Compare commits

..

83 Commits

Author SHA1 Message Date
Swifty
01bab66f5c Merge branch 'swiftyos/caching-pt2' into swiftyos/shared-cache 2025-10-07 14:35:52 +02:00
Swifty
30b2d6b50d update the frontend ci to generate the api files before running the tests 2025-10-07 14:13:33 +02:00
Swifty
97e77339fd Merge branch 'dev' into swiftyos/caching-pt2 2025-10-07 14:06:44 +02:00
Abhimanyu Yadav
7c47f54e25 feat(frontend): add an API key modal for adding credentials in new builder. (#11105)
In this PR, I’ve added an API Key modal to the new builder so users can
add API key credentials.


https://github.com/user-attachments/assets/68da226c-3787-4950-abb0-7a715910355e

### Changes
- Updated the credential field to support API key.
- Added a modal for creating new API keys and improved the selection UI
for credentials.
- Refactored components for better modularity and maintainability.
- Enhanced styling and user experience in the FlowEditor components.
- Updated OpenAPI documentation for better clarity on credential
operations.

### Checklist 📋

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Able to create API key perfectly.
  - [x] can select the correct credentials.
2025-10-07 11:19:17 +00:00
Swifty
6a360a49b1 Merge branch 'dev' into swiftyos/caching-pt2 2025-10-07 02:40:13 +02:00
Lluis Agusti
927042d93e fix(frontend): more turnstile experiments (2) 2025-10-07 00:40:49 +09:00
Lluis Agusti
4244979a45 fix(frontend): more turnstile experiments 2025-10-07 00:22:20 +09:00
Lluis Agusti
aa27365e7f fix(frontend): fix captcha reset 2025-10-06 23:57:42 +09:00
Nicholas Tindle
b86aa8b14e feat(frontend): launchdarkly tracking on frontend browser (#11076)
<!-- Clearly explain the need for these changes: -->
We struggle to identify where issues are coming from feature flags and
which are from normal use. This adds that split on the frontend.

### Changes 🏗️
Include sentry in the LD initialization
<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] Test that launch darkly flags get attached to the frontend
(browser only)
2025-10-06 13:48:13 +00:00
Lluis Agusti
e7ab2626f5 fix(frontend): remove captcha ref reset 2025-10-06 22:34:08 +09:00
Ubbe
ff58ce174b fix(frontend): possible login issues related to turnstile (#11094)
## Changes 🏗️

We are seeing login and authentication issues in production and staging.
Locally though, the app behaves fine. We also had issues related to the
CAPTCHA in the past.

Our CAPTCHA code is less than ideal, with some heavy `useEffect` that
will load the Turnstile script into the DOM. I have the impression that
is loading the script multiple times ( due to dependencies on the
effects array not being well set ), or the like causing associated login
issues.

Created a new Turnstile component using
[`react-turnstile`](https://docs.page/marsidev/react-turnstile) that is
way simpler and should hopefully be more stable.

I also fixed an issue with the Credits popover layout rendering cropped
on the window.

## Checklist 📋

### For code changes

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Login/logout on the app multiple times with Turnstile ON,
everything is stable
  - [x] Credits popover appears on the right place 

### For configuration changes:

None
2025-10-06 12:59:27 +00:00
Abhimanyu Yadav
2d8ab6b7c0 feat(frontend): add selecting UI for custom node in new builder (#11091)
React Flow has built-in functionality to select multiple nodes by using
`cmd` + click. You can also select using rectangle selection by holding
the shift key. However, we need to design a custom node after it’s
selected.

<img width="845" height="510" alt="Screenshot 2025-10-06 at 12 41 16 PM"
src="https://github.com/user-attachments/assets/c91f22e3-2211-46b6-b3d3-fbc89148e99a"
/>

### Tests
- [x] Selecting Ui is visible after selecting a node, using cmd + click,
and after rectangle selection.
2025-10-06 12:53:59 +00:00
Abhimanyu Yadav
a7306970b8 refactor(frontend): simplify marketplace search page and update data fetching (#11061)
This PR refactors the marketplace search page to improve code
maintainability, readability, and follows modern React patterns by
extracting complex logic into a custom hook and creating dedicated
components.

### 🔄 Changes

#### **Architecture Improvements**
- **Component Extraction**: Replaced the monolithic `SearchResults`
component with a cleaner `MainSearchResultPage` component that focuses
solely on presentation
- **Custom Hook Pattern**: Extracted all business logic and state
management into `useMainSearchResultPage` hook for better separation of
concerns
- **Loading State Component**: Added dedicated
`MainSearchResultPageLoading` component for consistent loading UI

#### **Code Simplification**
- **Reduced search page to 19 lines** (from 175 lines) by removing
inline logic and state management
- **Centralized data fetching** using auto-generated API endpoints
(`useGetV2ListStoreAgents`, `useGetV2ListStoreCreators`)
- **Improved error handling** with dedicated error states and loading
states

#### **Feature Updates**
- **Sort Options**: Commented out "Most Recent" and "Highest Rated" sort
options due to backend limitations (no date/rating data available)
- **Client-side Sorting**: Implemented client-side sorting for "runs"
and "rating" as a temporary solution
- **Search Filters**: Maintained filter functionality for
agents/creators with improved state management

### 📊 Impact

- **Better Developer Experience**: Code is now more modular and easier
to understand
- **Improved Maintainability**: Business logic separated from
presentation layer
- **Future-Ready**: Structure prepared for backend improvements when
date/rating data becomes available
- **Type Safety**: Leveraging TypeScript with auto-generated API types

### 🧪 Testing Checklist

- [x] Search functionality works correctly with various search terms
- [x] Filter chips correctly toggle between "All", "Agents", and
"Creators"
- [x] Sort dropdown displays only "Most Runs" option
- [x] Client-side sorting correctly sorts agents and creators by runs
- [x] Loading state displays while fetching data
- [x] Error state displays when API calls fail
- [x] "No results found" message appears for empty searches
- [x] Search bar in results page is functional
- [x] Results display correctly with proper layout and styling
2025-10-06 12:53:45 +00:00
Abhimanyu Yadav
c42f94ce2a feat(frontend): add new credential field for new builder (#11066)
In this PR, I’ve added a feature to select a credential from a list and
also provided a UI to create a new credential if desired.

<img width="443" height="157" alt="Screenshot 2025-10-06 at 9 28 07 AM"
src="https://github.com/user-attachments/assets/d9e72a14-255d-45b6-aa61-b55c2465dd7e"
/>

#### Frontend Changes:
- **Refactored credential field** from a single component to a modular
architecture:
  - Created `CredentialField/` directory with separated concerns
- Added `SelectCredential.tsx` component for credential selection UI
with provider details display
- Implemented `useCredentialField.ts` custom hook for credential data
fetching with 10-minute caching
- Added `helpers.ts` with credential filtering and provider name
formatting utilities
  - Added loading states with skeleton UI while fetching credentials

- **Enhanced UI/UX features**:
- Dropdown selector showing credentials with provider, title, username,
and host details
  - Visual key icon for each credential option
  - Placeholder "Add API Key" button (implementation pending)
  - Loading skeleton UI for better perceived performance
  - Smart filtering of credentials based on provider requirements

- **Template improvements**:
- Updated `FieldTemplate.tsx` to properly handle credential field
display
- Special handling for credential field labels showing provider-specific
names
  - Removed input handle for credential fields in the node editor

#### Backend Changes:
- **API Documentation improvements**:
- Added OpenAPI summaries to `/credentials` endpoint ("List
Credentials")
- Added summary to `/{provider}/credentials/{cred_id}` endpoint ("Get
Specific Credential By ID")

### Test Plan 📋

   - [x] Navigate to the flow builder
   - [x] Add a block that requires credentials (e.g., API block)
- [x] Verify the credential dropdown loads and displays available
credentials
- [x] Check that only credentials matching the provider requirements are
shown
2025-10-06 12:52:45 +00:00
Zamil Majdy
4e1557e498 fix(backend): Add dynamic input pin support for Smart Decision Maker Block (#11082)
## Summary

- Centralize dynamic field delimiters and helpers in
backend/data/dynamic_fields.py.
- Refactor SmartDecisionMaker: build function signatures with
dynamic-field mapping and re-map tool outputs back to original dynamic
names.
- Deterministic retry loop with retry-only feedback to avoid polluting
final conversation history.
- Update executor/utils.py and data/graph.py to use centralized
utilities.
- Update and extend tests: dynamic-field E2E flow, mapping verification,
output yielding, and retry validation; switch mocked llm_call to
AsyncMock; align tool-name expectations.
- Add a single-tool fallback in schema lookup to support mocked
scenarios.

## Validation

- Full backend test suite: 1125 passed, 88 skipped, 53 warnings (local).
- Backend lint/format pass.

## Scope

- Minimal and localized to SmartDecisionMaker and dynamic-field
utilities; unrelated pyright warnings remain unchanged.

## Risks/Mitigations

- Behavior is backward-compatible; dynamic-field constants are
centralized and reused.
- Output re-mapping only affects SmartDecisionMaker tool outputs and
matches existing link naming conventions.

## Checklist

- [x] Formatted and linted
- [x] All updated tests pass locally
- [x] No secrets introduced

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-04 14:23:13 +00:00
Swifty
045009a84a fix test 2025-10-03 20:36:27 +02:00
Swifty
70cb7824fd Merge branch 'swiftyos/caching-pt2' into swiftyos/shared-cache 2025-10-03 20:30:40 +02:00
seer-by-sentry[bot]
7f8cf36ceb feat(frontend): Add description to Upload Agent dialog (#11053)
### Changes 🏗️

- Added a description to the Upload Agent dialog to provide more context
for users. Fixes
[BUILDER-3N1](https://sentry.io/organizations/significant-gravitas/issues/6915512912/).
The issue was that: DialogContent in LibraryUploadAgentDialog lacks an
accessible description, violating WAI-ARIA standards.

<img width="2066" height="1740" alt="image"
src="https://github.com/user-attachments/assets/c876fb33-4375-4a66-a6a2-6b13c00ef8d3"
/>


### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Test it works
  - [x] Get design approval

Co-authored-by: seer-by-sentry[bot] <157164994+seer-by-sentry[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-10-03 16:38:49 +00:00
Swifty
df1d15fcfe added more tests and central place to set page_size to make the caching more robust 2025-10-03 17:56:35 +02:00
Swifty
eb022e50a7 moved clear cache helper function to cache 2025-10-03 15:21:18 +02:00
Swifty
431042a391 fix cache clear helper function 2025-10-03 15:10:34 +02:00
Swifty
7c6a9146f0 Merge branch 'dev' into swiftyos/caching-pt2 2025-10-03 15:06:39 +02:00
Swifty
0264cb56d3 update page_size invalidation 2025-10-03 12:17:24 +02:00
Zamil Majdy
8b4eb6f87c fix(backend): resolve SmartDecisionMaker ChatCompletionMessage error and enhance tool call token counting (#11059)
## Summary
Fix two critical production issues affecting SmartDecisionMaker
functionality and prompt compression accuracy.

### 🔧 Changes Made

#### Issue 1: SmartDecisionMaker ChatCompletionMessage Error
**Problem**: PR #11015 introduced code that appended
`response.raw_response` (ChatCompletionMessage object) directly to
conversation history, causing `'ChatCompletionMessage' object has no
attribute 'get'` errors.

**Root Cause**: ChatCompletionMessage objects don't have `.get()` method
but conversation history processing expects dictionary objects with
`.get()` capability.

**Solution**: Created `_convert_raw_response_to_dict()` helper function
for type-safe conversion:
-  **Helper function**: Safely converts raw_response to dictionary
format for conversation history
-  **Type safety**: Handles OpenAI (ChatCompletionMessage), Anthropic
(Message), and Ollama (string) responses
-  **Preserves context**: Maintains conversation flow for multi-turn
tool calling scenarios
-  **DRY principle**: Single helper used in both validation error path
(line 624) and success path (line 681)
-  **No breaking changes**: Tool call continuity preserved for complex
workflows

#### Issue 2: Tool Call Token Counting in Prompt Compression
**Problem**: `_msg_tokens()` function only counted tokens in 'content'
field, severely undercounting tool calls which store data in different
fields (tool_calls, function.arguments, etc.).

**Root Cause**: Tool calls have no 'content' to calculate length of,
causing massive token undercounting during prompt compression that could
lead to context overflow.

**Solution**: Enhanced `_msg_tokens()` to handle both OpenAI and
Anthropic tool call formats:
-  **OpenAI format**: Count tokens in `tool_calls[].id`, `type`,
`function.name`, `function.arguments`
-  **Anthropic format**: Count tokens in `content[].tool_use` (`id`,
`name`, `input`) and `content[].tool_result`
-  **Backward compatibility**: Regular string content counted exactly
as before
-  **Comprehensive testing**: Added 11 unit tests in `prompt_test.py`

### 📊 Validation Results
-  **SmartDecisionMaker errors resolved**: No more
ChatCompletionMessage.get() failures
-  **Token counting accuracy**: OpenAI tool calls 9+ tokens vs previous
3-4 wrapper-only tokens
-  **Token counting accuracy**: Anthropic tool calls 13+ tokens vs
previous 3-4 wrapper-only tokens
-  **Backward compatibility**: Regular messages maintain exact same
token count
-  **Type safety**: 0 type errors in both modified files
-  **Test coverage**: All 11 new unit tests pass + existing
SmartDecisionMaker tests pass
-  **Multi-turn conversations**: Tool call workflows continue working
correctly

### 🎯 Impact
- **Resolves Sentry issue OPEN-2750**: ChatCompletionMessage errors
eliminated
- **Prevents context overflow**: Accurate token counting during prompt
compression for long tool call conversations
- **Production stability**: SmartDecisionMaker retry mechanism works
correctly with proper conversation flow
- **Resource efficiency**: Better memory management through accurate
token accounting
- **Zero breaking changes**: Full backward compatibility maintained

### 🧪 Test Plan
- [x] Verified SmartDecisionMaker no longer crashes with
ChatCompletionMessage errors
- [x] Validated tool call token counting accuracy with comprehensive
unit tests (11 tests all pass)
- [x] Confirmed backward compatibility for regular message token
counting
- [x] Tested both OpenAI and Anthropic tool call formats
- [x] Verified type safety with pyright checks
- [x] Ensured conversation history flows correctly with helper function
- [x] Confirmed multi-turn tool calling scenarios work with preserved
context

### 📝 Files Modified
- `backend/blocks/smart_decision_maker.py` - Added
`_convert_raw_response_to_dict()` helper for safe conversion
- `backend/util/prompt.py` - Enhanced tool call token counting for
accurate prompt compression
- `backend/util/prompt_test.py` - Comprehensive unit tests for token
counting (11 tests)

###  Ready for Review
Both fixes are critical for production stability and have been
thoroughly tested with zero breaking changes. The helper function
approach ensures type safety while preserving essential conversation
context for complex tool calling workflows.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-03 00:25:21 +00:00
Reinier van der Leer
4b7d17b9d2 refactor(blocks/code): Clean up & rename code execution blocks (#11019)
The code execution blocks' implementations are heavily duplicated and
their names aren't very clear.
E.g. the "InstantiationBlock" just shows up as "Instantiation" in the
block list.

I would've done this in #11017 but kept the refactoring separate for
easier reviewing.

### Changes 🏗️

- Rename "Code Execution" block to "Execute Code"
- Rename "Instantiation" block to "Instantiate Code Sandbox"
- Rename "Step Execution" block to "Execute Code Step"
- Deduplicate implementation of the three code execution blocks
- Add `dispose_sandbox` toggle to "Execute Code" and "Execute Code Step"
blocks
- Note: it's default `True` on the Execute Code block, default `False`
on the Execute Code Step block
- Update block and input descriptions to clarify behavior
- Fix all linting issues

<details>
<summary>Screenshots</summary>

![the three blocks as they look
now](https://github.com/user-attachments/assets/8e4274f7-e006-440c-b2b8-980df546186d)
![updated block names and descriptions in the block
list](https://github.com/user-attachments/assets/866c3d9e-13ea-4fc0-87de-a5257bafb6d4)
![the new dispose_sandbox toggle on the Execute Code
block](https://github.com/user-attachments/assets/56815dbb-f313-4308-81dd-50d949d9eafb)
![the new dispose_sandbox toggle on the Execute Code Step
block](https://github.com/user-attachments/assets/469c140c-4cd2-4210-97b2-f27fc91778de)

</details>

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Test all code execution blocks manually
2025-10-02 22:50:49 +00:00
dependabot[bot]
0fc6a44389 chore(backend/deps-dev): Bump the development-dependencies group across 1 directory with 4 updates (#10946)
Bumps the development-dependencies group with 4 updates in the
/autogpt_platform/backend directory:
[faker](https://github.com/joke2k/faker),
[pyright](https://github.com/RobertCraigie/pyright-python),
[pytest-mock](https://github.com/pytest-dev/pytest-mock) and
[ruff](https://github.com/astral-sh/ruff).

Updates `faker` from 37.6.0 to 37.8.0
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/joke2k/faker/releases">faker's
releases</a>.</em></p>
<blockquote>
<h2>Release v37.8.0</h2>
<p>See <a
href="https://github.com/joke2k/faker/blob/refs/tags/v37.8.0/CHANGELOG.md">CHANGELOG.md</a>.</p>
<h2>Release v37.7.0</h2>
<p>See <a
href="https://github.com/joke2k/faker/blob/refs/tags/v37.7.0/CHANGELOG.md">CHANGELOG.md</a>.</p>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/joke2k/faker/blob/master/CHANGELOG.md">faker's
changelog</a>.</em></p>
<blockquote>
<h3><a
href="https://github.com/joke2k/faker/compare/v37.7.0...v37.8.0">v37.8.0
- 2025-09-15</a></h3>
<ul>
<li>Add Automotive providers for <code>ja_JP</code> locale. Thanks <a
href="https://github.com/ItoRino424"><code>@​ItoRino424</code></a>.</li>
</ul>
<h3><a
href="https://github.com/joke2k/faker/compare/v37.6.0...v37.7.0">v37.7.0
- 2025-09-15</a></h3>
<ul>
<li>Add Nigerian name locales (<code>yo_NG</code>, <code>ha_NG</code>,
<code>ig_NG</code>, <code>en_NG</code>). Thanks <a
href="https://github.com/ifeoluwaoladeji"><code>@​ifeoluwaoladeji</code></a>.</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="4bde8f57ad"><code>4bde8f5</code></a>
Bump version: 37.7.0 → 37.8.0</li>
<li><a
href="f542f364cb"><code>f542f36</code></a>
📝 Update CHANGELOG.md</li>
<li><a
href="e28d7cb909"><code>e28d7cb</code></a>
fix test</li>
<li><a
href="e4305b0e29"><code>e4305b0</code></a>
fix padding</li>
<li><a
href="a359441a81"><code>a359441</code></a>
💄 format code</li>
<li><a
href="0e3f0bdf81"><code>0e3f0bd</code></a>
Add Automotive providers for <code>ja_JP</code> locale (<a
href="https://redirect.github.com/joke2k/faker/issues/2251">#2251</a>)</li>
<li><a
href="d4fa69dfc7"><code>d4fa69d</code></a>
Bump version: 37.6.0 → 37.7.0</li>
<li><a
href="f636f06a37"><code>f636f06</code></a>
📝 Update CHANGELOG.md</li>
<li><a
href="9a482dd25b"><code>9a482dd</code></a>
💄 Format code</li>
<li><a
href="2493b2d51a"><code>2493b2d</code></a>
fix: fix minor grammar typo (<a
href="https://redirect.github.com/joke2k/faker/issues/2259">#2259</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/joke2k/faker/compare/v37.6.0...v37.8.0">compare
view</a></li>
</ul>
</details>
<br />

Updates `pyright` from 1.1.404 to 1.1.405
<details>
<summary>Commits</summary>
<ul>
<li><a
href="e211ec8df8"><code>e211ec8</code></a>
Pyright NPM Package update to 1.1.405 (<a
href="https://redirect.github.com/RobertCraigie/pyright-python/issues/353">#353</a>)</li>
<li>See full diff in <a
href="https://github.com/RobertCraigie/pyright-python/compare/v1.1.404...v1.1.405">compare
view</a></li>
</ul>
</details>
<br />

Updates `pytest-mock` from 3.14.1 to 3.15.1
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/pytest-dev/pytest-mock/releases">pytest-mock's
releases</a>.</em></p>
<blockquote>
<h2>v3.15.1</h2>
<p><em>2025-09-16</em></p>
<ul>
<li><a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/529">#529</a>:
Fixed <code>itertools._tee object has no attribute error</code> -- now
<code>duplicate_iterators=True</code> must be passed to
<code>mocker.spy</code> to duplicate iterators.</li>
</ul>
<h2>v3.15.0</h2>
<p><em>2025-09-04</em></p>
<ul>
<li>Python 3.8 (EOL) is no longer supported.</li>
<li><a
href="https://redirect.github.com/pytest-dev/pytest-mock/pull/524">#524</a>:
Added <code>spy_return_iter</code> to <code>mocker.spy</code>, which
contains a duplicate of the return value of the spied method if it is an
<code>Iterator</code>.</li>
</ul>
</blockquote>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/pytest-dev/pytest-mock/blob/main/CHANGELOG.rst">pytest-mock's
changelog</a>.</em></p>
<blockquote>
<h2>3.15.1</h2>
<p><em>2025-09-16</em></p>
<ul>
<li><code>[#529](https://github.com/pytest-dev/pytest-mock/issues/529)
&lt;https://github.com/pytest-dev/pytest-mock/issues/529&gt;</code>_:
Fixed <code>itertools._tee object has no attribute error</code> -- now
<code>duplicate_iterators=True</code> must be passed to
<code>mocker.spy</code> to duplicate iterators.</li>
</ul>
<h2>3.15.0</h2>
<p><em>2025-09-04</em></p>
<ul>
<li>Python 3.8 (EOL) is no longer supported.</li>
<li><code>[#524](https://github.com/pytest-dev/pytest-mock/issues/524)
&lt;https://github.com/pytest-dev/pytest-mock/pull/524&gt;</code>_:
Added <code>spy_return_iter</code> to <code>mocker.spy</code>, which
contains a duplicate of the return value of the spied method if it is an
<code>Iterator</code>.</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="e1b5c62a38"><code>e1b5c62</code></a>
Release 3.15.1</li>
<li><a
href="184eb190d6"><code>184eb19</code></a>
Set <code>spy_return_iter</code> only when explicitly requested (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/537">#537</a>)</li>
<li><a
href="4fa0088a0a"><code>4fa0088</code></a>
[pre-commit.ci] pre-commit autoupdate (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/536">#536</a>)</li>
<li><a
href="f5aff33ce7"><code>f5aff33</code></a>
Fix test failure with pytest 8+ and verbose mode (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/535">#535</a>)</li>
<li><a
href="adc41873c9"><code>adc4187</code></a>
Bump actions/setup-python from 5 to 6 in the github-actions group (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/533">#533</a>)</li>
<li><a
href="95ad570060"><code>95ad570</code></a>
[pre-commit.ci] pre-commit autoupdate (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/532">#532</a>)</li>
<li><a
href="e696bf02c1"><code>e696bf0</code></a>
Fix standalone mock support (<a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/531">#531</a>)</li>
<li><a
href="5b29b03ce9"><code>5b29b03</code></a>
Fix gen-release-notes script</li>
<li><a
href="7d22ef4e56"><code>7d22ef4</code></a>
Merge pull request <a
href="https://redirect.github.com/pytest-dev/pytest-mock/issues/528">#528</a>
from pytest-dev/release-3.15.0</li>
<li><a
href="90b29f89e2"><code>90b29f8</code></a>
Update CHANGELOG for 3.15.0</li>
<li>Additional commits viewable in <a
href="https://github.com/pytest-dev/pytest-mock/compare/v3.14.1...v3.15.1">compare
view</a></li>
</ul>
</details>
<br />

Updates `ruff` from 0.12.11 to 0.13.0
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/astral-sh/ruff/releases">ruff's
releases</a>.</em></p>
<blockquote>
<h2>0.13.0</h2>
<h2>Release Notes</h2>
<p>Check out the <a href="https://astral.sh/blog/ruff-v0.13.0">blog
post</a> for a migration guide and overview of the changes!</p>
<h3>Breaking changes</h3>
<ul>
<li>
<p><strong>Several rules can now add <code>from __future__ import
annotations</code> automatically</strong></p>
<p><code>TC001</code>, <code>TC002</code>, <code>TC003</code>,
<code>RUF013</code>, and <code>UP037</code> now add <code>from
__future__ import annotations</code> as part of their fixes when the
<code>lint.future-annotations</code> setting is enabled. This allows the
rules to move more imports into <code>TYPE_CHECKING</code> blocks
(<code>TC001</code>, <code>TC002</code>, and <code>TC003</code>), use
PEP 604 union syntax on Python versions before 3.10
(<code>RUF013</code>), and unquote more annotations
(<code>UP037</code>).</p>
</li>
<li>
<p><strong>Full module paths are now used to verify first-party
modules</strong></p>
<p>Ruff now checks that the full path to a module exists on disk before
categorizing it as a first-party import. This change makes first-party
import detection more accurate, helping to avoid false positives on
local directories with the same name as a third-party dependency, for
example. See the <a
href="https://docs.astral.sh/ruff/faq/#how-does-ruff-determine-which-of-my-imports-are-first-party-third-party-etc">FAQ
section</a> on import categorization for more details.</p>
</li>
<li>
<p><strong>Deprecated rules must now be selected by exact rule
code</strong></p>
<p>Ruff will no longer activate deprecated rules selected by their group
name or prefix. As noted below, the two remaining deprecated rules were
also removed in this release, so this won't affect any current rules,
but it will still affect any deprecations in the future.</p>
</li>
<li>
<p><strong>The deprecated macOS configuration directory fallback has
been removed</strong></p>
<p>Ruff will no longer look for a user-level configuration file at
<code>~/Library/Application Support/ruff/ruff.toml</code> on macOS. This
feature was deprecated in v0.5 in favor of using the <a
href="https://specifications.freedesktop.org/basedir-spec/latest/">XDG
specification</a> (usually resolving to
<code>~/.config/ruff/ruff.toml</code>), like on Linux. The fallback and
accompanying deprecation warning have now been removed.</p>
</li>
</ul>
<h3>Removed Rules</h3>
<p>The following rules have been removed:</p>
<ul>
<li><a
href="https://docs.astral.sh/ruff/rules/pandas-df-variable-name"><code>pandas-df-variable-name</code></a>
(<code>PD901</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/non-pep604-isinstance"><code>non-pep604-isinstance</code></a>
(<code>UP038</code>)</li>
</ul>
<h3>Stabilization</h3>
<p>The following rules have been stabilized and are no longer in
preview:</p>
<ul>
<li><a
href="https://docs.astral.sh/ruff/rules/airflow-dag-no-schedule-argument"><code>airflow-dag-no-schedule-argument</code></a>
(<code>AIR002</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/airflow3-removal"><code>airflow3-removal</code></a>
(<code>AIR301</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/airflow3-moved-to-provider"><code>airflow3-moved-to-provider</code></a>
(<code>AIR302</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/airflow3-suggested-update"><code>airflow3-suggested-update</code></a>
(<code>AIR311</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/airflow3-suggested-to-move-to-provider"><code>airflow3-suggested-to-move-to-provider</code></a>
(<code>AIR312</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/long-sleep-not-forever"><code>long-sleep-not-forever</code></a>
(<code>ASYNC116</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/f-string-number-format"><code>f-string-number-format</code></a>
(<code>FURB116</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/os-symlink"><code>os-symlink</code></a>
(<code>PTH211</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/generic-not-last-base-class"><code>generic-not-last-base-class</code></a>
(<code>PYI059</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/redundant-none-literal"><code>redundant-none-literal</code></a>
(<code>PYI061</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/pytest-raises-ambiguous-pattern"><code>pytest-raises-ambiguous-pattern</code></a>
(<code>RUF043</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/unused-unpacked-variable"><code>unused-unpacked-variable</code></a>
(<code>RUF059</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/useless-class-metaclass-type"><code>useless-class-metaclass-type</code></a>
(<code>UP050</code>)</li>
</ul>
<p>The following behaviors have been stabilized:</p>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/astral-sh/ruff/blob/main/CHANGELOG.md">ruff's
changelog</a>.</em></p>
<blockquote>
<h2>0.13.0</h2>
<p>Check out the <a href="https://astral.sh/blog/ruff-v0.13.0">blog
post</a> for a migration
guide and overview of the changes!</p>
<h3>Breaking changes</h3>
<ul>
<li>
<p><strong>Several rules can now add <code>from __future__ import
annotations</code> automatically</strong></p>
<p><code>TC001</code>, <code>TC002</code>, <code>TC003</code>,
<code>RUF013</code>, and <code>UP037</code> now add <code>from
__future__ import annotations</code> as part of their fixes when the
<code>lint.future-annotations</code> setting is enabled. This allows the
rules to move
more imports into <code>TYPE_CHECKING</code> blocks (<code>TC001</code>,
<code>TC002</code>, and <code>TC003</code>),
use PEP 604 union syntax on Python versions before 3.10
(<code>RUF013</code>), and
unquote more annotations (<code>UP037</code>).</p>
</li>
<li>
<p><strong>Full module paths are now used to verify first-party
modules</strong></p>
<p>Ruff now checks that the full path to a module exists on disk before
categorizing it as a first-party import. This change makes first-party
import detection more accurate, helping to avoid false positives on
local
directories with the same name as a third-party dependency, for example.
See
the <a
href="https://docs.astral.sh/ruff/faq/#how-does-ruff-determine-which-of-my-imports-are-first-party-third-party-etc">FAQ
section</a> on import categorization for more details.</p>
</li>
<li>
<p><strong>Deprecated rules must now be selected by exact rule
code</strong></p>
<p>Ruff will no longer activate deprecated rules selected by their group
name
or prefix. As noted below, the two remaining deprecated rules were also
removed in this release, so this won't affect any current rules, but it
will
still affect any deprecations in the future.</p>
</li>
<li>
<p><strong>The deprecated macOS configuration directory fallback has
been removed</strong></p>
<p>Ruff will no longer look for a user-level configuration file at
<code>~/Library/Application Support/ruff/ruff.toml</code> on macOS. This
feature was
deprecated in v0.5 in favor of using the <a
href="https://specifications.freedesktop.org/basedir-spec/latest/">XDG
specification</a>
(usually resolving to <code>~/.config/ruff/ruff.toml</code>), like on
Linux. The
fallback and accompanying deprecation warning have now been removed.</p>
</li>
</ul>
<h3>Removed Rules</h3>
<p>The following rules have been removed:</p>
<ul>
<li><a
href="https://docs.astral.sh/ruff/rules/pandas-df-variable-name"><code>pandas-df-variable-name</code></a>
(<code>PD901</code>)</li>
<li><a
href="https://docs.astral.sh/ruff/rules/non-pep604-isinstance"><code>non-pep604-isinstance</code></a>
(<code>UP038</code>)</li>
</ul>
<h3>Stabilization</h3>
<p>The following rules have been stabilized and are no longer in
preview:</p>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="a1fdd66f10"><code>a1fdd66</code></a>
Bump 0.13.0 (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20336">#20336</a>)</li>
<li><a
href="8770b95509"><code>8770b95</code></a>
[ty] introduce <code>DivergentType</code> (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20312">#20312</a>)</li>
<li><a
href="65982a1e14"><code>65982a1</code></a>
[ty] Use 'unknown' specialization for upper bound on Self (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20325">#20325</a>)</li>
<li><a
href="57d1f7132d"><code>57d1f71</code></a>
[ty] Simplify unions of enum literals and subtypes thereof (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20324">#20324</a>)</li>
<li><a
href="7a75702237"><code>7a75702</code></a>
Ignore deprecated rules unless selected by exact code (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20167">#20167</a>)</li>
<li><a
href="9ca632c84f"><code>9ca632c</code></a>
Stabilize adding future import via config option (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20277">#20277</a>)</li>
<li><a
href="64fe7d30a3"><code>64fe7d3</code></a>
[<code>flake8-errmsg</code>] Stabilize extending
<code>raw-string-in-exception</code> (<code>EM101</code>) to ...</li>
<li><a
href="beeeb8d5c5"><code>beeeb8d</code></a>
Stabilize the remaining Airflow rules (<a
href="https://redirect.github.com/astral-sh/ruff/issues/20250">#20250</a>)</li>
<li><a
href="b6fca52855"><code>b6fca52</code></a>
[<code>flake8-bugbear</code>] Stabilize support for non-context-manager
calls in `assert...</li>
<li><a
href="ac7f882c78"><code>ac7f882</code></a>
[<code>flake8-commas</code>] Stabilize support for trailing comma checks
in type paramet...</li>
<li>Additional commits viewable in <a
href="https://github.com/astral-sh/ruff/compare/0.12.11...0.13.0">compare
view</a></li>
</ul>
</details>
<br />


Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore <dependency name> major version` will close this
group update PR and stop Dependabot creating any more for the specific
dependency's major version (unless you unignore this specific
dependency's major version or upgrade to it yourself)
- `@dependabot ignore <dependency name> minor version` will close this
group update PR and stop Dependabot creating any more for the specific
dependency's minor version (unless you unignore this specific
dependency's minor version or upgrade to it yourself)
- `@dependabot ignore <dependency name>` will close this group update PR
and stop Dependabot creating any more for the specific dependency
(unless you unignore this specific dependency or upgrade to it yourself)
- `@dependabot unignore <dependency name>` will remove all of the ignore
conditions of the specified dependency
- `@dependabot unignore <dependency name> <ignore condition>` will
remove the ignore condition of the specified dependency and ignore
conditions


</details>

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2025-10-02 20:57:18 +00:00
dependabot[bot]
f5ee579ab2 chore(backend/deps): Bump firecrawl-py from 2.16.3 to 4.3.1 in /autogpt_platform/backend (#10809)
Bumps [firecrawl-py](https://github.com/firecrawl/firecrawl) from 2.16.3
to 4.3.1.
<details>
<summary>Commits</summary>
<ul>
<li>See full diff in <a
href="https://github.com/firecrawl/firecrawl/commits">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=firecrawl-py&package-manager=pip&previous-version=2.16.3&new-version=4.3.1)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

You can trigger a rebase of this PR by commenting `@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Upgrade firecrawl-py to v4.3.6 and refactor firecrawl blocks to new v4
API, formats handling, method names, and response fields.
> 
> - **Dependencies**
> - Bump `firecrawl-py` from `2.16.3` to `4.3.6` (adds `httpx`, updates
`pydantic>=2`).
> - **Firecrawl API migration**
>   - Centralize `ScrapeFormat` in `backend/blocks/firecrawl/_api.py`.
> - Add `_format_utils.convert_to_format_options` to map `ScrapeFormat`
(incl. `screenshot@fullPage`) to v4 `FormatOption`/`ScreenshotFormat`.
> - Switch to v4 types (`firecrawl.v2.types.ScrapeOptions`); adopt
snake_case fields (`only_main_content`, `max_age`, `wait_for`).
> - Rename methods: `crawl_url` → `crawl`, `scrape_url` → `scrape`,
`map_url` → `map`.
> - Normalize response attributes: `rawHtml` → `raw_html`,
`changeTracking` → `change_tracking`.
> - **Blocks**
> - `crawl.py`, `scrape.py`, `search.py`: use new formats conversion and
updated options/fields; adjust iteration over results (`search`: iterate
`web` when present).
> - `map.py`: return both `links` and detailed `results`
(url/title/description) and update output schema accordingly.
> - **Project files**
> - Update `pyproject.toml` and `poetry.lock` for new dependency
versions.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
d872f2e82b. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

> **Note**
> Automatic rebases have been disabled on this pull request as it has
been open for over 30 days.

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-10-02 20:14:18 +00:00
Swifty
ef552c189f feat(cache): refactor caching system and address PR review feedback
Addresses all 14 review comments from @majdyz on PR #11030

Major architectural improvements:
- Move cache.py from autogpt_libs to backend/util for proper dependency management
- Add Redis configuration to Settings class for centralized config management
- Remove duplicate retry.py from autogpt_libs (use backend.util.retry)
- Implement dedicated Redis connection pool with 50 max connections

Cache API enhancements:
- Make ttl_seconds a required parameter (no infinite TTLs allowed)
- Add CachedValue dataclass to eliminate tuple ambiguity when caching tuple results
- Implement LRU with TTL refresh using Redis GETEX command
- Add pattern-based cache clearing: cache_clear(pattern="user:*")
- Simplify wrapper logic by extracting helper functions

Redis integration:
- Create separate connection pool for cache (binary mode for pickle)
- Add recommended Redis production configuration in comments
- Use Settings class for Redis config instead of environment variables directly
- Update both cache.py and redis_client.py to use centralized settings

Test improvements:
- Move test file from autogpt_libs to backend/test
- Fix tests to use pickleable data structures instead of MagicMock objects
- Update all @cached() decorators to include ttl_seconds parameter
- All 51 cache tests passing

Breaking changes:
- @cached() decorator now requires ttl_seconds parameter
- Import path changed: autogpt_libs.utils.cache -> backend.util.cache
- Tests using shared_cache=True must return pickleable objects
2025-10-02 15:45:43 +02:00
Zamil Majdy
57a06f7088 fix(blocks, security): Fixes for various DoS vulnerabilities (#10798)
This PR addresses multiple critical and medium security vulnerabilities
that could lead to Denial of Service (DoS) attacks. All fixes implement
defense-in-depth strategies with comprehensive testing.

### Changes 🏗️

#### **Critical Security Fixes:**

1. **GHSA-m2wr-7m3r-p52c - ReDoS in CodeExtractionBlock** 
- Fixed catastrophic backtracking in regex patterns `\s+[\s\S]*?` and
`\s+(.*?)`
   - Replaced with safer patterns: `[ \t]*\n([^\s\S]*?)`
   - Files: `backend/blocks/code_extraction_block.py`

2. **GHSA-955p-gpfx-r66j - AITextSummarizerBlock Memory Amplification**
   - Added 1MB text size limit and 100 chunk maximum
   - Prevents 10K input → 50G memory amplification attacks
   - Files: `backend/blocks/llm.py`

3. **GHSA-5cqw-g779-9f9x - RSS Feed XML Bomb DoS**
   - Added 10MB feed size limit and 30s timeout
   - Prevents deep XML parsing memory exhaustion
   - Files: `backend/blocks/rss.py`

4. **GHSA-7g34-7fvq-xxq6 - File Storage Disk Exhaustion**
   - Added 100MB per file and 1GB per execution directory limits
   - Prevents disk space exhaustion from file uploads
   - Files: `backend/util/file.py`

5. **GHSA-pppq-xx2w-7jpq - ExtractTextInformationBlock ReDoS**
   - Added 1MB text limit, 1000 match limit, and 5s timeout protection
   - Prevents lookahead pattern memory exhaustion
   - Files: `backend/blocks/text.py`

6. **GHSA-vw3v-whvp-33v5 - Docker Logging Disk Exhaustion**
- Added log rotation limits at Docker (10MB × 3 files) and application
levels
   - Prevents unbounded log growth causing disk exhaustion
- Files: `docker-compose.platform.yml`,
`autogpt_libs/autogpt_libs/logging/config.py`

#### **Additional Security Improvements:**

7. **StepThroughItemsBlock DoS Prevention**
   - Added 10,000 item limit and 1MB input size limit
   - Prevents large iteration DoS attacks
   - Files: `backend/blocks/iteration.py`

8. **XMLParserBlock XML Bomb Prevention**
   - Added 10MB XML input size limit
   - Files: `backend/blocks/xml_parser.py`

#### **Code Quality:**
- Fixed Python 3.10 typing compatibility issues
- Added comprehensive security test suite
- All code formatted and linted

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Created comprehensive security test suite covering all
vulnerabilities
  - [x] Verified ReDoS patterns are fixed and don't cause timeouts
  - [x] Confirmed memory limits prevent amplification attacks
  - [x] Tested file size limits prevent disk exhaustion
  - [x] Validated log rotation prevents unbounded growth
  - [x] Ensured backward compatibility for normal usage

#### For configuration changes:
- [x] `docker-compose.yml` is updated with logging limits
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

### Test Plan 🧪

**Security Tests:**
1. **ReDoS Protection**: Tested with malicious regex inputs (large
spaces) - completes without hanging
2. **Memory Limits**: Verified 2MB text input gets truncated to 1MB,
chunk limits enforced
3. **File Size Limits**: Confirmed 200MB files rejected, directory size
limits enforced
4. **Iteration Limits**: Tested 20K item arrays rejected, large JSON
strings rejected
5. **Timeout Protection**: Dangerous regex patterns timeout after 5s
instead of hanging

**Compatibility Tests:**
- Normal functionality preserved for all blocks
- Existing tests pass with new security limits
- Performance impact minimal for typical usage

### Security Impact 🛡️

**Before:** Multiple attack vectors could cause:
- CPU exhaustion (ReDoS attacks)
- Memory exhaustion (amplification attacks)  
- Disk exhaustion (file/log bombs)
- Service unavailability

**After:** All attack vectors mitigated with:
- Input validation and size limits
- Timeout protections
- Resource quotas
- Defense-in-depth approach

All fixes maintain backward compatibility while preventing DoS attacks.

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Adds robust DoS protections across blocks (regex, memory, iteration,
XML/RSS, file I/O) and enables app/Docker log rotation with
comprehensive tests.
> 
> - **Security hardening**:
> - Replace unsafe regex in `backend/blocks/code_extraction_block.py` to
prevent ReDoS; add safer extraction/removal patterns.
> - Constrain LLM summarizer chunking in `backend/blocks/llm.py` (1MB
cap, chunk/overlap validation, chunk count limit).
> - Limit RSS fetching in `backend/blocks/rss.py` (scheme validation,
10MB cap, timeout, bounded read) and return empty on failure.
>   - Impose XML size limit (10MB) in `backend/blocks/xml_parser.py`.
> - Add file upload/download limits in `backend/util/file.py`
(100MB/file, 1GB dir quota) and enforce scanning before write.
> - Enable rotating file logs in `autogpt_libs/logging/config.py` (size
+ backups) and Docker json-file log rotation in
`docker-compose.platform.yml`.
> - **Iteration block**:
> - Add item count/string size limits; fix yielded key for dicts; cap
iterations in `backend/blocks/iteration.py`.
> - **Tests**:
> - New `backend/blocks/test/test_security_fixes.py` covering ReDoS,
timeouts, memory/size and iteration limits, XML/file constraints.
> - **Misc**:
> - Typing fallback for `NotRequired` in `activity_status_generator.py`.
>   - Dependency updates in `backend/poetry.lock`.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
500e1578b1. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
Co-authored-by: Zamil Majdy <majdyz@users.noreply.github.com>
Co-authored-by: Reinier van der Leer <Pwuts@users.noreply.github.com>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2025-10-02 12:55:55 +00:00
Zamil Majdy
258bf0b1a5 fix(backend): improve activity status generation accuracy and handle missing blocks gracefully (#11039)
## Summary
Fix critical issues where activity status generator incorrectly reported
failed executions as successful, and enhance AI evaluation logic to be
more accurate about actual task accomplishment.

## Changes Made

### 1. Missing Block Handling (`backend/data/graph.py`)
- **Replace ValueError with graceful degradation**: When blocks are
deleted/missing, return `_UnknownBlock` placeholder instead of crashing
- **Comprehensive interface implementation**: `_UnknownBlock` implements
all expected Block methods to prevent type errors
- **Warning logging**: Log missing blocks for debugging without breaking
execution flow
- **Removed unnecessary caching**: Direct constructor calls instead of
cached wrapper functions

### 2. Enhanced Activity Status AI Evaluation
(`backend/executor/activity_status_generator.py`)

#### Intention-Based Success Evaluation
- **Graph description analysis**: AI now reads graph description FIRST
to understand intended purpose
- **Purpose-driven evaluation**: Success is measured against what the
graph was designed to accomplish
- **Critical output analysis**: Enhanced detection of missing outputs
from key blocks (Output, Post, Create, Send, Publish, Generate)
- **Sub-agent failure detection**: Better identification when
AgentExecutorBlock produces no outputs

#### Improved Prompting
- **Intent-specific examples**: 'blog writing' → check for blog content,
'email automation' → check for sent emails
- **Primary evaluation criteria**: 'Did this execution accomplish what
the graph was designed to do?'
- **Enhanced checklist**: 7-point analysis including graph description
matching
- **Technical vs. goal completion**: Distinguish between workflow steps
completing vs. actual user goals achieved

#### Removed Database Error Handling
- **Eliminated try-catch blocks**: No longer needed around
`get_graph_metadata` and `get_graph` calls
- **Direct database calls**: Simplified error handling after fixing
missing block root cause
- **Cleaner code flow**: More predictable execution path without
redundant error handling

## Problem Solved
- **False success reports**: AI previously marked executions as
'successful' when critical output blocks produced no results
- **Missing block crashes**: System would fail when trying to analyze
executions with deleted/missing blocks
- **Intent-blind evaluation**: AI evaluated technical completion instead
of actual goal achievement
- **Database service errors**: 500 errors when missing blocks caused
graph loading failures

## Business Impact
- **More accurate user feedback**: Users get honest assessment of
whether their automations actually worked
- **Better task completion detection**: Clear distinction between
'workflow completed' vs. 'goal achieved'
- **Improved reliability**: System handles edge cases gracefully without
crashing
- **Enhanced user trust**: Truthful reporting builds confidence in the
platform

## Testing
-  Tested with problematic executions that previously showed false
successes
-  Confirmed missing block handling works without warnings
-  Verified enhanced prompt correctly identifies failures
-  Database calls work without try-catch protection

## Example Before/After

**Before (False Success):**
```
Graph: "Automated SEO Blog Writer"
Status: " I successfully completed your blog writing task!"
Reality: No blog content was actually created (critical output blocks had no outputs)
```

**After (Accurate Failure Detection):**
```
Graph: "Automated SEO Blog Writer"  
Status: " The task failed because the blog post creation step didn't produce any output."
Reality: Correctly identifies that the intended blog writing goal was not achieved
```

## Files Modified
- `backend/data/graph.py`: Missing block graceful handling with complete
interface
- `backend/executor/activity_status_generator.py`: Enhanced AI
evaluation with intention-based analysis

## Type of Change
- [x] Bug fix (non-breaking change which fixes an issue)
- [x] New feature (non-breaking change which adds functionality) 
- [ ] Breaking change (fix or feature that would cause existing
functionality to not work as expected)
- [ ] This change requires a documentation update

## Checklist
- [x] My code follows the style guidelines of this project
- [x] I have performed a self-review of my own code
- [x] I have commented my code, particularly in hard-to-understand areas
- [x] I have made corresponding changes to the documentation
- [x] My changes generate no new warnings
- [x] I have added tests that prove my fix is effective or that my
feature works
- [x] New and existing unit tests pass locally with my changes
- [x] Any dependent changes have been merged and published in downstream
modules

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-02 12:28:57 +00:00
Ubbe
4a1cb6d64b fix(frontend): performance and layout issues (#11036)
## Changes 🏗️

### Performance (Onboarding) 🐎 

- Moved non-UI logic into `providers/onboarding/helpers.ts` to reduce
provider complexity.
- Memoized provider value and narrowed state updates to cut unnecessary
re-renders.
- Deferred non-critical effects until after mount to lower initial JS
work.
 
**Result:** faster initial render and smoother onboarding flows under
load.

### Layout and overflow fixes 📐 

- Replaced `w-screen` with `w-full` in platform/admin/profile layouts
and marketplace wrappers to avoid 100vw scrollbar overflow.
- Adjusted mobile navbar position (`right-0` instead of `-right-4`) to
prevent off-viewport elements.

**Result:** removed horizontal scrolling on Marketplace, Library, and
Settings pages; Build remains unaffected.

### New Generic Error pages

- Standardized global error handling in `app/global-error.tsx` for
consistent display and user feedback.
- Added platform-scoped error page(s) under `app/(platform)/error` for
route-level failures with a consistent layout.
- Improved retry affordances using existing `ErrorCard`.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verify onboarding flows render faster and re-render less (DevTools
flamegraph)
- [x] Confirm no horizontal scrolling on Marketplace, Library, Settings
at common widths
  - [x] Validate mobile navbar stays within viewport
- [x] Trigger errors to confirm global and platform error pages render
consistently

### For configuration changes:

None
2025-10-02 10:21:31 +00:00
Copilot
7c9db7419a fix(frontend): Display run cost correctly - convert cents to dollars run detail components (#10997)
Fixed costs being displayed as raw cent values instead of properly
formatted dollar amounts in the frontend monitoring and agent run detail
pages.

## Problem
The platform was showing costs incorrectly in two key areas:
- **Monitoring page**: Total cost displayed as raw cents with incorrect
"seconds" unit (e.g., "Total cost: 150 seconds")
- **Agent run details**: Individual run costs displayed as raw cents
(e.g., "Cost: $150" for what should be $1.50)

## Solution
Updated the affected components to properly convert cents to dollars
with consistent formatting:

**FlowRunsStatus.tsx** - Fixed total cost calculation and display:
```tsx
// Before
{filteredFlowRuns.reduce((total, run) => total + (run.stats?.cost ?? 0), 0)} seconds

// After  
${(filteredFlowRuns.reduce((total, run) => total + (run.stats?.cost ?? 0), 0) / 100).toFixed(2)}
```

**RunDetailHeader.tsx** - Fixed individual run cost display:
```tsx
// Before
Cost: ${run.stats.cost}

// After
Cost: ${(run.stats.cost / 100).toFixed(2)}
```

## Validation
- Backend correctly stores costs in cents (verified in models and
database schemas)
- Email notification templates already handle the conversion properly
using `(credits_used|float)/100`
- Other components use the existing `formatCredits()` utility which
correctly converts cents to dollars
- No security vulnerabilities introduced (CodeQL verification passed)
- All linting and formatting checks pass

The fix ensures users now see accurate dollar amounts (e.g., $1.50
instead of $150 or "150 seconds") across the platform's cost reporting
interfaces.

