HGET", KEYS[1], "status")
|
||||
if current == "running" then
|
||||
redis.call("HSET", KEYS[1], "status", ARGV[1])
|
||||
return 1
|
||||
end
|
||||
return 0
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class ActiveTask:
|
||||
"""Represents an active streaming task (metadata only, no in-memory queues)."""
|
||||
|
||||
task_id: str
|
||||
session_id: str
|
||||
user_id: str | None
|
||||
tool_call_id: str
|
||||
tool_name: str
|
||||
operation_id: str
|
||||
status: Literal["running", "completed", "failed"] = "running"
|
||||
created_at: datetime = field(default_factory=lambda: datetime.now(timezone.utc))
|
||||
asyncio_task: asyncio.Task | None = None
|
||||
|
||||
|
||||
def _get_task_meta_key(task_id: str) -> str:
|
||||
"""Get Redis key for task metadata."""
|
||||
return f"{config.task_meta_prefix}{task_id}"
|
||||
|
||||
|
||||
def _get_task_stream_key(task_id: str) -> str:
|
||||
"""Get Redis key for task message stream."""
|
||||
return f"{config.task_stream_prefix}{task_id}"
|
||||
|
||||
|
||||
def _get_operation_mapping_key(operation_id: str) -> str:
|
||||
"""Get Redis key for operation_id to task_id mapping."""
|
||||
return f"{config.task_op_prefix}{operation_id}"
|
||||
|
||||
|
||||
async def create_task(
|
||||
task_id: str,
|
||||
session_id: str,
|
||||
user_id: str | None,
|
||||
tool_call_id: str,
|
||||
tool_name: str,
|
||||
operation_id: str,
|
||||
) -> ActiveTask:
|
||||
"""Create a new streaming task in Redis.
|
||||
|
||||
Args:
|
||||
task_id: Unique identifier for the task
|
||||
session_id: Chat session ID
|
||||
user_id: User ID (may be None for anonymous)
|
||||
tool_call_id: Tool call ID from the LLM
|
||||
tool_name: Name of the tool being executed
|
||||
operation_id: Operation ID for webhook callbacks
|
||||
|
||||
Returns:
|
||||
The created ActiveTask instance (metadata only)
|
||||
"""
|
||||
import time
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
# Build log metadata for structured logging
|
||||
log_meta = {
|
||||
"component": "StreamRegistry",
|
||||
"task_id": task_id,
|
||||
"session_id": session_id,
|
||||
}
|
||||
if user_id:
|
||||
log_meta["user_id"] = user_id
|
||||
|
||||
logger.info(
|
||||
f"[TIMING] create_task STARTED, task={task_id}, session={session_id}, user={user_id}",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
|
||||
task = ActiveTask(
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
tool_call_id=tool_call_id,
|
||||
tool_name=tool_name,
|
||||
operation_id=operation_id,
|
||||
)
|
||||
|
||||
# Store metadata in Redis
|
||||
redis_start = time.perf_counter()
|
||||
redis = await get_redis_async()
|
||||
redis_time = (time.perf_counter() - redis_start) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] get_redis_async took {redis_time:.1f}ms",
|
||||
extra={"json_fields": {**log_meta, "duration_ms": redis_time}},
|
||||
)
|
||||
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
op_key = _get_operation_mapping_key(operation_id)
|
||||
|
||||
hset_start = time.perf_counter()
|
||||
await redis.hset( # type: ignore[misc]
|
||||
meta_key,
|
||||
mapping={
|
||||
"task_id": task_id,
|
||||
"session_id": session_id,
|
||||
"user_id": user_id or "",
|
||||
"tool_call_id": tool_call_id,
|
||||
"tool_name": tool_name,
|
||||
"operation_id": operation_id,
|
||||
"status": task.status,
|
||||
"created_at": task.created_at.isoformat(),
|
||||
},
|
||||
)
|
||||
hset_time = (time.perf_counter() - hset_start) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] redis.hset took {hset_time:.1f}ms",
|
||||
extra={"json_fields": {**log_meta, "duration_ms": hset_time}},
|
||||
)
|
||||
|
||||
await redis.expire(meta_key, config.stream_ttl)
|
||||
|
||||
# Create operation_id -> task_id mapping for webhook lookups
|
||||
await redis.set(op_key, task_id, ex=config.stream_ttl)
|
||||
|
||||
total_time = (time.perf_counter() - start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] create_task COMPLETED in {total_time:.1f}ms; task={task_id}, session={session_id}",
|
||||
extra={"json_fields": {**log_meta, "total_time_ms": total_time}},
|
||||
)
|
||||
|
||||
return task
|
||||
|
||||
|
||||
async def publish_chunk(
|
||||
task_id: str,
|
||||
chunk: StreamBaseResponse,
|
||||
) -> str:
|
||||
"""Publish a chunk to Redis Stream.
|
||||
|
||||
All delivery is via Redis Streams - no in-memory state.
|
||||
|
||||
Args:
|
||||
task_id: Task ID to publish to
|
||||
chunk: The stream response chunk to publish
|
||||
|
||||
Returns:
|
||||
The Redis Stream message ID
|
||||
"""
|
||||
import time
|
||||
|
||||
start_time = time.perf_counter()
|
||||
chunk_type = type(chunk).__name__
|
||||
chunk_json = chunk.model_dump_json()
|
||||
message_id = "0-0"
|
||||
|
||||
# Build log metadata
|
||||
log_meta = {
|
||||
"component": "StreamRegistry",
|
||||
"task_id": task_id,
|
||||
"chunk_type": chunk_type,
|
||||
}
|
||||
|
||||
try:
|
||||
redis = await get_redis_async()
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
|
||||
# Write to Redis Stream for persistence and real-time delivery
|
||||
xadd_start = time.perf_counter()
|
||||
raw_id = await redis.xadd(
|
||||
stream_key,
|
||||
{"data": chunk_json},
|
||||
maxlen=config.stream_max_length,
|
||||
)
|
||||
xadd_time = (time.perf_counter() - xadd_start) * 1000
|
||||
message_id = raw_id if isinstance(raw_id, str) else raw_id.decode()
|
||||
|
||||
# Set TTL on stream to match task metadata TTL
|
||||
await redis.expire(stream_key, config.stream_ttl)
|
||||
|
||||
total_time = (time.perf_counter() - start_time) * 1000
|
||||
# Only log timing for significant chunks or slow operations
|
||||
if (
|
||||
chunk_type
|
||||
in ("StreamStart", "StreamFinish", "StreamTextStart", "StreamTextEnd")
|
||||
or total_time > 50
|
||||
):
|
||||
logger.info(
|
||||
f"[TIMING] publish_chunk {chunk_type} in {total_time:.1f}ms (xadd={xadd_time:.1f}ms)",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"total_time_ms": total_time,
|
||||
"xadd_time_ms": xadd_time,
|
||||
"message_id": message_id,
|
||||
}
|
||||
},
|
||||
)
|
||||
except Exception as e:
|
||||
elapsed = (time.perf_counter() - start_time) * 1000
|
||||
logger.error(
|
||||
f"[TIMING] Failed to publish chunk {chunk_type} after {elapsed:.1f}ms: {e}",
|
||||
extra={"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}},
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
return message_id
|
||||
|
||||
|
||||
async def subscribe_to_task(
|
||||
task_id: str,
|
||||
user_id: str | None,
|
||||
last_message_id: str = "0-0",
|
||||
) -> asyncio.Queue[StreamBaseResponse] | None:
|
||||
"""Subscribe to a task's stream with replay of missed messages.
|
||||
|
||||
This is fully stateless - uses Redis Stream for replay and pub/sub for live updates.
|
||||
|
||||
Args:
|
||||
task_id: Task ID to subscribe to
|
||||
user_id: User ID for ownership validation
|
||||
last_message_id: Last Redis Stream message ID received ("0-0" for full replay)
|
||||
|
||||
Returns:
|
||||
An asyncio Queue that will receive stream chunks, or None if task not found
|
||||
or user doesn't have access
|
||||
"""
|
||||
import time
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
# Build log metadata
|
||||
log_meta = {"component": "StreamRegistry", "task_id": task_id}
|
||||
if user_id:
|
||||
log_meta["user_id"] = user_id
|
||||
|
||||
logger.info(
|
||||
f"[TIMING] subscribe_to_task STARTED, task={task_id}, user={user_id}, last_msg={last_message_id}",
|
||||
extra={"json_fields": {**log_meta, "last_message_id": last_message_id}},
|
||||
)
|
||||
|
||||
redis_start = time.perf_counter()
|
||||
redis = await get_redis_async()
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
|
||||
hgetall_time = (time.perf_counter() - redis_start) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] Redis hgetall took {hgetall_time:.1f}ms",
|
||||
extra={"json_fields": {**log_meta, "duration_ms": hgetall_time}},
|
||||
)
|
||||
|
||||
if not meta:
|
||||
elapsed = (time.perf_counter() - start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] Task not found in Redis after {elapsed:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"elapsed_ms": elapsed,
|
||||
"reason": "task_not_found",
|
||||
}
|
||||
},
|
||||
)
|
||||
return None
|
||||
|
||||
# Note: Redis client uses decode_responses=True, so keys are strings
|
||||
task_status = meta.get("status", "")
|
||||
task_user_id = meta.get("user_id", "") or None
|
||||
log_meta["session_id"] = meta.get("session_id", "")
|
||||
|
||||
# Validate ownership - if task has an owner, requester must match
|
||||
if task_user_id:
|
||||
if user_id != task_user_id:
|
||||
logger.warning(
|
||||
f"[TIMING] Access denied: user {user_id} tried to access task owned by {task_user_id}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"task_owner": task_user_id,
|
||||
"reason": "access_denied",
|
||||
}
|
||||
},
|
||||
)
|
||||
return None
|
||||
|
||||
subscriber_queue: asyncio.Queue[StreamBaseResponse] = asyncio.Queue()
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
|
||||
# Step 1: Replay messages from Redis Stream
|
||||
xread_start = time.perf_counter()
|
||||
messages = await redis.xread({stream_key: last_message_id}, block=0, count=1000)
|
||||
xread_time = (time.perf_counter() - xread_start) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] Redis xread (replay) took {xread_time:.1f}ms, status={task_status}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"duration_ms": xread_time,
|
||||
"task_status": task_status,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
replayed_count = 0
|
||||
replay_last_id = last_message_id
|
||||
if messages:
|
||||
for _stream_name, stream_messages in messages:
|
||||
for msg_id, msg_data in stream_messages:
|
||||
replay_last_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
|
||||
# Note: Redis client uses decode_responses=True, so keys are strings
|
||||
if "data" in msg_data:
|
||||
try:
|
||||
chunk_data = orjson.loads(msg_data["data"])
|
||||
chunk = _reconstruct_chunk(chunk_data)
|
||||
if chunk:
|
||||
await subscriber_queue.put(chunk)
|
||||
replayed_count += 1
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to replay message: {e}")
|
||||
|
||||
logger.info(
|
||||
f"[TIMING] Replayed {replayed_count} messages, last_id={replay_last_id}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"n_messages_replayed": replayed_count,
|
||||
"replay_last_id": replay_last_id,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# Step 2: If task is still running, start stream listener for live updates
|
||||
if task_status == "running":
|
||||
logger.info(
|
||||
"[TIMING] Task still running, starting _stream_listener",
|
||||
extra={"json_fields": {**log_meta, "task_status": task_status}},
|
||||
)
|
||||
listener_task = asyncio.create_task(
|
||||
_stream_listener(task_id, subscriber_queue, replay_last_id, log_meta)
|
||||
)
|
||||
# Track listener task for cleanup on unsubscribe
|
||||
_listener_tasks[id(subscriber_queue)] = (task_id, listener_task)
|
||||
else:
|
||||
# Task is completed/failed - add finish marker
|
||||
logger.info(
|
||||
f"[TIMING] Task already {task_status}, adding StreamFinish",
|
||||
extra={"json_fields": {**log_meta, "task_status": task_status}},
|
||||
)
|
||||
await subscriber_queue.put(StreamFinish())
|
||||
|
||||
total_time = (time.perf_counter() - start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] subscribe_to_task COMPLETED in {total_time:.1f}ms; task={task_id}, "
|
||||
f"n_messages_replayed={replayed_count}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"total_time_ms": total_time,
|
||||
"n_messages_replayed": replayed_count,
|
||||
}
|
||||
},
|
||||
)
|
||||
return subscriber_queue
|
||||
|
||||
|
||||
async def _stream_listener(
|
||||
task_id: str,
|
||||
subscriber_queue: asyncio.Queue[StreamBaseResponse],
|
||||
last_replayed_id: str,
|
||||
log_meta: dict | None = None,
|
||||
) -> None:
|
||||
"""Listen to Redis Stream for new messages using blocking XREAD.
|
||||
|
||||
This approach avoids the duplicate message issue that can occur with pub/sub
|
||||
when messages are published during the gap between replay and subscription.
|
||||
|
||||
Args:
|
||||
task_id: Task ID to listen for
|
||||
subscriber_queue: Queue to deliver messages to
|
||||
last_replayed_id: Last message ID from replay (continue from here)
|
||||
log_meta: Structured logging metadata
|
||||
"""
|
||||
import time
|
||||
|
||||
start_time = time.perf_counter()
|
||||
|
||||
# Use provided log_meta or build minimal one
|
||||
if log_meta is None:
|
||||
log_meta = {"component": "StreamRegistry", "task_id": task_id}
|
||||
|
||||
logger.info(
|
||||
f"[TIMING] _stream_listener STARTED, task={task_id}, last_id={last_replayed_id}",
|
||||
extra={"json_fields": {**log_meta, "last_replayed_id": last_replayed_id}},
|
||||
)
|
||||
|
||||
queue_id = id(subscriber_queue)
|
||||
# Track the last successfully delivered message ID for recovery hints
|
||||
last_delivered_id = last_replayed_id
|
||||
messages_delivered = 0
|
||||
first_message_time = None
|
||||
xread_count = 0
|
||||
|
||||
try:
|
||||
redis = await get_redis_async()
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
current_id = last_replayed_id
|
||||
|
||||
while True:
|
||||
# Block for up to 30 seconds waiting for new messages
|
||||
# This allows periodic checking if task is still running
|
||||
xread_start = time.perf_counter()
|
||||
xread_count += 1
|
||||
messages = await redis.xread(
|
||||
{stream_key: current_id}, block=30000, count=100
|
||||
)
|
||||
xread_time = (time.perf_counter() - xread_start) * 1000
|
||||
|
||||
if messages:
|
||||
msg_count = sum(len(msgs) for _, msgs in messages)
|
||||
logger.info(
|
||||
f"[TIMING] xread #{xread_count} returned {msg_count} messages in {xread_time:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"xread_count": xread_count,
|
||||
"n_messages": msg_count,
|
||||
"duration_ms": xread_time,
|
||||
}
|
||||
},
|
||||
)
|
||||
elif xread_time > 1000:
|
||||
# Only log timeouts (30s blocking)
|
||||
logger.info(
|
||||
f"[TIMING] xread #{xread_count} timeout after {xread_time:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"xread_count": xread_count,
|
||||
"duration_ms": xread_time,
|
||||
"reason": "timeout",
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
if not messages:
|
||||
# Timeout - check if task is still running
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
status = await redis.hget(meta_key, "status") # type: ignore[misc]
|
||||
if status and status != "running":
|
||||
try:
|
||||
await asyncio.wait_for(
|
||||
subscriber_queue.put(StreamFinish()),
|
||||
timeout=QUEUE_PUT_TIMEOUT,
|
||||
)
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(
|
||||
f"Timeout delivering finish event for task {task_id}"
|
||||
)
|
||||
break
|
||||
continue
|
||||
|
||||
for _stream_name, stream_messages in messages:
|
||||
for msg_id, msg_data in stream_messages:
|
||||
current_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
|
||||
|
||||
if "data" not in msg_data:
|
||||
continue
|
||||
|
||||
try:
|
||||
chunk_data = orjson.loads(msg_data["data"])
|
||||
chunk = _reconstruct_chunk(chunk_data)
|
||||
if chunk:
|
||||
try:
|
||||
await asyncio.wait_for(
|
||||
subscriber_queue.put(chunk),
|
||||
timeout=QUEUE_PUT_TIMEOUT,
|
||||
)
|
||||
# Update last delivered ID on successful delivery
|
||||
last_delivered_id = current_id
|
||||
messages_delivered += 1
|
||||
if first_message_time is None:
|
||||
first_message_time = time.perf_counter()
|
||||
elapsed = (first_message_time - start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] FIRST live message at {elapsed:.1f}ms, type={type(chunk).__name__}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"elapsed_ms": elapsed,
|
||||
"chunk_type": type(chunk).__name__,
|
||||
}
|
||||
},
|
||||
)
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(
|
||||
f"[TIMING] Subscriber queue full, delivery timed out after {QUEUE_PUT_TIMEOUT}s",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"timeout_s": QUEUE_PUT_TIMEOUT,
|
||||
"reason": "queue_full",
|
||||
}
|
||||
},
|
||||
)
|
||||
# Send overflow error with recovery info
|
||||
try:
|
||||
overflow_error = StreamError(
|
||||
errorText="Message delivery timeout - some messages may have been missed",
|
||||
code="QUEUE_OVERFLOW",
|
||||
details={
|
||||
"last_delivered_id": last_delivered_id,
|
||||
"recovery_hint": f"Reconnect with last_message_id={last_delivered_id}",
|
||||
},
|
||||
)
|
||||
subscriber_queue.put_nowait(overflow_error)
|
||||
except asyncio.QueueFull:
|
||||
# Queue is completely stuck, nothing more we can do
|
||||
logger.error(
|
||||
f"Cannot deliver overflow error for task {task_id}, "
|
||||
"queue completely blocked"
|
||||
)
|
||||
|
||||
# Stop listening on finish
|
||||
if isinstance(chunk, StreamFinish):
|
||||
total_time = (time.perf_counter() - start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] StreamFinish received in {total_time/1000:.1f}s; delivered={messages_delivered}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"total_time_ms": total_time,
|
||||
"messages_delivered": messages_delivered,
|
||||
}
|
||||
},
|
||||
)
|
||||
return
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Error processing stream message: {e}",
|
||||
extra={"json_fields": {**log_meta, "error": str(e)}},
|
||||
)
|
||||
|
||||
except asyncio.CancelledError:
|
||||
elapsed = (time.perf_counter() - start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] _stream_listener CANCELLED after {elapsed:.1f}ms, delivered={messages_delivered}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"elapsed_ms": elapsed,
|
||||
"messages_delivered": messages_delivered,
|
||||
"reason": "cancelled",
|
||||
}
|
||||
},
|
||||
)
|
||||
raise # Re-raise to propagate cancellation
|
||||
except Exception as e:
|
||||
elapsed = (time.perf_counter() - start_time) * 1000
|
||||
logger.error(
|
||||
f"[TIMING] _stream_listener ERROR after {elapsed:.1f}ms: {e}",
|
||||
extra={"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}},
|
||||
)
|
||||
# On error, send finish to unblock subscriber
|
||||
try:
|
||||
await asyncio.wait_for(
|
||||
subscriber_queue.put(StreamFinish()),
|
||||
timeout=QUEUE_PUT_TIMEOUT,
|
||||
)
|
||||
except (asyncio.TimeoutError, asyncio.QueueFull):
|
||||
logger.warning(
|
||||
"Could not deliver finish event after error",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
finally:
|
||||
# Clean up listener task mapping on exit
|
||||
total_time = (time.perf_counter() - start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] _stream_listener FINISHED in {total_time/1000:.1f}s; task={task_id}, "
|
||||
f"delivered={messages_delivered}, xread_count={xread_count}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"total_time_ms": total_time,
|
||||
"messages_delivered": messages_delivered,
|
||||
"xread_count": xread_count,
|
||||
}
|
||||
},
|
||||
)
|
||||
_listener_tasks.pop(queue_id, None)
|
||||
|
||||
|
||||
async def mark_task_completed(
|
||||
task_id: str,
|
||||
status: Literal["completed", "failed"] = "completed",
|
||||
) -> bool:
|
||||
"""Mark a task as completed and publish finish event.
|
||||
|
||||
This is idempotent - calling multiple times with the same task_id is safe.
|
||||
Uses atomic compare-and-swap via Lua script to prevent race conditions.
|
||||
Status is updated first (source of truth), then finish event is published (best-effort).
|
||||
|
||||
Args:
|
||||
task_id: Task ID to mark as completed
|
||||
status: Final status ("completed" or "failed")
|
||||
|
||||
Returns:
|
||||
True if task was newly marked completed, False if already completed/failed
|
||||
"""
|
||||
redis = await get_redis_async()
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
|
||||
# Atomic compare-and-swap: only update if status is "running"
|
||||
# This prevents race conditions when multiple callers try to complete simultaneously
|
||||
result = await redis.eval(COMPLETE_TASK_SCRIPT, 1, meta_key, status) # type: ignore[misc]
|
||||
|
||||
if result == 0:
|
||||
logger.debug(f"Task {task_id} already completed/failed, skipping")
|
||||
return False
|
||||
|
||||
# THEN publish finish event (best-effort - listeners can detect via status polling)
|
||||
try:
|
||||
await publish_chunk(task_id, StreamFinish())
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to publish finish event for task {task_id}: {e}. "
|
||||
"Listeners will detect completion via status polling."
|
||||
)
|
||||
|
||||
# Clean up local task reference if exists
|
||||
_local_tasks.pop(task_id, None)
|
||||
return True
|
||||
|
||||
|
||||
async def find_task_by_operation_id(operation_id: str) -> ActiveTask | None:
|
||||
"""Find a task by its operation ID.
|
||||
|
||||
Used by webhook callbacks to locate the task to update.
|
||||
|
||||
Args:
|
||||
operation_id: Operation ID to search for
|
||||
|
||||
Returns:
|
||||
ActiveTask if found, None otherwise
|
||||
"""
|
||||
redis = await get_redis_async()
|
||||
op_key = _get_operation_mapping_key(operation_id)
|
||||
task_id = await redis.get(op_key)
|
||||
|
||||
if not task_id:
|
||||
return None
|
||||
|
||||
task_id_str = task_id.decode() if isinstance(task_id, bytes) else task_id
|
||||
return await get_task(task_id_str)
|
||||
|
||||
|
||||
async def get_task(task_id: str) -> ActiveTask | None:
|
||||
"""Get a task by its ID from Redis.
|
||||
|
||||
Args:
|
||||
task_id: Task ID to look up
|
||||
|
||||
Returns:
|
||||
ActiveTask if found, None otherwise
|
||||
"""
|
||||
redis = await get_redis_async()
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
|
||||
|
||||
if not meta:
|
||||
return None
|
||||
|
||||
# Note: Redis client uses decode_responses=True, so keys/values are strings
|
||||
return ActiveTask(
|
||||
task_id=meta.get("task_id", ""),
|
||||
session_id=meta.get("session_id", ""),
|
||||
user_id=meta.get("user_id", "") or None,
|
||||
tool_call_id=meta.get("tool_call_id", ""),
|
||||
tool_name=meta.get("tool_name", ""),
|
||||
operation_id=meta.get("operation_id", ""),
|
||||
status=meta.get("status", "running"), # type: ignore[arg-type]
|
||||
)
|
||||
|
||||
|
||||
async def get_task_with_expiry_info(
|
||||
task_id: str,
|
||||
) -> tuple[ActiveTask | None, str | None]:
|
||||
"""Get a task by its ID with expiration detection.
|
||||
|
||||
Returns (task, error_code) where error_code is:
|
||||
- None if task found
|
||||
- "TASK_EXPIRED" if stream exists but metadata is gone (TTL expired)
|
||||
- "TASK_NOT_FOUND" if neither exists
|
||||
|
||||
Args:
|
||||
task_id: Task ID to look up
|
||||
|
||||
Returns:
|
||||
Tuple of (ActiveTask or None, error_code or None)
|
||||
"""
|
||||
redis = await get_redis_async()
|
||||
meta_key = _get_task_meta_key(task_id)
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
|
||||
meta: dict[Any, Any] = await redis.hgetall(meta_key) # type: ignore[misc]
|
||||
|
||||
if not meta:
|
||||
# Check if stream still has data (metadata expired but stream hasn't)
|
||||
stream_len = await redis.xlen(stream_key)
|
||||
if stream_len > 0:
|
||||
return None, "TASK_EXPIRED"
|
||||
return None, "TASK_NOT_FOUND"
|
||||
|
||||
# Note: Redis client uses decode_responses=True, so keys/values are strings
|
||||
return (
|
||||
ActiveTask(
|
||||
task_id=meta.get("task_id", ""),
|
||||
session_id=meta.get("session_id", ""),
|
||||
user_id=meta.get("user_id", "") or None,
|
||||
tool_call_id=meta.get("tool_call_id", ""),
|
||||
tool_name=meta.get("tool_name", ""),
|
||||
operation_id=meta.get("operation_id", ""),
|
||||
status=meta.get("status", "running"), # type: ignore[arg-type]
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
|
||||
async def get_active_task_for_session(
|
||||
session_id: str,
|
||||
user_id: str | None = None,
|
||||
) -> tuple[ActiveTask | None, str]:
|
||||
"""Get the active (running) task for a session, if any.
|
||||
|
||||
Scans Redis for tasks matching the session_id with status="running".
|
||||
|
||||
Args:
|
||||
session_id: Session ID to look up
|
||||
user_id: User ID for ownership validation (optional)
|
||||
|
||||
Returns:
|
||||
Tuple of (ActiveTask if found and running, last_message_id from Redis Stream)
|
||||
"""
|
||||
|
||||
redis = await get_redis_async()
|
||||
|
||||
# Scan Redis for task metadata keys
|
||||
cursor = 0
|
||||
tasks_checked = 0
|
||||
|
||||
while True:
|
||||
cursor, keys = await redis.scan(
|
||||
cursor, match=f"{config.task_meta_prefix}*", count=100
|
||||
)
|
||||
|
||||
for key in keys:
|
||||
tasks_checked += 1
|
||||
meta: dict[Any, Any] = await redis.hgetall(key) # type: ignore[misc]
|
||||
if not meta:
|
||||
continue
|
||||
|
||||
# Note: Redis client uses decode_responses=True, so keys/values are strings
|
||||
task_session_id = meta.get("session_id", "")
|
||||
task_status = meta.get("status", "")
|
||||
task_user_id = meta.get("user_id", "") or None
|
||||
task_id = meta.get("task_id", "")
|
||||
|
||||
if task_session_id == session_id and task_status == "running":
|
||||
# Validate ownership - if task has an owner, requester must match
|
||||
if task_user_id and user_id != task_user_id:
|
||||
continue
|
||||
|
||||
# Auto-expire stale tasks that exceeded stream_timeout
|
||||
created_at_str = meta.get("created_at", "")
|
||||
if created_at_str:
|
||||
try:
|
||||
created_at = datetime.fromisoformat(created_at_str)
|
||||
age_seconds = (
|
||||
datetime.now(timezone.utc) - created_at
|
||||
).total_seconds()
|
||||
if age_seconds > config.stream_timeout:
|
||||
logger.warning(
|
||||
f"[TASK_LOOKUP] Auto-expiring stale task {task_id[:8]}... "
|
||||
f"(age={age_seconds:.0f}s > timeout={config.stream_timeout}s)"
|
||||
)
|
||||
await mark_task_completed(task_id, "failed")
|
||||
continue
|
||||
except (ValueError, TypeError):
|
||||
pass
|
||||
|
||||
logger.info(
|
||||
f"[TASK_LOOKUP] Found running task {task_id[:8]}... for session {session_id[:8]}..."
|
||||
)
|
||||
|
||||
# Get the last message ID from Redis Stream
|
||||
stream_key = _get_task_stream_key(task_id)
|
||||
last_id = "0-0"
|
||||
try:
|
||||
messages = await redis.xrevrange(stream_key, count=1)
|
||||
if messages:
|
||||
msg_id = messages[0][0]
|
||||
last_id = msg_id if isinstance(msg_id, str) else msg_id.decode()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to get last message ID: {e}")
|
||||
|
||||
return (
|
||||
ActiveTask(
|
||||
task_id=task_id,
|
||||
session_id=task_session_id,
|
||||
user_id=task_user_id,
|
||||
tool_call_id=meta.get("tool_call_id", ""),
|
||||
tool_name=meta.get("tool_name", ""),
|
||||
operation_id=meta.get("operation_id", ""),
|
||||
status="running",
|
||||
),
|
||||
last_id,
|
||||
)
|
||||
|
||||
if cursor == 0:
|
||||
break
|
||||
|
||||
return None, "0-0"
|
||||
|
||||
|
||||
def _reconstruct_chunk(chunk_data: dict) -> StreamBaseResponse | None:
|
||||
"""Reconstruct a StreamBaseResponse from JSON data.
|
||||
|
||||
Args:
|
||||
chunk_data: Parsed JSON data from Redis
|
||||
|
||||
Returns:
|
||||
Reconstructed response object, or None if unknown type
|
||||
"""
|
||||
from .response_model import (
|
||||
ResponseType,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamFinishStep,
|
||||
StreamHeartbeat,
|
||||
StreamStart,
|
||||
StreamStartStep,
|
||||
StreamTextDelta,
|
||||
StreamTextEnd,
|
||||
StreamTextStart,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolInputStart,
|
||||
StreamToolOutputAvailable,
|
||||
StreamUsage,
|
||||
)
|
||||
|
||||
# Map response types to their corresponding classes
|
||||
type_to_class: dict[str, type[StreamBaseResponse]] = {
|
||||
ResponseType.START.value: StreamStart,
|
||||
ResponseType.FINISH.value: StreamFinish,
|
||||
ResponseType.START_STEP.value: StreamStartStep,
|
||||
ResponseType.FINISH_STEP.value: StreamFinishStep,
|
||||
ResponseType.TEXT_START.value: StreamTextStart,
|
||||
ResponseType.TEXT_DELTA.value: StreamTextDelta,
|
||||
ResponseType.TEXT_END.value: StreamTextEnd,
|
||||
ResponseType.TOOL_INPUT_START.value: StreamToolInputStart,
|
||||
ResponseType.TOOL_INPUT_AVAILABLE.value: StreamToolInputAvailable,
|
||||
ResponseType.TOOL_OUTPUT_AVAILABLE.value: StreamToolOutputAvailable,
|
||||
ResponseType.ERROR.value: StreamError,
|
||||
ResponseType.USAGE.value: StreamUsage,
|
||||
ResponseType.HEARTBEAT.value: StreamHeartbeat,
|
||||
}
|
||||
|
||||
chunk_type = chunk_data.get("type")
|
||||
chunk_class = type_to_class.get(chunk_type) # type: ignore[arg-type]
|
||||
|
||||
if chunk_class is None:
|
||||
logger.warning(f"Unknown chunk type: {chunk_type}")
|
||||
return None
|
||||
|
||||
try:
|
||||
return chunk_class(**chunk_data)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to reconstruct chunk of type {chunk_type}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def set_task_asyncio_task(task_id: str, asyncio_task: asyncio.Task) -> None:
|
||||
"""Track the asyncio.Task for a task (local reference only).
|
||||
|
||||
This is just for cleanup purposes - the task state is in Redis.
|
||||
|
||||
Args:
|
||||
task_id: Task ID
|
||||
asyncio_task: The asyncio Task to track
|
||||
"""
|
||||
_local_tasks[task_id] = asyncio_task
|
||||
|
||||
|
||||
async def unsubscribe_from_task(
|
||||
task_id: str,
|
||||
subscriber_queue: asyncio.Queue[StreamBaseResponse],
|
||||
) -> None:
|
||||
"""Clean up when a subscriber disconnects.
|
||||
|
||||
Cancels the XREAD-based listener task associated with this subscriber queue
|
||||
to prevent resource leaks.
|
||||
|
||||
Args:
|
||||
task_id: Task ID
|
||||
subscriber_queue: The subscriber's queue used to look up the listener task
|
||||
"""
|
||||
queue_id = id(subscriber_queue)
|
||||
listener_entry = _listener_tasks.pop(queue_id, None)
|
||||
|
||||
if listener_entry is None:
|
||||
logger.debug(
|
||||
f"No listener task found for task {task_id} queue {queue_id} "
|
||||
"(may have already completed)"
|
||||
)
|
||||
return
|
||||
|
||||
stored_task_id, listener_task = listener_entry
|
||||
|
||||
if stored_task_id != task_id:
|
||||
logger.warning(
|
||||
f"Task ID mismatch in unsubscribe: expected {task_id}, "
|
||||
f"found {stored_task_id}"
|
||||
)
|
||||
|
||||
if listener_task.done():
|
||||
logger.debug(f"Listener task for task {task_id} already completed")
|
||||
return
|
||||
|
||||
# Cancel the listener task
|
||||
listener_task.cancel()
|
||||
|
||||
try:
|
||||
# Wait for the task to be cancelled with a timeout
|
||||
await asyncio.wait_for(listener_task, timeout=5.0)
|
||||
except asyncio.CancelledError:
|
||||
# Expected - the task was successfully cancelled
|
||||
pass
|
||||
except asyncio.TimeoutError:
|
||||
logger.warning(
|
||||
f"Timeout waiting for listener task cancellation for task {task_id}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error during listener task cancellation for task {task_id}: {e}")
|
||||
|
||||
logger.debug(f"Successfully unsubscribed from task {task_id}")
|
||||
@@ -1,79 +0,0 @@
|
||||
# CoPilot Tools - Future Ideas
|
||||
|
||||
## Multimodal Image Support for CoPilot
|
||||
|
||||
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
|
||||
|
||||
**Backend Solution:**
|
||||
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
|
||||
|
||||
```python
|
||||
# Before sending to LLM, scan for workspace image references
|
||||
# and inject them as image content parts
|
||||
|
||||
# Example message transformation:
|
||||
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
|
||||
# TO: {"role": "assistant", "content": [
|
||||
# {"type": "text", "text": "Generated image: workspace://abc123"},
|
||||
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
|
||||
# ]}
|
||||
```
|
||||
|
||||
**Where to implement:**
|
||||
- In the chat stream handler before calling the LLM
|
||||
- Or in a message preprocessing step
|
||||
- Need to fetch image from workspace, convert to base64, add as image content
|
||||
|
||||
**Considerations:**
|
||||
- Only do this for image MIME types (image/png, image/jpeg, etc.)
|
||||
- May want a size limit (don't pass 10MB images)
|
||||
- Track which images were "shown" to the AI for frontend indicator
|
||||
- Cost implications - vision API calls are more expensive
|
||||
|
||||
**Frontend Solution:**
|
||||
Show visual indicator on workspace files in chat:
|
||||
- If AI saw the image: normal display
|
||||
- If AI didn't see it: overlay icon saying "AI can't see this image"
|
||||
|
||||
Requires response metadata indicating which `workspace://` refs were passed to the model.
|
||||
|
||||
---
|
||||
|
||||
## Output Post-Processing Layer for run_block
|
||||
|
||||
**Problem:** Many blocks produce large outputs that:
|
||||
- Consume massive context (100KB base64 image = ~133KB tokens)
|
||||
- Can't fit in conversation
|
||||
- Break things and cause high LLM costs
|
||||
|
||||
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
|
||||
|
||||
**Benefits:**
|
||||
1. **Centralized** - one place to handle all output processing
|
||||
2. **Future-proof** - new blocks automatically get output processing
|
||||
3. **Keeps blocks pure** - they don't need to know about context constraints
|
||||
4. **Handles all large outputs** - not just images
|
||||
|
||||
**Processing Rules:**
|
||||
- Detect base64 data URIs → save to workspace, return `workspace://` reference
|
||||
- Truncate very long strings (>N chars) with truncation note
|
||||
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
|
||||
- Handle nested large outputs in dicts recursively
|
||||
- Cap total output size
|
||||
|
||||
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
|
||||
|
||||
**Example:**
|
||||
```python
|
||||
def _process_outputs_for_context(
|
||||
outputs: dict[str, list[Any]],
|
||||
workspace_manager: WorkspaceManager,
|
||||
max_string_length: int = 10000,
|
||||
max_array_preview: int = 5,
|
||||
) -> dict[str, list[Any]]:
|
||||
"""Process block outputs to prevent context bloat."""
|
||||
processed = {}
|
||||
for name, values in outputs.items():
|
||||
processed[name] = [_process_value(v, workspace_manager) for v in values]
|
||||
return processed
|
||||
```
|
||||
@@ -1,20 +1,14 @@
|
||||
import logging
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tracking import track_tool_called
|
||||
|
||||
from .add_understanding import AddUnderstandingTool
|
||||
from .agent_output import AgentOutputTool
|
||||
from .base import BaseTool
|
||||
from .bash_exec import BashExecTool
|
||||
from .check_operation_status import CheckOperationStatusTool
|
||||
from .create_agent import CreateAgentTool
|
||||
from .customize_agent import CustomizeAgentTool
|
||||
from .edit_agent import EditAgentTool
|
||||
from .feature_requests import CreateFeatureRequestTool, SearchFeatureRequestsTool
|
||||
from .find_agent import FindAgentTool
|
||||
from .find_block import FindBlockTool
|
||||
from .find_library_agent import FindLibraryAgentTool
|
||||
@@ -22,24 +16,14 @@ from .get_doc_page import GetDocPageTool
|
||||
from .run_agent import RunAgentTool
|
||||
from .run_block import RunBlockTool
|
||||
from .search_docs import SearchDocsTool
|
||||
from .web_fetch import WebFetchTool
|
||||
from .workspace_files import (
|
||||
DeleteWorkspaceFileTool,
|
||||
ListWorkspaceFilesTool,
|
||||
ReadWorkspaceFileTool,
|
||||
WriteWorkspaceFileTool,
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.api.features.chat.response_model import StreamToolOutputAvailable
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Single source of truth for all tools
|
||||
TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||
"add_understanding": AddUnderstandingTool(),
|
||||
"create_agent": CreateAgentTool(),
|
||||
"customize_agent": CustomizeAgentTool(),
|
||||
"edit_agent": EditAgentTool(),
|
||||
"find_agent": FindAgentTool(),
|
||||
"find_block": FindBlockTool(),
|
||||
@@ -47,22 +31,8 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||
"run_agent": RunAgentTool(),
|
||||
"run_block": RunBlockTool(),
|
||||
"view_agent_output": AgentOutputTool(),
|
||||
"check_operation_status": CheckOperationStatusTool(),
|
||||
"search_docs": SearchDocsTool(),
|
||||
"get_doc_page": GetDocPageTool(),
|
||||
# Web fetch for safe URL retrieval
|
||||
"web_fetch": WebFetchTool(),
|
||||
# Sandboxed code execution (bubblewrap)
|
||||
"bash_exec": BashExecTool(),
|
||||
# Persistent workspace tools (cloud storage, survives across sessions)
|
||||
# Feature request tools
|
||||
"search_feature_requests": SearchFeatureRequestsTool(),
|
||||
"create_feature_request": CreateFeatureRequestTool(),
|
||||
# Workspace tools for CoPilot file operations
|
||||
"list_workspace_files": ListWorkspaceFilesTool(),
|
||||
"read_workspace_file": ReadWorkspaceFileTool(),
|
||||
"write_workspace_file": WriteWorkspaceFileTool(),
|
||||
"delete_workspace_file": DeleteWorkspaceFileTool(),
|
||||
}
|
||||
|
||||
# Export individual tool instances for backwards compatibility
|
||||
@@ -75,11 +45,6 @@ tools: list[ChatCompletionToolParam] = [
|
||||
]
|
||||
|
||||
|
||||
def get_tool(tool_name: str) -> BaseTool | None:
|
||||
"""Get a tool instance by name."""
