Compare commits

..

2 Commits

Author SHA1 Message Date
SwiftyOS
52de22469f added comments 2024-11-05 10:11:33 +01:00
SwiftyOS
c27f163623 removed all services that are not strictly necessary for running the platform 2024-11-05 10:09:07 +01:00
1483 changed files with 41371 additions and 159430 deletions

View File

@@ -1,18 +0,0 @@
version = 1
test_patterns = ["**/*.spec.ts","**/*_test.py","**/*_tests.py","**/test_*.py"]
exclude_patterns = ["classic/**"]
[[analyzers]]
name = "javascript"
[analyzers.meta]
plugins = ["react"]
environment = ["nodejs"]
[[analyzers]]
name = "python"
[analyzers.meta]
runtime_version = "3.x.x"

View File

@@ -1,61 +1,40 @@
# Ignore everything by default, selectively add things to context
*
classic/run
# Platform - Libs
!autogpt_platform/autogpt_libs/autogpt_libs/
!autogpt_platform/autogpt_libs/pyproject.toml
!autogpt_platform/autogpt_libs/poetry.lock
!autogpt_platform/autogpt_libs/README.md
# Platform - Backend
!autogpt_platform/backend/backend/
!autogpt_platform/backend/migrations/
!autogpt_platform/backend/schema.prisma
!autogpt_platform/backend/pyproject.toml
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
# Platform - Market
!autogpt_platform/market/market/
!autogpt_platform/market/scripts.py
!autogpt_platform/market/schema.prisma
!autogpt_platform/market/pyproject.toml
!autogpt_platform/market/poetry.lock
!autogpt_platform/market/README.md
# Platform - Frontend
!autogpt_platform/frontend/src/
!autogpt_platform/frontend/public/
!autogpt_platform/frontend/package.json
!autogpt_platform/frontend/pnpm-lock.yaml
!autogpt_platform/frontend/tsconfig.json
!autogpt_platform/frontend/README.md
## config
!autogpt_platform/frontend/*.config.*
!autogpt_platform/frontend/.env.*
# Classic - AutoGPT
# AutoGPT
!classic/original_autogpt/autogpt/
!classic/original_autogpt/pyproject.toml
!classic/original_autogpt/poetry.lock
!classic/original_autogpt/README.md
!classic/original_autogpt/tests/
# Classic - Benchmark
# Benchmark
!classic/benchmark/agbenchmark/
!classic/benchmark/pyproject.toml
!classic/benchmark/poetry.lock
!classic/benchmark/README.md
# Classic - Forge
# Forge
!classic/forge/
!classic/forge/pyproject.toml
!classic/forge/poetry.lock
!classic/forge/README.md
# Classic - Frontend
# Frontend
!classic/frontend/build/web/
# Platform
!autogpt_platform/
# Explicitly re-ignore some folders
.*
**/__pycache__
autogpt_platform/frontend/.next/
autogpt_platform/frontend/node_modules
autogpt_platform/frontend/.env.example
autogpt_platform/frontend/.env.local
autogpt_platform/backend/.env
autogpt_platform/backend/.venv/
autogpt_platform/market/.env

View File

@@ -1,38 +1,36 @@
### Background
<!-- Clearly explain the need for these changes: -->
### Changes 🏗️
<!-- Concisely describe all of the changes made in this pull request: -->
### Checklist 📋
#### For code changes:
- [ ] I have clearly listed my changes in the PR description
- [ ] I have made a test plan
- [ ] I have tested my changes according to the test plan:
<!-- Put your test plan here: -->
- [ ] ...
### Testing 🔍
> [!NOTE]
Only for the new autogpt platform, currently in autogpt_platform/
<details>
<summary>Example test plan</summary>
- [ ] Create from scratch and execute an agent with at least 3 blocks
- [ ] Import an agent from file upload, and confirm it executes correctly
- [ ] Upload agent to marketplace
- [ ] Import an agent from marketplace and confirm it executes correctly
- [ ] Edit an agent from monitor, and confirm it executes correctly
</details>
<!--
Please make sure your changes have been tested and are in good working condition.
Here is a list of our critical paths, if you need some inspiration on what and how to test:
-->
#### For configuration changes:
- [ ] `.env.example` is updated or already compatible with my changes
- [ ] `docker-compose.yml` is updated or already compatible with my changes
- [ ] I have included a list of my configuration changes in the PR description (under **Changes**)
- Create from scratch and execute an agent with at least 3 blocks
- Import an agent from file upload, and confirm it executes correctly
- Upload agent to marketplace
- Import an agent from marketplace and confirm it executes correctly
- Edit an agent from monitor, and confirm it executes correctly
<details>
<summary>Examples of configuration changes</summary>
### Configuration Changes 📝
> [!NOTE]
Only for the new autogpt platform, currently in autogpt_platform/
- Changing ports
- Adding new services that need to communicate with each other
- Secrets or environment variable changes
- New or infrastructure changes such as databases
</details>
If you're making configuration or infrastructure changes, please remember to check you've updated the related infrastructure code in the autogpt_platform/infra folder.
Examples of such changes might include:
- Changing ports
- Adding new services that need to communicate with each other
- Secrets or environment variable changes
- New or infrastructure changes such as databases

122
.github/dependabot.yml vendored
View File

@@ -7,22 +7,17 @@ updates:
interval: "weekly"
open-pull-requests-limit: 10
target-branch: "dev"
commit-message:
prefix: "chore(libs/deps)"
prefix-development: "chore(libs/deps-dev)"
ignore:
- dependency-name: "poetry"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
# backend (Poetry project)
- package-ecosystem: "pip"
@@ -31,22 +26,18 @@ updates:
interval: "weekly"
open-pull-requests-limit: 10
target-branch: "dev"
commit-message:
prefix: "chore(backend/deps)"
prefix-development: "chore(backend/deps-dev)"
ignore:
- dependency-name: "poetry"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
# frontend (Next.js project)
- package-ecosystem: "npm"
@@ -55,20 +46,18 @@ updates:
interval: "weekly"
open-pull-requests-limit: 10
target-branch: "dev"
commit-message:
prefix: "chore(frontend/deps)"
prefix-development: "chore(frontend/deps-dev)"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
# infra (Terraform)
- package-ecosystem: "terraform"
@@ -77,21 +66,38 @@ updates:
interval: "weekly"
open-pull-requests-limit: 5
target-branch: "dev"
commit-message:
prefix: "chore(infra/deps)"
prefix-development: "chore(infra/deps-dev)"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
# market (Poetry project)
- package-ecosystem: "pip"
directory: "autogpt_platform/market"
schedule:
interval: "weekly"
open-pull-requests-limit: 10
target-branch: "dev"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
# GitHub Actions
- package-ecosystem: "github-actions"
@@ -104,13 +110,14 @@ updates:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
# Docker
- package-ecosystem: "docker"
@@ -123,31 +130,50 @@ updates:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
# Submodules
- package-ecosystem: "gitsubmodule"
directory: "autogpt_platform/supabase"
schedule:
interval: "weekly"
open-pull-requests-limit: 1
target-branch: "dev"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
# Docs
- package-ecosystem: "pip"
- package-ecosystem: 'pip'
directory: "docs/"
schedule:
interval: "weekly"
open-pull-requests-limit: 1
target-branch: "dev"
commit-message:
prefix: "chore(docs/deps)"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
- "minor"
- "patch"

5
.github/labeler.yml vendored
View File

@@ -24,9 +24,8 @@ platform/frontend:
platform/backend:
- changed-files:
- all-globs-to-any-file:
- autogpt_platform/backend/**
- '!autogpt_platform/backend/backend/blocks/**'
- any-glob-to-any-file: autogpt_platform/backend/**
- all-globs-to-all-files: '!autogpt_platform/backend/backend/blocks/**'
platform/blocks:
- changed-files:

View File

@@ -115,7 +115,6 @@ jobs:
poetry run pytest -vv \
--cov=autogpt --cov-branch --cov-report term-missing --cov-report xml \
--numprocesses=logical --durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
tests/unit tests/integration
env:
CI: true
@@ -125,14 +124,8 @@ jobs:
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
- name: Upload test results to Codecov
if: ${{ !cancelled() }} # Run even if tests fail
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Upload coverage reports to Codecov
uses: codecov/codecov-action@v5
uses: codecov/codecov-action@v4
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: autogpt-agent,${{ runner.os }}

View File

@@ -5,7 +5,7 @@ on:
- cron: 20 4 * * 1,4
env:
BASE_BRANCH: dev
BASE_BRANCH: development
IMAGE_NAME: auto-gpt
jobs:
@@ -15,46 +15,46 @@ jobs:
matrix:
build-type: [release, dev]
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- id: build
name: Build image
uses: docker/build-push-action@v6
with:
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=${{ matrix.build-type }}
load: true # save to docker images
# use GHA cache as read-only
cache-to: type=gha,scope=autogpt-docker-${{ matrix.build-type }},mode=max
- id: build
name: Build image
uses: docker/build-push-action@v5
with:
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=${{ matrix.build-type }}
load: true # save to docker images
# use GHA cache as read-only
cache-to: type=gha,scope=autogpt-docker-${{ matrix.build-type }},mode=max
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.schedule }}
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.schedule }}
build_type: ${{ matrix.build-type }}
build_type: ${{ matrix.build-type }}
prod_branch: master
dev_branch: dev
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'dev' && 'dev' || 'master' }}
prod_branch: master
dev_branch: development
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'development' && 'development' || 'master' }}
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.sha }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.sha) }}
push_forced_label:
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.sha }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.sha) }}
push_forced_label:
new_commits_json: ${{ null }}
compare_url_template: ${{ format('/{0}/compare/{{base}}...{{head}}', github.repository) }}
new_commits_json: ${{ null }}
compare_url_template: ${{ format('/{0}/compare/{{base}}...{{head}}', github.repository) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
run: .github/workflows/scripts/docker-ci-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true
run: .github/workflows/scripts/docker-ci-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true

View File

@@ -2,7 +2,7 @@ name: Classic - AutoGPT Docker CI
on:
push:
branches: [master, dev]
branches: [ master, development ]
paths:
- '.github/workflows/classic-autogpt-docker-ci.yml'
- 'classic/original_autogpt/**'
@@ -34,58 +34,58 @@ jobs:
matrix:
build-type: [release, dev]
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- if: runner.debug
run: |
ls -al
du -hs *
- if: runner.debug
run: |
ls -al
du -hs *
- id: build
name: Build image
uses: docker/build-push-action@v6
with:
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=${{ matrix.build-type }}
tags: ${{ env.IMAGE_NAME }}
labels: GIT_REVISION=${{ github.sha }}
load: true # save to docker images
# cache layers in GitHub Actions cache to speed up builds
cache-from: type=gha,scope=autogpt-docker-${{ matrix.build-type }}
cache-to: type=gha,scope=autogpt-docker-${{ matrix.build-type }},mode=max
- id: build
name: Build image
uses: docker/build-push-action@v5
with:
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=${{ matrix.build-type }}
tags: ${{ env.IMAGE_NAME }}
labels: GIT_REVISION=${{ github.sha }}
load: true # save to docker images
# cache layers in GitHub Actions cache to speed up builds
cache-from: type=gha,scope=autogpt-docker-${{ matrix.build-type }}
cache-to: type=gha,scope=autogpt-docker-${{ matrix.build-type }},mode=max
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.ref }}
event_ref_type: ${{ github.event.ref}}
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.ref }}
event_ref_type: ${{ github.event.ref}}
build_type: ${{ matrix.build-type }}
build_type: ${{ matrix.build-type }}
prod_branch: master
dev_branch: dev
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'dev' && 'dev' || 'master' }}
prod_branch: master
dev_branch: development
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'development' && 'development' || 'master' }}
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.event.after }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.event.release && github.event.release.tag_name || github.sha) }}
push_forced_label: ${{ github.event.forced && '☢️ forced' || '' }}
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.event.after }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.event.release && github.event.release.tag_name || github.sha) }}
push_forced_label: ${{ github.event.forced && '☢️ forced' || '' }}
new_commits_json: ${{ toJSON(github.event.commits) }}
compare_url_template: ${{ format('/{0}/compare/{{base}}...{{head}}', github.repository) }}
new_commits_json: ${{ toJSON(github.event.commits) }}
compare_url_template: ${{ format('/{0}/compare/{{base}}...{{head}}', github.repository) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
run: .github/workflows/scripts/docker-ci-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true
run: .github/workflows/scripts/docker-ci-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true
test:
runs-on: ubuntu-latest
@@ -117,16 +117,16 @@ jobs:
- id: build
name: Build image
uses: docker/build-push-action@v6
uses: docker/build-push-action@v5
with:
context: classic/
file: classic/Dockerfile.autogpt
build-args: BUILD_TYPE=dev # include pytest
build-args: BUILD_TYPE=dev # include pytest
tags: >
${{ env.IMAGE_NAME }},
${{ env.DEPLOY_IMAGE_NAME }}:${{ env.DEV_IMAGE_TAG }}
labels: GIT_REVISION=${{ github.sha }}
load: true # save to docker images
load: true # save to docker images
# cache layers in GitHub Actions cache to speed up builds
cache-from: type=gha,scope=autogpt-docker-dev
cache-to: type=gha,scope=autogpt-docker-dev,mode=max

View File

@@ -2,7 +2,7 @@ name: Classic - AutoGPT Docker Release
on:
release:
types: [published, edited]
types: [ published, edited ]
workflow_dispatch:
inputs:
@@ -19,69 +19,69 @@ jobs:
if: startsWith(github.ref, 'refs/tags/autogpt-')
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Checkout repository
uses: actions/checkout@v4
- name: Log in to Docker hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USER }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Log in to Docker hub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKER_USER }}
password: ${{ secrets.DOCKER_PASSWORD }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
# slashes are not allowed in image tags, but can appear in git branch or tag names
- id: sanitize_tag
name: Sanitize image tag
run: |
tag=${raw_tag//\//-}
echo tag=${tag#autogpt-} >> $GITHUB_OUTPUT
env:
raw_tag: ${{ github.ref_name }}
# slashes are not allowed in image tags, but can appear in git branch or tag names
- id: sanitize_tag
name: Sanitize image tag
run: |
tag=${raw_tag//\//-}
echo tag=${tag#autogpt-} >> $GITHUB_OUTPUT
env:
raw_tag: ${{ github.ref_name }}
- id: build
name: Build image
uses: docker/build-push-action@v6
with:
context: classic/
file: Dockerfile.autogpt
build-args: BUILD_TYPE=release
load: true # save to docker images
# push: true # TODO: uncomment when this issue is fixed: https://github.com/moby/buildkit/issues/1555
tags: >
${{ env.IMAGE_NAME }},
${{ env.DEPLOY_IMAGE_NAME }}:latest,
${{ env.DEPLOY_IMAGE_NAME }}:${{ steps.sanitize_tag.outputs.tag }}
labels: GIT_REVISION=${{ github.sha }}
- id: build
name: Build image
uses: docker/build-push-action@v5
with:
context: classic/
file: Dockerfile.autogpt
build-args: BUILD_TYPE=release
load: true # save to docker images
# push: true # TODO: uncomment when this issue is fixed: https://github.com/moby/buildkit/issues/1555
tags: >
${{ env.IMAGE_NAME }},
${{ env.DEPLOY_IMAGE_NAME }}:latest,
${{ env.DEPLOY_IMAGE_NAME }}:${{ steps.sanitize_tag.outputs.tag }}
labels: GIT_REVISION=${{ github.sha }}
# cache layers in GitHub Actions cache to speed up builds
cache-from: ${{ !inputs.no_cache && 'type=gha' || '' }},scope=autogpt-docker-release
cache-to: type=gha,scope=autogpt-docker-release,mode=max
# cache layers in GitHub Actions cache to speed up builds
cache-from: ${{ !inputs.no_cache && 'type=gha' || '' }},scope=autogpt-docker-release
cache-to: type=gha,scope=autogpt-docker-release,mode=max
- name: Push image to Docker Hub
run: docker push --all-tags ${{ env.DEPLOY_IMAGE_NAME }}
- name: Push image to Docker Hub
run: docker push --all-tags ${{ env.DEPLOY_IMAGE_NAME }}
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.ref }}
event_ref_type: ${{ github.event.ref}}
inputs_no_cache: ${{ inputs.no_cache }}
- name: Generate build report
env:
event_name: ${{ github.event_name }}
event_ref: ${{ github.event.ref }}
event_ref_type: ${{ github.event.ref}}
inputs_no_cache: ${{ inputs.no_cache }}
prod_branch: master
dev_branch: dev
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'dev' && 'dev' || 'master' }}
prod_branch: master
dev_branch: development
repository: ${{ github.repository }}
base_branch: ${{ github.ref_name != 'master' && github.ref_name != 'development' && 'development' || 'master' }}
ref_type: ${{ github.ref_type }}
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.sha }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.event.release && github.event.release.tag_name || github.sha) }}
ref_type: ${{ github.ref_type }}
current_ref: ${{ github.ref_name }}
commit_hash: ${{ github.sha }}
source_url: ${{ format('{0}/tree/{1}', github.event.repository.url, github.event.release && github.event.release.tag_name || github.sha) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
github_context_json: ${{ toJSON(github) }}
job_env_json: ${{ toJSON(env) }}
vars_json: ${{ toJSON(vars) }}
run: .github/workflows/scripts/docker-release-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true
run: .github/workflows/scripts/docker-release-summary.sh >> $GITHUB_STEP_SUMMARY
continue-on-error: true

View File

@@ -87,20 +87,13 @@ jobs:
poetry run pytest -vv \
--cov=agbenchmark --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
tests
env:
CI: true
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
- name: Upload test results to Codecov
if: ${{ !cancelled() }} # Run even if tests fail
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Upload coverage reports to Codecov
uses: codecov/codecov-action@v5
uses: codecov/codecov-action@v4
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: agbenchmark,${{ runner.os }}
@@ -109,7 +102,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
agent-name: [forge]
agent-name: [ forge ]
fail-fast: false
timeout-minutes: 20
steps:
@@ -153,23 +146,23 @@ jobs:
echo "Running the following command: poetry run agbenchmark --mock --category=coding"
poetry run agbenchmark --mock --category=coding
# echo "Running the following command: poetry run agbenchmark --test=WriteFile"
# poetry run agbenchmark --test=WriteFile
echo "Running the following command: poetry run agbenchmark --test=WriteFile"
poetry run agbenchmark --test=WriteFile
cd ../benchmark
poetry install
echo "Adding the BUILD_SKILL_TREE environment variable. This will attempt to add new elements in the skill tree. If new elements are added, the CI fails because they should have been pushed"
export BUILD_SKILL_TREE=true
# poetry run agbenchmark --mock
poetry run agbenchmark --mock
# CHANGED=$(git diff --name-only | grep -E '(agbenchmark/challenges)|(../classic/frontend/assets)') || echo "No diffs"
# if [ ! -z "$CHANGED" ]; then
# echo "There are unstaged changes please run agbenchmark and commit those changes since they are needed."
# echo "$CHANGED"
# exit 1
# else
# echo "No unstaged changes."
# fi
CHANGED=$(git diff --name-only | grep -E '(agbenchmark/challenges)|(../classic/frontend/assets)') || echo "No diffs"
if [ ! -z "$CHANGED" ]; then
echo "There are unstaged changes please run agbenchmark and commit those changes since they are needed."
echo "$CHANGED"
exit 1
else
echo "No unstaged changes."
fi
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
TELEMETRY_ENVIRONMENT: autogpt-benchmark-ci

View File

@@ -139,7 +139,6 @@ jobs:
poetry run pytest -vv \
--cov=forge --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
forge
env:
CI: true
@@ -149,14 +148,8 @@ jobs:
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
- name: Upload test results to Codecov
if: ${{ !cancelled() }} # Run even if tests fail
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Upload coverage reports to Codecov
uses: codecov/codecov-action@v5
uses: codecov/codecov-action@v4
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: forge,${{ runner.os }}

View File

@@ -4,7 +4,7 @@ on:
push:
branches:
- master
- dev
- development
- 'ci-test*' # This will match any branch that starts with "ci-test"
paths:
- 'classic/frontend/**'
@@ -24,37 +24,37 @@ jobs:
BUILD_BRANCH: ${{ format('classic-frontend-build/{0}', github.ref_name) }}
steps:
- name: Checkout Repo
uses: actions/checkout@v4
- name: Checkout Repo
uses: actions/checkout@v4
- name: Setup Flutter
uses: subosito/flutter-action@v2
with:
flutter-version: '3.13.2'
- name: Setup Flutter
uses: subosito/flutter-action@v2
with:
flutter-version: '3.13.2'
- name: Build Flutter to Web
run: |
cd classic/frontend
flutter build web --base-href /app/
- name: Build Flutter to Web
run: |
cd classic/frontend
flutter build web --base-href /app/
# - name: Commit and Push to ${{ env.BUILD_BRANCH }}
# if: github.event_name == 'push'
# run: |
# git config --local user.email "action@github.com"
# git config --local user.name "GitHub Action"
# git add classic/frontend/build/web
# git checkout -B ${{ env.BUILD_BRANCH }}
# git commit -m "Update frontend build to ${GITHUB_SHA:0:7}" -a
# git push -f origin ${{ env.BUILD_BRANCH }}
# - name: Commit and Push to ${{ env.BUILD_BRANCH }}
# if: github.event_name == 'push'
# run: |
# git config --local user.email "action@github.com"
# git config --local user.name "GitHub Action"
# git add classic/frontend/build/web
# git checkout -B ${{ env.BUILD_BRANCH }}
# git commit -m "Update frontend build to ${GITHUB_SHA:0:7}" -a
# git push -f origin ${{ env.BUILD_BRANCH }}
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}
branch: ${{ env.BUILD_BRANCH }}
delete-branch: true
title: "Update frontend build in `${{ github.ref_name }}`"
body: "This PR updates the frontend build based on commit ${{ github.sha }}."
commit-message: "Update frontend build based on commit ${{ github.sha }}"
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}
branch: ${{ env.BUILD_BRANCH }}
delete-branch: true
title: "Update frontend build in `${{ github.ref_name }}`"
body: "This PR updates the frontend build based on commit ${{ github.sha }}."
commit-message: "Update frontend build based on commit ${{ github.sha }}"

View File

@@ -1,47 +0,0 @@
name: Claude Code
on:
issue_comment:
types: [created]
pull_request_review_comment:
types: [created]
issues:
types: [opened, assigned]
pull_request_review:
types: [submitted]
jobs:
claude:
if: |
(
(github.event_name == 'issue_comment' && contains(github.event.comment.body, '@claude')) ||
(github.event_name == 'pull_request_review_comment' && contains(github.event.comment.body, '@claude')) ||
(github.event_name == 'pull_request_review' && contains(github.event.review.body, '@claude')) ||
(github.event_name == 'issues' && (contains(github.event.issue.body, '@claude') || contains(github.event.issue.title, '@claude')))
) && (
github.event.comment.author_association == 'OWNER' ||
github.event.comment.author_association == 'MEMBER' ||
github.event.comment.author_association == 'COLLABORATOR' ||
github.event.review.author_association == 'OWNER' ||
github.event.review.author_association == 'MEMBER' ||
github.event.review.author_association == 'COLLABORATOR' ||
github.event.issue.author_association == 'OWNER' ||
github.event.issue.author_association == 'MEMBER' ||
github.event.issue.author_association == 'COLLABORATOR'
)
runs-on: ubuntu-latest
permissions:
contents: read
pull-requests: read
issues: read
id-token: write
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 1
- name: Run Claude Code
id: claude
uses: anthropics/claude-code-action@beta
with:
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}

View File

@@ -13,10 +13,9 @@ name: "CodeQL"
on:
push:
branches: [ "master", "release-*", "dev" ]
branches: [ "master", "release-*" ]
pull_request:
branches: [ "master", "release-*", "dev" ]
merge_group:
branches: [ "master", "release-*" ]
schedule:
- cron: '15 4 * * 0'

View File

@@ -1,4 +1,4 @@
name: AutoGPT Platform - Deploy Prod Environment
name: AutoGPT Platform - Build, Push, and Deploy Prod Environment
on:
release:
@@ -8,6 +8,12 @@ permissions:
contents: 'read'
id-token: 'write'
env:
PROJECT_ID: ${{ secrets.GCP_PROJECT_ID }}
GKE_CLUSTER: prod-gke-cluster
GKE_ZONE: us-central1-a
NAMESPACE: prod-agpt
jobs:
migrate:
environment: production
@@ -34,17 +40,143 @@ jobs:
python -m prisma migrate deploy
env:
DATABASE_URL: ${{ secrets.BACKEND_DATABASE_URL }}
DIRECT_URL: ${{ secrets.BACKEND_DATABASE_URL }}
- name: Run Market Migrations
working-directory: ./autogpt_platform/market
run: |
python -m prisma migrate deploy
env:
DATABASE_URL: ${{ secrets.MARKET_DATABASE_URL }}
trigger:
needs: migrate
build-push-deploy:
environment: production
name: Build, Push, and Deploy
runs-on: ubuntu-latest
steps:
- name: Trigger deploy workflow
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
event-type: build_deploy_prod
client-payload: '{"ref": "${{ github.ref }}", "sha": "${{ github.sha }}", "repository": "${{ github.repository }}"}'
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- id: 'auth'
uses: 'google-github-actions/auth@v2'
with:
workload_identity_provider: 'projects/1021527134101/locations/global/workloadIdentityPools/prod-pool/providers/github'
service_account: 'prod-github-actions-sa@agpt-prod.iam.gserviceaccount.com'
token_format: 'access_token'
create_credentials_file: true
- name: 'Set up Cloud SDK'
uses: 'google-github-actions/setup-gcloud@v2'
- name: 'Configure Docker'
run: |
gcloud auth configure-docker us-east1-docker.pkg.dev
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Cache Docker layers
uses: actions/cache@v4
with:
path: /tmp/.buildx-cache
key: ${{ runner.os }}-buildx-${{ github.sha }}
restore-keys: |
${{ runner.os }}-buildx-
- name: Check for changes
id: check_changes
run: |
git fetch origin master
BACKEND_CHANGED=$(git diff --name-only origin/master HEAD | grep "^autogpt_platform/backend/" && echo "true" || echo "false")
FRONTEND_CHANGED=$(git diff --name-only origin/master HEAD | grep "^autogpt_platform/frontend/" && echo "true" || echo "false")
MARKET_CHANGED=$(git diff --name-only origin/master HEAD | grep "^autogpt_platform/market/" && echo "true" || echo "false")
echo "backend_changed=$BACKEND_CHANGED" >> $GITHUB_OUTPUT
echo "frontend_changed=$FRONTEND_CHANGED" >> $GITHUB_OUTPUT
echo "market_changed=$MARKET_CHANGED" >> $GITHUB_OUTPUT
- name: Get GKE credentials
uses: 'google-github-actions/get-gke-credentials@v2'
with:
cluster_name: ${{ env.GKE_CLUSTER }}
location: ${{ env.GKE_ZONE }}
- name: Build and Push Backend
if: steps.check_changes.outputs.backend_changed == 'true'
uses: docker/build-push-action@v2
with:
context: .
file: ./autogpt_platform/backend/Dockerfile
push: true
tags: us-east1-docker.pkg.dev/agpt-prod/agpt-backend-prod/agpt-backend-prod:${{ github.sha }}
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache-new,mode=max
- name: Build and Push Frontend
if: steps.check_changes.outputs.frontend_changed == 'true'
uses: docker/build-push-action@v2
with:
context: .
file: ./autogpt_platform/frontend/Dockerfile
push: true
tags: us-east1-docker.pkg.dev/agpt-prod/agpt-frontend-prod/agpt-frontend-prod:${{ github.sha }}
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache-new,mode=max
- name: Build and Push Market
if: steps.check_changes.outputs.market_changed == 'true'
uses: docker/build-push-action@v2
with:
context: .
file: ./autogpt_platform/market/Dockerfile
push: true
tags: us-east1-docker.pkg.dev/agpt-prod/agpt-market-prod/agpt-market-prod:${{ github.sha }}
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache-new,mode=max
- name: Move cache
run: |
rm -rf /tmp/.buildx-cache
mv /tmp/.buildx-cache-new /tmp/.buildx-cache
- name: Set up Helm
uses: azure/setup-helm@v4
with:
version: v3.4.0
- name: Deploy Backend
if: steps.check_changes.outputs.backend_changed == 'true'
run: |
helm upgrade autogpt-server ./autogpt-server \
--namespace ${{ env.NAMESPACE }} \
-f autogpt-server/values.yaml \
-f autogpt-server/values.prod.yaml \
--set image.tag=${{ github.sha }}
- name: Deploy Websocket
if: steps.check_changes.outputs.backend_changed == 'true'
run: |
helm upgrade autogpt-websocket-server ./autogpt-websocket-server \
--namespace ${{ env.NAMESPACE }} \
-f autogpt-websocket-server/values.yaml \
-f autogpt-websocket-server/values.prod.yaml \
--set image.tag=${{ github.sha }}
- name: Deploy Market
if: steps.check_changes.outputs.market_changed == 'true'
run: |
helm upgrade autogpt-market ./autogpt-market \
--namespace ${{ env.NAMESPACE }} \
-f autogpt-market/values.yaml \
-f autogpt-market/values.prod.yaml \
--set image.tag=${{ github.sha }}
- name: Deploy Frontend
if: steps.check_changes.outputs.frontend_changed == 'true'
run: |
helm upgrade autogpt-builder ./autogpt-builder \
--namespace ${{ env.NAMESPACE }} \
-f autogpt-builder/values.yaml \
-f autogpt-builder/values.prod.yaml \
--set image.tag=${{ github.sha }}

View File

@@ -1,51 +0,0 @@
name: AutoGPT Platform - Deploy Dev Environment
on:
push:
branches: [ dev ]
paths:
- 'autogpt_platform/**'
permissions:
contents: 'read'
id-token: 'write'
jobs:
migrate:
environment: develop
name: Run migrations for AutoGPT Platform
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install Python dependencies
run: |
python -m pip install --upgrade pip
pip install prisma
- name: Run Backend Migrations
working-directory: ./autogpt_platform/backend
run: |
python -m prisma migrate deploy
env:
DATABASE_URL: ${{ secrets.BACKEND_DATABASE_URL }}
DIRECT_URL: ${{ secrets.BACKEND_DATABASE_URL }}
trigger:
needs: migrate
runs-on: ubuntu-latest
steps:
- name: Trigger deploy workflow
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
event-type: build_deploy_dev
client-payload: '{"ref": "${{ github.ref }}", "sha": "${{ github.sha }}", "repository": "${{ github.repository }}"}'

View File

@@ -0,0 +1,186 @@
name: AutoGPT Platform - Build, Push, and Deploy Dev Environment
on:
push:
branches: [ dev ]
paths:
- 'autogpt_platform/backend/**'
- 'autogpt_platform/frontend/**'
- 'autogpt_platform/market/**'
permissions:
contents: 'read'
id-token: 'write'
env:
PROJECT_ID: ${{ secrets.GCP_PROJECT_ID }}
GKE_CLUSTER: dev-gke-cluster
GKE_ZONE: us-central1-a
NAMESPACE: dev-agpt
jobs:
migrate:
environment: develop
name: Run migrations for AutoGPT Platform
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Install Python dependencies
run: |
python -m pip install --upgrade pip
pip install prisma
- name: Run Backend Migrations
working-directory: ./autogpt_platform/backend
run: |
python -m prisma migrate deploy
env:
DATABASE_URL: ${{ secrets.BACKEND_DATABASE_URL }}
- name: Run Market Migrations
working-directory: ./autogpt_platform/market
run: |
python -m prisma migrate deploy
env:
DATABASE_URL: ${{ secrets.MARKET_DATABASE_URL }}
build-push-deploy:
name: Build, Push, and Deploy
needs: migrate
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- id: 'auth'
uses: 'google-github-actions/auth@v2'
with:
workload_identity_provider: 'projects/638488734936/locations/global/workloadIdentityPools/dev-pool/providers/github'
service_account: 'dev-github-actions-sa@agpt-dev.iam.gserviceaccount.com'
token_format: 'access_token'
create_credentials_file: true
- name: 'Set up Cloud SDK'
uses: 'google-github-actions/setup-gcloud@v2'
- name: 'Configure Docker'
run: |
gcloud auth configure-docker us-east1-docker.pkg.dev
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Cache Docker layers
uses: actions/cache@v4
with:
path: /tmp/.buildx-cache
key: ${{ runner.os }}-buildx-${{ github.sha }}
restore-keys: |
${{ runner.os }}-buildx-
- name: Check for changes
id: check_changes
run: |
git fetch origin dev
BACKEND_CHANGED=$(git diff --name-only origin/dev HEAD | grep "^autogpt_platform/backend/" && echo "true" || echo "false")
FRONTEND_CHANGED=$(git diff --name-only origin/dev HEAD | grep "^autogpt_platform/frontend/" && echo "true" || echo "false")
MARKET_CHANGED=$(git diff --name-only origin/dev HEAD | grep "^autogpt_platform/market/" && echo "true" || echo "false")
echo "backend_changed=$BACKEND_CHANGED" >> $GITHUB_OUTPUT
echo "frontend_changed=$FRONTEND_CHANGED" >> $GITHUB_OUTPUT
echo "market_changed=$MARKET_CHANGED" >> $GITHUB_OUTPUT
- name: Get GKE credentials
uses: 'google-github-actions/get-gke-credentials@v2'
with:
cluster_name: ${{ env.GKE_CLUSTER }}
location: ${{ env.GKE_ZONE }}
- name: Build and Push Backend
if: steps.check_changes.outputs.backend_changed == 'true'
uses: docker/build-push-action@v2
with:
context: .
file: ./autogpt_platform/backend/Dockerfile
push: true
tags: us-east1-docker.pkg.dev/agpt-dev/agpt-backend-dev/agpt-backend-dev:${{ github.sha }}
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache-new,mode=max
- name: Build and Push Frontend
if: steps.check_changes.outputs.frontend_changed == 'true'
uses: docker/build-push-action@v2
with:
context: .
file: ./autogpt_platform/frontend/Dockerfile
push: true
tags: us-east1-docker.pkg.dev/agpt-dev/agpt-frontend-dev/agpt-frontend-dev:${{ github.sha }}
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache-new,mode=max
- name: Build and Push Market
if: steps.check_changes.outputs.market_changed == 'true'
uses: docker/build-push-action@v2
with:
context: .
file: ./autogpt_platform/market/Dockerfile
push: true
tags: us-east1-docker.pkg.dev/agpt-dev/agpt-market-dev/agpt-market-dev:${{ github.sha }}
cache-from: type=local,src=/tmp/.buildx-cache
cache-to: type=local,dest=/tmp/.buildx-cache-new,mode=max
- name: Move cache
run: |
rm -rf /tmp/.buildx-cache
mv /tmp/.buildx-cache-new /tmp/.buildx-cache
- name: Set up Helm
uses: azure/setup-helm@v4
with:
version: v3.4.0
- name: Deploy Backend
if: steps.check_changes.outputs.backend_changed == 'true'
run: |
helm upgrade autogpt-server ./autogpt-server \
--namespace ${{ env.NAMESPACE }} \
-f autogpt-server/values.yaml \
-f autogpt-server/values.dev.yaml \
--set image.tag=${{ github.sha }}
- name: Deploy Websocket
if: steps.check_changes.outputs.backend_changed == 'true'
run: |
helm upgrade autogpt-websocket-server ./autogpt-websocket-server \
--namespace ${{ env.NAMESPACE }} \
-f autogpt-websocket-server/values.yaml \
-f autogpt-websocket-server/values.dev.yaml \
--set image.tag=${{ github.sha }}
- name: Deploy Market
if: steps.check_changes.outputs.market_changed == 'true'
run: |
helm upgrade autogpt-market ./autogpt-market \
--namespace ${{ env.NAMESPACE }} \
-f autogpt-market/values.yaml \
-f autogpt-market/values.dev.yaml \
--set image.tag=${{ github.sha }}
- name: Deploy Frontend
if: steps.check_changes.outputs.frontend_changed == 'true'
run: |
helm upgrade autogpt-builder ./autogpt-builder \
--namespace ${{ env.NAMESPACE }} \
-f autogpt-builder/values.yaml \
-f autogpt-builder/values.dev.yaml \
--set image.tag=${{ github.sha }}

View File

@@ -0,0 +1,56 @@
name: AutoGPT Platform - Infra
on:
push:
branches: [ master, dev ]
paths:
- '.github/workflows/platform-autogpt-infra-ci.yml'
- 'autogpt_platform/infra/**'
pull_request:
paths:
- '.github/workflows/platform-autogpt-infra-ci.yml'
- 'autogpt_platform/infra/**'
defaults:
run:
shell: bash
working-directory: autogpt_platform/infra
jobs:
lint:
runs-on: ubuntu-latest
steps:
- name: Checkout
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: TFLint
uses: pauloconnor/tflint-action@v0.0.2
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
with:
tflint_path: terraform/
tflint_recurse: true
tflint_changed_only: false
- name: Set up Helm
uses: azure/setup-helm@v4
with:
version: v3.14.4
- name: Set up chart-testing
uses: helm/chart-testing-action@v2.6.1
- name: Run chart-testing (list-changed)
id: list-changed
run: |
changed=$(ct list-changed --target-branch ${{ github.event.repository.default_branch }})
if [[ -n "$changed" ]]; then
echo "changed=true" >> "$GITHUB_OUTPUT"
fi
- name: Run chart-testing (lint)
if: steps.list-changed.outputs.changed == 'true'
run: ct lint --target-branch ${{ github.event.repository.default_branch }}

