Compare commits

..

6 Commits

Author SHA1 Message Date
Nick Tindle
f1c8842564 fix(backend): Use black formatting (remove ruff format check from lint)
Ruff and Black disagree on assert formatting:
- Ruff: assert x, (msg)
- Black: assert (x), msg

Since black runs last in format(), it is the source of truth.
Removed ruff format check from lint() to prevent false failures.
2026-02-12 16:28:23 -06:00
Nick Tindle
e8ea6c537b style(backend): Fix formatting (ruff + black + isort) 2026-02-12 16:10:55 -06:00
Otto-AGPT
bacbf1f0ab style(backend): Run poetry run format (ruff + black + isort) 2026-02-11 19:50:25 +00:00
Otto-AGPT
88d365b27d style(backend): Run black and isort formatting 2026-02-11 19:48:16 +00:00
Otto-AGPT
5ef820c473 fix(backend): Fix auth helpers tests and remove unnecessary comment
- Fixed 3 failing tests in helpers_test.py that were incorrectly trying
  to mock 'backend.api.auth.helpers.get_openapi' (which doesn't exist)
- Tests now properly mock the app's openapi method directly
- Removed unnecessary comment in dependabot.yml per review feedback
2026-02-11 19:14:22 +00:00
Otto-AGPT
40f51f4ac1 refactor(backend): Integrate autogpt_libs into backend structure (OPEN-2998)
Properly integrates autogpt_libs modules into the backend's existing
structure instead of just moving them wholesale.

Structure changes:
- auth/ → backend/api/auth/ (FastAPI auth dependencies)
- api_key/ → backend/api/auth/api_key/ (API key auth)
- logging/ → backend/logging/ (structured logging config)
- utils/synchronize → backend/util/synchronize.py

Removed (unused):
- rate_limit/ - backend has its own rate limiting
- supabase_integration_credentials_store/ - not imported anywhere

Import path changes:
- autogpt_libs.auth.* → backend.api.auth.*
- autogpt_libs.api_key.* → backend.api.auth.api_key.*
- autogpt_libs.logging.* → backend.logging.*
- autogpt_libs.utils.synchronize → backend.util.synchronize

Also updates:
- pyproject.toml (merged deps, removed path ref)
- Dockerfile (removed autogpt_libs copy)
- CI workflow (removed autogpt_libs paths)
- dependabot.yml (removed autogpt_libs entry)
- Docs (CLAUDE.md, TESTING.md)

Ticket: https://linear.app/autogpt/issue/OPEN-2998
2026-02-11 16:56:35 +00:00
446 changed files with 6832 additions and 25382 deletions

View File

@@ -5,13 +5,42 @@
!docs/
# Platform - Libs
!autogpt_platform/autogpt_libs/
!autogpt_platform/autogpt_libs/autogpt_libs/
!autogpt_platform/autogpt_libs/pyproject.toml
!autogpt_platform/autogpt_libs/poetry.lock
!autogpt_platform/autogpt_libs/README.md
# Platform - Backend
!autogpt_platform/backend/
!autogpt_platform/backend/backend/
!autogpt_platform/backend/test/e2e_test_data.py
!autogpt_platform/backend/migrations/
!autogpt_platform/backend/schema.prisma
!autogpt_platform/backend/pyproject.toml
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
!autogpt_platform/backend/.env
!autogpt_platform/backend/gen_prisma_types_stub.py
# Platform - Market
!autogpt_platform/market/market/
!autogpt_platform/market/scripts.py
!autogpt_platform/market/schema.prisma
!autogpt_platform/market/pyproject.toml
!autogpt_platform/market/poetry.lock
!autogpt_platform/market/README.md
# Platform - Frontend
!autogpt_platform/frontend/
!autogpt_platform/frontend/src/
!autogpt_platform/frontend/public/
!autogpt_platform/frontend/scripts/
!autogpt_platform/frontend/package.json
!autogpt_platform/frontend/pnpm-lock.yaml
!autogpt_platform/frontend/tsconfig.json
!autogpt_platform/frontend/README.md
## config
!autogpt_platform/frontend/*.config.*
!autogpt_platform/frontend/.env.*
!autogpt_platform/frontend/.env
# Classic - AutoGPT
!classic/original_autogpt/autogpt/
@@ -35,38 +64,6 @@
# Classic - Frontend
!classic/frontend/build/web/
# Explicitly re-ignore unwanted files from whitelisted directories
# Note: These patterns MUST come after the whitelist rules to take effect
# Hidden files and directories (but keep frontend .env files needed for build)
**/.*
!autogpt_platform/frontend/.env
!autogpt_platform/frontend/.env.default
!autogpt_platform/frontend/.env.production
# Python artifacts
**/__pycache__/
**/*.pyc
**/*.pyo
**/.venv/
**/.ruff_cache/
**/.pytest_cache/
**/.coverage
**/htmlcov/
# Node artifacts
**/node_modules/
**/.next/
**/storybook-static/
**/playwright-report/
**/test-results/
# Build artifacts
**/dist/
**/build/
!autogpt_platform/frontend/src/**/build/
**/target/
# Logs and temp files
**/*.log
**/*.tmp
# Explicitly re-ignore some folders
.*
**/__pycache__

View File

@@ -1,29 +1,5 @@
version: 2
updates:
# autogpt_libs (Poetry project)
- package-ecosystem: "pip"
directory: "autogpt_platform/autogpt_libs"
schedule:
interval: "weekly"
open-pull-requests-limit: 10
target-branch: "dev"
commit-message:
prefix: "chore(libs/deps)"
prefix-development: "chore(libs/deps-dev)"
ignore:
- dependency-name: "poetry"
groups:
production-dependencies:
dependency-type: "production"
update-types:
- "minor"
- "patch"
development-dependencies:
dependency-type: "development"
update-types:
- "minor"
- "patch"
# backend (Poetry project)
- package-ecosystem: "pip"
directory: "autogpt_platform/backend"

File diff suppressed because it is too large Load Diff

View File

@@ -40,48 +40,6 @@ jobs:
git checkout -b "$BRANCH_NAME"
echo "branch_name=$BRANCH_NAME" >> $GITHUB_OUTPUT
# Backend Python/Poetry setup (so Claude can run linting/tests)
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v5
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install Python dependencies
working-directory: autogpt_platform/backend
run: poetry install
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (so Claude can run linting/tests)
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend
run: pnpm install --frozen-lockfile
- name: Get CI failure details
id: failure_details
uses: actions/github-script@v8

View File

@@ -77,15 +77,27 @@ jobs:
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Enable corepack
run: corepack enable
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend

View File

@@ -93,15 +93,27 @@ jobs:
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Enable corepack
run: corepack enable
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Enable corepack
run: corepack enable
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend

View File

@@ -62,7 +62,7 @@ jobs:
# Initializes the CodeQL tools for scanning.
- name: Initialize CodeQL
uses: github/codeql-action/init@v4
uses: github/codeql-action/init@v3
with:
languages: ${{ matrix.language }}
build-mode: ${{ matrix.build-mode }}
@@ -93,6 +93,6 @@ jobs:
exit 1
- name: Perform CodeQL Analysis
uses: github/codeql-action/analyze@v4
uses: github/codeql-action/analyze@v3
with:
category: "/language:${{matrix.language}}"

View File

@@ -7,10 +7,6 @@ on:
- "docs/integrations/**"
- "autogpt_platform/backend/backend/blocks/**"
concurrency:
group: claude-docs-review-${{ github.event.pull_request.number }}
cancel-in-progress: true
jobs:
claude-review:
# Only run for PRs from members/collaborators
@@ -95,35 +91,5 @@ jobs:
3. Read corresponding documentation files to verify accuracy
4. Provide your feedback as a PR comment
## IMPORTANT: Comment Marker
Start your PR comment with exactly this HTML comment marker on its own line:
<!-- CLAUDE_DOCS_REVIEW -->
This marker is used to identify and replace your comment on subsequent runs.
Be constructive and specific. If everything looks good, say so!
If there are issues, explain what's wrong and suggest how to fix it.
- name: Delete old Claude review comments
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
# Get all comment IDs with our marker, sorted by creation date (oldest first)
COMMENT_IDS=$(gh api \
repos/${{ github.repository }}/issues/${{ github.event.pull_request.number }}/comments \
--jq '[.[] | select(.body | contains("<!-- CLAUDE_DOCS_REVIEW -->"))] | sort_by(.created_at) | .[].id')
# Count comments
COMMENT_COUNT=$(echo "$COMMENT_IDS" | grep -c . || true)
if [ "$COMMENT_COUNT" -gt 1 ]; then
# Delete all but the last (newest) comment
echo "$COMMENT_IDS" | head -n -1 | while read -r COMMENT_ID; do
if [ -n "$COMMENT_ID" ]; then
echo "Deleting old review comment: $COMMENT_ID"
gh api -X DELETE repos/${{ github.repository }}/issues/comments/$COMMENT_ID
fi
done
else
echo "No old review comments to clean up"
fi

View File

@@ -6,13 +6,11 @@ on:
paths:
- ".github/workflows/platform-backend-ci.yml"
- "autogpt_platform/backend/**"
- "autogpt_platform/autogpt_libs/**"
pull_request:
branches: [master, dev, release-*]
paths:
- ".github/workflows/platform-backend-ci.yml"
- "autogpt_platform/backend/**"
- "autogpt_platform/autogpt_libs/**"
merge_group:
concurrency:
@@ -41,18 +39,13 @@ jobs:
ports:
- 6379:6379
rabbitmq:
image: rabbitmq:4.1.4
image: rabbitmq:3.12-management
ports:
- 5672:5672
- 15672:15672
env:
RABBITMQ_DEFAULT_USER: ${{ env.RABBITMQ_DEFAULT_USER }}
RABBITMQ_DEFAULT_PASS: ${{ env.RABBITMQ_DEFAULT_PASS }}
options: >-
--health-cmd "rabbitmq-diagnostics -q ping"
--health-interval 30s
--health-timeout 10s
--health-retries 5
--health-start-period 10s
clamav:
image: clamav/clamav-debian:latest
ports:

View File

@@ -6,16 +6,10 @@ on:
paths:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
- "autogpt_platform/backend/Dockerfile"
- "autogpt_platform/docker-compose.yml"
- "autogpt_platform/docker-compose.platform.yml"
pull_request:
paths:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
- "autogpt_platform/backend/Dockerfile"
- "autogpt_platform/docker-compose.yml"
- "autogpt_platform/docker-compose.platform.yml"
merge_group:
workflow_dispatch:
@@ -32,6 +26,7 @@ jobs:
setup:
runs-on: ubuntu-latest
outputs:
cache-key: ${{ steps.cache-key.outputs.key }}
components-changed: ${{ steps.filter.outputs.components }}
steps:
@@ -46,17 +41,28 @@ jobs:
components:
- 'autogpt_platform/frontend/src/components/**'
- name: Enable corepack
run: corepack enable
- name: Set up Node
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Install dependencies to populate cache
- name: Enable corepack
run: corepack enable
- name: Generate cache key
id: cache-key
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
- name: Cache dependencies
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ steps.cache-key.outputs.key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
lint:
@@ -67,15 +73,22 @@ jobs:
- name: Checkout repository
uses: actions/checkout@v6
- name: Enable corepack
run: corepack enable
- name: Set up Node
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
@@ -98,15 +111,22 @@ jobs:
with:
fetch-depth: 0
- name: Enable corepack
run: corepack enable
- name: Set up Node
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile
@@ -121,8 +141,10 @@ jobs:
exitOnceUploaded: true
e2e_test:
name: end-to-end tests
runs-on: big-boi
needs: setup
strategy:
fail-fast: false
steps:
- name: Checkout repository
@@ -130,11 +152,19 @@ jobs:
with:
submodules: recursive
- name: Set up Platform - Copy default supabase .env
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
- name: Enable corepack
run: corepack enable
- name: Copy default supabase .env
run: |
cp ../.env.default ../.env
- name: Set up Platform - Copy backend .env and set OpenAI API key
- name: Copy backend .env and set OpenAI API key
run: |
cp ../backend/.env.default ../backend/.env
echo "OPENAI_INTERNAL_API_KEY=${{ secrets.OPENAI_API_KEY }}" >> ../backend/.env
@@ -142,125 +172,77 @@ jobs:
# Used by E2E test data script to generate embeddings for approved store agents
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
- name: Set up Platform - Set up Docker Buildx
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
driver: docker-container
driver-opts: network=host
- name: Set up Platform - Expose GHA cache to docker buildx CLI
uses: crazy-max/ghaction-github-runtime@v3
- name: Set up Platform - Build Docker images (with cache)
working-directory: autogpt_platform
run: |
pip install pyyaml
# Resolve extends and generate a flat compose file that bake can understand
docker compose -f docker-compose.yml config > docker-compose.resolved.yml
# Add cache configuration to the resolved compose file
python ../.github/workflows/scripts/docker-ci-fix-compose-build-cache.py \
--source docker-compose.resolved.yml \
--cache-from "type=gha" \
--cache-to "type=gha,mode=max" \
--backend-hash "${{ hashFiles('autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/poetry.lock', 'autogpt_platform/backend/backend') }}" \
--frontend-hash "${{ hashFiles('autogpt_platform/frontend/Dockerfile', 'autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/src') }}" \
--git-ref "${{ github.ref }}"
# Build with bake using the resolved compose file (now includes cache config)
docker buildx bake --allow=fs.read=.. -f docker-compose.resolved.yml --load
env:
NEXT_PUBLIC_PW_TEST: true
- name: Set up tests - Cache E2E test data
id: e2e-data-cache
- name: Cache Docker layers
uses: actions/cache@v5
with:
path: /tmp/e2e_test_data.sql
key: e2e-test-data-${{ hashFiles('autogpt_platform/backend/test/e2e_test_data.py', 'autogpt_platform/backend/migrations/**', '.github/workflows/platform-frontend-ci.yml') }}
path: /tmp/.buildx-cache
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
restore-keys: |
${{ runner.os }}-buildx-frontend-test-
- name: Set up Platform - Start Supabase DB + Auth
- name: Run docker compose
run: |
docker compose -f ../docker-compose.resolved.yml up -d db auth --no-build
echo "Waiting for database to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done'
echo "Waiting for auth service to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -c "SELECT 1 FROM auth.users LIMIT 1" 2>/dev/null; do sleep 2; done' || echo "Auth schema check timeout, continuing..."
- name: Set up Platform - Run migrations
run: |
echo "Running migrations..."
docker compose -f ../docker-compose.resolved.yml run --rm migrate
echo "✅ Migrations completed"
NEXT_PUBLIC_PW_TEST=true docker compose -f ../docker-compose.yml up -d
env:
NEXT_PUBLIC_PW_TEST: true
DOCKER_BUILDKIT: 1
BUILDX_CACHE_FROM: type=local,src=/tmp/.buildx-cache
BUILDX_CACHE_TO: type=local,dest=/tmp/.buildx-cache-new,mode=max
- name: Set up tests - Load cached E2E test data
if: steps.e2e-data-cache.outputs.cache-hit == 'true'
- name: Move cache
run: |
echo "✅ Found cached E2E test data, restoring..."
{
echo "SET session_replication_role = 'replica';"
cat /tmp/e2e_test_data.sql
echo "SET session_replication_role = 'origin';"
} | docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -b
# Refresh materialized views after restore
docker compose -f ../docker-compose.resolved.yml exec -T db \
psql -U postgres -d postgres -b -c "SET search_path TO platform; SELECT refresh_store_materialized_views();" || true
rm -rf /tmp/.buildx-cache
if [ -d "/tmp/.buildx-cache-new" ]; then
mv /tmp/.buildx-cache-new /tmp/.buildx-cache
fi
echo "✅ E2E test data restored from cache"
- name: Set up Platform - Start (all other services)
- name: Wait for services to be ready
run: |
docker compose -f ../docker-compose.resolved.yml up -d --no-build
echo "Waiting for rest_server to be ready..."
timeout 60 sh -c 'until curl -f http://localhost:8006/health 2>/dev/null; do sleep 2; done' || echo "Rest server health check timeout, continuing..."
env:
NEXT_PUBLIC_PW_TEST: true
echo "Waiting for database to be ready..."
timeout 60 sh -c 'until docker compose -f ../docker-compose.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done' || echo "Database ready check timeout, continuing..."
- name: Set up tests - Create E2E test data
if: steps.e2e-data-cache.outputs.cache-hit != 'true'
- name: Create E2E test data
run: |
echo "Creating E2E test data..."
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.resolved.yml ps -q rest_server):/tmp/e2e_test_data.py
docker compose -f ../docker-compose.resolved.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.resolved.yml logs --tail=50 rest_server
exit 1
}
# First try to run the script from inside the container
if docker compose -f ../docker-compose.yml exec -T rest_server test -f /app/autogpt_platform/backend/test/e2e_test_data.py; then
echo "✅ Found e2e_test_data.py in container, running it..."
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python backend/test/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
exit 1
}
else
echo "⚠️ e2e_test_data.py not found in container, copying and running..."
# Copy the script into the container and run it
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.yml ps -q rest_server):/tmp/e2e_test_data.py || {
echo "❌ Failed to copy script to container"
exit 1
}
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
echo "❌ E2E test data creation failed!"
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
exit 1
}
fi
# Dump auth.users + platform schema for cache (two separate dumps)
echo "Dumping database for cache..."
{
docker compose -f ../docker-compose.resolved.yml exec -T db \
pg_dump -U postgres --data-only --column-inserts \
--table='auth.users' postgres
docker compose -f ../docker-compose.resolved.yml exec -T db \
pg_dump -U postgres --data-only --column-inserts \
--schema=platform \
--exclude-table='platform._prisma_migrations' \
--exclude-table='platform.apscheduler_jobs' \
--exclude-table='platform.apscheduler_jobs_batched_notifications' \
postgres
} > /tmp/e2e_test_data.sql
echo "✅ Database dump created for caching ($(wc -l < /tmp/e2e_test_data.sql) lines)"
- name: Set up tests - Enable corepack
run: corepack enable
- name: Set up tests - Set up Node
uses: actions/setup-node@v6
- name: Restore dependencies cache
uses: actions/cache@v5
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Set up tests - Install dependencies
- name: Install dependencies
run: pnpm install --frozen-lockfile
- name: Set up tests - Install browser 'chromium'
- name: Install Browser 'chromium'
run: pnpm playwright install --with-deps chromium
- name: Run Playwright tests
@@ -287,7 +269,7 @@ jobs:
- name: Print Final Docker Compose logs
if: always()
run: docker compose -f ../docker-compose.resolved.yml logs
run: docker compose -f ../docker-compose.yml logs
integration_test:
runs-on: ubuntu-latest
@@ -299,15 +281,22 @@ jobs:
with:
submodules: recursive
- name: Enable corepack
run: corepack enable
- name: Set up Node
- name: Set up Node.js
uses: actions/setup-node@v6
with:
node-version: "22.18.0"
cache: "pnpm"
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
- name: Enable corepack
run: corepack enable
- name: Restore dependencies cache
uses: actions/cache@v5
with:
path: ~/.pnpm-store
key: ${{ needs.setup.outputs.cache-key }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install dependencies
run: pnpm install --frozen-lockfile

View File

@@ -1,39 +0,0 @@
name: PR Overlap Detection
on:
pull_request:
types: [opened, synchronize, reopened]
branches:
- dev
- master
permissions:
contents: read
pull-requests: write
jobs:
check-overlaps:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0 # Need full history for merge testing
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: '3.11'
- name: Configure git
run: |
git config user.email "github-actions[bot]@users.noreply.github.com"
git config user.name "github-actions[bot]"
- name: Run overlap detection
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
# Always succeed - this check informs contributors, it shouldn't block merging
continue-on-error: true
run: |
python .github/scripts/detect_overlaps.py ${{ github.event.pull_request.number }}

View File

@@ -1,195 +0,0 @@
#!/usr/bin/env python3
"""
Add cache configuration to a resolved docker-compose file for all services
that have a build key, and ensure image names match what docker compose expects.
"""
import argparse
import yaml
DEFAULT_BRANCH = "dev"
CACHE_BUILDS_FOR_COMPONENTS = ["backend", "frontend"]
def main():
parser = argparse.ArgumentParser(
description="Add cache config to a resolved compose file"
)
parser.add_argument(
"--source",
required=True,
help="Source compose file to read (should be output of `docker compose config`)",
)
parser.add_argument(
"--cache-from",
default="type=gha",
help="Cache source configuration",
)
parser.add_argument(
"--cache-to",
default="type=gha,mode=max",
help="Cache destination configuration",
)
for component in CACHE_BUILDS_FOR_COMPONENTS:
parser.add_argument(
f"--{component}-hash",
default="",
help=f"Hash for {component} cache scope (e.g., from hashFiles())",
)
parser.add_argument(
"--git-ref",
default="",
help="Git ref for branch-based cache scope (e.g., refs/heads/master)",
)
args = parser.parse_args()
# Normalize git ref to a safe scope name (e.g., refs/heads/master -> master)
git_ref_scope = ""
if args.git_ref:
git_ref_scope = args.git_ref.replace("refs/heads/", "").replace("/", "-")
with open(args.source, "r") as f:
compose = yaml.safe_load(f)
# Get project name from compose file or default
project_name = compose.get("name", "autogpt_platform")
def get_image_name(dockerfile: str, target: str) -> str:
"""Generate image name based on Dockerfile folder and build target."""
dockerfile_parts = dockerfile.replace("\\", "/").split("/")
if len(dockerfile_parts) >= 2:
folder_name = dockerfile_parts[-2] # e.g., "backend" or "frontend"
else:
folder_name = "app"
return f"{project_name}-{folder_name}:{target}"
def get_build_key(dockerfile: str, target: str) -> str:
"""Generate a unique key for a Dockerfile+target combination."""
return f"{dockerfile}:{target}"
def get_component(dockerfile: str) -> str | None:
"""Get component name (frontend/backend) from dockerfile path."""
for component in CACHE_BUILDS_FOR_COMPONENTS:
if component in dockerfile:
return component
return None
# First pass: collect all services with build configs and identify duplicates
# Track which (dockerfile, target) combinations we've seen
build_key_to_first_service: dict[str, str] = {}
services_to_build: list[str] = []
services_to_dedupe: list[str] = []
for service_name, service_config in compose.get("services", {}).items():
if "build" not in service_config:
continue
build_config = service_config["build"]
dockerfile = build_config.get("dockerfile", "Dockerfile")
target = build_config.get("target", "default")
build_key = get_build_key(dockerfile, target)
if build_key not in build_key_to_first_service:
# First service with this build config - it will do the actual build
build_key_to_first_service[build_key] = service_name
services_to_build.append(service_name)
else:
# Duplicate - will just use the image from the first service
services_to_dedupe.append(service_name)
# Second pass: configure builds and deduplicate
modified_services = []
for service_name, service_config in compose.get("services", {}).items():
if "build" not in service_config:
continue
build_config = service_config["build"]
dockerfile = build_config.get("dockerfile", "Dockerfile")
target = build_config.get("target", "latest")
image_name = get_image_name(dockerfile, target)
# Set image name for all services (needed for both builders and deduped)
service_config["image"] = image_name
if service_name in services_to_dedupe:
# Remove build config - this service will use the pre-built image
del service_config["build"]
continue
# This service will do the actual build - add cache config
cache_from_list = []
cache_to_list = []
component = get_component(dockerfile)
if not component:
# Skip services that don't clearly match frontend/backend
continue
# Get the hash for this component
component_hash = getattr(args, f"{component}_hash")
# Scope format: platform-{component}-{target}-{hash|ref}
# Example: platform-backend-server-abc123
if "type=gha" in args.cache_from:
# 1. Primary: exact hash match (most specific)
if component_hash:
hash_scope = f"platform-{component}-{target}-{component_hash}"
cache_from_list.append(f"{args.cache_from},scope={hash_scope}")
# 2. Fallback: branch-based cache
if git_ref_scope:
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
cache_from_list.append(f"{args.cache_from},scope={ref_scope}")
# 3. Fallback: dev branch cache (for PRs/feature branches)
if git_ref_scope and git_ref_scope != DEFAULT_BRANCH:
master_scope = f"platform-{component}-{target}-{DEFAULT_BRANCH}"
cache_from_list.append(f"{args.cache_from},scope={master_scope}")
if "type=gha" in args.cache_to:
# Write to both hash-based and branch-based scopes
if component_hash:
hash_scope = f"platform-{component}-{target}-{component_hash}"
cache_to_list.append(f"{args.cache_to},scope={hash_scope}")
if git_ref_scope:
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
cache_to_list.append(f"{args.cache_to},scope={ref_scope}")
# Ensure we have at least one cache source/target
if not cache_from_list:
cache_from_list.append(args.cache_from)
if not cache_to_list:
cache_to_list.append(args.cache_to)
build_config["cache_from"] = cache_from_list
build_config["cache_to"] = cache_to_list
modified_services.append(service_name)
# Write back to the same file
with open(args.source, "w") as f:
yaml.dump(compose, f, default_flow_style=False, sort_keys=False)
print(f"Added cache config to {len(modified_services)} services in {args.source}:")
for svc in modified_services:
svc_config = compose["services"][svc]
build_cfg = svc_config.get("build", {})
cache_from_list = build_cfg.get("cache_from", ["none"])
cache_to_list = build_cfg.get("cache_to", ["none"])
print(f" - {svc}")
print(f" image: {svc_config.get('image', 'N/A')}")
print(f" cache_from: {cache_from_list}")
print(f" cache_to: {cache_to_list}")
if services_to_dedupe:
print(
f"Deduplicated {len(services_to_dedupe)} services (will use pre-built images):"
)
for svc in services_to_dedupe:
print(f" - {svc} -> {compose['services'][svc].get('image', 'N/A')}")
if __name__ == "__main__":
main()

View File

@@ -8,7 +8,7 @@ AutoGPT Platform is a monorepo containing:
- **Backend** (`backend`): Python FastAPI server with async support
- **Frontend** (`frontend`): Next.js React application
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
- **Shared Libraries** (`backend/api/auth`, `backend/logging`): Auth, logging, and common utilities integrated into backend
## Component Documentation
@@ -45,11 +45,6 @@ AutoGPT Platform is a monorepo containing:
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Branching Strategy
- **`dev`** is the main development branch. All PRs should target `dev`.
- **`master`** is the production branch. Only used for production releases.
### Creating Pull Requests
- Create the PR against the `dev` branch of the repository.

View File

@@ -1,3 +0,0 @@
# AutoGPT Libs
This is a new project to store shared functionality across different services in the AutoGPT Platform (e.g. authentication)

View File

@@ -1,33 +0,0 @@
from typing import Optional
from pydantic import Field
from pydantic_settings import BaseSettings, SettingsConfigDict
class RateLimitSettings(BaseSettings):
redis_host: str = Field(
default="redis://localhost:6379",
description="Redis host",
validation_alias="REDIS_HOST",
)
redis_port: str = Field(
default="6379", description="Redis port", validation_alias="REDIS_PORT"
)
redis_password: Optional[str] = Field(
default=None,
description="Redis password",
validation_alias="REDIS_PASSWORD",
)
requests_per_minute: int = Field(
default=60,
description="Maximum number of requests allowed per minute per API key",
validation_alias="RATE_LIMIT_REQUESTS_PER_MINUTE",
)
model_config = SettingsConfigDict(case_sensitive=True, extra="ignore")
RATE_LIMIT_SETTINGS = RateLimitSettings()

View File

@@ -1,51 +0,0 @@
import time
from typing import Tuple
from redis import Redis
from .config import RATE_LIMIT_SETTINGS
class RateLimiter:
def __init__(
self,
redis_host: str = RATE_LIMIT_SETTINGS.redis_host,
redis_port: str = RATE_LIMIT_SETTINGS.redis_port,
redis_password: str | None = RATE_LIMIT_SETTINGS.redis_password,
requests_per_minute: int = RATE_LIMIT_SETTINGS.requests_per_minute,
):
self.redis = Redis(
host=redis_host,
port=int(redis_port),
password=redis_password,
decode_responses=True,
)
self.window = 60
self.max_requests = requests_per_minute
async def check_rate_limit(self, api_key_id: str) -> Tuple[bool, int, int]:
"""
Check if request is within rate limits.
Args:
api_key_id: The API key identifier to check
Returns:
Tuple of (is_allowed, remaining_requests, reset_time)
"""
now = time.time()
window_start = now - self.window
key = f"ratelimit:{api_key_id}:1min"
pipe = self.redis.pipeline()
pipe.zremrangebyscore(key, 0, window_start)
pipe.zadd(key, {str(now): now})
pipe.zcount(key, window_start, now)
pipe.expire(key, self.window)
_, _, request_count, _ = pipe.execute()
remaining = max(0, self.max_requests - request_count)
reset_time = int(now + self.window)
return request_count <= self.max_requests, remaining, reset_time

View File

@@ -1,32 +0,0 @@
from fastapi import HTTPException, Request
from starlette.middleware.base import RequestResponseEndpoint
from .limiter import RateLimiter
async def rate_limit_middleware(request: Request, call_next: RequestResponseEndpoint):
"""FastAPI middleware for rate limiting API requests."""
limiter = RateLimiter()
if not request.url.path.startswith("/api"):
return await call_next(request)
api_key = request.headers.get("Authorization")
if not api_key:
return await call_next(request)
api_key = api_key.replace("Bearer ", "")
is_allowed, remaining, reset_time = await limiter.check_rate_limit(api_key)
if not is_allowed:
raise HTTPException(
status_code=429, detail="Rate limit exceeded. Please try again later."
)
response = await call_next(request)
response.headers["X-RateLimit-Limit"] = str(limiter.max_requests)
response.headers["X-RateLimit-Remaining"] = str(remaining)
response.headers["X-RateLimit-Reset"] = str(reset_time)
return response

View File

@@ -1,76 +0,0 @@
from typing import Annotated, Any, Literal, Optional, TypedDict
from uuid import uuid4
from pydantic import BaseModel, Field, SecretStr, field_serializer
class _BaseCredentials(BaseModel):
id: str = Field(default_factory=lambda: str(uuid4()))
provider: str
title: Optional[str]
@field_serializer("*")
def dump_secret_strings(value: Any, _info):
if isinstance(value, SecretStr):
return value.get_secret_value()
return value
class OAuth2Credentials(_BaseCredentials):
type: Literal["oauth2"] = "oauth2"
username: Optional[str]
"""Username of the third-party service user that these credentials belong to"""
access_token: SecretStr
access_token_expires_at: Optional[int]
"""Unix timestamp (seconds) indicating when the access token expires (if at all)"""
refresh_token: Optional[SecretStr]
refresh_token_expires_at: Optional[int]
"""Unix timestamp (seconds) indicating when the refresh token expires (if at all)"""
scopes: list[str]
metadata: dict[str, Any] = Field(default_factory=dict)
def bearer(self) -> str:
return f"Bearer {self.access_token.get_secret_value()}"
class APIKeyCredentials(_BaseCredentials):
type: Literal["api_key"] = "api_key"
api_key: SecretStr
expires_at: Optional[int]
"""Unix timestamp (seconds) indicating when the API key expires (if at all)"""
def bearer(self) -> str:
return f"Bearer {self.api_key.get_secret_value()}"
Credentials = Annotated[
OAuth2Credentials | APIKeyCredentials,
Field(discriminator="type"),
]
CredentialsType = Literal["api_key", "oauth2"]
class OAuthState(BaseModel):
token: str
provider: str
expires_at: int
code_verifier: Optional[str] = None
scopes: list[str]
"""Unix timestamp (seconds) indicating when this OAuth state expires"""
class UserMetadata(BaseModel):
integration_credentials: list[Credentials] = Field(default_factory=list)
integration_oauth_states: list[OAuthState] = Field(default_factory=list)
class UserMetadataRaw(TypedDict, total=False):
integration_credentials: list[dict]
integration_oauth_states: list[dict]
class UserIntegrations(BaseModel):
credentials: list[Credentials] = Field(default_factory=list)
oauth_states: list[OAuthState] = Field(default_factory=list)

File diff suppressed because it is too large Load Diff

View File

@@ -1,40 +0,0 @@
[tool.poetry]
name = "autogpt-libs"
version = "0.2.0"
description = "Shared libraries across AutoGPT Platform"
authors = ["AutoGPT team <info@agpt.co>"]
readme = "README.md"
packages = [{ include = "autogpt_libs" }]
[tool.poetry.dependencies]
python = ">=3.10,<4.0"
colorama = "^0.4.6"
cryptography = "^46.0"
expiringdict = "^1.2.2"
fastapi = "^0.128.7"
google-cloud-logging = "^3.13.0"
launchdarkly-server-sdk = "^9.15.0"
pydantic = "^2.12.5"
pydantic-settings = "^2.12.0"
pyjwt = { version = "^2.11.0", extras = ["crypto"] }
redis = "^6.2.0"
supabase = "^2.28.0"
uvicorn = "^0.40.0"
[tool.poetry.group.dev.dependencies]
pyright = "^1.1.408"
pytest = "^8.4.1"
pytest-asyncio = "^1.3.0"
pytest-mock = "^3.15.1"
pytest-cov = "^7.0.0"
ruff = "^0.15.0"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"
[tool.ruff]
line-length = 88
[tool.ruff.lint]
extend-select = ["I"] # sort dependencies

View File

@@ -104,12 +104,6 @@ TWITTER_CLIENT_SECRET=
# Make a new workspace for your OAuth APP -- trust me
# https://linear.app/settings/api/applications/new
# Callback URL: http://localhost:3000/auth/integrations/oauth_callback
LINEAR_API_KEY=
# Linear project and team IDs for the feature request tracker.
# Find these in your Linear workspace URL: linear.app/<workspace>/project/<project-id>
# and in team settings. Used by the chat copilot to file and search feature requests.
LINEAR_FEATURE_REQUEST_PROJECT_ID=
LINEAR_FEATURE_REQUEST_TEAM_ID=
LINEAR_CLIENT_ID=
LINEAR_CLIENT_SECRET=