|
||||
return TOOL_REGISTRY.get(tool_name)
|
||||
|
||||
|
||||
async def execute_tool(
|
||||
tool_name: str,
|
||||
parameters: dict[str, Any],
|
||||
@@ -88,20 +53,7 @@ async def execute_tool(
|
||||
tool_call_id: str,
|
||||
) -> "StreamToolOutputAvailable":
|
||||
"""Execute a tool by name."""
|
||||
tool = get_tool(tool_name)
|
||||
tool = TOOL_REGISTRY.get(tool_name)
|
||||
if not tool:
|
||||
raise ValueError(f"Tool {tool_name} not found")
|
||||
|
||||
# Track tool call in PostHog
|
||||
logger.info(
|
||||
f"Tracking tool call: tool={tool_name}, user={user_id}, "
|
||||
f"session={session.session_id}, call_id={tool_call_id}"
|
||||
)
|
||||
track_tool_called(
|
||||
user_id=user_id,
|
||||
session_id=session.session_id,
|
||||
tool_name=tool_name,
|
||||
tool_call_id=tool_call_id,
|
||||
)
|
||||
|
||||
return await tool.execute(user_id, session, tool_call_id, **parameters)
|
||||
|
||||
@@ -3,6 +3,8 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.understanding import (
|
||||
BusinessUnderstandingInput,
|
||||
@@ -59,6 +61,7 @@ and automations for the user's specific needs."""
|
||||
"""Requires authentication to store user-specific data."""
|
||||
return True
|
||||
|
||||
@observe(as_type="tool", name="add_understanding")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
|
||||
@@ -1,59 +1,29 @@
|
||||
"""Agent generator package - Creates agents from natural language."""
|
||||
|
||||
from .core import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
AgentJsonValidationError,
|
||||
AgentSummary,
|
||||
DecompositionResult,
|
||||
DecompositionStep,
|
||||
LibraryAgentSummary,
|
||||
MarketplaceAgentSummary,
|
||||
customize_template,
|
||||
apply_agent_patch,
|
||||
decompose_goal,
|
||||
enrich_library_agents_from_steps,
|
||||
extract_search_terms_from_steps,
|
||||
extract_uuids_from_text,
|
||||
generate_agent,
|
||||
generate_agent_patch,
|
||||
get_agent_as_json,
|
||||
get_all_relevant_agents_for_generation,
|
||||
get_library_agent_by_graph_id,
|
||||
get_library_agent_by_id,
|
||||
get_library_agents_for_generation,
|
||||
graph_to_json,
|
||||
json_to_graph,
|
||||
save_agent_to_library,
|
||||
search_marketplace_agents_for_generation,
|
||||
)
|
||||
from .errors import get_user_message_for_error
|
||||
from .service import health_check as check_external_service_health
|
||||
from .service import is_external_service_configured
|
||||
from .fixer import apply_all_fixes
|
||||
from .utils import get_blocks_info
|
||||
from .validator import validate_agent
|
||||
|
||||
__all__ = [
|
||||
"AgentGeneratorNotConfiguredError",
|
||||
"AgentJsonValidationError",
|
||||
"AgentSummary",
|
||||
"DecompositionResult",
|
||||
"DecompositionStep",
|
||||
"LibraryAgentSummary",
|
||||
"MarketplaceAgentSummary",
|
||||
"check_external_service_health",
|
||||
"customize_template",
|
||||
# Core functions
|
||||
"decompose_goal",
|
||||
"enrich_library_agents_from_steps",
|
||||
"extract_search_terms_from_steps",
|
||||
"extract_uuids_from_text",
|
||||
"generate_agent",
|
||||
"generate_agent_patch",
|
||||
"get_agent_as_json",
|
||||
"get_all_relevant_agents_for_generation",
|
||||
"get_library_agent_by_graph_id",
|
||||
"get_library_agent_by_id",
|
||||
"get_library_agents_for_generation",
|
||||
"get_user_message_for_error",
|
||||
"graph_to_json",
|
||||
"is_external_service_configured",
|
||||
"json_to_graph",
|
||||
"apply_agent_patch",
|
||||
"save_agent_to_library",
|
||||
"search_marketplace_agents_for_generation",
|
||||
"get_agent_as_json",
|
||||
# Fixer
|
||||
"apply_all_fixes",
|
||||
# Validator
|
||||
"validate_agent",
|
||||
# Utils
|
||||
"get_blocks_info",
|
||||
]
|
||||
|
||||
@@ -0,0 +1,25 @@
|
||||
"""OpenRouter client configuration for agent generation."""
|
||||
|
||||
import os
|
||||
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
# Configuration - use OPEN_ROUTER_API_KEY for consistency with chat/config.py
|
||||
OPENROUTER_API_KEY = os.getenv("OPEN_ROUTER_API_KEY")
|
||||
AGENT_GENERATOR_MODEL = os.getenv("AGENT_GENERATOR_MODEL", "anthropic/claude-opus-4.5")
|
||||
|
||||
# OpenRouter client (OpenAI-compatible API)
|
||||
_client: AsyncOpenAI | None = None
|
||||
|
||||
|
||||
def get_client() -> AsyncOpenAI:
|
||||
"""Get or create the OpenRouter client."""
|
||||
global _client
|
||||
if _client is None:
|
||||
if not OPENROUTER_API_KEY:
|
||||
raise ValueError("OPENROUTER_API_KEY environment variable is required")
|
||||
_client = AsyncOpenAI(
|
||||
base_url="https://openrouter.ai/api/v1",
|
||||
api_key=OPENROUTER_API_KEY,
|
||||
)
|
||||
return _client
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,154 +0,0 @@
|
||||
"""Dummy Agent Generator for testing.
|
||||
|
||||
Returns mock responses matching the format expected from the external service.
|
||||
Enable via AGENTGENERATOR_USE_DUMMY=true in settings.
|
||||
|
||||
WARNING: This is for testing only. Do not use in production.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Dummy decomposition result (instructions type)
|
||||
DUMMY_DECOMPOSITION_RESULT: dict[str, Any] = {
|
||||
"type": "instructions",
|
||||
"steps": [
|
||||
{
|
||||
"description": "Get input from user",
|
||||
"action": "input",
|
||||
"block_name": "AgentInputBlock",
|
||||
},
|
||||
{
|
||||
"description": "Process the input",
|
||||
"action": "process",
|
||||
"block_name": "TextFormatterBlock",
|
||||
},
|
||||
{
|
||||
"description": "Return output to user",
|
||||
"action": "output",
|
||||
"block_name": "AgentOutputBlock",
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
# Block IDs from backend/blocks/io.py
|
||||
AGENT_INPUT_BLOCK_ID = "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b"
|
||||
AGENT_OUTPUT_BLOCK_ID = "363ae599-353e-4804-937e-b2ee3cef3da4"
|
||||
|
||||
|
||||
def _generate_dummy_agent_json() -> dict[str, Any]:
|
||||
"""Generate a minimal valid agent JSON for testing."""
|
||||
input_node_id = str(uuid.uuid4())
|
||||
output_node_id = str(uuid.uuid4())
|
||||
|
||||
return {
|
||||
"id": str(uuid.uuid4()),
|
||||
"version": 1,
|
||||
"is_active": True,
|
||||
"name": "Dummy Test Agent",
|
||||
"description": "A dummy agent generated for testing purposes",
|
||||
"nodes": [
|
||||
{
|
||||
"id": input_node_id,
|
||||
"block_id": AGENT_INPUT_BLOCK_ID,
|
||||
"input_default": {
|
||||
"name": "input",
|
||||
"title": "Input",
|
||||
"description": "Enter your input",
|
||||
"placeholder_values": [],
|
||||
},
|
||||
"metadata": {"position": {"x": 0, "y": 0}},
|
||||
},
|
||||
{
|
||||
"id": output_node_id,
|
||||
"block_id": AGENT_OUTPUT_BLOCK_ID,
|
||||
"input_default": {
|
||||
"name": "output",
|
||||
"title": "Output",
|
||||
"description": "Agent output",
|
||||
"format": "{output}",
|
||||
},
|
||||
"metadata": {"position": {"x": 400, "y": 0}},
|
||||
},
|
||||
],
|
||||
"links": [
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": input_node_id,
|
||||
"sink_id": output_node_id,
|
||||
"source_name": "result",
|
||||
"sink_name": "value",
|
||||
"is_static": False,
|
||||
},
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
async def decompose_goal_dummy(
|
||||
description: str,
|
||||
context: str = "",
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Return dummy decomposition result."""
|
||||
logger.info("Using dummy agent generator for decompose_goal")
|
||||
return DUMMY_DECOMPOSITION_RESULT.copy()
|
||||
|
||||
|
||||
async def generate_agent_dummy(
|
||||
instructions: dict[str, Any],
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
operation_id: str | None = None,
|
||||
task_id: str | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Return dummy agent JSON after a simulated delay."""
|
||||
logger.info("Using dummy agent generator for generate_agent (30s delay)")
|
||||
await asyncio.sleep(30)
|
||||
return _generate_dummy_agent_json()
|
||||
|
||||
|
||||
async def generate_agent_patch_dummy(
|
||||
update_request: str,
|
||||
current_agent: dict[str, Any],
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
operation_id: str | None = None,
|
||||
task_id: str | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Return dummy patched agent (returns the current agent with updated description)."""
|
||||
logger.info("Using dummy agent generator for generate_agent_patch")
|
||||
patched = current_agent.copy()
|
||||
patched["description"] = (
|
||||
f"{current_agent.get('description', '')} (updated: {update_request})"
|
||||
)
|
||||
return patched
|
||||
|
||||
|
||||
async def customize_template_dummy(
|
||||
template_agent: dict[str, Any],
|
||||
modification_request: str,
|
||||
context: str = "",
|
||||
) -> dict[str, Any]:
|
||||
"""Return dummy customized template (returns template with updated description)."""
|
||||
logger.info("Using dummy agent generator for customize_template")
|
||||
customized = template_agent.copy()
|
||||
customized["description"] = (
|
||||
f"{template_agent.get('description', '')} (customized: {modification_request})"
|
||||
)
|
||||
return customized
|
||||
|
||||
|
||||
async def get_blocks_dummy() -> list[dict[str, Any]]:
|
||||
"""Return dummy blocks list."""
|
||||
logger.info("Using dummy agent generator for get_blocks")
|
||||
return [
|
||||
{"id": AGENT_INPUT_BLOCK_ID, "name": "AgentInputBlock"},
|
||||
{"id": AGENT_OUTPUT_BLOCK_ID, "name": "AgentOutputBlock"},
|
||||
]
|
||||
|
||||
|
||||
async def health_check_dummy() -> bool:
|
||||
"""Always returns healthy for dummy service."""
|
||||
return True
|
||||
@@ -1,95 +0,0 @@
|
||||
"""Error handling utilities for agent generator."""
|
||||
|
||||
import re
|
||||
|
||||
|
||||
def _sanitize_error_details(details: str) -> str:
|
||||
"""Sanitize error details to remove sensitive information.
|
||||
|
||||
Strips common patterns that could expose internal system info:
|
||||
- File paths (Unix and Windows)
|
||||
- Database connection strings
|
||||
- URLs with credentials
|
||||
- Stack trace internals
|
||||
|
||||
Args:
|
||||
details: Raw error details string
|
||||
|
||||
Returns:
|
||||
Sanitized error details safe for user display
|
||||
"""
|
||||
sanitized = re.sub(
|
||||
r"/[a-zA-Z0-9_./\-]+\.(py|js|ts|json|yaml|yml)", "[path]", details
|
||||
)
|
||||
sanitized = re.sub(r"[A-Z]:\\[a-zA-Z0-9_\\.\\-]+", "[path]", sanitized)
|
||||
sanitized = re.sub(
|
||||
r"(postgres|mysql|mongodb|redis)://[^\s]+", "[database_url]", sanitized
|
||||
)
|
||||
sanitized = re.sub(r"https?://[^:]+:[^@]+@[^\s]+", "[url]", sanitized)
|
||||
sanitized = re.sub(r", line \d+", "", sanitized)
|
||||
sanitized = re.sub(r'File "[^"]+",?', "", sanitized)
|
||||
|
||||
return sanitized.strip()
|
||||
|
||||
|
||||
def get_user_message_for_error(
|
||||
error_type: str,
|
||||
operation: str = "process the request",
|
||||
llm_parse_message: str | None = None,
|
||||
validation_message: str | None = None,
|
||||
error_details: str | None = None,
|
||||
) -> str:
|
||||
"""Get a user-friendly error message based on error type.
|
||||
|
||||
This function maps internal error types to user-friendly messages,
|
||||
providing a consistent experience across different agent operations.
|
||||
|
||||
Args:
|
||||
error_type: The error type from the external service
|
||||
(e.g., "llm_parse_error", "timeout", "rate_limit")
|
||||
operation: Description of what operation failed, used in the default
|
||||
message (e.g., "analyze the goal", "generate the agent")
|
||||
llm_parse_message: Custom message for llm_parse_error type
|
||||
validation_message: Custom message for validation_error type
|
||||
error_details: Optional additional details about the error
|
||||
|
||||
Returns:
|
||||
User-friendly error message suitable for display to the user
|
||||
"""
|
||||
base_message = ""
|
||||
|
||||
if error_type == "llm_parse_error":
|
||||
base_message = (
|
||||
llm_parse_message
|
||||
or "The AI had trouble processing this request. Please try again."
|
||||
)
|
||||
elif error_type == "validation_error":
|
||||
base_message = (
|
||||
validation_message
|
||||
or "The generated agent failed validation. "
|
||||
"This usually happens when the agent structure doesn't match "
|
||||
"what the platform expects. Please try simplifying your goal "
|
||||
"or breaking it into smaller parts."
|
||||
)
|
||||
elif error_type == "patch_error":
|
||||
base_message = (
|
||||
"Failed to apply the changes. The modification couldn't be "
|
||||
"validated. Please try a different approach or simplify the change."
|
||||
)
|
||||
elif error_type in ("timeout", "llm_timeout"):
|
||||
base_message = (
|
||||
"The request took too long to process. This can happen with "
|
||||
"complex agents. Please try again or simplify your goal."
|
||||
)
|
||||
elif error_type in ("rate_limit", "llm_rate_limit"):
|
||||
base_message = "The service is currently busy. Please try again in a moment."
|
||||
else:
|
||||
base_message = f"Failed to {operation}. Please try again."
|
||||
|
||||
if error_details:
|
||||
details = _sanitize_error_details(error_details)
|
||||
if len(details) > 200:
|
||||
details = details[:200] + "..."
|
||||
base_message += f"\n\nTechnical details: {details}"
|
||||
|
||||
return base_message
|
||||
@@ -0,0 +1,606 @@
|
||||
"""Agent fixer - Fixes common LLM generation errors."""
|
||||
|
||||
import logging
|
||||
import re
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from .utils import (
|
||||
ADDTODICTIONARY_BLOCK_ID,
|
||||
ADDTOLIST_BLOCK_ID,
|
||||
CODE_EXECUTION_BLOCK_ID,
|
||||
CONDITION_BLOCK_ID,
|
||||
CREATEDICT_BLOCK_ID,
|
||||
CREATELIST_BLOCK_ID,
|
||||
DATA_SAMPLING_BLOCK_ID,
|
||||
DOUBLE_CURLY_BRACES_BLOCK_IDS,
|
||||
GET_CURRENT_DATE_BLOCK_ID,
|
||||
STORE_VALUE_BLOCK_ID,
|
||||
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
|
||||
get_blocks_info,
|
||||
is_valid_uuid,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def fix_agent_ids(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix invalid UUIDs in agent and link IDs."""
|
||||
# Fix agent ID
|
||||
if not is_valid_uuid(agent.get("id", "")):
|
||||
agent["id"] = str(uuid.uuid4())
|
||||
logger.debug(f"Fixed agent ID: {agent['id']}")
|
||||
|
||||
# Fix node IDs
|
||||
id_mapping = {} # Old ID -> New ID
|
||||
for node in agent.get("nodes", []):
|
||||
if not is_valid_uuid(node.get("id", "")):
|
||||
old_id = node.get("id", "")
|
||||
new_id = str(uuid.uuid4())
|
||||
id_mapping[old_id] = new_id
|
||||
node["id"] = new_id
|
||||
logger.debug(f"Fixed node ID: {old_id} -> {new_id}")
|
||||
|
||||
# Fix link IDs and update references
|
||||
for link in agent.get("links", []):
|
||||
if not is_valid_uuid(link.get("id", "")):
|
||||
link["id"] = str(uuid.uuid4())
|
||||
logger.debug(f"Fixed link ID: {link['id']}")
|
||||
|
||||
# Update source/sink IDs if they were remapped
|
||||
if link.get("source_id") in id_mapping:
|
||||
link["source_id"] = id_mapping[link["source_id"]]
|
||||
if link.get("sink_id") in id_mapping:
|
||||
link["sink_id"] = id_mapping[link["sink_id"]]
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_double_curly_braces(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix single curly braces to double in template blocks."""
|
||||
for node in agent.get("nodes", []):
|
||||
if node.get("block_id") not in DOUBLE_CURLY_BRACES_BLOCK_IDS:
|
||||
continue
|
||||
|
||||
input_data = node.get("input_default", {})
|
||||
for key in ("prompt", "format"):
|
||||
if key in input_data and isinstance(input_data[key], str):
|
||||
original = input_data[key]
|
||||
# Fix simple variable references: {var} -> {{var}}
|
||||
fixed = re.sub(
|
||||
r"(?<!\{)\{([a-zA-Z_][a-zA-Z0-9_]*)\}(?!\})",
|
||||
r"{{\1}}",
|
||||
original,
|
||||
)
|
||||
if fixed != original:
|
||||
input_data[key] = fixed
|
||||
logger.debug(f"Fixed curly braces in {key}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_storevalue_before_condition(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Add StoreValueBlock before ConditionBlock if needed for value2."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
|
||||
# Find all ConditionBlock nodes
|
||||
condition_node_ids = {
|
||||
node["id"] for node in nodes if node.get("block_id") == CONDITION_BLOCK_ID
|
||||
}
|
||||
|
||||
if not condition_node_ids:
|
||||
return agent
|
||||
|
||||
new_nodes = []
|
||||
new_links = []
|
||||
processed_conditions = set()
|
||||
|
||||
for link in links:
|
||||
sink_id = link.get("sink_id")
|
||||
sink_name = link.get("sink_name")
|
||||
|
||||
# Check if this link goes to a ConditionBlock's value2
|
||||
if sink_id in condition_node_ids and sink_name == "value2":
|
||||
source_node = next(
|
||||
(n for n in nodes if n["id"] == link.get("source_id")), None
|
||||
)
|
||||
|
||||
# Skip if source is already a StoreValueBlock
|
||||
if source_node and source_node.get("block_id") == STORE_VALUE_BLOCK_ID:
|
||||
continue
|
||||
|
||||
# Skip if we already processed this condition
|
||||
if sink_id in processed_conditions:
|
||||
continue
|
||||
|
||||
processed_conditions.add(sink_id)
|
||||
|
||||
# Create StoreValueBlock
|
||||
store_node_id = str(uuid.uuid4())
|
||||
store_node = {
|
||||
"id": store_node_id,
|
||||
"block_id": STORE_VALUE_BLOCK_ID,
|
||||
"input_default": {"data": None},
|
||||
"metadata": {"position": {"x": 0, "y": -100}},
|
||||
}
|
||||
new_nodes.append(store_node)
|
||||
|
||||
# Create link: original source -> StoreValueBlock
|
||||
new_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": link["source_id"],
|
||||
"source_name": link["source_name"],
|
||||
"sink_id": store_node_id,
|
||||
"sink_name": "input",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
|
||||
# Update original link: StoreValueBlock -> ConditionBlock
|
||||
link["source_id"] = store_node_id
|
||||
link["source_name"] = "output"
|
||||
|
||||
logger.debug(f"Added StoreValueBlock before ConditionBlock {sink_id}")
|
||||
|
||||
if new_nodes:
|
||||
agent["nodes"] = nodes + new_nodes
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_addtolist_blocks(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix AddToList blocks by adding prerequisite empty AddToList block.
|
||||
|
||||
When an AddToList block is found:
|
||||
1. Checks if there's a CreateListBlock before it
|
||||
2. Removes CreateListBlock if linked directly to AddToList
|
||||
3. Adds an empty AddToList block before the original
|
||||
4. Ensures the original has a self-referencing link
|
||||
"""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
new_nodes = []
|
||||
original_addtolist_ids = set()
|
||||
nodes_to_remove = set()
|
||||
links_to_remove = []
|
||||
|
||||
# First pass: identify CreateListBlock nodes to remove
|
||||
for link in links:
|
||||
source_node = next(
|
||||
(n for n in nodes if n.get("id") == link.get("source_id")), None
|
||||
)
|
||||
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
|
||||
|
||||
if (
|
||||
source_node
|
||||
and sink_node
|
||||
and source_node.get("block_id") == CREATELIST_BLOCK_ID
|
||||
and sink_node.get("block_id") == ADDTOLIST_BLOCK_ID
|
||||
):
|
||||
nodes_to_remove.add(source_node.get("id"))
|
||||
links_to_remove.append(link)
|
||||
logger.debug(f"Removing CreateListBlock {source_node.get('id')}")
|
||||
|
||||
# Second pass: process AddToList blocks
|
||||
filtered_nodes = []
|
||||
for node in nodes:
|
||||
if node.get("id") in nodes_to_remove:
|
||||
continue
|
||||
|
||||
if node.get("block_id") == ADDTOLIST_BLOCK_ID:
|
||||
original_addtolist_ids.add(node.get("id"))
|
||||
node_id = node.get("id")
|
||||
pos = node.get("metadata", {}).get("position", {"x": 0, "y": 0})
|
||||
|
||||
# Check if already has prerequisite
|
||||
has_prereq = any(
|
||||
link.get("sink_id") == node_id
|
||||
and link.get("sink_name") == "list"
|
||||
and link.get("source_name") == "updated_list"
|
||||
for link in links
|
||||
)
|
||||
|
||||
if not has_prereq:
|
||||
# Remove links to "list" input (except self-reference)
|
||||
for link in links:
|
||||
if (
|
||||
link.get("sink_id") == node_id
|
||||
and link.get("sink_name") == "list"
|
||||
and link.get("source_id") != node_id
|
||||
and link not in links_to_remove
|
||||
):
|
||||
links_to_remove.append(link)
|
||||
|
||||
# Create prerequisite AddToList block
|
||||
prereq_id = str(uuid.uuid4())
|
||||
prereq_node = {
|
||||
"id": prereq_id,
|
||||
"block_id": ADDTOLIST_BLOCK_ID,
|
||||
"input_default": {"list": [], "entry": None, "entries": []},
|
||||
"metadata": {
|
||||
"position": {"x": pos.get("x", 0) - 800, "y": pos.get("y", 0)}
|
||||
},
|
||||
}
|
||||
new_nodes.append(prereq_node)
|
||||
|
||||
# Link prerequisite to original
|
||||
links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": prereq_id,
|
||||
"source_name": "updated_list",
|
||||
"sink_id": node_id,
|
||||
"sink_name": "list",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
logger.debug(f"Added prerequisite AddToList block for {node_id}")
|
||||
|
||||
filtered_nodes.append(node)
|
||||
|
||||
# Remove marked links
|
||||
filtered_links = [link for link in links if link not in links_to_remove]
|
||||
|
||||
# Add self-referencing links for original AddToList blocks
|
||||
for node in filtered_nodes + new_nodes:
|
||||
if (
|
||||
node.get("block_id") == ADDTOLIST_BLOCK_ID
|
||||
and node.get("id") in original_addtolist_ids
|
||||
):
|
||||
node_id = node.get("id")
|
||||
has_self_ref = any(
|
||||
link["source_id"] == node_id
|
||||
and link["sink_id"] == node_id
|
||||
and link["source_name"] == "updated_list"
|
||||
and link["sink_name"] == "list"
|
||||
for link in filtered_links
|
||||
)
|
||||
if not has_self_ref:
|
||||
filtered_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": node_id,
|
||||
"source_name": "updated_list",
|
||||
"sink_id": node_id,
|
||||
"sink_name": "list",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
logger.debug(f"Added self-reference for AddToList {node_id}")
|
||||
|
||||
agent["nodes"] = filtered_nodes + new_nodes
|
||||
agent["links"] = filtered_links
|
||||
return agent
|
||||
|
||||
|
||||
def fix_addtodictionary_blocks(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix AddToDictionary blocks by removing empty CreateDictionary nodes."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
nodes_to_remove = set()
|
||||
links_to_remove = []
|
||||
|
||||
for link in links:
|
||||
source_node = next(
|
||||
(n for n in nodes if n.get("id") == link.get("source_id")), None
|
||||
)
|
||||
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
|
||||
|
||||
if (
|
||||
source_node
|
||||
and sink_node
|
||||
and source_node.get("block_id") == CREATEDICT_BLOCK_ID
|
||||
and sink_node.get("block_id") == ADDTODICTIONARY_BLOCK_ID
|
||||
):
|
||||
nodes_to_remove.add(source_node.get("id"))
|
||||
links_to_remove.append(link)
|
||||
logger.debug(f"Removing CreateDictionary {source_node.get('id')}")
|
||||
|
||||
agent["nodes"] = [n for n in nodes if n.get("id") not in nodes_to_remove]
|
||||
agent["links"] = [link for link in links if link not in links_to_remove]
|
||||
return agent
|
||||
|
||||
|
||||
def fix_code_execution_output(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix CodeExecutionBlock output: change 'response' to 'stdout_logs'."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
|
||||
for link in links:
|
||||
source_node = next(
|
||||
(n for n in nodes if n.get("id") == link.get("source_id")), None
|
||||
)
|
||||
if (
|
||||
source_node
|
||||
and source_node.get("block_id") == CODE_EXECUTION_BLOCK_ID
|
||||
and link.get("source_name") == "response"
|
||||
):
|
||||
link["source_name"] = "stdout_logs"
|
||||
logger.debug("Fixed CodeExecutionBlock output: response -> stdout_logs")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_data_sampling_sample_size(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix DataSamplingBlock by setting sample_size to 1 as default."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
links_to_remove = []
|
||||
|
||||
for node in nodes:
|
||||
if node.get("block_id") == DATA_SAMPLING_BLOCK_ID:
|
||||
node_id = node.get("id")
|
||||
input_default = node.get("input_default", {})
|
||||
|
||||
# Remove links to sample_size
|
||||
for link in links:
|
||||
if (
|
||||
link.get("sink_id") == node_id
|
||||
and link.get("sink_name") == "sample_size"
|
||||
):
|
||||
links_to_remove.append(link)
|
||||
|
||||
# Set default
|
||||
input_default["sample_size"] = 1
|
||||
node["input_default"] = input_default
|
||||
logger.debug(f"Fixed DataSamplingBlock {node_id} sample_size to 1")
|
||||
|
||||
if links_to_remove:
|
||||
agent["links"] = [link for link in links if link not in links_to_remove]
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_node_x_coordinates(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix node x-coordinates to ensure 800+ unit spacing between linked nodes."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
node_lookup = {n.get("id"): n for n in nodes}
|
||||
|
||||
for link in links:
|
||||
source_id = link.get("source_id")
|
||||
sink_id = link.get("sink_id")
|
||||
|
||||
source_node = node_lookup.get(source_id)
|
||||
sink_node = node_lookup.get(sink_id)
|
||||
|
||||
if not source_node or not sink_node:
|
||||
continue
|
||||
|
||||
source_pos = source_node.get("metadata", {}).get("position", {})
|
||||
sink_pos = sink_node.get("metadata", {}).get("position", {})
|
||||
|
||||
source_x = source_pos.get("x", 0)
|
||||
sink_x = sink_pos.get("x", 0)
|
||||
|
||||
if abs(sink_x - source_x) < 800:
|
||||
new_x = source_x + 800
|
||||
if "metadata" not in sink_node:
|
||||
sink_node["metadata"] = {}
|
||||
if "position" not in sink_node["metadata"]:
|
||||
sink_node["metadata"]["position"] = {}
|
||||
sink_node["metadata"]["position"]["x"] = new_x
|
||||
logger.debug(f"Fixed node {sink_id} x: {sink_x} -> {new_x}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_getcurrentdate_offset(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix GetCurrentDateBlock offset to ensure it's positive."""
|
||||
for node in agent.get("nodes", []):
|
||||
if node.get("block_id") == GET_CURRENT_DATE_BLOCK_ID:
|
||||
input_default = node.get("input_default", {})
|
||||
if "offset" in input_default:
|
||||
offset = input_default["offset"]
|
||||
if isinstance(offset, (int, float)) and offset < 0:
|
||||
input_default["offset"] = abs(offset)
|
||||
logger.debug(f"Fixed offset: {offset} -> {abs(offset)}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_ai_model_parameter(
|
||||
agent: dict[str, Any],
|
||||
blocks_info: list[dict[str, Any]],
|
||||
default_model: str = "gpt-4o",
|
||||
) -> dict[str, Any]:
|
||||
"""Add default model parameter to AI blocks if missing."""
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
block_id = node.get("block_id")
|
||||
block = block_map.get(block_id)
|
||||
|
||||
if not block:
|
||||
continue
|
||||
|
||||
# Check if block has AI category
|
||||
categories = block.get("categories", [])
|
||||
is_ai_block = any(
|
||||
cat.get("category") == "AI" for cat in categories if isinstance(cat, dict)
|
||||
)
|
||||
|
||||
if is_ai_block:
|
||||
input_default = node.get("input_default", {})
|
||||
if "model" not in input_default:
|
||||
input_default["model"] = default_model
|
||||
node["input_default"] = input_default
|
||||
logger.debug(
|
||||
f"Added model '{default_model}' to AI block {node.get('id')}"
|
||||
)
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_link_static_properties(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> dict[str, Any]:
|
||||
"""Fix is_static property based on source block's staticOutput."""
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
|
||||
|
||||
for link in agent.get("links", []):
|
||||
source_node = node_lookup.get(link.get("source_id"))
|
||||
if not source_node:
|
||||
continue
|
||||
|
||||
source_block = block_map.get(source_node.get("block_id"))
|
||||
if not source_block:
|
||||
continue
|
||||
|
||||
static_output = source_block.get("staticOutput", False)
|
||||
if link.get("is_static") != static_output:
|
||||
link["is_static"] = static_output
|
||||
logger.debug(f"Fixed link {link.get('id')} is_static to {static_output}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_data_type_mismatch(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> dict[str, Any]:
|
||||
"""Fix data type mismatches by inserting UniversalTypeConverterBlock."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in nodes}
|
||||
|
||||
def get_property_type(schema: dict, name: str) -> str | None:
|
||||
if "_#_" in name:
|
||||
parent, child = name.split("_#_", 1)
|
||||
parent_schema = schema.get(parent, {})
|
||||
if "properties" in parent_schema:
|
||||
return parent_schema["properties"].get(child, {}).get("type")
|
||||
return None
|
||||
return schema.get(name, {}).get("type")
|
||||
|
||||
def are_types_compatible(src: str, sink: str) -> bool:
|
||||
if {src, sink} <= {"integer", "number"}:
|
||||
return True
|
||||
return src == sink
|
||||
|
||||
type_mapping = {
|
||||
"string": "string",
|
||||
"text": "string",
|
||||
"integer": "number",
|
||||
"number": "number",
|
||||
"float": "number",
|
||||
"boolean": "boolean",
|
||||
"bool": "boolean",
|
||||
"array": "list",
|
||||
"list": "list",
|
||||
"object": "dictionary",
|
||||
"dict": "dictionary",
|
||||
"dictionary": "dictionary",
|
||||
}
|
||||
|
||||
new_links = []
|
||||
nodes_to_add = []
|
||||
|
||||
for link in links:
|
||||
source_node = node_lookup.get(link.get("source_id"))
|
||||
sink_node = node_lookup.get(link.get("sink_id"))
|
||||
|
||||
if not source_node or not sink_node:
|
||||
new_links.append(link)
|
||||
continue
|
||||
|
||||
source_block = block_map.get(source_node.get("block_id"))
|
||||
sink_block = block_map.get(sink_node.get("block_id"))
|
||||
|
||||
if not source_block or not sink_block:
|
||||
new_links.append(link)
|
||||
continue
|
||||
|
||||
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
|
||||
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
|
||||
|
||||
source_type = get_property_type(source_outputs, link.get("source_name", ""))
|
||||
sink_type = get_property_type(sink_inputs, link.get("sink_name", ""))
|
||||
|
||||
if (
|
||||
source_type
|
||||
and sink_type
|
||||
and not are_types_compatible(source_type, sink_type)
|
||||
):
|
||||
# Insert type converter
|
||||
converter_id = str(uuid.uuid4())
|
||||
target_type = type_mapping.get(sink_type, sink_type)
|
||||
|
||||
converter_node = {
|
||||
"id": converter_id,
|
||||
"block_id": UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
|
||||
"input_default": {"type": target_type},
|
||||
"metadata": {"position": {"x": 0, "y": 100}},
|
||||
}
|
||||
nodes_to_add.append(converter_node)
|
||||
|
||||
# source -> converter
|
||||
new_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": link["source_id"],
|
||||
"source_name": link["source_name"],
|
||||
"sink_id": converter_id,
|
||||
"sink_name": "value",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
|
||||
# converter -> sink
|
||||
new_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": converter_id,
|
||||
"source_name": "value",
|
||||
"sink_id": link["sink_id"],
|
||||
"sink_name": link["sink_name"],
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
|
||||
logger.debug(f"Inserted type converter: {source_type} -> {target_type}")
|
||||
else:
|
||||
new_links.append(link)
|
||||
|
||||
if nodes_to_add:
|
||||
agent["nodes"] = nodes + nodes_to_add
|
||||
agent["links"] = new_links
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def apply_all_fixes(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
|
||||
) -> dict[str, Any]:
|
||||
"""Apply all fixes to an agent JSON.
|
||||
|
||||
Args:
|
||||
agent: Agent JSON dict
|
||||
blocks_info: Optional list of block info dicts for advanced fixes
|
||||
|
||||
Returns:
|
||||
Fixed agent JSON
|
||||
"""
|
||||
# Basic fixes (no block info needed)
|
||||
agent = fix_agent_ids(agent)
|
||||
agent = fix_double_curly_braces(agent)
|
||||
agent = fix_storevalue_before_condition(agent)
|
||||
agent = fix_addtolist_blocks(agent)
|
||||
agent = fix_addtodictionary_blocks(agent)
|
||||
agent = fix_code_execution_output(agent)
|
||||
agent = fix_data_sampling_sample_size(agent)
|
||||
agent = fix_node_x_coordinates(agent)
|
||||
agent = fix_getcurrentdate_offset(agent)
|
||||
|
||||
# Advanced fixes (require block info)
|
||||
if blocks_info is None:
|
||||
blocks_info = get_blocks_info()
|
||||
|
||||
agent = fix_ai_model_parameter(agent, blocks_info)
|
||||
agent = fix_link_static_properties(agent, blocks_info)
|
||||
agent = fix_data_type_mismatch(agent, blocks_info)
|
||||
|
||||
return agent
|
||||
@@ -0,0 +1,225 @@
|
||||
"""Prompt templates for agent generation."""
|
||||
|
||||
DECOMPOSITION_PROMPT = """
|
||||
You are an expert AutoGPT Workflow Decomposer. Your task is to analyze a user's high-level goal and break it down into a clear, step-by-step plan using the available blocks.
|
||||
|
||||
Each step should represent a distinct, automatable action suitable for execution by an AI automation system.
|
||||
|
||||
---
|
||||
|
||||
FIRST: Analyze the user's goal and determine:
|
||||
1) Design-time configuration (fixed settings that won't change per run)
|
||||
2) Runtime inputs (values the agent's end-user will provide each time it runs)
|
||||
|
||||
For anything that can vary per run (email addresses, names, dates, search terms, etc.):
|
||||
- DO NOT ask for the actual value
|
||||
- Instead, define it as an Agent Input with a clear name, type, and description
|
||||
|
||||
Only ask clarifying questions about design-time config that affects how you build the workflow:
|
||||
- Which external service to use (e.g., "Gmail vs Outlook", "Notion vs Google Docs")
|
||||
- Required formats or structures (e.g., "CSV, JSON, or PDF output?")