View File

@@ -6,14 +6,11 @@ on:
paths:
- ".github/workflows/platform-backend-ci.yml"
- "autogpt_platform/backend/**"
- "autogpt_platform/autogpt_libs/**"
pull_request:
branches: [master, dev, release-*]
paths:
- ".github/workflows/platform-backend-ci.yml"
- "autogpt_platform/backend/**"
- "autogpt_platform/autogpt_libs/**"
merge_group:
concurrency:
group: ${{ format('backend-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -32,7 +29,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.11"]
python-version: ["3.10"]
runs-on: ubuntu-latest
services:
@@ -42,31 +39,6 @@ jobs:
REDIS_PASSWORD: testpassword
ports:
- 6379:6379
rabbitmq:
image: rabbitmq:3.12-management
ports:
- 5672:5672
- 15672:15672
env:
RABBITMQ_DEFAULT_USER: ${{ env.RABBITMQ_DEFAULT_USER }}
RABBITMQ_DEFAULT_PASS: ${{ env.RABBITMQ_DEFAULT_PASS }}
clamav:
image: clamav/clamav-debian:latest
ports:
- 3310:3310
env:
CLAMAV_NO_FRESHCLAMD: false
CLAMD_CONF_StreamMaxLength: 50M
CLAMD_CONF_MaxFileSize: 100M
CLAMD_CONF_MaxScanSize: 100M
CLAMD_CONF_MaxThreads: 4
CLAMD_CONF_ReadTimeout: 300
options: >-
--health-cmd "clamdscan --version || exit 1"
--health-interval 30s
--health-timeout 10s
--health-retries 5
--health-start-period 180s
steps:
- name: Checkout repository
@@ -83,7 +55,7 @@ jobs:
- name: Setup Supabase
uses: supabase/setup-cli@v1
with:
version: 1.178.1
version: latest
- id: get_date
name: Get date
@@ -97,40 +69,12 @@ jobs:
- name: Install Poetry (Unix)
run: |
# Extract Poetry version from backend/poetry.lock
HEAD_POETRY_VERSION=$(python ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
echo "Found Poetry version ${HEAD_POETRY_VERSION} in backend/poetry.lock"
if [ -n "$BASE_REF" ]; then
BASE_BRANCH=${BASE_REF/refs\/heads\//}
BASE_POETRY_VERSION=$((git show "origin/$BASE_BRANCH":./poetry.lock; true) | python ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry -)
echo "Found Poetry version ${BASE_POETRY_VERSION} in backend/poetry.lock on ${BASE_REF}"
POETRY_VERSION=$(printf '%s\n' "$HEAD_POETRY_VERSION" "$BASE_POETRY_VERSION" | sort -V | tail -n1)
else
POETRY_VERSION=$HEAD_POETRY_VERSION
fi
echo "Using Poetry version ${POETRY_VERSION}"
# Install Poetry
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$POETRY_VERSION python3 -
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
env:
BASE_REF: ${{ github.base_ref || github.event.merge_group.base_ref }}
- name: Check poetry.lock
run: |
poetry lock
if ! git diff --quiet --ignore-matching-lines="^# " poetry.lock; then
echo "Error: poetry.lock not up to date."
echo
git diff poetry.lock
exit 1
fi
- name: Install Python dependencies
run: poetry install
@@ -148,40 +92,10 @@ jobs:
# outputs:
# DB_URL, API_URL, GRAPHQL_URL, ANON_KEY, SERVICE_ROLE_KEY, JWT_SECRET
- name: Wait for ClamAV to be ready
run: |
echo "Waiting for ClamAV daemon to start..."
max_attempts=60
attempt=0
until nc -z localhost 3310 || [ $attempt -eq $max_attempts ]; do
echo "ClamAV is unavailable - sleeping (attempt $((attempt+1))/$max_attempts)"
sleep 5
attempt=$((attempt+1))
done
if [ $attempt -eq $max_attempts ]; then
echo "ClamAV failed to start after $((max_attempts*5)) seconds"
echo "Checking ClamAV service logs..."
docker logs $(docker ps -q --filter "ancestor=clamav/clamav-debian:latest") 2>&1 | tail -50 || echo "No ClamAV container found"
exit 1
fi
echo "ClamAV is ready!"
# Verify ClamAV is responsive
echo "Testing ClamAV connection..."
timeout 10 bash -c 'echo "PING" | nc localhost 3310' || {
echo "ClamAV is not responding to PING"
docker logs $(docker ps -q --filter "ancestor=clamav/clamav-debian:latest") 2>&1 | tail -50 || echo "No ClamAV container found"
exit 1
}
- name: Run Database Migrations
run: poetry run prisma migrate dev --name updates
env:
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}
- id: lint
name: Run Linter
@@ -190,22 +104,20 @@ jobs:
- name: Run pytest with coverage
run: |
if [[ "${{ runner.debug }}" == "1" ]]; then
poetry run pytest -s -vv -o log_cli=true -o log_cli_level=DEBUG
poetry run pytest -s -vv -o log_cli=true -o log_cli_level=DEBUG test
else
poetry run pytest -s -vv
poetry run pytest -s -vv test
fi
if: success() || (failure() && steps.lint.outcome == 'failure')
env:
LOG_LEVEL: ${{ runner.debug && 'DEBUG' || 'INFO' }}
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}
SUPABASE_URL: ${{ steps.supabase.outputs.API_URL }}
SUPABASE_SERVICE_ROLE_KEY: ${{ steps.supabase.outputs.SERVICE_ROLE_KEY }}
SUPABASE_JWT_SECRET: ${{ steps.supabase.outputs.JWT_SECRET }}
REDIS_HOST: "localhost"
REDIS_PORT: "6379"
REDIS_PASSWORD: "testpassword"
ENCRYPTION_KEY: "dvziYgz0KSK8FENhju0ZYi8-fRTfAdlz6YLhdB_jhNw=" # DO NOT USE IN PRODUCTION!!
REDIS_HOST: 'localhost'
REDIS_PORT: '6379'
REDIS_PASSWORD: 'testpassword'
env:
CI: true
@@ -213,13 +125,6 @@ jobs:
RUN_ENV: local
PORT: 8080
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
# We know these are here, don't report this as a security vulnerability
# This is used as the default credential for the entire system's RabbitMQ instance
# If you want to replace this, you can do so by making our entire system generate
# new credentials for each local user and update the environment variables in
# the backend service, docker composes, and examples
RABBITMQ_DEFAULT_USER: "rabbitmq_user_default"
RABBITMQ_DEFAULT_PASS: "k0VMxyIJF9S35f3x2uaw5IWAl6Y536O7"
# - name: Upload coverage reports to Codecov
# uses: codecov/codecov-action@v4

View File

@@ -1,198 +0,0 @@
name: AutoGPT Platform - Dev Deploy PR Event Dispatcher
on:
pull_request:
types: [closed]
issue_comment:
types: [created]
permissions:
issues: write
pull-requests: write
jobs:
dispatch:
runs-on: ubuntu-latest
steps:
- name: Check comment permissions and deployment status
id: check_status
if: github.event_name == 'issue_comment' && github.event.issue.pull_request
uses: actions/github-script@v7
with:
script: |
const commentBody = context.payload.comment.body.trim();
const commentUser = context.payload.comment.user.login;
const prAuthor = context.payload.issue.user.login;
const authorAssociation = context.payload.comment.author_association;
// Check permissions
const hasPermission = (
authorAssociation === 'OWNER' ||
authorAssociation === 'MEMBER' ||
authorAssociation === 'COLLABORATOR'
);
core.setOutput('comment_body', commentBody);
core.setOutput('has_permission', hasPermission);
if (!hasPermission && (commentBody === '!deploy' || commentBody === '!undeploy')) {
core.setOutput('permission_denied', 'true');
return;
}
if (commentBody !== '!deploy' && commentBody !== '!undeploy') {
return;
}
// Process deploy command
if (commentBody === '!deploy') {
core.setOutput('should_deploy', 'true');
}
// Process undeploy command
else if (commentBody === '!undeploy') {
core.setOutput('should_undeploy', 'true');
}
- name: Post permission denied comment
if: steps.check_status.outputs.permission_denied == 'true'
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: `❌ **Permission denied**: Only the repository owners, members, or collaborators can use deployment commands.`
});
- name: Get PR details for deployment
id: pr_details
if: steps.check_status.outputs.should_deploy == 'true' || steps.check_status.outputs.should_undeploy == 'true'
uses: actions/github-script@v7
with:
script: |
const pr = await github.rest.pulls.get({
owner: context.repo.owner,
repo: context.repo.repo,
pull_number: context.issue.number
});
core.setOutput('pr_number', pr.data.number);
core.setOutput('pr_title', pr.data.title);
core.setOutput('pr_state', pr.data.state);
- name: Dispatch Deploy Event
if: steps.check_status.outputs.should_deploy == 'true'
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
event-type: pr-event
client-payload: |
{
"action": "deploy",
"pr_number": "${{ steps.pr_details.outputs.pr_number }}",
"pr_title": "${{ steps.pr_details.outputs.pr_title }}",
"pr_state": "${{ steps.pr_details.outputs.pr_state }}",
"repo": "${{ github.repository }}"
}
- name: Post deploy success comment
if: steps.check_status.outputs.should_deploy == 'true'
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: `🚀 **Deploying PR #${{ steps.pr_details.outputs.pr_number }}** to development environment...`
});
- name: Dispatch Undeploy Event (from comment)
if: steps.check_status.outputs.should_undeploy == 'true'
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
event-type: pr-event
client-payload: |
{
"action": "undeploy",
"pr_number": "${{ steps.pr_details.outputs.pr_number }}",
"pr_title": "${{ steps.pr_details.outputs.pr_title }}",
"pr_state": "${{ steps.pr_details.outputs.pr_state }}",
"repo": "${{ github.repository }}"
}
- name: Post undeploy success comment
if: steps.check_status.outputs.should_undeploy == 'true'
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: `🗑️ **Undeploying PR #${{ steps.pr_details.outputs.pr_number }}** from development environment...`
});
- name: Check deployment status on PR close
id: check_pr_close
if: github.event_name == 'pull_request' && github.event.action == 'closed'
uses: actions/github-script@v7
with:
script: |
const comments = await github.rest.issues.listComments({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number
});
let lastDeployIndex = -1;
let lastUndeployIndex = -1;
comments.data.forEach((comment, index) => {
if (comment.body.trim() === '!deploy') {
lastDeployIndex = index;
} else if (comment.body.trim() === '!undeploy') {
lastUndeployIndex = index;
}
});
// Should undeploy if there's a !deploy without a subsequent !undeploy
const shouldUndeploy = lastDeployIndex !== -1 && lastDeployIndex > lastUndeployIndex;
core.setOutput('should_undeploy', shouldUndeploy);
- name: Dispatch Undeploy Event (PR closed with active deployment)
if: >-
github.event_name == 'pull_request' &&
github.event.action == 'closed' &&
steps.check_pr_close.outputs.should_undeploy == 'true'
uses: peter-evans/repository-dispatch@v3
with:
token: ${{ secrets.DISPATCH_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
event-type: pr-event
client-payload: |
{
"action": "undeploy",
"pr_number": "${{ github.event.pull_request.number }}",
"pr_title": "${{ github.event.pull_request.title }}",
"pr_state": "${{ github.event.pull_request.state }}",
"repo": "${{ github.repository }}"
}
- name: Post PR close undeploy comment
if: >-
github.event_name == 'pull_request' &&
github.event.action == 'closed' &&
steps.check_pr_close.outputs.should_undeploy == 'true'
uses: actions/github-script@v7
with:
script: |
await github.rest.issues.createComment({
owner: context.repo.owner,
repo: context.repo.repo,
issue_number: context.issue.number,
body: `🧹 **Auto-undeploying**: PR closed with active deployment. Cleaning up development environment for PR #${{ github.event.pull_request.number }}.`
});

View File

@@ -10,7 +10,6 @@ on:
paths:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
merge_group:
defaults:
run:
@@ -18,146 +17,44 @@ defaults:
working-directory: autogpt_platform/frontend
jobs:
setup:
runs-on: ubuntu-latest
outputs:
cache-key: ${{ steps.cache-key.outputs.key }}
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "21"
- name: Enable corepack
run: corepack enable
- name: Generate cache key
id: cache-key
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('**/pnpm-lock.yaml') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
restore-keys: |
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
lint:
runs-on: ubuntu-latest
needs: setup
steps:
- name: Checkout repository
uses: actions/checkout@v4
- uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "21"
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
run: |
yarn install --frozen-lockfile
- name: Run lint
run: pnpm lint
type-check:
runs-on: ubuntu-latest
needs: setup
steps:
- name: Checkout repository
uses: actions/checkout@v4
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "21"
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
- name: Run tsc check
run: pnpm type-check
chromatic:
runs-on: ubuntu-latest
needs: setup
# Only run on dev branch pushes or PRs targeting dev
if: github.ref == 'refs/heads/dev' || github.base_ref == 'dev'
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "21"
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
- name: Run Chromatic
uses: chromaui/action@latest
with:
projectToken: chpt_9e7c1a76478c9c8
onlyChanged: true
workingDir: autogpt_platform/frontend
token: ${{ secrets.GITHUB_TOKEN }}
run: |
yarn lint
test:
runs-on: ubuntu-latest
needs: setup
strategy:
fail-fast: false
matrix:
browser: [chromium, webkit]
steps:
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@main
with:
# this might remove tools that are actually needed,
# if set to "true" but frees about 6 GB
tool-cache: false
# all of these default to true, but feel free to set to
# "false" if necessary for your workflow
android: false
dotnet: false
haskell: false
large-packages: true
docker-images: true
swap-storage: true
- name: Checkout repository
uses: actions/checkout@v4
with:
@@ -168,60 +65,32 @@ jobs:
with:
node-version: "21"
- name: Enable corepack
run: corepack enable
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@main
with:
large-packages: false # slow
docker-images: false # limited benefit
- name: Copy default supabase .env
run: |
cp ../.env.example ../.env
- name: Copy backend .env
run: |
cp ../backend/.env.example ../backend/.env
cp ../supabase/docker/.env.example ../.env
- name: Run docker compose
run: |
docker compose -f ../docker-compose.yml up -d
- name: Restore dependencies cache
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
run: |
yarn install --frozen-lockfile
- name: Setup .env
run: cp .env.example .env
- name: Setup Builder .env
run: |
cp .env.example .env
- name: Build frontend
run: pnpm build --turbo
# uses Turbopack, much faster and safe enough for a test pipeline
- name: Install Playwright Browsers
run: yarn playwright install --with-deps
- name: Install Browser '${{ matrix.browser }}'
run: pnpm playwright install --with-deps ${{ matrix.browser }}
- name: Run Playwright tests
run: pnpm test:no-build --project=${{ matrix.browser }}
env:
BROWSER_TYPE: ${{ matrix.browser }}
- name: Print Final Docker Compose logs
if: always()
run: docker compose -f ../docker-compose.yml logs
- name: Run tests
run: |
yarn test
- uses: actions/upload-artifact@v4
if: ${{ !cancelled() }}
with:
name: playwright-report-${{ matrix.browser }}
name: playwright-report
path: playwright-report/
retention-days: 30

125
.github/workflows/platform-market-ci.yml vendored Normal file
View File

@@ -0,0 +1,125 @@
name: AutoGPT Platform - Backend CI
on:
push:
branches: [master, dev, ci-test*]
paths:
- ".github/workflows/platform-market-ci.yml"
- "autogpt_platform/market/**"
pull_request:
branches: [master, dev, release-*]
paths:
- ".github/workflows/platform-market-ci.yml"
- "autogpt_platform/market/**"
concurrency:
group: ${{ format('backend-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
cancel-in-progress: ${{ startsWith(github.event_name, 'pull_request') }}
defaults:
run:
shell: bash
working-directory: autogpt_platform/market
jobs:
test:
permissions:
contents: read
timeout-minutes: 30
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
- name: Setup Supabase
uses: supabase/setup-cli@v1
with:
version: latest
- id: get_date
name: Get date
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Set up Python dependency cache
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/market/poetry.lock') }}
- name: Install Poetry (Unix)
run: |
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Python dependencies
run: poetry install
- name: Generate Prisma Client
run: poetry run prisma generate
- id: supabase
name: Start Supabase
working-directory: .
run: |
supabase init
supabase start --exclude postgres-meta,realtime,storage-api,imgproxy,inbucket,studio,edge-runtime,logflare,vector,supavisor
supabase status -o env | sed 's/="/=/; s/"$//' >> $GITHUB_OUTPUT
# outputs:
# DB_URL, API_URL, GRAPHQL_URL, ANON_KEY, SERVICE_ROLE_KEY, JWT_SECRET
- name: Run Database Migrations
run: poetry run prisma migrate dev --name updates
env:
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
- id: lint
name: Run Linter
run: poetry run lint
# Tests comment out because they do not work with prisma mock, nor have they been updated since they were created
# - name: Run pytest with coverage
# run: |
# if [[ "${{ runner.debug }}" == "1" ]]; then
# poetry run pytest -s -vv -o log_cli=true -o log_cli_level=DEBUG test
# else
# poetry run pytest -s -vv test
# fi
# if: success() || (failure() && steps.lint.outcome == 'failure')
# env:
# LOG_LEVEL: ${{ runner.debug && 'DEBUG' || 'INFO' }}
# DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
# SUPABASE_URL: ${{ steps.supabase.outputs.API_URL }}
# SUPABASE_SERVICE_ROLE_KEY: ${{ steps.supabase.outputs.SERVICE_ROLE_KEY }}
# SUPABASE_JWT_SECRET: ${{ steps.supabase.outputs.JWT_SECRET }}
# REDIS_HOST: 'localhost'
# REDIS_PORT: '6379'
# REDIS_PASSWORD: 'testpassword'
env:
CI: true
PLAIN_OUTPUT: True
RUN_ENV: local
PORT: 8080
# - name: Upload coverage reports to Codecov
# uses: codecov/codecov-action@v4
# with:
# token: ${{ secrets.CODECOV_TOKEN }}
# flags: backend,${{ runner.os }}

View File

@@ -16,7 +16,7 @@ jobs:
# operations-per-run: 5000
stale-issue-message: >
This issue has automatically been marked as _stale_ because it has not had
any activity in the last 170 days. You can _unstale_ it by commenting or
any activity in the last 50 days. You can _unstale_ it by commenting or
removing the label. Otherwise, this issue will be closed in 10 days.
stale-pr-message: >
This pull request has automatically been marked as _stale_ because it has
@@ -25,7 +25,7 @@ jobs:
close-issue-message: >
This issue was closed automatically because it has been stale for 10 days
with no activity.
days-before-stale: 170
days-before-stale: 50
days-before-close: 10
# Do not touch meta issues:
exempt-issue-labels: meta,fridge,project management

View File

@@ -2,7 +2,6 @@ name: Repo - PR Status Checker
on:
pull_request:
types: [opened, synchronize, reopened]
merge_group:
jobs:
status-check:

View File

@@ -7,18 +7,13 @@ from typing import Dict, List, Tuple
CHECK_INTERVAL = 30
def get_environment_variables() -> Tuple[str, str, str, str, str]:
"""Retrieve and return necessary environment variables."""
try:
with open(os.environ["GITHUB_EVENT_PATH"]) as f:
event = json.load(f)
# Handle both PR and merge group events
if "pull_request" in event:
sha = event["pull_request"]["head"]["sha"]
else:
sha = os.environ["GITHUB_SHA"]
sha = event["pull_request"]["head"]["sha"]
return (
os.environ["GITHUB_API_URL"],

View File

@@ -1,60 +0,0 @@
#!/usr/bin/env python3
import sys
if sys.version_info < (3, 11):
print("Python version 3.11 or higher required")
sys.exit(1)
import tomllib
def get_package_version(package_name: str, lockfile_path: str) -> str | None:
"""Extract package version from poetry.lock file."""
try:
if lockfile_path == "-":
data = tomllib.load(sys.stdin.buffer)
else:
with open(lockfile_path, "rb") as f:
data = tomllib.load(f)
except FileNotFoundError:
print(f"Error: File '{lockfile_path}' not found", file=sys.stderr)
sys.exit(1)
except tomllib.TOMLDecodeError as e:
print(f"Error parsing TOML file: {e}", file=sys.stderr)
sys.exit(1)
except Exception as e:
print(f"Error reading file: {e}", file=sys.stderr)
sys.exit(1)
# Look for the package in the packages list
packages = data.get("package", [])
for package in packages:
if package.get("name", "").lower() == package_name.lower():
return package.get("version")
return None
def main():
if len(sys.argv) not in (2, 3):
print(
"Usages: python get_package_version_from_lockfile.py <package name> [poetry.lock path]\n"
" cat poetry.lock | python get_package_version_from_lockfile.py <package name> -",
file=sys.stderr,
)
sys.exit(1)
package_name = sys.argv[1]
lockfile_path = sys.argv[2] if len(sys.argv) == 3 else "poetry.lock"
version = get_package_version(package_name, lockfile_path)
if version:
print(version)
else:
print(f"Package '{package_name}' not found in {lockfile_path}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()

8
.gitignore vendored
View File

@@ -165,15 +165,9 @@ package-lock.json
# Allow for locally private items
# private
pri*
pri*
# ignore
ig*
.github_access_token
LICENSE.rtf
autogpt_platform/backend/settings.py
/.auth
/autogpt_platform/frontend/.auth
*.ign.*
.test-contents
.claude/settings.local.json

3
.gitmodules vendored
View File

@@ -1,3 +1,6 @@
[submodule "classic/forge/tests/vcr_cassettes"]
path = classic/forge/tests/vcr_cassettes
url = https://github.com/Significant-Gravitas/Auto-GPT-test-cassettes
[submodule "autogpt_platform/supabase"]
path = autogpt_platform/supabase
url = https://github.com/supabase/supabase.git

View File

@@ -9,7 +9,7 @@ repos:
- id: check-merge-conflict
- id: check-symlinks
- id: debug-statements
- repo: https://github.com/Yelp/detect-secrets
rev: v1.5.0
hooks:
@@ -17,135 +17,41 @@ repos:
name: Detect secrets
description: Detects high entropy strings that are likely to be passwords.
files: ^autogpt_platform/
stages: [pre-push]
- repo: local
# For proper type checking, all dependencies need to be up-to-date.
# It's also a good idea to check that poetry.lock is consistent with pyproject.toml.
hooks:
- id: poetry-install
name: Check & Install dependencies - AutoGPT Platform - Backend
alias: poetry-install-platform-backend
entry: poetry -C autogpt_platform/backend install
# include autogpt_libs source (since it's a path dependency)
files: ^autogpt_platform/(backend|autogpt_libs)/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - AutoGPT Platform - Libs
alias: poetry-install-platform-libs
entry: poetry -C autogpt_platform/autogpt_libs install
files: ^autogpt_platform/autogpt_libs/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - AutoGPT
alias: poetry-install-classic-autogpt
entry: poetry -C classic/original_autogpt install
# include forge source (since it's a path dependency)
files: ^classic/(original_autogpt|forge)/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Forge
alias: poetry-install-classic-forge
entry: poetry -C classic/forge install
files: ^classic/forge/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Benchmark
alias: poetry-install-classic-benchmark
entry: poetry -C classic/benchmark install
files: ^classic/benchmark/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- repo: local
# For proper type checking, Prisma client must be up-to-date.
hooks:
- id: prisma-generate
name: Prisma Generate - AutoGPT Platform - Backend
alias: prisma-generate-platform-backend
entry: bash -c 'cd autogpt_platform/backend && poetry run prisma generate'
# include everything that triggers poetry install + the prisma schema
files: ^autogpt_platform/((backend|autogpt_libs)/poetry\.lock|backend/schema.prisma)$
types: [file]
language: system
pass_filenames: false
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.7.2
hooks:
- id: ruff
name: Lint (Ruff) - AutoGPT Platform - Backend
alias: ruff-lint-platform-backend
files: ^autogpt_platform/backend/
args: [--fix]
- id: ruff
name: Lint (Ruff) - AutoGPT Platform - Libs
alias: ruff-lint-platform-libs
files: ^autogpt_platform/autogpt_libs/
args: [--fix]
- id: ruff-format
name: Format (Ruff) - AutoGPT Platform - Libs
alias: ruff-lint-platform-libs
files: ^autogpt_platform/autogpt_libs/
stages: [push]
- repo: local
# isort needs the context of which packages are installed to function, so we
# can't use a vendored isort pre-commit hook (which runs in its own isolated venv).
hooks:
- id: isort
name: Lint (isort) - AutoGPT Platform - Backend
alias: isort-platform-backend
entry: poetry -P autogpt_platform/backend run isort -p backend
files: ^autogpt_platform/backend/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - AutoGPT
alias: isort-classic-autogpt
entry: poetry -P classic/original_autogpt run isort -p autogpt
- id: isort-autogpt
name: Lint (isort) - AutoGPT
entry: poetry -C classic/original_autogpt run isort
files: ^classic/original_autogpt/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Forge
alias: isort-classic-forge
entry: poetry -P classic/forge run isort -p forge
- id: isort-forge
name: Lint (isort) - Forge
entry: poetry -C classic/forge run isort
files: ^classic/forge/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Benchmark
alias: isort-classic-benchmark
entry: poetry -P classic/benchmark run isort -p agbenchmark
- id: isort-benchmark
name: Lint (isort) - Benchmark
entry: poetry -C classic/benchmark run isort
files: ^classic/benchmark/
types: [file, python]
language: system
- repo: https://github.com/psf/black
rev: 24.10.0
rev: 23.12.1
# Black has sensible defaults, doesn't need package context, and ignores
# everything in .gitignore, so it works fine without any config or arguments.
hooks:
- id: black
name: Format (Black)
name: Lint (Black)
language_version: python3.12
- repo: https://github.com/PyCQA/flake8
rev: 7.0.0
@@ -153,79 +59,53 @@ repos:
# them separately.
hooks:
- id: flake8
name: Lint (Flake8) - Classic - AutoGPT
alias: flake8-classic-autogpt
name: Lint (Flake8) - AutoGPT
alias: flake8-autogpt
files: ^classic/original_autogpt/(autogpt|scripts|tests)/
args: [--config=classic/original_autogpt/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Forge
alias: flake8-classic-forge
name: Lint (Flake8) - Forge
alias: flake8-forge
files: ^classic/forge/(forge|tests)/
args: [--config=classic/forge/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Benchmark
alias: flake8-classic-benchmark
name: Lint (Flake8) - Benchmark
alias: flake8-benchmark
files: ^classic/benchmark/(agbenchmark|tests)/((?!reports).)*[/.]
args: [--config=classic/benchmark/.flake8]
- repo: local
hooks:
- id: prettier
name: Format (Prettier) - AutoGPT Platform - Frontend
alias: format-platform-frontend
entry: bash -c 'cd autogpt_platform/frontend && npx prettier --write $(echo "$@" | sed "s|autogpt_platform/frontend/||g")' --
files: ^autogpt_platform/frontend/
types: [file]
language: system
- repo: local
# To have watertight type checking, we check *all* the files in an affected
# project. To trigger on poetry.lock we also reset the file `types` filter.
hooks:
- id: pyright
name: Typecheck - AutoGPT Platform - Backend
alias: pyright-platform-backend
entry: poetry -C autogpt_platform/backend run pyright
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^autogpt_platform/(backend/((backend|test)/|(\w+\.py|poetry\.lock)$)|autogpt_libs/(autogpt_libs/.*(?<!_test)\.py|poetry\.lock)$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - AutoGPT Platform - Libs
alias: pyright-platform-libs
entry: poetry -C autogpt_platform/autogpt_libs run pyright
files: ^autogpt_platform/autogpt_libs/(autogpt_libs/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - AutoGPT
alias: pyright-classic-autogpt
name: Typecheck - AutoGPT
alias: pyright-autogpt
entry: poetry -C classic/original_autogpt run pyright
args: [-p, autogpt, autogpt]
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^(classic/original_autogpt/((autogpt|scripts|tests)/|poetry\.lock$)|classic/forge/(forge/.*(?<!_test)\.py|poetry\.lock)$)
files: ^(classic/original_autogpt/((autogpt|scripts|tests)/|poetry\.lock$)|classic/forge/(classic/forge/.*(?<!_test)\.py|poetry\.lock)$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Forge
alias: pyright-classic-forge
name: Typecheck - Forge
alias: pyright-forge
entry: poetry -C classic/forge run pyright
files: ^classic/forge/(forge/|poetry\.lock$)
args: [-p, forge, forge]
files: ^classic/forge/(classic/forge/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Benchmark
alias: pyright-classic-benchmark
name: Typecheck - Benchmark
alias: pyright-benchmark
entry: poetry -C classic/benchmark run pyright
args: [-p, benchmark, benchmark]
files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
types: [file]
language: system
@@ -233,46 +113,24 @@ repos:
- repo: local
hooks:
- id: tsc
name: Typecheck - AutoGPT Platform - Frontend
entry: bash -c 'cd autogpt_platform/frontend && pnpm type-check'
files: ^autogpt_platform/frontend/
types: [file]
- id: pytest-autogpt
name: Run tests - AutoGPT (excl. slow tests)
entry: bash -c 'cd classic/original_autogpt && poetry run pytest --cov=autogpt -m "not slow" tests/unit tests/integration'
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^(classic/original_autogpt/((autogpt|tests)/|poetry\.lock$)|classic/forge/(classic/forge/.*(?<!_test)\.py|poetry\.lock)$)
language: system
pass_filenames: false
# - repo: local
# hooks:
# - id: pytest
# name: Run tests - AutoGPT Platform - Backend
# alias: pytest-platform-backend
# entry: bash -c 'cd autogpt_platform/backend && poetry run pytest'
# # include autogpt_libs source (since it's a path dependency) but exclude *_test.py files:
# files: ^autogpt_platform/(backend/((backend|test)/|poetry\.lock$)|autogpt_libs/(autogpt_libs/.*(?<!_test)\.py|poetry\.lock)$)
# language: system
# pass_filenames: false
- id: pytest-forge
name: Run tests - Forge (excl. slow tests)
entry: bash -c 'cd classic/forge && poetry run pytest --cov=forge -m "not slow"'
files: ^classic/forge/(classic/forge/|tests/|poetry\.lock$)
language: system
pass_filenames: false
# - id: pytest
# name: Run tests - Classic - AutoGPT (excl. slow tests)
# alias: pytest-classic-autogpt
# entry: bash -c 'cd classic/original_autogpt && poetry run pytest --cov=autogpt -m "not slow" tests/unit tests/integration'
# # include forge source (since it's a path dependency) but exclude *_test.py files:
# files: ^(classic/original_autogpt/((autogpt|tests)/|poetry\.lock$)|classic/forge/(forge/.*(?<!_test)\.py|poetry\.lock)$)
# language: system
# pass_filenames: false
# - id: pytest
# name: Run tests - Classic - Forge (excl. slow tests)
# alias: pytest-classic-forge
# entry: bash -c 'cd classic/forge && poetry run pytest --cov=forge -m "not slow"'
# files: ^classic/forge/(forge/|tests/|poetry\.lock$)
# language: system
# pass_filenames: false
# - id: pytest
# name: Run tests - Classic - Benchmark
# alias: pytest-classic-benchmark
# entry: bash -c 'cd classic/benchmark && poetry run pytest --cov=benchmark'
# files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
# language: system
# pass_filenames: false
- id: pytest-benchmark
name: Run tests - Benchmark
entry: bash -c 'cd classic/benchmark && poetry run pytest --cov=benchmark'
files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
language: system
pass_filenames: false

67
.vscode/launch.json vendored
View File

@@ -1,67 +0,0 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "Frontend: Server Side",
"type": "node-terminal",
"request": "launch",
"cwd": "${workspaceFolder}/autogpt_platform/frontend",
"command": "yarn dev"
},
{
"name": "Frontend: Client Side",
"type": "msedge",
"request": "launch",
"url": "http://localhost:3000"
},
{
"name": "Frontend: Full Stack",
"type": "node-terminal",
"request": "launch",
"command": "yarn dev",
"cwd": "${workspaceFolder}/autogpt_platform/frontend",
"serverReadyAction": {
"pattern": "- Local:.+(https?://.+)",
"uriFormat": "%s",
"action": "debugWithEdge"
}
},
{
"name": "Backend",
"type": "debugpy",
"request": "launch",
"module": "backend.app",
"env": {
"OBJC_DISABLE_INITIALIZE_FORK_SAFETY": "YES"
},
"envFile": "${workspaceFolder}/backend/.env",
"justMyCode": false,
"cwd": "${workspaceFolder}/autogpt_platform/backend"
},
{
"name": "Marketplace",
"type": "debugpy",
"request": "launch",
"module": "autogpt_platform.market.main",
"env": {
"ENV": "dev"
},
"envFile": "${workspaceFolder}/market/.env",
"justMyCode": false,
"cwd": "${workspaceFolder}/market"
}
],
"compounds": [
{
"name": "Everything",
"configurations": ["Backend", "Frontend: Full Stack"],
// "preLaunchTask": "${defaultBuildTask}",
"stopAll": true,
"presentation": {
"hidden": false,
"order": 0
}
}
]
}

View File

@@ -1,53 +0,0 @@
# AutoGPT Platform Contribution Guide
This guide provides context for Codex when updating the **autogpt_platform** folder.
## Directory overview
- `autogpt_platform/backend` FastAPI based backend service.
- `autogpt_platform/autogpt_libs` Shared Python libraries.
- `autogpt_platform/frontend` Next.js + Typescript frontend.
- `autogpt_platform/docker-compose.yml` development stack.
See `docs/content/platform/getting-started.md` for setup instructions.
## Code style
- Format Python code with `poetry run format`.
- Format frontend code using `pnpm format`.
## Testing
- Backend: `poetry run test` (runs pytest with a docker based postgres + prisma).
- Frontend: `pnpm test` or `pnpm test-ui` for Playwright tests. See `docs/content/platform/contributing/tests.md` for tips.
Always run the relevant linters and tests before committing.
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
Types:
- feat
- fix
- refactor
- ci
- dx (developer experience)
Scopes:
- platform
- platform/library
- platform/marketplace
- backend
- backend/executor
- frontend
- frontend/library
- frontend/marketplace
- blocks
## Pull requests
- Use the template in `.github/PULL_REQUEST_TEMPLATE.md`.
- Rely on the pre-commit checks for linting and formatting
- Fill out the **Changes** section and the checklist.
- Use conventional commit titles with a scope (e.g. `feat(frontend): add feature`).
- Keep out-of-scope changes under 20% of the PR.
- Ensure PR descriptions are complete.
- For changes touching `data/*.py`, validate user ID checks or explain why not needed.
- If adding protected frontend routes, update `frontend/lib/supabase/middleware.ts`.
- Use the linear ticket branch structure if given codex/open-1668-resume-dropped-runs

View File

@@ -2,6 +2,9 @@
If you are reading this, you are probably looking for the full **[contribution guide]**,
which is part of our [wiki].
Also check out our [🚀 Roadmap][roadmap] for information about our priorities and associated tasks.
<!-- You can find our immediate priorities and their progress on our public [kanban board]. -->
[contribution guide]: https://github.com/Significant-Gravitas/AutoGPT/wiki/Contributing
[wiki]: https://github.com/Significant-Gravitas/AutoGPT/wiki
[roadmap]: https://github.com/Significant-Gravitas/AutoGPT/discussions/6971

View File

@@ -15,38 +15,7 @@
> Setting up and hosting the AutoGPT Platform yourself is a technical process.
> If you'd rather something that just works, we recommend [joining the waitlist](https://bit.ly/3ZDijAI) for the cloud-hosted beta.
### System Requirements
Before proceeding with the installation, ensure your system meets the following requirements:
#### Hardware Requirements
- CPU: 4+ cores recommended
- RAM: Minimum 8GB, 16GB recommended
- Storage: At least 10GB of free space
#### Software Requirements
- Operating Systems:
- Linux (Ubuntu 20.04 or newer recommended)
- macOS (10.15 or newer)
- Windows 10/11 with WSL2
- Required Software (with minimum versions):
- Docker Engine (20.10.0 or newer)
- Docker Compose (2.0.0 or newer)
- Git (2.30 or newer)
- Node.js (16.x or newer)
- npm (8.x or newer)
- VSCode (1.60 or newer) or any modern code editor
#### Network Requirements
- Stable internet connection
- Access to required ports (will be configured in Docker)
- Ability to make outbound HTTPS connections
### Updated Setup Instructions:
We've moved to a fully maintained and regularly updated documentation site.
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
https://github.com/user-attachments/assets/d04273a5-b36a-4a37-818e-f631ce72d603
This tutorial assumes you have Docker, VSCode, git and npm installed.
@@ -66,7 +35,7 @@ The AutoGPT frontend is where users interact with our powerful AI automation pla
**Monitoring and Analytics:** Keep track of your agents' performance and gain insights to continually improve your automation processes.
[Read this guide](https://docs.agpt.co/platform/new_blocks/) to learn how to build your own custom blocks.
[Read this guide](https://docs.agpt.co/server/new_blocks/) to learn how to build your own custom blocks.
### 💽 AutoGPT Server
@@ -179,7 +148,7 @@ Just clone the repo, install dependencies with `./run setup`, and you should be
[![Join us on Discord](https://invidget.switchblade.xyz/autogpt)](https://discord.gg/autogpt)
To report a bug or request a feature, create a [GitHub Issue](https://github.com/Significant-Gravitas/AutoGPT/issues/new/choose). Please ensure someone else hasn't created an issue for the same topic.
To report a bug or request a feature, create a [GitHub Issue](https://github.com/Significant-Gravitas/AutoGPT/issues/new/choose). Please ensure someone else hasnt created an issue for the same topic.
## 🤝 Sister projects

View File

@@ -1,48 +0,0 @@
# Security Policy
## Reporting Security Issues
We take the security of our project seriously. If you believe you have found a security vulnerability, please report it to us privately. **Please do not report security vulnerabilities through public GitHub issues, discussions, or pull requests.**
> **Important Note**: Any code within the `classic/` folder is considered legacy, unsupported, and out of scope for security reports. We will not address security vulnerabilities in this deprecated code.
Instead, please report them via:
- [GitHub Security Advisory](https://github.com/Significant-Gravitas/AutoGPT/security/advisories/new)
<!--- [Huntr.dev](https://huntr.com/repos/significant-gravitas/autogpt) - where you may be eligible for a bounty-->
### Reporting Process
1. **Submit Report**: Use one of the above channels to submit your report
2. **Response Time**: Our team will acknowledge receipt of your report within 14 business days.
3. **Collaboration**: We will collaborate with you to understand and validate the issue
4. **Resolution**: We will work on a fix and coordinate the release process
### Disclosure Policy
- Please provide detailed reports with reproducible steps
- Include the version/commit hash where you discovered the vulnerability
- Allow us a 90-day security fix window before any public disclosure
- After patch is released, allow 30 days for users to update before public disclosure (for a total of 120 days max between update time and fix time)
- Share any potential mitigations or workarounds if known
## Supported Versions
Only the following versions are eligible for security updates:
| Version | Supported |
|---------|-----------|
| Latest release on master branch | ✅ |
| Development commits (pre-master) | ✅ |
| Classic folder (deprecated) | ❌ |
| All other versions | ❌ |
## Security Best Practices
When using this project:
1. Always use the latest stable version
2. Review security advisories before updating
3. Follow our security documentation and guidelines
4. Keep your dependencies up to date
5. Do not use code from the `classic/` folder as it is deprecated and unsupported
## Past Security Advisories
For a list of past security advisories, please visit our [Security Advisory Page](https://github.com/Significant-Gravitas/AutoGPT/security/advisories) and [Huntr Disclosures Page](https://huntr.com/repos/significant-gravitas/autogpt).
---
Last updated: November 2024