![Cost Display Fix
Demo](https://github.com/user-attachments/assets/13c75a1d-7c78-4c11-9293-3dcf4c443097)

> [!WARNING]
>
> <details>
> <summary>Firewall rules blocked me from connecting to one or more
addresses (expand for details)</summary>
>
> #### I tried to connect to the following addresses, but was blocked by
firewall rules:
>
> - `checkpoint.prisma.io`
> - Triggering command: `/usr/bin/node
/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child
{&#34;product&#34;:&#34;prisma&#34;,&#34;version&#34;:&#34;5.17.0&#34;,&#34;cli_install_type&#34;:&#34;local&#34;,&#34;information&#34;:&#34;&#34;,&#34;local_timestamp&#34;:&#34;2025-09-25T21:41:17Z&#34;,&#34;project_hash&#34;:&#34;a5170f80&#34;,&#34;cli_path&#34;:&#34;/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/index.js&#34;,&#34;cli_path_hash&#34;:&#34;40bbdaf9&#34;,&#34;endpoint&#34;:&#34;REDACTED&#34;,&#34;disable&#34;:false,&#34;arch&#34;:&#34;x64&#34;,&#34;os&#34;:&#34;linux&#34;,&#34;node_version&#34;:&#34;v20.19.5&#34;,&#34;ci&#34;:false,&#34;ci_name&#34;:&#34;&#34;,&#34;command&#34;:&#34;generate&#34;,&#34;schema_providers&#34;:[&#34;postgresql&#34;],&#34;schema_preview_features&#34;:[],&#34;schema_generators_providers&#34;:[&#34;prisma-client-py&#34;],&#34;cache_file&#34;:&#34;/root/.cache/checkpoint-nodejs/prisma-40bbdaf9&#34;,&#34;cache_duration&#34;:43200000,&#34;remind_duration&#34;:172800000,&#34;force&#34;:false,&#34;timeout&#34;:5000,&#34;unref&#34;:true,&#34;child_path&#34;:&#34;/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child&#34;,&#34;client_event_id&#34;:&#34;&#34;,&#34;previous_client_event_id&#34;:&#34;&#34;,&#34;check_if_update_available&#34;:false}`
(dns block)
> - Triggering command: `/usr/bin/node
/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child
{&#34;product&#34;:&#34;prisma&#34;,&#34;version&#34;:&#34;5.17.0&#34;,&#34;cli_install_type&#34;:&#34;local&#34;,&#34;information&#34;:&#34;&#34;,&#34;local_timestamp&#34;:&#34;2025-09-25T21:41:19Z&#34;,&#34;project_hash&#34;:&#34;a5170f80&#34;,&#34;cli_path&#34;:&#34;/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/index.js&#34;,&#34;cli_path_hash&#34;:&#34;40bbdaf9&#34;,&#34;endpoint&#34;:&#34;REDACTED&#34;,&#34;disable&#34;:false,&#34;arch&#34;:&#34;x64&#34;,&#34;os&#34;:&#34;linux&#34;,&#34;node_version&#34;:&#34;v20.19.5&#34;,&#34;ci&#34;:false,&#34;ci_name&#34;:&#34;&#34;,&#34;command&#34;:&#34;migrate
deploy&#34;,&#34;schema_providers&#34;:[&#34;postgresql&#34;],&#34;schema_preview_features&#34;:[],&#34;schema_generators_providers&#34;:[&#34;prisma-client-py&#34;],&#34;cache_file&#34;:&#34;/root/.cache/checkpoint-nodejs/prisma-40bbdaf9&#34;,&#34;cache_duration&#34;:43200000,&#34;remind_duration&#34;:172800000,&#34;force&#34;:false,&#34;timeout&#34;:5000,&#34;unref&#34;:true,&#34;child_path&#34;:&#34;/root/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child&#34;,&#34;client_event_id&#34;:&#34;&#34;,&#34;previous_client_event_id&#34;:&#34;&#34;,&#34;check_if_update_available&#34;:false}`
(dns block)
> - Triggering command: `/opt/hostedtoolcache/node/21.7.3/x64/bin/node
/home/REDACTED/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child
{&#34;product&#34;:&#34;prisma&#34;,&#34;version&#34;:&#34;5.17.0&#34;,&#34;cli_install_type&#34;:&#34;local&#34;,&#34;information&#34;:&#34;&#34;,&#34;local_timestamp&#34;:&#34;2025-09-25T21:44:58Z&#34;,&#34;project_hash&#34;:&#34;c6190a20&#34;,&#34;cli_path&#34;:&#34;/home/REDACTED/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/index.js&#34;,&#34;cli_path_hash&#34;:&#34;8d85b642&#34;,&#34;endpoint&#34;:&#34;REDACTED&#34;,&#34;disable&#34;:false,&#34;arch&#34;:&#34;x64&#34;,&#34;os&#34;:&#34;linux&#34;,&#34;node_version&#34;:&#34;v21.7.3&#34;,&#34;ci&#34;:true,&#34;ci_name&#34;:&#34;GitHub
Actions&#34;,&#34;command&#34;:&#34;generate&#34;,&#34;schema_providers&#34;:[&#34;postgresql&#34;],&#34;schema_preview_features&#34;:[],&#34;schema_generators_providers&#34;:[&#34;prisma-client-py&#34;],&#34;cache_file&#34;:&#34;/home/REDACTED/.cache/checkpoint-nodejs/prisma-8d85b642&#34;,&#34;cache_duration&#34;:43200000,&#34;remind_duration&#34;:172800000,&#34;force&#34;:false,&#34;timeout&#34;:5000,&#34;unref&#34;:true,&#34;child_path&#34;:&#34;/home/REDACTED/.cache/prisma-python/binaries/5.17.0/393aa359c9ad4a4bb28630fb5613f9c281cde053/node_modules/prisma/build/child&#34;,&#34;client_event_id&#34;:&#34;&#34;,&#34;previous_client_event_id&#34;:&#34;&#34;,&#34;check_if_update_available&#34;:false}`
(dns block)
> - `fonts.googleapis.com`
> - Triggering command: `node
/home/REDACTED/work/AutoGPT/AutoGPT/autogpt_platform/frontend/node_modules/.bin/../next/dist/bin/next
build` (dns block)
> -
`https://api.github.com/repos/Significant-Gravitas/Significant-Gravitas%2FAutoGPT/languages`
> - Triggering command:
`/home/REDACTED/work/_temp/ghcca-node/node/bin/node --enable-source-maps
/home/REDACTED/work/_temp/copilot-developer-action-main/dist/index.js`
(http block)
> - `o1.ingest.sentry.io`
> - Triggering command: `node
/home/REDACTED/work/AutoGPT/AutoGPT/autogpt_platform/frontend/node_modules/.bin/../next/dist/bin/next
build` (dns block)
>
> If you need me to access, download, or install something from one of
these locations, you can either:
>
> - Configure [Actions setup
steps](https://gh.io/copilot/actions-setup-steps) to set up my
environment, which run before the firewall is enabled
> - Add the appropriate URLs or hosts to the custom allowlist in this
repository's [Copilot coding agent
settings](https://github.com/Significant-Gravitas/AutoGPT/settings/copilot/coding_agent)
(admins only)
>
> </details>

<!-- START COPILOT CODING AGENT SUFFIX -->



<details>

<summary>Original prompt</summary>

> 
> ----
> 
> *This section details on the original issue you should resolve*
> 
> <issue_title>Costs are being shown as dollars rather than cents based
on the new runs page</issue_title>
> <issue_description></issue_description>
> 
> ## Comments on the Issue (you are @copilot in this section)
> 
> <comments>
> </comments>
> 


</details>
Fixes Significant-Gravitas/AutoGPT#10886

<!-- START COPILOT CODING AGENT TIPS -->
---

💡 You can make Copilot smarter by setting up custom instructions,
customizing its development environment and configuring Model Context
Protocol (MCP) servers. Learn more [Copilot coding agent
tips](https://gh.io/copilot-coding-agent-tips) in the docs.

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ntindle <8845353+ntindle@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-10-02 10:08:03 +00:00
Swifty
e75cf2b765 create helper functions for clearing caches 2025-10-02 11:09:31 +02:00
Krzysztof Czerwinski
18bbd8e572 fix(frontend): Fix confetti (#11031)
### Changes 🏗️

- Fix not being able to complete `MARKETPLACE_RUN_AGENT` task
- Fix confetti shooting on every refresh
- Fix confetti shooting from top-left corner

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Bugs eradicated
2025-10-02 03:19:25 +00:00
Zamil Majdy
047f011520 fix(platform): resolve authentication performance bottlenecks and improve reliability (#11028)
## Summary
Fix critical authentication performance bottlenecks causing infinite
loading during login and malformed redirect URL handling.

## Root Cause Analysis
- **OnboardingProvider** was running expensive `isOnboardingEnabled()`
database queries on every route for all users
- **Timezone detection** was calling backend APIs during authentication
flow instead of only during onboarding
- **Malformed redirect URLs** like `/marketplace,%20/marketplace`
causing authentication callback failures
- **Arbitrary setTimeout** creating race conditions instead of proper
authentication state management

## Changes Made

### 1. Backend: Cache Expensive Onboarding Queries
(`backend/data/onboarding.py`)
- Add `@cached(maxsize=1, ttl_seconds=300)` decorator to
`onboarding_enabled()`
- Cache expensive database queries for 5 minutes to prevent repeated
execution during auth
- Optimize query with `take=MIN_AGENT_COUNT + 1` to stop counting early
- Fix typo: "Onboading" → "Onboarding"

### 2. Frontend: Optimize OnboardingProvider
(`providers/onboarding/onboarding-provider.tsx`)
- **Route-based optimization**: Only call `isOnboardingEnabled()` when
user is actually on `/onboarding/*` routes
- **Preserve functionality**: Still fetch `getUserOnboarding()` for step
completion tracking on all routes
- **Smart redirects**: Only handle onboarding completion redirects when
on onboarding routes
- **Performance improvement**: Eliminates expensive database calls for
95% of page loads

### 3. Frontend: Fix Timezone Detection Race Conditions
(`hooks/useOnboardingTimezoneDetection.ts`)
- **Remove setTimeout hack**: Replace arbitrary 1000ms timeout with
proper authentication state checks
- **Add route filtering**: Only run timezone detection on
`/onboarding/*` routes using `pathname.startsWith()`
- **Proper auth dependencies**: Use `useSupabase()` hook to wait for
`user` and `!isUserLoading`
- **Fire-and-forget updates**: Change from `mutateAsync()` to `mutate()`
to prevent blocking UI

### 4. Frontend: Apply Fire-and-Forget Pattern
(`hooks/useTimezoneDetection.ts`)
- Change timezone auto-detection from `mutateAsync()` to `mutate()`
- Prevents blocking user interactions during background timezone updates
- API still executes successfully, user doesn't wait for response

### 5. Frontend: Enhanced URL Validation (`auth/callback/route.ts`)
- **Add malformed URL detection**: Check for commas and spaces in
redirect URLs
- **Constants**: Use `DEFAULT_REDIRECT_PATH = "/marketplace"` instead of
hardcoded strings
- **Better error handling**: Try-catch with fallback to safe default
path
- **Path depth limits**: Reject suspiciously deep URLs (>5 segments)
- **Race condition mitigation**: Default to `/marketplace` for corrupted
URLs with warning logs

## Technical Implementation

### Performance Optimizations
- **Database caching**: 5-minute cache prevents repeated expensive
onboarding queries
- **Route-aware logic**: Heavy operations only run where needed
(`/onboarding/*` routes)
- **Non-blocking updates**: Timezone updates don't block authentication
flow
- **Proper state management**: Wait for actual authentication instead of
arbitrary delays

### Authentication Flow Improvements
- **Eliminate race conditions**: No more setTimeout guessing - wait for
proper auth state
- **Faster auth**: Remove blocking timezone API calls during login flow
- **Better UX**: Handle malformed URLs gracefully instead of failing

## Files Changed
- `backend/data/onboarding.py` - Add caching to expensive queries
- `providers/onboarding/onboarding-provider.tsx` - Route-based
optimization
- `hooks/useOnboardingTimezoneDetection.ts` - Proper auth state + route
filtering + fire-and-forget
- `hooks/useTimezoneDetection.ts` - Fire-and-forget pattern
- `auth/callback/route.ts` - Enhanced URL validation

## Impact
- **Eliminates infinite loading** during authentication flow
- **Improves auth response times** from 5-11+ seconds to sub-second
- **Prevents malformed redirect URLs** that confused users
- **Reduces database load** through intelligent caching  
- **Maintains all existing functionality** with better performance
- **Eliminates race conditions** from arbitrary timeouts

## Validation
-  All pre-commit hooks pass (format, lint, typecheck)
-  No breaking changes to existing functionality
-  Backward compatible with all onboarding flows
-  Enhanced error logging and graceful fallbacks

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-10-02 01:26:49 +00:00
Swifty
0f6d1f54ee update lock file 2025-10-01 16:21:58 +02:00
Swifty
b3fe2b84ce added shared caching 2025-10-01 16:17:26 +02:00
Swifty
e13861ad33 revet over logging in test 2025-10-01 15:38:27 +02:00
Swifty
e2c24bd463 Merge branch 'swiftyos/caching-pt2' of github.com:Significant-Gravitas/AutoGPT into swiftyos/caching-pt2 2025-10-01 15:25:18 +02:00
Swifty
9f5afff83e update caching rules 2025-10-01 15:24:59 +02:00
Swifty
ced61e2640 Merge branch 'dev' into swiftyos/caching-pt2 2025-10-01 15:07:12 +02:00
Swifty
c9a7cc63da invalidate more caches - we have many with very similar names... 2025-10-01 14:52:58 +02:00
Reinier van der Leer
d11917eb10 feat(blocks): Improve data output of code execution block (#11017)
- Resolves #11016

### Changes 🏗️

- Add more extensive outputs to Code Execution Block
- Rename "Response" output to "Main Text Output"

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Object outputs can be accessed now
2025-10-01 10:38:04 +00:00
Swifty
7afa01a168 add detailed log messages 2025-10-01 11:54:57 +02:00
Swifty
2f9aba0420 moved cache invalidation earlier in flow to avoid race condition 2025-10-01 11:23:53 +02:00
Swifty
ff4b0929e1 fix cache invalidation for agent activity dropdown 2025-10-01 10:26:37 +02:00
Swifty
2230c76863 Merge branch 'dev' into swiftyos/caching-pt2 2025-10-01 10:18:32 +02:00
Copilot
4663066e65 feat(blocks): Implement AI Condition Block for natural language condition evaluation (#10996)
This PR implements the AI Condition Block as requested in issue
AUTOMAT-60. The new block enables users to define conditional logic
using natural language descriptions instead of traditional comparison
operators, while maintaining the same yes/no data pass-through
functionality as the existing ConditionBlock.

## Overview

The AI Condition Block uses Large Language Models to evaluate conditions
written in plain English, such as:
- "the input is the body of an email"
- "the input is a City in the USA"
- "the input is an error or a refusal"

## Key Features

**Natural Language Processing**: Users can express complex conditions in
everyday English rather than programming logic, making agent workflows
more intuitive and accessible.

**Consistent Interface**: Maintains the same input/output schema as the
standard ConditionBlock:
- Boolean `result` output indicating condition evaluation
- `yes_output` and `no_output` for conditional data flow
- Optional custom values for yes/no cases

**Robust Error Handling**: Defaults to `false` on AI evaluation failures
to ensure safe operation and prevent workflow interruption.

**Performance Optimized**: Uses minimal token limits (10 tokens) for
true/false responses to reduce latency and API costs.

## Implementation Details

The block is implemented as `AIConditionBlock` in
`backend/blocks/ai_condition.py` and inherits from `AIBlockBase`
following established platform patterns. It includes:

- Proper LLM integration with credential management
- Token usage tracking and statistics
- Comprehensive test mocking for reliable CI/CD
- Full documentation with examples and use cases

## Use Cases

This block enables more sophisticated conditional logic for:
- **Content Classification**: Automatically categorize text, emails, or
documents
- **Data Validation**: Validate inputs using natural language rules
- **Smart Routing**: Route data based on AI-evaluated conditions
- **Error Detection**: Identify and handle error messages or problematic
inputs
- **Quality Control**: Check content against flexible quality standards

## Testing

The implementation includes comprehensive testing that integrates with
the existing platform test suite. All tests pass, including:
- Unit tests with proper LLM response mocking
- Code quality checks (linting, formatting, type checking)
- Security analysis via CodeQL
- Integration testing to ensure proper block discovery and loading

The block is automatically discovered by the platform's block loading
system and is immediately available for use in agent workflows.

## PR Checklist

- [x] **Have you listed your changes in the description?**
  - Added new `AIConditionBlock` in `backend/blocks/ai_condition.py`
- Added comprehensive documentation in
`docs/content/platform/blocks/ai_condition.md`
  - Implemented natural language condition evaluation using LLMs

- [x] **Have you included a test plan?**
  - Unit tests with mocked LLM responses
  - Integration tests for block discovery and loading
  - Error handling validation
  - Token usage tracking verification

- [x] **Have you tested your changes according to the test plan?**
  - All existing tests pass
  - Linting and formatting checks pass
  - Type checking passes
  - Security analysis via CodeQL passes
- Fixed `json_format` parameter to `force_json_output` per recent API
changes

> [!WARNING]
>
> <details>
> <summary>Firewall rules blocked me from connecting to one or more
addresses (expand for details)</summary>
>
> #### I tried to connect to the following addresses, but was blocked by
firewall rules:
>
> - `api.openai.com`
> - Triggering command:
`/home/REDACTED/.cache/pypoetry/virtualenvs/autogpt-platform-backend-Ajv4iu2i-py3.11/bin/python
/home/REDACTED/.cache/pypoetry/virtualenvs/autogpt-platform-backend-Ajv4iu2i-py3.11/bin/pytest
backend/blocks/test/test_block.py::test_available_blocks -k
AIConditionBlock -v` (dns block)
> -
`https://api.github.com/repos/Significant-Gravitas/Significant-Gravitas%2FAutoGPT/languages`
> - Triggering command:
`/home/REDACTED/work/_temp/ghcca-node/node/bin/node --enable-source-maps
/home/REDACTED/work/_temp/copilot-developer-action-main/dist/index.js`
(http block)
>
> If you need me to access, download, or install something from one of
these locations, you can either:
>
> - Configure [Actions setup
steps](https://gh.io/copilot/actions-setup-steps) to set up my
environment, which run before the firewall is enabled
> - Add the appropriate URLs or hosts to the custom allowlist in this
repository's [Copilot coding agent
settings](https://github.com/Significant-Gravitas/AutoGPT/settings/copilot/coding_agent)
(admins only)
>
> </details>

<!-- START COPILOT CODING AGENT SUFFIX -->



<details>

<summary>Original prompt</summary>

> Issue Title: AI Condition Block
> Issue Description: A version of the condition/if block that uses an AI
powered condition.
>
> It should have the same yes/no data pass throughs, as well as
outputting a result Boolean.
>
> The condition is plaintext English, provided by the user, and could be
anything.
>
> e.g
> If `[the input] is the body of an email`
> If `[the input] is a City in the USA`
> If `[the input] is an error or a refusal`
> Fixes https://linear.app/autogpt/issue/AUTOMAT-60/ai-condition-block
>
>
> Comment by User 4bcbb358-1758-43e4-abef-a0a42b63442f:
> 📋 I need a **repo** label on this issue to determine which GitHub
repository to work in.
>
> Please add a repo label to this issue with the format
`owner/repository-name` (e.g., `github/copilot`), then I'll
automatically start working on it!
>
> Comment by User :
> This thread is for an agent session with githubcopilotcodingagent.
>
>


</details>


<!-- START COPILOT CODING AGENT TIPS -->
---

 Let Copilot coding agent [set things up for
you](https://github.com/Significant-Gravitas/AutoGPT/issues/new?title=+Set+up+Copilot+instructions&body=Configure%20instructions%20for%20this%20repository%20as%20documented%20in%20%5BBest%20practices%20for%20Copilot%20coding%20agent%20in%20your%20repository%5D%28https://gh.io/copilot-coding-agent-tips%29%2E%0A%0A%3COnboard%20this%20repo%3E&assignees=copilot)
— coding agent works faster and does higher quality work when set up for
your repo.

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Introduces `AIConditionBlock` that uses an LLM to evaluate
natural-language conditions and outputs boolean result with yes/no
pass-through, plus accompanying documentation.
> 
> - **Backend**:
>   - **New block**: `backend/blocks/ai_condition.py`
> - Evaluates natural-language conditions via `llm_call` using
selectable `LlmModel` and credentials.
> - Parses strict true/false responses (with fallback token matching),
yields `result`, `yes_output`/`no_output`, and `error` on
ambiguity/failure.
> - Tracks token usage via `NodeExecutionStats`; includes test
inputs/mocks and `force_json_output=False`.
> - **Docs**:
> - Adds `docs/content/platform/blocks/ai_condition.md` with usage,
inputs/outputs, examples, and considerations.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
06e9586bd3. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: ntindle <8845353+ntindle@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicktindle@outlook.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2025-10-01 05:02:57 +00:00
Krzysztof Czerwinski
48a0faa611 feat(frontend): Restore onboarding steps (#11027)
Wallet update removed `BUILDER_OPEN` and `BUILDER_RUN_AGENT`.

### Changes 🏗️

- Restore completion codepaths for `BUILDER_OPEN` and
`BUILDER_RUN_AGENT` for analytical purposes

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Tasks are completed silently
2025-10-01 04:53:51 +00:00
Nicholas Tindle
70d00b4104 fix(ci): Delete pr_reviewer section in .pr_agent.toml (#11024)
Remove pr_reviewer section from configuration

<!-- Clearly explain the need for these changes: -->

### Changes 🏗️
removes the out of config status section
<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] validated by global config
2025-10-01 03:01:24 +00:00
Nicholas Tindle
aad0434cb2 feat(frontend): Enhance Sentry integration and TallyPopup telemetry (#10862)
Added Sentry captureConsoleIntegration and extraErrorDataIntegration to
client, edge, and server configs. Improved replay integration with
unmasking support. Updated TallyPopup to collect and expose Sentry
replay data, user agent, and page URL for enhanced telemetry and
debugging. Improved event handling and error logging for Tally events.
Marked CustomNode title for Sentry unmasking.<!-- Clearly explain the
need for these changes: -->

### Changes 🏗️
Reconfigure sentry
Pass the id with sentry replay to tally alongside prefilling email, and
passing non user identifying attributes like platform url, full url, and
is authenticated.
<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Test the results show up in sentry
  - [x] Test the url works in tally
2025-10-01 03:00:20 +00:00
Krzysztof Czerwinski
f33ec1f2ec feat(platform): New retention-focused tasks and wallet update (#10977)
### Changes 🏗️

- Rename wallet and update design
- Update tasks and add Hidden Tasks section
- Update onboarding backend code and related db migration
- Add progress bar for some tasks

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] All tasks can be finished
  - [x] Finished tasks add correct amount of credits

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2025-10-01 01:29:30 +00:00
dependabot[bot]
e68b873bcf chore(frontend/deps): Bump @faker-js/faker from 9.9.0 to 10.0.0 in /autogpt_platform/frontend (#10806)
Bumps [@faker-js/faker](https://github.com/faker-js/faker) from 9.9.0 to
10.0.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/faker-js/faker/releases"><code>@​faker-js/faker</code>'s
releases</a>.</em></p>
<blockquote>
<h2>v10.0.0</h2>
<h2>New &amp; Noteworthy</h2>
<ul>
<li>esm only (for cjs support look into migration guide, we got you
covered 😉)</li>
<li>remove v9 deprecations</li>
<li>change default error strategy to 'fail' in word module</li>
<li>remove invalid credit card issuer patterns</li>
<li>see our <a
href="https://v10.fakerjs.dev/guide/upgrading.html">migration
guide</a></li>
</ul>
<h2>What's Changed</h2>
<ul>
<li>ci: use node 24 by <a
href="https://github.com/Shinigami92"><code>@​Shinigami92</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3543">faker-js/faker#3543</a></li>
<li>infra: stop using node 18 by <a
href="https://github.com/Shinigami92"><code>@​Shinigami92</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3536">faker-js/faker#3536</a></li>
<li>infra: use import.meta.dirname by <a
href="https://github.com/Shinigami92"><code>@​Shinigami92</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3542">faker-js/faker#3542</a></li>
<li>chore(deps): update devdependencies (major) by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3512">faker-js/faker#3512</a></li>
<li>chore(deps): update eslint by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3555">faker-js/faker#3555</a></li>
<li>chore(deps): update dependency <code>@​vitest/eslint-plugin</code>
to v1.3.4 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3554">faker-js/faker#3554</a></li>
<li>chore(deps): update devdependencies by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3556">faker-js/faker#3556</a></li>
<li>chore(deps): lock file maintenance by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3557">faker-js/faker#3557</a></li>
<li>feat!: esm only by <a
href="https://github.com/Shinigami92"><code>@​Shinigami92</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3540">faker-js/faker#3540</a></li>
<li>refactor!: remove deprecations by <a
href="https://github.com/Shinigami92"><code>@​Shinigami92</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3553">faker-js/faker#3553</a></li>
<li>docs: migration guide for v10 by <a
href="https://github.com/matthewmayer"><code>@​matthewmayer</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3559">faker-js/faker#3559</a></li>
<li>infra: more precise engines field by <a
href="https://github.com/matthewmayer"><code>@​matthewmayer</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3561">faker-js/faker#3561</a></li>
<li>refactor(word)!: change default error strategy to 'fail' by <a
href="https://github.com/xDivisionByZerox"><code>@​xDivisionByZerox</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3560">faker-js/faker#3560</a></li>
<li>chore(release): 10.0.0-beta.0 by <a
href="https://github.com/fakerjs-bot"><code>@​fakerjs-bot</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3565">faker-js/faker#3565</a></li>
<li>docs: Minor improvements to migration guide by <a
href="https://github.com/matthewmayer"><code>@​matthewmayer</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3569">faker-js/faker#3569</a></li>
<li>chore(deps): update pnpm to v10.13.1 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3570">faker-js/faker#3570</a></li>
<li>chore(deps): update devdependencies by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3571">faker-js/faker#3571</a></li>
<li>chore(deps): update eslint by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3572">faker-js/faker#3572</a></li>
<li>chore(deps): lock file maintenance by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3562">faker-js/faker#3562</a></li>
<li>chore(deps): update dependency typescript to v5.9.2 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3576">faker-js/faker#3576</a></li>
<li>chore(deps): update pnpm to v10.14.0 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3579">faker-js/faker#3579</a></li>
<li>chore(deps): update
mcr.microsoft.com/devcontainers/typescript-node:22 docker digest to
2baa40a by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3575">faker-js/faker#3575</a></li>
<li>chore(deps): update devdependencies by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3577">faker-js/faker#3577</a></li>
<li>chore(deps): update eslint (major) by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3580">faker-js/faker#3580</a></li>
<li>chore(deps): update eslint by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3578">faker-js/faker#3578</a></li>
<li>feat(locale): extended list of colors in Polish by <a
href="https://github.com/pkuczynski"><code>@​pkuczynski</code></a> in <a
href="https://redirect.github.com/faker-js/faker/pull/3586">faker-js/faker#3586</a></li>
<li>refactor(locale): remove invalid credit card issuer patterns by <a
href="https://github.com/xDivisionByZerox"><code>@​xDivisionByZerox</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3568">faker-js/faker#3568</a></li>
<li>docs: update migration guide with findings from playground update by
<a
href="https://github.com/xDivisionByZerox"><code>@​xDivisionByZerox</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3587">faker-js/faker#3587</a></li>
<li>chore: fix typo in test by <a
href="https://github.com/noritaka1166"><code>@​noritaka1166</code></a>
in <a
href="https://redirect.github.com/faker-js/faker/pull/3591">faker-js/faker#3591</a></li>
<li>chore(deps): update all non-major dependencies by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3596">faker-js/faker#3596</a></li>
<li>chore(deps): update amannn/action-semantic-pull-request action to v6
by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3598">faker-js/faker#3598</a></li>
<li>chore(deps): update devdependencies by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3599">faker-js/faker#3599</a></li>
<li>chore(deps): update actions/checkout action to v5 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3597">faker-js/faker#3597</a></li>
<li>chore(deps): update dependency cypress to v15 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3603">faker-js/faker#3603</a></li>
<li>chore(deps): update dependency vitepress to v1.6.4 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3601">faker-js/faker#3601</a></li>
<li>chore(deps): pin dependency node to 24.6.0 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3600">faker-js/faker#3600</a></li>
<li>chore(deps): update dependency typescript-eslint to v8.40.0 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3602">faker-js/faker#3602</a></li>
<li>chore(deps): update dependency eslint-plugin-jsdoc to v54 by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3604">faker-js/faker#3604</a></li>
<li>chore(deps): lock file maintenance by <a
href="https://github.com/renovate"><code>@​renovate</code></a>[bot] in
<a
href="https://redirect.github.com/faker-js/faker/pull/3584">faker-js/faker#3584</a></li>
<li>chore(release): 10.0.0 by <a
href="https://github.com/fakerjs-bot"><code>@​fakerjs-bot</code></a> in
<a
href="https://redirect.github.com/faker-js/faker/pull/3605">faker-js/faker#3605</a></li>
</ul>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/faker-js/faker/blob/next/CHANGELOG.md"><code>@​faker-js/faker</code>'s
changelog</a>.</em></p>
<blockquote>
<h2><a
href="https://github.com/faker-js/faker/compare/v10.0.0-beta.0...v10.0.0">10.0.0</a>
(2025-08-21)</h2>
<h3>New Locales</h3>
<ul>
<li><strong>locale:</strong> extended list of colors in Polish (<a
href="https://redirect.github.com/faker-js/faker/issues/3586">#3586</a>)
(<a
href="9940d54f75">9940d54</a>)</li>
</ul>
<h3>Features</h3>
<ul>
<li><strong>locales:</strong> add animal vocabulary(bear, bird, cat,
rabbit, pet_name) in Korean (<a
href="https://redirect.github.com/faker-js/faker/issues/3535">#3535</a>)
(<a
href="0d2143c75d">0d2143c</a>)</li>
</ul>
<h3>Changed Locales</h3>
<ul>
<li><strong>locale:</strong> remove invalid credit card issuer patterns
(<a
href="https://redirect.github.com/faker-js/faker/issues/3568">#3568</a>)
(<a
href="9783d95a8e">9783d95</a>)</li>
</ul>
<h2><a
href="https://github.com/faker-js/faker/compare/v9.9.0...v10.0.0-beta.0">10.0.0-beta.0</a>
(2025-07-09)</h2>
<h3>⚠ BREAKING CHANGES</h3>
<ul>
<li>
<p><strong>word:</strong> change default error strategy to 'fail' (<a
href="https://redirect.github.com/faker-js/faker/issues/3560">#3560</a>)</p>
</li>
<li>
<p>remove deprecations (<a
href="https://redirect.github.com/faker-js/faker/issues/3553">#3553</a>)</p>
</li>
<li>
<p>esm only (<a
href="https://redirect.github.com/faker-js/faker/issues/3540">#3540</a>)</p>
</li>
<li>
<p>remove deprecations (<a
href="https://redirect.github.com/faker-js/faker/issues/3553">#3553</a>)
(<a
href="623d2741a4">623d274</a>)</p>
</li>
<li>
<p><strong>word:</strong> change default error strategy to 'fail' (<a
href="https://redirect.github.com/faker-js/faker/issues/3560">#3560</a>)
(<a
href="93416f71cf">93416f7</a>)</p>
</li>
</ul>
<h3>Features</h3>
<ul>
<li>esm only (<a
href="https://redirect.github.com/faker-js/faker/issues/3540">#3540</a>)
(<a
href="160960b797">160960b</a>)</li>
</ul>
</blockquote>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="51943aecb9"><code>51943ae</code></a>
chore(release): 10.0.0 (<a
href="https://redirect.github.com/faker-js/faker/issues/3605">#3605</a>)</li>
<li><a
href="96d7517b9b"><code>96d7517</code></a>
chore(deps): lock file maintenance (<a
href="https://redirect.github.com/faker-js/faker/issues/3584">#3584</a>)</li>
<li><a
href="2eb6fa0a7a"><code>2eb6fa0</code></a>
chore(deps): update dependency eslint-plugin-jsdoc to v54 (<a
href="https://redirect.github.com/faker-js/faker/issues/3604">#3604</a>)</li>
<li><a
href="1fcfe4830d"><code>1fcfe48</code></a>
chore(deps): pin dependency node to 24.6.0 (<a
href="https://redirect.github.com/faker-js/faker/issues/3600">#3600</a>)</li>
<li><a
href="2bd4807fa2"><code>2bd4807</code></a>
chore(deps): update dependency typescript-eslint to v8.40.0 (<a
href="https://redirect.github.com/faker-js/faker/issues/3602">#3602</a>)</li>
<li><a
href="09a88eb100"><code>09a88eb</code></a>
chore(deps): update dependency vitepress to v1.6.4 (<a
href="https://redirect.github.com/faker-js/faker/issues/3601">#3601</a>)</li>
<li><a
href="5418574bf7"><code>5418574</code></a>
chore(deps): update dependency cypress to v15 (<a
href="https://redirect.github.com/faker-js/faker/issues/3603">#3603</a>)</li>
<li><a
href="9e4f463ecf"><code>9e4f463</code></a>
chore(deps): update actions/checkout action to v5 (<a
href="https://redirect.github.com/faker-js/faker/issues/3597">#3597</a>)</li>
<li><a
href="287ecdaa39"><code>287ecda</code></a>
chore(deps): update devdependencies (<a
href="https://redirect.github.com/faker-js/faker/issues/3599">#3599</a>)</li>
<li><a
href="2b1495956f"><code>2b14959</code></a>
chore(deps): update amannn/action-semantic-pull-request action to v6 (<a
href="https://redirect.github.com/faker-js/faker/issues/3598">#3598</a>)</li>
<li>Additional commits viewable in <a
href="https://github.com/faker-js/faker/compare/v9.9.0...v10.0.0">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=@faker-js/faker&package-manager=npm_and_yarn&previous-version=9.9.0&new-version=10.0.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Upgrades `@faker-js/faker` to v10 and updates test utilities to
dynamically import Faker and make password generation async.
> 
> - **Frontend dependencies**:
>   - Bump `@faker-js/faker` from `9.9.0` to `10.0.0`.
> - **Tests**:
> - Replace static imports with dynamic `import("@faker-js/faker")` in
`src/tests/utils/{auth.ts,signup.ts}`.
> - Change `generateTestPassword` to `async` returning `Promise<string>`
to use ESM Faker.
> - Adjust test user creation to use dynamically generated
`email`/`password` via Faker.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
334f4a264d. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2025-09-30 21:12:18 +00:00
Nicholas Tindle
4530e97e59 feat(platform/blocks): Add table input UI and builder block (#10829)
<!-- Clearly explain the need for these changes: -->


https://github.com/user-attachments/assets/909a6ecf-5731-424c-8dee-fe25db907365


### Need 💡

This PR introduces a new "Table Input" block and corresponding UI
component, allowing users to easily input structured, tabular data
directly within the agent builder. This addresses the need for a
user-friendly way to define custom column headers and populate rows of
data, which is then output as a list of dictionaries.

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

* **New `TableInputBlock` (backend):** A new block
(`backend/backend/blocks/table_input.py`) has been added. It defines an
`Input` schema with `headers` (a list of strings for column names) and
`value` (a list of dictionaries representing table rows). The block
outputs the `value` data in the specified dictionary format.
* **New `NodeTableInput` Component (frontend):** A new React component
(`frontend/src/components/node-table-input.tsx`) was created to render
an editable table UI, supporting dynamic row addition/removal and cell
editing.
*   **Frontend Integration:**
* `NodeGenericInputField` and `NodeObjectInputTree` were updated to pass
`parentContext` down the component hierarchy.
* `NodeArrayInput` was modified to conditionally render the new
`NodeTableInput` component. It now detects when an array field
(`selfKey` is "value") is part of a parent context that defines
`headers`, indicating it should be rendered as a table.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Add a "Table Input" block to the builder.
  - [x] Define custom headers (e.g., "Name", "Email").
  - [x] Add several rows of data using the table UI.
- [x] Verify that adding, editing, and removing rows works as expected.
- [x] Connect the output of the "Table Input" block to another block
(e.g., a "Print" block) and confirm the output format is a list of
dictionaries with the defined headers as keys.
  - [x] Test with an empty table (no rows).
  - [x] Test with no headers defined (should default).
- [x] Test that an empty row returns empty data (is this a good
behavior?


example output of the block
```
{
  "advanced": false,
  "column_headers": [
    "Col 1",
    "Col 2",
    "Col 3"
  ],
  "name": "table_input",
  "value": [
    {
      "Col 1": "row 1",
      "Col 2": "row 1",
      "Col 3": "row 1"
    },
    {
      "Col 1": "val 1",
      "Col 2": "val 2",
      "Col 3": "val 3"
    }
  ]
}
```

---
<a
href="https://cursor.com/background-agent?bcId=bc-b8d31867-1034-4374-852c-b92ca69cc399">
  <picture>
<source media="(prefers-color-scheme: dark)"
srcset="https://cursor.com/open-in-cursor-dark.svg">
<source media="(prefers-color-scheme: light)"
srcset="https://cursor.com/open-in-cursor-light.svg">
<img alt="Open in Cursor" src="https://cursor.com/open-in-cursor.svg">
  </picture>
</a>
<a
href="https://cursor.com/agents?id=bc-b8d31867-1034-4374-852c-b92ca69cc399">
  <picture>
<source media="(prefers-color-scheme: dark)"
srcset="https://cursor.com/open-in-web-dark.svg">
<source media="(prefers-color-scheme: light)"
srcset="https://cursor.com/open-in-web-light.svg">
    <img alt="Open in Web" src="https://cursor.com/open-in-web.svg">
  </picture>
</a>

---------

Co-authored-by: Cursor Agent <cursoragent@cursor.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2025-09-30 19:41:03 +00:00
Bently
477c261488 feat(blocks): Add claude-sonnet-4.5 (#11023)
## Summary
Adds claude-sonnet-4.5 model to the platform and sets the price to 9

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] test the new claude-sonnet-4.5 model on the platform to make sure
it works
2025-09-30 19:30:58 +00:00
dependabot[bot]
8ac2228e1e chore(frontend/deps): Upgrade @sentry/nextjs from 9.42.0 to 10.8.0 (#10802)
Bumps [@sentry/nextjs](https://github.com/getsentry/sentry-javascript)
from 9.42.0 to 10.8.0.
<details>
<summary>Release notes</summary>
<p><em>Sourced from <a
href="https://github.com/getsentry/sentry-javascript/releases"><code>@​sentry/nextjs</code>'s
releases</a>.</em></p>
<blockquote>
<h2>10.8.0</h2>
<h3>Important Changes</h3>
<ul>
<li>
<p><strong>feat(sveltekit): Add Compatibility for builtin SvelteKit
Tracing (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17423">#17423</a>)</strong></p>
<p>This release makes the <code>@sentry/sveltekit</code> SDK compatible
with SvelteKit's native <a
href="https://svelte.dev/docs/kit/observability">observability
support</a> introduced in SvelteKit version <code>2.31.0</code>.
If you enable both, instrumentation and tracing, the SDK will now
initialize early enough to set up additional instrumentation like
database queries and it will pick up spans emitted from SvelteKit.</p>
<p>We will follow up with docs how to set up the SDK soon.
For now, If you're on SvelteKit version <code>2.31.0</code> or newer,
you can easily opt into the new feature:</p>
<ol>
<li>
<p>Enable <a
href="https://svelte.dev/docs/kit/observability">experimental tracing
and instrumentation support</a> in <code>svelte.config.js</code>:</p>
</li>
<li>
<p>Move your <code>Sentry.init()</code> call from
<code>src/hooks.server.(js|ts)</code> to the new
<code>instrumentation.server.(js|ts)</code> file:</p>
<pre lang="ts"><code>// instrumentation.server.ts
import * as Sentry from '@sentry/sveltekit';
<p>Sentry.init({<br />
dsn: '...',<br />
// rest of your config<br />
});<br />
</code></pre></p>
<p>The rest of your Sentry config in <code>hooks.server.ts</code>
(<code>sentryHandle</code> and <code>handleErrorWithSentry</code>)
should stay the same.</p>
</li>
</ol>
<p>If you prefer to stay on the hooks-file based config for now, the SDK
will continue to work as previously.</p>
<p>Thanks to the Svelte team and <a
href="https://github.com/elliott-with-the-longest-name-on-github"><code>@​elliott-with-the-longest-name-on-github</code></a>
for implementing observability support and for reviewing our PR!</p>
</li>
</ul>
<h3>Other Changes</h3>
<ul>
<li>fix(react): Avoid multiple name updates on navigation spans (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17438">#17438</a>)</li>
</ul>
<!-- raw HTML omitted -->
<ul>
<li>test(profiling): Add tests for current state of profiling (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17470">#17470</a>)</li>
</ul>
<!-- raw HTML omitted -->
<h2>Bundle size 📦</h2>
<table>
<thead>
<tr>
<th>Path</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>@​sentry/browser</code></td>
<td>23.59 KB</td>
</tr>
<tr>
<td><code>@​sentry/browser</code> - with treeshaking flags</td>
<td>22.2 KB</td>
</tr>
<tr>
<td><code>@​sentry/browser</code> (incl. Tracing)</td>
<td>38.94 KB</td>
</tr>
<tr>
<td><code>@​sentry/browser</code> (incl. Tracing, Replay)</td>
<td>76.4 KB</td>
</tr>
<tr>
<td><code>@​sentry/browser</code> (incl. Tracing, Replay) - with
treeshaking flags</td>
<td>66.43 KB</td>
</tr>
</tbody>
</table>
<!-- raw HTML omitted -->
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Changelog</summary>
<p><em>Sourced from <a
href="https://github.com/getsentry/sentry-javascript/blob/develop/CHANGELOG.md"><code>@​sentry/nextjs</code>'s
changelog</a>.</em></p>
<blockquote>
<h2>10.8.0</h2>
<h3>Important Changes</h3>
<ul>
<li>
<p><strong>feat(sveltekit): Add Compatibility for builtin SvelteKit
Tracing (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17423">#17423</a>)</strong></p>
<p>This release makes the <code>@sentry/sveltekit</code> SDK compatible
with SvelteKit's native <a
href="https://svelte.dev/docs/kit/observability">observability
support</a> introduced in SvelteKit version <code>2.31.0</code>.
If you enable both, instrumentation and tracing, the SDK will now
initialize early enough to set up additional instrumentation like
database queries and it will pick up spans emitted from SvelteKit.</p>
<p>We will follow up with docs how to set up the SDK soon.
For now, If you're on SvelteKit version <code>2.31.0</code> or newer,
you can easily opt into the new feature:</p>
<ol>
<li>
<p>Enable <a
href="https://svelte.dev/docs/kit/observability">experimental tracing
and instrumentation support</a> in <code>svelte.config.js</code>:</p>
</li>
<li>
<p>Move your <code>Sentry.init()</code> call from
<code>src/hooks.server.(js|ts)</code> to the new
<code>instrumentation.server.(js|ts)</code> file:</p>
<pre lang="ts"><code>// instrumentation.server.ts
import * as Sentry from '@sentry/sveltekit';
<p>Sentry.init({<br />
dsn: '...',<br />
// rest of your config<br />
});<br />
</code></pre></p>
<p>The rest of your Sentry config in <code>hooks.server.ts</code>
(<code>sentryHandle</code> and <code>handleErrorWithSentry</code>)
should stay the same.</p>
</li>
</ol>
<p>If you prefer to stay on the hooks-file based config for now, the SDK
will continue to work as previously.</p>
<p>Thanks to the Svelte team and <a
href="https://github.com/elliott-with-the-longest-name-on-github"><code>@​elliott-with-the-longest-name-on-github</code></a>
for implementing observability support and for reviewing our PR!</p>
</li>
</ul>
<h3>Other Changes</h3>
<ul>
<li>fix(react): Avoid multiple name updates on navigation spans (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17438">#17438</a>)</li>
</ul>
<!-- raw HTML omitted -->
<ul>
<li>test(profiling): Add tests for current state of profiling (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17470">#17470</a>)</li>
</ul>
<!-- raw HTML omitted -->
<h2>10.7.0</h2>
<h3>Important Changes</h3>
<ul>
<li><strong>feat(cloudflare): Add
<code>instrumentPrototypeMethods</code> option to instrument RPC methods
for DurableObjects (<a
href="https://redirect.github.com/getsentry/sentry-javascript/pull/17424">#17424</a>)</strong></li>
</ul>
<p>By default, <code>Sentry.instrumentDurableObjectWithSentry</code>
will not wrap any RPC methods on the prototype. To enable wrapping for
RPC methods, set <code>instrumentPrototypeMethods</code> to
<code>true</code> or, if performance is a concern, a list of only the
methods you want to instrument:</p>
<pre lang="js"><code>&lt;/tr&gt;&lt;/table&gt; 
</code></pre>
</blockquote>
<p>... (truncated)</p>
</details>
<details>
<summary>Commits</summary>
<ul>
<li><a
href="bd8458e659"><code>bd8458e</code></a>
release: 10.8.0</li>
<li><a
href="dbdddc896f"><code>dbdddc8</code></a>
Merge pull request <a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17481">#17481</a>
from getsentry/prepare-release/10.8.0</li>
<li><a
href="f5d4bd616e"><code>f5d4bd6</code></a>
meta(changelog): Update changelog for 10.8.0</li>
<li><a
href="dfdc3b0ab9"><code>dfdc3b0</code></a>
test(profiling): Add tests for current state of profiling (<a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17470">#17470</a>)</li>
<li><a
href="895b38590c"><code>895b385</code></a>
fix(react): Avoid multiple name updates on navigation spans (<a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17438">#17438</a>)</li>
<li><a
href="e6e20d847c"><code>e6e20d8</code></a>
feat(sveltekit): Add Compatibility for builtin SvelteKit Tracing (<a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17423">#17423</a>)</li>
<li><a
href="7e24422327"><code>7e24422</code></a>
Merge pull request <a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17472">#17472</a>
from getsentry/master</li>
<li><a
href="27e97b0cec"><code>27e97b0</code></a>
Merge branch 'release/10.7.0'</li>
<li><a
href="b7e4816824"><code>b7e4816</code></a>
release: 10.7.0</li>
<li><a
href="0bc8417d50"><code>0bc8417</code></a>
Merge pull request <a
href="https://redirect.github.com/getsentry/sentry-javascript/issues/17471">#17471</a>
from getsentry/prepare-release/10.7.0</li>
<li>Additional commits viewable in <a
href="https://github.com/getsentry/sentry-javascript/compare/9.42.0...10.8.0">compare
view</a></li>
</ul>
</details>
<br />


[![Dependabot compatibility
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=@sentry/nextjs&package-manager=npm_and_yarn&previous-version=9.42.0&new-version=10.8.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)

Dependabot will resolve any conflicts with this PR as long as you don't
alter it yourself. You can also trigger a rebase manually by commenting
`@dependabot rebase`.

[//]: # (dependabot-automerge-start)
[//]: # (dependabot-automerge-end)

---

<details>
<summary>Dependabot commands and options</summary>
<br />

You can trigger Dependabot actions by commenting on this PR:
- `@dependabot rebase` will rebase this PR
- `@dependabot recreate` will recreate this PR, overwriting any edits
that have been made to it
- `@dependabot merge` will merge this PR after your CI passes on it
- `@dependabot squash and merge` will squash and merge this PR after
your CI passes on it
- `@dependabot cancel merge` will cancel a previously requested merge
and block automerging
- `@dependabot reopen` will reopen this PR if it is closed
- `@dependabot close` will close this PR and stop Dependabot recreating
it. You can achieve the same result by closing it manually
- `@dependabot show <dependency name> ignore conditions` will show all
of the ignore conditions of the specified dependency
- `@dependabot ignore this major version` will close this PR and stop
Dependabot creating any more for this major version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this minor version` will close this PR and stop
Dependabot creating any more for this minor version (unless you reopen
the PR or upgrade to it yourself)
- `@dependabot ignore this dependency` will close this PR and stop
Dependabot creating any more for this dependency (unless you reopen the
PR or upgrade to it yourself)


</details>

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Upgrades `@sentry/nextjs` to 10.15.0, updating numerous related
`@sentry/*`, OpenTelemetry (v2), and build/dev dependencies via the
lockfile.
> 
> - **Dependencies (frontend)**:
>   - Upgrade `@sentry/nextjs` from `9.42.0` to `10.15.0`.
>   - Cascading updates in `pnpm-lock.yaml`:
> - `@sentry/*` packages (`browser`, `core`, `node`, `opentelemetry`,
`react`, `vercel-edge`, `webpack-plugin`, `bundler-plugin-core`, `cli`,
etc.).
> - OpenTelemetry stack to newer major versions
(`@opentelemetry/core`/`resources`/`sdk-trace-base` 2.x; multiple
`instrumentation-*` packages).
> - Build tooling: `rollup` 4.52.x and platform binaries;
`@rollup/plugin-*`.
> - Misc dev typings and utilities (e.g., `@types/mysql`, `@types/pg`,
`debug`, `@prisma/instrumentation`).
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
5b4b37e551. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2025-09-30 16:42:05 +00:00
Zamil Majdy
91dd9364bb fix(backend): implement retry mechanism for SmartDecisionMaker tool call validation (#11015)
<!-- Clearly explain the need for these changes: -->

This PR fixes a critical production issue where SmartDecisionMakerBlock
was silently accepting tool calls with typo'd parameter names (e.g.,
'maximum_keyword_difficulty' instead of 'max_keyword_difficulty'),
causing downstream blocks to receive null values and execution failures.

The solution implements comprehensive parameter validation with
automatic retry when the LLM provides malformed tool calls, giving the
LLM specific feedback to correct the errors.

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

**Core Validation & Retry Logic
(`backend/blocks/smart_decision_maker.py`)**
- Add tool call parameter validation against function schema
- Implement retry mechanism using existing `create_retry_decorator` from
`backend.util.retry`
- Validate provided parameters against expected schema properties and
required fields
- Generate specific error messages for unknown parameters (typos) and
missing required parameters
- Add error feedback to conversation history for LLM learning on retry
attempts
- Use `input_data.retry` field to configure number of retry attempts

**Comprehensive Test Coverage
(`backend/blocks/test/test_smart_decision_maker.py`)**
- Add `test_smart_decision_maker_parameter_validation` with 4
comprehensive test scenarios:
1. Tool call with typo'd parameter (should retry and eventually fail
with clear error)
2. Tool call missing required parameter (should fail immediately with
clear error)
  3. Valid tool call with optional parameter missing (should succeed)
  4. Valid tool call with all parameters provided (should succeed)
- Verify retry mechanism works correctly and respects retry count
- Mock LLM responses for controlled testing of validation logic

**Load Tests Documentation Update (`load-tests/README.md`)**
- Update documentation to reflect current orchestrator-based
architecture
- Remove references to deprecated `run-tests.js` and
`comprehensive-orchestrator.js`
- Streamline documentation to focus on working
`orchestrator/orchestrator.js`
- Update NPM scripts and command examples for current workflow
- Clean up outdated file references to match actual infrastructure

**Production Impact**
- **Prevents silent failures**: Tool call parameter typos now cause
retries instead of null downstream values
- **Maintains compatibility**: No breaking changes to existing
SmartDecisionMaker functionality
- **Improves reliability**: LLM receives feedback to correct parameter
errors
- **Configurable retries**: Uses existing `retry` field for user control
- **Accurate documentation**: Load-tests docs now match actual working
infrastructure

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
- [x] Run existing SmartDecisionMaker tests to ensure no regressions:
`poetry run pytest backend/blocks/test/test_smart_decision_maker.py
-xvs`  All 4 tests passed
- [x] Run new parameter validation test specifically: `poetry run pytest
backend/blocks/test/test_smart_decision_maker.py::test_smart_decision_maker_parameter_validation
-xvs`  Passed with retry behavior confirmed
- [x] Verify retry mechanism works by checking log output for retry
attempts  Confirmed in test logs
- [x] Test tool call validation with different scenarios (typos, missing
params, valid calls)  All scenarios covered and working
- [x] Run code formatting and linting: `poetry run format`  All
formatters passed
- [x] Verify no breaking changes to existing SmartDecisionMaker
functionality  All existing tests pass
- [x] Verify load-tests documentation accuracy  README now matches
actual orchestrator infrastructure

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

**Note**: No configuration changes were needed as this uses existing
retry infrastructure and block schema validation.

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-30 16:18:05 +00:00
Zamil Majdy
f314fbf14f fix(backend): resolve two critical long-running agent execution failures (#11011)
## Summary

Fix two production issues causing agent execution failures that occurred
this morning:

1. **AsyncRedisLock Release Error** (ExecutionID:
08b2c251-ee27-45de-b88d-1792823ca3ee)
   - Error: "Cannot release a lock that's no longer owned" 
- Root cause: Race condition where lock expires during long database
operations
   - Location: backend/executor/manager.py synchronized context manager

2. **Tool Call Parameter Validation** (ExecutionID:
766fd9a0-5f22-4a77-96e8-14c9d02f3292)
- Issue: LLM used typo'd parameter 'maximum_keyword_difficulty' instead
of 'max_keyword_difficulty'
- SmartDecisionMakerBlock silently accepted typo, setting correct
parameter to null
- Result: Downstream blocks received null values causing execution
failures

## Changes Made

### AsyncRedisLock Error Handling
- Add try-catch blocks around AsyncRedisLock.release() calls in
ExecutionManager and OAuth refresh
- Prevent crashes when locks expire between ownership check and release
- Log warnings instead of crashing execution

### Tool Call Parameter Validation  
- **Reject unknown parameters**: Raise ValueError for typo'd parameter
names with detailed error messages
- **Allow optional parameters**: Only validate missing REQUIRED
parameters
- **Safe parameter access**: Use .get() to handle optional parameters
with defaults
- **Clean code**: Extract parameters object once to eliminate
duplication

## Technical Implementation

**Lock Release Protection:**
```python
if await lock.locked() and await lock.owned():
    try:
        await lock.release()
    except Exception as e:
        logger.warning(f"Failed to release lock for key {key}: {e}")
```

**Parameter Validation Logic:**
```python
# Get parameters schema from tool definition  
if tool_def and "function" in tool_def and "parameters" in tool_def["function"]:
    parameters = tool_def["function"]["parameters"]
    expected_args = parameters.get("properties", {})
    required_params = set(parameters.get("required", []))

# Detect parameter typos and missing required params
unexpected_args = provided_args - expected_args_set  
missing_required_args = required_params - provided_args

if unexpected_args or missing_required_args:
    raise ValueError(error_msg)  # Detailed error explaining the problem
```

## Testing

- [x] All existing tests pass
- [x] Lock error handling prevents execution crashes  
- [x] Tool validation catches typos while allowing optional parameters
- [x] Maintains backward compatibility with existing workflows

## Impact

-  No more "Cannot release a lock" crashes during long database
operations
-  Tool calls with typo'd parameters are rejected with clear error
messages
-  Optional parameters work correctly with default values  
-  Production stability improved with graceful error handling

## Files Modified

- `backend/executor/manager.py` - AsyncRedisLock error handling in
synchronized context
- `backend/integrations/creds_manager.py` - OAuth refresh lock error
handling
- `backend/blocks/smart_decision_maker.py` - Tool call parameter
validation with typo detection

Fixes two critical production failures that were causing 2/5 agent runs
to fail this morning.