|
||||
- Business rules that must be hard-coded
|
||||
|
||||
IMPORTANT CLARIFICATIONS POLICY:
|
||||
- Ask no more than five essential questions
|
||||
- Do not ask for concrete values that can be provided at runtime as Agent Inputs
|
||||
- Do not ask for API keys or credentials; the platform handles those directly
|
||||
- If there is enough information to infer reasonable defaults, prefer to propose defaults
|
||||
|
||||
---
|
||||
|
||||
GUIDELINES:
|
||||
1. List each step as a numbered item
|
||||
2. Describe the action clearly and specify inputs/outputs
|
||||
3. Ensure steps are in logical, sequential order
|
||||
4. Mention block names naturally (e.g., "Use GetWeatherByLocationBlock to...")
|
||||
5. Help the user reach their goal efficiently
|
||||
|
||||
---
|
||||
|
||||
RULES:
|
||||
1. OUTPUT FORMAT: Only output either clarifying questions OR step-by-step instructions, not both
|
||||
2. USE ONLY THE BLOCKS PROVIDED
|
||||
3. ALL required_input fields must be provided
|
||||
4. Data types of linked properties must match
|
||||
5. Write expert-level prompts for AI-related blocks
|
||||
|
||||
---
|
||||
|
||||
CRITICAL BLOCK RESTRICTIONS:
|
||||
1. AddToListBlock: Outputs updated list EVERY addition, not after all additions
|
||||
2. SendEmailBlock: Draft the email for user review; set SMTP config based on email type
|
||||
3. ConditionBlock: value2 is reference, value1 is contrast
|
||||
4. CodeExecutionBlock: DO NOT USE - use AI blocks instead
|
||||
5. ReadCsvBlock: Only use the 'rows' output, not 'row'
|
||||
|
||||
---
|
||||
|
||||
OUTPUT FORMAT:
|
||||
|
||||
If more information is needed:
|
||||
```json
|
||||
{{
|
||||
"type": "clarifying_questions",
|
||||
"questions": [
|
||||
{{
|
||||
"question": "Which email provider should be used? (Gmail, Outlook, custom SMTP)",
|
||||
"keyword": "email_provider",
|
||||
"example": "Gmail"
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
If ready to proceed:
|
||||
```json
|
||||
{{
|
||||
"type": "instructions",
|
||||
"steps": [
|
||||
{{
|
||||
"step_number": 1,
|
||||
"block_name": "AgentShortTextInputBlock",
|
||||
"description": "Get the URL of the content to analyze.",
|
||||
"inputs": [{{"name": "name", "value": "URL"}}],
|
||||
"outputs": [{{"name": "result", "description": "The URL entered by user"}}]
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
AVAILABLE BLOCKS:
|
||||
{block_summaries}
|
||||
"""
|
||||
|
||||
GENERATION_PROMPT = """
|
||||
You are an expert AI workflow builder. Generate a valid agent JSON from the given instructions.
|
||||
|
||||
---
|
||||
|
||||
NODES:
|
||||
Each node must include:
|
||||
- `id`: Unique UUID v4 (e.g. `a8f5b1e2-c3d4-4e5f-8a9b-0c1d2e3f4a5b`)
|
||||
- `block_id`: The block identifier (must match an Allowed Block)
|
||||
- `input_default`: Dict of inputs (can be empty if no static inputs needed)
|
||||
- `metadata`: Must contain:
|
||||
- `position`: {{"x": number, "y": number}} - adjacent nodes should differ by 800+ in X
|
||||
- `customized_name`: Clear name describing this block's purpose in the workflow
|
||||
|
||||
---
|
||||
|
||||
LINKS:
|
||||
Each link connects a source node's output to a sink node's input:
|
||||
- `id`: MUST be UUID v4 (NOT "link-1", "link-2", etc.)
|
||||
- `source_id`: ID of the source node
|
||||
- `source_name`: Output field name from the source block
|
||||
- `sink_id`: ID of the sink node
|
||||
- `sink_name`: Input field name on the sink block
|
||||
- `is_static`: true only if source block has static_output: true
|
||||
|
||||
CRITICAL: All IDs must be valid UUID v4 format!
|
||||
|
||||
---
|
||||
|
||||
AGENT (GRAPH):
|
||||
Wrap nodes and links in:
|
||||
- `id`: UUID of the agent
|
||||
- `name`: Short, generic name (avoid specific company names, URLs)
|
||||
- `description`: Short, generic description
|
||||
- `nodes`: List of all nodes
|
||||
- `links`: List of all links
|
||||
- `version`: 1
|
||||
- `is_active`: true
|
||||
|
||||
---
|
||||
|
||||
TIPS:
|
||||
- All required_input fields must be provided via input_default or a valid link
|
||||
- Ensure consistent source_id and sink_id references
|
||||
- Avoid dangling links
|
||||
- Input/output pins must match block schemas
|
||||
- Do not invent unknown block_ids
|
||||
|
||||
---
|
||||
|
||||
ALLOWED BLOCKS:
|
||||
{block_summaries}
|
||||
|
||||
---
|
||||
|
||||
Generate the complete agent JSON. Output ONLY valid JSON, no explanation.
|
||||
"""
|
||||
|
||||
PATCH_PROMPT = """
|
||||
You are an expert at modifying AutoGPT agent workflows. Given the current agent and a modification request, generate a JSON patch to update the agent.
|
||||
|
||||
CURRENT AGENT:
|
||||
{current_agent}
|
||||
|
||||
AVAILABLE BLOCKS:
|
||||
{block_summaries}
|
||||
|
||||
---
|
||||
|
||||
PATCH FORMAT:
|
||||
Return a JSON object with the following structure:
|
||||
|
||||
```json
|
||||
{{
|
||||
"type": "patch",
|
||||
"intent": "Brief description of what the patch does",
|
||||
"patches": [
|
||||
{{
|
||||
"type": "modify",
|
||||
"node_id": "uuid-of-node-to-modify",
|
||||
"changes": {{
|
||||
"input_default": {{"field": "new_value"}},
|
||||
"metadata": {{"customized_name": "New Name"}}
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"type": "add",
|
||||
"new_nodes": [
|
||||
{{
|
||||
"id": "new-uuid",
|
||||
"block_id": "block-uuid",
|
||||
"input_default": {{}},
|
||||
"metadata": {{"position": {{"x": 0, "y": 0}}, "customized_name": "Name"}}
|
||||
}}
|
||||
],
|
||||
"new_links": [
|
||||
{{
|
||||
"id": "link-uuid",
|
||||
"source_id": "source-node-id",
|
||||
"source_name": "output_field",
|
||||
"sink_id": "sink-node-id",
|
||||
"sink_name": "input_field"
|
||||
}}
|
||||
]
|
||||
}},
|
||||
{{
|
||||
"type": "remove",
|
||||
"node_ids": ["uuid-of-node-to-remove"],
|
||||
"link_ids": ["uuid-of-link-to-remove"]
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
If you need more information, return:
|
||||
```json
|
||||
{{
|
||||
"type": "clarifying_questions",
|
||||
"questions": [
|
||||
{{
|
||||
"question": "What specific change do you want?",
|
||||
"keyword": "change_type",
|
||||
"example": "Add error handling"
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
Generate the minimal patch needed. Output ONLY valid JSON.
|
||||
"""
|
||||
@@ -1,549 +0,0 @@
|
||||
"""External Agent Generator service client.
|
||||
|
||||
This module provides a client for communicating with the external Agent Generator
|
||||
microservice. When AGENTGENERATOR_HOST is configured, the agent generation functions
|
||||
will delegate to the external service instead of using the built-in LLM-based implementation.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
import httpx
|
||||
|
||||
from backend.util.settings import Settings
|
||||
|
||||
from .dummy import (
|
||||
customize_template_dummy,
|
||||
decompose_goal_dummy,
|
||||
generate_agent_dummy,
|
||||
generate_agent_patch_dummy,
|
||||
get_blocks_dummy,
|
||||
health_check_dummy,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_dummy_mode_warned = False
|
||||
|
||||
|
||||
def _create_error_response(
|
||||
error_message: str,
|
||||
error_type: str = "unknown",
|
||||
details: dict[str, Any] | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Create a standardized error response dict.
|
||||
|
||||
Args:
|
||||
error_message: Human-readable error message
|
||||
error_type: Machine-readable error type
|
||||
details: Optional additional error details
|
||||
|
||||
Returns:
|
||||
Error dict with type="error" and error details
|
||||
"""
|
||||
response: dict[str, Any] = {
|
||||
"type": "error",
|
||||
"error": error_message,
|
||||
"error_type": error_type,
|
||||
}
|
||||
if details:
|
||||
response["details"] = details
|
||||
return response
|
||||
|
||||
|
||||
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
|
||||
"""Classify an HTTP error into error_type and message.
|
||||
|
||||
Args:
|
||||
e: The HTTP status error
|
||||
|
||||
Returns:
|
||||
Tuple of (error_type, error_message)
|
||||
"""
|
||||
status = e.response.status_code
|
||||
if status == 429:
|
||||
return "rate_limit", f"Agent Generator rate limited: {e}"
|
||||
elif status == 503:
|
||||
return "service_unavailable", f"Agent Generator unavailable: {e}"
|
||||
elif status == 504 or status == 408:
|
||||
return "timeout", f"Agent Generator timed out: {e}"
|
||||
else:
|
||||
return "http_error", f"HTTP error calling Agent Generator: {e}"
|
||||
|
||||
|
||||
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
|
||||
"""Classify a request error into error_type and message.
|
||||
|
||||
Args:
|
||||
e: The request error
|
||||
|
||||
Returns:
|
||||
Tuple of (error_type, error_message)
|
||||
"""
|
||||
error_str = str(e).lower()
|
||||
if "timeout" in error_str or "timed out" in error_str:
|
||||
return "timeout", f"Agent Generator request timed out: {e}"
|
||||
elif "connect" in error_str:
|
||||
return "connection_error", f"Could not connect to Agent Generator: {e}"
|
||||
else:
|
||||
return "request_error", f"Request error calling Agent Generator: {e}"
|
||||
|
||||
|
||||
_client: httpx.AsyncClient | None = None
|
||||
_settings: Settings | None = None
|
||||
|
||||
|
||||
def _get_settings() -> Settings:
|
||||
"""Get or create settings singleton."""
|
||||
global _settings
|
||||
if _settings is None:
|
||||
_settings = Settings()
|
||||
return _settings
|
||||
|
||||
|
||||
def _is_dummy_mode() -> bool:
|
||||
"""Check if dummy mode is enabled for testing."""
|
||||
global _dummy_mode_warned
|
||||
settings = _get_settings()
|
||||
is_dummy = bool(settings.config.agentgenerator_use_dummy)
|
||||
if is_dummy and not _dummy_mode_warned:
|
||||
logger.warning(
|
||||
"Agent Generator running in DUMMY MODE - returning mock responses. "
|
||||
"Do not use in production!"
|
||||
)
|
||||
_dummy_mode_warned = True
|
||||
return is_dummy
|
||||
|
||||
|
||||
def is_external_service_configured() -> bool:
|
||||
"""Check if external Agent Generator service is configured (or dummy mode)."""
|
||||
settings = _get_settings()
|
||||
return bool(settings.config.agentgenerator_host) or bool(
|
||||
settings.config.agentgenerator_use_dummy
|
||||
)
|
||||
|
||||
|
||||
def _get_base_url() -> str:
|
||||
"""Get the base URL for the external service."""
|
||||
settings = _get_settings()
|
||||
host = settings.config.agentgenerator_host
|
||||
port = settings.config.agentgenerator_port
|
||||
return f"http://{host}:{port}"
|
||||
|
||||
|
||||
def _get_client() -> httpx.AsyncClient:
|
||||
"""Get or create the HTTP client for the external service."""
|
||||
global _client
|
||||
if _client is None:
|
||||
settings = _get_settings()
|
||||
_client = httpx.AsyncClient(
|
||||
base_url=_get_base_url(),
|
||||
timeout=httpx.Timeout(settings.config.agentgenerator_timeout),
|
||||
)
|
||||
return _client
|
||||
|
||||
|
||||
async def decompose_goal_external(
|
||||
description: str,
|
||||
context: str = "",
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to decompose a goal.
|
||||
|
||||
Args:
|
||||
description: Natural language goal description
|
||||
context: Additional context (e.g., answers to previous questions)
|
||||
library_agents: User's library agents available for sub-agent composition
|
||||
|
||||
Returns:
|
||||
Dict with either:
|
||||
- {"type": "clarifying_questions", "questions": [...]}
|
||||
- {"type": "instructions", "steps": [...]}
|
||||
- {"type": "unachievable_goal", ...}
|
||||
- {"type": "vague_goal", ...}
|
||||
- {"type": "error", "error": "...", "error_type": "..."} on error
|
||||
Or None on unexpected error
|
||||
"""
|
||||
if _is_dummy_mode():
|
||||
return await decompose_goal_dummy(description, context, library_agents)
|
||||
|
||||
client = _get_client()
|
||||
|
||||
if context:
|
||||
description = f"{description}\n\nAdditional context from user:\n{context}"
|
||||
|
||||
payload: dict[str, Any] = {"description": description}
|
||||
if library_agents:
|
||||
payload["library_agents"] = library_agents
|
||||
|
||||
try:
|
||||
response = await client.post("/api/decompose-description", json=payload)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||
error_type = data.get("error_type", "unknown")
|
||||
logger.error(
|
||||
f"Agent Generator decomposition failed: {error_msg} "
|
||||
f"(type: {error_type})"
|
||||
)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
|
||||
# Map the response to the expected format
|
||||
response_type = data.get("type")
|
||||
if response_type == "instructions":
|
||||
return {"type": "instructions", "steps": data.get("steps", [])}
|
||||
elif response_type == "clarifying_questions":
|
||||
return {
|
||||
"type": "clarifying_questions",
|
||||
"questions": data.get("questions", []),
|
||||
}
|
||||
elif response_type == "unachievable_goal":
|
||||
return {
|
||||
"type": "unachievable_goal",
|
||||
"reason": data.get("reason"),
|
||||
"suggested_goal": data.get("suggested_goal"),
|
||||
}
|
||||
elif response_type == "vague_goal":
|
||||
return {
|
||||
"type": "vague_goal",
|
||||
"suggested_goal": data.get("suggested_goal"),
|
||||
}
|
||||
elif response_type == "error":
|
||||
# Pass through error from the service
|
||||
return _create_error_response(
|
||||
data.get("error", "Unknown error"),
|
||||
data.get("error_type", "unknown"),
|
||||
)
|
||||
else:
|
||||
logger.error(
|
||||
f"Unknown response type from external service: {response_type}"
|
||||
)
|
||||
return _create_error_response(
|
||||
f"Unknown response type from Agent Generator: {response_type}",
|
||||
"invalid_response",
|
||||
)
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
error_type, error_msg = _classify_http_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except httpx.RequestError as e:
|
||||
error_type, error_msg = _classify_request_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except Exception as e:
|
||||
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, "unexpected_error")
|
||||
|
||||
|
||||
async def generate_agent_external(
|
||||
instructions: dict[str, Any],
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
operation_id: str | None = None,
|
||||
task_id: str | None = None,
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to generate an agent from instructions.
|
||||
|
||||
Args:
|
||||
instructions: Structured instructions from decompose_goal
|
||||
library_agents: User's library agents available for sub-agent composition
|
||||
operation_id: Operation ID for async processing (enables Redis Streams callback)
|
||||
task_id: Task ID for async processing (enables Redis Streams callback)
|
||||
|
||||
Returns:
|
||||
Agent JSON dict, {"status": "accepted"} for async, or error dict {"type": "error", ...} on error
|
||||
"""
|
||||
if _is_dummy_mode():
|
||||
return await generate_agent_dummy(
|
||||
instructions, library_agents, operation_id, task_id
|
||||
)
|
||||
|
||||
client = _get_client()
|
||||
|
||||
# Build request payload
|
||||
payload: dict[str, Any] = {"instructions": instructions}
|
||||
if library_agents:
|
||||
payload["library_agents"] = library_agents
|
||||
if operation_id and task_id:
|
||||
payload["operation_id"] = operation_id
|
||||
payload["task_id"] = task_id
|
||||
|
||||
try:
|
||||
response = await client.post("/api/generate-agent", json=payload)
|
||||
|
||||
# Handle 202 Accepted for async processing
|
||||
if response.status_code == 202:
|
||||
logger.info(
|
||||
f"Agent Generator accepted async request "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return {
|
||||
"status": "accepted",
|
||||
"operation_id": operation_id,
|
||||
"task_id": task_id,
|
||||
}
|
||||
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||
error_type = data.get("error_type", "unknown")
|
||||
logger.error(
|
||||
f"Agent Generator generation failed: {error_msg} (type: {error_type})"
|
||||
)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
error_type, error_msg = _classify_http_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except httpx.RequestError as e:
|
||||
error_type, error_msg = _classify_request_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except Exception as e:
|
||||
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, "unexpected_error")
|
||||
|
||||
|
||||
async def generate_agent_patch_external(
|
||||
update_request: str,
|
||||
current_agent: dict[str, Any],
|
||||
library_agents: list[dict[str, Any]] | None = None,
|
||||
operation_id: str | None = None,
|
||||
task_id: str | None = None,
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to generate a patch for an existing agent.
|
||||
|
||||
Args:
|
||||
update_request: Natural language description of changes
|
||||
current_agent: Current agent JSON
|
||||
library_agents: User's library agents available for sub-agent composition
|
||||
operation_id: Operation ID for async processing (enables Redis Streams callback)
|
||||
task_id: Task ID for async processing (enables Redis Streams callback)
|
||||
|
||||
Returns:
|
||||
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or error dict on error
|
||||
"""
|
||||
if _is_dummy_mode():
|
||||
return await generate_agent_patch_dummy(
|
||||
update_request, current_agent, library_agents, operation_id, task_id
|
||||
)
|
||||
|
||||
client = _get_client()
|
||||
|
||||
# Build request payload
|
||||
payload: dict[str, Any] = {
|
||||
"update_request": update_request,
|
||||
"current_agent_json": current_agent,
|
||||
}
|
||||
if library_agents:
|
||||
payload["library_agents"] = library_agents
|
||||
if operation_id and task_id:
|
||||
payload["operation_id"] = operation_id
|
||||
payload["task_id"] = task_id
|
||||
|
||||
try:
|
||||
response = await client.post("/api/update-agent", json=payload)
|
||||
|
||||
# Handle 202 Accepted for async processing
|
||||
if response.status_code == 202:
|
||||
logger.info(
|
||||
f"Agent Generator accepted async update request "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return {
|
||||
"status": "accepted",
|
||||
"operation_id": operation_id,
|
||||
"task_id": task_id,
|
||||
}
|
||||
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||
error_type = data.get("error_type", "unknown")
|
||||
logger.error(
|
||||
f"Agent Generator patch generation failed: {error_msg} "
|
||||
f"(type: {error_type})"
|
||||
)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
|
||||
# Check if it's clarifying questions
|
||||
if data.get("type") == "clarifying_questions":
|
||||
return {
|
||||
"type": "clarifying_questions",
|
||||
"questions": data.get("questions", []),
|
||||
}
|
||||
|
||||
# Check if it's an error passed through
|
||||
if data.get("type") == "error":
|
||||
return _create_error_response(
|
||||
data.get("error", "Unknown error"),
|
||||
data.get("error_type", "unknown"),
|
||||
)
|
||||
|
||||
# Otherwise return the updated agent JSON
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
error_type, error_msg = _classify_http_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except httpx.RequestError as e:
|
||||
error_type, error_msg = _classify_request_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except Exception as e:
|
||||
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, "unexpected_error")
|
||||
|
||||
|
||||
async def customize_template_external(
|
||||
template_agent: dict[str, Any],
|
||||
modification_request: str,
|
||||
context: str = "",
|
||||
) -> dict[str, Any] | None:
|
||||
"""Call the external service to customize a template/marketplace agent.
|
||||
|
||||
Args:
|
||||
template_agent: The template agent JSON to customize
|
||||
modification_request: Natural language description of customizations
|
||||
context: Additional context (e.g., answers to previous questions)
|
||||
|
||||
Returns:
|
||||
Customized agent JSON, clarifying questions dict, or error dict on error
|
||||
"""
|
||||
if _is_dummy_mode():
|
||||
return await customize_template_dummy(
|
||||
template_agent, modification_request, context
|
||||
)
|
||||
|
||||
client = _get_client()
|
||||
|
||||
request = modification_request
|
||||
if context:
|
||||
request = f"{modification_request}\n\nAdditional context from user:\n{context}"
|
||||
|
||||
payload: dict[str, Any] = {
|
||||
"template_agent_json": template_agent,
|
||||
"modification_request": request,
|
||||
}
|
||||
|
||||
try:
|
||||
response = await client.post("/api/template-modification", json=payload)
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
error_msg = data.get("error", "Unknown error from Agent Generator")
|
||||
error_type = data.get("error_type", "unknown")
|
||||
logger.error(
|
||||
f"Agent Generator template customization failed: {error_msg} "
|
||||
f"(type: {error_type})"
|
||||
)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
|
||||
# Check if it's clarifying questions
|
||||
if data.get("type") == "clarifying_questions":
|
||||
return {
|
||||
"type": "clarifying_questions",
|
||||
"questions": data.get("questions", []),
|
||||
}
|
||||
|
||||
# Check if it's an error passed through
|
||||
if data.get("type") == "error":
|
||||
return _create_error_response(
|
||||
data.get("error", "Unknown error"),
|
||||
data.get("error_type", "unknown"),
|
||||
)
|
||||
|
||||
# Otherwise return the customized agent JSON
|
||||
return data.get("agent_json")
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
error_type, error_msg = _classify_http_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except httpx.RequestError as e:
|
||||
error_type, error_msg = _classify_request_error(e)
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, error_type)
|
||||
except Exception as e:
|
||||
error_msg = f"Unexpected error calling Agent Generator: {e}"
|
||||
logger.error(error_msg)
|
||||
return _create_error_response(error_msg, "unexpected_error")
|
||||
|
||||
|
||||
async def get_blocks_external() -> list[dict[str, Any]] | None:
|
||||
"""Get available blocks from the external service.
|
||||
|
||||
Returns:
|
||||
List of block info dicts or None on error
|
||||
"""
|
||||
if _is_dummy_mode():
|
||||
return await get_blocks_dummy()
|
||||
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
response = await client.get("/api/blocks")
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
|
||||
if not data.get("success"):
|
||||
logger.error("External service returned error getting blocks")
|
||||
return None
|
||||
|
||||
return data.get("blocks", [])
|
||||
|
||||
except httpx.HTTPStatusError as e:
|
||||
logger.error(f"HTTP error getting blocks from external service: {e}")
|
||||
return None
|
||||
except httpx.RequestError as e:
|
||||
logger.error(f"Request error getting blocks from external service: {e}")
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error getting blocks from external service: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def health_check() -> bool:
|
||||
"""Check if the external service is healthy.
|
||||
|
||||
Returns:
|
||||
True if healthy, False otherwise
|
||||
"""
|
||||
if not is_external_service_configured():
|
||||
return False
|
||||
|
||||
if _is_dummy_mode():
|
||||
return await health_check_dummy()
|
||||
|
||||
client = _get_client()
|
||||
|
||||
try:
|
||||
response = await client.get("/health")
|
||||
response.raise_for_status()
|
||||
data = response.json()
|
||||
return data.get("status") == "healthy" and data.get("blocks_loaded", False)
|
||||
except Exception as e:
|
||||
logger.warning(f"External agent generator health check failed: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def close_client() -> None:
|
||||
"""Close the HTTP client."""
|
||||
global _client
|
||||
if _client is not None:
|
||||
await _client.aclose()
|
||||
_client = None
|
||||
@@ -0,0 +1,213 @@
|
||||
"""Utilities for agent generation."""
|
||||
|
||||
import json
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from backend.data.block import get_blocks
|
||||
|
||||
# UUID validation regex
|
||||
UUID_REGEX = re.compile(
|
||||
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$"
|
||||
)
|
||||
|
||||
# Block IDs for various fixes
|
||||
STORE_VALUE_BLOCK_ID = "1ff065e9-88e8-4358-9d82-8dc91f622ba9"
|
||||
CONDITION_BLOCK_ID = "715696a0-e1da-45c8-b209-c2fa9c3b0be6"
|
||||
ADDTOLIST_BLOCK_ID = "aeb08fc1-2fc1-4141-bc8e-f758f183a822"
|
||||
ADDTODICTIONARY_BLOCK_ID = "31d1064e-7446-4693-a7d4-65e5ca1180d1"
|
||||
CREATELIST_BLOCK_ID = "a912d5c7-6e00-4542-b2a9-8034136930e4"
|
||||
CREATEDICT_BLOCK_ID = "b924ddf4-de4f-4b56-9a85-358930dcbc91"
|
||||
CODE_EXECUTION_BLOCK_ID = "0b02b072-abe7-11ef-8372-fb5d162dd712"
|
||||
DATA_SAMPLING_BLOCK_ID = "4a448883-71fa-49cf-91cf-70d793bd7d87"
|
||||
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID = "95d1b990-ce13-4d88-9737-ba5c2070c97b"
|
||||
GET_CURRENT_DATE_BLOCK_ID = "b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1"
|
||||
|
||||
DOUBLE_CURLY_BRACES_BLOCK_IDS = [
|
||||
"44f6c8ad-d75c-4ae1-8209-aad1c0326928", # FillTextTemplateBlock
|
||||
"6ab085e2-20b3-4055-bc3e-08036e01eca6",
|
||||
"90f8c45e-e983-4644-aa0b-b4ebe2f531bc",
|
||||
"363ae599-353e-4804-937e-b2ee3cef3da4", # AgentOutputBlock
|
||||
"3b191d9f-356f-482d-8238-ba04b6d18381",
|
||||
"db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
|
||||
"3a7c4b8d-6e2f-4a5d-b9c1-f8d23c5a9b0e",
|
||||
"ed1ae7a0-b770-4089-b520-1f0005fad19a",
|
||||
"a892b8d9-3e4e-4e9c-9c1e-75f8efcf1bfa",
|
||||
"b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1",
|
||||
"716a67b3-6760-42e7-86dc-18645c6e00fc",
|
||||
"530cf046-2ce0-4854-ae2c-659db17c7a46",
|
||||
"ed55ac19-356e-4243-a6cb-bc599e9b716f",
|
||||
"1f292d4a-41a4-4977-9684-7c8d560b9f91", # LLM blocks
|
||||
"32a87eab-381e-4dd4-bdb8-4c47151be35a",
|
||||
]
|
||||
|
||||
|
||||
def is_valid_uuid(value: str) -> bool:
|
||||
"""Check if a string is a valid UUID v4."""
|
||||
return isinstance(value, str) and UUID_REGEX.match(value) is not None
|
||||
|
||||
|
||||
def _compact_schema(schema: dict) -> dict[str, str]:
|
||||
"""Extract compact type info from a JSON schema properties dict.
|
||||
|
||||
Returns a dict of {field_name: type_string} for essential info only.
|
||||
"""
|
||||
props = schema.get("properties", {})
|
||||
result = {}
|
||||
|
||||
for name, prop in props.items():
|
||||
# Skip internal/complex fields
|
||||
if name.startswith("_"):
|
||||
continue
|
||||
|
||||
# Get type string
|
||||
type_str = prop.get("type", "any")
|
||||
|
||||
# Handle anyOf/oneOf (optional types)
|
||||
if "anyOf" in prop:
|
||||
types = [t.get("type", "?") for t in prop["anyOf"] if t.get("type")]
|
||||
type_str = "|".join(types) if types else "any"
|
||||
elif "allOf" in prop:
|
||||
type_str = "object"
|
||||
|
||||
# Add array item type if present
|
||||
if type_str == "array" and "items" in prop:
|
||||
items = prop["items"]
|
||||
if isinstance(items, dict):
|
||||
item_type = items.get("type", "any")
|
||||
type_str = f"array[{item_type}]"
|
||||
|
||||
result[name] = type_str
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def get_block_summaries(include_schemas: bool = True) -> str:
|
||||
"""Generate compact block summaries for prompts.
|
||||
|
||||
Args:
|
||||
include_schemas: Whether to include input/output type info
|
||||
|
||||
Returns:
|
||||
Formatted string of block summaries (compact format)
|
||||
"""
|
||||
blocks = get_blocks()
|
||||
summaries = []
|
||||
|
||||
for block_id, block_cls in blocks.items():
|
||||
block = block_cls()
|
||||
name = block.name
|
||||
desc = getattr(block, "description", "") or ""
|
||||
|
||||
# Truncate description
|
||||
if len(desc) > 150:
|
||||
desc = desc[:147] + "..."
|
||||
|
||||
if not include_schemas:
|
||||
summaries.append(f"- {name} (id: {block_id}): {desc}")
|
||||
else:
|
||||
# Compact format with type info only
|
||||
inputs = {}
|
||||
outputs = {}
|
||||
required = []
|
||||
|
||||
if hasattr(block, "input_schema"):
|
||||
try:
|
||||
schema = block.input_schema.jsonschema()
|
||||
inputs = _compact_schema(schema)
|
||||
required = schema.get("required", [])
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if hasattr(block, "output_schema"):
|
||||
try:
|
||||
schema = block.output_schema.jsonschema()
|
||||
outputs = _compact_schema(schema)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Build compact line format
|
||||
# Format: NAME (id): desc | in: {field:type, ...} [required] | out: {field:type}
|
||||
in_str = ", ".join(f"{k}:{v}" for k, v in inputs.items())
|
||||
out_str = ", ".join(f"{k}:{v}" for k, v in outputs.items())
|
||||
req_str = f" req=[{','.join(required)}]" if required else ""
|
||||
|
||||
static = " [static]" if getattr(block, "static_output", False) else ""
|
||||
|
||||
line = f"- {name} (id: {block_id}): {desc}"
|
||||
if in_str:
|
||||
line += f"\n in: {{{in_str}}}{req_str}"
|
||||
if out_str:
|
||||
line += f"\n out: {{{out_str}}}{static}"
|
||||
|
||||
summaries.append(line)
|
||||
|
||||
return "\n".join(summaries)
|
||||
|
||||
|
||||
def get_blocks_info() -> list[dict[str, Any]]:
|
||||
"""Get block information with schemas for validation and fixing."""
|
||||
blocks = get_blocks()
|
||||
blocks_info = []
|
||||
for block_id, block_cls in blocks.items():
|
||||
block = block_cls()
|
||||
blocks_info.append(
|
||||
{
|
||||
"id": block_id,
|
||||
"name": block.name,
|
||||
"description": getattr(block, "description", ""),
|
||||
"categories": getattr(block, "categories", []),
|
||||
"staticOutput": getattr(block, "static_output", False),
|
||||
"inputSchema": (
|
||||
block.input_schema.jsonschema()
|
||||
if hasattr(block, "input_schema")
|
||||
else {}
|
||||
),
|
||||
"outputSchema": (
|
||||
block.output_schema.jsonschema()
|
||||
if hasattr(block, "output_schema")
|
||||
else {}
|
||||
),
|
||||
}
|
||||
)
|
||||
return blocks_info
|
||||
|
||||
|
||||
def parse_json_from_llm(text: str) -> dict[str, Any] | None:
|
||||
"""Extract JSON from LLM response (handles markdown code blocks)."""
|
||||
if not text:
|
||||
return None
|
||||
|
||||
# Try fenced code block
|
||||
match = re.search(r"```(?:json)?\s*([\s\S]*?)```", text, re.IGNORECASE)
|
||||
if match:
|
||||
try:
|
||||
return json.loads(match.group(1).strip())
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try raw text
|
||||
try:
|
||||
return json.loads(text.strip())
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try finding {...} span
|
||||
start = text.find("{")
|
||||
end = text.rfind("}")
|
||||
if start != -1 and end > start:
|
||||
try:
|
||||
return json.loads(text[start : end + 1])
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try finding [...] span
|
||||
start = text.find("[")
|
||||
end = text.rfind("]")
|
||||
if start != -1 and end > start:
|
||||
try:
|
||||
return json.loads(text[start : end + 1])
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
return None
|
||||
@@ -0,0 +1,279 @@
|
||||
"""Agent validator - Validates agent structure and connections."""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from .utils import get_blocks_info
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentValidator:
|
||||
"""Validator for AutoGPT agents with detailed error reporting."""
|
||||
|
||||
def __init__(self):
|
||||
self.errors: list[str] = []
|
||||
|
||||
def add_error(self, error: str) -> None:
|
||||
"""Add an error message."""
|
||||
self.errors.append(error)
|
||||
|
||||
def validate_block_existence(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate all block IDs exist in the blocks library."""
|
||||
valid = True
|
||||
valid_block_ids = {b.get("id") for b in blocks_info if b.get("id")}
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
block_id = node.get("block_id")
|
||||
node_id = node.get("id")
|
||||
|
||||
if not block_id:
|
||||
self.add_error(f"Node '{node_id}' is missing 'block_id' field.")
|
||||
valid = False
|
||||
continue
|
||||
|
||||
if block_id not in valid_block_ids:
|
||||
self.add_error(
|
||||
f"Node '{node_id}' references block_id '{block_id}' which does not exist."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_link_node_references(self, agent: dict[str, Any]) -> bool:
|
||||
"""Validate all node IDs referenced in links exist."""
|
||||
valid = True
|
||||
valid_node_ids = {n.get("id") for n in agent.get("nodes", []) if n.get("id")}
|
||||
|
||||
for link in agent.get("links", []):
|
||||
link_id = link.get("id", "Unknown")
|
||||
source_id = link.get("source_id")
|
||||
sink_id = link.get("sink_id")
|
||||
|
||||
if not source_id:
|
||||
self.add_error(f"Link '{link_id}' is missing 'source_id'.")
|
||||
valid = False
|
||||
elif source_id not in valid_node_ids:
|
||||
self.add_error(
|
||||
f"Link '{link_id}' references non-existent source_id '{source_id}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
if not sink_id:
|
||||
self.add_error(f"Link '{link_id}' is missing 'sink_id'.")
|
||||
valid = False
|
||||
elif sink_id not in valid_node_ids:
|
||||
self.add_error(
|
||||
f"Link '{link_id}' references non-existent sink_id '{sink_id}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_required_inputs(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate required inputs are provided."""
|
||||
valid = True
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
block_id = node.get("block_id")
|
||||
block = block_map.get(block_id)
|
||||
|
||||
if not block:
|
||||
continue
|
||||
|
||||
required_inputs = block.get("inputSchema", {}).get("required", [])
|
||||
input_defaults = node.get("input_default", {})
|
||||
node_id = node.get("id")
|
||||
|
||||
# Get linked inputs
|
||||
linked_inputs = {
|
||||
link["sink_name"]
|
||||
for link in agent.get("links", [])
|
||||
if link.get("sink_id") == node_id
|
||||
}
|
||||
|
||||
for req_input in required_inputs:
|
||||
if (
|
||||
req_input not in input_defaults
|
||||
and req_input not in linked_inputs
|
||||
and req_input != "credentials"
|
||||
):
|
||||
block_name = block.get("name", "Unknown Block")
|
||||
self.add_error(
|
||||
f"Node '{node_id}' ({block_name}) is missing required input '{req_input}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_data_type_compatibility(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate linked data types are compatible."""
|
||||
valid = True
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
|
||||
|
||||
def get_type(schema: dict, name: str) -> str | None:
|
||||
if "_#_" in name:
|
||||
parent, child = name.split("_#_", 1)
|
||||
parent_schema = schema.get(parent, {})
|
||||
if "properties" in parent_schema:
|
||||
return parent_schema["properties"].get(child, {}).get("type")
|
||||
return None
|
||||
return schema.get(name, {}).get("type")
|
||||
|
||||
def are_compatible(src: str, sink: str) -> bool:
|
||||
if {src, sink} <= {"integer", "number"}:
|
||||
return True
|
||||
return src == sink
|
||||
|
||||
for link in agent.get("links", []):
|
||||
source_node = node_lookup.get(link.get("source_id"))
|
||||
sink_node = node_lookup.get(link.get("sink_id"))
|
||||
|
||||
if not source_node or not sink_node:
|
||||
continue
|
||||
|
||||
source_block = block_map.get(source_node.get("block_id"))
|
||||
sink_block = block_map.get(sink_node.get("block_id"))
|
||||
|
||||
if not source_block or not sink_block:
|
||||
continue
|
||||
|
||||
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
|
||||
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
|
||||
|
||||
source_type = get_type(source_outputs, link.get("source_name", ""))
|
||||
sink_type = get_type(sink_inputs, link.get("sink_name", ""))
|
||||
|
||||
if source_type and sink_type and not are_compatible(source_type, sink_type):
|
||||
self.add_error(
|
||||
f"Type mismatch: {source_block.get('name')} output '{link['source_name']}' "
|
||||
f"({source_type}) -> {sink_block.get('name')} input '{link['sink_name']}' ({sink_type})."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_nested_sink_links(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate nested sink links (with _#_ notation)."""
|
||||
valid = True
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
|
||||
|
||||
for link in agent.get("links", []):
|
||||
sink_name = link.get("sink_name", "")
|
||||
|
||||
if "_#_" in sink_name:
|
||||
parent, child = sink_name.split("_#_", 1)
|
||||
|
||||
sink_node = node_lookup.get(link.get("sink_id"))
|
||||
if not sink_node:
|
||||
continue
|
||||
|
||||
block = block_map.get(sink_node.get("block_id"))
|
||||
if not block:
|
||||
continue
|
||||
|
||||
input_props = block.get("inputSchema", {}).get("properties", {})
|
||||
parent_schema = input_props.get(parent)
|
||||
|
||||
if not parent_schema:
|
||||
self.add_error(
|
||||
f"Invalid nested link '{sink_name}': parent '{parent}' not found."
|
||||
)
|
||||
valid = False
|
||||
continue
|
||||
|
||||
if not parent_schema.get("additionalProperties"):
|
||||
if not (
|
||||
isinstance(parent_schema, dict)
|
||||
and "properties" in parent_schema
|
||||
and child in parent_schema.get("properties", {})
|
||||
):
|
||||
self.add_error(
|
||||
f"Invalid nested link '{sink_name}': child '{child}' not found in '{parent}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_prompt_spaces(self, agent: dict[str, Any]) -> bool:
|
||||
"""Validate prompts don't have spaces in template variables."""
