Compare commits

..

64 Commits

Author SHA1 Message Date
Bentlybro
8e6bc5eb48 Update route examples and compress_context call
Update doc examples in admin/llm_routes.py to use the new /api/llm/admin/... path. Change compress_context invocation in blocks/llm.py to pass client=None (truncation-only, no LLM summarization) instead of using the lossy_ok parameter.
2026-02-12 09:07:24 +00:00
Bentlybro
8b2b0c853a Update openapi.json 2026-02-11 14:05:32 +00:00
Bentlybro
ffb86cced4 Merge remote-tracking branch 'origin/dev' into add-llm-manager-ui 2026-02-11 13:45:56 +00:00
Bentlybro
fea46a6d28 Use LlmModel and simplify cache clearing
Refactor LLM handling and cache logic: instantiate and pass a LlmModel instance to generate_model_label (rename model_enum -> model) to ensure consistent enum usage when building labels. Remove hasattr guards and directly clear the v2 builder caches during runtime state refresh so cached providers and search results are always attempted to be cleared. Update the AIConditionBlock test fixture to use LlmModel.default() instead of a hardcoded gpt-4o string. These changes simplify the code and standardize LlmModel usage.
2026-02-10 15:32:36 +00:00
Nicholas Tindle
f2f779e54f Merge branch 'dev' into add-llm-manager-ui 2026-01-27 10:39:47 -06:00
Bentlybro
dda9a9b010 Update llm.py 2026-01-23 15:07:55 +00:00
Bentlybro
c1d3604682 Improve LlmModelMeta slug generation logic
Slug generation now checks for exact matches in the registry before applying the letter-digit hyphen transformation. This ensures that model names like 'o1' are preserved as-is if present in the registry, improving compatibility with dynamic model slugs.
2026-01-23 14:59:49 +00:00
Bentlybro
dfbfbdf696 Add pagination and lazy loading to models table
Implemented client-side pagination for the LLM models table in the admin UI, including a 'Load More' button and loading state. The backend now only returns enabled models for selection. This improves performance and usability when managing large numbers of models.
2026-01-23 12:12:32 +00:00
Bentlybro
994ebc2cf8 Merge branch 'dev' into add-llm-manager-ui 2026-01-22 14:38:24 +00:00
Bentlybro
2245d115d3 Refactor form field extraction and validation utilities
Introduced utility functions for extracting and validating required fields from FormData, reducing code duplication and improving error handling across LLM provider, model, and creator actions. Updated all relevant actions to use these new utilities for consistent validation.
2026-01-22 14:07:59 +00:00
Bentlybro
5238b1b71c Add input validation to LLM provider/model actions
Improves robustness by validating and sanitizing form data in deleteLlmProviderAction and createLlmModelAction. Ensures required fields are present and context window and credit cost are valid numbers before proceeding.
2026-01-22 13:51:54 +00:00
Bentlybro
4fb86b2738 Update actions.ts 2026-01-22 13:44:46 +00:00
Bentlybro
e10128e9f0 Improve LLM provider form data handling
Parse 'default_credential_id' and 'default_credential_type' from form data instead of using static values. Update boolean field parsing to use getAll and check for 'on' to better support multiple checkbox inputs.
2026-01-22 13:41:37 +00:00
Bentlybro
b205d5863e format 2026-01-22 13:13:46 +00:00
Bentlybro
6da2dee62f Add edit and delete functionality for LLM providers
Introduces backend API and frontend UI for editing and deleting LLM providers. Providers can only be deleted if they have no associated models. Includes new modals for editing and deleting providers, updates provider list to show model count and actions, and adds corresponding actions and API integration.
2026-01-22 13:08:29 +00:00
Bentlybro
324ebc1e06 Fix LLM model creation, DB JSON handling, and migration logic
Corrects handling of JSON fields in the backend by wrapping metadata and capabilities in prisma.Json, and updates model/creator relationship to use Prisma connect syntax. Updates LlmModelMigration timestamps to use datetime objects. Adjusts SQL migrations to avoid duplicate table/constraint creation and adds conditional foreign key logic. Fixes frontend LLM model form to properly handle is_enabled checkbox state.
2026-01-22 12:37:31 +00:00
Bentlybro
ce2ebee838 Refactor LlmModel priceTier and add creator support
Removes the priceTier field from the LlmModel seed migration and moves price tier assignments to a dedicated migration. Adds new columns to LlmModel for creatorId and isRecommended, creates the LlmModelCreator table, and updates priceTier values for existing models to support enhanced LLM Picker UI functionality.
2026-01-22 12:04:13 +00:00
Bentlybro
0597573b6c Merge branch 'dev' into add-llm-manager-ui 2026-01-22 11:52:43 +00:00
Bentlybro
9496b33a1c Add price tier to LLM model metadata and registry
Introduces a 'priceTier' attribute (1=cheapest, 2=medium, 3=expensive) to LlmModel in the database schema, model metadata, and registry logic. Updates migrations and seed data to support price tier for LLM models, enabling cost-based filtering and selection in the LLM Picker UI.
2026-01-22 11:52:37 +00:00
Bentlybro
8e3aabd558 Use effective model for parallel tool calls param
Replaces usage of llm_model with effective_model when resolving parallel tool calls parameters. This ensures model-specific parameter resolution uses the actual model in use, including after any fallback.
2026-01-22 11:08:09 +00:00
Bentlybro
fbef81c0c9 Improve LLM model iteration and metadata handling
Added __iter__ to LlmModelMeta for dynamic model iteration and updated metadata retrieval to handle missing registry entries gracefully. Fixed BlockSchema cached_jsonschema initialization and improved discriminator mapping refresh logic. Updated NodeInputs to display beautified string if label is missing.
2026-01-22 10:00:06 +00:00
Bentlybro
226d2ef4a0 Merge branch 'dev' into add-llm-manager-ui 2026-01-21 23:46:07 +00:00
Bentlybro
42f8a26ee1 Allow LLM model deletion without replacement if unused
Updated backend logic and API schema to permit deleting an LLM model without specifying a replacement if no workflow nodes are using it. Adjusted tests to cover both cases (with and without usage), made replacement_model_slug optional in the response model, and updated OpenAPI spec accordingly.
2026-01-21 23:26:52 +00:00
Bentlybro
8d021fe76c Allow LLM model deletion without mandatory migration
Backend and frontend logic updated to allow deletion of LLM models without requiring a replacement if no workflows use the model. The API, UI, and OpenAPI spec now conditionally require a replacement model only when migration is necessary, improving admin workflow and error handling.
2026-01-21 22:23:26 +00:00
Bentlybro
cb10907bf6 Add pagination to LLM model listing endpoints
Introduces pagination support to the LLM model listing APIs in both admin and public routes. Updates the response model to include pagination metadata, modifies database queries to support paging, and adjusts related tests. Also renames model_types.py to model.py for consistency.
2026-01-21 21:00:18 +00:00
Bentlybro
54084fe597 Refactor LLM admin route tests for improved mocking and snapshots
Updated tests to use actual model and response classes from llm_model instead of dicts, ensuring more accurate type usage. Snapshot assertions now serialize responses to JSON strings for compatibility. Cleaned up test_delete_llm_model_missing_replacement to remove unnecessary mocking.
2026-01-19 14:28:33 +00:00
Bentlybro
8f5d851908 Set router prefix in llm_routes_test.py
Added the '/admin/llm' prefix to the included router in the test setup to match the expected route structure.
2026-01-19 14:16:08 +00:00
Bentlybro
358a21c6fc prettier 2026-01-19 14:15:04 +00:00
Bentlybro
336fc43b24 Add unique constraint to LlmModelCost on model, provider, unit
Introduces a unique index on the combination of llmModelId, credentialProvider, and unit in the LlmModelCost table to prevent duplicate cost entries. Updates the seed migration to handle conflicts on this unique key by doing nothing on conflict.
2026-01-19 13:39:20 +00:00
Bentlybro
cfb1613877 Update hidden credential_type input logic in EditModelModal
The hidden input for credential_type now prioritizes cost.credential_type, then provider.default_credential_type, and defaults to 'api_key' if neither is set. This ensures the correct credential type is submitted based on available data.
2026-01-16 14:29:46 +00:00
Bentlybro
386eea741c Rename cost_unit field to unit in LLM model forms
Updated form field and related code references from 'cost_unit' to 'unit' in both create and update LLM model actions, as well as in the EditModelModal component. This change ensures consistency in naming and aligns with expected backend parameters.
2026-01-16 14:19:04 +00:00
Bentlybro
e5c6809d9c Improve LLM model cost unit handling and cache refresh
Adds explicit handling of the cost unit in LLM model creation and update actions, ensuring the unit is always set (defaulting to 'RUN'). Updates the EditModelModal to include a hidden cost_unit input. Refactors backend LLM runtime state refresh logic to improve error handling and logging for cache clearing operations.
2026-01-16 13:58:19 +00:00
Bentlybro
963b8090cc Fix admin LLM API routes and improve model migration
Removes redundant route prefix in backend admin LLM API, updates OpenAPI paths to match, and improves parameterization for batch node updates in model migration and revert logic. Also adds stricter validation for replacement model slug in frontend actions and sets button type in EditModelModal.
2026-01-16 12:51:06 +00:00
Bentlybro
eab93aba2b Add options field to BlockIOStringSubSchema type
Introduces an optional 'options' array to BlockIOStringSubSchema, allowing specification of selectable string values with labels and optional descriptions.
2026-01-16 10:13:33 +00:00
Bentlybro
47a70cdbd0 Merge branch 'dev' into add-llm-manager-ui 2026-01-16 09:39:36 +00:00
Bentlybro
69c9136060 Improve LLM registry consistency and frontend UX
Backend: Refactored LLM registry state updates to use atomic swaps for consistency, made Redis notification publishing async, and improved schema/discriminator mapping access to prevent external mutation. Added stricter slug validation for model creation. Frontend: Enhanced Edit and Delete Model modals to refresh data after actions and show error states, and wrapped the LLM Registry Dashboard in an error boundary for better error handling.
2026-01-12 12:52:40 +00:00
Bentlybro
6ed8bb4f14 Clarify custom pricing override for LLM migrations
Improved documentation and comments for the custom_credit_cost field in backend, frontend, and schema files to clarify its use as a billing override during LLM model migrations. Also removed unused LLM registry types and API methods from frontend code, and renamed useLlmRegistryPage.ts to getLlmRegistryPage.ts for consistency.
2026-01-12 11:40:49 +00:00
Bentlybro
6cf28e58d3 Improve LLM model default selection and admin actions
Backend logic for selecting the default LLM model now prioritizes the recommended model, with improved fallbacks and error handling if no models are enabled. The migration enforces a single recommended model at the database level. Frontend admin actions for LLM models and providers now correctly interpret form values for boolean fields and fix the return type for the delete action.
2026-01-09 15:18:54 +00:00
Bentlybro
632ef24408 Add recommended LLM model feature to admin UI and API
Introduces the ability for admins to mark a model as the recommended default via a new boolean field `isRecommended` on LlmModel. Adds backend endpoints and logic to set, get, and persist the recommended model, including a migration and schema update. Updates the frontend admin UI to allow selecting and displaying the recommended model, and reflects the recommended status in model tables and dropdowns.
2026-01-07 19:43:16 +00:00
Bentlybro
6dc767aafa Improve admin LLM registry UX and error handling
Adds user feedback and error handling to LLM registry modals (add/edit creator, model, provider) in the admin UI, including loading states and error messages. Ensures atomic updates for model costs in the backend using transactions. Improves display of creator website URLs and handles the case where no LLM models are available in analytics config. Updates icon usage and removes unnecessary 'use server' directive.
2026-01-07 14:17:37 +00:00
Bentlybro
23e37fd163 Replace delete button with DeleteCreatorModal
Refactored the creator deletion flow in CreatorsTable to use a new DeleteCreatorModal component, providing a confirmation dialog and improved error handling. The previous DeleteCreatorButton was removed and replaced for better user experience and safety.
2026-01-06 14:22:21 +00:00
Bentlybro
63869fe710 format 2026-01-06 13:40:16 +00:00
Bentlybro
90ae75d475 Delete settings.local.json 2026-01-06 13:07:46 +00:00
Bentlybro
9b6dc3be12 prettier 2026-01-06 13:01:51 +00:00
Bentlybro
9b8b6252c5 Refactor LLM registry admin backend and frontend
Refactored backend imports and test mocks to use new admin LLM routes location. Cleaned up and reordered imports for clarity and consistency. Improved code formatting and readability across backend and frontend files. Renamed useLlmRegistryPage to getLlmRegistryPageData for clarity and updated all usages. No functional changes to business logic.
2026-01-06 12:57:33 +00:00
Bentlybro
0d321323f5 Add GPT-5.2 model and admin LLM endpoints
Introduces a migration to add the GPT-5.2 model and updates the O3 model slug in the database. Refactors backend LLM model registry usage for search and migration logic. Expands the OpenAPI spec with new admin endpoints for managing LLM models, providers, creators, and migrations.
2026-01-06 12:46:20 +00:00
Bentlybro
3ee3ea8f02 Merge branch 'dev' into add-llm-manager-ui 2026-01-06 10:28:43 +00:00
Bentlybro
7a842d35ae Refactor LLM admin to use generated API and types
Replaces usage of the custom BackendApi client and legacy types in admin LLM actions and components with generated OpenAPI endpoints and types. Updates API calls, error handling, and type imports throughout the admin LLM dashboard. Also corrects operationId fields in backend routes and OpenAPI spec for consistency.
2026-01-06 09:43:15 +00:00
Bentlybro
07e8568f57 Refactor LLM admin UI for improved consistency and API support
Refactored admin LLM actions and components to improve code organization, update color schemes to use design tokens, and enhance UI consistency. Updated API types and endpoints to support model creators and migrations, and switched tables to use shared Table components. Added and documented new API endpoints for model migrations, creators, and usage in openapi.json.
2026-01-05 17:10:04 +00:00
Bentlybro
13a0caa5d8 Improve model modal UX and credential provider selection
Add auto-selection of creator based on provider in AddModelModal for better usability. Update EditModelModal to use a select dropdown for credential provider, add helper text, and set credential_type as a hidden default input.
2026-01-05 16:01:36 +00:00
Bentlybro
664523a721 Refactor LLM model cost and update logic, remove 'Enabled' checkbox
Improves backend handling of LLM model cost updates by separating scalar and relation field updates, ensuring costs are deleted and recreated as needed. Optional cost fields are now only included if present, and metadata is handled as a Prisma Json type. On the frontend, removes the 'Enabled' checkbox from the EditModelModal component.
2026-01-05 15:56:45 +00:00
Bentlybro
33b103d09b Improve LLM model migration and add AgentNode index
Refactored model migration and revert logic for atomicity and consistency, including transactional node selection and updates. Enhanced revert API to support optional re-enabling of source models and reporting of nodes not reverted. Added a database index on AgentNode.constantInput->>'model' to optimize migration queries and performance.
2026-01-05 15:22:33 +00:00
Bentlybro
2e3fc99caa Add LLM model creator support to registry and admin UI
Introduces the LlmModelCreator entity to distinguish model creators (e.g., OpenAI, Meta) from providers, with full CRUD API endpoints, database migration, and Prisma schema updates. Backend and frontend are updated to support associating models with creators, including admin UI for managing creators and selecting them when creating or editing models. Existing models are backfilled with known creators via migration.
2026-01-05 10:17:00 +00:00
Bently
52c7b223df Add migration management for LLM models
Introduced a new LlmModelMigration model to track migrations when disabling LLM models, allowing for revert capability. Updated the toggle model API to create migration records with optional reason and custom pricing. Added endpoints for listing and reverting migrations, along with corresponding frontend actions and UI components to manage migrations effectively. Enhanced the admin dashboard to display active migrations, improving overall usability and tracking of model changes.
2025-12-19 00:06:03 +00:00
Bently
24d86fde30 Enhance LLM model toggle functionality with migration support
Updated the toggle LLM model API to include an optional migration feature, allowing workflows to be migrated to a specified replacement model when disabling a model. Refactored related request and response models to accommodate this change. Improved error handling and logging for better debugging. Updated frontend actions and components to support the new migration parameter.
2025-12-18 23:32:41 +00:00
Bentlybro
df7be39724 Refactor add model/provider forms to modal dialogs
Replaces AddModelForm and AddProviderForm components with AddModelModal and AddProviderModal, converting the add model/provider flows to use modal dialogs instead of inline forms. Updates LlmRegistryDashboard to use the new modal components and removes dropdown/form selection logic for a cleaner UI.
2025-12-13 19:39:30 +00:00
Bentlybro
8c7b1af409 Refactor LLM registry to modular structure and improve admin UI
Moved LLM registry backend code into a dedicated llm_registry module with submodules for model types, notifications, schema utilities, and registry logic. Updated all backend imports to use the new structure. On the frontend, redesigned the admin LLM registry page with a dashboard layout, modularized data fetching, and improved forms for adding/editing providers and models. Updated UI components for better usability and maintainability.
2025-12-12 11:32:28 +00:00
Bentlybro
b6e2f05b63 Refactor LlmModel to support dynamic registry slugs
Replaces hardcoded LlmModel enum values with a dynamic approach that accepts any model slug from the registry. Updates block defaults to use a default_factory method that pulls the preferred model from the registry. Refactors model validation, migration, and admin analytics routes to use registry-based model lists, ensuring only enabled models are selectable and recommended. Adds get_default_model_slug to llm_registry for consistent default selection.
2025-12-09 15:49:44 +00:00
Bentlybro
7435739053 Add fallback logic for disabled LLM models
Introduces fallback selection for disabled LLM models in llm_call, preferring enabled models from the same provider. Updates registry utilities to support fallback lookup, model info retrieval, and validation of all known model slugs. Schema utilities now keep all known models in validation enums while showing only enabled models in UI options.
2025-12-08 11:29:31 +00:00
Bentlybro
a97fdba554 Restrict LLM model and provider listings to enabled items
Updated public LLM model and provider listing endpoints to only return enabled models and providers. Refactored database access functions to support filtering by enabled status, and improved transaction safety for model deletion. Adjusted tests and internal documentation to reflect these changes.
2025-12-04 15:56:25 +00:00
Bentlybro
ec705bbbcf format 2025-12-02 14:49:03 +00:00
Bentlybro
7fe6b576ae Add LLM model deletion and migration feature
Introduces backend and frontend support for deleting LLM models with automatic workflow migration to a replacement model. Adds API endpoints, database logic, response models, frontend modal, and actions for safe deletion, including usage count display and error handling. Updates table components to use new modal and refactors table imports.
2025-12-02 14:41:13 +00:00
Bentlybro
dfc42003a1 Refactor LLM registry integration and schema updates
Moved LLM registry schema update logic to a shared utility (llm_schema_utils.py) and refactored block and credentials schema post-processing to use this helper. Extracted executor registry initialization and notification handling into llm_registry_init.py for better separation of concerns. Updated manager.py to use new initialization and subscription functions, improving maintainability and clarity of LLM registry refresh logic.
2025-12-01 17:55:43 +00:00
Bentlybro
6bbeb22943 Refactor LLM model registry to use database
Migrates LLM model metadata and cost configuration from static code to a dynamic database-driven registry. Adds new backend modules for LLM registry and model types, updates block and cost configuration logic to fetch model info and costs from the database, and ensures block schemas and UI options reflect enabled/disabled models. This enables dynamic management of LLM models and costs via the admin UI and database migrations.
2025-12-01 14:37:46 +00:00
264 changed files with 11429 additions and 4395 deletions