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-29 15:34:20 +00:00
Swifty
b3443e0549 fixing tests 2025-09-29 10:58:23 +02:00
Swifty
b1364b1701 fixed test 2025-09-29 10:45:55 +02:00
Swifty
95d66a035c invalidating cache for favoriates 2025-09-29 10:40:02 +02:00
Swifty
30cdf9f0d9 fix merge error 2025-09-29 09:55:34 +02:00
Swifty
e47f0e7f2f Merge branch 'swiftyos/caching-pt2' of https://github.com/Significant-Gravitas/AutoGPT into swiftyos/caching-pt2 2025-09-29 09:46:55 +02:00
Swifty
13d71464a0 Merge branch 'dev' into swiftyos/caching-pt2 2025-09-29 09:46:34 +02:00
Zamil Majdy
a97ff641c3 feat(backend): optimize FastAPI endpoints performance and alert system (#11000)
## Summary

Comprehensive performance optimization fixing event loop binding issues
and addressing all PR feedback.

### Original Performance Issues Fixed

**Event Loop Binding Problems:**
- JWT authentication dependencies were synchronous, causing thread pool
bottlenecks under high concurrency
- FastAPI's default thread pool (40 threads) was insufficient for
high-load scenarios
- Backend services lacked proper event loop configuration

**Security & Performance Improvements:**
- Security middleware converted from BaseHTTPMiddleware to pure ASGI for
better performance
- Added blocks endpoint to cacheable paths for improved response times
- Cross-platform uvloop detection with Windows compatibility

### Key Changes Made

#### 1. JWT Authentication Async Conversion
- **Files**: `autogpt_libs/auth/dependencies.py`,
`autogpt_libs/auth/jwt_utils.py`
- **Change**: Convert all JWT functions to async (`requires_user`,
`requires_admin_user`, `get_user_id`, `get_jwt_payload`)
- **Impact**: Eliminates thread pool blocking, improves concurrency
handling
- **Tests**: All 25+ authentication tests updated to async patterns

#### 2. FastAPI Thread Pool Optimization  
- **File**: `backend/server/rest_api.py:82-93`
- **Change**: Configure thread pool size via
`config.fastapi_thread_pool_size`
- **Default**: Increased from 40 to higher limit for sync operations
- **Impact**: Better handling of remaining sync dependencies

#### 3. Performance-Optimized Security Middleware
- **File**: `backend/server/middleware/security.py`
- **Change**: Pure ASGI implementation replacing BaseHTTPMiddleware
- **Headers**: HTTP spec compliant capitalization
(X-Content-Type-Options, X-Frame-Options, etc.)
- **Caching**: Added `/api/blocks` and `/api/v1/blocks` to cacheable
paths
- **Impact**: Reduced middleware overhead, improved header compliance

#### 4. Cross-Platform Event Loop Configuration
- **File**: `backend/server/rest_api.py:311-312`
- **Change**: Platform-aware uvloop detection: `'uvloop' if
platform.system() != 'Windows' else 'auto'`
- **Impact**: Windows compatibility while maintaining Unix performance
benefits
- **Verified**: 'auto' is valid uvicorn default parameter

#### 5. Enhanced Caching Infrastructure
- **File**: `autogpt_libs/utils/cache.py:118-132`
- **Change**: Per-event-loop asyncio.Lock instances prevent cross-loop
deadlocks
- **Impact**: Thread-safe caching across multiple event loops

#### 6. Database Query Limits & Performance
- **Files**: Multiple data layer files
- **Change**: Added configurable limits to prevent unbounded queries
- **Constants**: `MAX_GRAPH_VERSIONS_FETCH=50`,
`MAX_USER_API_KEYS_FETCH=500`, etc.
- **Impact**: Consistent performance regardless of data volume

#### 7. OpenAPI Documentation Improvements
- **File**: `backend/server/routers/v1.py:68-85`
- **Change**: Added proper response model and schema for blocks endpoint
- **Impact**: Better API documentation and type safety

#### 8. Error Handling & Retry Logic Fixes
- **File**: `backend/util/retry.py:63`
- **Change**: Accurate retry threshold comments referencing
EXCESSIVE_RETRY_THRESHOLD
- **Impact**: Clear documentation for debugging retry scenarios

### ntindle Feedback Addressed

 **HTTP Header Capitalization**: All headers now use proper HTTP spec
capitalization
 **Windows uvloop Compatibility**: Clean platform detection with inline
conditional
 **OpenAPI Response Model**: Blocks endpoint properly documented in
schema
 **Retry Comment Accuracy**: References actual threshold constants
instead of hardcoded numbers
 **Code Cleanliness**: Inline conditionals preferred over verbose if
statements

### Performance Testing Results

**Before Optimization:**
- High latency under concurrent load
- Thread pool exhaustion at ~40 concurrent requests
- Event loop binding issues causing timeouts

**After Optimization:**
- Improved concurrency handling with async JWT pipeline
- Configurable thread pool scaling
- Cross-platform event loop optimization
- Reduced middleware overhead

### Backward Compatibility

 **All existing functionality preserved**  
 **No breaking API changes**  
 **Enhanced test coverage with async patterns**  
 **Windows and Unix compatibility maintained**

### Files Modified

**Core Authentication & Performance:**
- `autogpt_libs/auth/dependencies.py` - Async JWT dependencies
- `autogpt_libs/auth/jwt_utils.py` - Async JWT utilities  
- `backend/server/rest_api.py` - Thread pool config + uvloop detection
- `backend/server/middleware/security.py` - ASGI security middleware

**Database & Limits:**
- `backend/data/includes.py` - Performance constants and configurable
includes
- `backend/data/api_key.py`, `backend/data/credit.py`,
`backend/data/graph.py`, `backend/data/integrations.py` - Query limits

**Caching & Infrastructure:**
- `autogpt_libs/utils/cache.py` - Per-event-loop lock safety
- `backend/server/routers/v1.py` - OpenAPI improvements
- `backend/util/retry.py` - Comment accuracy

**Testing:**
- `autogpt_libs/auth/dependencies_test.py` - 25+ async test conversions
- `autogpt_libs/auth/jwt_utils_test.py` - Async JWT test patterns

Ready for review and production deployment. 🚀

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-29 05:32:48 +00:00
Zamil Majdy
114f604d7b Merge branch 'master' of github.com:Significant-Gravitas/AutoGPT into dev 2025-09-27 18:43:26 +07:00
Zamil Majdy
3abea1ed96 fix(backend): prevent duplicate graph executions across multiple executor pods (#11008)
## Problem
Multiple executor pods could simultaneously execute the same graph,
leading to:
- Duplicate executions and wasted resources
- Inconsistent execution states and results
- Race conditions in graph execution management
- Inefficient resource utilization in cluster environments

## Solution
Implement distributed locking using ClusterLock to ensure only one
executor pod can process a specific graph execution at a time.

## Key Changes

### Core Fix: Distributed Execution Coordination
- **ClusterLock implementation**: Redis-based distributed locking
prevents duplicate executions
- **Atomic lock acquisition**: Only one executor can hold the lock for a
specific graph execution
- **Automatic lock expiry**: Prevents deadlocks if executor pods crash
or become unresponsive
- **Graceful degradation**: System continues operating even if Redis
becomes temporarily unavailable

### Technical Implementation
- Move ClusterLock to `backend/executor/` alongside ExecutionManager
(its primary consumer)
- Comprehensive integration tests (27 test scenarios) ensure reliability
under all conditions
- Redis client compatibility for different deployment configurations
- Rate-limited lock refresh to minimize Redis load

### Reliability Improvements
- **Context manager support**: Automatic lock cleanup prevents resource
leaks
- **Ownership verification**: Locks can only be refreshed/released by
the owner
- **Concurrency testing**: Thread-safe operations verified under high
contention
- **Error handling**: Robust failure scenarios including network
partitions

## Test Coverage
-  Concurrent executor coordination (prevents duplicate executions)
-  Lock expiry and refresh mechanisms (prevents deadlocks)
-  Redis connection failures (graceful degradation)
-  Thread safety under high load (production scenarios)
-  Long-running executions with periodic refresh

## Impact
- **No more duplicate executions**: Eliminates wasted compute resources
and inconsistent results
- **Improved reliability**: Robust distributed coordination across
executor pods
- **Better resource utilization**: Only one pod processes each execution
- **Scalable architecture**: Supports multiple executor pods without
conflicts

## Validation
- All integration tests pass 
- Existing ExecutionManager functionality preserved   
- No breaking changes to APIs 
- Production-ready distributed locking 

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>

---------

Co-authored-by: Claude <noreply@anthropic.com>
2025-09-27 11:42:40 +00:00
Abhimanyu Yadav
da6e1ad26d refactor(frontend): enhance builder UI for better performance (#10922)
### Changes 🏗️

This PR introduces a new high-performance builder interface for the
AutoGPT platform, implementing a React Flow-based visual editor with
optimized state management and rendering.

#### Key Changes:

1. **New Flow Editor Implementation**
   - Built on React Flow for efficient graph rendering and interaction
- Implements a node-based visual workflow builder with custom nodes and
edges
- Dynamic form generation using React JSON Schema Form (RJSF) for block
inputs
   - Intelligent connection handling with visual feedback

2. **State Management Optimization**  
   - Added Zustand for lightweight, performant state management
   - Separated node and edge stores for better data isolation
   - Reduced unnecessary re-renders through granular state updates

3. **Dual Builder View (Temporary)**
   - Added toggle between old and new builder implementations
   - Allows A/B testing and gradual migration
   - Feature flagged for controlled rollout

4. **Enhanced UI Components**
- Custom form widgets for various input types (date, time, file, etc.)
   - Array and object editors with improved UX
   - Connection handles with visual state indicators
   - Advanced mode toggle for complex configurations

5. **Architecture Improvements**
   - Modular component structure for better code organization
   - Comprehensive documentation for the new system
   - Type-safe implementation with TypeScript

#### Dependencies Added:
- `zustand` (v5.0.2) - State management
- `@rjsf/core` (v5.22.8) - JSON Schema Form core
- `@rjsf/utils` (v5.22.8) - RJSF utilities  
- `@rjsf/validator-ajv8` (v5.22.8) - Schema validation

### Performance Improvements 🚀

- **Reduced Re-renders**: Zustand's shallow comparison and selective
subscriptions minimize unnecessary component updates
- **Optimized Graph Rendering**: React Flow provides efficient
canvas-based rendering for large workflows
- **Lazy Loading**: Components are loaded on-demand reducing initial
bundle size
- **Memoized Computations**: Heavy calculations are cached to avoid
redundant processing

### Test Plan 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  
#### Test Checklist:
- [x] Create a new agent from scratch with at least 5 blocks
- [x] Connect blocks and verify connections render correctly
- [x] Switch between old and new builder views 
- [x] Test all form input types (text, number, boolean, array, object)
- [x] Verify data persistence when switching views
- [x] Test advanced mode toggle functionality
- [x] Performance test with 50+ blocks to verify smooth interaction

### Migration Strategy

The implementation includes a temporary toggle to switch between the old
and new builder. This allows for:
- Gradual user migration
- A/B testing to measure performance improvements
- Fallback option if issues are discovered
- Collecting user feedback before full rollout

### Documentation

Comprehensive documentation has been added:
- `/components/FlowEditor/docs/README.md` - Architecture overview and
store management
- `/components/FlowEditor/docs/FORM_CREATOR.md` - Detailed form system
documentation

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Claude <noreply@anthropic.com>
2025-09-26 10:42:05 +00:00
Swifty
634fffb967 fix(blocks): Handle NoneType in DataForSEO Blocks and Add missing Err (#11004)
This PR fixes critical issues in the DataForSEO blocks to improve error
handling and prevent runtime exceptions.

### Changes 🏗️

1. **Fixed NoneType error in DataForSEO Related Keywords Block**
(#10990)
- Added null check to ensure `items` is always a list before iteration
   - Prevents TypeError when API returns None for items field
   - Ensures robust handling of unexpected API responses

2. **Added error output pins to DataForSEO blocks** (#10981)
- Added `error` field to Output schema in both `related_keywords.py` and
`keyword_suggestions.py`
   - Wrapped entire `run` methods in try-except blocks
- Errors are now properly yielded to the error output pin, allowing
agents to handle failures gracefully

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified that DataForSEO blocks handle None responses without
throwing TypeError
- [x] Confirmed error output pins capture and yield exceptions properly
- [x] Ensured backwards compatibility with existing block
implementations
  - [x] Tested both Related Keywords and Keyword Suggestions blocks

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---

Fixes #10990
Fixes #10981

Generated with [Claude Code](https://claude.ai/code)

<!-- Clearly explain the need for these changes: -->

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [ ] I have clearly listed my changes in the PR description
- [ ] I have made a test plan
- [ ] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [ ] ...

<details>
  <summary>Example test plan</summary>
  
  - [ ] Create from scratch and execute an agent with at least 3 blocks
- [ ] Import an agent from file upload, and confirm it executes
correctly
  - [ ] Upload agent to marketplace
- [ ] Import an agent from marketplace and confirm it executes correctly
  - [ ] Edit an agent from monitor, and confirm it executes correctly
</details>

#### For configuration changes:

- [ ] `.env.default` is updated or already compatible with my changes
- [ ] `docker-compose.yml` is updated or already compatible with my
changes
- [ ] I have included a list of my configuration changes in the PR
description (under **Changes**)

<details>
  <summary>Examples of configuration changes</summary>

  - Changing ports
  - Adding new services that need to communicate with each other
  - Secrets or environment variable changes
  - New or infrastructure changes such as databases
</details>

Co-authored-by: Toran Bruce Richards <toran.richards@gmail.com>
2025-09-26 11:23:14 +02:00
Swifty
be1947f6d1 Merge branch 'dev' into swiftyos/caching-pt2 2025-09-26 10:37:42 +02:00
Toran Bruce Richards
f3ec426c82 fix(blocks): Handle NoneType in DataForSEO Blocks and Add missing Error pins (#10995)
This PR fixes critical issues in the DataForSEO blocks to improve error
handling and prevent runtime exceptions.

### Changes 🏗️

1. **Fixed NoneType error in DataForSEO Related Keywords Block**
(#10990)
- Added null check to ensure `items` is always a list before iteration
   - Prevents TypeError when API returns None for items field
   - Ensures robust handling of unexpected API responses

2. **Added error output pins to DataForSEO blocks** (#10981)
- Added `error` field to Output schema in both `related_keywords.py` and
`keyword_suggestions.py`
   - Wrapped entire `run` methods in try-except blocks
- Errors are now properly yielded to the error output pin, allowing
agents to handle failures gracefully

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified that DataForSEO blocks handle None responses without
throwing TypeError
- [x] Confirmed error output pins capture and yield exceptions properly
- [x] Ensured backwards compatibility with existing block
implementations
  - [x] Tested both Related Keywords and Keyword Suggestions blocks

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---

Fixes #10990
Fixes #10981

Generated with [Claude Code](https://claude.ai/code)
2025-09-25 20:22:10 +00:00
Swifty
1afebcf96b fix test 2025-09-25 15:34:47 +02:00
Swifty
d124c93ff8 Merge branch 'dev' into swiftyos/caching-pt2 2025-09-25 15:34:21 +02:00
Swifty
bc5eb8a8a5 updated caching invalidation rules 2025-09-25 15:26:51 +02:00
Swifty
872ef5fdfb fmt 2025-09-25 13:31:18 +02:00
Swifty
12382e7990 fix duplicated caching code 2025-09-25 13:31:13 +02:00
Swifty
d68a3a1b53 fixed caching when saving an agent 2025-09-25 12:57:52 +02:00
Swifty
863e213af3 fixed caching when adding agent from library 2025-09-25 12:57:40 +02:00
Swifty
c61af53a74 Merge remote-tracking branch 'origin/dev' into swiftyos/caching-pt2 2025-09-25 12:04:07 +02:00
Swifty
eb94503de8 fix(backend): prevent caching of None graph results to handle dynamic permissions
When a graph is not found/accessible, we now clear the cache entry rather than
caching the None result. This prevents issues with store listing permissions
where a graph becomes accessible after approval but the cache still returns
the old 'not found' result.
2025-09-24 18:08:13 +02:00
Swifty
ee4feff8c2 fix(backend): include subgraphs in cached graph retrieval
The cached graph function was missing include_subgraphs=True parameter which
is needed to construct full credentials input schema. This was causing
test_access_store_listing_graph to fail.
2025-09-24 16:51:20 +02:00
Swifty
9147c2d6c8 fix(backend): update library favorites test to mock cache function instead of db
The test was failing because routes now use cached functions. Updated the mock
to patch the cache function which is what the route actually calls.
2025-09-24 16:38:07 +02:00
Swifty
a3af430c69 feat(backend): implement comprehensive caching layer for all GET endpoints (Part 2)
- Created separate cache.py modules for better code organization
  - backend/server/routers/cache.py for V1 API endpoints
  - backend/server/v2/library/cache.py for library endpoints
  - backend/server/v2/store/cache.py (refactored from routes)

- Added caching to all major GET endpoints:
  - Graphs list/details with 15-30 min TTL
  - Graph executions with 5 min TTL
  - User preferences/timezone with 30-60 min TTL
  - Library agents/favorites/presets with 10-30 min TTL
  - Store listings/profiles with 5-60 min TTL

- Implemented intelligent cache invalidation:
  - Clears relevant caches on CREATE/UPDATE/DELETE operations
  - Uses positional arguments for cache_delete to match function calls
  - Selective caching only for default queries (bypasses cache for filtered/searched results)

- Added comprehensive test coverage:
  - 20 cache-specific tests all passing
  - Validates cache hit/miss behavior
  - Verifies invalidation on mutations

- Performance improvements:
  - Reduces database load for frequently accessed data
  - Built-in thundering herd protection via @cached decorator
  - Configurable TTLs based on data volatility
2025-09-24 16:20:19 +02:00
239 changed files with 15598 additions and 3915 deletions

View File

@@ -217,6 +217,9 @@ jobs:
- name: Install dependencies
run: pnpm install --frozen-lockfile
- name: Generate API client
run: pnpm generate:api
- name: Install Browser 'chromium'
run: pnpm playwright install --with-deps chromium

View File

@@ -1,6 +1,3 @@
[pr_reviewer]
num_code_suggestions=0
[pr_code_suggestions]
commitable_code_suggestions=false
num_code_suggestions=0

View File

@@ -10,7 +10,7 @@ from .jwt_utils import get_jwt_payload, verify_user
from .models import User
def requires_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User:
async def requires_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User:
"""
FastAPI dependency that requires a valid authenticated user.
@@ -20,7 +20,9 @@ def requires_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User
return verify_user(jwt_payload, admin_only=False)
def requires_admin_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User:
async def requires_admin_user(
jwt_payload: dict = fastapi.Security(get_jwt_payload),
) -> User:
"""
FastAPI dependency that requires a valid admin user.
@@ -30,7 +32,7 @@ def requires_admin_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -
return verify_user(jwt_payload, admin_only=True)
def get_user_id(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> str:
async def get_user_id(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> str:
"""
FastAPI dependency that returns the ID of the authenticated user.

View File

@@ -45,7 +45,7 @@ class TestAuthDependencies:
"""Create a test client."""
return TestClient(app)
def test_requires_user_with_valid_jwt_payload(self, mocker: MockerFixture):
async def test_requires_user_with_valid_jwt_payload(self, mocker: MockerFixture):
"""Test requires_user with valid JWT payload."""
jwt_payload = {"sub": "user-123", "role": "user", "email": "user@example.com"}
@@ -53,12 +53,12 @@ class TestAuthDependencies:
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = requires_user(jwt_payload)
user = await requires_user(jwt_payload)
assert isinstance(user, User)
assert user.user_id == "user-123"
assert user.role == "user"
def test_requires_user_with_admin_jwt_payload(self, mocker: MockerFixture):
async def test_requires_user_with_admin_jwt_payload(self, mocker: MockerFixture):
"""Test requires_user accepts admin users."""
jwt_payload = {
"sub": "admin-456",
@@ -69,28 +69,28 @@ class TestAuthDependencies:
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = requires_user(jwt_payload)
user = await requires_user(jwt_payload)
assert user.user_id == "admin-456"
assert user.role == "admin"
def test_requires_user_missing_sub(self):
async def test_requires_user_missing_sub(self):
"""Test requires_user with missing user ID."""
jwt_payload = {"role": "user", "email": "user@example.com"}
with pytest.raises(HTTPException) as exc_info:
requires_user(jwt_payload)
await requires_user(jwt_payload)
assert exc_info.value.status_code == 401
assert "User ID not found" in exc_info.value.detail
def test_requires_user_empty_sub(self):
async def test_requires_user_empty_sub(self):
"""Test requires_user with empty user ID."""
jwt_payload = {"sub": "", "role": "user"}
with pytest.raises(HTTPException) as exc_info:
requires_user(jwt_payload)
await requires_user(jwt_payload)
assert exc_info.value.status_code == 401
def test_requires_admin_user_with_admin(self, mocker: MockerFixture):
async def test_requires_admin_user_with_admin(self, mocker: MockerFixture):
"""Test requires_admin_user with admin role."""
jwt_payload = {
"sub": "admin-789",
@@ -101,51 +101,51 @@ class TestAuthDependencies:
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = requires_admin_user(jwt_payload)
user = await requires_admin_user(jwt_payload)
assert user.user_id == "admin-789"
assert user.role == "admin"
def test_requires_admin_user_with_regular_user(self):
async def test_requires_admin_user_with_regular_user(self):
"""Test requires_admin_user rejects regular users."""
jwt_payload = {"sub": "user-123", "role": "user", "email": "user@example.com"}
with pytest.raises(HTTPException) as exc_info:
requires_admin_user(jwt_payload)
await requires_admin_user(jwt_payload)
assert exc_info.value.status_code == 403
assert "Admin access required" in exc_info.value.detail
def test_requires_admin_user_missing_role(self):
async def test_requires_admin_user_missing_role(self):
"""Test requires_admin_user with missing role."""
jwt_payload = {"sub": "user-123", "email": "user@example.com"}
with pytest.raises(KeyError):
requires_admin_user(jwt_payload)
await requires_admin_user(jwt_payload)
def test_get_user_id_with_valid_payload(self, mocker: MockerFixture):
async def test_get_user_id_with_valid_payload(self, mocker: MockerFixture):
"""Test get_user_id extracts user ID correctly."""
jwt_payload = {"sub": "user-id-xyz", "role": "user"}
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user_id = get_user_id(jwt_payload)
user_id = await get_user_id(jwt_payload)
assert user_id == "user-id-xyz"
def test_get_user_id_missing_sub(self):
async def test_get_user_id_missing_sub(self):
"""Test get_user_id with missing user ID."""
jwt_payload = {"role": "user"}
with pytest.raises(HTTPException) as exc_info:
get_user_id(jwt_payload)
await get_user_id(jwt_payload)
assert exc_info.value.status_code == 401
assert "User ID not found" in exc_info.value.detail
def test_get_user_id_none_sub(self):
async def test_get_user_id_none_sub(self):
"""Test get_user_id with None user ID."""
jwt_payload = {"sub": None, "role": "user"}
with pytest.raises(HTTPException) as exc_info:
get_user_id(jwt_payload)
await get_user_id(jwt_payload)
assert exc_info.value.status_code == 401
@@ -170,7 +170,7 @@ class TestAuthDependenciesIntegration:
return _create_token
def test_endpoint_auth_enabled_no_token(self):
async def test_endpoint_auth_enabled_no_token(self):
"""Test endpoints require token when auth is enabled."""
app = FastAPI()
@@ -184,7 +184,7 @@ class TestAuthDependenciesIntegration:
response = client.get("/test")
assert response.status_code == 401
def test_endpoint_with_valid_token(self, create_token):
async def test_endpoint_with_valid_token(self, create_token):
"""Test endpoint with valid JWT token."""
app = FastAPI()
@@ -203,7 +203,7 @@ class TestAuthDependenciesIntegration:
assert response.status_code == 200
assert response.json()["user_id"] == "test-user"
def test_admin_endpoint_requires_admin_role(self, create_token):
async def test_admin_endpoint_requires_admin_role(self, create_token):
"""Test admin endpoint rejects non-admin users."""
app = FastAPI()
@@ -240,7 +240,7 @@ class TestAuthDependenciesIntegration:
class TestAuthDependenciesEdgeCases:
"""Edge case tests for authentication dependencies."""
def test_dependency_with_complex_payload(self):
async def test_dependency_with_complex_payload(self):
"""Test dependencies handle complex JWT payloads."""
complex_payload = {
"sub": "user-123",
@@ -256,14 +256,14 @@ class TestAuthDependenciesEdgeCases:
"exp": 9999999999,
}
user = requires_user(complex_payload)
user = await requires_user(complex_payload)
assert user.user_id == "user-123"
assert user.email == "test@example.com"
admin = requires_admin_user(complex_payload)
admin = await requires_admin_user(complex_payload)
assert admin.role == "admin"
def test_dependency_with_unicode_in_payload(self):
async def test_dependency_with_unicode_in_payload(self):
"""Test dependencies handle unicode in JWT payloads."""
unicode_payload = {
"sub": "user-😀-123",
@@ -272,11 +272,11 @@ class TestAuthDependenciesEdgeCases:
"name": "日本語",
}
user = requires_user(unicode_payload)
user = await requires_user(unicode_payload)
assert "😀" in user.user_id
assert user.email == "测试@example.com"
def test_dependency_with_null_values(self):
async def test_dependency_with_null_values(self):
"""Test dependencies handle null values in payload."""
null_payload = {
"sub": "user-123",
@@ -286,18 +286,18 @@ class TestAuthDependenciesEdgeCases:
"metadata": None,
}
user = requires_user(null_payload)
user = await requires_user(null_payload)
assert user.user_id == "user-123"
assert user.email is None
def test_concurrent_requests_isolation(self):
async def test_concurrent_requests_isolation(self):
"""Test that concurrent requests don't interfere with each other."""
payload1 = {"sub": "user-1", "role": "user"}
payload2 = {"sub": "user-2", "role": "admin"}
# Simulate concurrent processing
user1 = requires_user(payload1)
user2 = requires_admin_user(payload2)
user1 = await requires_user(payload1)
user2 = await requires_admin_user(payload2)
assert user1.user_id == "user-1"
assert user2.user_id == "user-2"
@@ -314,7 +314,7 @@ class TestAuthDependenciesEdgeCases:
({"sub": "user", "role": "user"}, "Admin access required", True),
],
)
def test_dependency_error_cases(
async def test_dependency_error_cases(
self, payload, expected_error: str, admin_only: bool
):
"""Test that errors propagate correctly through dependencies."""
@@ -325,7 +325,7 @@ class TestAuthDependenciesEdgeCases:
verify_user(payload, admin_only=admin_only)
assert expected_error in exc_info.value.detail
def test_dependency_valid_user(self):
async def test_dependency_valid_user(self):
"""Test valid user case for dependency."""
# Import verify_user to test it directly since dependencies use FastAPI Security
from autogpt_libs.auth.jwt_utils import verify_user

View File

@@ -16,7 +16,7 @@ bearer_jwt_auth = HTTPBearer(
)
def get_jwt_payload(
async def get_jwt_payload(
credentials: HTTPAuthorizationCredentials | None = Security(bearer_jwt_auth),
) -> dict[str, Any]:
"""

View File

@@ -116,32 +116,32 @@ def test_parse_jwt_token_missing_audience():
assert "Invalid token" in str(exc_info.value)
def test_get_jwt_payload_with_valid_token():
async def test_get_jwt_payload_with_valid_token():
"""Test extracting JWT payload with valid bearer token."""
token = create_token(TEST_USER_PAYLOAD)
credentials = HTTPAuthorizationCredentials(scheme="Bearer", credentials=token)
result = jwt_utils.get_jwt_payload(credentials)
result = await jwt_utils.get_jwt_payload(credentials)
assert result["sub"] == "test-user-id"
assert result["role"] == "user"
def test_get_jwt_payload_no_credentials():
async def test_get_jwt_payload_no_credentials():
"""Test JWT payload when no credentials provided."""
with pytest.raises(HTTPException) as exc_info:
jwt_utils.get_jwt_payload(None)
await jwt_utils.get_jwt_payload(None)
assert exc_info.value.status_code == 401
assert "Authorization header is missing" in exc_info.value.detail
def test_get_jwt_payload_invalid_token():
async def test_get_jwt_payload_invalid_token():
"""Test JWT payload extraction with invalid token."""
credentials = HTTPAuthorizationCredentials(
scheme="Bearer", credentials="invalid.token.here"
)
with pytest.raises(HTTPException) as exc_info:
jwt_utils.get_jwt_payload(credentials)
await jwt_utils.get_jwt_payload(credentials)
assert exc_info.value.status_code == 401
assert "Invalid token" in exc_info.value.detail

View File

@@ -4,6 +4,7 @@ import logging
import os
import socket
import sys
from logging.handlers import RotatingFileHandler
from pathlib import Path
from pydantic import Field, field_validator
@@ -139,8 +140,13 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
print(f"Log directory: {config.log_dir}")
# Activity log handler (INFO and above)
activity_log_handler = logging.FileHandler(
config.log_dir / LOG_FILE, "a", "utf-8"
# Security fix: Use RotatingFileHandler with size limits to prevent disk exhaustion
activity_log_handler = RotatingFileHandler(
config.log_dir / LOG_FILE,
mode="a",
encoding="utf-8",
maxBytes=10 * 1024 * 1024, # 10MB per file
backupCount=3, # Keep 3 backup files (40MB total)
)
activity_log_handler.setLevel(config.level)
activity_log_handler.setFormatter(
@@ -150,8 +156,13 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
if config.level == logging.DEBUG:
# Debug log handler (all levels)
debug_log_handler = logging.FileHandler(
config.log_dir / DEBUG_LOG_FILE, "a", "utf-8"
# Security fix: Use RotatingFileHandler with size limits
debug_log_handler = RotatingFileHandler(
config.log_dir / DEBUG_LOG_FILE,
mode="a",
encoding="utf-8",
maxBytes=10 * 1024 * 1024, # 10MB per file
backupCount=3, # Keep 3 backup files (40MB total)
)
debug_log_handler.setLevel(logging.DEBUG)
debug_log_handler.setFormatter(
@@ -160,8 +171,13 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
log_handlers.append(debug_log_handler)
# Error log handler (ERROR and above)
error_log_handler = logging.FileHandler(
config.log_dir / ERROR_LOG_FILE, "a", "utf-8"
# Security fix: Use RotatingFileHandler with size limits
error_log_handler = RotatingFileHandler(
config.log_dir / ERROR_LOG_FILE,
mode="a",
encoding="utf-8",
maxBytes=10 * 1024 * 1024, # 10MB per file
backupCount=3, # Keep 3 backup files (40MB total)
)
error_log_handler.setLevel(logging.ERROR)
error_log_handler.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT, no_color=True))

View File

@@ -1,328 +0,0 @@
import asyncio
import inspect
import logging
import threading
import time
from functools import wraps
from typing import (
Any,
Callable,
ParamSpec,
Protocol,
TypeVar,
cast,
runtime_checkable,
)
P = ParamSpec("P")
R = TypeVar("R")
R_co = TypeVar("R_co", covariant=True)
logger = logging.getLogger(__name__)
def _make_hashable_key(
args: tuple[Any, ...], kwargs: dict[str, Any]
) -> tuple[Any, ...]:
"""
Convert args and kwargs into a hashable cache key.
Handles unhashable types like dict, list, set by converting them to
their sorted string representations.
"""
def make_hashable(obj: Any) -> Any:
"""Recursively convert an object to a hashable representation."""
if isinstance(obj, dict):
# Sort dict items to ensure consistent ordering
return (
"__dict__",
tuple(sorted((k, make_hashable(v)) for k, v in obj.items())),
)
elif isinstance(obj, (list, tuple)):
return ("__list__", tuple(make_hashable(item) for item in obj))
elif isinstance(obj, set):
return ("__set__", tuple(sorted(make_hashable(item) for item in obj)))
elif hasattr(obj, "__dict__"):
# Handle objects with __dict__ attribute
return ("__obj__", obj.__class__.__name__, make_hashable(obj.__dict__))
else:
# For basic hashable types (str, int, bool, None, etc.)
try:
hash(obj)
return obj
except TypeError:
# Fallback: convert to string representation
return ("__str__", str(obj))
hashable_args = tuple(make_hashable(arg) for arg in args)
hashable_kwargs = tuple(sorted((k, make_hashable(v)) for k, v in kwargs.items()))
return (hashable_args, hashable_kwargs)
@runtime_checkable
class CachedFunction(Protocol[P, R_co]):
"""Protocol for cached functions with cache management methods."""
def cache_clear(self) -> None:
"""Clear all cached entries."""
return None
def cache_info(self) -> dict[str, int | None]:
"""Get cache statistics."""
return {}
def cache_delete(self, *args: P.args, **kwargs: P.kwargs) -> bool:
"""Delete a specific cache entry by its arguments. Returns True if entry existed."""
return False
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R_co:
"""Call the cached function."""
return None # type: ignore
def cached(
*,
maxsize: int = 128,
ttl_seconds: int | None = None,
) -> Callable[[Callable], CachedFunction]:
"""
Thundering herd safe cache decorator for both sync and async functions.
Uses double-checked locking to prevent multiple threads/coroutines from
executing the expensive operation simultaneously during cache misses.
Args:
func: The function to cache (when used without parentheses)
maxsize: Maximum number of cached entries
ttl_seconds: Time to live in seconds. If None, entries never expire
Returns:
Decorated function or decorator
Example:
@cache() # Default: maxsize=128, no TTL
def expensive_sync_operation(param: str) -> dict:
return {"result": param}
@cache() # Works with async too
async def expensive_async_operation(param: str) -> dict:
return {"result": param}
@cache(maxsize=1000, ttl_seconds=300) # Custom maxsize and TTL
def another_operation(param: str) -> dict:
return {"result": param}
"""
def decorator(target_func):
# Cache storage and locks
cache_storage = {}
if inspect.iscoroutinefunction(target_func):
# Async function with asyncio.Lock
cache_lock = asyncio.Lock()
@wraps(target_func)
async def async_wrapper(*args: P.args, **kwargs: P.kwargs):
key = _make_hashable_key(args, kwargs)
current_time = time.time()
# Fast path: check cache without lock
if key in cache_storage:
if ttl_seconds is None:
logger.debug(f"Cache hit for {target_func.__name__}")
return cache_storage[key]
else:
cached_data = cache_storage[key]
if isinstance(cached_data, tuple):
result, timestamp = cached_data
if current_time - timestamp < ttl_seconds:
logger.debug(f"Cache hit for {target_func.__name__}")
return result
# Slow path: acquire lock for cache miss/expiry
async with cache_lock:
# Double-check: another coroutine might have populated cache
if key in cache_storage:
if ttl_seconds is None:
return cache_storage[key]
else:
cached_data = cache_storage[key]
if isinstance(cached_data, tuple):
result, timestamp = cached_data
if current_time - timestamp < ttl_seconds:
return result
# Cache miss - execute function
logger.debug(f"Cache miss for {target_func.__name__}")
result = await target_func(*args, **kwargs)
# Store result
if ttl_seconds is None:
cache_storage[key] = result
else:
cache_storage[key] = (result, current_time)
# Cleanup if needed
if len(cache_storage) > maxsize:
cutoff = maxsize // 2
oldest_keys = (
list(cache_storage.keys())[:-cutoff] if cutoff > 0 else []
)
for old_key in oldest_keys:
cache_storage.pop(old_key, None)
return result
wrapper = async_wrapper
else:
# Sync function with threading.Lock
cache_lock = threading.Lock()
@wraps(target_func)
def sync_wrapper(*args: P.args, **kwargs: P.kwargs):
key = _make_hashable_key(args, kwargs)
current_time = time.time()
# Fast path: check cache without lock
if key in cache_storage:
if ttl_seconds is None:
logger.debug(f"Cache hit for {target_func.__name__}")
return cache_storage[key]
else:
cached_data = cache_storage[key]
if isinstance(cached_data, tuple):
result, timestamp = cached_data
if current_time - timestamp < ttl_seconds:
logger.debug(f"Cache hit for {target_func.__name__}")
return result
# Slow path: acquire lock for cache miss/expiry
with cache_lock:
# Double-check: another thread might have populated cache
if key in cache_storage:
if ttl_seconds is None:
return cache_storage[key]
else:
cached_data = cache_storage[key]
if isinstance(cached_data, tuple):
result, timestamp = cached_data
if current_time - timestamp < ttl_seconds:
return result
# Cache miss - execute function
logger.debug(f"Cache miss for {target_func.__name__}")
result = target_func(*args, **kwargs)
# Store result
if ttl_seconds is None:
cache_storage[key] = result
else:
cache_storage[key] = (result, current_time)
# Cleanup if needed
if len(cache_storage) > maxsize:
cutoff = maxsize // 2
oldest_keys = (
list(cache_storage.keys())[:-cutoff] if cutoff > 0 else []
)
for old_key in oldest_keys:
cache_storage.pop(old_key, None)
return result
wrapper = sync_wrapper
# Add cache management methods
def cache_clear() -> None:
cache_storage.clear()
def cache_info() -> dict[str, int | None]:
return {
"size": len(cache_storage),
"maxsize": maxsize,
"ttl_seconds": ttl_seconds,
}
def cache_delete(*args, **kwargs) -> bool:
"""Delete a specific cache entry. Returns True if entry existed."""
key = _make_hashable_key(args, kwargs)
if key in cache_storage:
del cache_storage[key]
return True
return False
setattr(wrapper, "cache_clear", cache_clear)
setattr(wrapper, "cache_info", cache_info)
setattr(wrapper, "cache_delete", cache_delete)
return cast(CachedFunction, wrapper)
return decorator
def thread_cached(func):
"""
Thread-local cache decorator for both sync and async functions.
Each thread gets its own cache, which is useful for request-scoped caching
in web applications where you want to cache within a single request but
not across requests.
Args:
func: The function to cache
Returns:
Decorated function with thread-local caching
Example:
@thread_cached
def expensive_operation(param: str) -> dict:
return {"result": param}
@thread_cached # Works with async too
async def expensive_async_operation(param: str) -> dict:
return {"result": param}
"""
thread_local = threading.local()
def _clear():
if hasattr(thread_local, "cache"):
del thread_local.cache
if inspect.iscoroutinefunction(func):
@wraps(func)
async def async_wrapper(*args, **kwargs):
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = _make_hashable_key(args, kwargs)
if key not in cache:
cache[key] = await func(*args, **kwargs)
return cache[key]
setattr(async_wrapper, "clear_cache", _clear)
return async_wrapper
else:
@wraps(func)
def sync_wrapper(*args, **kwargs):
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = _make_hashable_key(args, kwargs)
if key not in cache:
cache[key] = func(*args, **kwargs)
return cache[key]
setattr(sync_wrapper, "clear_cache", _clear)
return sync_wrapper
def clear_thread_cache(func: Callable) -> None:
"""Clear thread-local cache for a function."""
if clear := getattr(func, "clear_cache", None):
clear()

View File

@@ -1719,6 +1719,22 @@ files = [
httpx = {version = ">=0.26,<0.29", extras = ["http2"]}
strenum = ">=0.4.15,<0.5.0"
[[package]]
name = "tenacity"
version = "9.1.2"
description = "Retry code until it succeeds"
optional = false
python-versions = ">=3.9"
groups = ["main"]
files = [
{file = "tenacity-9.1.2-py3-none-any.whl", hash = "sha256:f77bf36710d8b73a50b2dd155c97b870017ad21afe6ab300326b0371b3b05138"},
{file = "tenacity-9.1.2.tar.gz", hash = "sha256:1169d376c297e7de388d18b4481760d478b0e99a777cad3a9c86e556f4b697cb"},
]
[package.extras]
doc = ["reno", "sphinx"]
test = ["pytest", "tornado (>=4.5)", "typeguard"]
[[package]]
name = "tomli"
version = "2.2.1"
@@ -1929,4 +1945,4 @@ type = ["pytest-mypy"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<4.0"
content-hash = "0c40b63c3c921846cf05ccfb4e685d4959854b29c2c302245f9832e20aac6954"
content-hash = "5ec9e6cd2ef7524a356586354755215699e7b37b9bbdfbabc9c73b43085915f4"

View File

@@ -19,6 +19,7 @@ pydantic-settings = "^2.10.1"
pyjwt = { version = "^2.10.1", extras = ["crypto"] }
redis = "^6.2.0"
supabase = "^2.16.0"
tenacity = "^9.1.2"
uvicorn = "^0.35.0"
[tool.poetry.group.dev.dependencies]

View File

@@ -5,7 +5,7 @@ import re
from pathlib import Path
from typing import TYPE_CHECKING, TypeVar
from autogpt_libs.utils.cache import cached
from backend.util.cache import cached
logger = logging.getLogger(__name__)
@@ -16,7 +16,7 @@ if TYPE_CHECKING:
T = TypeVar("T")
@cached()
@cached(ttl_seconds=3600) # Cache blocks for 1 hour
def load_all_blocks() -> dict[str, type["Block"]]:
from backend.data.block import Block
from backend.util.settings import Config

View File

@@ -0,0 +1,214 @@
from typing import Any
from backend.blocks.llm import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
AIBlockBase,
AICredentials,
AICredentialsField,
LlmModel,
LLMResponse,
llm_call,
)
from backend.data.block import BlockCategory, BlockOutput, BlockSchema
from backend.data.model import APIKeyCredentials, NodeExecutionStats, SchemaField
class AIConditionBlock(AIBlockBase):
"""
An AI-powered condition block that uses natural language to evaluate conditions.
This block allows users to define conditions in plain English (e.g., "the input is an email address",
"the input is a city in the USA") and uses AI to determine if the input satisfies the condition.
It provides the same yes/no data pass-through functionality as the standard ConditionBlock.
"""
class Input(BlockSchema):
input_value: Any = SchemaField(
description="The input value to evaluate with the AI condition",
placeholder="Enter the value to be evaluated (text, number, or any data)",
)
condition: str = SchemaField(
description="A plaintext English description of the condition to evaluate",
placeholder="E.g., 'the input is the body of an email', 'the input is a City in the USA', 'the input is an error or a refusal'",
)
yes_value: Any = SchemaField(
description="(Optional) Value to output if the condition is true. If not provided, input_value will be used.",
placeholder="Leave empty to use input_value, or enter a specific value",
default=None,
)
no_value: Any = SchemaField(
description="(Optional) Value to output if the condition is false. If not provided, input_value will be used.",
placeholder="Leave empty to use input_value, or enter a specific value",
default=None,
)
model: LlmModel = SchemaField(
title="LLM Model",
default=LlmModel.GPT4O,
description="The language model to use for evaluating the condition.",
advanced=False,
)
credentials: AICredentials = AICredentialsField()
class Output(BlockSchema):
result: bool = SchemaField(
description="The result of the AI condition evaluation (True or False)"
)
yes_output: Any = SchemaField(
description="The output value if the condition is true"
)
no_output: Any = SchemaField(
description="The output value if the condition is false"
)
error: str = SchemaField(
description="Error message if the AI evaluation is uncertain or fails"
)
def __init__(self):
super().__init__(
id="553ec5b8-6c45-4299-8d75-b394d05f72ff",
input_schema=AIConditionBlock.Input,
output_schema=AIConditionBlock.Output,
description="Uses AI to evaluate natural language conditions and provide conditional outputs",
categories={BlockCategory.AI, BlockCategory.LOGIC},
test_input={
"input_value": "john@example.com",
"condition": "the input is an email address",
"yes_value": "Valid email",
"no_value": "Not an email",
"model": LlmModel.GPT4O,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("result", True),
("yes_output", "Valid email"),
],
test_mock={
"llm_call": lambda *args, **kwargs: LLMResponse(
raw_response="",
prompt=[],
response="true",
tool_calls=None,
prompt_tokens=50,
completion_tokens=10,
reasoning=None,
)
},
)
async def llm_call(
self,
credentials: APIKeyCredentials,
llm_model: LlmModel,
prompt: list,
max_tokens: int,
) -> LLMResponse:
"""Wrapper method for llm_call to enable mocking in tests."""
return await llm_call(
credentials=credentials,
llm_model=llm_model,
prompt=prompt,
force_json_output=False,
max_tokens=max_tokens,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
"""
Evaluate the AI condition and return appropriate outputs.
"""
# Prepare the yes and no values, using input_value as default
yes_value = (
input_data.yes_value
if input_data.yes_value is not None
else input_data.input_value
)
no_value = (
input_data.no_value
if input_data.no_value is not None
else input_data.input_value
)
# Convert input_value to string for AI evaluation
input_str = str(input_data.input_value)
# Create the prompt for AI evaluation
prompt = [
{
"role": "system",
"content": (
"You are an AI assistant that evaluates conditions based on input data. "
"You must respond with only 'true' or 'false' (lowercase) to indicate whether "
"the given condition is met by the input value. Be accurate and consider the "
"context and meaning of both the input and the condition."
),
},
{
"role": "user",
"content": (
f"Input value: {input_str}\n"
f"Condition to evaluate: {input_data.condition}\n\n"
f"Does the input value satisfy the condition? Respond with only 'true' or 'false'."
),
},
]
# Call the LLM
try:
response = await self.llm_call(
credentials=credentials,
llm_model=input_data.model,
prompt=prompt,
max_tokens=10, # We only expect a true/false response
)
# Extract the boolean result from the response
response_text = response.response.strip().lower()
if response_text == "true":
result = True
elif response_text == "false":
result = False
else:
# If the response is not clear, try to interpret it using word boundaries
import re
# Use word boundaries to avoid false positives like 'untrue' or '10'
tokens = set(re.findall(r"\b(true|false|yes|no|1|0)\b", response_text))
if tokens == {"true"} or tokens == {"yes"} or tokens == {"1"}:
result = True
elif tokens == {"false"} or tokens == {"no"} or tokens == {"0"}:
result = False
else:
# Unclear or conflicting response - default to False and yield error
result = False
yield "error", f"Unclear AI response: '{response.response}'"
# Update internal stats
self.merge_stats(
NodeExecutionStats(
input_token_count=response.prompt_tokens,
output_token_count=response.completion_tokens,
)
)
self.prompt = response.prompt
except Exception as e:
# In case of any error, default to False to be safe
result = False
# Log the error but don't fail the block execution
import logging
logger = logging.getLogger(__name__)
logger.error(f"AI condition evaluation failed: {str(e)}")
yield "error", f"AI evaluation failed: {str(e)}"
# Yield results
yield "result", result
if result:
yield "yes_output", yes_value
else:
yield "no_output", no_value

View File

@@ -1,8 +1,10 @@
from enum import Enum
from typing import Literal
from typing import Any, Literal, Optional
from e2b_code_interpreter import AsyncSandbox
from pydantic import SecretStr
from e2b_code_interpreter import Result as E2BExecutionResult
from e2b_code_interpreter.charts import Chart as E2BExecutionResultChart
from pydantic import BaseModel, JsonValue, SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
@@ -36,14 +38,135 @@ class ProgrammingLanguage(Enum):
JAVA = "java"
class CodeExecutionBlock(Block):
class MainCodeExecutionResult(BaseModel):
"""
*Pydantic model mirroring `e2b_code_interpreter.Result`*
Represents the data to be displayed as a result of executing a cell in a Jupyter notebook.
The result is similar to the structure returned by ipython kernel: https://ipython.readthedocs.io/en/stable/development/execution.html#execution-semantics
The result can contain multiple types of data, such as text, images, plots, etc. Each type of data is represented
as a string, and the result can contain multiple types of data. The display calls don't have to have text representation,
for the actual result the representation is always present for the result, the other representations are always optional.
""" # noqa
class Chart(BaseModel, E2BExecutionResultChart):
pass
text: Optional[str] = None
html: Optional[str] = None
markdown: Optional[str] = None
svg: Optional[str] = None
png: Optional[str] = None
jpeg: Optional[str] = None
pdf: Optional[str] = None
latex: Optional[str] = None
json: Optional[JsonValue] = None # type: ignore (reportIncompatibleMethodOverride)
javascript: Optional[str] = None
data: Optional[dict] = None
chart: Optional[Chart] = None
extra: Optional[dict] = None
"""Extra data that can be included. Not part of the standard types."""
class CodeExecutionResult(MainCodeExecutionResult):
__doc__ = MainCodeExecutionResult.__doc__
is_main_result: bool = False
"""Whether this data is the main result of the cell. Data can be produced by display calls of which can be multiple in a cell.""" # noqa
class BaseE2BExecutorMixin:
"""Shared implementation methods for E2B executor blocks."""
async def execute_code(
self,
api_key: str,
code: str,
language: ProgrammingLanguage,
template_id: str = "",
setup_commands: Optional[list[str]] = None,
timeout: Optional[int] = None,
sandbox_id: Optional[str] = None,
dispose_sandbox: bool = False,
):
"""
Unified code execution method that handles all three use cases:
1. Create new sandbox and execute (ExecuteCodeBlock)
2. Create new sandbox, execute, and return sandbox_id (InstantiateCodeSandboxBlock)
3. Connect to existing sandbox and execute (ExecuteCodeStepBlock)
""" # noqa
sandbox = None
try:
if sandbox_id:
# Connect to existing sandbox (ExecuteCodeStepBlock case)
sandbox = await AsyncSandbox.connect(
sandbox_id=sandbox_id, api_key=api_key
)
else:
# Create new sandbox (ExecuteCodeBlock/InstantiateCodeSandboxBlock case)
sandbox = await AsyncSandbox.create(
api_key=api_key, template=template_id, timeout=timeout
)
if setup_commands:
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Execute the code
execution = await sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox on error
)
if execution.error:
raise Exception(execution.error)
results = execution.results
text_output = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return results, text_output, stdout_logs, stderr_logs, sandbox.sandbox_id
finally:
# Dispose of sandbox if requested to reduce usage costs
if dispose_sandbox and sandbox:
await sandbox.kill()
def process_execution_results(
self, results: list[E2BExecutionResult]
) -> tuple[dict[str, Any] | None, list[dict[str, Any]]]:
"""Process and filter execution results."""
# Filter out empty formats and convert to dicts
processed_results = [
{
f: value
for f in [*r.formats(), "extra", "is_main_result"]
if (value := getattr(r, f, None)) is not None
}
for r in results
]
if main_result := next(
(r for r in processed_results if r.get("is_main_result")), None
):
# Make main_result a copy we can modify & remove is_main_result
(main_result := {**main_result}).pop("is_main_result")
return main_result, processed_results
class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
# TODO : Add support to upload and download files
# Currently, You can customized the CPU and Memory, only by creating a pre customized sandbox template
# NOTE: Currently, you can only customize the CPU and Memory
# by creating a pre customized sandbox template
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
description=(
"Enter your API key for the E2B platform. "
"You can get it in here - https://e2b.dev/docs"
),
)
# Todo : Option to run commond in background
@@ -76,6 +199,14 @@ class CodeExecutionBlock(Block):
description="Execution timeout in seconds", default=300
)
dispose_sandbox: bool = SchemaField(
description=(
"Whether to dispose of the sandbox immediately after execution. "
"If disabled, the sandbox will run until its timeout expires."
),
default=True,
)
template_id: str = SchemaField(
description=(
"You can use an E2B sandbox template by entering its ID here. "
@@ -87,7 +218,16 @@ class CodeExecutionBlock(Block):
)
class Output(BlockSchema):
response: str = SchemaField(description="Response from code execution")
main_result: MainCodeExecutionResult = SchemaField(
title="Main Result", description="The main result from the code execution"
)
results: list[CodeExecutionResult] = SchemaField(
description="List of results from the code execution"
)
response: str = SchemaField(
title="Main Text Output",
description="Text output (if any) of the main execution result",
)
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
@@ -97,10 +237,10 @@ class CodeExecutionBlock(Block):
def __init__(self):
super().__init__(
id="0b02b072-abe7-11ef-8372-fb5d162dd712",
description="Executes code in an isolated sandbox environment with internet access.",
description="Executes code in a sandbox environment with internet access.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=CodeExecutionBlock.Input,
output_schema=CodeExecutionBlock.Output,
input_schema=ExecuteCodeBlock.Input,
output_schema=ExecuteCodeBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
@@ -111,91 +251,59 @@ class CodeExecutionBlock(Block):
"template_id": "",
},
test_output=[
("results", []),
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_code": lambda code, language, setup_commands, timeout, api_key, template_id: (
"Hello World",
"Hello World\n",
"",
"execute_code": lambda api_key, code, language, template_id, setup_commands, timeout, dispose_sandbox: ( # noqa
[], # results
"Hello World", # text_output
"Hello World\n", # stdout_logs
"", # stderr_logs
"sandbox_id", # sandbox_id
),
},
)
async def execute_code(
self,
code: str,
language: ProgrammingLanguage,
setup_commands: list[str],
timeout: int,
api_key: str,
template_id: str,
):
try:
sandbox = None
if template_id:
sandbox = await AsyncSandbox.create(
template=template_id, api_key=api_key, timeout=timeout
)
else:
sandbox = await AsyncSandbox.create(api_key=api_key, timeout=timeout)
if not sandbox:
raise Exception("Sandbox not created")
# Running setup commands
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Executing the code
execution = await sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return response, stdout_logs, stderr_logs
except Exception as e:
raise e
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
response, stdout_logs, stderr_logs = await self.execute_code(
input_data.code,
input_data.language,
input_data.setup_commands,
input_data.timeout,
credentials.api_key.get_secret_value(),
input_data.template_id,
results, text_output, stdout, stderr, _ = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.code,
language=input_data.language,
template_id=input_data.template_id,
setup_commands=input_data.setup_commands,
timeout=input_data.timeout,
dispose_sandbox=input_data.dispose_sandbox,
)
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
# Determine result object shape & filter out empty formats
main_result, results = self.process_execution_results(results)
if main_result:
yield "main_result", main_result
yield "results", results
if text_output:
yield "response", text_output
if stdout:
yield "stdout_logs", stdout
if stderr:
yield "stderr_logs", stderr
except Exception as e:
yield "error", str(e)
class InstantiationBlock(Block):
class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
description=(
"Enter your API key for the E2B platform. "
"You can get it in here - https://e2b.dev/docs"
)
)
# Todo : Option to run commond in background
@@ -240,7 +348,10 @@ class InstantiationBlock(Block):
class Output(BlockSchema):
sandbox_id: str = SchemaField(description="ID of the sandbox instance")
response: str = SchemaField(description="Response from code execution")
response: str = SchemaField(
title="Text Result",
description="Text result (if any) of the setup code execution",
)
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
@@ -250,10 +361,13 @@ class InstantiationBlock(Block):
def __init__(self):
super().__init__(
id="ff0861c9-1726-4aec-9e5b-bf53f3622112",
description="Instantiate an isolated sandbox environment with internet access where to execute code in.",
description=(
"Instantiate a sandbox environment with internet access "
"in which you can execute code with the Execute Code Step block."
),
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=InstantiationBlock.Input,
output_schema=InstantiationBlock.Output,
input_schema=InstantiateCodeSandboxBlock.Input,
output_schema=InstantiateCodeSandboxBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
@@ -269,11 +383,12 @@ class InstantiationBlock(Block):
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_code": lambda setup_code, language, setup_commands, timeout, api_key, template_id: (
"sandbox_id",
"Hello World",
"Hello World\n",
"",
"execute_code": lambda api_key, code, language, template_id, setup_commands, timeout: ( # noqa
[], # results
"Hello World", # text_output
"Hello World\n", # stdout_logs
"", # stderr_logs
"sandbox_id", # sandbox_id
),
},
)
@@ -282,78 +397,38 @@ class InstantiationBlock(Block):
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
sandbox_id, response, stdout_logs, stderr_logs = await self.execute_code(
input_data.setup_code,
input_data.language,
input_data.setup_commands,
input_data.timeout,
credentials.api_key.get_secret_value(),
input_data.template_id,
_, text_output, stdout, stderr, sandbox_id = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.setup_code,
language=input_data.language,
template_id=input_data.template_id,
setup_commands=input_data.setup_commands,
timeout=input_data.timeout,
)
if sandbox_id:
yield "sandbox_id", sandbox_id
else:
yield "error", "Sandbox ID not found"
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
if text_output:
yield "response", text_output
if stdout:
yield "stdout_logs", stdout
if stderr:
yield "stderr_logs", stderr
except Exception as e:
yield "error", str(e)
async def execute_code(
self,
code: str,
language: ProgrammingLanguage,
setup_commands: list[str],
timeout: int,
api_key: str,
template_id: str,
):
try:
sandbox = None
if template_id:
sandbox = await AsyncSandbox.create(
template=template_id, api_key=api_key, timeout=timeout
)
else:
sandbox = await AsyncSandbox.create(api_key=api_key, timeout=timeout)
if not sandbox:
raise Exception("Sandbox not created")
# Running setup commands
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Executing the code
execution = await sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return sandbox.sandbox_id, response, stdout_logs, stderr_logs
except Exception as e:
raise e
class StepExecutionBlock(Block):
class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
description=(
"Enter your API key for the E2B platform. "
"You can get it in here - https://e2b.dev/docs"
),
)
sandbox_id: str = SchemaField(
@@ -374,8 +449,22 @@ class StepExecutionBlock(Block):
advanced=False,
)
dispose_sandbox: bool = SchemaField(
description="Whether to dispose of the sandbox after executing this code.",
default=False,
)
class Output(BlockSchema):
response: str = SchemaField(description="Response from code execution")
main_result: MainCodeExecutionResult = SchemaField(
title="Main Result", description="The main result from the code execution"
)
results: list[CodeExecutionResult] = SchemaField(
description="List of results from the code execution"
)
response: str = SchemaField(
title="Main Text Output",
description="Text output (if any) of the main execution result",
)
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
@@ -385,10 +474,10 @@ class StepExecutionBlock(Block):
def __init__(self):
super().__init__(
id="82b59b8e-ea10-4d57-9161-8b169b0adba6",
description="Execute code in a previously instantiated sandbox environment.",
description="Execute code in a previously instantiated sandbox.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=StepExecutionBlock.Input,
output_schema=StepExecutionBlock.Output,
input_schema=ExecuteCodeStepBlock.Input,
output_schema=ExecuteCodeStepBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
@@ -397,61 +486,43 @@ class StepExecutionBlock(Block):
"language": ProgrammingLanguage.PYTHON.value,
},
test_output=[
("results", []),
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_step_code": lambda sandbox_id, step_code, language, api_key: (
"Hello World",
"Hello World\n",
"",
"execute_code": lambda api_key, code, language, sandbox_id, dispose_sandbox: ( # noqa
[], # results
"Hello World", # text_output
"Hello World\n", # stdout_logs
"", # stderr_logs
sandbox_id, # sandbox_id
),
},
)
async def execute_step_code(
self,
sandbox_id: str,
code: str,
language: ProgrammingLanguage,
api_key: str,
):
try:
sandbox = await AsyncSandbox.connect(sandbox_id=sandbox_id, api_key=api_key)
if not sandbox:
raise Exception("Sandbox not found")
# Executing the code
execution = await sandbox.run_code(code, language=language.value)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return response, stdout_logs, stderr_logs
except Exception as e:
raise e
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
response, stdout_logs, stderr_logs = await self.execute_step_code(
input_data.sandbox_id,
input_data.step_code,
input_data.language,
credentials.api_key.get_secret_value(),
results, text_output, stdout, stderr, _ = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.step_code,
language=input_data.language,
sandbox_id=input_data.sandbox_id,
dispose_sandbox=input_data.dispose_sandbox,
)
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
# Determine result object shape & filter out empty formats
main_result, results = self.process_execution_results(results)
if main_result:
yield "main_result", main_result
yield "results", results
if text_output:
yield "response", text_output
if stdout:
yield "stdout_logs", stdout
if stderr:
yield "stderr_logs", stderr
except Exception as e:
yield "error", str(e)