|
||||
valid = True
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
input_default = node.get("input_default", {})
|
||||
prompt = input_default.get("prompt", "")
|
||||
|
||||
if not isinstance(prompt, str):
|
||||
continue
|
||||
|
||||
# Find {{...}} with spaces
|
||||
matches = re.finditer(r"\{\{([^}]+)\}\}", prompt)
|
||||
for match in matches:
|
||||
content = match.group(1)
|
||||
if " " in content:
|
||||
self.add_error(
|
||||
f"Node '{node.get('id')}' has spaces in template variable: "
|
||||
f"'{{{{{content}}}}}' should be '{{{{{content.replace(' ', '_')}}}}}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
|
||||
) -> tuple[bool, str | None]:
|
||||
"""Run all validations.
|
||||
|
||||
Returns:
|
||||
Tuple of (is_valid, error_message)
|
||||
"""
|
||||
self.errors = []
|
||||
|
||||
if blocks_info is None:
|
||||
blocks_info = get_blocks_info()
|
||||
|
||||
checks = [
|
||||
self.validate_block_existence(agent, blocks_info),
|
||||
self.validate_link_node_references(agent),
|
||||
self.validate_required_inputs(agent, blocks_info),
|
||||
self.validate_data_type_compatibility(agent, blocks_info),
|
||||
self.validate_nested_sink_links(agent, blocks_info),
|
||||
self.validate_prompt_spaces(agent),
|
||||
]
|
||||
|
||||
all_passed = all(checks)
|
||||
|
||||
if all_passed:
|
||||
logger.info("Agent validation successful")
|
||||
return True, None
|
||||
|
||||
error_message = "Agent validation failed:\n"
|
||||
for i, error in enumerate(self.errors, 1):
|
||||
error_message += f"{i}. {error}\n"
|
||||
|
||||
logger.warning(f"Agent validation failed with {len(self.errors)} errors")
|
||||
return False, error_message
|
||||
|
||||
|
||||
def validate_agent(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
|
||||
) -> tuple[bool, str | None]:
|
||||
"""Convenience function to validate an agent.
|
||||
|
||||
Returns:
|
||||
Tuple of (is_valid, error_message)
|
||||
"""
|
||||
validator = AgentValidator()
|
||||
return validator.validate(agent, blocks_info)
|
||||
@@ -5,6 +5,7 @@ import re
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
from pydantic import BaseModel, field_validator
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
@@ -328,6 +329,7 @@ class AgentOutputTool(BaseTool):
|
||||
total_executions=len(available_executions) if available_executions else 1,
|
||||
)
|
||||
|
||||
@observe(as_type="tool", name="view_agent_output")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
"""Shared agent search functionality for find_agent and find_library_agent tools."""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from typing import Literal
|
||||
|
||||
from backend.api.features.library import db as library_db
|
||||
@@ -20,85 +19,6 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
SearchSource = Literal["marketplace", "library"]
|
||||
|
||||
_UUID_PATTERN = re.compile(
|
||||
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$",
|
||||
re.IGNORECASE,
|
||||
)
|
||||
|
||||
|
||||
def _is_uuid(text: str) -> bool:
|
||||
"""Check if text is a valid UUID v4."""
|
||||
return bool(_UUID_PATTERN.match(text.strip()))
|
||||
|
||||
|
||||
async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | None:
|
||||
"""Fetch a library agent by ID (library agent ID or graph_id).
|
||||
|
||||
Tries multiple lookup strategies:
|
||||
1. First by graph_id (AgentGraph primary key)
|
||||
2. Then by library agent ID (LibraryAgent primary key)
|
||||
|
||||
Args:
|
||||
user_id: The user ID
|
||||
agent_id: The ID to look up (can be graph_id or library agent ID)
|
||||
|
||||
Returns:
|
||||
AgentInfo if found, None otherwise
|
||||
"""
|
||||
try:
|
||||
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
|
||||
if agent:
|
||||
logger.debug(f"Found library agent by graph_id: {agent.name}")
|
||||
return AgentInfo(
|
||||
id=agent.id,
|
||||
name=agent.name,
|
||||
description=agent.description or "",
|
||||
source="library",
|
||||
in_library=True,
|
||||
creator=agent.creator_name,
|
||||
status=agent.status.value,
|
||||
can_access_graph=agent.can_access_graph,
|
||||
has_external_trigger=agent.has_external_trigger,
|
||||
new_output=agent.new_output,
|
||||
graph_id=agent.graph_id,
|
||||
)
|
||||
except DatabaseError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Could not fetch library agent by graph_id {agent_id}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
try:
|
||||
agent = await library_db.get_library_agent(agent_id, user_id)
|
||||
if agent:
|
||||
logger.debug(f"Found library agent by library_id: {agent.name}")
|
||||
return AgentInfo(
|
||||
id=agent.id,
|
||||
name=agent.name,
|
||||
description=agent.description or "",
|
||||
source="library",
|
||||
in_library=True,
|
||||
creator=agent.creator_name,
|
||||
status=agent.status.value,
|
||||
can_access_graph=agent.can_access_graph,
|
||||
has_external_trigger=agent.has_external_trigger,
|
||||
new_output=agent.new_output,
|
||||
graph_id=agent.graph_id,
|
||||
)
|
||||
except NotFoundError:
|
||||
logger.debug(f"Library agent not found by library_id: {agent_id}")
|
||||
except DatabaseError:
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Could not fetch library agent by library_id {agent_id}: {e}",
|
||||
exc_info=True,
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
async def search_agents(
|
||||
query: str,
|
||||
@@ -149,37 +69,29 @@ async def search_agents(
|
||||
is_featured=False,
|
||||
)
|
||||
)
|
||||
else:
|
||||
if _is_uuid(query):
|
||||
logger.info(f"Query looks like UUID, trying direct lookup: {query}")
|
||||
agent = await _get_library_agent_by_id(user_id, query) # type: ignore[arg-type]
|
||||
if agent:
|
||||
agents.append(agent)
|
||||
logger.info(f"Found agent by direct ID lookup: {agent.name}")
|
||||
|
||||
if not agents:
|
||||
logger.info(f"Searching user library for: {query}")
|
||||
results = await library_db.list_library_agents(
|
||||
user_id=user_id, # type: ignore[arg-type]
|
||||
search_term=query,
|
||||
page_size=10,
|
||||
)
|
||||
for agent in results.agents:
|
||||
agents.append(
|
||||
AgentInfo(
|
||||
id=agent.id,
|
||||
name=agent.name,
|
||||
description=agent.description or "",
|
||||
source="library",
|
||||
in_library=True,
|
||||
creator=agent.creator_name,
|
||||
status=agent.status.value,
|
||||
can_access_graph=agent.can_access_graph,
|
||||
has_external_trigger=agent.has_external_trigger,
|
||||
new_output=agent.new_output,
|
||||
graph_id=agent.graph_id,
|
||||
)
|
||||
else: # library
|
||||
logger.info(f"Searching user library for: {query}")
|
||||
results = await library_db.list_library_agents(
|
||||
user_id=user_id, # type: ignore[arg-type]
|
||||
search_term=query,
|
||||
page_size=10,
|
||||
)
|
||||
for agent in results.agents:
|
||||
agents.append(
|
||||
AgentInfo(
|
||||
id=agent.id,
|
||||
name=agent.name,
|
||||
description=agent.description or "",
|
||||
source="library",
|
||||
in_library=True,
|
||||
creator=agent.creator_name,
|
||||
status=agent.status.value,
|
||||
can_access_graph=agent.can_access_graph,
|
||||
has_external_trigger=agent.has_external_trigger,
|
||||
new_output=agent.new_output,
|
||||
graph_id=agent.graph_id,
|
||||
)
|
||||
)
|
||||
logger.info(f"Found {len(agents)} agents in {source}")
|
||||
except NotFoundError:
|
||||
pass
|
||||
@@ -206,9 +118,9 @@ async def search_agents(
|
||||
]
|
||||
)
|
||||
no_results_msg = (
|
||||
f"No agents found matching '{query}'. Let the user know they can try different keywords or browse the marketplace. Also let them know you can create a custom agent for them based on their needs."
|
||||
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
|
||||
if source == "marketplace"
|
||||
else f"No agents matching '{query}' found in your library. Let the user know you can create a custom agent for them based on their needs."
|
||||
else f"No agents matching '{query}' found in your library."
|
||||
)
|
||||
return NoResultsResponse(
|
||||
message=no_results_msg, session_id=session_id, suggestions=suggestions
|
||||
@@ -224,10 +136,10 @@ async def search_agents(
|
||||
message = (
|
||||
"Now you have found some options for the user to choose from. "
|
||||
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
|
||||
"Please ask the user if they would like to use any of these agents. Let the user know we can create a custom agent for them based on their needs."
|
||||
"Please ask the user if they would like to use any of these agents."
|
||||
if source == "marketplace"
|
||||
else "Found agents in the user's library. You can provide a link to view an agent at: "
|
||||
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute. Let the user know we can create a custom agent for them based on their needs."
|
||||
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
|
||||
)
|
||||
|
||||
return AgentsFoundResponse(
|
||||
|
||||
@@ -36,16 +36,6 @@ class BaseTool:
|
||||
"""Whether this tool requires authentication."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
"""Whether this tool is long-running and should execute in background.
|
||||
|
||||
Long-running tools (like agent generation) are executed via background
|
||||
tasks to survive SSE disconnections. The result is persisted to chat
|
||||
history and visible when the user refreshes.
|
||||
"""
|
||||
return False
|
||||
|
||||
def as_openai_tool(self) -> ChatCompletionToolParam:
|
||||
"""Convert to OpenAI tool format."""
|
||||
return ChatCompletionToolParam(
|
||||
|
||||
@@ -1,131 +0,0 @@
|
||||
"""Bash execution tool — run shell commands in a bubblewrap sandbox.
|
||||
|
||||
Full Bash scripting is allowed (loops, conditionals, pipes, functions, etc.).
|
||||
Safety comes from OS-level isolation (bubblewrap): only system dirs visible
|
||||
read-only, writable workspace only, clean env, no network.
|
||||
|
||||
Requires bubblewrap (``bwrap``) — the tool is disabled when bwrap is not
|
||||
available (e.g. macOS development).
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
BashExecResponse,
|
||||
ErrorResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
from backend.api.features.chat.tools.sandbox import (
|
||||
get_workspace_dir,
|
||||
has_full_sandbox,
|
||||
run_sandboxed,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BashExecTool(BaseTool):
|
||||
"""Execute Bash commands in a bubblewrap sandbox."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "bash_exec"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
if not has_full_sandbox():
|
||||
return (
|
||||
"Bash execution is DISABLED — bubblewrap sandbox is not "
|
||||
"available on this platform. Do not call this tool."
|
||||
)
|
||||
return (
|
||||
"Execute a Bash command or script in a bubblewrap sandbox. "
|
||||
"Full Bash scripting is supported (loops, conditionals, pipes, "
|
||||
"functions, etc.). "
|
||||
"The sandbox shares the same working directory as the SDK Read/Write "
|
||||
"tools — files created by either are accessible to both. "
|
||||
"SECURITY: Only system directories (/usr, /bin, /lib, /etc) are "
|
||||
"visible read-only, the per-session workspace is the only writable "
|
||||
"path, environment variables are wiped (no secrets), all network "
|
||||
"access is blocked at the kernel level, and resource limits are "
|
||||
"enforced (max 64 processes, 512MB memory, 50MB file size). "
|
||||
"Application code, configs, and other directories are NOT accessible. "
|
||||
"To fetch web content, use the web_fetch tool instead. "
|
||||
"Execution is killed after the timeout (default 30s, max 120s). "
|
||||
"Returns stdout and stderr. "
|
||||
"Useful for file manipulation, data processing with Unix tools "
|
||||
"(grep, awk, sed, jq, etc.), and running shell scripts."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"command": {
|
||||
"type": "string",
|
||||
"description": "Bash command or script to execute.",
|
||||
},
|
||||
"timeout": {
|
||||
"type": "integer",
|
||||
"description": (
|
||||
"Max execution time in seconds (default 30, max 120)."
|
||||
),
|
||||
"default": 30,
|
||||
},
|
||||
},
|
||||
"required": ["command"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return False
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs: Any,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
if not has_full_sandbox():
|
||||
return ErrorResponse(
|
||||
message="bash_exec requires bubblewrap sandbox (Linux only).",
|
||||
error="sandbox_unavailable",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
command: str = (kwargs.get("command") or "").strip()
|
||||
timeout: int = kwargs.get("timeout", 30)
|
||||
|
||||
if not command:
|
||||
return ErrorResponse(
|
||||
message="No command provided.",
|
||||
error="empty_command",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
workspace = get_workspace_dir(session_id or "default")
|
||||
|
||||
stdout, stderr, exit_code, timed_out = await run_sandboxed(
|
||||
command=["bash", "-c", command],
|
||||
cwd=workspace,
|
||||
timeout=timeout,
|
||||
)
|
||||
|
||||
return BashExecResponse(
|
||||
message=(
|
||||
"Execution timed out"
|
||||
if timed_out
|
||||
else f"Command executed (exit {exit_code})"
|
||||
),
|
||||
stdout=stdout,
|
||||
stderr=stderr,
|
||||
exit_code=exit_code,
|
||||
timed_out=timed_out,
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -1,127 +0,0 @@
|
||||
"""CheckOperationStatusTool — query the status of a long-running operation."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
ErrorResponse,
|
||||
ResponseType,
|
||||
ToolResponseBase,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OperationStatusResponse(ToolResponseBase):
|
||||
"""Response for check_operation_status tool."""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_STATUS
|
||||
task_id: str
|
||||
operation_id: str
|
||||
status: str # "running", "completed", "failed"
|
||||
tool_name: str | None = None
|
||||
message: str = ""
|
||||
|
||||
|
||||
class CheckOperationStatusTool(BaseTool):
|
||||
"""Check the status of a long-running operation (create_agent, edit_agent, etc.).
|
||||
|
||||
The CoPilot uses this tool to report back to the user whether an
|
||||
operation that was started earlier has completed, failed, or is still
|
||||
running.
|
||||
"""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "check_operation_status"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Check the current status of a long-running operation such as "
|
||||
"create_agent or edit_agent. Accepts either an operation_id or "
|
||||
"task_id from a previous operation_started response. "
|
||||
"Returns the current status: running, completed, or failed."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"operation_id": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The operation_id from an operation_started response."
|
||||
),
|
||||
},
|
||||
"task_id": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The task_id from an operation_started response. "
|
||||
"Used as fallback if operation_id is not provided."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return False
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
from backend.api.features.chat import stream_registry
|
||||
|
||||
operation_id = (kwargs.get("operation_id") or "").strip()
|
||||
task_id = (kwargs.get("task_id") or "").strip()
|
||||
|
||||
if not operation_id and not task_id:
|
||||
return ErrorResponse(
|
||||
message="Please provide an operation_id or task_id.",
|
||||
error="missing_parameter",
|
||||
)
|
||||
|
||||
task = None
|
||||
if operation_id:
|
||||
task = await stream_registry.find_task_by_operation_id(operation_id)
|
||||
if task is None and task_id:
|
||||
task = await stream_registry.get_task(task_id)
|
||||
|
||||
if task is None:
|
||||
# Task not in Redis — it may have already expired (TTL).
|
||||
# Check conversation history for the result instead.
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Operation not found — it may have already completed and "
|
||||
"expired from the status tracker. Check the conversation "
|
||||
"history for the result."
|
||||
),
|
||||
error="not_found",
|
||||
)
|
||||
|
||||
status_messages = {
|
||||
"running": (
|
||||
f"The {task.tool_name or 'operation'} is still running. "
|
||||
"Please wait for it to complete."
|
||||
),
|
||||
"completed": (
|
||||
f"The {task.tool_name or 'operation'} has completed successfully."
|
||||
),
|
||||
"failed": f"The {task.tool_name or 'operation'} has failed.",
|
||||
}
|
||||
|
||||
return OperationStatusResponse(
|
||||
task_id=task.task_id,
|
||||
operation_id=task.operation_id,
|
||||
status=task.status,
|
||||
tool_name=task.tool_name,
|
||||
message=status_messages.get(task.status, f"Status: {task.status}"),
|
||||
)
|
||||
@@ -3,31 +3,33 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
apply_all_fixes,
|
||||
decompose_goal,
|
||||
enrich_library_agents_from_steps,
|
||||
generate_agent,
|
||||
get_all_relevant_agents_for_generation,
|
||||
get_user_message_for_error,
|
||||
get_blocks_info,
|
||||
save_agent_to_library,
|
||||
validate_agent,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
AsyncProcessingResponse,
|
||||
ClarificationNeededResponse,
|
||||
ClarifyingQuestion,
|
||||
ErrorResponse,
|
||||
SuggestedGoalResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Maximum retries for agent generation with validation feedback
|
||||
MAX_GENERATION_RETRIES = 2
|
||||
|
||||
|
||||
class CreateAgentTool(BaseTool):
|
||||
"""Tool for creating agents from natural language descriptions."""
|
||||
@@ -47,10 +49,6 @@ class CreateAgentTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
@@ -82,6 +80,7 @@ class CreateAgentTool(BaseTool):
|
||||
"required": ["description"],
|
||||
}
|
||||
|
||||
@observe(as_type="tool", name="create_agent")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -92,18 +91,15 @@ class CreateAgentTool(BaseTool):
|
||||
|
||||
Flow:
|
||||
1. Decompose the description into steps (may return clarifying questions)
|
||||
2. Generate agent JSON (external service handles fixing and validation)
|
||||
3. Preview or save based on the save parameter
|
||||
2. Generate agent JSON from the steps
|
||||
3. Apply fixes to correct common LLM errors
|
||||
4. Preview or save based on the save parameter
|
||||
"""
|
||||
description = kwargs.get("description", "").strip()
|
||||
context = kwargs.get("context", "")
|
||||
save = kwargs.get("save", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
# Extract async processing params (passed by long-running tool handler)
|
||||
operation_id = kwargs.get("_operation_id")
|
||||
task_id = kwargs.get("_task_id")
|
||||
|
||||
if not description:
|
||||
return ErrorResponse(
|
||||
message="Please provide a description of what the agent should do.",
|
||||
@@ -111,61 +107,25 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
library_agents = None
|
||||
if user_id:
|
||||
try:
|
||||
library_agents = await get_all_relevant_agents_for_generation(
|
||||
user_id=user_id,
|
||||
search_query=description,
|
||||
include_marketplace=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"Found {len(library_agents)} relevant agents for sub-agent composition"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch library agents: {e}")
|
||||
|
||||
# Step 1: Decompose goal into steps
|
||||
try:
|
||||
decomposition_result = await decompose_goal(
|
||||
description, context, library_agents
|
||||
)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
decomposition_result = await decompose_goal(description, context)
|
||||
except ValueError as e:
|
||||
# Handle missing API key or configuration errors
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Agent generation is not available. "
|
||||
"The Agent Generator service is not configured."
|
||||
),
|
||||
error="service_not_configured",
|
||||
message=f"Agent generation is not configured: {str(e)}",
|
||||
error="configuration_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if decomposition_result is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
|
||||
error="decomposition_failed",
|
||||
details={"description": description[:100]},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if decomposition_result.get("type") == "error":
|
||||
error_msg = decomposition_result.get("error", "Unknown error")
|
||||
error_type = decomposition_result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="analyze the goal",
|
||||
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"decomposition_failed:{error_type}",
|
||||
details={
|
||||
"description": description[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
message="Failed to analyze the goal. Please try rephrasing.",
|
||||
error="Decomposition failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if LLM returned clarifying questions
|
||||
if decomposition_result.get("type") == "clarifying_questions":
|
||||
questions = decomposition_result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
@@ -184,113 +144,99 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check for unachievable/vague goals
|
||||
if decomposition_result.get("type") == "unachievable_goal":
|
||||
suggested = decomposition_result.get("suggested_goal", "")
|
||||
reason = decomposition_result.get("reason", "")
|
||||
return SuggestedGoalResponse(
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"This goal cannot be accomplished with the available blocks. {reason}"
|
||||
f"This goal cannot be accomplished with the available blocks. "
|
||||
f"{reason} "
|
||||
f"Suggestion: {suggested}"
|
||||
),
|
||||
suggested_goal=suggested,
|
||||
reason=reason,
|
||||
original_goal=description,
|
||||
goal_type="unachievable",
|
||||
error="unachievable_goal",
|
||||
details={"suggested_goal": suggested, "reason": reason},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if decomposition_result.get("type") == "vague_goal":
|
||||
suggested = decomposition_result.get("suggested_goal", "")
|
||||
return SuggestedGoalResponse(
|
||||
message="The goal is too vague to create a specific workflow.",
|
||||
suggested_goal=suggested,
|
||||
reason="The goal needs more specific details",
|
||||
original_goal=description,
|
||||
goal_type="vague",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if user_id and library_agents is not None:
|
||||
try:
|
||||
library_agents = await enrich_library_agents_from_steps(
|
||||
user_id=user_id,
|
||||
decomposition_result=decomposition_result,
|
||||
existing_agents=library_agents,
|
||||
include_marketplace=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to enrich library agents from steps: {e}")
|
||||
|
||||
try:
|
||||
agent_json = await generate_agent(
|
||||
decomposition_result,
|
||||
library_agents,
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Agent generation is not available. "
|
||||
"The Agent Generator service is not configured."
|
||||
f"The goal is too vague to create a specific workflow. "
|
||||
f"Suggestion: {suggested}"
|
||||
),
|
||||
error="service_not_configured",
|
||||
error="vague_goal",
|
||||
details={"suggested_goal": suggested},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if agent_json is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
|
||||
error="generation_failed",
|
||||
details={"description": description[:100]},
|
||||
session_id=session_id,
|
||||
# Step 2: Generate agent JSON with retry on validation failure
|
||||
blocks_info = get_blocks_info()
|
||||
agent_json = None
|
||||
validation_errors = None
|
||||
|
||||
for attempt in range(MAX_GENERATION_RETRIES + 1):
|
||||
# Generate agent (include validation errors from previous attempt)
|
||||
if attempt == 0:
|
||||
agent_json = await generate_agent(decomposition_result)
|
||||
else:
|
||||
# Retry with validation error feedback
|
||||
logger.info(
|
||||
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
|
||||
)
|
||||
retry_instructions = {
|
||||
**decomposition_result,
|
||||
"previous_errors": validation_errors,
|
||||
"retry_instructions": (
|
||||
"The previous generation had validation errors. "
|
||||
"Please fix these issues in the new generation:\n"
|
||||
f"{validation_errors}"
|
||||
),
|
||||
}
|
||||
agent_json = await generate_agent(retry_instructions)
|
||||
|
||||
if agent_json is None:
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate the agent. Please try again.",
|
||||
error="Generation failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
continue
|
||||
|
||||
# Step 3: Apply fixes to correct common errors
|
||||
agent_json = apply_all_fixes(agent_json, blocks_info)
|
||||
|
||||
# Step 4: Validate the agent
|
||||
is_valid, validation_errors = validate_agent(agent_json, blocks_info)
|
||||
|
||||
if is_valid:
|
||||
logger.info(f"Agent generated successfully on attempt {attempt + 1}")
|
||||
break
|
||||
|
||||
logger.warning(
|
||||
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
|
||||
)
|
||||
|
||||
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
|
||||
error_msg = agent_json.get("error", "Unknown error")
|
||||
error_type = agent_json.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="generate the agent",
|
||||
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
|
||||
validation_message=(
|
||||
"I wasn't able to create a valid agent for this request. "
|
||||
"The generated workflow had some structural issues. "
|
||||
"Please try simplifying your goal or breaking it into smaller steps."
|
||||
),
|
||||
error_details=error_msg,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"generation_failed:{error_type}",
|
||||
details={
|
||||
"description": description[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if Agent Generator accepted for async processing
|
||||
if agent_json.get("status") == "accepted":
|
||||
logger.info(
|
||||
f"Agent generation delegated to async processing "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return AsyncProcessingResponse(
|
||||
message="Agent generation started. You'll be notified when it's complete.",
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
)
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
# Return error with validation details
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Generated agent has validation errors after {MAX_GENERATION_RETRIES + 1} attempts. "
|
||||
f"Please try rephrasing your request or simplify the workflow."
|
||||
),
|
||||
error="validation_failed",
|
||||
details={"validation_errors": validation_errors},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
agent_name = agent_json.get("name", "Generated Agent")
|
||||
agent_description = agent_json.get("description", "")
|
||||
node_count = len(agent_json.get("nodes", []))
|
||||
link_count = len(agent_json.get("links", []))
|
||||
|
||||
# Step 4: Preview or save
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
@@ -305,6 +251,7 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Save to library
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="You must be logged in to save agents.",
|
||||
@@ -322,7 +269,7 @@ class CreateAgentTool(BaseTool):
|
||||
agent_id=created_graph.id,
|
||||
agent_name=created_graph.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=f"/library/agents/{library_agent.id}",
|
||||
library_agent_link=f"/library/{library_agent.id}",
|
||||
agent_page_link=f"/build?flowID={created_graph.id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
@@ -1,142 +0,0 @@
|
||||
"""Tests for CreateAgentTool response types."""
|
||||
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.api.features.chat.tools.create_agent import CreateAgentTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
ClarificationNeededResponse,
|
||||
ErrorResponse,
|
||||
SuggestedGoalResponse,
|
||||
)
|
||||
|
||||
from ._test_data import make_session
|
||||
|
||||
_TEST_USER_ID = "test-user-create-agent"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def tool():
|
||||
return CreateAgentTool()
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def session():
|
||||
return make_session(_TEST_USER_ID)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_missing_description_returns_error(tool, session):
|
||||
"""Missing description returns ErrorResponse."""
|
||||
result = await tool._execute(user_id=_TEST_USER_ID, session=session, description="")
|
||||
assert isinstance(result, ErrorResponse)
|
||||
assert result.error == "Missing description parameter"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_vague_goal_returns_suggested_goal_response(tool, session):
|
||||
"""vague_goal decomposition result returns SuggestedGoalResponse, not ErrorResponse."""
|
||||
vague_result = {
|
||||
"type": "vague_goal",
|
||||
"suggested_goal": "Monitor Twitter mentions for a specific keyword and send a daily digest email",
|
||||
}
|
||||
|
||||
with (
|
||||
patch(
|
||||
"backend.api.features.chat.tools.create_agent.get_all_relevant_agents_for_generation",
|
||||
new_callable=AsyncMock,
|
||||
return_value=[],
|
||||
),
|
||||
patch(
|
||||
"backend.api.features.chat.tools.create_agent.decompose_goal",
|
||||
new_callable=AsyncMock,
|
||||
return_value=vague_result,
|
||||
),
|
||||
):
|
||||
result = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
description="monitor social media",
|
||||
)
|
||||
|
||||
assert isinstance(result, SuggestedGoalResponse)
|
||||
assert result.goal_type == "vague"
|
||||
assert result.suggested_goal == vague_result["suggested_goal"]
|
||||
assert result.original_goal == "monitor social media"
|
||||
assert result.reason == "The goal needs more specific details"
|
||||
assert not isinstance(result, ErrorResponse)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_unachievable_goal_returns_suggested_goal_response(tool, session):
|
||||
"""unachievable_goal decomposition result returns SuggestedGoalResponse, not ErrorResponse."""
|
||||
unachievable_result = {
|
||||
"type": "unachievable_goal",
|
||||
"suggested_goal": "Summarize the latest news articles on a topic and send them by email",
|
||||
"reason": "There are no blocks for mind-reading.",
|
||||
}
|
||||
|
||||
with (
|
||||
patch(
|
||||
"backend.api.features.chat.tools.create_agent.get_all_relevant_agents_for_generation",
|
||||
new_callable=AsyncMock,
|
||||
return_value=[],
|
||||
),
|
||||
patch(
|
||||
"backend.api.features.chat.tools.create_agent.decompose_goal",
|
||||
new_callable=AsyncMock,
|
||||
return_value=unachievable_result,
|
||||
),
|
||||
):
|
||||
result = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
description="read my mind",
|
||||
)
|
||||
|
||||
assert isinstance(result, SuggestedGoalResponse)
|
||||
assert result.goal_type == "unachievable"
|
||||
assert result.suggested_goal == unachievable_result["suggested_goal"]
|
||||
assert result.original_goal == "read my mind"
|
||||
assert result.reason == unachievable_result["reason"]
|
||||
assert not isinstance(result, ErrorResponse)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_clarifying_questions_returns_clarification_needed_response(
|
||||
tool, session
|
||||
):
|
||||
"""clarifying_questions decomposition result returns ClarificationNeededResponse."""
|
||||
clarifying_result = {
|
||||
"type": "clarifying_questions",
|
||||
"questions": [
|
||||
{
|
||||
"question": "What platform should be monitored?",
|
||||
"keyword": "platform",
|
||||
"example": "Twitter, Reddit",
|
||||
}
|
||||
],
|
||||
}
|
||||
|
||||
with (
|
||||
patch(
|
||||
"backend.api.features.chat.tools.create_agent.get_all_relevant_agents_for_generation",
|
||||
new_callable=AsyncMock,
|
||||
return_value=[],
|
||||
),
|
||||
patch(
|
||||
"backend.api.features.chat.tools.create_agent.decompose_goal",
|
||||
new_callable=AsyncMock,
|
||||
return_value=clarifying_result,
|
||||
),
|
||||
):
|
||||
result = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
description="monitor social media and alert me",
|
||||
)
|
||||
|
||||
assert isinstance(result, ClarificationNeededResponse)
|
||||
assert len(result.questions) == 1
|
||||
assert result.questions[0].keyword == "platform"
|
||||
@@ -1,337 +0,0 @@
|
||||
"""CustomizeAgentTool - Customizes marketplace/template agents using natural language."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.api.features.store.exceptions import AgentNotFoundError
|
||||
|
||||
from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
customize_template,
|
||||
get_user_message_for_error,
|
||||
graph_to_json,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
ClarificationNeededResponse,
|
||||
ClarifyingQuestion,
|
||||
ErrorResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class CustomizeAgentTool(BaseTool):
|
||||
"""Tool for customizing marketplace/template agents using natural language."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "customize_agent"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Customize a marketplace or template agent using natural language. "
|
||||
"Takes an existing agent from the marketplace and modifies it based on "
|
||||
"the user's requirements before adding to their library."
|
||||
)
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"agent_id": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The marketplace agent ID in format 'creator/slug' "
|
||||
"(e.g., 'autogpt/newsletter-writer'). "
|
||||
"Get this from find_agent results."
|
||||
),
|
||||
},
|
||||
"modifications": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Natural language description of how to customize the agent. "
|
||||
"Be specific about what changes you want to make."
|
||||
),
|
||||
},
|
||||
"context": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Additional context or answers to previous clarifying questions."
|
||||
),
|
||||
},
|
||||
"save": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"Whether to save the customized agent to the user's library. "
|
||||
"Default is true. Set to false for preview only."
|
||||
),
|
||||
"default": True,
|
||||
},
|
||||
},
|
||||
"required": ["agent_id", "modifications"],
|
||||
}
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
"""Execute the customize_agent tool.
|
||||
|
||||
Flow:
|
||||
1. Parse the agent ID to get creator/slug
|
||||
2. Fetch the template agent from the marketplace
|
||||
3. Call customize_template with the modification request
|
||||
4. Preview or save based on the save parameter
|
||||
"""
|
||||
agent_id = kwargs.get("agent_id", "").strip()
|
||||
modifications = kwargs.get("modifications", "").strip()
|
||||
context = kwargs.get("context", "")
|
||||
save = kwargs.get("save", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
if not agent_id:
|
||||
return ErrorResponse(
|
||||
message="Please provide the marketplace agent ID (e.g., 'creator/agent-name').",
|
||||
error="missing_agent_id",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not modifications:
|
||||
return ErrorResponse(
|
||||
message="Please describe how you want to customize this agent.",
|
||||
error="missing_modifications",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Parse agent_id in format "creator/slug"
|
||||
parts = [p.strip() for p in agent_id.split("/")]
|
||||
if len(parts) != 2 or not parts[0] or not parts[1]:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Invalid agent ID format: '{agent_id}'. "
|
||||
"Expected format is 'creator/agent-name' "
|
||||
"(e.g., 'autogpt/newsletter-writer')."
|
||||
),
|
||||
error="invalid_agent_id_format",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
creator_username, agent_slug = parts
|
||||
|
||||
# Fetch the marketplace agent details
|
||||
try:
|
||||
agent_details = await store_db.get_store_agent_details(
|
||||
username=creator_username, agent_name=agent_slug
|
||||
)
|
||||
except AgentNotFoundError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Could not find marketplace agent '{agent_id}'. "
|
||||
"Please check the agent ID and try again."
|
||||
),
|
||||
error="agent_not_found",
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error fetching marketplace agent {agent_id}: {e}")
|
||||
return ErrorResponse(
|
||||
message="Failed to fetch the marketplace agent. Please try again.",
|
||||
error="fetch_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not agent_details.store_listing_version_id:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"The agent '{agent_id}' does not have an available version. "
|
||||
"Please try a different agent."
|
||||
),
|
||||
error="no_version_available",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Get the full agent graph
|
||||
try:
|
||||
graph = await store_db.get_agent(agent_details.store_listing_version_id)
|
||||
template_agent = graph_to_json(graph)
|
||||
except Exception as e:
|
||||
logger.error(f"Error fetching agent graph for {agent_id}: {e}")
|
||||
return ErrorResponse(
|
||||
message="Failed to fetch the agent configuration. Please try again.",
|
||||
error="graph_fetch_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Call customize_template
|
||||
try:
|
||||
result = await customize_template(
|
||||
template_agent=template_agent,
|
||||
modification_request=modifications,
|
||||
context=context,
|
||||
)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Agent customization is not available. "
|
||||
"The Agent Generator service is not configured."
|
||||
),
|
||||
error="service_not_configured",
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error calling customize_template for {agent_id}: {e}")
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Failed to customize the agent due to a service error. "
|
||||
"Please try again."
|
||||
),
|
||||
error="customization_service_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if result is None:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Failed to customize the agent. "
|
||||
"The agent generation service may be unavailable or timed out. "
|
||||
"Please try again."
|
||||
),
|
||||
error="customization_failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Handle error response
|
||||
if isinstance(result, dict) and result.get("type") == "error":
|
||||
error_msg = result.get("error", "Unknown error")
|
||||
error_type = result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="customize the agent",
|
||||
llm_parse_message=(
|
||||
"The AI had trouble customizing the agent. "
|
||||
"Please try again or simplify your request."
|
||||
),
|
||||
validation_message=(
|
||||
"The customized agent failed validation. "
|
||||
"Please try rephrasing your request."
|
||||
),
|
||||
error_details=error_msg,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"customization_failed:{error_type}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Handle clarifying questions
|
||||
if isinstance(result, dict) and result.get("type") == "clarifying_questions":
|
||||
questions = result.get("questions") or []
|
||||
if not isinstance(questions, list):
|
||||
logger.error(
|
||||
f"Unexpected clarifying questions format: {type(questions)}"
|
||||
)
|
||||
questions = []
|
||||
return ClarificationNeededResponse(
|
||||
message=(
|
||||
"I need some more information to customize this agent. "
|
||||
"Please answer the following questions:"
|
||||
),
|
||||
questions=[
|
||||
ClarifyingQuestion(
|
||||
question=q.get("question", ""),
|
||||
keyword=q.get("keyword", ""),
|
||||
example=q.get("example"),
|
||||
)
|
||||
for q in questions
|
||||
if isinstance(q, dict)
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Result should be the customized agent JSON
|
||||
if not isinstance(result, dict):
|
||||
logger.error(f"Unexpected customize_template response type: {type(result)}")
|
||||
return ErrorResponse(
|
||||
message="Failed to customize the agent due to an unexpected response.",
|
||||
error="unexpected_response_type",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
customized_agent = result
|
||||
|
||||
agent_name = customized_agent.get(
|
||||
"name", f"Customized {agent_details.agent_name}"
|
||||
)
|
||||
agent_description = customized_agent.get("description", "")
|
||||
nodes = customized_agent.get("nodes")
|
||||
links = customized_agent.get("links")
|
||||
node_count = len(nodes) if isinstance(nodes, list) else 0
|
||||
link_count = len(links) if isinstance(links, list) else 0
|
||||
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
f"I've customized the agent '{agent_details.agent_name}'. "
|
||||
f"The customized agent has {node_count} blocks. "
|
||||
f"Review it and call customize_agent with save=true to save it."
|
||||
),
|
||||
agent_json=customized_agent,
|
||||
agent_name=agent_name,
|
||||
description=agent_description,
|
||||
node_count=node_count,
|
||||
link_count=link_count,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="You must be logged in to save agents.",
|
||||
error="auth_required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Save to user's library
|
||||
try:
|
||||
created_graph, library_agent = await save_agent_to_library(
|
||||
customized_agent, user_id, is_update=False
|
||||
)
|
||||
|
||||
return AgentSavedResponse(
|
||||
message=(
|
||||
f"Customized agent '{created_graph.name}' "
|
||||
f"(based on '{agent_details.agent_name}') "
|
||||
f"has been saved to your library!"
|
||||
),
|
||||
agent_id=created_graph.id,
|
||||
agent_name=created_graph.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=f"/library/agents/{library_agent.id}",
|
||||
agent_page_link=f"/build?flowID={created_graph.id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error saving customized agent: {e}")
|
||||
return ErrorResponse(
|
||||
message="Failed to save the customized agent. Please try again.",
|
||||
error="save_failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -3,21 +3,23 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
apply_agent_patch,
|
||||
apply_all_fixes,
|
||||
generate_agent_patch,
|
||||
get_agent_as_json,
|
||||
get_all_relevant_agents_for_generation,
|
||||
get_user_message_for_error,
|
||||
get_blocks_info,
|
||||
save_agent_to_library,
|
||||
validate_agent,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
AsyncProcessingResponse,
|
||||
ClarificationNeededResponse,
|
||||
ClarifyingQuestion,
|
||||
ErrorResponse,
|
||||
@@ -26,6 +28,9 @@ from .models import (
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Maximum retries for patch generation with validation feedback
|
||||
MAX_GENERATION_RETRIES = 2
|
||||
|
||||
|
||||
class EditAgentTool(BaseTool):
|
||||
"""Tool for editing existing agents using natural language."""