View File

@@ -122,6 +122,24 @@ class ConnectionManager:
return len(connections)
async def broadcast_to_all(self, *, method: WSMethod, data: dict) -> int:
"""Broadcast a message to all active websocket connections."""
message = WSMessage(
method=method,
data=data,
).model_dump_json()
connections = tuple(self.active_connections)
if not connections:
return 0
await asyncio.gather(
*(connection.send_text(message) for connection in connections),
return_exceptions=True,
)
return len(connections)
async def _subscribe(self, channel_key: str, websocket: WebSocket) -> str:
if channel_key not in self.subscriptions:
self.subscriptions[channel_key] = set()

View File

@@ -10,7 +10,7 @@ from typing_extensions import TypedDict
import backend.api.features.store.cache as store_cache
import backend.api.features.store.model as store_model
import backend.blocks
import backend.data.block
from backend.api.external.middleware import require_permission
from backend.data import execution as execution_db
from backend.data import graph as graph_db
@@ -67,7 +67,7 @@ async def get_user_info(
dependencies=[Security(require_permission(APIKeyPermission.READ_BLOCK))],
)
async def get_graph_blocks() -> Sequence[dict[Any, Any]]:
blocks = [block() for block in backend.blocks.get_blocks().values()]
blocks = [block() for block in backend.data.block.get_blocks().values()]
return [b.to_dict() for b in blocks if not b.disabled]
@@ -83,7 +83,7 @@ async def execute_graph_block(
require_permission(APIKeyPermission.EXECUTE_BLOCK)
),
) -> CompletedBlockOutput:
obj = backend.blocks.get_block(block_id)
obj = backend.data.block.get_block(block_id)
if not obj:
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
if obj.disabled:

View File

@@ -176,30 +176,64 @@ async def get_execution_analytics_config(
# Return with provider prefix for clarity
return f"{provider_name}: {model_name}"
# Include all LlmModel values (no more filtering by hardcoded list)
recommended_model = LlmModel.GPT4O_MINI.value
for model in LlmModel:
# Get all models from the registry (dynamic, not hardcoded enum)
from backend.data import llm_registry
from backend.server.v2.llm import db as llm_db
# Get the recommended model from the database (configurable via admin UI)
recommended_model_slug = await llm_db.get_recommended_model_slug()
# Build the available models list
first_enabled_slug = None
for registry_model in llm_registry.iter_dynamic_models():
# Only include enabled models in the list
if not registry_model.is_enabled:
continue
# Track first enabled model as fallback
if first_enabled_slug is None:
first_enabled_slug = registry_model.slug
model = LlmModel(registry_model.slug)
label = generate_model_label(model)
# Add "(Recommended)" suffix to the recommended model
if model.value == recommended_model:
if registry_model.slug == recommended_model_slug:
label += " (Recommended)"
available_models.append(
ModelInfo(
value=model.value,
value=registry_model.slug,
label=label,
provider=model.provider,
provider=registry_model.metadata.provider,
)
)
# Sort models by provider and name for better UX
available_models.sort(key=lambda x: (x.provider, x.label))
# Handle case where no models are available
if not available_models:
logger.warning(
"No enabled LLM models found in registry. "
"Ensure models are configured and enabled in the LLM Registry."
)
# Provide a placeholder entry so admins see meaningful feedback
available_models.append(
ModelInfo(
value="",
label="No models available - configure in LLM Registry",
provider="none",
)
)
# Use the DB recommended model, or fallback to first enabled model
final_recommended = recommended_model_slug or first_enabled_slug or ""
return ExecutionAnalyticsConfig(
available_models=available_models,
default_system_prompt=DEFAULT_SYSTEM_PROMPT,
default_user_prompt=DEFAULT_USER_PROMPT,
recommended_model=recommended_model,
recommended_model=final_recommended,
)

View File

@@ -0,0 +1,593 @@
import logging
import autogpt_libs.auth
import fastapi
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
from backend.server.v2.llm import db as llm_db
from backend.server.v2.llm import model as llm_model
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
tags=["llm", "admin"],
dependencies=[fastapi.Security(autogpt_libs.auth.requires_admin_user)],
)
async def _refresh_runtime_state() -> None:
"""Refresh the LLM registry and clear all related caches to ensure real-time updates."""
logger.info("Refreshing LLM registry runtime state...")
try:
# Refresh registry from database
await llm_registry.refresh_llm_registry()
refresh_llm_costs()
# Clear block schema caches so they're regenerated with updated model options
from backend.data.block import BlockSchema
BlockSchema.clear_all_schema_caches()
logger.info("Cleared all block schema caches")
# Clear the /blocks endpoint cache so frontend gets updated schemas
try:
from backend.api.features.v1 import _get_cached_blocks
_get_cached_blocks.cache_clear()
logger.info("Cleared /blocks endpoint cache")
except Exception as e:
logger.warning("Failed to clear /blocks cache: %s", e)
# Clear the v2 builder caches
try:
from backend.api.features.builder import db as builder_db
builder_db._get_all_providers.cache_clear()
logger.info("Cleared v2 builder providers cache")
builder_db._build_cached_search_results.cache_clear()
logger.info("Cleared v2 builder search results cache")
except Exception as e:
logger.debug("Could not clear v2 builder cache: %s", e)
# Notify all executor services to refresh their registry cache
from backend.data.llm_registry import publish_registry_refresh_notification
await publish_registry_refresh_notification()
logger.info("Published registry refresh notification")
except Exception as exc:
logger.exception(
"LLM runtime state refresh failed; caches may be stale: %s", exc
)
@router.get(
"/providers",
summary="List LLM providers",
response_model=llm_model.LlmProvidersResponse,
)
async def list_llm_providers(include_models: bool = True):
providers = await llm_db.list_providers(include_models=include_models)
return llm_model.LlmProvidersResponse(providers=providers)
@router.post(
"/providers",
summary="Create LLM provider",
response_model=llm_model.LlmProvider,
)
async def create_llm_provider(request: llm_model.UpsertLlmProviderRequest):
provider = await llm_db.upsert_provider(request=request)
await _refresh_runtime_state()
return provider
@router.patch(
"/providers/{provider_id}",
summary="Update LLM provider",
response_model=llm_model.LlmProvider,
)
async def update_llm_provider(
provider_id: str,
request: llm_model.UpsertLlmProviderRequest,
):
provider = await llm_db.upsert_provider(request=request, provider_id=provider_id)
await _refresh_runtime_state()
return provider
@router.delete(
"/providers/{provider_id}",
summary="Delete LLM provider",
response_model=dict,
)
async def delete_llm_provider(provider_id: str):
"""
Delete an LLM provider.
A provider can only be deleted if it has no associated models.
Delete all models from the provider first before deleting the provider.
"""
try:
await llm_db.delete_provider(provider_id)
await _refresh_runtime_state()
logger.info("Deleted LLM provider '%s'", provider_id)
return {"success": True, "message": "Provider deleted successfully"}
except ValueError as e:
logger.warning("Failed to delete provider '%s': %s", provider_id, e)
raise fastapi.HTTPException(status_code=400, detail=str(e))
except Exception as e:
logger.exception("Failed to delete provider '%s': %s", provider_id, e)
raise fastapi.HTTPException(status_code=500, detail=str(e))
@router.get(
"/models",
summary="List LLM models",
response_model=llm_model.LlmModelsResponse,
)
async def list_llm_models(
provider_id: str | None = fastapi.Query(default=None),
page: int = fastapi.Query(default=1, ge=1, description="Page number (1-indexed)"),
page_size: int = fastapi.Query(
default=50, ge=1, le=100, description="Number of models per page"
),
):
return await llm_db.list_models(
provider_id=provider_id, page=page, page_size=page_size
)
@router.post(
"/models",
summary="Create LLM model",
response_model=llm_model.LlmModel,
)
async def create_llm_model(request: llm_model.CreateLlmModelRequest):
model = await llm_db.create_model(request=request)
await _refresh_runtime_state()
return model
@router.patch(
"/models/{model_id}",
summary="Update LLM model",
response_model=llm_model.LlmModel,
)
async def update_llm_model(
model_id: str,
request: llm_model.UpdateLlmModelRequest,
):
model = await llm_db.update_model(model_id=model_id, request=request)
await _refresh_runtime_state()
return model
@router.patch(
"/models/{model_id}/toggle",
summary="Toggle LLM model availability",
response_model=llm_model.ToggleLlmModelResponse,
)
async def toggle_llm_model(
model_id: str,
request: llm_model.ToggleLlmModelRequest,
):
"""
Toggle a model's enabled status, optionally migrating workflows when disabling.
If disabling a model and `migrate_to_slug` is provided, all workflows using
this model will be migrated to the specified replacement model before disabling.
A migration record is created which can be reverted later using the revert endpoint.
Optional fields:
- `migration_reason`: Reason for the migration (e.g., "Provider outage")
- `custom_credit_cost`: Custom pricing override for billing during migration
"""
try:
result = await llm_db.toggle_model(
model_id=model_id,
is_enabled=request.is_enabled,
migrate_to_slug=request.migrate_to_slug,
migration_reason=request.migration_reason,
custom_credit_cost=request.custom_credit_cost,
)
await _refresh_runtime_state()
if result.nodes_migrated > 0:
logger.info(
"Toggled model '%s' to %s and migrated %d nodes to '%s' (migration_id=%s)",
result.model.slug,
"enabled" if request.is_enabled else "disabled",
result.nodes_migrated,
result.migrated_to_slug,
result.migration_id,
)
return result
except ValueError as exc:
logger.warning("Model toggle validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to toggle LLM model %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to toggle model availability",
) from exc
@router.get(
"/models/{model_id}/usage",
summary="Get model usage count",
response_model=llm_model.LlmModelUsageResponse,
)
async def get_llm_model_usage(model_id: str):
"""Get the number of workflow nodes using this model."""
try:
return await llm_db.get_model_usage(model_id=model_id)
except ValueError as exc:
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to get model usage %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get model usage",
) from exc
@router.delete(
"/models/{model_id}",
summary="Delete LLM model and migrate workflows",
response_model=llm_model.DeleteLlmModelResponse,
)
async def delete_llm_model(
model_id: str,
replacement_model_slug: str | None = fastapi.Query(
default=None,
description="Slug of the model to migrate existing workflows to (required only if workflows use this model)",
),
):
"""
Delete a model and optionally migrate workflows using it to a replacement model.
If no workflows are using this model, it can be deleted without providing a
replacement. If workflows exist, replacement_model_slug is required.
This endpoint:
1. Counts how many workflow nodes use the model being deleted
2. If nodes exist, validates the replacement model and migrates them
3. Deletes the model record
4. Refreshes all caches and notifies executors
Example: DELETE /api/llm/admin/models/{id}?replacement_model_slug=gpt-4o
Example (no usage): DELETE /api/llm/admin/models/{id}
"""
try:
result = await llm_db.delete_model(
model_id=model_id, replacement_model_slug=replacement_model_slug
)
await _refresh_runtime_state()
logger.info(
"Deleted model '%s' and migrated %d nodes to '%s'",
result.deleted_model_slug,
result.nodes_migrated,
result.replacement_model_slug,
)
return result
except ValueError as exc:
# Validation errors (model not found, replacement invalid, etc.)
logger.warning("Model deletion validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to delete LLM model %s: %s", model_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to delete model and migrate workflows",
) from exc
# ============================================================================
# Migration Management Endpoints
# ============================================================================
@router.get(
"/migrations",
summary="List model migrations",
response_model=llm_model.LlmMigrationsResponse,
)
async def list_llm_migrations(
include_reverted: bool = fastapi.Query(
default=False, description="Include reverted migrations in the list"
),
):
"""
List all model migrations.
Migrations are created when disabling a model with the migrate_to_slug option.
They can be reverted to restore the original model configuration.
"""
try:
migrations = await llm_db.list_migrations(include_reverted=include_reverted)
return llm_model.LlmMigrationsResponse(migrations=migrations)
except Exception as exc:
logger.exception("Failed to list migrations: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to list migrations",
) from exc
@router.get(
"/migrations/{migration_id}",
summary="Get migration details",
response_model=llm_model.LlmModelMigration,
)
async def get_llm_migration(migration_id: str):
"""Get details of a specific migration."""
try:
migration = await llm_db.get_migration(migration_id)
if not migration:
raise fastapi.HTTPException(
status_code=404, detail=f"Migration '{migration_id}' not found"
)
return migration
except fastapi.HTTPException:
raise
except Exception as exc:
logger.exception("Failed to get migration %s: %s", migration_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get migration",
) from exc
@router.post(
"/migrations/{migration_id}/revert",
summary="Revert a model migration",
response_model=llm_model.RevertMigrationResponse,
)
async def revert_llm_migration(
migration_id: str,
request: llm_model.RevertMigrationRequest | None = None,
):
"""
Revert a model migration, restoring affected workflows to their original model.
This only reverts the specific nodes that were part of the migration.
The source model must exist for the revert to succeed.
Options:
- `re_enable_source_model`: Whether to re-enable the source model if disabled (default: True)
Response includes:
- `nodes_reverted`: Number of nodes successfully reverted
- `nodes_already_changed`: Number of nodes that were modified since migration (not reverted)
- `source_model_re_enabled`: Whether the source model was re-enabled
Requirements:
- Migration must not already be reverted
- Source model must exist
"""
try:
re_enable = request.re_enable_source_model if request else True
result = await llm_db.revert_migration(
migration_id,
re_enable_source_model=re_enable,
)
await _refresh_runtime_state()
logger.info(
"Reverted migration '%s': %d nodes restored from '%s' to '%s' "
"(%d already changed, source re-enabled=%s)",
migration_id,
result.nodes_reverted,
result.target_model_slug,
result.source_model_slug,
result.nodes_already_changed,
result.source_model_re_enabled,
)
return result
except ValueError as exc:
logger.warning("Migration revert validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to revert migration %s: %s", migration_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to revert migration",
) from exc
# ============================================================================
# Creator Management Endpoints
# ============================================================================
@router.get(
"/creators",
summary="List model creators",
response_model=llm_model.LlmCreatorsResponse,
)
async def list_llm_creators():
"""
List all model creators.
Creators are organizations that create/train models (e.g., OpenAI, Meta, Anthropic).
This is distinct from providers who host/serve the models (e.g., OpenRouter).
"""
try:
creators = await llm_db.list_creators()
return llm_model.LlmCreatorsResponse(creators=creators)
except Exception as exc:
logger.exception("Failed to list creators: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to list creators",
) from exc
@router.get(
"/creators/{creator_id}",
summary="Get creator details",
response_model=llm_model.LlmModelCreator,
)
async def get_llm_creator(creator_id: str):
"""Get details of a specific model creator."""
try:
creator = await llm_db.get_creator(creator_id)
if not creator:
raise fastapi.HTTPException(
status_code=404, detail=f"Creator '{creator_id}' not found"
)
return creator
except fastapi.HTTPException:
raise
except Exception as exc:
logger.exception("Failed to get creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get creator",
) from exc
@router.post(
"/creators",
summary="Create model creator",
response_model=llm_model.LlmModelCreator,
)
async def create_llm_creator(request: llm_model.UpsertLlmCreatorRequest):
"""
Create a new model creator.
A creator represents an organization that creates/trains AI models,
such as OpenAI, Anthropic, Meta, or Google.
"""
try:
creator = await llm_db.upsert_creator(request=request)
await _refresh_runtime_state()
logger.info("Created model creator '%s' (%s)", creator.display_name, creator.id)
return creator
except Exception as exc:
logger.exception("Failed to create creator: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to create creator",
) from exc
@router.patch(
"/creators/{creator_id}",
summary="Update model creator",
response_model=llm_model.LlmModelCreator,
)
async def update_llm_creator(
creator_id: str,
request: llm_model.UpsertLlmCreatorRequest,
):
"""Update an existing model creator."""
try:
creator = await llm_db.upsert_creator(request=request, creator_id=creator_id)
await _refresh_runtime_state()
logger.info("Updated model creator '%s' (%s)", creator.display_name, creator_id)
return creator
except Exception as exc:
logger.exception("Failed to update creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to update creator",
) from exc
@router.delete(
"/creators/{creator_id}",
summary="Delete model creator",
response_model=dict,
)
async def delete_llm_creator(creator_id: str):
"""
Delete a model creator.
This will remove the creator association from all models that reference it
(sets creatorId to NULL), but will not delete the models themselves.
"""
try:
await llm_db.delete_creator(creator_id)
await _refresh_runtime_state()
logger.info("Deleted model creator '%s'", creator_id)
return {"success": True, "message": f"Creator '{creator_id}' deleted"}
except ValueError as exc:
logger.warning("Creator deletion validation failed: %s", exc)
raise fastapi.HTTPException(status_code=404, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to delete creator %s: %s", creator_id, exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to delete creator",
) from exc
# ============================================================================
# Recommended Model Endpoints
# ============================================================================
@router.get(
"/recommended-model",
summary="Get recommended model",
response_model=llm_model.RecommendedModelResponse,
)
async def get_recommended_model():
"""
Get the currently recommended LLM model.
The recommended model is shown to users as the default/suggested option
in model selection dropdowns.
"""
try:
model = await llm_db.get_recommended_model()
return llm_model.RecommendedModelResponse(
model=model,
slug=model.slug if model else None,
)
except Exception as exc:
logger.exception("Failed to get recommended model: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to get recommended model",
) from exc
@router.post(
"/recommended-model",
summary="Set recommended model",
response_model=llm_model.SetRecommendedModelResponse,
)
async def set_recommended_model(request: llm_model.SetRecommendedModelRequest):
"""
Set a model as the recommended model.
This clears the recommended flag from any other model and sets it on
the specified model. The model must be enabled to be set as recommended.
The recommended model is displayed to users as the default/suggested
option in model selection dropdowns throughout the platform.
"""
try:
model, previous_slug = await llm_db.set_recommended_model(request.model_id)
await _refresh_runtime_state()
logger.info(
"Set recommended model to '%s' (previous: %s)",
model.slug,
previous_slug or "none",
)
return llm_model.SetRecommendedModelResponse(
model=model,
previous_recommended_slug=previous_slug,
message=f"Model '{model.display_name}' is now the recommended model",
)
except ValueError as exc:
logger.warning("Set recommended model validation failed: %s", exc)
raise fastapi.HTTPException(status_code=400, detail=str(exc)) from exc
except Exception as exc:
logger.exception("Failed to set recommended model: %s", exc)
raise fastapi.HTTPException(
status_code=500,
detail="Failed to set recommended model",
) from exc