View File

@@ -1,123 +0,0 @@
############
# Secrets
# YOU MUST CHANGE THESE BEFORE GOING INTO PRODUCTION
############
POSTGRES_PASSWORD=your-super-secret-and-long-postgres-password
JWT_SECRET=your-super-secret-jwt-token-with-at-least-32-characters-long
ANON_KEY=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyAgCiAgICAicm9sZSI6ICJhbm9uIiwKICAgICJpc3MiOiAic3VwYWJhc2UtZGVtbyIsCiAgICAiaWF0IjogMTY0MTc2OTIwMCwKICAgICJleHAiOiAxNzk5NTM1NjAwCn0.dc_X5iR_VP_qT0zsiyj_I_OZ2T9FtRU2BBNWN8Bu4GE
SERVICE_ROLE_KEY=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyAgCiAgICAicm9sZSI6ICJzZXJ2aWNlX3JvbGUiLAogICAgImlzcyI6ICJzdXBhYmFzZS1kZW1vIiwKICAgICJpYXQiOiAxNjQxNzY5MjAwLAogICAgImV4cCI6IDE3OTk1MzU2MDAKfQ.DaYlNEoUrrEn2Ig7tqibS-PHK5vgusbcbo7X36XVt4Q
DASHBOARD_USERNAME=supabase
DASHBOARD_PASSWORD=this_password_is_insecure_and_should_be_updated
SECRET_KEY_BASE=UpNVntn3cDxHJpq99YMc1T1AQgQpc8kfYTuRgBiYa15BLrx8etQoXz3gZv1/u2oq
VAULT_ENC_KEY=your-encryption-key-32-chars-min
############
# Database - You can change these to any PostgreSQL database that has logical replication enabled.
############
POSTGRES_HOST=db
POSTGRES_DB=postgres
POSTGRES_PORT=5432
# default user is postgres
############
# Supavisor -- Database pooler
############
POOLER_PROXY_PORT_TRANSACTION=6543
POOLER_DEFAULT_POOL_SIZE=20
POOLER_MAX_CLIENT_CONN=100
POOLER_TENANT_ID=your-tenant-id
############
# API Proxy - Configuration for the Kong Reverse proxy.
############
KONG_HTTP_PORT=8000
KONG_HTTPS_PORT=8443
############
# API - Configuration for PostgREST.
############
PGRST_DB_SCHEMAS=public,storage,graphql_public
############
# Auth - Configuration for the GoTrue authentication server.
############
## General
SITE_URL=http://localhost:3000
ADDITIONAL_REDIRECT_URLS=
JWT_EXPIRY=3600
DISABLE_SIGNUP=false
API_EXTERNAL_URL=http://localhost:8000
## Mailer Config
MAILER_URLPATHS_CONFIRMATION="/auth/v1/verify"
MAILER_URLPATHS_INVITE="/auth/v1/verify"
MAILER_URLPATHS_RECOVERY="/auth/v1/verify"
MAILER_URLPATHS_EMAIL_CHANGE="/auth/v1/verify"
## Email auth
ENABLE_EMAIL_SIGNUP=true
ENABLE_EMAIL_AUTOCONFIRM=false
SMTP_ADMIN_EMAIL=admin@example.com
SMTP_HOST=supabase-mail
SMTP_PORT=2500
SMTP_USER=fake_mail_user
SMTP_PASS=fake_mail_password
SMTP_SENDER_NAME=fake_sender
ENABLE_ANONYMOUS_USERS=false
## Phone auth
ENABLE_PHONE_SIGNUP=true
ENABLE_PHONE_AUTOCONFIRM=true
############
# Studio - Configuration for the Dashboard
############
STUDIO_DEFAULT_ORGANIZATION=Default Organization
STUDIO_DEFAULT_PROJECT=Default Project
STUDIO_PORT=3000
# replace if you intend to use Studio outside of localhost
SUPABASE_PUBLIC_URL=http://localhost:8000
# Enable webp support
IMGPROXY_ENABLE_WEBP_DETECTION=true
# Add your OpenAI API key to enable SQL Editor Assistant
OPENAI_API_KEY=
############
# Functions - Configuration for Functions
############
# NOTE: VERIFY_JWT applies to all functions. Per-function VERIFY_JWT is not supported yet.
FUNCTIONS_VERIFY_JWT=false
############
# Logs - Configuration for Logflare
# Please refer to https://supabase.com/docs/reference/self-hosting-analytics/introduction
############
LOGFLARE_LOGGER_BACKEND_API_KEY=your-super-secret-and-long-logflare-key
# Change vector.toml sinks to reflect this change
LOGFLARE_API_KEY=your-super-secret-and-long-logflare-key
# Docker socket location - this value will differ depending on your OS
DOCKER_SOCKET_LOCATION=/var/run/docker.sock
# Google Cloud Project details
GOOGLE_PROJECT_ID=GOOGLE_PROJECT_ID
GOOGLE_PROJECT_NUMBER=GOOGLE_PROJECT_NUMBER