|
||||
@@ -38,17 +43,13 @@ class EditAgentTool(BaseTool):
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Edit an existing agent from the user's library using natural language. "
|
||||
"Generates updates to the agent while preserving unchanged parts."
|
||||
"Generates a patch to update the agent while preserving unchanged parts."
|
||||
)
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
@@ -86,6 +87,7 @@ class EditAgentTool(BaseTool):
|
||||
"required": ["agent_id", "changes"],
|
||||
}
|
||||
|
||||
@observe(as_type="tool", name="edit_agent")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -96,8 +98,9 @@ class EditAgentTool(BaseTool):
|
||||
|
||||
Flow:
|
||||
1. Fetch the current agent
|
||||
2. Generate updated agent (external service handles fixing and validation)
|
||||
3. Preview or save based on the save parameter
|
||||
2. Generate a patch based on the requested changes
|
||||
3. Apply the patch to create an updated agent
|
||||
4. Preview or save based on the save parameter
|
||||
"""
|
||||
agent_id = kwargs.get("agent_id", "").strip()
|
||||
changes = kwargs.get("changes", "").strip()
|
||||
@@ -105,10 +108,6 @@ class EditAgentTool(BaseTool):
|
||||
save = kwargs.get("save", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
# Extract async processing params (passed by long-running tool handler)
|
||||
operation_id = kwargs.get("_operation_id")
|
||||
task_id = kwargs.get("_task_id")
|
||||
|
||||
if not agent_id:
|
||||
return ErrorResponse(
|
||||
message="Please provide the agent ID to edit.",
|
||||
@@ -123,6 +122,7 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 1: Fetch current agent
|
||||
current_agent = await get_agent_as_json(agent_id, user_id)
|
||||
|
||||
if current_agent is None:
|
||||
@@ -132,117 +132,126 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
library_agents = None
|
||||
if user_id:
|
||||
try:
|
||||
graph_id = current_agent.get("id")
|
||||
library_agents = await get_all_relevant_agents_for_generation(
|
||||
user_id=user_id,
|
||||
search_query=changes,
|
||||
exclude_graph_id=graph_id,
|
||||
include_marketplace=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"Found {len(library_agents)} relevant agents for sub-agent composition"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch library agents: {e}")
|
||||
|
||||
# Build the update request with context
|
||||
update_request = changes
|
||||
if context:
|
||||
update_request = f"{changes}\n\nAdditional context:\n{context}"
|
||||
|
||||
try:
|
||||
result = await generate_agent_patch(
|
||||
update_request,
|
||||
current_agent,
|
||||
library_agents,
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Agent editing is not available. "
|
||||
"The Agent Generator service is not configured."
|
||||
),
|
||||
error="service_not_configured",
|
||||
session_id=session_id,
|
||||
)
|
||||
# Step 2: Generate patch with retry on validation failure
|
||||
blocks_info = get_blocks_info()
|
||||
updated_agent = None
|
||||
validation_errors = None
|
||||
intent = "Applied requested changes"
|
||||
|
||||
if result is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate changes. The agent generation service may be unavailable or timed out. Please try again.",
|
||||
error="update_generation_failed",
|
||||
details={"agent_id": agent_id, "changes": changes[:100]},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if Agent Generator accepted for async processing
|
||||
if result.get("status") == "accepted":
|
||||
logger.info(
|
||||
f"Agent edit delegated to async processing "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return AsyncProcessingResponse(
|
||||
message="Agent edit started. You'll be notified when it's complete.",
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if the result is an error from the external service
|
||||
if isinstance(result, dict) and result.get("type") == "error":
|
||||
error_msg = result.get("error", "Unknown error")
|
||||
error_type = result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="generate the changes",
|
||||
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
|
||||
validation_message="The generated changes failed validation. Please try rephrasing your request.",
|
||||
error_details=error_msg,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"update_generation_failed:{error_type}",
|
||||
details={
|
||||
"agent_id": agent_id,
|
||||
"changes": changes[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if result.get("type") == "clarifying_questions":
|
||||
questions = result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
message=(
|
||||
"I need some more information about the changes. "
|
||||
"Please answer the following questions:"
|
||||
),
|
||||
questions=[
|
||||
ClarifyingQuestion(
|
||||
question=q.get("question", ""),
|
||||
keyword=q.get("keyword", ""),
|
||||
example=q.get("example"),
|
||||
for attempt in range(MAX_GENERATION_RETRIES + 1):
|
||||
# Generate patch (include validation errors from previous attempt)
|
||||
try:
|
||||
if attempt == 0:
|
||||
patch_result = await generate_agent_patch(
|
||||
update_request, current_agent
|
||||
)
|
||||
for q in questions
|
||||
],
|
||||
session_id=session_id,
|
||||
else:
|
||||
# Retry with validation error feedback
|
||||
logger.info(
|
||||
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
|
||||
)
|
||||
retry_request = (
|
||||
f"{update_request}\n\n"
|
||||
f"IMPORTANT: The previous edit had validation errors. "
|
||||
f"Please fix these issues:\n{validation_errors}"
|
||||
)
|
||||
patch_result = await generate_agent_patch(
|
||||
retry_request, current_agent
|
||||
)
|
||||
except ValueError as e:
|
||||
# Handle missing API key or configuration errors
|
||||
return ErrorResponse(
|
||||
message=f"Agent generation is not configured: {str(e)}",
|
||||
error="configuration_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if patch_result is None:
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate changes. Please try rephrasing.",
|
||||
error="Patch generation failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
continue
|
||||
|
||||
# Check if LLM returned clarifying questions
|
||||
if patch_result.get("type") == "clarifying_questions":
|
||||
questions = patch_result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
message=(
|
||||
"I need some more information about the changes. "
|
||||
"Please answer the following questions:"
|
||||
),
|
||||
questions=[
|
||||
ClarifyingQuestion(
|
||||
question=q.get("question", ""),
|
||||
keyword=q.get("keyword", ""),
|
||||
example=q.get("example"),
|
||||
)
|
||||
for q in questions
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 3: Apply patch and fixes
|
||||
try:
|
||||
updated_agent = apply_agent_patch(current_agent, patch_result)
|
||||
updated_agent = apply_all_fixes(updated_agent, blocks_info)
|
||||
except Exception as e:
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
return ErrorResponse(
|
||||
message=f"Failed to apply changes: {str(e)}",
|
||||
error="patch_apply_failed",
|
||||
details={"exception": str(e)},
|
||||
session_id=session_id,
|
||||
)
|
||||
validation_errors = str(e)
|
||||
continue
|
||||
|
||||
# Step 4: Validate the updated agent
|
||||
is_valid, validation_errors = validate_agent(updated_agent, blocks_info)
|
||||
|
||||
if is_valid:
|
||||
logger.info(f"Agent edited successfully on attempt {attempt + 1}")
|
||||
intent = patch_result.get("intent", "Applied requested changes")
|
||||
break
|
||||
|
||||
logger.warning(
|
||||
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
|
||||
)
|
||||
|
||||
updated_agent = result
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
# Return error with validation details
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Updated agent has validation errors after "
|
||||
f"{MAX_GENERATION_RETRIES + 1} attempts. "
|
||||
f"Please try rephrasing your request or simplify the changes."
|
||||
),
|
||||
error="validation_failed",
|
||||
details={"validation_errors": validation_errors},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# At this point, updated_agent is guaranteed to be set (we return on all failure paths)
|
||||
assert updated_agent is not None
|
||||
|
||||
agent_name = updated_agent.get("name", "Updated Agent")
|
||||
agent_description = updated_agent.get("description", "")
|
||||
node_count = len(updated_agent.get("nodes", []))
|
||||
link_count = len(updated_agent.get("links", []))
|
||||
|
||||
# Step 5: Preview or save
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
f"I've updated the agent. "
|
||||
f"I've updated the agent. Changes: {intent}. "
|
||||
f"The agent now has {node_count} blocks. "
|
||||
f"Review it and call edit_agent with save=true to save the changes."
|
||||
),
|
||||
@@ -254,6 +263,7 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Save to library (creates a new version)
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="You must be logged in to save agents.",
|
||||
@@ -267,11 +277,14 @@ class EditAgentTool(BaseTool):
|
||||
)
|
||||
|
||||
return AgentSavedResponse(
|
||||
message=f"Updated agent '{created_graph.name}' has been saved to your library!",
|
||||
message=(
|
||||
f"Updated agent '{created_graph.name}' has been saved to your library! "
|
||||
f"Changes: {intent}"
|
||||
),
|
||||
agent_id=created_graph.id,
|
||||
agent_name=created_graph.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=f"/library/agents/{library_agent.id}",
|
||||
library_agent_link=f"/library/{library_agent.id}",
|
||||
agent_page_link=f"/build?flowID={created_graph.id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
@@ -1,448 +0,0 @@
|
||||
"""Feature request tools - search and create feature requests via Linear."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
ErrorResponse,
|
||||
FeatureRequestCreatedResponse,
|
||||
FeatureRequestInfo,
|
||||
FeatureRequestSearchResponse,
|
||||
NoResultsResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
from backend.blocks.linear._api import LinearClient
|
||||
from backend.data.model import APIKeyCredentials
|
||||
from backend.data.user import get_user_email_by_id
|
||||
from backend.util.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
MAX_SEARCH_RESULTS = 10
|
||||
|
||||
# GraphQL queries/mutations
|
||||
SEARCH_ISSUES_QUERY = """
|
||||
query SearchFeatureRequests($term: String!, $filter: IssueFilter, $first: Int) {
|
||||
searchIssues(term: $term, filter: $filter, first: $first) {
|
||||
nodes {
|
||||
id
|
||||
identifier
|
||||
title
|
||||
description
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
CUSTOMER_UPSERT_MUTATION = """
|
||||
mutation CustomerUpsert($input: CustomerUpsertInput!) {
|
||||
customerUpsert(input: $input) {
|
||||
success
|
||||
customer {
|
||||
id
|
||||
name
|
||||
externalIds
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
ISSUE_CREATE_MUTATION = """
|
||||
mutation IssueCreate($input: IssueCreateInput!) {
|
||||
issueCreate(input: $input) {
|
||||
success
|
||||
issue {
|
||||
id
|
||||
identifier
|
||||
title
|
||||
url
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
CUSTOMER_NEED_CREATE_MUTATION = """
|
||||
mutation CustomerNeedCreate($input: CustomerNeedCreateInput!) {
|
||||
customerNeedCreate(input: $input) {
|
||||
success
|
||||
need {
|
||||
id
|
||||
body
|
||||
customer {
|
||||
id
|
||||
name
|
||||
}
|
||||
issue {
|
||||
id
|
||||
identifier
|
||||
title
|
||||
url
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
_settings: Settings | None = None
|
||||
|
||||
|
||||
def _get_settings() -> Settings:
|
||||
global _settings
|
||||
if _settings is None:
|
||||
_settings = Settings()
|
||||
return _settings
|
||||
|
||||
|
||||
def _get_linear_config() -> tuple[LinearClient, str, str]:
|
||||
"""Return a configured Linear client, project ID, and team ID.
|
||||
|
||||
Raises RuntimeError if any required setting is missing.
|
||||
"""
|
||||
secrets = _get_settings().secrets
|
||||
if not secrets.linear_api_key:
|
||||
raise RuntimeError("LINEAR_API_KEY is not configured")
|
||||
if not secrets.linear_feature_request_project_id:
|
||||
raise RuntimeError("LINEAR_FEATURE_REQUEST_PROJECT_ID is not configured")
|
||||
if not secrets.linear_feature_request_team_id:
|
||||
raise RuntimeError("LINEAR_FEATURE_REQUEST_TEAM_ID is not configured")
|
||||
|
||||
credentials = APIKeyCredentials(
|
||||
id="system-linear",
|
||||
provider="linear",
|
||||
api_key=SecretStr(secrets.linear_api_key),
|
||||
title="System Linear API Key",
|
||||
)
|
||||
client = LinearClient(credentials=credentials)
|
||||
return (
|
||||
client,
|
||||
secrets.linear_feature_request_project_id,
|
||||
secrets.linear_feature_request_team_id,
|
||||
)
|
||||
|
||||
|
||||
class SearchFeatureRequestsTool(BaseTool):
|
||||
"""Tool for searching existing feature requests in Linear."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "search_feature_requests"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Search existing feature requests to check if a similar request "
|
||||
"already exists before creating a new one. Returns matching feature "
|
||||
"requests with their ID, title, and description."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {
|
||||
"type": "string",
|
||||
"description": "Search term to find matching feature requests.",
|
||||
},
|
||||
},
|
||||
"required": ["query"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
query = kwargs.get("query", "").strip()
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
if not query:
|
||||
return ErrorResponse(
|
||||
message="Please provide a search query.",
|
||||
error="Missing query parameter",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
client, project_id, _team_id = _get_linear_config()
|
||||
data = await client.query(
|
||||
SEARCH_ISSUES_QUERY,
|
||||
{
|
||||
"term": query,
|
||||
"filter": {
|
||||
"project": {"id": {"eq": project_id}},
|
||||
},
|
||||
"first": MAX_SEARCH_RESULTS,
|
||||
},
|
||||
)
|
||||
|
||||
nodes = data.get("searchIssues", {}).get("nodes", [])
|
||||
|
||||
if not nodes:
|
||||
return NoResultsResponse(
|
||||
message=f"No feature requests found matching '{query}'.",
|
||||
suggestions=[
|
||||
"Try different keywords",
|
||||
"Use broader search terms",
|
||||
"You can create a new feature request if none exists",
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
results = [
|
||||
FeatureRequestInfo(
|
||||
id=node["id"],
|
||||
identifier=node["identifier"],
|
||||
title=node["title"],
|
||||
description=node.get("description"),
|
||||
)
|
||||
for node in nodes
|
||||
]
|
||||
|
||||
return FeatureRequestSearchResponse(
|
||||
message=f"Found {len(results)} feature request(s) matching '{query}'.",
|
||||
results=results,
|
||||
count=len(results),
|
||||
query=query,
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.exception("Failed to search feature requests")
|
||||
return ErrorResponse(
|
||||
message="Failed to search feature requests.",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class CreateFeatureRequestTool(BaseTool):
|
||||
"""Tool for creating feature requests (or adding needs to existing ones)."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "create_feature_request"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Create a new feature request or add a customer need to an existing one. "
|
||||
"Always search first with search_feature_requests to avoid duplicates. "
|
||||
"If a matching request exists, pass its ID as existing_issue_id to add "
|
||||
"the user's need to it instead of creating a duplicate."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"title": {
|
||||
"type": "string",
|
||||
"description": "Title for the feature request.",
|
||||
},
|
||||
"description": {
|
||||
"type": "string",
|
||||
"description": "Detailed description of what the user wants and why.",
|
||||
},
|
||||
"existing_issue_id": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"If adding a need to an existing feature request, "
|
||||
"provide its Linear issue ID (from search results). "
|
||||
"Omit to create a new feature request."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": ["title", "description"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _find_or_create_customer(
|
||||
self, client: LinearClient, user_id: str, name: str
|
||||
) -> dict:
|
||||
"""Find existing customer by user_id or create a new one via upsert.
|
||||
|
||||
Args:
|
||||
client: Linear API client.
|
||||
user_id: Stable external ID used to deduplicate customers.
|
||||
name: Human-readable display name (e.g. the user's email).
|
||||
"""
|
||||
data = await client.mutate(
|
||||
CUSTOMER_UPSERT_MUTATION,
|
||||
{
|
||||
"input": {
|
||||
"name": name,
|
||||
"externalId": user_id,
|
||||
},
|
||||
},
|
||||
)
|
||||
result = data.get("customerUpsert", {})
|
||||
if not result.get("success"):
|
||||
raise RuntimeError(f"Failed to upsert customer: {data}")
|
||||
return result["customer"]
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
title = kwargs.get("title", "").strip()
|
||||
description = kwargs.get("description", "").strip()
|
||||
existing_issue_id = kwargs.get("existing_issue_id")
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
if not title or not description:
|
||||
return ErrorResponse(
|
||||
message="Both title and description are required.",
|
||||
error="Missing required parameters",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required to create feature requests.",
|
||||
error="Missing user_id",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
client, project_id, team_id = _get_linear_config()
|
||||
except Exception as e:
|
||||
logger.exception("Failed to initialize Linear client")
|
||||
return ErrorResponse(
|
||||
message="Failed to create feature request.",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Resolve a human-readable name (email) for the Linear customer record.
|
||||
# Fall back to user_id if the lookup fails or returns None.
|
||||
try:
|
||||
customer_display_name = await get_user_email_by_id(user_id) or user_id
|
||||
except Exception:
|
||||
customer_display_name = user_id
|
||||
|
||||
# Step 1: Find or create customer for this user
|
||||
try:
|
||||
customer = await self._find_or_create_customer(
|
||||
client, user_id, customer_display_name
|
||||
)
|
||||
customer_id = customer["id"]
|
||||
customer_name = customer["name"]
|
||||
except Exception as e:
|
||||
logger.exception("Failed to upsert customer in Linear")
|
||||
return ErrorResponse(
|
||||
message="Failed to create feature request.",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 2: Create or reuse issue
|
||||
issue_id: str | None = None
|
||||
issue_identifier: str | None = None
|
||||
if existing_issue_id:
|
||||
# Add need to existing issue - we still need the issue details for response
|
||||
is_new_issue = False
|
||||
issue_id = existing_issue_id
|
||||
else:
|
||||
# Create new issue in the feature requests project
|
||||
try:
|
||||
data = await client.mutate(
|
||||
ISSUE_CREATE_MUTATION,
|
||||
{
|
||||
"input": {
|
||||
"title": title,
|
||||
"description": description,
|
||||
"teamId": team_id,
|
||||
"projectId": project_id,
|
||||
},
|
||||
},
|
||||
)
|
||||
result = data.get("issueCreate", {})
|
||||
if not result.get("success"):
|
||||
return ErrorResponse(
|
||||
message="Failed to create feature request issue.",
|
||||
error=str(data),
|
||||
session_id=session_id,
|
||||
)
|
||||
issue = result["issue"]
|
||||
issue_id = issue["id"]
|
||||
issue_identifier = issue.get("identifier")
|
||||
except Exception as e:
|
||||
logger.exception("Failed to create feature request issue")
|
||||
return ErrorResponse(
|
||||
message="Failed to create feature request.",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
is_new_issue = True
|
||||
|
||||
# Step 3: Create customer need on the issue
|
||||
try:
|
||||
data = await client.mutate(
|
||||
CUSTOMER_NEED_CREATE_MUTATION,
|
||||
{
|
||||
"input": {
|
||||
"customerId": customer_id,
|
||||
"issueId": issue_id,
|
||||
"body": description,
|
||||
"priority": 0,
|
||||
},
|
||||
},
|
||||
)
|
||||
need_result = data.get("customerNeedCreate", {})
|
||||
if not need_result.get("success"):
|
||||
orphaned = (
|
||||
{"issue_id": issue_id, "issue_identifier": issue_identifier}
|
||||
if is_new_issue
|
||||
else None
|
||||
)
|
||||
return ErrorResponse(
|
||||
message="Failed to attach customer need to the feature request.",
|
||||
error=str(data),
|
||||
details=orphaned,
|
||||
session_id=session_id,
|
||||
)
|
||||
need = need_result["need"]
|
||||
issue_info = need["issue"]
|
||||
except Exception as e:
|
||||
logger.exception("Failed to create customer need")
|
||||
orphaned = (
|
||||
{"issue_id": issue_id, "issue_identifier": issue_identifier}
|
||||
if is_new_issue
|
||||
else None
|
||||
)
|
||||
return ErrorResponse(
|
||||
message="Failed to attach customer need to the feature request.",
|
||||
error=str(e),
|
||||
details=orphaned,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
return FeatureRequestCreatedResponse(
|
||||
message=(
|
||||
f"{'Created new feature request' if is_new_issue else 'Added your request to existing feature request'}: "
|
||||
f"{issue_info['title']}."
|
||||
),
|
||||
issue_id=issue_info["id"],
|
||||
issue_identifier=issue_info["identifier"],
|
||||
issue_title=issue_info["title"],
|
||||
issue_url=issue_info.get("url", ""),
|
||||
is_new_issue=is_new_issue,
|
||||
customer_name=customer_name,
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -1,615 +0,0 @@
|
||||
"""Tests for SearchFeatureRequestsTool and CreateFeatureRequestTool."""
|
||||
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.api.features.chat.tools.feature_requests import (
|
||||
CreateFeatureRequestTool,
|
||||
SearchFeatureRequestsTool,
|
||||
)
|
||||
from backend.api.features.chat.tools.models import (
|
||||
ErrorResponse,
|
||||
FeatureRequestCreatedResponse,
|
||||
FeatureRequestSearchResponse,
|
||||
NoResultsResponse,
|
||||
)
|
||||
|
||||
from ._test_data import make_session
|
||||
|
||||
_TEST_USER_ID = "test-user-feature-requests"
|
||||
_TEST_USER_EMAIL = "testuser@example.com"
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Helpers
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
_FAKE_PROJECT_ID = "test-project-id"
|
||||
_FAKE_TEAM_ID = "test-team-id"
|
||||
|
||||
|
||||
def _mock_linear_config(*, query_return=None, mutate_return=None):
|
||||
"""Return a patched _get_linear_config that yields a mock LinearClient."""
|
||||
client = AsyncMock()
|
||||
if query_return is not None:
|
||||
client.query.return_value = query_return
|
||||
if mutate_return is not None:
|
||||
client.mutate.return_value = mutate_return
|
||||
return (
|
||||
patch(
|
||||
"backend.api.features.chat.tools.feature_requests._get_linear_config",
|
||||
return_value=(client, _FAKE_PROJECT_ID, _FAKE_TEAM_ID),
|
||||
),
|
||||
client,
|
||||
)
|
||||
|
||||
|
||||
def _search_response(nodes: list[dict]) -> dict:
|
||||
return {"searchIssues": {"nodes": nodes}}
|
||||
|
||||
|
||||
def _customer_upsert_response(
|
||||
customer_id: str = "cust-1", name: str = _TEST_USER_EMAIL, success: bool = True
|
||||
) -> dict:
|
||||
return {
|
||||
"customerUpsert": {
|
||||
"success": success,
|
||||
"customer": {"id": customer_id, "name": name, "externalIds": [name]},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def _issue_create_response(
|
||||
issue_id: str = "issue-1",
|
||||
identifier: str = "FR-1",
|
||||
title: str = "New Feature",
|
||||
success: bool = True,
|
||||
) -> dict:
|
||||
return {
|
||||
"issueCreate": {
|
||||
"success": success,
|
||||
"issue": {
|
||||
"id": issue_id,
|
||||
"identifier": identifier,
|
||||
"title": title,
|
||||
"url": f"https://linear.app/issue/{identifier}",
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def _need_create_response(
|
||||
need_id: str = "need-1",
|
||||
issue_id: str = "issue-1",
|
||||
identifier: str = "FR-1",
|
||||
title: str = "New Feature",
|
||||
success: bool = True,
|
||||
) -> dict:
|
||||
return {
|
||||
"customerNeedCreate": {
|
||||
"success": success,
|
||||
"need": {
|
||||
"id": need_id,
|
||||
"body": "description",
|
||||
"customer": {"id": "cust-1", "name": _TEST_USER_EMAIL},
|
||||
"issue": {
|
||||
"id": issue_id,
|
||||
"identifier": identifier,
|
||||
"title": title,
|
||||
"url": f"https://linear.app/issue/{identifier}",
|
||||
},
|
||||
},
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
# ===========================================================================
|
||||
# SearchFeatureRequestsTool
|
||||
# ===========================================================================
|
||||
|
||||
|
||||
class TestSearchFeatureRequestsTool:
|
||||
"""Tests for SearchFeatureRequestsTool._execute."""
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_successful_search(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
nodes = [
|
||||
{
|
||||
"id": "id-1",
|
||||
"identifier": "FR-1",
|
||||
"title": "Dark mode",
|
||||
"description": "Add dark mode support",
|
||||
},
|
||||
{
|
||||
"id": "id-2",
|
||||
"identifier": "FR-2",
|
||||
"title": "Dark theme",
|
||||
"description": None,
|
||||
},
|
||||
]
|
||||
patcher, _ = _mock_linear_config(query_return=_search_response(nodes))
|
||||
with patcher:
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="dark mode"
|
||||
)
|
||||
|
||||
assert isinstance(resp, FeatureRequestSearchResponse)
|
||||
assert resp.count == 2
|
||||
assert resp.results[0].id == "id-1"
|
||||
assert resp.results[1].identifier == "FR-2"
|
||||
assert resp.query == "dark mode"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_no_results(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, _ = _mock_linear_config(query_return=_search_response([]))
|
||||
with patcher:
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="nonexistent"
|
||||
)
|
||||
|
||||
assert isinstance(resp, NoResultsResponse)
|
||||
assert "nonexistent" in resp.message
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_empty_query_returns_error(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(user_id=_TEST_USER_ID, session=session, query=" ")
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "query" in resp.error.lower()
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_missing_query_returns_error(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(user_id=_TEST_USER_ID, session=session)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_api_failure(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.query.side_effect = RuntimeError("Linear API down")
|
||||
with patcher:
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="test"
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "Linear API down" in resp.error
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_malformed_node_returns_error(self):
|
||||
"""A node missing required keys should be caught by the try/except."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
# Node missing 'identifier' key
|
||||
bad_nodes = [{"id": "id-1", "title": "Missing identifier"}]
|
||||
patcher, _ = _mock_linear_config(query_return=_search_response(bad_nodes))
|
||||
with patcher:
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="test"
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_linear_client_init_failure(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.feature_requests._get_linear_config",
|
||||
side_effect=RuntimeError("No API key"),
|
||||
):
|
||||
tool = SearchFeatureRequestsTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="test"
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "No API key" in resp.error
|
||||
|
||||
|
||||
# ===========================================================================
|
||||
# CreateFeatureRequestTool
|
||||
# ===========================================================================
|
||||
|
||||
|
||||
class TestCreateFeatureRequestTool:
|
||||
"""Tests for CreateFeatureRequestTool._execute."""
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def _patch_email_lookup(self):
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.feature_requests.get_user_email_by_id",
|
||||
new_callable=AsyncMock,
|
||||
return_value=_TEST_USER_EMAIL,
|
||||
):
|
||||
yield
|
||||
|
||||
# ---- Happy paths -------------------------------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_create_new_issue(self):
|
||||
"""Full happy path: upsert customer -> create issue -> attach need."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_issue_create_response(),
|
||||
_need_create_response(),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="New Feature",
|
||||
description="Please add this",
|
||||
)
|
||||
|
||||
assert isinstance(resp, FeatureRequestCreatedResponse)
|
||||
assert resp.is_new_issue is True
|
||||
assert resp.issue_identifier == "FR-1"
|
||||
assert resp.customer_name == _TEST_USER_EMAIL
|
||||
assert client.mutate.call_count == 3
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_add_need_to_existing_issue(self):
|
||||
"""When existing_issue_id is provided, skip issue creation."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_need_create_response(issue_id="existing-1", identifier="FR-99"),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Existing Feature",
|
||||
description="Me too",
|
||||
existing_issue_id="existing-1",
|
||||
)
|
||||
|
||||
assert isinstance(resp, FeatureRequestCreatedResponse)
|
||||
assert resp.is_new_issue is False
|
||||
assert resp.issue_id == "existing-1"
|
||||
# Only 2 mutations: customer upsert + need create (no issue create)
|
||||
assert client.mutate.call_count == 2
|
||||
|
||||
# ---- Validation errors -------------------------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_missing_title(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="",
|
||||
description="some desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "required" in resp.error.lower()
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_missing_description(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Some title",
|
||||
description="",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "required" in resp.error.lower()
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_missing_user_id(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=None,
|
||||
session=session,
|
||||
title="Some title",
|
||||
description="Some desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "user_id" in resp.error.lower()
|
||||
|
||||
# ---- Linear client init failure ----------------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_linear_client_init_failure(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.feature_requests._get_linear_config",
|
||||
side_effect=RuntimeError("No API key"),
|
||||
):
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "No API key" in resp.error
|
||||
|
||||
# ---- Customer upsert failures ------------------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_customer_upsert_api_error(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = RuntimeError("Customer API error")
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "Customer API error" in resp.error
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_customer_upsert_not_success(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.return_value = _customer_upsert_response(success=False)
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_customer_malformed_response(self):
|
||||
"""Customer dict missing 'id' key should be caught."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
# success=True but customer has no 'id'
|
||||
client.mutate.return_value = {
|
||||
"customerUpsert": {
|
||||
"success": True,
|
||||
"customer": {"name": _TEST_USER_ID},
|
||||
}
|
||||
}
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
|
||||
# ---- Issue creation failures -------------------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_issue_create_api_error(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
RuntimeError("Issue create failed"),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "Issue create failed" in resp.error
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_issue_create_not_success(self):
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_issue_create_response(success=False),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert "Failed to create feature request issue" in resp.message
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_issue_create_malformed_response(self):
|
||||
"""issueCreate success=True but missing 'issue' key."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
{"issueCreate": {"success": True}}, # no 'issue' key
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
|
||||
# ---- Customer need attachment failures ---------------------------------
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_need_create_api_error_new_issue(self):
|
||||
"""Need creation fails after new issue was created -> orphaned issue info."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_issue_create_response(issue_id="orphan-1", identifier="FR-10"),
|
||||
RuntimeError("Need attach failed"),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.error is not None
|
||||
assert "Need attach failed" in resp.error
|
||||
assert resp.details is not None
|
||||
assert resp.details["issue_id"] == "orphan-1"
|
||||
assert resp.details["issue_identifier"] == "FR-10"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_need_create_api_error_existing_issue(self):
|
||||
"""Need creation fails on existing issue -> no orphaned info."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
RuntimeError("Need attach failed"),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
existing_issue_id="existing-1",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.details is None
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_need_create_not_success_includes_orphaned_info(self):
|
||||
"""customerNeedCreate returns success=False -> includes orphaned issue."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_issue_create_response(issue_id="orphan-2", identifier="FR-20"),
|
||||
_need_create_response(success=False),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.details is not None
|
||||
assert resp.details["issue_id"] == "orphan-2"
|
||||
assert resp.details["issue_identifier"] == "FR-20"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_need_create_not_success_existing_issue_no_details(self):
|
||||
"""customerNeedCreate fails on existing issue -> no orphaned info."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_need_create_response(success=False),
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
existing_issue_id="existing-1",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.details is None
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_need_create_malformed_response(self):
|
||||
"""need_result missing 'need' key after success=True."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
patcher, client = _mock_linear_config()
|
||||
client.mutate.side_effect = [
|
||||
_customer_upsert_response(),
|
||||
_issue_create_response(),
|
||||
{"customerNeedCreate": {"success": True}}, # no 'need' key
|
||||
]
|
||||
|
||||
with patcher:
|
||||
tool = CreateFeatureRequestTool()
|
||||
resp = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
title="Title",
|
||||
description="Desc",
|
||||
)
|
||||
|
||||
assert isinstance(resp, ErrorResponse)
|
||||
assert resp.details is not None
|
||||
assert resp.details["issue_id"] == "issue-1"
|
||||
@@ -2,6 +2,8 @@
|
||||
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_search import search_agents
|
||||
@@ -35,6 +37,7 @@ class FindAgentTool(BaseTool):
|
||||
"required": ["query"],
|
||||
}
|
||||
|
||||
@observe(as_type="tool", name="find_agent")
|
||||
async def _execute(
|
||||
self, user_id: str | None, session: ChatSession, **kwargs
|
||||
) -> ToolResponseBase:
|
||||
|
||||
@@ -1,44 +1,23 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
|
||||
from backend.api.features.chat.tools.models import (
|
||||
BlockInfoSummary,
|
||||
BlockInputFieldInfo,
|
||||
BlockListResponse,
|
||||
ErrorResponse,
|
||||
NoResultsResponse,
|
||||
)
|
||||
from backend.api.features.store.hybrid_search import unified_hybrid_search
|
||||
from backend.blocks import get_block
|
||||
from backend.blocks._base import BlockType
|
||||
from backend.data.block import get_block
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_TARGET_RESULTS = 10
|
||||
# Over-fetch to compensate for post-hoc filtering of graph-only blocks.
|
||||
# 40 is 2x current removed; speed of query 10 vs 40 is minimial
|
||||
_OVERFETCH_PAGE_SIZE = 40
|
||||
|
||||
# Block types that only work within graphs and cannot run standalone in CoPilot.
|
||||
COPILOT_EXCLUDED_BLOCK_TYPES = {
|
||||
BlockType.INPUT, # Graph interface definition - data enters via chat, not graph inputs
|
||||
BlockType.OUTPUT, # Graph interface definition - data exits via chat, not graph outputs
|
||||
BlockType.WEBHOOK, # Wait for external events - would hang forever in CoPilot
|
||||
BlockType.WEBHOOK_MANUAL, # Same as WEBHOOK
|
||||
BlockType.NOTE, # Visual annotation only - no runtime behavior
|
||||
BlockType.HUMAN_IN_THE_LOOP, # Pauses for human approval - CoPilot IS human-in-the-loop
|
||||
BlockType.AGENT, # AgentExecutorBlock requires execution_context - use run_agent tool
|
||||
}
|
||||
|
||||
# Specific block IDs excluded from CoPilot (STANDARD type but still require graph context)
|
||||
COPILOT_EXCLUDED_BLOCK_IDS = {
|
||||
# SmartDecisionMakerBlock - dynamically discovers downstream blocks via graph topology
|
||||
"3b191d9f-356f-482d-8238-ba04b6d18381",
|
||||
}
|
||||
|
||||
|
||||
class FindBlockTool(BaseTool):
|
||||
"""Tool for searching available blocks."""
|
||||
@@ -54,8 +33,7 @@ class FindBlockTool(BaseTool):
|
||||
"Blocks are reusable components that perform specific tasks like "
|
||||
"sending emails, making API calls, processing text, etc. "
|
||||
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
|
||||
"The response includes each block's id, name, and description. "
|
||||
"Call run_block with the block's id **with no inputs** to see detailed inputs/outputs and execute it."
|
||||
"The response includes each block's id, required_inputs, and input_schema."
|
||||
)
|
||||
|
||||
@property
|
||||
@@ -78,6 +56,7 @@ class FindBlockTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@observe(as_type="tool", name="find_block")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -111,7 +90,7 @@ class FindBlockTool(BaseTool):
|
||||
query=query,
|
||||
content_types=[ContentType.BLOCK],
|
||||
page=1,
|
||||
page_size=_OVERFETCH_PAGE_SIZE,
|
||||
page_size=10,
|
||||
)
|
||||
|
||||
if not results:
|
||||
@@ -124,44 +103,66 @@ class FindBlockTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Enrich results with block information
|
||||
# Enrich results with full block information
|
||||
blocks: list[BlockInfoSummary] = []
|
||||
for result in results:
|
||||
block_id = result["content_id"]
|
||||
block = get_block(block_id)
|
||||
|
||||
# Skip disabled blocks
|
||||
if not block or block.disabled:
|
||||
continue
|
||||
if block:
|
||||
# Get input/output schemas
|
||||
input_schema = {}
|
||||
output_schema = {}
|
||||
try:
|
||||
input_schema = block.input_schema.jsonschema()
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
output_schema = block.output_schema.jsonschema()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Skip blocks excluded from CoPilot (graph-only blocks)
|
||||
if (
|
||||
block.block_type in COPILOT_EXCLUDED_BLOCK_TYPES
|
||||
or block.id in COPILOT_EXCLUDED_BLOCK_IDS
|
||||
):
|
||||
continue
|
||||
# Get categories from block instance
|
||||
categories = []
|
||||
if hasattr(block, "categories") and block.categories:
|
||||
categories = [cat.value for cat in block.categories]
|
||||
|
||||
blocks.append(
|
||||
BlockInfoSummary(
|
||||
id=block_id,
|
||||
name=block.name,
|
||||
description=block.description or "",
|
||||
categories=[c.value for c in block.categories],
|
||||
# Extract required inputs for easier use
|
||||
required_inputs: list[BlockInputFieldInfo] = []
|
||||
if input_schema:
|
||||
properties = input_schema.get("properties", {})
|
||||
required_fields = set(input_schema.get("required", []))
|
||||
# Get credential field names to exclude from required inputs
|
||||
credentials_fields = set(
|
||||
block.input_schema.get_credentials_fields().keys()
|
||||
)
|
||||
|
||||
for field_name, field_schema in properties.items():
|
||||
# Skip credential fields - they're handled separately
|
||||
if field_name in credentials_fields:
|
||||
continue
|
||||
|
||||
required_inputs.append(
|
||||
BlockInputFieldInfo(
|
||||
name=field_name,
|
||||
type=field_schema.get("type", "string"),
|
||||
description=field_schema.get("description", ""),
|
||||
required=field_name in required_fields,
|
||||
default=field_schema.get("default"),
|
||||
)
|
||||
)
|
||||
|
||||
blocks.append(
|
||||
BlockInfoSummary(
|
||||
id=block_id,
|
||||
name=block.name,
|
||||
description=block.description or "",
|
||||
categories=categories,
|
||||
input_schema=input_schema,
|
||||
output_schema=output_schema,
|
||||
required_inputs=required_inputs,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
if len(blocks) >= _TARGET_RESULTS:
|
||||
break
|
||||
|
||||
if blocks and len(blocks) < _TARGET_RESULTS:
|
||||
logger.debug(
|
||||
"find_block returned %d/%d results for query '%s' "
|
||||
"(filtered %d excluded/disabled blocks)",
|
||||
len(blocks),
|
||||
_TARGET_RESULTS,
|
||||
query,
|
||||
len(results) - len(blocks),
|
||||
)
|
||||
|
||||
if not blocks:
|
||||
return NoResultsResponse(
|
||||
@@ -175,7 +176,8 @@ class FindBlockTool(BaseTool):
|
||||
return BlockListResponse(
|
||||
message=(
|
||||
f"Found {len(blocks)} block(s) matching '{query}'. "
|
||||
"To see a block's inputs/outputs and execute it, use run_block with the block's 'id' - providing no inputs."