View File

@@ -0,0 +1,491 @@
import json
from unittest.mock import AsyncMock
import fastapi
import fastapi.testclient
import pytest
import pytest_mock
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from pytest_snapshot.plugin import Snapshot
import backend.api.features.admin.llm_routes as llm_routes
from backend.server.v2.llm import model as llm_model
from backend.util.models import Pagination
app = fastapi.FastAPI()
app.include_router(llm_routes.router, prefix="/admin/llm")
client = fastapi.testclient.TestClient(app)
@pytest.fixture(autouse=True)
def setup_app_admin_auth(mock_jwt_admin):
"""Setup admin auth overrides for all tests in this module"""
app.dependency_overrides[get_jwt_payload] = mock_jwt_admin["get_jwt_payload"]
yield
app.dependency_overrides.clear()
def test_list_llm_providers_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful listing of LLM providers"""
# Mock the database function
mock_providers = [
{
"id": "provider-1",
"name": "openai",
"display_name": "OpenAI",
"description": "OpenAI LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": True,
"metadata": {},
"models": [],
},
{
"id": "provider-2",
"name": "anthropic",
"display_name": "Anthropic",
"description": "Anthropic LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": True,
"metadata": {},
"models": [],
},
]
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.list_providers",
new=AsyncMock(return_value=mock_providers),
)
response = client.get("/admin/llm/providers")
assert response.status_code == 200
response_data = response.json()
assert len(response_data["providers"]) == 2
assert response_data["providers"][0]["name"] == "openai"
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"list_llm_providers_success.json",
)
def test_list_llm_models_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful listing of LLM models with pagination"""
# Mock the database function - now returns LlmModelsResponse
mock_model = llm_model.LlmModel(
id="model-1",
slug="gpt-4o",
display_name="GPT-4o",
description="GPT-4 Optimized",
provider_id="provider-1",
context_window=128000,
max_output_tokens=16384,
is_enabled=True,
capabilities={},
metadata={},
costs=[
llm_model.LlmModelCost(
id="cost-1",
credit_cost=10,
credential_provider="openai",
metadata={},
)
],
)
mock_response = llm_model.LlmModelsResponse(
models=[mock_model],
pagination=Pagination(
total_items=1,
total_pages=1,
current_page=1,
page_size=50,
),
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.list_models",
new=AsyncMock(return_value=mock_response),
)
response = client.get("/admin/llm/models")
assert response.status_code == 200
response_data = response.json()
assert len(response_data["models"]) == 1
assert response_data["models"][0]["slug"] == "gpt-4o"
assert response_data["pagination"]["total_items"] == 1
assert response_data["pagination"]["page_size"] == 50
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"list_llm_models_success.json",
)
def test_create_llm_provider_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful creation of LLM provider"""
mock_provider = {
"id": "new-provider-id",
"name": "groq",
"display_name": "Groq",
"description": "Groq LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": False,
"metadata": {},
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.upsert_provider",
new=AsyncMock(return_value=mock_provider),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"name": "groq",
"display_name": "Groq",
"description": "Groq LLM provider",
"supports_tools": True,
"supports_json_output": True,
"supports_reasoning": False,
"supports_parallel_tool": False,
"metadata": {},
}
response = client.post("/admin/llm/providers", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["name"] == "groq"
assert response_data["display_name"] == "Groq"
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"create_llm_provider_success.json",
)
def test_create_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful creation of LLM model"""
mock_model = {
"id": "new-model-id",
"slug": "gpt-4.1-mini",
"display_name": "GPT-4.1 Mini",
"description": "Latest GPT-4.1 Mini model",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-id",
"credit_cost": 5,
"credential_provider": "openai",
"metadata": {},
}
],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.create_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"slug": "gpt-4.1-mini",
"display_name": "GPT-4.1 Mini",
"description": "Latest GPT-4.1 Mini model",
"provider_id": "provider-1",
"context_window": 128000,
"max_output_tokens": 16384,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"credit_cost": 5,
"credential_provider": "openai",
"metadata": {},
}
],
}
response = client.post("/admin/llm/models", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["slug"] == "gpt-4.1-mini"
assert response_data["is_enabled"] is True
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"create_llm_model_success.json",
)
def test_update_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful update of LLM model"""
mock_model = {
"id": "model-1",
"slug": "gpt-4o",
"display_name": "GPT-4o Updated",
"description": "Updated description",
"provider_id": "provider-1",
"context_window": 256000,
"max_output_tokens": 32768,
"is_enabled": True,
"capabilities": {},
"metadata": {},
"costs": [
{
"id": "cost-1",
"credit_cost": 15,
"credential_provider": "openai",
"metadata": {},
}
],
}
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.update_model",
new=AsyncMock(return_value=mock_model),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {
"display_name": "GPT-4o Updated",
"description": "Updated description",
"context_window": 256000,
"max_output_tokens": 32768,
}
response = client.patch("/admin/llm/models/model-1", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["display_name"] == "GPT-4o Updated"
assert response_data["context_window"] == 256000
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"update_llm_model_success.json",
)
def test_toggle_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful toggling of LLM model enabled status"""
# Create a proper mock model object
mock_model = llm_model.LlmModel(
id="model-1",
slug="gpt-4o",
display_name="GPT-4o",
description="GPT-4 Optimized",
provider_id="provider-1",
context_window=128000,
max_output_tokens=16384,
is_enabled=False,
capabilities={},
metadata={},
costs=[],
)
# Create a proper ToggleLlmModelResponse
mock_response = llm_model.ToggleLlmModelResponse(
model=mock_model,
nodes_migrated=0,
migrated_to_slug=None,
migration_id=None,
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.toggle_model",
new=AsyncMock(return_value=mock_response),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
request_data = {"is_enabled": False}
response = client.patch("/admin/llm/models/model-1/toggle", json=request_data)
assert response.status_code == 200
response_data = response.json()
assert response_data["model"]["is_enabled"] is False
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"toggle_llm_model_success.json",
)
def test_delete_llm_model_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test successful deletion of LLM model with migration"""
# Create a proper DeleteLlmModelResponse
mock_response = llm_model.DeleteLlmModelResponse(
deleted_model_slug="gpt-3.5-turbo",
deleted_model_display_name="GPT-3.5 Turbo",
replacement_model_slug="gpt-4o-mini",
nodes_migrated=42,
message="Successfully deleted model 'GPT-3.5 Turbo' (gpt-3.5-turbo) "
"and migrated 42 workflow node(s) to 'gpt-4o-mini'.",
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(return_value=mock_response),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
response = client.delete(
"/admin/llm/models/model-1?replacement_model_slug=gpt-4o-mini"
)
assert response.status_code == 200
response_data = response.json()
assert response_data["deleted_model_slug"] == "gpt-3.5-turbo"
assert response_data["nodes_migrated"] == 42
assert response_data["replacement_model_slug"] == "gpt-4o-mini"
# Verify refresh was called
mock_refresh.assert_called_once()
# Snapshot test the response (must be string)
configured_snapshot.assert_match(
json.dumps(response_data, indent=2, sort_keys=True),
"delete_llm_model_success.json",
)
def test_delete_llm_model_validation_error(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion fails with proper error when validation fails"""
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(side_effect=ValueError("Replacement model 'invalid' not found")),
)
response = client.delete("/admin/llm/models/model-1?replacement_model_slug=invalid")
assert response.status_code == 400
assert "Replacement model 'invalid' not found" in response.json()["detail"]
def test_delete_llm_model_no_replacement_with_usage(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion fails when nodes exist but no replacement is provided"""
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(
side_effect=ValueError(
"Cannot delete model 'test-model': 5 workflow node(s) are using it. "
"Please provide a replacement_model_slug to migrate them."
)
),
)
response = client.delete("/admin/llm/models/model-1")
assert response.status_code == 400
assert "workflow node(s) are using it" in response.json()["detail"]
def test_delete_llm_model_no_replacement_no_usage(
mocker: pytest_mock.MockFixture,
) -> None:
"""Test deletion succeeds when no nodes use the model and no replacement is provided"""
mock_response = llm_model.DeleteLlmModelResponse(
deleted_model_slug="unused-model",
deleted_model_display_name="Unused Model",
replacement_model_slug=None,
nodes_migrated=0,
message="Successfully deleted model 'Unused Model' (unused-model). No workflows were using this model.",
)
mocker.patch(
"backend.api.features.admin.llm_routes.llm_db.delete_model",
new=AsyncMock(return_value=mock_response),
)
mock_refresh = mocker.patch(
"backend.api.features.admin.llm_routes._refresh_runtime_state",
new=AsyncMock(),
)
response = client.delete("/admin/llm/models/model-1")
assert response.status_code == 200
response_data = response.json()
assert response_data["deleted_model_slug"] == "unused-model"
assert response_data["nodes_migrated"] == 0
assert response_data["replacement_model_slug"] is None
mock_refresh.assert_called_once()

View File

@@ -10,16 +10,12 @@ import backend.api.features.library.db as library_db
import backend.api.features.library.model as library_model
import backend.api.features.store.db as store_db
import backend.api.features.store.model as store_model
import backend.data.block
from backend.blocks import load_all_blocks
from backend.blocks._base import (
AnyBlockSchema,
BlockCategory,
BlockInfo,
BlockSchema,
BlockType,
)
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
from backend.data.db import query_raw_with_schema
from backend.data.llm_registry import get_all_model_slugs_for_validation
from backend.integrations.providers import ProviderName
from backend.util.cache import cached
from backend.util.models import Pagination
@@ -27,7 +23,7 @@ from backend.util.models import Pagination
from .model import (
BlockCategoryResponse,
BlockResponse,
BlockTypeFilter,
BlockType,
CountResponse,
FilterType,
Provider,
@@ -36,7 +32,14 @@ from .model import (
)
logger = logging.getLogger(__name__)
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
def _get_llm_models() -> list[str]:
"""Get LLM model names for search matching from the registry."""
return [
slug.lower().replace("-", " ") for slug in get_all_model_slugs_for_validation()
]
MAX_LIBRARY_AGENT_RESULTS = 100
MAX_MARKETPLACE_AGENT_RESULTS = 100
@@ -93,7 +96,7 @@ def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse
def get_blocks(
*,
category: str | None = None,
type: BlockTypeFilter | None = None,
type: BlockType | None = None,
provider: ProviderName | None = None,
page: int = 1,
page_size: int = 50,
@@ -501,8 +504,8 @@ async def _get_static_counts():
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
for field in schema_cls.model_fields.values():
if field.annotation == LlmModel:
# Check if query matches any value in llm_models
if any(query in name for name in llm_models):
# Check if query matches any value in llm_models from registry
if any(query in name for name in _get_llm_models()):
return True
return False
@@ -674,9 +677,9 @@ async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
if block.disabled or block.block_type in (
BlockType.INPUT,
BlockType.OUTPUT,
BlockType.AGENT,
backend.data.block.BlockType.INPUT,
backend.data.block.BlockType.OUTPUT,
backend.data.block.BlockType.AGENT,
):
continue
# Find the execution count for this block

View File

@@ -4,7 +4,7 @@ from pydantic import BaseModel
import backend.api.features.library.model as library_model
import backend.api.features.store.model as store_model
from backend.blocks._base import BlockInfo
from backend.data.block import BlockInfo
from backend.integrations.providers import ProviderName
from backend.util.models import Pagination
@@ -15,7 +15,7 @@ FilterType = Literal[
"my_agents",
]
BlockTypeFilter = Literal["all", "input", "action", "output"]
BlockType = Literal["all", "input", "action", "output"]
class SearchEntry(BaseModel):

View File

@@ -88,7 +88,7 @@ async def get_block_categories(
)
async def get_blocks(
category: Annotated[str | None, fastapi.Query()] = None,
type: Annotated[builder_model.BlockTypeFilter | None, fastapi.Query()] = None,
type: Annotated[builder_model.BlockType | None, fastapi.Query()] = None,
provider: Annotated[ProviderName | None, fastapi.Query()] = None,
page: Annotated[int, fastapi.Query()] = 1,
page_size: Annotated[int, fastapi.Query()] = 50,

View File

@@ -2,7 +2,7 @@ import asyncio
import logging
import uuid
from datetime import UTC, datetime
from typing import Any, cast
from typing import Any
from weakref import WeakValueDictionary
from openai.types.chat import (
@@ -104,26 +104,6 @@ class ChatSession(BaseModel):
successful_agent_runs: dict[str, int] = {}
successful_agent_schedules: dict[str, int] = {}
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
"""Attach a tool_call to the current turn's assistant message.
Searches backwards for the most recent assistant message (stopping at
any user message boundary). If found, appends the tool_call to it.
Otherwise creates a new assistant message with the tool_call.
"""
for msg in reversed(self.messages):
if msg.role == "user":
break
if msg.role == "assistant":
if not msg.tool_calls:
msg.tool_calls = []
msg.tool_calls.append(tool_call)
return
self.messages.append(
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
)
@staticmethod
def new(user_id: str) -> "ChatSession":
return ChatSession(
@@ -192,47 +172,6 @@ class ChatSession(BaseModel):
successful_agent_schedules=successful_agent_schedules,
)
@staticmethod
def _merge_consecutive_assistant_messages(
messages: list[ChatCompletionMessageParam],
) -> list[ChatCompletionMessageParam]:
"""Merge consecutive assistant messages into single messages.
Long-running tool flows can create split assistant messages: one with
text content and another with tool_calls. Anthropic's API requires
tool_result blocks to reference a tool_use in the immediately preceding
assistant message, so these splits cause 400 errors via OpenRouter.
"""
if len(messages) < 2:
return messages
result: list[ChatCompletionMessageParam] = [messages[0]]
for msg in messages[1:]:
prev = result[-1]
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
result.append(msg)
continue
prev = cast(ChatCompletionAssistantMessageParam, prev)
curr = cast(ChatCompletionAssistantMessageParam, msg)
curr_content = curr.get("content") or ""
if curr_content:
prev_content = prev.get("content") or ""
prev["content"] = (
f"{prev_content}\n{curr_content}" if prev_content else curr_content
)
curr_tool_calls = curr.get("tool_calls")
if curr_tool_calls:
prev_tool_calls = prev.get("tool_calls")
prev["tool_calls"] = (
list(prev_tool_calls) + list(curr_tool_calls)
if prev_tool_calls
else list(curr_tool_calls)
)
return result
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
messages = []
for message in self.messages:
@@ -319,7 +258,7 @@ class ChatSession(BaseModel):
name=message.name or "",
)
)
return self._merge_consecutive_assistant_messages(messages)
return messages
async def _get_session_from_cache(session_id: str) -> ChatSession | None:

View File

@@ -1,16 +1,4 @@
from typing import cast
import pytest
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
ChatCompletionMessageParam,
ChatCompletionToolMessageParam,
ChatCompletionUserMessageParam,
)
from openai.types.chat.chat_completion_message_tool_call_param import (
ChatCompletionMessageToolCallParam,
Function,
)
from .model import (
ChatMessage,
@@ -129,205 +117,3 @@ async def test_chatsession_db_storage(setup_test_user, test_user_id):
loaded.tool_calls is not None
), f"Tool calls missing for {orig.role} message"
assert len(orig.tool_calls) == len(loaded.tool_calls)
# --------------------------------------------------------------------------- #
# _merge_consecutive_assistant_messages #
# --------------------------------------------------------------------------- #
_tc = ChatCompletionMessageToolCallParam(
id="tc1", type="function", function=Function(name="do_stuff", arguments="{}")
)
_tc2 = ChatCompletionMessageToolCallParam(
id="tc2", type="function", function=Function(name="other", arguments="{}")
)
def test_merge_noop_when_no_consecutive_assistants():
"""Messages without consecutive assistants are returned unchanged."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="hi"),
ChatCompletionAssistantMessageParam(role="assistant", content="hello"),
ChatCompletionUserMessageParam(role="user", content="bye"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert [m["role"] for m in merged] == ["user", "assistant", "user"]
def test_merge_splits_text_and_tool_calls():
"""The exact bug scenario: text-only assistant followed by tool_calls-only assistant."""
msgs = [
ChatCompletionUserMessageParam(role="user", content="build agent"),
ChatCompletionAssistantMessageParam(
role="assistant", content="Let me build that"
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
ChatCompletionToolMessageParam(role="tool", content="ok", tool_call_id="tc1"),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs)
assert len(merged) == 3
assert merged[0]["role"] == "user"
assert merged[2]["role"] == "tool"
a = cast(ChatCompletionAssistantMessageParam, merged[1])
assert a["role"] == "assistant"
assert a.get("content") == "Let me build that"
assert a.get("tool_calls") == [_tc]
def test_merge_combines_tool_calls_from_both():
"""Both consecutive assistants have tool_calls — they get merged."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(
role="assistant", content="text", tool_calls=[_tc]
),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc2]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("tool_calls") == [_tc, _tc2]
assert a.get("content") == "text"
def test_merge_three_consecutive_assistants():
"""Three consecutive assistants collapse into one."""
msgs: list[ChatCompletionAssistantMessageParam] = [
ChatCompletionAssistantMessageParam(role="assistant", content="a"),
ChatCompletionAssistantMessageParam(role="assistant", content="b"),
ChatCompletionAssistantMessageParam(
role="assistant", content="", tool_calls=[_tc]
),
]
merged = ChatSession._merge_consecutive_assistant_messages(msgs) # type: ignore[arg-type]
assert len(merged) == 1
a = cast(ChatCompletionAssistantMessageParam, merged[0])
assert a.get("content") == "a\nb"
assert a.get("tool_calls") == [_tc]
def test_merge_empty_and_single_message():
"""Edge cases: empty list and single message."""
assert ChatSession._merge_consecutive_assistant_messages([]) == []
single: list[ChatCompletionMessageParam] = [
ChatCompletionUserMessageParam(role="user", content="hi")
]
assert ChatSession._merge_consecutive_assistant_messages(single) == single
# --------------------------------------------------------------------------- #
# add_tool_call_to_current_turn #
# --------------------------------------------------------------------------- #
_raw_tc = {
"id": "tc1",
"type": "function",
"function": {"name": "f", "arguments": "{}"},
}
_raw_tc2 = {
"id": "tc2",
"type": "function",
"function": {"name": "g", "arguments": "{}"},
}
def test_add_tool_call_appends_to_existing_assistant():
"""When the last assistant is from the current turn, tool_call is added to it."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="working on it"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2 # no new message created
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_creates_assistant_when_none_exists():
"""When there's no current-turn assistant, a new one is created."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 2
assert session.messages[1].role == "assistant"
assert session.messages[1].tool_calls == [_raw_tc]
def test_add_tool_call_does_not_cross_user_boundary():
"""A user message acts as a boundary — previous assistant is not modified."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="assistant", content="old turn"),
ChatMessage(role="user", content="new message"),
]
session.add_tool_call_to_current_turn(_raw_tc)
assert len(session.messages) == 3 # new assistant was created
assert session.messages[0].tool_calls is None # old assistant untouched
assert session.messages[2].role == "assistant"
assert session.messages[2].tool_calls == [_raw_tc]
def test_add_tool_call_multiple_times():
"""Multiple long-running tool calls accumulate on the same assistant."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="hi"),
ChatMessage(role="assistant", content="doing stuff"),
]
session.add_tool_call_to_current_turn(_raw_tc)
# Simulate a pending tool result in between (like _yield_tool_call does)
session.messages.append(
ChatMessage(role="tool", content="pending", tool_call_id="tc1")
)
session.add_tool_call_to_current_turn(_raw_tc2)
assert len(session.messages) == 3 # user, assistant, tool — no extra assistant
assert session.messages[1].tool_calls == [_raw_tc, _raw_tc2]
def test_to_openai_messages_merges_split_assistants():
"""End-to-end: session with split assistants produces valid OpenAI messages."""
session = ChatSession.new(user_id="u")
session.messages = [
ChatMessage(role="user", content="build agent"),
ChatMessage(role="assistant", content="Let me build that"),
ChatMessage(
role="assistant",
content="",
tool_calls=[
{
"id": "tc1",
"type": "function",
"function": {"name": "create_agent", "arguments": "{}"},
}
],
),
ChatMessage(role="tool", content="done", tool_call_id="tc1"),
ChatMessage(role="assistant", content="Saved!"),
ChatMessage(role="user", content="show me an example run"),
]
openai_msgs = session.to_openai_messages()
# The two consecutive assistants at index 1,2 should be merged
roles = [m["role"] for m in openai_msgs]
assert roles == ["user", "assistant", "tool", "assistant", "user"]
# The merged assistant should have both content and tool_calls
merged = cast(ChatCompletionAssistantMessageParam, openai_msgs[1])
assert merged.get("content") == "Let me build that"
tc_list = merged.get("tool_calls")
assert tc_list is not None and len(list(tc_list)) == 1
assert list(tc_list)[0]["id"] == "tc1"

View File

@@ -10,8 +10,6 @@ from typing import Any
from pydantic import BaseModel, Field
from backend.util.json import dumps as json_dumps
class ResponseType(str, Enum):
"""Types of streaming responses following AI SDK protocol."""
@@ -195,18 +193,6 @@ class StreamError(StreamBaseResponse):
default=None, description="Additional error details"
)
def to_sse(self) -> str:
"""Convert to SSE format, only emitting fields required by AI SDK protocol.
The AI SDK uses z.strictObject({type, errorText}) which rejects
any extra fields like `code` or `details`.
"""
data = {
"type": self.type.value,
"errorText": self.errorText,
}
return f"data: {json_dumps(data)}\n\n"
class StreamHeartbeat(StreamBaseResponse):
"""Heartbeat to keep SSE connection alive during long-running operations.

View File

@@ -800,13 +800,9 @@ async def stream_chat_completion(
# Build the messages list in the correct order
messages_to_save: list[ChatMessage] = []
# Add assistant message with tool_calls if any.
# Use extend (not assign) to preserve tool_calls already added by
# _yield_tool_call for long-running tools.
# Add assistant message with tool_calls if any
if accumulated_tool_calls:
if not assistant_response.tool_calls:
assistant_response.tool_calls = []
assistant_response.tool_calls.extend(accumulated_tool_calls)
assistant_response.tool_calls = accumulated_tool_calls
logger.info(
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
)
@@ -1408,9 +1404,13 @@ async def _yield_tool_call(
operation_id=operation_id,
)
# Attach the tool_call to the current turn's assistant message
# (or create one if this is a tool-only response with no text).
session.add_tool_call_to_current_turn(tool_calls[yield_idx])
# Save assistant message with tool_call FIRST (required by LLM)
assistant_message = ChatMessage(
role="assistant",
content="",
tool_calls=[tool_calls[yield_idx]],
)
session.messages.append(assistant_message)
# Then save pending tool result
pending_message = ChatMessage(

View File

@@ -12,7 +12,6 @@ from .base import BaseTool
from .create_agent import CreateAgentTool
from .customize_agent import CustomizeAgentTool
from .edit_agent import EditAgentTool
from .feature_requests import CreateFeatureRequestTool, SearchFeatureRequestsTool
from .find_agent import FindAgentTool
from .find_block import FindBlockTool
from .find_library_agent import FindLibraryAgentTool
@@ -46,9 +45,6 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Feature request tools
"search_feature_requests": SearchFeatureRequestsTool(),
"create_feature_request": CreateFeatureRequestTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),

View File

@@ -1,369 +0,0 @@
"""Feature request tools - search and create feature requests via Linear."""
import logging
from typing import Any
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
ErrorResponse,
FeatureRequestCreatedResponse,
FeatureRequestInfo,
FeatureRequestSearchResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.blocks.linear._api import LinearClient
from backend.data.model import APIKeyCredentials
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
# Target project and team IDs in our Linear workspace
FEATURE_REQUEST_PROJECT_ID = "13f066f3-f639-4a67-aaa3-31483ebdf8cd"
TEAM_ID = "557fd3d5-087e-43a9-83e3-476c8313ce49"
MAX_SEARCH_RESULTS = 10
# GraphQL queries/mutations
SEARCH_ISSUES_QUERY = """
query SearchFeatureRequests($term: String!, $filter: IssueFilter, $first: Int) {
searchIssues(term: $term, filter: $filter, first: $first) {
nodes {
id
identifier
title
description
}
}
}
"""
CUSTOMER_UPSERT_MUTATION = """
mutation CustomerUpsert($input: CustomerUpsertInput!) {
customerUpsert(input: $input) {
success
customer {
id
name
externalIds
}
}
}
"""
ISSUE_CREATE_MUTATION = """
mutation IssueCreate($input: IssueCreateInput!) {
issueCreate(input: $input) {
success
issue {
id
identifier
title
url
}
}
}
"""
CUSTOMER_NEED_CREATE_MUTATION = """
mutation CustomerNeedCreate($input: CustomerNeedCreateInput!) {
customerNeedCreate(input: $input) {
success
need {
id
body
customer {
id
name
}
issue {
id
identifier
title
url
}
}
}
}
"""
_settings: Settings | None = None
def _get_settings() -> Settings:
global _settings
if _settings is None:
_settings = Settings()
return _settings
def _get_linear_client() -> LinearClient:
"""Create a Linear client using the system API key from settings."""
api_key = _get_settings().secrets.linear_api_key
if not api_key:
raise RuntimeError("LINEAR_API_KEY secret is not configured")
credentials = APIKeyCredentials(
id="system-linear",
provider="linear",
api_key=SecretStr(api_key),
title="System Linear API Key",
)
return LinearClient(credentials=credentials)
class SearchFeatureRequestsTool(BaseTool):
"""Tool for searching existing feature requests in Linear."""
@property
def name(self) -> str:
return "search_feature_requests"
@property
def description(self) -> str:
return (
"Search existing feature requests to check if a similar request "
"already exists before creating a new one. Returns matching feature "
"requests with their ID, title, and description."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Search term to find matching feature requests.",
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
query = kwargs.get("query", "").strip()
session_id = session.session_id if session else None
if not query:
return ErrorResponse(
message="Please provide a search query.",
error="Missing query parameter",
session_id=session_id,
)
client = _get_linear_client()
data = await client.query(
SEARCH_ISSUES_QUERY,
{
"term": query,
"filter": {
"project": {"id": {"eq": FEATURE_REQUEST_PROJECT_ID}},
},
"first": MAX_SEARCH_RESULTS,
},
)
nodes = data.get("searchIssues", {}).get("nodes", [])
if not nodes:
return NoResultsResponse(
message=f"No feature requests found matching '{query}'.",
suggestions=[
"Try different keywords",
"Use broader search terms",
"You can create a new feature request if none exists",
],
session_id=session_id,
)
results = [
FeatureRequestInfo(
id=node["id"],
identifier=node["identifier"],
title=node["title"],
description=node.get("description"),
)
for node in nodes
]
return FeatureRequestSearchResponse(
message=f"Found {len(results)} feature request(s) matching '{query}'.",
results=results,
count=len(results),
query=query,
session_id=session_id,
)
class CreateFeatureRequestTool(BaseTool):
"""Tool for creating feature requests (or adding needs to existing ones)."""
@property
def name(self) -> str:
return "create_feature_request"
@property
def description(self) -> str:
return (
"Create a new feature request or add a customer need to an existing one. "
"Always search first with search_feature_requests to avoid duplicates. "
"If a matching request exists, pass its ID as existing_issue_id to add "
"the user's need to it instead of creating a duplicate."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"title": {
"type": "string",
"description": "Title for the feature request.",
},
"description": {
"type": "string",
"description": "Detailed description of what the user wants and why.",
},
"existing_issue_id": {
"type": "string",
"description": (
"If adding a need to an existing feature request, "
"provide its Linear issue ID (from search results). "
"Omit to create a new feature request."
),
},
},
"required": ["title", "description"],
}
@property
def requires_auth(self) -> bool:
return True
async def _find_or_create_customer(
self, client: LinearClient, user_id: str
) -> dict:
"""Find existing customer by user_id or create a new one via upsert."""
data = await client.mutate(
CUSTOMER_UPSERT_MUTATION,
{
"input": {
"name": user_id,
"externalId": user_id,
},
},
)
result = data.get("customerUpsert", {})
if not result.get("success"):
raise RuntimeError(f"Failed to upsert customer: {data}")
return result["customer"]
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
title = kwargs.get("title", "").strip()
description = kwargs.get("description", "").strip()
existing_issue_id = kwargs.get("existing_issue_id")
session_id = session.session_id if session else None
if not title or not description:
return ErrorResponse(
message="Both title and description are required.",
error="Missing required parameters",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="Authentication required to create feature requests.",
error="Missing user_id",
session_id=session_id,
)
client = _get_linear_client()
# Step 1: Find or create customer for this user
customer = await self._find_or_create_customer(client, user_id)
customer_id = customer["id"]
customer_name = customer["name"]
# Step 2: Create or reuse issue
if existing_issue_id:
# Add need to existing issue - we still need the issue details for response
is_new_issue = False
issue_id = existing_issue_id
else:
# Create new issue in the feature requests project
data = await client.mutate(
ISSUE_CREATE_MUTATION,
{
"input": {
"title": title,
"description": description,
"teamId": TEAM_ID,
"projectId": FEATURE_REQUEST_PROJECT_ID,
},
},
)
result = data.get("issueCreate", {})
if not result.get("success"):
return ErrorResponse(
message="Failed to create feature request issue.",
error=str(data),
session_id=session_id,
)
issue = result["issue"]
issue_id = issue["id"]
is_new_issue = True
# Step 3: Create customer need on the issue
data = await client.mutate(
CUSTOMER_NEED_CREATE_MUTATION,
{
"input": {
"customerId": customer_id,
"issueId": issue_id,
"body": description,
"priority": 0,
},
},
)
need_result = data.get("customerNeedCreate", {})
if not need_result.get("success"):
return ErrorResponse(
message="Failed to attach customer need to the feature request.",
error=str(data),
session_id=session_id,
)
need = need_result["need"]
issue_info = need["issue"]
return FeatureRequestCreatedResponse(
message=(
f"{'Created new feature request' if is_new_issue else 'Added your request to existing feature request'} "
f"[{issue_info['identifier']}] {issue_info['title']}."
),
issue_id=issue_info["id"],
issue_identifier=issue_info["identifier"],
issue_title=issue_info["title"],
issue_url=issue_info.get("url", ""),
is_new_issue=is_new_issue,
customer_name=customer_name,
session_id=session_id,
)

View File

@@ -13,8 +13,7 @@ from backend.api.features.chat.tools.models import (
NoResultsResponse,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.blocks import get_block
from backend.blocks._base import BlockType
from backend.data.block import BlockType, get_block
logger = logging.getLogger(__name__)

View File

@@ -10,7 +10,7 @@ from backend.api.features.chat.tools.find_block import (
FindBlockTool,
)
from backend.api.features.chat.tools.models import BlockListResponse
from backend.blocks._base import BlockType
from backend.data.block import BlockType
from ._test_data import make_session

View File

@@ -40,9 +40,6 @@ class ResponseType(str, Enum):
OPERATION_IN_PROGRESS = "operation_in_progress"
# Input validation
INPUT_VALIDATION_ERROR = "input_validation_error"
# Feature request types
FEATURE_REQUEST_SEARCH = "feature_request_search"
FEATURE_REQUEST_CREATED = "feature_request_created"
# Base response model
@@ -424,34 +421,3 @@ class AsyncProcessingResponse(ToolResponseBase):
status: str = "accepted" # Must be "accepted" for detection
operation_id: str | None = None
task_id: str | None = None
# Feature request models
class FeatureRequestInfo(BaseModel):
"""Information about a feature request issue."""
id: str
identifier: str
title: str
description: str | None = None
class FeatureRequestSearchResponse(ToolResponseBase):
"""Response for search_feature_requests tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_SEARCH
results: list[FeatureRequestInfo]
count: int
query: str
class FeatureRequestCreatedResponse(ToolResponseBase):
"""Response for create_feature_request tool."""
type: ResponseType = ResponseType.FEATURE_REQUEST_CREATED
issue_id: str
issue_identifier: str
issue_title: str
issue_url: str
is_new_issue: bool # False if added to existing
customer_name: str

View File

@@ -12,8 +12,7 @@ from backend.api.features.chat.tools.find_block import (
COPILOT_EXCLUDED_BLOCK_IDS,
COPILOT_EXCLUDED_BLOCK_TYPES,
)
from backend.blocks import get_block
from backend.blocks._base import AnyBlockSchema
from backend.data.block import AnyBlockSchema, get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace

View File

@@ -6,7 +6,7 @@ import pytest
from backend.api.features.chat.tools.models import ErrorResponse
from backend.api.features.chat.tools.run_block import RunBlockTool
from backend.blocks._base import BlockType
from backend.data.block import BlockType
from ._test_data import make_session

View File

@@ -12,11 +12,12 @@ import backend.api.features.store.image_gen as store_image_gen
import backend.api.features.store.media as store_media
import backend.data.graph as graph_db
import backend.data.integrations as integrations_db
from backend.data.block import BlockInput
from backend.data.db import transaction
from backend.data.execution import get_graph_execution
from backend.data.graph import GraphSettings
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
from backend.data.model import CredentialsMetaInput, GraphInput
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.webhooks.graph_lifecycle_hooks import (
on_graph_activate,
@@ -1129,7 +1130,7 @@ async def create_preset_from_graph_execution(
async def update_preset(
user_id: str,
preset_id: str,
inputs: Optional[GraphInput] = None,
inputs: Optional[BlockInput] = None,
credentials: Optional[dict[str, CredentialsMetaInput]] = None,
name: Optional[str] = None,
description: Optional[str] = None,