View File

@@ -1,5 +1,3 @@
# ============================ DEPENDENCY BUILDER ============================ #
FROM debian:13-slim AS builder
# Set environment variables
@@ -41,8 +39,7 @@ ENV PATH=/opt/poetry/bin:$PATH
RUN pip3 install poetry --break-system-packages
# Copy and install dependencies
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
# Copy and install dependencies (autogpt_libs merged into backend - OPEN-2998)
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
WORKDIR /app/autogpt_platform/backend
RUN poetry install --no-ansi --no-root
@@ -53,62 +50,27 @@ COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/parti
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
# =============================== DB MIGRATOR =============================== #
# Lightweight migrate stage - only needs Prisma CLI, not full Python environment
FROM debian:13-slim AS migrate
WORKDIR /app/autogpt_platform/backend
ENV DEBIAN_FRONTEND=noninteractive
# Install only what's needed for prisma migrate: Node.js and minimal Python for prisma-python
RUN apt-get update && apt-get install -y --no-install-recommends \
python3.13 \
python3-pip \
ca-certificates \
&& rm -rf /var/lib/apt/lists/*
# Copy Node.js from builder (needed for Prisma CLI)
COPY --from=builder /usr/bin/node /usr/bin/node
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
COPY --from=builder /usr/bin/npm /usr/bin/npm
# Copy Prisma binaries
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
# Install prisma-client-py directly (much smaller than copying full venv)
RUN pip3 install prisma>=0.15.0 --break-system-packages
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
COPY autogpt_platform/backend/migrations ./migrations
# ============================== BACKEND SERVER ============================== #
FROM debian:13-slim AS server
FROM debian:13-slim AS server_dependencies
WORKDIR /app
ENV DEBIAN_FRONTEND=noninteractive
ENV POETRY_HOME=/opt/poetry \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=true \
POETRY_VIRTUALENVS_IN_PROJECT=true \
DEBIAN_FRONTEND=noninteractive
ENV PATH=/opt/poetry/bin:$PATH
# Install Python, FFmpeg, ImageMagick, and CLI tools for agent use.
# bubblewrap provides OS-level sandbox (whitelist-only FS + no network)
# for the bash_exec MCP tool.
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
RUN apt-get update && apt-get install -y --no-install-recommends \
# Install Python, FFmpeg, and ImageMagick (required for video processing blocks)
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip \
ffmpeg \
imagemagick \
jq \
ripgrep \
tree \
bubblewrap \
&& rm -rf /var/lib/apt/lists/*
# Copy poetry (build-time only, for `poetry install --only-root` to create entry points)
# Copy only necessary files from builder
COPY --from=builder /app /app
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
# Copy Node.js installation for Prisma
@@ -118,25 +80,28 @@ COPY --from=builder /usr/bin/npm /usr/bin/npm
COPY --from=builder /usr/bin/npx /usr/bin/npx
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
WORKDIR /app/autogpt_platform/backend
# Copy only the .venv from builder (not the entire /app directory)
# The .venv includes the generated Prisma client
COPY --from=builder /app/autogpt_platform/backend/.venv ./.venv
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
# Copy dependency files + autogpt_libs (path dependency)
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml ./
# autogpt_libs merged into backend (OPEN-2998)
RUN mkdir -p /app/autogpt_platform/backend
# Copy backend code + docs (for Copilot docs search)
COPY autogpt_platform/backend ./
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
WORKDIR /app/autogpt_platform/backend
FROM server_dependencies AS migrate
# Migration stage only needs schema and migrations - much lighter than full backend
COPY autogpt_platform/backend/schema.prisma /app/autogpt_platform/backend/
COPY autogpt_platform/backend/backend/data/partial_types.py /app/autogpt_platform/backend/backend/data/partial_types.py
COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migrations
FROM server_dependencies AS server
COPY autogpt_platform/backend /app/autogpt_platform/backend
COPY docs /app/docs
# Install the project package to create entry point scripts in .venv/bin/
# (e.g., rest, executor, ws, db, scheduler, notification - see [tool.poetry.scripts])
RUN POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true \
poetry install --no-ansi --only-root
RUN poetry install --no-ansi --only-root
ENV PORT=8000
CMD ["rest"]
CMD ["poetry", "run", "rest"]

View File

@@ -132,7 +132,7 @@ def test_endpoint_success(snapshot: Snapshot):
### Testing with Authentication
For the main API routes that use JWT authentication, auth is provided by the `autogpt_libs.auth` module. If the test actually uses the `user_id`, the recommended approach for testing is to mock the `get_jwt_payload` function, which underpins all higher-level auth functions used in the API (`requires_user`, `requires_admin_user`, `get_user_id`).
For the main API routes that use JWT authentication, auth is provided by the `backend.api.auth` module. If the test actually uses the `user_id`, the recommended approach for testing is to mock the `get_jwt_payload` function, which underpins all higher-level auth functions used in the API (`requires_user`, `requires_admin_user`, `get_user_id`).
If the test doesn't need the `user_id` specifically, mocking is not necessary as during tests auth is disabled anyway (see `conftest.py`).
@@ -158,7 +158,7 @@ client = fastapi.testclient.TestClient(app)
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_user):
"""Setup auth overrides for all tests in this module"""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from backend.api.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_user['get_jwt_payload']
yield
@@ -171,7 +171,7 @@ For admin-only endpoints, use `mock_jwt_admin` instead:
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_admin):
"""Setup auth overrides for admin tests"""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from backend.api.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_admin['get_jwt_payload']
yield

View File

@@ -1,6 +1,6 @@
import hashlib
from autogpt_libs.api_key.keysmith import APIKeySmith
from backend.api.auth.api_key.keysmith import APIKeySmith
def test_generate_api_key():

View File

@@ -9,7 +9,7 @@ import os
import pytest
from pytest_mock import MockerFixture
from autogpt_libs.auth.config import AuthConfigError, Settings
from backend.api.auth.config import AuthConfigError, Settings
def test_environment_variable_precedence(mocker: MockerFixture):
@@ -228,7 +228,7 @@ def test_no_crypto_warning(mocker: MockerFixture, caplog: pytest.LogCaptureFixtu
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": secret}, clear=True)
# Mock has_crypto to return False
mocker.patch("autogpt_libs.auth.config.has_crypto", False)
mocker.patch("backend.api.auth.config.has_crypto", False)
with caplog.at_level(logging.WARNING):
Settings()

View File

@@ -43,7 +43,7 @@ def get_optional_user_id(
try:
# Parse JWT token to get user ID
from autogpt_libs.auth.jwt_utils import parse_jwt_token
from backend.api.auth.jwt_utils import parse_jwt_token
payload = parse_jwt_token(credentials.credentials)
return payload.get("sub")

View File

@@ -11,12 +11,12 @@ from fastapi import FastAPI, HTTPException, Request, Security
from fastapi.testclient import TestClient
from pytest_mock import MockerFixture
from autogpt_libs.auth.dependencies import (
from backend.api.auth.dependencies import (
get_user_id,
requires_admin_user,
requires_user,
)
from autogpt_libs.auth.models import User
from backend.api.auth.models import User
class TestAuthDependencies:
@@ -53,7 +53,7 @@ class TestAuthDependencies:
# Mock get_jwt_payload to return our test payload
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
"backend.api.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = await requires_user(jwt_payload)
assert isinstance(user, User)
@@ -70,7 +70,7 @@ class TestAuthDependencies:
}
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
"backend.api.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = await requires_user(jwt_payload)
assert user.user_id == "admin-456"
@@ -105,7 +105,7 @@ class TestAuthDependencies:
}
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
"backend.api.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = await requires_admin_user(jwt_payload)
assert user.user_id == "admin-789"
@@ -137,7 +137,7 @@ class TestAuthDependencies:
jwt_payload = {"sub": "user-id-xyz", "role": "user"}
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
"backend.api.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user_id = await get_user_id(request, jwt_payload)
assert user_id == "user-id-xyz"
@@ -344,7 +344,7 @@ class TestAuthDependenciesEdgeCases:
):
"""Test that errors propagate correctly through dependencies."""
# Import verify_user to test it directly since dependencies use FastAPI Security
from autogpt_libs.auth.jwt_utils import verify_user
from backend.api.auth.jwt_utils import verify_user
with pytest.raises(HTTPException) as exc_info:
verify_user(payload, admin_only=admin_only)
@@ -354,7 +354,7 @@ class TestAuthDependenciesEdgeCases:
async def test_dependency_valid_user(self):
"""Test valid user case for dependency."""
# Import verify_user to test it directly since dependencies use FastAPI Security
from autogpt_libs.auth.jwt_utils import verify_user
from backend.api.auth.jwt_utils import verify_user
# Valid case
user = verify_user({"sub": "user", "role": "user"}, admin_only=False)
@@ -376,16 +376,16 @@ class TestAdminImpersonation:
}
# Mock verify_user to return admin user data
mock_verify_user = mocker.patch("autogpt_libs.auth.dependencies.verify_user")
mock_verify_user = mocker.patch("backend.api.auth.dependencies.verify_user")
mock_verify_user.return_value = Mock(
user_id="admin-456", email="admin@example.com", role="admin"
)
# Mock logger to verify audit logging
mock_logger = mocker.patch("autogpt_libs.auth.dependencies.logger")
mock_logger = mocker.patch("backend.api.auth.dependencies.logger")
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
"backend.api.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user_id = await get_user_id(request, jwt_payload)
@@ -412,13 +412,13 @@ class TestAdminImpersonation:
}
# Mock verify_user to return regular user data
mock_verify_user = mocker.patch("autogpt_libs.auth.dependencies.verify_user")
mock_verify_user = mocker.patch("backend.api.auth.dependencies.verify_user")
mock_verify_user.return_value = Mock(
user_id="regular-user", email="user@example.com", role="user"
)
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
"backend.api.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
with pytest.raises(HTTPException) as exc_info:
@@ -439,7 +439,7 @@ class TestAdminImpersonation:
}
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
"backend.api.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user_id = await get_user_id(request, jwt_payload)
@@ -459,7 +459,7 @@ class TestAdminImpersonation:
}
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
"backend.api.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user_id = await get_user_id(request, jwt_payload)
@@ -479,16 +479,16 @@ class TestAdminImpersonation:
}
# Mock verify_user to return admin user data
mock_verify_user = mocker.patch("autogpt_libs.auth.dependencies.verify_user")
mock_verify_user = mocker.patch("backend.api.auth.dependencies.verify_user")
mock_verify_user.return_value = Mock(
user_id="admin-999", email="superadmin@company.com", role="admin"
)
# Mock logger to capture audit trail
mock_logger = mocker.patch("autogpt_libs.auth.dependencies.logger")
mock_logger = mocker.patch("backend.api.auth.dependencies.logger")
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
"backend.api.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user_id = await get_user_id(request, jwt_payload)
@@ -515,7 +515,7 @@ class TestAdminImpersonation:
}
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
"backend.api.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user_id = await get_user_id(request, jwt_payload)
@@ -535,16 +535,16 @@ class TestAdminImpersonation:
}
# Mock verify_user to return admin user data
mock_verify_user = mocker.patch("autogpt_libs.auth.dependencies.verify_user")
mock_verify_user = mocker.patch("backend.api.auth.dependencies.verify_user")
mock_verify_user.return_value = Mock(
user_id="admin-456", email="admin@example.com", role="admin"
)
# Mock logger
mock_logger = mocker.patch("autogpt_libs.auth.dependencies.logger")
mock_logger = mocker.patch("backend.api.auth.dependencies.logger")
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
"backend.api.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user_id = await get_user_id(request, jwt_payload)

View File

@@ -3,13 +3,11 @@ Comprehensive tests for auth helpers module to achieve 100% coverage.
Tests OpenAPI schema generation and authentication response handling.
"""
from unittest import mock
from fastapi import FastAPI
from fastapi.openapi.utils import get_openapi
from autogpt_libs.auth.helpers import add_auth_responses_to_openapi
from autogpt_libs.auth.jwt_utils import bearer_jwt_auth
from backend.api.auth.helpers import add_auth_responses_to_openapi
from backend.api.auth.jwt_utils import bearer_jwt_auth
def test_add_auth_responses_to_openapi_basic():
@@ -19,7 +17,7 @@ def test_add_auth_responses_to_openapi_basic():
# Add some test endpoints with authentication
from fastapi import Depends
from autogpt_libs.auth.dependencies import requires_user
from backend.api.auth.dependencies import requires_user
@app.get("/protected", dependencies=[Depends(requires_user)])
def protected_endpoint():
@@ -64,7 +62,7 @@ def test_add_auth_responses_to_openapi_with_security():
# Mock endpoint with security
from fastapi import Security
from autogpt_libs.auth.dependencies import get_user_id
from backend.api.auth.dependencies import get_user_id
@app.get("/secured")
def secured_endpoint(user_id: str = Security(get_user_id)):
@@ -130,7 +128,7 @@ def test_add_auth_responses_to_openapi_existing_responses():
from fastapi import Security
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from backend.api.auth.jwt_utils import get_jwt_payload
@app.get(
"/with-responses",
@@ -197,8 +195,8 @@ def test_add_auth_responses_to_openapi_multiple_security_schemes():
from fastapi import Security
from autogpt_libs.auth.dependencies import requires_admin_user, requires_user
from autogpt_libs.auth.models import User
from backend.api.auth.dependencies import requires_admin_user, requires_user
from backend.api.auth.models import User
@app.get("/multi-auth")
def multi_auth(
@@ -227,26 +225,29 @@ def test_add_auth_responses_to_openapi_empty_components():
"""Test when OpenAPI schema has no components section initially."""
app = FastAPI()
# Mock get_openapi to return schema without components
original_get_openapi = get_openapi
def mock_get_openapi(*args, **kwargs):
schema = original_get_openapi(*args, **kwargs)
# Remove components if it exists
def mock_openapi():
schema = get_openapi(
title=app.title,
version=app.version,
routes=app.routes,
)
# Remove components if it exists to test component creation
if "components" in schema:
del schema["components"]
return schema
with mock.patch("autogpt_libs.auth.helpers.get_openapi", mock_get_openapi):
# Apply customization
add_auth_responses_to_openapi(app)
# Replace app's openapi method
app.openapi = mock_openapi
schema = app.openapi()
# Apply customization (this wraps our mock)
add_auth_responses_to_openapi(app)
# Components should be created
assert "components" in schema
assert "responses" in schema["components"]
assert "HTTP401NotAuthenticatedError" in schema["components"]["responses"]
schema = app.openapi()
# Components should be created
assert "components" in schema
assert "responses" in schema["components"]
assert "HTTP401NotAuthenticatedError" in schema["components"]["responses"]
def test_add_auth_responses_to_openapi_all_http_methods():
@@ -255,7 +256,7 @@ def test_add_auth_responses_to_openapi_all_http_methods():
from fastapi import Security
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from backend.api.auth.jwt_utils import get_jwt_payload
@app.get("/resource")
def get_resource(jwt: dict = Security(get_jwt_payload)):
@@ -333,53 +334,59 @@ def test_endpoint_without_responses_section():
app = FastAPI()
from fastapi import Security
from fastapi.openapi.utils import get_openapi as original_get_openapi
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from backend.api.auth.jwt_utils import get_jwt_payload
# Create endpoint
@app.get("/no-responses")
def endpoint_without_responses(jwt: dict = Security(get_jwt_payload)):
return {"data": "test"}
# Mock get_openapi to remove responses from the endpoint
def mock_get_openapi(*args, **kwargs):
schema = original_get_openapi(*args, **kwargs)
# Remove responses from our endpoint to trigger line 40
# Create a mock openapi method that removes responses from the endpoint
def mock_openapi():
schema = get_openapi(
title=app.title,
version=app.version,
routes=app.routes,
)
# Remove responses from our endpoint to test response creation
if "/no-responses" in schema.get("paths", {}):
if "get" in schema["paths"]["/no-responses"]:
# Delete responses to force the code to create it
if "responses" in schema["paths"]["/no-responses"]["get"]:
del schema["paths"]["/no-responses"]["get"]["responses"]
return schema
with mock.patch("autogpt_libs.auth.helpers.get_openapi", mock_get_openapi):
# Apply customization
add_auth_responses_to_openapi(app)
# Replace app's openapi method
app.openapi = mock_openapi
# Get schema and verify 401 was added
schema = app.openapi()
# Apply customization (this wraps our mock)
add_auth_responses_to_openapi(app)
# The endpoint should now have 401 response
if "/no-responses" in schema["paths"]:
if "get" in schema["paths"]["/no-responses"]:
responses = schema["paths"]["/no-responses"]["get"].get("responses", {})
assert "401" in responses
assert (
responses["401"]["$ref"]
== "#/components/responses/HTTP401NotAuthenticatedError"
)
# Get schema and verify 401 was added
schema = app.openapi()
# The endpoint should now have 401 response
if "/no-responses" in schema["paths"]:
if "get" in schema["paths"]["/no-responses"]:
responses = schema["paths"]["/no-responses"]["get"].get("responses", {})
assert "401" in responses
assert (
responses["401"]["$ref"]
== "#/components/responses/HTTP401NotAuthenticatedError"
)
def test_components_with_existing_responses():
"""Test when components already has a responses section."""
app = FastAPI()
# Mock get_openapi to return schema with existing components/responses
from fastapi.openapi.utils import get_openapi as original_get_openapi
def mock_get_openapi(*args, **kwargs):
schema = original_get_openapi(*args, **kwargs)
# Create a mock openapi method that adds existing components/responses
def mock_openapi():
schema = get_openapi(
title=app.title,
version=app.version,
routes=app.routes,
)
# Add existing components/responses
if "components" not in schema:
schema["components"] = {}
@@ -388,21 +395,21 @@ def test_components_with_existing_responses():
}
return schema
with mock.patch("autogpt_libs.auth.helpers.get_openapi", mock_get_openapi):
# Apply customization
add_auth_responses_to_openapi(app)
# Replace app's openapi method
app.openapi = mock_openapi
schema = app.openapi()
# Apply customization (this wraps our mock)
add_auth_responses_to_openapi(app)
# Both responses should exist
assert "ExistingResponse" in schema["components"]["responses"]
assert "HTTP401NotAuthenticatedError" in schema["components"]["responses"]
schema = app.openapi()
# Verify our 401 response structure
error_response = schema["components"]["responses"][
"HTTP401NotAuthenticatedError"
]
assert error_response["description"] == "Authentication required"
# Both responses should exist
assert "ExistingResponse" in schema["components"]["responses"]
assert "HTTP401NotAuthenticatedError" in schema["components"]["responses"]
# Verify our 401 response structure
error_response = schema["components"]["responses"]["HTTP401NotAuthenticatedError"]
assert error_response["description"] == "Authentication required"
def test_openapi_schema_persistence():
@@ -411,7 +418,7 @@ def test_openapi_schema_persistence():
from fastapi import Security
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from backend.api.auth.jwt_utils import get_jwt_payload
@app.get("/test")
def test_endpoint(jwt: dict = Security(get_jwt_payload)):

View File

@@ -12,9 +12,9 @@ from fastapi import HTTPException
from fastapi.security import HTTPAuthorizationCredentials
from pytest_mock import MockerFixture
from autogpt_libs.auth import config, jwt_utils
from autogpt_libs.auth.config import Settings
from autogpt_libs.auth.models import User
from backend.api.auth import config, jwt_utils
from backend.api.auth.config import Settings
from backend.api.auth.models import User
MOCK_JWT_SECRET = "test-secret-key-with-at-least-32-characters"
TEST_USER_PAYLOAD = {

View File

@@ -10,7 +10,7 @@ from typing_extensions import TypedDict
import backend.api.features.store.cache as store_cache
import backend.api.features.store.model as store_model
import backend.blocks
import backend.data.block
from backend.api.external.middleware import require_permission
from backend.data import execution as execution_db
from backend.data import graph as graph_db
@@ -67,7 +67,7 @@ async def get_user_info(
dependencies=[Security(require_permission(APIKeyPermission.READ_BLOCK))],
)
async def get_graph_blocks() -> Sequence[dict[Any, Any]]:
blocks = [block() for block in backend.blocks.get_blocks().values()]
blocks = [block() for block in backend.data.block.get_blocks().values()]
return [b.to_dict() for b in blocks if not b.disabled]
@@ -83,7 +83,7 @@ async def execute_graph_block(
require_permission(APIKeyPermission.EXECUTE_BLOCK)
),
) -> CompletedBlockOutput:
obj = backend.blocks.get_block(block_id)
obj = backend.data.block.get_block(block_id)
if not obj:
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
if obj.disabled:

View File

@@ -1,10 +1,10 @@
import logging
import typing
from autogpt_libs.auth import get_user_id, requires_admin_user
from fastapi import APIRouter, Body, Security
from prisma.enums import CreditTransactionType
from backend.api.auth import get_user_id, requires_admin_user
from backend.data.credit import admin_get_user_history, get_user_credit_model
from backend.util.json import SafeJson

View File

@@ -6,9 +6,9 @@ import fastapi.testclient
import prisma.enums
import pytest
import pytest_mock
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from pytest_snapshot.plugin import Snapshot
from backend.api.auth.jwt_utils import get_jwt_payload
from backend.data.model import UserTransaction
from backend.util.json import SafeJson
from backend.util.models import Pagination

View File

@@ -3,10 +3,10 @@ import logging
from datetime import datetime
from typing import Optional
from autogpt_libs.auth import get_user_id, requires_admin_user
from fastapi import APIRouter, HTTPException, Security
from pydantic import BaseModel, Field
from backend.api.auth import get_user_id, requires_admin_user
from backend.blocks.llm import LlmModel
from backend.data.analytics import (
AccuracyTrendsResponse,

View File

@@ -2,11 +2,11 @@ import logging
import tempfile
import typing
import autogpt_libs.auth
import fastapi
import fastapi.responses
import prisma.enums
import backend.api.auth
import backend.api.features.store.cache as store_cache
import backend.api.features.store.db as store_db
import backend.api.features.store.model as store_model
@@ -17,7 +17,7 @@ logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
prefix="/admin",
tags=["store", "admin"],
dependencies=[fastapi.Security(autogpt_libs.auth.requires_admin_user)],
dependencies=[fastapi.Security(backend.api.auth.requires_admin_user)],
)
@@ -73,7 +73,7 @@ async def get_admin_listings_with_versions(
async def review_submission(
store_listing_version_id: str,
request: store_model.ReviewSubmissionRequest,
user_id: str = fastapi.Security(autogpt_libs.auth.get_user_id),
user_id: str = fastapi.Security(backend.api.auth.get_user_id),
):
"""
Review a store listing submission.
@@ -117,7 +117,7 @@ async def review_submission(
tags=["store", "admin"],
)
async def admin_download_agent_file(
user_id: str = fastapi.Security(autogpt_libs.auth.get_user_id),
user_id: str = fastapi.Security(backend.api.auth.get_user_id),
store_listing_version_id: str = fastapi.Path(
..., description="The ID of the agent to download"
),

View File

@@ -5,10 +5,10 @@ from typing import Annotated
import fastapi
import pydantic
from autogpt_libs.auth import get_user_id
from autogpt_libs.auth.dependencies import requires_user
import backend.data.analytics
from backend.api.auth import get_user_id
from backend.api.auth.dependencies import requires_user
router = fastapi.APIRouter(dependencies=[fastapi.Security(requires_user)])
logger = logging.getLogger(__name__)

View File

@@ -20,7 +20,7 @@ client = fastapi.testclient.TestClient(app)
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_user):
"""Setup auth overrides for all tests in this module."""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from backend.api.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_user["get_jwt_payload"]
yield

View File

@@ -10,15 +10,10 @@ import backend.api.features.library.db as library_db
import backend.api.features.library.model as library_model
import backend.api.features.store.db as store_db
import backend.api.features.store.model as store_model
import backend.data.block
from backend.blocks import load_all_blocks
from backend.blocks._base import (
AnyBlockSchema,
BlockCategory,
BlockInfo,
BlockSchema,
BlockType,
)
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
from backend.data.db import query_raw_with_schema
from backend.integrations.providers import ProviderName
from backend.util.cache import cached
@@ -27,7 +22,7 @@ from backend.util.models import Pagination
from .model import (
BlockCategoryResponse,
BlockResponse,
BlockTypeFilter,
BlockType,
CountResponse,
FilterType,
Provider,
@@ -93,7 +88,7 @@ def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse
def get_blocks(
*,
category: str | None = None,
type: BlockTypeFilter | None = None,
type: BlockType | None = None,
provider: ProviderName | None = None,
page: int = 1,
page_size: int = 50,
@@ -674,9 +669,9 @@ async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
if block.disabled or block.block_type in (
BlockType.INPUT,
BlockType.OUTPUT,
BlockType.AGENT,
backend.data.block.BlockType.INPUT,
backend.data.block.BlockType.OUTPUT,
backend.data.block.BlockType.AGENT,
):
continue
# Find the execution count for this block

View File

@@ -4,7 +4,7 @@ from pydantic import BaseModel
import backend.api.features.library.model as library_model
import backend.api.features.store.model as store_model
from backend.blocks._base import BlockInfo
from backend.data.block import BlockInfo
from backend.integrations.providers import ProviderName
from backend.util.models import Pagination
@@ -15,7 +15,7 @@ FilterType = Literal[
"my_agents",
]
BlockTypeFilter = Literal["all", "input", "action", "output"]
BlockType = Literal["all", "input", "action", "output"]
class SearchEntry(BaseModel):

View File

@@ -2,8 +2,8 @@ import logging
from typing import Annotated, Sequence
import fastapi
from autogpt_libs.auth.dependencies import get_user_id, requires_user
from backend.api.auth.dependencies import get_user_id, requires_user
from backend.integrations.providers import ProviderName
from backend.util.models import Pagination
@@ -88,7 +88,7 @@ async def get_block_categories(
)
async def get_blocks(
category: Annotated[str | None, fastapi.Query()] = None,
type: Annotated[builder_model.BlockTypeFilter | None, fastapi.Query()] = None,
type: Annotated[builder_model.BlockType | None, fastapi.Query()] = None,
provider: Annotated[ProviderName | None, fastapi.Query()] = None,
page: Annotated[int, fastapi.Query()] = 1,
page_size: Annotated[int, fastapi.Query()] = 50,

View File

@@ -27,11 +27,12 @@ class ChatConfig(BaseSettings):
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
# Streaming Configuration
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
max_retries: int = Field(
default=3,
description="Max retries for fallback path (SDK handles retries internally)",
max_context_messages: int = Field(
default=50, ge=1, le=200, description="Maximum context messages"
)
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
max_retries: int = Field(default=3, description="Maximum number of retries")
max_agent_runs: int = Field(default=30, description="Maximum number of agent runs")
max_agent_schedules: int = Field(
default=30, description="Maximum number of agent schedules"
@@ -92,31 +93,6 @@ class ChatConfig(BaseSettings):
description="Name of the prompt in Langfuse to fetch",
)
# Claude Agent SDK Configuration
use_claude_agent_sdk: bool = Field(
default=True,
description="Use Claude Agent SDK for chat completions",
)
claude_agent_model: str | None = Field(
default=None,
description="Model for the Claude Agent SDK path. If None, derives from "
"the `model` field by stripping the OpenRouter provider prefix.",
)
claude_agent_max_buffer_size: int = Field(
default=10 * 1024 * 1024, # 10MB (default SDK is 1MB)
description="Max buffer size in bytes for Claude Agent SDK JSON message parsing. "
"Increase if tool outputs exceed the limit.",
)
claude_agent_max_subtasks: int = Field(
default=10,
description="Max number of sub-agent Tasks the SDK can spawn per session.",
)
claude_agent_use_resume: bool = Field(
default=True,
description="Use --resume for multi-turn conversations instead of "
"history compression. Falls back to compression when unavailable.",
)
# Extended thinking configuration for Claude models
thinking_enabled: bool = Field(
default=True,
@@ -162,17 +138,6 @@ class ChatConfig(BaseSettings):
v = os.getenv("CHAT_INTERNAL_API_KEY")
return v
@field_validator("use_claude_agent_sdk", mode="before")
@classmethod
def get_use_claude_agent_sdk(cls, v):
"""Get use_claude_agent_sdk from environment if not provided."""
# Check environment variable - default to True if not set
env_val = os.getenv("CHAT_USE_CLAUDE_AGENT_SDK", "").lower()
if env_val:
return env_val in ("true", "1", "yes", "on")
# Default to True (SDK enabled by default)
return True if v is None else v
# Prompt paths for different contexts
PROMPT_PATHS: dict[str, str] = {
"default": "prompts/chat_system.md",

View File

@@ -2,7 +2,7 @@ import asyncio
import logging
import uuid
from datetime import UTC, datetime
from typing import Any, cast
from typing import Any
from weakref import WeakValueDictionary
from openai.types.chat import (
@@ -104,26 +104,6 @@ class ChatSession(BaseModel):
successful_agent_runs: dict[str, int] = {}
successful_agent_schedules: dict[str, int] = {}
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
"""Attach a tool_call to the current turn's assistant message.
Searches backwards for the most recent assistant message (stopping at
any user message boundary). If found, appends the tool_call to it.
Otherwise creates a new assistant message with the tool_call.
"""
for msg in reversed(self.messages):
if msg.role == "user":
break
if msg.role == "assistant":
if not msg.tool_calls:
msg.tool_calls = []
msg.tool_calls.append(tool_call)
return
self.messages.append(
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
)
@staticmethod
def new(user_id: str) -> "ChatSession":
return ChatSession(
@@ -192,47 +172,6 @@ class ChatSession(BaseModel):
successful_agent_schedules=successful_agent_schedules,
)
@staticmethod
def _merge_consecutive_assistant_messages(
messages: list[ChatCompletionMessageParam],
) -> list[ChatCompletionMessageParam]:
"""Merge consecutive assistant messages into single messages.
Long-running tool flows can create split assistant messages: one with
text content and another with tool_calls. Anthropic's API requires
tool_result blocks to reference a tool_use in the immediately preceding
assistant message, so these splits cause 400 errors via OpenRouter.
"""
if len(messages) < 2:
return messages
result: list[ChatCompletionMessageParam] = [messages[0]]
for msg in messages[1:]:
prev = result[-1]
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
result.append(msg)
continue
prev = cast(ChatCompletionAssistantMessageParam, prev)
curr = cast(ChatCompletionAssistantMessageParam, msg)
curr_content = curr.get("content") or ""
if curr_content:
prev_content = prev.get("content") or ""
prev["content"] = (
f"{prev_content}\n{curr_content}" if prev_content else curr_content
)
curr_tool_calls = curr.get("tool_calls")
if curr_tool_calls:
prev_tool_calls = prev.get("tool_calls")
prev["tool_calls"] = (
list(prev_tool_calls) + list(curr_tool_calls)
if prev_tool_calls
else list(curr_tool_calls)
)
return result
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
messages = []
for message in self.messages:
@@ -319,7 +258,7 @@ class ChatSession(BaseModel):
name=message.name or "",
)
)
return self._merge_consecutive_assistant_messages(messages)
return messages
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
@@ -334,8 +273,9 @@ async def _get_session_from_cache(session_id: str) -> ChatSession | None:
try:
session = ChatSession.model_validate_json(raw_session)
logger.info(
f"[CACHE] Loaded session {session_id}: {len(session.messages)} messages, "
f"last_roles={[m.role for m in session.messages[-3:]]}" # Last 3 roles
f"Loading session {session_id} from cache: "
f"message_count={len(session.messages)}, "
f"roles={[m.role for m in session.messages]}"
)
return session
except Exception as e:
@@ -377,9 +317,11 @@ async def _get_session_from_db(session_id: str) -> ChatSession | None:
return None
messages = prisma_session.Messages
logger.debug(
f"[DB] Loaded session {session_id}: {len(messages) if messages else 0} messages, "
f"roles={[m.role for m in messages[-3:]] if messages else []}" # Last 3 roles
logger.info(
f"Loading session {session_id} from DB: "
f"has_messages={messages is not None}, "
f"message_count={len(messages) if messages else 0}, "
f"roles={[m.role for m in messages] if messages else []}"
)
return ChatSession.from_db(prisma_session, messages)
@@ -430,9 +372,10 @@ async def _save_session_to_db(
"function_call": msg.function_call,
}
)
logger.debug(
f"[DB] Saving {len(new_messages)} messages to session {session.session_id}, "
f"roles={[m['role'] for m in messages_data]}"
logger.info(
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
f"roles={[m['role'] for m in messages_data]}, "
f"start_sequence={existing_message_count}"
)
await chat_db.add_chat_messages_batch(
session_id=session.session_id,
@@ -472,7 +415,7 @@ async def get_chat_session(
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
# Fall back to database
logger.debug(f"Session {session_id} not in cache, checking database")
logger.info(f"Session {session_id} not in cache, checking database")
session = await _get_session_from_db(session_id)
if session is None:
@@ -489,6 +432,7 @@ async def get_chat_session(
# Cache the session from DB
try:
await _cache_session(session)
logger.info(f"Cached session {session_id} from database")
except Exception as e:
logger.warning(f"Failed to cache session {session_id}: {e}")
@@ -553,40 +497,6 @@ async def upsert_chat_session(
return session
async def append_and_save_message(session_id: str, message: ChatMessage) -> ChatSession:
"""Atomically append a message to a session and persist it.
Acquires the session lock, re-fetches the latest session state,
appends the message, and saves — preventing message loss when
concurrent requests modify the same session.
"""
lock = await _get_session_lock(session_id)
async with lock:
session = await get_chat_session(session_id)
if session is None:
raise ValueError(f"Session {session_id} not found")
session.messages.append(message)
existing_message_count = await chat_db.get_chat_session_message_count(
session_id
)
try:
await _save_session_to_db(session, existing_message_count)
except Exception as e:
raise DatabaseError(
f"Failed to persist message to session {session_id}"
) from e
try:
await _cache_session(session)
except Exception as e:
logger.warning(f"Cache write failed for session {session_id}: {e}")
return session
async def create_chat_session(user_id: str) -> ChatSession:
"""Create a new chat session and persist it.
@@ -693,19 +603,13 @@ async def update_session_title(session_id: str, title: str) -> bool:
logger.warning(f"Session {session_id} not found for title update")
return False
# Update title in cache if it exists (instead of invalidating).
# This prevents race conditions where cache invalidation causes
# the frontend to see stale DB data while streaming is still in progress.
# Invalidate cache so next fetch gets updated title
try:
cached = await _get_session_from_cache(session_id)
if cached:
cached.title = title
await _cache_session(cached)
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
# Not critical - title will be correct on next full cache refresh
logger.warning(
f"Failed to update title in cache for session {session_id}: {e}"
)
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
return True
except Exception as e:

View File

@@ -1,16 +1,4 @@
from typing import cast
import pytest
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
ChatCompletionMessageParam,
ChatCompletionToolMessageParam,
ChatCompletionUserMessageParam,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
ChatCompletionMessageToolCallParam,
Function,
)
from .model import (
ChatMessage,
@@ -129,205 +117,3 @@ async def test_chatsession_db_storage(setup_test_user, test_user_id):
loaded.tool_calls is not None
), f"Tool calls missing for {orig.role} message"
assert len(orig.tool_calls) == len(loaded.tool_calls)
# --------------------------------------------------------------------------- #
# _merge_consecutive_assistant_messages #
# --------------------------------------------------------------------------- #
_tc = ChatCompletionMessageToolCallParam(
id="tc1", type="function", function=Function(name="do_stuff", arguments="{}")
)
_tc2 = ChatCompletionMessageToolCallParam(
id="tc2", type="function", function=Function(name="other", arguments="{}")
)
def test_merge_noop_when_no_consecutive_assistants():
"""Messages without consecutive assistants are returned unchanged."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="hi"),
ChatCompletionAssistantMessageParam(role="assistant", content="hello"),
ChatCompletionUserMessageParam(role="user", content="bye"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert [m["role"] for m in merged] == ["user", "assistant", "user"]
def test_merge_splits_text_and_tool_calls():
"""The exact bug scenario: text-only assistant followed by tool_calls-only assistant."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="build agent"),
ChatCompletionAssistantMessageParam(
role="assistant", content="Let me build that"
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
ChatCompletionToolMessageParam(role="tool", content="ok", tool_call_id="tc1"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert merged[0]["role"] == "user"
assert merged[2]["role"] == "tool"
a = cast(ChatCompletionAssistantMessageParam, merged[1])
assert a["role"] == "assistant"
assert a.get("content") == "Let me build that"
assert a.get("tool_calls") == [_tc]
def test_merge_combines_tool_calls_from_both():
"""Both consecutive assistants have tool_calls — they get merged."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(
role="assistant", content="text", tool_calls=[_tc]
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc2]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("tool_calls") == [_tc, _tc2]
assert a.get("content") == "text"
def test_merge_three_consecutive_assistants():
"""Three consecutive assistants collapse into one."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(role="assistant", content="a"),
ChatCompletionAssistantMessageParam(role="assistant", content="b"),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("content") == "a\nb"
assert a.get("tool_calls") == [_tc]
def test_merge_empty_and_single_message():
"""Edge cases: empty list and single message."""
assert ChatSession._merge_consecutive_assistant_messages([]) == []
single: list[ChatCompletionMessageParam] = [
ChatCompletionUserMessageParam(role="user", content="hi")
]
assert ChatSession._merge_consecutive_assistant_messages(single) == single
# --------------------------------------------------------------------------- #
# add_tool_call_to_current_turn #
# --------------------------------------------------------------------------- #
_raw_tc = {
"id": "tc1",
"type": "function",
"function": {"name": "f", "arguments": "{}"},
}
_raw_tc2 = {
"id": "tc2",
"type": "function",
"function": {"name": "g", "arguments": "{}"},
}
def test_add_tool_call_appends_to_existing_assistant():
"""When the last assistant is from the current turn, tool_call is added to it."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="working on it"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2 # no new message created
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_creates_assistant_when_none_exists():
"""When there's no current-turn assistant, a new one is created."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2
assert session.messages[1].role == "assistant"
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_does_not_cross_user_boundary():
"""A user message acts as a boundary — previous assistant is not modified."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="assistant", content="old turn"),
ChatMessage(role="user", content="new message"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 3 # new assistant was created
assert session.messages[0].tool_calls is None # old assistant untouched
assert session.messages[2].role == "assistant"
assert session.messages[2].tool_calls == [_raw_tc]
def test_add_tool_call_multiple_times():
"""Multiple long-running tool calls accumulate on the same assistant."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="doing stuff"),
]
session.add_tool_call_to_current_turn(_raw_tc)
# Simulate a pending tool result in between (like _yield_tool_call does)
session.messages.append(
ChatMessage(role="tool", content="pending", tool_call_id="tc1")
)
session.add_tool_call_to_current_turn(_raw_tc2)
assert len(session.messages) == 3 # user, assistant, tool — no extra assistant
assert session.messages[1].tool_calls == [_raw_tc, _raw_tc2]
def test_to_openai_messages_merges_split_assistants():
"""End-to-end: session with split assistants produces valid OpenAI messages."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="build agent"),
ChatMessage(role="assistant", content="Let me build that"),
ChatMessage(
role="assistant",
content="",
tool_calls=[
{
"id": "tc1",
"type": "function",
"function": {"name": "create_agent", "arguments": "{}"},
}
],
),
ChatMessage(role="tool", content="done", tool_call_id="tc1"),
ChatMessage(role="assistant", content="Saved!"),
ChatMessage(role="user", content="show me an example run"),
]
openai_msgs = session.to_openai_messages()
# The two consecutive assistants at index 1,2 should be merged
roles = [m["role"] for m in openai_msgs]
assert roles == ["user", "assistant", "tool", "assistant", "user"]
# The merged assistant should have both content and tool_calls
merged = cast(ChatCompletionAssistantMessageParam, openai_msgs[1])
assert merged.get("content") == "Let me build that"
tc_list = merged.get("tool_calls")
assert tc_list is not None and len(list(tc_list)) == 1
assert list(tc_list)[0]["id"] == "tc1"

View File

@@ -1,41 +1,29 @@
"""Chat API routes for chat session management and streaming via SSE."""
import asyncio
import logging
import uuid as uuid_module
from collections.abc import AsyncGenerator
from typing import Annotated
from autogpt_libs import auth
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Response, Security
from fastapi.responses import StreamingResponse
from pydantic import BaseModel
from backend.api import auth
from backend.util.exceptions import NotFoundError
from backend.util.feature_flag import Flag, is_feature_enabled
from . import service as chat_service
from . import stream_registry
from .completion_handler import process_operation_failure, process_operation_success
from .config import ChatConfig
from .model import (
ChatMessage,
ChatSession,
append_and_save_message,
create_chat_session,
delete_chat_session,
get_chat_session,
get_user_sessions,
)
from .response_model import StreamError, StreamFinish, StreamHeartbeat, StreamStart
from .sdk import service as sdk_service
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
from .response_model import StreamFinish, StreamHeartbeat
from .tools.models import (
AgentDetailsResponse,
AgentOutputResponse,
AgentPreviewResponse,
AgentSavedResponse,
AgentsFoundResponse,
BlockDetailsResponse,
BlockListResponse,
BlockOutputResponse,
ClarificationNeededResponse,
@@ -52,7 +40,6 @@ from .tools.models import (
SetupRequirementsResponse,
UnderstandingUpdatedResponse,
)
from .tracking import track_user_message
config = ChatConfig()
@@ -212,43 +199,6 @@ async def create_session(
)
@router.delete(
"/sessions/{session_id}",
dependencies=[Security(auth.requires_user)],
status_code=204,
responses={404: {"description": "Session not found or access denied"}},
)
async def delete_session(
session_id: str,
user_id: Annotated[str, Security(auth.get_user_id)],
) -> Response:
"""
Delete a chat session.
Permanently removes a chat session and all its messages.
Only the owner can delete their sessions.
Args:
session_id: The session ID to delete.
user_id: The authenticated user's ID.
Returns:
204 No Content on success.
Raises:
HTTPException: 404 if session not found or not owned by user.
"""
deleted = await delete_chat_session(session_id, user_id)
if not deleted:
raise HTTPException(
status_code=404,
detail=f"Session {session_id} not found or access denied",
)
return Response(status_code=204)
@router.get(
"/sessions/{session_id}",
)
@@ -281,10 +231,6 @@ async def get_session(
active_task, last_message_id = await stream_registry.get_active_task_for_session(
session_id, user_id
)
logger.info(
f"[GET_SESSION] session={session_id}, active_task={active_task is not None}, "
f"msg_count={len(messages)}, last_role={messages[-1].get('role') if messages else 'none'}"
)
if active_task:
# Filter out the in-progress assistant message from the session response.
# The client will receive the complete assistant response through the SSE
@@ -354,6 +300,7 @@ async def stream_chat_post(
f"user={user_id}, message_len={len(request.message)}",
extra={"json_fields": log_meta},
)
session = await _validate_and_get_session(session_id, user_id)
logger.info(
f"[TIMING] session validated in {(time.perf_counter() - stream_start_time) * 1000:.1f}ms",
@@ -365,25 +312,6 @@ async def stream_chat_post(
},
)
# Atomically append user message to session BEFORE creating task to avoid
# race condition where GET_SESSION sees task as "running" but message isn't
# saved yet. append_and_save_message re-fetches inside a lock to prevent
# message loss from concurrent requests.
if request.message:
message = ChatMessage(
role="user" if request.is_user_message else "assistant",
content=request.message,
)
if request.is_user_message:
track_user_message(
user_id=user_id,
session_id=session_id,
message_length=len(request.message),
)
logger.info(f"[STREAM] Saving user message to session {session_id}")
session = await append_and_save_message(session_id, message)
logger.info(f"[STREAM] User message saved for session {session_id}")
# Create a task in the stream registry for reconnection support
task_id = str(uuid_module.uuid4())
operation_id = str(uuid_module.uuid4())
@@ -420,47 +348,15 @@ async def stream_chat_post(
first_chunk_time, ttfc = None, None
chunk_count = 0
try:
# Emit a start event with task_id for reconnection
start_chunk = StreamStart(messageId=task_id, taskId=task_id)
await stream_registry.publish_chunk(task_id, start_chunk)
logger.info(
f"[TIMING] StreamStart published at {(time_module.perf_counter() - gen_start_time) * 1000:.1f}ms",
extra={
"json_fields": {
**log_meta,
"elapsed_ms": (time_module.perf_counter() - gen_start_time)
* 1000,
}
},
)
# Choose service based on LaunchDarkly flag (falls back to config default)
use_sdk = await is_feature_enabled(
Flag.COPILOT_SDK,
user_id or "anonymous",
default=config.use_claude_agent_sdk,
)
stream_fn = (
sdk_service.stream_chat_completion_sdk
if use_sdk
else chat_service.stream_chat_completion
)
logger.info(
f"[TIMING] Calling {'sdk' if use_sdk else 'standard'} stream_chat_completion",
extra={"json_fields": log_meta},
)
# Pass message=None since we already added it to the session above
async for chunk in stream_fn(
async for chunk in chat_service.stream_chat_completion(
session_id,
None, # Message already in session
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session, # Pass session with message already added
session=session, # Pass pre-fetched session to avoid double-fetch
context=request.context,
_task_id=task_id, # Pass task_id so service emits start with taskId for reconnection
):
# Skip duplicate StreamStart — we already published one above
if isinstance(chunk, StreamStart):
continue
chunk_count += 1
if first_chunk_time is None:
first_chunk_time = time_module.perf_counter()
@@ -508,17 +404,6 @@ async def stream_chat_post(
}
},
)
# Publish a StreamError so the frontend can display an error message
try:
await stream_registry.publish_chunk(
task_id,
StreamError(
errorText="An error occurred. Please try again.",
code="stream_error",
),
)
except Exception:
pass # Best-effort; mark_task_completed will publish StreamFinish
await stream_registry.mark_task_completed(task_id, "failed")
# Start the AI generation in a background task
@@ -621,14 +506,8 @@ async def stream_chat_post(
"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}
},
)
# Surface error to frontend so it doesn't appear stuck
yield StreamError(
errorText="An error occurred. Please try again.",
code="stream_error",
).to_sse()
yield StreamFinish().to_sse()
finally:
# Unsubscribe when client disconnects or stream ends
# Unsubscribe when client disconnects or stream ends to prevent resource leak
if subscriber_queue is not None:
try:
await stream_registry.unsubscribe_from_task(
@@ -872,6 +751,8 @@ async def stream_task(
)
async def event_generator() -> AsyncGenerator[str, None]:
import asyncio
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
try:
while True:
@@ -1090,7 +971,6 @@ ToolResponseUnion = (
| AgentSavedResponse
| ClarificationNeededResponse
| BlockListResponse
| BlockDetailsResponse
| BlockOutputResponse
| DocSearchResultsResponse
| DocPageResponse

View File

@@ -1,14 +0,0 @@
"""Claude Agent SDK integration for CoPilot.
This module provides the integration layer between the Claude Agent SDK
and the existing CoPilot tool system, enabling drop-in replacement of
the current LLM orchestration with the battle-tested Claude Agent SDK.
"""
from .service import stream_chat_completion_sdk
from .tool_adapter import create_copilot_mcp_server
__all__ = [
"stream_chat_completion_sdk",
"create_copilot_mcp_server",
]

View File

@@ -1,203 +0,0 @@
"""Response adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
This module provides the adapter layer that converts streaming messages from
the Claude Agent SDK into the Vercel AI SDK UI Stream Protocol format that
the frontend expects.
"""
import json
import logging
import uuid
from claude_agent_sdk import (
AssistantMessage,
Message,
ResultMessage,
SystemMessage,
TextBlock,
ToolResultBlock,
ToolUseBlock,
UserMessage,
)
from backend.api.features.chat.response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamFinishStep,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
)
from backend.api.features.chat.sdk.tool_adapter import (
MCP_TOOL_PREFIX,
pop_pending_tool_output,
)
logger = logging.getLogger(__name__)
class SDKResponseAdapter:
"""Adapter for converting Claude Agent SDK messages to Vercel AI SDK format.
This class maintains state during a streaming session to properly track
text blocks, tool calls, and message lifecycle.
"""
def __init__(self, message_id: str | None = None):
self.message_id = message_id or str(uuid.uuid4())
self.text_block_id = str(uuid.uuid4())
self.has_started_text = False
self.has_ended_text = False
self.current_tool_calls: dict[str, dict[str, str]] = {}
self.task_id: str | None = None
self.step_open = False
def set_task_id(self, task_id: str) -> None:
"""Set the task ID for reconnection support."""
self.task_id = task_id
def convert_message(self, sdk_message: Message) -> list[StreamBaseResponse]:
"""Convert a single SDK message to Vercel AI SDK format."""
responses: list[StreamBaseResponse] = []
if isinstance(sdk_message, SystemMessage):
if sdk_message.subtype == "init":
responses.append(
StreamStart(messageId=self.message_id, taskId=self.task_id)
)
# Open the first step (matches non-SDK: StreamStart then StreamStartStep)
responses.append(StreamStartStep())
self.step_open = True
elif isinstance(sdk_message, AssistantMessage):
# After tool results, the SDK sends a new AssistantMessage for the
# next LLM turn. Open a new step if the previous one was closed.
if not self.step_open:
responses.append(StreamStartStep())
self.step_open = True
for block in sdk_message.content:
if isinstance(block, TextBlock):
if block.text:
self._ensure_text_started(responses)
responses.append(
StreamTextDelta(id=self.text_block_id, delta=block.text)
)
elif isinstance(block, ToolUseBlock):
self._end_text_if_open(responses)
# Strip MCP prefix so frontend sees "find_block"
# instead of "mcp__copilot__find_block".
tool_name = block.name.removeprefix(MCP_TOOL_PREFIX)
responses.append(
StreamToolInputStart(toolCallId=block.id, toolName=tool_name)
)
responses.append(
StreamToolInputAvailable(
toolCallId=block.id,
toolName=tool_name,
input=block.input,
)
)
self.current_tool_calls[block.id] = {"name": tool_name}
elif isinstance(sdk_message, UserMessage):
# UserMessage carries tool results back from tool execution.
content = sdk_message.content
blocks = content if isinstance(content, list) else []
for block in blocks:
if isinstance(block, ToolResultBlock) and block.tool_use_id:
tool_info = self.current_tool_calls.get(block.tool_use_id, {})
tool_name = tool_info.get("name", "unknown")
# Prefer the stashed full output over the SDK's
# (potentially truncated) ToolResultBlock content.
# The SDK truncates large results, writing them to disk,
# which breaks frontend widget parsing.
output = pop_pending_tool_output(tool_name) or (
_extract_tool_output(block.content)
)
responses.append(
StreamToolOutputAvailable(
toolCallId=block.tool_use_id,
toolName=tool_name,
output=output,
success=not (block.is_error or False),
)
)
# Close the current step after tool results — the next
# AssistantMessage will open a new step for the continuation.
if self.step_open:
responses.append(StreamFinishStep())
self.step_open = False
elif isinstance(sdk_message, ResultMessage):
self._end_text_if_open(responses)
# Close the step before finishing.
if self.step_open:
responses.append(StreamFinishStep())
self.step_open = False
if sdk_message.subtype == "success":
responses.append(StreamFinish())
elif sdk_message.subtype in ("error", "error_during_execution"):
error_msg = getattr(sdk_message, "result", None) or "Unknown error"
responses.append(
StreamError(errorText=str(error_msg), code="sdk_error")
)
responses.append(StreamFinish())
else:
logger.warning(
f"Unexpected ResultMessage subtype: {sdk_message.subtype}"
)
responses.append(StreamFinish())
else:
logger.debug(f"Unhandled SDK message type: {type(sdk_message).__name__}")
return responses
def _ensure_text_started(self, responses: list[StreamBaseResponse]) -> None:
"""Start (or restart) a text block if needed."""
if not self.has_started_text or self.has_ended_text:
if self.has_ended_text:
self.text_block_id = str(uuid.uuid4())
self.has_ended_text = False
responses.append(StreamTextStart(id=self.text_block_id))
self.has_started_text = True
def _end_text_if_open(self, responses: list[StreamBaseResponse]) -> None:
"""End the current text block if one is open."""
if self.has_started_text and not self.has_ended_text:
responses.append(StreamTextEnd(id=self.text_block_id))
self.has_ended_text = True
def _extract_tool_output(content: str | list[dict[str, str]] | None) -> str:
"""Extract a string output from a ToolResultBlock's content field."""
if isinstance(content, str):
return content
if isinstance(content, list):
parts = [item.get("text", "") for item in content if item.get("type") == "text"]
if parts:
return "".join(parts)
try:
return json.dumps(content)
except (TypeError, ValueError):
return str(content)
if content is None:
return ""
try:
return json.dumps(content)
except (TypeError, ValueError):
return str(content)

View File

@@ -1,366 +0,0 @@
"""Unit tests for the SDK response adapter."""
from claude_agent_sdk import (
AssistantMessage,
ResultMessage,
SystemMessage,
TextBlock,
ToolResultBlock,
ToolUseBlock,
UserMessage,
)
from backend.api.features.chat.response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamFinishStep,
StreamStart,
StreamStartStep,
StreamTextDelta,
StreamTextEnd,
StreamTextStart,
StreamToolInputAvailable,
StreamToolInputStart,
StreamToolOutputAvailable,
)
from .response_adapter import SDKResponseAdapter
from .tool_adapter import MCP_TOOL_PREFIX
def _adapter() -> SDKResponseAdapter:
a = SDKResponseAdapter(message_id="msg-1")
a.set_task_id("task-1")
return a
# -- SystemMessage -----------------------------------------------------------
def test_system_init_emits_start_and_step():
adapter = _adapter()
results = adapter.convert_message(SystemMessage(subtype="init", data={}))
assert len(results) == 2
assert isinstance(results[0], StreamStart)
assert results[0].messageId == "msg-1"
assert results[0].taskId == "task-1"
assert isinstance(results[1], StreamStartStep)
def test_system_non_init_emits_nothing():
adapter = _adapter()
results = adapter.convert_message(SystemMessage(subtype="other", data={}))
assert results == []
# -- AssistantMessage with TextBlock -----------------------------------------
def test_text_block_emits_step_start_and_delta():
adapter = _adapter()
msg = AssistantMessage(content=[TextBlock(text="hello")], model="test")
results = adapter.convert_message(msg)
assert len(results) == 3
assert isinstance(results[0], StreamStartStep)
assert isinstance(results[1], StreamTextStart)
assert isinstance(results[2], StreamTextDelta)
assert results[2].delta == "hello"
def test_empty_text_block_emits_only_step():
adapter = _adapter()
msg = AssistantMessage(content=[TextBlock(text="")], model="test")
results = adapter.convert_message(msg)
# Empty text skipped, but step still opens
assert len(results) == 1
assert isinstance(results[0], StreamStartStep)
def test_multiple_text_deltas_reuse_block_id():
adapter = _adapter()
msg1 = AssistantMessage(content=[TextBlock(text="a")], model="test")
msg2 = AssistantMessage(content=[TextBlock(text="b")], model="test")
r1 = adapter.convert_message(msg1)
r2 = adapter.convert_message(msg2)
# First gets step+start+delta, second only delta (block & step already started)
assert len(r1) == 3
assert isinstance(r1[0], StreamStartStep)
assert isinstance(r1[1], StreamTextStart)
assert len(r2) == 1
assert isinstance(r2[0], StreamTextDelta)
assert r1[1].id == r2[0].id # same block ID
# -- AssistantMessage with ToolUseBlock --------------------------------------
def test_tool_use_emits_input_start_and_available():
"""Tool names arrive with MCP prefix and should be stripped for the frontend."""
adapter = _adapter()
msg = AssistantMessage(
content=[
ToolUseBlock(
id="tool-1",
name=f"{MCP_TOOL_PREFIX}find_agent",
input={"q": "x"},
)
],
model="test",
)
results = adapter.convert_message(msg)
assert len(results) == 3
assert isinstance(results[0], StreamStartStep)
assert isinstance(results[1], StreamToolInputStart)
assert results[1].toolCallId == "tool-1"
assert results[1].toolName == "find_agent" # prefix stripped
assert isinstance(results[2], StreamToolInputAvailable)
assert results[2].toolName == "find_agent" # prefix stripped
assert results[2].input == {"q": "x"}
def test_text_then_tool_ends_text_block():
adapter = _adapter()
text_msg = AssistantMessage(content=[TextBlock(text="thinking...")], model="test")
tool_msg = AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
model="test",
)
adapter.convert_message(text_msg) # opens step + text
results = adapter.convert_message(tool_msg)
# Step already open, so: TextEnd, ToolInputStart, ToolInputAvailable
assert len(results) == 3
assert isinstance(results[0], StreamTextEnd)
assert isinstance(results[1], StreamToolInputStart)
# -- UserMessage with ToolResultBlock ----------------------------------------
def test_tool_result_emits_output_and_finish_step():
adapter = _adapter()
# First register the tool call (opens step) — SDK sends prefixed name
tool_msg = AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}find_agent", input={})],
model="test",
)
adapter.convert_message(tool_msg)
# Now send tool result
result_msg = UserMessage(
content=[ToolResultBlock(tool_use_id="t1", content="found 3 agents")]
)
results = adapter.convert_message(result_msg)
assert len(results) == 2
assert isinstance(results[0], StreamToolOutputAvailable)
assert results[0].toolCallId == "t1"
assert results[0].toolName == "find_agent" # prefix stripped
assert results[0].output == "found 3 agents"
assert results[0].success is True
assert isinstance(results[1], StreamFinishStep)
def test_tool_result_error():
adapter = _adapter()
adapter.convert_message(
AssistantMessage(
content=[
ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}run_agent", input={})
],
model="test",
)
)
result_msg = UserMessage(
content=[ToolResultBlock(tool_use_id="t1", content="timeout", is_error=True)]
)
results = adapter.convert_message(result_msg)
assert isinstance(results[0], StreamToolOutputAvailable)
assert results[0].success is False
assert isinstance(results[1], StreamFinishStep)
def test_tool_result_list_content():
adapter = _adapter()
adapter.convert_message(
AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
model="test",
)
)
result_msg = UserMessage(
content=[
ToolResultBlock(
tool_use_id="t1",
content=[
{"type": "text", "text": "line1"},
{"type": "text", "text": "line2"},
],
)
]
)
results = adapter.convert_message(result_msg)
assert isinstance(results[0], StreamToolOutputAvailable)
assert results[0].output == "line1line2"
assert isinstance(results[1], StreamFinishStep)
def test_string_user_message_ignored():
"""A plain string UserMessage (not tool results) produces no output."""
adapter = _adapter()
results = adapter.convert_message(UserMessage(content="hello"))
assert results == []
# -- ResultMessage -----------------------------------------------------------
def test_result_success_emits_finish_step_and_finish():
adapter = _adapter()
# Start some text first (opens step)
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="done")], model="test")
)
msg = ResultMessage(
subtype="success",
duration_ms=100,
duration_api_ms=50,
is_error=False,
num_turns=1,
session_id="s1",
)
results = adapter.convert_message(msg)
# TextEnd + FinishStep + StreamFinish
assert len(results) == 3
assert isinstance(results[0], StreamTextEnd)
assert isinstance(results[1], StreamFinishStep)
assert isinstance(results[2], StreamFinish)
def test_result_error_emits_error_and_finish():
adapter = _adapter()
msg = ResultMessage(
subtype="error",
duration_ms=100,
duration_api_ms=50,
is_error=True,
num_turns=0,
session_id="s1",
result="API rate limited",
)
results = adapter.convert_message(msg)
# No step was open, so no FinishStep — just Error + Finish
assert len(results) == 2
assert isinstance(results[0], StreamError)
assert "API rate limited" in results[0].errorText
assert isinstance(results[1], StreamFinish)
# -- Text after tools (new block ID) ----------------------------------------
def test_text_after_tool_gets_new_block_id():
adapter = _adapter()
# Text -> Tool -> ToolResult -> Text should get a new text block ID and step
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="before")], model="test")
)
adapter.convert_message(
AssistantMessage(
content=[ToolUseBlock(id="t1", name=f"{MCP_TOOL_PREFIX}tool", input={})],
model="test",
)
)
# Send tool result (closes step)
adapter.convert_message(
UserMessage(content=[ToolResultBlock(tool_use_id="t1", content="ok")])
)
results = adapter.convert_message(
AssistantMessage(content=[TextBlock(text="after")], model="test")
)
# Should get StreamStartStep (new step) + StreamTextStart (new block) + StreamTextDelta
assert len(results) == 3
assert isinstance(results[0], StreamStartStep)
assert isinstance(results[1], StreamTextStart)
assert isinstance(results[2], StreamTextDelta)
assert results[2].delta == "after"
# -- Full conversation flow --------------------------------------------------
def test_full_conversation_flow():
"""Simulate a complete conversation: init -> text -> tool -> result -> text -> finish."""
adapter = _adapter()
all_responses: list[StreamBaseResponse] = []
# 1. Init
all_responses.extend(
adapter.convert_message(SystemMessage(subtype="init", data={}))
)
# 2. Assistant text
all_responses.extend(
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="Let me search")], model="test")
)
)
# 3. Tool use
all_responses.extend(
adapter.convert_message(
AssistantMessage(
content=[
ToolUseBlock(
id="t1",
name=f"{MCP_TOOL_PREFIX}find_agent",
input={"query": "email"},
)
],
model="test",
)
)
)
# 4. Tool result
all_responses.extend(
adapter.convert_message(
UserMessage(
content=[ToolResultBlock(tool_use_id="t1", content="Found 2 agents")]
)
)
)
# 5. More text
all_responses.extend(
adapter.convert_message(
AssistantMessage(content=[TextBlock(text="I found 2")], model="test")
)
)
# 6. Result
all_responses.extend(
adapter.convert_message(
ResultMessage(
subtype="success",
duration_ms=500,
duration_api_ms=400,
is_error=False,
num_turns=2,
session_id="s1",
)
)
)
types = [type(r).__name__ for r in all_responses]
assert types == [
"StreamStart",
"StreamStartStep", # step 1: text + tool call
"StreamTextStart",
"StreamTextDelta", # "Let me search"
"StreamTextEnd", # closed before tool
"StreamToolInputStart",
"StreamToolInputAvailable",
"StreamToolOutputAvailable", # tool result
"StreamFinishStep", # step 1 closed after tool result
"StreamStartStep", # step 2: continuation text
"StreamTextStart", # new block after tool
"StreamTextDelta", # "I found 2"
"StreamTextEnd", # closed by result
"StreamFinishStep", # step 2 closed
"StreamFinish",
]

View File

@@ -1,305 +0,0 @@
"""Security hooks for Claude Agent SDK integration.
This module provides security hooks that validate tool calls before execution,
ensuring multi-user isolation and preventing unauthorized operations.
"""
import json
import logging
import os
import re
from collections.abc import Callable
from typing import Any, cast
from backend.api.features.chat.sdk.tool_adapter import (
BLOCKED_TOOLS,
DANGEROUS_PATTERNS,
MCP_TOOL_PREFIX,
WORKSPACE_SCOPED_TOOLS,
)
logger = logging.getLogger(__name__)
def _deny(reason: str) -> dict[str, Any]:
"""Return a hook denial response."""
return {
"hookSpecificOutput": {
"hookEventName": "PreToolUse",
"permissionDecision": "deny",
"permissionDecisionReason": reason,
}
}
def _validate_workspace_path(
tool_name: str, tool_input: dict[str, Any], sdk_cwd: str | None
) -> dict[str, Any]:
"""Validate that a workspace-scoped tool only accesses allowed paths.
Allowed directories:
- The SDK working directory (``/tmp/copilot-<session>/``)
- The SDK tool-results directory (``~/.claude/projects/…/tool-results/``)
"""
path = tool_input.get("file_path") or tool_input.get("path") or ""
if not path:
# Glob/Grep without a path default to cwd which is already sandboxed
return {}
# Resolve relative paths against sdk_cwd (the SDK sets cwd so the LLM
# naturally uses relative paths like "test.txt" instead of absolute ones).
# Tilde paths (~/) are home-dir references, not relative — expand first.
if path.startswith("~"):
resolved = os.path.realpath(os.path.expanduser(path))
elif not os.path.isabs(path) and sdk_cwd:
resolved = os.path.realpath(os.path.join(sdk_cwd, path))
else:
resolved = os.path.realpath(path)
# Allow access within the SDK working directory
if sdk_cwd:
norm_cwd = os.path.realpath(sdk_cwd)
if resolved.startswith(norm_cwd + os.sep) or resolved == norm_cwd:
return {}
# Allow access to ~/.claude/projects/*/tool-results/ (big tool results)
claude_dir = os.path.realpath(os.path.expanduser("~/.claude/projects"))
tool_results_seg = os.sep + "tool-results" + os.sep
if resolved.startswith(claude_dir + os.sep) and tool_results_seg in resolved:
return {}
logger.warning(
f"Blocked {tool_name} outside workspace: {path} (resolved={resolved})"
)
workspace_hint = f" Allowed workspace: {sdk_cwd}" if sdk_cwd else ""
return _deny(
f"[SECURITY] Tool '{tool_name}' can only access files within the workspace "
f"directory.{workspace_hint} "
"This is enforced by the platform and cannot be bypassed."
)
def _validate_tool_access(
tool_name: str, tool_input: dict[str, Any], sdk_cwd: str | None = None
) -> dict[str, Any]:
"""Validate that a tool call is allowed.
Returns:
Empty dict to allow, or dict with hookSpecificOutput to deny
"""
# Block forbidden tools
if tool_name in BLOCKED_TOOLS:
logger.warning(f"Blocked tool access attempt: {tool_name}")
return _deny(
f"[SECURITY] Tool '{tool_name}' is blocked for security. "
"This is enforced by the platform and cannot be bypassed. "
"Use the CoPilot-specific MCP tools instead."
)
# Workspace-scoped tools: allowed only within the SDK workspace directory
if tool_name in WORKSPACE_SCOPED_TOOLS:
return _validate_workspace_path(tool_name, tool_input, sdk_cwd)
# Check for dangerous patterns in tool input
# Use json.dumps for predictable format (str() produces Python repr)
input_str = json.dumps(tool_input) if tool_input else ""
for pattern in DANGEROUS_PATTERNS:
if re.search(pattern, input_str, re.IGNORECASE):
logger.warning(
f"Blocked dangerous pattern in tool input: {pattern} in {tool_name}"
)
return _deny(
"[SECURITY] Input contains a blocked pattern. "
"This is enforced by the platform and cannot be bypassed."
)
return {}
def _validate_user_isolation(
tool_name: str, tool_input: dict[str, Any], user_id: str | None
) -> dict[str, Any]:
"""Validate that tool calls respect user isolation."""
# For workspace file tools, ensure path doesn't escape
if "workspace" in tool_name.lower():
path = tool_input.get("path", "") or tool_input.get("file_path", "")
if path:
# Check for path traversal
if ".." in path or path.startswith("/"):
logger.warning(
f"Blocked path traversal attempt: {path} by user {user_id}"
)
return {
"hookSpecificOutput": {
"hookEventName": "PreToolUse",
"permissionDecision": "deny",
"permissionDecisionReason": "Path traversal not allowed",
}
}
return {}
def create_security_hooks(
user_id: str | None,
sdk_cwd: str | None = None,
max_subtasks: int = 3,
on_stop: Callable[[str, str], None] | None = None,
) -> dict[str, Any]:
"""Create the security hooks configuration for Claude Agent SDK.
Includes security validation and observability hooks:
- PreToolUse: Security validation before tool execution
- PostToolUse: Log successful tool executions
- PostToolUseFailure: Log and handle failed tool executions
- PreCompact: Log context compaction events (SDK handles compaction automatically)
- Stop: Capture transcript path for stateless resume (when *on_stop* is provided)
Args:
user_id: Current user ID for isolation validation
sdk_cwd: SDK working directory for workspace-scoped tool validation
max_subtasks: Maximum Task (sub-agent) spawns allowed per session
on_stop: Callback ``(transcript_path, sdk_session_id)`` invoked when
the SDK finishes processing — used to read the JSONL transcript
before the CLI process exits.
Returns:
Hooks configuration dict for ClaudeAgentOptions
"""
try:
from claude_agent_sdk import HookMatcher
from claude_agent_sdk.types import HookContext, HookInput, SyncHookJSONOutput
# Per-session counter for Task sub-agent spawns
task_spawn_count = 0
async def pre_tool_use_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Combined pre-tool-use validation hook."""
nonlocal task_spawn_count
_ = context # unused but required by signature
tool_name = cast(str, input_data.get("tool_name", ""))
tool_input = cast(dict[str, Any], input_data.get("tool_input", {}))
# Rate-limit Task (sub-agent) spawns per session
if tool_name == "Task":
task_spawn_count += 1
if task_spawn_count > max_subtasks:
logger.warning(
f"[SDK] Task limit reached ({max_subtasks}), user={user_id}"
)
return cast(
SyncHookJSONOutput,
_deny(
f"Maximum {max_subtasks} sub-tasks per session. "
"Please continue in the main conversation."
),
)
# Strip MCP prefix for consistent validation
is_copilot_tool = tool_name.startswith(MCP_TOOL_PREFIX)
clean_name = tool_name.removeprefix(MCP_TOOL_PREFIX)
# Only block non-CoPilot tools; our MCP-registered tools
# (including Read for oversized results) are already sandboxed.
if not is_copilot_tool:
result = _validate_tool_access(clean_name, tool_input, sdk_cwd)
if result:
return cast(SyncHookJSONOutput, result)
# Validate user isolation
result = _validate_user_isolation(clean_name, tool_input, user_id)
if result:
return cast(SyncHookJSONOutput, result)
logger.debug(f"[SDK] Tool start: {tool_name}, user={user_id}")
return cast(SyncHookJSONOutput, {})
async def post_tool_use_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log successful tool executions for observability."""
_ = context
tool_name = cast(str, input_data.get("tool_name", ""))
logger.debug(f"[SDK] Tool success: {tool_name}, tool_use_id={tool_use_id}")
return cast(SyncHookJSONOutput, {})
async def post_tool_failure_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log failed tool executions for debugging."""
_ = context
tool_name = cast(str, input_data.get("tool_name", ""))
error = input_data.get("error", "Unknown error")
logger.warning(
f"[SDK] Tool failed: {tool_name}, error={error}, "
f"user={user_id}, tool_use_id={tool_use_id}"
)
return cast(SyncHookJSONOutput, {})
async def pre_compact_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Log when SDK triggers context compaction.
The SDK automatically compacts conversation history when it grows too large.
This hook provides visibility into when compaction happens.
"""
_ = context, tool_use_id
trigger = input_data.get("trigger", "auto")
logger.info(
f"[SDK] Context compaction triggered: {trigger}, user={user_id}"
)
return cast(SyncHookJSONOutput, {})
# --- Stop hook: capture transcript path for stateless resume ---
async def stop_hook(
input_data: HookInput,
tool_use_id: str | None,
context: HookContext,
) -> SyncHookJSONOutput:
"""Capture transcript path when SDK finishes processing.
The Stop hook fires while the CLI process is still alive, giving us
a reliable window to read the JSONL transcript before SIGTERM.
"""
_ = context, tool_use_id
transcript_path = cast(str, input_data.get("transcript_path", ""))
sdk_session_id = cast(str, input_data.get("session_id", ""))
if transcript_path and on_stop:
logger.info(
f"[SDK] Stop hook: transcript_path={transcript_path}, "
f"sdk_session_id={sdk_session_id[:12]}..."
)
on_stop(transcript_path, sdk_session_id)
return cast(SyncHookJSONOutput, {})
hooks: dict[str, Any] = {
"PreToolUse": [HookMatcher(matcher="*", hooks=[pre_tool_use_hook])],
"PostToolUse": [HookMatcher(matcher="*", hooks=[post_tool_use_hook])],
"PostToolUseFailure": [
HookMatcher(matcher="*", hooks=[post_tool_failure_hook])
],
"PreCompact": [HookMatcher(matcher="*", hooks=[pre_compact_hook])],
}
if on_stop is not None:
hooks["Stop"] = [HookMatcher(matcher=None, hooks=[stop_hook])]
return hooks
except ImportError:
# Fallback for when SDK isn't available - return empty hooks
logger.warning("claude-agent-sdk not available, security hooks disabled")
return {}