View File

@@ -1,2 +0,0 @@
*.ignore.*
*.ign.*

View File

@@ -1,147 +0,0 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Repository Overview
AutoGPT Platform is a monorepo containing:
- **Backend** (`/backend`): Python FastAPI server with async support
- **Frontend** (`/frontend`): Next.js React application
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
## Essential Commands
### Backend Development
```bash
# Install dependencies
cd backend && poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend server
poetry run serve
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in TESTING.md
#### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Frontend Development
```bash
# Install dependencies
cd frontend && npm install
# Start development server
npm run dev
# Run E2E tests
npm run test
# Run Storybook for component development
npm run storybook
# Build production
npm run build
# Type checking
npm run type-check
```
## Architecture Overview
### Backend Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
### Frontend Architecture
- **Framework**: Next.js App Router with React Server Components
- **State Management**: React hooks + Supabase client for real-time updates
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: Radix UI primitives with Tailwind CSS styling
- **Feature Flags**: LaunchDarkly integration
### Key Concepts
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
3. **Integrations**: OAuth and API connections stored per user
4. **Store**: Marketplace for sharing agent templates
5. **Virus Scanning**: ClamAV integration for file upload security
### Testing Approach
- Backend uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
- Frontend uses Playwright for E2E tests
- Component testing via Storybook
### Database Schema
Key models (defined in `/backend/schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
### Environment Configuration
- Backend: `.env` file in `/backend`
- Frontend: `.env.local` file in `/frontend`
- Both require Supabase credentials and API keys for various services
### Common Development Tasks
**Adding a new block:**
1. Create new file in `/backend/backend/blocks/`
2. Inherit from `Block` base class
3. Define input/output schemas
4. Implement `run` method
5. Register in block registry
6. Generate the block uuid using `uuid.uuid4()`
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
**Frontend feature development:**
1. Components go in `/frontend/src/components/`
2. Use existing UI components from `/frontend/src/components/ui/`
3. Add Storybook stories for new components
4. Test with Playwright if user-facing
### Security Implementation
**Cache Protection Middleware:**
- Located in `/backend/backend/server/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications

View File

@@ -15,66 +15,53 @@ Welcome to the AutoGPT Platform - a powerful system for creating and running AI
To run the AutoGPT Platform, follow these steps:
1. Clone this repository to your local machine and navigate to the `autogpt_platform` directory within the repository:
```
git clone <https://github.com/Significant-Gravitas/AutoGPT.git | git@github.com:Significant-Gravitas/AutoGPT.git>
cd AutoGPT/autogpt_platform
```
2. Run the following command:
```
cp .env.example .env
git submodule update --init --recursive
```
This command will copy the `.env.example` file to `.env`. You can modify the `.env` file to add your own environment variables.
This command will initialize and update the submodules in the repository. The `supabase` folder will be cloned to the root directory.
3. Run the following command:
```
cp supabase/docker/.env.example .env
```
This command will copy the `.env.example` file to `.env` in the `supabase/docker` directory. You can modify the `.env` file to add your own environment variables.
4. Run the following command:
```
docker compose up -d
```
This command will start all the necessary backend services defined in the `docker-compose.yml` file in detached mode.
4. Navigate to `frontend` within the `autogpt_platform` directory:
5. Navigate to `frontend` within the `autogpt_platform` directory:
```
cd frontend
```
You will need to run your frontend application separately on your local machine.
5. Run the following command:
6. Run the following command:
```
cp .env.example .env.local
```
This command will copy the `.env.example` file to `.env.local` in the `frontend` directory. You can modify the `.env.local` within this folder to add your own environment variables for the frontend application.
6. Run the following command:
Enable corepack and install dependencies by running:
7. Run the following command:
```
corepack enable
pnpm i
npm install
npm run dev
```
This command will install the necessary dependencies and start the frontend application in development mode.
If you are using Yarn, you can run the following commands instead:
```
yarn install && yarn dev
```
Generate the API client (this step is required before running the frontend):
```
pnpm generate:api-client
```
Then start the frontend application in development mode:
```
pnpm dev
```
7. Open your browser and navigate to `http://localhost:3000` to access the AutoGPT Platform frontend.
8. Open your browser and navigate to `http://localhost:3000` to access the AutoGPT Platform frontend.
### Docker Compose Commands
@@ -87,52 +74,43 @@ Here are some useful Docker Compose commands for managing your AutoGPT Platform:
- `docker compose down`: Stop and remove containers, networks, and volumes.
- `docker compose watch`: Watch for changes in your services and automatically update them.
### Sample Scenarios
Here are some common scenarios where you might use multiple Docker Compose commands:
1. Updating and restarting a specific service:
```
docker compose build api_srv
docker compose up -d --no-deps api_srv
```
This rebuilds the `api_srv` service and restarts it without affecting other services.
2. Viewing logs for troubleshooting:
```
docker compose logs -f api_srv ws_srv
```
This shows and follows the logs for both `api_srv` and `ws_srv` services.
3. Scaling a service for increased load:
```
docker compose up -d --scale executor=3
```
This scales the `executor` service to 3 instances to handle increased load.
4. Stopping the entire system for maintenance:
```
docker compose stop
docker compose rm -f
docker compose pull
docker compose up -d
```
This stops all services, removes containers, pulls the latest images, and restarts the system.
5. Developing with live updates:
```
docker compose watch
```
This watches for changes in your code and automatically updates the relevant services.
6. Checking the status of services:
@@ -143,6 +121,7 @@ Here are some common scenarios where you might use multiple Docker Compose comma
These scenarios demonstrate how to use Docker Compose commands in combination to manage your AutoGPT Platform effectively.
### Persisting Data
To persist data for PostgreSQL and Redis, you can modify the `docker-compose.yml` file to add volumes. Here's how:
@@ -170,27 +149,3 @@ To persist data for PostgreSQL and Redis, you can modify the `docker-compose.yml
3. Save the file and run `docker compose up -d` to apply the changes.
This configuration will create named volumes for PostgreSQL and Redis, ensuring that your data persists across container restarts.
### API Client Generation
The platform includes scripts for generating and managing the API client:
- `pnpm fetch:openapi`: Fetches the OpenAPI specification from the backend service (requires backend to be running on port 8006)
- `pnpm generate:api-client`: Generates the TypeScript API client from the OpenAPI specification using Orval
- `pnpm generate:api-all`: Runs both fetch and generate commands in sequence
#### Manual API Client Updates
If you need to update the API client after making changes to the backend API:
1. Ensure the backend services are running:
```
docker compose up -d
```
2. Generate the updated API client:
```
pnpm generate:api-all
```
This will fetch the latest OpenAPI specification and regenerate the TypeScript client code.

View File

@@ -1,3 +1,3 @@
# AutoGPT Libs
This is a new project to store shared functionality across different services in the AutoGPT Platform (e.g. authentication)
This is a new project to store shared functionality across different services in NextGen AutoGPT (e.g. authentication)

View File

@@ -1,35 +0,0 @@
import hashlib
import secrets
from typing import NamedTuple
class APIKeyContainer(NamedTuple):
"""Container for API key parts."""
raw: str
prefix: str
postfix: str
hash: str
class APIKeyManager:
PREFIX: str = "agpt_"
PREFIX_LENGTH: int = 8
POSTFIX_LENGTH: int = 8
def generate_api_key(self) -> APIKeyContainer:
"""Generate a new API key with all its parts."""
raw_key = f"{self.PREFIX}{secrets.token_urlsafe(32)}"
return APIKeyContainer(
raw=raw_key,
prefix=raw_key[: self.PREFIX_LENGTH],
postfix=raw_key[-self.POSTFIX_LENGTH :],
hash=hashlib.sha256(raw_key.encode()).hexdigest(),
)
def verify_api_key(self, provided_key: str, stored_hash: str) -> bool:
"""Verify if a provided API key matches the stored hash."""
if not provided_key.startswith(self.PREFIX):
return False
provided_hash = hashlib.sha256(provided_key.encode()).hexdigest()
return secrets.compare_digest(provided_hash, stored_hash)

View File

@@ -1,13 +1,14 @@
from .config import Settings
from .depends import requires_admin_user, requires_user
from .jwt_utils import parse_jwt_token
from .middleware import APIKeyValidator, auth_middleware
from .middleware import auth_middleware
from .models import User
__all__ = [
"Settings",
"parse_jwt_token",
"requires_user",
"requires_admin_user",
"APIKeyValidator",
"auth_middleware",
"User",
]

View File

@@ -1,11 +1,14 @@
import os
from dotenv import load_dotenv
load_dotenv()
class Settings:
def __init__(self):
self.JWT_SECRET_KEY: str = os.getenv("SUPABASE_JWT_SECRET", "")
self.ENABLE_AUTH: bool = os.getenv("ENABLE_AUTH", "false").lower() == "true"
self.JWT_ALGORITHM: str = "HS256"
JWT_SECRET_KEY: str = os.getenv("SUPABASE_JWT_SECRET", "")
ENABLE_AUTH: bool = os.getenv("ENABLE_AUTH", "false").lower() == "true"
JWT_ALGORITHM: str = "HS256"
@property
def is_configured(self) -> bool:

View File

@@ -1,8 +1,7 @@
import fastapi
from .config import settings
from .middleware import auth_middleware
from .models import DEFAULT_USER_ID, User
from .models import User
def requires_user(payload: dict = fastapi.Depends(auth_middleware)) -> User:
@@ -17,12 +16,8 @@ def requires_admin_user(
def verify_user(payload: dict | None, admin_only: bool) -> User:
if not payload:
if settings.ENABLE_AUTH:
raise fastapi.HTTPException(
status_code=401, detail="Authorization header is missing"
)
# This handles the case when authentication is disabled
payload = {"sub": DEFAULT_USER_ID, "role": "admin"}
payload = {"sub": "3e53486c-cf57-477e-ba2a-cb02dc828e1a", "role": "admin"}
user_id = payload.get("sub")
@@ -35,12 +30,3 @@ def verify_user(payload: dict | None, admin_only: bool) -> User:
raise fastapi.HTTPException(status_code=403, detail="Admin access required")
return User.from_payload(payload)
def get_user_id(payload: dict = fastapi.Depends(auth_middleware)) -> str:
user_id = payload.get("sub")
if not user_id:
raise fastapi.HTTPException(
status_code=401, detail="User ID not found in token"
)
return user_id

View File

@@ -1,11 +1,7 @@
import inspect
import logging
import secrets
from typing import Any, Callable, Optional
from fastapi import HTTPException, Request, Security
from fastapi.security import APIKeyHeader, HTTPBearer
from starlette.status import HTTP_401_UNAUTHORIZED
from fastapi import HTTPException, Request
from fastapi.security import HTTPBearer
from .config import settings
from .jwt_utils import parse_jwt_token
@@ -17,7 +13,7 @@ logger = logging.getLogger(__name__)
async def auth_middleware(request: Request):
if not settings.ENABLE_AUTH:
# If authentication is disabled, allow the request to proceed
logger.warning("Auth disabled")
logger.warn("Auth disabled")
return {}
security = HTTPBearer()
@@ -33,108 +29,3 @@ async def auth_middleware(request: Request):
except ValueError as e:
raise HTTPException(status_code=401, detail=str(e))
return payload
class APIKeyValidator:
"""
Configurable API key validator that supports custom validation functions
for FastAPI applications.
This class provides a flexible way to implement API key authentication with optional
custom validation logic. It can be used for simple token matching
or more complex validation scenarios like database lookups.
Examples:
Simple token validation:
```python
validator = APIKeyValidator(
header_name="X-API-Key",
expected_token="your-secret-token"
)
@app.get("/protected", dependencies=[Depends(validator.get_dependency())])
def protected_endpoint():
return {"message": "Access granted"}
```
Custom validation with database lookup:
```python
async def validate_with_db(api_key: str):
api_key_obj = await db.get_api_key(api_key)
return api_key_obj if api_key_obj and api_key_obj.is_active else None
validator = APIKeyValidator(
header_name="X-API-Key",
validate_fn=validate_with_db
)
```
Args:
header_name (str): The name of the header containing the API key
expected_token (Optional[str]): The expected API key value for simple token matching
validate_fn (Optional[Callable]): Custom validation function that takes an API key
string and returns a boolean or object. Can be async.
error_status (int): HTTP status code to use for validation errors
error_message (str): Error message to return when validation fails
"""
def __init__(
self,
header_name: str,
expected_token: Optional[str] = None,
validate_fn: Optional[Callable[[str], bool]] = None,
error_status: int = HTTP_401_UNAUTHORIZED,
error_message: str = "Invalid API key",
):
# Create the APIKeyHeader as a class property
self.security_scheme = APIKeyHeader(name=header_name)
self.expected_token = expected_token
self.custom_validate_fn = validate_fn
self.error_status = error_status
self.error_message = error_message
async def default_validator(self, api_key: str) -> bool:
if not self.expected_token:
raise ValueError(
"Expected Token Required to be set when uisng API Key Validator default validation"
)
return secrets.compare_digest(api_key, self.expected_token)
async def __call__(
self, request: Request, api_key: str = Security(APIKeyHeader)
) -> Any:
if api_key is None:
raise HTTPException(status_code=self.error_status, detail="Missing API key")
# Use custom validation if provided, otherwise use default equality check
validator = self.custom_validate_fn or self.default_validator
result = (
await validator(api_key)
if inspect.iscoroutinefunction(validator)
else validator(api_key)
)
if not result:
raise HTTPException(
status_code=self.error_status, detail=self.error_message
)
# Store validation result in request state if it's not just a boolean
if result is not True:
request.state.api_key = result
return result
def get_dependency(self):
"""
Returns a callable dependency that FastAPI will recognize as a security scheme
"""
async def validate_api_key(
request: Request, api_key: str = Security(self.security_scheme)
) -> Any:
return await self(request, api_key)
# This helps FastAPI recognize it as a security dependency
validate_api_key.__name__ = f"validate_{self.security_scheme.model.name}"
return validate_api_key

View File

@@ -1,8 +1,5 @@
from dataclasses import dataclass
DEFAULT_USER_ID = "3e53486c-cf57-477e-ba2a-cb02dc828e1a"
DEFAULT_EMAIL = "default@example.com"
# Using dataclass here to avoid adding dependency on pydantic
@dataclass(frozen=True)

View File

@@ -1,166 +0,0 @@
import asyncio
import contextlib
import logging
from functools import wraps
from typing import Any, Awaitable, Callable, Dict, Optional, TypeVar, Union, cast
import ldclient
from fastapi import HTTPException
from ldclient import Context, LDClient
from ldclient.config import Config
from typing_extensions import ParamSpec
from .config import SETTINGS
logger = logging.getLogger(__name__)
P = ParamSpec("P")
T = TypeVar("T")
def get_client() -> LDClient:
"""Get the LaunchDarkly client singleton."""
return ldclient.get()
def initialize_launchdarkly() -> None:
sdk_key = SETTINGS.launch_darkly_sdk_key
logger.debug(
f"Initializing LaunchDarkly with SDK key: {'present' if sdk_key else 'missing'}"
)
if not sdk_key:
logger.warning("LaunchDarkly SDK key not configured")
return
config = Config(sdk_key)
ldclient.set_config(config)
if ldclient.get().is_initialized():
logger.info("LaunchDarkly client initialized successfully")
else:
logger.error("LaunchDarkly client failed to initialize")
def shutdown_launchdarkly() -> None:
"""Shutdown the LaunchDarkly client."""
if ldclient.get().is_initialized():
ldclient.get().close()
logger.info("LaunchDarkly client closed successfully")
def create_context(
user_id: str, additional_attributes: Optional[Dict[str, Any]] = None
) -> Context:
"""Create LaunchDarkly context with optional additional attributes."""
builder = Context.builder(str(user_id)).kind("user")
if additional_attributes:
for key, value in additional_attributes.items():
builder.set(key, value)
return builder.build()
def feature_flag(
flag_key: str,
default: bool = False,
) -> Callable[
[Callable[P, Union[T, Awaitable[T]]]], Callable[P, Union[T, Awaitable[T]]]
]:
"""
Decorator for feature flag protected endpoints.
"""
def decorator(
func: Callable[P, Union[T, Awaitable[T]]],
) -> Callable[P, Union[T, Awaitable[T]]]:
@wraps(func)
async def async_wrapper(*args: P.args, **kwargs: P.kwargs) -> T:
try:
user_id = kwargs.get("user_id")
if not user_id:
raise ValueError("user_id is required")
if not get_client().is_initialized():
logger.warning(
f"LaunchDarkly not initialized, using default={default}"
)
is_enabled = default
else:
context = create_context(str(user_id))
is_enabled = get_client().variation(flag_key, context, default)
if not is_enabled:
raise HTTPException(status_code=404, detail="Feature not available")
result = func(*args, **kwargs)
if asyncio.iscoroutine(result):
return await result
return cast(T, result)
except Exception as e:
logger.error(f"Error evaluating feature flag {flag_key}: {e}")
raise
@wraps(func)
def sync_wrapper(*args: P.args, **kwargs: P.kwargs) -> T:
try:
user_id = kwargs.get("user_id")
if not user_id:
raise ValueError("user_id is required")
if not get_client().is_initialized():
logger.warning(
f"LaunchDarkly not initialized, using default={default}"
)
is_enabled = default
else:
context = create_context(str(user_id))
is_enabled = get_client().variation(flag_key, context, default)
if not is_enabled:
raise HTTPException(status_code=404, detail="Feature not available")
return cast(T, func(*args, **kwargs))
except Exception as e:
logger.error(f"Error evaluating feature flag {flag_key}: {e}")
raise
return cast(
Callable[P, Union[T, Awaitable[T]]],
async_wrapper if asyncio.iscoroutinefunction(func) else sync_wrapper,
)
return decorator
def percentage_rollout(
flag_key: str,
default: bool = False,
) -> Callable[
[Callable[P, Union[T, Awaitable[T]]]], Callable[P, Union[T, Awaitable[T]]]
]:
"""Decorator for percentage-based rollouts."""
return feature_flag(flag_key, default)
def beta_feature(
flag_key: Optional[str] = None,
unauthorized_response: Any = {"message": "Not available in beta"},
) -> Callable[
[Callable[P, Union[T, Awaitable[T]]]], Callable[P, Union[T, Awaitable[T]]]
]:
"""Decorator for beta features."""
actual_key = f"beta-{flag_key}" if flag_key else "beta"
return feature_flag(actual_key, False)
@contextlib.contextmanager
def mock_flag_variation(flag_key: str, return_value: Any):
"""Context manager for testing feature flags."""
original_variation = get_client().variation
get_client().variation = lambda key, context, default: (
return_value if key == flag_key else original_variation(key, context, default)
)
try:
yield
finally:
get_client().variation = original_variation

View File

@@ -1,45 +0,0 @@
import pytest
from ldclient import LDClient
from autogpt_libs.feature_flag.client import feature_flag, mock_flag_variation
@pytest.fixture
def ld_client(mocker):
client = mocker.Mock(spec=LDClient)
mocker.patch("ldclient.get", return_value=client)
client.is_initialized.return_value = True
return client
@pytest.mark.asyncio
async def test_feature_flag_enabled(ld_client):
ld_client.variation.return_value = True
@feature_flag("test-flag")
async def test_function(user_id: str):
return "success"
result = test_function(user_id="test-user")
assert result == "success"
ld_client.variation.assert_called_once()
@pytest.mark.asyncio
async def test_feature_flag_unauthorized_response(ld_client):
ld_client.variation.return_value = False
@feature_flag("test-flag")
async def test_function(user_id: str):
return "success"
result = test_function(user_id="test-user")
assert result == {"error": "disabled"}
def test_mock_flag_variation(ld_client):
with mock_flag_variation("test-flag", True):
assert ld_client.variation("test-flag", None, False)
with mock_flag_variation("test-flag", False):
assert ld_client.variation("test-flag", None, False)

View File

@@ -1,15 +0,0 @@
from pydantic import Field
from pydantic_settings import BaseSettings, SettingsConfigDict
class Settings(BaseSettings):
launch_darkly_sdk_key: str = Field(
default="",
description="The Launch Darkly SDK key",
validation_alias="LAUNCH_DARKLY_SDK_KEY",
)
model_config = SettingsConfigDict(case_sensitive=True, extra="ignore")
SETTINGS = Settings()

View File

@@ -6,9 +6,8 @@ from pathlib import Path
from pydantic import Field, field_validator
from pydantic_settings import BaseSettings, SettingsConfigDict
from .filters import BelowLevelFilter
from .formatters import AGPTFormatter
from .formatters import AGPTFormatter, StructuredLoggingFormatter
LOG_DIR = Path(__file__).parent.parent.parent.parent / "logs"
LOG_FILE = "activity.log"
@@ -18,11 +17,12 @@ ERROR_LOG_FILE = "error.log"
SIMPLE_LOG_FORMAT = "%(asctime)s %(levelname)s %(title)s%(message)s"
DEBUG_LOG_FORMAT = (
"%(asctime)s %(levelname)s %(filename)s:%(lineno)d %(title)s%(message)s"
"%(asctime)s %(levelname)s %(filename)s:%(lineno)d" " %(title)s%(message)s"
)
class LoggingConfig(BaseSettings):
level: str = Field(
default="INFO",
description="Logging level",
@@ -81,26 +81,9 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
"""
config = LoggingConfig()
log_handlers: list[logging.Handler] = []
# Console output handlers
stdout = logging.StreamHandler(stream=sys.stdout)
stdout.setLevel(config.level)
stdout.addFilter(BelowLevelFilter(logging.WARNING))
if config.level == logging.DEBUG:
stdout.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stdout.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
stderr = logging.StreamHandler()
stderr.setLevel(logging.WARNING)
if config.level == logging.DEBUG:
stderr.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stderr.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
log_handlers += [stdout, stderr]
# Cloud logging setup
if config.enable_cloud_logging or force_cloud_logging:
import google.cloud.logging
@@ -114,7 +97,28 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
transport=SyncTransport,
)
cloud_handler.setLevel(config.level)
cloud_handler.setFormatter(StructuredLoggingFormatter())
log_handlers.append(cloud_handler)
print("Cloud logging enabled")
else:
# Console output handlers
stdout = logging.StreamHandler(stream=sys.stdout)
stdout.setLevel(config.level)
stdout.addFilter(BelowLevelFilter(logging.WARNING))
if config.level == logging.DEBUG:
stdout.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stdout.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
stderr = logging.StreamHandler()
stderr.setLevel(logging.WARNING)
if config.level == logging.DEBUG:
stderr.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stderr.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
log_handlers += [stdout, stderr]
print("Console logging enabled")
# File logging setup
if config.enable_file_logging:
@@ -152,6 +156,7 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
error_log_handler.setLevel(logging.ERROR)
error_log_handler.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT, no_color=True))
log_handlers.append(error_log_handler)
print("File logging enabled")
# Configure the root logger
logging.basicConfig(

View File

@@ -1,6 +1,7 @@
import logging
from colorama import Fore, Style
from google.cloud.logging_v2.handlers import CloudLoggingFilter, StructuredLogHandler
from .utils import remove_color_codes
@@ -79,3 +80,16 @@ class AGPTFormatter(FancyConsoleFormatter):
return remove_color_codes(super().format(record))
else:
return super().format(record)
class StructuredLoggingFormatter(StructuredLogHandler, logging.Formatter):
def __init__(self):
# Set up CloudLoggingFilter to add diagnostic info to the log records
self.cloud_logging_filter = CloudLoggingFilter()
# Init StructuredLogHandler
super().__init__()
def format(self, record: logging.LogRecord) -> str:
self.cloud_logging_filter.filter(record)
return super().format(record)

View File

@@ -24,10 +24,10 @@ from .utils import remove_color_codes
),
("", ""),
("hello", "hello"),
("hello\x1b[31m world", "hello world"),
("\x1b[36mHello,\x1b[32m World!", "Hello, World!"),
("hello\x1B[31m world", "hello world"),
("\x1B[36mHello,\x1B[32m World!", "Hello, World!"),
(
"\x1b[1m\x1b[31mError:\x1b[0m\x1b[31m file not found",
"\x1B[1m\x1B[31mError:\x1B[0m\x1B[31m file not found",
"Error: file not found",
),
],

View File

@@ -2,7 +2,6 @@ import logging
import re
from typing import Any
import uvicorn.config
from colorama import Fore
@@ -26,14 +25,3 @@ def print_attribute(
"color": value_color,
},
)
def generate_uvicorn_config():
"""
Generates a uvicorn logging config that silences uvicorn's default logging and tells it to use the native logging module.
"""
log_config = dict(uvicorn.config.LOGGING_CONFIG)
log_config["loggers"]["uvicorn"] = {"handlers": []}
log_config["loggers"]["uvicorn.error"] = {"handlers": []}
log_config["loggers"]["uvicorn.access"] = {"handlers": []}
return log_config

View File

@@ -1,31 +0,0 @@
from pydantic import Field
from pydantic_settings import BaseSettings, SettingsConfigDict
class RateLimitSettings(BaseSettings):
redis_host: str = Field(
default="redis://localhost:6379",
description="Redis host",
validation_alias="REDIS_HOST",
)
redis_port: str = Field(
default="6379", description="Redis port", validation_alias="REDIS_PORT"
)
redis_password: str = Field(
default="password",
description="Redis password",
validation_alias="REDIS_PASSWORD",
)
requests_per_minute: int = Field(
default=60,
description="Maximum number of requests allowed per minute per API key",
validation_alias="RATE_LIMIT_REQUESTS_PER_MINUTE",
)
model_config = SettingsConfigDict(case_sensitive=True, extra="ignore")
RATE_LIMIT_SETTINGS = RateLimitSettings()

View File

@@ -1,51 +0,0 @@
import time
from typing import Tuple
from redis import Redis
from .config import RATE_LIMIT_SETTINGS
class RateLimiter:
def __init__(
self,
redis_host: str = RATE_LIMIT_SETTINGS.redis_host,
redis_port: str = RATE_LIMIT_SETTINGS.redis_port,
redis_password: str = RATE_LIMIT_SETTINGS.redis_password,
requests_per_minute: int = RATE_LIMIT_SETTINGS.requests_per_minute,
):
self.redis = Redis(
host=redis_host,
port=int(redis_port),
password=redis_password,
decode_responses=True,
)
self.window = 60
self.max_requests = requests_per_minute
async def check_rate_limit(self, api_key_id: str) -> Tuple[bool, int, int]:
"""
Check if request is within rate limits.
Args:
api_key_id: The API key identifier to check
Returns:
Tuple of (is_allowed, remaining_requests, reset_time)
"""
now = time.time()
window_start = now - self.window
key = f"ratelimit:{api_key_id}:1min"
pipe = self.redis.pipeline()
pipe.zremrangebyscore(key, 0, window_start)
pipe.zadd(key, {str(now): now})
pipe.zcount(key, window_start, now)
pipe.expire(key, self.window)
_, _, request_count, _ = pipe.execute()
remaining = max(0, self.max_requests - request_count)
reset_time = int(now + self.window)
return request_count <= self.max_requests, remaining, reset_time

View File

@@ -1,32 +0,0 @@
from fastapi import HTTPException, Request
from starlette.middleware.base import RequestResponseEndpoint
from .limiter import RateLimiter
async def rate_limit_middleware(request: Request, call_next: RequestResponseEndpoint):
"""FastAPI middleware for rate limiting API requests."""
limiter = RateLimiter()
if not request.url.path.startswith("/api"):
return await call_next(request)
api_key = request.headers.get("Authorization")
if not api_key:
return await call_next(request)
api_key = api_key.replace("Bearer ", "")
is_allowed, remaining, reset_time = await limiter.check_rate_limit(api_key)
if not is_allowed:
raise HTTPException(
status_code=429, detail="Rate limit exceeded. Please try again later."
)
response = await call_next(request)
response.headers["X-RateLimit-Limit"] = str(limiter.max_requests)
response.headers["X-RateLimit-Remaining"] = str(remaining)
response.headers["X-RateLimit-Reset"] = str(reset_time)
return response

View File

@@ -0,0 +1,9 @@
from .store import SupabaseIntegrationCredentialsStore
from .types import Credentials, APIKeyCredentials, OAuth2Credentials
__all__ = [
"SupabaseIntegrationCredentialsStore",
"Credentials",
"APIKeyCredentials",
"OAuth2Credentials",
]

View File

@@ -0,0 +1,278 @@
import secrets
from datetime import datetime, timedelta, timezone
from typing import TYPE_CHECKING
from pydantic import SecretStr
if TYPE_CHECKING:
from redis import Redis
from backend.executor.database import DatabaseManager
from autogpt_libs.utils.cache import thread_cached
from autogpt_libs.utils.synchronize import RedisKeyedMutex
from .types import (
APIKeyCredentials,
Credentials,
OAuth2Credentials,
OAuthState,
UserIntegrations,
)
from backend.util.settings import Settings
settings = Settings()
revid_credentials = APIKeyCredentials(
id="fdb7f412-f519-48d1-9b5f-d2f73d0e01fe",
provider="revid",
api_key=SecretStr(settings.secrets.revid_api_key),
title="Use Credits for Revid",
expires_at=None,
)
ideogram_credentials = APIKeyCredentials(
id="760f84fc-b270-42de-91f6-08efe1b512d0",
provider="ideogram",
api_key=SecretStr(settings.secrets.ideogram_api_key),
title="Use Credits for Ideogram",
expires_at=None,
)
replicate_credentials = APIKeyCredentials(
id="6b9fc200-4726-4973-86c9-cd526f5ce5db",
provider="replicate",
api_key=SecretStr(settings.secrets.replicate_api_key),
title="Use Credits for Replicate",
expires_at=None,
)
openai_credentials = APIKeyCredentials(
id="53c25cb8-e3ee-465c-a4d1-e75a4c899c2a",
provider="llm",
api_key=SecretStr(settings.secrets.openai_api_key),
title="Use Credits for OpenAI",
expires_at=None,
)
anthropic_credentials = APIKeyCredentials(
id="24e5d942-d9e3-4798-8151-90143ee55629",
provider="llm",
api_key=SecretStr(settings.secrets.anthropic_api_key),
title="Use Credits for Anthropic",
expires_at=None,
)
groq_credentials = APIKeyCredentials(
id="4ec22295-8f97-4dd1-b42b-2c6957a02545",
provider="llm",
api_key=SecretStr(settings.secrets.groq_api_key),
title="Use Credits for Groq",
expires_at=None,
)
did_credentials = APIKeyCredentials(
id="7f7b0654-c36b-4565-8fa7-9a52575dfae2",
provider="d_id",
api_key=SecretStr(settings.secrets.did_api_key),
title="Use Credits for D-ID",
expires_at=None,
)
DEFAULT_CREDENTIALS = [
revid_credentials,
ideogram_credentials,
replicate_credentials,
openai_credentials,
anthropic_credentials,
groq_credentials,
did_credentials,
]
class SupabaseIntegrationCredentialsStore:
def __init__(self, redis: "Redis"):
self.locks = RedisKeyedMutex(redis)
@property
@thread_cached
def db_manager(self) -> "DatabaseManager":
from backend.executor.database import DatabaseManager
from backend.util.service import get_service_client
return get_service_client(DatabaseManager)
def add_creds(self, user_id: str, credentials: Credentials) -> None:
with self.locked_user_integrations(user_id):
if self.get_creds_by_id(user_id, credentials.id):
raise ValueError(
f"Can not re-create existing credentials #{credentials.id} "
f"for user #{user_id}"
)
self._set_user_integration_creds(
user_id, [*self.get_all_creds(user_id), credentials]
)
def get_all_creds(self, user_id: str) -> list[Credentials]:
users_credentials = self._get_user_integrations(user_id).credentials
all_credentials = users_credentials
if settings.secrets.revid_api_key:
all_credentials.append(revid_credentials)
if settings.secrets.ideogram_api_key:
all_credentials.append(ideogram_credentials)
if settings.secrets.groq_api_key:
all_credentials.append(groq_credentials)
if settings.secrets.replicate_api_key:
all_credentials.append(replicate_credentials)
if settings.secrets.openai_api_key:
all_credentials.append(openai_credentials)
if settings.secrets.anthropic_api_key:
all_credentials.append(anthropic_credentials)
if settings.secrets.did_api_key:
all_credentials.append(did_credentials)
return all_credentials
def get_creds_by_id(self, user_id: str, credentials_id: str) -> Credentials | None:
all_credentials = self.get_all_creds(user_id)
return next((c for c in all_credentials if c.id == credentials_id), None)
def get_creds_by_provider(self, user_id: str, provider: str) -> list[Credentials]:
credentials = self.get_all_creds(user_id)
return [c for c in credentials if c.provider == provider]
def get_authorized_providers(self, user_id: str) -> list[str]:
credentials = self.get_all_creds(user_id)
return list(set(c.provider for c in credentials))
def update_creds(self, user_id: str, updated: Credentials) -> None:
with self.locked_user_integrations(user_id):
current = self.get_creds_by_id(user_id, updated.id)
if not current:
raise ValueError(
f"Credentials with ID {updated.id} "
f"for user with ID {user_id} not found"
)
if type(current) is not type(updated):
raise TypeError(
f"Can not update credentials with ID {updated.id} "
f"from type {type(current)} "
f"to type {type(updated)}"
)
# Ensure no scopes are removed when updating credentials
if (
isinstance(updated, OAuth2Credentials)
and isinstance(current, OAuth2Credentials)
and not set(updated.scopes).issuperset(current.scopes)
):
raise ValueError(
f"Can not update credentials with ID {updated.id} "
f"and scopes {current.scopes} "
f"to more restrictive set of scopes {updated.scopes}"
)
# Update the credentials
updated_credentials_list = [
updated if c.id == updated.id else c
for c in self.get_all_creds(user_id)
]
self._set_user_integration_creds(user_id, updated_credentials_list)
def delete_creds_by_id(self, user_id: str, credentials_id: str) -> None:
with self.locked_user_integrations(user_id):
filtered_credentials = [
c for c in self.get_all_creds(user_id) if c.id != credentials_id
]
self._set_user_integration_creds(user_id, filtered_credentials)
def store_state_token(self, user_id: str, provider: str, scopes: list[str]) -> str:
token = secrets.token_urlsafe(32)
expires_at = datetime.now(timezone.utc) + timedelta(minutes=10)
state = OAuthState(
token=token,
provider=provider,
expires_at=int(expires_at.timestamp()),
scopes=scopes,
)
with self.locked_user_integrations(user_id):
user_integrations = self._get_user_integrations(user_id)
oauth_states = user_integrations.oauth_states
oauth_states.append(state)
user_integrations.oauth_states = oauth_states
self.db_manager.update_user_integrations(
user_id=user_id, data=user_integrations
)
return token
def get_any_valid_scopes_from_state_token(
self, user_id: str, token: str, provider: str
) -> list[str]:
"""
Get the valid scopes from the OAuth state token. This will return any valid scopes
from any OAuth state token for the given provider. If no valid scopes are found,
an empty list is returned. DO NOT RELY ON THIS TOKEN TO AUTHENTICATE A USER, AS IT
IS TO CHECK IF THE USER HAS GIVEN PERMISSIONS TO THE APPLICATION BEFORE EXCHANGING
THE CODE FOR TOKENS.
"""
user_integrations = self._get_user_integrations(user_id)
oauth_states = user_integrations.oauth_states
now = datetime.now(timezone.utc)
valid_state = next(
(
state
for state in oauth_states
if state.token == token
and state.provider == provider
and state.expires_at > now.timestamp()
),
None,
)
if valid_state:
return valid_state.scopes
return []
def verify_state_token(self, user_id: str, token: str, provider: str) -> bool:
with self.locked_user_integrations(user_id):
user_integrations = self._get_user_integrations(user_id)
oauth_states = user_integrations.oauth_states
now = datetime.now(timezone.utc)
valid_state = next(
(
state
for state in oauth_states
if state.token == token
and state.provider == provider
and state.expires_at > now.timestamp()
),
None,
)
if valid_state:
# Remove the used state
oauth_states.remove(valid_state)
user_integrations.oauth_states = oauth_states
self.db_manager.update_user_integrations(user_id, user_integrations)
return True
return False
def _set_user_integration_creds(
self, user_id: str, credentials: list[Credentials]
) -> None:
integrations = self._get_user_integrations(user_id)
# Remove default credentials from the list
credentials = [c for c in credentials if c not in DEFAULT_CREDENTIALS]
integrations.credentials = credentials
self.db_manager.update_user_integrations(user_id, integrations)
def _get_user_integrations(self, user_id: str) -> UserIntegrations:
integrations: UserIntegrations = self.db_manager.get_user_integrations(
user_id=user_id
)
return integrations
def locked_user_integrations(self, user_id: str):
key = (self.db_manager, f"user:{user_id}", "integrations")
return self.locks.locked(key)

View File

@@ -56,7 +56,6 @@ class OAuthState(BaseModel):
token: str
provider: str
expires_at: int
code_verifier: Optional[str] = None
scopes: list[str]
"""Unix timestamp (seconds) indicating when this OAuth state expires"""

View File

@@ -1,59 +1,20 @@
import inspect
from typing import Callable, TypeVar, ParamSpec
import threading
from typing import Awaitable, Callable, ParamSpec, TypeVar, cast, overload
P = ParamSpec("P")
R = TypeVar("R")
@overload
def thread_cached(func: Callable[P, Awaitable[R]]) -> Callable[P, Awaitable[R]]: ...
@overload
def thread_cached(func: Callable[P, R]) -> Callable[P, R]: ...
def thread_cached(
func: Callable[P, R] | Callable[P, Awaitable[R]],
) -> Callable[P, R] | Callable[P, Awaitable[R]]:
def thread_cached(func: Callable[P, R]) -> Callable[P, R]:
thread_local = threading.local()
def _clear():
if hasattr(thread_local, "cache"):
del thread_local.cache
def wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = (args, tuple(sorted(kwargs.items())))
if key not in cache:
cache[key] = func(*args, **kwargs)
return cache[key]
if inspect.iscoroutinefunction(func):
async def async_wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = (args, tuple(sorted(kwargs.items())))
if key not in cache:
cache[key] = await cast(Callable[P, Awaitable[R]], func)(
*args, **kwargs
)
return cache[key]
setattr(async_wrapper, "clear_cache", _clear)
return async_wrapper
else:
def sync_wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = (args, tuple(sorted(kwargs.items())))
if key not in cache:
cache[key] = func(*args, **kwargs)
return cache[key]
setattr(sync_wrapper, "clear_cache", _clear)
return sync_wrapper
def clear_thread_cache(func: Callable) -> None:
if clear := getattr(func, "clear_cache", None):
clear()
return wrapper

View File

@@ -1,15 +1,15 @@
import asyncio
from contextlib import asynccontextmanager
from contextlib import contextmanager
from threading import Lock
from typing import TYPE_CHECKING, Any
from expiringdict import ExpiringDict
if TYPE_CHECKING:
from redis.asyncio import Redis as AsyncRedis
from redis.asyncio.lock import Lock as AsyncRedisLock
from redis import Redis
from redis.lock import Lock as RedisLock
class AsyncRedisKeyedMutex:
class RedisKeyedMutex:
"""
This class provides a mutex that can be locked and unlocked by a specific key,
using Redis as a distributed locking provider.
@@ -17,45 +17,40 @@ class AsyncRedisKeyedMutex:
in case the key is not unlocked for a specified duration, to prevent memory leaks.
"""
def __init__(self, redis: "AsyncRedis", timeout: int | None = 60):
def __init__(self, redis: "Redis", timeout: int | None = 60):
self.redis = redis
self.timeout = timeout
self.locks: dict[Any, "AsyncRedisLock"] = ExpiringDict(
self.locks: dict[Any, "RedisLock"] = ExpiringDict(
max_len=6000, max_age_seconds=self.timeout
)
self.locks_lock = asyncio.Lock()
self.locks_lock = Lock()
@asynccontextmanager
async def locked(self, key: Any):
lock = await self.acquire(key)
@contextmanager
def locked(self, key: Any):
lock = self.acquire(key)
try:
yield
finally:
if (await lock.locked()) and (await lock.owned()):
await lock.release()
lock.release()
async def acquire(self, key: Any) -> "AsyncRedisLock":
def acquire(self, key: Any) -> "RedisLock":
"""Acquires and returns a lock with the given key"""
async with self.locks_lock:
with self.locks_lock:
if key not in self.locks:
self.locks[key] = self.redis.lock(
str(key), self.timeout, thread_local=False
)
lock = self.locks[key]
await lock.acquire()
lock.acquire()
return lock
async def release(self, key: Any):
if (
(lock := self.locks.get(key))
and (await lock.locked())
and (await lock.owned())
):
await lock.release()
def release(self, key: Any):
if lock := self.locks.get(key):
lock.release()
async def release_all_locks(self):
def release_all_locks(self):
"""Call this on process termination to ensure all locks are released"""
async with self.locks_lock:
for lock in self.locks.values():
if (await lock.locked()) and (await lock.owned()):
await lock.release()
self.locks_lock.acquire(blocking=False)
for lock in self.locks.values():
if lock.locked() and lock.owned():
lock.release()

File diff suppressed because it is too large Load Diff

View File

@@ -7,30 +7,19 @@ readme = "README.md"
packages = [{ include = "autogpt_libs" }]
[tool.poetry.dependencies]
python = ">=3.10,<4.0"
colorama = "^0.4.6"
expiringdict = "^1.2.2"
google-cloud-logging = "^3.12.1"
pydantic = "^2.11.4"
pydantic-settings = "^2.9.1"
pyjwt = "^2.10.1"
pytest-asyncio = "^0.26.0"
pytest-mock = "^3.14.0"
supabase = "^2.15.1"
launchdarkly-server-sdk = "^9.11.1"
fastapi = "^0.115.12"
uvicorn = "^0.34.3"
google-cloud-logging = "^3.11.3"
pydantic = "^2.9.2"
pydantic-settings = "^2.6.1"
pyjwt = "^2.8.0"
python = ">=3.10,<4.0"
python-dotenv = "^1.0.1"
supabase = "^2.9.1"
[tool.poetry.group.dev.dependencies]
redis = "^5.2.1"
ruff = "^0.12.2"
redis = "^5.2.0"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
[tool.ruff]
line-length = 88
[tool.ruff.lint]
extend-select = ["I"] # sort dependencies

View File

@@ -2,32 +2,19 @@ DB_USER=postgres
DB_PASS=your-super-secret-and-long-postgres-password
DB_NAME=postgres
DB_PORT=5432
DB_HOST=localhost
DB_CONNECTION_LIMIT=12
DB_CONNECT_TIMEOUT=60
DB_POOL_TIMEOUT=300
DB_SCHEMA=platform
DATABASE_URL="postgresql://${DB_USER}:${DB_PASS}@${DB_HOST}:${DB_PORT}/${DB_NAME}?schema=${DB_SCHEMA}&connect_timeout=${DB_CONNECT_TIMEOUT}"
DIRECT_URL="postgresql://${DB_USER}:${DB_PASS}@${DB_HOST}:${DB_PORT}/${DB_NAME}?schema=${DB_SCHEMA}&connect_timeout=${DB_CONNECT_TIMEOUT}"
DATABASE_URL="postgresql://${DB_USER}:${DB_PASS}@localhost:${DB_PORT}/${DB_NAME}?connect_timeout=60&schema=platform"
PRISMA_SCHEMA="postgres/schema.prisma"
# EXECUTOR
NUM_GRAPH_WORKERS=10
BACKEND_CORS_ALLOW_ORIGINS=["http://localhost:3000"]
# generate using `from cryptography.fernet import Fernet;Fernet.generate_key().decode()`
ENCRYPTION_KEY='dvziYgz0KSK8FENhju0ZYi8-fRTfAdlz6YLhdB_jhNw='
UNSUBSCRIBE_SECRET_KEY = 'HlP8ivStJjmbf6NKi78m_3FnOogut0t5ckzjsIqeaio='
REDIS_HOST=localhost
REDIS_PORT=6379
REDIS_PASSWORD=password
ENABLE_CREDIT=false
STRIPE_API_KEY=
STRIPE_WEBHOOK_SECRET=
# What environment things should be logged under: local dev or prod
APP_ENV=local
# What environment to behave as: "local" or "cloud"
@@ -35,42 +22,14 @@ BEHAVE_AS=local
PYRO_HOST=localhost
SENTRY_DSN=
# Email For Postmark so we can send emails
POSTMARK_SERVER_API_TOKEN=
POSTMARK_SENDER_EMAIL=invalid@invalid.com
POSTMARK_WEBHOOK_TOKEN=
## User auth with Supabase is required for any of the 3rd party integrations with auth to work.
ENABLE_AUTH=true
SUPABASE_URL=http://localhost:8000
SUPABASE_SERVICE_ROLE_KEY=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyAgCiAgICAicm9sZSI6ICJzZXJ2aWNlX3JvbGUiLAogICAgImlzcyI6ICJzdXBhYmFzZS1kZW1vIiwKICAgICJpYXQiOiAxNjQxNzY5MjAwLAogICAgImV4cCI6IDE3OTk1MzU2MDAKfQ.DaYlNEoUrrEn2Ig7tqibS-PHK5vgusbcbo7X36XVt4Q
SUPABASE_JWT_SECRET=your-super-secret-jwt-token-with-at-least-32-characters-long
# RabbitMQ credentials -- Used for communication between services
RABBITMQ_HOST=localhost
RABBITMQ_PORT=5672
RABBITMQ_DEFAULT_USER=rabbitmq_user_default
RABBITMQ_DEFAULT_PASS=k0VMxyIJF9S35f3x2uaw5IWAl6Y536O7
## GCS bucket is required for marketplace and library functionality
MEDIA_GCS_BUCKET_NAME=
## For local development, you may need to set FRONTEND_BASE_URL for the OAuth flow
## for integrations to work. Defaults to the value of PLATFORM_BASE_URL if not set.
# FRONTEND_BASE_URL=http://localhost:3000
## PLATFORM_BASE_URL must be set to a *publicly accessible* URL pointing to your backend
## to use the platform's webhook-related functionality.
## If you are developing locally, you can use something like ngrok to get a publc URL
## and tunnel it to your locally running backend.
PLATFORM_BASE_URL=http://localhost:3000
## Cloudflare Turnstile (CAPTCHA) Configuration
## Get these from the Cloudflare Turnstile dashboard: https://dash.cloudflare.com/?to=/:account/turnstile
## This is the backend secret key
TURNSTILE_SECRET_KEY=
## This is the verify URL
TURNSTILE_VERIFY_URL=https://challenges.cloudflare.com/turnstile/v0/siteverify
# For local development, you may need to set FRONTEND_BASE_URL for the OAuth flow for integrations to work.
FRONTEND_BASE_URL=http://localhost:3000
## == INTEGRATION CREDENTIALS == ##
# Each set of server side credentials is required for the corresponding 3rd party
@@ -92,52 +51,18 @@ GITHUB_CLIENT_SECRET=
GOOGLE_CLIENT_ID=
GOOGLE_CLIENT_SECRET=