View File

@@ -6,12 +6,9 @@ import prisma.enums
import prisma.models
import pydantic
from backend.data.block import BlockInput
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
from backend.data.model import (
CredentialsMetaInput,
GraphInput,
is_credentials_field_name,
)
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
from backend.util.json import loads as json_loads
from backend.util.models import Pagination
@@ -326,7 +323,7 @@ class LibraryAgentPresetCreatable(pydantic.BaseModel):
graph_id: str
graph_version: int
inputs: GraphInput
inputs: BlockInput
credentials: dict[str, CredentialsMetaInput]
name: str
@@ -355,7 +352,7 @@ class LibraryAgentPresetUpdatable(pydantic.BaseModel):
Request model used when updating a preset for a library agent.
"""
inputs: Optional[GraphInput] = None
inputs: Optional[BlockInput] = None
credentials: Optional[dict[str, CredentialsMetaInput]] = None
name: Optional[str] = None
@@ -398,7 +395,7 @@ class LibraryAgentPreset(LibraryAgentPresetCreatable):
"Webhook must be included in AgentPreset query when webhookId is set"
)
input_data: GraphInput = {}
input_data: BlockInput = {}
input_credentials: dict[str, CredentialsMetaInput] = {}
for preset_input in preset.InputPresets:

View File

@@ -5,8 +5,8 @@ from typing import Optional
import aiohttp
from fastapi import HTTPException
from backend.blocks import get_block
from backend.data import graph as graph_db
from backend.data.block import get_block
from backend.util.settings import Settings
from .models import ApiResponse, ChatRequest, GraphData

View File

@@ -152,7 +152,7 @@ class BlockHandler(ContentHandler):
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
"""Fetch blocks without embeddings."""
from backend.blocks import get_blocks
from backend.data.block import get_blocks
# Get all available blocks
all_blocks = get_blocks()
@@ -249,7 +249,7 @@ class BlockHandler(ContentHandler):
async def get_stats(self) -> dict[str, int]:
"""Get statistics about block embedding coverage."""
from backend.blocks import get_blocks
from backend.data.block import get_blocks
all_blocks = get_blocks()

View File

@@ -93,7 +93,7 @@ async def test_block_handler_get_missing_items(mocker):
mock_existing = []
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -135,7 +135,7 @@ async def test_block_handler_get_stats(mocker):
mock_embedded = [{"count": 2}]
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -327,7 +327,7 @@ async def test_block_handler_handles_missing_attributes():
mock_blocks = {"block-minimal": mock_block_class}
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(
@@ -360,7 +360,7 @@ async def test_block_handler_skips_failed_blocks():
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
with patch(
"backend.blocks.get_blocks",
"backend.data.block.get_blocks",
return_value=mock_blocks,
):
with patch(

View File

@@ -662,7 +662,7 @@ async def cleanup_orphaned_embeddings() -> dict[str, Any]:
)
current_ids = {row["id"] for row in valid_agents}
elif content_type == ContentType.BLOCK:
from backend.blocks import get_blocks
from backend.data.block import get_blocks
current_ids = set(get_blocks().keys())
elif content_type == ContentType.DOCUMENTATION:

View File

@@ -7,6 +7,15 @@ from replicate.client import Client as ReplicateClient
from replicate.exceptions import ReplicateError
from replicate.helpers import FileOutput
from backend.blocks.ideogram import (
AspectRatio,
ColorPalettePreset,
IdeogramModelBlock,
IdeogramModelName,
MagicPromptOption,
StyleType,
UpscaleOption,
)
from backend.data.graph import GraphBaseMeta
from backend.data.model import CredentialsMetaInput, ProviderName
from backend.integrations.credentials_store import ideogram_credentials
@@ -41,16 +50,6 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
if not ideogram_credentials.api_key:
raise ValueError("Missing Ideogram API key")
from backend.blocks.ideogram import (
AspectRatio,
ColorPalettePreset,
IdeogramModelBlock,
IdeogramModelName,
MagicPromptOption,
StyleType,
UpscaleOption,
)
name = graph.name
description = f"{name} ({graph.description})" if graph.description else name

View File

@@ -393,6 +393,7 @@ async def get_creators(
@router.get(
"/creator/{username}",
summary="Get creator details",
operation_id="getV2GetCreatorDetails",
tags=["store", "public"],
response_model=store_model.CreatorDetails,
)

View File

@@ -40,11 +40,10 @@ from backend.api.model import (
UpdateTimezoneRequest,
UploadFileResponse,
)
from backend.blocks import get_block, get_blocks
from backend.data import execution as execution_db
from backend.data import graph as graph_db
from backend.data.auth import api_key as api_key_db
from backend.data.block import BlockInput, CompletedBlockOutput
from backend.data.block import BlockInput, CompletedBlockOutput, get_block, get_blocks
from backend.data.credit import (
AutoTopUpConfig,
RefundRequest,

View File

@@ -18,6 +18,7 @@ from prisma.errors import PrismaError
import backend.api.features.admin.credit_admin_routes
import backend.api.features.admin.execution_analytics_routes
import backend.api.features.admin.llm_routes
import backend.api.features.admin.store_admin_routes
import backend.api.features.builder
import backend.api.features.builder.routes
@@ -38,13 +39,15 @@ import backend.data.db
import backend.data.graph
import backend.data.user
import backend.integrations.webhooks.utils
import backend.server.v2.llm.routes as public_llm_routes
import backend.util.service
import backend.util.settings
from backend.api.features.chat.completion_consumer import (
start_completion_consumer,
stop_completion_consumer,
)
from backend.blocks.llm import DEFAULT_LLM_MODEL
from backend.data import llm_registry
from backend.data.block_cost_config import refresh_llm_costs
from backend.data.model import Credentials
from backend.integrations.providers import ProviderName
from backend.monitoring.instrumentation import instrument_fastapi
@@ -115,11 +118,27 @@ async def lifespan_context(app: fastapi.FastAPI):
AutoRegistry.patch_integrations()
# Refresh LLM registry before initializing blocks so blocks can use registry data
await llm_registry.refresh_llm_registry()
refresh_llm_costs()
# Clear block schema caches so they're regenerated with updated discriminator_mapping
from backend.data.block import BlockSchema
BlockSchema.clear_all_schema_caches()
await backend.data.block.initialize_blocks()
await backend.data.user.migrate_and_encrypt_user_integrations()
await backend.data.graph.fix_llm_provider_credentials()
await backend.data.graph.migrate_llm_models(DEFAULT_LLM_MODEL)
# migrate_llm_models uses registry default model
from backend.blocks.llm import LlmModel
default_model_slug = llm_registry.get_default_model_slug()
if default_model_slug:
await backend.data.graph.migrate_llm_models(LlmModel(default_model_slug))
else:
logger.warning("Skipping LLM model migration: no default model available")
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
# Start chat completion consumer for Redis Streams notifications
@@ -321,6 +340,16 @@ app.include_router(
tags=["v2", "executions", "review"],
prefix="/api/review",
)
app.include_router(
backend.api.features.admin.llm_routes.router,
tags=["v2", "admin", "llm"],
prefix="/api/llm/admin",
)
app.include_router(
public_llm_routes.router,
tags=["v2", "llm"],
prefix="/api",
)
app.include_router(
backend.api.features.library.routes.router, tags=["v2"], prefix="/api/library"
)

View File

@@ -79,7 +79,39 @@ async def event_broadcaster(manager: ConnectionManager):
payload=notification.payload,
)
await asyncio.gather(execution_worker(), notification_worker())
async def registry_refresh_worker():
"""Listen for LLM registry refresh notifications and broadcast to all clients."""
from backend.data.llm_registry import REGISTRY_REFRESH_CHANNEL
from backend.data.redis_client import connect_async
redis = await connect_async()
pubsub = redis.pubsub()
await pubsub.subscribe(REGISTRY_REFRESH_CHANNEL)
logger.info(
"Subscribed to LLM registry refresh notifications for WebSocket broadcast"
)
async for message in pubsub.listen():
if (
message["type"] == "message"
and message["channel"] == REGISTRY_REFRESH_CHANNEL
):
logger.info(
"Broadcasting LLM registry refresh to all WebSocket clients"
)
await manager.broadcast_to_all(
method=WSMethod.NOTIFICATION,
data={
"type": "LLM_REGISTRY_REFRESH",
"event": "registry_updated",
},
)
await asyncio.gather(
execution_worker(),
notification_worker(),
registry_refresh_worker(),
)
finally:
# Ensure PubSub connections are closed on any exit to prevent leaks
await execution_bus.close()

View File

@@ -3,19 +3,22 @@ import logging
import os
import re
from pathlib import Path
from typing import Sequence, Type, TypeVar
from typing import TYPE_CHECKING, TypeVar
from backend.blocks._base import AnyBlockSchema, BlockType
from backend.util.cache import cached
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from backend.data.block import Block
T = TypeVar("T")
@cached(ttl_seconds=3600)
def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
from backend.blocks._base import Block
def load_all_blocks() -> dict[str, type["Block"]]:
from backend.data.block import Block
from backend.util.settings import Config
# Check if example blocks should be loaded from settings
@@ -47,8 +50,8 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
importlib.import_module(f".{module}", package=__name__)
# Load all Block instances from the available modules
available_blocks: dict[str, type["AnyBlockSchema"]] = {}
for block_cls in _all_subclasses(Block):
available_blocks: dict[str, type["Block"]] = {}
for block_cls in all_subclasses(Block):
class_name = block_cls.__name__
if class_name.endswith("Base"):
@@ -61,7 +64,7 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
"please name the class with 'Base' at the end"
)
block = block_cls() # pyright: ignore[reportAbstractUsage]
block = block_cls.create()
if not isinstance(block.id, str) or len(block.id) != 36:
raise ValueError(
@@ -102,7 +105,7 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
available_blocks[block.id] = block_cls
# Filter out blocks with incomplete auth configs, e.g. missing OAuth server secrets
from ._utils import is_block_auth_configured
from backend.data.block import is_block_auth_configured
filtered_blocks = {}
for block_id, block_cls in available_blocks.items():
@@ -112,48 +115,11 @@ def load_all_blocks() -> dict[str, type["AnyBlockSchema"]]:
return filtered_blocks
def _all_subclasses(cls: type[T]) -> list[type[T]]:
__all__ = ["load_all_blocks"]
def all_subclasses(cls: type[T]) -> list[type[T]]:
subclasses = cls.__subclasses__()
for subclass in subclasses:
subclasses += _all_subclasses(subclass)
subclasses += all_subclasses(subclass)
return subclasses
# ============== Block access helper functions ============== #
def get_blocks() -> dict[str, Type["AnyBlockSchema"]]:
return load_all_blocks()
# Note on the return type annotation: https://github.com/microsoft/pyright/issues/10281
def get_block(block_id: str) -> "AnyBlockSchema | None":
cls = get_blocks().get(block_id)
return cls() if cls else None
@cached(ttl_seconds=3600)
def get_webhook_block_ids() -> Sequence[str]:
return [
id
for id, B in get_blocks().items()
if B().block_type in (BlockType.WEBHOOK, BlockType.WEBHOOK_MANUAL)
]
@cached(ttl_seconds=3600)
def get_io_block_ids() -> Sequence[str]:
return [
id
for id, B in get_blocks().items()
if B().block_type in (BlockType.INPUT, BlockType.OUTPUT)
]
@cached(ttl_seconds=3600)
def get_human_in_the_loop_block_ids() -> Sequence[str]:
return [
id
for id, B in get_blocks().items()
if B().block_type == BlockType.HUMAN_IN_THE_LOOP
]