View File

@@ -1,165 +0,0 @@
"""Unit tests for SDK security hooks."""
import os
from .security_hooks import _validate_tool_access, _validate_user_isolation
SDK_CWD = "/tmp/copilot-abc123"
def _is_denied(result: dict) -> bool:
hook = result.get("hookSpecificOutput", {})
return hook.get("permissionDecision") == "deny"
# -- Blocked tools -----------------------------------------------------------
def test_blocked_tools_denied():
for tool in ("bash", "shell", "exec", "terminal", "command"):
result = _validate_tool_access(tool, {})
assert _is_denied(result), f"{tool} should be blocked"
def test_unknown_tool_allowed():
result = _validate_tool_access("SomeCustomTool", {})
assert result == {}
# -- Workspace-scoped tools --------------------------------------------------
def test_read_within_workspace_allowed():
result = _validate_tool_access(
"Read", {"file_path": f"{SDK_CWD}/file.txt"}, sdk_cwd=SDK_CWD
)
assert result == {}
def test_write_within_workspace_allowed():
result = _validate_tool_access(
"Write", {"file_path": f"{SDK_CWD}/output.json"}, sdk_cwd=SDK_CWD
)
assert result == {}
def test_edit_within_workspace_allowed():
result = _validate_tool_access(
"Edit", {"file_path": f"{SDK_CWD}/src/main.py"}, sdk_cwd=SDK_CWD
)
assert result == {}
def test_glob_within_workspace_allowed():
result = _validate_tool_access("Glob", {"path": f"{SDK_CWD}/src"}, sdk_cwd=SDK_CWD)
assert result == {}
def test_grep_within_workspace_allowed():
result = _validate_tool_access("Grep", {"path": f"{SDK_CWD}/src"}, sdk_cwd=SDK_CWD)
assert result == {}
def test_read_outside_workspace_denied():
result = _validate_tool_access(
"Read", {"file_path": "/etc/passwd"}, sdk_cwd=SDK_CWD
)
assert _is_denied(result)
def test_write_outside_workspace_denied():
result = _validate_tool_access(
"Write", {"file_path": "/home/user/secrets.txt"}, sdk_cwd=SDK_CWD
)
assert _is_denied(result)
def test_traversal_attack_denied():
result = _validate_tool_access(
"Read",
{"file_path": f"{SDK_CWD}/../../etc/passwd"},
sdk_cwd=SDK_CWD,
)
assert _is_denied(result)
def test_no_path_allowed():
"""Glob/Grep without a path argument defaults to cwd — should pass."""
result = _validate_tool_access("Glob", {}, sdk_cwd=SDK_CWD)
assert result == {}
def test_read_no_cwd_denies_absolute():
"""If no sdk_cwd is set, absolute paths are denied."""
result = _validate_tool_access("Read", {"file_path": "/tmp/anything"})
assert _is_denied(result)
# -- Tool-results directory --------------------------------------------------
def test_read_tool_results_allowed():
home = os.path.expanduser("~")
path = f"{home}/.claude/projects/-tmp-copilot-abc123/tool-results/12345.txt"
result = _validate_tool_access("Read", {"file_path": path}, sdk_cwd=SDK_CWD)
assert result == {}
def test_read_claude_projects_without_tool_results_denied():
home = os.path.expanduser("~")
path = f"{home}/.claude/projects/-tmp-copilot-abc123/settings.json"
result = _validate_tool_access("Read", {"file_path": path}, sdk_cwd=SDK_CWD)
assert _is_denied(result)
# -- Built-in Bash is blocked (use bash_exec MCP tool instead) ---------------
def test_bash_builtin_always_blocked():
"""SDK built-in Bash is blocked — bash_exec MCP tool with bubblewrap is used instead."""
result = _validate_tool_access("Bash", {"command": "echo hello"}, sdk_cwd=SDK_CWD)
assert _is_denied(result)
# -- Dangerous patterns ------------------------------------------------------
def test_dangerous_pattern_blocked():
result = _validate_tool_access("SomeTool", {"cmd": "sudo rm -rf /"})
assert _is_denied(result)
def test_subprocess_pattern_blocked():
result = _validate_tool_access("SomeTool", {"code": "subprocess.run(...)"})
assert _is_denied(result)
# -- User isolation ----------------------------------------------------------
def test_workspace_path_traversal_blocked():
result = _validate_user_isolation(
"workspace_read", {"path": "../../../etc/shadow"}, user_id="user-1"
)
assert _is_denied(result)
def test_workspace_absolute_path_blocked():
result = _validate_user_isolation(
"workspace_read", {"path": "/etc/passwd"}, user_id="user-1"
)
assert _is_denied(result)
def test_workspace_normal_path_allowed():
result = _validate_user_isolation(
"workspace_read", {"path": "src/main.py"}, user_id="user-1"
)
assert result == {}
def test_non_workspace_tool_passes_isolation():
result = _validate_user_isolation(
"find_agent", {"query": "email"}, user_id="user-1"
)
assert result == {}

View File

@@ -1,752 +0,0 @@
"""Claude Agent SDK service layer for CoPilot chat completions."""
import asyncio
import json
import logging
import os
import uuid
from collections.abc import AsyncGenerator
from dataclasses import dataclass
from typing import Any
from backend.util.exceptions import NotFoundError
from .. import stream_registry
from ..config import ChatConfig
from ..model import (
ChatMessage,
ChatSession,
get_chat_session,
update_session_title,
upsert_chat_session,
)
from ..response_model import (
StreamBaseResponse,
StreamError,
StreamFinish,
StreamStart,
StreamTextDelta,
StreamToolInputAvailable,
StreamToolOutputAvailable,
)
from ..service import (
_build_system_prompt,
_execute_long_running_tool_with_streaming,
_generate_session_title,
)
from ..tools.models import OperationPendingResponse, OperationStartedResponse
from ..tools.sandbox import WORKSPACE_PREFIX, make_session_path
from ..tracking import track_user_message
from .response_adapter import SDKResponseAdapter
from .security_hooks import create_security_hooks
from .tool_adapter import (
COPILOT_TOOL_NAMES,
SDK_DISALLOWED_TOOLS,
LongRunningCallback,
create_copilot_mcp_server,
set_execution_context,
)
from .transcript import (
download_transcript,
read_transcript_file,
upload_transcript,
validate_transcript,
write_transcript_to_tempfile,
)
logger = logging.getLogger(__name__)
config = ChatConfig()
# Set to hold background tasks to prevent garbage collection
_background_tasks: set[asyncio.Task[Any]] = set()
@dataclass
class CapturedTranscript:
"""Info captured by the SDK Stop hook for stateless --resume."""
path: str = ""
sdk_session_id: str = ""
@property
def available(self) -> bool:
return bool(self.path)
_SDK_CWD_PREFIX = WORKSPACE_PREFIX
# Appended to the system prompt to inform the agent about available tools.
# The SDK built-in Bash is NOT available — use mcp__copilot__bash_exec instead,
# which has kernel-level network isolation (unshare --net).
_SDK_TOOL_SUPPLEMENT = """
## Tool notes
- The SDK built-in Bash tool is NOT available. Use the `bash_exec` MCP tool
for shell commands — it runs in a network-isolated sandbox.
- **Shared workspace**: The SDK Read/Write tools and `bash_exec` share the
same working directory. Files created by one are readable by the other.
These files are **ephemeral** — they exist only for the current session.
- **Persistent storage**: Use `write_workspace_file` / `read_workspace_file`
for files that should persist across sessions (stored in cloud storage).
- Long-running tools (create_agent, edit_agent, etc.) are handled
asynchronously. You will receive an immediate response; the actual result
is delivered to the user via a background stream.
"""
def _build_long_running_callback(user_id: str | None) -> LongRunningCallback:
"""Build a callback that delegates long-running tools to the non-SDK infrastructure.
Long-running tools (create_agent, edit_agent, etc.) are delegated to the
existing background infrastructure: stream_registry (Redis Streams),
database persistence, and SSE reconnection. This means results survive
page refreshes / pod restarts, and the frontend shows the proper loading
widget with progress updates.
The returned callback matches the ``LongRunningCallback`` signature:
``(tool_name, args, session) -> MCP response dict``.
"""
async def _callback(
tool_name: str, args: dict[str, Any], session: ChatSession
) -> dict[str, Any]:
operation_id = str(uuid.uuid4())
task_id = str(uuid.uuid4())
tool_call_id = f"sdk-{uuid.uuid4().hex[:12]}"
session_id = session.session_id
# --- Build user-friendly messages (matches non-SDK service) ---
if tool_name == "create_agent":
desc = args.get("description", "")
desc_preview = (desc[:100] + "...") if len(desc) > 100 else desc
pending_msg = (
f"Creating your agent: {desc_preview}"
if desc_preview
else "Creating agent... This may take a few minutes."
)
started_msg = (
"Agent creation started. You can close this tab - "
"check your library in a few minutes."
)
elif tool_name == "edit_agent":
changes = args.get("changes", "")
changes_preview = (changes[:100] + "...") if len(changes) > 100 else changes
pending_msg = (
f"Editing agent: {changes_preview}"
if changes_preview
else "Editing agent... This may take a few minutes."
)
started_msg = (
"Agent edit started. You can close this tab - "
"check your library in a few minutes."
)
else:
pending_msg = f"Running {tool_name}... This may take a few minutes."
started_msg = (
f"{tool_name} started. You can close this tab - "
"check back in a few minutes."
)
# --- Register task in Redis for SSE reconnection ---
await stream_registry.create_task(
task_id=task_id,
session_id=session_id,
user_id=user_id,
tool_call_id=tool_call_id,
tool_name=tool_name,
operation_id=operation_id,
)
# --- Save OperationPendingResponse to chat history ---
pending_message = ChatMessage(
role="tool",
content=OperationPendingResponse(
message=pending_msg,
operation_id=operation_id,
tool_name=tool_name,
).model_dump_json(),
tool_call_id=tool_call_id,
)
session.messages.append(pending_message)
await upsert_chat_session(session)
# --- Spawn background task (reuses non-SDK infrastructure) ---
bg_task = asyncio.create_task(
_execute_long_running_tool_with_streaming(
tool_name=tool_name,
parameters=args,
tool_call_id=tool_call_id,
operation_id=operation_id,
task_id=task_id,
session_id=session_id,
user_id=user_id,
)
)
_background_tasks.add(bg_task)
bg_task.add_done_callback(_background_tasks.discard)
await stream_registry.set_task_asyncio_task(task_id, bg_task)
logger.info(
f"[SDK] Long-running tool {tool_name} delegated to background "
f"(operation_id={operation_id}, task_id={task_id})"
)
# --- Return OperationStartedResponse as MCP tool result ---
# This flows through SDK → response adapter → frontend, triggering
# the loading widget with SSE reconnection support.
started_json = OperationStartedResponse(
message=started_msg,
operation_id=operation_id,
tool_name=tool_name,
task_id=task_id,
).model_dump_json()
return {
"content": [{"type": "text", "text": started_json}],
"isError": False,
}
return _callback
def _resolve_sdk_model() -> str | None:
"""Resolve the model name for the Claude Agent SDK CLI.
Uses ``config.claude_agent_model`` if set, otherwise derives from
``config.model`` by stripping the OpenRouter provider prefix (e.g.,
``"anthropic/claude-opus-4.6"`` → ``"claude-opus-4.6"``).
"""
if config.claude_agent_model:
return config.claude_agent_model
model = config.model
if "/" in model:
return model.split("/", 1)[1]
return model
def _build_sdk_env() -> dict[str, str]:
"""Build env vars for the SDK CLI process.
Routes API calls through OpenRouter (or a custom base_url) using
the same ``config.api_key`` / ``config.base_url`` as the non-SDK path.
This gives per-call token and cost tracking on the OpenRouter dashboard.
Only overrides ``ANTHROPIC_API_KEY`` when a valid proxy URL and auth
token are both present — otherwise returns an empty dict so the SDK
falls back to its default credentials.
"""
env: dict[str, str] = {}
if config.api_key and config.base_url:
# Strip /v1 suffix — SDK expects the base URL without a version path
base = config.base_url.rstrip("/")
if base.endswith("/v1"):
base = base[:-3]
if not base or not base.startswith("http"):
# Invalid base_url — don't override SDK defaults
return env
env["ANTHROPIC_BASE_URL"] = base
env["ANTHROPIC_AUTH_TOKEN"] = config.api_key
# Must be explicitly empty so the CLI uses AUTH_TOKEN instead
env["ANTHROPIC_API_KEY"] = ""
return env
def _make_sdk_cwd(session_id: str) -> str:
"""Create a safe, session-specific working directory path.
Delegates to :func:`~backend.api.features.chat.tools.sandbox.make_session_path`
(single source of truth for path sanitization) and adds a defence-in-depth
assertion.
"""
cwd = make_session_path(session_id)
# Defence-in-depth: normpath + startswith is a CodeQL-recognised sanitizer
cwd = os.path.normpath(cwd)
if not cwd.startswith(_SDK_CWD_PREFIX):
raise ValueError(f"SDK cwd escaped prefix: {cwd}")
return cwd
def _cleanup_sdk_tool_results(cwd: str) -> None:
"""Remove SDK tool-result files for a specific session working directory.
The SDK creates tool-result files under ~/.claude/projects/<encoded-cwd>/tool-results/.
We clean only the specific cwd's results to avoid race conditions between
concurrent sessions.
Security: cwd MUST be created by _make_sdk_cwd() which sanitizes session_id.
"""
import shutil
# Validate cwd is under the expected prefix
normalized = os.path.normpath(cwd)
if not normalized.startswith(_SDK_CWD_PREFIX):
logger.warning(f"[SDK] Rejecting cleanup for path outside workspace: {cwd}")
return
# SDK encodes the cwd path by replacing '/' with '-'
encoded_cwd = normalized.replace("/", "-")
# Construct the project directory path (known-safe home expansion)
claude_projects = os.path.expanduser("~/.claude/projects")
project_dir = os.path.join(claude_projects, encoded_cwd)
# Security check 3: Validate project_dir is under ~/.claude/projects
project_dir = os.path.normpath(project_dir)
if not project_dir.startswith(claude_projects):
logger.warning(
f"[SDK] Rejecting cleanup for escaped project path: {project_dir}"
)
return
results_dir = os.path.join(project_dir, "tool-results")
if os.path.isdir(results_dir):
for filename in os.listdir(results_dir):
file_path = os.path.join(results_dir, filename)
try:
if os.path.isfile(file_path):
os.remove(file_path)
except OSError:
pass
# Also clean up the temp cwd directory itself
try:
shutil.rmtree(normalized, ignore_errors=True)
except OSError:
pass
async def _compress_conversation_history(
session: ChatSession,
) -> list[ChatMessage]:
"""Compress prior conversation messages if they exceed the token threshold.
Uses the shared compress_context() from prompt.py which supports:
- LLM summarization of old messages (keeps recent ones intact)
- Progressive content truncation as fallback
- Middle-out deletion as last resort
Returns the compressed prior messages (everything except the current message).
"""
prior = session.messages[:-1]
if len(prior) < 2:
return prior
from backend.util.prompt import compress_context
# Convert ChatMessages to dicts for compress_context
messages_dict = []
for msg in prior:
msg_dict: dict[str, Any] = {"role": msg.role}
if msg.content:
msg_dict["content"] = msg.content
if msg.tool_calls:
msg_dict["tool_calls"] = msg.tool_calls
if msg.tool_call_id:
msg_dict["tool_call_id"] = msg.tool_call_id
messages_dict.append(msg_dict)
try:
import openai
async with openai.AsyncOpenAI(
api_key=config.api_key, base_url=config.base_url, timeout=30.0
) as client:
result = await compress_context(
messages=messages_dict,
model=config.model,
client=client,
)
except Exception as e:
logger.warning(f"[SDK] Context compression with LLM failed: {e}")
# Fall back to truncation-only (no LLM summarization)
result = await compress_context(
messages=messages_dict,
model=config.model,
client=None,
)
if result.was_compacted:
logger.info(
f"[SDK] Context compacted: {result.original_token_count} -> "
f"{result.token_count} tokens "
f"({result.messages_summarized} summarized, "
f"{result.messages_dropped} dropped)"
)
# Convert compressed dicts back to ChatMessages
return [
ChatMessage(
role=m["role"],
content=m.get("content"),
tool_calls=m.get("tool_calls"),
tool_call_id=m.get("tool_call_id"),
)
for m in result.messages
]
return prior
def _format_conversation_context(messages: list[ChatMessage]) -> str | None:
"""Format conversation messages into a context prefix for the user message.
Returns a string like:
<conversation_history>
User: hello
You responded: Hi! How can I help?
</conversation_history>
Returns None if there are no messages to format.
"""
if not messages:
return None
lines: list[str] = []
for msg in messages:
if not msg.content:
continue
if msg.role == "user":
lines.append(f"User: {msg.content}")
elif msg.role == "assistant":
lines.append(f"You responded: {msg.content}")
# Skip tool messages — they're internal details
if not lines:
return None
return "<conversation_history>\n" + "\n".join(lines) + "\n</conversation_history>"
async def stream_chat_completion_sdk(
session_id: str,
message: str | None = None,
tool_call_response: str | None = None, # noqa: ARG001
is_user_message: bool = True,
user_id: str | None = None,
retry_count: int = 0, # noqa: ARG001
session: ChatSession | None = None,
context: dict[str, str] | None = None, # noqa: ARG001
) -> AsyncGenerator[StreamBaseResponse, None]:
"""Stream chat completion using Claude Agent SDK.
Drop-in replacement for stream_chat_completion with improved reliability.
"""
if session is None:
session = await get_chat_session(session_id, user_id)
if not session:
raise NotFoundError(
f"Session {session_id} not found. Please create a new session first."
)
if message:
session.messages.append(
ChatMessage(
role="user" if is_user_message else "assistant", content=message
)
)
if is_user_message:
track_user_message(
user_id=user_id, session_id=session_id, message_length=len(message)
)
session = await upsert_chat_session(session)
# Generate title for new sessions (first user message)
if is_user_message and not session.title:
user_messages = [m for m in session.messages if m.role == "user"]
if len(user_messages) == 1:
first_message = user_messages[0].content or message or ""
if first_message:
task = asyncio.create_task(
_update_title_async(session_id, first_message, user_id)
)
_background_tasks.add(task)
task.add_done_callback(_background_tasks.discard)
# Build system prompt (reuses non-SDK path with Langfuse support)
has_history = len(session.messages) > 1
system_prompt, _ = await _build_system_prompt(
user_id, has_conversation_history=has_history
)
system_prompt += _SDK_TOOL_SUPPLEMENT
message_id = str(uuid.uuid4())
task_id = str(uuid.uuid4())
yield StreamStart(messageId=message_id, taskId=task_id)
stream_completed = False
# Initialise sdk_cwd before the try so the finally can reference it
# even if _make_sdk_cwd raises (in that case it stays as "").
sdk_cwd = ""
use_resume = False
try:
# Use a session-specific temp dir to avoid cleanup race conditions
# between concurrent sessions.
sdk_cwd = _make_sdk_cwd(session_id)
os.makedirs(sdk_cwd, exist_ok=True)
set_execution_context(
user_id,
session,
long_running_callback=_build_long_running_callback(user_id),
)
try:
from claude_agent_sdk import ClaudeAgentOptions, ClaudeSDKClient
# Fail fast when no API credentials are available at all
sdk_env = _build_sdk_env()
if not sdk_env and not os.environ.get("ANTHROPIC_API_KEY"):
raise RuntimeError(
"No API key configured. Set OPEN_ROUTER_API_KEY "
"(or CHAT_API_KEY) for OpenRouter routing, "
"or ANTHROPIC_API_KEY for direct Anthropic access."
)
mcp_server = create_copilot_mcp_server()
sdk_model = _resolve_sdk_model()
# --- Transcript capture via Stop hook ---
captured_transcript = CapturedTranscript()
def _on_stop(transcript_path: str, sdk_session_id: str) -> None:
captured_transcript.path = transcript_path
captured_transcript.sdk_session_id = sdk_session_id
security_hooks = create_security_hooks(
user_id,
sdk_cwd=sdk_cwd,
max_subtasks=config.claude_agent_max_subtasks,
on_stop=_on_stop if config.claude_agent_use_resume else None,
)
# --- Resume strategy: download transcript from bucket ---
resume_file: str | None = None
use_resume = False
if config.claude_agent_use_resume and user_id and len(session.messages) > 1:
transcript_content = await download_transcript(user_id, session_id)
if transcript_content and validate_transcript(transcript_content):
resume_file = write_transcript_to_tempfile(
transcript_content, session_id, sdk_cwd
)
if resume_file:
use_resume = True
logger.info(
f"[SDK] Using --resume with transcript "
f"({len(transcript_content)} bytes)"
)
sdk_options_kwargs: dict[str, Any] = {
"system_prompt": system_prompt,
"mcp_servers": {"copilot": mcp_server},
"allowed_tools": COPILOT_TOOL_NAMES,
"disallowed_tools": SDK_DISALLOWED_TOOLS,
"hooks": security_hooks,
"cwd": sdk_cwd,
"max_buffer_size": config.claude_agent_max_buffer_size,
}
if sdk_env:
sdk_options_kwargs["model"] = sdk_model
sdk_options_kwargs["env"] = sdk_env
if use_resume and resume_file:
sdk_options_kwargs["resume"] = resume_file
options = ClaudeAgentOptions(**sdk_options_kwargs) # type: ignore[arg-type]
adapter = SDKResponseAdapter(message_id=message_id)
adapter.set_task_id(task_id)
async with ClaudeSDKClient(options=options) as client:
current_message = message or ""
if not current_message and session.messages:
last_user = [m for m in session.messages if m.role == "user"]
if last_user:
current_message = last_user[-1].content or ""
if not current_message.strip():
yield StreamError(
errorText="Message cannot be empty.",
code="empty_prompt",
)
yield StreamFinish()
return
# Build query: with --resume the CLI already has full
# context, so we only send the new message. Without
# resume, compress history into a context prefix.
query_message = current_message
if not use_resume and len(session.messages) > 1:
logger.warning(
f"[SDK] Using compression fallback for session "
f"{session_id} ({len(session.messages)} messages) — "
f"no transcript available for --resume"
)
compressed = await _compress_conversation_history(session)
history_context = _format_conversation_context(compressed)
if history_context:
query_message = (
f"{history_context}\n\n"
f"Now, the user says:\n{current_message}"
)
logger.info(
f"[SDK] Sending query ({len(session.messages)} msgs in session)"
)
logger.debug(f"[SDK] Query preview: {current_message[:80]!r}")
await client.query(query_message, session_id=session_id)
assistant_response = ChatMessage(role="assistant", content="")
accumulated_tool_calls: list[dict[str, Any]] = []
has_appended_assistant = False
has_tool_results = False
async for sdk_msg in client.receive_messages():
logger.debug(
f"[SDK] Received: {type(sdk_msg).__name__} "
f"{getattr(sdk_msg, 'subtype', '')}"
)
for response in adapter.convert_message(sdk_msg):
if isinstance(response, StreamStart):
continue
yield response
if isinstance(response, StreamTextDelta):
delta = response.delta or ""
# After tool results, start a new assistant
# message for the post-tool text.
if has_tool_results and has_appended_assistant:
assistant_response = ChatMessage(
role="assistant", content=delta
)
accumulated_tool_calls = []
has_appended_assistant = False
has_tool_results = False
session.messages.append(assistant_response)
has_appended_assistant = True
else:
assistant_response.content = (
assistant_response.content or ""
) + delta
if not has_appended_assistant:
session.messages.append(assistant_response)
has_appended_assistant = True
elif isinstance(response, StreamToolInputAvailable):
accumulated_tool_calls.append(
{
"id": response.toolCallId,
"type": "function",
"function": {
"name": response.toolName,
"arguments": json.dumps(response.input or {}),
},
}
)
assistant_response.tool_calls = accumulated_tool_calls
if not has_appended_assistant:
session.messages.append(assistant_response)
has_appended_assistant = True
elif isinstance(response, StreamToolOutputAvailable):
session.messages.append(
ChatMessage(
role="tool",
content=(
response.output
if isinstance(response.output, str)
else str(response.output)
),
tool_call_id=response.toolCallId,
)
)
has_tool_results = True
elif isinstance(response, StreamFinish):
stream_completed = True
if stream_completed:
break
if (
assistant_response.content or assistant_response.tool_calls
) and not has_appended_assistant:
session.messages.append(assistant_response)
# --- Capture transcript while CLI is still alive ---
# Must happen INSIDE async with: close() sends SIGTERM
# which kills the CLI before it can flush the JSONL.
if (
config.claude_agent_use_resume
and user_id
and captured_transcript.available
):
# Give CLI time to flush JSONL writes before we read
await asyncio.sleep(0.5)
raw_transcript = read_transcript_file(captured_transcript.path)
if raw_transcript:
task = asyncio.create_task(
_upload_transcript_bg(user_id, session_id, raw_transcript)
)
_background_tasks.add(task)
task.add_done_callback(_background_tasks.discard)
else:
logger.debug("[SDK] Stop hook fired but transcript not usable")
except ImportError:
raise RuntimeError(
"claude-agent-sdk is not installed. "
"Disable SDK mode (CHAT_USE_CLAUDE_AGENT_SDK=false) "
"to use the OpenAI-compatible fallback."
)
await upsert_chat_session(session)
logger.debug(
f"[SDK] Session {session_id} saved with {len(session.messages)} messages"
)
if not stream_completed:
yield StreamFinish()
except Exception as e:
logger.error(f"[SDK] Error: {e}", exc_info=True)
try:
await upsert_chat_session(session)
except Exception as save_err:
logger.error(f"[SDK] Failed to save session on error: {save_err}")
yield StreamError(
errorText="An error occurred. Please try again.",
code="sdk_error",
)
yield StreamFinish()
finally:
if sdk_cwd:
_cleanup_sdk_tool_results(sdk_cwd)
async def _upload_transcript_bg(
user_id: str, session_id: str, raw_content: str
) -> None:
"""Background task to strip progress entries and upload transcript."""
try:
await upload_transcript(user_id, session_id, raw_content)
except Exception as e:
logger.error(f"[SDK] Failed to upload transcript for {session_id}: {e}")
async def _update_title_async(
session_id: str, message: str, user_id: str | None = None
) -> None:
"""Background task to update session title."""
try:
title = await _generate_session_title(
message, user_id=user_id, session_id=session_id
)
if title:
await update_session_title(session_id, title)
logger.debug(f"[SDK] Generated title for {session_id}: {title}")
except Exception as e:
logger.warning(f"[SDK] Failed to update session title: {e}")