|
||||
"To execute a block, use run_block with the block's 'id' field "
|
||||
"and provide 'input_data' matching the block's input_schema."
|
||||
),
|
||||
blocks=blocks,
|
||||
count=len(blocks),
|
||||
|
||||
@@ -1,386 +0,0 @@
|
||||
"""Tests for block filtering in FindBlockTool."""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.api.features.chat.tools.find_block import (
|
||||
COPILOT_EXCLUDED_BLOCK_IDS,
|
||||
COPILOT_EXCLUDED_BLOCK_TYPES,
|
||||
FindBlockTool,
|
||||
)
|
||||
from backend.api.features.chat.tools.models import BlockListResponse
|
||||
from backend.blocks._base import BlockType
|
||||
|
||||
from ._test_data import make_session
|
||||
|
||||
_TEST_USER_ID = "test-user-find-block"
|
||||
|
||||
|
||||
def make_mock_block(
|
||||
block_id: str,
|
||||
name: str,
|
||||
block_type: BlockType,
|
||||
disabled: bool = False,
|
||||
input_schema: dict | None = None,
|
||||
output_schema: dict | None = None,
|
||||
credentials_fields: dict | None = None,
|
||||
):
|
||||
"""Create a mock block for testing."""
|
||||
mock = MagicMock()
|
||||
mock.id = block_id
|
||||
mock.name = name
|
||||
mock.description = f"{name} description"
|
||||
mock.block_type = block_type
|
||||
mock.disabled = disabled
|
||||
mock.input_schema = MagicMock()
|
||||
mock.input_schema.jsonschema.return_value = input_schema or {
|
||||
"properties": {},
|
||||
"required": [],
|
||||
}
|
||||
mock.input_schema.get_credentials_fields.return_value = credentials_fields or {}
|
||||
mock.output_schema = MagicMock()
|
||||
mock.output_schema.jsonschema.return_value = output_schema or {}
|
||||
mock.categories = []
|
||||
return mock
|
||||
|
||||
|
||||
class TestFindBlockFiltering:
|
||||
"""Tests for block filtering in FindBlockTool."""
|
||||
|
||||
def test_excluded_block_types_contains_expected_types(self):
|
||||
"""Verify COPILOT_EXCLUDED_BLOCK_TYPES contains all graph-only types."""
|
||||
assert BlockType.INPUT in COPILOT_EXCLUDED_BLOCK_TYPES
|
||||
assert BlockType.OUTPUT in COPILOT_EXCLUDED_BLOCK_TYPES
|
||||
assert BlockType.WEBHOOK in COPILOT_EXCLUDED_BLOCK_TYPES
|
||||
assert BlockType.WEBHOOK_MANUAL in COPILOT_EXCLUDED_BLOCK_TYPES
|
||||
assert BlockType.NOTE in COPILOT_EXCLUDED_BLOCK_TYPES
|
||||
assert BlockType.HUMAN_IN_THE_LOOP in COPILOT_EXCLUDED_BLOCK_TYPES
|
||||
assert BlockType.AGENT in COPILOT_EXCLUDED_BLOCK_TYPES
|
||||
|
||||
def test_excluded_block_ids_contains_smart_decision_maker(self):
|
||||
"""Verify SmartDecisionMakerBlock is in COPILOT_EXCLUDED_BLOCK_IDS."""
|
||||
assert "3b191d9f-356f-482d-8238-ba04b6d18381" in COPILOT_EXCLUDED_BLOCK_IDS
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_excluded_block_type_filtered_from_results(self):
|
||||
"""Verify blocks with excluded BlockTypes are filtered from search results."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
# Mock search returns an INPUT block (excluded) and a STANDARD block (included)
|
||||
search_results = [
|
||||
{"content_id": "input-block-id", "score": 0.9},
|
||||
{"content_id": "standard-block-id", "score": 0.8},
|
||||
]
|
||||
|
||||
input_block = make_mock_block("input-block-id", "Input Block", BlockType.INPUT)
|
||||
standard_block = make_mock_block(
|
||||
"standard-block-id", "HTTP Request", BlockType.STANDARD
|
||||
)
|
||||
|
||||
def mock_get_block(block_id):
|
||||
return {
|
||||
"input-block-id": input_block,
|
||||
"standard-block-id": standard_block,
|
||||
}.get(block_id)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
|
||||
new_callable=AsyncMock,
|
||||
return_value=(search_results, 2),
|
||||
):
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.find_block.get_block",
|
||||
side_effect=mock_get_block,
|
||||
):
|
||||
tool = FindBlockTool()
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="test"
|
||||
)
|
||||
|
||||
# Should only return the standard block, not the INPUT block
|
||||
assert isinstance(response, BlockListResponse)
|
||||
assert len(response.blocks) == 1
|
||||
assert response.blocks[0].id == "standard-block-id"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_excluded_block_id_filtered_from_results(self):
|
||||
"""Verify SmartDecisionMakerBlock is filtered from search results."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
smart_decision_id = "3b191d9f-356f-482d-8238-ba04b6d18381"
|
||||
search_results = [
|
||||
{"content_id": smart_decision_id, "score": 0.9},
|
||||
{"content_id": "normal-block-id", "score": 0.8},
|
||||
]
|
||||
|
||||
# SmartDecisionMakerBlock has STANDARD type but is excluded by ID
|
||||
smart_block = make_mock_block(
|
||||
smart_decision_id, "Smart Decision Maker", BlockType.STANDARD
|
||||
)
|
||||
normal_block = make_mock_block(
|
||||
"normal-block-id", "Normal Block", BlockType.STANDARD
|
||||
)
|
||||
|
||||
def mock_get_block(block_id):
|
||||
return {
|
||||
smart_decision_id: smart_block,
|
||||
"normal-block-id": normal_block,
|
||||
}.get(block_id)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
|
||||
new_callable=AsyncMock,
|
||||
return_value=(search_results, 2),
|
||||
):
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.find_block.get_block",
|
||||
side_effect=mock_get_block,
|
||||
):
|
||||
tool = FindBlockTool()
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="decision"
|
||||
)
|
||||
|
||||
# Should only return normal block, not SmartDecisionMakerBlock
|
||||
assert isinstance(response, BlockListResponse)
|
||||
assert len(response.blocks) == 1
|
||||
assert response.blocks[0].id == "normal-block-id"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_response_size_average_chars_per_block(self):
|
||||
"""Measure average chars per block in the serialized response."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
# Realistic block definitions modeled after real blocks
|
||||
block_defs = [
|
||||
{
|
||||
"id": "http-block-id",
|
||||
"name": "Send Web Request",
|
||||
"input_schema": {
|
||||
"properties": {
|
||||
"url": {
|
||||
"type": "string",
|
||||
"description": "The URL to send the request to",
|
||||
},
|
||||
"method": {
|
||||
"type": "string",
|
||||
"description": "The HTTP method to use",
|
||||
},
|
||||
"headers": {
|
||||
"type": "object",
|
||||
"description": "Headers to include in the request",
|
||||
},
|
||||
"json_format": {
|
||||
"type": "boolean",
|
||||
"description": "If true, send the body as JSON",
|
||||
},
|
||||
"body": {
|
||||
"type": "object",
|
||||
"description": "Form/JSON body payload",
|
||||
},
|
||||
"credentials": {
|
||||
"type": "object",
|
||||
"description": "HTTP credentials",
|
||||
},
|
||||
},
|
||||
"required": ["url", "method"],
|
||||
},
|
||||
"output_schema": {
|
||||
"properties": {
|
||||
"response": {
|
||||
"type": "object",
|
||||
"description": "The response from the server",
|
||||
},
|
||||
"client_error": {
|
||||
"type": "object",
|
||||
"description": "Errors on 4xx status codes",
|
||||
},
|
||||
"server_error": {
|
||||
"type": "object",
|
||||
"description": "Errors on 5xx status codes",
|
||||
},
|
||||
"error": {
|
||||
"type": "string",
|
||||
"description": "Errors for all other exceptions",
|
||||
},
|
||||
},
|
||||
},
|
||||
"credentials_fields": {"credentials": True},
|
||||
},
|
||||
{
|
||||
"id": "email-block-id",
|
||||
"name": "Send Email",
|
||||
"input_schema": {
|
||||
"properties": {
|
||||
"to_email": {
|
||||
"type": "string",
|
||||
"description": "Recipient email address",
|
||||
},
|
||||
"subject": {
|
||||
"type": "string",
|
||||
"description": "Subject of the email",
|
||||
},
|
||||
"body": {
|
||||
"type": "string",
|
||||
"description": "Body of the email",
|
||||
},
|
||||
"config": {
|
||||
"type": "object",
|
||||
"description": "SMTP Config",
|
||||
},
|
||||
"credentials": {
|
||||
"type": "object",
|
||||
"description": "SMTP credentials",
|
||||
},
|
||||
},
|
||||
"required": ["to_email", "subject", "body", "credentials"],
|
||||
},
|
||||
"output_schema": {
|
||||
"properties": {
|
||||
"status": {
|
||||
"type": "string",
|
||||
"description": "Status of the email sending operation",
|
||||
},
|
||||
"error": {
|
||||
"type": "string",
|
||||
"description": "Error message if sending failed",
|
||||
},
|
||||
},
|
||||
},
|
||||
"credentials_fields": {"credentials": True},
|
||||
},
|
||||
{
|
||||
"id": "claude-code-block-id",
|
||||
"name": "Claude Code",
|
||||
"input_schema": {
|
||||
"properties": {
|
||||
"e2b_credentials": {
|
||||
"type": "object",
|
||||
"description": "API key for E2B platform",
|
||||
},
|
||||
"anthropic_credentials": {
|
||||
"type": "object",
|
||||
"description": "API key for Anthropic",
|
||||
},
|
||||
"prompt": {
|
||||
"type": "string",
|
||||
"description": "Task or instruction for Claude Code",
|
||||
},
|
||||
"timeout": {
|
||||
"type": "integer",
|
||||
"description": "Sandbox timeout in seconds",
|
||||
},
|
||||
"setup_commands": {
|
||||
"type": "array",
|
||||
"description": "Shell commands to run before execution",
|
||||
},
|
||||
"working_directory": {
|
||||
"type": "string",
|
||||
"description": "Working directory for Claude Code",
|
||||
},
|
||||
"session_id": {
|
||||
"type": "string",
|
||||
"description": "Session ID to resume a conversation",
|
||||
},
|
||||
"sandbox_id": {
|
||||
"type": "string",
|
||||
"description": "Sandbox ID to reconnect to",
|
||||
},
|
||||
"conversation_history": {
|
||||
"type": "string",
|
||||
"description": "Previous conversation history",
|
||||
},
|
||||
"dispose_sandbox": {
|
||||
"type": "boolean",
|
||||
"description": "Whether to dispose sandbox after execution",
|
||||
},
|
||||
},
|
||||
"required": [
|
||||
"e2b_credentials",
|
||||
"anthropic_credentials",
|
||||
"prompt",
|
||||
],
|
||||
},
|
||||
"output_schema": {
|
||||
"properties": {
|
||||
"response": {
|
||||
"type": "string",
|
||||
"description": "Output from Claude Code execution",
|
||||
},
|
||||
"files": {
|
||||
"type": "array",
|
||||
"description": "Files created/modified by Claude Code",
|
||||
},
|
||||
"conversation_history": {
|
||||
"type": "string",
|
||||
"description": "Full conversation history",
|
||||
},
|
||||
"session_id": {
|
||||
"type": "string",
|
||||
"description": "Session ID for this conversation",
|
||||
},
|
||||
"sandbox_id": {
|
||||
"type": "string",
|
||||
"description": "ID of the sandbox instance",
|
||||
},
|
||||
"error": {
|
||||
"type": "string",
|
||||
"description": "Error message if execution failed",
|
||||
},
|
||||
},
|
||||
},
|
||||
"credentials_fields": {
|
||||
"e2b_credentials": True,
|
||||
"anthropic_credentials": True,
|
||||
},
|
||||
},
|
||||
]
|
||||
|
||||
search_results = [
|
||||
{"content_id": d["id"], "score": 0.9 - i * 0.1}
|
||||
for i, d in enumerate(block_defs)
|
||||
]
|
||||
mock_blocks = {
|
||||
d["id"]: make_mock_block(
|
||||
block_id=d["id"],
|
||||
name=d["name"],
|
||||
block_type=BlockType.STANDARD,
|
||||
input_schema=d["input_schema"],
|
||||
output_schema=d["output_schema"],
|
||||
credentials_fields=d["credentials_fields"],
|
||||
)
|
||||
for d in block_defs
|
||||
}
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
|
||||
new_callable=AsyncMock,
|
||||
return_value=(search_results, len(search_results)),
|
||||
), patch(
|
||||
"backend.api.features.chat.tools.find_block.get_block",
|
||||
side_effect=lambda bid: mock_blocks.get(bid),
|
||||
):
|
||||
tool = FindBlockTool()
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID, session=session, query="test"
|
||||
)
|
||||
|
||||
assert isinstance(response, BlockListResponse)
|
||||
assert response.count == len(block_defs)
|
||||
|
||||
total_chars = len(response.model_dump_json())
|
||||
avg_chars = total_chars // response.count
|
||||
|
||||
# Print for visibility in test output
|
||||
print(f"\nTotal response size: {total_chars} chars")
|
||||
print(f"Number of blocks: {response.count}")
|
||||
print(f"Average chars per block: {avg_chars}")
|
||||
|
||||
# The old response was ~90K for 10 blocks (~9K per block).
|
||||
# Previous optimization reduced it to ~1.5K per block (no raw JSON schemas).
|
||||
# Now with only id/name/description, we expect ~300 chars per block.
|
||||
assert avg_chars < 500, (
|
||||
f"Average chars per block ({avg_chars}) exceeds 500. "
|
||||
f"Total response: {total_chars} chars for {response.count} blocks."
|
||||
)
|
||||
@@ -2,6 +2,8 @@
|
||||
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_search import search_agents
|
||||
@@ -41,6 +43,7 @@ class FindLibraryAgentTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@observe(as_type="tool", name="find_library_agent")
|
||||
async def _execute(
|
||||
self, user_id: str | None, session: ChatSession, **kwargs
|
||||
) -> ToolResponseBase:
|
||||
|
||||
@@ -4,6 +4,8 @@ import logging
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
@@ -71,6 +73,7 @@ class GetDocPageTool(BaseTool):
|
||||
url_path = path.rsplit(".", 1)[0] if "." in path else path
|
||||
return f"{DOCS_BASE_URL}/{url_path}"
|
||||
|
||||
@observe(as_type="tool", name="get_doc_page")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
|
||||
@@ -1,29 +0,0 @@
|
||||
"""Shared helpers for chat tools."""
|
||||
|
||||
from typing import Any
|
||||
|
||||
|
||||
def get_inputs_from_schema(
|
||||
input_schema: dict[str, Any],
|
||||
exclude_fields: set[str] | None = None,
|
||||
) -> list[dict[str, Any]]:
|
||||
"""Extract input field info from JSON schema."""
|
||||
if not isinstance(input_schema, dict):
|
||||
return []
|
||||
|
||||
exclude = exclude_fields or set()
|
||||
properties = input_schema.get("properties", {})
|
||||
required = set(input_schema.get("required", []))
|
||||
|
||||
return [
|
||||
{
|
||||
"name": name,
|
||||
"title": schema.get("title", name),
|
||||
"type": schema.get("type", "string"),
|
||||
"description": schema.get("description", ""),
|
||||
"required": name in required,
|
||||
"default": schema.get("default"),
|
||||
}
|
||||
for name, schema in properties.items()
|
||||
if name not in exclude
|
||||
]
|
||||
@@ -25,33 +25,9 @@ class ResponseType(str, Enum):
|
||||
AGENT_SAVED = "agent_saved"
|
||||
CLARIFICATION_NEEDED = "clarification_needed"
|
||||
BLOCK_LIST = "block_list"
|
||||
BLOCK_DETAILS = "block_details"
|
||||
BLOCK_OUTPUT = "block_output"
|
||||
DOC_SEARCH_RESULTS = "doc_search_results"
|
||||
DOC_PAGE = "doc_page"
|
||||
# Workspace response types
|
||||
WORKSPACE_FILE_LIST = "workspace_file_list"
|
||||
WORKSPACE_FILE_CONTENT = "workspace_file_content"
|
||||
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
|
||||
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
|
||||
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
|
||||
# Long-running operation types
|
||||
OPERATION_STARTED = "operation_started"
|
||||
OPERATION_PENDING = "operation_pending"
|
||||
OPERATION_IN_PROGRESS = "operation_in_progress"
|
||||
# Input validation
|
||||
INPUT_VALIDATION_ERROR = "input_validation_error"
|
||||
# Web fetch
|
||||
WEB_FETCH = "web_fetch"
|
||||
# Code execution
|
||||
BASH_EXEC = "bash_exec"
|
||||
# Operation status check
|
||||
OPERATION_STATUS = "operation_status"
|
||||
# Feature request types
|
||||
FEATURE_REQUEST_SEARCH = "feature_request_search"
|
||||
FEATURE_REQUEST_CREATED = "feature_request_created"
|
||||
# Goal refinement
|
||||
SUGGESTED_GOAL = "suggested_goal"
|
||||
|
||||
|
||||
# Base response model
|
||||
@@ -82,10 +58,6 @@ class AgentInfo(BaseModel):
|
||||
has_external_trigger: bool | None = None
|
||||
new_output: bool | None = None
|
||||
graph_id: str | None = None
|
||||
inputs: dict[str, Any] | None = Field(
|
||||
default=None,
|
||||
description="Input schema for the agent, including field names, types, and defaults",
|
||||
)
|
||||
|
||||
|
||||
class AgentsFoundResponse(ToolResponseBase):
|
||||
@@ -212,20 +184,6 @@ class ErrorResponse(ToolResponseBase):
|
||||
details: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class InputValidationErrorResponse(ToolResponseBase):
|
||||
"""Response when run_agent receives unknown input fields."""
|
||||
|
||||
type: ResponseType = ResponseType.INPUT_VALIDATION_ERROR
|
||||
unrecognized_fields: list[str] = Field(
|
||||
description="List of input field names that were not recognized"
|
||||
)
|
||||
inputs: dict[str, Any] = Field(
|
||||
description="The agent's valid input schema for reference"
|
||||
)
|
||||
graph_id: str | None = None
|
||||
graph_version: int | None = None
|
||||
|
||||
|
||||
# Agent output models
|
||||
class ExecutionOutputInfo(BaseModel):
|
||||
"""Summary of a single execution's outputs."""
|
||||
@@ -298,22 +256,6 @@ class ClarificationNeededResponse(ToolResponseBase):
|
||||
questions: list[ClarifyingQuestion] = Field(default_factory=list)
|
||||
|
||||
|
||||
class SuggestedGoalResponse(ToolResponseBase):
|
||||
"""Response when the goal needs refinement with a suggested alternative."""
|
||||
|
||||
type: ResponseType = ResponseType.SUGGESTED_GOAL
|
||||
suggested_goal: str = Field(description="The suggested alternative goal")
|
||||
reason: str = Field(
|
||||
default="", description="Why the original goal needs refinement"
|
||||
)
|
||||
original_goal: str = Field(
|
||||
default="", description="The user's original goal for context"
|
||||
)
|
||||
goal_type: str = Field(
|
||||
default="vague", description="Type: 'vague' or 'unachievable'"
|
||||
)
|
||||
|
||||
|
||||
# Documentation search models
|
||||
class DocSearchResult(BaseModel):
|
||||
"""A single documentation search result."""
|
||||
@@ -363,17 +305,11 @@ class BlockInfoSummary(BaseModel):
|
||||
name: str
|
||||
description: str
|
||||
categories: list[str]
|
||||
input_schema: dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Full JSON schema for block inputs",
|
||||
)
|
||||
output_schema: dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Full JSON schema for block outputs",
|
||||
)
|
||||
input_schema: dict[str, Any]
|
||||
output_schema: dict[str, Any]
|
||||
required_inputs: list[BlockInputFieldInfo] = Field(
|
||||
default_factory=list,
|
||||
description="List of input fields for this block",
|
||||
description="List of required input fields for this block",
|
||||
)
|
||||
|
||||
|
||||
@@ -386,29 +322,10 @@ class BlockListResponse(ToolResponseBase):
|
||||
query: str
|
||||
usage_hint: str = Field(
|
||||
default="To execute a block, call run_block with block_id set to the block's "
|
||||
"'id' field and input_data containing the fields listed in required_inputs."
|
||||
"'id' field and input_data containing the required fields from input_schema."
|
||||
)
|
||||
|
||||
|
||||
class BlockDetails(BaseModel):
|
||||
"""Detailed block information."""
|
||||
|
||||
id: str
|
||||
name: str
|
||||
description: str
|
||||
inputs: dict[str, Any] = {}
|
||||
outputs: dict[str, Any] = {}
|
||||
credentials: list[CredentialsMetaInput] = []
|
||||
|
||||
|
||||
class BlockDetailsResponse(ToolResponseBase):
|
||||
"""Response for block details (first run_block attempt)."""
|
||||
|
||||
type: ResponseType = ResponseType.BLOCK_DETAILS
|
||||
block: BlockDetails
|
||||
user_authenticated: bool = False
|
||||
|
||||
|
||||
class BlockOutputResponse(ToolResponseBase):
|
||||
"""Response for run_block tool."""
|
||||
|
||||
@@ -417,112 +334,3 @@ class BlockOutputResponse(ToolResponseBase):
|
||||
block_name: str
|
||||
outputs: dict[str, list[Any]]
|
||||
success: bool = True
|
||||
|
||||
|
||||
# Long-running operation models
|
||||
class OperationStartedResponse(ToolResponseBase):
|
||||
"""Response when a long-running operation has been started in the background.
|
||||
|
||||
This is returned immediately to the client while the operation continues
|
||||
to execute. The user can close the tab and check back later.
|
||||
|
||||
The task_id can be used to reconnect to the SSE stream via
|
||||
GET /chat/tasks/{task_id}/stream?last_idx=0
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_STARTED
|
||||
operation_id: str
|
||||
tool_name: str
|
||||
task_id: str | None = None # For SSE reconnection
|
||||
|
||||
|
||||
class OperationPendingResponse(ToolResponseBase):
|
||||
"""Response stored in chat history while a long-running operation is executing.
|
||||
|
||||
This is persisted to the database so users see a pending state when they
|
||||
refresh before the operation completes.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_PENDING
|
||||
operation_id: str
|
||||
tool_name: str
|
||||
|
||||
|
||||
class OperationInProgressResponse(ToolResponseBase):
|
||||
"""Response when an operation is already in progress.
|
||||
|
||||
Returned for idempotency when the same tool_call_id is requested again
|
||||
while the background task is still running.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
|
||||
tool_call_id: str
|
||||
|
||||
|
||||
class AsyncProcessingResponse(ToolResponseBase):
|
||||
"""Response when an operation has been delegated to async processing.
|
||||
|
||||
This is returned by tools when the external service accepts the request
|
||||
for async processing (HTTP 202 Accepted). The Redis Streams completion
|
||||
consumer will handle the result when the external service completes.
|
||||
|
||||
The status field is specifically "accepted" to allow the long-running tool
|
||||
handler to detect this response and skip LLM continuation.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_STARTED
|
||||
status: str = "accepted" # Must be "accepted" for detection
|
||||
operation_id: str | None = None
|
||||
task_id: str | None = None
|
||||
|
||||
|
||||
class WebFetchResponse(ToolResponseBase):
|
||||
"""Response for web_fetch tool."""
|
||||
|
||||
type: ResponseType = ResponseType.WEB_FETCH
|
||||
url: str
|
||||
status_code: int
|
||||
content_type: str
|
||||
content: str
|
||||
truncated: bool = False
|
||||
|
||||
|
||||
class BashExecResponse(ToolResponseBase):
|
||||
"""Response for bash_exec tool."""
|
||||
|
||||
type: ResponseType = ResponseType.BASH_EXEC
|
||||
stdout: str
|
||||
stderr: str
|
||||
exit_code: int
|
||||
timed_out: bool = False
|
||||
|
||||
|
||||
# Feature request models
|
||||
class FeatureRequestInfo(BaseModel):
|
||||
"""Information about a feature request issue."""
|
||||
|
||||
id: str
|
||||
identifier: str
|
||||
title: str
|
||||
description: str | None = None
|
||||
|
||||
|
||||
class FeatureRequestSearchResponse(ToolResponseBase):
|
||||
"""Response for search_feature_requests tool."""
|
||||
|
||||
type: ResponseType = ResponseType.FEATURE_REQUEST_SEARCH
|
||||
results: list[FeatureRequestInfo]
|
||||
count: int
|
||||
query: str
|
||||
|
||||
|
||||
class FeatureRequestCreatedResponse(ToolResponseBase):
|
||||
"""Response for create_feature_request tool."""
|
||||
|
||||
type: ResponseType = ResponseType.FEATURE_REQUEST_CREATED
|
||||
issue_id: str
|
||||
issue_identifier: str
|
||||
issue_title: str
|
||||
issue_url: str
|
||||
is_new_issue: bool # False if added to existing
|
||||
customer_name: str
|
||||
|
||||
@@ -3,14 +3,11 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from backend.api.features.chat.config import ChatConfig
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tracking import (
|
||||
track_agent_run_success,
|
||||
track_agent_scheduled,
|
||||
)
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
@@ -24,14 +21,12 @@ from backend.util.timezone_utils import (
|
||||
)
|
||||
|
||||
from .base import BaseTool
|
||||
from .helpers import get_inputs_from_schema
|
||||
from .models import (
|
||||
AgentDetails,
|
||||
AgentDetailsResponse,
|
||||
ErrorResponse,
|
||||
ExecutionOptions,
|
||||
ExecutionStartedResponse,
|
||||
InputValidationErrorResponse,
|
||||
SetupInfo,
|
||||
SetupRequirementsResponse,
|
||||
ToolResponseBase,
|
||||
@@ -160,6 +155,7 @@ class RunAgentTool(BaseTool):
|
||||
"""All operations require authentication."""
|
||||
return True
|
||||
|
||||
@observe(as_type="tool", name="run_agent")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -262,7 +258,7 @@ class RunAgentTool(BaseTool):
|
||||
),
|
||||
requirements={
|
||||
"credentials": requirements_creds_list,
|
||||
"inputs": get_inputs_from_schema(graph.input_schema),
|
||||
"inputs": self._get_inputs_list(graph.input_schema),
|
||||
"execution_modes": self._get_execution_modes(graph),
|
||||
},
|
||||
),
|
||||
@@ -275,22 +271,6 @@ class RunAgentTool(BaseTool):
|
||||
input_properties = graph.input_schema.get("properties", {})
|
||||
required_fields = set(graph.input_schema.get("required", []))
|
||||
provided_inputs = set(params.inputs.keys())
|
||||
valid_fields = set(input_properties.keys())
|
||||
|
||||
# Check for unknown input fields
|
||||
unrecognized_fields = provided_inputs - valid_fields
|
||||
if unrecognized_fields:
|
||||
return InputValidationErrorResponse(
|
||||
message=(
|
||||
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
|
||||
f"Agent was not executed. Please use the correct field names from the schema."
|
||||
),
|
||||
session_id=session_id,
|
||||
unrecognized_fields=sorted(unrecognized_fields),
|
||||
inputs=graph.input_schema,
|
||||
graph_id=graph.id,
|
||||
graph_version=graph.version,
|
||||
)
|
||||
|
||||
# If agent has inputs but none were provided AND use_defaults is not set,
|
||||
# always show what's available first so user can decide
|
||||
@@ -370,6 +350,22 @@ class RunAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
def _get_inputs_list(self, input_schema: dict[str, Any]) -> list[dict[str, Any]]:
|
||||
"""Extract inputs list from schema."""
|
||||
inputs_list = []
|
||||
if isinstance(input_schema, dict) and "properties" in input_schema:
|
||||
for field_name, field_schema in input_schema["properties"].items():
|
||||
inputs_list.append(
|
||||
{
|
||||
"name": field_name,
|
||||
"title": field_schema.get("title", field_name),
|
||||
"type": field_schema.get("type", "string"),
|
||||
"description": field_schema.get("description", ""),
|
||||
"required": field_name in input_schema.get("required", []),
|
||||
}
|
||||
)
|
||||
return inputs_list
|
||||
|
||||
def _get_execution_modes(self, graph: GraphModel) -> list[str]:
|
||||
"""Get available execution modes for the graph."""
|
||||
trigger_info = graph.trigger_setup_info
|
||||
@@ -383,7 +379,7 @@ class RunAgentTool(BaseTool):
|
||||
suffix: str,
|
||||
) -> str:
|
||||
"""Build a message describing available inputs for an agent."""
|
||||
inputs_list = get_inputs_from_schema(graph.input_schema)
|
||||
inputs_list = self._get_inputs_list(graph.input_schema)
|
||||
required_names = [i["name"] for i in inputs_list if i["required"]]
|
||||
optional_names = [i["name"] for i in inputs_list if not i["required"]]
|
||||
|
||||
@@ -457,16 +453,6 @@ class RunAgentTool(BaseTool):
|
||||
session.successful_agent_runs.get(library_agent.graph_id, 0) + 1
|
||||
)
|
||||
|
||||
# Track in PostHog
|
||||
track_agent_run_success(
|
||||
user_id=user_id,
|
||||
session_id=session_id,
|
||||
graph_id=library_agent.graph_id,
|
||||
graph_name=library_agent.name,
|
||||
execution_id=execution.id,
|
||||
library_agent_id=library_agent.id,
|
||||
)
|
||||
|
||||
library_agent_link = f"/library/agents/{library_agent.id}"
|
||||
return ExecutionStartedResponse(
|
||||
message=(
|
||||
@@ -548,18 +534,6 @@ class RunAgentTool(BaseTool):
|
||||
session.successful_agent_schedules.get(library_agent.graph_id, 0) + 1
|
||||
)
|
||||
|
||||
# Track in PostHog
|
||||
track_agent_scheduled(
|
||||
user_id=user_id,
|
||||
session_id=session_id,
|
||||
graph_id=library_agent.graph_id,
|
||||
graph_name=library_agent.name,
|
||||
schedule_id=result.id,
|
||||
schedule_name=schedule_name,
|
||||
cron=cron,
|
||||
library_agent_id=library_agent.id,
|
||||
)
|
||||
|
||||
library_agent_link = f"/library/agents/{library_agent.id}"
|
||||
return ExecutionStartedResponse(
|
||||
message=(
|
||||
|
||||
@@ -29,7 +29,7 @@ def mock_embedding_functions():
|
||||
yield
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent(setup_test_data):
|
||||
"""Test that the run_agent tool successfully executes an approved agent"""
|
||||
# Use test data from fixture
|
||||
@@ -70,7 +70,7 @@ async def test_run_agent(setup_test_data):
|
||||
assert result_data["graph_name"] == "Test Agent"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_missing_inputs(setup_test_data):
|
||||
"""Test that the run_agent tool returns error when inputs are missing"""
|
||||
# Use test data from fixture
|
||||
@@ -106,7 +106,7 @@ async def test_run_agent_missing_inputs(setup_test_data):
|
||||
assert "message" in result_data
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_invalid_agent_id(setup_test_data):
|
||||
"""Test that the run_agent tool returns error for invalid agent ID"""
|
||||
# Use test data from fixture
|
||||
@@ -141,7 +141,7 @@ async def test_run_agent_invalid_agent_id(setup_test_data):
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_with_llm_credentials(setup_llm_test_data):
|
||||
"""Test that run_agent works with an agent requiring LLM credentials"""
|
||||
# Use test data from fixture
|
||||
@@ -185,7 +185,7 @@ async def test_run_agent_with_llm_credentials(setup_llm_test_data):
|
||||
assert result_data["graph_name"] == "LLM Test Agent"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_data):
|
||||
"""Test that run_agent returns available inputs when called without inputs or use_defaults."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -219,7 +219,7 @@ async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_da
|
||||
assert "inputs" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_with_use_defaults(setup_test_data):
|
||||
"""Test that run_agent executes successfully with use_defaults=True."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -251,7 +251,7 @@ async def test_run_agent_with_use_defaults(setup_test_data):
|
||||
assert result_data["graph_id"] == graph.id
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
|
||||
"""Test that run_agent returns setup_requirements when credentials are missing."""
|
||||
user = setup_firecrawl_test_data["user"]
|
||||
@@ -285,7 +285,7 @@ async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
|
||||
assert len(setup_info["user_readiness"]["missing_credentials"]) > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_invalid_slug_format(setup_test_data):
|
||||
"""Test that run_agent returns error for invalid slug format (no slash)."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -313,7 +313,7 @@ async def test_run_agent_invalid_slug_format(setup_test_data):
|
||||
assert "username/agent-name" in result_data["message"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_unauthenticated():
|
||||
"""Test that run_agent returns need_login for unauthenticated users."""
|
||||
tool = RunAgentTool()
|
||||
@@ -340,7 +340,7 @@ async def test_run_agent_unauthenticated():
|
||||
assert "sign in" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_schedule_without_cron(setup_test_data):
|
||||
"""Test that run_agent returns error when scheduling without cron expression."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -372,7 +372,7 @@ async def test_run_agent_schedule_without_cron(setup_test_data):
|
||||
assert "cron" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_schedule_without_name(setup_test_data):
|
||||
"""Test that run_agent returns error when scheduling without schedule_name."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -402,42 +402,3 @@ async def test_run_agent_schedule_without_name(setup_test_data):
|
||||
# Should return error about missing schedule_name
|
||||
assert result_data.get("type") == "error"
|
||||
assert "schedule_name" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_agent_rejects_unknown_input_fields(setup_test_data):
|
||||
"""Test that run_agent returns input_validation_error for unknown input fields."""
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = RunAgentTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Execute with unknown input field names
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={
|
||||
"unknown_field": "some value",
|
||||
"another_unknown": "another value",
|
||||
},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "output")
|
||||
assert isinstance(response.output, str)
|
||||
result_data = orjson.loads(response.output)
|
||||
|
||||
# Should return input_validation_error type with unrecognized fields
|
||||
assert result_data.get("type") == "input_validation_error"
|
||||
assert "unrecognized_fields" in result_data
|
||||
assert set(result_data["unrecognized_fields"]) == {
|
||||
"another_unknown",
|
||||
"unknown_field",
|
||||
}
|
||||
assert "inputs" in result_data # Contains the valid schema
|
||||
assert "Agent was not executed" in result_data["message"]
|
||||
|
||||
@@ -1,42 +1,28 @@
|
||||
"""Tool for executing blocks directly."""