# Twitter (X) OAuth 2.0 with PKCE Configuration
# 1. Create a Twitter Developer Account:
# - Visit https://developer.x.com/en and sign up
# 2. Set up your application:
# - Navigate to Developer Portal > Projects > Create Project
# - Add a new app to your project
# 3. Configure app settings:
# - App Permissions: Read + Write + Direct Messages
# - App Type: Web App, Automated App or Bot
# - OAuth 2.0 Callback URL: http://localhost:3000/auth/integrations/oauth_callback
# - Save your Client ID and Client Secret below
TWITTER_CLIENT_ID=
TWITTER_CLIENT_SECRET=
# Linear App
# Make a new workspace for your OAuth APP -- trust me
# https://linear.app/settings/api/applications/new
# Callback URL: http://localhost:3000/auth/integrations/oauth_callback
LINEAR_CLIENT_ID=
LINEAR_CLIENT_SECRET=
# To obtain Todoist API credentials:
# 1. Create a Todoist account at todoist.com
# 2. Visit the Developer Console: https://developer.todoist.com/appconsole.html
# 3. Click "Create new app"
# 4. Once created, copy your Client ID and Client Secret below
TODOIST_CLIENT_ID=
TODOIST_CLIENT_SECRET=
## ===== OPTIONAL API KEYS ===== ##
# LLM
OPENAI_API_KEY=
ANTHROPIC_API_KEY=
AIML_API_KEY=
GROQ_API_KEY=
OPEN_ROUTER_API_KEY=
LLAMA_API_KEY=
# Reddit
# Go to https://www.reddit.com/prefs/apps and create a new app
# Choose "script" for the type
# Fill in the redirect uri as <your_frontend_url>/auth/integrations/oauth_callback, e.g. http://localhost:3000/auth/integrations/oauth_callback
REDDIT_CLIENT_ID=
REDDIT_CLIENT_SECRET=
REDDIT_USER_AGENT="AutoGPT:1.0 (by /u/autogpt)"
REDDIT_USERNAME=
REDDIT_PASSWORD=
# Discord
DISCORD_BOT_TOKEN=
@@ -173,32 +98,6 @@ REPLICATE_API_KEY=
# Ideogram
IDEOGRAM_API_KEY=
# Fal
FAL_API_KEY=
# Exa
EXA_API_KEY=
# E2B
E2B_API_KEY=
# Mem0
MEM0_API_KEY=
# Nvidia
NVIDIA_API_KEY=
# Apollo
APOLLO_API_KEY=
# SmartLead
SMARTLEAD_API_KEY=
# ZeroBounce
ZEROBOUNCE_API_KEY=
## ===== OPTIONAL API KEYS END ===== ##
# Logging Configuration
LOG_LEVEL=INFO
ENABLE_CLOUD_LOGGING=false

View File

@@ -5,7 +5,4 @@ dev.db-journal
build/
config.json
secrets/*
!secrets/.gitkeep
*.ignore.*
*.ign.*
!secrets/.gitkeep

View File

@@ -1,4 +1,4 @@
FROM python:3.11.10-slim-bookworm AS builder
FROM python:3.11-slim-buster AS builder
# Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1
@@ -6,21 +6,17 @@ ENV PYTHONUNBUFFERED 1
WORKDIR /app
RUN echo 'Acquire::http::Pipeline-Depth 0;\nAcquire::http::No-Cache true;\nAcquire::BrokenProxy true;\n' > /etc/apt/apt.conf.d/99fixbadproxy
RUN apt-get update --allow-releaseinfo-change --fix-missing
# Install build dependencies
RUN apt-get install -y build-essential
RUN apt-get install -y libpq5
RUN apt-get install -y libz-dev
RUN apt-get install -y libssl-dev
RUN apt-get install -y postgresql-client
RUN apt-get update \
&& apt-get install -y build-essential curl ffmpeg wget libcurl4-gnutls-dev libexpat1-dev libpq5 gettext libz-dev libssl-dev postgresql-client git \
&& apt-get clean \
&& rm -rf /var/lib/apt/lists/*
ENV POETRY_HOME=/opt/poetry
ENV POETRY_NO_INTERACTION=1
ENV POETRY_VIRTUALENVS_CREATE=false
ENV PATH=/opt/poetry/bin:$PATH
ENV POETRY_VERSION=1.8.3 \
POETRY_HOME="/opt/poetry" \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=false \
PATH="$POETRY_HOME/bin:$PATH"
# Upgrade pip and setuptools to fix security vulnerabilities
RUN pip3 install --upgrade pip setuptools
@@ -31,20 +27,24 @@ RUN pip3 install poetry
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
WORKDIR /app/autogpt_platform/backend
RUN poetry install --no-ansi --no-root
RUN poetry config virtualenvs.create false \
&& poetry install --no-interaction --no-ansi
# Generate Prisma client
COPY autogpt_platform/backend/schema.prisma ./
RUN poetry run prisma generate
RUN poetry config virtualenvs.create false \
&& poetry run prisma generate
FROM python:3.11.10-slim-bookworm AS server_dependencies
FROM python:3.11-slim-buster AS server_dependencies
WORKDIR /app
ENV POETRY_HOME=/opt/poetry \
ENV POETRY_VERSION=1.8.3 \
POETRY_HOME="/opt/poetry" \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=false
ENV PATH=/opt/poetry/bin:$PATH
POETRY_VIRTUALENVS_CREATE=false \
PATH="$POETRY_HOME/bin:$PATH"
# Upgrade pip and setuptools to fix security vulnerabilities
RUN pip3 install --upgrade pip setuptools
@@ -71,8 +71,8 @@ WORKDIR /app/autogpt_platform/backend
FROM server_dependencies AS server
COPY autogpt_platform/backend /app/autogpt_platform/backend
RUN poetry install --no-ansi --only-root
ENV DATABASE_URL=""
ENV PORT=8000
CMD ["poetry", "run", "rest"]

View File

@@ -1 +1,75 @@
[Advanced Setup (Dev Branch)](https://dev-docs.agpt.co/platform/advanced_setup/#autogpt_agent_server_advanced_set_up)
# AutoGPT Agent Server Advanced set up
This guide walks you through a dockerized set up, with an external DB (postgres)
## Setup
We use the Poetry to manage the dependencies. To set up the project, follow these steps inside this directory:
0. Install Poetry
```sh
pip install poetry
```
1. Configure Poetry to use .venv in your project directory
```sh
poetry config virtualenvs.in-project true
```
2. Enter the poetry shell
```sh
poetry shell
```
3. Install dependencies
```sh
poetry install
```
4. Copy .env.example to .env
```sh
cp .env.example .env
```
5. Generate the Prisma client
```sh
poetry run prisma generate
```
> In case Prisma generates the client for the global Python installation instead of the virtual environment, the current mitigation is to just uninstall the global Prisma package:
>
> ```sh
> pip uninstall prisma
> ```
>
> Then run the generation again. The path *should* look something like this:
> `<some path>/pypoetry/virtualenvs/backend-TQIRSwR6-py3.12/bin/prisma`
6. Run the postgres database from the /rnd folder
```sh
cd autogpt_platform/
docker compose up -d
```
7. Run the migrations (from the backend folder)
```sh
cd ../backend
prisma migrate deploy
```
## Running The Server
### Starting the server directly
Run the following command:
```sh
poetry run app
```

View File

@@ -1 +1,203 @@
[Getting Started (Released)](https://docs.agpt.co/platform/getting-started/#autogpt_agent_server)
# AutoGPT Agent Server
This is an initial project for creating the next generation of agent execution, which is an AutoGPT agent server.
The agent server will enable the creation of composite multi-agent systems that utilize AutoGPT agents and other non-agent components as its primitives.
## Docs
You can access the docs for the [AutoGPT Agent Server here](https://docs.agpt.co/server/setup).
## Setup
We use the Poetry to manage the dependencies. To set up the project, follow these steps inside this directory:
0. Install Poetry
```sh
pip install poetry
```
1. Configure Poetry to use .venv in your project directory
```sh
poetry config virtualenvs.in-project true
```
2. Enter the poetry shell
```sh
poetry shell
```
3. Install dependencies
```sh
poetry install
```
4. Copy .env.example to .env
```sh
cp .env.example .env
```
5. Generate the Prisma client
```sh
poetry run prisma generate
```
> In case Prisma generates the client for the global Python installation instead of the virtual environment, the current mitigation is to just uninstall the global Prisma package:
>
> ```sh
> pip uninstall prisma
> ```
>
> Then run the generation again. The path *should* look something like this:
> `<some path>/pypoetry/virtualenvs/backend-TQIRSwR6-py3.12/bin/prisma`
6. Migrate the database. Be careful because this deletes current data in the database.
```sh
docker compose up db -d
poetry run prisma migrate deploy
```
## Running The Server
### Starting the server without Docker
Run the following command to run database in docker but the application locally:
```sh
docker compose --profile local up deps --build --detach
poetry run app
```
### Starting the server with Docker
Run the following command to build the dockerfiles:
```sh
docker compose build
```
Run the following command to run the app:
```sh
docker compose up
```
Run the following to automatically rebuild when code changes, in another terminal:
```sh
docker compose watch
```
Run the following command to shut down:
```sh
docker compose down
```
If you run into issues with dangling orphans, try:
```sh
docker compose down --volumes --remove-orphans && docker-compose up --force-recreate --renew-anon-volumes --remove-orphans
```
## Testing
To run the tests:
```sh
poetry run test
```
## Development
### Formatting & Linting
Auto formatter and linter are set up in the project. To run them:
Install:
```sh
poetry install --with dev
```
Format the code:
```sh
poetry run format
```
Lint the code:
```sh
poetry run lint
```
## Project Outline
The current project has the following main modules:
### **blocks**
This module stores all the Agent Blocks, which are reusable components to build a graph that represents the agent's behavior.
### **data**
This module stores the logical model that is persisted in the database.
It abstracts the database operations into functions that can be called by the service layer.
Any code that interacts with Prisma objects or the database should reside in this module.
The main models are:
* `block`: anything related to the block used in the graph
* `execution`: anything related to the execution graph execution
* `graph`: anything related to the graph, node, and its relations
### **execution**
This module stores the business logic of executing the graph.
It currently has the following main modules:
* `manager`: A service that consumes the queue of the graph execution and executes the graph. It contains both pieces of logic.
* `scheduler`: A service that triggers scheduled graph execution based on a cron expression. It pushes an execution request to the manager.
### **server**
This module stores the logic for the server API.
It contains all the logic used for the API that allows the client to create, execute, and monitor the graph and its execution.
This API service interacts with other services like those defined in `manager` and `scheduler`.
### **utils**
This module stores utility functions that are used across the project.
Currently, it has two main modules:
* `process`: A module that contains the logic to spawn a new process.
* `service`: A module that serves as a parent class for all the services in the project.
## Service Communication
Currently, there are only 3 active services:
- AgentServer (the API, defined in `server.py`)
- ExecutionManager (the executor, defined in `manager.py`)
- ExecutionScheduler (the scheduler, defined in `scheduler.py`)
The services run in independent Python processes and communicate through an IPC.
A communication layer (`service.py`) is created to decouple the communication library from the implementation.
Currently, the IPC is done using Pyro5 and abstracted in a way that allows a function decorated with `@expose` to be called from a different process.
By default the daemons run on the following ports:
Execution Manager Daemon: 8002
Execution Scheduler Daemon: 8003
Rest Server Daemon: 8004
## Adding a New Agent Block
To add a new agent block, you need to create a new class that inherits from `Block` and provides the following information:
* All the block code should live in the `blocks` (`backend.blocks`) module.
* `input_schema`: the schema of the input data, represented by a Pydantic object.
* `output_schema`: the schema of the output data, represented by a Pydantic object.
* `run` method: the main logic of the block.
* `test_input` & `test_output`: the sample input and output data for the block, which will be used to auto-test the block.
* You can mock the functions declared in the block using the `test_mock` field for your unit tests.
* Once you finish creating the block, you can test it by running `pytest -s test/block/test_block.py`.

View File

@@ -1,237 +0,0 @@
# Backend Testing Guide
This guide covers testing practices for the AutoGPT Platform backend, with a focus on snapshot testing for API endpoints.
## Table of Contents
- [Overview](#overview)
- [Running Tests](#running-tests)
- [Snapshot Testing](#snapshot-testing)
- [Writing Tests for API Routes](#writing-tests-for-api-routes)
- [Best Practices](#best-practices)
## Overview
The backend uses pytest for testing with the following key libraries:
- `pytest` - Test framework
- `pytest-asyncio` - Async test support
- `pytest-mock` - Mocking support
- `pytest-snapshot` - Snapshot testing for API responses
## Running Tests
### Run all tests
```bash
poetry run test
```
### Run specific test file
```bash
poetry run pytest path/to/test_file.py
```
### Run with verbose output
```bash
poetry run pytest -v
```
### Run with coverage
```bash
poetry run pytest --cov=backend
```
## Snapshot Testing
Snapshot testing captures the output of your code and compares it against previously saved snapshots. This is particularly useful for testing API responses.
### How Snapshot Testing Works
1. First run: Creates snapshot files in `snapshots/` directories
2. Subsequent runs: Compares output against saved snapshots
3. Changes detected: Test fails if output differs from snapshot
### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Snapshot Test Example
```python
import json
from pytest_snapshot.plugin import Snapshot
def test_api_endpoint(snapshot: Snapshot):
response = client.get("/api/endpoint")
# Snapshot the response
snapshot.snapshot_dir = "snapshots"
snapshot.assert_match(
json.dumps(response.json(), indent=2, sort_keys=True),
"endpoint_response"
)
```
### Best Practices for Snapshots
1. **Use descriptive names**: `"user_list_response"` not `"response1"`
2. **Sort JSON keys**: Ensures consistent snapshots
3. **Format JSON**: Use `indent=2` for readable diffs
4. **Exclude dynamic data**: Remove timestamps, IDs, etc. that change between runs
Example of excluding dynamic data:
```python
response_data = response.json()
# Remove dynamic fields for snapshot
response_data.pop("created_at", None)
response_data.pop("id", None)
snapshot.snapshot_dir = "snapshots"
snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"static_response_data"
)
```
## Writing Tests for API Routes
### Basic Structure
```python
import json
import fastapi
import fastapi.testclient
import pytest
from pytest_snapshot.plugin import Snapshot
from backend.server.v2.myroute import router
app = fastapi.FastAPI()
app.include_router(router)
client = fastapi.testclient.TestClient(app)
def test_endpoint_success(snapshot: Snapshot):
response = client.get("/endpoint")
assert response.status_code == 200
# Test specific fields
data = response.json()
assert data["status"] == "success"
# Snapshot the full response
snapshot.snapshot_dir = "snapshots"
snapshot.assert_match(
json.dumps(data, indent=2, sort_keys=True),
"endpoint_success_response"
)
```
### Testing with Authentication
```python
def override_auth_middleware():
return {"sub": "test-user-id"}
def override_get_user_id():
return "test-user-id"
app.dependency_overrides[auth_middleware] = override_auth_middleware
app.dependency_overrides[get_user_id] = override_get_user_id
```
### Mocking External Services
```python
def test_external_api_call(mocker, snapshot):
# Mock external service
mock_response = {"external": "data"}
mocker.patch(
"backend.services.external_api.call",
return_value=mock_response
)
response = client.post("/api/process")
assert response.status_code == 200
snapshot.snapshot_dir = "snapshots"
snapshot.assert_match(
json.dumps(response.json(), indent=2, sort_keys=True),
"process_with_external_response"
)
```
## Best Practices
### 1. Test Organization
- Place tests next to the code: `routes.py``routes_test.py`
- Use descriptive test names: `test_create_user_with_invalid_email`
- Group related tests in classes when appropriate
### 2. Test Coverage
- Test happy path and error cases
- Test edge cases (empty data, invalid formats)
- Test authentication and authorization
### 3. Snapshot Testing Guidelines
- Review all snapshot changes carefully
- Don't snapshot sensitive data
- Keep snapshots focused and minimal
- Update snapshots intentionally, not accidentally
### 4. Async Testing
- Use regular `def` for FastAPI TestClient tests
- Use `async def` with `@pytest.mark.asyncio` for testing async functions directly
### 5. Fixtures
Create reusable fixtures for common test data:
```python
@pytest.fixture
def sample_user():
return {
"email": "test@example.com",
"name": "Test User"
}
def test_create_user(sample_user, snapshot):
response = client.post("/users", json=sample_user)
# ... test implementation
```
## CI/CD Integration
The GitHub Actions workflow automatically runs tests on:
- Pull requests
- Pushes to main branch
Snapshot tests work in CI by:
1. Committing snapshot files to the repository
2. CI compares against committed snapshots
3. Fails if snapshots don't match
## Troubleshooting
### Snapshot Mismatches
- Review the diff carefully
- If changes are expected: `poetry run pytest --snapshot-update`
- If changes are unexpected: Fix the code causing the difference
### Async Test Issues
- Ensure async functions use `@pytest.mark.asyncio`
- Use `AsyncMock` for mocking async functions
- FastAPI TestClient handles async automatically
### Import Errors
- Check that all dependencies are in `pyproject.toml`
- Run `poetry install` to ensure dependencies are installed
- Verify import paths are correct
## Summary
Snapshot testing provides a powerful way to ensure API responses remain consistent. Combined with traditional assertions, it creates a robust test suite that catches regressions while remaining maintainable.
Remember: Good tests are as important as good code!

View File

@@ -1,30 +1,22 @@
import logging
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from backend.util.process import AppProcess
logger = logging.getLogger(__name__)
def run_processes(*processes: "AppProcess", **kwargs):
"""
Execute all processes in the app. The last process is run in the foreground.
Includes enhanced error handling and process lifecycle management.
"""
try:
# Run all processes except the last one in the background.
for process in processes[:-1]:
process.start(background=True, **kwargs)
# Run the last process in the foreground.
# Run the last process in the foreground
processes[-1].start(background=False, **kwargs)
finally:
for process in processes:
try:
process.stop()
except Exception as e:
logger.exception(f"[{process.service_name}] unable to stop: {e}")
process.stop()
def main(**kwargs):
@@ -32,16 +24,14 @@ def main(**kwargs):
Run all the processes required for the AutoGPT-server (REST and WebSocket APIs).
"""
from backend.executor import DatabaseManager, ExecutionManager, Scheduler
from backend.notifications import NotificationManager
from backend.executor import DatabaseManager, ExecutionManager, ExecutionScheduler
from backend.server.rest_api import AgentServer
from backend.server.ws_api import WebsocketServer
run_processes(
DatabaseManager(),
ExecutionManager(),
Scheduler(),
NotificationManager(),
ExecutionScheduler(),
WebsocketServer(),
AgentServer(),
**kwargs,

View File

@@ -1,99 +1,96 @@
import functools
import importlib
import os
import re
from pathlib import Path
from typing import TYPE_CHECKING, TypeVar
from typing import Type, TypeVar
from backend.data.block import Block
# Dynamically load all modules under backend.blocks
AVAILABLE_MODULES = []
current_dir = Path(__file__).parent
modules = [
str(f.relative_to(current_dir))[:-3].replace(os.path.sep, ".")
for f in current_dir.rglob("*.py")
if f.is_file() and f.name != "__init__.py"
]
for module in modules:
if not re.match("^[a-z_.]+$", module):
raise ValueError(
f"Block module {module} error: module name must be lowercase, "
"separated by underscores, and contain only alphabet characters"
)
importlib.import_module(f".{module}", package=__name__)
AVAILABLE_MODULES.append(module)
# Load all Block instances from the available modules
AVAILABLE_BLOCKS: dict[str, Type[Block]] = {}
if TYPE_CHECKING:
from backend.data.block import Block
T = TypeVar("T")
@functools.cache
def load_all_blocks() -> dict[str, type["Block"]]:
from backend.data.block import Block
# Dynamically load all modules under backend.blocks
current_dir = Path(__file__).parent
modules = [
str(f.relative_to(current_dir))[:-3].replace(os.path.sep, ".")
for f in current_dir.rglob("*.py")
if f.is_file() and f.name != "__init__.py" and not f.name.startswith("test_")
]
for module in modules:
if not re.match("^[a-z0-9_.]+$", module):
raise ValueError(
f"Block module {module} error: module name must be lowercase, "
"and contain only alphanumeric characters and underscores."
)
importlib.import_module(f".{module}", package=__name__)
# Load all Block instances from the available modules
available_blocks: dict[str, type["Block"]] = {}
for block_cls in all_subclasses(Block):
class_name = block_cls.__name__
if class_name.endswith("Base"):
continue
if not class_name.endswith("Block"):
raise ValueError(
f"Block class {class_name} does not end with 'Block'. "
"If you are creating an abstract class, "
"please name the class with 'Base' at the end"
)
block = block_cls.create()
if not isinstance(block.id, str) or len(block.id) != 36:
raise ValueError(
f"Block ID {block.name} error: {block.id} is not a valid UUID"
)
if block.id in available_blocks:
raise ValueError(
f"Block ID {block.name} error: {block.id} is already in use"
)
input_schema = block.input_schema.model_fields
output_schema = block.output_schema.model_fields
# Make sure `error` field is a string in the output schema
if "error" in output_schema and output_schema["error"].annotation is not str:
raise ValueError(
f"{block.name} `error` field in output_schema must be a string"
)
# Ensure all fields in input_schema and output_schema are annotated SchemaFields
for field_name, field in [*input_schema.items(), *output_schema.items()]:
if field.annotation is None:
raise ValueError(
f"{block.name} has a field {field_name} that is not annotated"
)
if field.json_schema_extra is None:
raise ValueError(
f"{block.name} has a field {field_name} not defined as SchemaField"
)
for field in block.input_schema.model_fields.values():
if field.annotation is bool and field.default not in (True, False):
raise ValueError(
f"{block.name} has a boolean field with no default value"
)
available_blocks[block.id] = block_cls
return available_blocks
__all__ = ["load_all_blocks"]
def all_subclasses(cls: type[T]) -> list[type[T]]:
def all_subclasses(cls: Type[T]) -> list[Type[T]]:
subclasses = cls.__subclasses__()
for subclass in subclasses:
subclasses += all_subclasses(subclass)
return subclasses
for block_cls in all_subclasses(Block):
name = block_cls.__name__
if block_cls.__name__.endswith("Base"):
continue
if not block_cls.__name__.endswith("Block"):
raise ValueError(
f"Block class {block_cls.__name__} does not end with 'Block', If you are creating an abstract class, please name the class with 'Base' at the end"
)
block = block_cls.create()
if not isinstance(block.id, str) or len(block.id) != 36:
raise ValueError(f"Block ID {block.name} error: {block.id} is not a valid UUID")
if block.id in AVAILABLE_BLOCKS:
raise ValueError(f"Block ID {block.name} error: {block.id} is already in use")
input_schema = block.input_schema.model_fields
output_schema = block.output_schema.model_fields
# Prevent duplicate field name in input_schema and output_schema
duplicate_field_names = set(input_schema.keys()) & set(output_schema.keys())
if duplicate_field_names:
raise ValueError(
f"{block.name} has duplicate field names in input_schema and output_schema: {duplicate_field_names}"
)
# Make sure `error` field is a string in the output schema
if "error" in output_schema and output_schema["error"].annotation is not str:
raise ValueError(
f"{block.name} `error` field in output_schema must be a string"
)
# Make sure all fields in input_schema and output_schema are annotated and has a value
for field_name, field in [*input_schema.items(), *output_schema.items()]:
if field.annotation is None:
raise ValueError(
f"{block.name} has a field {field_name} that is not annotated"
)
if field.json_schema_extra is None:
raise ValueError(
f"{block.name} has a field {field_name} not defined as SchemaField"
)
for field in block.input_schema.model_fields.values():
if field.annotation is bool and field.default not in (True, False):
raise ValueError(f"{block.name} has a boolean field with no default value")
if block.disabled:
continue
AVAILABLE_BLOCKS[block.id] = block_cls
__all__ = ["AVAILABLE_MODULES", "AVAILABLE_BLOCKS"]

View File

@@ -1,199 +0,0 @@
import asyncio
import logging
from typing import Any, Optional
from pydantic import JsonValue
from backend.data.block import (
Block,
BlockCategory,
BlockInput,
BlockOutput,
BlockSchema,
BlockType,
get_block,
)
from backend.data.execution import ExecutionStatus
from backend.data.model import SchemaField
from backend.util import json, retry
_logger = logging.getLogger(__name__)
class AgentExecutorBlock(Block):
class Input(BlockSchema):
user_id: str = SchemaField(description="User ID")
graph_id: str = SchemaField(description="Graph ID")
graph_version: int = SchemaField(description="Graph Version")
inputs: BlockInput = SchemaField(description="Input data for the graph")
input_schema: dict = SchemaField(description="Input schema for the graph")
output_schema: dict = SchemaField(description="Output schema for the graph")
nodes_input_masks: Optional[dict[str, dict[str, JsonValue]]] = SchemaField(
default=None, hidden=True
)
@classmethod
def get_input_schema(cls, data: BlockInput) -> dict[str, Any]:
return data.get("input_schema", {})
@classmethod
def get_input_defaults(cls, data: BlockInput) -> BlockInput:
return data.get("inputs", {})
@classmethod
def get_missing_input(cls, data: BlockInput) -> set[str]:
required_fields = cls.get_input_schema(data).get("required", [])
return set(required_fields) - set(data)
@classmethod
def get_mismatch_error(cls, data: BlockInput) -> str | None:
return json.validate_with_jsonschema(cls.get_input_schema(data), data)
class Output(BlockSchema):
pass
def __init__(self):
super().__init__(
id="e189baac-8c20-45a1-94a7-55177ea42565",
description="Executes an existing agent inside your agent",
input_schema=AgentExecutorBlock.Input,
output_schema=AgentExecutorBlock.Output,
block_type=BlockType.AGENT,
categories={BlockCategory.AGENT},
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
from backend.executor import utils as execution_utils
graph_exec = await execution_utils.add_graph_execution(
graph_id=input_data.graph_id,
graph_version=input_data.graph_version,
user_id=input_data.user_id,
inputs=input_data.inputs,
nodes_input_masks=input_data.nodes_input_masks,
use_db_query=False,
)
logger = execution_utils.LogMetadata(
logger=_logger,
user_id=input_data.user_id,
graph_eid=graph_exec.id,
graph_id=input_data.graph_id,
node_eid="*",
node_id="*",
block_name=self.name,
)
try:
async for name, data in self._run(
graph_id=input_data.graph_id,
graph_version=input_data.graph_version,
graph_exec_id=graph_exec.id,
user_id=input_data.user_id,
logger=logger,
):
yield name, data
except asyncio.CancelledError:
await self._stop(
graph_exec_id=graph_exec.id,
user_id=input_data.user_id,
logger=logger,
)
logger.warning(
f"Execution of graph {input_data.graph_id}v{input_data.graph_version} was cancelled."
)
except Exception as e:
await self._stop(
graph_exec_id=graph_exec.id,
user_id=input_data.user_id,
logger=logger,
)
logger.error(
f"Execution of graph {input_data.graph_id}v{input_data.graph_version} failed: {e}, execution is stopped."
)
raise
async def _run(
self,
graph_id: str,
graph_version: int,
graph_exec_id: str,
user_id: str,
logger,
) -> BlockOutput:
from backend.data.execution import ExecutionEventType
from backend.executor import utils as execution_utils
event_bus = execution_utils.get_async_execution_event_bus()
log_id = f"Graph #{graph_id}-V{graph_version}, exec-id: {graph_exec_id}"
logger.info(f"Starting execution of {log_id}")
async for event in event_bus.listen(
user_id=user_id,
graph_id=graph_id,
graph_exec_id=graph_exec_id,
):
if event.status not in [
ExecutionStatus.COMPLETED,
ExecutionStatus.TERMINATED,
ExecutionStatus.FAILED,
]:
logger.debug(
f"Execution {log_id} received event {event.event_type} with status {event.status}"
)
continue
if event.event_type == ExecutionEventType.GRAPH_EXEC_UPDATE:
# If the graph execution is COMPLETED, TERMINATED, or FAILED,
# we can stop listening for further events.
break
logger.debug(
f"Execution {log_id} produced input {event.input_data} output {event.output_data}"
)
if not event.block_id:
logger.warning(f"{log_id} received event without block_id {event}")
continue
block = get_block(event.block_id)
if not block or block.block_type != BlockType.OUTPUT:
continue
output_name = event.input_data.get("name")
if not output_name:
logger.warning(f"{log_id} produced an output with no name {event}")
continue
for output_data in event.output_data.get("output", []):
logger.debug(
f"Execution {log_id} produced {output_name}: {output_data}"
)
yield output_name, output_data
@retry.func_retry
async def _stop(
self,
graph_exec_id: str,
user_id: str,
logger,
) -> None:
from backend.executor import utils as execution_utils
log_id = f"Graph exec-id: {graph_exec_id}"
logger.info(f"Stopping execution of {log_id}")
try:
await execution_utils.stop_graph_execution(
graph_exec_id=graph_exec_id,
user_id=user_id,
use_db_query=False,
)
logger.info(f"Execution {log_id} stopped successfully.")
except Exception as e:
logger.error(f"Failed to stop execution {log_id}: {e}")

View File

@@ -1,325 +0,0 @@
from enum import Enum
from typing import Literal
from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.data.block import Block, BlockCategory, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
class ImageSize(str, Enum):
"""
Semantic sizes that map reliably across all models
"""
SQUARE = "square" # For profile pictures, icons, etc.
LANDSCAPE = "landscape" # For traditional photos, scenes
PORTRAIT = "portrait" # For vertical photos, portraits
WIDE = "wide" # For cinematic, desktop wallpapers
TALL = "tall" # For mobile wallpapers, stories
# Mapping semantic sizes to model-specific formats
SIZE_TO_SD_RATIO = {
ImageSize.SQUARE: "1:1",
ImageSize.LANDSCAPE: "4:3",
ImageSize.PORTRAIT: "3:4",
ImageSize.WIDE: "16:9",
ImageSize.TALL: "9:16",
}
SIZE_TO_FLUX_RATIO = {
ImageSize.SQUARE: "1:1",
ImageSize.LANDSCAPE: "4:3",
ImageSize.PORTRAIT: "3:4",
ImageSize.WIDE: "16:9",
ImageSize.TALL: "9:16",
}
SIZE_TO_FLUX_DIMENSIONS = {
ImageSize.SQUARE: (1024, 1024),
ImageSize.LANDSCAPE: (1365, 1024),
ImageSize.PORTRAIT: (1024, 1365),
ImageSize.WIDE: (1440, 810), # Adjusted to maintain 16:9 within 1440 limit
ImageSize.TALL: (810, 1440), # Adjusted to maintain 9:16 within 1440 limit
}
SIZE_TO_RECRAFT_DIMENSIONS = {
ImageSize.SQUARE: "1024x1024",
ImageSize.LANDSCAPE: "1365x1024",
ImageSize.PORTRAIT: "1024x1365",
ImageSize.WIDE: "1536x1024",
ImageSize.TALL: "1024x1536",
}
class ImageStyle(str, Enum):
"""
Complete set of supported styles
"""
ANY = "any"
# Realistic image styles
REALISTIC = "realistic_image"
REALISTIC_BW = "realistic_image/b_and_w"
REALISTIC_HDR = "realistic_image/hdr"
REALISTIC_NATURAL = "realistic_image/natural_light"
REALISTIC_STUDIO = "realistic_image/studio_portrait"
REALISTIC_ENTERPRISE = "realistic_image/enterprise"
REALISTIC_HARD_FLASH = "realistic_image/hard_flash"
REALISTIC_MOTION_BLUR = "realistic_image/motion_blur"
# Digital illustration styles
DIGITAL_ART = "digital_illustration"
PIXEL_ART = "digital_illustration/pixel_art"
HAND_DRAWN = "digital_illustration/hand_drawn"
GRAIN = "digital_illustration/grain"
SKETCH = "digital_illustration/infantile_sketch"
POSTER = "digital_illustration/2d_art_poster"
POSTER_2 = "digital_illustration/2d_art_poster_2"
HANDMADE_3D = "digital_illustration/handmade_3d"
HAND_DRAWN_OUTLINE = "digital_illustration/hand_drawn_outline"
ENGRAVING_COLOR = "digital_illustration/engraving_color"
class ImageGenModel(str, Enum):
"""
Available model providers
"""
FLUX = "Flux 1.1 Pro"
FLUX_ULTRA = "Flux 1.1 Pro Ultra"
RECRAFT = "Recraft v3"
SD3_5 = "Stable Diffusion 3.5 Medium"
class AIImageGeneratorBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.REPLICATE], Literal["api_key"]
] = CredentialsField(
description="Enter your Replicate API key to access the image generation API. You can obtain an API key from https://replicate.com/account/api-tokens.",
)
prompt: str = SchemaField(
description="Text prompt for image generation",
placeholder="e.g., 'A red panda using a laptop in a snowy forest'",
title="Prompt",
)
model: ImageGenModel = SchemaField(
description="The AI model to use for image generation",
default=ImageGenModel.SD3_5,
title="Model",
)
size: ImageSize = SchemaField(
description=(
"Format of the generated image:\n"
"- Square: Perfect for profile pictures, icons\n"
"- Landscape: Traditional photo format\n"
"- Portrait: Vertical photos, portraits\n"
"- Wide: Cinematic format, desktop wallpapers\n"
"- Tall: Mobile wallpapers, social media stories"
),
default=ImageSize.SQUARE,
title="Image Format",
)
style: ImageStyle = SchemaField(
description="Visual style for the generated image",
default=ImageStyle.ANY,
title="Image Style",
)
class Output(BlockSchema):
image_url: str = SchemaField(description="URL of the generated image")
error: str = SchemaField(description="Error message if generation failed")
def __init__(self):
super().__init__(
id="ed1ae7a0-b770-4089-b520-1f0005fad19a",
description="Generate images using various AI models through a unified interface",
categories={BlockCategory.AI},
input_schema=AIImageGeneratorBlock.Input,
output_schema=AIImageGeneratorBlock.Output,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"prompt": "An octopus using a laptop in a snowy forest with 'AutoGPT' clearly visible on the screen",
"model": ImageGenModel.RECRAFT,
"size": ImageSize.SQUARE,
"style": ImageStyle.REALISTIC,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
(
"image_url",
"https://replicate.delivery/generated-image.webp",
),
],
test_mock={
"_run_client": lambda *args, **kwargs: "https://replicate.delivery/generated-image.webp"
},
)
async def _run_client(
self, credentials: APIKeyCredentials, model_name: str, input_params: dict
):
try:
# Initialize Replicate client
client = ReplicateClient(api_token=credentials.api_key.get_secret_value())
# Run the model with input parameters
output = await client.async_run(model_name, input=input_params, wait=False)
# Process output
if isinstance(output, list) and len(output) > 0:
if isinstance(output[0], FileOutput):
result_url = output[0].url
else:
result_url = output[0]
elif isinstance(output, FileOutput):
result_url = output.url
elif isinstance(output, str):
result_url = output
else:
result_url = None
return result_url
except TypeError as e:
raise TypeError(f"Error during model execution: {e}")
except Exception as e:
raise RuntimeError(f"Unexpected error during model execution: {e}")
async def generate_image(self, input_data: Input, credentials: APIKeyCredentials):
try:
# Handle style-based prompt modification for models without native style support
modified_prompt = input_data.prompt
if input_data.model not in [ImageGenModel.RECRAFT]:
style_prefix = self._style_to_prompt_prefix(input_data.style)
modified_prompt = f"{style_prefix} {modified_prompt}".strip()
if input_data.model == ImageGenModel.SD3_5:
# Use Stable Diffusion 3.5 with aspect ratio
input_params = {
"prompt": modified_prompt,
"aspect_ratio": SIZE_TO_SD_RATIO[input_data.size],
"output_format": "webp",
"output_quality": 90,
"steps": 40,
"cfg_scale": 7.0,
}
output = await self._run_client(
credentials,
"stability-ai/stable-diffusion-3.5-medium",
input_params,
)
return output
elif input_data.model == ImageGenModel.FLUX:
# Use Flux-specific dimensions with 'jpg' format to avoid ReplicateError
width, height = SIZE_TO_FLUX_DIMENSIONS[input_data.size]
input_params = {
"prompt": modified_prompt,
"width": width,
"height": height,
"aspect_ratio": SIZE_TO_FLUX_RATIO[input_data.size],
"output_format": "jpg", # Set to jpg for Flux models
"output_quality": 90,
}
output = await self._run_client(
credentials, "black-forest-labs/flux-1.1-pro", input_params
)
return output
elif input_data.model == ImageGenModel.FLUX_ULTRA:
width, height = SIZE_TO_FLUX_DIMENSIONS[input_data.size]
input_params = {
"prompt": modified_prompt,
"width": width,
"height": height,
"aspect_ratio": SIZE_TO_FLUX_RATIO[input_data.size],
"output_format": "jpg",
"output_quality": 90,
}
output = await self._run_client(
credentials, "black-forest-labs/flux-1.1-pro-ultra", input_params
)
return output
elif input_data.model == ImageGenModel.RECRAFT:
input_params = {
"prompt": input_data.prompt,
"size": SIZE_TO_RECRAFT_DIMENSIONS[input_data.size],
"style": input_data.style.value,
}
output = await self._run_client(
credentials, "recraft-ai/recraft-v3", input_params
)
return output
except Exception as e:
raise RuntimeError(f"Failed to generate image: {str(e)}")
def _style_to_prompt_prefix(self, style: ImageStyle) -> str:
"""
Convert a style enum to a prompt prefix for models without native style support.
"""
if style == ImageStyle.ANY:
return ""
style_map = {
ImageStyle.REALISTIC: "photorealistic",
ImageStyle.REALISTIC_BW: "black and white photograph",
ImageStyle.REALISTIC_HDR: "HDR photograph",
ImageStyle.REALISTIC_NATURAL: "natural light photograph",
ImageStyle.REALISTIC_STUDIO: "studio portrait photograph",
ImageStyle.REALISTIC_ENTERPRISE: "enterprise photograph",
ImageStyle.REALISTIC_HARD_FLASH: "hard flash photograph",
ImageStyle.REALISTIC_MOTION_BLUR: "motion blur photograph",
ImageStyle.DIGITAL_ART: "digital art",
ImageStyle.PIXEL_ART: "pixel art",
ImageStyle.HAND_DRAWN: "hand drawn illustration",
ImageStyle.GRAIN: "grainy digital illustration",
ImageStyle.SKETCH: "sketchy illustration",
ImageStyle.POSTER: "2D art poster",
ImageStyle.POSTER_2: "alternate 2D art poster",
ImageStyle.HANDMADE_3D: "handmade 3D illustration",
ImageStyle.HAND_DRAWN_OUTLINE: "hand drawn outline illustration",
ImageStyle.ENGRAVING_COLOR: "color engraving illustration",
}
style_text = style_map.get(style, "")
return f"{style_text} of" if style_text else ""
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
try:
url = await self.generate_image(input_data, credentials)
if url:
yield "image_url", url
else:
yield "error", "Image generation returned an empty result."
except Exception as e:
# Capture and return only the message of the exception, avoiding serialization of non-serializable objects
yield "error", str(e)
# Test credentials stay the same
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="replicate",
api_key=SecretStr("mock-replicate-api-key"),
title="Mock Replicate API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}

View File

@@ -1,227 +0,0 @@
import asyncio
import logging
from enum import Enum
from typing import Literal
from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
logger = logging.getLogger(__name__)
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="replicate",
api_key=SecretStr("mock-replicate-api-key"),
title="Mock Replicate API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.type,
}
# Model version enum
class MusicGenModelVersion(str, Enum):
STEREO_LARGE = "stereo-large"
MELODY_LARGE = "melody-large"
LARGE = "large"
# Audio format enum
class AudioFormat(str, Enum):
WAV = "wav"
MP3 = "mp3"
# Normalization strategy enum
class NormalizationStrategy(str, Enum):
LOUDNESS = "loudness"
CLIP = "clip"
PEAK = "peak"
RMS = "rms"
class AIMusicGeneratorBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.REPLICATE], Literal["api_key"]
] = CredentialsField(
description="The Replicate integration can be used with "
"any API key with sufficient permissions for the blocks it is used on.",
)
prompt: str = SchemaField(
description="A description of the music you want to generate",
placeholder="e.g., 'An upbeat electronic dance track with heavy bass'",
title="Prompt",
)
music_gen_model_version: MusicGenModelVersion = SchemaField(
description="Model to use for generation",
default=MusicGenModelVersion.STEREO_LARGE,
title="Model Version",
)
duration: int = SchemaField(
description="Duration of the generated audio in seconds",
default=8,
title="Duration",
)
temperature: float = SchemaField(
description="Controls the 'conservativeness' of the sampling process. Higher temperature means more diversity",
default=1.0,
title="Temperature",
)
top_k: int = SchemaField(
description="Reduces sampling to the k most likely tokens",
default=250,
title="Top K",
)
top_p: float = SchemaField(
description="Reduces sampling to tokens with cumulative probability of p. When set to 0 (default), top_k sampling is used",
default=0.0,
title="Top P",
)
classifier_free_guidance: int = SchemaField(
description="Increases the influence of inputs on the output. Higher values produce lower-variance outputs that adhere more closely to inputs",
default=3,
title="Classifier Free Guidance",
)
output_format: AudioFormat = SchemaField(
description="Output format for generated audio",
default=AudioFormat.WAV,
title="Output Format",
)
normalization_strategy: NormalizationStrategy = SchemaField(
description="Strategy for normalizing audio",
default=NormalizationStrategy.LOUDNESS,
title="Normalization Strategy",
)
class Output(BlockSchema):
result: str = SchemaField(description="URL of the generated audio file")
error: str = SchemaField(description="Error message if the model run failed")
def __init__(self):
super().__init__(
id="44f6c8ad-d75c-4ae1-8209-aad1c0326928",
description="This block generates music using Meta's MusicGen model on Replicate.",
categories={BlockCategory.AI},
input_schema=AIMusicGeneratorBlock.Input,
output_schema=AIMusicGeneratorBlock.Output,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"prompt": "An upbeat electronic dance track with heavy bass",
"music_gen_model_version": MusicGenModelVersion.STEREO_LARGE,
"duration": 8,
"temperature": 1.0,
"top_k": 250,
"top_p": 0.0,
"classifier_free_guidance": 3,
"output_format": AudioFormat.WAV,
"normalization_strategy": NormalizationStrategy.LOUDNESS,
},
test_output=[
(
"result",
"https://replicate.com/output/generated-audio-url.wav",
),
],
test_mock={
"run_model": lambda api_key, music_gen_model_version, prompt, duration, temperature, top_k, top_p, classifier_free_guidance, output_format, normalization_strategy: "https://replicate.com/output/generated-audio-url.wav",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
max_retries = 3
retry_delay = 5 # seconds
last_error = None
for attempt in range(max_retries):
try:
logger.debug(
f"[AIMusicGeneratorBlock] - Running model (attempt {attempt + 1})"
)
result = await self.run_model(
api_key=credentials.api_key,
music_gen_model_version=input_data.music_gen_model_version,
prompt=input_data.prompt,
duration=input_data.duration,
temperature=input_data.temperature,
top_k=input_data.top_k,
top_p=input_data.top_p,
classifier_free_guidance=input_data.classifier_free_guidance,
output_format=input_data.output_format,
normalization_strategy=input_data.normalization_strategy,
)
if result and result != "No output received":
yield "result", result
return
else:
last_error = "Model returned empty or invalid response"
raise ValueError(last_error)
except Exception as e:
last_error = f"Unexpected error: {str(e)}"
logger.error(f"[AIMusicGeneratorBlock] - Error: {last_error}")
if attempt < max_retries - 1:
await asyncio.sleep(retry_delay)
continue
# If we've exhausted all retries, yield the error
yield "error", f"Failed after {max_retries} attempts. Last error: {last_error}"
async def run_model(
self,
api_key: SecretStr,
music_gen_model_version: MusicGenModelVersion,
prompt: str,
duration: int,
temperature: float,
top_k: int,
top_p: float,
classifier_free_guidance: int,
output_format: AudioFormat,
normalization_strategy: NormalizationStrategy,
):
# Initialize Replicate client with the API key
client = ReplicateClient(api_token=api_key.get_secret_value())
# Run the model with parameters
output = await client.async_run(
"meta/musicgen:671ac645ce5e552cc63a54a2bbff63fcf798043055d2dac5fc9e36a837eedcfb",
input={
"prompt": prompt,
"music_gen_model_version": music_gen_model_version,
"duration": duration,
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
"classifier_free_guidance": classifier_free_guidance,
"output_format": output_format,
"normalization_strategy": normalization_strategy,
},
)
# Handle the output
if isinstance(output, list) and len(output) > 0:
result_url = output[0] # If output is a list, get the first element
elif isinstance(output, str):
result_url = output # If output is a string, use it directly
else:
result_url = (
"No output received" # Fallback message if output is not as expected
)
return result_url

View File

@@ -1,20 +1,14 @@
import asyncio
import logging
import time
from enum import Enum
from typing import Literal
import requests
from autogpt_libs.supabase_integration_credentials_store.types import APIKeyCredentials
from pydantic import SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.request import Requests
from backend.data.model import CredentialsField, CredentialsMetaInput, SchemaField
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -53,7 +47,6 @@ class AudioTrack(str, Enum):
REFRESHER = ("Refresher",)
TOURIST = ("Tourist",)
TWIN_TYCHES = ("Twin Tyches",)
DONT_STOP_ME_ABSTRACT_FUTURE_BASS = ("Dont Stop Me Abstract Future Bass",)
@property
def audio_url(self):
@@ -79,7 +72,6 @@ class AudioTrack(str, Enum):
AudioTrack.REFRESHER: "https://cdn.tfrv.xyz/audio/refresher.mp3",
AudioTrack.TOURIST: "https://cdn.tfrv.xyz/audio/tourist.mp3",
AudioTrack.TWIN_TYCHES: "https://cdn.tfrv.xyz/audio/twin-tynches.mp3",
AudioTrack.DONT_STOP_ME_ABSTRACT_FUTURE_BASS: "https://cdn.revid.ai/audio/_dont-stop-me-abstract-future-bass.mp3",
}
return audio_urls[self]
@@ -107,7 +99,6 @@ class GenerationPreset(str, Enum):
MOVIE = ("Movie",)
STYLIZED_ILLUSTRATION = ("Stylized Illustration",)
MANGA = ("Manga",)
DEFAULT = ("DEFAULT",)
class Voice(str, Enum):
@@ -117,7 +108,6 @@ class Voice(str, Enum):
JESSICA = "Jessica"
CHARLOTTE = "Charlotte"
CALLUM = "Callum"
EVA = "Eva"
@property
def voice_id(self):