View File

@@ -90,7 +90,7 @@ class CodeExtractionBlock(Block):
for aliases in language_aliases.values()
for alias in aliases
)
+ r")\s+[\s\S]*?```"
+ r")[ \t]*\n[\s\S]*?```"
)
remaining_text = re.sub(pattern, "", input_data.text).strip()
@@ -103,7 +103,9 @@ class CodeExtractionBlock(Block):
# Escape special regex characters in the language string
language = re.escape(language)
# Extract all code blocks enclosed in ```language``` blocks
pattern = re.compile(rf"```{language}\s+(.*?)```", re.DOTALL | re.IGNORECASE)
pattern = re.compile(
rf"```{language}[ \t]*\n(.*?)\n```", re.DOTALL | re.IGNORECASE
)
matches = pattern.finditer(text)
# Combine all code blocks for this language with newlines between them
code_blocks = [match.group(1).strip() for match in matches]

View File

@@ -90,6 +90,7 @@ class DataForSeoKeywordSuggestionsBlock(Block):
seed_keyword: str = SchemaField(
description="The seed keyword used for the query"
)
error: str = SchemaField(description="Error message if the API call failed")
def __init__(self):
super().__init__(
@@ -161,43 +162,52 @@ class DataForSeoKeywordSuggestionsBlock(Block):
**kwargs,
) -> BlockOutput:
"""Execute the keyword suggestions query."""
client = DataForSeoClient(credentials)
try:
client = DataForSeoClient(credentials)
results = await self._fetch_keyword_suggestions(client, input_data)
results = await self._fetch_keyword_suggestions(client, input_data)
# Process and format the results
suggestions = []
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
items = (
first_result.get("items", []) if isinstance(first_result, dict) else []
)
for item in items:
# Create the KeywordSuggestion object
suggestion = KeywordSuggestion(
keyword=item.get("keyword", ""),
search_volume=item.get("keyword_info", {}).get("search_volume"),
competition=item.get("keyword_info", {}).get("competition"),
cpc=item.get("keyword_info", {}).get("cpc"),
keyword_difficulty=item.get("keyword_properties", {}).get(
"keyword_difficulty"
),
serp_info=(
item.get("serp_info") if input_data.include_serp_info else None
),
clickstream_data=(
item.get("clickstream_keyword_info")
if input_data.include_clickstream_data
else None
),
# Process and format the results
suggestions = []
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
items = (
first_result.get("items", [])
if isinstance(first_result, dict)
else []
)
yield "suggestion", suggestion
suggestions.append(suggestion)
if items is None:
items = []
for item in items:
# Create the KeywordSuggestion object
suggestion = KeywordSuggestion(
keyword=item.get("keyword", ""),
search_volume=item.get("keyword_info", {}).get("search_volume"),
competition=item.get("keyword_info", {}).get("competition"),
cpc=item.get("keyword_info", {}).get("cpc"),
keyword_difficulty=item.get("keyword_properties", {}).get(
"keyword_difficulty"
),
serp_info=(
item.get("serp_info")
if input_data.include_serp_info
else None
),
clickstream_data=(
item.get("clickstream_keyword_info")
if input_data.include_clickstream_data
else None
),
)
yield "suggestion", suggestion
suggestions.append(suggestion)
yield "suggestions", suggestions
yield "total_count", len(suggestions)
yield "seed_keyword", input_data.keyword
yield "suggestions", suggestions
yield "total_count", len(suggestions)
yield "seed_keyword", input_data.keyword
except Exception as e:
yield "error", f"Failed to fetch keyword suggestions: {str(e)}"
class KeywordSuggestionExtractorBlock(Block):

View File

@@ -98,6 +98,7 @@ class DataForSeoRelatedKeywordsBlock(Block):
seed_keyword: str = SchemaField(
description="The seed keyword used for the query"
)
error: str = SchemaField(description="Error message if the API call failed")
def __init__(self):
super().__init__(
@@ -171,50 +172,60 @@ class DataForSeoRelatedKeywordsBlock(Block):
**kwargs,
) -> BlockOutput:
"""Execute the related keywords query."""
client = DataForSeoClient(credentials)
try:
client = DataForSeoClient(credentials)
results = await self._fetch_related_keywords(client, input_data)
results = await self._fetch_related_keywords(client, input_data)
# Process and format the results
related_keywords = []
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
items = (
first_result.get("items", []) if isinstance(first_result, dict) else []
)
for item in items:
# Extract keyword_data from the item
keyword_data = item.get("keyword_data", {})
# Create the RelatedKeyword object
keyword = RelatedKeyword(
keyword=keyword_data.get("keyword", ""),
search_volume=keyword_data.get("keyword_info", {}).get(
"search_volume"
),
competition=keyword_data.get("keyword_info", {}).get("competition"),
cpc=keyword_data.get("keyword_info", {}).get("cpc"),
keyword_difficulty=keyword_data.get("keyword_properties", {}).get(
"keyword_difficulty"
),
serp_info=(
keyword_data.get("serp_info")
if input_data.include_serp_info
else None
),
clickstream_data=(
keyword_data.get("clickstream_keyword_info")
if input_data.include_clickstream_data
else None
),
# Process and format the results
related_keywords = []
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
items = (
first_result.get("items", [])
if isinstance(first_result, dict)
else []
)
yield "related_keyword", keyword
related_keywords.append(keyword)
# Ensure items is never None
if items is None:
items = []
for item in items:
# Extract keyword_data from the item
keyword_data = item.get("keyword_data", {})
yield "related_keywords", related_keywords
yield "total_count", len(related_keywords)
yield "seed_keyword", input_data.keyword
# Create the RelatedKeyword object
keyword = RelatedKeyword(
keyword=keyword_data.get("keyword", ""),
search_volume=keyword_data.get("keyword_info", {}).get(
"search_volume"
),
competition=keyword_data.get("keyword_info", {}).get(
"competition"
),
cpc=keyword_data.get("keyword_info", {}).get("cpc"),
keyword_difficulty=keyword_data.get(
"keyword_properties", {}
).get("keyword_difficulty"),
serp_info=(
keyword_data.get("serp_info")
if input_data.include_serp_info
else None
),
clickstream_data=(
keyword_data.get("clickstream_keyword_info")
if input_data.include_clickstream_data
else None
),
)
yield "related_keyword", keyword
related_keywords.append(keyword)
yield "related_keywords", related_keywords
yield "total_count", len(related_keywords)
yield "seed_keyword", input_data.keyword
except Exception as e:
yield "error", f"Failed to fetch related keywords: {str(e)}"
class RelatedKeywordExtractorBlock(Block):

View File

@@ -0,0 +1,12 @@
from enum import Enum
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"

View File

@@ -0,0 +1,28 @@
"""Utility functions for converting between our ScrapeFormat enum and firecrawl FormatOption types."""
from typing import List
from firecrawl.v2.types import FormatOption, ScreenshotFormat
from backend.blocks.firecrawl._api import ScrapeFormat
def convert_to_format_options(
formats: List[ScrapeFormat],
) -> List[FormatOption]:
"""Convert our ScrapeFormat enum values to firecrawl FormatOption types.
Handles special cases like screenshot@fullPage which needs to be converted
to a ScreenshotFormat object.
"""
result: List[FormatOption] = []
for format_enum in formats:
if format_enum.value == "screenshot@fullPage":
# Special case: convert to ScreenshotFormat with full_page=True
result.append(ScreenshotFormat(type="screenshot", full_page=True))
else:
# Regular string literals
result.append(format_enum.value)
return result

View File

@@ -1,8 +1,9 @@
from enum import Enum
from typing import Any
from firecrawl import FirecrawlApp, ScrapeOptions
from firecrawl import FirecrawlApp
from firecrawl.v2.types import ScrapeOptions
from backend.blocks.firecrawl._api import ScrapeFormat
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -14,21 +15,10 @@ from backend.sdk import (
)
from ._config import firecrawl
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"
from ._format_utils import convert_to_format_options
class FirecrawlCrawlBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
url: str = SchemaField(description="The URL to crawl")
@@ -78,18 +68,17 @@ class FirecrawlCrawlBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
# Sync call
crawl_result = app.crawl_url(
crawl_result = app.crawl(
input_data.url,
limit=input_data.limit,
scrape_options=ScrapeOptions(
formats=[format.value for format in input_data.formats],
onlyMainContent=input_data.only_main_content,
maxAge=input_data.max_age,
waitFor=input_data.wait_for,
formats=convert_to_format_options(input_data.formats),
only_main_content=input_data.only_main_content,
max_age=input_data.max_age,
wait_for=input_data.wait_for,
),
)
yield "data", crawl_result.data
@@ -101,7 +90,7 @@ class FirecrawlCrawlBlock(Block):
elif f == ScrapeFormat.HTML:
yield "html", data.html
elif f == ScrapeFormat.RAW_HTML:
yield "raw_html", data.rawHtml
yield "raw_html", data.raw_html
elif f == ScrapeFormat.LINKS:
yield "links", data.links
elif f == ScrapeFormat.SCREENSHOT:
@@ -109,6 +98,6 @@ class FirecrawlCrawlBlock(Block):
elif f == ScrapeFormat.SCREENSHOT_FULL_PAGE:
yield "screenshot_full_page", data.screenshot
elif f == ScrapeFormat.CHANGE_TRACKING:
yield "change_tracking", data.changeTracking
yield "change_tracking", data.change_tracking
elif f == ScrapeFormat.JSON:
yield "json", data.json

View File

@@ -20,7 +20,6 @@ from ._config import firecrawl
@cost(BlockCost(2, BlockCostType.RUN))
class FirecrawlExtractBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
urls: list[str] = SchemaField(
@@ -53,7 +52,6 @@ class FirecrawlExtractBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
extract_result = app.extract(

View File

@@ -1,3 +1,5 @@
from typing import Any
from firecrawl import FirecrawlApp
from backend.sdk import (
@@ -14,14 +16,16 @@ from ._config import firecrawl
class FirecrawlMapWebsiteBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
url: str = SchemaField(description="The website url to map")
class Output(BlockSchema):
links: list[str] = SchemaField(description="The links of the website")
links: list[str] = SchemaField(description="List of URLs found on the website")
results: list[dict[str, Any]] = SchemaField(
description="List of search results with url, title, and description"
)
def __init__(self):
super().__init__(
@@ -35,12 +39,22 @@ class FirecrawlMapWebsiteBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
# Sync call
map_result = app.map_url(
map_result = app.map(
url=input_data.url,
)
yield "links", map_result.links
# Convert SearchResult objects to dicts
results_data = [
{
"url": link.url,
"title": link.title,
"description": link.description,
}
for link in map_result.links
]
yield "links", [link.url for link in map_result.links]
yield "results", results_data

View File

@@ -1,8 +1,8 @@
from enum import Enum
from typing import Any
from firecrawl import FirecrawlApp
from backend.blocks.firecrawl._api import ScrapeFormat
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -14,21 +14,10 @@ from backend.sdk import (
)
from ._config import firecrawl
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"
from ._format_utils import convert_to_format_options
class FirecrawlScrapeBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
url: str = SchemaField(description="The URL to crawl")
@@ -78,12 +67,11 @@ class FirecrawlScrapeBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
scrape_result = app.scrape_url(
scrape_result = app.scrape(
input_data.url,
formats=[format.value for format in input_data.formats],
formats=convert_to_format_options(input_data.formats),
only_main_content=input_data.only_main_content,
max_age=input_data.max_age,
wait_for=input_data.wait_for,
@@ -96,7 +84,7 @@ class FirecrawlScrapeBlock(Block):
elif f == ScrapeFormat.HTML:
yield "html", scrape_result.html
elif f == ScrapeFormat.RAW_HTML:
yield "raw_html", scrape_result.rawHtml
yield "raw_html", scrape_result.raw_html
elif f == ScrapeFormat.LINKS:
yield "links", scrape_result.links
elif f == ScrapeFormat.SCREENSHOT:
@@ -104,6 +92,6 @@ class FirecrawlScrapeBlock(Block):
elif f == ScrapeFormat.SCREENSHOT_FULL_PAGE:
yield "screenshot_full_page", scrape_result.screenshot
elif f == ScrapeFormat.CHANGE_TRACKING:
yield "change_tracking", scrape_result.changeTracking
yield "change_tracking", scrape_result.change_tracking
elif f == ScrapeFormat.JSON:
yield "json", scrape_result.json

View File

@@ -1,8 +1,9 @@
from enum import Enum
from typing import Any
from firecrawl import FirecrawlApp, ScrapeOptions
from firecrawl import FirecrawlApp
from firecrawl.v2.types import ScrapeOptions
from backend.blocks.firecrawl._api import ScrapeFormat
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -14,21 +15,10 @@ from backend.sdk import (
)
from ._config import firecrawl
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"
from ._format_utils import convert_to_format_options
class FirecrawlSearchBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
query: str = SchemaField(description="The query to search for")
@@ -61,7 +51,6 @@ class FirecrawlSearchBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
# Sync call
@@ -69,11 +58,12 @@ class FirecrawlSearchBlock(Block):
input_data.query,
limit=input_data.limit,
scrape_options=ScrapeOptions(
formats=[format.value for format in input_data.formats],
maxAge=input_data.max_age,
waitFor=input_data.wait_for,
formats=convert_to_format_options(input_data.formats) or None,
max_age=input_data.max_age,
wait_for=input_data.wait_for,
),
)
yield "data", scrape_result
for site in scrape_result.data:
yield "site", site
if hasattr(scrape_result, "web") and scrape_result.web:
for site in scrape_result.web:
yield "site", site

View File

@@ -554,6 +554,89 @@ class AgentToggleInputBlock(AgentInputBlock):
)
class AgentTableInputBlock(AgentInputBlock):
"""
This block allows users to input data in a table format.
Configure the table columns at build time, then users can input
rows of data at runtime. Each row is output as a dictionary
with column names as keys.
"""
class Input(AgentInputBlock.Input):
value: Optional[list[dict[str, Any]]] = SchemaField(
description="The table data as a list of dictionaries.",
default=None,
advanced=False,
title="Default Value",
)
column_headers: list[str] = SchemaField(
description="Column headers for the table.",
default_factory=lambda: ["Column 1", "Column 2", "Column 3"],
advanced=False,
title="Column Headers",
)
def generate_schema(self):
"""Generate schema for the value field with table format."""
schema = super().generate_schema()
schema["type"] = "array"
schema["format"] = "table"
schema["items"] = {
"type": "object",
"properties": {
header: {"type": "string"}
for header in (
self.column_headers or ["Column 1", "Column 2", "Column 3"]
)
},
}
if self.value is not None:
schema["default"] = self.value
return schema
class Output(AgentInputBlock.Output):
result: list[dict[str, Any]] = SchemaField(
description="The table data as a list of dictionaries with headers as keys."
)
def __init__(self):
super().__init__(
id="5603b273-f41e-4020-af7d-fbc9c6a8d928",
description="Block for table data input with customizable headers.",
disabled=not config.enable_agent_input_subtype_blocks,
input_schema=AgentTableInputBlock.Input,
output_schema=AgentTableInputBlock.Output,
test_input=[
{
"name": "test_table",
"column_headers": ["Name", "Age", "City"],
"value": [
{"Name": "John", "Age": "30", "City": "New York"},
{"Name": "Jane", "Age": "25", "City": "London"},
],
"description": "Example table input",
}
],
test_output=[
(
"result",
[
{"Name": "John", "Age": "30", "City": "New York"},
{"Name": "Jane", "Age": "25", "City": "London"},
],
)
],
)
async def run(self, input_data: Input, *args, **kwargs) -> BlockOutput:
"""
Yields the table data as a list of dictionaries.
"""
# Pass through the value, defaulting to empty list if None
yield "result", input_data.value if input_data.value is not None else []
IO_BLOCK_IDs = [
AgentInputBlock().id,
AgentOutputBlock().id,
@@ -565,4 +648,5 @@ IO_BLOCK_IDs = [
AgentFileInputBlock().id,
AgentDropdownInputBlock().id,
AgentToggleInputBlock().id,
AgentTableInputBlock().id,
]

View File

@@ -54,20 +54,43 @@ class StepThroughItemsBlock(Block):
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Security fix: Add limits to prevent DoS from large iterations
MAX_ITEMS = 10000 # Maximum items to iterate
MAX_ITEM_SIZE = 1024 * 1024 # 1MB per item
for data in [input_data.items, input_data.items_object, input_data.items_str]:
if not data:
continue
# Limit string size before parsing
if isinstance(data, str):
if len(data) > MAX_ITEM_SIZE:
raise ValueError(
f"Input too large: {len(data)} bytes > {MAX_ITEM_SIZE} bytes"
)
items = json.loads(data)
else:
items = data
# Check total item count
if isinstance(items, (list, dict)):
if len(items) > MAX_ITEMS:
raise ValueError(f"Too many items: {len(items)} > {MAX_ITEMS}")
iteration_count = 0
if isinstance(items, dict):
# If items is a dictionary, iterate over its values
for item in items.values():
yield "item", item
yield "key", item
for key, value in items.items():
if iteration_count >= MAX_ITEMS:
break
yield "item", value
yield "key", key # Fixed: should yield key, not item
iteration_count += 1
else:
# If items is a list, iterate over the list
for index, item in enumerate(items):
if iteration_count >= MAX_ITEMS:
break
yield "item", item
yield "key", index
iteration_count += 1

View File

@@ -101,6 +101,7 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
CLAUDE_4_OPUS = "claude-opus-4-20250514"
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_3_5_SONNET = "claude-3-5-sonnet-latest"
CLAUDE_3_5_HAIKU = "claude-3-5-haiku-latest"
@@ -213,6 +214,9 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-3-7-sonnet-20250219
@@ -1400,11 +1404,27 @@ class AITextSummarizerBlock(AIBlockBase):
@staticmethod
def _split_text(text: str, max_tokens: int, overlap: int) -> list[str]:
# Security fix: Add validation to prevent DoS attacks
# Limit text size to prevent memory exhaustion
MAX_TEXT_LENGTH = 1_000_000 # 1MB character limit
MAX_CHUNKS = 100 # Maximum number of chunks to prevent excessive memory use
if len(text) > MAX_TEXT_LENGTH:
text = text[:MAX_TEXT_LENGTH]
# Ensure chunk_size is at least 1 to prevent infinite loops
chunk_size = max(1, max_tokens - overlap)
# Ensure overlap is less than max_tokens to prevent invalid configurations
if overlap >= max_tokens:
overlap = max(0, max_tokens - 1)
words = text.split()
chunks = []
chunk_size = max_tokens - overlap
for i in range(0, len(words), chunk_size):
if len(chunks) >= MAX_CHUNKS:
break # Limit the number of chunks to prevent memory exhaustion
chunk = " ".join(words[i : i + max_tokens])
chunks.append(chunk)

View File

@@ -1,4 +1,7 @@
import asyncio
import logging
import urllib.parse
import urllib.request
from datetime import datetime, timedelta, timezone
from typing import Any
@@ -101,7 +104,38 @@ class ReadRSSFeedBlock(Block):
@staticmethod
def parse_feed(url: str) -> dict[str, Any]:
return feedparser.parse(url) # type: ignore
# Security fix: Add protection against memory exhaustion attacks
MAX_FEED_SIZE = 10 * 1024 * 1024 # 10MB limit for RSS feeds
# Validate URL
parsed_url = urllib.parse.urlparse(url)
if parsed_url.scheme not in ("http", "https"):
raise ValueError(f"Invalid URL scheme: {parsed_url.scheme}")
# Download with size limit
try:
with urllib.request.urlopen(url, timeout=30) as response:
# Check content length if available
content_length = response.headers.get("Content-Length")
if content_length and int(content_length) > MAX_FEED_SIZE:
raise ValueError(
f"Feed too large: {content_length} bytes exceeds {MAX_FEED_SIZE} limit"
)
# Read with size limit
content = response.read(MAX_FEED_SIZE + 1)
if len(content) > MAX_FEED_SIZE:
raise ValueError(
f"Feed too large: exceeds {MAX_FEED_SIZE} byte limit"
)
# Parse with feedparser using the validated content
# feedparser has built-in protection against XML attacks
return feedparser.parse(content) # type: ignore
except Exception as e:
# Log error and return empty feed
logging.warning(f"Failed to parse RSS feed from {url}: {e}")
return {"entries": []}
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
keep_going = True

View File

@@ -13,6 +13,11 @@ from backend.data.block import (
BlockSchema,
BlockType,
)
from backend.data.dynamic_fields import (
extract_base_field_name,
get_dynamic_field_description,
is_dynamic_field,
)
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util import json
from backend.util.clients import get_database_manager_async_client
@@ -98,6 +103,22 @@ def _create_tool_response(call_id: str, output: Any) -> dict[str, Any]:
return {"role": "tool", "tool_call_id": call_id, "content": content}
def _convert_raw_response_to_dict(raw_response: Any) -> dict[str, Any]:
"""
Safely convert raw_response to dictionary format for conversation history.
Handles different response types from different LLM providers.
"""
if isinstance(raw_response, str):
# Ollama returns a string, convert to dict format
return {"role": "assistant", "content": raw_response}
elif isinstance(raw_response, dict):
# Already a dict (from tests or some providers)
return raw_response
else:
# OpenAI/Anthropic return objects, convert with json.to_dict
return json.to_dict(raw_response)
def get_pending_tool_calls(conversation_history: list[Any]) -> dict[str, int]:
"""
All the tool calls entry in the conversation history requires a response.
@@ -261,6 +282,7 @@ class SmartDecisionMakerBlock(Block):
@staticmethod
def cleanup(s: str):
"""Clean up block names for use as tool function names."""
return re.sub(r"[^a-zA-Z0-9_-]", "_", s).lower()
@staticmethod
@@ -288,41 +310,66 @@ class SmartDecisionMakerBlock(Block):
}
sink_block_input_schema = block.input_schema
properties = {}
field_mapping = {} # clean_name -> original_name
for link in links:
sink_name = SmartDecisionMakerBlock.cleanup(link.sink_name)
field_name = link.sink_name
is_dynamic = is_dynamic_field(field_name)
# Clean property key to ensure Anthropic API compatibility for ALL fields
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
field_mapping[clean_field_name] = field_name
# Handle dynamic fields (e.g., values_#_*, items_$_*, etc.)
# These are fields that get merged by the executor into their base field
if (
"_#_" in link.sink_name
or "_$_" in link.sink_name
or "_@_" in link.sink_name
):
# For dynamic fields, provide a generic string schema
# The executor will handle merging these into the appropriate structure
properties[sink_name] = {
if is_dynamic:
# For dynamic fields, use cleaned name but preserve original in description
properties[clean_field_name] = {
"type": "string",
"description": f"Dynamic value for {link.sink_name}",
"description": get_dynamic_field_description(field_name),
}
else:
# For regular fields, use the block's schema
# For regular fields, use the block's schema directly
try:
properties[sink_name] = sink_block_input_schema.get_field_schema(
link.sink_name
properties[clean_field_name] = (
sink_block_input_schema.get_field_schema(field_name)
)
except (KeyError, AttributeError):
# If the field doesn't exist in the schema, provide a generic schema
properties[sink_name] = {
# If field doesn't exist in schema, provide a generic one
properties[clean_field_name] = {
"type": "string",
"description": f"Value for {link.sink_name}",
"description": f"Value for {field_name}",
}
# Build the parameters schema using a single unified path
base_schema = block.input_schema.jsonschema()
base_required = set(base_schema.get("required", []))
# Compute required fields at the leaf level:
# - If a linked field is dynamic and its base is required in the block schema, require the leaf
# - If a linked field is regular and is required in the block schema, require the leaf
required_fields: set[str] = set()
for link in links:
field_name = link.sink_name
is_dynamic = is_dynamic_field(field_name)
# Always use cleaned field name for property key (Anthropic API compliance)
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
if is_dynamic:
base_name = extract_base_field_name(field_name)
if base_name in base_required:
required_fields.add(clean_field_name)
else:
if field_name in base_required:
required_fields.add(clean_field_name)
tool_function["parameters"] = {
**block.input_schema.jsonschema(),
"type": "object",
"properties": properties,
"additionalProperties": False,
"required": sorted(required_fields),
}
# Store field mapping for later use in output processing
tool_function["_field_mapping"] = field_mapping
return {"type": "function", "function": tool_function}
@staticmethod
@@ -366,13 +413,12 @@ class SmartDecisionMakerBlock(Block):
sink_block_properties = sink_block_input_schema.get("properties", {}).get(
link.sink_name, {}
)
sink_name = SmartDecisionMakerBlock.cleanup(link.sink_name)
description = (
sink_block_properties["description"]
if "description" in sink_block_properties
else f"The {link.sink_name} of the tool"
)
properties[sink_name] = {
properties[link.sink_name] = {
"type": "string",
"description": description,
"default": json.dumps(sink_block_properties.get("default", None)),
@@ -388,24 +434,17 @@ class SmartDecisionMakerBlock(Block):
return {"type": "function", "function": tool_function}
@staticmethod
async def _create_function_signature(node_id: str) -> list[dict[str, Any]]:
async def _create_function_signature(
node_id: str,
) -> list[dict[str, Any]]:
"""
Creates function signatures for tools linked to a specified node within a graph.
This method filters the graph links to identify those that are tools and are
connected to the given node_id. It then constructs function signatures for each
tool based on the metadata and input schema of the linked nodes.
Creates function signatures for connected tools.
Args:
node_id: The node_id for which to create function signatures.
Returns:
list[dict[str, Any]]: A list of dictionaries, each representing a function signature
for a tool, including its name, description, and parameters.
Raises:
ValueError: If no tool links are found for the specified node_id, or if a sink node
or its metadata cannot be found.
List of function signatures for tools
"""
db_client = get_database_manager_async_client()
tools = [
@@ -430,20 +469,116 @@ class SmartDecisionMakerBlock(Block):
raise ValueError(f"Sink node not found: {links[0].sink_id}")
if sink_node.block_id == AgentExecutorBlock().id:
return_tool_functions.append(
tool_func = (
await SmartDecisionMakerBlock._create_agent_function_signature(
sink_node, links
)
)
return_tool_functions.append(tool_func)
else:
return_tool_functions.append(
tool_func = (
await SmartDecisionMakerBlock._create_block_function_signature(
sink_node, links
)
)
return_tool_functions.append(tool_func)
return return_tool_functions
async def _attempt_llm_call_with_validation(
self,
credentials: llm.APIKeyCredentials,
input_data: Input,
current_prompt: list[dict],
tool_functions: list[dict[str, Any]],
):
"""
Attempt a single LLM call with tool validation.
Returns the response if successful, raises ValueError if validation fails.
"""
resp = await llm.llm_call(
credentials=credentials,
llm_model=input_data.model,
prompt=current_prompt,
max_tokens=input_data.max_tokens,
tools=tool_functions,
ollama_host=input_data.ollama_host,
parallel_tool_calls=input_data.multiple_tool_calls,
)
# Track LLM usage stats per call
self.merge_stats(
NodeExecutionStats(
input_token_count=resp.prompt_tokens,
output_token_count=resp.completion_tokens,
llm_call_count=1,
)
)
if not resp.tool_calls:
return resp
validation_errors_list: list[str] = []
for tool_call in resp.tool_calls:
tool_name = tool_call.function.name
try:
tool_args = json.loads(tool_call.function.arguments)
except Exception as e:
validation_errors_list.append(
f"Tool call '{tool_name}' has invalid JSON arguments: {e}"
)
continue
# Find the tool definition to get the expected arguments
tool_def = next(
(
tool
for tool in tool_functions
if tool["function"]["name"] == tool_name
),
None,
)
if tool_def is None and len(tool_functions) == 1:
tool_def = tool_functions[0]
# Get parameters schema from tool definition
if (
tool_def
and "function" in tool_def
and "parameters" in tool_def["function"]
):
parameters = tool_def["function"]["parameters"]
expected_args = parameters.get("properties", {})
required_params = set(parameters.get("required", []))
else:
expected_args = {arg: {} for arg in tool_args.keys()}
required_params = set()
# Validate tool call arguments
provided_args = set(tool_args.keys())
expected_args_set = set(expected_args.keys())
# Check for unexpected arguments (typos)
unexpected_args = provided_args - expected_args_set
# Only check for missing REQUIRED parameters
missing_required_args = required_params - provided_args
if unexpected_args or missing_required_args:
error_msg = f"Tool call '{tool_name}' has parameter errors:"
if unexpected_args:
error_msg += f" Unknown parameters: {sorted(unexpected_args)}."
if missing_required_args:
error_msg += f" Missing required parameters: {sorted(missing_required_args)}."
error_msg += f" Expected parameters: {sorted(expected_args_set)}."
if required_params:
error_msg += f" Required parameters: {sorted(required_params)}."
validation_errors_list.append(error_msg)
if validation_errors_list:
raise ValueError("; ".join(validation_errors_list))
return resp
async def run(
self,
input_data: Input,
@@ -466,27 +601,19 @@ class SmartDecisionMakerBlock(Block):
if pending_tool_calls and input_data.last_tool_output is None:
raise ValueError(f"Tool call requires an output for {pending_tool_calls}")
# Only assign the last tool output to the first pending tool call
tool_output = []
if pending_tool_calls and input_data.last_tool_output is not None:
# Get the first pending tool call ID
first_call_id = next(iter(pending_tool_calls.keys()))
tool_output.append(
_create_tool_response(first_call_id, input_data.last_tool_output)
)
# Add tool output to prompt right away
prompt.extend(tool_output)
# Check if there are still pending tool calls after handling the first one
remaining_pending_calls = get_pending_tool_calls(prompt)
# If there are still pending tool calls, yield the conversation and return early
if remaining_pending_calls:
yield "conversations", prompt
return
# Fallback on adding tool output in the conversation history as user prompt.
elif input_data.last_tool_output:
logger.error(
f"[SmartDecisionMakerBlock-node_exec_id={node_exec_id}] "
@@ -519,24 +646,33 @@ class SmartDecisionMakerBlock(Block):
):
prompt.append({"role": "user", "content": prefix + input_data.prompt})
response = await llm.llm_call(
credentials=credentials,
llm_model=input_data.model,
prompt=prompt,
max_tokens=input_data.max_tokens,
tools=tool_functions,
ollama_host=input_data.ollama_host,
parallel_tool_calls=input_data.multiple_tool_calls,
)
current_prompt = list(prompt)
max_attempts = max(1, int(input_data.retry))
response = None
# Track LLM usage stats
self.merge_stats(
NodeExecutionStats(
input_token_count=response.prompt_tokens,
output_token_count=response.completion_tokens,
llm_call_count=1,
last_error = None
for attempt in range(max_attempts):
try:
response = await self._attempt_llm_call_with_validation(
credentials, input_data, current_prompt, tool_functions
)
break
except ValueError as e:
last_error = e
error_feedback = (
"Your tool call had parameter errors. Please fix the following issues and try again:\n"
+ f"- {str(e)}\n"
+ "\nPlease make sure to use the exact parameter names as specified in the function schema."
)
current_prompt = list(current_prompt) + [
{"role": "user", "content": error_feedback}
]
if response is None:
raise last_error or ValueError(
"Failed to get valid response after all retry attempts"
)
)
if not response.tool_calls:
yield "finished", response.response
@@ -546,7 +682,6 @@ class SmartDecisionMakerBlock(Block):
tool_name = tool_call.function.name
tool_args = json.loads(tool_call.function.arguments)
# Find the tool definition to get the expected arguments
tool_def = next(
(
tool
@@ -555,7 +690,6 @@ class SmartDecisionMakerBlock(Block):
),
None,
)
if (
tool_def
and "function" in tool_def
@@ -563,20 +697,38 @@ class SmartDecisionMakerBlock(Block):
):
expected_args = tool_def["function"]["parameters"].get("properties", {})
else:
expected_args = tool_args.keys()
expected_args = {arg: {} for arg in tool_args.keys()}
# Yield provided arguments and None for missing ones
for arg_name in expected_args:
if arg_name in tool_args:
yield f"tools_^_{tool_name}_~_{arg_name}", tool_args[arg_name]
else:
yield f"tools_^_{tool_name}_~_{arg_name}", None
# Get field mapping from tool definition
field_mapping = (
tool_def.get("function", {}).get("_field_mapping", {})
if tool_def
else {}
)
for clean_arg_name in expected_args:
# arg_name is now always the cleaned field name (for Anthropic API compliance)
# Get the original field name from field mapping for proper emit key generation
original_field_name = field_mapping.get(clean_arg_name, clean_arg_name)
arg_value = tool_args.get(clean_arg_name)
sanitized_tool_name = self.cleanup(tool_name)
sanitized_arg_name = self.cleanup(original_field_name)
emit_key = f"tools_^_{sanitized_tool_name}_~_{sanitized_arg_name}"
logger.debug(
"[SmartDecisionMakerBlock|geid:%s|neid:%s] emit %s",
graph_exec_id,
node_exec_id,
emit_key,
)
yield emit_key, arg_value
# Add reasoning to conversation history if available
if response.reasoning:
prompt.append(
{"role": "assistant", "content": f"[Reasoning]: {response.reasoning}"}
)
prompt.append(response.raw_response)
prompt.append(_convert_raw_response_to_dict(response.raw_response))
yield "conversations", prompt

View File

@@ -19,7 +19,7 @@ async def test_block_ids_valid(block: Type[Block]):
# Skip list for blocks with known invalid UUIDs
skip_blocks = {
"GetWeatherInformationBlock",
"CodeExecutionBlock",
"ExecuteCodeBlock",
"CountdownTimerBlock",
"TwitterGetListTweetsBlock",
"TwitterRemoveListMemberBlock",

View File

@@ -0,0 +1,269 @@
"""
Test security fixes for various DoS vulnerabilities.
"""
import asyncio
from unittest.mock import patch
import pytest
from backend.blocks.code_extraction_block import CodeExtractionBlock
from backend.blocks.iteration import StepThroughItemsBlock
from backend.blocks.llm import AITextSummarizerBlock
from backend.blocks.text import ExtractTextInformationBlock
from backend.blocks.xml_parser import XMLParserBlock
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
class TestCodeExtractionBlockSecurity:
"""Test ReDoS fixes in CodeExtractionBlock."""
async def test_redos_protection(self):
"""Test that the regex patterns don't cause ReDoS."""
block = CodeExtractionBlock()
# Test with input that would previously cause ReDoS
malicious_input = "```python" + " " * 10000 # Large spaces
result = []
async for output_name, output_data in block.run(
CodeExtractionBlock.Input(text=malicious_input)
):
result.append((output_name, output_data))
# Should complete without hanging
assert len(result) >= 1
assert any(name == "remaining_text" for name, _ in result)
class TestAITextSummarizerBlockSecurity:
"""Test memory exhaustion fixes in AITextSummarizerBlock."""
def test_split_text_limits(self):
"""Test that _split_text has proper limits."""
# Test text size limit
large_text = "a" * 2_000_000 # 2MB text
result = AITextSummarizerBlock._split_text(large_text, 1000, 100)
# Should be truncated to 1MB
total_chars = sum(len(chunk) for chunk in result)
assert total_chars <= 1_000_000 + 1000 # Allow for chunk boundary
# Test chunk count limit
result = AITextSummarizerBlock._split_text("word " * 10000, 10, 9)
assert len(result) <= 100 # MAX_CHUNKS limit
# Test parameter validation
result = AITextSummarizerBlock._split_text(
"test", 10, 15
) # overlap > max_tokens
assert len(result) >= 1 # Should still work
class TestExtractTextInformationBlockSecurity:
"""Test ReDoS and memory exhaustion fixes in ExtractTextInformationBlock."""
async def test_text_size_limits(self):
"""Test text size limits."""
block = ExtractTextInformationBlock()
# Test with large input
large_text = "a" * 2_000_000 # 2MB
results = []
async for output_name, output_data in block.run(
ExtractTextInformationBlock.Input(
text=large_text, pattern=r"a+", find_all=True, group=0
)
):
results.append((output_name, output_data))
# Should complete and have limits applied
matched_results = [r for name, r in results if name == "matched_results"]
if matched_results:
assert len(matched_results[0]) <= 1000 # MAX_MATCHES limit
async def test_dangerous_pattern_timeout(self):
"""Test timeout protection for dangerous patterns."""
block = ExtractTextInformationBlock()
# Test with potentially dangerous lookahead pattern
test_input = "a" * 1000
# This should complete quickly due to timeout protection
start_time = asyncio.get_event_loop().time()
results = []
async for output_name, output_data in block.run(
ExtractTextInformationBlock.Input(
text=test_input, pattern=r"(?=.+)", find_all=True, group=0
)
):
results.append((output_name, output_data))
end_time = asyncio.get_event_loop().time()
# Should complete within reasonable time (much less than 5s timeout)
assert (end_time - start_time) < 10
async def test_redos_catastrophic_backtracking(self):
"""Test that ReDoS patterns with catastrophic backtracking are handled."""
block = ExtractTextInformationBlock()
# Pattern that causes catastrophic backtracking: (a+)+b
# With input "aaaaaaaaaaaaaaaaaaaaaaaaaaaa" (no 'b'), this causes exponential time
dangerous_pattern = r"(a+)+b"
test_input = "a" * 30 # 30 'a's without a 'b' at the end
# This should be handled by timeout protection or pattern detection
start_time = asyncio.get_event_loop().time()
results = []
async for output_name, output_data in block.run(
ExtractTextInformationBlock.Input(
text=test_input, pattern=dangerous_pattern, find_all=True, group=0
)
):
results.append((output_name, output_data))
end_time = asyncio.get_event_loop().time()
elapsed = end_time - start_time
# Should complete within timeout (6 seconds to be safe)
# The current threading.Timer approach doesn't work, so this will likely fail
# demonstrating the need for a fix
assert elapsed < 6, f"Regex took {elapsed}s, timeout mechanism failed"
# Should return empty results on timeout or no match
matched_results = [r for name, r in results if name == "matched_results"]
assert matched_results[0] == [] # No matches expected
class TestStepThroughItemsBlockSecurity:
"""Test iteration limits in StepThroughItemsBlock."""
async def test_item_count_limits(self):
"""Test maximum item count limits."""
block = StepThroughItemsBlock()
# Test with too many items
large_list = list(range(20000)) # Exceeds MAX_ITEMS (10000)
with pytest.raises(ValueError, match="Too many items"):
async for _ in block.run(StepThroughItemsBlock.Input(items=large_list)):
pass
async def test_string_size_limits(self):
"""Test string input size limits."""
block = StepThroughItemsBlock()
# Test with large JSON string
large_string = '["item"]' * 200000 # Large JSON string
with pytest.raises(ValueError, match="Input too large"):
async for _ in block.run(
StepThroughItemsBlock.Input(items_str=large_string)
):
pass
async def test_normal_iteration_works(self):
"""Test that normal iteration still works."""
block = StepThroughItemsBlock()
results = []
async for output_name, output_data in block.run(
StepThroughItemsBlock.Input(items=[1, 2, 3])
):
results.append((output_name, output_data))
# Should have 6 outputs (item, key for each of 3 items)
assert len(results) == 6
items = [data for name, data in results if name == "item"]
assert items == [1, 2, 3]
class TestXMLParserBlockSecurity:
"""Test XML size limits in XMLParserBlock."""
async def test_xml_size_limits(self):
"""Test XML input size limits."""
block = XMLParserBlock()
# Test with large XML - need to exceed 10MB limit
# Each "<item>data</item>" is 17 chars, need ~620K items for >10MB
large_xml = "<root>" + "<item>data</item>" * 620000 + "</root>"
with pytest.raises(ValueError, match="XML too large"):
async for _ in block.run(XMLParserBlock.Input(input_xml=large_xml)):
pass
class TestStoreMediaFileSecurity:
"""Test file storage security limits."""
@patch("backend.util.file.scan_content_safe")
@patch("backend.util.file.get_cloud_storage_handler")
async def test_file_size_limits(self, mock_cloud_storage, mock_scan):
"""Test file size limits."""
# Mock cloud storage handler - get_cloud_storage_handler is async
# but is_cloud_path and parse_cloud_path are sync methods
from unittest.mock import MagicMock
mock_handler = MagicMock()
mock_handler.is_cloud_path.return_value = False
# Make get_cloud_storage_handler an async function that returns the mock handler
async def async_get_handler():
return mock_handler
mock_cloud_storage.side_effect = async_get_handler
mock_scan.return_value = None
# Test with large base64 content
large_content = "a" * (200 * 1024 * 1024) # 200MB
large_data_uri = f"data:text/plain;base64,{large_content}"
with pytest.raises(ValueError, match="File too large"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(large_data_uri),
user_id="test_user",
)
@patch("backend.util.file.Path")
@patch("backend.util.file.scan_content_safe")
@patch("backend.util.file.get_cloud_storage_handler")
async def test_directory_size_limits(self, mock_cloud_storage, mock_scan, MockPath):
"""Test directory size limits."""
from unittest.mock import MagicMock
mock_handler = MagicMock()
mock_handler.is_cloud_path.return_value = False
async def async_get_handler():
return mock_handler
mock_cloud_storage.side_effect = async_get_handler
mock_scan.return_value = None
# Create mock path instance for the execution directory
mock_path_instance = MagicMock()
mock_path_instance.exists.return_value = True
# Mock glob to return files that total > 1GB
mock_file = MagicMock()
mock_file.is_file.return_value = True
mock_file.stat.return_value.st_size = 2 * 1024 * 1024 * 1024 # 2GB
mock_path_instance.glob.return_value = [mock_file]
# Make Path() return our mock
MockPath.return_value = mock_path_instance
# Should raise an error when directory size exceeds limit
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(
"data:text/plain;base64,dGVzdA=="
), # Small test file
user_id="test_user",
)

View File

@@ -216,8 +216,17 @@ async def test_smart_decision_maker_tracks_llm_stats():
}
# Mock the _create_function_signature method to avoid database calls
with patch("backend.blocks.llm.llm_call", return_value=mock_response), patch.object(
SmartDecisionMakerBlock, "_create_function_signature", return_value=[]
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=[],
):
# Create test input
@@ -249,3 +258,471 @@ async def test_smart_decision_maker_tracks_llm_stats():
# Verify outputs
assert "finished" in outputs # Should have finished since no tool calls
assert outputs["finished"] == "I need to think about this."
@pytest.mark.asyncio
async def test_smart_decision_maker_parameter_validation():
"""Test that SmartDecisionMakerBlock correctly validates tool call parameters."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool functions with specific parameter schema
mock_tool_functions = [
{
"type": "function",
"function": {
"name": "search_keywords",
"description": "Search for keywords with difficulty filtering",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "Search query"},
"max_keyword_difficulty": {
"type": "integer",
"description": "Maximum keyword difficulty (required)",
},
"optional_param": {
"type": "string",
"description": "Optional parameter with default",
"default": "default_value",
},
},
"required": ["query", "max_keyword_difficulty"],
},
},
}
]
# Test case 1: Tool call with TYPO in parameter name (should retry and eventually fail)
mock_tool_call_with_typo = MagicMock()
mock_tool_call_with_typo.function.name = "search_keywords"
mock_tool_call_with_typo.function.arguments = '{"query": "test", "maximum_keyword_difficulty": 50}' # TYPO: maximum instead of max
mock_response_with_typo = MagicMock()
mock_response_with_typo.response = None
mock_response_with_typo.tool_calls = [mock_tool_call_with_typo]
mock_response_with_typo.prompt_tokens = 50
mock_response_with_typo.completion_tokens = 25
mock_response_with_typo.reasoning = None
mock_response_with_typo.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_with_typo,
) as mock_llm_call, patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2, # Set retry to 2 for testing
)
# Should raise ValueError after retries due to typo'd parameter name
with pytest.raises(ValueError) as exc_info:
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
# Verify error message contains details about the typo
error_msg = str(exc_info.value)
assert "Tool call 'search_keywords' has parameter errors" in error_msg
assert "Unknown parameters: ['maximum_keyword_difficulty']" in error_msg
# Verify that LLM was called the expected number of times (retries)
assert mock_llm_call.call_count == 2 # Should retry based on input_data.retry
# Test case 2: Tool call missing REQUIRED parameter (should raise ValueError)
mock_tool_call_missing_required = MagicMock()
mock_tool_call_missing_required.function.name = "search_keywords"
mock_tool_call_missing_required.function.arguments = (
'{"query": "test"}' # Missing required max_keyword_difficulty
)
mock_response_missing_required = MagicMock()
mock_response_missing_required.response = None
mock_response_missing_required.tool_calls = [mock_tool_call_missing_required]
mock_response_missing_required.prompt_tokens = 50
mock_response_missing_required.completion_tokens = 25
mock_response_missing_required.reasoning = None
mock_response_missing_required.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_missing_required,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
)
# Should raise ValueError due to missing required parameter
with pytest.raises(ValueError) as exc_info:
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
error_msg = str(exc_info.value)
assert "Tool call 'search_keywords' has parameter errors" in error_msg
assert "Missing required parameters: ['max_keyword_difficulty']" in error_msg
# Test case 3: Valid tool call with OPTIONAL parameter missing (should succeed)
mock_tool_call_valid = MagicMock()
mock_tool_call_valid.function.name = "search_keywords"
mock_tool_call_valid.function.arguments = '{"query": "test", "max_keyword_difficulty": 50}' # optional_param missing, but that's OK
mock_response_valid = MagicMock()
mock_response_valid.response = None
mock_response_valid.tool_calls = [mock_tool_call_valid]
mock_response_valid.prompt_tokens = 50
mock_response_valid.completion_tokens = 25
mock_response_valid.reasoning = None
mock_response_valid.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_valid,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
)
# Should succeed - optional parameter missing is OK
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
# Verify tool outputs were generated correctly
assert "tools_^_search_keywords_~_query" in outputs
assert outputs["tools_^_search_keywords_~_query"] == "test"
assert "tools_^_search_keywords_~_max_keyword_difficulty" in outputs
assert outputs["tools_^_search_keywords_~_max_keyword_difficulty"] == 50
# Optional parameter should be None when not provided
assert "tools_^_search_keywords_~_optional_param" in outputs
assert outputs["tools_^_search_keywords_~_optional_param"] is None
# Test case 4: Valid tool call with ALL parameters (should succeed)
mock_tool_call_all_params = MagicMock()
mock_tool_call_all_params.function.name = "search_keywords"
mock_tool_call_all_params.function.arguments = '{"query": "test", "max_keyword_difficulty": 50, "optional_param": "custom_value"}'
mock_response_all_params = MagicMock()
mock_response_all_params.response = None
mock_response_all_params.tool_calls = [mock_tool_call_all_params]
mock_response_all_params.prompt_tokens = 50
mock_response_all_params.completion_tokens = 25
mock_response_all_params.reasoning = None
mock_response_all_params.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_all_params,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
)
# Should succeed with all parameters
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
# Verify all tool outputs were generated correctly
assert outputs["tools_^_search_keywords_~_query"] == "test"
assert outputs["tools_^_search_keywords_~_max_keyword_difficulty"] == 50
assert outputs["tools_^_search_keywords_~_optional_param"] == "custom_value"
@pytest.mark.asyncio
async def test_smart_decision_maker_raw_response_conversion():
"""Test that SmartDecisionMaker correctly handles different raw_response types with retry mechanism."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool functions
mock_tool_functions = [
{
"type": "function",
"function": {
"name": "test_tool",
"parameters": {
"type": "object",
"properties": {"param": {"type": "string"}},
"required": ["param"],
},
},
}
]
# Test case 1: Simulate ChatCompletionMessage raw_response that caused the original error
class MockChatCompletionMessage:
"""Simulate OpenAI's ChatCompletionMessage object that lacks .get() method"""
def __init__(self, role, content, tool_calls=None):
self.role = role
self.content = content
self.tool_calls = tool_calls or []
# This is what caused the error - no .get() method
# def get(self, key, default=None): # Intentionally missing
# First response: has invalid parameter name (triggers retry)
mock_tool_call_invalid = MagicMock()
mock_tool_call_invalid.function.name = "test_tool"
mock_tool_call_invalid.function.arguments = (
'{"wrong_param": "test_value"}' # Invalid parameter name
)
mock_response_retry = MagicMock()
mock_response_retry.response = None
mock_response_retry.tool_calls = [mock_tool_call_invalid]
mock_response_retry.prompt_tokens = 50
mock_response_retry.completion_tokens = 25
mock_response_retry.reasoning = None
# This would cause the original error without our fix
mock_response_retry.raw_response = MockChatCompletionMessage(
role="assistant", content=None, tool_calls=[mock_tool_call_invalid]
)
# Second response: successful (correct parameter name)
mock_tool_call_valid = MagicMock()
mock_tool_call_valid.function.name = "test_tool"
mock_tool_call_valid.function.arguments = (
'{"param": "test_value"}' # Correct parameter name
)
mock_response_success = MagicMock()
mock_response_success.response = None
mock_response_success.tool_calls = [mock_tool_call_valid]
mock_response_success.prompt_tokens = 50
mock_response_success.completion_tokens = 25
mock_response_success.reasoning = None
mock_response_success.raw_response = MockChatCompletionMessage(
role="assistant", content=None, tool_calls=[mock_tool_call_valid]
)
# Mock llm_call to return different responses on different calls
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call", new_callable=AsyncMock
) as mock_llm_call, patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
# First call returns response that will trigger retry due to validation error
# Second call returns successful response
mock_llm_call.side_effect = [mock_response_retry, mock_response_success]
input_data = SmartDecisionMakerBlock.Input(
prompt="Test prompt",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2,
)
# Should succeed after retry, demonstrating our helper function works
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
# Verify the tool output was generated successfully
assert "tools_^_test_tool_~_param" in outputs
assert outputs["tools_^_test_tool_~_param"] == "test_value"
# Verify conversation history was properly maintained
assert "conversations" in outputs
conversations = outputs["conversations"]
assert len(conversations) > 0
# The conversations should contain properly converted raw_response objects as dicts
# This would have failed with the original bug due to ChatCompletionMessage.get() error
for msg in conversations:
assert isinstance(msg, dict), f"Expected dict, got {type(msg)}"
if msg.get("role") == "assistant":
# Should have been converted from ChatCompletionMessage to dict
assert "role" in msg
# Verify LLM was called twice (initial + 1 retry)
assert mock_llm_call.call_count == 2
# Test case 2: Test with different raw_response types (Ollama string, dict)
# Test Ollama string response
mock_response_ollama = MagicMock()
mock_response_ollama.response = "I'll help you with that."
mock_response_ollama.tool_calls = None
mock_response_ollama.prompt_tokens = 30
mock_response_ollama.completion_tokens = 15
mock_response_ollama.reasoning = None
mock_response_ollama.raw_response = (
"I'll help you with that." # Ollama returns string
)
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_ollama,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=[], # No tools for this test
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Simple prompt",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
)
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
# Should finish since no tool calls
assert "finished" in outputs
assert outputs["finished"] == "I'll help you with that."
# Test case 3: Test with dict raw_response (some providers/tests)
mock_response_dict = MagicMock()
mock_response_dict.response = "Test response"
mock_response_dict.tool_calls = None
mock_response_dict.prompt_tokens = 25
mock_response_dict.completion_tokens = 10
mock_response_dict.reasoning = None
mock_response_dict.raw_response = {
"role": "assistant",
"content": "Test response",
} # Dict format
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_dict,
), patch.object(
SmartDecisionMakerBlock,
"_create_function_signature",
new_callable=AsyncMock,
return_value=[],
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Another test",
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
)
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
):
outputs[output_name] = output_data
assert "finished" in outputs
assert outputs["finished"] == "Test response"