View File

@@ -1,363 +0,0 @@
"""Tool adapter for wrapping existing CoPilot tools as Claude Agent SDK MCP tools.
This module provides the adapter layer that converts existing BaseTool implementations
into in-process MCP tools that can be used with the Claude Agent SDK.
Long-running tools (``is_long_running=True``) are delegated to the non-SDK
background infrastructure (stream_registry, Redis persistence, SSE reconnection)
via a callback provided by the service layer. This avoids wasteful SDK polling
and makes results survive page refreshes.
"""
import itertools
import json
import logging
import os
import uuid
from collections.abc import Awaitable, Callable
from contextvars import ContextVar
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools import TOOL_REGISTRY
from backend.api.features.chat.tools.base import BaseTool
logger = logging.getLogger(__name__)
# Allowed base directory for the Read tool (SDK saves oversized tool results here).
# Restricted to ~/.claude/projects/ and further validated to require "tool-results"
# in the path — prevents reading settings, credentials, or other sensitive files.
_SDK_PROJECTS_DIR = os.path.expanduser("~/.claude/projects/")
# MCP server naming - the SDK prefixes tool names as "mcp__{server_name}__{tool}"
MCP_SERVER_NAME = "copilot"
MCP_TOOL_PREFIX = f"mcp__{MCP_SERVER_NAME}__"
# Context variables to pass user/session info to tool execution
_current_user_id: ContextVar[str | None] = ContextVar("current_user_id", default=None)
_current_session: ContextVar[ChatSession | None] = ContextVar(
"current_session", default=None
)
# Stash for MCP tool outputs before the SDK potentially truncates them.
# Keyed by tool_name → full output string. Consumed (popped) by the
# response adapter when it builds StreamToolOutputAvailable.
_pending_tool_outputs: ContextVar[dict[str, str]] = ContextVar(
"pending_tool_outputs", default=None # type: ignore[arg-type]
)
# Callback type for delegating long-running tools to the non-SDK infrastructure.
# Args: (tool_name, arguments, session) → MCP-formatted response dict.
LongRunningCallback = Callable[
[str, dict[str, Any], ChatSession], Awaitable[dict[str, Any]]
]
# ContextVar so the service layer can inject the callback per-request.
_long_running_callback: ContextVar[LongRunningCallback | None] = ContextVar(
"long_running_callback", default=None
)
def set_execution_context(
user_id: str | None,
session: ChatSession,
long_running_callback: LongRunningCallback | None = None,
) -> None:
"""Set the execution context for tool calls.
This must be called before streaming begins to ensure tools have access
to user_id and session information.
Args:
user_id: Current user's ID.
session: Current chat session.
long_running_callback: Optional callback to delegate long-running tools
to the non-SDK background infrastructure (stream_registry + Redis).
"""
_current_user_id.set(user_id)
_current_session.set(session)
_pending_tool_outputs.set({})
_long_running_callback.set(long_running_callback)
def get_execution_context() -> tuple[str | None, ChatSession | None]:
"""Get the current execution context."""
return (
_current_user_id.get(),
_current_session.get(),
)
def pop_pending_tool_output(tool_name: str) -> str | None:
"""Pop and return the stashed full output for *tool_name*.
The SDK CLI may truncate large tool results (writing them to disk and
replacing the content with a file reference). This stash keeps the
original MCP output so the response adapter can forward it to the
frontend for proper widget rendering.
Returns ``None`` if nothing was stashed for *tool_name*.
"""
pending = _pending_tool_outputs.get(None)
if pending is None:
return None
return pending.pop(tool_name, None)
async def _execute_tool_sync(
base_tool: BaseTool,
user_id: str | None,
session: ChatSession,
args: dict[str, Any],
) -> dict[str, Any]:
"""Execute a tool synchronously and return MCP-formatted response."""
effective_id = f"sdk-{uuid.uuid4().hex[:12]}"
result = await base_tool.execute(
user_id=user_id,
session=session,
tool_call_id=effective_id,
**args,
)
text = (
result.output if isinstance(result.output, str) else json.dumps(result.output)
)
# Stash the full output before the SDK potentially truncates it.
pending = _pending_tool_outputs.get(None)
if pending is not None:
pending[base_tool.name] = text
return {
"content": [{"type": "text", "text": text}],
"isError": not result.success,
}
def _mcp_error(message: str) -> dict[str, Any]:
return {
"content": [
{"type": "text", "text": json.dumps({"error": message, "type": "error"})}
],
"isError": True,
}
def create_tool_handler(base_tool: BaseTool):
"""Create an async handler function for a BaseTool.
This wraps the existing BaseTool._execute method to be compatible
with the Claude Agent SDK MCP tool format.
Long-running tools (``is_long_running=True``) are delegated to the
non-SDK background infrastructure via a callback set in the execution
context. The callback persists the operation in Redis (stream_registry)
so results survive page refreshes and pod restarts.
"""
async def tool_handler(args: dict[str, Any]) -> dict[str, Any]:
"""Execute the wrapped tool and return MCP-formatted response."""
user_id, session = get_execution_context()
if session is None:
return _mcp_error("No session context available")
# --- Long-running: delegate to non-SDK background infrastructure ---
if base_tool.is_long_running:
callback = _long_running_callback.get(None)
if callback:
try:
return await callback(base_tool.name, args, session)
except Exception as e:
logger.error(
f"Long-running callback failed for {base_tool.name}: {e}",
exc_info=True,
)
return _mcp_error(f"Failed to start {base_tool.name}: {e}")
# No callback — fall through to synchronous execution
logger.warning(
f"[SDK] No long-running callback for {base_tool.name}, "
f"executing synchronously (may block)"
)
# --- Normal (fast) tool: execute synchronously ---
try:
return await _execute_tool_sync(base_tool, user_id, session, args)
except Exception as e:
logger.error(f"Error executing tool {base_tool.name}: {e}", exc_info=True)
return _mcp_error(f"Failed to execute {base_tool.name}: {e}")
return tool_handler
def _build_input_schema(base_tool: BaseTool) -> dict[str, Any]:
"""Build a JSON Schema input schema for a tool."""
return {
"type": "object",
"properties": base_tool.parameters.get("properties", {}),
"required": base_tool.parameters.get("required", []),
}
async def _read_file_handler(args: dict[str, Any]) -> dict[str, Any]:
"""Read a file with optional offset/limit. Restricted to SDK working directory.
After reading, the file is deleted to prevent accumulation in long-running pods.
"""
file_path = args.get("file_path", "")
offset = args.get("offset", 0)
limit = args.get("limit", 2000)
# Security: only allow reads under ~/.claude/projects/**/tool-results/
real_path = os.path.realpath(file_path)
if not real_path.startswith(_SDK_PROJECTS_DIR) or "tool-results" not in real_path:
return {
"content": [{"type": "text", "text": f"Access denied: {file_path}"}],
"isError": True,
}
try:
with open(real_path) as f:
selected = list(itertools.islice(f, offset, offset + limit))
content = "".join(selected)
# Cleanup happens in _cleanup_sdk_tool_results after session ends;
# don't delete here — the SDK may read in multiple chunks.
return {"content": [{"type": "text", "text": content}], "isError": False}
except FileNotFoundError:
return {
"content": [{"type": "text", "text": f"File not found: {file_path}"}],
"isError": True,
}
except Exception as e:
return {
"content": [{"type": "text", "text": f"Error reading file: {e}"}],
"isError": True,
}
_READ_TOOL_NAME = "Read"
_READ_TOOL_DESCRIPTION = (
"Read a file from the local filesystem. "
"Use offset and limit to read specific line ranges for large files."
)
_READ_TOOL_SCHEMA = {
"type": "object",
"properties": {
"file_path": {
"type": "string",
"description": "The absolute path to the file to read",
},
"offset": {
"type": "integer",
"description": "Line number to start reading from (0-indexed). Default: 0",
},
"limit": {
"type": "integer",
"description": "Number of lines to read. Default: 2000",
},
},
"required": ["file_path"],
}
# Create the MCP server configuration
def create_copilot_mcp_server():
"""Create an in-process MCP server configuration for CoPilot tools.
This can be passed to ClaudeAgentOptions.mcp_servers.
Note: The actual SDK MCP server creation depends on the claude-agent-sdk
package being available. This function returns the configuration that
can be used with the SDK.
"""
try:
from claude_agent_sdk import create_sdk_mcp_server, tool
# Create decorated tool functions
sdk_tools = []
for tool_name, base_tool in TOOL_REGISTRY.items():
handler = create_tool_handler(base_tool)
decorated = tool(
tool_name,
base_tool.description,
_build_input_schema(base_tool),
)(handler)
sdk_tools.append(decorated)
# Add the Read tool so the SDK can read back oversized tool results
read_tool = tool(
_READ_TOOL_NAME,
_READ_TOOL_DESCRIPTION,
_READ_TOOL_SCHEMA,
)(_read_file_handler)
sdk_tools.append(read_tool)
server = create_sdk_mcp_server(
name=MCP_SERVER_NAME,
version="1.0.0",
tools=sdk_tools,
)
return server
except ImportError:
# Let ImportError propagate so service.py handles the fallback
raise
# SDK built-in tools allowed within the workspace directory.
# Security hooks validate that file paths stay within sdk_cwd.
# Bash is NOT included — use the sandboxed MCP bash_exec tool instead,
# which provides kernel-level network isolation via unshare --net.
# Task allows spawning sub-agents (rate-limited by security hooks).
# WebSearch uses Brave Search via Anthropic's API — safe, no SSRF risk.
_SDK_BUILTIN_TOOLS = ["Read", "Write", "Edit", "Glob", "Grep", "Task", "WebSearch"]
# SDK built-in tools that must be explicitly blocked.
# Bash: dangerous — agent uses mcp__copilot__bash_exec with kernel-level
# network isolation (unshare --net) instead.
# WebFetch: SSRF risk — can reach internal network (localhost, 10.x, etc.).
# Agent uses the SSRF-protected mcp__copilot__web_fetch tool instead.
SDK_DISALLOWED_TOOLS = ["Bash", "WebFetch"]
# Tools that are blocked entirely in security hooks (defence-in-depth).
# Includes SDK_DISALLOWED_TOOLS plus common aliases/synonyms.
BLOCKED_TOOLS = {
*SDK_DISALLOWED_TOOLS,
"bash",
"shell",
"exec",
"terminal",
"command",
}
# Tools allowed only when their path argument stays within the SDK workspace.
# The SDK uses these to handle oversized tool results (writes to tool-results/
# files, then reads them back) and for workspace file operations.
WORKSPACE_SCOPED_TOOLS = {"Read", "Write", "Edit", "Glob", "Grep"}
# Dangerous patterns in tool inputs
DANGEROUS_PATTERNS = [
r"sudo",
r"rm\s+-rf",
r"dd\s+if=",
r"/etc/passwd",
r"/etc/shadow",
r"chmod\s+777",
r"curl\s+.*\|.*sh",
r"wget\s+.*\|.*sh",
r"eval\s*\(",
r"exec\s*\(",
r"__import__",
r"os\.system",
r"subprocess",
]
# List of tool names for allowed_tools configuration
# Include MCP tools, the MCP Read tool for oversized results,
# and SDK built-in file tools for workspace operations.
COPILOT_TOOL_NAMES = [
*[f"{MCP_TOOL_PREFIX}{name}" for name in TOOL_REGISTRY.keys()],
f"{MCP_TOOL_PREFIX}{_READ_TOOL_NAME}",
*_SDK_BUILTIN_TOOLS,
]

View File

@@ -1,356 +0,0 @@
"""JSONL transcript management for stateless multi-turn resume.
The Claude Code CLI persists conversations as JSONL files (one JSON object per
line). When the SDK's ``Stop`` hook fires we read this file, strip bloat
(progress entries, metadata), and upload the result to bucket storage. On the
next turn we download the transcript, write it to a temp file, and pass
``--resume`` so the CLI can reconstruct the full conversation.
Storage is handled via ``WorkspaceStorageBackend`` (GCS in prod, local
filesystem for self-hosted) — no DB column needed.
"""
import json
import logging
import os
import re
logger = logging.getLogger(__name__)
# UUIDs are hex + hyphens; strip everything else to prevent path injection.
_SAFE_ID_RE = re.compile(r"[^0-9a-fA-F-]")
# Entry types that can be safely removed from the transcript without breaking
# the parentUuid conversation tree that ``--resume`` relies on.
# - progress: UI progress ticks, no message content (avg 97KB for agent_progress)
# - file-history-snapshot: undo tracking metadata
# - queue-operation: internal queue bookkeeping
# - summary: session summaries
# - pr-link: PR link metadata
STRIPPABLE_TYPES = frozenset(
{"progress", "file-history-snapshot", "queue-operation", "summary", "pr-link"}
)
# Workspace storage constants — deterministic path from session_id.
TRANSCRIPT_STORAGE_PREFIX = "chat-transcripts"
# ---------------------------------------------------------------------------
# Progress stripping
# ---------------------------------------------------------------------------
def strip_progress_entries(content: str) -> str:
"""Remove progress/metadata entries from a JSONL transcript.
Removes entries whose ``type`` is in ``STRIPPABLE_TYPES`` and reparents
any remaining child entries so the ``parentUuid`` chain stays intact.
Typically reduces transcript size by ~30%.
"""
lines = content.strip().split("\n")
entries: list[dict] = []
for line in lines:
try:
entries.append(json.loads(line))
except json.JSONDecodeError:
# Keep unparseable lines as-is (safety)
entries.append({"_raw": line})
stripped_uuids: set[str] = set()
uuid_to_parent: dict[str, str] = {}
kept: list[dict] = []
for entry in entries:
if "_raw" in entry:
kept.append(entry)
continue
uid = entry.get("uuid", "")
parent = entry.get("parentUuid", "")
entry_type = entry.get("type", "")
if uid:
uuid_to_parent[uid] = parent
if entry_type in STRIPPABLE_TYPES:
if uid:
stripped_uuids.add(uid)
else:
kept.append(entry)
# Reparent: walk up chain through stripped entries to find surviving ancestor
for entry in kept:
if "_raw" in entry:
continue
parent = entry.get("parentUuid", "")
original_parent = parent
while parent in stripped_uuids:
parent = uuid_to_parent.get(parent, "")
if parent != original_parent:
entry["parentUuid"] = parent
result_lines: list[str] = []
for entry in kept:
if "_raw" in entry:
result_lines.append(entry["_raw"])
else:
result_lines.append(json.dumps(entry, separators=(",", ":")))
return "\n".join(result_lines) + "\n"
# ---------------------------------------------------------------------------
# Local file I/O (read from CLI's JSONL, write temp file for --resume)
# ---------------------------------------------------------------------------
def read_transcript_file(transcript_path: str) -> str | None:
"""Read a JSONL transcript file from disk.
Returns the raw JSONL content, or ``None`` if the file is missing, empty,
or only contains metadata (≤2 lines with no conversation messages).
"""
if not transcript_path or not os.path.isfile(transcript_path):
logger.debug(f"[Transcript] File not found: {transcript_path}")
return None
try:
with open(transcript_path) as f:
content = f.read()
if not content.strip():
logger.debug(f"[Transcript] Empty file: {transcript_path}")
return None
lines = content.strip().split("\n")
if len(lines) < 3:
# Raw files with ≤2 lines are metadata-only
# (queue-operation + file-history-snapshot, no conversation).
logger.debug(
f"[Transcript] Too few lines ({len(lines)}): {transcript_path}"
)
return None
# Quick structural validation — parse first and last lines.
json.loads(lines[0])
json.loads(lines[-1])
logger.info(
f"[Transcript] Read {len(lines)} lines, "
f"{len(content)} bytes from {transcript_path}"
)
return content
except (json.JSONDecodeError, OSError) as e:
logger.warning(f"[Transcript] Failed to read {transcript_path}: {e}")
return None
def _sanitize_id(raw_id: str, max_len: int = 36) -> str:
"""Sanitize an ID for safe use in file paths.
Session/user IDs are expected to be UUIDs (hex + hyphens). Strip
everything else and truncate to *max_len* so the result cannot introduce
path separators or other special characters.
"""
cleaned = _SAFE_ID_RE.sub("", raw_id or "")[:max_len]
return cleaned or "unknown"
_SAFE_CWD_PREFIX = os.path.realpath("/tmp/copilot-")
def write_transcript_to_tempfile(
transcript_content: str,
session_id: str,
cwd: str,
) -> str | None:
"""Write JSONL transcript to a temp file inside *cwd* for ``--resume``.
The file lives in the session working directory so it is cleaned up
automatically when the session ends.
Returns the absolute path to the file, or ``None`` on failure.
"""
# Validate cwd is under the expected sandbox prefix (CodeQL sanitizer).
real_cwd = os.path.realpath(cwd)
if not real_cwd.startswith(_SAFE_CWD_PREFIX):
logger.warning(f"[Transcript] cwd outside sandbox: {cwd}")
return None
try:
os.makedirs(real_cwd, exist_ok=True)
safe_id = _sanitize_id(session_id, max_len=8)
jsonl_path = os.path.realpath(
os.path.join(real_cwd, f"transcript-{safe_id}.jsonl")
)
if not jsonl_path.startswith(real_cwd):
logger.warning(f"[Transcript] Path escaped cwd: {jsonl_path}")
return None
with open(jsonl_path, "w") as f:
f.write(transcript_content)
logger.info(f"[Transcript] Wrote resume file: {jsonl_path}")
return jsonl_path
except OSError as e:
logger.warning(f"[Transcript] Failed to write resume file: {e}")
return None
def validate_transcript(content: str | None) -> bool:
"""Check that a transcript has actual conversation messages.
A valid transcript for resume needs at least one user message and one
assistant message (not just queue-operation / file-history-snapshot
metadata).
"""
if not content or not content.strip():
return False
lines = content.strip().split("\n")
if len(lines) < 2:
return False
has_user = False
has_assistant = False
for line in lines:
try:
entry = json.loads(line)
msg_type = entry.get("type")
if msg_type == "user":
has_user = True
elif msg_type == "assistant":
has_assistant = True
except json.JSONDecodeError:
return False
return has_user and has_assistant
# ---------------------------------------------------------------------------
# Bucket storage (GCS / local via WorkspaceStorageBackend)
# ---------------------------------------------------------------------------
def _storage_path_parts(user_id: str, session_id: str) -> tuple[str, str, str]:
"""Return (workspace_id, file_id, filename) for a session's transcript.
Path structure: ``chat-transcripts/{user_id}/{session_id}.jsonl``
IDs are sanitized to hex+hyphen to prevent path traversal.
"""
return (
TRANSCRIPT_STORAGE_PREFIX,
_sanitize_id(user_id),
f"{_sanitize_id(session_id)}.jsonl",
)
def _build_storage_path(user_id: str, session_id: str, backend: object) -> str:
"""Build the full storage path string that ``retrieve()`` expects.
``store()`` returns a path like ``gcs://bucket/workspaces/...`` or
``local://workspace_id/file_id/filename``. Since we use deterministic
arguments we can reconstruct the same path for download/delete without
having stored the return value.
"""
from backend.util.workspace_storage import GCSWorkspaceStorage
wid, fid, fname = _storage_path_parts(user_id, session_id)
if isinstance(backend, GCSWorkspaceStorage):
blob = f"workspaces/{wid}/{fid}/{fname}"
return f"gcs://{backend.bucket_name}/{blob}"
else:
# LocalWorkspaceStorage returns local://{relative_path}
return f"local://{wid}/{fid}/{fname}"
async def upload_transcript(user_id: str, session_id: str, content: str) -> None:
"""Strip progress entries and upload transcript to bucket storage.
Safety: only overwrites when the new (stripped) transcript is larger than
what is already stored. Since JSONL is append-only, the latest transcript
is always the longest. This prevents a slow/stale background task from
clobbering a newer upload from a concurrent turn.
"""
from backend.util.workspace_storage import get_workspace_storage
stripped = strip_progress_entries(content)
if not validate_transcript(stripped):
logger.warning(
f"[Transcript] Skipping upload — stripped content is not a valid "
f"transcript for session {session_id}"
)
return
storage = await get_workspace_storage()
wid, fid, fname = _storage_path_parts(user_id, session_id)
encoded = stripped.encode("utf-8")
new_size = len(encoded)
# Check existing transcript size to avoid overwriting newer with older
path = _build_storage_path(user_id, session_id, storage)
try:
existing = await storage.retrieve(path)
if len(existing) >= new_size:
logger.info(
f"[Transcript] Skipping upload — existing transcript "
f"({len(existing)}B) >= new ({new_size}B) for session "
f"{session_id}"
)
return
except (FileNotFoundError, Exception):
pass # No existing transcript or retrieval error — proceed with upload
await storage.store(
workspace_id=wid,
file_id=fid,
filename=fname,
content=encoded,
)
logger.info(
f"[Transcript] Uploaded {new_size} bytes "
f"(stripped from {len(content)}) for session {session_id}"
)
async def download_transcript(user_id: str, session_id: str) -> str | None:
"""Download transcript from bucket storage.
Returns the JSONL content string, or ``None`` if not found.
"""
from backend.util.workspace_storage import get_workspace_storage
storage = await get_workspace_storage()
path = _build_storage_path(user_id, session_id, storage)
try:
data = await storage.retrieve(path)
content = data.decode("utf-8")
logger.info(
f"[Transcript] Downloaded {len(content)} bytes for session {session_id}"
)
return content
except FileNotFoundError:
logger.debug(f"[Transcript] No transcript in storage for {session_id}")
return None
except Exception as e:
logger.warning(f"[Transcript] Failed to download transcript: {e}")
return None
async def delete_transcript(user_id: str, session_id: str) -> None:
"""Delete transcript from bucket storage (e.g. after resume failure)."""
from backend.util.workspace_storage import get_workspace_storage
storage = await get_workspace_storage()
path = _build_storage_path(user_id, session_id, storage)
try:
await storage.delete(path)
logger.info(f"[Transcript] Deleted transcript for session {session_id}")
except Exception as e:
logger.warning(f"[Transcript] Failed to delete transcript: {e}")

View File

@@ -245,16 +245,12 @@ async def _get_system_prompt_template(context: str) -> str:
return DEFAULT_SYSTEM_PROMPT.format(users_information=context)
async def _build_system_prompt(
user_id: str | None, has_conversation_history: bool = False
) -> tuple[str, Any]:
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
"""Build the full system prompt including business understanding if available.
Args:
user_id: The user ID for fetching business understanding.
has_conversation_history: Whether there's existing conversation history.
If True, we don't tell the model to greet/introduce (since they're
already in a conversation).
user_id: The user ID for fetching business understanding
If "default" and this is the user's first session, will use "onboarding" instead.
Returns:
Tuple of (compiled prompt string, business understanding object)
@@ -270,8 +266,6 @@ async def _build_system_prompt(
if understanding:
context = format_understanding_for_prompt(understanding)
elif has_conversation_history:
context = "No prior understanding saved yet. Continue the existing conversation naturally."
else:
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
@@ -380,6 +374,7 @@ async def stream_chat_completion(
Raises:
NotFoundError: If session_id is invalid
ValueError: If max_context_messages is exceeded
"""
completion_start = time.monotonic()
@@ -464,9 +459,8 @@ async def stream_chat_completion(
# Generate title for new sessions on first user message (non-blocking)
# Check: is_user_message, no title yet, and this is the first user message
user_messages = [m for m in session.messages if m.role == "user"]
first_user_msg = message or (user_messages[0].content if user_messages else None)
if is_user_message and first_user_msg and not session.title:
if is_user_message and message and not session.title:
user_messages = [m for m in session.messages if m.role == "user"]
if len(user_messages) == 1:
# First user message - generate title in background
import asyncio
@@ -474,7 +468,7 @@ async def stream_chat_completion(
# Capture only the values we need (not the session object) to avoid
# stale data issues when the main flow modifies the session
captured_session_id = session_id
captured_message = first_user_msg
captured_message = message
captured_user_id = user_id
async def _update_title():
@@ -806,13 +800,9 @@ async def stream_chat_completion(
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
# Add assistant message with tool_calls if any.
# Use extend (not assign) to preserve tool_calls already added by
# _yield_tool_call for long-running tools.
# Add assistant message with tool_calls if any
if accumulated_tool_calls:
if not assistant_response.tool_calls:
assistant_response.tool_calls = []
assistant_response.tool_calls.extend(accumulated_tool_calls)
assistant_response.tool_calls = accumulated_tool_calls
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
@@ -1251,7 +1241,6 @@ async def _stream_chat_chunks(
return
except Exception as e:
last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
# Calculate delay with exponential backoff
@@ -1267,27 +1256,12 @@ async def _stream_chat_chunks(
continue # Retry the stream
else:
# Non-retryable error or max retries exceeded
_log_api_error(
error=e,
context="stream (not retrying)",
session_id=session.session_id if session else None,
message_count=len(messages) if messages else None,
model=model,
retry_count=retry_count,
logger.error(
f"Error in stream (not retrying): {e!s}",
exc_info=True,
)
error_code = None
error_text = str(e)
error_details = _extract_api_error_details(e)
if error_details.get("response_body"):
body = error_details["response_body"]
if isinstance(body, dict):
err = body.get("error")
if isinstance(err, dict) and err.get("message"):
error_text = err["message"]
elif body.get("message"):
error_text = body["message"]
if _is_region_blocked_error(e):
error_code = "MODEL_NOT_AVAILABLE_REGION"
error_text = (
@@ -1304,13 +1278,9 @@ async def _stream_chat_chunks(
# If we exit the retry loop without returning, it means we exhausted retries
if last_error:
_log_api_error(
error=last_error,
context=f"stream (max retries {MAX_RETRIES} exceeded)",
session_id=session.session_id if session else None,
message_count=len(messages) if messages else None,
model=model,
retry_count=MAX_RETRIES,
logger.error(
f"Max retries ({MAX_RETRIES}) exceeded. Last error: {last_error!s}",
exc_info=True,
)
yield StreamError(errorText=f"Max retries exceeded: {last_error!s}")
yield StreamFinish()
@@ -1434,9 +1404,13 @@ async def _yield_tool_call(
operation_id=operation_id,
)
# Attach the tool_call to the current turn's assistant message
# (or create one if this is a tool-only response with no text).
session.add_tool_call_to_current_turn(tool_calls[yield_idx])
# Save assistant message with tool_call FIRST (required by LLM)
assistant_message = ChatMessage(
role="assistant",
content="",
tool_calls=[tool_calls[yield_idx]],
)
session.messages.append(assistant_message)
# Then save pending tool result
pending_message = ChatMessage(
@@ -1883,7 +1857,6 @@ async def _generate_llm_continuation(
break # Success, exit retry loop
except Exception as e:
last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
delay = min(
@@ -1897,25 +1870,17 @@ async def _generate_llm_continuation(
await asyncio.sleep(delay)
continue
else:
# Non-retryable error - log details and exit gracefully
_log_api_error(
error=e,
context="LLM continuation (not retrying)",
session_id=session_id,
message_count=len(messages) if messages else None,
model=config.model,
retry_count=retry_count,
# Non-retryable error - log and exit gracefully
logger.error(
f"Non-retryable error in LLM continuation: {e!s}",
exc_info=True,
)
return
if last_error:
_log_api_error(
error=last_error,
context=f"LLM continuation (max retries {MAX_RETRIES} exceeded)",
session_id=session_id,
message_count=len(messages) if messages else None,
model=config.model,
retry_count=MAX_RETRIES,
logger.error(
f"Max retries ({MAX_RETRIES}) exceeded for LLM continuation. "
f"Last error: {last_error!s}"
)
return
@@ -1955,91 +1920,6 @@ async def _generate_llm_continuation(
logger.error(f"Failed to generate LLM continuation: {e}", exc_info=True)
def _log_api_error(
error: Exception,
context: str,
session_id: str | None = None,
message_count: int | None = None,
model: str | None = None,
retry_count: int = 0,
) -> None:
"""Log detailed API error information for debugging."""
details = _extract_api_error_details(error)
details["context"] = context
details["session_id"] = session_id
details["message_count"] = message_count
details["model"] = model
details["retry_count"] = retry_count
if isinstance(error, RateLimitError):
logger.warning(f"Rate limit error in {context}: {details}", exc_info=error)
elif isinstance(error, APIConnectionError):
logger.warning(f"API connection error in {context}: {details}", exc_info=error)
elif isinstance(error, APIStatusError) and error.status_code >= 500:
logger.error(f"API server error (5xx) in {context}: {details}", exc_info=error)
else:
logger.error(f"API error in {context}: {details}", exc_info=error)
def _extract_api_error_details(error: Exception) -> dict[str, Any]:
"""Extract detailed information from OpenAI/OpenRouter API errors."""
error_msg = str(error)
details: dict[str, Any] = {
"error_type": type(error).__name__,
"error_message": error_msg[:500] + "..." if len(error_msg) > 500 else error_msg,
}
if hasattr(error, "code"):
details["code"] = getattr(error, "code", None)
if hasattr(error, "param"):
details["param"] = getattr(error, "param", None)
if isinstance(error, APIStatusError):
details["status_code"] = error.status_code
details["request_id"] = getattr(error, "request_id", None)
if hasattr(error, "body") and error.body:
details["response_body"] = _sanitize_error_body(error.body)
if hasattr(error, "response") and error.response:
headers = error.response.headers
details["openrouter_provider"] = headers.get("x-openrouter-provider")
details["openrouter_model"] = headers.get("x-openrouter-model")
details["retry_after"] = headers.get("retry-after")
details["rate_limit_remaining"] = headers.get("x-ratelimit-remaining")
return details
def _sanitize_error_body(
body: Any, max_length: int = 2000
) -> dict[str, Any] | str | None:
"""Extract only safe fields from error response body to avoid logging sensitive data."""
if not isinstance(body, dict):
# Non-dict bodies (e.g., HTML error pages) - return truncated string
if body is not None:
body_str = str(body)
if len(body_str) > max_length:
return body_str[:max_length] + "...[truncated]"
return body_str
return None
safe_fields = ("message", "type", "code", "param", "error")
sanitized: dict[str, Any] = {}
for field in safe_fields:
if field in body:
value = body[field]
if field == "error" and isinstance(value, dict):
sanitized[field] = _sanitize_error_body(value, max_length)
elif isinstance(value, str) and len(value) > max_length:
sanitized[field] = value[:max_length] + "...[truncated]"
else:
sanitized[field] = value
return sanitized if sanitized else None
async def _generate_llm_continuation_with_streaming(
session_id: str,
user_id: str | None,

View File

@@ -1,4 +1,3 @@
import asyncio
import logging
from os import getenv
@@ -12,8 +11,6 @@ from .response_model import (
StreamTextDelta,
StreamToolOutputAvailable,
)
from .sdk import service as sdk_service
from .sdk.transcript import download_transcript
logger = logging.getLogger(__name__)
@@ -83,96 +80,3 @@ async def test_stream_chat_completion_with_tool_calls(setup_test_user, test_user
session = await get_chat_session(session.session_id)
assert session, "Session not found"
assert session.usage, "Usage is empty"
@pytest.mark.asyncio(loop_scope="session")
async def test_sdk_resume_multi_turn(setup_test_user, test_user_id):
"""Test that the SDK --resume path captures and uses transcripts across turns.
Turn 1: Send a message containing a unique keyword.
Turn 2: Ask the model to recall that keyword — proving the transcript was
persisted and restored via --resume.
"""
api_key: str | None = getenv("OPEN_ROUTER_API_KEY")
if not api_key:
return pytest.skip("OPEN_ROUTER_API_KEY is not set, skipping test")
from .config import ChatConfig
cfg = ChatConfig()
if not cfg.claude_agent_use_resume:
return pytest.skip("CLAUDE_AGENT_USE_RESUME is not enabled, skipping test")
session = await create_chat_session(test_user_id)
session = await upsert_chat_session(session)
# --- Turn 1: send a message with a unique keyword ---
keyword = "ZEPHYR42"
turn1_msg = (
f"Please remember this special keyword: {keyword}. "
"Just confirm you've noted it, keep your response brief."
)
turn1_text = ""
turn1_errors: list[str] = []
turn1_ended = False
async for chunk in sdk_service.stream_chat_completion_sdk(
session.session_id,
turn1_msg,
user_id=test_user_id,
):
if isinstance(chunk, StreamTextDelta):
turn1_text += chunk.delta
elif isinstance(chunk, StreamError):
turn1_errors.append(chunk.errorText)
elif isinstance(chunk, StreamFinish):
turn1_ended = True
assert turn1_ended, "Turn 1 did not finish"
assert not turn1_errors, f"Turn 1 errors: {turn1_errors}"
assert turn1_text, "Turn 1 produced no text"
# Wait for background upload task to complete (retry up to 5s)
transcript = None
for _ in range(10):
await asyncio.sleep(0.5)
transcript = await download_transcript(test_user_id, session.session_id)
if transcript:
break
assert transcript, (
"Transcript was not uploaded to bucket after turn 1 — "
"Stop hook may not have fired or transcript was too small"
)
logger.info(f"Turn 1 transcript uploaded: {len(transcript)} bytes")
# Reload session for turn 2
session = await get_chat_session(session.session_id, test_user_id)
assert session, "Session not found after turn 1"
# --- Turn 2: ask model to recall the keyword ---
turn2_msg = "What was the special keyword I asked you to remember?"
turn2_text = ""
turn2_errors: list[str] = []
turn2_ended = False
async for chunk in sdk_service.stream_chat_completion_sdk(
session.session_id,
turn2_msg,
user_id=test_user_id,
session=session,
):
if isinstance(chunk, StreamTextDelta):
turn2_text += chunk.delta
elif isinstance(chunk, StreamError):
turn2_errors.append(chunk.errorText)
elif isinstance(chunk, StreamFinish):
turn2_ended = True
assert turn2_ended, "Turn 2 did not finish"
assert not turn2_errors, f"Turn 2 errors: {turn2_errors}"
assert turn2_text, "Turn 2 produced no text"
assert keyword in turn2_text, (
f"Model did not recall keyword '{keyword}' in turn 2. "
f"Response: {turn2_text[:200]}"
)
logger.info(f"Turn 2 recalled keyword successfully: {turn2_text[:100]}")

View File

@@ -569,7 +569,7 @@ async def _stream_listener(
if isinstance(chunk, StreamFinish):
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] StreamFinish received in {total_time/1000:.1f}s; delivered={messages_delivered}",
f"[TIMING] StreamFinish received in {total_time / 1000:.1f}s; delivered={messages_delivered}",
extra={
"json_fields": {
**log_meta,
@@ -620,7 +620,7 @@ async def _stream_listener(
# Clean up listener task mapping on exit
total_time = (time.perf_counter() - start_time) * 1000
logger.info(
f"[TIMING] _stream_listener FINISHED in {total_time/1000:.1f}s; task={task_id}, "
f"[TIMING] _stream_listener FINISHED in {total_time / 1000:.1f}s; task={task_id}, "
f"delivered={messages_delivered}, xread_count={xread_count}",
extra={
"json_fields": {
@@ -814,28 +814,6 @@ async def get_active_task_for_session(
if task_user_id and user_id != task_user_id:
continue
# Auto-expire stale tasks that exceeded stream_timeout
created_at_str = meta.get("created_at", "")
if created_at_str:
try:
created_at = datetime.fromisoformat(created_at_str)
age_seconds = (
datetime.now(timezone.utc) - created_at
).total_seconds()
if age_seconds > config.stream_timeout:
logger.warning(
f"[TASK_LOOKUP] Auto-expiring stale task {task_id[:8]}... "
f"(age={age_seconds:.0f}s > timeout={config.stream_timeout}s)"
)
await mark_task_completed(task_id, "failed")
continue
except (ValueError, TypeError):
pass
logger.info(
f"[TASK_LOOKUP] Found running task {task_id[:8]}... for session {session_id[:8]}..."
)
# Get the last message ID from Redis Stream
stream_key = _get_task_stream_key(task_id)
last_id = "0-0"

View File

@@ -9,12 +9,9 @@ from backend.api.features.chat.tracking import track_tool_called
from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
from .base import BaseTool
from .bash_exec import BashExecTool
from .check_operation_status import CheckOperationStatusTool
from .create_agent import CreateAgentTool
from .customize_agent import CustomizeAgentTool
from .edit_agent import EditAgentTool
from .feature_requests import CreateFeatureRequestTool, SearchFeatureRequestsTool
from .find_agent import FindAgentTool
from .find_block import FindBlockTool
from .find_library_agent import FindLibraryAgentTool
@@ -22,7 +19,6 @@ from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
from .web_fetch import WebFetchTool
from .workspace_files import (
DeleteWorkspaceFileTool,
ListWorkspaceFilesTool,
@@ -47,17 +43,8 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"run_agent": RunAgentTool(),
"run_block": RunBlockTool(),
"view_agent_output": AgentOutputTool(),
"check_operation_status": CheckOperationStatusTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Web fetch for safe URL retrieval
"web_fetch": WebFetchTool(),
# Sandboxed code execution (bubblewrap)
"bash_exec": BashExecTool(),
# Persistent workspace tools (cloud storage, survives across sessions)
# Feature request tools
"search_feature_requests": SearchFeatureRequestsTool(),
"create_feature_request": CreateFeatureRequestTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),