View File

@@ -1,739 +0,0 @@
import inspect
import logging
from abc import ABC, abstractmethod
from enum import Enum
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
Generic,
Optional,
Type,
TypeAlias,
TypeVar,
cast,
get_origin,
)
import jsonref
import jsonschema
from pydantic import BaseModel
from backend.data.block import BlockInput, BlockOutput, BlockOutputEntry
from backend.data.model import (
Credentials,
CredentialsFieldInfo,
CredentialsMetaInput,
SchemaField,
is_credentials_field_name,
)
from backend.integrations.providers import ProviderName
from backend.util import json
from backend.util.exceptions import (
BlockError,
BlockExecutionError,
BlockInputError,
BlockOutputError,
BlockUnknownError,
)
from backend.util.settings import Config
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
from backend.data.model import ContributorDetails, NodeExecutionStats
from ..data.graph import Link
app_config = Config()
BlockTestOutput = BlockOutputEntry | tuple[str, Callable[[Any], bool]]
class BlockType(Enum):
STANDARD = "Standard"
INPUT = "Input"
OUTPUT = "Output"
NOTE = "Note"
WEBHOOK = "Webhook"
WEBHOOK_MANUAL = "Webhook (manual)"
AGENT = "Agent"
AI = "AI"
AYRSHARE = "Ayrshare"
HUMAN_IN_THE_LOOP = "Human In The Loop"
class BlockCategory(Enum):
AI = "Block that leverages AI to perform a task."
SOCIAL = "Block that interacts with social media platforms."
TEXT = "Block that processes text data."
SEARCH = "Block that searches or extracts information from the internet."
BASIC = "Block that performs basic operations."
INPUT = "Block that interacts with input of the graph."
OUTPUT = "Block that interacts with output of the graph."
LOGIC = "Programming logic to control the flow of your agent"
COMMUNICATION = "Block that interacts with communication platforms."
DEVELOPER_TOOLS = "Developer tools such as GitHub blocks."
DATA = "Block that interacts with structured data."
HARDWARE = "Block that interacts with hardware."
AGENT = "Block that interacts with other agents."
CRM = "Block that interacts with CRM services."
SAFETY = (
"Block that provides AI safety mechanisms such as detecting harmful content"
)
PRODUCTIVITY = "Block that helps with productivity"
ISSUE_TRACKING = "Block that helps with issue tracking"
MULTIMEDIA = "Block that interacts with multimedia content"
MARKETING = "Block that helps with marketing"
def dict(self) -> dict[str, str]:
return {"category": self.name, "description": self.value}
class BlockCostType(str, Enum):
RUN = "run" # cost X credits per run
BYTE = "byte" # cost X credits per byte
SECOND = "second" # cost X credits per second
class BlockCost(BaseModel):
cost_amount: int
cost_filter: BlockInput
cost_type: BlockCostType
def __init__(
self,
cost_amount: int,
cost_type: BlockCostType = BlockCostType.RUN,
cost_filter: Optional[BlockInput] = None,
**data: Any,
) -> None:
super().__init__(
cost_amount=cost_amount,
cost_filter=cost_filter or {},
cost_type=cost_type,
**data,
)
class BlockInfo(BaseModel):
id: str
name: str
inputSchema: dict[str, Any]
outputSchema: dict[str, Any]
costs: list[BlockCost]
description: str
categories: list[dict[str, str]]
contributors: list[dict[str, Any]]
staticOutput: bool
uiType: str
class BlockSchema(BaseModel):
cached_jsonschema: ClassVar[dict[str, Any]]
@classmethod
def jsonschema(cls) -> dict[str, Any]:
if cls.cached_jsonschema:
return cls.cached_jsonschema
model = jsonref.replace_refs(cls.model_json_schema(), merge_props=True)
def ref_to_dict(obj):
if isinstance(obj, dict):
# OpenAPI <3.1 does not support sibling fields that has a $ref key
# So sometimes, the schema has an "allOf"/"anyOf"/"oneOf" with 1 item.
keys = {"allOf", "anyOf", "oneOf"}
one_key = next((k for k in keys if k in obj and len(obj[k]) == 1), None)
if one_key:
obj.update(obj[one_key][0])
return {
key: ref_to_dict(value)
for key, value in obj.items()
if not key.startswith("$") and key != one_key
}
elif isinstance(obj, list):
return [ref_to_dict(item) for item in obj]
return obj
cls.cached_jsonschema = cast(dict[str, Any], ref_to_dict(model))
return cls.cached_jsonschema
@classmethod
def validate_data(cls, data: BlockInput) -> str | None:
return json.validate_with_jsonschema(
schema=cls.jsonschema(),
data={k: v for k, v in data.items() if v is not None},
)
@classmethod
def get_mismatch_error(cls, data: BlockInput) -> str | None:
return cls.validate_data(data)
@classmethod
def get_field_schema(cls, field_name: str) -> dict[str, Any]:
model_schema = cls.jsonschema().get("properties", {})
if not model_schema:
raise ValueError(f"Invalid model schema {cls}")
property_schema = model_schema.get(field_name)
if not property_schema:
raise ValueError(f"Invalid property name {field_name}")
return property_schema
@classmethod
def validate_field(cls, field_name: str, data: BlockInput) -> str | None:
"""
Validate the data against a specific property (one of the input/output name).
Returns the validation error message if the data does not match the schema.
"""
try:
property_schema = cls.get_field_schema(field_name)
jsonschema.validate(json.to_dict(data), property_schema)
return None
except jsonschema.ValidationError as e:
return str(e)
@classmethod
def get_fields(cls) -> set[str]:
return set(cls.model_fields.keys())
@classmethod
def get_required_fields(cls) -> set[str]:
return {
field
for field, field_info in cls.model_fields.items()
if field_info.is_required()
}
@classmethod
def __pydantic_init_subclass__(cls, **kwargs):
"""Validates the schema definition. Rules:
- Fields with annotation `CredentialsMetaInput` MUST be
named `credentials` or `*_credentials`
- Fields named `credentials` or `*_credentials` MUST be
of type `CredentialsMetaInput`
"""
super().__pydantic_init_subclass__(**kwargs)
# Reset cached JSON schema to prevent inheriting it from parent class
cls.cached_jsonschema = {}
credentials_fields = cls.get_credentials_fields()
for field_name in cls.get_fields():
if is_credentials_field_name(field_name):
if field_name not in credentials_fields:
raise TypeError(
f"Credentials field '{field_name}' on {cls.__qualname__} "
f"is not of type {CredentialsMetaInput.__name__}"
)
CredentialsMetaInput.validate_credentials_field_schema(
cls.get_field_schema(field_name), field_name
)
elif field_name in credentials_fields:
raise KeyError(
f"Credentials field '{field_name}' on {cls.__qualname__} "
"has invalid name: must be 'credentials' or *_credentials"
)
@classmethod
def get_credentials_fields(cls) -> dict[str, type[CredentialsMetaInput]]:
return {
field_name: info.annotation
for field_name, info in cls.model_fields.items()
if (
inspect.isclass(info.annotation)
and issubclass(
get_origin(info.annotation) or info.annotation,
CredentialsMetaInput,
)
)
}
@classmethod
def get_auto_credentials_fields(cls) -> dict[str, dict[str, Any]]:
"""
Get fields that have auto_credentials metadata (e.g., GoogleDriveFileInput).
Returns a dict mapping kwarg_name -> {field_name, auto_credentials_config}
Raises:
ValueError: If multiple fields have the same kwarg_name, as this would
cause silent overwriting and only the last field would be processed.
"""
result: dict[str, dict[str, Any]] = {}
schema = cls.jsonschema()
properties = schema.get("properties", {})
for field_name, field_schema in properties.items():
auto_creds = field_schema.get("auto_credentials")
if auto_creds:
kwarg_name = auto_creds.get("kwarg_name", "credentials")
if kwarg_name in result:
raise ValueError(
f"Duplicate auto_credentials kwarg_name '{kwarg_name}' "
f"in fields '{result[kwarg_name]['field_name']}' and "
f"'{field_name}' on {cls.__qualname__}"
)
result[kwarg_name] = {
"field_name": field_name,
"config": auto_creds,
}
return result
@classmethod
def get_credentials_fields_info(cls) -> dict[str, CredentialsFieldInfo]:
result = {}
# Regular credentials fields
for field_name in cls.get_credentials_fields().keys():
result[field_name] = CredentialsFieldInfo.model_validate(
cls.get_field_schema(field_name), by_alias=True
)
# Auto-generated credentials fields (from GoogleDriveFileInput etc.)
for kwarg_name, info in cls.get_auto_credentials_fields().items():
config = info["config"]
# Build a schema-like dict that CredentialsFieldInfo can parse
auto_schema = {
"credentials_provider": [config.get("provider", "google")],
"credentials_types": [config.get("type", "oauth2")],
"credentials_scopes": config.get("scopes"),
}
result[kwarg_name] = CredentialsFieldInfo.model_validate(
auto_schema, by_alias=True
)
return result
@classmethod
def get_input_defaults(cls, data: BlockInput) -> BlockInput:
return data # Return as is, by default.
@classmethod
def get_missing_links(cls, data: BlockInput, links: list["Link"]) -> set[str]:
input_fields_from_nodes = {link.sink_name for link in links}
return input_fields_from_nodes - set(data)
@classmethod
def get_missing_input(cls, data: BlockInput) -> set[str]:
return cls.get_required_fields() - set(data)
class BlockSchemaInput(BlockSchema):
"""
Base schema class for block inputs.
All block input schemas should extend this class for consistency.
"""
pass
class BlockSchemaOutput(BlockSchema):
"""
Base schema class for block outputs that includes a standard error field.
All block output schemas should extend this class to ensure consistent error handling.
"""
error: str = SchemaField(
description="Error message if the operation failed", default=""
)
BlockSchemaInputType = TypeVar("BlockSchemaInputType", bound=BlockSchemaInput)
BlockSchemaOutputType = TypeVar("BlockSchemaOutputType", bound=BlockSchemaOutput)
class EmptyInputSchema(BlockSchemaInput):
pass
class EmptyOutputSchema(BlockSchemaOutput):
pass
# For backward compatibility - will be deprecated
EmptySchema = EmptyOutputSchema
# --8<-- [start:BlockWebhookConfig]
class BlockManualWebhookConfig(BaseModel):
"""
Configuration model for webhook-triggered blocks on which
the user has to manually set up the webhook at the provider.
"""
provider: ProviderName
"""The service provider that the webhook connects to"""
webhook_type: str
"""
Identifier for the webhook type. E.g. GitHub has repo and organization level hooks.
Only for use in the corresponding `WebhooksManager`.
"""
event_filter_input: str = ""
"""
Name of the block's event filter input.
Leave empty if the corresponding webhook doesn't have distinct event/payload types.
"""
event_format: str = "{event}"
"""
Template string for the event(s) that a block instance subscribes to.
Applied individually to each event selected in the event filter input.
Example: `"pull_request.{event}"` -> `"pull_request.opened"`
"""
class BlockWebhookConfig(BlockManualWebhookConfig):
"""
Configuration model for webhook-triggered blocks for which
the webhook can be automatically set up through the provider's API.
"""
resource_format: str
"""
Template string for the resource that a block instance subscribes to.
Fields will be filled from the block's inputs (except `payload`).
Example: `f"{repo}/pull_requests"` (note: not how it's actually implemented)
Only for use in the corresponding `WebhooksManager`.
"""
# --8<-- [end:BlockWebhookConfig]
class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
def __init__(
self,
id: str = "",
description: str = "",
contributors: list["ContributorDetails"] = [],
categories: set[BlockCategory] | None = None,
input_schema: Type[BlockSchemaInputType] = EmptyInputSchema,
output_schema: Type[BlockSchemaOutputType] = EmptyOutputSchema,
test_input: BlockInput | list[BlockInput] | None = None,
test_output: BlockTestOutput | list[BlockTestOutput] | None = None,
test_mock: dict[str, Any] | None = None,
test_credentials: Optional[Credentials | dict[str, Credentials]] = None,
disabled: bool = False,
static_output: bool = False,
block_type: BlockType = BlockType.STANDARD,
webhook_config: Optional[BlockWebhookConfig | BlockManualWebhookConfig] = None,
is_sensitive_action: bool = False,
):
"""
Initialize the block with the given schema.
Args:
id: The unique identifier for the block, this value will be persisted in the
DB. So it should be a unique and constant across the application run.
Use the UUID format for the ID.
description: The description of the block, explaining what the block does.
contributors: The list of contributors who contributed to the block.
input_schema: The schema, defined as a Pydantic model, for the input data.
output_schema: The schema, defined as a Pydantic model, for the output data.
test_input: The list or single sample input data for the block, for testing.
test_output: The list or single expected output if the test_input is run.
test_mock: function names on the block implementation to mock on test run.
disabled: If the block is disabled, it will not be available for execution.
static_output: Whether the output links of the block are static by default.
"""
from backend.data.model import NodeExecutionStats
self.id = id
self.input_schema = input_schema
self.output_schema = output_schema
self.test_input = test_input
self.test_output = test_output
self.test_mock = test_mock
self.test_credentials = test_credentials
self.description = description
self.categories = categories or set()
self.contributors = contributors or set()
self.disabled = disabled
self.static_output = static_output
self.block_type = block_type
self.webhook_config = webhook_config
self.is_sensitive_action = is_sensitive_action
self.execution_stats: "NodeExecutionStats" = NodeExecutionStats()
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
# Enforce presence of credentials field on auto-setup webhook blocks
if not (cred_fields := self.input_schema.get_credentials_fields()):
raise TypeError(
"credentials field is required on auto-setup webhook blocks"
)
# Disallow multiple credentials inputs on webhook blocks
elif len(cred_fields) > 1:
raise ValueError(
"Multiple credentials inputs not supported on webhook blocks"
)
self.block_type = BlockType.WEBHOOK
else:
self.block_type = BlockType.WEBHOOK_MANUAL
# Enforce shape of webhook event filter, if present
if self.webhook_config.event_filter_input:
event_filter_field = self.input_schema.model_fields[
self.webhook_config.event_filter_input
]
if not (
isinstance(event_filter_field.annotation, type)
and issubclass(event_filter_field.annotation, BaseModel)
and all(
field.annotation is bool
for field in event_filter_field.annotation.model_fields.values()
)
):
raise NotImplementedError(
f"{self.name} has an invalid webhook event selector: "
"field must be a BaseModel and all its fields must be boolean"
)
# Enforce presence of 'payload' input
if "payload" not in self.input_schema.model_fields:
raise TypeError(
f"{self.name} is webhook-triggered but has no 'payload' input"
)
# Disable webhook-triggered block if webhook functionality not available
if not app_config.platform_base_url:
self.disabled = True
@abstractmethod
async def run(self, input_data: BlockSchemaInputType, **kwargs) -> BlockOutput:
"""
Run the block with the given input data.
Args:
input_data: The input data with the structure of input_schema.
Kwargs: Currently 14/02/2025 these include
graph_id: The ID of the graph.
node_id: The ID of the node.
graph_exec_id: The ID of the graph execution.
node_exec_id: The ID of the node execution.
user_id: The ID of the user.
Returns:
A Generator that yields (output_name, output_data).
output_name: One of the output name defined in Block's output_schema.
output_data: The data for the output_name, matching the defined schema.
"""
# --- satisfy the type checker, never executed -------------
if False: # noqa: SIM115
yield "name", "value" # pyright: ignore[reportMissingYield]
raise NotImplementedError(f"{self.name} does not implement the run method.")
async def run_once(
self, input_data: BlockSchemaInputType, output: str, **kwargs
) -> Any:
async for item in self.run(input_data, **kwargs):
name, data = item
if name == output:
return data
raise ValueError(f"{self.name} did not produce any output for {output}")
def merge_stats(self, stats: "NodeExecutionStats") -> "NodeExecutionStats":
self.execution_stats += stats
return self.execution_stats
@property
def name(self):
return self.__class__.__name__
def to_dict(self):
return {
"id": self.id,
"name": self.name,
"inputSchema": self.input_schema.jsonschema(),
"outputSchema": self.output_schema.jsonschema(),
"description": self.description,
"categories": [category.dict() for category in self.categories],
"contributors": [
contributor.model_dump() for contributor in self.contributors
],
"staticOutput": self.static_output,
"uiType": self.block_type.value,
}
def get_info(self) -> BlockInfo:
from backend.data.credit import get_block_cost
return BlockInfo(
id=self.id,
name=self.name,
inputSchema=self.input_schema.jsonschema(),
outputSchema=self.output_schema.jsonschema(),
costs=get_block_cost(self),
description=self.description,
categories=[category.dict() for category in self.categories],
contributors=[
contributor.model_dump() for contributor in self.contributors
],
staticOutput=self.static_output,
uiType=self.block_type.value,
)
async def execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
try:
async for output_name, output_data in self._execute(input_data, **kwargs):
yield output_name, output_data
except Exception as ex:
if isinstance(ex, BlockError):
raise ex
else:
raise (
BlockExecutionError
if isinstance(ex, ValueError)
else BlockUnknownError
)(
message=str(ex),
block_name=self.name,
block_id=self.id,
) from ex
async def is_block_exec_need_review(
self,
input_data: BlockInput,
*,
user_id: str,
node_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: "ExecutionContext",
**kwargs,
) -> tuple[bool, BlockInput]:
"""
Check if this block execution needs human review and handle the review process.
Returns:
Tuple of (should_pause, input_data_to_use)
- should_pause: True if execution should be paused for review
- input_data_to_use: The input data to use (may be modified by reviewer)
"""
if not (
self.is_sensitive_action and execution_context.sensitive_action_safe_mode
):
return False, input_data
from backend.blocks.helpers.review import HITLReviewHelper
# Handle the review request and get decision
decision = await HITLReviewHelper.handle_review_decision(
input_data=input_data,
user_id=user_id,
node_id=node_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
block_name=self.name,
editable=True,
)
if decision is None:
# We're awaiting review - pause execution
return True, input_data
if not decision.should_proceed:
# Review was rejected, raise an error to stop execution
raise BlockExecutionError(
message=f"Block execution rejected by reviewer: {decision.message}",
block_name=self.name,
block_id=self.id,
)
# Review was approved - use the potentially modified data
# ReviewResult.data must be a dict for block inputs
reviewed_data = decision.review_result.data
if not isinstance(reviewed_data, dict):
raise BlockExecutionError(
message=f"Review data must be a dict for block input, got {type(reviewed_data).__name__}",
block_name=self.name,
block_id=self.id,
)
return False, reviewed_data
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
# Check for review requirement only if running within a graph execution context
# Direct block execution (e.g., from chat) skips the review process
has_graph_context = all(
key in kwargs
for key in (
"node_exec_id",
"graph_exec_id",
"graph_id",
"execution_context",
)
)
if has_graph_context:
should_pause, input_data = await self.is_block_exec_need_review(
input_data, **kwargs
)
if should_pause:
return
# Validate the input data (original or reviewer-modified) once
if error := self.input_schema.validate_data(input_data):
raise BlockInputError(
message=f"Unable to execute block with invalid input data: {error}",
block_name=self.name,
block_id=self.id,
)
# Use the validated input data
async for output_name, output_data in self.run(
self.input_schema(**{k: v for k, v in input_data.items() if v is not None}),
**kwargs,
):
if output_name == "error":
raise BlockExecutionError(
message=output_data, block_name=self.name, block_id=self.id
)
if self.block_type == BlockType.STANDARD and (
error := self.output_schema.validate_field(output_name, output_data)
):
raise BlockOutputError(
message=f"Block produced an invalid output data: {error}",
block_name=self.name,
block_id=self.id,
)
yield output_name, output_data
def is_triggered_by_event_type(
self, trigger_config: dict[str, Any], event_type: str
) -> bool:
if not self.webhook_config:
raise TypeError("This method can't be used on non-trigger blocks")
if not self.webhook_config.event_filter_input:
return True
event_filter = trigger_config.get(self.webhook_config.event_filter_input)
if not event_filter:
raise ValueError("Event filter is not configured on trigger")
return event_type in [
self.webhook_config.event_format.format(event=k)
for k in event_filter
if event_filter[k] is True
]
# Type alias for any block with standard input/output schemas
AnyBlockSchema: TypeAlias = Block[BlockSchemaInput, BlockSchemaOutput]

View File

@@ -1,122 +0,0 @@
import logging
import os
from backend.integrations.providers import ProviderName
from ._base import AnyBlockSchema
logger = logging.getLogger(__name__)
def is_block_auth_configured(
block_cls: type[AnyBlockSchema],
) -> bool:
"""
Check if a block has a valid authentication method configured at runtime.
For example if a block is an OAuth-only block and there env vars are not set,
do not show it in the UI.
"""
from backend.sdk.registry import AutoRegistry
# Create an instance to access input_schema
try:
block = block_cls()
except Exception as e:
# If we can't create a block instance, assume it's not OAuth-only
logger.error(f"Error creating block instance for {block_cls.__name__}: {e}")
return True
logger.debug(
f"Checking if block {block_cls.__name__} has a valid provider configured"
)
# Get all credential inputs from input schema
credential_inputs = block.input_schema.get_credentials_fields_info()
required_inputs = block.input_schema.get_required_fields()
if not credential_inputs:
logger.debug(
f"Block {block_cls.__name__} has no credential inputs - Treating as valid"
)
return True
# Check credential inputs
if len(required_inputs.intersection(credential_inputs.keys())) == 0:
logger.debug(
f"Block {block_cls.__name__} has only optional credential inputs"
" - will work without credentials configured"
)
# Check if the credential inputs for this block are correctly configured
for field_name, field_info in credential_inputs.items():
provider_names = field_info.provider
if not provider_names:
logger.warning(
f"Block {block_cls.__name__} "
f"has credential input '{field_name}' with no provider options"
" - Disabling"
)
return False
# If a field has multiple possible providers, each one needs to be usable to
# prevent breaking the UX
for _provider_name in provider_names:
provider_name = _provider_name.value
if provider_name in ProviderName.__members__.values():
logger.debug(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' is part of the legacy provider system"
" - Treating as valid"
)
break
provider = AutoRegistry.get_provider(provider_name)
if not provider:
logger.warning(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"refers to unknown provider '{provider_name}' - Disabling"
)
return False
# Check the provider's supported auth types
if field_info.supported_types != provider.supported_auth_types:
logger.warning(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"has mismatched supported auth types (field <> Provider): "
f"{field_info.supported_types} != {provider.supported_auth_types}"
)
if not (supported_auth_types := provider.supported_auth_types):
# No auth methods are been configured for this provider
logger.warning(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' "
"has no authentication methods configured - Disabling"
)
return False
# Check if provider supports OAuth
if "oauth2" in supported_auth_types:
# Check if OAuth environment variables are set
if (oauth_config := provider.oauth_config) and bool(
os.getenv(oauth_config.client_id_env_var)
and os.getenv(oauth_config.client_secret_env_var)
):
logger.debug(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' is configured for OAuth"
)
else:
logger.error(
f"Block {block_cls.__name__} credential input '{field_name}' "
f"provider '{provider_name}' "
"is missing OAuth client ID or secret - Disabling"
)
return False
logger.debug(
f"Block {block_cls.__name__} credential input '{field_name}' is valid; "
f"supported credential types: {', '.join(field_info.supported_types)}"
)
return True

View File

@@ -1,7 +1,7 @@
import logging
from typing import TYPE_CHECKING, Any, Optional
from typing import Any, Optional
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockInput,
@@ -9,15 +9,13 @@ from backend.blocks._base import (
BlockSchema,
BlockSchemaInput,
BlockType,
get_block,
)
from backend.data.execution import ExecutionContext, ExecutionStatus, NodesInputMasks
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util.json import validate_with_jsonschema
from backend.util.retry import func_retry
if TYPE_CHECKING:
from backend.executor.utils import LogMetadata
_logger = logging.getLogger(__name__)
@@ -126,10 +124,9 @@ class AgentExecutorBlock(Block):
graph_version: int,
graph_exec_id: str,
user_id: str,
logger: "LogMetadata",
logger,
) -> BlockOutput:
from backend.blocks import get_block
from backend.data.execution import ExecutionEventType
from backend.executor import utils as execution_utils
@@ -201,7 +198,7 @@ class AgentExecutorBlock(Block):
self,
graph_exec_id: str,
user_id: str,
logger: "LogMetadata",
logger,
) -> None:
from backend.executor import utils as execution_utils

View File

@@ -1,13 +1,6 @@
from typing import Any
from backend.blocks._base import (
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.llm import (
DEFAULT_LLM_MODEL,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
AIBlockBase,
@@ -16,6 +9,13 @@ from backend.blocks.llm import (
LlmModel,
LLMResponse,
llm_call,
llm_model_schema_extra,
)
from backend.data.block import (
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import APIKeyCredentials, NodeExecutionStats, SchemaField
@@ -50,9 +50,10 @@ class AIConditionBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for evaluating the condition.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
@@ -82,7 +83,7 @@ class AIConditionBlock(AIBlockBase):
"condition": "the input is an email address",
"yes_value": "Valid email",
"no_value": "Not an email",
"model": DEFAULT_LLM_MODEL,
"model": LlmModel.default(),
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,