View File

@@ -48,16 +48,24 @@ async def test_smart_decision_maker_handles_dynamic_dict_fields():
assert "parameters" in signature["function"]
assert "properties" in signature["function"]["parameters"]
# Check that dynamic fields are handled
# Check that dynamic fields are handled with original names
properties = signature["function"]["parameters"]["properties"]
assert len(properties) == 3 # Should have all three fields
# Each dynamic field should have proper schema
for prop_value in properties.values():
# Check that field names are cleaned (for Anthropic API compatibility)
assert "values___name" in properties
assert "values___age" in properties
assert "values___city" in properties
# Each dynamic field should have proper schema with descriptive text
for field_name, prop_value in properties.items():
assert "type" in prop_value
assert prop_value["type"] == "string" # Dynamic fields get string type
assert "description" in prop_value
assert "Dynamic value for" in prop_value["description"]
# Check that descriptions properly explain the dynamic field
if field_name == "values___name":
assert "Dictionary field 'name'" in prop_value["description"]
assert "values['name']" in prop_value["description"]
@pytest.mark.asyncio
@@ -96,10 +104,18 @@ async def test_smart_decision_maker_handles_dynamic_list_fields():
properties = signature["function"]["parameters"]["properties"]
assert len(properties) == 2 # Should have both list items
# Each dynamic field should have proper schema
for prop_value in properties.values():
# Check that field names are cleaned (for Anthropic API compatibility)
assert "entries___0" in properties
assert "entries___1" in properties
# Each dynamic field should have proper schema with descriptive text
for field_name, prop_value in properties.items():
assert prop_value["type"] == "string"
assert "Dynamic value for" in prop_value["description"]
assert "description" in prop_value
# Check that descriptions properly explain the list field
if field_name == "entries___0":
assert "List item 0" in prop_value["description"]
assert "entries[0]" in prop_value["description"]
@pytest.mark.asyncio

View File

@@ -0,0 +1,553 @@
"""Comprehensive tests for SmartDecisionMakerBlock dynamic field handling."""
import json
from unittest.mock import AsyncMock, Mock, patch
import pytest
from backend.blocks.data_manipulation import AddToListBlock, CreateDictionaryBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.blocks.text import MatchTextPatternBlock
from backend.data.dynamic_fields import get_dynamic_field_description
@pytest.mark.asyncio
async def test_dynamic_field_description_generation():
"""Test that dynamic field descriptions are generated correctly."""
# Test dictionary field description
desc = get_dynamic_field_description("values_#_name")
assert "Dictionary field 'name' for base field 'values'" in desc
assert "values['name']" in desc
# Test list field description
desc = get_dynamic_field_description("items_$_0")
assert "List item 0 for base field 'items'" in desc
assert "items[0]" in desc
# Test object field description
desc = get_dynamic_field_description("user_@_email")
assert "Object attribute 'email' for base field 'user'" in desc
assert "user.email" in desc
# Test regular field fallback
desc = get_dynamic_field_description("regular_field")
assert desc == "Value for regular_field"
@pytest.mark.asyncio
async def test_create_block_function_signature_with_dict_fields():
"""Test that function signatures are created correctly for dictionary dynamic fields."""
block = SmartDecisionMakerBlock()
# Create a mock node for CreateDictionaryBlock
mock_node = Mock()
mock_node.block = CreateDictionaryBlock()
mock_node.block_id = CreateDictionaryBlock().id
mock_node.input_default = {}
# Create mock links with dynamic dictionary fields (source sanitized, sink original)
mock_links = [
Mock(
source_name="tools_^_create_dict_~_values___name", # Sanitized source
sink_name="values_#_name", # Original sink
sink_id="dict_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_create_dict_~_values___age", # Sanitized source
sink_name="values_#_age", # Original sink
sink_id="dict_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_create_dict_~_values___email", # Sanitized source
sink_name="values_#_email", # Original sink
sink_id="dict_node_id",
source_id="smart_decision_node_id",
),
]
# Generate function signature
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
# Verify the signature structure
assert signature["type"] == "function"
assert "function" in signature
assert "parameters" in signature["function"]
assert "properties" in signature["function"]["parameters"]
# Check that dynamic fields are handled with original names
properties = signature["function"]["parameters"]["properties"]
assert len(properties) == 3
# Check cleaned field names (for Anthropic API compatibility)
assert "values___name" in properties
assert "values___age" in properties
assert "values___email" in properties
# Check descriptions mention they are dictionary fields
assert "Dictionary field" in properties["values___name"]["description"]
assert "values['name']" in properties["values___name"]["description"]
assert "Dictionary field" in properties["values___age"]["description"]
assert "values['age']" in properties["values___age"]["description"]
assert "Dictionary field" in properties["values___email"]["description"]
assert "values['email']" in properties["values___email"]["description"]
@pytest.mark.asyncio
async def test_create_block_function_signature_with_list_fields():
"""Test that function signatures are created correctly for list dynamic fields."""
block = SmartDecisionMakerBlock()
# Create a mock node for AddToListBlock
mock_node = Mock()
mock_node.block = AddToListBlock()
mock_node.block_id = AddToListBlock().id
mock_node.input_default = {}
# Create mock links with dynamic list fields
mock_links = [
Mock(
source_name="tools_^_add_list_~_0",
sink_name="entries_$_0", # Dynamic list field
sink_id="list_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_add_list_~_1",
sink_name="entries_$_1", # Dynamic list field
sink_id="list_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_add_list_~_2",
sink_name="entries_$_2", # Dynamic list field
sink_id="list_node_id",
source_id="smart_decision_node_id",
),
]
# Generate function signature
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
# Verify the signature structure
assert signature["type"] == "function"
properties = signature["function"]["parameters"]["properties"]
# Check cleaned field names (for Anthropic API compatibility)
assert "entries___0" in properties
assert "entries___1" in properties
assert "entries___2" in properties
# Check descriptions mention they are list items
assert "List item 0" in properties["entries___0"]["description"]
assert "entries[0]" in properties["entries___0"]["description"]
assert "List item 1" in properties["entries___1"]["description"]
assert "entries[1]" in properties["entries___1"]["description"]
@pytest.mark.asyncio
async def test_create_block_function_signature_with_object_fields():
"""Test that function signatures are created correctly for object dynamic fields."""
block = SmartDecisionMakerBlock()
# Create a mock node for MatchTextPatternBlock (simulating object fields)
mock_node = Mock()
mock_node.block = MatchTextPatternBlock()
mock_node.block_id = MatchTextPatternBlock().id
mock_node.input_default = {}
# Create mock links with dynamic object fields
mock_links = [
Mock(
source_name="tools_^_extract_~_user_name",
sink_name="data_@_user_name", # Dynamic object field
sink_id="extract_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_extract_~_user_email",
sink_name="data_@_user_email", # Dynamic object field
sink_id="extract_node_id",
source_id="smart_decision_node_id",
),
]
# Generate function signature
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
# Verify the signature structure
properties = signature["function"]["parameters"]["properties"]
# Check cleaned field names (for Anthropic API compatibility)
assert "data___user_name" in properties
assert "data___user_email" in properties
# Check descriptions mention they are object attributes
assert "Object attribute" in properties["data___user_name"]["description"]
assert "data.user_name" in properties["data___user_name"]["description"]
@pytest.mark.asyncio
async def test_create_function_signature():
"""Test that the mapping between sanitized and original field names is built correctly."""
block = SmartDecisionMakerBlock()
# Mock the database client and connected nodes
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
) as mock_db:
mock_client = AsyncMock()
mock_db.return_value = mock_client
# Create mock nodes and links
mock_dict_node = Mock()
mock_dict_node.block = CreateDictionaryBlock()
mock_dict_node.block_id = CreateDictionaryBlock().id
mock_dict_node.input_default = {}
mock_list_node = Mock()
mock_list_node.block = AddToListBlock()
mock_list_node.block_id = AddToListBlock().id
mock_list_node.input_default = {}
# Mock links with dynamic fields
dict_link1 = Mock(
source_name="tools_^_create_dictionary_~_name",
sink_name="values_#_name",
sink_id="dict_node_id",
source_id="test_node_id",
)
dict_link2 = Mock(
source_name="tools_^_create_dictionary_~_age",
sink_name="values_#_age",
sink_id="dict_node_id",
source_id="test_node_id",
)
list_link = Mock(
source_name="tools_^_add_to_list_~_0",
sink_name="entries_$_0",
sink_id="list_node_id",
source_id="test_node_id",
)
mock_client.get_connected_output_nodes.return_value = [
(dict_link1, mock_dict_node),
(dict_link2, mock_dict_node),
(list_link, mock_list_node),
]
# Call the method that builds signatures
tool_functions = await block._create_function_signature("test_node_id")
# Verify we got 2 tool functions (one for dict, one for list)
assert len(tool_functions) == 2
# Verify the tool functions contain the dynamic field names
dict_tool = next(
(
tool
for tool in tool_functions
if tool["function"]["name"] == "createdictionaryblock"
),
None,
)
assert dict_tool is not None
dict_properties = dict_tool["function"]["parameters"]["properties"]
assert "values___name" in dict_properties
assert "values___age" in dict_properties
list_tool = next(
(
tool
for tool in tool_functions
if tool["function"]["name"] == "addtolistblock"
),
None,
)
assert list_tool is not None
list_properties = list_tool["function"]["parameters"]["properties"]
assert "entries___0" in list_properties
@pytest.mark.asyncio
async def test_output_yielding_with_dynamic_fields():
"""Test that outputs are yielded correctly with dynamic field names mapped back."""
block = SmartDecisionMakerBlock()
# No more sanitized mapping needed since we removed sanitization
# Mock LLM response with tool calls
mock_response = Mock()
mock_response.tool_calls = [
Mock(
function=Mock(
arguments=json.dumps(
{
"values___name": "Alice",
"values___age": 30,
"values___email": "alice@example.com",
}
),
)
)
]
# Ensure function name is a real string, not a Mock name
mock_response.tool_calls[0].function.name = "createdictionaryblock"
mock_response.reasoning = "Creating a dictionary with user information"
mock_response.raw_response = {"role": "assistant", "content": "test"}
mock_response.prompt_tokens = 100
mock_response.completion_tokens = 50
# Mock the LLM call
with patch(
"backend.blocks.smart_decision_maker.llm.llm_call", new_callable=AsyncMock
) as mock_llm:
mock_llm.return_value = mock_response
# Mock the function signature creation
with patch.object(
block, "_create_function_signature", new_callable=AsyncMock
) as mock_sig:
mock_sig.return_value = [
{
"type": "function",
"function": {
"name": "createdictionaryblock",
"parameters": {
"type": "object",
"properties": {
"values___name": {"type": "string"},
"values___age": {"type": "number"},
"values___email": {"type": "string"},
},
},
},
}
]
# Create input data
from backend.blocks import llm
input_data = block.input_schema(
prompt="Create a user dictionary",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
)
# Run the block
outputs = {}
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
):
outputs[output_name] = output_value
# Verify the outputs use sanitized field names (matching frontend normalizeToolName)
assert "tools_^_createdictionaryblock_~_values___name" in outputs
assert outputs["tools_^_createdictionaryblock_~_values___name"] == "Alice"
assert "tools_^_createdictionaryblock_~_values___age" in outputs
assert outputs["tools_^_createdictionaryblock_~_values___age"] == 30
assert "tools_^_createdictionaryblock_~_values___email" in outputs
assert (
outputs["tools_^_createdictionaryblock_~_values___email"]
== "alice@example.com"
)
@pytest.mark.asyncio
async def test_mixed_regular_and_dynamic_fields():
"""Test handling of blocks with both regular and dynamic fields."""
block = SmartDecisionMakerBlock()
# Create a mock node
mock_node = Mock()
mock_node.block = Mock()
mock_node.block.name = "TestBlock"
mock_node.block.description = "A test block"
mock_node.block.input_schema = Mock()
# Mock the get_field_schema to return a proper schema for regular fields
def get_field_schema(field_name):
if field_name == "regular_field":
return {"type": "string", "description": "A regular field"}
elif field_name == "values":
return {"type": "object", "description": "A dictionary field"}
else:
raise KeyError(f"Field {field_name} not found")
mock_node.block.input_schema.get_field_schema = get_field_schema
mock_node.block.input_schema.jsonschema = Mock(
return_value={"properties": {}, "required": []}
)
# Create links with both regular and dynamic fields
mock_links = [
Mock(
source_name="tools_^_test_~_regular",
sink_name="regular_field", # Regular field
sink_id="test_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_test_~_dict_key",
sink_name="values_#_key1", # Dynamic dict field
sink_id="test_node_id",
source_id="smart_decision_node_id",
),
Mock(
source_name="tools_^_test_~_dict_key2",
sink_name="values_#_key2", # Dynamic dict field
sink_id="test_node_id",
source_id="smart_decision_node_id",
),
]
# Generate function signature
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
# Check properties
properties = signature["function"]["parameters"]["properties"]
assert len(properties) == 3
# Regular field should have its original schema
assert "regular_field" in properties
assert properties["regular_field"]["description"] == "A regular field"
# Dynamic fields should have generated descriptions
assert "values___key1" in properties
assert "Dictionary field" in properties["values___key1"]["description"]
assert "values___key2" in properties
assert "Dictionary field" in properties["values___key2"]["description"]
@pytest.mark.asyncio
async def test_validation_errors_dont_pollute_conversation():
"""Test that validation errors are only used during retries and don't pollute the conversation."""
block = SmartDecisionMakerBlock()
# Track conversation history changes
conversation_snapshots = []
# Mock response with invalid tool call (missing required parameter)
invalid_response = Mock()
invalid_response.tool_calls = [
Mock(
function=Mock(
arguments=json.dumps({"wrong_param": "value"}), # Wrong parameter name
)
)
]
# Ensure function name is a real string, not a Mock name
invalid_response.tool_calls[0].function.name = "test_tool"
invalid_response.reasoning = None
invalid_response.raw_response = {"role": "assistant", "content": "invalid"}
invalid_response.prompt_tokens = 100
invalid_response.completion_tokens = 50
# Mock valid response after retry
valid_response = Mock()
valid_response.tool_calls = [
Mock(function=Mock(arguments=json.dumps({"correct_param": "value"})))
]
# Ensure function name is a real string, not a Mock name
valid_response.tool_calls[0].function.name = "test_tool"
valid_response.reasoning = None
valid_response.raw_response = {"role": "assistant", "content": "valid"}
valid_response.prompt_tokens = 100
valid_response.completion_tokens = 50
call_count = 0
async def mock_llm_call(**kwargs):
nonlocal call_count
# Capture conversation state
conversation_snapshots.append(kwargs.get("prompt", []).copy())
call_count += 1
if call_count == 1:
return invalid_response
else:
return valid_response
# Mock the LLM call
with patch(
"backend.blocks.smart_decision_maker.llm.llm_call", new_callable=AsyncMock
) as mock_llm:
mock_llm.side_effect = mock_llm_call
# Mock the function signature creation
with patch.object(
block, "_create_function_signature", new_callable=AsyncMock
) as mock_sig:
mock_sig.return_value = [
{
"type": "function",
"function": {
"name": "test_tool",
"parameters": {
"type": "object",
"properties": {
"correct_param": {
"type": "string",
"description": "The correct parameter",
}
},
"required": ["correct_param"],
},
},
}
]
# Create input data
from backend.blocks import llm
input_data = block.input_schema(
prompt="Test prompt",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
retry=3, # Allow retries
)
# Run the block
outputs = {}
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
):
outputs[output_name] = output_value
# Verify we had 2 LLM calls (initial + retry)
assert call_count == 2
# Check the final conversation output
final_conversation = outputs.get("conversations", [])
# The final conversation should NOT contain the validation error message
error_messages = [
msg
for msg in final_conversation
if msg.get("role") == "user"
and "parameter errors" in msg.get("content", "")
]
assert (
len(error_messages) == 0
), "Validation error leaked into final conversation"
# The final conversation should only have the successful response
assert final_conversation[-1]["content"] == "valid"

View File

@@ -0,0 +1,131 @@
import pytest
from backend.blocks.io import AgentTableInputBlock
from backend.util.test import execute_block_test
@pytest.mark.asyncio
async def test_table_input_block():
"""Test the AgentTableInputBlock with basic input/output."""
block = AgentTableInputBlock()
await execute_block_test(block)
@pytest.mark.asyncio
async def test_table_input_with_data():
"""Test AgentTableInputBlock with actual table data."""
block = AgentTableInputBlock()
input_data = block.Input(
name="test_table",
column_headers=["Name", "Age", "City"],
value=[
{"Name": "John", "Age": "30", "City": "New York"},
{"Name": "Jane", "Age": "25", "City": "London"},
{"Name": "Bob", "Age": "35", "City": "Paris"},
],
)
output_data = []
async for output_name, output_value in block.run(input_data):
output_data.append((output_name, output_value))
assert len(output_data) == 1
assert output_data[0][0] == "result"
result = output_data[0][1]
assert len(result) == 3
assert result[0]["Name"] == "John"
assert result[1]["Age"] == "25"
assert result[2]["City"] == "Paris"
@pytest.mark.asyncio
async def test_table_input_empty_data():
"""Test AgentTableInputBlock with empty data."""
block = AgentTableInputBlock()
input_data = block.Input(
name="empty_table", column_headers=["Col1", "Col2"], value=[]
)
output_data = []
async for output_name, output_value in block.run(input_data):
output_data.append((output_name, output_value))
assert len(output_data) == 1
assert output_data[0][0] == "result"
assert output_data[0][1] == []
@pytest.mark.asyncio
async def test_table_input_with_missing_columns():
"""Test AgentTableInputBlock passes through data with missing columns as-is."""
block = AgentTableInputBlock()
input_data = block.Input(
name="partial_table",
column_headers=["Name", "Age", "City"],
value=[
{"Name": "John", "Age": "30"}, # Missing City
{"Name": "Jane", "City": "London"}, # Missing Age
{"Age": "35", "City": "Paris"}, # Missing Name
],
)
output_data = []
async for output_name, output_value in block.run(input_data):
output_data.append((output_name, output_value))
result = output_data[0][1]
assert len(result) == 3
# Check data is passed through as-is
assert result[0] == {"Name": "John", "Age": "30"}
assert result[1] == {"Name": "Jane", "City": "London"}
assert result[2] == {"Age": "35", "City": "Paris"}
@pytest.mark.asyncio
async def test_table_input_none_value():
"""Test AgentTableInputBlock with None value returns empty list."""
block = AgentTableInputBlock()
input_data = block.Input(
name="none_table", column_headers=["Name", "Age"], value=None
)
output_data = []
async for output_name, output_value in block.run(input_data):
output_data.append((output_name, output_value))
assert len(output_data) == 1
assert output_data[0][0] == "result"
assert output_data[0][1] == []
@pytest.mark.asyncio
async def test_table_input_with_default_headers():
"""Test AgentTableInputBlock with default column headers."""
block = AgentTableInputBlock()
# Don't specify column_headers, should use defaults
input_data = block.Input(
name="default_headers_table",
value=[
{"Column 1": "A", "Column 2": "B", "Column 3": "C"},
{"Column 1": "D", "Column 2": "E", "Column 3": "F"},
],
)
output_data = []
async for output_name, output_value in block.run(input_data):
output_data.append((output_name, output_value))
assert len(output_data) == 1
assert output_data[0][0] == "result"
result = output_data[0][1]
assert len(result) == 2
assert result[0]["Column 1"] == "A"
assert result[1]["Column 3"] == "F"

View File

@@ -2,6 +2,8 @@ import re
from pathlib import Path
from typing import Any
import regex # Has built-in timeout support
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util import json, text
@@ -137,6 +139,11 @@ class ExtractTextInformationBlock(Block):
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Security fix: Add limits to prevent ReDoS and memory exhaustion
MAX_TEXT_LENGTH = 1_000_000 # 1MB character limit
MAX_MATCHES = 1000 # Maximum number of matches to prevent memory exhaustion
MAX_MATCH_LENGTH = 10_000 # Maximum length per match
flags = 0
if not input_data.case_sensitive:
flags = flags | re.IGNORECASE
@@ -148,20 +155,85 @@ class ExtractTextInformationBlock(Block):
else:
txt = json.dumps(input_data.text)
matches = [
match.group(input_data.group)
for match in re.finditer(input_data.pattern, txt, flags)
if input_data.group <= len(match.groups())
]
if not input_data.find_all:
matches = matches[:1]
for match in matches:
yield "positive", match
if not matches:
yield "negative", input_data.text
# Limit text size to prevent DoS
if len(txt) > MAX_TEXT_LENGTH:
txt = txt[:MAX_TEXT_LENGTH]
yield "matched_results", matches
yield "matched_count", len(matches)
# Validate regex pattern to prevent dangerous patterns
dangerous_patterns = [
r".*\+.*\+", # Nested quantifiers
r".*\*.*\*", # Nested quantifiers
r"(?=.*\+)", # Lookahead with quantifier
r"(?=.*\*)", # Lookahead with quantifier
r"\(.+\)\+", # Group with nested quantifier
r"\(.+\)\*", # Group with nested quantifier
r"\([^)]+\+\)\+", # Nested quantifiers like (a+)+
r"\([^)]+\*\)\*", # Nested quantifiers like (a*)*
]
# Check if pattern is potentially dangerous
is_dangerous = any(
re.search(dangerous, input_data.pattern) for dangerous in dangerous_patterns
)
# Use regex module with timeout for dangerous patterns
# For safe patterns, use standard re module for compatibility
try:
matches = []
match_count = 0
if is_dangerous:
# Use regex module with timeout (5 seconds) for dangerous patterns
# The regex module supports timeout parameter in finditer
try:
for match in regex.finditer(
input_data.pattern, txt, flags=flags, timeout=5.0
):
if match_count >= MAX_MATCHES:
break
if input_data.group <= len(match.groups()):
match_text = match.group(input_data.group)
# Limit match length to prevent memory exhaustion
if len(match_text) > MAX_MATCH_LENGTH:
match_text = match_text[:MAX_MATCH_LENGTH]
matches.append(match_text)
match_count += 1
except regex.error as e:
# Timeout occurred or regex error
if "timeout" in str(e).lower():
# Timeout - return empty results
pass
else:
# Other regex error
raise
else:
# Use standard re module for non-dangerous patterns
for match in re.finditer(input_data.pattern, txt, flags):
if match_count >= MAX_MATCHES:
break
if input_data.group <= len(match.groups()):
match_text = match.group(input_data.group)
# Limit match length to prevent memory exhaustion
if len(match_text) > MAX_MATCH_LENGTH:
match_text = match_text[:MAX_MATCH_LENGTH]
matches.append(match_text)
match_count += 1
if not input_data.find_all:
matches = matches[:1]
for match in matches:
yield "positive", match
if not matches:
yield "negative", input_data.text
yield "matched_results", matches
yield "matched_count", len(matches)
except Exception:
# Return empty results on any regex error
yield "negative", input_data.text
yield "matched_results", []
yield "matched_count", 0
class FillTextTemplateBlock(Block):

View File

@@ -270,13 +270,17 @@ class GetCurrentDateBlock(Block):
test_output=[
(
"date",
lambda t: abs(datetime.now() - datetime.strptime(t, "%Y-%m-%d"))
< timedelta(days=8), # 7 days difference + 1 day error margin.
lambda t: abs(
datetime.now().date() - datetime.strptime(t, "%Y-%m-%d").date()
)
<= timedelta(days=8), # 7 days difference + 1 day error margin.
),
(
"date",
lambda t: abs(datetime.now() - datetime.strptime(t, "%m/%d/%Y"))
< timedelta(days=8),
lambda t: abs(
datetime.now().date() - datetime.strptime(t, "%m/%d/%Y").date()
)
<= timedelta(days=8),
# 7 days difference + 1 day error margin.
),
(
@@ -382,7 +386,7 @@ class GetCurrentDateAndTimeBlock(Block):
lambda t: abs(
datetime.now().date() - datetime.strptime(t, "%Y/%m/%d").date()
)
< timedelta(days=1), # Date format only, no time component
<= timedelta(days=1), # Date format only, no time component
),
(
"date_time",

View File

@@ -26,6 +26,14 @@ class XMLParserBlock(Block):
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Security fix: Add size limits to prevent XML bomb attacks
MAX_XML_SIZE = 10 * 1024 * 1024 # 10MB limit for XML input
if len(input_data.input_xml) > MAX_XML_SIZE:
raise ValueError(
f"XML too large: {len(input_data.input_xml)} bytes > {MAX_XML_SIZE} bytes"
)
try:
tokens = tokenize(input_data.input_xml)
parser = Parser(tokens)

View File

@@ -9,6 +9,7 @@ from prisma.models import APIKey as PrismaAPIKey
from prisma.types import APIKeyWhereUniqueInput
from pydantic import BaseModel, Field
from backend.data.includes import MAX_USER_API_KEYS_FETCH
from backend.util.exceptions import NotAuthorizedError, NotFoundError
logger = logging.getLogger(__name__)
@@ -178,9 +179,13 @@ async def revoke_api_key(key_id: str, user_id: str) -> APIKeyInfo:
return APIKeyInfo.from_db(updated_api_key)
async def list_user_api_keys(user_id: str) -> list[APIKeyInfo]:
async def list_user_api_keys(
user_id: str, limit: int = MAX_USER_API_KEYS_FETCH
) -> list[APIKeyInfo]:
api_keys = await PrismaAPIKey.prisma().find_many(
where={"userId": user_id}, order={"createdAt": "desc"}
where={"userId": user_id},
order={"createdAt": "desc"},
take=limit,
)
return [APIKeyInfo.from_db(key) for key in api_keys]

View File

@@ -20,7 +20,6 @@ from typing import (
import jsonref
import jsonschema
from autogpt_libs.utils.cache import cached
from prisma.models import AgentBlock
from prisma.types import AgentBlockCreateInput
from pydantic import BaseModel
@@ -28,6 +27,7 @@ from pydantic import BaseModel
from backend.data.model import NodeExecutionStats
from backend.integrations.providers import ProviderName
from backend.util import json
from backend.util.cache import cached
from backend.util.settings import Config
from .model import (
@@ -722,7 +722,7 @@ def get_block(block_id: str) -> Block[BlockSchema, BlockSchema] | None:
return cls() if cls else None
@cached()
@cached(ttl_seconds=3600)
def get_webhook_block_ids() -> Sequence[str]:
return [
id
@@ -731,7 +731,7 @@ def get_webhook_block_ids() -> Sequence[str]:
]
@cached()
@cached(ttl_seconds=3600)
def get_io_block_ids() -> Sequence[str]:
return [
id

View File

@@ -69,6 +69,7 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.CLAUDE_4_1_OPUS: 21,
LlmModel.CLAUDE_4_OPUS: 21,
LlmModel.CLAUDE_4_SONNET: 5,
LlmModel.CLAUDE_4_5_SONNET: 9,
LlmModel.CLAUDE_3_7_SONNET: 5,
LlmModel.CLAUDE_3_5_SONNET: 4,
LlmModel.CLAUDE_3_5_HAIKU: 1, # $0.80 / $4.00

View File

@@ -23,6 +23,7 @@ from pydantic import BaseModel
from backend.data import db
from backend.data.block_cost_config import BLOCK_COSTS
from backend.data.includes import MAX_CREDIT_REFUND_REQUESTS_FETCH
from backend.data.model import (
AutoTopUpConfig,
RefundRequest,
@@ -905,7 +906,9 @@ class UserCredit(UserCreditBase):
),
)
async def get_refund_requests(self, user_id: str) -> list[RefundRequest]:
async def get_refund_requests(
self, user_id: str, limit: int = MAX_CREDIT_REFUND_REQUESTS_FETCH
) -> list[RefundRequest]:
return [
RefundRequest(
id=r.id,
@@ -921,6 +924,7 @@ class UserCredit(UserCreditBase):
for r in await CreditRefundRequest.prisma().find_many(
where={"userId": user_id},
order={"createdAt": "desc"},
take=limit,
)
]

View File

@@ -0,0 +1,284 @@
"""
Utilities for handling dynamic field names with special delimiters.
Dynamic fields allow graphs to connect complex data structures using special delimiters:
- _#_ for dictionary keys (e.g., "values_#_name" → values["name"])
- _$_ for list indices (e.g., "items_$_0" → items[0])
- _@_ for object attributes (e.g., "obj_@_attr" → obj.attr)
"""
from typing import Any
from backend.util.mock import MockObject
# Dynamic field delimiters
LIST_SPLIT = "_$_"
DICT_SPLIT = "_#_"
OBJC_SPLIT = "_@_"
DYNAMIC_DELIMITERS = (LIST_SPLIT, DICT_SPLIT, OBJC_SPLIT)
def extract_base_field_name(field_name: str) -> str:
"""
Extract the base field name from a dynamic field name by removing all dynamic suffixes.
Examples:
extract_base_field_name("values_#_name") → "values"
extract_base_field_name("items_$_0") → "items"
extract_base_field_name("obj_@_attr") → "obj"
extract_base_field_name("regular_field") → "regular_field"
Args:
field_name: The field name that may contain dynamic delimiters
Returns:
The base field name without any dynamic suffixes
"""
base_name = field_name
for delimiter in DYNAMIC_DELIMITERS:
if delimiter in base_name:
base_name = base_name.split(delimiter)[0]
return base_name
def is_dynamic_field(field_name: str) -> bool:
"""
Check if a field name contains dynamic delimiters.
Args:
field_name: The field name to check
Returns:
True if the field contains any dynamic delimiters, False otherwise
"""
return any(delimiter in field_name for delimiter in DYNAMIC_DELIMITERS)
def get_dynamic_field_description(field_name: str) -> str:
"""
Generate a description for a dynamic field based on its structure.
Args:
field_name: The full dynamic field name (e.g., "values_#_name")
Returns:
A descriptive string explaining what this dynamic field represents
"""
base_name = extract_base_field_name(field_name)
if DICT_SPLIT in field_name:
# Extract the key part after _#_
parts = field_name.split(DICT_SPLIT)
if len(parts) > 1:
key = parts[1].split("_")[0] if "_" in parts[1] else parts[1]
return f"Dictionary field '{key}' for base field '{base_name}' ({base_name}['{key}'])"
elif LIST_SPLIT in field_name:
# Extract the index part after _$_
parts = field_name.split(LIST_SPLIT)
if len(parts) > 1:
index = parts[1].split("_")[0] if "_" in parts[1] else parts[1]
return (
f"List item {index} for base field '{base_name}' ({base_name}[{index}])"
)
elif OBJC_SPLIT in field_name:
# Extract the attribute part after _@_
parts = field_name.split(OBJC_SPLIT)
if len(parts) > 1:
# Get the full attribute name (everything after _@_)
attr = parts[1]
return f"Object attribute '{attr}' for base field '{base_name}' ({base_name}.{attr})"
return f"Value for {field_name}"
# --------------------------------------------------------------------------- #
# Dynamic field parsing and merging utilities
# --------------------------------------------------------------------------- #
def _next_delim(s: str) -> tuple[str | None, int]:
"""
Return the *earliest* delimiter appearing in `s` and its index.
If none present → (None, -1).
"""
first: str | None = None
pos = len(s) # sentinel: larger than any real index
for d in DYNAMIC_DELIMITERS:
i = s.find(d)
if 0 <= i < pos:
first, pos = d, i
return first, (pos if first else -1)
def _tokenise(path: str) -> list[tuple[str, str]] | None:
"""
Convert the raw path string (starting with a delimiter) into
[ (delimiter, identifier), … ] or None if the syntax is malformed.
"""
tokens: list[tuple[str, str]] = []
while path:
# 1. Which delimiter starts this chunk?
delim = next((d for d in DYNAMIC_DELIMITERS if path.startswith(d)), None)
if delim is None:
return None # invalid syntax
# 2. Slice off the delimiter, then up to the next delimiter (or EOS)
path = path[len(delim) :]
nxt_delim, pos = _next_delim(path)
token, path = (
path[: pos if pos != -1 else len(path)],
path[pos if pos != -1 else len(path) :],
)
if token == "":
return None # empty identifier is invalid
tokens.append((delim, token))
return tokens
def parse_execution_output(output: tuple[str, Any], name: str) -> Any:
"""
Retrieve a nested value out of `output` using the flattened *name*.
On any failure (wrong name, wrong type, out-of-range, bad path)
returns **None**.
Args:
output: Tuple of (base_name, data) representing a block output entry
name: The flattened field name to extract from the output data
Returns:
The value at the specified path, or None if not found/invalid
"""
base_name, data = output
# Exact match → whole object
if name == base_name:
return data
# Must start with the expected name
if not name.startswith(base_name):
return None
path = name[len(base_name) :]
if not path:
return None # nothing left to parse
tokens = _tokenise(path)
if tokens is None:
return None
cur: Any = data
for delim, ident in tokens:
if delim == LIST_SPLIT:
# list[index]
try:
idx = int(ident)
except ValueError:
return None
if not isinstance(cur, list) or idx >= len(cur):
return None
cur = cur[idx]
elif delim == DICT_SPLIT:
if not isinstance(cur, dict) or ident not in cur:
return None
cur = cur[ident]
elif delim == OBJC_SPLIT:
if not hasattr(cur, ident):
return None
cur = getattr(cur, ident)
else:
return None # unreachable
return cur
def _assign(container: Any, tokens: list[tuple[str, str]], value: Any) -> Any:
"""
Recursive helper that *returns* the (possibly new) container with
`value` assigned along the remaining `tokens` path.
"""
if not tokens:
return value # leaf reached
delim, ident = tokens[0]
rest = tokens[1:]
# ---------- list ----------
if delim == LIST_SPLIT:
try:
idx = int(ident)
except ValueError:
raise ValueError("index must be an integer")
if container is None:
container = []
elif not isinstance(container, list):
container = list(container) if hasattr(container, "__iter__") else []
while len(container) <= idx:
container.append(None)
container[idx] = _assign(container[idx], rest, value)
return container
# ---------- dict ----------
if delim == DICT_SPLIT:
if container is None:
container = {}
elif not isinstance(container, dict):
container = dict(container) if hasattr(container, "items") else {}
container[ident] = _assign(container.get(ident), rest, value)
return container
# ---------- object ----------
if delim == OBJC_SPLIT:
if container is None:
container = MockObject()
elif not hasattr(container, "__dict__"):
# If it's not an object, create a new one
container = MockObject()
setattr(
container,
ident,
_assign(getattr(container, ident, None), rest, value),
)
return container
return value # unreachable
def merge_execution_input(data: dict[str, Any]) -> dict[str, Any]:
"""
Reconstruct nested objects from a *flattened* dict of key → value.
Raises ValueError on syntactically invalid list indices.
Args:
data: Dictionary with potentially flattened dynamic field keys
Returns:
Dictionary with nested objects reconstructed from flattened keys
"""
merged: dict[str, Any] = {}
for key, value in data.items():
# Split off the base name (before the first delimiter, if any)
delim, pos = _next_delim(key)
if delim is None:
merged[key] = value
continue
base, path = key[:pos], key[pos:]
tokens = _tokenise(path)
if tokens is None:
# Invalid key; treat as scalar under the raw name
merged[key] = value
continue
merged[base] = _assign(merged.get(base), tokens, value)
data.update(merged)
return data

View File

@@ -20,6 +20,8 @@ from backend.blocks.agent import AgentExecutorBlock
from backend.blocks.io import AgentInputBlock, AgentOutputBlock
from backend.blocks.llm import LlmModel
from backend.data.db import prisma as db
from backend.data.dynamic_fields import extract_base_field_name
from backend.data.includes import MAX_GRAPH_VERSIONS_FETCH
from backend.data.model import (
CredentialsField,
CredentialsFieldInfo,
@@ -31,7 +33,15 @@ from backend.util import type as type_utils
from backend.util.json import SafeJson
from backend.util.models import Pagination
from .block import Block, BlockInput, BlockSchema, BlockType, get_block, get_blocks
from .block import (
Block,
BlockInput,
BlockSchema,
BlockType,
EmptySchema,
get_block,
get_blocks,
)
from .db import BaseDbModel, query_raw_with_schema, transaction
from .includes import AGENT_GRAPH_INCLUDE, AGENT_NODE_INCLUDE
@@ -72,12 +82,15 @@ class Node(BaseDbModel):
output_links: list[Link] = []
@property
def block(self) -> Block[BlockSchema, BlockSchema]:
def block(self) -> "Block[BlockSchema, BlockSchema] | _UnknownBlockBase":
"""Get the block for this node. Returns UnknownBlock if block is deleted/missing."""
block = get_block(self.block_id)
if not block:
raise ValueError(
f"Block #{self.block_id} does not exist -> Node #{self.id} is invalid"
# Log warning but don't raise exception - return a placeholder block for deleted blocks
logger.warning(
f"Block #{self.block_id} does not exist for Node #{self.id} (deleted/missing block), using UnknownBlock"
)
return _UnknownBlockBase(self.block_id)
return block
@@ -729,7 +742,7 @@ def _is_tool_pin(name: str) -> bool:
def _sanitize_pin_name(name: str) -> str:
sanitized_name = name.split("_#_")[0].split("_@_")[0].split("_$_")[0]
sanitized_name = extract_base_field_name(name)
if _is_tool_pin(sanitized_name):
return "tools"
return sanitized_name
@@ -1059,11 +1072,14 @@ async def set_graph_active_version(graph_id: str, version: int, user_id: str) ->
)
async def get_graph_all_versions(graph_id: str, user_id: str) -> list[GraphModel]:
async def get_graph_all_versions(
graph_id: str, user_id: str, limit: int = MAX_GRAPH_VERSIONS_FETCH
) -> list[GraphModel]:
graph_versions = await AgentGraph.prisma().find_many(
where={"id": graph_id, "userId": user_id},
order={"version": "desc"},
include=AGENT_GRAPH_INCLUDE,
take=limit,
)
if not graph_versions:
@@ -1312,3 +1328,34 @@ async def migrate_llm_models(migrate_to: LlmModel):
id,
path,
)
# Simple placeholder class for deleted/missing blocks
class _UnknownBlockBase(Block):
"""
Placeholder for deleted/missing blocks that inherits from Block
but uses a name that doesn't end with 'Block' to avoid auto-discovery.
"""
def __init__(self, block_id: str = "00000000-0000-0000-0000-000000000000"):
# Initialize with minimal valid Block parameters
super().__init__(
id=block_id,
description=f"Unknown or deleted block (original ID: {block_id})",
disabled=True,
input_schema=EmptySchema,
output_schema=EmptySchema,
categories=set(),
contributors=[],
static_output=False,
block_type=BlockType.STANDARD,
webhook_config=None,
)
@property
def name(self):
return "UnknownBlock"
async def run(self, input_data, **kwargs):
"""Always yield an error for missing blocks."""
yield "error", f"Block {self.id} no longer exists"

View File

@@ -14,6 +14,7 @@ AGENT_GRAPH_INCLUDE: prisma.types.AgentGraphInclude = {
"Nodes": {"include": AGENT_NODE_INCLUDE}
}
EXECUTION_RESULT_ORDER: list[prisma.types.AgentNodeExecutionOrderByInput] = [
{"queuedTime": "desc"},
# Fallback: Incomplete execs has no queuedTime.
@@ -28,6 +29,13 @@ EXECUTION_RESULT_INCLUDE: prisma.types.AgentNodeExecutionInclude = {
}
MAX_NODE_EXECUTIONS_FETCH = 1000
MAX_LIBRARY_AGENT_EXECUTIONS_FETCH = 10
# Default limits for potentially large result sets
MAX_CREDIT_REFUND_REQUESTS_FETCH = 100
MAX_INTEGRATION_WEBHOOKS_FETCH = 100
MAX_USER_API_KEYS_FETCH = 500
MAX_GRAPH_VERSIONS_FETCH = 50
GRAPH_EXECUTION_INCLUDE_WITH_NODES: prisma.types.AgentGraphExecutionInclude = {
"NodeExecutions": {
@@ -71,13 +79,56 @@ INTEGRATION_WEBHOOK_INCLUDE: prisma.types.IntegrationWebhookInclude = {
}
def library_agent_include(user_id: str) -> prisma.types.LibraryAgentInclude:
return {
"AgentGraph": {
"include": {
**AGENT_GRAPH_INCLUDE,
"Executions": {"where": {"userId": user_id}},
}
},
"Creator": True,
def library_agent_include(
user_id: str,
include_nodes: bool = True,
include_executions: bool = True,
execution_limit: int = MAX_LIBRARY_AGENT_EXECUTIONS_FETCH,
) -> prisma.types.LibraryAgentInclude:
"""
Fully configurable includes for library agent queries with performance optimization.
Args:
user_id: User ID for filtering user-specific data
include_nodes: Whether to include graph nodes (default: True, needed for get_sub_graphs)
include_executions: Whether to include executions (default: True, safe with execution_limit)
execution_limit: Limit on executions to fetch (default: MAX_LIBRARY_AGENT_EXECUTIONS_FETCH)
Defaults maintain backward compatibility and safety - includes everything needed for all functionality.
For performance optimization, explicitly set include_nodes=False and include_executions=False
for listing views where frontend fetches data separately.
Performance impact:
- Default (full nodes + limited executions): Original performance, works everywhere
- Listing optimization (no nodes/executions): ~2s for 15 agents vs potential timeouts
- Unlimited executions: varies by user (thousands of executions = timeouts)
"""
result: prisma.types.LibraryAgentInclude = {
"Creator": True, # Always needed for creator info
}
# Build AgentGraph include based on requested options
if include_nodes or include_executions:
agent_graph_include = {}
# Add nodes if requested (always full nodes)
if include_nodes:
agent_graph_include.update(AGENT_GRAPH_INCLUDE) # Full nodes
# Add executions if requested
if include_executions:
agent_graph_include["Executions"] = {
"where": {"userId": user_id},
"order_by": {"createdAt": "desc"},
"take": execution_limit,
}
result["AgentGraph"] = cast(
prisma.types.AgentGraphArgsFromLibraryAgent,
{"include": agent_graph_include},
)
else:
# Default: Basic metadata only (fast - recommended for most use cases)
result["AgentGraph"] = True # Basic graph metadata (name, description, id)
return result

View File

@@ -11,7 +11,10 @@ from prisma.types import (
from pydantic import Field, computed_field
from backend.data.event_bus import AsyncRedisEventBus
from backend.data.includes import INTEGRATION_WEBHOOK_INCLUDE
from backend.data.includes import (
INTEGRATION_WEBHOOK_INCLUDE,
MAX_INTEGRATION_WEBHOOKS_FETCH,
)
from backend.integrations.providers import ProviderName
from backend.integrations.webhooks.utils import webhook_ingress_url
from backend.server.v2.library.model import LibraryAgentPreset
@@ -128,22 +131,36 @@ async def get_webhook(
@overload
async def get_all_webhooks_by_creds(
user_id: str, credentials_id: str, *, include_relations: Literal[True]
user_id: str,
credentials_id: str,
*,
include_relations: Literal[True],
limit: int = MAX_INTEGRATION_WEBHOOKS_FETCH,
) -> list[WebhookWithRelations]: ...
@overload
async def get_all_webhooks_by_creds(
user_id: str, credentials_id: str, *, include_relations: Literal[False] = False
user_id: str,
credentials_id: str,
*,
include_relations: Literal[False] = False,
limit: int = MAX_INTEGRATION_WEBHOOKS_FETCH,
) -> list[Webhook]: ...
async def get_all_webhooks_by_creds(
user_id: str, credentials_id: str, *, include_relations: bool = False
user_id: str,
credentials_id: str,
*,
include_relations: bool = False,
limit: int = MAX_INTEGRATION_WEBHOOKS_FETCH,
) -> list[Webhook] | list[WebhookWithRelations]:
if not credentials_id:
raise ValueError("credentials_id must not be empty")
webhooks = await IntegrationWebhook.prisma().find_many(
where={"userId": user_id, "credentialsId": credentials_id},
include=INTEGRATION_WEBHOOK_INCLUDE if include_relations else None,
order={"createdAt": "desc"},
take=limit,
)
return [
(WebhookWithRelations if include_relations else Webhook).from_db(webhook)

View File

@@ -270,6 +270,7 @@ def SchemaField(
min_length: Optional[int] = None,
max_length: Optional[int] = None,
discriminator: Optional[str] = None,
format: Optional[str] = None,
json_schema_extra: Optional[dict[str, Any]] = None,
) -> T:
if default is PydanticUndefined and default_factory is None:
@@ -285,6 +286,7 @@ def SchemaField(
"advanced": advanced,
"hidden": hidden,
"depends_on": depends_on,
"format": format,
**(json_schema_extra or {}),
}.items()
if v is not None

View File

@@ -1,8 +1,10 @@
import re
from datetime import datetime
from typing import Any, Optional
import prisma
import pydantic
from autogpt_libs.utils.cache import cached
from prisma.enums import OnboardingStep
from prisma.models import UserOnboarding
from prisma.types import UserOnboardingCreateInput, UserOnboardingUpdateInput
@@ -30,7 +32,7 @@ user_credit = get_user_credit_model()
class UserOnboardingUpdate(pydantic.BaseModel):
completedSteps: Optional[list[OnboardingStep]] = None
notificationDot: Optional[bool] = None
walletShown: Optional[bool] = None
notified: Optional[list[OnboardingStep]] = None
usageReason: Optional[str] = None
integrations: Optional[list[str]] = None
@@ -39,6 +41,8 @@ class UserOnboardingUpdate(pydantic.BaseModel):
agentInput: Optional[dict[str, Any]] = None
onboardingAgentExecutionId: Optional[str] = None
agentRuns: Optional[int] = None
lastRunAt: Optional[datetime] = None
consecutiveRunDays: Optional[int] = None
async def get_user_onboarding(user_id: str):
@@ -57,16 +61,22 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
update["completedSteps"] = list(set(data.completedSteps))
for step in (
OnboardingStep.AGENT_NEW_RUN,
OnboardingStep.RUN_AGENTS,
OnboardingStep.MARKETPLACE_VISIT,
OnboardingStep.MARKETPLACE_ADD_AGENT,
OnboardingStep.MARKETPLACE_RUN_AGENT,
OnboardingStep.BUILDER_SAVE_AGENT,
OnboardingStep.BUILDER_RUN_AGENT,
OnboardingStep.RE_RUN_AGENT,
OnboardingStep.SCHEDULE_AGENT,
OnboardingStep.RUN_AGENTS,
OnboardingStep.RUN_3_DAYS,
OnboardingStep.TRIGGER_WEBHOOK,
OnboardingStep.RUN_14_DAYS,
OnboardingStep.RUN_AGENTS_100,
):
if step in data.completedSteps:
await reward_user(user_id, step)
if data.notificationDot is not None:
update["notificationDot"] = data.notificationDot
if data.walletShown is not None:
update["walletShown"] = data.walletShown
if data.notified is not None:
update["notified"] = list(set(data.notified))
if data.usageReason is not None:
@@ -83,6 +93,10 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
update["onboardingAgentExecutionId"] = data.onboardingAgentExecutionId
if data.agentRuns is not None:
update["agentRuns"] = data.agentRuns
if data.lastRunAt is not None:
update["lastRunAt"] = data.lastRunAt
if data.consecutiveRunDays is not None:
update["consecutiveRunDays"] = data.consecutiveRunDays
return await UserOnboarding.prisma().upsert(
where={"userId": user_id},
@@ -101,16 +115,28 @@ async def reward_user(user_id: str, step: OnboardingStep):
# This is seen as a reward for the GET_RESULTS step in the wallet
case OnboardingStep.AGENT_NEW_RUN:
reward = 300
case OnboardingStep.RUN_AGENTS:
reward = 300
case OnboardingStep.MARKETPLACE_VISIT:
reward = 100
case OnboardingStep.MARKETPLACE_ADD_AGENT:
reward = 100
case OnboardingStep.MARKETPLACE_RUN_AGENT:
reward = 100
case OnboardingStep.BUILDER_SAVE_AGENT:
reward = 100
case OnboardingStep.BUILDER_RUN_AGENT:
case OnboardingStep.RE_RUN_AGENT:
reward = 100
case OnboardingStep.SCHEDULE_AGENT:
reward = 100
case OnboardingStep.RUN_AGENTS:
reward = 300
case OnboardingStep.RUN_3_DAYS:
reward = 100
case OnboardingStep.TRIGGER_WEBHOOK:
reward = 100
case OnboardingStep.RUN_14_DAYS:
reward = 300
case OnboardingStep.RUN_AGENTS_100:
reward = 300
if reward == 0:
return
@@ -132,6 +158,22 @@ async def reward_user(user_id: str, step: OnboardingStep):
)
async def complete_webhook_trigger_step(user_id: str):
"""
Completes the TRIGGER_WEBHOOK onboarding step for the user if not already completed.
"""
onboarding = await get_user_onboarding(user_id)
if OnboardingStep.TRIGGER_WEBHOOK not in onboarding.completedSteps:
await update_user_onboarding(
user_id,
UserOnboardingUpdate(
completedSteps=onboarding.completedSteps
+ [OnboardingStep.TRIGGER_WEBHOOK]
),
)
def clean_and_split(text: str) -> list[str]:
"""
Removes all special characters from a string, truncates it to 100 characters,
@@ -333,8 +375,13 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
]
@cached(maxsize=1, ttl_seconds=300) # Cache for 5 minutes since this rarely changes
async def onboarding_enabled() -> bool:
"""
Check if onboarding should be enabled based on store agent count.
Cached to prevent repeated slow database queries.
"""
# Use a more efficient query that stops counting after finding enough agents
count = await prisma.models.StoreAgent.prisma().count(take=MIN_AGENT_COUNT + 1)
# Onboading is enabled if there are at least 2 agents in the store
# Onboarding is enabled if there are at least 2 agents in the store
return count >= MIN_AGENT_COUNT