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from typing import Any
|
||||
|
||||
from pydantic_core import PydanticUndefined
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.find_block import (
|
||||
COPILOT_EXCLUDED_BLOCK_IDS,
|
||||
COPILOT_EXCLUDED_BLOCK_TYPES,
|
||||
)
|
||||
from backend.blocks import get_block
|
||||
from backend.blocks._base import AnyBlockSchema
|
||||
from backend.data.block import get_block
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
|
||||
from backend.data.workspace import get_or_create_workspace
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.util.exceptions import BlockError
|
||||
|
||||
from .base import BaseTool
|
||||
from .helpers import get_inputs_from_schema
|
||||
from .models import (
|
||||
BlockDetails,
|
||||
BlockDetailsResponse,
|
||||
BlockOutputResponse,
|
||||
ErrorResponse,
|
||||
InputValidationErrorResponse,
|
||||
SetupInfo,
|
||||
SetupRequirementsResponse,
|
||||
ToolResponseBase,
|
||||
UserReadiness,
|
||||
)
|
||||
from .utils import (
|
||||
build_missing_credentials_from_field_info,
|
||||
match_credentials_to_requirements,
|
||||
)
|
||||
from .utils import build_missing_credentials_from_field_info
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -54,8 +40,8 @@ class RunBlockTool(BaseTool):
|
||||
"Execute a specific block with the provided input data. "
|
||||
"IMPORTANT: You MUST call find_block first to get the block's 'id' - "
|
||||
"do NOT guess or make up block IDs. "
|
||||
"On first attempt (without input_data), returns detailed schema showing "
|
||||
"required inputs and outputs. Then call again with proper input_data to execute."
|
||||
"Use the 'id' from find_block results and provide input_data "
|
||||
"matching the block's required_inputs."
|
||||
)
|
||||
|
||||
@property
|
||||
@@ -70,19 +56,11 @@ class RunBlockTool(BaseTool):
|
||||
"NEVER guess this - always get it from find_block first."
|
||||
),
|
||||
},
|
||||
"block_name": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The block's human-readable name from find_block results. "
|
||||
"Used for display purposes in the UI."
|
||||
),
|
||||
},
|
||||
"input_data": {
|
||||
"type": "object",
|
||||
"description": (
|
||||
"Input values for the block. "
|
||||
"First call with empty {} to see the block's schema, "
|
||||
"then call again with proper values to execute."
|
||||
"Input values for the block. Use the 'required_inputs' field "
|
||||
"from find_block to see what fields are needed."
|
||||
),
|
||||
},
|
||||
},
|
||||
@@ -93,6 +71,66 @@ class RunBlockTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _check_block_credentials(
|
||||
self,
|
||||
user_id: str,
|
||||
block: Any,
|
||||
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
|
||||
"""
|
||||
Check if user has required credentials for a block.
|
||||
|
||||
Returns:
|
||||
tuple[matched_credentials, missing_credentials]
|
||||
"""
|
||||
matched_credentials: dict[str, CredentialsMetaInput] = {}
|
||||
missing_credentials: list[CredentialsMetaInput] = []
|
||||
|
||||
# Get credential field info from block's input schema
|
||||
credentials_fields_info = block.input_schema.get_credentials_fields_info()
|
||||
|
||||
if not credentials_fields_info:
|
||||
return matched_credentials, missing_credentials
|
||||
|
||||
# Get user's available credentials
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
available_creds = await creds_manager.store.get_all_creds(user_id)
|
||||
|
||||
for field_name, field_info in credentials_fields_info.items():
|
||||
# field_info.provider is a frozenset of acceptable providers
|
||||
# field_info.supported_types is a frozenset of acceptable types
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
for cred in available_creds
|
||||
if cred.provider in field_info.provider
|
||||
and cred.type in field_info.supported_types
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
if matching_cred:
|
||||
matched_credentials[field_name] = CredentialsMetaInput(
|
||||
id=matching_cred.id,
|
||||
provider=matching_cred.provider, # type: ignore
|
||||
type=matching_cred.type,
|
||||
title=matching_cred.title,
|
||||
)
|
||||
else:
|
||||
# Create a placeholder for the missing credential
|
||||
provider = next(iter(field_info.provider), "unknown")
|
||||
cred_type = next(iter(field_info.supported_types), "api_key")
|
||||
missing_credentials.append(
|
||||
CredentialsMetaInput(
|
||||
id=field_name,
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type, # type: ignore
|
||||
title=field_name.replace("_", " ").title(),
|
||||
)
|
||||
)
|
||||
|
||||
return matched_credentials, missing_credentials
|
||||
|
||||
@observe(as_type="tool", name="run_block")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -141,60 +179,15 @@ class RunBlockTool(BaseTool):
|
||||
message=f"Block '{block_id}' not found",
|
||||
session_id=session_id,
|
||||
)
|
||||
if block.disabled:
|
||||
return ErrorResponse(
|
||||
message=f"Block '{block_id}' is disabled",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if block is excluded from CoPilot (graph-only blocks)
|
||||
if (
|
||||
block.block_type in COPILOT_EXCLUDED_BLOCK_TYPES
|
||||
or block.id in COPILOT_EXCLUDED_BLOCK_IDS
|
||||
):
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Block '{block.name}' cannot be run directly in CoPilot. "
|
||||
"This block is designed for use within graphs only."
|
||||
),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
|
||||
|
||||
# Check credentials
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
matched_credentials, missing_credentials = (
|
||||
await self._resolve_block_credentials(user_id, block, input_data)
|
||||
matched_credentials, missing_credentials = await self._check_block_credentials(
|
||||
user_id, block
|
||||
)
|
||||
|
||||
# Get block schemas for details/validation
|
||||
try:
|
||||
input_schema: dict[str, Any] = block.input_schema.jsonschema()
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to generate input schema for block %s: %s",
|
||||
block_id,
|
||||
e,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=f"Block '{block.name}' has an invalid input schema",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
try:
|
||||
output_schema: dict[str, Any] = block.output_schema.jsonschema()
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
"Failed to generate output schema for block %s: %s",
|
||||
block_id,
|
||||
e,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=f"Block '{block.name}' has an invalid output schema",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if missing_credentials:
|
||||
# Return setup requirements response with missing credentials
|
||||
credentials_fields_info = block.input_schema.get_credentials_fields_info()
|
||||
@@ -227,96 +220,12 @@ class RunBlockTool(BaseTool):
|
||||
graph_version=None,
|
||||
)
|
||||
|
||||
# Check if this is a first attempt (required inputs missing)
|
||||
# Return block details so user can see what inputs are needed
|
||||
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
|
||||
required_keys = set(input_schema.get("required", []))
|
||||
required_non_credential_keys = required_keys - credentials_fields
|
||||
provided_input_keys = set(input_data.keys()) - credentials_fields
|
||||
|
||||
# Check for unknown input fields
|
||||
valid_fields = (
|
||||
set(input_schema.get("properties", {}).keys()) - credentials_fields
|
||||
)
|
||||
unrecognized_fields = provided_input_keys - valid_fields
|
||||
if unrecognized_fields:
|
||||
return InputValidationErrorResponse(
|
||||
message=(
|
||||
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
|
||||
f"Block was not executed. Please use the correct field names from the schema."
|
||||
),
|
||||
session_id=session_id,
|
||||
unrecognized_fields=sorted(unrecognized_fields),
|
||||
inputs=input_schema,
|
||||
)
|
||||
|
||||
# Show details when not all required non-credential inputs are provided
|
||||
if not (required_non_credential_keys <= provided_input_keys):
|
||||
# Get credentials info for the response
|
||||
credentials_meta = []
|
||||
for field_name, cred_meta in matched_credentials.items():
|
||||
credentials_meta.append(cred_meta)
|
||||
|
||||
return BlockDetailsResponse(
|
||||
message=(
|
||||
f"Block '{block.name}' details. "
|
||||
"Provide input_data matching the inputs schema to execute the block."
|
||||
),
|
||||
session_id=session_id,
|
||||
block=BlockDetails(
|
||||
id=block_id,
|
||||
name=block.name,
|
||||
description=block.description or "",
|
||||
inputs=input_schema,
|
||||
outputs=output_schema,
|
||||
credentials=credentials_meta,
|
||||
),
|
||||
user_authenticated=True,
|
||||
)
|
||||
|
||||
try:
|
||||
# Get or create user's workspace for CoPilot file operations
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
|
||||
# Generate synthetic IDs for CoPilot context
|
||||
# Each chat session is treated as its own agent with one continuous run
|
||||
# This means:
|
||||
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
|
||||
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
|
||||
# - node_exec_id = unique per block execution
|
||||
synthetic_graph_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
|
||||
synthetic_node_id = f"copilot-node-{block_id}"
|
||||
synthetic_node_exec_id = (
|
||||
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
|
||||
)
|
||||
|
||||
# Create unified execution context with all required fields
|
||||
execution_context = ExecutionContext(
|
||||
# Execution identity
|
||||
user_id=user_id,
|
||||
graph_id=synthetic_graph_id,
|
||||
graph_exec_id=synthetic_graph_exec_id,
|
||||
graph_version=1, # Versions are 1-indexed
|
||||
node_id=synthetic_node_id,
|
||||
node_exec_id=synthetic_node_exec_id,
|
||||
# Workspace with session scoping
|
||||
workspace_id=workspace.id,
|
||||
session_id=session.session_id,
|
||||
)
|
||||
|
||||
# Prepare kwargs for block execution
|
||||
# Keep individual kwargs for backwards compatibility with existing blocks
|
||||
# Fetch actual credentials and prepare kwargs for block execution
|
||||
# Create execution context with defaults (blocks may require it)
|
||||
exec_kwargs: dict[str, Any] = {
|
||||
"user_id": user_id,
|
||||
"execution_context": execution_context,
|
||||
# Legacy: individual kwargs for blocks not yet using execution_context
|
||||
"workspace_id": workspace.id,
|
||||
"graph_exec_id": synthetic_graph_exec_id,
|
||||
"node_exec_id": synthetic_node_exec_id,
|
||||
"node_id": synthetic_node_id,
|
||||
"graph_version": 1, # Versions are 1-indexed
|
||||
"graph_id": synthetic_graph_id,
|
||||
"execution_context": ExecutionContext(),
|
||||
}
|
||||
|
||||
for field_name, cred_meta in matched_credentials.items():
|
||||
@@ -368,75 +277,29 @@ class RunBlockTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
async def _resolve_block_credentials(
|
||||
self,
|
||||
user_id: str,
|
||||
block: AnyBlockSchema,
|
||||
input_data: dict[str, Any] | None = None,
|
||||
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
|
||||
"""
|
||||
Resolve credentials for a block by matching user's available credentials.
|
||||
|
||||
Args:
|
||||
user_id: User ID
|
||||
block: Block to resolve credentials for
|
||||
input_data: Input data for the block (used to determine provider via discriminator)
|
||||
|
||||
Returns:
|
||||
tuple of (matched_credentials, missing_credentials) - matched credentials
|
||||
are used for block execution, missing ones indicate setup requirements.
|
||||
"""
|
||||
input_data = input_data or {}
|
||||
requirements = self._resolve_discriminated_credentials(block, input_data)
|
||||
|
||||
if not requirements:
|
||||
return {}, []
|
||||
|
||||
return await match_credentials_to_requirements(user_id, requirements)
|
||||
|
||||
def _get_inputs_list(self, block: AnyBlockSchema) -> list[dict[str, Any]]:
|
||||
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
|
||||
"""Extract non-credential inputs from block schema."""
|
||||
inputs_list = []
|
||||
schema = block.input_schema.jsonschema()
|
||||
properties = schema.get("properties", {})
|
||||
required_fields = set(schema.get("required", []))
|
||||
|
||||
# Get credential field names to exclude
|
||||
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
|
||||
return get_inputs_from_schema(schema, exclude_fields=credentials_fields)
|
||||
|
||||
def _resolve_discriminated_credentials(
|
||||
self,
|
||||
block: AnyBlockSchema,
|
||||
input_data: dict[str, Any],
|
||||
) -> dict[str, CredentialsFieldInfo]:
|
||||
"""Resolve credential requirements, applying discriminator logic where needed."""
|
||||
credentials_fields_info = block.input_schema.get_credentials_fields_info()
|
||||
if not credentials_fields_info:
|
||||
return {}
|
||||
for field_name, field_schema in properties.items():
|
||||
# Skip credential fields
|
||||
if field_name in credentials_fields:
|
||||
continue
|
||||
|
||||
resolved: dict[str, CredentialsFieldInfo] = {}
|
||||
inputs_list.append(
|
||||
{
|
||||
"name": field_name,
|
||||
"title": field_schema.get("title", field_name),
|
||||
"type": field_schema.get("type", "string"),
|
||||
"description": field_schema.get("description", ""),
|
||||
"required": field_name in required_fields,
|
||||
}
|
||||
)
|
||||
|
||||
for field_name, field_info in credentials_fields_info.items():
|
||||
effective_field_info = field_info
|
||||
|
||||
if field_info.discriminator and field_info.discriminator_mapping:
|
||||
discriminator_value = input_data.get(field_info.discriminator)
|
||||
if discriminator_value is None:
|
||||
field = block.input_schema.model_fields.get(
|
||||
field_info.discriminator
|
||||
)
|
||||
if field and field.default is not PydanticUndefined:
|
||||
discriminator_value = field.default
|
||||
|
||||
if (
|
||||
discriminator_value
|
||||
and discriminator_value in field_info.discriminator_mapping
|
||||
):
|
||||
effective_field_info = field_info.discriminate(discriminator_value)
|
||||
# For host-scoped credentials, add the discriminator value
|
||||
# (e.g., URL) so _credential_is_for_host can match it
|
||||
effective_field_info.discriminator_values.add(discriminator_value)
|
||||
logger.debug(
|
||||
f"Discriminated provider for {field_name}: "
|
||||
f"{discriminator_value} -> {effective_field_info.provider}"
|
||||
)
|
||||
|
||||
resolved[field_name] = effective_field_info
|
||||
|
||||
return resolved
|
||||
return inputs_list
|
||||
|
||||
@@ -1,362 +0,0 @@
|
||||
"""Tests for block execution guards and input validation in RunBlockTool."""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.api.features.chat.tools.models import (
|
||||
BlockDetailsResponse,
|
||||
BlockOutputResponse,
|
||||
ErrorResponse,
|
||||
InputValidationErrorResponse,
|
||||
)
|
||||
from backend.api.features.chat.tools.run_block import RunBlockTool
|
||||
from backend.blocks._base import BlockType
|
||||
|
||||
from ._test_data import make_session
|
||||
|
||||
_TEST_USER_ID = "test-user-run-block"
|
||||
|
||||
|
||||
def make_mock_block(
|
||||
block_id: str, name: str, block_type: BlockType, disabled: bool = False
|
||||
):
|
||||
"""Create a mock block for testing."""
|
||||
mock = MagicMock()
|
||||
mock.id = block_id
|
||||
mock.name = name
|
||||
mock.block_type = block_type
|
||||
mock.disabled = disabled
|
||||
mock.input_schema = MagicMock()
|
||||
mock.input_schema.jsonschema.return_value = {"properties": {}, "required": []}
|
||||
mock.input_schema.get_credentials_fields_info.return_value = []
|
||||
return mock
|
||||
|
||||
|
||||
def make_mock_block_with_schema(
|
||||
block_id: str,
|
||||
name: str,
|
||||
input_properties: dict,
|
||||
required_fields: list[str],
|
||||
output_properties: dict | None = None,
|
||||
):
|
||||
"""Create a mock block with a defined input/output schema for validation tests."""
|
||||
mock = MagicMock()
|
||||
mock.id = block_id
|
||||
mock.name = name
|
||||
mock.block_type = BlockType.STANDARD
|
||||
mock.disabled = False
|
||||
mock.description = f"Test block: {name}"
|
||||
|
||||
input_schema = {
|
||||
"properties": input_properties,
|
||||
"required": required_fields,
|
||||
}
|
||||
mock.input_schema = MagicMock()
|
||||
mock.input_schema.jsonschema.return_value = input_schema
|
||||
mock.input_schema.get_credentials_fields_info.return_value = {}
|
||||
mock.input_schema.get_credentials_fields.return_value = {}
|
||||
|
||||
output_schema = {
|
||||
"properties": output_properties or {"result": {"type": "string"}},
|
||||
}
|
||||
mock.output_schema = MagicMock()
|
||||
mock.output_schema.jsonschema.return_value = output_schema
|
||||
|
||||
return mock
|
||||
|
||||
|
||||
class TestRunBlockFiltering:
|
||||
"""Tests for block execution guards in RunBlockTool."""
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_excluded_block_type_returns_error(self):
|
||||
"""Attempting to execute a block with excluded BlockType returns error."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
input_block = make_mock_block("input-block-id", "Input Block", BlockType.INPUT)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.run_block.get_block",
|
||||
return_value=input_block,
|
||||
):
|
||||
tool = RunBlockTool()
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
block_id="input-block-id",
|
||||
input_data={},
|
||||
)
|
||||
|
||||
assert isinstance(response, ErrorResponse)
|
||||
assert "cannot be run directly in CoPilot" in response.message
|
||||
assert "designed for use within graphs only" in response.message
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_excluded_block_id_returns_error(self):
|
||||
"""Attempting to execute SmartDecisionMakerBlock returns error."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
smart_decision_id = "3b191d9f-356f-482d-8238-ba04b6d18381"
|
||||
smart_block = make_mock_block(
|
||||
smart_decision_id, "Smart Decision Maker", BlockType.STANDARD
|
||||
)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.run_block.get_block",
|
||||
return_value=smart_block,
|
||||
):
|
||||
tool = RunBlockTool()
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
block_id=smart_decision_id,
|
||||
input_data={},
|
||||
)
|
||||
|
||||
assert isinstance(response, ErrorResponse)
|
||||
assert "cannot be run directly in CoPilot" in response.message
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_non_excluded_block_passes_guard(self):
|
||||
"""Non-excluded blocks pass the filtering guard (may fail later for other reasons)."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
standard_block = make_mock_block(
|
||||
"standard-id", "HTTP Request", BlockType.STANDARD
|
||||
)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.run_block.get_block",
|
||||
return_value=standard_block,
|
||||
):
|
||||
tool = RunBlockTool()
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
block_id="standard-id",
|
||||
input_data={},
|
||||
)
|
||||
|
||||
# Should NOT be an ErrorResponse about CoPilot exclusion
|
||||
# (may be other errors like missing credentials, but not the exclusion guard)
|
||||
if isinstance(response, ErrorResponse):
|
||||
assert "cannot be run directly in CoPilot" not in response.message
|
||||
|
||||
|
||||
class TestRunBlockInputValidation:
|
||||
"""Tests for input field validation in RunBlockTool.
|
||||
|
||||
run_block rejects unknown input field names with InputValidationErrorResponse,
|
||||
preventing silent failures where incorrect keys would be ignored and the block
|
||||
would execute with default values instead of the caller's intended values.
|
||||
"""
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_unknown_input_fields_are_rejected(self):
|
||||
"""run_block rejects unknown input fields instead of silently ignoring them.
|
||||
|
||||
Scenario: The AI Text Generator block has a field called 'model' (for LLM model
|
||||
selection), but the LLM calling the tool guesses wrong and sends 'LLM_Model'
|
||||
instead. The block should reject the request and return the valid schema.
|
||||
"""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
mock_block = make_mock_block_with_schema(
|
||||
block_id="ai-text-gen-id",
|
||||
name="AI Text Generator",
|
||||
input_properties={
|
||||
"prompt": {"type": "string", "description": "The prompt to send"},
|
||||
"model": {
|
||||
"type": "string",
|
||||
"description": "The LLM model to use",
|
||||
"default": "gpt-4o-mini",
|
||||
},
|
||||
"sys_prompt": {
|
||||
"type": "string",
|
||||
"description": "System prompt",
|
||||
"default": "",
|
||||
},
|
||||
},
|
||||
required_fields=["prompt"],
|
||||
output_properties={"response": {"type": "string"}},
|
||||
)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.run_block.get_block",
|
||||
return_value=mock_block,
|
||||
):
|
||||
tool = RunBlockTool()
|
||||
|
||||
# Provide 'prompt' (correct) but 'LLM_Model' instead of 'model' (wrong key)
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
block_id="ai-text-gen-id",
|
||||
input_data={
|
||||
"prompt": "Write a haiku about coding",
|
||||
"LLM_Model": "claude-opus-4-6", # WRONG KEY - should be 'model'
|
||||
},
|
||||
)
|
||||
|
||||
assert isinstance(response, InputValidationErrorResponse)
|
||||
assert "LLM_Model" in response.unrecognized_fields
|
||||
assert "Block was not executed" in response.message
|
||||
assert "inputs" in response.model_dump() # valid schema included
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_multiple_wrong_keys_are_all_reported(self):
|
||||
"""All unrecognized field names are reported in a single error response."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
mock_block = make_mock_block_with_schema(
|
||||
block_id="ai-text-gen-id",
|
||||
name="AI Text Generator",
|
||||
input_properties={
|
||||
"prompt": {"type": "string"},
|
||||
"model": {"type": "string", "default": "gpt-4o-mini"},
|
||||
"sys_prompt": {"type": "string", "default": ""},
|
||||
"retry": {"type": "integer", "default": 3},
|
||||
},
|
||||
required_fields=["prompt"],
|
||||
)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.run_block.get_block",
|
||||
return_value=mock_block,
|
||||
):
|
||||
tool = RunBlockTool()
|
||||
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
block_id="ai-text-gen-id",
|
||||
input_data={
|
||||
"prompt": "Hello", # correct
|
||||
"llm_model": "claude-opus-4-6", # WRONG - should be 'model'
|
||||
"system_prompt": "Be helpful", # WRONG - should be 'sys_prompt'
|
||||
"retries": 5, # WRONG - should be 'retry'
|
||||
},
|
||||
)
|
||||
|
||||
assert isinstance(response, InputValidationErrorResponse)
|
||||
assert set(response.unrecognized_fields) == {
|
||||
"llm_model",
|
||||
"system_prompt",
|
||||
"retries",
|
||||
}
|
||||
assert "Block was not executed" in response.message
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_unknown_fields_rejected_even_with_missing_required(self):
|
||||
"""Unknown fields are caught before the missing-required-fields check."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
mock_block = make_mock_block_with_schema(
|
||||
block_id="ai-text-gen-id",
|
||||
name="AI Text Generator",
|
||||
input_properties={
|
||||
"prompt": {"type": "string"},
|
||||
"model": {"type": "string", "default": "gpt-4o-mini"},
|
||||
},
|
||||
required_fields=["prompt"],
|
||||
)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.run_block.get_block",
|
||||
return_value=mock_block,
|
||||
):
|
||||
tool = RunBlockTool()
|
||||
|
||||
# 'prompt' is missing AND 'LLM_Model' is an unknown field
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
block_id="ai-text-gen-id",
|
||||
input_data={
|
||||
"LLM_Model": "claude-opus-4-6", # wrong key, and 'prompt' is missing
|
||||
},
|
||||
)
|
||||
|
||||
# Unknown fields are caught first
|
||||
assert isinstance(response, InputValidationErrorResponse)
|
||||
assert "LLM_Model" in response.unrecognized_fields
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_correct_inputs_still_execute(self):
|
||||
"""Correct input field names pass validation and the block executes."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
mock_block = make_mock_block_with_schema(
|
||||
block_id="ai-text-gen-id",
|
||||
name="AI Text Generator",
|
||||
input_properties={
|
||||
"prompt": {"type": "string"},
|
||||
"model": {"type": "string", "default": "gpt-4o-mini"},
|
||||
},
|
||||
required_fields=["prompt"],
|
||||
)
|
||||
|
||||
async def mock_execute(input_data, **kwargs):
|
||||
yield "response", "Generated text"
|
||||
|
||||
mock_block.execute = mock_execute
|
||||
|
||||
with (
|
||||
patch(
|
||||
"backend.api.features.chat.tools.run_block.get_block",
|
||||
return_value=mock_block,
|
||||
),
|
||||
patch(
|
||||
"backend.api.features.chat.tools.run_block.get_or_create_workspace",
|
||||
new_callable=AsyncMock,
|
||||
return_value=MagicMock(id="test-workspace-id"),
|
||||
),
|
||||
):
|
||||
tool = RunBlockTool()
|
||||
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
block_id="ai-text-gen-id",
|
||||
input_data={
|
||||
"prompt": "Write a haiku",
|
||||
"model": "gpt-4o-mini", # correct field name
|
||||
},
|
||||
)
|
||||
|
||||
assert isinstance(response, BlockOutputResponse)
|
||||
assert response.success is True
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_missing_required_fields_returns_details(self):
|
||||
"""Missing required fields returns BlockDetailsResponse with schema."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
mock_block = make_mock_block_with_schema(
|
||||
block_id="ai-text-gen-id",
|
||||
name="AI Text Generator",
|
||||
input_properties={
|
||||
"prompt": {"type": "string"},
|
||||
"model": {"type": "string", "default": "gpt-4o-mini"},
|
||||
},
|
||||
required_fields=["prompt"],
|
||||
)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.run_block.get_block",
|
||||
return_value=mock_block,
|
||||
):
|
||||
tool = RunBlockTool()
|
||||
|
||||
# Only provide valid optional field, missing required 'prompt'
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
block_id="ai-text-gen-id",
|
||||
input_data={
|
||||
"model": "gpt-4o-mini", # valid but optional
|
||||
},
|
||||
)
|
||||
|
||||
assert isinstance(response, BlockDetailsResponse)
|
||||
@@ -1,265 +0,0 @@
|
||||
"""Sandbox execution utilities for code execution tools.
|
||||
|
||||
Provides filesystem + network isolated command execution using **bubblewrap**
|
||||
(``bwrap``): whitelist-only filesystem (only system dirs visible read-only),
|
||||
writable workspace only, clean environment, network blocked.
|
||||
|
||||
Tools that call :func:`run_sandboxed` must first check :func:`has_full_sandbox`
|
||||
and refuse to run if bubblewrap is not available.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import os
|
||||
import platform
|
||||
import shutil
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_DEFAULT_TIMEOUT = 30
|
||||
_MAX_TIMEOUT = 120
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Sandbox capability detection (cached at first call)
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
_BWRAP_AVAILABLE: bool | None = None
|
||||
|
||||
|
||||
def has_full_sandbox() -> bool:
|
||||
"""Return True if bubblewrap is available (filesystem + network isolation).
|
||||
|
||||
On non-Linux platforms (macOS), always returns False.
|
||||
"""
|
||||
global _BWRAP_AVAILABLE
|
||||
if _BWRAP_AVAILABLE is None:
|
||||
_BWRAP_AVAILABLE = (
|
||||
platform.system() == "Linux" and shutil.which("bwrap") is not None
|
||||
)
|
||||
return _BWRAP_AVAILABLE
|
||||
|
||||
|
||||
WORKSPACE_PREFIX = "/tmp/copilot-"
|
||||
|
||||
|
||||
def make_session_path(session_id: str) -> str:
|
||||
"""Build a sanitized, session-specific path under :data:`WORKSPACE_PREFIX`.
|
||||
|
||||
Shared by both the SDK working-directory setup and the sandbox tools so
|
||||
they always resolve to the same directory for a given session.
|
||||
|
||||
Steps:
|
||||
1. Strip all characters except ``[A-Za-z0-9-]``.
|
||||
2. Construct ``/tmp/copilot-<safe_id>``.
|
||||
3. Validate via ``os.path.normpath`` + ``startswith`` (CodeQL-recognised
|
||||
sanitizer) to prevent path traversal.
|
||||
|
||||
Raises:
|
||||
ValueError: If the resulting path escapes the prefix.
|
||||
"""
|
||||
import re
|
||||
|
||||
safe_id = re.sub(r"[^A-Za-z0-9-]", "", session_id)
|
||||
if not safe_id:
|
||||
safe_id = "default"
|
||||
path = os.path.normpath(f"{WORKSPACE_PREFIX}{safe_id}")
|
||||
if not path.startswith(WORKSPACE_PREFIX):
|
||||
raise ValueError(f"Session path escaped prefix: {path}")
|
||||
return path
|
||||
|
||||
|
||||
def get_workspace_dir(session_id: str) -> str:
|
||||
"""Get or create the workspace directory for a session.
|
||||
|
||||
Uses :func:`make_session_path` — the same path the SDK uses — so that
|
||||
bash_exec shares the workspace with the SDK file tools.
|
||||
"""
|
||||
workspace = make_session_path(session_id)
|
||||
os.makedirs(workspace, exist_ok=True)
|
||||
return workspace
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Bubblewrap command builder
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
# System directories mounted read-only inside the sandbox.
|
||||
# ONLY these are visible — /app, /root, /home, /opt, /var etc. are NOT accessible.
|
||||
_SYSTEM_RO_BINDS = [
|
||||
"/usr", # binaries, libraries, Python interpreter
|
||||
"/etc", # system config: ld.so, locale, passwd, alternatives
|
||||
]
|
||||
|
||||
# Compat paths: symlinks to /usr/* on modern Debian, real dirs on older systems.
|
||||
# On Debian 13 these are symlinks (e.g. /bin -> usr/bin). bwrap --ro-bind
|
||||
# can't create a symlink target, so we detect and use --symlink instead.
|
||||
# /lib64 is critical: the ELF dynamic linker lives at /lib64/ld-linux-x86-64.so.2.
|
||||
_COMPAT_PATHS = [
|
||||
("/bin", "usr/bin"), # -> /usr/bin on Debian 13
|
||||
("/sbin", "usr/sbin"), # -> /usr/sbin on Debian 13
|
||||
("/lib", "usr/lib"), # -> /usr/lib on Debian 13
|
||||
("/lib64", "usr/lib64"), # 64-bit libraries / ELF interpreter
|
||||
]
|
||||
|
||||
# Resource limits to prevent fork bombs, memory exhaustion, and disk abuse.
|
||||
# Applied via ulimit inside the sandbox before exec'ing the user command.
|
||||
_RESOURCE_LIMITS = (
|
||||
"ulimit -u 64" # max 64 processes (prevents fork bombs)
|
||||
" -v 524288" # 512 MB virtual memory
|
||||
" -f 51200" # 50 MB max file size (1024-byte blocks)
|
||||
" -n 256" # 256 open file descriptors
|
||||
" 2>/dev/null"
|
||||
)
|
||||
|
||||
|
||||
def _build_bwrap_command(
|
||||
command: list[str], cwd: str, env: dict[str, str]
|
||||
) -> list[str]:
|
||||
"""Build a bubblewrap command with strict filesystem + network isolation.
|
||||
|
||||
Security model:
|
||||
- **Whitelist-only filesystem**: only system directories (``/usr``, ``/etc``,
|
||||
``/bin``, ``/lib``) are mounted read-only. Application code (``/app``),
|
||||
home directories, ``/var``, ``/opt``, etc. are NOT accessible at all.
|
||||
- **Writable workspace only**: the per-session workspace is the sole
|
||||
writable path.
|
||||
- **Clean environment**: ``--clearenv`` wipes all inherited env vars.
|
||||
Only the explicitly-passed safe env vars are set inside the sandbox.
|
||||
- **Network isolation**: ``--unshare-net`` blocks all network access.
|
||||
- **Resource limits**: ulimit caps on processes (64), memory (512MB),
|
||||
file size (50MB), and open FDs (256) to prevent fork bombs and abuse.
|
||||
- **New session**: prevents terminal control escape.
|
||||
- **Die with parent**: prevents orphaned sandbox processes.
|
||||
"""
|
||||
cmd = [
|
||||
"bwrap",
|
||||
# Create a new user namespace so bwrap can set up sandboxing
|
||||
# inside unprivileged Docker containers (no CAP_SYS_ADMIN needed).
|
||||
"--unshare-user",
|
||||
# Wipe all inherited environment variables (API keys, secrets, etc.)
|
||||
"--clearenv",
|
||||
]
|
||||
|
||||
# Set only the safe env vars inside the sandbox
|
||||
for key, value in env.items():
|
||||
cmd.extend(["--setenv", key, value])
|
||||
|
||||
# System directories: read-only
|
||||
for path in _SYSTEM_RO_BINDS:
|
||||
cmd.extend(["--ro-bind", path, path])
|
||||
|
||||
# Compat paths: use --symlink when host path is a symlink (Debian 13),
|
||||
# --ro-bind when it's a real directory (older distros).
|
||||
for path, symlink_target in _COMPAT_PATHS:
|
||||
if os.path.islink(path):
|
||||
cmd.extend(["--symlink", symlink_target, path])
|
||||
elif os.path.exists(path):
|
||||
cmd.extend(["--ro-bind", path, path])
|
||||
|
||||
# Wrap the user command with resource limits:
|
||||
# sh -c 'ulimit ...; exec "$@"' -- <original command>
|
||||
# `exec "$@"` replaces the shell so there's no extra process overhead,
|
||||
# and properly handles arguments with spaces.
|
||||
limited_command = [
|
||||
"sh",
|
||||
"-c",
|
||||
f'{_RESOURCE_LIMITS}; exec "$@"',
|
||||
"--",
|
||||
*command,
|
||||
]
|
||||
|
||||
cmd.extend(
|
||||
[
|
||||
# Fresh virtual filesystems
|
||||
"--dev",
|
||||
"/dev",
|
||||
"--proc",
|
||||
"/proc",
|
||||
"--tmpfs",
|
||||
"/tmp",
|
||||
# Workspace bind AFTER --tmpfs /tmp so it's visible through the tmpfs.
|
||||
# (workspace lives under /tmp/copilot-<session>)
|
||||
"--bind",
|
||||
cwd,
|
||||
cwd,
|
||||
# Isolation
|
||||
"--unshare-net",
|
||||
"--die-with-parent",
|
||||
"--new-session",
|
||||
"--chdir",
|
||||
cwd,
|
||||
"--",
|
||||
*limited_command,
|
||||
]
|
||||
)
|
||||
|
||||
return cmd
|
||||
|
||||
|
||||
# ---------------------------------------------------------------------------
|
||||
# Public API
|
||||
# ---------------------------------------------------------------------------
|
||||
|
||||
|
||||
async def run_sandboxed(
|
||||
command: list[str],
|
||||
cwd: str,
|
||||
timeout: int = _DEFAULT_TIMEOUT,
|
||||
env: dict[str, str] | None = None,
|
||||
) -> tuple[str, str, int, bool]:
|
||||
"""Run a command inside a bubblewrap sandbox.
|
||||
|
||||
Callers **must** check :func:`has_full_sandbox` before calling this
|
||||
function. If bubblewrap is not available, this function raises
|
||||
:class:`RuntimeError` rather than running unsandboxed.
|
||||
|
||||
Returns:
|
||||
(stdout, stderr, exit_code, timed_out)
|
||||
"""
|
||||
if not has_full_sandbox():
|
||||
raise RuntimeError(
|
||||
"run_sandboxed() requires bubblewrap but bwrap is not available. "
|
||||
"Callers must check has_full_sandbox() before calling this function."
|
||||
)
|
||||
|
||||
timeout = min(max(timeout, 1), _MAX_TIMEOUT)
|
||||
|
||||
safe_env = {
|
||||
"PATH": "/usr/local/bin:/usr/bin:/bin",
|
||||
"HOME": cwd,
|
||||
"TMPDIR": cwd,
|
||||
"LANG": "en_US.UTF-8",
|
||||
"PYTHONDONTWRITEBYTECODE": "1",
|
||||
"PYTHONIOENCODING": "utf-8",
|
||||
}
|
||||
if env:
|
||||
safe_env.update(env)
|
||||
|
||||
full_command = _build_bwrap_command(command, cwd, safe_env)
|
||||
|
||||
try:
|
||||
proc = await asyncio.create_subprocess_exec(
|
||||
*full_command,
|
||||
stdout=asyncio.subprocess.PIPE,
|
||||
stderr=asyncio.subprocess.PIPE,
|
||||
cwd=cwd,
|
||||
env=safe_env,
|
||||
)
|
||||
|
||||
try:
|
||||
stdout_bytes, stderr_bytes = await asyncio.wait_for(
|
||||
proc.communicate(), timeout=timeout
|
||||
)
|
||||
stdout = stdout_bytes.decode("utf-8", errors="replace")
|
||||
stderr = stderr_bytes.decode("utf-8", errors="replace")
|
||||
return stdout, stderr, proc.returncode or 0, False
|
||||
except asyncio.TimeoutError:
|
||||
proc.kill()
|
||||
await proc.communicate()
|
||||
return "", f"Execution timed out after {timeout}s", -1, True
|
||||
|
||||
except RuntimeError:
|
||||
raise
|
||||
except Exception as e:
|
||||
return "", f"Sandbox error: {e}", -1, False
|
||||
@@ -3,6 +3,7 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
@@ -87,6 +88,7 @@ class SearchDocsTool(BaseTool):
|
||||
url_path = path.rsplit(".", 1)[0] if "." in path else path
|
||||
return f"{DOCS_BASE_URL}/{url_path}"
|
||||
|
||||
@observe(as_type="tool", name="search_docs")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
|
||||
@@ -1,153 +0,0 @@
|
||||
"""Tests for BlockDetailsResponse in RunBlockTool."""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.api.features.chat.tools.models import BlockDetailsResponse
|
||||
from backend.api.features.chat.tools.run_block import RunBlockTool
|
||||
from backend.blocks._base import BlockType
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.integrations.providers import ProviderName
|
||||
|
||||
from ._test_data import make_session
|
||||
|
||||
_TEST_USER_ID = "test-user-run-block-details"
|
||||
|
||||
|
||||
def make_mock_block_with_inputs(
|
||||
block_id: str, name: str, description: str = "Test description"
|
||||
):
|
||||
"""Create a mock block with input/output schemas for testing."""
|
||||
mock = MagicMock()
|
||||
mock.id = block_id
|
||||
mock.name = name
|
||||
mock.description = description
|
||||
mock.block_type = BlockType.STANDARD
|
||||
mock.disabled = False
|
||||
|
||||
# Input schema with non-credential fields
|
||||
mock.input_schema = MagicMock()
|
||||
mock.input_schema.jsonschema.return_value = {
|
||||
"properties": {
|
||||
"url": {"type": "string", "description": "URL to fetch"},
|
||||
"method": {"type": "string", "description": "HTTP method"},
|
||||
},
|
||||
"required": ["url"],
|
||||
}
|
||||
mock.input_schema.get_credentials_fields.return_value = {}
|
||||
mock.input_schema.get_credentials_fields_info.return_value = {}
|
||||
|
||||
# Output schema
|
||||
mock.output_schema = MagicMock()
|
||||
mock.output_schema.jsonschema.return_value = {
|
||||
"properties": {
|
||||
"response": {"type": "object", "description": "HTTP response"},
|
||||
"error": {"type": "string", "description": "Error message"},
|
||||
}
|
||||
}
|
||||
|
||||
return mock
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_block_returns_details_when_no_input_provided():
|
||||
"""When run_block is called without input_data, it should return BlockDetailsResponse."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
# Create a block with inputs
|
||||
http_block = make_mock_block_with_inputs(
|
||||
"http-block-id", "HTTP Request", "Send HTTP requests"
|
||||
)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.run_block.get_block",
|
||||
return_value=http_block,
|
||||
):
|
||||
# Mock credentials check to return no missing credentials
|
||||
with patch.object(
|
||||
RunBlockTool,
|
||||
"_resolve_block_credentials",
|
||||
new_callable=AsyncMock,
|
||||
return_value=({}, []), # (matched_credentials, missing_credentials)
|
||||
):
|
||||
tool = RunBlockTool()
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
block_id="http-block-id",
|
||||
input_data={}, # Empty input data
|
||||
)
|
||||
|
||||
# Should return BlockDetailsResponse showing the schema
|
||||
assert isinstance(response, BlockDetailsResponse)
|
||||
assert response.block.id == "http-block-id"
|
||||
assert response.block.name == "HTTP Request"
|
||||
assert response.block.description == "Send HTTP requests"
|
||||
assert "url" in response.block.inputs["properties"]
|
||||
assert "method" in response.block.inputs["properties"]
|
||||
assert "response" in response.block.outputs["properties"]
|
||||
assert response.user_authenticated is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_block_returns_details_when_only_credentials_provided():
|
||||
"""When only credentials are provided (no actual input), should return details."""
|
||||
session = make_session(user_id=_TEST_USER_ID)
|
||||
|
||||
# Create a block with both credential and non-credential inputs
|
||||
mock = MagicMock()
|
||||
mock.id = "api-block-id"
|
||||
mock.name = "API Call"
|
||||
mock.description = "Make API calls"
|
||||
mock.block_type = BlockType.STANDARD
|
||||
mock.disabled = False
|
||||
|
||||
mock.input_schema = MagicMock()
|
||||
mock.input_schema.jsonschema.return_value = {
|
||||
"properties": {
|
||||
"credentials": {"type": "object", "description": "API credentials"},
|
||||
"endpoint": {"type": "string", "description": "API endpoint"},
|
||||
},
|
||||
"required": ["credentials", "endpoint"],
|
||||
}
|
||||
mock.input_schema.get_credentials_fields.return_value = {"credentials": True}
|
||||
mock.input_schema.get_credentials_fields_info.return_value = {}
|
||||
|
||||
mock.output_schema = MagicMock()
|
||||
mock.output_schema.jsonschema.return_value = {
|
||||
"properties": {"result": {"type": "object"}}
|
||||
}
|
||||
|
||||
with patch(
|
||||
"backend.api.features.chat.tools.run_block.get_block",
|
||||
return_value=mock,
|
||||
):
|
||||
with patch.object(
|
||||
RunBlockTool,
|
||||
"_resolve_block_credentials",
|
||||
new_callable=AsyncMock,
|
||||
return_value=(
|
||||
{
|
||||
"credentials": CredentialsMetaInput(
|
||||
id="cred-id",
|
||||
provider=ProviderName("test_provider"),
|
||||
type="api_key",
|
||||
title="Test Credential",
|
||||
)
|
||||
},
|
||||
[],
|
||||
),
|
||||
):
|
||||
tool = RunBlockTool()
|
||||
response = await tool._execute(
|
||||
user_id=_TEST_USER_ID,
|
||||
session=session,
|
||||
block_id="api-block-id",
|
||||
input_data={"credentials": {"some": "cred"}}, # Only credential
|
||||
)
|
||||
|
||||
# Should return details because no non-credential inputs provided
|
||||
assert isinstance(response, BlockDetailsResponse)
|
||||
assert response.block.id == "api-block-id"
|
||||
assert response.block.name == "API Call"
|
||||
@@ -6,16 +6,10 @@ from typing import Any
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.api.features.library import model as library_model
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import (
|
||||
Credentials,
|
||||
CredentialsFieldInfo,
|
||||
CredentialsMetaInput,
|
||||
HostScopedCredentials,
|
||||
OAuth2Credentials,
|
||||
)
|
||||
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -45,8 +39,14 @@ async def fetch_graph_from_store_slug(
|
||||
return None, None
|
||||
|
||||
# Get the graph from store listing version
|
||||
graph = await store_db.get_available_graph(
|
||||
store_agent.store_listing_version_id, hide_nodes=False
|
||||
graph_meta = await store_db.get_available_graph(
|
||||
store_agent.store_listing_version_id
|
||||
)
|
||||
graph = await graph_db.get_graph(
|
||||
graph_id=graph_meta.id,
|
||||
version=graph_meta.version,
|
||||
user_id=None, # Public access
|
||||
include_subgraphs=True,
|
||||
)
|
||||
return graph, store_agent
|
||||
|
||||
@@ -123,7 +123,7 @@ def build_missing_credentials_from_graph(
|
||||
|
||||
return {
|
||||
field_key: _serialize_missing_credential(field_key, field_info)
|
||||
for field_key, (field_info, _, _) in aggregated_fields.items()
|
||||
for field_key, (field_info, _node_fields) in aggregated_fields.items()
|
||||
if field_key not in matched_keys
|
||||
}
|
||||
|
||||
@@ -225,99 +225,6 @@ async def get_or_create_library_agent(
|
||||
return library_agents[0]
|
||||
|
||||
|
||||
async def match_credentials_to_requirements(
|
||||
user_id: str,
|
||||
requirements: dict[str, CredentialsFieldInfo],
|
||||
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
|
||||
"""
|
||||
Match user's credentials against a dictionary of credential requirements.
|
||||
|
||||
This is the core matching logic shared by both graph and block credential matching.
|
||||
"""
|
||||
matched: dict[str, CredentialsMetaInput] = {}
|
||||
missing: list[CredentialsMetaInput] = []
|
||||
|
||||
if not requirements:
|
||||
return matched, missing
|
||||
|
||||
available_creds = await get_user_credentials(user_id)
|
||||
|
||||
for field_name, field_info in requirements.items():
|
||||
matching_cred = find_matching_credential(available_creds, field_info)
|
||||
|
||||
if matching_cred:
|
||||
try:
|
||||
matched[field_name] = create_credential_meta_from_match(matching_cred)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to create CredentialsMetaInput for field '{field_name}': "
|
||||
f"provider={matching_cred.provider}, type={matching_cred.type}, "
|
||||
f"credential_id={matching_cred.id}",
|
||||
exc_info=True,
|
||||
)
|
||||
provider = next(iter(field_info.provider), "unknown")
|
||||
cred_type = next(iter(field_info.supported_types), "api_key")
|
||||
missing.append(
|
||||
CredentialsMetaInput(
|
||||
id=field_name,
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type, # type: ignore
|
||||
title=f"{field_name} (validation failed: {e})",
|
||||
)
|
||||
)
|
||||
else:
|
||||
provider = next(iter(field_info.provider), "unknown")
|
||||
cred_type = next(iter(field_info.supported_types), "api_key")
|
||||
missing.append(
|
||||
CredentialsMetaInput(
|
||||
id=field_name,
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type, # type: ignore
|
||||
title=field_name.replace("_", " ").title(),
|
||||
)
|
||||
)
|
||||
|
||||
return matched, missing
|
||||
|
||||
|
||||
async def get_user_credentials(user_id: str) -> list[Credentials]:
|
||||
"""Get all available credentials for a user."""