View File

@@ -1,154 +0,0 @@
"""Dummy Agent Generator for testing.
Returns mock responses matching the format expected from the external service.
Enable via AGENTGENERATOR_USE_DUMMY=true in settings.
WARNING: This is for testing only. Do not use in production.
"""
import asyncio
import logging
import uuid
from typing import Any
logger = logging.getLogger(__name__)
# Dummy decomposition result (instructions type)
DUMMY_DECOMPOSITION_RESULT: dict[str, Any] = {
"type": "instructions",
"steps": [
{
"description": "Get input from user",
"action": "input",
"block_name": "AgentInputBlock",
},
{
"description": "Process the input",
"action": "process",
"block_name": "TextFormatterBlock",
},
{
"description": "Return output to user",
"action": "output",
"block_name": "AgentOutputBlock",
},
],
}
# Block IDs from backend/blocks/io.py
AGENT_INPUT_BLOCK_ID = "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b"
AGENT_OUTPUT_BLOCK_ID = "363ae599-353e-4804-937e-b2ee3cef3da4"
def _generate_dummy_agent_json() -> dict[str, Any]:
"""Generate a minimal valid agent JSON for testing."""
input_node_id = str(uuid.uuid4())
output_node_id = str(uuid.uuid4())
return {
"id": str(uuid.uuid4()),
"version": 1,
"is_active": True,
"name": "Dummy Test Agent",
"description": "A dummy agent generated for testing purposes",
"nodes": [
{
"id": input_node_id,
"block_id": AGENT_INPUT_BLOCK_ID,
"input_default": {
"name": "input",
"title": "Input",
"description": "Enter your input",
"placeholder_values": [],
},
"metadata": {"position": {"x": 0, "y": 0}},
},
{
"id": output_node_id,
"block_id": AGENT_OUTPUT_BLOCK_ID,
"input_default": {
"name": "output",
"title": "Output",
"description": "Agent output",
"format": "{output}",
},
"metadata": {"position": {"x": 400, "y": 0}},
},
],
"links": [
{
"id": str(uuid.uuid4()),
"source_id": input_node_id,
"sink_id": output_node_id,
"source_name": "result",
"sink_name": "value",
"is_static": False,
},
],
}
async def decompose_goal_dummy(
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any]:
"""Return dummy decomposition result."""
logger.info("Using dummy agent generator for decompose_goal")
return DUMMY_DECOMPOSITION_RESULT.copy()
async def generate_agent_dummy(
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any]:
"""Return dummy agent JSON after a simulated delay."""
logger.info("Using dummy agent generator for generate_agent (30s delay)")
await asyncio.sleep(30)
return _generate_dummy_agent_json()
async def generate_agent_patch_dummy(
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
operation_id: str | None = None,
task_id: str | None = None,
) -> dict[str, Any]:
"""Return dummy patched agent (returns the current agent with updated description)."""
logger.info("Using dummy agent generator for generate_agent_patch")
patched = current_agent.copy()
patched["description"] = (
f"{current_agent.get('description', '')} (updated: {update_request})"
)
return patched
async def customize_template_dummy(
template_agent: dict[str, Any],
modification_request: str,
context: str = "",
) -> dict[str, Any]:
"""Return dummy customized template (returns template with updated description)."""
logger.info("Using dummy agent generator for customize_template")
customized = template_agent.copy()
customized["description"] = (
f"{template_agent.get('description', '')} (customized: {modification_request})"
)
return customized
async def get_blocks_dummy() -> list[dict[str, Any]]:
"""Return dummy blocks list."""
logger.info("Using dummy agent generator for get_blocks")
return [
{"id": AGENT_INPUT_BLOCK_ID, "name": "AgentInputBlock"},
{"id": AGENT_OUTPUT_BLOCK_ID, "name": "AgentOutputBlock"},
]
async def health_check_dummy() -> bool:
"""Always returns healthy for dummy service."""
return True

View File

@@ -12,19 +12,8 @@ import httpx
from backend.util.settings import Settings
from .dummy import (
customize_template_dummy,
decompose_goal_dummy,
generate_agent_dummy,
generate_agent_patch_dummy,
get_blocks_dummy,
health_check_dummy,
)
logger = logging.getLogger(__name__)
_dummy_mode_warned = False
def _create_error_response(
error_message: str,
@@ -101,26 +90,10 @@ def _get_settings() -> Settings:
return _settings
def _is_dummy_mode() -> bool:
"""Check if dummy mode is enabled for testing."""
global _dummy_mode_warned
settings = _get_settings()
is_dummy = bool(settings.config.agentgenerator_use_dummy)
if is_dummy and not _dummy_mode_warned:
logger.warning(
"Agent Generator running in DUMMY MODE - returning mock responses. "
"Do not use in production!"
)
_dummy_mode_warned = True
return is_dummy
def is_external_service_configured() -> bool:
"""Check if external Agent Generator service is configured (or dummy mode)."""
"""Check if external Agent Generator service is configured."""
settings = _get_settings()
return bool(settings.config.agentgenerator_host) or bool(
settings.config.agentgenerator_use_dummy
)
return bool(settings.config.agentgenerator_host)
def _get_base_url() -> str:
@@ -164,9 +137,6 @@ async def decompose_goal_external(
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
"""
if _is_dummy_mode():
return await decompose_goal_dummy(description, context, library_agents)
client = _get_client()
if context:
@@ -256,11 +226,6 @@ async def generate_agent_external(
Returns:
Agent JSON dict, {"status": "accepted"} for async, or error dict {"type": "error", ...} on error
"""
if _is_dummy_mode():
return await generate_agent_dummy(
instructions, library_agents, operation_id, task_id
)
client = _get_client()
# Build request payload
@@ -332,11 +297,6 @@ async def generate_agent_patch_external(
Returns:
Updated agent JSON, clarifying questions dict, {"status": "accepted"} for async, or error dict on error
"""
if _is_dummy_mode():
return await generate_agent_patch_dummy(
update_request, current_agent, library_agents, operation_id, task_id
)
client = _get_client()
# Build request payload
@@ -423,11 +383,6 @@ async def customize_template_external(
Returns:
Customized agent JSON, clarifying questions dict, or error dict on error
"""
if _is_dummy_mode():
return await customize_template_dummy(
template_agent, modification_request, context
)
client = _get_client()
request = modification_request
@@ -490,9 +445,6 @@ async def get_blocks_external() -> list[dict[str, Any]] | None:
Returns:
List of block info dicts or None on error
"""
if _is_dummy_mode():
return await get_blocks_dummy()
client = _get_client()
try:
@@ -526,9 +478,6 @@ async def health_check() -> bool:
if not is_external_service_configured():
return False
if _is_dummy_mode():
return await health_check_dummy()
client = _get_client()
try:

View File

@@ -1,131 +0,0 @@
"""Bash execution tool — run shell commands in a bubblewrap sandbox.
Full Bash scripting is allowed (loops, conditionals, pipes, functions, etc.).
Safety comes from OS-level isolation (bubblewrap): only system dirs visible
read-only, writable workspace only, clean env, no network.
Requires bubblewrap (``bwrap``) — the tool is disabled when bwrap is not
available (e.g. macOS development).
"""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
BashExecResponse,
ErrorResponse,
ToolResponseBase,
)
from backend.api.features.chat.tools.sandbox import (
get_workspace_dir,
has_full_sandbox,
run_sandboxed,
)
logger = logging.getLogger(__name__)
class BashExecTool(BaseTool):
"""Execute Bash commands in a bubblewrap sandbox."""
@property
def name(self) -> str:
return "bash_exec"
@property
def description(self) -> str:
if not has_full_sandbox():
return (
"Bash execution is DISABLED — bubblewrap sandbox is not "
"available on this platform. Do not call this tool."
)
return (
"Execute a Bash command or script in a bubblewrap sandbox. "
"Full Bash scripting is supported (loops, conditionals, pipes, "
"functions, etc.). "
"The sandbox shares the same working directory as the SDK Read/Write "
"tools — files created by either are accessible to both. "
"SECURITY: Only system directories (/usr, /bin, /lib, /etc) are "
"visible read-only, the per-session workspace is the only writable "
"path, environment variables are wiped (no secrets), all network "
"access is blocked at the kernel level, and resource limits are "
"enforced (max 64 processes, 512MB memory, 50MB file size). "
"Application code, configs, and other directories are NOT accessible. "
"To fetch web content, use the web_fetch tool instead. "
"Execution is killed after the timeout (default 30s, max 120s). "
"Returns stdout and stderr. "
"Useful for file manipulation, data processing with Unix tools "
"(grep, awk, sed, jq, etc.), and running shell scripts."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"command": {
"type": "string",
"description": "Bash command or script to execute.",
},
"timeout": {
"type": "integer",
"description": (
"Max execution time in seconds (default 30, max 120)."
),
"default": 30,
},
},
"required": ["command"],
}
@property
def requires_auth(self) -> bool:
return False
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs: Any,
) -> ToolResponseBase:
session_id = session.session_id if session else None
if not has_full_sandbox():
return ErrorResponse(
message="bash_exec requires bubblewrap sandbox (Linux only).",
error="sandbox_unavailable",
session_id=session_id,
)
command: str = (kwargs.get("command") or "").strip()
timeout: int = kwargs.get("timeout", 30)
if not command:
return ErrorResponse(
message="No command provided.",
error="empty_command",
session_id=session_id,
)
workspace = get_workspace_dir(session_id or "default")
stdout, stderr, exit_code, timed_out = await run_sandboxed(
command=["bash", "-c", command],
cwd=workspace,
timeout=timeout,
)
return BashExecResponse(
message=(
"Execution timed out"
if timed_out
else f"Command executed (exit {exit_code})"
),
stdout=stdout,
stderr=stderr,
exit_code=exit_code,
timed_out=timed_out,
session_id=session_id,
)

View File

@@ -1,127 +0,0 @@
"""CheckOperationStatusTool — query the status of a long-running operation."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
ResponseType,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
class OperationStatusResponse(ToolResponseBase):
"""Response for check_operation_status tool."""
type: ResponseType = ResponseType.OPERATION_STATUS
task_id: str
operation_id: str
status: str # "running", "completed", "failed"
tool_name: str | None = None
message: str = ""
class CheckOperationStatusTool(BaseTool):
"""Check the status of a long-running operation (create_agent, edit_agent, etc.).
The CoPilot uses this tool to report back to the user whether an
operation that was started earlier has completed, failed, or is still
running.
"""
@property
def name(self) -> str:
return "check_operation_status"
@property
def description(self) -> str:
return (
"Check the current status of a long-running operation such as "
"create_agent or edit_agent. Accepts either an operation_id or "
"task_id from a previous operation_started response. "
"Returns the current status: running, completed, or failed."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"operation_id": {
"type": "string",
"description": (
"The operation_id from an operation_started response."
),
},
"task_id": {
"type": "string",
"description": (
"The task_id from an operation_started response. "
"Used as fallback if operation_id is not provided."
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return False
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
from backend.api.features.chat import stream_registry
operation_id = (kwargs.get("operation_id") or "").strip()
task_id = (kwargs.get("task_id") or "").strip()
if not operation_id and not task_id:
return ErrorResponse(
message="Please provide an operation_id or task_id.",
error="missing_parameter",
)
task = None
if operation_id:
task = await stream_registry.find_task_by_operation_id(operation_id)
if task is None and task_id:
task = await stream_registry.get_task(task_id)
if task is None:
# Task not in Redis — it may have already expired (TTL).
# Check conversation history for the result instead.
return ErrorResponse(
message=(
"Operation not found — it may have already completed and "
"expired from the status tracker. Check the conversation "
"history for the result."
),
error="not_found",
)
status_messages = {
"running": (
f"The {task.tool_name or 'operation'} is still running. "
"Please wait for it to complete."
),
"completed": (
f"The {task.tool_name or 'operation'} has completed successfully."
),
"failed": f"The {task.tool_name or 'operation'} has failed.",
}
return OperationStatusResponse(
task_id=task.task_id,
operation_id=task.operation_id,
status=task.status,
tool_name=task.tool_name,
message=status_messages.get(task.status, f"Status: {task.status}"),
)

View File

@@ -1,448 +0,0 @@
"""Feature request tools - search and create feature requests via Linear."""
import logging
from typing import Any
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestInfo,
FeatureRequestSearchResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.blocks.linear._api import LinearClient
from backend.data.model import APIKeyCredentials
from backend.data.user import get_user_email_by_id
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
MAX_SEARCH_RESULTS = 10
# GraphQL queries/mutations
SEARCH_ISSUES_QUERY = """
query SearchFeatureRequests($term: String!, $filter: IssueFilter, $first: Int) {
searchIssues(term: $term, filter: $filter, first: $first) {
nodes {
id
identifier
title
description
}
}
}
"""
CUSTOMER_UPSERT_MUTATION = """
mutation CustomerUpsert($input: CustomerUpsertInput!) {
customerUpsert(input: $input) {
success
customer {
id
name
externalIds
}
}
}
"""
ISSUE_CREATE_MUTATION = """
mutation IssueCreate($input: IssueCreateInput!) {
issueCreate(input: $input) {
success
issue {
id
identifier
title
url
}
}
}
"""
CUSTOMER_NEED_CREATE_MUTATION = """
mutation CustomerNeedCreate($input: CustomerNeedCreateInput!) {
customerNeedCreate(input: $input) {
success
need {
id
body
customer {
id
name
}
issue {
id
identifier
title
url
}
}
}
}
"""
_settings: Settings | None = None
def _get_settings() -> Settings:
global _settings
if _settings is None:
_settings = Settings()
return _settings
def _get_linear_config() -> tuple[LinearClient, str, str]:
"""Return a configured Linear client, project ID, and team ID.
Raises RuntimeError if any required setting is missing.
"""
secrets = _get_settings().secrets
if not secrets.linear_api_key:
raise RuntimeError("LINEAR_API_KEY is not configured")
if not secrets.linear_feature_request_project_id:
raise RuntimeError("LINEAR_FEATURE_REQUEST_PROJECT_ID is not configured")
if not secrets.linear_feature_request_team_id:
raise RuntimeError("LINEAR_FEATURE_REQUEST_TEAM_ID is not configured")
credentials = APIKeyCredentials(
id="system-linear",
provider="linear",
api_key=SecretStr(secrets.linear_api_key),
title="System Linear API Key",
)
client = LinearClient(credentials=credentials)
return (
client,
secrets.linear_feature_request_project_id,
secrets.linear_feature_request_team_id,
)
class SearchFeatureRequestsTool(BaseTool):
"""Tool for searching existing feature requests in Linear."""
@property
def name(self) -> str:
return "search_feature_requests"
@property
def description(self) -> str:
return (
"Search existing feature requests to check if a similar request "
"already exists before creating a new one. Returns matching feature "
"requests with their ID, title, and description."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search term to find matching feature requests.",
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
query = kwargs.get("query", "").strip()
session_id = session.session_id if session else None
if not query:
return ErrorResponse(
message="Please provide a search query.",
error="Missing query parameter",
session_id=session_id,
)
try:
client, project_id, _team_id = _get_linear_config()
data = await client.query(
SEARCH_ISSUES_QUERY,
{
"term": query,
"filter": {
"project": {"id": {"eq": project_id}},
},
"first": MAX_SEARCH_RESULTS,
},
)
nodes = data.get("searchIssues", {}).get("nodes", [])
if not nodes:
return NoResultsResponse(
message=f"No feature requests found matching '{query}'.",
suggestions=[
"Try different keywords",
"Use broader search terms",
"You can create a new feature request if none exists",
],
session_id=session_id,
)
results = [
FeatureRequestInfo(
id=node["id"],
identifier=node["identifier"],
title=node["title"],
description=node.get("description"),
)
for node in nodes
]
return FeatureRequestSearchResponse(
message=f"Found {len(results)} feature request(s) matching '{query}'.",
results=results,
count=len(results),
query=query,
session_id=session_id,
)
except Exception as e:
logger.exception("Failed to search feature requests")
return ErrorResponse(
message="Failed to search feature requests.",
error=str(e),
session_id=session_id,
)
class CreateFeatureRequestTool(BaseTool):
"""Tool for creating feature requests (or adding needs to existing ones)."""
@property
def name(self) -> str:
return "create_feature_request"
@property
def description(self) -> str:
return (
"Create a new feature request or add a customer need to an existing one. "
"Always search first with search_feature_requests to avoid duplicates. "
"If a matching request exists, pass its ID as existing_issue_id to add "
"the user's need to it instead of creating a duplicate."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "Title for the feature request.",
},
"description": {
"type": "string",
"description": "Detailed description of what the user wants and why.",
},
"existing_issue_id": {
"type": "string",
"description": (
"If adding a need to an existing feature request, "
"provide its Linear issue ID (from search results). "
"Omit to create a new feature request."
),
},
},
"required": ["title", "description"],
}
@property
def requires_auth(self) -> bool:
return True
async def _find_or_create_customer(
self, client: LinearClient, user_id: str, name: str
) -> dict:
"""Find existing customer by user_id or create a new one via upsert.
Args:
client: Linear API client.
user_id: Stable external ID used to deduplicate customers.
name: Human-readable display name (e.g. the user's email).
"""
data = await client.mutate(
CUSTOMER_UPSERT_MUTATION,
{
"input": {
"name": name,
"externalId": user_id,
},
},
)
result = data.get("customerUpsert", {})
if not result.get("success"):
raise RuntimeError(f"Failed to upsert customer: {data}")
return result["customer"]
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
title = kwargs.get("title", "").strip()
description = kwargs.get("description", "").strip()
existing_issue_id = kwargs.get("existing_issue_id")
session_id = session.session_id if session else None
if not title or not description:
return ErrorResponse(
message="Both title and description are required.",
error="Missing required parameters",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="Authentication required to create feature requests.",
error="Missing user_id",
session_id=session_id,
)
try:
client, project_id, team_id = _get_linear_config()
except Exception as e:
logger.exception("Failed to initialize Linear client")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
# Resolve a human-readable name (email) for the Linear customer record.
# Fall back to user_id if the lookup fails or returns None.
try:
customer_display_name = await get_user_email_by_id(user_id) or user_id
except Exception:
customer_display_name = user_id
# Step 1: Find or create customer for this user
try:
customer = await self._find_or_create_customer(
client, user_id, customer_display_name
)
customer_id = customer["id"]
customer_name = customer["name"]
except Exception as e:
logger.exception("Failed to upsert customer in Linear")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
# Step 2: Create or reuse issue
issue_id: str | None = None
issue_identifier: str | None = None
if existing_issue_id:
# Add need to existing issue - we still need the issue details for response
is_new_issue = False
issue_id = existing_issue_id
else:
# Create new issue in the feature requests project
try:
data = await client.mutate(
ISSUE_CREATE_MUTATION,
{
"input": {
"title": title,
"description": description,
"teamId": team_id,
"projectId": project_id,
},
},
)
result = data.get("issueCreate", {})
if not result.get("success"):
return ErrorResponse(
message="Failed to create feature request issue.",
error=str(data),
session_id=session_id,
)
issue = result["issue"]
issue_id = issue["id"]
issue_identifier = issue.get("identifier")
except Exception as e:
logger.exception("Failed to create feature request issue")
return ErrorResponse(
message="Failed to create feature request.",
error=str(e),
session_id=session_id,
)
is_new_issue = True
# Step 3: Create customer need on the issue
try:
data = await client.mutate(
CUSTOMER_NEED_CREATE_MUTATION,
{
"input": {
"customerId": customer_id,
"issueId": issue_id,
"body": description,
"priority": 0,
},
},
)
need_result = data.get("customerNeedCreate", {})
if not need_result.get("success"):
orphaned = (
{"issue_id": issue_id, "issue_identifier": issue_identifier}
if is_new_issue
else None
)
return ErrorResponse(
message="Failed to attach customer need to the feature request.",
error=str(data),
details=orphaned,
session_id=session_id,
)
need = need_result["need"]
issue_info = need["issue"]
except Exception as e:
logger.exception("Failed to create customer need")
orphaned = (
{"issue_id": issue_id, "issue_identifier": issue_identifier}
if is_new_issue
else None
)
return ErrorResponse(
message="Failed to attach customer need to the feature request.",
error=str(e),
details=orphaned,
session_id=session_id,
)
return FeatureRequestCreatedResponse(
message=(
f"{'Created new feature request' if is_new_issue else 'Added your request to existing feature request'}: "
f"{issue_info['title']}."
),
issue_id=issue_info["id"],
issue_identifier=issue_info["identifier"],
issue_title=issue_info["title"],
issue_url=issue_info.get("url", ""),
is_new_issue=is_new_issue,
customer_name=customer_name,
session_id=session_id,
)

View File

@@ -1,615 +0,0 @@
"""Tests for SearchFeatureRequestsTool and CreateFeatureRequestTool."""
from unittest.mock import AsyncMock, patch
import pytest
from backend.api.features.chat.tools.feature_requests import (
CreateFeatureRequestTool,
SearchFeatureRequestsTool,
)
from backend.api.features.chat.tools.models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestSearchResponse,
NoResultsResponse,
)
from ._test_data import make_session
_TEST_USER_ID = "test-user-feature-requests"
_TEST_USER_EMAIL = "testuser@example.com"
# ---------------------------------------------------------------------------
# Helpers
# ---------------------------------------------------------------------------
_FAKE_PROJECT_ID = "test-project-id"
_FAKE_TEAM_ID = "test-team-id"
def _mock_linear_config(*, query_return=None, mutate_return=None):
"""Return a patched _get_linear_config that yields a mock LinearClient."""
client = AsyncMock()
if query_return is not None:
client.query.return_value = query_return
if mutate_return is not None:
client.mutate.return_value = mutate_return
return (
patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
return_value=(client, _FAKE_PROJECT_ID, _FAKE_TEAM_ID),
),
client,
)
def _search_response(nodes: list[dict]) -> dict:
return {"searchIssues": {"nodes": nodes}}
def _customer_upsert_response(
customer_id: str = "cust-1", name: str = _TEST_USER_EMAIL, success: bool = True
) -> dict:
return {
"customerUpsert": {
"success": success,
"customer": {"id": customer_id, "name": name, "externalIds": [name]},
}
}
def _issue_create_response(
issue_id: str = "issue-1",
identifier: str = "FR-1",
title: str = "New Feature",
success: bool = True,
) -> dict:
return {
"issueCreate": {
"success": success,
"issue": {
"id": issue_id,
"identifier": identifier,
"title": title,
"url": f"https://linear.app/issue/{identifier}",
},
}
}
def _need_create_response(
need_id: str = "need-1",
issue_id: str = "issue-1",
identifier: str = "FR-1",
title: str = "New Feature",
success: bool = True,
) -> dict:
return {
"customerNeedCreate": {
"success": success,
"need": {
"id": need_id,
"body": "description",
"customer": {"id": "cust-1", "name": _TEST_USER_EMAIL},
"issue": {
"id": issue_id,
"identifier": identifier,
"title": title,
"url": f"https://linear.app/issue/{identifier}",
},
},
}
}
# ===========================================================================
# SearchFeatureRequestsTool
# ===========================================================================
class TestSearchFeatureRequestsTool:
"""Tests for SearchFeatureRequestsTool._execute."""
@pytest.mark.asyncio(loop_scope="session")
async def test_successful_search(self):
session = make_session(user_id=_TEST_USER_ID)
nodes = [
{
"id": "id-1",
"identifier": "FR-1",
"title": "Dark mode",
"description": "Add dark mode support",
},
{
"id": "id-2",
"identifier": "FR-2",
"title": "Dark theme",
"description": None,
},
]
patcher, _ = _mock_linear_config(query_return=_search_response(nodes))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="dark mode"
)
assert isinstance(resp, FeatureRequestSearchResponse)
assert resp.count == 2
assert resp.results[0].id == "id-1"
assert resp.results[1].identifier == "FR-2"
assert resp.query == "dark mode"
@pytest.mark.asyncio(loop_scope="session")
async def test_no_results(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, _ = _mock_linear_config(query_return=_search_response([]))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="nonexistent"
)
assert isinstance(resp, NoResultsResponse)
assert "nonexistent" in resp.message
@pytest.mark.asyncio(loop_scope="session")
async def test_empty_query_returns_error(self):
session = make_session(user_id=_TEST_USER_ID)
tool = SearchFeatureRequestsTool()
resp = await tool._execute(user_id=_TEST_USER_ID, session=session, query=" ")
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "query" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_query_returns_error(self):
session = make_session(user_id=_TEST_USER_ID)
tool = SearchFeatureRequestsTool()
resp = await tool._execute(user_id=_TEST_USER_ID, session=session)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_api_failure(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.query.side_effect = RuntimeError("Linear API down")
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Linear API down" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_malformed_node_returns_error(self):
"""A node missing required keys should be caught by the try/except."""
session = make_session(user_id=_TEST_USER_ID)
# Node missing 'identifier' key
bad_nodes = [{"id": "id-1", "title": "Missing identifier"}]
patcher, _ = _mock_linear_config(query_return=_search_response(bad_nodes))
with patcher:
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_linear_client_init_failure(self):
session = make_session(user_id=_TEST_USER_ID)
with patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
side_effect=RuntimeError("No API key"),
):
tool = SearchFeatureRequestsTool()
resp = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "No API key" in resp.error
# ===========================================================================
# CreateFeatureRequestTool
# ===========================================================================
class TestCreateFeatureRequestTool:
"""Tests for CreateFeatureRequestTool._execute."""
@pytest.fixture(autouse=True)
def _patch_email_lookup(self):
with patch(
"backend.api.features.chat.tools.feature_requests.get_user_email_by_id",
new_callable=AsyncMock,
return_value=_TEST_USER_EMAIL,
):
yield
# ---- Happy paths -------------------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_create_new_issue(self):
"""Full happy path: upsert customer -> create issue -> attach need."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(),
_need_create_response(),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="New Feature",
description="Please add this",
)
assert isinstance(resp, FeatureRequestCreatedResponse)
assert resp.is_new_issue is True
assert resp.issue_identifier == "FR-1"
assert resp.customer_name == _TEST_USER_EMAIL
assert client.mutate.call_count == 3
@pytest.mark.asyncio(loop_scope="session")
async def test_add_need_to_existing_issue(self):
"""When existing_issue_id is provided, skip issue creation."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_need_create_response(issue_id="existing-1", identifier="FR-99"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Existing Feature",
description="Me too",
existing_issue_id="existing-1",
)
assert isinstance(resp, FeatureRequestCreatedResponse)
assert resp.is_new_issue is False
assert resp.issue_id == "existing-1"
# Only 2 mutations: customer upsert + need create (no issue create)
assert client.mutate.call_count == 2
# ---- Validation errors -------------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_title(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="",
description="some desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "required" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_description(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Some title",
description="",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "required" in resp.error.lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_user_id(self):
session = make_session(user_id=_TEST_USER_ID)
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=None,
session=session,
title="Some title",
description="Some desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "user_id" in resp.error.lower()
# ---- Linear client init failure ----------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_linear_client_init_failure(self):
session = make_session(user_id=_TEST_USER_ID)
with patch(
"backend.api.features.chat.tools.feature_requests._get_linear_config",
side_effect=RuntimeError("No API key"),
):
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "No API key" in resp.error
# ---- Customer upsert failures ------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_upsert_api_error(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = RuntimeError("Customer API error")
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Customer API error" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_upsert_not_success(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.return_value = _customer_upsert_response(success=False)
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
@pytest.mark.asyncio(loop_scope="session")
async def test_customer_malformed_response(self):
"""Customer dict missing 'id' key should be caught."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
# success=True but customer has no 'id'
client.mutate.return_value = {
"customerUpsert": {
"success": True,
"customer": {"name": _TEST_USER_ID},
}
}
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
# ---- Issue creation failures -------------------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_api_error(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
RuntimeError("Issue create failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Issue create failed" in resp.error
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_not_success(self):
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert "Failed to create feature request issue" in resp.message
@pytest.mark.asyncio(loop_scope="session")
async def test_issue_create_malformed_response(self):
"""issueCreate success=True but missing 'issue' key."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
{"issueCreate": {"success": True}}, # no 'issue' key
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
# ---- Customer need attachment failures ---------------------------------
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_api_error_new_issue(self):
"""Need creation fails after new issue was created -> orphaned issue info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(issue_id="orphan-1", identifier="FR-10"),
RuntimeError("Need attach failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.error is not None
assert "Need attach failed" in resp.error
assert resp.details is not None
assert resp.details["issue_id"] == "orphan-1"
assert resp.details["issue_identifier"] == "FR-10"
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_api_error_existing_issue(self):
"""Need creation fails on existing issue -> no orphaned info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
RuntimeError("Need attach failed"),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
existing_issue_id="existing-1",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is None
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_not_success_includes_orphaned_info(self):
"""customerNeedCreate returns success=False -> includes orphaned issue."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(issue_id="orphan-2", identifier="FR-20"),
_need_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is not None
assert resp.details["issue_id"] == "orphan-2"
assert resp.details["issue_identifier"] == "FR-20"
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_not_success_existing_issue_no_details(self):
"""customerNeedCreate fails on existing issue -> no orphaned info."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_need_create_response(success=False),
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
existing_issue_id="existing-1",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is None
@pytest.mark.asyncio(loop_scope="session")
async def test_need_create_malformed_response(self):
"""need_result missing 'need' key after success=True."""
session = make_session(user_id=_TEST_USER_ID)
patcher, client = _mock_linear_config()
client.mutate.side_effect = [
_customer_upsert_response(),
_issue_create_response(),
{"customerNeedCreate": {"success": True}}, # no 'need' key
]
with patcher:
tool = CreateFeatureRequestTool()
resp = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
title="Title",
description="Desc",
)
assert isinstance(resp, ErrorResponse)
assert resp.details is not None
assert resp.details["issue_id"] == "issue-1"

View File

@@ -7,13 +7,13 @@ from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
from backend.api.features.chat.tools.models import (
BlockInfoSummary,
BlockInputFieldInfo,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.blocks import get_block
from backend.blocks._base import BlockType
from backend.data.block import BlockType, get_block
logger = logging.getLogger(__name__)
@@ -54,8 +54,7 @@ class FindBlockTool(BaseTool):
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
"The response includes each block's id, name, and description. "
"Call run_block with the block's id **with no inputs** to see detailed inputs/outputs and execute it."
"The response includes each block's id, required_inputs, and input_schema."
)
@property
@@ -124,7 +123,7 @@ class FindBlockTool(BaseTool):
session_id=session_id,
)
# Enrich results with block information
# Enrich results with full block information
blocks: list[BlockInfoSummary] = []
for result in results:
block_id = result["content_id"]
@@ -141,12 +140,65 @@ class FindBlockTool(BaseTool):
):
continue
# Get input/output schemas
input_schema = {}
output_schema = {}
try:
input_schema = block.input_schema.jsonschema()
except Exception as e:
logger.debug(
"Failed to generate input schema for block %s: %s",
block_id,
e,
)
try:
output_schema = block.output_schema.jsonschema()
except Exception as e:
logger.debug(
"Failed to generate output schema for block %s: %s",
block_id,
e,
)
# Get categories from block instance
categories = []
if hasattr(block, "categories") and block.categories:
categories = [cat.value for cat in block.categories]
# Extract required inputs for easier use
required_inputs: list[BlockInputFieldInfo] = []
if input_schema:
properties = input_schema.get("properties", {})
required_fields = set(input_schema.get("required", []))
# Get credential field names to exclude from required inputs
credentials_fields = set(
block.input_schema.get_credentials_fields().keys()
)
for field_name, field_schema in properties.items():
# Skip credential fields - they're handled separately
if field_name in credentials_fields:
continue
required_inputs.append(
BlockInputFieldInfo(
name=field_name,
type=field_schema.get("type", "string"),
description=field_schema.get("description", ""),
required=field_name in required_fields,
default=field_schema.get("default"),
)
)
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=[c.value for c in block.categories],
categories=categories,
input_schema=input_schema,
output_schema=output_schema,
required_inputs=required_inputs,
)
)
@@ -175,7 +227,8 @@ class FindBlockTool(BaseTool):
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
"To see a block's inputs/outputs and execute it, use run_block with the block's 'id' - providing no inputs."
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
),
blocks=blocks,
count=len(blocks),

View File

@@ -10,7 +10,7 @@ from backend.api.features.chat.tools.find_block import (
FindBlockTool,
)
from backend.api.features.chat.tools.models import BlockListResponse
from backend.blocks._base import BlockType
from backend.data.block import BlockType
from ._test_data import make_session
@@ -18,13 +18,7 @@ _TEST_USER_ID = "test-user-find-block"
def make_mock_block(
block_id: str,
name: str,
block_type: BlockType,
disabled: bool = False,
input_schema: dict | None = None,
output_schema: dict | None = None,
credentials_fields: dict | None = None,
block_id: str, name: str, block_type: BlockType, disabled: bool = False
):
"""Create a mock block for testing."""
mock = MagicMock()
@@ -34,13 +28,10 @@ def make_mock_block(
mock.block_type = block_type
mock.disabled = disabled
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = input_schema or {
"properties": {},
"required": [],
}
mock.input_schema.get_credentials_fields.return_value = credentials_fields or {}
mock.input_schema.jsonschema.return_value = {"properties": {}, "required": []}
mock.input_schema.get_credentials_fields.return_value = {}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = output_schema or {}
mock.output_schema.jsonschema.return_value = {}
mock.categories = []
return mock
@@ -146,241 +137,3 @@ class TestFindBlockFiltering:
assert isinstance(response, BlockListResponse)
assert len(response.blocks) == 1
assert response.blocks[0].id == "normal-block-id"
@pytest.mark.asyncio(loop_scope="session")
async def test_response_size_average_chars_per_block(self):
"""Measure average chars per block in the serialized response."""
session = make_session(user_id=_TEST_USER_ID)
# Realistic block definitions modeled after real blocks
block_defs = [
{
"id": "http-block-id",
"name": "Send Web Request",
"input_schema": {
"properties": {
"url": {
"type": "string",
"description": "The URL to send the request to",
},
"method": {
"type": "string",
"description": "The HTTP method to use",
},
"headers": {
"type": "object",
"description": "Headers to include in the request",
},
"json_format": {
"type": "boolean",
"description": "If true, send the body as JSON",
},
"body": {
"type": "object",
"description": "Form/JSON body payload",
},
"credentials": {
"type": "object",
"description": "HTTP credentials",
},
},
"required": ["url", "method"],
},
"output_schema": {
"properties": {
"response": {
"type": "object",
"description": "The response from the server",
},
"client_error": {
"type": "object",
"description": "Errors on 4xx status codes",
},
"server_error": {
"type": "object",
"description": "Errors on 5xx status codes",
},
"error": {
"type": "string",
"description": "Errors for all other exceptions",
},
},
},
"credentials_fields": {"credentials": True},
},
{
"id": "email-block-id",
"name": "Send Email",
"input_schema": {
"properties": {
"to_email": {
"type": "string",
"description": "Recipient email address",
},
"subject": {
"type": "string",
"description": "Subject of the email",
},
"body": {
"type": "string",
"description": "Body of the email",
},
"config": {
"type": "object",
"description": "SMTP Config",
},
"credentials": {
"type": "object",
"description": "SMTP credentials",
},
},
"required": ["to_email", "subject", "body", "credentials"],
},
"output_schema": {
"properties": {
"status": {
"type": "string",
"description": "Status of the email sending operation",
},
"error": {
"type": "string",
"description": "Error message if sending failed",
},
},
},
"credentials_fields": {"credentials": True},
},
{
"id": "claude-code-block-id",
"name": "Claude Code",
"input_schema": {
"properties": {
"e2b_credentials": {
"type": "object",
"description": "API key for E2B platform",
},
"anthropic_credentials": {
"type": "object",
"description": "API key for Anthropic",
},
"prompt": {
"type": "string",
"description": "Task or instruction for Claude Code",
},
"timeout": {
"type": "integer",
"description": "Sandbox timeout in seconds",
},
"setup_commands": {
"type": "array",
"description": "Shell commands to run before execution",
},
"working_directory": {
"type": "string",
"description": "Working directory for Claude Code",
},
"session_id": {
"type": "string",
"description": "Session ID to resume a conversation",
},
"sandbox_id": {
"type": "string",
"description": "Sandbox ID to reconnect to",
},
"conversation_history": {
"type": "string",
"description": "Previous conversation history",
},
"dispose_sandbox": {
"type": "boolean",
"description": "Whether to dispose sandbox after execution",
},
},
"required": [
"e2b_credentials",
"anthropic_credentials",
"prompt",
],
},
"output_schema": {
"properties": {
"response": {
"type": "string",
"description": "Output from Claude Code execution",
},
"files": {
"type": "array",
"description": "Files created/modified by Claude Code",
},
"conversation_history": {
"type": "string",
"description": "Full conversation history",
},
"session_id": {
"type": "string",
"description": "Session ID for this conversation",
},
"sandbox_id": {
"type": "string",
"description": "ID of the sandbox instance",
},
"error": {
"type": "string",
"description": "Error message if execution failed",
},
},
},
"credentials_fields": {
"e2b_credentials": True,
"anthropic_credentials": True,
},
},
]
search_results = [
{"content_id": d["id"], "score": 0.9 - i * 0.1}
for i, d in enumerate(block_defs)
]
mock_blocks = {
d["id"]: make_mock_block(
block_id=d["id"],
name=d["name"],
block_type=BlockType.STANDARD,
input_schema=d["input_schema"],
output_schema=d["output_schema"],
credentials_fields=d["credentials_fields"],
)
for d in block_defs
}
with patch(
"backend.api.features.chat.tools.find_block.unified_hybrid_search",
new_callable=AsyncMock,
return_value=(search_results, len(search_results)),
), patch(
"backend.api.features.chat.tools.find_block.get_block",
side_effect=lambda bid: mock_blocks.get(bid),
):
tool = FindBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID, session=session, query="test"
)
assert isinstance(response, BlockListResponse)
assert response.count == len(block_defs)
total_chars = len(response.model_dump_json())
avg_chars = total_chars // response.count
# Print for visibility in test output
print(f"\nTotal response size: {total_chars} chars")
print(f"Number of blocks: {response.count}")
print(f"Average chars per block: {avg_chars}")
# The old response was ~90K for 10 blocks (~9K per block).
# Previous optimization reduced it to ~1.5K per block (no raw JSON schemas).
# Now with only id/name/description, we expect ~300 chars per block.
assert avg_chars < 500, (
f"Average chars per block ({avg_chars}) exceeds 500. "
f"Total response: {total_chars} chars for {response.count} blocks."
)