@@ -128,7 +118,6 @@ class Voice(str, Enum):
Voice.JESSICA: "cgSgspJ2msm6clMCkdW9",
Voice.CHARLOTTE: "XB0fDUnXU5powFXDhCwa",
Voice.CALLUM: "N2lVS1w4EtoT3dr4eOWO",
Voice.EVA: "FGY2WhTYpPnrIDTdsKH5",
}
return voice_id_map[self]
@@ -146,14 +135,14 @@ logger = logging.getLogger(__name__)
class AIShortformVideoCreatorBlock(Block):
"""Creates a shortform texttovideo clip using stock or AI imagery."""
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.REVID], Literal["api_key"]
] = CredentialsField(
description="The revid.ai integration can be used with "
"any API key with sufficient permissions for the blocks it is used on.",
credentials: CredentialsMetaInput[Literal["revid"], Literal["api_key"]] = (
CredentialsField(
provider="revid",
supported_credential_types={"api_key"},
description="The revid.ai integration can be used with "
"any API key with sufficient permissions for the blocks it is used on.",
)
)
script: str = SchemaField(
description="""1. Use short and punctuated sentences\n\n2. Use linebreaks to create a new clip\n\n3. Text outside of brackets is spoken by the AI, and [text between brackets] will be used to guide the visual generation. For example, [close-up of a cat] will show a close-up of a cat.""",
@@ -191,58 +180,6 @@ class AIShortformVideoCreatorBlock(Block):
video_url: str = SchemaField(description="The URL of the created video")
error: str = SchemaField(description="Error message if the request failed")
async def create_webhook(self) -> tuple[str, str]:
"""Create a new webhook URL for receiving notifications."""
url = "https://webhook.site/token"
headers = {"Accept": "application/json", "Content-Type": "application/json"}
response = await Requests().post(url, headers=headers)
webhook_data = response.json()
return webhook_data["uuid"], f"https://webhook.site/{webhook_data['uuid']}"
async def create_video(self, api_key: SecretStr, payload: dict) -> dict:
"""Create a video using the Revid API."""
url = "https://www.revid.ai/api/public/v2/render"
headers = {"key": api_key.get_secret_value()}
response = await Requests().post(url, json=payload, headers=headers)
logger.debug(
f"API Response Status Code: {response.status}, Content: {response.text}"
)
return response.json()
async def check_video_status(self, api_key: SecretStr, pid: str) -> dict:
"""Check the status of a video creation job."""
url = f"https://www.revid.ai/api/public/v2/status?pid={pid}"
headers = {"key": api_key.get_secret_value()}
response = await Requests().get(url, headers=headers)
return response.json()
async def wait_for_video(
self,
api_key: SecretStr,
pid: str,
max_wait_time: int = 1000,
) -> str:
"""Wait for video creation to complete and return the video URL."""
start_time = time.time()
while time.time() - start_time < max_wait_time:
status = await self.check_video_status(api_key, pid)
logger.debug(f"Video status: {status}")
if status.get("status") == "ready" and "videoUrl" in status:
return status["videoUrl"]
elif status.get("status") == "error":
error_message = status.get("error", "Unknown error occurred")
logger.error(f"Video creation failed: {error_message}")
raise ValueError(f"Video creation failed: {error_message}")
elif status.get("status") in ["FAILED", "CANCELED"]:
logger.error(f"Video creation failed: {status.get('message')}")
raise ValueError(f"Video creation failed: {status.get('message')}")
await asyncio.sleep(10)
logger.error("Video creation timed out")
raise TimeoutError("Video creation timed out")
def __init__(self):
super().__init__(
id="361697fb-0c4f-4feb-aed3-8320c88c771b",
@@ -261,41 +198,94 @@ class AIShortformVideoCreatorBlock(Block):
"voice": Voice.LILY,
"video_style": VisualMediaType.STOCK_VIDEOS,
},
test_output=("video_url", "https://example.com/video.mp4"),
test_output=(
"video_url",
"https://example.com/video.mp4",
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"create_webhook": lambda: (
"test_uuid",
"https://webhook.site/test_uuid",
),
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/video.mp4",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
"create_video": lambda api_key, payload: {"pid": "test_pid"},
"wait_for_video": lambda api_key, pid, webhook_token, max_wait_time=1000: "https://example.com/video.mp4",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
def create_webhook(self):
url = "https://webhook.site/token"
headers = {"Accept": "application/json", "Content-Type": "application/json"}
response = requests.post(url, headers=headers)
response.raise_for_status()
webhook_data = response.json()
return webhook_data["uuid"], f"https://webhook.site/{webhook_data['uuid']}"
def create_video(self, api_key: SecretStr, payload: dict) -> dict:
url = "https://www.revid.ai/api/public/v2/render"
headers = {"key": api_key.get_secret_value()}
response = requests.post(url, json=payload, headers=headers)
logger.debug(
f"API Response Status Code: {response.status_code}, Content: {response.text}"
)
response.raise_for_status()
return response.json()
def check_video_status(self, api_key: SecretStr, pid: str) -> dict:
url = f"https://www.revid.ai/api/public/v2/status?pid={pid}"
headers = {"key": api_key.get_secret_value()}
response = requests.get(url, headers=headers)
response.raise_for_status()
return response.json()
def wait_for_video(
self,
api_key: SecretStr,
pid: str,
webhook_token: str,
max_wait_time: int = 1000,
) -> str:
start_time = time.time()
while time.time() - start_time < max_wait_time:
status = self.check_video_status(api_key, pid)
logger.debug(f"Video status: {status}")
if status.get("status") == "ready" and "videoUrl" in status:
return status["videoUrl"]
elif status.get("status") == "error":
error_message = status.get("error", "Unknown error occurred")
logger.error(f"Video creation failed: {error_message}")
raise ValueError(f"Video creation failed: {error_message}")
elif status.get("status") in ["FAILED", "CANCELED"]:
logger.error(f"Video creation failed: {status.get('message')}")
raise ValueError(f"Video creation failed: {status.get('message')}")
time.sleep(10)
logger.error("Video creation timed out")
raise TimeoutError("Video creation timed out")
def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
# Create a new Webhook.site URL
webhook_token, webhook_url = await self.create_webhook()
webhook_token, webhook_url = self.create_webhook()
logger.debug(f"Webhook URL: {webhook_url}")
audio_url = input_data.background_music.audio_url
payload = {
"frameRate": input_data.frame_rate,
"resolution": input_data.resolution,
"frameDurationMultiplier": 18,
"webhook": None,
"webhook": webhook_url,
"creationParams": {
"mediaType": input_data.video_style,
"captionPresetName": "Wrap 1",
"selectedVoice": input_data.voice.voice_id,
"hasEnhancedGeneration": True,
"generationPreset": input_data.generation_preset.name,
"selectedAudio": input_data.background_music.value,
"selectedAudio": input_data.background_music,
"origin": "/create",
"inputText": input_data.script,
"flowType": "text-to-video",
@@ -311,12 +301,12 @@ class AIShortformVideoCreatorBlock(Block):
"selectedStoryStyle": {"value": "custom", "label": "Custom"},
"hasToGenerateVideos": input_data.video_style
!= VisualMediaType.STOCK_VIDEOS,
"audioUrl": input_data.background_music.audio_url,
"audioUrl": audio_url,
},
}
logger.debug("Creating video...")
response = await self.create_video(credentials.api_key, payload)
response = self.create_video(credentials.api_key, payload)
pid = response.get("pid")
if not pid:
@@ -328,370 +318,6 @@ class AIShortformVideoCreatorBlock(Block):
logger.debug(
f"Video created with project ID: {pid}. Waiting for completion..."
)
video_url = await self.wait_for_video(credentials.api_key, pid)
video_url = self.wait_for_video(credentials.api_key, pid, webhook_token)
logger.debug(f"Video ready: {video_url}")
yield "video_url", video_url
class AIAdMakerVideoCreatorBlock(Block):
"""Generates a 30second vertical AI advert using optional usersupplied imagery."""
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.REVID], Literal["api_key"]
] = CredentialsField(
description="Credentials for Revid.ai API access.",
)
script: str = SchemaField(
description="Short advertising copy. Line breaks create new scenes.",
placeholder="Introducing Foobar [show product photo] the gadget that does it all.",
)
ratio: str = SchemaField(description="Aspect ratio", default="9 / 16")
target_duration: int = SchemaField(
description="Desired length of the ad in seconds.", default=30
)
voice: Voice = SchemaField(
description="Narration voice", default=Voice.EVA, placeholder=Voice.EVA
)
background_music: AudioTrack = SchemaField(
description="Background track",
default=AudioTrack.DONT_STOP_ME_ABSTRACT_FUTURE_BASS,
)
input_media_urls: list[str] = SchemaField(
description="List of image URLs to feature in the advert.", default=[]
)
use_only_provided_media: bool = SchemaField(
description="Restrict visuals to supplied images only.", default=True
)
class Output(BlockSchema):
video_url: str = SchemaField(description="URL of the finished advert")
error: str = SchemaField(description="Error message on failure")
async def create_webhook(self) -> tuple[str, str]:
"""Create a new webhook URL for receiving notifications."""
url = "https://webhook.site/token"
headers = {"Accept": "application/json", "Content-Type": "application/json"}
response = await Requests().post(url, headers=headers)
webhook_data = response.json()
return webhook_data["uuid"], f"https://webhook.site/{webhook_data['uuid']}"
async def create_video(self, api_key: SecretStr, payload: dict) -> dict:
"""Create a video using the Revid API."""
url = "https://www.revid.ai/api/public/v2/render"
headers = {"key": api_key.get_secret_value()}
response = await Requests().post(url, json=payload, headers=headers)
logger.debug(
f"API Response Status Code: {response.status}, Content: {response.text}"
)
return response.json()
async def check_video_status(self, api_key: SecretStr, pid: str) -> dict:
"""Check the status of a video creation job."""
url = f"https://www.revid.ai/api/public/v2/status?pid={pid}"
headers = {"key": api_key.get_secret_value()}
response = await Requests().get(url, headers=headers)
return response.json()
async def wait_for_video(
self,
api_key: SecretStr,
pid: str,
max_wait_time: int = 1000,
) -> str:
"""Wait for video creation to complete and return the video URL."""
start_time = time.time()
while time.time() - start_time < max_wait_time:
status = await self.check_video_status(api_key, pid)
logger.debug(f"Video status: {status}")
if status.get("status") == "ready" and "videoUrl" in status:
return status["videoUrl"]
elif status.get("status") == "error":
error_message = status.get("error", "Unknown error occurred")
logger.error(f"Video creation failed: {error_message}")
raise ValueError(f"Video creation failed: {error_message}")
elif status.get("status") in ["FAILED", "CANCELED"]:
logger.error(f"Video creation failed: {status.get('message')}")
raise ValueError(f"Video creation failed: {status.get('message')}")
await asyncio.sleep(10)
logger.error("Video creation timed out")
raise TimeoutError("Video creation timed out")
def __init__(self):
super().__init__(
id="58bd2a19-115d-4fd1-8ca4-13b9e37fa6a0",
description="Creates an AIgenerated 30second advert (text + images)",
categories={BlockCategory.MARKETING, BlockCategory.AI},
input_schema=AIAdMakerVideoCreatorBlock.Input,
output_schema=AIAdMakerVideoCreatorBlock.Output,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"script": "Test product launch!",
"input_media_urls": [
"https://cdn.revid.ai/uploads/1747076315114-image.png",
],
},
test_output=("video_url", "https://example.com/ad.mp4"),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
"https://webhook.site/test_uuid",
),
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/ad.mp4",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
webhook_token, webhook_url = await self.create_webhook()
payload = {
"webhook": webhook_url,
"creationParams": {
"targetDuration": input_data.target_duration,
"ratio": input_data.ratio,
"mediaType": "aiVideo",
"inputText": input_data.script,
"flowType": "text-to-video",
"slug": "ai-ad-generator",
"slugNew": "",
"isCopiedFrom": False,
"hasToGenerateVoice": True,
"hasToTranscript": False,
"hasToSearchMedia": True,
"hasAvatar": False,
"hasWebsiteRecorder": False,
"hasTextSmallAtBottom": False,
"selectedAudio": input_data.background_music.value,
"selectedVoice": input_data.voice.voice_id,
"selectedAvatar": "https://cdn.revid.ai/avatars/young-woman.mp4",
"selectedAvatarType": "video/mp4",
"websiteToRecord": "",
"hasToGenerateCover": True,
"nbGenerations": 1,
"disableCaptions": False,
"mediaMultiplier": "medium",
"characters": [],
"captionPresetName": "Revid",
"sourceType": "contentScraping",
"selectedStoryStyle": {"value": "custom", "label": "General"},
"generationPreset": "DEFAULT",
"hasToGenerateMusic": False,
"isOptimizedForChinese": False,
"generationUserPrompt": "",
"enableNsfwFilter": False,
"addStickers": False,
"typeMovingImageAnim": "dynamic",
"hasToGenerateSoundEffects": False,
"forceModelType": "gpt-image-1",
"selectedCharacters": [],
"lang": "",
"voiceSpeed": 1,
"disableAudio": False,
"disableVoice": False,
"useOnlyProvidedMedia": input_data.use_only_provided_media,
"imageGenerationModel": "ultra",
"videoGenerationModel": "pro",
"hasEnhancedGeneration": True,
"hasEnhancedGenerationPro": True,
"inputMedias": [
{"url": url, "title": "", "type": "image"}
for url in input_data.input_media_urls
],
"hasToGenerateVideos": True,
"audioUrl": input_data.background_music.audio_url,
"watermark": None,
},
}
response = await self.create_video(credentials.api_key, payload)
pid = response.get("pid")
if not pid:
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url
class AIScreenshotToVideoAdBlock(Block):
"""Creates an advert where the supplied screenshot is narrated by an AI avatar."""
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.REVID], Literal["api_key"]
] = CredentialsField(description="Revid.ai API key")
script: str = SchemaField(
description="Narration that will accompany the screenshot.",
placeholder="Check out these amazing stats!",
)
screenshot_url: str = SchemaField(
description="Screenshot or image URL to showcase."
)
ratio: str = SchemaField(default="9 / 16")
target_duration: int = SchemaField(default=30)
voice: Voice = SchemaField(default=Voice.EVA)
background_music: AudioTrack = SchemaField(
default=AudioTrack.DONT_STOP_ME_ABSTRACT_FUTURE_BASS
)
class Output(BlockSchema):
video_url: str = SchemaField(description="Rendered video URL")
error: str = SchemaField(description="Error, if encountered")
async def create_webhook(self) -> tuple[str, str]:
"""Create a new webhook URL for receiving notifications."""
url = "https://webhook.site/token"
headers = {"Accept": "application/json", "Content-Type": "application/json"}
response = await Requests().post(url, headers=headers)
webhook_data = response.json()
return webhook_data["uuid"], f"https://webhook.site/{webhook_data['uuid']}"
async def create_video(self, api_key: SecretStr, payload: dict) -> dict:
"""Create a video using the Revid API."""
url = "https://www.revid.ai/api/public/v2/render"
headers = {"key": api_key.get_secret_value()}
response = await Requests().post(url, json=payload, headers=headers)
logger.debug(
f"API Response Status Code: {response.status}, Content: {response.text}"
)
return response.json()
async def check_video_status(self, api_key: SecretStr, pid: str) -> dict:
"""Check the status of a video creation job."""
url = f"https://www.revid.ai/api/public/v2/status?pid={pid}"
headers = {"key": api_key.get_secret_value()}
response = await Requests().get(url, headers=headers)
return response.json()
async def wait_for_video(
self,
api_key: SecretStr,
pid: str,
max_wait_time: int = 1000,
) -> str:
"""Wait for video creation to complete and return the video URL."""
start_time = time.time()
while time.time() - start_time < max_wait_time:
status = await self.check_video_status(api_key, pid)
logger.debug(f"Video status: {status}")
if status.get("status") == "ready" and "videoUrl" in status:
return status["videoUrl"]
elif status.get("status") == "error":
error_message = status.get("error", "Unknown error occurred")
logger.error(f"Video creation failed: {error_message}")
raise ValueError(f"Video creation failed: {error_message}")
elif status.get("status") in ["FAILED", "CANCELED"]:
logger.error(f"Video creation failed: {status.get('message')}")
raise ValueError(f"Video creation failed: {status.get('message')}")
await asyncio.sleep(10)
logger.error("Video creation timed out")
raise TimeoutError("Video creation timed out")
def __init__(self):
super().__init__(
id="0f3e4635-e810-43d9-9e81-49e6f4e83b7c",
description="Turns a screenshot into an engaging, avatarnarrated video advert.",
categories={BlockCategory.AI, BlockCategory.MARKETING},
input_schema=AIScreenshotToVideoAdBlock.Input,
output_schema=AIScreenshotToVideoAdBlock.Output,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"script": "Amazing numbers!",
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
},
test_output=("video_url", "https://example.com/screenshot.mp4"),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
"https://webhook.site/test_uuid",
),
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/screenshot.mp4",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
webhook_token, webhook_url = await self.create_webhook()
payload = {
"webhook": webhook_url,
"creationParams": {
"targetDuration": input_data.target_duration,
"ratio": input_data.ratio,
"mediaType": "aiVideo",
"hasAvatar": True,
"removeAvatarBackground": True,
"inputText": input_data.script,
"flowType": "text-to-video",
"slug": "ai-ad-generator",
"slugNew": "screenshot-to-video-ad",
"isCopiedFrom": "ai-ad-generator",
"hasToGenerateVoice": True,
"hasToTranscript": False,
"hasToSearchMedia": True,
"hasWebsiteRecorder": False,
"hasTextSmallAtBottom": False,
"selectedAudio": input_data.background_music.value,
"selectedVoice": input_data.voice.voice_id,
"selectedAvatar": "https://cdn.revid.ai/avatars/young-woman.mp4",
"selectedAvatarType": "video/mp4",
"websiteToRecord": "",
"hasToGenerateCover": True,
"nbGenerations": 1,
"disableCaptions": False,
"mediaMultiplier": "medium",
"characters": [],
"captionPresetName": "Revid",
"sourceType": "contentScraping",
"selectedStoryStyle": {"value": "custom", "label": "General"},
"generationPreset": "DEFAULT",
"hasToGenerateMusic": False,
"isOptimizedForChinese": False,
"generationUserPrompt": "",
"enableNsfwFilter": False,
"addStickers": False,
"typeMovingImageAnim": "dynamic",
"hasToGenerateSoundEffects": False,
"forceModelType": "gpt-image-1",
"selectedCharacters": [],
"lang": "",
"voiceSpeed": 1,
"disableAudio": False,
"disableVoice": False,
"useOnlyProvidedMedia": True,
"imageGenerationModel": "ultra",
"videoGenerationModel": "ultra",
"hasEnhancedGeneration": True,
"hasEnhancedGenerationPro": True,
"inputMedias": [
{"url": input_data.screenshot_url, "title": "", "type": "image"}
],
"hasToGenerateVideos": True,
"audioUrl": input_data.background_music.audio_url,
"watermark": None,
},
}
response = await self.create_video(credentials.api_key, payload)
pid = response.get("pid")
if not pid:
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url

View File

@@ -1,131 +0,0 @@
import logging
from typing import List
from backend.blocks.apollo._auth import ApolloCredentials
from backend.blocks.apollo.models import (
Contact,
EnrichPersonRequest,
Organization,
SearchOrganizationsRequest,
SearchOrganizationsResponse,
SearchPeopleRequest,
SearchPeopleResponse,
)
from backend.util.request import Requests
logger = logging.getLogger(name=__name__)
class ApolloClient:
"""Client for the Apollo API"""
API_URL = "https://api.apollo.io/api/v1"
def __init__(self, credentials: ApolloCredentials):
self.credentials = credentials
self.requests = Requests()
def _get_headers(self) -> dict[str, str]:
return {"x-api-key": self.credentials.api_key.get_secret_value()}
async def search_people(self, query: SearchPeopleRequest) -> List[Contact]:
"""Search for people in Apollo"""
response = await self.requests.post(
f"{self.API_URL}/mixed_people/search",
headers=self._get_headers(),
json=query.model_dump(exclude={"max_results"}),
)
data = response.json()
parsed_response = SearchPeopleResponse(**data)
if parsed_response.pagination.total_entries == 0:
return []
people = parsed_response.people
# handle pagination
if (
query.max_results is not None
and query.max_results < parsed_response.pagination.total_entries
and len(people) < query.max_results
):
while (
len(people) < query.max_results
and query.page < parsed_response.pagination.total_pages
and len(parsed_response.people) > 0
):
query.page += 1
response = await self.requests.post(
f"{self.API_URL}/mixed_people/search",
headers=self._get_headers(),
json=query.model_dump(exclude={"max_results"}),
)
data = response.json()
parsed_response = SearchPeopleResponse(**data)
people.extend(parsed_response.people[: query.max_results - len(people)])
logger.info(f"Found {len(people)} people")
return people[: query.max_results] if query.max_results else people
async def search_organizations(
self, query: SearchOrganizationsRequest
) -> List[Organization]:
"""Search for organizations in Apollo"""
response = await self.requests.post(
f"{self.API_URL}/mixed_companies/search",
headers=self._get_headers(),
json=query.model_dump(exclude={"max_results"}),
)
data = response.json()
parsed_response = SearchOrganizationsResponse(**data)
if parsed_response.pagination.total_entries == 0:
return []
organizations = parsed_response.organizations
# handle pagination
if (
query.max_results is not None
and query.max_results < parsed_response.pagination.total_entries
and len(organizations) < query.max_results
):
while (
len(organizations) < query.max_results
and query.page < parsed_response.pagination.total_pages
and len(parsed_response.organizations) > 0
):
query.page += 1
response = await self.requests.post(
f"{self.API_URL}/mixed_companies/search",
headers=self._get_headers(),
json=query.model_dump(exclude={"max_results"}),
)
data = response.json()
parsed_response = SearchOrganizationsResponse(**data)
organizations.extend(
parsed_response.organizations[
: query.max_results - len(organizations)
]
)
logger.info(f"Found {len(organizations)} organizations")
return (
organizations[: query.max_results] if query.max_results else organizations
)
async def enrich_person(self, query: EnrichPersonRequest) -> Contact:
"""Enrich a person's data including email & phone reveal"""
response = await self.requests.post(
f"{self.API_URL}/people/match",
headers=self._get_headers(),
json=query.model_dump(),
params={
"reveal_personal_emails": "true",
},
)
data = response.json()
if "person" not in data:
raise ValueError(f"Person not found or enrichment failed: {data}")
contact = Contact(**data["person"])
contact.email = contact.email or "-"
return contact

View File

@@ -1,35 +0,0 @@
from typing import Literal
from pydantic import SecretStr
from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput
from backend.integrations.providers import ProviderName
ApolloCredentials = APIKeyCredentials
ApolloCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.APOLLO],
Literal["api_key"],
]
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="apollo",
api_key=SecretStr("mock-apollo-api-key"),
title="Mock Apollo API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
def ApolloCredentialsField() -> ApolloCredentialsInput:
"""
Creates a Apollo credentials input on a block.
"""
return CredentialsField(
description="The Apollo integration can be used with an API Key.",
)

View File

@@ -1,607 +0,0 @@
from enum import Enum
from typing import Any, Optional
from pydantic import BaseModel as OriginalBaseModel
from pydantic import ConfigDict
from backend.data.model import SchemaField
class BaseModel(OriginalBaseModel):
def model_dump(self, *args, exclude: set[str] | None = None, **kwargs):
if exclude is None:
exclude = set("credentials")
else:
exclude.add("credentials")
kwargs.setdefault("exclude_none", True)
kwargs.setdefault("exclude_unset", True)
kwargs.setdefault("exclude_defaults", True)
return super().model_dump(*args, exclude=exclude, **kwargs)
class PrimaryPhone(BaseModel):
"""A primary phone in Apollo"""
number: Optional[str] = ""
source: Optional[str] = ""
sanitized_number: Optional[str] = ""
class SenorityLevels(str, Enum):
"""Seniority levels in Apollo"""
OWNER = "owner"
FOUNDER = "founder"
C_SUITE = "c_suite"
PARTNER = "partner"
VP = "vp"
HEAD = "head"
DIRECTOR = "director"
MANAGER = "manager"
SENIOR = "senior"
ENTRY = "entry"
INTERN = "intern"
class ContactEmailStatuses(str, Enum):
"""Contact email statuses in Apollo"""
VERIFIED = "verified"
UNVERIFIED = "unverified"
LIKELY_TO_ENGAGE = "likely_to_engage"
UNAVAILABLE = "unavailable"
class RuleConfigStatus(BaseModel):
"""A rule config status in Apollo"""
_id: Optional[str] = ""
created_at: Optional[str] = ""
rule_action_config_id: Optional[str] = ""
rule_config_id: Optional[str] = ""
status_cd: Optional[str] = ""
updated_at: Optional[str] = ""
id: Optional[str] = ""
key: Optional[str] = ""
class ContactCampaignStatus(BaseModel):
"""A contact campaign status in Apollo"""
id: Optional[str] = ""
emailer_campaign_id: Optional[str] = ""
send_email_from_user_id: Optional[str] = ""
inactive_reason: Optional[str] = ""
status: Optional[str] = ""
added_at: Optional[str] = ""
added_by_user_id: Optional[str] = ""
finished_at: Optional[str] = ""
paused_at: Optional[str] = ""
auto_unpause_at: Optional[str] = ""
send_email_from_email_address: Optional[str] = ""
send_email_from_email_account_id: Optional[str] = ""
manually_set_unpause: Optional[str] = ""
failure_reason: Optional[str] = ""
current_step_id: Optional[str] = ""
in_response_to_emailer_message_id: Optional[str] = ""
cc_emails: Optional[str] = ""
bcc_emails: Optional[str] = ""
to_emails: Optional[str] = ""
class Account(BaseModel):
"""An account in Apollo"""
id: Optional[str] = ""
name: Optional[str] = ""
website_url: Optional[str] = ""
blog_url: Optional[str] = ""
angellist_url: Optional[str] = ""
linkedin_url: Optional[str] = ""
twitter_url: Optional[str] = ""
facebook_url: Optional[str] = ""
primary_phone: Optional[PrimaryPhone] = PrimaryPhone()
languages: Optional[list[str]] = []
alexa_ranking: Optional[int] = 0
phone: Optional[str] = ""
linkedin_uid: Optional[str] = ""
founded_year: Optional[int] = 0
publicly_traded_symbol: Optional[str] = ""
publicly_traded_exchange: Optional[str] = ""
logo_url: Optional[str] = ""
chrunchbase_url: Optional[str] = ""
primary_domain: Optional[str] = ""
domain: Optional[str] = ""
team_id: Optional[str] = ""
organization_id: Optional[str] = ""
account_stage_id: Optional[str] = ""
source: Optional[str] = ""
original_source: Optional[str] = ""
creator_id: Optional[str] = ""
owner_id: Optional[str] = ""
created_at: Optional[str] = ""
phone_status: Optional[str] = ""
hubspot_id: Optional[str] = ""
salesforce_id: Optional[str] = ""
crm_owner_id: Optional[str] = ""
parent_account_id: Optional[str] = ""
sanitized_phone: Optional[str] = ""
# no listed type on the API docs
account_playbook_statues: Optional[list[Any]] = []
account_rule_config_statuses: Optional[list[RuleConfigStatus]] = []
existence_level: Optional[str] = ""
label_ids: Optional[list[str]] = []
typed_custom_fields: Optional[Any] = {}
custom_field_errors: Optional[Any] = {}
modality: Optional[str] = ""
source_display_name: Optional[str] = ""
salesforce_record_id: Optional[str] = ""
crm_record_url: Optional[str] = ""
class ContactEmail(BaseModel):
"""A contact email in Apollo"""
email: Optional[str] = ""
email_md5: Optional[str] = ""
email_sha256: Optional[str] = ""
email_status: Optional[str] = ""
email_source: Optional[str] = ""
extrapolated_email_confidence: Optional[str] = ""
position: Optional[int] = 0
email_from_customer: Optional[str] = ""
free_domain: Optional[bool] = True
class EmploymentHistory(BaseModel):
"""An employment history in Apollo"""
model_config = ConfigDict(
extra="allow",
arbitrary_types_allowed=True,
from_attributes=True,
populate_by_name=True,
)
_id: Optional[str] = ""
created_at: Optional[str] = ""
current: Optional[bool] = False
degree: Optional[str] = ""
description: Optional[str] = ""
emails: Optional[str] = ""
end_date: Optional[str] = ""
grade_level: Optional[str] = ""
kind: Optional[str] = ""
major: Optional[str] = ""
organization_id: Optional[str] = ""
organization_name: Optional[str] = ""
raw_address: Optional[str] = ""
start_date: Optional[str] = ""
title: Optional[str] = ""
updated_at: Optional[str] = ""
id: Optional[str] = ""
key: Optional[str] = ""
class Breadcrumb(BaseModel):
"""A breadcrumb in Apollo"""
label: Optional[str] = ""
signal_field_name: Optional[str] = ""
value: str | list | None = ""
display_name: Optional[str] = ""
class TypedCustomField(BaseModel):
"""A typed custom field in Apollo"""
id: Optional[str] = ""
value: Optional[str] = ""
class Pagination(BaseModel):
"""Pagination in Apollo"""
model_config = ConfigDict(
extra="allow",
arbitrary_types_allowed=True,
from_attributes=True,
populate_by_name=True,
)
page: int = 0
per_page: int = 0
total_entries: int = 0
total_pages: int = 0
class DialerFlags(BaseModel):
"""A dialer flags in Apollo"""
country_name: Optional[str] = ""
country_enabled: Optional[bool] = True
high_risk_calling_enabled: Optional[bool] = True
potential_high_risk_number: Optional[bool] = True
class PhoneNumber(BaseModel):
"""A phone number in Apollo"""
raw_number: Optional[str] = ""
sanitized_number: Optional[str] = ""
type: Optional[str] = ""
position: Optional[int] = 0
status: Optional[str] = ""
dnc_status: Optional[str] = ""
dnc_other_info: Optional[str] = ""
dailer_flags: Optional[DialerFlags] = DialerFlags(
country_name="",
country_enabled=True,
high_risk_calling_enabled=True,
potential_high_risk_number=True,
)
class Organization(BaseModel):
"""An organization in Apollo"""
model_config = ConfigDict(
extra="allow",
arbitrary_types_allowed=True,
from_attributes=True,
populate_by_name=True,
)
id: Optional[str] = ""
name: Optional[str] = ""
website_url: Optional[str] = ""
blog_url: Optional[str] = ""
angellist_url: Optional[str] = ""
linkedin_url: Optional[str] = ""
twitter_url: Optional[str] = ""
facebook_url: Optional[str] = ""
primary_phone: Optional[PrimaryPhone] = PrimaryPhone()
languages: Optional[list[str]] = []
alexa_ranking: Optional[int] = 0
phone: Optional[str] = ""
linkedin_uid: Optional[str] = ""
founded_year: Optional[int] = 0
publicly_traded_symbol: Optional[str] = ""
publicly_traded_exchange: Optional[str] = ""
logo_url: Optional[str] = ""
chrunchbase_url: Optional[str] = ""
primary_domain: Optional[str] = ""
sanitized_phone: Optional[str] = ""
owned_by_organization_id: Optional[str] = ""
intent_strength: Optional[str] = ""
show_intent: Optional[bool] = True
has_intent_signal_account: Optional[bool] = True
intent_signal_account: Optional[str] = ""
class Contact(BaseModel):
"""A contact in Apollo"""
model_config = ConfigDict(
extra="allow",
arbitrary_types_allowed=True,
from_attributes=True,
populate_by_name=True,
)
contact_roles: Optional[list[Any]] = []
id: Optional[str] = ""
first_name: Optional[str] = ""
last_name: Optional[str] = ""
name: Optional[str] = ""
linkedin_url: Optional[str] = ""
title: Optional[str] = ""
contact_stage_id: Optional[str] = ""
owner_id: Optional[str] = ""
creator_id: Optional[str] = ""
person_id: Optional[str] = ""
email_needs_tickling: Optional[bool] = True
organization_name: Optional[str] = ""
source: Optional[str] = ""
original_source: Optional[str] = ""
organization_id: Optional[str] = ""
headline: Optional[str] = ""
photo_url: Optional[str] = ""
present_raw_address: Optional[str] = ""
linkededin_uid: Optional[str] = ""
extrapolated_email_confidence: Optional[float] = 0.0
salesforce_id: Optional[str] = ""
salesforce_lead_id: Optional[str] = ""
salesforce_contact_id: Optional[str] = ""
saleforce_account_id: Optional[str] = ""
crm_owner_id: Optional[str] = ""
created_at: Optional[str] = ""
emailer_campaign_ids: Optional[list[str]] = []
direct_dial_status: Optional[str] = ""
direct_dial_enrichment_failed_at: Optional[str] = ""
email_status: Optional[str] = ""
email_source: Optional[str] = ""
account_id: Optional[str] = ""
last_activity_date: Optional[str] = ""
hubspot_vid: Optional[str] = ""
hubspot_company_id: Optional[str] = ""
crm_id: Optional[str] = ""
sanitized_phone: Optional[str] = ""
merged_crm_ids: Optional[str] = ""
updated_at: Optional[str] = ""
queued_for_crm_push: Optional[bool] = True
suggested_from_rule_engine_config_id: Optional[str] = ""
email_unsubscribed: Optional[str] = ""
label_ids: Optional[list[Any]] = []
has_pending_email_arcgate_request: Optional[bool] = True
has_email_arcgate_request: Optional[bool] = True
existence_level: Optional[str] = ""
email: Optional[str] = ""
email_from_customer: Optional[str] = ""
typed_custom_fields: Optional[list[TypedCustomField]] = []
custom_field_errors: Optional[Any] = {}
salesforce_record_id: Optional[str] = ""
crm_record_url: Optional[str] = ""
email_status_unavailable_reason: Optional[str] = ""
email_true_status: Optional[str] = ""
updated_email_true_status: Optional[bool] = True
contact_rule_config_statuses: Optional[list[RuleConfigStatus]] = []
source_display_name: Optional[str] = ""
twitter_url: Optional[str] = ""
contact_campaign_statuses: Optional[list[ContactCampaignStatus]] = []
state: Optional[str] = ""
city: Optional[str] = ""
country: Optional[str] = ""
account: Optional[Account] = Account()
contact_emails: Optional[list[ContactEmail]] = []
organization: Optional[Organization] = Organization()
employment_history: Optional[list[EmploymentHistory]] = []
time_zone: Optional[str] = ""
intent_strength: Optional[str] = ""
show_intent: Optional[bool] = True
phone_numbers: Optional[list[PhoneNumber]] = []
account_phone_note: Optional[str] = ""
free_domain: Optional[bool] = True
is_likely_to_engage: Optional[bool] = True
email_domain_catchall: Optional[bool] = True
contact_job_change_event: Optional[str] = ""
class SearchOrganizationsRequest(BaseModel):
"""Request for Apollo's search organizations API"""
organization_num_employees_range: Optional[list[int]] = SchemaField(
description="""The number range of employees working for the company. This enables you to find companies based on headcount. You can add multiple ranges to expand your search results.
Each range you add needs to be a string, with the upper and lower numbers of the range separated only by a comma.""",
default=[0, 1000000],
)
organization_locations: Optional[list[str]] = SchemaField(
description="""The location of the company headquarters. You can search across cities, US states, and countries.
If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, any Boston-based companies will not appearch in your search results, even if they match other parameters.
To exclude companies based on location, use the organization_not_locations parameter.
""",
default_factory=list,
)
organizations_not_locations: Optional[list[str]] = SchemaField(
description="""Exclude companies from search results based on the location of the company headquarters. You can use cities, US states, and countries as locations to exclude.
This parameter is useful for ensuring you do not prospect in an undesirable territory. For example, if you use ireland as a value, no Ireland-based companies will appear in your search results.
""",
default_factory=list,
)
q_organization_keyword_tags: Optional[list[str]] = SchemaField(
description="""Filter search results based on keywords associated with companies. For example, you can enter mining as a value to return only companies that have an association with the mining industry.""",
default_factory=list,
)
q_organization_name: Optional[str] = SchemaField(
description="""Filter search results to include a specific company name.
If the value you enter for this parameter does not match with a company's name, the company will not appear in search results, even if it matches other parameters. Partial matches are accepted. For example, if you filter by the value marketing, a company called NY Marketing Unlimited would still be eligible as a search result, but NY Market Analysis would not be eligible.""",
default="",
)
organization_ids: Optional[list[str]] = SchemaField(
description="""The Apollo IDs for the companies you want to include in your search results. Each company in the Apollo database is assigned a unique ID.
To find IDs, identify the values for organization_id when you call this endpoint.""",
default_factory=list,
)
max_results: Optional[int] = SchemaField(
description="""The maximum number of results to return. If you don't specify this parameter, the default is 100.""",
default=100,
ge=1,
le=50000,
advanced=True,
)
page: int = SchemaField(
description="""The page number of the Apollo data that you want to retrieve.
Use this parameter in combination with the per_page parameter to make search results for navigable and improve the performance of the endpoint.""",
default=1,
)
per_page: int = SchemaField(
description="""The number of search results that should be returned for each page. Limited the number of results per page improves the endpoint's performance.
Use the page parameter to search the different pages of data.""",
default=100,
)
class SearchOrganizationsResponse(BaseModel):
"""Response from Apollo's search organizations API"""
breadcrumbs: Optional[list[Breadcrumb]] = []
partial_results_only: Optional[bool] = True
has_join: Optional[bool] = True
disable_eu_prospecting: Optional[bool] = True
partial_results_limit: Optional[int] = 0
pagination: Pagination = Pagination(
page=0, per_page=0, total_entries=0, total_pages=0
)
# no listed type on the API docs
accounts: list[Any] = []
organizations: list[Organization] = []
models_ids: list[str] = []
num_fetch_result: Optional[str] = ""
derived_params: Optional[str] = ""
class SearchPeopleRequest(BaseModel):
"""Request for Apollo's search people API"""
person_titles: Optional[list[str]] = SchemaField(
description="""Job titles held by the people you want to find. For a person to be included in search results, they only need to match 1 of the job titles you add. Adding more job titles expands your search results.
Results also include job titles with the same terms, even if they are not exact matches. For example, searching for marketing manager might return people with the job title content marketing manager.
Use this parameter in combination with the person_seniorities[] parameter to find people based on specific job functions and seniority levels.
""",
default_factory=list,
placeholder="marketing manager",
)
person_locations: Optional[list[str]] = SchemaField(
description="""The location where people live. You can search across cities, US states, and countries.
To find people based on the headquarters locations of their current employer, use the organization_locations parameter.""",
default_factory=list,
)
person_seniorities: Optional[list[SenorityLevels]] = SchemaField(
description="""The job seniority that people hold within their current employer. This enables you to find people that currently hold positions at certain reporting levels, such as Director level or senior IC level.
For a person to be included in search results, they only need to match 1 of the seniorities you add. Adding more seniorities expands your search results.
Searches only return results based on their current job title, so searching for Director-level employees only returns people that currently hold a Director-level title. If someone was previously a Director, but is currently a VP, they would not be included in your search results.
Use this parameter in combination with the person_titles[] parameter to find people based on specific job functions and seniority levels.""",
default_factory=list,
)
organization_locations: Optional[list[str]] = SchemaField(
description="""The location of the company headquarters for a person's current employer. You can search across cities, US states, and countries.
If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, people that work for the Boston-based company will not appear in your results, even if they match other parameters.
To find people based on their personal location, use the person_locations parameter.""",
default_factory=list,
)
q_organization_domains: Optional[list[str]] = SchemaField(
description="""The domain name for the person's employer. This can be the current employer or a previous employer. Do not include www., the @ symbol, or similar.
You can add multiple domains to search across companies.
Examples: apollo.io and microsoft.com""",
default_factory=list,
)
contact_email_statuses: Optional[list[ContactEmailStatuses]] = SchemaField(
description="""The email statuses for the people you want to find. You can add multiple statuses to expand your search.""",
default_factory=list,
)
organization_ids: Optional[list[str]] = SchemaField(
description="""The Apollo IDs for the companies (employers) you want to include in your search results. Each company in the Apollo database is assigned a unique ID.
To find IDs, call the Organization Search endpoint and identify the values for organization_id.""",
default_factory=list,
)
organization_num_employees_range: Optional[list[int]] = SchemaField(
description="""The number range of employees working for the company. This enables you to find companies based on headcount. You can add multiple ranges to expand your search results.
Each range you add needs to be a string, with the upper and lower numbers of the range separated only by a comma.""",
default_factory=list,
)
q_keywords: Optional[str] = SchemaField(
description="""A string of words over which we want to filter the results""",
default="",
)
page: int = SchemaField(
description="""The page number of the Apollo data that you want to retrieve.
Use this parameter in combination with the per_page parameter to make search results for navigable and improve the performance of the endpoint.""",
default=1,
)
per_page: int = SchemaField(
description="""The number of search results that should be returned for each page. Limited the number of results per page improves the endpoint's performance.
Use the page parameter to search the different pages of data.""",
default=100,
)
max_results: Optional[int] = SchemaField(
description="""The maximum number of results to return. If you don't specify this parameter, the default is 100.""",
default=100,
ge=1,
le=50000,
advanced=True,
)
class SearchPeopleResponse(BaseModel):
"""Response from Apollo's search people API"""
model_config = ConfigDict(
extra="allow",
arbitrary_types_allowed=True,
from_attributes=True,
populate_by_name=True,
)
breadcrumbs: Optional[list[Breadcrumb]] = []
partial_results_only: Optional[bool] = True
has_join: Optional[bool] = True
disable_eu_prospecting: Optional[bool] = True
partial_results_limit: Optional[int] = 0
pagination: Pagination = Pagination(
page=0, per_page=0, total_entries=0, total_pages=0
)
contacts: list[Contact] = []
people: list[Contact] = []
model_ids: list[str] = []
num_fetch_result: Optional[str] = ""
derived_params: Optional[str] = ""
class EnrichPersonRequest(BaseModel):
"""Request for Apollo's person enrichment API"""
person_id: Optional[str] = SchemaField(
description="Apollo person ID to enrich (most accurate method)",
default="",
)
first_name: Optional[str] = SchemaField(
description="First name of the person to enrich",
default="",
)
last_name: Optional[str] = SchemaField(
description="Last name of the person to enrich",
default="",
)
name: Optional[str] = SchemaField(
description="Full name of the person to enrich",
default="",
)
email: Optional[str] = SchemaField(
description="Email address of the person to enrich",
default="",
)
domain: Optional[str] = SchemaField(
description="Company domain of the person to enrich",
default="",
)
company: Optional[str] = SchemaField(
description="Company name of the person to enrich",
default="",
)
linkedin_url: Optional[str] = SchemaField(
description="LinkedIn URL of the person to enrich",
default="",
)
organization_id: Optional[str] = SchemaField(
description="Apollo organization ID of the person's company",
default="",
)
title: Optional[str] = SchemaField(
description="Job title of the person to enrich",
default="",
)

View File

@@ -1,217 +0,0 @@
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
ApolloCredentials,
ApolloCredentialsInput,
)
from backend.blocks.apollo.models import (
Organization,
PrimaryPhone,
SearchOrganizationsRequest,
)
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import CredentialsField, SchemaField
class SearchOrganizationsBlock(Block):
"""Search for organizations in Apollo"""
class Input(BlockSchema):
organization_num_employees_range: list[int] = SchemaField(
description="""The number range of employees working for the company. This enables you to find companies based on headcount. You can add multiple ranges to expand your search results.
Each range you add needs to be a string, with the upper and lower numbers of the range separated only by a comma.""",
default=[0, 1000000],
)
organization_locations: list[str] = SchemaField(
description="""The location of the company headquarters. You can search across cities, US states, and countries.
If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, any Boston-based companies will not appearch in your search results, even if they match other parameters.
To exclude companies based on location, use the organization_not_locations parameter.
""",
default_factory=list,
)
organizations_not_locations: list[str] = SchemaField(
description="""Exclude companies from search results based on the location of the company headquarters. You can use cities, US states, and countries as locations to exclude.
This parameter is useful for ensuring you do not prospect in an undesirable territory. For example, if you use ireland as a value, no Ireland-based companies will appear in your search results.