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
return await creds_manager.store.get_all_creds(user_id)
|
||||
|
||||
|
||||
def find_matching_credential(
|
||||
available_creds: list[Credentials],
|
||||
field_info: CredentialsFieldInfo,
|
||||
) -> Credentials | None:
|
||||
"""Find a credential that matches the required provider, type, scopes, and host."""
|
||||
for cred in available_creds:
|
||||
if cred.provider not in field_info.provider:
|
||||
continue
|
||||
if cred.type not in field_info.supported_types:
|
||||
continue
|
||||
if cred.type == "oauth2" and not _credential_has_required_scopes(
|
||||
cred, field_info
|
||||
):
|
||||
continue
|
||||
if cred.type == "host_scoped" and not _credential_is_for_host(cred, field_info):
|
||||
continue
|
||||
return cred
|
||||
return None
|
||||
|
||||
|
||||
def create_credential_meta_from_match(
|
||||
matching_cred: Credentials,
|
||||
) -> CredentialsMetaInput:
|
||||
"""Create a CredentialsMetaInput from a matched credential."""
|
||||
return CredentialsMetaInput(
|
||||
id=matching_cred.id,
|
||||
provider=matching_cred.provider, # type: ignore
|
||||
type=matching_cred.type,
|
||||
title=matching_cred.title,
|
||||
)
|
||||
|
||||
|
||||
async def match_user_credentials_to_graph(
|
||||
user_id: str,
|
||||
graph: GraphModel,
|
||||
@@ -357,28 +264,15 @@ async def match_user_credentials_to_graph(
|
||||
# provider is in the set of acceptable providers.
|
||||
for credential_field_name, (
|
||||
credential_requirements,
|
||||
_,
|
||||
_,
|
||||
_node_fields,
|
||||
) in aggregated_creds.items():
|
||||
# Find first matching credential by provider, type, scopes, and host/URL
|
||||
# Find first matching credential by provider and type
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
for cred in available_creds
|
||||
if cred.provider in credential_requirements.provider
|
||||
and cred.type in credential_requirements.supported_types
|
||||
and (
|
||||
cred.type != "oauth2"
|
||||
or _credential_has_required_scopes(cred, credential_requirements)
|
||||
)
|
||||
and (
|
||||
cred.type != "host_scoped"
|
||||
or _credential_is_for_host(cred, credential_requirements)
|
||||
)
|
||||
and (
|
||||
cred.provider != ProviderName.MCP
|
||||
or _credential_is_for_mcp_server(cred, credential_requirements)
|
||||
)
|
||||
),
|
||||
None,
|
||||
)
|
||||
@@ -402,17 +296,10 @@ async def match_user_credentials_to_graph(
|
||||
f"{credential_field_name} (validation failed: {e})"
|
||||
)
|
||||
else:
|
||||
# Build a helpful error message including scope requirements
|
||||
error_parts = [
|
||||
f"provider in {list(credential_requirements.provider)}",
|
||||
f"type in {list(credential_requirements.supported_types)}",
|
||||
]
|
||||
if credential_requirements.required_scopes:
|
||||
error_parts.append(
|
||||
f"scopes including {list(credential_requirements.required_scopes)}"
|
||||
)
|
||||
missing_creds.append(
|
||||
f"{credential_field_name} (requires {', '.join(error_parts)})"
|
||||
f"{credential_field_name} "
|
||||
f"(requires provider in {list(credential_requirements.provider)}, "
|
||||
f"type in {list(credential_requirements.supported_types)})"
|
||||
)
|
||||
|
||||
logger.info(
|
||||
@@ -422,49 +309,6 @@ async def match_user_credentials_to_graph(
|
||||
return graph_credentials_inputs, missing_creds
|
||||
|
||||
|
||||
def _credential_has_required_scopes(
|
||||
credential: OAuth2Credentials,
|
||||
requirements: CredentialsFieldInfo,
|
||||
) -> bool:
|
||||
"""Check if an OAuth2 credential has all the scopes required by the input."""
|
||||
# If no scopes are required, any credential matches
|
||||
if not requirements.required_scopes:
|
||||
return True
|
||||
return set(credential.scopes).issuperset(requirements.required_scopes)
|
||||
|
||||
|
||||
def _credential_is_for_host(
|
||||
credential: HostScopedCredentials,
|
||||
requirements: CredentialsFieldInfo,
|
||||
) -> bool:
|
||||
"""Check if a host-scoped credential matches the host required by the input."""
|
||||
# We need to know the host to match host-scoped credentials to.
|
||||
# Graph.aggregate_credentials_inputs() adds the node's set URL value (if any)
|
||||
# to discriminator_values. No discriminator_values -> no host to match against.
|
||||
if not requirements.discriminator_values:
|
||||
return True
|
||||
|
||||
# Check that credential host matches required host.
|
||||
# Host-scoped credential inputs are grouped by host, so any item from the set works.
|
||||
return credential.matches_url(list(requirements.discriminator_values)[0])
|
||||
|
||||
|
||||
def _credential_is_for_mcp_server(
|
||||
credential: Credentials,
|
||||
requirements: CredentialsFieldInfo,
|
||||
) -> bool:
|
||||
"""Check if an MCP OAuth credential matches the required server URL."""
|
||||
if not requirements.discriminator_values:
|
||||
return True
|
||||
|
||||
server_url = (
|
||||
credential.metadata.get("mcp_server_url")
|
||||
if isinstance(credential, OAuth2Credentials)
|
||||
else None
|
||||
)
|
||||
return server_url in requirements.discriminator_values if server_url else False
|
||||
|
||||
|
||||
async def check_user_has_required_credentials(
|
||||
user_id: str,
|
||||
required_credentials: list[CredentialsMetaInput],
|
||||
|
||||
@@ -1,151 +0,0 @@
|
||||
"""Web fetch tool — safely retrieve public web page content."""
|
||||
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
import aiohttp
|
||||
import html2text
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
ErrorResponse,
|
||||
ToolResponseBase,
|
||||
WebFetchResponse,
|
||||
)
|
||||
from backend.util.request import Requests
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Limits
|
||||
_MAX_CONTENT_BYTES = 102_400 # 100 KB download cap
|
||||
_REQUEST_TIMEOUT = aiohttp.ClientTimeout(total=15)
|
||||
|
||||
# Content types we'll read as text
|
||||
_TEXT_CONTENT_TYPES = {
|
||||
"text/html",
|
||||
"text/plain",
|
||||
"text/xml",
|
||||
"text/csv",
|
||||
"text/markdown",
|
||||
"application/json",
|
||||
"application/xml",
|
||||
"application/xhtml+xml",
|
||||
"application/rss+xml",
|
||||
"application/atom+xml",
|
||||
}
|
||||
|
||||
|
||||
def _is_text_content(content_type: str) -> bool:
|
||||
base = content_type.split(";")[0].strip().lower()
|
||||
return base in _TEXT_CONTENT_TYPES or base.startswith("text/")
|
||||
|
||||
|
||||
def _html_to_text(html: str) -> str:
|
||||
h = html2text.HTML2Text()
|
||||
h.ignore_links = False
|
||||
h.ignore_images = True
|
||||
h.body_width = 0
|
||||
return h.handle(html)
|
||||
|
||||
|
||||
class WebFetchTool(BaseTool):
|
||||
"""Safely fetch content from a public URL using SSRF-protected HTTP."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "web_fetch"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Fetch the content of a public web page by URL. "
|
||||
"Returns readable text extracted from HTML by default. "
|
||||
"Useful for reading documentation, articles, and API responses. "
|
||||
"Only supports HTTP/HTTPS GET requests to public URLs "
|
||||
"(private/internal network addresses are blocked)."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"url": {
|
||||
"type": "string",
|
||||
"description": "The public HTTP/HTTPS URL to fetch.",
|
||||
},
|
||||
"extract_text": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true (default), extract readable text from HTML. "
|
||||
"If false, return raw content."
|
||||
),
|
||||
"default": True,
|
||||
},
|
||||
},
|
||||
"required": ["url"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return False
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs: Any,
|
||||
) -> ToolResponseBase:
|
||||
url: str = (kwargs.get("url") or "").strip()
|
||||
extract_text: bool = kwargs.get("extract_text", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
if not url:
|
||||
return ErrorResponse(
|
||||
message="Please provide a URL to fetch.",
|
||||
error="missing_url",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
client = Requests(raise_for_status=False, retry_max_attempts=1)
|
||||
response = await client.get(url, timeout=_REQUEST_TIMEOUT)
|
||||
except ValueError as e:
|
||||
# validate_url raises ValueError for SSRF / blocked IPs
|
||||
return ErrorResponse(
|
||||
message=f"URL blocked: {e}",
|
||||
error="url_blocked",
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"[web_fetch] Request failed for {url}: {e}")
|
||||
return ErrorResponse(
|
||||
message=f"Failed to fetch URL: {e}",
|
||||
error="fetch_failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
content_type = response.headers.get("content-type", "")
|
||||
if not _is_text_content(content_type):
|
||||
return ErrorResponse(
|
||||
message=f"Non-text content type: {content_type.split(';')[0]}",
|
||||
error="unsupported_content_type",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
raw = response.content[:_MAX_CONTENT_BYTES]
|
||||
text = raw.decode("utf-8", errors="replace")
|
||||
|
||||
if extract_text and "html" in content_type.lower():
|
||||
text = _html_to_text(text)
|
||||
|
||||
return WebFetchResponse(
|
||||
message=f"Fetched {url}",
|
||||
url=response.url,
|
||||
status_code=response.status,
|
||||
content_type=content_type.split(";")[0].strip(),
|
||||
content=text,
|
||||
truncated=False,
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -1,626 +0,0 @@
|
||||
"""CoPilot tools for workspace file operations."""
|
||||
|
||||
import base64
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.workspace import get_or_create_workspace
|
||||
from backend.util.settings import Config
|
||||
from backend.util.virus_scanner import scan_content_safe
|
||||
from backend.util.workspace import WorkspaceManager
|
||||
|
||||
from .base import BaseTool
|
||||
from .models import ErrorResponse, ResponseType, ToolResponseBase
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class WorkspaceFileInfoData(BaseModel):
|
||||
"""Data model for workspace file information (not a response itself)."""
|
||||
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
size_bytes: int
|
||||
|
||||
|
||||
class WorkspaceFileListResponse(ToolResponseBase):
|
||||
"""Response containing list of workspace files."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
|
||||
files: list[WorkspaceFileInfoData]
|
||||
total_count: int
|
||||
|
||||
|
||||
class WorkspaceFileContentResponse(ToolResponseBase):
|
||||
"""Response containing workspace file content (legacy, for small text files)."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
content_base64: str
|
||||
|
||||
|
||||
class WorkspaceFileMetadataResponse(ToolResponseBase):
|
||||
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
mime_type: str
|
||||
size_bytes: int
|
||||
download_url: str
|
||||
preview: str | None = None # First 500 chars for text files
|
||||
|
||||
|
||||
class WorkspaceWriteResponse(ToolResponseBase):
|
||||
"""Response after writing a file to workspace."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
|
||||
file_id: str
|
||||
name: str
|
||||
path: str
|
||||
size_bytes: int
|
||||
|
||||
|
||||
class WorkspaceDeleteResponse(ToolResponseBase):
|
||||
"""Response after deleting a file from workspace."""
|
||||
|
||||
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
|
||||
file_id: str
|
||||
success: bool
|
||||
|
||||
|
||||
class ListWorkspaceFilesTool(BaseTool):
|
||||
"""Tool for listing files in user's workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "list_workspace_files"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"List files in the user's persistent workspace (cloud storage). "
|
||||
"These files survive across sessions. "
|
||||
"For ephemeral session files, use the SDK Read/Glob tools instead. "
|
||||
"Returns file names, paths, sizes, and metadata. "
|
||||
"Optionally filter by path prefix."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"path_prefix": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional path prefix to filter files "
|
||||
"(e.g., '/documents/' to list only files in documents folder). "
|
||||
"By default, only files from the current session are listed."
|
||||
),
|
||||
},
|
||||
"limit": {
|
||||
"type": "integer",
|
||||
"description": "Maximum number of files to return (default 50, max 100)",
|
||||
"minimum": 1,
|
||||
"maximum": 100,
|
||||
},
|
||||
"include_all_sessions": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true, list files from all sessions. "
|
||||
"Default is false (only current session's files)."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
path_prefix: Optional[str] = kwargs.get("path_prefix")
|
||||
limit = min(kwargs.get("limit", 50), 100)
|
||||
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
files = await manager.list_files(
|
||||
path=path_prefix,
|
||||
limit=limit,
|
||||
include_all_sessions=include_all_sessions,
|
||||
)
|
||||
total = await manager.get_file_count(
|
||||
path=path_prefix,
|
||||
include_all_sessions=include_all_sessions,
|
||||
)
|
||||
|
||||
file_infos = [
|
||||
WorkspaceFileInfoData(
|
||||
file_id=f.id,
|
||||
name=f.name,
|
||||
path=f.path,
|
||||
mime_type=f.mimeType,
|
||||
size_bytes=f.sizeBytes,
|
||||
)
|
||||
for f in files
|
||||
]
|
||||
|
||||
scope_msg = "all sessions" if include_all_sessions else "current session"
|
||||
return WorkspaceFileListResponse(
|
||||
files=file_infos,
|
||||
total_count=total,
|
||||
message=f"Found {len(files)} files in workspace ({scope_msg})",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error listing workspace files: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to list workspace files: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class ReadWorkspaceFileTool(BaseTool):
|
||||
"""Tool for reading file content from workspace."""
|
||||
|
||||
# Size threshold for returning full content vs metadata+URL
|
||||
# Files larger than this return metadata with download URL to prevent context bloat
|
||||
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
|
||||
# Preview size for text files
|
||||
PREVIEW_SIZE = 500
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "read_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Read a file from the user's persistent workspace (cloud storage). "
|
||||
"These files survive across sessions. "
|
||||
"For ephemeral session files, use the SDK Read tool instead. "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"For small text files, returns content directly. "
|
||||
"For large or binary files, returns metadata and a download URL. "
|
||||
"Paths are scoped to the current session by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_id": {
|
||||
"type": "string",
|
||||
"description": "The file's unique ID (from list_workspace_files)",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The virtual file path (e.g., '/documents/report.pdf'). "
|
||||
"Scoped to current session by default."
|
||||
),
|
||||
},
|
||||
"force_download_url": {
|
||||
"type": "boolean",
|
||||
"description": (
|
||||
"If true, always return metadata+URL instead of inline content. "
|
||||
"Default is false (auto-selects based on file size/type)."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [], # At least one must be provided
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
def _is_text_mime_type(self, mime_type: str) -> bool:
|
||||
"""Check if the MIME type is a text-based type."""
|
||||
text_types = [
|
||||
"text/",
|
||||
"application/json",
|
||||
"application/xml",
|
||||
"application/javascript",
|
||||
"application/x-python",
|
||||
"application/x-sh",
|
||||
]
|
||||
return any(mime_type.startswith(t) for t in text_types)
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
file_id: Optional[str] = kwargs.get("file_id")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
force_download_url: bool = kwargs.get("force_download_url", False)
|
||||
|
||||
if not file_id and not path:
|
||||
return ErrorResponse(
|
||||
message="Please provide either file_id or path",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
# Get file info
|
||||
if file_id:
|
||||
file_info = await manager.get_file_info(file_id)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found: {file_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_id
|
||||
else:
|
||||
# path is guaranteed to be non-None here due to the check above
|
||||
assert path is not None
|
||||
file_info = await manager.get_file_info_by_path(path)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found at path: {path}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_info.id
|
||||
|
||||
# Decide whether to return inline content or metadata+URL
|
||||
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
|
||||
is_text_file = self._is_text_mime_type(file_info.mimeType)
|
||||
|
||||
# Return inline content for small text files (unless force_download_url)
|
||||
if is_small_file and is_text_file and not force_download_url:
|
||||
content = await manager.read_file_by_id(target_file_id)
|
||||
content_b64 = base64.b64encode(content).decode("utf-8")
|
||||
|
||||
return WorkspaceFileContentResponse(
|
||||
file_id=file_info.id,
|
||||
name=file_info.name,
|
||||
path=file_info.path,
|
||||
mime_type=file_info.mimeType,
|
||||
content_base64=content_b64,
|
||||
message=f"Successfully read file: {file_info.name}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Return metadata + workspace:// reference for large or binary files
|
||||
# This prevents context bloat (100KB file = ~133KB as base64)
|
||||
# Use workspace:// format so frontend urlTransform can add proxy prefix
|
||||
download_url = f"workspace://{target_file_id}"
|
||||
|
||||
# Generate preview for text files
|
||||
preview: str | None = None
|
||||
if is_text_file:
|
||||
try:
|
||||
content = await manager.read_file_by_id(target_file_id)
|
||||
preview_text = content[: self.PREVIEW_SIZE].decode(
|
||||
"utf-8", errors="replace"
|
||||
)
|
||||
if len(content) > self.PREVIEW_SIZE:
|
||||
preview_text += "..."
|
||||
preview = preview_text
|
||||
except Exception:
|
||||
pass # Preview is optional
|
||||
|
||||
return WorkspaceFileMetadataResponse(
|
||||
file_id=file_info.id,
|
||||
name=file_info.name,
|
||||
path=file_info.path,
|
||||
mime_type=file_info.mimeType,
|
||||
size_bytes=file_info.sizeBytes,
|
||||
download_url=download_url,
|
||||
preview=preview,
|
||||
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except FileNotFoundError as e:
|
||||
return ErrorResponse(
|
||||
message=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error reading workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to read workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class WriteWorkspaceFileTool(BaseTool):
|
||||
"""Tool for writing files to workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "write_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Write or create a file in the user's persistent workspace (cloud storage). "
|
||||
"These files survive across sessions. "
|
||||
"For ephemeral session files, use the SDK Write tool instead. "
|
||||
"Provide the content as a base64-encoded string. "
|
||||
f"Maximum file size is {Config().max_file_size_mb}MB. "
|
||||
"Files are saved to the current session's folder by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"filename": {
|
||||
"type": "string",
|
||||
"description": "Name for the file (e.g., 'report.pdf')",
|
||||
},
|
||||
"content_base64": {
|
||||
"type": "string",
|
||||
"description": "Base64-encoded file content",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional virtual path where to save the file "
|
||||
"(e.g., '/documents/report.pdf'). "
|
||||
"Defaults to '/{filename}'. Scoped to current session."
|
||||
),
|
||||
},
|
||||
"mime_type": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"Optional MIME type of the file. "
|
||||
"Auto-detected from filename if not provided."
|
||||
),
|
||||
},
|
||||
"overwrite": {
|
||||
"type": "boolean",
|
||||
"description": "Whether to overwrite if file exists at path (default: false)",
|
||||
},
|
||||
},
|
||||
"required": ["filename", "content_base64"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
filename: str = kwargs.get("filename", "")
|
||||
content_b64: str = kwargs.get("content_base64", "")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
mime_type: Optional[str] = kwargs.get("mime_type")
|
||||
overwrite: bool = kwargs.get("overwrite", False)
|
||||
|
||||
if not filename:
|
||||
return ErrorResponse(
|
||||
message="Please provide a filename",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not content_b64:
|
||||
return ErrorResponse(
|
||||
message="Please provide content_base64",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Decode content
|
||||
try:
|
||||
content = base64.b64decode(content_b64)
|
||||
except Exception:
|
||||
return ErrorResponse(
|
||||
message="Invalid base64-encoded content",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check size
|
||||
max_file_size = Config().max_file_size_mb * 1024 * 1024
|
||||
if len(content) > max_file_size:
|
||||
return ErrorResponse(
|
||||
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
# Virus scan
|
||||
await scan_content_safe(content, filename=filename)
|
||||
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
file_record = await manager.write_file(
|
||||
content=content,
|
||||
filename=filename,
|
||||
path=path,
|
||||
mime_type=mime_type,
|
||||
overwrite=overwrite,
|
||||
)
|
||||
|
||||
return WorkspaceWriteResponse(
|
||||
file_id=file_record.id,
|
||||
name=file_record.name,
|
||||
path=file_record.path,
|
||||
size_bytes=file_record.sizeBytes,
|
||||
message=f"Successfully wrote file: {file_record.name}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except ValueError as e:
|
||||
return ErrorResponse(
|
||||
message=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error writing workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to write workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
|
||||
class DeleteWorkspaceFileTool(BaseTool):
|
||||
"""Tool for deleting files from workspace."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "delete_workspace_file"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Delete a file from the user's persistent workspace (cloud storage). "
|
||||
"Specify either file_id or path to identify the file. "
|
||||
"Paths are scoped to the current session by default. "
|
||||
"Use /sessions/<session_id>/... for cross-session access."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"file_id": {
|
||||
"type": "string",
|
||||
"description": "The file's unique ID (from list_workspace_files)",
|
||||
},
|
||||
"path": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The virtual file path (e.g., '/documents/report.pdf'). "
|
||||
"Scoped to current session by default."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": [], # At least one must be provided
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
session_id = session.session_id
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
file_id: Optional[str] = kwargs.get("file_id")
|
||||
path: Optional[str] = kwargs.get("path")
|
||||
|
||||
if not file_id and not path:
|
||||
return ErrorResponse(
|
||||
message="Please provide either file_id or path",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
try:
|
||||
workspace = await get_or_create_workspace(user_id)
|
||||
# Pass session_id for session-scoped file access
|
||||
manager = WorkspaceManager(user_id, workspace.id, session_id)
|
||||
|
||||
# Determine the file_id to delete
|
||||
target_file_id: str
|
||||
if file_id:
|
||||
target_file_id = file_id
|
||||
else:
|
||||
# path is guaranteed to be non-None here due to the check above
|
||||
assert path is not None
|
||||
file_info = await manager.get_file_info_by_path(path)
|
||||
if file_info is None:
|
||||
return ErrorResponse(
|
||||
message=f"File not found at path: {path}",
|
||||
session_id=session_id,
|
||||
)
|
||||
target_file_id = file_info.id
|
||||
|
||||
success = await manager.delete_file(target_file_id)
|
||||
|
||||
if not success:
|
||||
return ErrorResponse(
|
||||
message=f"File not found: {target_file_id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
return WorkspaceDeleteResponse(
|
||||
file_id=target_file_id,
|
||||
success=True,
|
||||
message="File deleted successfully",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to delete workspace file: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -1,250 +0,0 @@
|
||||
"""PostHog analytics tracking for the chat system."""
|
||||
|
||||
import atexit
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from posthog import Posthog
|
||||
|
||||
from backend.util.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
settings = Settings()
|
||||
|
||||
# PostHog client instance (lazily initialized)
|
||||
_posthog_client: Posthog | None = None
|
||||
|
||||
|
||||
def _shutdown_posthog() -> None:
|
||||
"""Flush and shutdown PostHog client on process exit."""
|
||||
if _posthog_client is not None:
|
||||
_posthog_client.flush()
|
||||
_posthog_client.shutdown()
|
||||
|
||||
|
||||
atexit.register(_shutdown_posthog)
|
||||
|
||||
|
||||
def _get_posthog_client() -> Posthog | None:
|
||||
"""Get or create the PostHog client instance."""
|
||||
global _posthog_client
|
||||
if _posthog_client is not None:
|
||||
return _posthog_client
|
||||
|
||||
if not settings.secrets.posthog_api_key:
|
||||
logger.debug("PostHog API key not configured, analytics disabled")
|
||||
return None
|
||||
|
||||
_posthog_client = Posthog(
|
||||
settings.secrets.posthog_api_key,
|
||||
host=settings.secrets.posthog_host,
|
||||
)
|
||||
logger.info(
|
||||
f"PostHog client initialized with host: {settings.secrets.posthog_host}"
|
||||
)
|
||||
return _posthog_client
|
||||
|
||||
|
||||
def _get_base_properties() -> dict[str, Any]:
|
||||
"""Get base properties included in all events."""
|
||||
return {
|
||||
"environment": settings.config.app_env.value,
|
||||
"source": "chat_copilot",
|
||||
}
|
||||
|
||||
|
||||
def track_user_message(
|
||||
user_id: str | None,
|
||||
session_id: str,
|
||||
message_length: int,
|
||||
) -> None:
|
||||
"""Track when a user sends a message in chat.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID (or None for anonymous)
|
||||
session_id: The chat session ID
|
||||
message_length: Length of the user's message
|
||||
"""
|
||||
client = _get_posthog_client()
|
||||
if not client:
|
||||
return
|
||||
|
||||
try:
|
||||
properties = {
|
||||
**_get_base_properties(),
|
||||
"session_id": session_id,
|
||||
"message_length": message_length,
|
||||
}
|
||||
client.capture(
|
||||
distinct_id=user_id or f"anonymous_{session_id}",
|
||||
event="copilot_message_sent",
|
||||
properties=properties,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to track user message: {e}")
|
||||
|
||||
|
||||
def track_tool_called(
|
||||
user_id: str | None,
|
||||
session_id: str,
|
||||
tool_name: str,
|
||||
tool_call_id: str,
|
||||
) -> None:
|
||||
"""Track when a tool is called in chat.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID (or None for anonymous)
|
||||
session_id: The chat session ID
|
||||
tool_name: Name of the tool being called
|
||||
tool_call_id: Unique ID of the tool call
|
||||
"""
|
||||
client = _get_posthog_client()
|
||||
if not client:
|
||||
logger.info("PostHog client not available for tool tracking")
|
||||
return
|
||||
|
||||
try:
|
||||
properties = {
|
||||
**_get_base_properties(),
|
||||
"session_id": session_id,
|
||||
"tool_name": tool_name,
|
||||
"tool_call_id": tool_call_id,
|
||||
}
|
||||
distinct_id = user_id or f"anonymous_{session_id}"
|
||||
logger.info(
|
||||
f"Sending copilot_tool_called event to PostHog: distinct_id={distinct_id}, "
|
||||
f"tool_name={tool_name}"
|
||||
)
|
||||
client.capture(
|
||||
distinct_id=distinct_id,
|
||||
event="copilot_tool_called",
|
||||
properties=properties,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to track tool call: {e}")
|
||||
|
||||
|
||||
def track_agent_run_success(
|
||||
user_id: str,
|
||||
session_id: str,
|
||||
graph_id: str,
|
||||
graph_name: str,
|
||||
execution_id: str,
|
||||
library_agent_id: str,
|
||||
) -> None:
|
||||
"""Track when an agent is successfully run.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
session_id: The chat session ID
|
||||
graph_id: ID of the agent graph
|
||||
graph_name: Name of the agent
|
||||
execution_id: ID of the execution
|
||||
library_agent_id: ID of the library agent
|
||||
"""
|
||||
client = _get_posthog_client()
|
||||
if not client:
|
||||
return
|
||||
|
||||
try:
|
||||
properties = {
|
||||
**_get_base_properties(),
|
||||
"session_id": session_id,
|
||||
"graph_id": graph_id,
|
||||
"graph_name": graph_name,
|
||||
"execution_id": execution_id,
|
||||
"library_agent_id": library_agent_id,
|
||||
}
|
||||
client.capture(
|
||||
distinct_id=user_id,
|
||||
event="copilot_agent_run_success",
|
||||
properties=properties,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to track agent run: {e}")
|
||||
|
||||
|
||||
def track_agent_scheduled(
|
||||
user_id: str,
|
||||
session_id: str,
|
||||
graph_id: str,
|
||||
graph_name: str,
|
||||
schedule_id: str,
|
||||
schedule_name: str,
|
||||
cron: str,
|
||||
library_agent_id: str,
|
||||
) -> None:
|
||||
"""Track when an agent is successfully scheduled.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
session_id: The chat session ID
|
||||
graph_id: ID of the agent graph
|
||||
graph_name: Name of the agent
|
||||
schedule_id: ID of the schedule
|
||||
schedule_name: Name of the schedule
|
||||
cron: Cron expression for the schedule
|
||||
library_agent_id: ID of the library agent
|
||||
"""
|
||||
client = _get_posthog_client()
|
||||
if not client:
|
||||
return
|
||||
|
||||
try:
|
||||
properties = {
|
||||
**_get_base_properties(),
|
||||
"session_id": session_id,
|
||||
"graph_id": graph_id,
|
||||
"graph_name": graph_name,
|
||||
"schedule_id": schedule_id,
|
||||
"schedule_name": schedule_name,
|
||||
"cron": cron,
|
||||
"library_agent_id": library_agent_id,
|
||||
}
|
||||
client.capture(
|
||||
distinct_id=user_id,
|
||||
event="copilot_agent_scheduled",
|
||||
properties=properties,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to track agent schedule: {e}")
|
||||
|
||||
|
||||
def track_trigger_setup(
|
||||
user_id: str,
|
||||
session_id: str,
|
||||
graph_id: str,
|
||||
graph_name: str,
|
||||
trigger_type: str,
|
||||
library_agent_id: str,
|
||||
) -> None:
|
||||
"""Track when a trigger is set up for an agent.
|
||||
|
||||
Args:
|
||||
user_id: The user's ID
|
||||
session_id: The chat session ID
|
||||
graph_id: ID of the agent graph
|
||||
graph_name: Name of the agent
|
||||
trigger_type: Type of trigger (e.g., 'webhook')
|
||||
library_agent_id: ID of the library agent
|
||||
"""
|
||||
client = _get_posthog_client()
|
||||
if not client:
|
||||
return
|
||||
|
||||
try:
|
||||
properties = {
|
||||
**_get_base_properties(),
|
||||
"session_id": session_id,
|
||||
"graph_id": graph_id,
|
||||
"graph_name": graph_name,
|
||||
"trigger_type": trigger_type,
|
||||
"library_agent_id": library_agent_id,
|
||||
}
|
||||
client.capture(
|
||||
distinct_id=user_id,
|
||||
event="copilot_trigger_setup",
|
||||
properties=properties,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to track trigger setup: {e}")
|
||||
@@ -23,7 +23,6 @@ class PendingHumanReviewModel(BaseModel):
|
||||
id: Unique identifier for the review record
|
||||
user_id: ID of the user who must perform the review
|
||||
node_exec_id: ID of the node execution that created this review
|
||||
node_id: ID of the node definition (for grouping reviews from same node)
|
||||
graph_exec_id: ID of the graph execution containing the node
|
||||
graph_id: ID of the graph template being executed
|
||||
graph_version: Version number of the graph template
|
||||
@@ -38,10 +37,6 @@ class PendingHumanReviewModel(BaseModel):
|
||||
"""
|
||||
|
||||
node_exec_id: str = Field(description="Node execution ID (primary key)")
|
||||
node_id: str = Field(
|
||||
description="Node definition ID (for grouping)",
|
||||
default="", # Temporary default for test compatibility
|
||||
)
|
||||
user_id: str = Field(description="User ID associated with the review")
|
||||
graph_exec_id: str = Field(description="Graph execution ID")
|
||||
graph_id: str = Field(description="Graph ID")
|
||||
@@ -71,9 +66,7 @@ class PendingHumanReviewModel(BaseModel):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_db(
|
||||
cls, review: "PendingHumanReview", node_id: str
|
||||
) -> "PendingHumanReviewModel":
|
||||
def from_db(cls, review: "PendingHumanReview") -> "PendingHumanReviewModel":
|
||||
"""
|
||||
Convert a database model to a response model.
|
||||
|
||||
@@ -81,14 +74,9 @@ class PendingHumanReviewModel(BaseModel):
|
||||
payload, instructions, and editable flag.
|
||||
|
||||
Handles invalid data gracefully by using safe defaults.
|
||||
|
||||
Args:
|
||||
review: Database review object
|
||||
node_id: Node definition ID (fetched from NodeExecution)
|
||||
"""
|
||||
return cls(
|
||||
node_exec_id=review.nodeExecId,
|
||||
node_id=node_id,
|
||||
user_id=review.userId,
|
||||
graph_exec_id=review.graphExecId,
|
||||
graph_id=review.graphId,
|
||||
@@ -119,13 +107,6 @@ class ReviewItem(BaseModel):
|
||||
reviewed_data: SafeJsonData | None = Field(
|
||||
None, description="Optional edited data (ignored if approved=False)"
|
||||
)
|
||||
auto_approve_future: bool = Field(
|
||||
default=False,
|
||||
description=(
|
||||
"If true and this review is approved, future executions of this same "
|
||||
"block (node) will be automatically approved. This only affects approved reviews."
|
||||
),
|
||||
)
|
||||
|
||||
@field_validator("reviewed_data")
|
||||
@classmethod
|
||||
@@ -193,9 +174,6 @@ class ReviewRequest(BaseModel):
|
||||
This request must include ALL pending reviews for a graph execution.
|
||||
Each review will be either approved (with optional data modifications)
|
||||
or rejected (data ignored). The execution will resume only after ALL reviews are processed.
|
||||
|
||||
Each review item can individually specify whether to auto-approve future executions
|
||||
of the same block via the `auto_approve_future` field on ReviewItem.
|
||||
"""
|
||||
|
||||
reviews: List[ReviewItem] = Field(
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user