View File

@@ -25,7 +25,6 @@ class ResponseType(str, Enum):
AGENT_SAVED = "agent_saved"
CLARIFICATION_NEEDED = "clarification_needed"
BLOCK_LIST = "block_list"
BLOCK_DETAILS = "block_details"
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
@@ -41,15 +40,6 @@ class ResponseType(str, Enum):
OPERATION_IN_PROGRESS = "operation_in_progress"
# Input validation
INPUT_VALIDATION_ERROR = "input_validation_error"
# Web fetch
WEB_FETCH = "web_fetch"
# Code execution
BASH_EXEC = "bash_exec"
# Operation status check
OPERATION_STATUS = "operation_status"
# Feature request types
FEATURE_REQUEST_SEARCH = "feature_request_search"
FEATURE_REQUEST_CREATED = "feature_request_created"
# Base response model
@@ -345,17 +335,11 @@ class BlockInfoSummary(BaseModel):
name: str
description: str
categories: list[str]
input_schema: dict[str, Any] = Field(
default_factory=dict,
description="Full JSON schema for block inputs",
)
output_schema: dict[str, Any] = Field(
default_factory=dict,
description="Full JSON schema for block outputs",
)
input_schema: dict[str, Any]
output_schema: dict[str, Any]
required_inputs: list[BlockInputFieldInfo] = Field(
default_factory=list,
description="List of input fields for this block",
description="List of required input fields for this block",
)
@@ -368,29 +352,10 @@ class BlockListResponse(ToolResponseBase):
query: str
usage_hint: str = Field(
default="To execute a block, call run_block with block_id set to the block's "
"'id' field and input_data containing the fields listed in required_inputs."
"'id' field and input_data containing the required fields from input_schema."
)
class BlockDetails(BaseModel):
"""Detailed block information."""
id: str
name: str
description: str
inputs: dict[str, Any] = {}
outputs: dict[str, Any] = {}
credentials: list[CredentialsMetaInput] = []
class BlockDetailsResponse(ToolResponseBase):
"""Response for block details (first run_block attempt)."""
type: ResponseType = ResponseType.BLOCK_DETAILS
block: BlockDetails
user_authenticated: bool = False
class BlockOutputResponse(ToolResponseBase):
"""Response for run_block tool."""
@@ -456,55 +421,3 @@ class AsyncProcessingResponse(ToolResponseBase):
status: str = "accepted" # Must be "accepted" for detection
operation_id: str | None = None
task_id: str | None = None
class WebFetchResponse(ToolResponseBase):
"""Response for web_fetch tool."""
type: ResponseType = ResponseType.WEB_FETCH
url: str
status_code: int
content_type: str
content: str
truncated: bool = False
class BashExecResponse(ToolResponseBase):
"""Response for bash_exec tool."""
type: ResponseType = ResponseType.BASH_EXEC
stdout: str
stderr: str
exit_code: int
timed_out: bool = False
# Feature request models
class FeatureRequestInfo(BaseModel):
"""Information about a feature request issue."""
id: str
identifier: str
title: str
description: str | None = None
class FeatureRequestSearchResponse(ToolResponseBase):
"""Response for search_feature_requests tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_SEARCH
results: list[FeatureRequestInfo]
count: int
query: str
class FeatureRequestCreatedResponse(ToolResponseBase):
"""Response for create_feature_request tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_CREATED
issue_id: str
issue_identifier: str
issue_title: str
issue_url: str
is_new_issue: bool # False if added to existing
customer_name: str

View File

@@ -12,8 +12,7 @@ from backend.api.features.chat.tools.find_block import (
COPILOT_EXCLUDED_BLOCK_IDS,
COPILOT_EXCLUDED_BLOCK_TYPES,
)
from backend.blocks import get_block
from backend.blocks._base import AnyBlockSchema
from backend.data.block import AnyBlockSchema, get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
@@ -23,11 +22,8 @@ from backend.util.exceptions import BlockError
from .base import BaseTool
from .helpers import get_inputs_from_schema
from .models import (
BlockDetails,
BlockDetailsResponse,
BlockOutputResponse,
ErrorResponse,
InputValidationErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
@@ -54,8 +50,8 @@ class RunBlockTool(BaseTool):
"Execute a specific block with the provided input data. "
"IMPORTANT: You MUST call find_block first to get the block's 'id' - "
"do NOT guess or make up block IDs. "
"On first attempt (without input_data), returns detailed schema showing "
"required inputs and outputs. Then call again with proper input_data to execute."
"Use the 'id' from find_block results and provide input_data "
"matching the block's required_inputs."
)
@property
@@ -70,19 +66,11 @@ class RunBlockTool(BaseTool):
"NEVER guess this - always get it from find_block first."
),
},
"block_name": {
"type": "string",
"description": (
"The block's human-readable name from find_block results. "
"Used for display purposes in the UI."
),
},
"input_data": {
"type": "object",
"description": (
"Input values for the block. "
"First call with empty {} to see the block's schema, "
"then call again with proper values to execute."
"Input values for the block. Use the 'required_inputs' field "
"from find_block to see what fields are needed."
),
},
},
@@ -163,37 +151,10 @@ class RunBlockTool(BaseTool):
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
creds_manager = IntegrationCredentialsManager()
matched_credentials, missing_credentials = (
await self._resolve_block_credentials(user_id, block, input_data)
)
# Get block schemas for details/validation
try:
input_schema: dict[str, Any] = block.input_schema.jsonschema()
except Exception as e:
logger.warning(
"Failed to generate input schema for block %s: %s",
block_id,
e,
)
return ErrorResponse(
message=f"Block '{block.name}' has an invalid input schema",
error=str(e),
session_id=session_id,
)
try:
output_schema: dict[str, Any] = block.output_schema.jsonschema()
except Exception as e:
logger.warning(
"Failed to generate output schema for block %s: %s",
block_id,
e,
)
return ErrorResponse(
message=f"Block '{block.name}' has an invalid output schema",
error=str(e),
session_id=session_id,
)
(
matched_credentials,
missing_credentials,
) = await self._resolve_block_credentials(user_id, block, input_data)
if missing_credentials:
# Return setup requirements response with missing credentials
@@ -227,53 +188,6 @@ class RunBlockTool(BaseTool):
graph_version=None,
)
# Check if this is a first attempt (required inputs missing)
# Return block details so user can see what inputs are needed
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
required_keys = set(input_schema.get("required", []))
required_non_credential_keys = required_keys - credentials_fields
provided_input_keys = set(input_data.keys()) - credentials_fields
# Check for unknown input fields
valid_fields = (
set(input_schema.get("properties", {}).keys()) - credentials_fields
)
unrecognized_fields = provided_input_keys - valid_fields
if unrecognized_fields:
return InputValidationErrorResponse(
message=(
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
f"Block was not executed. Please use the correct field names from the schema."
),
session_id=session_id,
unrecognized_fields=sorted(unrecognized_fields),
inputs=input_schema,
)
# Show details when not all required non-credential inputs are provided
if not (required_non_credential_keys <= provided_input_keys):
# Get credentials info for the response
credentials_meta = []
for field_name, cred_meta in matched_credentials.items():
credentials_meta.append(cred_meta)
return BlockDetailsResponse(
message=(
f"Block '{block.name}' details. "
"Provide input_data matching the inputs schema to execute the block."
),
session_id=session_id,
block=BlockDetails(
id=block_id,
name=block.name,
description=block.description or "",
inputs=input_schema,
outputs=output_schema,
credentials=credentials_meta,
),
user_authenticated=True,
)
try:
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)

View File

@@ -1,17 +1,12 @@
"""Tests for block execution guards and input validation in RunBlockTool."""
"""Tests for block execution guards in RunBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
from unittest.mock import MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import (
BlockDetailsResponse,
BlockOutputResponse,
ErrorResponse,
InputValidationErrorResponse,
)
from backend.api.features.chat.tools.models import ErrorResponse
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from backend.data.block import BlockType
from ._test_data import make_session
@@ -33,39 +28,6 @@ def make_mock_block(
return mock
def make_mock_block_with_schema(
block_id: str,
name: str,
input_properties: dict,
required_fields: list[str],
output_properties: dict | None = None,
):
"""Create a mock block with a defined input/output schema for validation tests."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.block_type = BlockType.STANDARD
mock.disabled = False
mock.description = f"Test block: {name}"
input_schema = {
"properties": input_properties,
"required": required_fields,
}
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = input_schema
mock.input_schema.get_credentials_fields_info.return_value = {}
mock.input_schema.get_credentials_fields.return_value = {}
output_schema = {
"properties": output_properties or {"result": {"type": "string"}},
}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = output_schema
return mock
class TestRunBlockFiltering:
"""Tests for block execution guards in RunBlockTool."""
@@ -142,221 +104,3 @@ class TestRunBlockFiltering:
# (may be other errors like missing credentials, but not the exclusion guard)
if isinstance(response, ErrorResponse):
assert "cannot be run directly in CoPilot" not in response.message
class TestRunBlockInputValidation:
"""Tests for input field validation in RunBlockTool.
run_block rejects unknown input field names with InputValidationErrorResponse,
preventing silent failures where incorrect keys would be ignored and the block
would execute with default values instead of the caller's intended values.
"""
@pytest.mark.asyncio(loop_scope="session")
async def test_unknown_input_fields_are_rejected(self):
"""run_block rejects unknown input fields instead of silently ignoring them.
Scenario: The AI Text Generator block has a field called 'model' (for LLM model
selection), but the LLM calling the tool guesses wrong and sends 'LLM_Model'
instead. The block should reject the request and return the valid schema.
"""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string", "description": "The prompt to send"},
"model": {
"type": "string",
"description": "The LLM model to use",
"default": "gpt-4o-mini",
},
"sys_prompt": {
"type": "string",
"description": "System prompt",
"default": "",
},
},
required_fields=["prompt"],
output_properties={"response": {"type": "string"}},
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# Provide 'prompt' (correct) but 'LLM_Model' instead of 'model' (wrong key)
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Write a haiku about coding",
"LLM_Model": "claude-opus-4-6", # WRONG KEY - should be 'model'
},
)
assert isinstance(response, InputValidationErrorResponse)
assert "LLM_Model" in response.unrecognized_fields
assert "Block was not executed" in response.message
assert "inputs" in response.model_dump() # valid schema included
@pytest.mark.asyncio(loop_scope="session")
async def test_multiple_wrong_keys_are_all_reported(self):
"""All unrecognized field names are reported in a single error response."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
"sys_prompt": {"type": "string", "default": ""},
"retry": {"type": "integer", "default": 3},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Hello", # correct
"llm_model": "claude-opus-4-6", # WRONG - should be 'model'
"system_prompt": "Be helpful", # WRONG - should be 'sys_prompt'
"retries": 5, # WRONG - should be 'retry'
},
)
assert isinstance(response, InputValidationErrorResponse)
assert set(response.unrecognized_fields) == {
"llm_model",
"system_prompt",
"retries",
}
assert "Block was not executed" in response.message
@pytest.mark.asyncio(loop_scope="session")
async def test_unknown_fields_rejected_even_with_missing_required(self):
"""Unknown fields are caught before the missing-required-fields check."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# 'prompt' is missing AND 'LLM_Model' is an unknown field
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"LLM_Model": "claude-opus-4-6", # wrong key, and 'prompt' is missing
},
)
# Unknown fields are caught first
assert isinstance(response, InputValidationErrorResponse)
assert "LLM_Model" in response.unrecognized_fields
@pytest.mark.asyncio(loop_scope="session")
async def test_correct_inputs_still_execute(self):
"""Correct input field names pass validation and the block executes."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
async def mock_execute(input_data, **kwargs):
yield "response", "Generated text"
mock_block.execute = mock_execute
with (
patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
),
patch(
"backend.api.features.chat.tools.run_block.get_or_create_workspace",
new_callable=AsyncMock,
return_value=MagicMock(id="test-workspace-id"),
),
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"prompt": "Write a haiku",
"model": "gpt-4o-mini", # correct field name
},
)
assert isinstance(response, BlockOutputResponse)
assert response.success is True
@pytest.mark.asyncio(loop_scope="session")
async def test_missing_required_fields_returns_details(self):
"""Missing required fields returns BlockDetailsResponse with schema."""
session = make_session(user_id=_TEST_USER_ID)
mock_block = make_mock_block_with_schema(
block_id="ai-text-gen-id",
name="AI Text Generator",
input_properties={
"prompt": {"type": "string"},
"model": {"type": "string", "default": "gpt-4o-mini"},
},
required_fields=["prompt"],
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock_block,
):
tool = RunBlockTool()
# Only provide valid optional field, missing required 'prompt'
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="ai-text-gen-id",
input_data={
"model": "gpt-4o-mini", # valid but optional
},
)
assert isinstance(response, BlockDetailsResponse)

View File

@@ -1,265 +0,0 @@
"""Sandbox execution utilities for code execution tools.
Provides filesystem + network isolated command execution using **bubblewrap**
(``bwrap``): whitelist-only filesystem (only system dirs visible read-only),
writable workspace only, clean environment, network blocked.
Tools that call :func:`run_sandboxed` must first check :func:`has_full_sandbox`
and refuse to run if bubblewrap is not available.
"""
import asyncio
import logging
import os
import platform
import shutil
logger = logging.getLogger(__name__)
_DEFAULT_TIMEOUT = 30
_MAX_TIMEOUT = 120
# ---------------------------------------------------------------------------
# Sandbox capability detection (cached at first call)
# ---------------------------------------------------------------------------
_BWRAP_AVAILABLE: bool | None = None
def has_full_sandbox() -> bool:
"""Return True if bubblewrap is available (filesystem + network isolation).
On non-Linux platforms (macOS), always returns False.
"""
global _BWRAP_AVAILABLE
if _BWRAP_AVAILABLE is None:
_BWRAP_AVAILABLE = (
platform.system() == "Linux" and shutil.which("bwrap") is not None
)
return _BWRAP_AVAILABLE
WORKSPACE_PREFIX = "/tmp/copilot-"
def make_session_path(session_id: str) -> str:
"""Build a sanitized, session-specific path under :data:`WORKSPACE_PREFIX`.
Shared by both the SDK working-directory setup and the sandbox tools so
they always resolve to the same directory for a given session.
Steps:
1. Strip all characters except ``[A-Za-z0-9-]``.
2. Construct ``/tmp/copilot-<safe_id>``.
3. Validate via ``os.path.normpath`` + ``startswith`` (CodeQL-recognised
sanitizer) to prevent path traversal.
Raises:
ValueError: If the resulting path escapes the prefix.
"""
import re
safe_id = re.sub(r"[^A-Za-z0-9-]", "", session_id)
if not safe_id:
safe_id = "default"
path = os.path.normpath(f"{WORKSPACE_PREFIX}{safe_id}")
if not path.startswith(WORKSPACE_PREFIX):
raise ValueError(f"Session path escaped prefix: {path}")
return path
def get_workspace_dir(session_id: str) -> str:
"""Get or create the workspace directory for a session.
Uses :func:`make_session_path` — the same path the SDK uses — so that
bash_exec shares the workspace with the SDK file tools.
"""
workspace = make_session_path(session_id)
os.makedirs(workspace, exist_ok=True)
return workspace
# ---------------------------------------------------------------------------
# Bubblewrap command builder
# ---------------------------------------------------------------------------
# System directories mounted read-only inside the sandbox.
# ONLY these are visible — /app, /root, /home, /opt, /var etc. are NOT accessible.
_SYSTEM_RO_BINDS = [
"/usr", # binaries, libraries, Python interpreter
"/etc", # system config: ld.so, locale, passwd, alternatives
]
# Compat paths: symlinks to /usr/* on modern Debian, real dirs on older systems.
# On Debian 13 these are symlinks (e.g. /bin -> usr/bin). bwrap --ro-bind
# can't create a symlink target, so we detect and use --symlink instead.
# /lib64 is critical: the ELF dynamic linker lives at /lib64/ld-linux-x86-64.so.2.
_COMPAT_PATHS = [
("/bin", "usr/bin"), # -> /usr/bin on Debian 13
("/sbin", "usr/sbin"), # -> /usr/sbin on Debian 13
("/lib", "usr/lib"), # -> /usr/lib on Debian 13
("/lib64", "usr/lib64"), # 64-bit libraries / ELF interpreter
]
# Resource limits to prevent fork bombs, memory exhaustion, and disk abuse.
# Applied via ulimit inside the sandbox before exec'ing the user command.
_RESOURCE_LIMITS = (
"ulimit -u 64" # max 64 processes (prevents fork bombs)
" -v 524288" # 512 MB virtual memory
" -f 51200" # 50 MB max file size (1024-byte blocks)
" -n 256" # 256 open file descriptors
" 2>/dev/null"
)
def _build_bwrap_command(
command: list[str], cwd: str, env: dict[str, str]
) -> list[str]:
"""Build a bubblewrap command with strict filesystem + network isolation.
Security model:
- **Whitelist-only filesystem**: only system directories (``/usr``, ``/etc``,
``/bin``, ``/lib``) are mounted read-only. Application code (``/app``),
home directories, ``/var``, ``/opt``, etc. are NOT accessible at all.
- **Writable workspace only**: the per-session workspace is the sole
writable path.
- **Clean environment**: ``--clearenv`` wipes all inherited env vars.
Only the explicitly-passed safe env vars are set inside the sandbox.
- **Network isolation**: ``--unshare-net`` blocks all network access.
- **Resource limits**: ulimit caps on processes (64), memory (512MB),
file size (50MB), and open FDs (256) to prevent fork bombs and abuse.
- **New session**: prevents terminal control escape.
- **Die with parent**: prevents orphaned sandbox processes.
"""
cmd = [
"bwrap",
# Create a new user namespace so bwrap can set up sandboxing
# inside unprivileged Docker containers (no CAP_SYS_ADMIN needed).
"--unshare-user",
# Wipe all inherited environment variables (API keys, secrets, etc.)
"--clearenv",
]
# Set only the safe env vars inside the sandbox
for key, value in env.items():
cmd.extend(["--setenv", key, value])
# System directories: read-only
for path in _SYSTEM_RO_BINDS:
cmd.extend(["--ro-bind", path, path])
# Compat paths: use --symlink when host path is a symlink (Debian 13),
# --ro-bind when it's a real directory (older distros).
for path, symlink_target in _COMPAT_PATHS:
if os.path.islink(path):
cmd.extend(["--symlink", symlink_target, path])
elif os.path.exists(path):
cmd.extend(["--ro-bind", path, path])
# Wrap the user command with resource limits:
# sh -c 'ulimit ...; exec "$@"' -- <original command>
# `exec "$@"` replaces the shell so there's no extra process overhead,
# and properly handles arguments with spaces.
limited_command = [
"sh",
"-c",
f'{_RESOURCE_LIMITS}; exec "$@"',
"--",
*command,
]
cmd.extend(
[
# Fresh virtual filesystems
"--dev",
"/dev",
"--proc",
"/proc",
"--tmpfs",
"/tmp",
# Workspace bind AFTER --tmpfs /tmp so it's visible through the tmpfs.
# (workspace lives under /tmp/copilot-<session>)
"--bind",
cwd,
cwd,
# Isolation
"--unshare-net",
"--die-with-parent",
"--new-session",
"--chdir",
cwd,
"--",
*limited_command,
]
)
return cmd
# ---------------------------------------------------------------------------
# Public API
# ---------------------------------------------------------------------------
async def run_sandboxed(
command: list[str],
cwd: str,
timeout: int = _DEFAULT_TIMEOUT,
env: dict[str, str] | None = None,
) -> tuple[str, str, int, bool]:
"""Run a command inside a bubblewrap sandbox.
Callers **must** check :func:`has_full_sandbox` before calling this
function. If bubblewrap is not available, this function raises
:class:`RuntimeError` rather than running unsandboxed.
Returns:
(stdout, stderr, exit_code, timed_out)
"""
if not has_full_sandbox():
raise RuntimeError(
"run_sandboxed() requires bubblewrap but bwrap is not available. "
"Callers must check has_full_sandbox() before calling this function."
)
timeout = min(max(timeout, 1), _MAX_TIMEOUT)
safe_env = {
"PATH": "/usr/local/bin:/usr/bin:/bin",
"HOME": cwd,
"TMPDIR": cwd,
"LANG": "en_US.UTF-8",
"PYTHONDONTWRITEBYTECODE": "1",
"PYTHONIOENCODING": "utf-8",
}
if env:
safe_env.update(env)
full_command = _build_bwrap_command(command, cwd, safe_env)
try:
proc = await asyncio.create_subprocess_exec(
*full_command,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE,
cwd=cwd,
env=safe_env,
)
try:
stdout_bytes, stderr_bytes = await asyncio.wait_for(
proc.communicate(), timeout=timeout
)
stdout = stdout_bytes.decode("utf-8", errors="replace")
stderr = stderr_bytes.decode("utf-8", errors="replace")
return stdout, stderr, proc.returncode or 0, False
except asyncio.TimeoutError:
proc.kill()
await proc.communicate()
return "", f"Execution timed out after {timeout}s", -1, True
except RuntimeError:
raise
except Exception as e:
return "", f"Sandbox error: {e}", -1, False

View File

@@ -1,153 +0,0 @@
"""Tests for BlockDetailsResponse in RunBlockTool."""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.models import BlockDetailsResponse
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from backend.data.model import CredentialsMetaInput
from backend.integrations.providers import ProviderName
from ._test_data import make_session
_TEST_USER_ID = "test-user-run-block-details"
def make_mock_block_with_inputs(
block_id: str, name: str, description: str = "Test description"
):
"""Create a mock block with input/output schemas for testing."""
mock = MagicMock()
mock.id = block_id
mock.name = name
mock.description = description
mock.block_type = BlockType.STANDARD
mock.disabled = False
# Input schema with non-credential fields
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {
"properties": {
"url": {"type": "string", "description": "URL to fetch"},
"method": {"type": "string", "description": "HTTP method"},
},
"required": ["url"],
}
mock.input_schema.get_credentials_fields.return_value = {}
mock.input_schema.get_credentials_fields_info.return_value = {}
# Output schema
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {
"properties": {
"response": {"type": "object", "description": "HTTP response"},
"error": {"type": "string", "description": "Error message"},
}
}
return mock
@pytest.mark.asyncio(loop_scope="session")
async def test_run_block_returns_details_when_no_input_provided():
"""When run_block is called without input_data, it should return BlockDetailsResponse."""
session = make_session(user_id=_TEST_USER_ID)
# Create a block with inputs
http_block = make_mock_block_with_inputs(
"http-block-id", "HTTP Request", "Send HTTP requests"
)
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=http_block,
):
# Mock credentials check to return no missing credentials
with patch.object(
RunBlockTool,
"_resolve_block_credentials",
new_callable=AsyncMock,
return_value=({}, []), # (matched_credentials, missing_credentials)
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="http-block-id",
input_data={}, # Empty input data
)
# Should return BlockDetailsResponse showing the schema
assert isinstance(response, BlockDetailsResponse)
assert response.block.id == "http-block-id"
assert response.block.name == "HTTP Request"
assert response.block.description == "Send HTTP requests"
assert "url" in response.block.inputs["properties"]
assert "method" in response.block.inputs["properties"]
assert "response" in response.block.outputs["properties"]
assert response.user_authenticated is True
@pytest.mark.asyncio(loop_scope="session")
async def test_run_block_returns_details_when_only_credentials_provided():
"""When only credentials are provided (no actual input), should return details."""
session = make_session(user_id=_TEST_USER_ID)
# Create a block with both credential and non-credential inputs
mock = MagicMock()
mock.id = "api-block-id"
mock.name = "API Call"
mock.description = "Make API calls"
mock.block_type = BlockType.STANDARD
mock.disabled = False
mock.input_schema = MagicMock()
mock.input_schema.jsonschema.return_value = {
"properties": {
"credentials": {"type": "object", "description": "API credentials"},
"endpoint": {"type": "string", "description": "API endpoint"},
},
"required": ["credentials", "endpoint"],
}
mock.input_schema.get_credentials_fields.return_value = {"credentials": True}
mock.input_schema.get_credentials_fields_info.return_value = {}
mock.output_schema = MagicMock()
mock.output_schema.jsonschema.return_value = {
"properties": {"result": {"type": "object"}}
}
with patch(
"backend.api.features.chat.tools.run_block.get_block",
return_value=mock,
):
with patch.object(
RunBlockTool,
"_resolve_block_credentials",
new_callable=AsyncMock,
return_value=(
{
"credentials": CredentialsMetaInput(
id="cred-id",
provider=ProviderName("test_provider"),
type="api_key",
title="Test Credential",
)
},
[],
),
):
tool = RunBlockTool()
response = await tool._execute(
user_id=_TEST_USER_ID,
session=session,
block_id="api-block-id",
input_data={"credentials": {"some": "cred"}}, # Only credential
)
# Should return details because no non-credential inputs provided
assert isinstance(response, BlockDetailsResponse)
assert response.block.id == "api-block-id"
assert response.block.name == "API Call"

View File

@@ -15,7 +15,6 @@ from backend.data.model import (
OAuth2Credentials,
)
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.providers import ProviderName
from backend.util.exceptions import NotFoundError
logger = logging.getLogger(__name__)
@@ -360,7 +359,7 @@ async def match_user_credentials_to_graph(
_,
_,
) in aggregated_creds.items():
# Find first matching credential by provider, type, scopes, and host/URL
# Find first matching credential by provider, type, and scopes
matching_cred = next(
(
cred
@@ -375,10 +374,6 @@ async def match_user_credentials_to_graph(
cred.type != "host_scoped"
or _credential_is_for_host(cred, credential_requirements)
)
and (
cred.provider != ProviderName.MCP
or _credential_is_for_mcp_server(cred, credential_requirements)
)
),
None,
)
@@ -449,22 +444,6 @@ def _credential_is_for_host(
return credential.matches_url(list(requirements.discriminator_values)[0])
def _credential_is_for_mcp_server(
credential: Credentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""Check if an MCP OAuth credential matches the required server URL."""
if not requirements.discriminator_values:
return True
server_url = (
credential.metadata.get("mcp_server_url")
if isinstance(credential, OAuth2Credentials)
else None
)
return server_url in requirements.discriminator_values if server_url else False
async def check_user_has_required_credentials(
user_id: str,
required_credentials: list[CredentialsMetaInput],

View File

@@ -1,151 +0,0 @@
"""Web fetch tool — safely retrieve public web page content."""
import logging
from typing import Any
import aiohttp
import html2text
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
ToolResponseBase,
WebFetchResponse,
)
from backend.util.request import Requests
logger = logging.getLogger(__name__)
# Limits
_MAX_CONTENT_BYTES = 102_400 # 100 KB download cap
_REQUEST_TIMEOUT = aiohttp.ClientTimeout(total=15)
# Content types we'll read as text
_TEXT_CONTENT_TYPES = {
"text/html",
"text/plain",
"text/xml",
"text/csv",
"text/markdown",
"application/json",
"application/xml",
"application/xhtml+xml",
"application/rss+xml",
"application/atom+xml",
}
def _is_text_content(content_type: str) -> bool:
base = content_type.split(";")[0].strip().lower()
return base in _TEXT_CONTENT_TYPES or base.startswith("text/")
def _html_to_text(html: str) -> str:
h = html2text.HTML2Text()
h.ignore_links = False
h.ignore_images = True
h.body_width = 0
return h.handle(html)
class WebFetchTool(BaseTool):
"""Safely fetch content from a public URL using SSRF-protected HTTP."""
@property
def name(self) -> str:
return "web_fetch"
@property
def description(self) -> str:
return (
"Fetch the content of a public web page by URL. "
"Returns readable text extracted from HTML by default. "
"Useful for reading documentation, articles, and API responses. "
"Only supports HTTP/HTTPS GET requests to public URLs "
"(private/internal network addresses are blocked)."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"url": {
"type": "string",
"description": "The public HTTP/HTTPS URL to fetch.",
},
"extract_text": {
"type": "boolean",
"description": (
"If true (default), extract readable text from HTML. "
"If false, return raw content."
),
"default": True,
},
},
"required": ["url"],
}
@property
def requires_auth(self) -> bool:
return False
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs: Any,
) -> ToolResponseBase:
url: str = (kwargs.get("url") or "").strip()
extract_text: bool = kwargs.get("extract_text", True)
session_id = session.session_id if session else None
if not url:
return ErrorResponse(
message="Please provide a URL to fetch.",
error="missing_url",
session_id=session_id,
)
try:
client = Requests(raise_for_status=False, retry_max_attempts=1)
response = await client.get(url, timeout=_REQUEST_TIMEOUT)
except ValueError as e:
# validate_url raises ValueError for SSRF / blocked IPs
return ErrorResponse(
message=f"URL blocked: {e}",
error="url_blocked",
session_id=session_id,
)
except Exception as e:
logger.warning(f"[web_fetch] Request failed for {url}: {e}")
return ErrorResponse(
message=f"Failed to fetch URL: {e}",
error="fetch_failed",
session_id=session_id,
)
content_type = response.headers.get("content-type", "")
if not _is_text_content(content_type):
return ErrorResponse(
message=f"Non-text content type: {content_type.split(';')[0]}",
error="unsupported_content_type",
session_id=session_id,
)
raw = response.content[:_MAX_CONTENT_BYTES]
text = raw.decode("utf-8", errors="replace")
if extract_text and "html" in content_type.lower():
text = _html_to_text(text)
return WebFetchResponse(
message=f"Fetched {url}",
url=response.url,
status_code=response.status,
content_type=content_type.split(";")[0].strip(),
content=text,
truncated=False,
session_id=session_id,
)

View File

@@ -88,9 +88,7 @@ class ListWorkspaceFilesTool(BaseTool):
@property
def description(self) -> str:
return (
"List files in the user's persistent workspace (cloud storage). "
"These files survive across sessions. "
"For ephemeral session files, use the SDK Read/Glob tools instead. "
"List files in the user's workspace. "
"Returns file names, paths, sizes, and metadata. "
"Optionally filter by path prefix."
)
@@ -206,9 +204,7 @@ class ReadWorkspaceFileTool(BaseTool):
@property
def description(self) -> str:
return (
"Read a file from the user's persistent workspace (cloud storage). "
"These files survive across sessions. "
"For ephemeral session files, use the SDK Read tool instead. "
"Read a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"For small text files, returns content directly. "
"For large or binary files, returns metadata and a download URL. "
@@ -382,9 +378,7 @@ class WriteWorkspaceFileTool(BaseTool):
@property
def description(self) -> str:
return (
"Write or create a file in the user's persistent workspace (cloud storage). "
"These files survive across sessions. "
"For ephemeral session files, use the SDK Write tool instead. "
"Write or create a file in the user's workspace. "
"Provide the content as a base64-encoded string. "
f"Maximum file size is {Config().max_file_size_mb}MB. "
"Files are saved to the current session's folder by default. "
@@ -529,7 +523,7 @@ class DeleteWorkspaceFileTool(BaseTool):
@property
def description(self) -> str:
return (
"Delete a file from the user's persistent workspace (cloud storage). "
"Delete a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."