View File

@@ -1,29 +1,24 @@
import logging
import os
from autogpt_libs.utils.cache import cached, thread_cached
from dotenv import load_dotenv
from redis import Redis
from redis.asyncio import Redis as AsyncRedis
from backend.util.cache import cached, thread_cached
from backend.util.retry import conn_retry
from backend.util.settings import Settings
load_dotenv()
HOST = os.getenv("REDIS_HOST", "localhost")
PORT = int(os.getenv("REDIS_PORT", "6379"))
PASSWORD = os.getenv("REDIS_PASSWORD", None)
settings = Settings()
logger = logging.getLogger(__name__)
@conn_retry("Redis", "Acquiring connection")
def connect() -> Redis:
def connect(decode_responses: bool = True) -> Redis:
c = Redis(
host=HOST,
port=PORT,
password=PASSWORD,
decode_responses=True,
host=settings.config.redis_host,
port=settings.config.redis_port,
password=settings.config.redis_password or None,
decode_responses=decode_responses,
)
c.ping()
return c
@@ -34,7 +29,7 @@ def disconnect():
get_redis().close()
@cached()
@cached(ttl_seconds=3600)
def get_redis() -> Redis:
return connect()
@@ -42,9 +37,9 @@ def get_redis() -> Redis:
@conn_retry("AsyncRedis", "Acquiring connection")
async def connect_async() -> AsyncRedis:
c = AsyncRedis(
host=HOST,
port=PORT,
password=PASSWORD,
host=settings.config.redis_host,
port=settings.config.redis_port,
password=settings.config.redis_password or None,
decode_responses=True,
)
await c.ping()

View File

@@ -7,7 +7,6 @@ from typing import Optional, cast
from urllib.parse import quote_plus
from autogpt_libs.auth.models import DEFAULT_USER_ID
from autogpt_libs.utils.cache import cached
from fastapi import HTTPException
from prisma.enums import NotificationType
from prisma.models import User as PrismaUser
@@ -17,6 +16,7 @@ from backend.data.db import prisma
from backend.data.model import User, UserIntegrations, UserMetadata
from backend.data.notifications import NotificationPreference, NotificationPreferenceDTO
from backend.server.v2.store.exceptions import DatabaseError
from backend.util.cache import cached
from backend.util.encryption import JSONCryptor
from backend.util.json import SafeJson
from backend.util.settings import Settings

View File

@@ -4,7 +4,12 @@ Module for generating AI-based activity status for graph executions.
import json
import logging
from typing import TYPE_CHECKING, Any, NotRequired, TypedDict
from typing import TYPE_CHECKING, Any, TypedDict
try:
from typing import NotRequired
except ImportError:
from typing_extensions import NotRequired
from pydantic import SecretStr
@@ -146,17 +151,35 @@ async def generate_activity_status_for_execution(
"Focus on the ACTUAL TASK the user wanted done, not the internal workflow steps. "
"Avoid technical terms like 'workflow', 'execution', 'components', 'nodes', 'processing', etc. "
"Keep it to 3 sentences maximum. Be conversational and human-friendly.\n\n"
"UNDERSTAND THE INTENDED PURPOSE:\n"
"- FIRST: Read the graph description carefully to understand what the user wanted to accomplish\n"
"- The graph name and description tell you the main goal/intention of this automation\n"
"- Use this intended purpose as your PRIMARY criteria for success/failure evaluation\n"
"- Ask yourself: 'Did this execution actually accomplish what the graph was designed to do?'\n\n"
"CRITICAL OUTPUT ANALYSIS:\n"
"- Check if blocks that should produce user-facing results actually produced outputs\n"
"- Blocks with names containing 'Output', 'Post', 'Create', 'Send', 'Publish', 'Generate' are usually meant to produce final results\n"
"- If these critical blocks have NO outputs (empty recent_outputs), the task likely FAILED even if status shows 'completed'\n"
"- Sub-agents (AgentExecutorBlock) that produce no outputs usually indicate failed sub-tasks\n"
"- Most importantly: Does the execution result match what the graph description promised to deliver?\n\n"
"SUCCESS EVALUATION BASED ON INTENTION:\n"
"- If the graph is meant to 'create blog posts' → check if blog content was actually created\n"
"- If the graph is meant to 'send emails' → check if emails were actually sent\n"
"- If the graph is meant to 'analyze data' → check if analysis results were produced\n"
"- If the graph is meant to 'generate reports' → check if reports were generated\n"
"- Technical completion ≠ goal achievement. Focus on whether the USER'S INTENDED OUTCOME was delivered\n\n"
"IMPORTANT: Be HONEST about what actually happened:\n"
"- If the input was invalid/nonsensical, say so directly\n"
"- If the task failed, explain what went wrong in simple terms\n"
"- If errors occurred, focus on what the user needs to know\n"
"- Only claim success if the task was genuinely completed\n"
"- Don't sugar-coat failures or present them as helpful feedback\n\n"
"- Only claim success if the INTENDED PURPOSE was genuinely accomplished AND produced expected outputs\n"
"- Don't sugar-coat failures or present them as helpful feedback\n"
"- ESPECIALLY: If the graph's main purpose wasn't achieved, this is a failure regardless of 'completed' status\n\n"
"Understanding Errors:\n"
"- Node errors: Individual steps may fail but the overall task might still complete (e.g., one data source fails but others work)\n"
"- Graph error (in overall_status.graph_error): This means the entire execution failed and nothing was accomplished\n"
"- Even if execution shows 'completed', check if critical nodes failed that would prevent the desired outcome\n"
"- Focus on the end result the user wanted, not whether technical steps completed"
"- Missing outputs from critical blocks: Even if no errors, this means the task failed to produce expected results\n"
"- Focus on whether the graph's intended purpose was fulfilled, not whether technical steps completed"
),
},
{
@@ -165,15 +188,28 @@ async def generate_activity_status_for_execution(
f"A user ran '{graph_name}' to accomplish something. Based on this execution data, "
f"write what they achieved in simple, user-friendly terms:\n\n"
f"{json.dumps(execution_data, indent=2)}\n\n"
"CRITICAL: Check overall_status.graph_error FIRST - if present, the entire execution failed.\n"
"Then check individual node errors to understand partial failures.\n\n"
"ANALYSIS CHECKLIST:\n"
"1. READ graph_info.description FIRST - this tells you what the user intended to accomplish\n"
"2. Check overall_status.graph_error - if present, the entire execution failed\n"
"3. Look for nodes with 'Output', 'Post', 'Create', 'Send', 'Publish', 'Generate' in their block_name\n"
"4. Check if these critical blocks have empty recent_outputs arrays - this indicates failure\n"
"5. Look for AgentExecutorBlock (sub-agents) with no outputs - this suggests sub-task failures\n"
"6. Count how many nodes produced outputs vs total nodes - low ratio suggests problems\n"
"7. MOST IMPORTANT: Does the execution outcome match what graph_info.description promised?\n\n"
"INTENTION-BASED EVALUATION:\n"
"- If description mentions 'blog writing' → did it create blog content?\n"
"- If description mentions 'email automation' → were emails actually sent?\n"
"- If description mentions 'data analysis' → were analysis results produced?\n"
"- If description mentions 'content generation' → was content actually generated?\n"
"- If description mentions 'social media posting' → were posts actually made?\n"
"- Match the outputs to the stated intention, not just technical completion\n\n"
"Write 1-3 sentences about what the user accomplished, such as:\n"
"- 'I analyzed your resume and provided detailed feedback for the IT industry.'\n"
"- 'I couldn't analyze your resume because the input was just nonsensical text.'\n"
"- 'I failed to complete the task due to missing API access.'\n"
"- 'I couldn't complete the task because critical steps failed to produce any results.'\n"
"- 'I failed to generate the content you requested due to missing API access.'\n"
"- 'I extracted key information from your documents and organized it into a summary.'\n"
"- 'The task failed to run due to system configuration issues.'\n\n"
"Focus on what ACTUALLY happened, not what was attempted."
"- 'The task failed because the blog post creation step didn't produce any output.'\n\n"
"BE CRITICAL: If the graph's intended purpose (from description) wasn't achieved, report this as a failure even if status is 'completed'."
),
},
]
@@ -197,6 +233,7 @@ async def generate_activity_status_for_execution(
logger.debug(
f"Generated activity status for {graph_exec_id}: {activity_status}"
)
return activity_status
except Exception as e:

View File

@@ -0,0 +1,115 @@
"""Redis-based distributed locking for cluster coordination."""
import logging
import time
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from redis import Redis
logger = logging.getLogger(__name__)
class ClusterLock:
"""Simple Redis-based distributed lock for preventing duplicate execution."""
def __init__(self, redis: "Redis", key: str, owner_id: str, timeout: int = 300):
self.redis = redis
self.key = key
self.owner_id = owner_id
self.timeout = timeout
self._last_refresh = 0.0
def try_acquire(self) -> str | None:
"""Try to acquire the lock.
Returns:
- owner_id (self.owner_id) if successfully acquired
- different owner_id if someone else holds the lock
- None if Redis is unavailable or other error
"""
try:
success = self.redis.set(self.key, self.owner_id, nx=True, ex=self.timeout)
if success:
self._last_refresh = time.time()
return self.owner_id # Successfully acquired
# Failed to acquire, get current owner
current_value = self.redis.get(self.key)
if current_value:
current_owner = (
current_value.decode("utf-8")
if isinstance(current_value, bytes)
else str(current_value)
)
return current_owner
# Key doesn't exist but we failed to set it - race condition or Redis issue
return None
except Exception as e:
logger.error(f"ClusterLock.try_acquire failed for key {self.key}: {e}")
return None
def refresh(self) -> bool:
"""Refresh lock TTL if we still own it.
Rate limited to at most once every timeout/10 seconds (minimum 1 second).
During rate limiting, still verifies lock existence but skips TTL extension.
Setting _last_refresh to 0 bypasses rate limiting for testing.
"""
# Calculate refresh interval: max(timeout // 10, 1)
refresh_interval = max(self.timeout // 10, 1)
current_time = time.time()
# Check if we're within the rate limit period
# _last_refresh == 0 forces a refresh (bypasses rate limiting for testing)
is_rate_limited = (
self._last_refresh > 0
and (current_time - self._last_refresh) < refresh_interval
)
try:
# Always verify lock existence, even during rate limiting
current_value = self.redis.get(self.key)
if not current_value:
self._last_refresh = 0
return False
stored_owner = (
current_value.decode("utf-8")
if isinstance(current_value, bytes)
else str(current_value)
)
if stored_owner != self.owner_id:
self._last_refresh = 0
return False
# If rate limited, return True but don't update TTL or timestamp
if is_rate_limited:
return True
# Perform actual refresh
if self.redis.expire(self.key, self.timeout):
self._last_refresh = current_time
return True
self._last_refresh = 0
return False
except Exception as e:
logger.error(f"ClusterLock.refresh failed for key {self.key}: {e}")
self._last_refresh = 0
return False
def release(self):
"""Release the lock."""
if self._last_refresh == 0:
return
try:
self.redis.delete(self.key)
except Exception:
pass
self._last_refresh = 0.0

View File

@@ -0,0 +1,509 @@
"""
Integration tests for ClusterLock - Redis-based distributed locking.
Tests the complete lock lifecycle without mocking Redis to ensure
real-world behavior is correct. Covers acquisition, refresh, expiry,
contention, and error scenarios.
"""
import logging
import time
import uuid
from threading import Thread
import pytest
import redis
from .cluster_lock import ClusterLock
logger = logging.getLogger(__name__)
@pytest.fixture
def redis_client():
"""Get Redis client for testing using same config as backend."""
from backend.util.settings import Settings
settings = Settings()
# Use same config as backend but without decode_responses since ClusterLock needs raw bytes
client = redis.Redis(
host=settings.config.redis_host,
port=settings.config.redis_port,
password=settings.config.redis_password or None,
decode_responses=False, # ClusterLock needs raw bytes for ownership verification
)
# Clean up any existing test keys
try:
for key in client.scan_iter(match="test_lock:*"):
client.delete(key)
except Exception:
pass # Ignore cleanup errors
return client
@pytest.fixture
def lock_key():
"""Generate unique lock key for each test."""
return f"test_lock:{uuid.uuid4()}"
@pytest.fixture
def owner_id():
"""Generate unique owner ID for each test."""
return str(uuid.uuid4())
class TestClusterLockBasic:
"""Basic lock acquisition and release functionality."""
def test_lock_acquisition_success(self, redis_client, lock_key, owner_id):
"""Test basic lock acquisition succeeds."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
# Lock should be acquired successfully
result = lock.try_acquire()
assert result == owner_id # Returns our owner_id when successfully acquired
assert lock._last_refresh > 0
# Lock key should exist in Redis
assert redis_client.exists(lock_key) == 1
assert redis_client.get(lock_key).decode("utf-8") == owner_id
def test_lock_acquisition_contention(self, redis_client, lock_key):
"""Test second acquisition fails when lock is held."""
owner1 = str(uuid.uuid4())
owner2 = str(uuid.uuid4())
lock1 = ClusterLock(redis_client, lock_key, owner1, timeout=60)
lock2 = ClusterLock(redis_client, lock_key, owner2, timeout=60)
# First lock should succeed
result1 = lock1.try_acquire()
assert result1 == owner1 # Successfully acquired, returns our owner_id
# Second lock should fail and return the first owner
result2 = lock2.try_acquire()
assert result2 == owner1 # Returns the current owner (first owner)
assert lock2._last_refresh == 0
def test_lock_release_deletes_redis_key(self, redis_client, lock_key, owner_id):
"""Test lock release deletes Redis key and marks locally as released."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
lock.try_acquire()
assert lock._last_refresh > 0
assert redis_client.exists(lock_key) == 1
# Release should delete Redis key and mark locally as released
lock.release()
assert lock._last_refresh == 0
assert lock._last_refresh == 0.0
# Redis key should be deleted for immediate release
assert redis_client.exists(lock_key) == 0
# Another lock should be able to acquire immediately
new_owner_id = str(uuid.uuid4())
new_lock = ClusterLock(redis_client, lock_key, new_owner_id, timeout=60)
assert new_lock.try_acquire() == new_owner_id
class TestClusterLockRefresh:
"""Lock refresh and TTL management."""
def test_lock_refresh_success(self, redis_client, lock_key, owner_id):
"""Test lock refresh extends TTL."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
lock.try_acquire()
original_ttl = redis_client.ttl(lock_key)
# Wait a bit then refresh
time.sleep(1)
lock._last_refresh = 0 # Force refresh past rate limit
assert lock.refresh() is True
# TTL should be reset to full timeout (allow for small timing differences)
new_ttl = redis_client.ttl(lock_key)
assert new_ttl >= original_ttl or new_ttl >= 58 # Allow for timing variance
def test_lock_refresh_rate_limiting(self, redis_client, lock_key, owner_id):
"""Test refresh is rate-limited to timeout/10."""
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=100
) # 100s timeout
lock.try_acquire()
# First refresh should work
assert lock.refresh() is True
first_refresh_time = lock._last_refresh
# Immediate second refresh should be skipped (rate limited) but verify key exists
assert lock.refresh() is True # Returns True but skips actual refresh
assert lock._last_refresh == first_refresh_time # Time unchanged
def test_lock_refresh_verifies_existence_during_rate_limit(
self, redis_client, lock_key, owner_id
):
"""Test refresh verifies lock existence even during rate limiting."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=100)
lock.try_acquire()
# Manually delete the key (simulates expiry or external deletion)
redis_client.delete(lock_key)
# Refresh should detect missing key even during rate limit period
assert lock.refresh() is False
assert lock._last_refresh == 0
def test_lock_refresh_ownership_lost(self, redis_client, lock_key, owner_id):
"""Test refresh fails when ownership is lost."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
lock.try_acquire()
# Simulate another process taking the lock
different_owner = str(uuid.uuid4())
redis_client.set(lock_key, different_owner, ex=60)
# Force refresh past rate limit and verify it fails
lock._last_refresh = 0 # Force refresh past rate limit
assert lock.refresh() is False
assert lock._last_refresh == 0
def test_lock_refresh_when_not_acquired(self, redis_client, lock_key, owner_id):
"""Test refresh fails when lock was never acquired."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
# Refresh without acquiring should fail
assert lock.refresh() is False
class TestClusterLockExpiry:
"""Lock expiry and timeout behavior."""
def test_lock_natural_expiry(self, redis_client, lock_key, owner_id):
"""Test lock expires naturally via Redis TTL."""
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=2
) # 2 second timeout
lock.try_acquire()
assert redis_client.exists(lock_key) == 1
# Wait for expiry
time.sleep(3)
assert redis_client.exists(lock_key) == 0
# New lock with same key should succeed
new_lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
assert new_lock.try_acquire() == owner_id
def test_lock_refresh_prevents_expiry(self, redis_client, lock_key, owner_id):
"""Test refreshing prevents lock from expiring."""
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=3
) # 3 second timeout
lock.try_acquire()
# Wait and refresh before expiry
time.sleep(1)
lock._last_refresh = 0 # Force refresh past rate limit
assert lock.refresh() is True
# Wait beyond original timeout
time.sleep(2.5)
assert redis_client.exists(lock_key) == 1 # Should still exist
class TestClusterLockConcurrency:
"""Concurrent access patterns."""
def test_multiple_threads_contention(self, redis_client, lock_key):
"""Test multiple threads competing for same lock."""
num_threads = 5
successful_acquisitions = []
def try_acquire_lock(thread_id):
owner_id = f"thread_{thread_id}"
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
if lock.try_acquire() == owner_id:
successful_acquisitions.append(thread_id)
time.sleep(0.1) # Hold lock briefly
lock.release()
threads = []
for i in range(num_threads):
thread = Thread(target=try_acquire_lock, args=(i,))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
# Only one thread should have acquired the lock
assert len(successful_acquisitions) == 1
def test_sequential_lock_reuse(self, redis_client, lock_key):
"""Test lock can be reused after natural expiry."""
owners = [str(uuid.uuid4()) for _ in range(3)]
for i, owner_id in enumerate(owners):
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=1) # 1 second
assert lock.try_acquire() == owner_id
time.sleep(1.5) # Wait for expiry
# Verify lock expired
assert redis_client.exists(lock_key) == 0
def test_refresh_during_concurrent_access(self, redis_client, lock_key):
"""Test lock refresh works correctly during concurrent access attempts."""
owner1 = str(uuid.uuid4())
owner2 = str(uuid.uuid4())
lock1 = ClusterLock(redis_client, lock_key, owner1, timeout=5)
lock2 = ClusterLock(redis_client, lock_key, owner2, timeout=5)
# Thread 1 holds lock and refreshes
assert lock1.try_acquire() == owner1
def refresh_continuously():
for _ in range(10):
lock1._last_refresh = 0 # Force refresh
lock1.refresh()
time.sleep(0.1)
def try_acquire_continuously():
attempts = 0
while attempts < 20:
if lock2.try_acquire() == owner2:
return True
time.sleep(0.1)
attempts += 1
return False
refresh_thread = Thread(target=refresh_continuously)
acquire_thread = Thread(target=try_acquire_continuously)
refresh_thread.start()
acquire_thread.start()
refresh_thread.join()
acquire_thread.join()
# Lock1 should still own the lock due to refreshes
assert lock1._last_refresh > 0
assert lock2._last_refresh == 0
class TestClusterLockErrorHandling:
"""Error handling and edge cases."""
def test_redis_connection_failure_on_acquire(self, lock_key, owner_id):
"""Test graceful handling when Redis is unavailable during acquisition."""
# Use invalid Redis connection
bad_redis = redis.Redis(
host="invalid_host", port=1234, socket_connect_timeout=1
)
lock = ClusterLock(bad_redis, lock_key, owner_id, timeout=60)
# Should return None for Redis connection failures
result = lock.try_acquire()
assert result is None # Returns None when Redis fails
assert lock._last_refresh == 0
def test_redis_connection_failure_on_refresh(
self, redis_client, lock_key, owner_id
):
"""Test graceful handling when Redis fails during refresh."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
# Acquire normally
assert lock.try_acquire() == owner_id
# Replace Redis client with failing one
lock.redis = redis.Redis(
host="invalid_host", port=1234, socket_connect_timeout=1
)
# Refresh should fail gracefully
lock._last_refresh = 0 # Force refresh
assert lock.refresh() is False
assert lock._last_refresh == 0
def test_invalid_lock_parameters(self, redis_client):
"""Test validation of lock parameters."""
owner_id = str(uuid.uuid4())
# All parameters are now simple - no validation needed
# Just test basic construction works
lock = ClusterLock(redis_client, "test_key", owner_id, timeout=60)
assert lock.key == "test_key"
assert lock.owner_id == owner_id
assert lock.timeout == 60
def test_refresh_after_redis_key_deleted(self, redis_client, lock_key, owner_id):
"""Test refresh behavior when Redis key is manually deleted."""
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
lock.try_acquire()
# Manually delete the key (simulates external deletion)
redis_client.delete(lock_key)
# Refresh should fail and mark as not acquired
lock._last_refresh = 0 # Force refresh
assert lock.refresh() is False
assert lock._last_refresh == 0
class TestClusterLockDynamicRefreshInterval:
"""Dynamic refresh interval based on timeout."""
def test_refresh_interval_calculation(self, redis_client, lock_key, owner_id):
"""Test refresh interval is calculated as max(timeout/10, 1)."""
test_cases = [
(5, 1), # 5/10 = 0, but minimum is 1
(10, 1), # 10/10 = 1
(30, 3), # 30/10 = 3
(100, 10), # 100/10 = 10
(200, 20), # 200/10 = 20
(1000, 100), # 1000/10 = 100
]
for timeout, expected_interval in test_cases:
lock = ClusterLock(
redis_client, f"{lock_key}_{timeout}", owner_id, timeout=timeout
)
lock.try_acquire()
# Calculate expected interval using same logic as implementation
refresh_interval = max(timeout // 10, 1)
assert refresh_interval == expected_interval
# Test rate limiting works with calculated interval
assert lock.refresh() is True
first_refresh_time = lock._last_refresh
# Sleep less than interval - should be rate limited
time.sleep(0.1)
assert lock.refresh() is True
assert lock._last_refresh == first_refresh_time # No actual refresh
class TestClusterLockRealWorldScenarios:
"""Real-world usage patterns."""
def test_execution_coordination_simulation(self, redis_client):
"""Simulate graph execution coordination across multiple pods."""
graph_exec_id = str(uuid.uuid4())
lock_key = f"execution:{graph_exec_id}"
# Simulate 3 pods trying to execute same graph
pods = [f"pod_{i}" for i in range(3)]
execution_results = {}
def execute_graph(pod_id):
"""Simulate graph execution with cluster lock."""
lock = ClusterLock(redis_client, lock_key, pod_id, timeout=300)
if lock.try_acquire() == pod_id:
# Simulate execution work
execution_results[pod_id] = "executed"
time.sleep(0.1)
lock.release()
else:
execution_results[pod_id] = "rejected"
threads = []
for pod_id in pods:
thread = Thread(target=execute_graph, args=(pod_id,))
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
# Only one pod should have executed
executed_count = sum(
1 for result in execution_results.values() if result == "executed"
)
rejected_count = sum(
1 for result in execution_results.values() if result == "rejected"
)
assert executed_count == 1
assert rejected_count == 2
def test_long_running_execution_with_refresh(
self, redis_client, lock_key, owner_id
):
"""Test lock maintains ownership during long execution with periodic refresh."""
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=30
) # 30 second timeout, refresh interval = max(30//10, 1) = 3 seconds
def long_execution_with_refresh():
"""Simulate long-running execution with periodic refresh."""
assert lock.try_acquire() == owner_id
# Simulate 10 seconds of work with refreshes every 2 seconds
# This respects rate limiting - actual refreshes will happen at 0s, 3s, 6s, 9s
try:
for i in range(5): # 5 iterations * 2 seconds = 10 seconds total
time.sleep(2)
refresh_success = lock.refresh()
assert refresh_success is True, f"Refresh failed at iteration {i}"
return "completed"
finally:
lock.release()
# Should complete successfully without losing lock
result = long_execution_with_refresh()
assert result == "completed"
def test_graceful_degradation_pattern(self, redis_client, lock_key):
"""Test graceful degradation when Redis becomes unavailable."""
owner_id = str(uuid.uuid4())
lock = ClusterLock(
redis_client, lock_key, owner_id, timeout=3
) # Use shorter timeout
# Normal operation
assert lock.try_acquire() == owner_id
lock._last_refresh = 0 # Force refresh past rate limit
assert lock.refresh() is True
# Simulate Redis becoming unavailable
original_redis = lock.redis
lock.redis = redis.Redis(
host="invalid_host",
port=1234,
socket_connect_timeout=1,
decode_responses=False,
)
# Should degrade gracefully
lock._last_refresh = 0 # Force refresh past rate limit
assert lock.refresh() is False
assert lock._last_refresh == 0
# Restore Redis and verify can acquire again
lock.redis = original_redis
# Wait for original lock to expire (use longer wait for 3s timeout)
time.sleep(4)
new_lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
assert new_lock.try_acquire() == owner_id
if __name__ == "__main__":
# Run specific test for quick validation
pytest.main([__file__, "-v"])

View File

@@ -3,6 +3,7 @@ import logging
import os
import threading
import time
import uuid
from collections import defaultdict
from concurrent.futures import Future, ThreadPoolExecutor
from contextlib import asynccontextmanager
@@ -10,9 +11,32 @@ from typing import TYPE_CHECKING, Any, Optional, TypeVar, cast
from pika.adapters.blocking_connection import BlockingChannel
from pika.spec import Basic, BasicProperties
from redis.asyncio.lock import Lock as RedisLock
from prometheus_client import Gauge, start_http_server
from redis.asyncio.lock import Lock as AsyncRedisLock
from backend.blocks.agent import AgentExecutorBlock
from backend.blocks.io import AgentOutputBlock
from backend.data import redis_client as redis
from backend.data.block import (
BlockInput,
BlockOutput,
BlockOutputEntry,
BlockSchema,
get_block,
)
from backend.data.credit import UsageTransactionMetadata
from backend.data.dynamic_fields import parse_execution_output
from backend.data.execution import (
ExecutionQueue,
ExecutionStatus,
GraphExecution,
GraphExecutionEntry,
NodeExecutionEntry,
NodeExecutionResult,
NodesInputMasks,
UserContext,
)
from backend.data.graph import Link, Node
from backend.data.model import GraphExecutionStats, NodeExecutionStats
from backend.data.notifications import (
AgentRunData,
@@ -25,50 +49,21 @@ from backend.data.rabbitmq import SyncRabbitMQ
from backend.executor.activity_status_generator import (
generate_activity_status_for_execution,
)
from backend.executor.utils import LogMetadata
from backend.notifications.notifications import queue_notification
from backend.util.exceptions import InsufficientBalanceError, ModerationError
if TYPE_CHECKING:
from backend.executor import DatabaseManagerClient, DatabaseManagerAsyncClient
from prometheus_client import Gauge, start_http_server
from backend.blocks.agent import AgentExecutorBlock
from backend.data import redis_client as redis
from backend.data.block import (
BlockInput,
BlockOutput,
BlockOutputEntry,
BlockSchema,
get_block,
)
from backend.data.credit import UsageTransactionMetadata
from backend.data.execution import (
ExecutionQueue,
ExecutionStatus,
GraphExecution,
GraphExecutionEntry,
NodeExecutionEntry,
NodeExecutionResult,
NodesInputMasks,
UserContext,
)
from backend.data.graph import Link, Node
from backend.executor.utils import (
GRACEFUL_SHUTDOWN_TIMEOUT_SECONDS,
GRAPH_EXECUTION_CANCEL_QUEUE_NAME,
GRAPH_EXECUTION_QUEUE_NAME,
CancelExecutionEvent,
ExecutionOutputEntry,
LogMetadata,
NodeExecutionProgress,
block_usage_cost,
create_execution_queue_config,
execution_usage_cost,
parse_execution_output,
validate_exec,
)
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.notifications.notifications import queue_notification
from backend.server.v2.AutoMod.manager import automod_manager
from backend.util import json
from backend.util.clients import (
@@ -84,6 +79,7 @@ from backend.util.decorator import (
error_logged,
time_measured,
)
from backend.util.exceptions import InsufficientBalanceError, ModerationError
from backend.util.file import clean_exec_files
from backend.util.logging import TruncatedLogger, configure_logging
from backend.util.metrics import DiscordChannel
@@ -91,6 +87,12 @@ from backend.util.process import AppProcess, set_service_name
from backend.util.retry import continuous_retry, func_retry
from backend.util.settings import Settings
from .cluster_lock import ClusterLock
if TYPE_CHECKING:
from backend.executor import DatabaseManagerAsyncClient, DatabaseManagerClient
_logger = logging.getLogger(__name__)
logger = TruncatedLogger(_logger, prefix="[GraphExecutor]")
settings = Settings()
@@ -106,6 +108,7 @@ utilization_gauge = Gauge(
"Ratio of active graph runs to max graph workers",
)
# Thread-local storage for ExecutionProcessor instances
_tls = threading.local()
@@ -117,10 +120,14 @@ def init_worker():
def execute_graph(
graph_exec_entry: "GraphExecutionEntry", cancel_event: threading.Event
graph_exec_entry: "GraphExecutionEntry",
cancel_event: threading.Event,
cluster_lock: ClusterLock,
):
"""Execute graph using thread-local ExecutionProcessor instance"""
return _tls.processor.on_graph_execution(graph_exec_entry, cancel_event)
return _tls.processor.on_graph_execution(
graph_exec_entry, cancel_event, cluster_lock
)
T = TypeVar("T")
@@ -429,7 +436,7 @@ class ExecutionProcessor:
graph_id=node_exec.graph_id,
node_eid=node_exec.node_exec_id,
node_id=node_exec.node_id,
block_name="-",
block_name=b.name if (b := get_block(node_exec.block_id)) else "-",
)
db_client = get_db_async_client()
node = await db_client.get_node(node_exec.node_id)
@@ -583,6 +590,7 @@ class ExecutionProcessor:
self,
graph_exec: GraphExecutionEntry,
cancel: threading.Event,
cluster_lock: ClusterLock,
):
log_metadata = LogMetadata(
logger=_logger,
@@ -641,6 +649,7 @@ class ExecutionProcessor:
cancel=cancel,
log_metadata=log_metadata,
execution_stats=exec_stats,
cluster_lock=cluster_lock,
)
exec_stats.walltime += timing_info.wall_time
exec_stats.cputime += timing_info.cpu_time
@@ -742,6 +751,7 @@ class ExecutionProcessor:
cancel: threading.Event,
log_metadata: LogMetadata,
execution_stats: GraphExecutionStats,
cluster_lock: ClusterLock,
) -> ExecutionStatus:
"""
Returns:
@@ -927,7 +937,7 @@ class ExecutionProcessor:
and execution_queue.empty()
and (running_node_execution or running_node_evaluation)
):
# There is nothing to execute, and no output to process, let's relax for a while.
cluster_lock.refresh()
time.sleep(0.1)
# loop done --------------------------------------------------
@@ -1219,6 +1229,7 @@ class ExecutionManager(AppProcess):
super().__init__()
self.pool_size = settings.config.num_graph_workers
self.active_graph_runs: dict[str, tuple[Future, threading.Event]] = {}
self.executor_id = str(uuid.uuid4())
self._executor = None
self._stop_consuming = None
@@ -1228,6 +1239,8 @@ class ExecutionManager(AppProcess):
self._run_thread = None
self._run_client = None
self._execution_locks = {}
@property
def cancel_thread(self) -> threading.Thread:
if self._cancel_thread is None:
@@ -1435,17 +1448,46 @@ class ExecutionManager(AppProcess):
logger.info(
f"[{self.service_name}] Received RUN for graph_exec_id={graph_exec_id}"
)
# Check for local duplicate execution first
if graph_exec_id in self.active_graph_runs:
# TODO: Make this check cluster-wide, prevent duplicate runs across executor pods.
logger.error(
f"[{self.service_name}] Graph {graph_exec_id} already running; rejecting duplicate run."
logger.warning(
f"[{self.service_name}] Graph {graph_exec_id} already running locally; rejecting duplicate."
)
_ack_message(reject=True, requeue=False)
_ack_message(reject=True, requeue=True)
return
# Try to acquire cluster-wide execution lock
cluster_lock = ClusterLock(
redis=redis.get_redis(),
key=f"exec_lock:{graph_exec_id}",
owner_id=self.executor_id,
timeout=settings.config.cluster_lock_timeout,
)
current_owner = cluster_lock.try_acquire()
if current_owner != self.executor_id:
# Either someone else has it or Redis is unavailable
if current_owner is not None:
logger.warning(
f"[{self.service_name}] Graph {graph_exec_id} already running on pod {current_owner}"
)
else:
logger.warning(
f"[{self.service_name}] Could not acquire lock for {graph_exec_id} - Redis unavailable"
)
_ack_message(reject=True, requeue=True)
return
self._execution_locks[graph_exec_id] = cluster_lock
logger.info(
f"[{self.service_name}] Acquired cluster lock for {graph_exec_id} with executor {self.executor_id}"
)
cancel_event = threading.Event()
future = self.executor.submit(execute_graph, graph_exec_entry, cancel_event)
future = self.executor.submit(
execute_graph, graph_exec_entry, cancel_event, cluster_lock
)
self.active_graph_runs[graph_exec_id] = (future, cancel_event)
self._update_prompt_metrics()
@@ -1464,6 +1506,10 @@ class ExecutionManager(AppProcess):
f"[{self.service_name}] Error in run completion callback: {e}"
)
finally:
# Release the cluster-wide execution lock
if graph_exec_id in self._execution_locks:
self._execution_locks[graph_exec_id].release()
del self._execution_locks[graph_exec_id]
self._cleanup_completed_runs()
future.add_done_callback(_on_run_done)
@@ -1546,6 +1592,10 @@ class ExecutionManager(AppProcess):
f"{prefix} ⏳ Still waiting for {len(self.active_graph_runs)} executions: {ids}"
)
for graph_exec_id in self.active_graph_runs:
if lock := self._execution_locks.get(graph_exec_id):
lock.refresh()
time.sleep(wait_interval)
waited += wait_interval
@@ -1563,6 +1613,15 @@ class ExecutionManager(AppProcess):
except Exception as e:
logger.error(f"{prefix} ⚠️ Error during executor shutdown: {type(e)} {e}")
# Release remaining execution locks
try:
for lock in self._execution_locks.values():
lock.release()
self._execution_locks.clear()
logger.info(f"{prefix} ✅ Released execution locks")
except Exception as e:
logger.warning(f"{prefix} ⚠️ Failed to release all locks: {e}")
# Disconnect the run execution consumer
self._stop_message_consumers(
self.run_thread,
@@ -1668,15 +1727,18 @@ def update_graph_execution_state(
@asynccontextmanager
async def synchronized(key: str, timeout: int = 60):
async def synchronized(key: str, timeout: int = settings.config.cluster_lock_timeout):
r = await redis.get_redis_async()
lock: RedisLock = r.lock(f"lock:{key}", timeout=timeout)
lock: AsyncRedisLock = r.lock(f"lock:{key}", timeout=timeout)
try:
await lock.acquire()
yield
finally:
if await lock.locked() and await lock.owned():
await lock.release()
try:
await lock.release()
except Exception as e:
logger.warning(f"Failed to release lock for key {key}: {e}")
def increment_execution_count(user_id: str) -> int:

View File

@@ -4,7 +4,7 @@ import threading
import time
from collections import defaultdict
from concurrent.futures import Future
from typing import Any, Mapping, Optional, cast
from typing import Mapping, Optional, cast
from pydantic import BaseModel, JsonValue, ValidationError
@@ -20,6 +20,9 @@ from backend.data.block import (
)
from backend.data.block_cost_config import BLOCK_COSTS
from backend.data.db import prisma
# Import dynamic field utilities from centralized location
from backend.data.dynamic_fields import merge_execution_input
from backend.data.execution import (
ExecutionStatus,
GraphExecutionStats,
@@ -39,7 +42,6 @@ from backend.util.clients import (
)
from backend.util.exceptions import GraphValidationError, NotFoundError
from backend.util.logging import TruncatedLogger
from backend.util.mock import MockObject
from backend.util.settings import Config
from backend.util.type import convert
@@ -186,195 +188,7 @@ def _is_cost_filter_match(cost_filter: BlockInput, input_data: BlockInput) -> bo
# ============ Execution Input Helpers ============ #
# --------------------------------------------------------------------------- #
# Delimiters
# --------------------------------------------------------------------------- #
LIST_SPLIT = "_$_"
DICT_SPLIT = "_#_"
OBJC_SPLIT = "_@_"
_DELIMS = (LIST_SPLIT, DICT_SPLIT, OBJC_SPLIT)
# --------------------------------------------------------------------------- #
# Tokenisation utilities
# --------------------------------------------------------------------------- #
def _next_delim(s: str) -> tuple[str | None, int]:
"""
Return the *earliest* delimiter appearing in `s` and its index.
If none present → (None, -1).
"""
first: str | None = None
pos = len(s) # sentinel: larger than any real index
for d in _DELIMS:
i = s.find(d)
if 0 <= i < pos:
first, pos = d, i
return first, (pos if first else -1)
def _tokenise(path: str) -> list[tuple[str, str]] | None:
"""
Convert the raw path string (starting with a delimiter) into
[ (delimiter, identifier), … ] or None if the syntax is malformed.
"""
tokens: list[tuple[str, str]] = []
while path:
# 1. Which delimiter starts this chunk?
delim = next((d for d in _DELIMS if path.startswith(d)), None)
if delim is None:
return None # invalid syntax
# 2. Slice off the delimiter, then up to the next delimiter (or EOS)
path = path[len(delim) :]
nxt_delim, pos = _next_delim(path)
token, path = (
path[: pos if pos != -1 else len(path)],
path[pos if pos != -1 else len(path) :],
)
if token == "":
return None # empty identifier is invalid
tokens.append((delim, token))
return tokens
# --------------------------------------------------------------------------- #
# Public API parsing (flattened ➜ concrete)
# --------------------------------------------------------------------------- #
def parse_execution_output(output: BlockOutputEntry, name: str) -> JsonValue | None:
"""
Retrieve a nested value out of `output` using the flattened *name*.
On any failure (wrong name, wrong type, out-of-range, bad path)
returns **None**.
"""
base_name, data = output
# Exact match → whole object
if name == base_name:
return data
# Must start with the expected name
if not name.startswith(base_name):
return None
path = name[len(base_name) :]
if not path:
return None # nothing left to parse
tokens = _tokenise(path)
if tokens is None:
return None
cur: JsonValue = data
for delim, ident in tokens:
if delim == LIST_SPLIT:
# list[index]
try:
idx = int(ident)
except ValueError:
return None
if not isinstance(cur, list) or idx >= len(cur):
return None
cur = cur[idx]
elif delim == DICT_SPLIT:
if not isinstance(cur, dict) or ident not in cur:
return None
cur = cur[ident]
elif delim == OBJC_SPLIT:
if not hasattr(cur, ident):
return None
cur = getattr(cur, ident)
else:
return None # unreachable
return cur
def _assign(container: Any, tokens: list[tuple[str, str]], value: Any) -> Any:
"""
Recursive helper that *returns* the (possibly new) container with
`value` assigned along the remaining `tokens` path.
"""
if not tokens:
return value # leaf reached
delim, ident = tokens[0]
rest = tokens[1:]
# ---------- list ----------
if delim == LIST_SPLIT:
try:
idx = int(ident)
except ValueError:
raise ValueError("index must be an integer")
if container is None:
container = []
elif not isinstance(container, list):
container = list(container) if hasattr(container, "__iter__") else []
while len(container) <= idx:
container.append(None)
container[idx] = _assign(container[idx], rest, value)
return container
# ---------- dict ----------
if delim == DICT_SPLIT:
if container is None:
container = {}
elif not isinstance(container, dict):
container = dict(container) if hasattr(container, "items") else {}
container[ident] = _assign(container.get(ident), rest, value)
return container
# ---------- object ----------
if delim == OBJC_SPLIT:
if container is None or not isinstance(container, MockObject):
container = MockObject()
setattr(
container,
ident,
_assign(getattr(container, ident, None), rest, value),
)
return container
return value # unreachable
def merge_execution_input(data: BlockInput) -> BlockInput:
"""
Reconstruct nested objects from a *flattened* dict of key → value.
Raises ValueError on syntactically invalid list indices.
"""
merged: BlockInput = {}
for key, value in data.items():
# Split off the base name (before the first delimiter, if any)
delim, pos = _next_delim(key)
if delim is None:
merged[key] = value
continue
base, path = key[:pos], key[pos:]
tokens = _tokenise(path)
if tokens is None:
# Invalid key; treat as scalar under the raw name
merged[key] = value
continue
merged[base] = _assign(merged.get(base), tokens, value)
data.update(merged)
return data
# Dynamic field utilities are now imported from backend.data.dynamic_fields
def validate_exec(

View File

@@ -3,7 +3,7 @@ from typing import cast
import pytest
from pytest_mock import MockerFixture
from backend.executor.utils import merge_execution_input, parse_execution_output
from backend.data.dynamic_fields import merge_execution_input, parse_execution_output
from backend.util.mock import MockObject

View File

@@ -151,7 +151,10 @@ class IntegrationCredentialsManager:
fresh_credentials = await oauth_handler.refresh_tokens(credentials)
await self.store.update_creds(user_id, fresh_credentials)
if _lock and (await _lock.locked()) and (await _lock.owned()):
await _lock.release()
try:
await _lock.release()
except Exception as e:
logger.warning(f"Failed to release OAuth refresh lock: {e}")
credentials = fresh_credentials
return credentials
@@ -184,7 +187,10 @@ class IntegrationCredentialsManager:
yield
finally:
if (await lock.locked()) and (await lock.owned()):
await lock.release()
try:
await lock.release()
except Exception as e:
logger.warning(f"Failed to release credentials lock: {e}")
async def release_all_locks(self):
"""Call this on process termination to ensure all locks are released"""

View File

@@ -1,6 +1,6 @@
from typing import TYPE_CHECKING
from autogpt_libs.utils.cache import cached
from backend.util.cache import cached
if TYPE_CHECKING:
from ..providers import ProviderName
@@ -8,7 +8,7 @@ if TYPE_CHECKING:
# --8<-- [start:load_webhook_managers]
@cached()
@cached(ttl_seconds=3600) # Cache webhook managers for 1 hour
def load_webhook_managers() -> dict["ProviderName", type["BaseWebhooksManager"]]:
webhook_managers = {}

View File

@@ -0,0 +1,86 @@
"""
Shared cache configuration constants.
This module defines all page_size defaults used across the application.
By centralizing these values, we ensure that cache invalidation always
uses the same page_size as the routes that populate the cache.
CRITICAL: If you change any of these values, the tests in
test_cache_invalidation_consistency.py will fail to remind you to
update all dependent code.
"""
# V1 API (legacy) page sizes
V1_GRAPHS_PAGE_SIZE = 250
"""Default page size for listing user graphs in v1 API."""
V1_LIBRARY_AGENTS_PAGE_SIZE = 10
"""Default page size for library agents in v1 API."""
V1_GRAPH_EXECUTIONS_PAGE_SIZE = 25
"""Default page size for graph executions in v1 API."""
# V2 Store API page sizes
V2_STORE_AGENTS_PAGE_SIZE = 20
"""Default page size for store agents listing."""
V2_STORE_CREATORS_PAGE_SIZE = 20
"""Default page size for store creators listing."""
V2_STORE_SUBMISSIONS_PAGE_SIZE = 20
"""Default page size for user submissions listing."""
V2_MY_AGENTS_PAGE_SIZE = 20
"""Default page size for user's own agents listing."""
# V2 Library API page sizes
V2_LIBRARY_AGENTS_PAGE_SIZE = 10
"""Default page size for library agents listing in v2 API."""
V2_LIBRARY_PRESETS_PAGE_SIZE = 20
"""Default page size for library presets listing."""
# Alternative page sizes (for backward compatibility or special cases)
V2_LIBRARY_PRESETS_ALT_PAGE_SIZE = 10
"""
Alternative page size for library presets.
Some clients may use this smaller page size, so cache clearing must handle both.
"""
V2_GRAPH_EXECUTIONS_ALT_PAGE_SIZE = 10
"""
Alternative page size for graph executions.
Some clients may use this smaller page size, so cache clearing must handle both.
"""
# Cache clearing configuration
MAX_PAGES_TO_CLEAR = 20
"""
Maximum number of pages to clear when invalidating paginated caches.
This prevents infinite loops while ensuring we clear most cached pages.
For users with more than 20 pages, those pages will expire naturally via TTL.
"""
def get_page_sizes_for_clearing(
primary_page_size: int, alt_page_size: int | None = None
) -> list[int]:
"""
Get all page_size values that should be cleared for a given cache.
Args:
primary_page_size: The main page_size used by the route
alt_page_size: Optional alternative page_size if multiple clients use different sizes
Returns:
List of page_size values to clear
Example:
>>> get_page_sizes_for_clearing(20)
[20]
>>> get_page_sizes_for_clearing(20, 10)
[20, 10]
"""
if alt_page_size is None:
return [primary_page_size]
return [primary_page_size, alt_page_size]

View File

@@ -32,6 +32,7 @@ from backend.data.model import (
OAuth2Credentials,
UserIntegrations,
)
from backend.data.onboarding import complete_webhook_trigger_step
from backend.data.user import get_user_integrations
from backend.executor.utils import add_graph_execution
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
@@ -179,7 +180,7 @@ async def callback(
)
@router.get("/credentials")
@router.get("/credentials", summary="List Credentials")
async def list_credentials(
user_id: Annotated[str, Security(get_user_id)],
) -> list[CredentialsMetaResponse]:
@@ -220,7 +221,9 @@ async def list_credentials_by_provider(
]
@router.get("/{provider}/credentials/{cred_id}")
@router.get(
"/{provider}/credentials/{cred_id}", summary="Get Specific Credential By ID"
)
async def get_credential(
provider: Annotated[
ProviderName, Path(title="The provider to retrieve credentials for")
@@ -241,7 +244,7 @@ async def get_credential(
return credential
@router.post("/{provider}/credentials", status_code=201)
@router.post("/{provider}/credentials", status_code=201, summary="Create Credentials")
async def create_credentials(
user_id: Annotated[str, Security(get_user_id)],
provider: Annotated[
@@ -367,6 +370,8 @@ async def webhook_ingress_generic(
return
executions: list[Awaitable] = []
await complete_webhook_trigger_step(user_id)
for node in webhook.triggered_nodes:
logger.debug(f"Webhook-attached node: {node}")
if not node.is_triggered_by_event_type(event_type):

View File

@@ -1,12 +1,10 @@
import re
from typing import Set
from fastapi import Request, Response
from starlette.middleware.base import BaseHTTPMiddleware
from starlette.types import ASGIApp
from starlette.types import ASGIApp, Message, Receive, Scope, Send
class SecurityHeadersMiddleware(BaseHTTPMiddleware):
class SecurityHeadersMiddleware:
"""
Middleware to add security headers to responses, with cache control
disabled by default for all endpoints except those explicitly allowed.
@@ -25,6 +23,8 @@ class SecurityHeadersMiddleware(BaseHTTPMiddleware):
"/api/health",
"/api/v1/health",
"/api/status",
"/api/blocks",
"/api/v1/blocks",
# Public store/marketplace pages (read-only)
"/api/store/agents",
"/api/v1/store/agents",
@@ -49,7 +49,7 @@ class SecurityHeadersMiddleware(BaseHTTPMiddleware):
}
def __init__(self, app: ASGIApp):
super().__init__(app)
self.app = app
# Compile regex patterns for wildcard matching
self.cacheable_patterns = [
re.compile(pattern.replace("*", "[^/]+"))
@@ -72,26 +72,42 @@ class SecurityHeadersMiddleware(BaseHTTPMiddleware):
return False
async def dispatch(self, request: Request, call_next):
response: Response = await call_next(request)
async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None:
"""Pure ASGI middleware implementation for better performance than BaseHTTPMiddleware."""
if scope["type"] != "http":
await self.app(scope, receive, send)
return
# Add general security headers
response.headers["X-Content-Type-Options"] = "nosniff"
response.headers["X-Frame-Options"] = "DENY"
response.headers["X-XSS-Protection"] = "1; mode=block"
response.headers["Referrer-Policy"] = "strict-origin-when-cross-origin"
# Extract path from scope
path = scope["path"]
# Add noindex header for shared execution pages
if "/public/shared" in request.url.path:
response.headers["X-Robots-Tag"] = "noindex, nofollow"
async def send_wrapper(message: Message) -> None:
if message["type"] == "http.response.start":
# Add security headers to the response
headers = dict(message.get("headers", []))
# Default: Disable caching for all endpoints
# Only allow caching for explicitly permitted paths
if not self.is_cacheable_path(request.url.path):
response.headers["Cache-Control"] = (
"no-store, no-cache, must-revalidate, private"
)
response.headers["Pragma"] = "no-cache"
response.headers["Expires"] = "0"
# Add general security headers (HTTP spec requires proper capitalization)
headers[b"X-Content-Type-Options"] = b"nosniff"
headers[b"X-Frame-Options"] = b"DENY"
headers[b"X-XSS-Protection"] = b"1; mode=block"
headers[b"Referrer-Policy"] = b"strict-origin-when-cross-origin"
return response
# Add noindex header for shared execution pages
if "/public/shared" in path:
headers[b"X-Robots-Tag"] = b"noindex, nofollow"
# Default: Disable caching for all endpoints
# Only allow caching for explicitly permitted paths
if not self.is_cacheable_path(path):
headers[b"Cache-Control"] = (
b"no-store, no-cache, must-revalidate, private"
)
headers[b"Pragma"] = b"no-cache"
headers[b"Expires"] = b"0"
# Convert headers back to list format
message["headers"] = list(headers.items())
await send(message)
await self.app(scope, receive, send_wrapper)

View File

@@ -1,5 +1,6 @@
import contextlib
import logging
import platform
from enum import Enum
from typing import Any, Optional
@@ -11,6 +12,7 @@ import uvicorn
from autogpt_libs.auth import add_auth_responses_to_openapi
from autogpt_libs.auth import verify_settings as verify_auth_settings
from fastapi.exceptions import RequestValidationError
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.routing import APIRoute
from prisma.errors import PrismaError
@@ -70,6 +72,26 @@ async def lifespan_context(app: fastapi.FastAPI):
await backend.data.db.connect()
# Configure thread pool for FastAPI sync operation performance
# CRITICAL: FastAPI automatically runs ALL sync functions in this thread pool:
# - Any endpoint defined with 'def' (not async def)
# - Any dependency function defined with 'def' (not async def)
# - Manual run_in_threadpool() calls (like JWT decoding)
# Default pool size is only 40 threads, causing bottlenecks under high concurrency
config = backend.util.settings.Config()
try:
import anyio.to_thread
anyio.to_thread.current_default_thread_limiter().total_tokens = (
config.fastapi_thread_pool_size
)
logger.info(
f"Thread pool size set to {config.fastapi_thread_pool_size} for sync endpoint/dependency performance"
)
except (ImportError, AttributeError) as e:
logger.warning(f"Could not configure thread pool size: {e}")
# Continue without thread pool configuration
# Ensure SDK auto-registration is patched before initializing blocks
from backend.sdk.registry import AutoRegistry
@@ -140,6 +162,9 @@ app = fastapi.FastAPI(
app.add_middleware(SecurityHeadersMiddleware)
# Add GZip compression middleware for large responses (like /api/blocks)
app.add_middleware(GZipMiddleware, minimum_size=50_000) # 50KB threshold
# Add 401 responses to authenticated endpoints in OpenAPI spec
add_auth_responses_to_openapi(app)
@@ -273,12 +298,28 @@ class AgentServer(backend.util.service.AppProcess):
allow_methods=["*"], # Allows all methods
allow_headers=["*"], # Allows all headers
)
uvicorn.run(
server_app,
host=backend.util.settings.Config().agent_api_host,
port=backend.util.settings.Config().agent_api_port,
log_config=None,
)
config = backend.util.settings.Config()
# Configure uvicorn with performance optimizations from Kludex FastAPI tips
uvicorn_config = {
"app": server_app,
"host": config.agent_api_host,
"port": config.agent_api_port,
"log_config": None,
# Use httptools for HTTP parsing (if available)
"http": "httptools",
# Only use uvloop on Unix-like systems (not supported on Windows)
"loop": "uvloop" if platform.system() != "Windows" else "auto",
}
# Only add debug in local environment (not supported in all uvicorn versions)
if config.app_env == backend.util.settings.AppEnvironment.LOCAL:
import os
# Enable asyncio debug mode via environment variable
os.environ["PYTHONASYNCIODEBUG"] = "1"
uvicorn.run(**uvicorn_config)
def cleanup(self):
super().cleanup()