View File

@@ -6,7 +6,7 @@ from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -5,12 +5,7 @@ from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.blocks._base import (
Block,
BlockCategory,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,

View File

@@ -6,7 +6,7 @@ from typing import Literal
from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -6,7 +6,7 @@ from typing import Literal
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,10 +1,3 @@
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
@@ -17,6 +10,13 @@ from backend.blocks.apollo.models import (
PrimaryPhone,
SearchOrganizationsRequest,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import CredentialsField, SchemaField

View File

@@ -1,12 +1,5 @@
import asyncio
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
@@ -21,6 +14,13 @@ from backend.blocks.apollo.models import (
SearchPeopleRequest,
SenorityLevels,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import CredentialsField, SchemaField

View File

@@ -1,10 +1,3 @@
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.apollo._api import ApolloClient
from backend.blocks.apollo._auth import (
TEST_CREDENTIALS,
@@ -13,6 +6,13 @@ from backend.blocks.apollo._auth import (
ApolloCredentialsInput,
)
from backend.blocks.apollo.models import Contact, EnrichPersonRequest
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import CredentialsField, SchemaField

View File

@@ -3,7 +3,7 @@ from typing import Optional
from pydantic import BaseModel, Field
from backend.blocks._base import BlockSchemaInput
from backend.data.block import BlockSchemaInput
from backend.data.model import SchemaField, UserIntegrations
from backend.integrations.ayrshare import AyrshareClient
from backend.util.clients import get_database_manager_async_client

View File

@@ -1,7 +1,7 @@
import enum
from typing import Any
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,7 @@ import os
import re
from typing import Type
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,7 +1,7 @@
from enum import Enum
from typing import Any
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -6,7 +6,7 @@ from typing import Literal, Optional
from e2b import AsyncSandbox as BaseAsyncSandbox
from pydantic import BaseModel, SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -6,7 +6,7 @@ from e2b_code_interpreter import Result as E2BExecutionResult
from e2b_code_interpreter.charts import Chart as E2BExecutionResultChart
from pydantic import BaseModel, Field, JsonValue, SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,6 +1,6 @@
import re
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -6,7 +6,7 @@ from openai import AsyncOpenAI
from openai.types.responses import Response as OpenAIResponse
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,6 +1,6 @@
from pydantic import BaseModel
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockManualWebhookConfig,

View File

@@ -1,4 +1,4 @@
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,6 +1,6 @@
from typing import Any, List
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,6 +1,6 @@
import codecs
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -8,7 +8,7 @@ from typing import Any, Literal, cast
import discord
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,7 @@
Discord OAuth-based blocks.
"""
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -7,7 +7,7 @@ from typing import Literal
from pydantic import BaseModel, ConfigDict, SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,7 @@
import codecs
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -8,7 +8,7 @@ which provides access to LinkedIn profile data and related information.
import logging
from typing import Optional
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,13 +3,6 @@ import logging
from enum import Enum
from typing import Any
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.fal._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
@@ -17,6 +10,13 @@ from backend.blocks.fal._auth import (
FalCredentialsField,
FalCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file

View File

@@ -5,7 +5,7 @@ from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,7 +3,7 @@ from typing import Optional
from pydantic import BaseModel
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -5,7 +5,7 @@ from typing import Optional
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,7 +3,7 @@ from urllib.parse import urlparse
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,7 @@ import re
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,7 @@ import base64
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -4,7 +4,7 @@ from typing import Any, List, Optional
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,7 +3,7 @@ from typing import Optional
from pydantic import BaseModel
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -4,7 +4,7 @@ from pathlib import Path
from pydantic import BaseModel
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -8,7 +8,7 @@ from google.oauth2.credentials import Credentials
from googleapiclient.discovery import build
from pydantic import BaseModel
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -7,14 +7,14 @@ from google.oauth2.credentials import Credentials
from googleapiclient.discovery import build
from gravitas_md2gdocs import to_requests
from backend.blocks._base import (
from backend.blocks.google._drive import GoogleDriveFile, GoogleDriveFileField
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.google._drive import GoogleDriveFile, GoogleDriveFileField
from backend.data.model import SchemaField
from backend.util.settings import Settings

View File

@@ -14,7 +14,7 @@ from google.oauth2.credentials import Credentials
from googleapiclient.discovery import build
from pydantic import BaseModel, Field
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -7,14 +7,14 @@ from enum import Enum
from google.oauth2.credentials import Credentials
from googleapiclient.discovery import build
from backend.blocks._base import (
from backend.blocks.google._drive import GoogleDriveFile, GoogleDriveFileField
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.google._drive import GoogleDriveFile, GoogleDriveFileField
from backend.data.model import SchemaField
from backend.util.settings import Settings

View File

@@ -3,7 +3,7 @@ from typing import Literal
import googlemaps
from pydantic import BaseModel, SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -9,7 +9,9 @@ from typing import Any, Optional
from prisma.enums import ReviewStatus
from pydantic import BaseModel
from backend.data.execution import ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
logger = logging.getLogger(__name__)
@@ -41,8 +43,6 @@ class HITLReviewHelper:
@staticmethod
async def update_node_execution_status(**kwargs) -> None:
"""Update the execution status of a node."""
from backend.executor.manager import async_update_node_execution_status
await async_update_node_execution_status(
db_client=get_database_manager_async_client(), **kwargs
)
@@ -88,13 +88,12 @@ class HITLReviewHelper:
Raises:
Exception: If review creation or status update fails
"""
from backend.data.execution import ExecutionStatus
# Note: Safe mode checks (human_in_the_loop_safe_mode, sensitive_action_safe_mode)
# are handled by the caller:
# - HITL blocks check human_in_the_loop_safe_mode in their run() method
# - Sensitive action blocks check sensitive_action_safe_mode in is_block_exec_need_review()
# This function only handles checking for existing approvals.
# Check if this node has already been approved (normal or auto-approval)
if approval_result := await HITLReviewHelper.check_approval(
node_exec_id=node_exec_id,

View File

@@ -8,7 +8,7 @@ from typing import Literal
import aiofiles
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,15 +1,15 @@
from backend.blocks._base import (
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -1,15 +1,15 @@
from backend.blocks._base import (
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -1,17 +1,17 @@
from datetime import datetime, timedelta
from backend.blocks._base import (
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.hubspot._auth import (
HubSpotCredentials,
HubSpotCredentialsField,
HubSpotCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -3,7 +3,8 @@ from typing import Any
from prisma.enums import ReviewStatus
from backend.blocks._base import (
from backend.blocks.helpers.review import HITLReviewHelper
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
@@ -11,7 +12,6 @@ from backend.blocks._base import (
BlockSchemaOutput,
BlockType,
)
from backend.blocks.helpers.review import HITLReviewHelper
from backend.data.execution import ExecutionContext
from backend.data.human_review import ReviewResult
from backend.data.model import SchemaField
@@ -21,71 +21,43 @@ logger = logging.getLogger(__name__)
class HumanInTheLoopBlock(Block):
"""
Pauses execution and waits for human approval or rejection of the data.
This block pauses execution and waits for human approval or modification of the data.
When executed, this block creates a pending review entry and sets the node execution
status to REVIEW. The execution remains paused until a human user either approves
or rejects the data.
When executed, it creates a pending review entry and sets the node execution status
to REVIEW. The execution will remain paused until a human user either:
- Approves the data (with or without modifications)
- Rejects the data
**How it works:**
- The input data is presented to a human reviewer
- The reviewer can approve or reject (and optionally modify the data if editable)
- On approval: the data flows out through the `approved_data` output pin
- On rejection: the data flows out through the `rejected_data` output pin
**Important:** The output pins yield the actual data itself, NOT status strings.
The approval/rejection decision determines WHICH output pin fires, not the value.
You do NOT need to compare the output to "APPROVED" or "REJECTED" - simply connect
downstream blocks to the appropriate output pin for each case.
**Example usage:**
- Connect `approved_data` → next step in your workflow (data was approved)
- Connect `rejected_data` → error handling or notification (data was rejected)
This is useful for workflows that require human validation or intervention before
proceeding to the next steps.
"""
class Input(BlockSchemaInput):
data: Any = SchemaField(
description="The data to be reviewed by a human user. "
"This exact data will be passed through to either approved_data or "
"rejected_data output based on the reviewer's decision."
)
data: Any = SchemaField(description="The data to be reviewed by a human user")
name: str = SchemaField(
description="A descriptive name for what this data represents. "
"This helps the reviewer understand what they are reviewing.",
description="A descriptive name for what this data represents",
)
editable: bool = SchemaField(
description="Whether the human reviewer can edit the data before "
"approving or rejecting it",
description="Whether the human reviewer can edit the data",
default=True,
advanced=True,
)
class Output(BlockSchemaOutput):
approved_data: Any = SchemaField(
description="Outputs the input data when the reviewer APPROVES it. "
"The value is the actual data itself (not a status string like 'APPROVED'). "
"If the reviewer edited the data, this contains the modified version. "
"Connect downstream blocks here for the 'approved' workflow path."
description="The data when approved (may be modified by reviewer)"
)
rejected_data: Any = SchemaField(
description="Outputs the input data when the reviewer REJECTS it. "
"The value is the actual data itself (not a status string like 'REJECTED'). "
"If the reviewer edited the data, this contains the modified version. "
"Connect downstream blocks here for the 'rejected' workflow path."
description="The data when rejected (may be modified by reviewer)"
)
review_message: str = SchemaField(
description="Optional message provided by the reviewer explaining their "
"decision. Only outputs when the reviewer provides a message; "
"this pin does not fire if no message was given.",
default="",
description="Any message provided by the reviewer", default=""
)
def __init__(self):
super().__init__(
id="8b2a7b3c-6e9d-4a5f-8c1b-2e3f4a5b6c7d",
description="Pause execution for human review. Data flows through "
"approved_data or rejected_data output based on the reviewer's decision. "
"Outputs contain the actual data, not status strings.",
description="Pause execution and wait for human approval or modification of data",
categories={BlockCategory.BASIC},
input_schema=HumanInTheLoopBlock.Input,
output_schema=HumanInTheLoopBlock.Output,

View File

@@ -3,7 +3,7 @@ from typing import Any, Dict, Literal, Optional
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,9 @@ import copy
from datetime import date, time
from typing import Any, Optional
from backend.blocks._base import (
# Import for Google Drive file input block
from backend.blocks.google._drive import AttachmentView, GoogleDriveFile
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
@@ -10,9 +12,6 @@ from backend.blocks._base import (
BlockSchemaInput,
BlockType,
)
# Import for Google Drive file input block
from backend.blocks.google._drive import AttachmentView, GoogleDriveFile
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file

View File

@@ -1,6 +1,6 @@
from typing import Any
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,15 +1,15 @@
from backend.blocks._base import (
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -1,15 +1,15 @@
from backend.blocks._base import (
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -3,18 +3,18 @@ from urllib.parse import quote
from typing_extensions import TypedDict
from backend.blocks._base import (
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
JinaCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests

View File

@@ -1,12 +1,5 @@
from urllib.parse import quote
from backend.blocks._base import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.jina._auth import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
@@ -15,6 +8,13 @@ from backend.blocks.jina._auth import (
JinaCredentialsInput,
)
from backend.blocks.search import GetRequest
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError

View File

@@ -4,24 +4,27 @@ import logging
import re
import secrets
from abc import ABC
from enum import Enum, EnumMeta
from enum import Enum
from json import JSONDecodeError
from typing import Any, Iterable, List, Literal, NamedTuple, Optional
from typing import Any, Iterable, List, Literal, Optional
import anthropic
import ollama
import openai
from anthropic.types import ToolParam
from groq import AsyncGroq
from pydantic import BaseModel, SecretStr
from pydantic import BaseModel, GetCoreSchemaHandler, SecretStr
from pydantic_core import CoreSchema, core_schema
from backend.blocks._base import (
from backend.data import llm_registry
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.llm_registry import ModelMetadata
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -66,114 +69,123 @@ TEST_CREDENTIALS_INPUT = {
def AICredentialsField() -> AICredentials:
"""
Returns a CredentialsField for LLM providers.
The discriminator_mapping will be refreshed when the schema is generated
if it's empty, ensuring the LLM registry is loaded.
"""
# Get the mapping now - it may be empty initially, but will be refreshed
# when the schema is generated via CredentialsMetaInput._add_json_schema_extra
mapping = llm_registry.get_llm_discriminator_mapping()
return CredentialsField(
description="API key for the LLM provider.",
discriminator="model",
discriminator_mapping={
model.value: model.metadata.provider for model in LlmModel
},
discriminator_mapping=mapping, # May be empty initially, refreshed later
)
class ModelMetadata(NamedTuple):
provider: str
context_window: int
max_output_tokens: int | None
display_name: str
provider_name: str
creator_name: str
price_tier: Literal[1, 2, 3]
def llm_model_schema_extra() -> dict[str, Any]:
return {"options": llm_registry.get_llm_model_schema_options()}
class LlmModelMeta(EnumMeta):
pass
class LlmModelMeta(type):
"""
Metaclass for LlmModel that enables attribute-style access to dynamic models.
This allows code like `LlmModel.GPT4O` to work by converting the attribute
name to a slug format:
- GPT4O -> gpt-4o
- GPT4O_MINI -> gpt-4o-mini
- CLAUDE_3_5_SONNET -> claude-3-5-sonnet
"""
def __getattr__(cls, name: str):
# Don't intercept private/dunder attributes
if name.startswith("_"):
raise AttributeError(f"type object 'LlmModel' has no attribute '{name}'")
# Convert attribute name to slug format:
# 1. Lowercase: GPT4O -> gpt4o
# 2. Underscores to hyphens: GPT4O_MINI -> gpt4o-mini
slug = name.lower().replace("_", "-")
# Check for exact match in registry first (e.g., "o1" stays "o1")
registry_slugs = llm_registry.get_dynamic_model_slugs()
if slug in registry_slugs:
return cls(slug)
# If no exact match, try inserting hyphen between letter and digit
# e.g., gpt4o -> gpt-4o
transformed_slug = re.sub(r"([a-z])(\d)", r"\1-\2", slug)
return cls(transformed_slug)
def __iter__(cls):
"""Iterate over all models from the registry.
Yields LlmModel instances for each model in the dynamic registry.
Used by __get_pydantic_json_schema__ to build model metadata.
"""
for model in llm_registry.iter_dynamic_models():
yield cls(model.slug)
class LlmModel(str, Enum, metaclass=LlmModelMeta):
# OpenAI models
O3_MINI = "o3-mini"
O3 = "o3-2025-04-16"
O1 = "o1"
O1_MINI = "o1-mini"
# GPT-5 models
GPT5_2 = "gpt-5.2-2025-12-11"
GPT5_1 = "gpt-5.1-2025-11-13"
GPT5 = "gpt-5-2025-08-07"
GPT5_MINI = "gpt-5-mini-2025-08-07"
GPT5_NANO = "gpt-5-nano-2025-08-07"
GPT5_CHAT = "gpt-5-chat-latest"
GPT41 = "gpt-4.1-2025-04-14"
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
GPT4O_MINI = "gpt-4o-mini"
GPT4O = "gpt-4o"
GPT4_TURBO = "gpt-4-turbo"
GPT3_5_TURBO = "gpt-3.5-turbo"
# Anthropic models
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
CLAUDE_4_OPUS = "claude-opus-4-20250514"
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_4_6_OPUS = "claude-opus-4-6"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
AIML_API_LLAMA3_1_70B = "nvidia/llama-3.1-nemotron-70b-instruct"
AIML_API_LLAMA3_3_70B = "meta-llama/Llama-3.3-70B-Instruct-Turbo"
AIML_API_META_LLAMA_3_1_70B = "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo"
AIML_API_LLAMA_3_2_3B = "meta-llama/Llama-3.2-3B-Instruct-Turbo"
# Groq models
LLAMA3_3_70B = "llama-3.3-70b-versatile"
LLAMA3_1_8B = "llama-3.1-8b-instant"
# Ollama models
OLLAMA_LLAMA3_3 = "llama3.3"
OLLAMA_LLAMA3_2 = "llama3.2"
OLLAMA_LLAMA3_8B = "llama3"
OLLAMA_LLAMA3_405B = "llama3.1:405b"
OLLAMA_DOLPHIN = "dolphin-mistral:latest"
# OpenRouter models
OPENAI_GPT_OSS_120B = "openai/gpt-oss-120b"
OPENAI_GPT_OSS_20B = "openai/gpt-oss-20b"
GEMINI_2_5_PRO = "google/gemini-2.5-pro-preview-03-25"
GEMINI_3_PRO_PREVIEW = "google/gemini-3-pro-preview"
GEMINI_2_5_FLASH = "google/gemini-2.5-flash"
GEMINI_2_0_FLASH = "google/gemini-2.0-flash-001"
GEMINI_2_5_FLASH_LITE_PREVIEW = "google/gemini-2.5-flash-lite-preview-06-17"
GEMINI_2_0_FLASH_LITE = "google/gemini-2.0-flash-lite-001"
MISTRAL_NEMO = "mistralai/mistral-nemo"
COHERE_COMMAND_R_08_2024 = "cohere/command-r-08-2024"
COHERE_COMMAND_R_PLUS_08_2024 = "cohere/command-r-plus-08-2024"
DEEPSEEK_CHAT = "deepseek/deepseek-chat" # Actually: DeepSeek V3
DEEPSEEK_R1_0528 = "deepseek/deepseek-r1-0528"
PERPLEXITY_SONAR = "perplexity/sonar"
PERPLEXITY_SONAR_PRO = "perplexity/sonar-pro"
PERPLEXITY_SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B = "nousresearch/hermes-3-llama-3.1-405b"
NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B = "nousresearch/hermes-3-llama-3.1-70b"
AMAZON_NOVA_LITE_V1 = "amazon/nova-lite-v1"
AMAZON_NOVA_MICRO_V1 = "amazon/nova-micro-v1"
AMAZON_NOVA_PRO_V1 = "amazon/nova-pro-v1"
MICROSOFT_WIZARDLM_2_8X22B = "microsoft/wizardlm-2-8x22b"
GRYPHE_MYTHOMAX_L2_13B = "gryphe/mythomax-l2-13b"
META_LLAMA_4_SCOUT = "meta-llama/llama-4-scout"
META_LLAMA_4_MAVERICK = "meta-llama/llama-4-maverick"
GROK_4 = "x-ai/grok-4"
GROK_4_FAST = "x-ai/grok-4-fast"
GROK_4_1_FAST = "x-ai/grok-4.1-fast"
GROK_CODE_FAST_1 = "x-ai/grok-code-fast-1"
KIMI_K2 = "moonshotai/kimi-k2"
QWEN3_235B_A22B_THINKING = "qwen/qwen3-235b-a22b-thinking-2507"
QWEN3_CODER = "qwen/qwen3-coder"
# Llama API models
LLAMA_API_LLAMA_4_SCOUT = "Llama-4-Scout-17B-16E-Instruct-FP8"
LLAMA_API_LLAMA4_MAVERICK = "Llama-4-Maverick-17B-128E-Instruct-FP8"
LLAMA_API_LLAMA3_3_8B = "Llama-3.3-8B-Instruct"
LLAMA_API_LLAMA3_3_70B = "Llama-3.3-70B-Instruct"
# v0 by Vercel models
V0_1_5_MD = "v0-1.5-md"
V0_1_5_LG = "v0-1.5-lg"
V0_1_0_MD = "v0-1.0-md"
class LlmModel(str, metaclass=LlmModelMeta):
"""
Dynamic LLM model type that accepts any model slug from the registry.
This is a string subclass (not an Enum) that allows any model slug value.
All models are managed via the LLM Registry in the database.
Usage:
model = LlmModel("gpt-4o") # Direct construction
model = LlmModel.GPT4O # Attribute access (converted to "gpt-4o")
model.value # Returns the slug string
model.provider # Returns the provider from registry
"""
def __new__(cls, value: str):
if isinstance(value, LlmModel):
return value
return str.__new__(cls, value)
@classmethod
def __get_pydantic_core_schema__(
cls, source_type: Any, handler: GetCoreSchemaHandler
) -> CoreSchema:
"""
Tell Pydantic how to validate LlmModel.
Accepts strings and converts them to LlmModel instances.
"""
return core_schema.no_info_after_validator_function(
cls, # The validator function (LlmModel constructor)
core_schema.str_schema(), # Accept string input
serialization=core_schema.to_string_ser_schema(), # Serialize as string
)
@property
def value(self) -> str:
"""Return the model slug (for compatibility with enum-style access)."""
return str(self)
@classmethod
def default(cls) -> "LlmModel":
"""
Get the default model from the registry.
Returns the recommended model if set, otherwise gpt-4o if available
and enabled, otherwise the first enabled model from the registry.
Falls back to "gpt-4o" if registry is empty (e.g., at module import time).
"""
from backend.data.llm_registry import get_default_model_slug
slug = get_default_model_slug()
if slug is None:
# Registry is empty (e.g., at module import time before DB connection).
# Fall back to gpt-4o for backward compatibility.
slug = "gpt-4o"
return cls(slug)
@classmethod
def __get_pydantic_json_schema__(cls, schema, handler):
@@ -181,7 +193,15 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
llm_model_metadata = {}
for model in cls:
model_name = model.value
metadata = model.metadata
# Skip disabled models - only show enabled models in the picker
if not llm_registry.is_model_enabled(model_name):
continue
# Use registry directly with None check to gracefully handle
# missing metadata during startup/import before registry is populated
metadata = llm_registry.get_llm_model_metadata(model_name)
if metadata is None:
# Skip models without metadata (registry not yet populated)
continue
llm_model_metadata[model_name] = {
"creator": metadata.creator_name,
"creator_name": metadata.creator_name,
@@ -197,7 +217,12 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
@property
def metadata(self) -> ModelMetadata:
return MODEL_METADATA[self]
metadata = llm_registry.get_llm_model_metadata(self.value)
if metadata:
return metadata
raise ValueError(
f"Missing metadata for model: {self.value}. Model not found in LLM registry."
)
@property
def provider(self) -> str:
@@ -212,300 +237,9 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
return self.metadata.max_output_tokens
MODEL_METADATA = {
# https://platform.openai.com/docs/models
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
LlmModel.O3_MINI: ModelMetadata(
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata(
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata(
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata(
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
),
LlmModel.GPT5_1: ModelMetadata(
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
),
LlmModel.GPT5: ModelMetadata(
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_MINI: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_NANO: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_CHAT: ModelMetadata(
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
),
LlmModel.GPT41: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
),
LlmModel.GPT41_MINI: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT4O_MINI: ModelMetadata(
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
), # gpt-4o-mini-2024-07-18
LlmModel.GPT4O: ModelMetadata(
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata(
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_6_OPUS: ModelMetadata(
"anthropic", 200000, 128000, "Claude Opus 4.6", "Anthropic", "Anthropic", 3
), # claude-opus-4-6
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307
# https://docs.aimlapi.com/api-overview/model-database/text-models
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
"aiml_api",
128000,
40000,
"Llama 3.1 Nemotron 70B Instruct",
"AI/ML",
"Nvidia",
1,
),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata(
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
),
LlmModel.LLAMA3_1_8B: ModelMetadata(
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
"open_router",
1050000,
8192,
"Gemini 2.5 Pro Preview 03.25",
"OpenRouter",
"Google",
2,
),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router",
1048576,
65535,
"Gemini 2.5 Flash Lite Preview 06.17",
"OpenRouter",
"Google",
1,
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
"open_router",
1048576,
8192,
"Gemini 2.0 Flash Lite 001",
"OpenRouter",
"Google",
1,
),
LlmModel.MISTRAL_NEMO: ModelMetadata(
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
),
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
),
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
),
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
"open_router",
128000,
16000,
"Sonar Deep Research",
"OpenRouter",
"Perplexity",
3,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router",
131000,
4096,
"Hermes 3 Llama 3.1 405B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
"open_router",
12288,
12288,
"Hermes 3 Llama 3.1 70B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
),
LlmModel.GROK_4: ModelMetadata(
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
),
LlmModel.GROK_4_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_4_1_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
),
LlmModel.KIMI_K2: ModelMetadata(
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
"open_router",
262144,
262144,
"Qwen 3 235B A22B Thinking 2507",
"OpenRouter",
"Qwen",
1,
),
LlmModel.QWEN3_CODER: ModelMetadata(
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
),
# Llama API models
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Scout 17B 16E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Maverick 17B 128E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
),
# v0 by Vercel models
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
}
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
for model in LlmModel:
if model not in MODEL_METADATA:
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
# Default model constant for backward compatibility
# Uses the dynamic registry to get the default model
DEFAULT_LLM_MODEL = LlmModel.default()
class ToolCall(BaseModel):
@@ -598,8 +332,11 @@ def get_parallel_tool_calls_param(
llm_model: LlmModel, parallel_tool_calls: bool | None
) -> bool | openai.Omit:
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
if llm_model.startswith("o") or parallel_tool_calls is None:
return openai.omit
# Check for o-series models (o1, o1-mini, o3-mini, etc.) which don't support
# parallel tool calls. Use regex to avoid false positives like "openai/gpt-oss".
is_o_series = re.match(r"^o\d", llm_model) is not None
if is_o_series or parallel_tool_calls is None:
return openai.NOT_GIVEN
return parallel_tool_calls
@@ -634,15 +371,93 @@ async def llm_call(
- prompt_tokens: The number of tokens used in the prompt.
- completion_tokens: The number of tokens used in the completion.
"""
provider = llm_model.metadata.provider
context_window = llm_model.context_window
# Get model metadata and check if enabled - with fallback support
# The model we'll actually use (may differ if original is disabled)
model_to_use = llm_model.value
# Check if model is in registry and if it's enabled
from backend.data.llm_registry import (
get_fallback_model_for_disabled,
get_model_info,
)
model_info = get_model_info(llm_model.value)
if model_info and not model_info.is_enabled:
# Model is disabled - try to find a fallback from the same provider
fallback = get_fallback_model_for_disabled(llm_model.value)
if fallback:
logger.warning(
f"Model '{llm_model.value}' is disabled. Using fallback model '{fallback.slug}' from the same provider ({fallback.metadata.provider})."
)
model_to_use = fallback.slug
# Use fallback model's metadata
provider = fallback.metadata.provider
context_window = fallback.metadata.context_window
model_max_output = fallback.metadata.max_output_tokens or int(2**15)
else:
# No fallback available - raise error
raise ValueError(
f"LLM model '{llm_model.value}' is disabled and no fallback model "
f"from the same provider is available. Please enable the model or "
f"select a different model in the block configuration."
)
else:
# Model is enabled or not in registry (legacy/static model)
try:
provider = llm_model.metadata.provider
context_window = llm_model.context_window
model_max_output = llm_model.max_output_tokens or int(2**15)
except ValueError:
# Model not in cache - try refreshing the registry once if we have DB access
logger.warning(f"Model {llm_model.value} not found in registry cache")
# Try refreshing the registry if we have database access
from backend.data.db import is_connected
if is_connected():
try:
logger.info(
f"Refreshing LLM registry and retrying lookup for {llm_model.value}"
)
await llm_registry.refresh_llm_registry()
# Try again after refresh
try:
provider = llm_model.metadata.provider
context_window = llm_model.context_window
model_max_output = llm_model.max_output_tokens or int(2**15)
logger.info(
f"Successfully loaded model {llm_model.value} metadata after registry refresh"
)
except ValueError:
# Still not found after refresh
raise ValueError(
f"LLM model '{llm_model.value}' not found in registry after refresh. "
"Please ensure the model is added and enabled in the LLM registry via the admin UI."
)
except Exception as refresh_exc:
logger.error(f"Failed to refresh LLM registry: {refresh_exc}")
raise ValueError(
f"LLM model '{llm_model.value}' not found in registry and failed to refresh. "
"Please ensure the model is added to the LLM registry via the admin UI."
) from refresh_exc
else:
# No DB access (e.g., in executor without direct DB connection)
# The registry should have been loaded on startup
raise ValueError(
f"LLM model '{llm_model.value}' not found in registry cache. "
"The registry may need to be refreshed. Please contact support or try again later."
)
# Create effective model for model-specific parameter resolution (e.g., o-series check)
# This uses the resolved model_to_use which may differ from llm_model if fallback occurred
effective_model = LlmModel(model_to_use)
if compress_prompt_to_fit:
result = await compress_context(
messages=prompt,
target_tokens=llm_model.context_window // 2,
target_tokens=context_window // 2,
client=None, # Truncation-only, no LLM summarization
reserve=0, # Caller handles response token budget separately
)
if result.error:
logger.warning(
@@ -653,7 +468,7 @@ async def llm_call(
# Calculate available tokens based on context window and input length
estimated_input_tokens = estimate_token_count(prompt)
model_max_output = llm_model.max_output_tokens or int(2**15)
# model_max_output already set above
user_max = max_tokens or model_max_output
available_tokens = max(context_window - estimated_input_tokens, 0)
max_tokens = max(min(available_tokens, model_max_output, user_max), 1)
@@ -664,14 +479,14 @@ async def llm_call(
response_format = None
parallel_tool_calls = get_parallel_tool_calls_param(
llm_model, parallel_tool_calls
effective_model, parallel_tool_calls
)
if force_json_output:
response_format = {"type": "json_object"}
response = await oai_client.chat.completions.create(
model=llm_model.value,
model=model_to_use,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_completion_tokens=max_tokens,
@@ -718,7 +533,7 @@ async def llm_call(
)
try:
resp = await client.messages.create(
model=llm_model.value,
model=model_to_use,
system=sysprompt,
messages=messages,
max_tokens=max_tokens,
@@ -782,7 +597,7 @@ async def llm_call(
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
response_format = {"type": "json_object"} if force_json_output else None
response = await client.chat.completions.create(
model=llm_model.value,
model=model_to_use,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_tokens=max_tokens,
@@ -804,7 +619,7 @@ async def llm_call(
sys_messages = [p["content"] for p in prompt if p["role"] == "system"]
usr_messages = [p["content"] for p in prompt if p["role"] != "system"]
response = await client.generate(
model=llm_model.value,
model=model_to_use,
prompt=f"{sys_messages}\n\n{usr_messages}",
stream=False,
options={"num_ctx": max_tokens},
@@ -826,7 +641,7 @@ async def llm_call(
)
parallel_tool_calls_param = get_parallel_tool_calls_param(
llm_model, parallel_tool_calls
effective_model, parallel_tool_calls
)
response = await client.chat.completions.create(
@@ -834,7 +649,7 @@ async def llm_call(
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=llm_model.value,
model=model_to_use,
messages=prompt, # type: ignore
max_tokens=max_tokens,
tools=tools_param, # type: ignore
@@ -868,7 +683,7 @@ async def llm_call(
)
parallel_tool_calls_param = get_parallel_tool_calls_param(
llm_model, parallel_tool_calls
effective_model, parallel_tool_calls
)
response = await client.chat.completions.create(
@@ -876,7 +691,7 @@ async def llm_call(
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=llm_model.value,
model=model_to_use,
messages=prompt, # type: ignore
max_tokens=max_tokens,
tools=tools_param, # type: ignore
@@ -903,7 +718,7 @@ async def llm_call(
reasoning=reasoning,
)
elif provider == "aiml_api":
client = openai.OpenAI(
client = openai.AsyncOpenAI(
base_url="https://api.aimlapi.com/v2",
api_key=credentials.api_key.get_secret_value(),
default_headers={
@@ -913,8 +728,8 @@ async def llm_call(
},
)
completion = client.chat.completions.create(
model=llm_model.value,
completion = await client.chat.completions.create(
model=model_to_use,
messages=prompt, # type: ignore
max_tokens=max_tokens,
)
@@ -942,11 +757,11 @@ async def llm_call(
response_format = {"type": "json_object"}
parallel_tool_calls_param = get_parallel_tool_calls_param(
llm_model, parallel_tool_calls
effective_model, parallel_tool_calls
)
response = await client.chat.completions.create(
model=llm_model.value,
model=model_to_use,
messages=prompt, # type: ignore
response_format=response_format, # type: ignore
max_tokens=max_tokens,
@@ -997,9 +812,10 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
force_json_output: bool = SchemaField(
title="Restrict LLM to pure JSON output",
@@ -1062,7 +878,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
input_schema=AIStructuredResponseGeneratorBlock.Input,
output_schema=AIStructuredResponseGeneratorBlock.Output,
test_input={
"model": DEFAULT_LLM_MODEL,
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"credentials": TEST_CREDENTIALS_INPUT,
"expected_format": {
"key1": "value1",
@@ -1428,9 +1244,10 @@ class AITextGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for answering the prompt.",
advanced=False,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
sys_prompt: str = SchemaField(
@@ -1524,8 +1341,9 @@ class AITextSummarizerBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for summarizing the text.",
json_schema_extra=llm_model_schema_extra(),
)
focus: str = SchemaField(
title="Focus",
@@ -1741,8 +1559,9 @@ class AIConversationBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for the conversation.",
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
max_tokens: int | None = SchemaField(
@@ -1779,7 +1598,7 @@ class AIConversationBlock(AIBlockBase):
},
{"role": "user", "content": "Where was it played?"},
],
"model": DEFAULT_LLM_MODEL,
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
@@ -1842,9 +1661,10 @@ class AIListGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default_factory=LlmModel.default,
description="The language model to use for generating the list.",
advanced=True,
json_schema_extra=llm_model_schema_extra(),
)
credentials: AICredentials = AICredentialsField()
max_retries: int = SchemaField(
@@ -1899,7 +1719,7 @@ class AIListGeneratorBlock(AIBlockBase):
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
"fictional worlds."
),
"model": DEFAULT_LLM_MODEL,
"model": "gpt-4o", # Using string value - enum accepts any model slug dynamically
"credentials": TEST_CREDENTIALS_INPUT,
"max_retries": 3,
"force_json_output": False,

View File

@@ -2,7 +2,7 @@ import operator
from enum import Enum
from typing import Any
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,7 +3,7 @@ from typing import List, Literal
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,7 +3,7 @@ from typing import Any, Literal, Optional, Union
from mem0 import MemoryClient
from pydantic import BaseModel, SecretStr
from backend.blocks._base import Block, BlockOutput, BlockSchemaInput, BlockSchemaOutput
from backend.data.block import Block, BlockOutput, BlockSchemaInput, BlockSchemaOutput
from backend.data.model import (
APIKeyCredentials,
CredentialsField,

View File

@@ -4,7 +4,7 @@ from typing import Any, Dict, List, Optional
from pydantic import model_validator
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -2,7 +2,7 @@ from __future__ import annotations
from typing import Any, Dict, List, Optional
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,6 +1,6 @@
from __future__ import annotations
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,6 +1,6 @@
from __future__ import annotations
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -4,7 +4,7 @@ from typing import List, Optional
from pydantic import BaseModel
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,15 +1,15 @@
from backend.blocks._base import (
from backend.blocks.nvidia._auth import (
NvidiaCredentials,
NvidiaCredentialsField,
NvidiaCredentialsInput,
)
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.blocks.nvidia._auth import (
NvidiaCredentials,
NvidiaCredentialsField,
NvidiaCredentialsInput,
)
from backend.data.model import SchemaField
from backend.util.request import Requests
from backend.util.type import MediaFileType

View File

@@ -6,7 +6,7 @@ from typing import Any, Literal
import openai
from pydantic import SecretStr
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -1,7 +1,7 @@
import logging
from typing import Any, Literal
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

View File

@@ -3,7 +3,7 @@ from typing import Any, Literal
from pinecone import Pinecone, ServerlessSpec
from backend.blocks._base import (
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,

Some files were not shown because too many files have changed in this diff Show More