""",
default_factory=list,
)
q_organization_keyword_tags: list[str] = SchemaField(
description="""Filter search results based on keywords associated with companies. For example, you can enter mining as a value to return only companies that have an association with the mining industry.""",
default_factory=list,
)
q_organization_name: str = SchemaField(
description="""Filter search results to include a specific company name.
If the value you enter for this parameter does not match with a company's name, the company will not appear in search results, even if it matches other parameters. Partial matches are accepted. For example, if you filter by the value marketing, a company called NY Marketing Unlimited would still be eligible as a search result, but NY Market Analysis would not be eligible.""",
default="",
advanced=False,
)
organization_ids: list[str] = SchemaField(
description="""The Apollo IDs for the companies you want to include in your search results. Each company in the Apollo database is assigned a unique ID.
To find IDs, identify the values for organization_id when you call this endpoint.""",
default_factory=list,
)
max_results: int = SchemaField(
description="""The maximum number of results to return. If you don't specify this parameter, the default is 100.""",
default=100,
ge=1,
le=50000,
advanced=True,
)
credentials: ApolloCredentialsInput = CredentialsField(
description="Apollo credentials",
)
class Output(BlockSchema):
organizations: list[Organization] = SchemaField(
description="List of organizations found",
default_factory=list,
)
organization: Organization = SchemaField(
description="Each found organization, one at a time",
)
error: str = SchemaField(
description="Error message if the search failed",
default="",
)
def __init__(self):
super().__init__(
id="3d71270d-599e-4148-9b95-71b35d2f44f0",
description="Search for organizations in Apollo",
categories={BlockCategory.SEARCH},
input_schema=SearchOrganizationsBlock.Input,
output_schema=SearchOrganizationsBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={"query": "Google", "credentials": TEST_CREDENTIALS_INPUT},
test_output=[
(
"organization",
Organization(
id="1",
name="Google",
website_url="https://google.com",
blog_url="https://google.com/blog",
angellist_url="https://angel.co/google",
linkedin_url="https://linkedin.com/company/google",
twitter_url="https://twitter.com/google",
facebook_url="https://facebook.com/google",
primary_phone=PrimaryPhone(
source="google",
number="1234567890",
sanitized_number="1234567890",
),
languages=["en"],
alexa_ranking=1000,
phone="1234567890",
linkedin_uid="1234567890",
founded_year=2000,
publicly_traded_symbol="GOOGL",
publicly_traded_exchange="NASDAQ",
logo_url="https://google.com/logo.png",
chrunchbase_url="https://chrunchbase.com/google",
primary_domain="google.com",
sanitized_phone="1234567890",
owned_by_organization_id="1",
intent_strength="strong",
show_intent=True,
has_intent_signal_account=True,
intent_signal_account="1",
),
),
(
"organizations",
[
Organization(
id="1",
name="Google",
website_url="https://google.com",
blog_url="https://google.com/blog",
angellist_url="https://angel.co/google",
linkedin_url="https://linkedin.com/company/google",
twitter_url="https://twitter.com/google",
facebook_url="https://facebook.com/google",
primary_phone=PrimaryPhone(
source="google",
number="1234567890",
sanitized_number="1234567890",
),
languages=["en"],
alexa_ranking=1000,
phone="1234567890",
linkedin_uid="1234567890",
founded_year=2000,
publicly_traded_symbol="GOOGL",
publicly_traded_exchange="NASDAQ",
logo_url="https://google.com/logo.png",
chrunchbase_url="https://chrunchbase.com/google",
primary_domain="google.com",
sanitized_phone="1234567890",
owned_by_organization_id="1",
intent_strength="strong",
show_intent=True,
has_intent_signal_account=True,
intent_signal_account="1",
),
],
),
],
test_mock={
"search_organizations": lambda *args, **kwargs: [
Organization(
id="1",
name="Google",
website_url="https://google.com",
blog_url="https://google.com/blog",
angellist_url="https://angel.co/google",
linkedin_url="https://linkedin.com/company/google",
twitter_url="https://twitter.com/google",
facebook_url="https://facebook.com/google",
primary_phone=PrimaryPhone(
source="google",
number="1234567890",
sanitized_number="1234567890",
),
languages=["en"],
alexa_ranking=1000,
phone="1234567890",
linkedin_uid="1234567890",
founded_year=2000,
publicly_traded_symbol="GOOGL",
publicly_traded_exchange="NASDAQ",
logo_url="https://google.com/logo.png",
chrunchbase_url="https://chrunchbase.com/google",
primary_domain="google.com",
sanitized_phone="1234567890",
owned_by_organization_id="1",
intent_strength="strong",
show_intent=True,
has_intent_signal_account=True,
intent_signal_account="1",
)
]
},
)
@staticmethod
async def search_organizations(
query: SearchOrganizationsRequest, credentials: ApolloCredentials
) -> list[Organization]:
client = ApolloClient(credentials)
return await client.search_organizations(query)
async def run(
self, input_data: Input, *, credentials: ApolloCredentials, **kwargs
) -> BlockOutput:
query = SearchOrganizationsRequest(**input_data.model_dump())
organizations = await self.search_organizations(query, credentials)
for organization in organizations:
yield "organization", organization
yield "organizations", organizations

View File

@@ -1,363 +0,0 @@
import asyncio
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
ApolloCredentials,
ApolloCredentialsInput,
)
from backend.blocks.apollo.models import (
Contact,
ContactEmailStatuses,
EnrichPersonRequest,
SearchPeopleRequest,
SenorityLevels,
)
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import CredentialsField, SchemaField
class SearchPeopleBlock(Block):
"""Search for people in Apollo"""
class Input(BlockSchema):
person_titles: list[str] = SchemaField(
description="""Job titles held by the people you want to find. For a person to be included in search results, they only need to match 1 of the job titles you add. Adding more job titles expands your search results.
Results also include job titles with the same terms, even if they are not exact matches. For example, searching for marketing manager might return people with the job title content marketing manager.
Use this parameter in combination with the person_seniorities[] parameter to find people based on specific job functions and seniority levels.
""",
default_factory=list,
advanced=False,
)
person_locations: list[str] = SchemaField(
description="""The location where people live. You can search across cities, US states, and countries.
To find people based on the headquarters locations of their current employer, use the organization_locations parameter.""",
default_factory=list,
advanced=False,
)
person_seniorities: list[SenorityLevels] = SchemaField(
description="""The job seniority that people hold within their current employer. This enables you to find people that currently hold positions at certain reporting levels, such as Director level or senior IC level.
For a person to be included in search results, they only need to match 1 of the seniorities you add. Adding more seniorities expands your search results.
Searches only return results based on their current job title, so searching for Director-level employees only returns people that currently hold a Director-level title. If someone was previously a Director, but is currently a VP, they would not be included in your search results.
Use this parameter in combination with the person_titles[] parameter to find people based on specific job functions and seniority levels.""",
default_factory=list,
advanced=False,
)
organization_locations: list[str] = SchemaField(
description="""The location of the company headquarters for a person's current employer. You can search across cities, US states, and countries.
If a company has several office locations, results are still based on the headquarters location. For example, if you search chicago but a company's HQ location is in boston, people that work for the Boston-based company will not appear in your results, even if they match other parameters.
To find people based on their personal location, use the person_locations parameter.""",
default_factory=list,
advanced=False,
)
q_organization_domains: list[str] = SchemaField(
description="""The domain name for the person's employer. This can be the current employer or a previous employer. Do not include www., the @ symbol, or similar.
You can add multiple domains to search across companies.
Examples: apollo.io and microsoft.com""",
default_factory=list,
advanced=False,
)
contact_email_statuses: list[ContactEmailStatuses] = SchemaField(
description="""The email statuses for the people you want to find. You can add multiple statuses to expand your search.""",
default_factory=list,
advanced=False,
)
organization_ids: list[str] = SchemaField(
description="""The Apollo IDs for the companies (employers) you want to include in your search results. Each company in the Apollo database is assigned a unique ID.
To find IDs, call the Organization Search endpoint and identify the values for organization_id.""",
default_factory=list,
advanced=False,
)
organization_num_employees_range: list[int] = SchemaField(
description="""The number range of employees working for the company. This enables you to find companies based on headcount. You can add multiple ranges to expand your search results.
Each range you add needs to be a string, with the upper and lower numbers of the range separated only by a comma.""",
default_factory=list,
advanced=False,
)
q_keywords: str = SchemaField(
description="""A string of words over which we want to filter the results""",
default="",
advanced=False,
)
max_results: int = SchemaField(
description="""The maximum number of results to return. If you don't specify this parameter, the default is 25. Limited to 500 to prevent overspending.""",
default=25,
ge=1,
le=500,
advanced=True,
)
enrich_info: bool = SchemaField(
description="""Whether to enrich contacts with detailed information including real email addresses. This will double the search cost.""",
default=False,
advanced=True,
)
credentials: ApolloCredentialsInput = CredentialsField(
description="Apollo credentials",
)
class Output(BlockSchema):
people: list[Contact] = SchemaField(
description="List of people found",
default_factory=list,
)
error: str = SchemaField(
description="Error message if the search failed",
default="",
)
def __init__(self):
super().__init__(
id="c2adb3aa-5aae-488d-8a6e-4eb8c23e2ed6",
description="Search for people in Apollo",
categories={BlockCategory.SEARCH},
input_schema=SearchPeopleBlock.Input,
output_schema=SearchPeopleBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={"credentials": TEST_CREDENTIALS_INPUT},
test_output=[
(
"people",
[
Contact(
contact_roles=[],
id="1",
name="John Doe",
first_name="John",
last_name="Doe",
linkedin_url="https://www.linkedin.com/in/johndoe",
title="Software Engineer",
organization_name="Google",
organization_id="123456",
contact_stage_id="1",
owner_id="1",
creator_id="1",
person_id="1",
email_needs_tickling=True,
source="apollo",
original_source="apollo",
headline="Software Engineer",
photo_url="https://www.linkedin.com/in/johndoe",
present_raw_address="123 Main St, Anytown, USA",
linkededin_uid="123456",
extrapolated_email_confidence=0.8,
salesforce_id="123456",
salesforce_lead_id="123456",
salesforce_contact_id="123456",
saleforce_account_id="123456",
crm_owner_id="123456",
created_at="2021-01-01",
emailer_campaign_ids=[],
direct_dial_status="active",
direct_dial_enrichment_failed_at="2021-01-01",
email_status="active",
email_source="apollo",
account_id="123456",
last_activity_date="2021-01-01",
hubspot_vid="123456",
hubspot_company_id="123456",
crm_id="123456",
sanitized_phone="123456",
merged_crm_ids="123456",
updated_at="2021-01-01",
queued_for_crm_push=True,
suggested_from_rule_engine_config_id="123456",
email_unsubscribed=None,
label_ids=[],
has_pending_email_arcgate_request=True,
has_email_arcgate_request=True,
existence_level=None,
email=None,
email_from_customer=None,
typed_custom_fields=[],
custom_field_errors=None,
salesforce_record_id=None,
crm_record_url=None,
email_status_unavailable_reason=None,
email_true_status=None,
updated_email_true_status=True,
contact_rule_config_statuses=[],
source_display_name=None,
twitter_url=None,
contact_campaign_statuses=[],
state=None,
city=None,
country=None,
account=None,
contact_emails=[],
organization=None,
employment_history=[],
time_zone=None,
intent_strength=None,
show_intent=True,
phone_numbers=[],
account_phone_note=None,
free_domain=True,
is_likely_to_engage=True,
email_domain_catchall=True,
contact_job_change_event=None,
),
],
),
],
test_mock={
"search_people": lambda query, credentials: [
Contact(
id="1",
name="John Doe",
first_name="John",
last_name="Doe",
linkedin_url="https://www.linkedin.com/in/johndoe",
title="Software Engineer",
organization_name="Google",
organization_id="123456",
contact_stage_id="1",
owner_id="1",
creator_id="1",
person_id="1",
email_needs_tickling=True,
source="apollo",
original_source="apollo",
headline="Software Engineer",
photo_url="https://www.linkedin.com/in/johndoe",
present_raw_address="123 Main St, Anytown, USA",
linkededin_uid="123456",
extrapolated_email_confidence=0.8,
salesforce_id="123456",
salesforce_lead_id="123456",
salesforce_contact_id="123456",
saleforce_account_id="123456",
crm_owner_id="123456",
created_at="2021-01-01",
emailer_campaign_ids=[],
direct_dial_status="active",
direct_dial_enrichment_failed_at="2021-01-01",
email_status="active",
email_source="apollo",
account_id="123456",
last_activity_date="2021-01-01",
hubspot_vid="123456",
hubspot_company_id="123456",
crm_id="123456",
sanitized_phone="123456",
merged_crm_ids="123456",
updated_at="2021-01-01",
queued_for_crm_push=True,
suggested_from_rule_engine_config_id="123456",
email_unsubscribed=None,
label_ids=[],
has_pending_email_arcgate_request=True,
has_email_arcgate_request=True,
existence_level=None,
email=None,
email_from_customer=None,
typed_custom_fields=[],
custom_field_errors=None,
salesforce_record_id=None,
crm_record_url=None,
email_status_unavailable_reason=None,
email_true_status=None,
updated_email_true_status=True,
contact_rule_config_statuses=[],
source_display_name=None,
twitter_url=None,
contact_campaign_statuses=[],
state=None,
city=None,
country=None,
account=None,
contact_emails=[],
organization=None,
employment_history=[],
time_zone=None,
intent_strength=None,
show_intent=True,
phone_numbers=[],
account_phone_note=None,
free_domain=True,
is_likely_to_engage=True,
email_domain_catchall=True,
contact_job_change_event=None,
),
]
},
)
@staticmethod
async def search_people(
query: SearchPeopleRequest, credentials: ApolloCredentials
) -> list[Contact]:
client = ApolloClient(credentials)
return await client.search_people(query)
@staticmethod
async def enrich_person(
query: EnrichPersonRequest, credentials: ApolloCredentials
) -> Contact:
client = ApolloClient(credentials)
return await client.enrich_person(query)
@staticmethod
def merge_contact_data(original: Contact, enriched: Contact) -> Contact:
"""
Merge contact data from original search with enriched data.
Enriched data complements original data, only filling in missing values.
"""
merged_data = original.model_dump()
enriched_data = enriched.model_dump()
# Only update fields that are None, empty string, empty list, or default values in original
for key, enriched_value in enriched_data.items():
# Skip if enriched value is None, empty string, or empty list
if enriched_value is None or enriched_value == "" or enriched_value == []:
continue
# Update if original value is None, empty string, empty list, or zero
if enriched_value:
merged_data[key] = enriched_value
return Contact(**merged_data)
async def run(
self,
input_data: Input,
*,
credentials: ApolloCredentials,
**kwargs,
) -> BlockOutput:
query = SearchPeopleRequest(**input_data.model_dump())
people = await self.search_people(query, credentials)
# Enrich with detailed info if requested
if input_data.enrich_info:
async def enrich_or_fallback(person: Contact):
try:
enrich_query = EnrichPersonRequest(person_id=person.id)
enriched_person = await self.enrich_person(
enrich_query, credentials
)
# Merge enriched data with original data, complementing instead of replacing
return self.merge_contact_data(person, enriched_person)
except Exception:
return person # If enrichment fails, use original person data
people = await asyncio.gather(
*(enrich_or_fallback(person) for person in people)
)
yield "people", people

View File

@@ -1,138 +0,0 @@
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
ApolloCredentials,
ApolloCredentialsInput,
)
from backend.blocks.apollo.models import Contact, EnrichPersonRequest
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import CredentialsField, SchemaField
class GetPersonDetailBlock(Block):
"""Get detailed person data with Apollo API, including email reveal"""
class Input(BlockSchema):
person_id: str = SchemaField(
description="Apollo person ID to enrich (most accurate method)",
default="",
advanced=False,
)
first_name: str = SchemaField(
description="First name of the person to enrich",
default="",
advanced=False,
)
last_name: str = SchemaField(
description="Last name of the person to enrich",
default="",
advanced=False,
)
name: str = SchemaField(
description="Full name of the person to enrich (alternative to first_name + last_name)",
default="",
advanced=False,
)
email: str = SchemaField(
description="Known email address of the person (helps with matching)",
default="",
advanced=False,
)
domain: str = SchemaField(
description="Company domain of the person (e.g., 'google.com')",
default="",
advanced=False,
)
company: str = SchemaField(
description="Company name of the person",
default="",
advanced=False,
)
linkedin_url: str = SchemaField(
description="LinkedIn URL of the person",
default="",
advanced=False,
)
organization_id: str = SchemaField(
description="Apollo organization ID of the person's company",
default="",
advanced=True,
)
title: str = SchemaField(
description="Job title of the person to enrich",
default="",
advanced=True,
)
credentials: ApolloCredentialsInput = CredentialsField(
description="Apollo credentials",
)
class Output(BlockSchema):
contact: Contact = SchemaField(
description="Enriched contact information",
)
error: str = SchemaField(
description="Error message if enrichment failed",
default="",
)
def __init__(self):
super().__init__(
id="3b18d46c-3db6-42ae-a228-0ba441bdd176",
description="Get detailed person data with Apollo API, including email reveal",
categories={BlockCategory.SEARCH},
input_schema=GetPersonDetailBlock.Input,
output_schema=GetPersonDetailBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"first_name": "John",
"last_name": "Doe",
"company": "Google",
},
test_output=[
(
"contact",
Contact(
id="1",
name="John Doe",
first_name="John",
last_name="Doe",
email="john.doe@gmail.com",
title="Software Engineer",
organization_name="Google",
linkedin_url="https://www.linkedin.com/in/johndoe",
),
),
],
test_mock={
"enrich_person": lambda query, credentials: Contact(
id="1",
name="John Doe",
first_name="John",
last_name="Doe",
email="john.doe@gmail.com",
title="Software Engineer",
organization_name="Google",
linkedin_url="https://www.linkedin.com/in/johndoe",
)
},
)
@staticmethod
async def enrich_person(
query: EnrichPersonRequest, credentials: ApolloCredentials
) -> Contact:
client = ApolloClient(credentials)
return await client.enrich_person(query)
async def run(
self,
input_data: Input,
*,
credentials: ApolloCredentials,
**kwargs,
) -> BlockOutput:
query = EnrichPersonRequest(**input_data.model_dump())
yield "contact", await self.enrich_person(query, credentials)

View File

@@ -1,51 +1,13 @@
import enum
from typing import Any
import re
from typing import Any, List
from jinja2 import BaseLoader, Environment
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema, BlockType
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.type import MediaFileType, convert
from backend.util.mock import MockObject
class FileStoreBlock(Block):
class Input(BlockSchema):
file_in: MediaFileType = SchemaField(
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
)
base_64: bool = SchemaField(
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
default=False,
advanced=True,
title="Produce Base64 Output",
)
class Output(BlockSchema):
file_out: MediaFileType = SchemaField(
description="The relative path to the stored file in the temporary directory."
)
def __init__(self):
super().__init__(
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
description="Stores the input file in the temporary directory.",
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
input_schema=FileStoreBlock.Input,
output_schema=FileStoreBlock.Output,
static_output=True,
)
async def run(
self,
input_data: Input,
*,
graph_exec_id: str,
**kwargs,
) -> BlockOutput:
yield "file_out", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.file_in,
return_content=input_data.base_64,
)
jinja = Environment(loader=BaseLoader())
class StoreValueBlock(Block):
@@ -87,16 +49,15 @@ class StoreValueBlock(Block):
static_output=True,
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "output", input_data.data or input_data.input
class PrintToConsoleBlock(Block):
class Input(BlockSchema):
text: Any = SchemaField(description="The data to print to the console.")
text: str = SchemaField(description="The text to print to the console.")
class Output(BlockSchema):
output: Any = SchemaField(description="The data printed to the console.")
status: str = SchemaField(description="The status of the print operation.")
def __init__(self):
@@ -107,15 +68,354 @@ class PrintToConsoleBlock(Block):
input_schema=PrintToConsoleBlock.Input,
output_schema=PrintToConsoleBlock.Output,
test_input={"text": "Hello, World!"},
test_output=("status", "printed"),
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
print(">>>>> Print: ", input_data.text)
yield "status", "printed"
class FindInDictionaryBlock(Block):
class Input(BlockSchema):
input: Any = SchemaField(description="Dictionary to lookup from")
key: str | int = SchemaField(description="Key to lookup in the dictionary")
class Output(BlockSchema):
output: Any = SchemaField(description="Value found for the given key")
missing: Any = SchemaField(
description="Value of the input that missing the key"
)
def __init__(self):
super().__init__(
id="0e50422c-6dee-4145-83d6-3a5a392f65de",
description="Lookup the given key in the input dictionary/object/list and return the value.",
input_schema=FindInDictionaryBlock.Input,
output_schema=FindInDictionaryBlock.Output,
test_input=[
{"input": {"apple": 1, "banana": 2, "cherry": 3}, "key": "banana"},
{"input": {"x": 10, "y": 20, "z": 30}, "key": "w"},
{"input": [1, 2, 3], "key": 1},
{"input": [1, 2, 3], "key": 3},
{"input": MockObject(value="!!", key="key"), "key": "key"},
{"input": [{"k1": "v1"}, {"k2": "v2"}, {"k1": "v3"}], "key": "k1"},
],
test_output=[
("output", "Hello, World!"),
("status", "printed"),
("output", 2),
("missing", {"x": 10, "y": 20, "z": 30}),
("output", 2),
("missing", [1, 2, 3]),
("output", "key"),
("output", ["v1", "v3"]),
],
categories={BlockCategory.BASIC},
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
obj = input_data.input
key = input_data.key
if isinstance(obj, dict) and key in obj:
yield "output", obj[key]
elif isinstance(obj, list) and isinstance(key, int) and 0 <= key < len(obj):
yield "output", obj[key]
elif isinstance(obj, list) and isinstance(key, str):
if len(obj) == 0:
yield "output", []
elif isinstance(obj[0], dict) and key in obj[0]:
yield "output", [item[key] for item in obj if key in item]
else:
yield "output", [getattr(val, key) for val in obj if hasattr(val, key)]
elif isinstance(obj, object) and isinstance(key, str) and hasattr(obj, key):
yield "output", getattr(obj, key)
else:
yield "missing", input_data.input
class AgentInputBlock(Block):
"""
This block is used to provide input to the graph.
It takes in a value, name, description, default values list and bool to limit selection to default values.
It Outputs the value passed as input.
"""
class Input(BlockSchema):
name: str = SchemaField(description="The name of the input.")
value: Any = SchemaField(
description="The value to be passed as input.",
default=None,
)
description: str = SchemaField(
description="The description of the input.",
default="",
advanced=True,
)
placeholder_values: List[Any] = SchemaField(
description="The placeholder values to be passed as input.",
default=[],
advanced=True,
)
limit_to_placeholder_values: bool = SchemaField(
description="Whether to limit the selection to placeholder values.",
default=False,
advanced=True,
)
class Output(BlockSchema):
result: Any = SchemaField(description="The value passed as input.")
def __init__(self):
super().__init__(
id="c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
description="This block is used to provide input to the graph.",
input_schema=AgentInputBlock.Input,
output_schema=AgentInputBlock.Output,
test_input=[
{
"value": "Hello, World!",
"name": "input_1",
"description": "This is a test input.",
"placeholder_values": [],
"limit_to_placeholder_values": False,
},
{
"value": "Hello, World!",
"name": "input_2",
"description": "This is a test input.",
"placeholder_values": ["Hello, World!"],
"limit_to_placeholder_values": True,
},
],
test_output=[
("result", "Hello, World!"),
("result", "Hello, World!"),
],
categories={BlockCategory.INPUT, BlockCategory.BASIC},
block_type=BlockType.INPUT,
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "result", input_data.value
class AgentOutputBlock(Block):
"""
Records the output of the graph for users to see.
Attributes:
recorded_value: The value to be recorded as output.
name: The name of the output.
description: The description of the output.
fmt_string: The format string to be used to format the recorded_value.
Outputs:
output: The formatted recorded_value if fmt_string is provided and the recorded_value
can be formatted, otherwise the raw recorded_value.
Behavior:
If fmt_string is provided and the recorded_value is of a type that can be formatted,
the block attempts to format the recorded_value using the fmt_string.
If formatting fails or no fmt_string is provided, the raw recorded_value is output.
"""
class Input(BlockSchema):
value: Any = SchemaField(description="The value to be recorded as output.")
name: str = SchemaField(description="The name of the output.")
description: str = SchemaField(
description="The description of the output.",
default="",
advanced=True,
)
format: str = SchemaField(
description="The format string to be used to format the recorded_value.",
default="",
advanced=True,
)
class Output(BlockSchema):
output: Any = SchemaField(description="The value recorded as output.")
def __init__(self):
super().__init__(
id="363ae599-353e-4804-937e-b2ee3cef3da4",
description=("Stores the output of the graph for users to see."),
input_schema=AgentOutputBlock.Input,
output_schema=AgentOutputBlock.Output,
test_input=[
{
"value": "Hello, World!",
"name": "output_1",
"description": "This is a test output.",
"format": "{{ output_1 }}!!",
},
{
"value": "42",
"name": "output_2",
"description": "This is another test output.",
"format": "{{ output_2 }}",
},
{
"value": MockObject(value="!!", key="key"),
"name": "output_3",
"description": "This is a test output with a mock object.",
"format": "{{ output_3 }}",
},
],
test_output=[
("output", "Hello, World!!!"),
("output", "42"),
("output", MockObject(value="!!", key="key")),
],
categories={BlockCategory.OUTPUT, BlockCategory.BASIC},
block_type=BlockType.OUTPUT,
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
"""
Attempts to format the recorded_value using the fmt_string if provided.
If formatting fails or no fmt_string is given, returns the original recorded_value.
"""
if input_data.format:
try:
fmt = re.sub(r"(?<!{){[ a-zA-Z0-9_]+}", r"{\g<0>}", input_data.format)
template = jinja.from_string(fmt)
yield "output", template.render({input_data.name: input_data.value})
except Exception as e:
yield "output", f"Error: {e}, {input_data.value}"
else:
yield "output", input_data.value
class AddToDictionaryBlock(Block):
class Input(BlockSchema):
dictionary: dict | None = SchemaField(
default=None,
description="The dictionary to add the entry to. If not provided, a new dictionary will be created.",
placeholder='{"key1": "value1", "key2": "value2"}',
)
key: str = SchemaField(
description="The key for the new entry.", placeholder="new_key"
)
value: Any = SchemaField(
description="The value for the new entry.", placeholder="new_value"
)
class Output(BlockSchema):
updated_dictionary: dict = SchemaField(
description="The dictionary with the new entry added."
)
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="31d1064e-7446-4693-a7d4-65e5ca1180d1",
description="Adds a new key-value pair to a dictionary. If no dictionary is provided, a new one is created.",
categories={BlockCategory.BASIC},
input_schema=AddToDictionaryBlock.Input,
output_schema=AddToDictionaryBlock.Output,
test_input=[
{
"dictionary": {"existing_key": "existing_value"},
"key": "new_key",
"value": "new_value",
},
{"key": "first_key", "value": "first_value"},
],
test_output=[
(
"updated_dictionary",
{"existing_key": "existing_value", "new_key": "new_value"},
),
("updated_dictionary", {"first_key": "first_value"}),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "output", input_data.text
yield "status", "printed"
def run(self, input_data: Input, **kwargs) -> BlockOutput:
# If no dictionary is provided, create a new one
if input_data.dictionary is None:
updated_dict = {}
else:
# Create a copy of the input dictionary to avoid modifying the original
updated_dict = input_data.dictionary.copy()
# Add the new key-value pair
updated_dict[input_data.key] = input_data.value
yield "updated_dictionary", updated_dict
class AddToListBlock(Block):
class Input(BlockSchema):
list: List[Any] | None = SchemaField(
default=None,
description="The list to add the entry to. If not provided, a new list will be created.",
placeholder='[1, "string", {"key": "value"}]',
)
entry: Any = SchemaField(
description="The entry to add to the list. Can be of any type (string, int, dict, etc.).",
placeholder='{"new_key": "new_value"}',
)
position: int | None = SchemaField(
default=None,
description="The position to insert the new entry. If not provided, the entry will be appended to the end of the list.",
placeholder="0",
)
class Output(BlockSchema):
updated_list: List[Any] = SchemaField(
description="The list with the new entry added."
)
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="aeb08fc1-2fc1-4141-bc8e-f758f183a822",
description="Adds a new entry to a list. The entry can be of any type. If no list is provided, a new one is created.",
categories={BlockCategory.BASIC},
input_schema=AddToListBlock.Input,
output_schema=AddToListBlock.Output,
test_input=[
{
"list": [1, "string", {"existing_key": "existing_value"}],
"entry": {"new_key": "new_value"},
"position": 1,
},
{"entry": "first_entry"},
{"list": ["a", "b", "c"], "entry": "d"},
],
test_output=[
(
"updated_list",
[
1,
{"new_key": "new_value"},
"string",
{"existing_key": "existing_value"},
],
),
("updated_list", ["first_entry"]),
("updated_list", ["a", "b", "c", "d"]),
],
)
def run(self, input_data: Input, **kwargs) -> BlockOutput:
# If no list is provided, create a new one
if input_data.list is None:
updated_list = []
else:
# Create a copy of the input list to avoid modifying the original
updated_list = input_data.list.copy()
# Add the new entry
if input_data.position is None:
updated_list.append(input_data.entry)
else:
updated_list.insert(input_data.position, input_data.entry)
yield "updated_list", updated_list
class NoteBlock(Block):
@@ -139,50 +439,5 @@ class NoteBlock(Block):
block_type=BlockType.NOTE,
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "output", input_data.text
class TypeOptions(enum.Enum):
STRING = "string"
NUMBER = "number"
BOOLEAN = "boolean"
LIST = "list"
DICTIONARY = "dictionary"
class UniversalTypeConverterBlock(Block):
class Input(BlockSchema):
value: Any = SchemaField(
description="The value to convert to a universal type."
)
type: TypeOptions = SchemaField(description="The type to convert the value to.")
class Output(BlockSchema):
value: Any = SchemaField(description="The converted value.")
error: str = SchemaField(description="Error message if conversion failed.")
def __init__(self):
super().__init__(
id="95d1b990-ce13-4d88-9737-ba5c2070c97b",
description="This block is used to convert a value to a universal type.",
categories={BlockCategory.BASIC},
input_schema=UniversalTypeConverterBlock.Input,
output_schema=UniversalTypeConverterBlock.Output,
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
try:
converted_value = convert(
input_data.value,
{
TypeOptions.STRING: str,
TypeOptions.NUMBER: float,
TypeOptions.BOOLEAN: bool,
TypeOptions.LIST: list,
TypeOptions.DICTIONARY: dict,
}[input_data.type],
)
yield "value", converted_value
except Exception as e:
yield "error", f"Failed to convert value: {str(e)}"

View File

@@ -38,7 +38,7 @@ class BlockInstallationBlock(Block):
disabled=True,
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
def run(self, input_data: Input, **kwargs) -> BlockOutput:
code = input_data.code
if search := re.search(r"class (\w+)\(Block\):", code):
@@ -64,7 +64,7 @@ class BlockInstallationBlock(Block):
from backend.util.test import execute_block_test
await execute_block_test(block)
execute_block_test(block)
yield "success", "Block installed successfully."
except Exception as e:
os.remove(file_path)

View File

@@ -3,7 +3,6 @@ from typing import Any
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.type import convert
class ComparisonOperator(Enum):
@@ -71,25 +70,12 @@ class ConditionBlock(Block):
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
operator = input_data.operator
def run(self, input_data: Input, **kwargs) -> BlockOutput:
value1 = input_data.value1
if isinstance(value1, str):
try:
value1 = float(value1.strip())
except ValueError:
value1 = value1.strip()
operator = input_data.operator
value2 = input_data.value2
if isinstance(value2, str):
try:
value2 = float(value2.strip())
except ValueError:
value2 = value2.strip()
yes_value = input_data.yes_value if input_data.yes_value is not None else value1
no_value = input_data.no_value if input_data.no_value is not None else value2
no_value = input_data.no_value if input_data.no_value is not None else value1
comparison_funcs = {
ComparisonOperator.EQUAL: lambda a, b: a == b,
@@ -100,107 +86,17 @@ class ConditionBlock(Block):
ComparisonOperator.LESS_THAN_OR_EQUAL: lambda a, b: a <= b,
}
result = comparison_funcs[operator](value1, value2)
try:
result = comparison_funcs[operator](value1, value2)
yield "result", result
yield "result", result
if result:
yield "yes_output", yes_value
else:
yield "no_output", no_value
if result:
yield "yes_output", yes_value
else:
yield "no_output", no_value
class IfInputMatchesBlock(Block):
class Input(BlockSchema):
input: Any = SchemaField(
description="The input to match against",
placeholder="For example: 10 or 'hello' or True",
)
value: Any = SchemaField(
description="The value to output if the input matches",
placeholder="For example: 'Greater' or 20 or False",
)
yes_value: Any = SchemaField(
description="The value to output if the input matches",
placeholder="For example: 'Greater' or 20 or False",
default=None,
)
no_value: Any = SchemaField(
description="The value to output if the input does not match",
placeholder="For example: 'Greater' or 20 or False",
default=None,
)
class Output(BlockSchema):
result: bool = SchemaField(
description="The result of the condition evaluation (True or False)"
)
yes_output: Any = SchemaField(
description="The output value if the condition is true"
)
no_output: Any = SchemaField(
description="The output value if the condition is false"
)
def __init__(self):
super().__init__(
id="6dbbc4b3-ca6c-42b6-b508-da52d23e13f2",
input_schema=IfInputMatchesBlock.Input,
output_schema=IfInputMatchesBlock.Output,
description="Handles conditional logic based on comparison operators",
categories={BlockCategory.LOGIC},
test_input=[
{
"input": 10,
"value": 10,
"yes_value": "Greater",
"no_value": "Not greater",
},
{
"input": 10,
"value": 20,
"yes_value": "Greater",
"no_value": "Not greater",
},
{
"input": 10,
"value": "None",
"yes_value": "Yes",
"no_value": "No",
},
],
test_output=[
("result", True),
("yes_output", "Greater"),
("result", False),
("no_output", "Not greater"),
("result", False),
("no_output", "No"),
# ("result", True),
# ("yes_output", "Yes"),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# If input_data.value is not matching input_data.input, convert value to type of input
if (
input_data.input != input_data.value
and input_data.input is not input_data.value
):
try:
# Only attempt conversion if input is not None and value is not None
if input_data.input is not None and input_data.value is not None:
input_type = type(input_data.input)
# Avoid converting if input_type is Any or object
if input_type not in (Any, object):
input_data.value = convert(input_data.value, input_type)
except Exception:
pass # If conversion fails, just leave value as is
if input_data.input == input_data.value:
yield "result", True
yield "yes_output", input_data.yes_value
else:
yield "result", False
yield "no_output", input_data.no_value
except Exception:
yield "result", None
yield "yes_output", None
yield "no_output", None

View File

@@ -1,457 +0,0 @@
from enum import Enum
from typing import Literal
from e2b_code_interpreter import AsyncSandbox
from pydantic import SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="e2b",
api_key=SecretStr("mock-e2b-api-key"),
title="Mock E2B API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.type,
}
class ProgrammingLanguage(Enum):
PYTHON = "python"
JAVASCRIPT = "js"
BASH = "bash"
R = "r"
JAVA = "java"
class CodeExecutionBlock(Block):
# TODO : Add support to upload and download files
# Currently, You can customized the CPU and Memory, only by creating a pre customized sandbox template
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
)
# Todo : Option to run commond in background
setup_commands: list[str] = SchemaField(
description=(
"Shell commands to set up the sandbox before running the code. "
"You can use `curl` or `git` to install your desired Debian based "
"package manager. `pip` and `npm` are pre-installed.\n\n"
"These commands are executed with `sh`, in the foreground."
),
placeholder="pip install cowsay",
default_factory=list,
advanced=False,
)
code: str = SchemaField(
description="Code to execute in the sandbox",
placeholder="print('Hello, World!')",
default="",
advanced=False,
)
language: ProgrammingLanguage = SchemaField(
description="Programming language to execute",
default=ProgrammingLanguage.PYTHON,
advanced=False,
)
timeout: int = SchemaField(
description="Execution timeout in seconds", default=300
)
template_id: str = SchemaField(
description=(
"You can use an E2B sandbox template by entering its ID here. "
"Check out the E2B docs for more details: "
"[E2B - Sandbox template](https://e2b.dev/docs/sandbox-template)"
),
default="",
advanced=True,
)
class Output(BlockSchema):
response: str = SchemaField(description="Response from code execution")
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
stderr_logs: str = SchemaField(description="Standard error logs from execution")
error: str = SchemaField(description="Error message if execution failed")
def __init__(self):
super().__init__(
id="0b02b072-abe7-11ef-8372-fb5d162dd712",
description="Executes code in an isolated sandbox environment with internet access.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=CodeExecutionBlock.Input,
output_schema=CodeExecutionBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"code": "print('Hello World')",
"language": ProgrammingLanguage.PYTHON.value,
"setup_commands": [],
"timeout": 300,
"template_id": "",
},
test_output=[
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_code": lambda code, language, setup_commands, timeout, api_key, template_id: (
"Hello World",
"Hello World\n",
"",
),
},
)
async def execute_code(
self,
code: str,
language: ProgrammingLanguage,
setup_commands: list[str],
timeout: int,
api_key: str,
template_id: str,
):
try:
sandbox = None
if template_id:
sandbox = await AsyncSandbox.create(
template=template_id, api_key=api_key, timeout=timeout
)
else:
sandbox = await AsyncSandbox.create(api_key=api_key, timeout=timeout)
if not sandbox:
raise Exception("Sandbox not created")
# Running setup commands
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Executing the code
execution = await sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return response, stdout_logs, stderr_logs
except Exception as e:
raise e
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
response, stdout_logs, stderr_logs = await self.execute_code(
input_data.code,
input_data.language,
input_data.setup_commands,
input_data.timeout,
credentials.api_key.get_secret_value(),
input_data.template_id,
)
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
except Exception as e:
yield "error", str(e)
class InstantiationBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
)
# Todo : Option to run commond in background
setup_commands: list[str] = SchemaField(
description=(
"Shell commands to set up the sandbox before running the code. "
"You can use `curl` or `git` to install your desired Debian based "
"package manager. `pip` and `npm` are pre-installed.\n\n"
"These commands are executed with `sh`, in the foreground."
),
placeholder="pip install cowsay",
default_factory=list,
advanced=False,
)
setup_code: str = SchemaField(
description="Code to execute in the sandbox",
placeholder="print('Hello, World!')",
default="",
advanced=False,
)
language: ProgrammingLanguage = SchemaField(
description="Programming language to execute",
default=ProgrammingLanguage.PYTHON,
advanced=False,
)
timeout: int = SchemaField(
description="Execution timeout in seconds", default=300
)
template_id: str = SchemaField(
description=(
"You can use an E2B sandbox template by entering its ID here. "
"Check out the E2B docs for more details: "
"[E2B - Sandbox template](https://e2b.dev/docs/sandbox-template)"
),
default="",
advanced=True,
)
class Output(BlockSchema):
sandbox_id: str = SchemaField(description="ID of the sandbox instance")
response: str = SchemaField(description="Response from code execution")
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
stderr_logs: str = SchemaField(description="Standard error logs from execution")
error: str = SchemaField(description="Error message if execution failed")
def __init__(self):
super().__init__(
id="ff0861c9-1726-4aec-9e5b-bf53f3622112",
description="Instantiate an isolated sandbox environment with internet access where to execute code in.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=InstantiationBlock.Input,
output_schema=InstantiationBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"setup_code": "print('Hello World')",
"language": ProgrammingLanguage.PYTHON.value,
"setup_commands": [],
"timeout": 300,
"template_id": "",
},
test_output=[
("sandbox_id", str),
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_code": lambda setup_code, language, setup_commands, timeout, api_key, template_id: (
"sandbox_id",
"Hello World",
"Hello World\n",
"",
),
},
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
sandbox_id, response, stdout_logs, stderr_logs = await self.execute_code(
input_data.setup_code,
input_data.language,
input_data.setup_commands,
input_data.timeout,
credentials.api_key.get_secret_value(),
input_data.template_id,
)
if sandbox_id:
yield "sandbox_id", sandbox_id
else:
yield "error", "Sandbox ID not found"
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
except Exception as e:
yield "error", str(e)
async def execute_code(
self,
code: str,
language: ProgrammingLanguage,
setup_commands: list[str],
timeout: int,
api_key: str,
template_id: str,
):
try:
sandbox = None
if template_id:
sandbox = await AsyncSandbox.create(
template=template_id, api_key=api_key, timeout=timeout
)
else:
sandbox = await AsyncSandbox.create(api_key=api_key, timeout=timeout)
if not sandbox:
raise Exception("Sandbox not created")
# Running setup commands
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Executing the code
execution = await sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return sandbox.sandbox_id, response, stdout_logs, stderr_logs
except Exception as e:
raise e
class StepExecutionBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
)
sandbox_id: str = SchemaField(
description="ID of the sandbox instance to execute the code in",
advanced=False,
)
step_code: str = SchemaField(
description="Code to execute in the sandbox",
placeholder="print('Hello, World!')",
default="",
advanced=False,
)
language: ProgrammingLanguage = SchemaField(
description="Programming language to execute",
default=ProgrammingLanguage.PYTHON,
advanced=False,
)
class Output(BlockSchema):
response: str = SchemaField(description="Response from code execution")
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
stderr_logs: str = SchemaField(description="Standard error logs from execution")
error: str = SchemaField(description="Error message if execution failed")
def __init__(self):
super().__init__(
id="82b59b8e-ea10-4d57-9161-8b169b0adba6",
description="Execute code in a previously instantiated sandbox environment.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=StepExecutionBlock.Input,
output_schema=StepExecutionBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
"sandbox_id": "sandbox_id",