View File

@@ -25,7 +25,7 @@ FIXED_NOW = datetime.datetime(2023, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc)
@pytest_asyncio.fixture(loop_scope="session")
async def client(server, mock_jwt_user) -> AsyncGenerator[httpx.AsyncClient, None]:
"""Create async HTTP client with auth overrides"""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from backend.api.auth.jwt_utils import get_jwt_payload
# Override get_jwt_payload dependency to return our test user
app.dependency_overrides[get_jwt_payload] = mock_jwt_user["get_jwt_payload"]

View File

@@ -2,10 +2,10 @@ import asyncio
import logging
from typing import Any, List
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, HTTPException, Query, Security, status
from prisma.enums import ReviewStatus
import backend.api.auth as autogpt_auth_lib
from backend.data.execution import (
ExecutionContext,
ExecutionStatus,

View File

@@ -1,9 +1,8 @@
import asyncio
import logging
from datetime import datetime, timedelta, timezone
from typing import TYPE_CHECKING, Annotated, Any, List, Literal
from typing import TYPE_CHECKING, Annotated, List, Literal
from autogpt_libs.auth import get_user_id
from fastapi import (
APIRouter,
Body,
@@ -14,9 +13,10 @@ from fastapi import (
Security,
status,
)
from pydantic import BaseModel, Field, SecretStr, model_validator
from pydantic import BaseModel, Field, SecretStr
from starlette.status import HTTP_500_INTERNAL_SERVER_ERROR, HTTP_502_BAD_GATEWAY
from backend.api.auth import get_user_id
from backend.api.features.library.db import set_preset_webhook, update_preset
from backend.api.features.library.model import LibraryAgentPreset
from backend.data.graph import NodeModel, get_graph, set_node_webhook
@@ -39,11 +39,7 @@ from backend.data.onboarding import OnboardingStep, complete_onboarding_step
from backend.data.user import get_user_integrations
from backend.executor.utils import add_graph_execution
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
from backend.integrations.credentials_store import provider_matches
from backend.integrations.creds_manager import (
IntegrationCredentialsManager,
create_mcp_oauth_handler,
)
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.oauth import CREDENTIALS_BY_PROVIDER, HANDLERS_BY_NAME
from backend.integrations.providers import ProviderName
from backend.integrations.webhooks import get_webhook_manager
@@ -106,37 +102,9 @@ class CredentialsMetaResponse(BaseModel):
scopes: list[str] | None
username: str | None
host: str | None = Field(
default=None,
description="Host pattern for host-scoped or MCP server URL for MCP credentials",
default=None, description="Host pattern for host-scoped credentials"
)
@model_validator(mode="before")
@classmethod
def _normalize_provider(cls, data: Any) -> Any:
"""Fix ``ProviderName.X`` format from Python 3.13 ``str(Enum)`` bug."""
if isinstance(data, dict):
prov = data.get("provider", "")
if isinstance(prov, str) and prov.startswith("ProviderName."):
member = prov.removeprefix("ProviderName.")
try:
data = {**data, "provider": ProviderName[member].value}
except KeyError:
pass
return data
@staticmethod
def get_host(cred: Credentials) -> str | None:
"""Extract host from credential: HostScoped host or MCP server URL."""
if isinstance(cred, HostScopedCredentials):
return cred.host
if isinstance(cred, OAuth2Credentials) and cred.provider in (
ProviderName.MCP,
ProviderName.MCP.value,
"ProviderName.MCP",
):
return (cred.metadata or {}).get("mcp_server_url")
return None
@router.post("/{provider}/callback", summary="Exchange OAuth code for tokens")
async def callback(
@@ -211,7 +179,9 @@ async def callback(
title=credentials.title,
scopes=credentials.scopes,
username=credentials.username,
host=(CredentialsMetaResponse.get_host(credentials)),
host=(
credentials.host if isinstance(credentials, HostScopedCredentials) else None
),
)
@@ -229,7 +199,7 @@ async def list_credentials(
title=cred.title,
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
host=CredentialsMetaResponse.get_host(cred),
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
)
for cred in credentials
]
@@ -252,7 +222,7 @@ async def list_credentials_by_provider(
title=cred.title,
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
host=CredentialsMetaResponse.get_host(cred),
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
)
for cred in credentials
]
@@ -352,11 +322,7 @@ async def delete_credentials(
tokens_revoked = None
if isinstance(creds, OAuth2Credentials):
if provider_matches(provider.value, ProviderName.MCP.value):
# MCP uses dynamic per-server OAuth — create handler from metadata
handler = create_mcp_oauth_handler(creds)
else:
handler = _get_provider_oauth_handler(request, provider)
handler = _get_provider_oauth_handler(request, provider)
tokens_revoked = await handler.revoke_tokens(creds)
return CredentialsDeletionResponse(revoked=tokens_revoked)

View File

@@ -12,11 +12,12 @@ import backend.api.features.store.image_gen as store_image_gen
import backend.api.features.store.media as store_media
import backend.data.graph as graph_db
import backend.data.integrations as integrations_db
from backend.data.block import BlockInput
from backend.data.db import transaction
from backend.data.execution import get_graph_execution
from backend.data.graph import GraphSettings
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
from backend.data.model import CredentialsMetaInput, GraphInput
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import (
on_graph_activate,
@@ -1129,7 +1130,7 @@ async def create_preset_from_graph_execution(
async def update_preset(
user_id: str,
preset_id: str,
inputs: Optional[GraphInput] = None,
inputs: Optional[BlockInput] = None,
credentials: Optional[dict[str, CredentialsMetaInput]] = None,
name: Optional[str] = None,
description: Optional[str] = None,

View File

@@ -6,12 +6,9 @@ import prisma.enums
import prisma.models
import pydantic
from backend.data.block import BlockInput
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
from backend.data.model import (
CredentialsMetaInput,
GraphInput,
is_credentials_field_name,
)
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
from backend.util.json import loads as json_loads
from backend.util.models import Pagination
@@ -326,7 +323,7 @@ class LibraryAgentPresetCreatable(pydantic.BaseModel):
graph_id: str
graph_version: int
inputs: GraphInput
inputs: BlockInput
credentials: dict[str, CredentialsMetaInput]
name: str
@@ -355,7 +352,7 @@ class LibraryAgentPresetUpdatable(pydantic.BaseModel):
Request model used when updating a preset for a library agent.
"""
inputs: Optional[GraphInput] = None
inputs: Optional[BlockInput] = None
credentials: Optional[dict[str, CredentialsMetaInput]] = None
name: Optional[str] = None
@@ -398,7 +395,7 @@ class LibraryAgentPreset(LibraryAgentPresetCreatable):
"Webhook must be included in AgentPreset query when webhookId is set"
)
input_data: GraphInput = {}
input_data: BlockInput = {}
input_credentials: dict[str, CredentialsMetaInput] = {}
for preset_input in preset.InputPresets:

View File

@@ -1,10 +1,10 @@
from typing import Literal, Optional
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, Body, HTTPException, Query, Security, status
from fastapi.responses import Response
from prisma.enums import OnboardingStep
import backend.api.auth as autogpt_auth_lib
from backend.data.onboarding import complete_onboarding_step
from .. import db as library_db

View File

@@ -1,9 +1,9 @@
import logging
from typing import Any, Optional
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, Body, HTTPException, Query, Security, status
import backend.api.auth as autogpt_auth_lib
from backend.data.execution import GraphExecutionMeta
from backend.data.graph import get_graph
from backend.data.integrations import get_webhook

View File

@@ -23,7 +23,7 @@ FIXED_NOW = datetime.datetime(2023, 1, 1, 0, 0, 0)
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_user):
"""Setup auth overrides for all tests in this module"""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from backend.api.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_user["get_jwt_payload"]
yield

View File

@@ -1,404 +0,0 @@
"""
MCP (Model Context Protocol) API routes.
Provides endpoints for MCP tool discovery and OAuth authentication so the
frontend can list available tools on an MCP server before placing a block.
"""
import logging
from typing import Annotated, Any
from urllib.parse import urlparse
import fastapi
from autogpt_libs.auth import get_user_id
from fastapi import Security
from pydantic import BaseModel, Field
from backend.api.features.integrations.router import CredentialsMetaResponse
from backend.blocks.mcp.client import MCPClient, MCPClientError
from backend.blocks.mcp.oauth import MCPOAuthHandler
from backend.data.model import OAuth2Credentials
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.providers import ProviderName
from backend.util.request import HTTPClientError, Requests
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
settings = Settings()
router = fastapi.APIRouter(tags=["mcp"])
creds_manager = IntegrationCredentialsManager()
# ====================== Tool Discovery ====================== #
class DiscoverToolsRequest(BaseModel):
"""Request to discover tools on an MCP server."""
server_url: str = Field(description="URL of the MCP server")
auth_token: str | None = Field(
default=None,
description="Optional Bearer token for authenticated MCP servers",
)
class MCPToolResponse(BaseModel):
"""A single MCP tool returned by discovery."""
name: str
description: str
input_schema: dict[str, Any]
class DiscoverToolsResponse(BaseModel):
"""Response containing the list of tools available on an MCP server."""
tools: list[MCPToolResponse]
server_name: str | None = None
protocol_version: str | None = None
@router.post(
"/discover-tools",
summary="Discover available tools on an MCP server",
response_model=DiscoverToolsResponse,
)
async def discover_tools(
request: DiscoverToolsRequest,
user_id: Annotated[str, Security(get_user_id)],
) -> DiscoverToolsResponse:
"""
Connect to an MCP server and return its available tools.
If the user has a stored MCP credential for this server URL, it will be
used automatically — no need to pass an explicit auth token.
"""
auth_token = request.auth_token
# Auto-use stored MCP credential when no explicit token is provided.
if not auth_token:
mcp_creds = await creds_manager.store.get_creds_by_provider(
user_id, ProviderName.MCP.value
)
# Find the freshest credential for this server URL
best_cred: OAuth2Credentials | None = None
for cred in mcp_creds:
if (
isinstance(cred, OAuth2Credentials)
and (cred.metadata or {}).get("mcp_server_url") == request.server_url
):
if best_cred is None or (
(cred.access_token_expires_at or 0)
> (best_cred.access_token_expires_at or 0)
):
best_cred = cred
if best_cred:
# Refresh the token if expired before using it
best_cred = await creds_manager.refresh_if_needed(user_id, best_cred)
logger.info(
f"Using MCP credential {best_cred.id} for {request.server_url}, "
f"expires_at={best_cred.access_token_expires_at}"
)
auth_token = best_cred.access_token.get_secret_value()
client = MCPClient(request.server_url, auth_token=auth_token)
try:
init_result = await client.initialize()
tools = await client.list_tools()
except HTTPClientError as e:
if e.status_code in (401, 403):
raise fastapi.HTTPException(
status_code=401,
detail="This MCP server requires authentication. "
"Please provide a valid auth token.",
)
raise fastapi.HTTPException(status_code=502, detail=str(e))
except MCPClientError as e:
raise fastapi.HTTPException(status_code=502, detail=str(e))
except Exception as e:
raise fastapi.HTTPException(
status_code=502,
detail=f"Failed to connect to MCP server: {e}",
)
return DiscoverToolsResponse(
tools=[
MCPToolResponse(
name=t.name,
description=t.description,
input_schema=t.input_schema,
)
for t in tools
],
server_name=(
init_result.get("serverInfo", {}).get("name")
or urlparse(request.server_url).hostname
or "MCP"
),
protocol_version=init_result.get("protocolVersion"),
)
# ======================== OAuth Flow ======================== #
class MCPOAuthLoginRequest(BaseModel):
"""Request to start an OAuth flow for an MCP server."""
server_url: str = Field(description="URL of the MCP server that requires OAuth")
class MCPOAuthLoginResponse(BaseModel):
"""Response with the OAuth login URL for the user to authenticate."""
login_url: str
state_token: str
@router.post(
"/oauth/login",
summary="Initiate OAuth login for an MCP server",
)
async def mcp_oauth_login(
request: MCPOAuthLoginRequest,
user_id: Annotated[str, Security(get_user_id)],
) -> MCPOAuthLoginResponse:
"""
Discover OAuth metadata from the MCP server and return a login URL.
1. Discovers the protected-resource metadata (RFC 9728)
2. Fetches the authorization server metadata (RFC 8414)
3. Performs Dynamic Client Registration (RFC 7591) if available
4. Returns the authorization URL for the frontend to open in a popup
"""
client = MCPClient(request.server_url)
# Step 1: Discover protected-resource metadata (RFC 9728)
protected_resource = await client.discover_auth()
metadata: dict[str, Any] | None = None
if protected_resource and protected_resource.get("authorization_servers"):
auth_server_url = protected_resource["authorization_servers"][0]
resource_url = protected_resource.get("resource", request.server_url)
# Step 2a: Discover auth-server metadata (RFC 8414)
metadata = await client.discover_auth_server_metadata(auth_server_url)
else:
# Fallback: Some MCP servers (e.g. Linear) are their own auth server
# and serve OAuth metadata directly without protected-resource metadata.
# Don't assume a resource_url — omitting it lets the auth server choose
# the correct audience for the token (RFC 8707 resource is optional).
resource_url = None
metadata = await client.discover_auth_server_metadata(request.server_url)
if (
not metadata
or "authorization_endpoint" not in metadata
or "token_endpoint" not in metadata
):
raise fastapi.HTTPException(
status_code=400,
detail="This MCP server does not advertise OAuth support. "
"You may need to provide an auth token manually.",
)
authorize_url = metadata["authorization_endpoint"]
token_url = metadata["token_endpoint"]
registration_endpoint = metadata.get("registration_endpoint")
revoke_url = metadata.get("revocation_endpoint")
# Step 3: Dynamic Client Registration (RFC 7591) if available
frontend_base_url = settings.config.frontend_base_url
if not frontend_base_url:
raise fastapi.HTTPException(
status_code=500,
detail="Frontend base URL is not configured.",
)
redirect_uri = f"{frontend_base_url}/auth/integrations/mcp_callback"
client_id = ""
client_secret = ""
if registration_endpoint:
reg_result = await _register_mcp_client(
registration_endpoint, redirect_uri, request.server_url
)
if reg_result:
client_id = reg_result.get("client_id", "")
client_secret = reg_result.get("client_secret", "")
if not client_id:
client_id = "autogpt-platform"
# Step 4: Store state token with OAuth metadata for the callback
scopes = (protected_resource or {}).get("scopes_supported") or metadata.get(
"scopes_supported", []
)
state_token, code_challenge = await creds_manager.store.store_state_token(
user_id,
ProviderName.MCP.value,
scopes,
state_metadata={
"authorize_url": authorize_url,
"token_url": token_url,
"revoke_url": revoke_url,
"resource_url": resource_url,
"server_url": request.server_url,
"client_id": client_id,
"client_secret": client_secret,
},
)
# Step 5: Build and return the login URL
handler = MCPOAuthHandler(
client_id=client_id,
client_secret=client_secret,
redirect_uri=redirect_uri,
authorize_url=authorize_url,
token_url=token_url,
resource_url=resource_url,
)
login_url = handler.get_login_url(
scopes, state_token, code_challenge=code_challenge
)
return MCPOAuthLoginResponse(login_url=login_url, state_token=state_token)
class MCPOAuthCallbackRequest(BaseModel):
"""Request to exchange an OAuth code for tokens."""
code: str = Field(description="Authorization code from OAuth callback")
state_token: str = Field(description="State token for CSRF verification")
class MCPOAuthCallbackResponse(BaseModel):
"""Response after successfully storing OAuth credentials."""
credential_id: str
@router.post(
"/oauth/callback",
summary="Exchange OAuth code for MCP tokens",
)
async def mcp_oauth_callback(
request: MCPOAuthCallbackRequest,
user_id: Annotated[str, Security(get_user_id)],
) -> CredentialsMetaResponse:
"""
Exchange the authorization code for tokens and store the credential.
The frontend calls this after receiving the OAuth code from the popup.
On success, subsequent ``/discover-tools`` calls for the same server URL
will automatically use the stored credential.
"""
valid_state = await creds_manager.store.verify_state_token(
user_id, request.state_token, ProviderName.MCP.value
)
if not valid_state:
raise fastapi.HTTPException(
status_code=400,
detail="Invalid or expired state token.",
)
meta = valid_state.state_metadata
frontend_base_url = settings.config.frontend_base_url
if not frontend_base_url:
raise fastapi.HTTPException(
status_code=500,
detail="Frontend base URL is not configured.",
)
redirect_uri = f"{frontend_base_url}/auth/integrations/mcp_callback"
handler = MCPOAuthHandler(
client_id=meta["client_id"],
client_secret=meta.get("client_secret", ""),
redirect_uri=redirect_uri,
authorize_url=meta["authorize_url"],
token_url=meta["token_url"],
revoke_url=meta.get("revoke_url"),
resource_url=meta.get("resource_url"),
)
try:
credentials = await handler.exchange_code_for_tokens(
request.code, valid_state.scopes, valid_state.code_verifier
)
except Exception as e:
raise fastapi.HTTPException(
status_code=400,
detail=f"OAuth token exchange failed: {e}",
)
# Enrich credential metadata for future lookup and token refresh
if credentials.metadata is None:
credentials.metadata = {}
credentials.metadata["mcp_server_url"] = meta["server_url"]
credentials.metadata["mcp_client_id"] = meta["client_id"]
credentials.metadata["mcp_client_secret"] = meta.get("client_secret", "")
credentials.metadata["mcp_token_url"] = meta["token_url"]
credentials.metadata["mcp_resource_url"] = meta.get("resource_url", "")
hostname = urlparse(meta["server_url"]).hostname or meta["server_url"]
credentials.title = f"MCP: {hostname}"
# Remove old MCP credentials for the same server to prevent stale token buildup.
try:
old_creds = await creds_manager.store.get_creds_by_provider(
user_id, ProviderName.MCP.value
)
for old in old_creds:
if (
isinstance(old, OAuth2Credentials)
and (old.metadata or {}).get("mcp_server_url") == meta["server_url"]
):
await creds_manager.store.delete_creds_by_id(user_id, old.id)
logger.info(
f"Removed old MCP credential {old.id} for {meta['server_url']}"
)
except Exception:
logger.debug("Could not clean up old MCP credentials", exc_info=True)
await creds_manager.create(user_id, credentials)
return CredentialsMetaResponse(
id=credentials.id,
provider=credentials.provider,
type=credentials.type,
title=credentials.title,
scopes=credentials.scopes,
username=credentials.username,
host=credentials.metadata.get("mcp_server_url"),
)
# ======================== Helpers ======================== #
async def _register_mcp_client(
registration_endpoint: str,
redirect_uri: str,
server_url: str,
) -> dict[str, Any] | None:
"""Attempt Dynamic Client Registration (RFC 7591) with an MCP auth server."""
try:
response = await Requests(raise_for_status=True).post(
registration_endpoint,
json={
"client_name": "AutoGPT Platform",
"redirect_uris": [redirect_uri],
"grant_types": ["authorization_code"],
"response_types": ["code"],
"token_endpoint_auth_method": "client_secret_post",
},
)
data = response.json()
if isinstance(data, dict) and "client_id" in data:
return data
return None
except Exception as e:
logger.warning(f"Dynamic client registration failed for {server_url}: {e}")
return None

View File

@@ -1,436 +0,0 @@
"""Tests for MCP API routes.
Uses httpx.AsyncClient with ASGITransport instead of fastapi.testclient.TestClient
to avoid creating blocking portals that can corrupt pytest-asyncio's session event loop.
"""
from unittest.mock import AsyncMock, patch
import fastapi
import httpx
import pytest
import pytest_asyncio
from autogpt_libs.auth import get_user_id
from backend.api.features.mcp.routes import router
from backend.blocks.mcp.client import MCPClientError, MCPTool
from backend.util.request import HTTPClientError
app = fastapi.FastAPI()
app.include_router(router)
app.dependency_overrides[get_user_id] = lambda: "test-user-id"
@pytest_asyncio.fixture(scope="module")
async def client():
transport = httpx.ASGITransport(app=app)
async with httpx.AsyncClient(transport=transport, base_url="http://test") as c:
yield c
class TestDiscoverTools:
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_success(self, client):
mock_tools = [
MCPTool(
name="get_weather",
description="Get weather for a city",
input_schema={
"type": "object",
"properties": {"city": {"type": "string"}},
"required": ["city"],
},
),
MCPTool(
name="add_numbers",
description="Add two numbers",
input_schema={
"type": "object",
"properties": {
"a": {"type": "number"},
"b": {"type": "number"},
},
},
),
]
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
instance = MockClient.return_value
instance.initialize = AsyncMock(
return_value={
"protocolVersion": "2025-03-26",
"serverInfo": {"name": "test-server"},
}
)
instance.list_tools = AsyncMock(return_value=mock_tools)
response = await client.post(
"/discover-tools",
json={"server_url": "https://mcp.example.com/mcp"},
)
assert response.status_code == 200
data = response.json()
assert len(data["tools"]) == 2
assert data["tools"][0]["name"] == "get_weather"
assert data["tools"][1]["name"] == "add_numbers"
assert data["server_name"] == "test-server"
assert data["protocol_version"] == "2025-03-26"
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_with_auth_token(self, client):
with patch("backend.api.features.mcp.routes.MCPClient") as MockClient:
instance = MockClient.return_value
instance.initialize = AsyncMock(
return_value={"serverInfo": {}, "protocolVersion": "2025-03-26"}
)
instance.list_tools = AsyncMock(return_value=[])
response = await client.post(
"/discover-tools",
json={
"server_url": "https://mcp.example.com/mcp",
"auth_token": "my-secret-token",
},
)
assert response.status_code == 200
MockClient.assert_called_once_with(
"https://mcp.example.com/mcp",
auth_token="my-secret-token",
)
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_auto_uses_stored_credential(self, client):
"""When no explicit token is given, stored MCP credentials are used."""
from pydantic import SecretStr
from backend.data.model import OAuth2Credentials
stored_cred = OAuth2Credentials(
provider="mcp",
title="MCP: example.com",
access_token=SecretStr("stored-token-123"),
refresh_token=None,
access_token_expires_at=None,
refresh_token_expires_at=None,
scopes=[],
metadata={"mcp_server_url": "https://mcp.example.com/mcp"},
)
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[stored_cred])
mock_cm.refresh_if_needed = AsyncMock(return_value=stored_cred)
instance = MockClient.return_value
instance.initialize = AsyncMock(
return_value={"serverInfo": {}, "protocolVersion": "2025-03-26"}
)
instance.list_tools = AsyncMock(return_value=[])
response = await client.post(
"/discover-tools",
json={"server_url": "https://mcp.example.com/mcp"},
)
assert response.status_code == 200
MockClient.assert_called_once_with(
"https://mcp.example.com/mcp",
auth_token="stored-token-123",
)
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_mcp_error(self, client):
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
instance = MockClient.return_value
instance.initialize = AsyncMock(
side_effect=MCPClientError("Connection refused")
)
response = await client.post(
"/discover-tools",
json={"server_url": "https://bad-server.example.com/mcp"},
)
assert response.status_code == 502
assert "Connection refused" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_generic_error(self, client):
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
instance = MockClient.return_value
instance.initialize = AsyncMock(side_effect=Exception("Network timeout"))
response = await client.post(
"/discover-tools",
json={"server_url": "https://timeout.example.com/mcp"},
)
assert response.status_code == 502
assert "Failed to connect" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_auth_required(self, client):
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
instance = MockClient.return_value
instance.initialize = AsyncMock(
side_effect=HTTPClientError("HTTP 401 Error: Unauthorized", 401)
)
response = await client.post(
"/discover-tools",
json={"server_url": "https://auth-server.example.com/mcp"},
)
assert response.status_code == 401
assert "requires authentication" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_forbidden(self, client):
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
):
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
instance = MockClient.return_value
instance.initialize = AsyncMock(
side_effect=HTTPClientError("HTTP 403 Error: Forbidden", 403)
)
response = await client.post(
"/discover-tools",
json={"server_url": "https://auth-server.example.com/mcp"},
)
assert response.status_code == 401
assert "requires authentication" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_discover_tools_missing_url(self, client):
response = await client.post("/discover-tools", json={})
assert response.status_code == 422
class TestOAuthLogin:
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_login_success(self, client):
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
patch("backend.api.features.mcp.routes.settings") as mock_settings,
patch(
"backend.api.features.mcp.routes._register_mcp_client"
) as mock_register,
):
instance = MockClient.return_value
instance.discover_auth = AsyncMock(
return_value={
"authorization_servers": ["https://auth.sentry.io"],
"resource": "https://mcp.sentry.dev/mcp",
"scopes_supported": ["openid"],
}
)
instance.discover_auth_server_metadata = AsyncMock(
return_value={
"authorization_endpoint": "https://auth.sentry.io/authorize",
"token_endpoint": "https://auth.sentry.io/token",
"registration_endpoint": "https://auth.sentry.io/register",
}
)
mock_register.return_value = {
"client_id": "registered-client-id",
"client_secret": "registered-secret",
}
mock_cm.store.store_state_token = AsyncMock(
return_value=("state-token-123", "code-challenge-abc")
)
mock_settings.config.frontend_base_url = "http://localhost:3000"
response = await client.post(
"/oauth/login",
json={"server_url": "https://mcp.sentry.dev/mcp"},
)
assert response.status_code == 200
data = response.json()
assert "login_url" in data
assert data["state_token"] == "state-token-123"
assert "auth.sentry.io/authorize" in data["login_url"]
assert "registered-client-id" in data["login_url"]
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_login_no_oauth_support(self, client):
with patch("backend.api.features.mcp.routes.MCPClient") as MockClient:
instance = MockClient.return_value
instance.discover_auth = AsyncMock(return_value=None)
instance.discover_auth_server_metadata = AsyncMock(return_value=None)
response = await client.post(
"/oauth/login",
json={"server_url": "https://simple-server.example.com/mcp"},
)
assert response.status_code == 400
assert "does not advertise OAuth" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_login_fallback_to_public_client(self, client):
"""When DCR is unavailable, falls back to default public client ID."""
with (
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
patch("backend.api.features.mcp.routes.settings") as mock_settings,
):
instance = MockClient.return_value
instance.discover_auth = AsyncMock(
return_value={
"authorization_servers": ["https://auth.example.com"],
"resource": "https://mcp.example.com/mcp",
}
)
instance.discover_auth_server_metadata = AsyncMock(
return_value={
"authorization_endpoint": "https://auth.example.com/authorize",
"token_endpoint": "https://auth.example.com/token",
# No registration_endpoint
}
)
mock_cm.store.store_state_token = AsyncMock(
return_value=("state-abc", "challenge-xyz")
)
mock_settings.config.frontend_base_url = "http://localhost:3000"
response = await client.post(
"/oauth/login",
json={"server_url": "https://mcp.example.com/mcp"},
)
assert response.status_code == 200
data = response.json()
assert "autogpt-platform" in data["login_url"]
class TestOAuthCallback:
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_callback_success(self, client):
from pydantic import SecretStr
from backend.data.model import OAuth2Credentials
mock_creds = OAuth2Credentials(
provider="mcp",
title=None,
access_token=SecretStr("access-token-xyz"),
refresh_token=None,
access_token_expires_at=None,
refresh_token_expires_at=None,
scopes=[],
metadata={
"mcp_token_url": "https://auth.sentry.io/token",
"mcp_resource_url": "https://mcp.sentry.dev/mcp",
},
)
with (
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
patch("backend.api.features.mcp.routes.settings") as mock_settings,
patch("backend.api.features.mcp.routes.MCPOAuthHandler") as MockHandler,
):
mock_settings.config.frontend_base_url = "http://localhost:3000"
# Mock state verification
mock_state = AsyncMock()
mock_state.state_metadata = {
"authorize_url": "https://auth.sentry.io/authorize",
"token_url": "https://auth.sentry.io/token",
"client_id": "test-client-id",
"client_secret": "test-secret",
"server_url": "https://mcp.sentry.dev/mcp",
}
mock_state.scopes = ["openid"]
mock_state.code_verifier = "verifier-123"
mock_cm.store.verify_state_token = AsyncMock(return_value=mock_state)
mock_cm.create = AsyncMock()
handler_instance = MockHandler.return_value
handler_instance.exchange_code_for_tokens = AsyncMock(
return_value=mock_creds
)
# Mock old credential cleanup
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
response = await client.post(
"/oauth/callback",
json={"code": "auth-code-abc", "state_token": "state-token-123"},
)
assert response.status_code == 200
data = response.json()
assert "id" in data
assert data["provider"] == "mcp"
assert data["type"] == "oauth2"
mock_cm.create.assert_called_once()
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_callback_invalid_state(self, client):
with patch("backend.api.features.mcp.routes.creds_manager") as mock_cm:
mock_cm.store.verify_state_token = AsyncMock(return_value=None)
response = await client.post(
"/oauth/callback",
json={"code": "auth-code", "state_token": "bad-state"},
)
assert response.status_code == 400
assert "Invalid or expired" in response.json()["detail"]
@pytest.mark.asyncio(loop_scope="session")
async def test_oauth_callback_token_exchange_fails(self, client):
with (
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
patch("backend.api.features.mcp.routes.settings") as mock_settings,
patch("backend.api.features.mcp.routes.MCPOAuthHandler") as MockHandler,
):
mock_settings.config.frontend_base_url = "http://localhost:3000"
mock_state = AsyncMock()
mock_state.state_metadata = {
"authorize_url": "https://auth.example.com/authorize",
"token_url": "https://auth.example.com/token",
"client_id": "cid",
"server_url": "https://mcp.example.com/mcp",
}
mock_state.scopes = []
mock_state.code_verifier = "v"
mock_cm.store.verify_state_token = AsyncMock(return_value=mock_state)
handler_instance = MockHandler.return_value
handler_instance.exchange_code_for_tokens = AsyncMock(
side_effect=RuntimeError("Token exchange failed")
)
response = await client.post(
"/oauth/callback",
json={"code": "bad-code", "state_token": "state"},
)
assert response.status_code == 400
assert "token exchange failed" in response.json()["detail"].lower()

View File

@@ -21,13 +21,13 @@ from datetime import datetime
from typing import Literal, Optional
from urllib.parse import urlencode
from autogpt_libs.auth import get_user_id
from fastapi import APIRouter, Body, HTTPException, Security, UploadFile, status
from gcloud.aio import storage as async_storage
from PIL import Image
from prisma.enums import APIKeyPermission
from pydantic import BaseModel, Field
from backend.api.auth import get_user_id
from backend.data.auth.oauth import (
InvalidClientError,
InvalidGrantError,

View File

@@ -21,7 +21,6 @@ from typing import AsyncGenerator
import httpx
import pytest
import pytest_asyncio
from autogpt_libs.api_key.keysmith import APIKeySmith
from prisma.enums import APIKeyPermission
from prisma.models import OAuthAccessToken as PrismaOAuthAccessToken
from prisma.models import OAuthApplication as PrismaOAuthApplication
@@ -29,6 +28,7 @@ from prisma.models import OAuthAuthorizationCode as PrismaOAuthAuthorizationCode
from prisma.models import OAuthRefreshToken as PrismaOAuthRefreshToken
from prisma.models import User as PrismaUser
from backend.api.auth.api_key.keysmith import APIKeySmith
from backend.api.rest_api import app
keysmith = APIKeySmith()
@@ -134,7 +134,7 @@ async def client(server, test_user: str) -> AsyncGenerator[httpx.AsyncClient, No
Depends on `server` to ensure the DB is connected and `test_user` to ensure
the user exists in the database before running tests.
"""
from autogpt_libs.auth import get_user_id
from backend.api.auth import get_user_id
# Override get_user_id dependency to return our test user
def override_get_user_id():

View File

@@ -1,8 +1,9 @@
import logging
from autogpt_libs.auth import get_user_id, requires_user
from fastapi import APIRouter, HTTPException, Security
from backend.api.auth import get_user_id, requires_user
from .models import ApiResponse, ChatRequest
from .service import OttoService

View File

@@ -19,7 +19,7 @@ client = fastapi.testclient.TestClient(app)
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_user):
"""Setup auth overrides for all tests in this module"""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from backend.api.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_user["get_jwt_payload"]
yield

View File

@@ -5,8 +5,8 @@ from typing import Optional
import aiohttp
from fastapi import HTTPException
from backend.blocks import get_block
from backend.data import graph as graph_db
from backend.data.block import get_block
from backend.util.settings import Settings
from .models import ApiResponse, ChatRequest, GraphData

View File

@@ -57,7 +57,7 @@ async def postmark_webhook_handler(
webhook: Annotated[
PostmarkWebhook,
Body(discriminator="RecordType"),
]
],
):
logger.info(f"Received webhook from Postmark: {webhook}")
match webhook:

View File

@@ -152,7 +152,7 @@ class BlockHandler(ContentHandler):
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch blocks without embeddings."""
from backend.blocks import get_blocks
from backend.data.block import get_blocks
# Get all available blocks
all_blocks = get_blocks()
@@ -164,7 +164,7 @@ class BlockHandler(ContentHandler):
block_ids = list(all_blocks.keys())
# Query for existing embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
placeholders = ",".join([f"${i + 1}" for i in range(len(block_ids))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"
@@ -249,7 +249,7 @@ class BlockHandler(ContentHandler):
async def get_stats(self) -> dict[str, int]:
"""Get statistics about block embedding coverage."""
from backend.blocks import get_blocks
from backend.data.block import get_blocks
all_blocks = get_blocks()
@@ -265,7 +265,7 @@ class BlockHandler(ContentHandler):
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
block_ids = enabled_block_ids
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
placeholders = ",".join([f"${i + 1}" for i in range(len(block_ids))])
embedded_result = await query_raw_with_schema(
f"""
@@ -508,7 +508,7 @@ class DocumentationHandler(ContentHandler):
]
# Check which ones have embeddings
placeholders = ",".join([f"${i+1}" for i in range(len(section_content_ids))])
placeholders = ",".join([f"${i + 1}" for i in range(len(section_content_ids))])
existing_result = await query_raw_with_schema(
f"""
SELECT "contentId"

View File

@@ -93,7 +93,7 @@ async def test_block_handler_get_missing_items(mocker):
mock_existing = []
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -135,7 +135,7 @@ async def test_block_handler_get_stats(mocker):
mock_embedded = [{"count": 2}]
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -327,7 +327,7 @@ async def test_block_handler_handles_missing_attributes():
mock_blocks = {"block-minimal": mock_block_class}
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -360,7 +360,7 @@ async def test_block_handler_skips_failed_blocks():
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(

View File

@@ -662,7 +662,7 @@ async def cleanup_orphaned_embeddings() -> dict[str, Any]:
)
current_ids = {row["id"] for row in valid_agents}
elif content_type == ContentType.BLOCK:
from backend.blocks import get_blocks
from backend.data.block import get_blocks
current_ids = set(get_blocks().keys())
elif content_type == ContentType.DOCUMENTATION:

Some files were not shown because too many files have changed in this diff Show More