"step_code": "print('Hello World')",
"language": ProgrammingLanguage.PYTHON.value,
},
test_output=[
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_step_code": lambda sandbox_id, step_code, language, api_key: (
"Hello World",
"Hello World\n",
"",
),
},
)
async def execute_step_code(
self,
sandbox_id: str,
code: str,
language: ProgrammingLanguage,
api_key: str,
):
try:
sandbox = await AsyncSandbox.connect(sandbox_id=sandbox_id, api_key=api_key)
if not sandbox:
raise Exception("Sandbox not found")
# Executing the code
execution = await sandbox.run_code(code, language=language.value)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return response, stdout_logs, stderr_logs
except Exception as e:
raise e
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
response, stdout_logs, stderr_logs = await self.execute_step_code(
input_data.sandbox_id,
input_data.step_code,
input_data.language,
credentials.api_key.get_secret_value(),
)
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
except Exception as e:
yield "error", str(e)

View File

@@ -1,110 +0,0 @@
import re
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class CodeExtractionBlock(Block):
class Input(BlockSchema):
text: str = SchemaField(
description="Text containing code blocks to extract (e.g., AI response)",
placeholder="Enter text containing code blocks",
)
class Output(BlockSchema):
html: str = SchemaField(description="Extracted HTML code")
css: str = SchemaField(description="Extracted CSS code")
javascript: str = SchemaField(description="Extracted JavaScript code")
python: str = SchemaField(description="Extracted Python code")
sql: str = SchemaField(description="Extracted SQL code")
java: str = SchemaField(description="Extracted Java code")
cpp: str = SchemaField(description="Extracted C++ code")
csharp: str = SchemaField(description="Extracted C# code")
json_code: str = SchemaField(description="Extracted JSON code")
bash: str = SchemaField(description="Extracted Bash code")
php: str = SchemaField(description="Extracted PHP code")
ruby: str = SchemaField(description="Extracted Ruby code")
yaml: str = SchemaField(description="Extracted YAML code")
markdown: str = SchemaField(description="Extracted Markdown code")
typescript: str = SchemaField(description="Extracted TypeScript code")
xml: str = SchemaField(description="Extracted XML code")
remaining_text: str = SchemaField(
description="Remaining text after code extraction"
)
def __init__(self):
super().__init__(
id="d3a7d896-3b78-4f44-8b4b-48fbf4f0bcd8",
description="Extracts code blocks from text and identifies their programming languages",
categories={BlockCategory.TEXT},
input_schema=CodeExtractionBlock.Input,
output_schema=CodeExtractionBlock.Output,
test_input={
"text": "Here's a Python example:\n```python\nprint('Hello World')\n```\nAnd some HTML:\n```html\n<h1>Title</h1>\n```"
},
test_output=[
("html", "<h1>Title</h1>"),
("python", "print('Hello World')"),
("remaining_text", "Here's a Python example:\nAnd some HTML:"),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# List of supported programming languages with mapped aliases
language_aliases = {
"html": ["html", "htm"],
"css": ["css"],
"javascript": ["javascript", "js"],
"python": ["python", "py"],
"sql": ["sql"],
"java": ["java"],
"cpp": ["cpp", "c++"],
"csharp": ["csharp", "c#", "cs"],
"json_code": ["json"],
"bash": ["bash", "shell", "sh"],
"php": ["php"],
"ruby": ["ruby", "rb"],
"yaml": ["yaml", "yml"],
"markdown": ["markdown", "md"],
"typescript": ["typescript", "ts"],
"xml": ["xml"],
}
# Extract code for each language
for canonical_name, aliases in language_aliases.items():
code = ""
# Try each alias for the language
for alias in aliases:
code_for_alias = self.extract_code(input_data.text, alias)
if code_for_alias:
code = code + "\n\n" + code_for_alias if code else code_for_alias
if code: # Only yield if there's actual code content
yield canonical_name, code
# Remove all code blocks from the text to get remaining text
pattern = (
r"```(?:"
+ "|".join(
re.escape(alias)
for aliases in language_aliases.values()
for alias in aliases
)
+ r")\s+[\s\S]*?```"
)
remaining_text = re.sub(pattern, "", input_data.text).strip()
remaining_text = re.sub(r"\n\s*\n", "\n", remaining_text)
if remaining_text: # Only yield if there's remaining text
yield "remaining_text", remaining_text
def extract_code(self, text: str, language: str) -> str:
# Escape special regex characters in the language string
language = re.escape(language)
# Extract all code blocks enclosed in ```language``` blocks
pattern = re.compile(rf"```{language}\s+(.*?)```", re.DOTALL | re.IGNORECASE)
matches = pattern.finditer(text)
# Combine all code blocks for this language with newlines between them
code_blocks = [match.group(1).strip() for match in matches]
return "\n\n".join(code_blocks) if code_blocks else ""

View File

@@ -1,60 +0,0 @@
from pydantic import BaseModel
from backend.data.block import (
Block,
BlockCategory,
BlockManualWebhookConfig,
BlockOutput,
BlockSchema,
)
from backend.data.model import SchemaField
from backend.integrations.providers import ProviderName
from backend.integrations.webhooks.compass import CompassWebhookType
class Transcription(BaseModel):
text: str
speaker: str
end: float
start: float
duration: float
class TranscriptionDataModel(BaseModel):
date: str
transcription: str
transcriptions: list[Transcription]
class CompassAITriggerBlock(Block):
class Input(BlockSchema):
payload: TranscriptionDataModel = SchemaField(hidden=True)
class Output(BlockSchema):
transcription: str = SchemaField(
description="The contents of the compass transcription."
)
def __init__(self):
super().__init__(
id="9464a020-ed1d-49e1-990f-7f2ac924a2b7",
description="This block will output the contents of the compass transcription.",
categories={BlockCategory.HARDWARE},
input_schema=CompassAITriggerBlock.Input,
output_schema=CompassAITriggerBlock.Output,
webhook_config=BlockManualWebhookConfig(
provider=ProviderName.COMPASS,
webhook_type=CompassWebhookType.TRANSCRIPTION,
),
test_input=[
{"input": "Hello, World!"},
{"input": "Hello, World!", "data": "Existing Data"},
],
# test_output=[
# ("output", "Hello, World!"), # No data provided, so trigger is returned
# ("output", "Existing Data"), # Data is provided, so data is returned.
# ],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "transcription", input_data.payload.transcription

View File

@@ -1,43 +0,0 @@
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
class WordCharacterCountBlock(Block):
class Input(BlockSchema):
text: str = SchemaField(
description="Input text to count words and characters",
placeholder="Enter your text here",
advanced=False,
)
class Output(BlockSchema):
word_count: int = SchemaField(description="Number of words in the input text")
character_count: int = SchemaField(
description="Number of characters in the input text"
)
error: str = SchemaField(
description="Error message if the counting operation failed"
)
def __init__(self):
super().__init__(
id="ab2a782d-22cf-4587-8a70-55b59b3f9f90",
description="Counts the number of words and characters in a given text.",
categories={BlockCategory.TEXT},
input_schema=WordCharacterCountBlock.Input,
output_schema=WordCharacterCountBlock.Output,
test_input={"text": "Hello, how are you?"},
test_output=[("word_count", 4), ("character_count", 19)],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
try:
text = input_data.text
word_count = len(text.split())
character_count = len(text)
yield "word_count", word_count
yield "character_count", character_count
except Exception as e:
yield "error", str(e)

View File

@@ -34,7 +34,7 @@ class ReadCsvBlock(Block):
)
skip_columns: list[str] = SchemaField(
description="The columns to skip from the start of the row",
default_factory=list,
default=[],
)
class Output(BlockSchema):
@@ -69,7 +69,7 @@ class ReadCsvBlock(Block):
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
def run(self, input_data: Input, **kwargs) -> BlockOutput:
import csv
from io import StringIO

View File

@@ -1,683 +0,0 @@
from typing import Any, List
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.json import loads
from backend.util.mock import MockObject
from backend.util.prompt import estimate_token_count_str
# =============================================================================
# Dictionary Manipulation Blocks
# =============================================================================
class CreateDictionaryBlock(Block):
class Input(BlockSchema):
values: dict[str, Any] = SchemaField(
description="Key-value pairs to create the dictionary with",
placeholder="e.g., {'name': 'Alice', 'age': 25}",
)
class Output(BlockSchema):
dictionary: dict[str, Any] = SchemaField(
description="The created dictionary containing the specified key-value pairs"
)
error: str = SchemaField(
description="Error message if dictionary creation failed"
)
def __init__(self):
super().__init__(
id="b924ddf4-de4f-4b56-9a85-358930dcbc91",
description="Creates a dictionary with the specified key-value pairs. Use this when you know all the values you want to add upfront.",
categories={BlockCategory.DATA},
input_schema=CreateDictionaryBlock.Input,
output_schema=CreateDictionaryBlock.Output,
test_input=[
{
"values": {"name": "Alice", "age": 25, "city": "New York"},
},
{
"values": {"numbers": [1, 2, 3], "active": True, "score": 95.5},
},
],
test_output=[
(
"dictionary",
{"name": "Alice", "age": 25, "city": "New York"},
),
(
"dictionary",
{"numbers": [1, 2, 3], "active": True, "score": 95.5},
),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
try:
# The values are already validated by Pydantic schema
yield "dictionary", input_data.values
except Exception as e:
yield "error", f"Failed to create dictionary: {str(e)}"
class AddToDictionaryBlock(Block):
class Input(BlockSchema):
dictionary: dict[Any, Any] = SchemaField(
default_factory=dict,
description="The dictionary to add the entry to. If not provided, a new dictionary will be created.",
)
key: str = SchemaField(
default="",
description="The key for the new entry.",
placeholder="new_key",
advanced=False,
)
value: Any = SchemaField(
default=None,
description="The value for the new entry.",
placeholder="new_value",
advanced=False,
)
entries: dict[Any, Any] = SchemaField(
default_factory=dict,
description="The entries to add to the dictionary. This is the batch version of the `key` and `value` fields.",
advanced=True,
)
class Output(BlockSchema):
updated_dictionary: dict = SchemaField(
description="The dictionary with the new entry added."
)
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="31d1064e-7446-4693-a7d4-65e5ca1180d1",
description="Adds a new key-value pair to a dictionary. If no dictionary is provided, a new one is created.",
categories={BlockCategory.BASIC},
input_schema=AddToDictionaryBlock.Input,
output_schema=AddToDictionaryBlock.Output,
test_input=[
{
"dictionary": {"existing_key": "existing_value"},
"key": "new_key",
"value": "new_value",
},
{"key": "first_key", "value": "first_value"},
{
"dictionary": {"existing_key": "existing_value"},
"entries": {"new_key": "new_value", "first_key": "first_value"},
},
],
test_output=[
(
"updated_dictionary",
{"existing_key": "existing_value", "new_key": "new_value"},
),
("updated_dictionary", {"first_key": "first_value"}),
(
"updated_dictionary",
{
"existing_key": "existing_value",
"new_key": "new_value",
"first_key": "first_value",
},
),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
updated_dict = input_data.dictionary.copy()
if input_data.value is not None and input_data.key:
updated_dict[input_data.key] = input_data.value
for key, value in input_data.entries.items():
updated_dict[key] = value
yield "updated_dictionary", updated_dict
class FindInDictionaryBlock(Block):
class Input(BlockSchema):
input: Any = SchemaField(description="Dictionary to lookup from")
key: str | int = SchemaField(description="Key to lookup in the dictionary")
class Output(BlockSchema):
output: Any = SchemaField(description="Value found for the given key")
missing: Any = SchemaField(
description="Value of the input that missing the key"
)
def __init__(self):
super().__init__(
id="0e50422c-6dee-4145-83d6-3a5a392f65de",
description="Lookup the given key in the input dictionary/object/list and return the value.",
input_schema=FindInDictionaryBlock.Input,
output_schema=FindInDictionaryBlock.Output,
test_input=[
{"input": {"apple": 1, "banana": 2, "cherry": 3}, "key": "banana"},
{"input": {"x": 10, "y": 20, "z": 30}, "key": "w"},
{"input": [1, 2, 3], "key": 1},
{"input": [1, 2, 3], "key": 3},
{"input": MockObject(value="!!", key="key"), "key": "key"},
{"input": [{"k1": "v1"}, {"k2": "v2"}, {"k1": "v3"}], "key": "k1"},
],
test_output=[
("output", 2),
("missing", {"x": 10, "y": 20, "z": 30}),
("output", 2),
("missing", [1, 2, 3]),
("output", "key"),
("output", ["v1", "v3"]),
],
categories={BlockCategory.BASIC},
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
obj = input_data.input
key = input_data.key
if isinstance(obj, str):
obj = loads(obj)
if isinstance(obj, dict) and key in obj:
yield "output", obj[key]
elif isinstance(obj, list) and isinstance(key, int) and 0 <= key < len(obj):
yield "output", obj[key]
elif isinstance(obj, list) and isinstance(key, str):
if len(obj) == 0:
yield "output", []
elif isinstance(obj[0], dict) and key in obj[0]:
yield "output", [item[key] for item in obj if key in item]
else:
yield "output", [getattr(val, key) for val in obj if hasattr(val, key)]
elif isinstance(obj, object) and isinstance(key, str) and hasattr(obj, key):
yield "output", getattr(obj, key)
else:
yield "missing", input_data.input
class RemoveFromDictionaryBlock(Block):
class Input(BlockSchema):
dictionary: dict[Any, Any] = SchemaField(
description="The dictionary to modify."
)
key: str | int = SchemaField(description="Key to remove from the dictionary.")
return_value: bool = SchemaField(
default=False, description="Whether to return the removed value."
)
class Output(BlockSchema):
updated_dictionary: dict[Any, Any] = SchemaField(
description="The dictionary after removal."
)
removed_value: Any = SchemaField(description="The removed value if requested.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="46afe2ea-c613-43f8-95ff-6692c3ef6876",
description="Removes a key-value pair from a dictionary.",
categories={BlockCategory.BASIC},
input_schema=RemoveFromDictionaryBlock.Input,
output_schema=RemoveFromDictionaryBlock.Output,
test_input=[
{
"dictionary": {"a": 1, "b": 2, "c": 3},
"key": "b",
"return_value": True,
},
{"dictionary": {"x": "hello", "y": "world"}, "key": "x"},
],
test_output=[
("updated_dictionary", {"a": 1, "c": 3}),
("removed_value", 2),
("updated_dictionary", {"y": "world"}),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
updated_dict = input_data.dictionary.copy()
try:
removed_value = updated_dict.pop(input_data.key)
yield "updated_dictionary", updated_dict
if input_data.return_value:
yield "removed_value", removed_value
except KeyError:
yield "error", f"Key '{input_data.key}' not found in dictionary"
class ReplaceDictionaryValueBlock(Block):
class Input(BlockSchema):
dictionary: dict[Any, Any] = SchemaField(
description="The dictionary to modify."
)
key: str | int = SchemaField(description="Key to replace the value for.")
value: Any = SchemaField(description="The new value for the given key.")
class Output(BlockSchema):
updated_dictionary: dict[Any, Any] = SchemaField(
description="The dictionary after replacement."
)
old_value: Any = SchemaField(description="The value that was replaced.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="27e31876-18b6-44f3-ab97-f6226d8b3889",
description="Replaces the value for a specified key in a dictionary.",
categories={BlockCategory.BASIC},
input_schema=ReplaceDictionaryValueBlock.Input,
output_schema=ReplaceDictionaryValueBlock.Output,
test_input=[
{"dictionary": {"a": 1, "b": 2, "c": 3}, "key": "b", "value": 99},
{
"dictionary": {"x": "hello", "y": "world"},
"key": "y",
"value": "universe",
},
],
test_output=[
("updated_dictionary", {"a": 1, "b": 99, "c": 3}),
("old_value", 2),
("updated_dictionary", {"x": "hello", "y": "universe"}),
("old_value", "world"),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
updated_dict = input_data.dictionary.copy()
try:
old_value = updated_dict[input_data.key]
updated_dict[input_data.key] = input_data.value
yield "updated_dictionary", updated_dict
yield "old_value", old_value
except KeyError:
yield "error", f"Key '{input_data.key}' not found in dictionary"
class DictionaryIsEmptyBlock(Block):
class Input(BlockSchema):
dictionary: dict[Any, Any] = SchemaField(description="The dictionary to check.")
class Output(BlockSchema):
is_empty: bool = SchemaField(description="True if the dictionary is empty.")
def __init__(self):
super().__init__(
id="a3cf3f64-6bb9-4cc6-9900-608a0b3359b0",
description="Checks if a dictionary is empty.",
categories={BlockCategory.BASIC},
input_schema=DictionaryIsEmptyBlock.Input,
output_schema=DictionaryIsEmptyBlock.Output,
test_input=[{"dictionary": {}}, {"dictionary": {"a": 1}}],
test_output=[("is_empty", True), ("is_empty", False)],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "is_empty", len(input_data.dictionary) == 0
# =============================================================================
# List Manipulation Blocks
# =============================================================================
class CreateListBlock(Block):
class Input(BlockSchema):
values: List[Any] = SchemaField(
description="A list of values to be combined into a new list.",
placeholder="e.g., ['Alice', 25, True]",
)
max_size: int | None = SchemaField(
default=None,
description="Maximum size of the list. If provided, the list will be yielded in chunks of this size.",
advanced=True,
)
max_tokens: int | None = SchemaField(
default=None,
description="Maximum tokens for the list. If provided, the list will be yielded in chunks that fit within this token limit.",
advanced=True,
)
class Output(BlockSchema):
list: List[Any] = SchemaField(
description="The created list containing the specified values."
)
error: str = SchemaField(description="Error message if list creation failed.")
def __init__(self):
super().__init__(
id="a912d5c7-6e00-4542-b2a9-8034136930e4",
description="Creates a list with the specified values. Use this when you know all the values you want to add upfront. This block can also yield the list in batches based on a maximum size or token limit.",
categories={BlockCategory.DATA},
input_schema=CreateListBlock.Input,
output_schema=CreateListBlock.Output,
test_input=[
{
"values": ["Alice", 25, True],
},
{
"values": [1, 2, 3, "four", {"key": "value"}],
},
],
test_output=[
(
"list",
["Alice", 25, True],
),
(
"list",
[1, 2, 3, "four", {"key": "value"}],
),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
chunk = []
cur_tokens, max_tokens = 0, input_data.max_tokens
cur_size, max_size = 0, input_data.max_size
for value in input_data.values:
if max_tokens:
tokens = estimate_token_count_str(value)
else:
tokens = 0
# Check if adding this value would exceed either limit
if (max_tokens and (cur_tokens + tokens > max_tokens)) or (
max_size and (cur_size + 1 > max_size)
):
yield "list", chunk
chunk = [value]
cur_size, cur_tokens = 1, tokens
else:
chunk.append(value)
cur_size, cur_tokens = cur_size + 1, cur_tokens + tokens
# Yield final chunk if any
if chunk or not input_data.values:
yield "list", chunk
class AddToListBlock(Block):
class Input(BlockSchema):
list: List[Any] = SchemaField(
default_factory=list,
advanced=False,
description="The list to add the entry to. If not provided, a new list will be created.",
)
entry: Any = SchemaField(
description="The entry to add to the list. Can be of any type (string, int, dict, etc.).",
advanced=False,
default=None,
)
entries: List[Any] = SchemaField(
default_factory=lambda: list(),
description="The entries to add to the list. This is the batch version of the `entry` field.",
advanced=True,
)
position: int | None = SchemaField(
default=None,
description="The position to insert the new entry. If not provided, the entry will be appended to the end of the list.",
)
class Output(BlockSchema):
updated_list: List[Any] = SchemaField(
description="The list with the new entry added."
)
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="aeb08fc1-2fc1-4141-bc8e-f758f183a822",
description="Adds a new entry to a list. The entry can be of any type. If no list is provided, a new one is created.",
categories={BlockCategory.BASIC},
input_schema=AddToListBlock.Input,
output_schema=AddToListBlock.Output,
test_input=[
{
"list": [1, "string", {"existing_key": "existing_value"}],
"entry": {"new_key": "new_value"},
"position": 1,
},
{"entry": "first_entry"},
{"list": ["a", "b", "c"], "entry": "d"},
{
"entry": "e",
"entries": ["f", "g"],
"list": ["a", "b"],
"position": 1,
},
],
test_output=[
(
"updated_list",
[
1,
{"new_key": "new_value"},
"string",
{"existing_key": "existing_value"},
],
),
("updated_list", ["first_entry"]),
("updated_list", ["a", "b", "c", "d"]),
("updated_list", ["a", "f", "g", "e", "b"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
entries_added = input_data.entries.copy()
if input_data.entry:
entries_added.append(input_data.entry)
updated_list = input_data.list.copy()
if (pos := input_data.position) is not None:
updated_list = updated_list[:pos] + entries_added + updated_list[pos:]
else:
updated_list += entries_added
yield "updated_list", updated_list
class FindInListBlock(Block):
class Input(BlockSchema):
list: List[Any] = SchemaField(description="The list to search in.")
value: Any = SchemaField(description="The value to search for.")
class Output(BlockSchema):
index: int = SchemaField(description="The index of the value in the list.")
found: bool = SchemaField(
description="Whether the value was found in the list."
)
not_found_value: Any = SchemaField(
description="The value that was not found in the list."
)
def __init__(self):
super().__init__(
id="5e2c6d0a-1e37-489f-b1d0-8e1812b23333",
description="Finds the index of the value in the list.",
categories={BlockCategory.BASIC},
input_schema=FindInListBlock.Input,
output_schema=FindInListBlock.Output,
test_input=[
{"list": [1, 2, 3, 4, 5], "value": 3},
{"list": [1, 2, 3, 4, 5], "value": 6},
],
test_output=[
("index", 2),
("found", True),
("found", False),
("not_found_value", 6),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
try:
yield "index", input_data.list.index(input_data.value)
yield "found", True
except ValueError:
yield "found", False
yield "not_found_value", input_data.value
class GetListItemBlock(Block):
class Input(BlockSchema):
list: List[Any] = SchemaField(description="The list to get the item from.")
index: int = SchemaField(
description="The 0-based index of the item (supports negative indices)."
)
class Output(BlockSchema):
item: Any = SchemaField(description="The item at the specified index.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="262ca24c-1025-43cf-a578-534e23234e97",
description="Returns the element at the given index.",
categories={BlockCategory.BASIC},
input_schema=GetListItemBlock.Input,
output_schema=GetListItemBlock.Output,
test_input=[
{"list": [1, 2, 3], "index": 1},
{"list": [1, 2, 3], "index": -1},
],
test_output=[
("item", 2),
("item", 3),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
try:
yield "item", input_data.list[input_data.index]
except IndexError:
yield "error", "Index out of range"
class RemoveFromListBlock(Block):
class Input(BlockSchema):
list: List[Any] = SchemaField(description="The list to modify.")
value: Any = SchemaField(
default=None, description="Value to remove from the list."
)
index: int | None = SchemaField(
default=None,
description="Index of the item to pop (supports negative indices).",
)
return_item: bool = SchemaField(
default=False, description="Whether to return the removed item."
)
class Output(BlockSchema):
updated_list: List[Any] = SchemaField(description="The list after removal.")
removed_item: Any = SchemaField(description="The removed item if requested.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="d93c5a93-ac7e-41c1-ae5c-ef67e6e9b826",
description="Removes an item from a list by value or index.",
categories={BlockCategory.BASIC},
input_schema=RemoveFromListBlock.Input,
output_schema=RemoveFromListBlock.Output,
test_input=[
{"list": [1, 2, 3], "index": 1, "return_item": True},
{"list": ["a", "b", "c"], "value": "b"},
],
test_output=[
("updated_list", [1, 3]),
("removed_item", 2),
("updated_list", ["a", "c"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
lst = input_data.list.copy()
removed = None
try:
if input_data.index is not None:
removed = lst.pop(input_data.index)
elif input_data.value is not None:
lst.remove(input_data.value)
removed = input_data.value
else:
raise ValueError("No index or value provided for removal")
except (IndexError, ValueError):
yield "error", "Index or value not found"
return
yield "updated_list", lst
if input_data.return_item:
yield "removed_item", removed
class ReplaceListItemBlock(Block):
class Input(BlockSchema):
list: List[Any] = SchemaField(description="The list to modify.")
index: int = SchemaField(
description="Index of the item to replace (supports negative indices)."
)
value: Any = SchemaField(description="The new value for the given index.")
class Output(BlockSchema):
updated_list: List[Any] = SchemaField(description="The list after replacement.")
old_item: Any = SchemaField(description="The item that was replaced.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="fbf62922-bea1-4a3d-8bac-23587f810b38",
description="Replaces an item at the specified index.",
categories={BlockCategory.BASIC},
input_schema=ReplaceListItemBlock.Input,
output_schema=ReplaceListItemBlock.Output,
test_input=[
{"list": [1, 2, 3], "index": 1, "value": 99},
{"list": ["a", "b"], "index": -1, "value": "c"},
],
test_output=[
("updated_list", [1, 99, 3]),
("old_item", 2),
("updated_list", ["a", "c"]),
("old_item", "b"),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
lst = input_data.list.copy()
try:
old = lst[input_data.index]
lst[input_data.index] = input_data.value
except IndexError:
yield "error", "Index out of range"
return
yield "updated_list", lst
yield "old_item", old
class ListIsEmptyBlock(Block):
class Input(BlockSchema):
list: List[Any] = SchemaField(description="The list to check.")
class Output(BlockSchema):
is_empty: bool = SchemaField(description="True if the list is empty.")
def __init__(self):
super().__init__(
id="896ed73b-27d0-41be-813c-c1c1dc856c03",
description="Checks if a list is empty.",
categories={BlockCategory.BASIC},
input_schema=ListIsEmptyBlock.Input,
output_schema=ListIsEmptyBlock.Output,
test_input=[{"list": []}, {"list": [1]}],
test_output=[("is_empty", True), ("is_empty", False)],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "is_empty", len(input_data.list) == 0

View File

@@ -34,6 +34,6 @@ This is a "quoted" string.""",
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
def run(self, input_data: Input, **kwargs) -> BlockOutput:
decoded_text = codecs.decode(input_data.text, "unicode_escape")
yield "decoded_text", decoded_text

View File

@@ -1,25 +1,23 @@
import asyncio
from typing import Literal
import aiohttp
import discord
from autogpt_libs.supabase_integration_credentials_store.types import APIKeyCredentials
from pydantic import SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.data.model import CredentialsField, CredentialsMetaInput, SchemaField
DiscordCredentials = CredentialsMetaInput[
Literal[ProviderName.DISCORD], Literal["api_key"]
]
DiscordCredentials = CredentialsMetaInput[Literal["discord"], Literal["api_key"]]
def DiscordCredentialsField() -> DiscordCredentials:
return CredentialsField(description="Discord bot token")
return CredentialsField(
description="Discord bot token",
provider="discord",
supported_credential_types={"api_key"},
)
TEST_CREDENTIALS = APIKeyCredentials(
@@ -73,11 +71,7 @@ class ReadDiscordMessagesBlock(Block):
("username", "test_user"),
],
test_mock={
"run_bot": lambda token: {
"output_data": "Hello!\n\nFile from user: example.txt\nContent: This is the content of the file.",
"channel_name": "general",
"username": "test_user",
}
"run_bot": lambda token: asyncio.Future() # Create a Future object for mocking
},
)
@@ -109,24 +103,37 @@ class ReadDiscordMessagesBlock(Block):
if attachment.filename.endswith((".txt", ".py")):
async with aiohttp.ClientSession() as session:
async with session.get(attachment.url) as response:
file_content = response.text()
file_content = await response.text()
self.output_data += f"\n\nFile from user: {attachment.filename}\nContent: {file_content}"
await client.close()
await client.start(token.get_secret_value())
async def run(
def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
async for output_name, output_value in self.__run(input_data, credentials):
yield output_name, output_value
while True:
for output_name, output_value in self.__run(input_data, credentials):
yield output_name, output_value
break
async def __run(
self, input_data: Input, credentials: APIKeyCredentials
) -> BlockOutput:
def __run(self, input_data: Input, credentials: APIKeyCredentials) -> BlockOutput:
try:
result = await self.run_bot(credentials.api_key)
loop = asyncio.get_event_loop()
future = self.run_bot(credentials.api_key)
# If it's a Future (mock), set the result
if isinstance(future, asyncio.Future):
future.set_result(
{
"output_data": "Hello!\n\nFile from user: example.txt\nContent: This is the content of the file.",
"channel_name": "general",
"username": "test_user",
}
)
result = loop.run_until_complete(future)
# For testing purposes, use the mocked result
if isinstance(result, dict):
@@ -180,7 +187,7 @@ class SendDiscordMessageBlock(Block):
},
test_output=[("status", "Message sent")],
test_mock={
"send_message": lambda token, channel_name, message_content: "Message sent"
"send_message": lambda token, channel_name, message_content: asyncio.Future()
},
test_credentials=TEST_CREDENTIALS,
)
@@ -212,16 +219,23 @@ class SendDiscordMessageBlock(Block):
"""Splits a message into chunks not exceeding the Discord limit."""
return [message[i : i + limit] for i in range(0, len(message), limit)]
async def run(
def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
result = await self.send_message(
loop = asyncio.get_event_loop()
future = self.send_message(
credentials.api_key.get_secret_value(),
input_data.channel_name,
input_data.message_content,
)
# If it's a Future (mock), set the result
if isinstance(future, asyncio.Future):
future.set_result("Message sent")
result = loop.run_until_complete(future)
# For testing purposes, use the mocked result
if isinstance(result, str):
self.output_data = result

View File

@@ -1,53 +1,22 @@
import smtplib
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from typing import Literal
from pydantic import BaseModel, ConfigDict, SecretStr
from pydantic import BaseModel, ConfigDict
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
CredentialsField,
CredentialsMetaInput,
SchemaField,
UserPasswordCredentials,
)
from backend.integrations.providers import ProviderName
TEST_CREDENTIALS = UserPasswordCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="smtp",
username=SecretStr("mock-smtp-username"),
password=SecretStr("mock-smtp-password"),
title="Mock SMTP credentials",
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
SMTPCredentials = UserPasswordCredentials
SMTPCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.SMTP],
Literal["user_password"],
]
from backend.data.model import BlockSecret, SchemaField, SecretField
def SMTPCredentialsField() -> SMTPCredentialsInput:
return CredentialsField(
description="The SMTP integration requires a username and password.",
)
class SMTPConfig(BaseModel):
class EmailCredentials(BaseModel):
smtp_server: str = SchemaField(
default="smtp.example.com", description="SMTP server address"
default="smtp.gmail.com", description="SMTP server address"
)
smtp_port: int = SchemaField(default=25, description="SMTP port number")
smtp_username: BlockSecret = SecretField(key="smtp_username")
smtp_password: BlockSecret = SecretField(key="smtp_password")
model_config = ConfigDict(title="SMTP Config")
model_config = ConfigDict(title="Email Credentials")
class SendEmailBlock(Block):
@@ -61,11 +30,10 @@ class SendEmailBlock(Block):
body: str = SchemaField(
description="Body of the email", placeholder="Enter the email body"
)
config: SMTPConfig = SchemaField(
description="SMTP Config",
default=SMTPConfig(),
creds: EmailCredentials = SchemaField(
description="SMTP credentials",
default=EmailCredentials(),
)
credentials: SMTPCredentialsInput = SMTPCredentialsField()
class Output(BlockSchema):
status: str = SchemaField(description="Status of the email sending operation")
@@ -75,6 +43,7 @@ class SendEmailBlock(Block):
def __init__(self):
super().__init__(
disabled=True,
id="4335878a-394e-4e67-adf2-919877ff49ae",
description="This block sends an email using the provided SMTP credentials.",
categories={BlockCategory.OUTPUT},
@@ -84,29 +53,25 @@ class SendEmailBlock(Block):
"to_email": "recipient@example.com",
"subject": "Test Email",
"body": "This is a test email.",
"config": {
"creds": {
"smtp_server": "smtp.gmail.com",
"smtp_port": 25,
"smtp_username": "your-email@gmail.com",
"smtp_password": "your-gmail-password",
},
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("status", "Email sent successfully")],
test_mock={"send_email": lambda *args, **kwargs: "Email sent successfully"},
)
@staticmethod
def send_email(
config: SMTPConfig,
to_email: str,
subject: str,
body: str,
credentials: SMTPCredentials,
creds: EmailCredentials, to_email: str, subject: str, body: str
) -> str:
smtp_server = config.smtp_server
smtp_port = config.smtp_port
smtp_username = credentials.username.get_secret_value()
smtp_password = credentials.password.get_secret_value()
smtp_server = creds.smtp_server
smtp_port = creds.smtp_port
smtp_username = creds.smtp_username.get_secret_value()
smtp_password = creds.smtp_password.get_secret_value()
msg = MIMEMultipart()
msg["From"] = smtp_username
@@ -121,13 +86,10 @@ class SendEmailBlock(Block):
return "Email sent successfully"
async def run(
self, input_data: Input, *, credentials: SMTPCredentials, **kwargs
) -> BlockOutput:
def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "status", self.send_email(
config=input_data.config,
to_email=input_data.to_email,
subject=input_data.subject,
body=input_data.body,
credentials=credentials,
input_data.creds,
input_data.to_email,
input_data.subject,
input_data.body,
)

View File

@@ -1,32 +0,0 @@
from typing import Literal
from pydantic import SecretStr
from backend.data.model import APIKeyCredentials, CredentialsField, CredentialsMetaInput
from backend.integrations.providers import ProviderName
ExaCredentials = APIKeyCredentials
ExaCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.EXA],
Literal["api_key"],
]
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="exa",
api_key=SecretStr("mock-exa-api-key"),
title="Mock Exa API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
def ExaCredentialsField() -> ExaCredentialsInput:
"""Creates an Exa credentials input on a block."""
return CredentialsField(description="The Exa integration requires an API Key.")

View File

@@ -1,86 +0,0 @@
from typing import List
from pydantic import BaseModel
from backend.blocks.exa._auth import (
ExaCredentials,
ExaCredentialsField,
ExaCredentialsInput,
)
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.request import Requests
class ContentRetrievalSettings(BaseModel):
text: dict = SchemaField(
description="Text content settings",
default={"maxCharacters": 1000, "includeHtmlTags": False},
advanced=True,
)
highlights: dict = SchemaField(
description="Highlight settings",
default={
"numSentences": 3,
"highlightsPerUrl": 3,
"query": "",
},
advanced=True,
)
summary: dict = SchemaField(
description="Summary settings",
default={"query": ""},
advanced=True,
)
class ExaContentsBlock(Block):
class Input(BlockSchema):
credentials: ExaCredentialsInput = ExaCredentialsField()
ids: List[str] = SchemaField(
description="Array of document IDs obtained from searches",
)
contents: ContentRetrievalSettings = SchemaField(
description="Content retrieval settings",
default=ContentRetrievalSettings(),
advanced=True,
)
class Output(BlockSchema):
results: list = SchemaField(
description="List of document contents",
default_factory=list,
)
error: str = SchemaField(description="Error message if the request failed")
def __init__(self):
super().__init__(
id="c52be83f-f8cd-4180-b243-af35f986b461",
description="Retrieves document contents using Exa's contents API",
categories={BlockCategory.SEARCH},
input_schema=ExaContentsBlock.Input,
output_schema=ExaContentsBlock.Output,
)
async def run(
self, input_data: Input, *, credentials: ExaCredentials, **kwargs
) -> BlockOutput:
url = "https://api.exa.ai/contents"
headers = {
"Content-Type": "application/json",
"x-api-key": credentials.api_key.get_secret_value(),
}
payload = {
"ids": input_data.ids,
"text": input_data.contents.text,
"highlights": input_data.contents.highlights,
"summary": input_data.contents.summary,
}
try:
response = await Requests().post(url, headers=headers, json=payload)
data = response.json()
yield "results", data.get("results", [])
except Exception as e:
yield "error", str(e)

View File

@@ -1,54 +0,0 @@
from typing import Optional
from pydantic import BaseModel
from backend.data.model import SchemaField
class TextSettings(BaseModel):
max_characters: int = SchemaField(
default=1000,
description="Maximum number of characters to return",
placeholder="1000",
)
include_html_tags: bool = SchemaField(
default=False,
description="Whether to include HTML tags in the text",
placeholder="False",
)
class HighlightSettings(BaseModel):
num_sentences: int = SchemaField(
default=3,
description="Number of sentences per highlight",
placeholder="3",
)
highlights_per_url: int = SchemaField(
default=3,
description="Number of highlights per URL",
placeholder="3",
)
class SummarySettings(BaseModel):
query: Optional[str] = SchemaField(
default="",
description="Query string for summarization",
placeholder="Enter query",
)
class ContentSettings(BaseModel):
text: TextSettings = SchemaField(
default=TextSettings(),
description="Text content settings",
)
highlights: HighlightSettings = SchemaField(
default=HighlightSettings(),
description="Highlight settings",
)
summary: SummarySettings = SchemaField(
default=SummarySettings(),
description="Summary settings",
)

View File

@@ -1,144 +0,0 @@
from datetime import datetime
from typing import List
from backend.blocks.exa._auth import (
ExaCredentials,
ExaCredentialsField,
ExaCredentialsInput,
)
from backend.blocks.exa.helpers import ContentSettings
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.request import Requests
class ExaSearchBlock(Block):
class Input(BlockSchema):
credentials: ExaCredentialsInput = ExaCredentialsField()
query: str = SchemaField(description="The search query")
use_auto_prompt: bool = SchemaField(
description="Whether to use autoprompt",
default=True,
advanced=True,
)
type: str = SchemaField(
description="Type of search",
default="",
advanced=True,
)
category: str = SchemaField(
description="Category to search within",
default="",
advanced=True,
)
number_of_results: int = SchemaField(
description="Number of results to return",
default=10,
advanced=True,
)
include_domains: List[str] = SchemaField(
description="Domains to include in search",
default_factory=list,
)
exclude_domains: List[str] = SchemaField(
description="Domains to exclude from search",
default_factory=list,
advanced=True,
)
start_crawl_date: datetime = SchemaField(
description="Start date for crawled content",
)
end_crawl_date: datetime = SchemaField(
description="End date for crawled content",
)
start_published_date: datetime = SchemaField(
description="Start date for published content",
)
end_published_date: datetime = SchemaField(
description="End date for published content",
)
include_text: List[str] = SchemaField(
description="Text patterns to include",
default_factory=list,
advanced=True,
)
exclude_text: List[str] = SchemaField(
description="Text patterns to exclude",
default_factory=list,
advanced=True,
)
contents: ContentSettings = SchemaField(
description="Content retrieval settings",
default=ContentSettings(),
advanced=True,
)
class Output(BlockSchema):
results: list = SchemaField(
description="List of search results",
default_factory=list,
)
error: str = SchemaField(
description="Error message if the request failed",
)
def __init__(self):
super().__init__(
id="996cec64-ac40-4dde-982f-b0dc60a5824d",
description="Searches the web using Exa's advanced search API",
categories={BlockCategory.SEARCH},
input_schema=ExaSearchBlock.Input,
output_schema=ExaSearchBlock.Output,
)
async def run(
self, input_data: Input, *, credentials: ExaCredentials, **kwargs
) -> BlockOutput:
url = "https://api.exa.ai/search"
headers = {
"Content-Type": "application/json",
"x-api-key": credentials.api_key.get_secret_value(),
}
payload = {
"query": input_data.query,
"useAutoprompt": input_data.use_auto_prompt,
"numResults": input_data.number_of_results,
"contents": input_data.contents.dict(),
}
date_field_mapping = {
"start_crawl_date": "startCrawlDate",
"end_crawl_date": "endCrawlDate",
"start_published_date": "startPublishedDate",
"end_published_date": "endPublishedDate",
}
# Add dates if they exist
for input_field, api_field in date_field_mapping.items():
value = getattr(input_data, input_field, None)
if value:
payload[api_field] = value.strftime("%Y-%m-%dT%H:%M:%S.000Z")
optional_field_mapping = {
"type": "type",
"category": "category",
"include_domains": "includeDomains",
"exclude_domains": "excludeDomains",
"include_text": "includeText",
"exclude_text": "excludeText",
}
# Add other fields
for input_field, api_field in optional_field_mapping.items():
value = getattr(input_data, input_field)
if value: # Only add non-empty values
payload[api_field] = value
try:
response = await Requests().post(url, headers=headers, json=payload)
data = response.json()
# Extract just the results array from the response
yield "results", data.get("results", [])
except Exception as e:
yield "error", str(e)

View File

@@ -1,127 +0,0 @@
from datetime import datetime
from typing import Any, List
from backend.blocks.exa._auth import (
ExaCredentials,
ExaCredentialsField,
ExaCredentialsInput,
)
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.request import Requests
from .helpers import ContentSettings
class ExaFindSimilarBlock(Block):
class Input(BlockSchema):
credentials: ExaCredentialsInput = ExaCredentialsField()
url: str = SchemaField(
description="The url for which you would like to find similar links"
)
number_of_results: int = SchemaField(
description="Number of results to return",
default=10,
advanced=True,
)
include_domains: List[str] = SchemaField(
description="Domains to include in search",
default_factory=list,
advanced=True,
)
exclude_domains: List[str] = SchemaField(
description="Domains to exclude from search",
default_factory=list,
advanced=True,
)
start_crawl_date: datetime = SchemaField(
description="Start date for crawled content",
)
end_crawl_date: datetime = SchemaField(
description="End date for crawled content",
)
start_published_date: datetime = SchemaField(
description="Start date for published content",
)
end_published_date: datetime = SchemaField(
description="End date for published content",
)
include_text: List[str] = SchemaField(
description="Text patterns to include (max 1 string, up to 5 words)",
default_factory=list,
advanced=True,
)
exclude_text: List[str] = SchemaField(
description="Text patterns to exclude (max 1 string, up to 5 words)",
default_factory=list,
advanced=True,
)
contents: ContentSettings = SchemaField(
description="Content retrieval settings",
default=ContentSettings(),
advanced=True,
)
class Output(BlockSchema):
results: List[Any] = SchemaField(
description="List of similar documents with title, URL, published date, author, and score",
default_factory=list,
)
error: str = SchemaField(description="Error message if the request failed")
def __init__(self):
super().__init__(
id="5e7315d1-af61-4a0c-9350-7c868fa7438a",
description="Finds similar links using Exa's findSimilar API",
categories={BlockCategory.SEARCH},
input_schema=ExaFindSimilarBlock.Input,
output_schema=ExaFindSimilarBlock.Output,
)
async def run(
self, input_data: Input, *, credentials: ExaCredentials, **kwargs
) -> BlockOutput:
url = "https://api.exa.ai/findSimilar"
headers = {
"Content-Type": "application/json",
"x-api-key": credentials.api_key.get_secret_value(),
}
payload = {
"url": input_data.url,
"numResults": input_data.number_of_results,
"contents": input_data.contents.dict(),
}
optional_field_mapping = {
"include_domains": "includeDomains",
"exclude_domains": "excludeDomains",
"include_text": "includeText",
"exclude_text": "excludeText",
}
# Add optional fields if they have values
for input_field, api_field in optional_field_mapping.items():
value = getattr(input_data, input_field)
if value: # Only add non-empty values
payload[api_field] = value
date_field_mapping = {
"start_crawl_date": "startCrawlDate",
"end_crawl_date": "endCrawlDate",
"start_published_date": "startPublishedDate",
"end_published_date": "endPublishedDate",
}
# Add dates if they exist
for input_field, api_field in date_field_mapping.items():
value = getattr(input_data, input_field, None)
if value:
payload[api_field] = value.strftime("%Y-%m-%dT%H:%M:%S.000Z")
try:
response = await Requests().post(url, headers=headers, json=payload)
data = response.json()
yield "results", data.get("results", [])
except Exception as e:
yield "error", str(e)

Some files were not shown because too many files have changed in this diff Show More