View File

@@ -0,0 +1,154 @@
"""
Cache functions for main V1 API endpoints.
This module contains all caching decorators and helpers for the V1 API,
separated from the main routes for better organization and maintainability.
"""
from typing import Sequence
from backend.data import execution as execution_db
from backend.data import graph as graph_db
from backend.data import user as user_db
from backend.data.block import get_blocks
from backend.util.cache import cached
# ===== Block Caches =====
# Cache block definitions with costs - they rarely change
@cached(maxsize=1, ttl_seconds=3600, shared_cache=True)
def get_cached_blocks() -> Sequence[dict]:
"""
Get cached blocks with thundering herd protection.
Uses cached decorator to prevent multiple concurrent requests
from all executing the expensive block loading operation.
"""
from backend.data.credit import get_block_cost
block_classes = get_blocks()
result = []
for block_class in block_classes.values():
block_instance = block_class()
if not block_instance.disabled:
# Get costs for this specific block class without creating another instance
costs = get_block_cost(block_instance)
result.append({**block_instance.to_dict(), "costs": costs})
return result
# ===== Graph Caches =====
# Cache user's graphs list for 15 minutes
@cached(maxsize=1000, ttl_seconds=900, shared_cache=True)
async def get_cached_graphs(
user_id: str,
page: int,
page_size: int,
):
"""Cached helper to get user's graphs."""
return await graph_db.list_graphs_paginated(
user_id=user_id,
page=page,
page_size=page_size,
)
# Cache individual graph details for 30 minutes
@cached(maxsize=500, ttl_seconds=1800, shared_cache=True)
async def get_cached_graph(
graph_id: str,
version: int | None,
user_id: str,
):
"""Cached helper to get graph details."""
return await graph_db.get_graph(
graph_id=graph_id,
version=version,
user_id=user_id,
include_subgraphs=True, # needed to construct full credentials input schema
)
# Cache graph versions for 30 minutes
@cached(maxsize=500, ttl_seconds=1800, shared_cache=True)
async def get_cached_graph_all_versions(
graph_id: str,
user_id: str,
) -> Sequence[graph_db.GraphModel]:
"""Cached helper to get all versions of a graph."""
return await graph_db.get_graph_all_versions(
graph_id=graph_id,
user_id=user_id,
)
# ===== Execution Caches =====
# Cache graph executions for 10 seconds.
@cached(maxsize=1000, ttl_seconds=10, shared_cache=True)
async def get_cached_graph_executions(
graph_id: str,
user_id: str,
page: int,
page_size: int,
):
"""Cached helper to get graph executions."""
return await execution_db.get_graph_executions_paginated(
graph_id=graph_id,
user_id=user_id,
page=page,
page_size=page_size,
)
# Cache all user executions for 10 seconds.
@cached(maxsize=500, ttl_seconds=10, shared_cache=True)
async def get_cached_graphs_executions(
user_id: str,
page: int,
page_size: int,
):
"""Cached helper to get all user's graph executions."""
return await execution_db.get_graph_executions_paginated(
user_id=user_id,
page=page,
page_size=page_size,
)
# Cache individual execution details for 10 seconds.
@cached(maxsize=1000, ttl_seconds=10, shared_cache=True)
async def get_cached_graph_execution(
graph_exec_id: str,
user_id: str,
):
"""Cached helper to get graph execution details."""
return await execution_db.get_graph_execution(
user_id=user_id,
execution_id=graph_exec_id,
include_node_executions=False,
)
# ===== User Preference Caches =====
# Cache user timezone for 1 hour
@cached(maxsize=1000, ttl_seconds=3600, shared_cache=True)
async def get_cached_user_timezone(user_id: str):
"""Cached helper to get user timezone."""
user = await user_db.get_user_by_id(user_id)
return {"timezone": user.timezone if user else "UTC"}
# Cache user preferences for 30 minutes
@cached(maxsize=1000, ttl_seconds=1800, shared_cache=True)
async def get_cached_user_preferences(user_id: str):
"""Cached helper to get user notification preferences."""
return await user_db.get_user_notification_preference(user_id)

View File

@@ -0,0 +1,376 @@
"""
Tests for cache invalidation in V1 API routes.
This module tests that caches are properly invalidated when data is modified
through POST, PUT, PATCH, and DELETE operations.
"""
import uuid
from unittest.mock import AsyncMock, patch
import pytest
import backend.server.routers.cache as cache
from backend.data import graph as graph_db
@pytest.fixture
def mock_user_id():
"""Generate a mock user ID for testing."""
return str(uuid.uuid4())
@pytest.fixture
def mock_graph_id():
"""Generate a mock graph ID for testing."""
return str(uuid.uuid4())
class TestGraphCacheInvalidation:
"""Test cache invalidation for graph operations."""
@pytest.mark.asyncio
async def test_create_graph_clears_list_cache(self, mock_user_id):
"""Test that creating a graph clears the graphs list cache."""
# Setup
cache.get_cached_graphs.cache_clear()
# Pre-populate cache
with patch.object(
graph_db, "list_graphs_paginated", new_callable=AsyncMock
) as mock_list:
# Use a simple dict instead of MagicMock to make it pickleable
mock_list.return_value = {
"graphs": [],
"total_count": 0,
"page": 1,
"page_size": 250,
}
# First call should hit the database
await cache.get_cached_graphs(mock_user_id, 1, 250)
assert mock_list.call_count == 1
# Second call should use cache
await cache.get_cached_graphs(mock_user_id, 1, 250)
assert mock_list.call_count == 1 # Still 1, used cache
# Simulate cache invalidation (what happens in create_new_graph)
cache.get_cached_graphs.cache_delete(mock_user_id, 1, 250)
# Next call should hit database again
await cache.get_cached_graphs(mock_user_id, 1, 250)
assert mock_list.call_count == 2 # Incremented, cache was cleared
@pytest.mark.asyncio
async def test_delete_graph_clears_multiple_caches(
self, mock_user_id, mock_graph_id
):
"""Test that deleting a graph clears all related caches."""
# Clear all caches first
cache.get_cached_graphs.cache_clear()
cache.get_cached_graph.cache_clear()
cache.get_cached_graph_all_versions.cache_clear()
cache.get_cached_graph_executions.cache_clear()
# Setup mocks
with (
patch.object(
graph_db, "list_graphs_paginated", new_callable=AsyncMock
) as mock_list,
patch.object(graph_db, "get_graph", new_callable=AsyncMock) as mock_get,
patch.object(
graph_db, "get_graph_all_versions", new_callable=AsyncMock
) as mock_versions,
):
mock_list.return_value = {
"graphs": [],
"total_count": 0,
"page": 1,
"page_size": 250,
}
mock_get.return_value = {"id": mock_graph_id}
mock_versions.return_value = []
# Pre-populate all caches (use consistent argument style)
await cache.get_cached_graphs(mock_user_id, 1, 250)
await cache.get_cached_graph(mock_graph_id, None, mock_user_id)
await cache.get_cached_graph_all_versions(mock_graph_id, mock_user_id)
initial_calls = {
"list": mock_list.call_count,
"get": mock_get.call_count,
"versions": mock_versions.call_count,
}
# Use cached values (no additional DB calls)
await cache.get_cached_graphs(mock_user_id, 1, 250)
await cache.get_cached_graph(mock_graph_id, None, mock_user_id)
await cache.get_cached_graph_all_versions(mock_graph_id, mock_user_id)
# Verify cache was used
assert mock_list.call_count == initial_calls["list"]
assert mock_get.call_count == initial_calls["get"]
assert mock_versions.call_count == initial_calls["versions"]
# Simulate delete_graph cache invalidation
# Use positional arguments for cache_delete to match how we called the functions
result1 = cache.get_cached_graphs.cache_delete(mock_user_id, 1, 250)
result2 = cache.get_cached_graph.cache_delete(
mock_graph_id, None, mock_user_id
)
result3 = cache.get_cached_graph_all_versions.cache_delete(
mock_graph_id, mock_user_id
)
# Verify that the cache entries were actually deleted
assert result1, "Failed to delete graphs cache entry"
assert result2, "Failed to delete graph cache entry"
assert result3, "Failed to delete graph versions cache entry"
# Next calls should hit database
await cache.get_cached_graphs(mock_user_id, 1, 250)
await cache.get_cached_graph(mock_graph_id, None, mock_user_id)
await cache.get_cached_graph_all_versions(mock_graph_id, mock_user_id)
# Verify database was called again
assert mock_list.call_count == initial_calls["list"] + 1
assert mock_get.call_count == initial_calls["get"] + 1
assert mock_versions.call_count == initial_calls["versions"] + 1
@pytest.mark.asyncio
async def test_update_graph_clears_caches(self, mock_user_id, mock_graph_id):
"""Test that updating a graph clears the appropriate caches."""
# Clear caches
cache.get_cached_graph.cache_clear()
cache.get_cached_graph_all_versions.cache_clear()
cache.get_cached_graphs.cache_clear()
with (
patch.object(graph_db, "get_graph", new_callable=AsyncMock) as mock_get,
patch.object(
graph_db, "get_graph_all_versions", new_callable=AsyncMock
) as mock_versions,
patch.object(
graph_db, "list_graphs_paginated", new_callable=AsyncMock
) as mock_list,
):
mock_get.return_value = {"id": mock_graph_id, "version": 1}
mock_versions.return_value = [{"version": 1}]
mock_list.return_value = {
"graphs": [],
"total_count": 0,
"page": 1,
"page_size": 250,
}
# Populate caches
await cache.get_cached_graph(mock_graph_id, None, mock_user_id)
await cache.get_cached_graph_all_versions(mock_graph_id, mock_user_id)
await cache.get_cached_graphs(mock_user_id, 1, 250)
initial_calls = {
"get": mock_get.call_count,
"versions": mock_versions.call_count,
"list": mock_list.call_count,
}
# Verify cache is being used
await cache.get_cached_graph(mock_graph_id, None, mock_user_id)
await cache.get_cached_graph_all_versions(mock_graph_id, mock_user_id)
await cache.get_cached_graphs(mock_user_id, 1, 250)
assert mock_get.call_count == initial_calls["get"]
assert mock_versions.call_count == initial_calls["versions"]
assert mock_list.call_count == initial_calls["list"]
# Simulate update_graph cache invalidation
cache.get_cached_graph.cache_delete(mock_graph_id, None, mock_user_id)
cache.get_cached_graph_all_versions.cache_delete(
mock_graph_id, mock_user_id
)
cache.get_cached_graphs.cache_delete(mock_user_id, 1, 250)
# Next calls should hit database
await cache.get_cached_graph(mock_graph_id, None, mock_user_id)
await cache.get_cached_graph_all_versions(mock_graph_id, mock_user_id)
await cache.get_cached_graphs(mock_user_id, 1, 250)
assert mock_get.call_count == initial_calls["get"] + 1
assert mock_versions.call_count == initial_calls["versions"] + 1
assert mock_list.call_count == initial_calls["list"] + 1
class TestUserPreferencesCacheInvalidation:
"""Test cache invalidation for user preferences operations."""
@pytest.mark.asyncio
async def test_update_preferences_clears_cache(self, mock_user_id):
"""Test that updating preferences clears the preferences cache."""
# Clear cache
cache.get_cached_user_preferences.cache_clear()
with patch.object(
cache.user_db, "get_user_notification_preference", new_callable=AsyncMock
) as mock_get_prefs:
mock_prefs = {"email_notifications": True, "push_notifications": False}
mock_get_prefs.return_value = mock_prefs
# First call hits database
result1 = await cache.get_cached_user_preferences(mock_user_id)
assert mock_get_prefs.call_count == 1
assert result1 == mock_prefs
# Second call uses cache
result2 = await cache.get_cached_user_preferences(mock_user_id)
assert mock_get_prefs.call_count == 1 # Still 1
assert result2 == mock_prefs
# Simulate update_preferences cache invalidation
cache.get_cached_user_preferences.cache_delete(mock_user_id)
# Change the mock return value to simulate updated preferences
mock_prefs_updated = {
"email_notifications": False,
"push_notifications": True,
}
mock_get_prefs.return_value = mock_prefs_updated
# Next call should hit database and get new value
result3 = await cache.get_cached_user_preferences(mock_user_id)
assert mock_get_prefs.call_count == 2
assert result3 == mock_prefs_updated
@pytest.mark.asyncio
async def test_timezone_cache_operations(self, mock_user_id):
"""Test timezone cache and its operations."""
# Clear cache
cache.get_cached_user_timezone.cache_clear()
with patch.object(
cache.user_db, "get_user_by_id", new_callable=AsyncMock
) as mock_get_user:
# Use a simple object that supports attribute access
class MockUser:
def __init__(self, timezone):
self.timezone = timezone
mock_user = MockUser("America/New_York")
mock_get_user.return_value = mock_user
# First call hits database
result1 = await cache.get_cached_user_timezone(mock_user_id)
assert mock_get_user.call_count == 1
assert result1["timezone"] == "America/New_York"
# Second call uses cache
result2 = await cache.get_cached_user_timezone(mock_user_id)
assert mock_get_user.call_count == 1 # Still 1
assert result2["timezone"] == "America/New_York"
# Clear cache manually (simulating what would happen after update)
cache.get_cached_user_timezone.cache_delete(mock_user_id)
# Change timezone
mock_user_updated = MockUser("Europe/London")
mock_get_user.return_value = mock_user_updated
# Next call should hit database
result3 = await cache.get_cached_user_timezone(mock_user_id)
assert mock_get_user.call_count == 2
assert result3["timezone"] == "Europe/London"
class TestExecutionCacheInvalidation:
"""Test cache invalidation for execution operations."""
@pytest.mark.asyncio
async def test_execution_cache_cleared_on_graph_delete(
self, mock_user_id, mock_graph_id
):
"""Test that execution caches are cleared when a graph is deleted."""
# Clear cache
cache.get_cached_graph_executions.cache_clear()
with patch.object(
cache.execution_db, "get_graph_executions_paginated", new_callable=AsyncMock
) as mock_exec:
mock_exec.return_value = {
"executions": [],
"total_count": 0,
"page": 1,
"page_size": 25,
}
# Populate cache for multiple pages
for page in range(1, 4):
await cache.get_cached_graph_executions(
mock_graph_id, mock_user_id, page, 25
)
initial_calls = mock_exec.call_count
# Verify cache is used
for page in range(1, 4):
await cache.get_cached_graph_executions(
mock_graph_id, mock_user_id, page, 25
)
assert mock_exec.call_count == initial_calls # No new calls
# Simulate graph deletion clearing execution caches
for page in range(1, 10): # Clear more pages as done in delete_graph
cache.get_cached_graph_executions.cache_delete(
mock_graph_id, mock_user_id, page, 25
)
# Next calls should hit database
for page in range(1, 4):
await cache.get_cached_graph_executions(
mock_graph_id, mock_user_id, page, 25
)
assert mock_exec.call_count == initial_calls + 3 # 3 new calls
class TestCacheInfo:
"""Test cache information and metrics."""
def test_cache_info_returns_correct_metrics(self):
"""Test that cache_info returns correct metrics."""
# Clear all caches
cache.get_cached_graphs.cache_clear()
cache.get_cached_graph.cache_clear()
# Get initial info
info_graphs = cache.get_cached_graphs.cache_info()
info_graph = cache.get_cached_graph.cache_info()
assert info_graphs["size"] == 0
assert info_graph["size"] == 0
# Note: We can't directly test cache population without real async context,
# but we can verify the cache_info structure
assert "size" in info_graphs
assert "maxsize" in info_graphs
assert "ttl_seconds" in info_graphs
def test_cache_clear_removes_all_entries(self):
"""Test that cache_clear removes all entries."""
# This test verifies the cache_clear method exists and can be called
cache.get_cached_graphs.cache_clear()
cache.get_cached_graph.cache_clear()
cache.get_cached_graph_all_versions.cache_clear()
cache.get_cached_graph_executions.cache_clear()
cache.get_cached_graphs_executions.cache_clear()
cache.get_cached_user_preferences.cache_clear()
cache.get_cached_user_timezone.cache_clear()
# After clear, all caches should be empty
assert cache.get_cached_graphs.cache_info()["size"] == 0
assert cache.get_cached_graph.cache_info()["size"] == 0
assert cache.get_cached_graph_all_versions.cache_info()["size"] == 0
assert cache.get_cached_graph_executions.cache_info()["size"] == 0
assert cache.get_cached_graphs_executions.cache_info()["size"] == 0
assert cache.get_cached_user_preferences.cache_info()["size"] == 0
assert cache.get_cached_user_timezone.cache_info()["size"] == 0

View File

@@ -11,7 +11,6 @@ import pydantic
import stripe
from autogpt_libs.auth import get_user_id, requires_user
from autogpt_libs.auth.jwt_utils import get_jwt_payload
from autogpt_libs.utils.cache import cached
from fastapi import (
APIRouter,
Body,
@@ -24,11 +23,16 @@ from fastapi import (
Security,
UploadFile,
)
from fastapi.concurrency import run_in_threadpool
from pydantic import BaseModel
from starlette.status import HTTP_204_NO_CONTENT, HTTP_404_NOT_FOUND
from typing_extensions import Optional, TypedDict
import backend.server.cache_config as cache_config
import backend.server.integrations.router
import backend.server.routers.analytics
import backend.server.routers.cache as cache
import backend.server.v2.library.cache as library_cache
import backend.server.v2.library.db as library_db
from backend.data import api_key as api_key_db
from backend.data import execution as execution_db
@@ -55,7 +59,6 @@ from backend.data.onboarding import (
from backend.data.user import (
get_or_create_user,
get_user_by_id,
get_user_notification_preference,
update_user_email,
update_user_notification_preference,
update_user_timezone,
@@ -85,6 +88,7 @@ from backend.server.model import (
from backend.util.clients import get_scheduler_client
from backend.util.cloud_storage import get_cloud_storage_handler
from backend.util.exceptions import GraphValidationError, NotFoundError
from backend.util.json import dumps
from backend.util.settings import Settings
from backend.util.timezone_utils import (
convert_utc_time_to_user_timezone,
@@ -165,7 +169,9 @@ async def get_user_timezone_route(
) -> TimezoneResponse:
"""Get user timezone setting."""
user = await get_or_create_user(user_data)
return TimezoneResponse(timezone=user.timezone)
# Use cached timezone for subsequent calls
result = await cache.get_cached_user_timezone(user.id)
return TimezoneResponse(timezone=result["timezone"])
@v1_router.post(
@@ -179,6 +185,7 @@ async def update_user_timezone_route(
) -> TimezoneResponse:
"""Update user timezone. The timezone should be a valid IANA timezone identifier."""
user = await update_user_timezone(user_id, str(request.timezone))
cache.get_cached_user_timezone.cache_delete(user_id)
return TimezoneResponse(timezone=user.timezone)
@@ -191,7 +198,7 @@ async def update_user_timezone_route(
async def get_preferences(
user_id: Annotated[str, Security(get_user_id)],
) -> NotificationPreference:
preferences = await get_user_notification_preference(user_id)
preferences = await cache.get_cached_user_preferences(user_id)
return preferences
@@ -206,6 +213,10 @@ async def update_preferences(
preferences: NotificationPreferenceDTO = Body(...),
) -> NotificationPreference:
output = await update_user_notification_preference(user_id, preferences)
# Clear preferences cache after update
cache.get_cached_user_preferences.cache_delete(user_id)
return output
@@ -263,13 +274,10 @@ async def is_onboarding_enabled():
########################################################
@cached()
def _get_cached_blocks() -> Sequence[dict[Any, Any]]:
def _compute_blocks_sync() -> str:
"""
Get cached blocks with thundering herd protection.
Uses sync_cache decorator to prevent multiple concurrent requests
from all executing the expensive block loading operation.
Synchronous function to compute blocks data.
This does the heavy lifting: instantiate 226+ blocks, compute costs, serialize.
"""
from backend.data.credit import get_block_cost
@@ -279,11 +287,27 @@ def _get_cached_blocks() -> Sequence[dict[Any, Any]]:
for block_class in block_classes.values():
block_instance = block_class()
if not block_instance.disabled:
# Get costs for this specific block class without creating another instance
costs = get_block_cost(block_instance)
result.append({**block_instance.to_dict(), "costs": costs})
# Convert BlockCost BaseModel objects to dictionaries for JSON serialization
costs_dict = [
cost.model_dump() if isinstance(cost, BaseModel) else cost
for cost in costs
]
result.append({**block_instance.to_dict(), "costs": costs_dict})
return result
# Use our JSON utility which properly handles complex types through to_dict conversion
return dumps(result)
@cached(ttl_seconds=3600)
async def _get_cached_blocks() -> str:
"""
Async cached function with thundering herd protection.
On cache miss: runs heavy work in thread pool
On cache hit: returns cached string immediately (no thread pool needed)
"""
# Only run in thread pool on cache miss - cache hits return immediately
return await run_in_threadpool(_compute_blocks_sync)
@v1_router.get(
@@ -291,9 +315,28 @@ def _get_cached_blocks() -> Sequence[dict[Any, Any]]:
summary="List available blocks",
tags=["blocks"],
dependencies=[Security(requires_user)],
responses={
200: {
"description": "Successful Response",
"content": {
"application/json": {
"schema": {
"items": {"additionalProperties": True, "type": "object"},
"type": "array",
"title": "Response Getv1List Available Blocks",
}
}
},
}
},
)
async def get_graph_blocks() -> Sequence[dict[Any, Any]]:
return _get_cached_blocks()
async def get_graph_blocks() -> Response:
# Cache hit: returns immediately, Cache miss: runs in thread pool
content = await _get_cached_blocks()
return Response(
content=content,
media_type="application/json",
)
@v1_router.post(
@@ -633,11 +676,10 @@ class DeleteGraphResponse(TypedDict):
async def list_graphs(
user_id: Annotated[str, Security(get_user_id)],
) -> Sequence[graph_db.GraphMeta]:
paginated_result = await graph_db.list_graphs_paginated(
paginated_result = await cache.get_cached_graphs(
user_id=user_id,
page=1,
page_size=250,
filter_by="active",
)
return paginated_result.graphs
@@ -660,13 +702,26 @@ async def get_graph(
version: int | None = None,
for_export: bool = False,
) -> graph_db.GraphModel:
graph = await graph_db.get_graph(
graph_id,
version,
user_id=user_id,
for_export=for_export,
include_subgraphs=True, # needed to construct full credentials input schema
)
# Use cache for non-export requests
if not for_export:
graph = await cache.get_cached_graph(
graph_id=graph_id,
version=version,
user_id=user_id,
)
# If graph not found, clear cache entry as permissions may have changed
if not graph:
cache.get_cached_graph.cache_delete(
graph_id=graph_id, version=version, user_id=user_id
)
else:
graph = await graph_db.get_graph(
graph_id,
version,
user_id=user_id,
for_export=for_export,
include_subgraphs=True, # needed to construct full credentials input schema
)
if not graph:
raise HTTPException(status_code=404, detail=f"Graph #{graph_id} not found.")
return graph
@@ -681,7 +736,7 @@ async def get_graph(
async def get_graph_all_versions(
graph_id: str, user_id: Annotated[str, Security(get_user_id)]
) -> Sequence[graph_db.GraphModel]:
graphs = await graph_db.get_graph_all_versions(graph_id, user_id=user_id)
graphs = await cache.get_cached_graph_all_versions(graph_id, user_id=user_id)
if not graphs:
raise HTTPException(status_code=404, detail=f"Graph #{graph_id} not found.")
return graphs
@@ -705,6 +760,26 @@ async def create_new_graph(
# as the graph already valid and no sub-graphs are returned back.
await graph_db.create_graph(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id=user_id)
# Clear graphs list cache after creating new graph
cache.get_cached_graphs.cache_delete(
user_id=user_id,
page=1,
page_size=cache_config.V1_GRAPHS_PAGE_SIZE,
)
for page in range(1, cache_config.MAX_PAGES_TO_CLEAR):
library_cache.get_cached_library_agents.cache_delete(
user_id=user_id,
page=page,
page_size=cache_config.V1_LIBRARY_AGENTS_PAGE_SIZE,
)
# Clear my agents cache so user sees new agent immediately
import backend.server.v2.store.cache
backend.server.v2.store.cache._clear_my_agents_cache(user_id)
return await on_graph_activate(graph, user_id=user_id)
@@ -720,7 +795,32 @@ async def delete_graph(
if active_version := await graph_db.get_graph(graph_id, user_id=user_id):
await on_graph_deactivate(active_version, user_id=user_id)
return {"version_counts": await graph_db.delete_graph(graph_id, user_id=user_id)}
result = DeleteGraphResponse(
version_counts=await graph_db.delete_graph(graph_id, user_id=user_id)
)
# Clear caches after deleting graph
cache.get_cached_graphs.cache_delete(
user_id=user_id,
page=1,
page_size=cache_config.V1_GRAPHS_PAGE_SIZE,
)
cache.get_cached_graph.cache_delete(
graph_id=graph_id, version=None, user_id=user_id
)
cache.get_cached_graph_all_versions.cache_delete(graph_id, user_id=user_id)
# Clear my agents cache so user sees agent removed immediately
import backend.server.v2.store.cache
backend.server.v2.store.cache._clear_my_agents_cache(user_id)
# Clear library agent by graph_id cache
library_cache.get_cached_library_agent_by_graph_id.cache_delete(
graph_id=graph_id, user_id=user_id
)
return result
@v1_router.put(
@@ -776,6 +876,18 @@ async def update_graph(
include_subgraphs=True,
)
assert new_graph_version_with_subgraphs # make type checker happy
# Clear caches after updating graph
cache.get_cached_graph.cache_delete(
graph_id=graph_id, version=None, user_id=user_id
)
cache.get_cached_graph_all_versions.cache_delete(graph_id, user_id=user_id)
cache.get_cached_graphs.cache_delete(
user_id=user_id,
page=1,
page_size=cache_config.V1_GRAPHS_PAGE_SIZE,
)
return new_graph_version_with_subgraphs
@@ -841,6 +953,29 @@ async def execute_graph(
detail="Insufficient balance to execute the agent. Please top up your account.",
)
# Invalidate caches before execution starts so frontend sees fresh data
cache.get_cached_graphs_executions.cache_delete(
user_id=user_id,
page=1,
page_size=cache_config.V1_GRAPHS_PAGE_SIZE,
)
for page in range(1, cache_config.MAX_PAGES_TO_CLEAR):
cache.get_cached_graph_execution.cache_delete(
graph_id=graph_id, user_id=user_id, version=graph_version
)
cache.get_cached_graph_executions.cache_delete(
graph_id=graph_id,
user_id=user_id,
page=page,
page_size=cache_config.V1_GRAPH_EXECUTIONS_PAGE_SIZE,
)
library_cache.get_cached_library_agents.cache_delete(
user_id=user_id,
page=page,
page_size=cache_config.V1_LIBRARY_AGENTS_PAGE_SIZE,
)
try:
result = await execution_utils.add_graph_execution(
graph_id=graph_id,
@@ -853,6 +988,7 @@ async def execute_graph(
# Record successful graph execution
record_graph_execution(graph_id=graph_id, status="success", user_id=user_id)
record_graph_operation(operation="execute", status="success")
return result
except GraphValidationError as e:
# Record failed graph execution
@@ -928,7 +1064,7 @@ async def _stop_graph_run(
async def list_graphs_executions(
user_id: Annotated[str, Security(get_user_id)],
) -> list[execution_db.GraphExecutionMeta]:
paginated_result = await execution_db.get_graph_executions_paginated(
paginated_result = await cache.get_cached_graphs_executions(
user_id=user_id,
page=1,
page_size=250,
@@ -950,7 +1086,7 @@ async def list_graph_executions(
25, ge=1, le=100, description="Number of executions per page"
),
) -> execution_db.GraphExecutionsPaginated:
return await execution_db.get_graph_executions_paginated(
return await cache.get_cached_graph_executions(
graph_id=graph_id,
user_id=user_id,
page=page,

View File

@@ -102,13 +102,13 @@ def test_get_graph_blocks(
mock_block.id = "test-block"
mock_block.disabled = False
# Mock get_blocks
# Mock get_blocks where it's imported at the top of v1.py
mocker.patch(
"backend.server.routers.v1.get_blocks",
return_value={"test-block": lambda: mock_block},
)
# Mock block costs
# Mock block costs where it's imported inside the function
mocker.patch(
"backend.data.credit.get_block_cost",
return_value=[{"cost": 10, "type": "credit"}],

View File

@@ -0,0 +1,299 @@
#!/usr/bin/env python3
"""
Complete audit of all @cached functions to verify proper cache invalidation.
This test systematically checks every @cached function in the codebase
to ensure it has appropriate cache invalidation logic when data changes.
"""
import pytest
class TestCacheInvalidationAudit:
"""Audit all @cached functions for proper invalidation."""
def test_v1_router_caches(self):
"""
V1 Router cached functions:
- _get_cached_blocks(): ✓ NEVER CHANGES (blocks are static in code)
"""
# No invalidation needed for static data
pass
def test_v1_cache_module_graph_caches(self):
"""
V1 Cache module graph-related caches:
- get_cached_graphs(user_id, page, page_size): ✓ HAS INVALIDATION
Cleared in: v1.py create_graph(), delete_graph(), update_graph_metadata(), stop_graph_execution()
- get_cached_graph(graph_id, version, user_id): ✓ HAS INVALIDATION
Cleared in: v1.py delete_graph(), update_graph(), delete_graph_execution()
- get_cached_graph_all_versions(graph_id, user_id): ✓ HAS INVALIDATION
Cleared in: v1.py delete_graph(), update_graph(), delete_graph_execution()
- get_cached_graph_executions(graph_id, user_id, page, page_size): ✓ HAS INVALIDATION
Cleared in: v1.py stop_graph_execution()
Also cleared in: v2/library/routes/presets.py
- get_cached_graphs_executions(user_id, page, page_size): ✓ HAS INVALIDATION
Cleared in: v1.py stop_graph_execution()
- get_cached_graph_execution(graph_exec_id, user_id): ✓ HAS INVALIDATION
Cleared in: v1.py stop_graph_execution()
ISSUE: All use hardcoded page_size values instead of cache_config constants!
"""
# Document that v1 routes should migrate to use cache_config
pass
def test_v1_cache_module_user_caches(self):
"""
V1 Cache module user-related caches:
- get_cached_user_timezone(user_id): ✓ HAS INVALIDATION
Cleared in: v1.py update_user_profile()
- get_cached_user_preferences(user_id): ✓ HAS INVALIDATION
Cleared in: v1.py update_user_notification_preferences()
"""
pass
def test_v2_store_cache_functions(self):
"""
V2 Store cached functions:
- _get_cached_user_profile(user_id): ✓ HAS INVALIDATION
Cleared in: v2/store/routes.py update_or_create_profile()
- _get_cached_store_agents(...): ⚠️ PARTIAL INVALIDATION
Cleared in: v2/admin/store_admin_routes.py review_submission() - uses cache_clear()
NOT cleared when agents are created/updated!
- _get_cached_agent_details(username, agent_name): ❌ NO INVALIDATION
NEVER cleared! Relies only on TTL (15 min)
- _get_cached_agent_graph(store_listing_version_id): ❌ NO INVALIDATION
NEVER cleared! Relies only on TTL (1 hour)
- _get_cached_store_agent_by_version(store_listing_version_id): ❌ NO INVALIDATION
NEVER cleared! Relies only on TTL (1 hour)
- _get_cached_store_creators(...): ❌ NO INVALIDATION
NEVER cleared! Relies only on TTL (1 hour)
- _get_cached_creator_details(username): ❌ NO INVALIDATION
NEVER cleared! Relies only on TTL (1 hour)
- _get_cached_my_agents(user_id, page, page_size): ❌ NO INVALIDATION
NEVER cleared! Users won't see new agents for 5 minutes!
CRITICAL BUG: Should be cleared when user creates/deletes agents
- _get_cached_submissions(user_id, page, page_size): ✓ HAS INVALIDATION
Cleared via: _clear_submissions_cache() helper
Called in: create_submission(), edit_submission(), delete_submission()
Called in: v2/admin/store_admin_routes.py review_submission()
"""
# Document critical issues
CRITICAL_MISSING_INVALIDATION = [
"_get_cached_my_agents - users won't see new agents immediately",
]
# Acceptable TTL-only caches (documented, not asserted):
# - _get_cached_agent_details (public data, 15min TTL acceptable)
# - _get_cached_agent_graph (immutable data, 1hr TTL acceptable)
# - _get_cached_store_agent_by_version (immutable version, 1hr TTL acceptable)
# - _get_cached_store_creators (public data, 1hr TTL acceptable)
# - _get_cached_creator_details (public data, 1hr TTL acceptable)
assert (
len(CRITICAL_MISSING_INVALIDATION) == 1
), "These caches need invalidation logic:\n" + "\n".join(
CRITICAL_MISSING_INVALIDATION
)
def test_v2_library_cache_functions(self):
"""
V2 Library cached functions:
- get_cached_library_agents(user_id, page, page_size, ...): ✓ HAS INVALIDATION
Cleared in: v1.py create_graph(), stop_graph_execution()
Cleared in: v2/library/routes/agents.py add_library_agent(), remove_library_agent()
- get_cached_library_agent_favorites(user_id, page, page_size): ✓ HAS INVALIDATION
Cleared in: v2/library/routes/agents.py favorite/unfavorite endpoints
- get_cached_library_agent(library_agent_id, user_id): ✓ HAS INVALIDATION
Cleared in: v2/library/routes/agents.py remove_library_agent()
- get_cached_library_agent_by_graph_id(graph_id, user_id): ❌ NO INVALIDATION
NEVER cleared! Relies only on TTL (30 min)
Should be cleared when graph is deleted
- get_cached_library_agent_by_store_version(store_listing_version_id, user_id): ❌ NO INVALIDATION
NEVER cleared! Relies only on TTL (1 hour)
Probably acceptable as store versions are immutable
- get_cached_library_presets(user_id, page, page_size): ✓ HAS INVALIDATION
Cleared via: _clear_presets_list_cache() helper
Called in: v2/library/routes/presets.py preset mutations
- get_cached_library_preset(preset_id, user_id): ✓ HAS INVALIDATION
Cleared in: v2/library/routes/presets.py preset mutations
ISSUE: Clearing uses hardcoded page_size values (10 and 20) instead of cache_config!
"""
pass
def test_immutable_singleton_caches(self):
"""
Caches that never need invalidation (singleton or immutable):
- get_webhook_block_ids(): ✓ STATIC (blocks in code)
- get_io_block_ids(): ✓ STATIC (blocks in code)
- get_supabase(): ✓ CLIENT INSTANCE (no invalidation needed)
- get_async_supabase(): ✓ CLIENT INSTANCE (no invalidation needed)
- _get_all_providers(): ✓ STATIC CONFIG (providers in code)
- get_redis(): ✓ CLIENT INSTANCE (no invalidation needed)
- load_webhook_managers(): ✓ STATIC (managers in code)
- load_all_blocks(): ✓ STATIC (blocks in code)
- get_cached_blocks(): ✓ STATIC (blocks in code)
"""
pass
def test_feature_flag_cache(self):
"""
Feature flag cache:
- _fetch_user_context_data(user_id): ⚠️ LONG TTL
TTL: 24 hours
NO INVALIDATION
This is probably acceptable as user context changes infrequently.
However, if user metadata changes, they won't see updated flags for 24 hours.
"""
pass
def test_onboarding_cache(self):
"""
Onboarding cache:
- onboarding_enabled(): ⚠️ NO INVALIDATION
TTL: 5 minutes
NO INVALIDATION
Should probably be cleared when store agents are added/removed.
But 5min TTL is acceptable for this use case.
"""
pass
class TestCacheInvalidationPageSizeConsistency:
"""Test that all cache_delete calls use consistent page_size values."""
def test_v1_routes_hardcoded_page_sizes(self):
"""
V1 routes use hardcoded page_size values that should migrate to cache_config:
❌ page_size=250 for graphs:
- v1.py line 765: cache.get_cached_graphs.cache_delete(user_id, page=1, page_size=250)
- v1.py line 791: cache.get_cached_graphs.cache_delete(user_id, page=1, page_size=250)
- v1.py line 859: cache.get_cached_graphs.cache_delete(user_id, page=1, page_size=250)
- v1.py line 929: cache.get_cached_graphs_executions.cache_delete(user_id, page=1, page_size=250)
❌ page_size=10 for library agents:
- v1.py line 768: library_cache.get_cached_library_agents.cache_delete(..., page_size=10)
- v1.py line 940: library_cache.get_cached_library_agents.cache_delete(..., page_size=10)
❌ page_size=25 for graph executions:
- v1.py line 937: cache.get_cached_graph_executions.cache_delete(..., page_size=25)
RECOMMENDATION: Create constants in cache_config and migrate v1 routes to use them.
"""
from backend.server import cache_config
# These constants exist but aren't used in v1 routes yet
assert cache_config.V1_GRAPHS_PAGE_SIZE == 250
assert cache_config.V1_LIBRARY_AGENTS_PAGE_SIZE == 10
assert cache_config.V1_GRAPH_EXECUTIONS_PAGE_SIZE == 25
def test_v2_library_routes_hardcoded_page_sizes(self):
"""
V2 library routes use hardcoded page_size values:
❌ v2/library/routes/agents.py:
- line 233: cache_delete(..., page_size=10)
❌ v2/library/routes/presets.py _clear_presets_list_cache():
- Clears BOTH page_size=10 AND page_size=20
- This suggests different consumers use different page sizes
❌ v2/library/routes/presets.py:
- line 449: cache_delete(..., page_size=10)
- line 452: cache_delete(..., page_size=25)
RECOMMENDATION: Migrate to use cache_config constants.
"""
from backend.server import cache_config
# Constants exist for library
assert cache_config.V2_LIBRARY_AGENTS_PAGE_SIZE == 10
assert cache_config.V2_LIBRARY_PRESETS_PAGE_SIZE == 20
assert cache_config.V2_LIBRARY_PRESETS_ALT_PAGE_SIZE == 10
def test_only_page_1_cleared_risk(self):
"""
Document cache_delete calls that only clear page=1.
RISKY PATTERN: Many cache_delete calls only clear page=1:
- v1.py create_graph(): Only clears page=1 of graphs
- v1.py delete_graph(): Only clears page=1 of graphs
- v1.py update_graph_metadata(): Only clears page=1 of graphs
- v1.py stop_graph_execution(): Only clears page=1 of executions
PROBLEM: If user has > 1 page, subsequent pages show stale data until TTL expires.
SOLUTIONS:
1. Use cache_clear() to clear all pages (nuclear option)
2. Loop through multiple pages like _clear_submissions_cache does
3. Accept TTL-based expiry for pages 2+ (current approach)
Current approach is probably acceptable given TTL values are reasonable.
"""
pass
class TestCriticalCacheBugs:
"""Document critical cache bugs that need fixing."""
def test_my_agents_cache_never_cleared(self):
"""
CRITICAL BUG: _get_cached_my_agents is NEVER cleared!
Impact:
- User creates a new agent → Won't see it in "My Agents" for 5 minutes
- User deletes an agent → Still see it in "My Agents" for 5 minutes
Fix needed:
1. Create _clear_my_agents_cache() helper (like _clear_submissions_cache)
2. Call it from v1.py create_graph() and delete_graph()
3. Use cache_config.V2_MY_AGENTS_PAGE_SIZE constant
Location: v2/store/cache.py line 120
"""
# This documents the bug
NEEDS_CACHE_CLEARING = "_get_cached_my_agents"
assert NEEDS_CACHE_CLEARING == "_get_cached_my_agents"
def test_library_agent_by_graph_id_never_cleared(self):
"""
BUG: get_cached_library_agent_by_graph_id is NEVER cleared!
Impact:
- User deletes a graph → Library still shows it's available for 30 minutes
Fix needed:
- Clear in v1.py delete_graph()
- Clear in v2/library/routes/agents.py remove_library_agent()
Location: v2/library/cache.py line 59
"""
pass
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -0,0 +1,95 @@
#!/usr/bin/env python3
"""
Test suite to verify cache_config constants are being used correctly.
This ensures that the centralized cache_config.py constants are actually
used throughout the codebase, not just defined.
"""
import pytest
from backend.server import cache_config
class TestCacheConfigConstants:
"""Verify cache_config constants have expected values."""
def test_v2_store_page_sizes(self):
"""Test V2 Store API page size constants."""
assert cache_config.V2_STORE_AGENTS_PAGE_SIZE == 20
assert cache_config.V2_STORE_CREATORS_PAGE_SIZE == 20
assert cache_config.V2_STORE_SUBMISSIONS_PAGE_SIZE == 20
assert cache_config.V2_MY_AGENTS_PAGE_SIZE == 20
def test_v2_library_page_sizes(self):
"""Test V2 Library API page size constants."""
assert cache_config.V2_LIBRARY_AGENTS_PAGE_SIZE == 10
assert cache_config.V2_LIBRARY_PRESETS_PAGE_SIZE == 20
assert cache_config.V2_LIBRARY_PRESETS_ALT_PAGE_SIZE == 10
def test_v1_page_sizes(self):
"""Test V1 API page size constants."""
assert cache_config.V1_GRAPHS_PAGE_SIZE == 250
assert cache_config.V1_LIBRARY_AGENTS_PAGE_SIZE == 10
assert cache_config.V1_GRAPH_EXECUTIONS_PAGE_SIZE == 25
def test_cache_clearing_config(self):
"""Test cache clearing configuration."""
assert cache_config.MAX_PAGES_TO_CLEAR == 20
def test_get_page_sizes_for_clearing_helper(self):
"""Test the helper function for getting page sizes to clear."""
# Single page size
result = cache_config.get_page_sizes_for_clearing(20)
assert result == [20]
# Multiple page sizes
result = cache_config.get_page_sizes_for_clearing(20, 10)
assert result == [20, 10]
# With None alt_page_size
result = cache_config.get_page_sizes_for_clearing(20, None)
assert result == [20]
class TestCacheConfigUsage:
"""Test that cache_config constants are actually used in the code."""
def test_store_routes_import_cache_config(self):
"""Verify store routes imports cache_config."""
import backend.server.v2.store.routes as store_routes
# Check that cache_config is imported
assert hasattr(store_routes, "backend")
assert hasattr(store_routes.backend.server, "cache_config")
def test_store_cache_uses_constants(self):
"""Verify store cache module uses cache_config constants."""
import backend.server.v2.store.cache as store_cache
# Check the module imports cache_config
assert hasattr(store_cache, "backend")
assert hasattr(store_cache.backend.server, "cache_config")
# The _clear_submissions_cache function should use the constant
import inspect
source = inspect.getsource(store_cache._clear_submissions_cache)
assert (
"cache_config.V2_STORE_SUBMISSIONS_PAGE_SIZE" in source
), "_clear_submissions_cache must use cache_config.V2_STORE_SUBMISSIONS_PAGE_SIZE"
assert (
"cache_config.MAX_PAGES_TO_CLEAR" in source
), "_clear_submissions_cache must use cache_config.MAX_PAGES_TO_CLEAR"
def test_admin_routes_use_constants(self):
"""Verify admin routes use cache_config constants."""
import backend.server.v2.admin.store_admin_routes as admin_routes
# Check that cache_config is imported
assert hasattr(admin_routes, "backend")
assert hasattr(admin_routes.backend.server, "cache_config")
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -0,0 +1,263 @@
#!/usr/bin/env python3
"""
Comprehensive test suite for cache invalidation consistency across the entire backend.
This test file identifies ALL locations where cache_delete is called with hardcoded
parameters (especially page_size) and ensures they match the corresponding route defaults.
CRITICAL: If any test in this file fails, it means cache invalidation will be broken
and users will see stale data after mutations.
Key problem areas identified:
1. v1.py routes: Uses page_size=250 for graphs, but cache clearing uses page_size=250 ✓
2. v1.py routes: Uses page_size=10 for library agents clearing
3. v2/library routes: Uses page_size=10 for library agents clearing
4. v2/store routes: Uses page_size=20 for submissions clearing (in _clear_submissions_cache)
5. v2/library presets: Uses page_size=10 AND page_size=20 for presets (dual clearing)
"""
import pytest
class TestCacheInvalidationConsistency:
"""Test that all cache_delete calls use correct parameters matching route defaults."""
def test_v1_graphs_cache_page_size_consistency(self):
"""
Test v1 graphs routes use consistent page_size.
Locations that must match:
- routes/v1.py line 682: default page_size=250
- routes/v1.py line 765: cache_delete with page_size=250
- routes/v1.py line 791: cache_delete with page_size=250
- routes/v1.py line 859: cache_delete with page_size=250
- routes/v1.py line 929: cache_delete with page_size=250
- routes/v1.py line 1034: default page_size=250
"""
V1_GRAPHS_DEFAULT_PAGE_SIZE = 250
# This is the expected value - if this test fails, check all the above locations
assert V1_GRAPHS_DEFAULT_PAGE_SIZE == 250, (
"If you changed the default page_size for v1 graphs, you must update:\n"
"1. routes/v1.py list_graphs() default parameter\n"
"2. routes/v1.py create_graph() cache_delete call\n"
"3. routes/v1.py delete_graph() cache_delete call\n"
"4. routes/v1.py update_graph_metadata() cache_delete call\n"
"5. routes/v1.py stop_graph_execution() cache_delete call\n"
"6. routes/v1.py list_graph_run_events() default parameter"
)
def test_v1_library_agents_cache_page_size_consistency(self):
"""
Test v1 library agents cache clearing uses consistent page_size.
Locations that must match:
- routes/v1.py line 768: cache_delete with page_size=10
- routes/v1.py line 940: cache_delete with page_size=10
- v2/library/routes/agents.py line 233: cache_delete with page_size=10
WARNING: These hardcode page_size=10 but we need to verify this matches
the actual page_size used when fetching library agents!
"""
V1_LIBRARY_AGENTS_CLEARING_PAGE_SIZE = 10
assert V1_LIBRARY_AGENTS_CLEARING_PAGE_SIZE == 10, (
"If you changed the library agents clearing page_size, you must update:\n"
"1. routes/v1.py create_graph() cache clearing loop\n"
"2. routes/v1.py stop_graph_execution() cache clearing loop\n"
"3. v2/library/routes/agents.py add_library_agent() cache clearing loop"
)
# TODO: This should be verified against the actual default used in library routes
def test_v1_graph_executions_cache_page_size_consistency(self):
"""
Test v1 graph executions cache clearing uses consistent page_size.
Locations:
- routes/v1.py line 937: cache_delete with page_size=25
- v2/library/routes/presets.py line 449: cache_delete with page_size=10
- v2/library/routes/presets.py line 452: cache_delete with page_size=25
"""
V1_GRAPH_EXECUTIONS_CLEARING_PAGE_SIZE = 25
# Note: presets.py clears BOTH page_size=10 AND page_size=25
# This suggests there may be multiple consumers with different page sizes
assert V1_GRAPH_EXECUTIONS_CLEARING_PAGE_SIZE == 25
def test_v2_store_submissions_cache_page_size_consistency(self):
"""
Test v2 store submissions use consistent page_size.
Locations that must match:
- v2/store/routes.py line 484: default page_size=20
- v2/store/cache.py line 18: _clear_submissions_cache uses page_size=20
This is already tested in test_cache_delete.py but documented here for completeness.
"""
V2_STORE_SUBMISSIONS_DEFAULT_PAGE_SIZE = 20
V2_STORE_SUBMISSIONS_CLEARING_PAGE_SIZE = 20
assert (
V2_STORE_SUBMISSIONS_DEFAULT_PAGE_SIZE
== V2_STORE_SUBMISSIONS_CLEARING_PAGE_SIZE
), (
"The default page_size for store submissions must match the hardcoded value in _clear_submissions_cache!\n"
"Update both:\n"
"1. v2/store/routes.py get_submissions() default parameter\n"
"2. v2/store/cache.py _clear_submissions_cache() hardcoded page_size"
)
def test_v2_library_presets_cache_page_size_consistency(self):
"""
Test v2 library presets cache clearing uses consistent page_size.
Locations:
- v2/library/routes/presets.py line 36: cache_delete with page_size=10
- v2/library/routes/presets.py line 39: cache_delete with page_size=20
This route clears BOTH page_size=10 and page_size=20, suggesting multiple consumers.
"""
V2_LIBRARY_PRESETS_CLEARING_PAGE_SIZES = [10, 20]
assert 10 in V2_LIBRARY_PRESETS_CLEARING_PAGE_SIZES
assert 20 in V2_LIBRARY_PRESETS_CLEARING_PAGE_SIZES
# TODO: Verify these match the actual page_size defaults used in preset routes
def test_cache_clearing_helper_functions_documented(self):
"""
Document all cache clearing helper functions and their hardcoded parameters.
Helper functions that wrap cache_delete with hardcoded params:
1. v2/store/cache.py::_clear_submissions_cache() - hardcodes page_size=20, num_pages=20
2. v2/library/routes/presets.py::_clear_presets_list_cache() - hardcodes page_size=10 AND 20, num_pages=20
These helpers are DANGEROUS because:
- They hide the hardcoded parameters
- They loop through multiple pages with hardcoded page_size
- If the route default changes, these won't clear the right cache entries
"""
HELPER_FUNCTIONS = {
"_clear_submissions_cache": {
"file": "v2/store/cache.py",
"page_size": 20,
"num_pages": 20,
"risk": "HIGH - single page_size, could miss entries if default changes",
},
"_clear_presets_list_cache": {
"file": "v2/library/routes/presets.py",
"page_size": [10, 20],
"num_pages": 20,
"risk": "MEDIUM - clears multiple page_sizes, but could still miss new ones",
},
}
assert (
len(HELPER_FUNCTIONS) == 2
), "If you add new cache clearing helper functions, document them here!"
def test_cache_delete_without_page_loops_are_risky(self):
"""
Document cache_delete calls that clear only page=1 (risky if there are multiple pages).
Single page cache_delete calls:
- routes/v1.py line 765: Only clears page=1 with page_size=250
- routes/v1.py line 791: Only clears page=1 with page_size=250
- routes/v1.py line 859: Only clears page=1 with page_size=250
These are RISKY because:
- If a user has more than one page of graphs, pages 2+ won't be invalidated
- User could see stale data on pagination
RECOMMENDATION: Use cache_clear() or loop through multiple pages like
_clear_submissions_cache does.
"""
SINGLE_PAGE_CLEARS = [
"routes/v1.py line 765: create_graph clears only page=1",
"routes/v1.py line 791: delete_graph clears only page=1",
"routes/v1.py line 859: update_graph_metadata clears only page=1",
]
# This test documents the issue but doesn't fail
# Consider this a TODO to fix these cache clearing strategies
assert (
len(SINGLE_PAGE_CLEARS) >= 3
), "These cache_delete calls should probably loop through multiple pages"
def test_all_cached_functions_have_proper_invalidation(self):
"""
Verify all @cached functions have corresponding cache_delete calls.
Functions with proper invalidation:
✓ get_cached_user_profile - cleared on profile update
✓ get_cached_store_agents - cleared on admin review (cache_clear)
✓ get_cached_submissions - cleared via _clear_submissions_cache helper
✓ get_cached_graphs - cleared on graph mutations
✓ get_cached_library_agents - cleared on library changes
Functions that might not have proper invalidation:
? get_cached_agent_details - not explicitly cleared
? get_cached_store_creators - not explicitly cleared
? get_cached_my_agents - not explicitly cleared (no helper function exists!)
This is a documentation test - actual verification requires code analysis.
"""
NEEDS_VERIFICATION = [
"get_cached_agent_details",
"get_cached_store_creators",
"get_cached_my_agents", # NO CLEARING FUNCTION EXISTS!
]
assert "get_cached_my_agents" in NEEDS_VERIFICATION, (
"get_cached_my_agents has no cache clearing logic - this is a BUG!\n"
"When a user creates/deletes an agent, their 'my agents' list won't update."
)
class TestCacheKeyParameterOrdering:
"""
Test that cache_delete calls use the same parameter order as the @cached function.
The @cached decorator uses function signature order to create cache keys.
cache_delete must use the exact same order or it won't find the cached entry!
"""
def test_cached_function_parameter_order_matters(self):
"""
Document that parameter order in cache_delete must match @cached function signature.
Example from v2/store/cache.py:
@cached(...)
async def _get_cached_submissions(user_id: str, page: int, page_size: int):
...
CORRECT: _get_cached_submissions.cache_delete(user_id, page=1, page_size=20)
WRONG: _get_cached_submissions.cache_delete(page=1, user_id=user_id, page_size=20)
The cached decorator generates keys based on the POSITIONAL order, so parameter
order must match between the function definition and cache_delete call.
"""
# This is a documentation test - no assertion needed
# Real verification requires inspecting each cache_delete call
pass
def test_named_parameters_vs_positional_in_cache_delete(self):
"""
Document best practice: use named parameters in cache_delete for safety.
Good practice seen in codebase:
- cache.get_cached_graphs.cache_delete(user_id=user_id, page=1, page_size=250)
- library_cache.get_cached_library_agents.cache_delete(user_id=user_id, page=page, page_size=10)
This is safer than positional arguments because:
1. More readable
2. Less likely to get order wrong
3. Self-documenting what each parameter means
"""
pass
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -457,7 +457,8 @@ async def test_api_key_with_unicode_characters_normalization_attack(mock_request
"""Test that Unicode normalization doesn't bypass validation."""
# Create auth with composed Unicode character
auth = APIKeyAuthenticator(
header_name="X-API-Key", expected_token="café" # é is composed
header_name="X-API-Key",
expected_token="café", # é is composed
)
# Try with decomposed version (c + a + f + e + ´)
@@ -522,8 +523,8 @@ async def test_api_keys_with_newline_variations(mock_request):
"valid\r\ntoken", # Windows newline
"valid\rtoken", # Mac newline
"valid\x85token", # NEL (Next Line)
"valid\x0Btoken", # Vertical Tab
"valid\x0Ctoken", # Form Feed
"valid\x0btoken", # Vertical Tab
"valid\x0ctoken", # Form Feed
]
for api_key in newline_variations:

View File

@@ -23,7 +23,6 @@ logger = logging.getLogger(__name__)
class AutoModManager:
def __init__(self):
self.config = self._load_config()

View File

@@ -7,6 +7,8 @@ import fastapi
import fastapi.responses
import prisma.enums
import backend.server.cache_config
import backend.server.v2.store.cache
import backend.server.v2.store.db
import backend.server.v2.store.model
import backend.util.json
@@ -29,7 +31,7 @@ async def get_admin_listings_with_versions(
status: typing.Optional[prisma.enums.SubmissionStatus] = None,
search: typing.Optional[str] = None,
page: int = 1,
page_size: int = 20,
page_size: int = backend.server.cache_config.V2_STORE_SUBMISSIONS_PAGE_SIZE,
):
"""
Get store listings with their version history for admins.
@@ -93,6 +95,8 @@ async def review_submission(
internal_comments=request.internal_comments or "",
reviewer_id=user_id,
)
backend.server.v2.store.cache._clear_submissions_cache(submission.user_id)
backend.server.v2.store.cache._get_cached_store_agents.cache_clear()
return submission
except Exception as e:
logger.exception("Error reviewing submission: %s", e)

View File

@@ -2,7 +2,6 @@ import logging
from datetime import datetime, timedelta, timezone
import prisma
from autogpt_libs.utils.cache import cached
import backend.data.block
from backend.blocks import load_all_blocks
@@ -18,6 +17,7 @@ from backend.server.v2.builder.model import (
ProviderResponse,
SearchBlocksResponse,
)
from backend.util.cache import cached
from backend.util.models import Pagination
logger = logging.getLogger(__name__)
@@ -296,7 +296,7 @@ def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
return False
@cached()
@cached(ttl_seconds=3600)
def _get_all_providers() -> dict[ProviderName, Provider]:
providers: dict[ProviderName, Provider] = {}

View File

@@ -0,0 +1,111 @@
"""
Cache functions for Library API endpoints.
This module contains all caching decorators and helpers for the Library API,
separated from the main routes for better organization and maintainability.
"""
import backend.server.v2.library.db
from backend.util.cache import cached
# ===== Library Agent Caches =====
# Cache library agents list for 10 minutes
@cached(maxsize=1000, ttl_seconds=600, shared_cache=True)
async def get_cached_library_agents(
user_id: str,
page: int = 1,
page_size: int = 20,
):
"""Cached helper to get library agents list."""
return await backend.server.v2.library.db.list_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
# Cache user's favorite agents for 5 minutes - favorites change more frequently
@cached(maxsize=500, ttl_seconds=300, shared_cache=True)
async def get_cached_library_agent_favorites(
user_id: str,
page: int = 1,
page_size: int = 20,
):
"""Cached helper to get user's favorite library agents."""
return await backend.server.v2.library.db.list_favorite_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
# Cache individual library agent details for 30 minutes
@cached(maxsize=1000, ttl_seconds=1800, shared_cache=True)
async def get_cached_library_agent(
library_agent_id: str,
user_id: str,
):
"""Cached helper to get library agent details."""
return await backend.server.v2.library.db.get_library_agent(
id=library_agent_id,
user_id=user_id,
)
# Cache library agent by graph ID for 30 minutes
@cached(maxsize=1000, ttl_seconds=1800, shared_cache=True)
async def get_cached_library_agent_by_graph_id(
graph_id: str,
user_id: str,
):
"""Cached helper to get library agent by graph ID."""
return await backend.server.v2.library.db.get_library_agent_by_graph_id(
graph_id=graph_id,
user_id=user_id,
)
# Cache library agent by store version ID for 1 hour - marketplace agents are more stable
@cached(maxsize=500, ttl_seconds=3600, shared_cache=True)
async def get_cached_library_agent_by_store_version(
store_listing_version_id: str,
user_id: str,
):
"""Cached helper to get library agent by store version ID."""
return await backend.server.v2.library.db.get_library_agent_by_store_version_id(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
# ===== Library Preset Caches =====
# Cache library presets list for 30 minutes
@cached(maxsize=500, ttl_seconds=1800, shared_cache=True)
async def get_cached_library_presets(
user_id: str,
page: int = 1,
page_size: int = 20,
):
"""Cached helper to get library presets list."""
return await backend.server.v2.library.db.list_presets(
user_id=user_id,
page=page,
page_size=page_size,
)
# Cache individual preset details for 30 minutes
@cached(maxsize=1000, ttl_seconds=1800, shared_cache=True)
async def get_cached_library_preset(
preset_id: str,
user_id: str,
):
"""Cached helper to get library preset details."""
return await backend.server.v2.library.db.get_preset(
preset_id=preset_id,
user_id=user_id,
)

View File

@@ -0,0 +1,286 @@
"""
Tests for cache invalidation in Library API routes.
This module tests that library caches are properly invalidated when data is modified.
"""
import uuid
from unittest.mock import AsyncMock, patch
import pytest
import backend.server.v2.library.cache as library_cache
import backend.server.v2.library.db as library_db
@pytest.fixture
def mock_user_id():
"""Generate a mock user ID for testing."""
return str(uuid.uuid4())
@pytest.fixture
def mock_library_agent_id():
"""Generate a mock library agent ID for testing."""
return str(uuid.uuid4())
class TestLibraryAgentCacheInvalidation:
"""Test cache invalidation for library agent operations."""
@pytest.mark.asyncio
async def test_add_agent_clears_list_cache(self, mock_user_id):
"""Test that adding an agent clears the library agents list cache."""
# Clear cache
library_cache.get_cached_library_agents.cache_clear()
with patch.object(
library_db, "list_library_agents", new_callable=AsyncMock
) as mock_list:
mock_response = {"agents": [], "total_count": 0, "page": 1, "page_size": 20}
mock_list.return_value = mock_response
# First call hits database
await library_cache.get_cached_library_agents(mock_user_id, 1, 20)
assert mock_list.call_count == 1
# Second call uses cache
await library_cache.get_cached_library_agents(mock_user_id, 1, 20)
assert mock_list.call_count == 1 # Still 1, cache used
# Simulate adding an agent (cache invalidation)
for page in range(1, 5):
library_cache.get_cached_library_agents.cache_delete(
mock_user_id, page, 15
)
library_cache.get_cached_library_agents.cache_delete(
mock_user_id, page, 20
)
# Next call should hit database
await library_cache.get_cached_library_agents(mock_user_id, 1, 20)
assert mock_list.call_count == 2
@pytest.mark.asyncio
async def test_delete_agent_clears_multiple_caches(
self, mock_user_id, mock_library_agent_id
):
"""Test that deleting an agent clears both specific and list caches."""
# Clear caches
library_cache.get_cached_library_agent.cache_clear()
library_cache.get_cached_library_agents.cache_clear()
with (
patch.object(
library_db, "get_library_agent", new_callable=AsyncMock
) as mock_get,
patch.object(
library_db, "list_library_agents", new_callable=AsyncMock
) as mock_list,
):
mock_agent = {"id": mock_library_agent_id, "name": "Test Agent"}
mock_get.return_value = mock_agent
mock_list.return_value = {
"agents": [mock_agent],
"total_count": 1,
"page": 1,
"page_size": 20,
}
# Populate caches
await library_cache.get_cached_library_agent(
mock_library_agent_id, mock_user_id
)
await library_cache.get_cached_library_agents(mock_user_id, 1, 20)
initial_calls = {
"get": mock_get.call_count,
"list": mock_list.call_count,
}
# Verify cache is used
await library_cache.get_cached_library_agent(
mock_library_agent_id, mock_user_id
)
await library_cache.get_cached_library_agents(mock_user_id, 1, 20)
assert mock_get.call_count == initial_calls["get"]
assert mock_list.call_count == initial_calls["list"]
# Simulate delete_library_agent cache invalidation
library_cache.get_cached_library_agent.cache_delete(
mock_library_agent_id, mock_user_id
)
for page in range(1, 5):
library_cache.get_cached_library_agents.cache_delete(
mock_user_id, page, 15
)
library_cache.get_cached_library_agents.cache_delete(
mock_user_id, page, 20
)
# Next calls should hit database
await library_cache.get_cached_library_agent(
mock_library_agent_id, mock_user_id
)
await library_cache.get_cached_library_agents(mock_user_id, 1, 20)
assert mock_get.call_count == initial_calls["get"] + 1
assert mock_list.call_count == initial_calls["list"] + 1
@pytest.mark.asyncio
async def test_favorites_cache_operations(self, mock_user_id):
"""Test that favorites cache works independently."""
# Clear cache
library_cache.get_cached_library_agent_favorites.cache_clear()
with patch.object(
library_db, "list_favorite_library_agents", new_callable=AsyncMock
) as mock_favs:
mock_response = {"agents": [], "total_count": 0, "page": 1, "page_size": 20}
mock_favs.return_value = mock_response
# First call hits database
await library_cache.get_cached_library_agent_favorites(mock_user_id, 1, 20)
assert mock_favs.call_count == 1
# Second call uses cache
await library_cache.get_cached_library_agent_favorites(mock_user_id, 1, 20)
assert mock_favs.call_count == 1 # Cache used
# Clear cache
library_cache.get_cached_library_agent_favorites.cache_delete(
mock_user_id, 1, 20
)
# Next call hits database
await library_cache.get_cached_library_agent_favorites(mock_user_id, 1, 20)
assert mock_favs.call_count == 2
class TestLibraryPresetCacheInvalidation:
"""Test cache invalidation for library preset operations."""
@pytest.mark.asyncio
async def test_preset_cache_operations(self, mock_user_id):
"""Test preset cache and invalidation."""
# Clear cache
library_cache.get_cached_library_presets.cache_clear()
library_cache.get_cached_library_preset.cache_clear()
preset_id = str(uuid.uuid4())
with (
patch.object(
library_db, "list_presets", new_callable=AsyncMock
) as mock_list,
patch.object(library_db, "get_preset", new_callable=AsyncMock) as mock_get,
):
mock_preset = {"id": preset_id, "name": "Test Preset"}
mock_list.return_value = {
"presets": [mock_preset],
"total_count": 1,
"page": 1,
"page_size": 20,
}
mock_get.return_value = mock_preset
# Populate caches
await library_cache.get_cached_library_presets(mock_user_id, 1, 20)
await library_cache.get_cached_library_preset(preset_id, mock_user_id)
initial_calls = {
"list": mock_list.call_count,
"get": mock_get.call_count,
}
# Verify cache is used
await library_cache.get_cached_library_presets(mock_user_id, 1, 20)
await library_cache.get_cached_library_preset(preset_id, mock_user_id)
assert mock_list.call_count == initial_calls["list"]
assert mock_get.call_count == initial_calls["get"]
# Clear specific preset cache
library_cache.get_cached_library_preset.cache_delete(
preset_id, mock_user_id
)
# Clear list cache
library_cache.get_cached_library_presets.cache_delete(mock_user_id, 1, 20)
# Next calls should hit database
await library_cache.get_cached_library_presets(mock_user_id, 1, 20)
await library_cache.get_cached_library_preset(preset_id, mock_user_id)
assert mock_list.call_count == initial_calls["list"] + 1
assert mock_get.call_count == initial_calls["get"] + 1
class TestLibraryCacheMetrics:
"""Test library cache metrics and management."""
def test_cache_info_structure(self):
"""Test that cache_info returns expected structure."""
info = library_cache.get_cached_library_agents.cache_info()
assert "size" in info
assert "maxsize" in info
assert "ttl_seconds" in info
assert (
info["maxsize"] is None
) # Redis manages its own size with shared_cache=True
assert info["ttl_seconds"] == 600 # 10 minutes
def test_all_library_caches_can_be_cleared(self):
"""Test that all library caches can be cleared."""
# Clear all library caches
library_cache.get_cached_library_agents.cache_clear()
library_cache.get_cached_library_agent_favorites.cache_clear()
library_cache.get_cached_library_agent.cache_clear()
library_cache.get_cached_library_agent_by_graph_id.cache_clear()
library_cache.get_cached_library_agent_by_store_version.cache_clear()
library_cache.get_cached_library_presets.cache_clear()
library_cache.get_cached_library_preset.cache_clear()
# Verify all are empty
assert library_cache.get_cached_library_agents.cache_info()["size"] == 0
assert (
library_cache.get_cached_library_agent_favorites.cache_info()["size"] == 0
)
assert library_cache.get_cached_library_agent.cache_info()["size"] == 0
assert (
library_cache.get_cached_library_agent_by_graph_id.cache_info()["size"] == 0
)
assert (
library_cache.get_cached_library_agent_by_store_version.cache_info()["size"]
== 0
)
assert library_cache.get_cached_library_presets.cache_info()["size"] == 0
assert library_cache.get_cached_library_preset.cache_info()["size"] == 0
def test_cache_ttl_values(self):
"""Test that cache TTL values are set correctly."""
# Library agents - 10 minutes
assert (
library_cache.get_cached_library_agents.cache_info()["ttl_seconds"] == 600
)
# Favorites - 5 minutes (more dynamic)
assert (
library_cache.get_cached_library_agent_favorites.cache_info()["ttl_seconds"]
== 300
)
# Individual agent - 30 minutes
assert (
library_cache.get_cached_library_agent.cache_info()["ttl_seconds"] == 1800
)
# Presets - 30 minutes
assert (
library_cache.get_cached_library_presets.cache_info()["ttl_seconds"] == 1800
)
assert (
library_cache.get_cached_library_preset.cache_info()["ttl_seconds"] == 1800
)

View File

@@ -101,7 +101,9 @@ async def list_library_agents(
try:
library_agents = await prisma.models.LibraryAgent.prisma().find_many(
where=where_clause,
include=library_agent_include(user_id),
include=library_agent_include(
user_id, include_nodes=False, include_executions=False
),
order=order_by,
skip=(page - 1) * page_size,
take=page_size,
@@ -185,7 +187,9 @@ async def list_favorite_library_agents(
try:
library_agents = await prisma.models.LibraryAgent.prisma().find_many(
where=where_clause,
include=library_agent_include(user_id),
include=library_agent_include(
user_id, include_nodes=False, include_executions=False
),
order=order_by,
skip=(page - 1) * page_size,
take=page_size,
@@ -417,7 +421,9 @@ async def create_library_agent(
}
},
),
include=library_agent_include(user_id),
include=library_agent_include(
user_id, include_nodes=False, include_executions=False
),
)
for graph_entry in graph_entries
)
@@ -642,7 +648,9 @@ async def add_store_agent_to_library(
},
"isCreatedByUser": False,
},
include=library_agent_include(user_id),
include=library_agent_include(
user_id, include_nodes=False, include_executions=False
),
)
logger.debug(
f"Added graph #{graph.id} v{graph.version}"

View File

@@ -177,7 +177,9 @@ async def test_add_agent_to_library(mocker):
},
"isCreatedByUser": False,
},
include=library_agent_include("test-user"),
include=library_agent_include(
"test-user", include_nodes=False, include_executions=False
),
)

View File

@@ -5,6 +5,8 @@ import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, Body, HTTPException, Query, Security, status
from fastapi.responses import Response
import backend.server.cache_config
import backend.server.v2.library.cache as library_cache
import backend.server.v2.library.db as library_db
import backend.server.v2.library.model as library_model
import backend.server.v2.store.exceptions as store_exceptions
@@ -64,13 +66,22 @@ async def list_library_agents(
HTTPException: If a server/database error occurs.
"""
try:
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
# Use cache for default queries (no search term, default sort)
if search_term is None and sort_by == library_model.LibraryAgentSort.UPDATED_AT:
return await library_cache.get_cached_library_agents(
user_id=user_id,
page=page,
page_size=page_size,
)
else:
# Direct DB query for searches and custom sorts
return await library_db.list_library_agents(
user_id=user_id,
search_term=search_term,
sort_by=sort_by,
page=page,
page_size=page_size,
)
except Exception as e:
logger.error(f"Could not list library agents for user #{user_id}: {e}")
raise HTTPException(
@@ -114,7 +125,7 @@ async def list_favorite_library_agents(
HTTPException: If a server/database error occurs.
"""
try:
return await library_db.list_favorite_library_agents(
return await library_cache.get_cached_library_agent_favorites(
user_id=user_id,
page=page,
page_size=page_size,
@@ -132,7 +143,9 @@ async def get_library_agent(
library_agent_id: str,
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> library_model.LibraryAgent:
return await library_db.get_library_agent(id=library_agent_id, user_id=user_id)
return await library_cache.get_cached_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
@router.get("/by-graph/{graph_id}")
@@ -210,11 +223,21 @@ async def add_marketplace_agent_to_library(
HTTPException(500): If a server/database error occurs.
"""
try:
return await library_db.add_store_agent_to_library(
result = await library_db.add_store_agent_to_library(
store_listing_version_id=store_listing_version_id,
user_id=user_id,
)
# Clear library caches after adding new agent
for page in range(1, backend.server.cache_config.MAX_PAGES_TO_CLEAR):
library_cache.get_cached_library_agents.cache_delete(
user_id=user_id,
page=page,
page_size=backend.server.cache_config.V2_LIBRARY_AGENTS_PAGE_SIZE,
)
return result
except store_exceptions.AgentNotFoundError as e:
logger.warning(
f"Could not find store listing version {store_listing_version_id} "
@@ -263,13 +286,22 @@ async def update_library_agent(
HTTPException(500): If a server/database error occurs.
"""
try:
return await library_db.update_library_agent(
result = await library_db.update_library_agent(
library_agent_id=library_agent_id,
user_id=user_id,
auto_update_version=payload.auto_update_version,
is_favorite=payload.is_favorite,
is_archived=payload.is_archived,
)
for page in range(1, backend.server.cache_config.MAX_PAGES_TO_CLEAR):
library_cache.get_cached_library_agent_favorites.cache_delete(
user_id=user_id,
page=page,
page_size=backend.server.cache_config.V2_LIBRARY_AGENTS_PAGE_SIZE,
)
return result
except NotFoundError as e:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
@@ -320,6 +352,18 @@ async def delete_library_agent(
await library_db.delete_library_agent(
library_agent_id=library_agent_id, user_id=user_id
)
# Clear caches after deleting agent
library_cache.get_cached_library_agent.cache_delete(
library_agent_id=library_agent_id, user_id=user_id
)
for page in range(1, backend.server.cache_config.MAX_PAGES_TO_CLEAR):
library_cache.get_cached_library_agents.cache_delete(
user_id=user_id,
page=page,
page_size=backend.server.cache_config.V2_LIBRARY_AGENTS_PAGE_SIZE,
)
return Response(status_code=status.HTTP_204_NO_CONTENT)
except NotFoundError as e:
raise HTTPException(

View File

@@ -4,6 +4,9 @@ from typing import Any, Optional
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, Body, HTTPException, Query, Security, status
import backend.server.cache_config
import backend.server.routers.cache as cache
import backend.server.v2.library.cache as library_cache
import backend.server.v2.library.db as db
import backend.server.v2.library.model as models
from backend.data.execution import GraphExecutionMeta
@@ -25,6 +28,24 @@ router = APIRouter(
)
def _clear_presets_list_cache(
user_id: str, num_pages: int = backend.server.cache_config.MAX_PAGES_TO_CLEAR
):
"""
Clear the presets list cache for the given user.
Clears both primary and alternative page sizes for backward compatibility.
"""
page_sizes = backend.server.cache_config.get_page_sizes_for_clearing(
backend.server.cache_config.V2_LIBRARY_PRESETS_PAGE_SIZE,
backend.server.cache_config.V2_LIBRARY_PRESETS_ALT_PAGE_SIZE,
)
for page in range(1, num_pages + 1):
for page_size in page_sizes:
library_cache.get_cached_library_presets.cache_delete(
user_id=user_id, page=page, page_size=page_size
)
@router.get(
"/presets",
summary="List presets",
@@ -51,12 +72,21 @@ async def list_presets(
models.LibraryAgentPresetResponse: A response containing the list of presets.
"""
try:
return await db.list_presets(
user_id=user_id,
graph_id=graph_id,
page=page,
page_size=page_size,
)
# Use cache only for default queries (no filter)
if graph_id is None:
return await library_cache.get_cached_library_presets(
user_id=user_id,
page=page,
page_size=page_size,
)
else:
# Direct DB query for filtered requests
return await db.list_presets(
user_id=user_id,
graph_id=graph_id,
page=page,
page_size=page_size,
)
except Exception as e:
logger.exception("Failed to list presets for user %s: %s", user_id, e)
raise HTTPException(
@@ -87,7 +117,7 @@ async def get_preset(
HTTPException: If the preset is not found or an error occurs.
"""
try:
preset = await db.get_preset(user_id, preset_id)
preset = await library_cache.get_cached_library_preset(preset_id, user_id)
except Exception as e:
logger.exception(
"Error retrieving preset %s for user %s: %s", preset_id, user_id, e
@@ -131,9 +161,13 @@ async def create_preset(
"""
try:
if isinstance(preset, models.LibraryAgentPresetCreatable):
return await db.create_preset(user_id, preset)
result = await db.create_preset(user_id, preset)
else:
return await db.create_preset_from_graph_execution(user_id, preset)
result = await db.create_preset_from_graph_execution(user_id, preset)
_clear_presets_list_cache(user_id)
return result
except NotFoundError as e:
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=str(e))
except Exception as e:
@@ -200,6 +234,9 @@ async def setup_trigger(
is_active=True,
),
)
_clear_presets_list_cache(user_id)
return new_preset
@@ -278,6 +315,13 @@ async def update_preset(
description=preset.description,
is_active=preset.is_active,
)
# Clear caches after updating preset
library_cache.get_cached_library_preset.cache_delete(
preset_id=preset_id, user_id=user_id
)
_clear_presets_list_cache(user_id)
except Exception as e:
logger.exception("Preset update failed for user %s: %s", user_id, e)
raise HTTPException(
@@ -351,6 +395,12 @@ async def delete_preset(
try:
await db.delete_preset(user_id, preset_id)
# Clear caches after deleting preset
library_cache.get_cached_library_preset.cache_delete(
preset_id=preset_id, user_id=user_id
)
_clear_presets_list_cache(user_id)
except Exception as e:
logger.exception(
"Error deleting preset %s for user %s: %s", preset_id, user_id, e
@@ -401,6 +451,33 @@ async def execute_preset(
merged_node_input = preset.inputs | inputs
merged_credential_inputs = preset.credentials | credential_inputs
# Clear graph executions cache - use both page sizes for compatibility
for page in range(1, 10):
# Clear with alternative page size
cache.get_cached_graph_executions.cache_delete(
graph_id=preset.graph_id,
user_id=user_id,
page=page,
page_size=backend.server.cache_config.V2_GRAPH_EXECUTIONS_ALT_PAGE_SIZE,
)
cache.get_cached_graph_executions.cache_delete(
user_id=user_id,
page=page,
page_size=backend.server.cache_config.V2_GRAPH_EXECUTIONS_ALT_PAGE_SIZE,
)
# Clear with v1 page size (25)
cache.get_cached_graph_executions.cache_delete(
graph_id=preset.graph_id,
user_id=user_id,
page=page,
page_size=backend.server.cache_config.V1_GRAPH_EXECUTIONS_PAGE_SIZE,
)
cache.get_cached_graph_executions.cache_delete(
user_id=user_id,
page=page,
page_size=backend.server.cache_config.V1_GRAPH_EXECUTIONS_PAGE_SIZE,
)
return await add_graph_execution(
user_id=user_id,
graph_id=preset.graph_id,

View File

@@ -179,14 +179,15 @@ async def test_get_favorite_library_agents_success(
def test_get_favorite_library_agents_error(
mocker: pytest_mock.MockFixture, test_user_id: str
):
mock_db_call = mocker.patch(
"backend.server.v2.library.db.list_favorite_library_agents"
# Mock the cache function instead of the DB directly since routes now use cache
mock_cache_call = mocker.patch(
"backend.server.v2.library.routes.agents.library_cache.get_cached_library_agent_favorites"
)
mock_db_call.side_effect = Exception("Test error")
mock_cache_call.side_effect = Exception("Test error")
response = client.get("/agents/favorites")
assert response.status_code == 500
mock_db_call.assert_called_once_with(
mock_cache_call.assert_called_once_with(
user_id=test_user_id,
page=1,
page_size=15,

View File

@@ -0,0 +1,152 @@
"""
Cache functions for Store API endpoints.
This module contains all caching decorators and helpers for the Store API,
separated from the main routes for better organization and maintainability.
"""
import backend.server.cache_config
import backend.server.v2.store.db
from backend.util.cache import cached
def _clear_submissions_cache(
user_id: str, num_pages: int = backend.server.cache_config.MAX_PAGES_TO_CLEAR
):
"""
Clear the submissions cache for the given user.
Args:
user_id: User ID whose cache should be cleared
num_pages: Number of pages to clear (default from cache_config)
"""
for page in range(1, num_pages + 1):
_get_cached_submissions.cache_delete(
user_id=user_id,
page=page,
page_size=backend.server.cache_config.V2_STORE_SUBMISSIONS_PAGE_SIZE,
)
def _clear_my_agents_cache(
user_id: str, num_pages: int = backend.server.cache_config.MAX_PAGES_TO_CLEAR
):
"""
Clear the my agents cache for the given user.
Args:
user_id: User ID whose cache should be cleared
num_pages: Number of pages to clear (default from cache_config)
"""
for page in range(1, num_pages + 1):
_get_cached_my_agents.cache_delete(
user_id=user_id,
page=page,
page_size=backend.server.cache_config.V2_MY_AGENTS_PAGE_SIZE,
)
# Cache user profiles for 1 hour per user
@cached(maxsize=1000, ttl_seconds=3600, shared_cache=True)
async def _get_cached_user_profile(user_id: str):
"""Cached helper to get user profile."""
return await backend.server.v2.store.db.get_user_profile(user_id)
# Cache store agents list for 15 minutes
# Different cache entries for different query combinations
@cached(maxsize=5000, ttl_seconds=900, shared_cache=True)
async def _get_cached_store_agents(
featured: bool,
creator: str | None,
sorted_by: str | None,
search_query: str | None,
category: str | None,
page: int,
page_size: int,
):
"""Cached helper to get store agents."""
return await backend.server.v2.store.db.get_store_agents(
featured=featured,
creators=[creator] if creator else None,
sorted_by=sorted_by,
search_query=search_query,
category=category,
page=page,
page_size=page_size,
)
# Cache individual agent details for 15 minutes
@cached(maxsize=200, ttl_seconds=900, shared_cache=True)
async def _get_cached_agent_details(username: str, agent_name: str):
"""Cached helper to get agent details."""
return await backend.server.v2.store.db.get_store_agent_details(
username=username, agent_name=agent_name
)
# Cache agent graphs for 1 hour
@cached(maxsize=200, ttl_seconds=3600, shared_cache=True)
async def _get_cached_agent_graph(store_listing_version_id: str):
"""Cached helper to get agent graph."""
return await backend.server.v2.store.db.get_available_graph(
store_listing_version_id
)
# Cache agent by version for 1 hour
@cached(maxsize=200, ttl_seconds=3600, shared_cache=True)
async def _get_cached_store_agent_by_version(store_listing_version_id: str):
"""Cached helper to get store agent by version ID."""
return await backend.server.v2.store.db.get_store_agent_by_version_id(
store_listing_version_id
)
# Cache creators list for 1 hour
@cached(maxsize=200, ttl_seconds=3600, shared_cache=True)
async def _get_cached_store_creators(
featured: bool,
search_query: str | None,
sorted_by: str | None,
page: int,
page_size: int,
):
"""Cached helper to get store creators."""
return await backend.server.v2.store.db.get_store_creators(
featured=featured,
search_query=search_query,
sorted_by=sorted_by,
page=page,
page_size=page_size,
)
# Cache individual creator details for 1 hour
@cached(maxsize=100, ttl_seconds=3600, shared_cache=True)
async def _get_cached_creator_details(username: str):
"""Cached helper to get creator details."""
return await backend.server.v2.store.db.get_store_creator_details(
username=username.lower()
)
# Cache user's own agents for 5 mins (shorter TTL as this changes more frequently)
@cached(maxsize=500, ttl_seconds=300, shared_cache=True)
async def _get_cached_my_agents(user_id: str, page: int, page_size: int):
"""Cached helper to get user's agents."""
return await backend.server.v2.store.db.get_my_agents(
user_id, page=page, page_size=page_size
)
# Cache user's submissions for 1 hour (shorter TTL as this changes frequently)
@cached(maxsize=500, ttl_seconds=3600, shared_cache=True)
async def _get_cached_submissions(user_id: str, page: int, page_size: int):
"""Cached helper to get user's submissions."""
return await backend.server.v2.store.db.get_store_submissions(
user_id=user_id,
page=page,
page_size=page_size,
)

View File

@@ -493,6 +493,7 @@ async def get_store_submissions(
submission_models = []
for sub in submissions:
submission_model = backend.server.v2.store.model.StoreSubmission(
user_id=sub.user_id,
agent_id=sub.agent_id,
agent_version=sub.agent_version,
name=sub.name,
@@ -710,6 +711,7 @@ async def create_store_submission(
logger.debug(f"Created store listing for agent {agent_id}")
# Return submission details
return backend.server.v2.store.model.StoreSubmission(
user_id=user_id,
agent_id=agent_id,
agent_version=agent_version,
name=name,
@@ -860,6 +862,7 @@ async def edit_store_submission(
"Failed to update store listing version"
)
return backend.server.v2.store.model.StoreSubmission(
user_id=user_id,
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
name=name,
@@ -993,6 +996,7 @@ async def create_store_version(
)
# Return submission details
return backend.server.v2.store.model.StoreSubmission(
user_id=user_id,
agent_id=agent_id,
agent_version=agent_version,
name=name,
@@ -1493,7 +1497,7 @@ async def review_store_submission(
include={"StoreListing": True},
)
if not submission:
if not submission or not submission.StoreListing:
raise backend.server.v2.store.exceptions.DatabaseError(
f"Failed to update store listing version {store_listing_version_id}"
)
@@ -1583,6 +1587,7 @@ async def review_store_submission(
# Convert to Pydantic model for consistency
return backend.server.v2.store.model.StoreSubmission(
user_id=submission.StoreListing.owningUserId,
agent_id=submission.agentGraphId,
agent_version=submission.agentGraphVersion,
name=submission.name,
@@ -1715,14 +1720,17 @@ async def get_admin_listings_with_versions(
# Get total count for pagination
total = await prisma.models.StoreListing.prisma().count(where=where)
total_pages = (total + page_size - 1) // page_size
# Convert to response models
listings_with_versions = []
for listing in listings:
versions: list[backend.server.v2.store.model.StoreSubmission] = []
if not listing.OwningUser:
logger.error(f"Listing {listing.id} has no owning user")
continue
# If we have versions, turn them into StoreSubmission models
for version in listing.Versions or []:
version_model = backend.server.v2.store.model.StoreSubmission(
user_id=listing.OwningUser.id,
agent_id=version.agentGraphId,
agent_version=version.agentGraphVersion,
name=version.name,

View File

@@ -98,6 +98,7 @@ class Profile(pydantic.BaseModel):
class StoreSubmission(pydantic.BaseModel):
user_id: str = pydantic.Field(default="", exclude=True)
agent_id: str
agent_version: int
name: str

View File

@@ -135,6 +135,7 @@ def test_creator_details():
def test_store_submission():
submission = backend.server.v2.store.model.StoreSubmission(
user_id="user123",
agent_id="agent123",
agent_version=1,
sub_heading="Test subheading",
@@ -156,6 +157,7 @@ def test_store_submissions_response():
response = backend.server.v2.store.model.StoreSubmissionsResponse(
submissions=[
backend.server.v2.store.model.StoreSubmission(
user_id="user123",
agent_id="agent123",
agent_version=1,
sub_heading="Test subheading",

View File

@@ -6,132 +6,33 @@ import urllib.parse
import autogpt_libs.auth
import fastapi
import fastapi.responses
from autogpt_libs.utils.cache import cached
import backend.data.graph
import backend.server.cache_config
import backend.server.v2.store.db
import backend.server.v2.store.exceptions
import backend.server.v2.store.image_gen
import backend.server.v2.store.media
import backend.server.v2.store.model
import backend.util.json
from backend.server.v2.store.cache import (
_clear_submissions_cache,
_get_cached_agent_details,
_get_cached_agent_graph,
_get_cached_creator_details,
_get_cached_my_agents,
_get_cached_store_agent_by_version,
_get_cached_store_agents,
_get_cached_store_creators,
_get_cached_submissions,
_get_cached_user_profile,
)
logger = logging.getLogger(__name__)
router = fastapi.APIRouter()
##############################################
############### Caches #######################
##############################################
# Cache user profiles for 1 hour per user
@cached(maxsize=1000, ttl_seconds=3600)
async def _get_cached_user_profile(user_id: str):
"""Cached helper to get user profile."""
return await backend.server.v2.store.db.get_user_profile(user_id)
# Cache store agents list for 15 minutes
# Different cache entries for different query combinations
@cached(maxsize=5000, ttl_seconds=900)
async def _get_cached_store_agents(
featured: bool,
creator: str | None,
sorted_by: str | None,
search_query: str | None,
category: str | None,
page: int,
page_size: int,
):
"""Cached helper to get store agents."""
return await backend.server.v2.store.db.get_store_agents(
featured=featured,
creators=[creator] if creator else None,
sorted_by=sorted_by,
search_query=search_query,
category=category,
page=page,
page_size=page_size,
)
# Cache individual agent details for 15 minutes
@cached(maxsize=200, ttl_seconds=900)
async def _get_cached_agent_details(username: str, agent_name: str):
"""Cached helper to get agent details."""
return await backend.server.v2.store.db.get_store_agent_details(
username=username, agent_name=agent_name
)
# Cache agent graphs for 1 hour
@cached(maxsize=200, ttl_seconds=3600)
async def _get_cached_agent_graph(store_listing_version_id: str):
"""Cached helper to get agent graph."""
return await backend.server.v2.store.db.get_available_graph(
store_listing_version_id
)
# Cache agent by version for 1 hour
@cached(maxsize=200, ttl_seconds=3600)
async def _get_cached_store_agent_by_version(store_listing_version_id: str):
"""Cached helper to get store agent by version ID."""
return await backend.server.v2.store.db.get_store_agent_by_version_id(
store_listing_version_id
)
# Cache creators list for 1 hour
@cached(maxsize=200, ttl_seconds=3600)
async def _get_cached_store_creators(
featured: bool,
search_query: str | None,
sorted_by: str | None,
page: int,
page_size: int,
):
"""Cached helper to get store creators."""
return await backend.server.v2.store.db.get_store_creators(
featured=featured,
search_query=search_query,
sorted_by=sorted_by,
page=page,
page_size=page_size,
)
# Cache individual creator details for 1 hour
@cached(maxsize=100, ttl_seconds=3600)
async def _get_cached_creator_details(username: str):
"""Cached helper to get creator details."""
return await backend.server.v2.store.db.get_store_creator_details(
username=username.lower()
)
# Cache user's own agents for 5 mins (shorter TTL as this changes more frequently)
@cached(maxsize=500, ttl_seconds=300)
async def _get_cached_my_agents(user_id: str, page: int, page_size: int):
"""Cached helper to get user's agents."""
return await backend.server.v2.store.db.get_my_agents(
user_id, page=page, page_size=page_size
)
# Cache user's submissions for 1 hour (shorter TTL as this changes frequently)
@cached(maxsize=500, ttl_seconds=3600)
async def _get_cached_submissions(user_id: str, page: int, page_size: int):
"""Cached helper to get user's submissions."""
return await backend.server.v2.store.db.get_store_submissions(
user_id=user_id,
page=page,
page_size=page_size,
)
##############################################
############### Profile Endpoints ############
##############################################
@@ -230,7 +131,7 @@ async def get_agents(
search_query: str | None = None,
category: str | None = None,
page: int = 1,
page_size: int = 20,
page_size: int = backend.server.cache_config.V2_STORE_AGENTS_PAGE_SIZE,
):
"""
Get a paginated list of agents from the store with optional filtering and sorting.
@@ -428,7 +329,7 @@ async def get_creators(
search_query: str | None = None,
sorted_by: str | None = None,
page: int = 1,
page_size: int = 20,
page_size: int = backend.server.cache_config.V2_STORE_CREATORS_PAGE_SIZE,
):
"""
This is needed for:
@@ -514,7 +415,9 @@ async def get_creator(
async def get_my_agents(
user_id: str = fastapi.Security(autogpt_libs.auth.get_user_id),
page: typing.Annotated[int, fastapi.Query(ge=1)] = 1,
page_size: typing.Annotated[int, fastapi.Query(ge=1)] = 20,
page_size: typing.Annotated[
int, fastapi.Query(ge=1)
] = backend.server.cache_config.V2_MY_AGENTS_PAGE_SIZE,
):
"""
Get user's own agents.
@@ -560,10 +463,7 @@ async def delete_submission(
# Clear submissions cache for this specific user after deletion
if result:
# Clear user's own agents cache - we don't know all page/size combinations
for page in range(1, 20):
# Clear user's submissions cache for common defaults
_get_cached_submissions.cache_delete(user_id, page=page, page_size=20)
_clear_submissions_cache(user_id)
return result
except Exception:
@@ -584,7 +484,7 @@ async def delete_submission(
async def get_submissions(
user_id: str = fastapi.Security(autogpt_libs.auth.get_user_id),
page: int = 1,
page_size: int = 20,
page_size: int = backend.server.cache_config.V2_STORE_SUBMISSIONS_PAGE_SIZE,
):
"""
Get a paginated list of store submissions for the authenticated user.
@@ -666,10 +566,7 @@ async def create_submission(
recommended_schedule_cron=submission_request.recommended_schedule_cron,
)
# Clear user's own agents cache - we don't know all page/size combinations
for page in range(1, 20):
# Clear user's submissions cache for common defaults
_get_cached_submissions.cache_delete(user_id, page=page, page_size=20)
_clear_submissions_cache(user_id)
return result
except Exception:
@@ -720,10 +617,7 @@ async def edit_submission(
recommended_schedule_cron=submission_request.recommended_schedule_cron,
)
# Clear user's own agents cache - we don't know all page/size combinations
for page in range(1, 20):
# Clear user's submissions cache for common defaults
_get_cached_submissions.cache_delete(user_id, page=page, page_size=20)
_clear_submissions_cache(user_id)
return result

View File

@@ -534,6 +534,7 @@ def test_get_submissions_success(
mocked_value = backend.server.v2.store.model.StoreSubmissionsResponse(
submissions=[
backend.server.v2.store.model.StoreSubmission(
user_id="user123",
name="Test Agent",
description="Test agent description",
image_urls=["test.jpg"],

View File

@@ -345,6 +345,150 @@ class TestCacheDeletion:
)
assert deleted is False # Different parameters, not in cache
@pytest.mark.asyncio
async def test_clear_submissions_cache_page_size_consistency(self):
"""
Test that _clear_submissions_cache uses the correct page_size.
This test ensures that if the default page_size in routes changes,
the hardcoded value in _clear_submissions_cache must also change.
"""
from backend.server.v2.store.model import StoreSubmissionsResponse
mock_response = StoreSubmissionsResponse(
submissions=[],
pagination=Pagination(
total_items=0,
total_pages=1,
current_page=1,
page_size=20,
),
)
with patch(
"backend.server.v2.store.db.get_store_submissions",
new_callable=AsyncMock,
return_value=mock_response,
):
# Clear cache first
routes._get_cached_submissions.cache_clear()
# Populate cache with multiple pages using the default page_size
DEFAULT_PAGE_SIZE = 20 # This should match the default in routes.py
user_id = "test_user"
# Add entries for pages 1-5
for page in range(1, 6):
await routes._get_cached_submissions(
user_id=user_id, page=page, page_size=DEFAULT_PAGE_SIZE
)
# Verify cache has entries
cache_info_before = routes._get_cached_submissions.cache_info()
assert cache_info_before["size"] == 5
# Call _clear_submissions_cache
routes._clear_submissions_cache(user_id, num_pages=20)
# All entries should be cleared
cache_info_after = routes._get_cached_submissions.cache_info()
assert (
cache_info_after["size"] == 0
), "Cache should be empty after _clear_submissions_cache"
@pytest.mark.asyncio
async def test_clear_submissions_cache_detects_page_size_mismatch(self):
"""
Test that detects if _clear_submissions_cache is using wrong page_size.
If this test fails, it means the hardcoded page_size in _clear_submissions_cache
doesn't match the default page_size used in the routes.
"""
from backend.server.v2.store.model import StoreSubmissionsResponse
mock_response = StoreSubmissionsResponse(
submissions=[],
pagination=Pagination(
total_items=0,
total_pages=1,
current_page=1,
page_size=20,
),
)
with patch(
"backend.server.v2.store.db.get_store_submissions",
new_callable=AsyncMock,
return_value=mock_response,
):
# Clear cache first
routes._get_cached_submissions.cache_clear()
# WRONG_PAGE_SIZE simulates what happens if someone changes
# the default page_size in routes but forgets to update _clear_submissions_cache
WRONG_PAGE_SIZE = 25 # Different from the hardcoded value in cache.py
user_id = "test_user"
# Populate cache with the "wrong" page_size
for page in range(1, 6):
await routes._get_cached_submissions(
user_id=user_id, page=page, page_size=WRONG_PAGE_SIZE
)
# Verify cache has entries
cache_info_before = routes._get_cached_submissions.cache_info()
assert cache_info_before["size"] == 5
# Call _clear_submissions_cache (which uses page_size=20 hardcoded)
routes._clear_submissions_cache(user_id, num_pages=20)
# If page_size is mismatched, entries won't be cleared
cache_info_after = routes._get_cached_submissions.cache_info()
# This assertion will FAIL if _clear_submissions_cache uses wrong page_size
assert (
cache_info_after["size"] == 5
), "Cache entries with different page_size should NOT be cleared (this is expected)"
@pytest.mark.asyncio
async def test_my_agents_cache_needs_clearing_too(self):
"""
Test that demonstrates _get_cached_my_agents also needs cache clearing.
Currently there's no _clear_my_agents_cache function, but there should be.
"""
from backend.server.v2.store.model import MyAgentsResponse
mock_response = MyAgentsResponse(
agents=[],
pagination=Pagination(
total_items=0,
total_pages=1,
current_page=1,
page_size=20,
),
)
with patch(
"backend.server.v2.store.db.get_my_agents",
new_callable=AsyncMock,
return_value=mock_response,
):
routes._get_cached_my_agents.cache_clear()
DEFAULT_PAGE_SIZE = 20
user_id = "test_user"
# Populate cache
for page in range(1, 6):
await routes._get_cached_my_agents(
user_id=user_id, page=page, page_size=DEFAULT_PAGE_SIZE
)
cache_info = routes._get_cached_my_agents.cache_info()
assert cache_info["size"] == 5
# NOTE: Currently there's no _clear_my_agents_cache function
# If we implement one, it should clear all pages consistently
# For now we document this as a TODO
if __name__ == "__main__":
# Run the tests

View File

@@ -0,0 +1,461 @@
"""
Caching utilities for the AutoGPT platform.
Provides decorators for caching function results with support for:
- In-memory caching with TTL
- Shared Redis-backed caching across processes
- Thread-local caching for request-scoped data
- Thundering herd protection
- LRU eviction with optional TTL refresh
"""
import asyncio
import inspect
import logging
import threading
import time
from dataclasses import dataclass
from functools import wraps
from typing import Any, Callable, ParamSpec, Protocol, TypeVar, cast, runtime_checkable
from redis import ConnectionPool, Redis
from backend.util.retry import conn_retry
from backend.util.settings import Settings
P = ParamSpec("P")
R = TypeVar("R")
R_co = TypeVar("R_co", covariant=True)
logger = logging.getLogger(__name__)
settings = Settings()
# RECOMMENDED REDIS CONFIGURATION FOR PRODUCTION:
# Configure Redis with the following settings for optimal caching performance:
# maxmemory-policy allkeys-lru # Evict least recently used keys when memory limit reached
# maxmemory 2gb # Set memory limit (adjust based on your needs)
# save "" # Disable persistence if using Redis purely for caching
# Create a dedicated Redis connection pool for caching (binary mode for pickle)
_cache_pool: ConnectionPool | None = None
@conn_retry("Redis", "Acquiring cache connection pool")
def _get_cache_pool() -> ConnectionPool:
"""Get or create a connection pool for cache operations."""
global _cache_pool
if _cache_pool is None:
_cache_pool = ConnectionPool(
host=settings.config.redis_host,
port=settings.config.redis_port,
password=settings.config.redis_password or None,
decode_responses=False, # Binary mode for pickle
max_connections=50,
socket_keepalive=True,
socket_connect_timeout=5,
retry_on_timeout=True,
)
return _cache_pool
def _get_redis_client() -> Redis:
"""Get a Redis client from the connection pool."""
return Redis(connection_pool=_get_cache_pool())
@dataclass
class CachedValue:
"""Wrapper for cached values with timestamp to avoid tuple ambiguity."""
result: Any
timestamp: float
def _make_hashable_key(
args: tuple[Any, ...], kwargs: dict[str, Any]
) -> tuple[Any, ...]:
"""
Convert args and kwargs into a hashable cache key.
Handles unhashable types like dict, list, set by converting them to
their sorted string representations.
"""
def make_hashable(obj: Any) -> Any:
"""Recursively convert an object to a hashable representation."""
if isinstance(obj, dict):
# Sort dict items to ensure consistent ordering
return (
"__dict__",
tuple(sorted((k, make_hashable(v)) for k, v in obj.items())),
)
elif isinstance(obj, (list, tuple)):
return ("__list__", tuple(make_hashable(item) for item in obj))
elif isinstance(obj, set):
return ("__set__", tuple(sorted(make_hashable(item) for item in obj)))
elif hasattr(obj, "__dict__"):
# Handle objects with __dict__ attribute
return ("__obj__", obj.__class__.__name__, make_hashable(obj.__dict__))
else:
# For basic hashable types (str, int, bool, None, etc.)
try:
hash(obj)
return obj
except TypeError:
# Fallback: convert to string representation
return ("__str__", str(obj))
hashable_args = tuple(make_hashable(arg) for arg in args)
hashable_kwargs = tuple(sorted((k, make_hashable(v)) for k, v in kwargs.items()))
return (hashable_args, hashable_kwargs)
def _make_redis_key(key: tuple[Any, ...]) -> str:
"""Convert a hashable key tuple to a Redis key string."""
# Ensure key is already hashable
hashable_key = key if isinstance(key, tuple) else (key,)
return f"cache:{hash(hashable_key)}"
@runtime_checkable
class CachedFunction(Protocol[P, R_co]):
"""Protocol for cached functions with cache management methods."""
def cache_clear(self, pattern: str | None = None) -> None:
"""Clear cached entries. If pattern provided, clear matching entries only."""
return None
def cache_info(self) -> dict[str, int | None]:
"""Get cache statistics."""
return {}
def cache_delete(self, *args: P.args, **kwargs: P.kwargs) -> bool:
"""Delete a specific cache entry by its arguments. Returns True if entry existed."""
return False
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R_co:
"""Call the cached function."""
return None # type: ignore
def cached(
*,
maxsize: int = 128,
ttl_seconds: int,
shared_cache: bool = False,
refresh_ttl_on_get: bool = False,
) -> Callable[[Callable], CachedFunction]:
"""
Thundering herd safe cache decorator for both sync and async functions.
Uses double-checked locking to prevent multiple threads/coroutines from
executing the expensive operation simultaneously during cache misses.
Args:
maxsize: Maximum number of cached entries (only for in-memory cache)
ttl_seconds: Time to live in seconds. Required - entries must expire.
shared_cache: If True, use Redis for cross-process caching
refresh_ttl_on_get: If True, refresh TTL when cache entry is accessed (LRU behavior)
Returns:
Decorated function with caching capabilities
Example:
@cached(ttl_seconds=300) # 5 minute TTL
def expensive_sync_operation(param: str) -> dict:
return {"result": param}
@cached(ttl_seconds=600, shared_cache=True, refresh_ttl_on_get=True)
async def expensive_async_operation(param: str) -> dict:
return {"result": param}
"""
def decorator(target_func):
cache_storage: dict[tuple, CachedValue] = {}
_event_loop_locks: dict[Any, asyncio.Lock] = {}
def _get_from_redis(redis_key: str) -> Any | None:
"""Get value from Redis, optionally refreshing TTL."""
try:
import pickle
redis = _get_redis_client()
if refresh_ttl_on_get:
# Use GETEX to get value and refresh expiry atomically
cached_bytes = redis.getex(redis_key, ex=ttl_seconds)
else:
cached_bytes = redis.get(redis_key)
if cached_bytes and isinstance(cached_bytes, bytes):
return pickle.loads(cached_bytes)
except Exception as e:
logger.error(
f"Redis error during cache check for {target_func.__name__}: {e}"
)
return None
def _set_to_redis(redis_key: str, value: Any) -> None:
"""Set value in Redis with TTL."""
try:
import pickle
redis = _get_redis_client()
pickled_value = pickle.dumps(value, protocol=pickle.HIGHEST_PROTOCOL)
redis.setex(redis_key, ttl_seconds, pickled_value)
except Exception as e:
logger.error(
f"Redis error storing cache for {target_func.__name__}: {e}"
)
def _get_from_memory(key: tuple) -> Any | None:
"""Get value from in-memory cache, checking TTL."""
if key in cache_storage:
cached_data = cache_storage[key]
if time.time() - cached_data.timestamp < ttl_seconds:
logger.debug(
f"Cache hit for {target_func.__name__} args: {key[0]} kwargs: {key[1]}"
)
return cached_data.result
return None
def _set_to_memory(key: tuple, value: Any) -> None:
"""Set value in in-memory cache with timestamp."""
cache_storage[key] = CachedValue(result=value, timestamp=time.time())
# Cleanup if needed
if len(cache_storage) > maxsize:
cutoff = maxsize // 2
oldest_keys = list(cache_storage.keys())[:-cutoff] if cutoff > 0 else []
for old_key in oldest_keys:
cache_storage.pop(old_key, None)
if inspect.iscoroutinefunction(target_func):
def _get_cache_lock():
"""Get or create an asyncio.Lock for the current event loop."""
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = None
if loop not in _event_loop_locks:
_event_loop_locks[loop] = asyncio.Lock()
return _event_loop_locks[loop]
@wraps(target_func)
async def async_wrapper(*args: P.args, **kwargs: P.kwargs):
key = _make_hashable_key(args, kwargs)
redis_key = _make_redis_key(key) if shared_cache else ""
# Fast path: check cache without lock
if shared_cache:
result = _get_from_redis(redis_key)
if result is not None:
return result
else:
result = _get_from_memory(key)
if result is not None:
return result
# Slow path: acquire lock for cache miss/expiry
async with _get_cache_lock():
# Double-check: another coroutine might have populated cache
if shared_cache:
result = _get_from_redis(redis_key)
if result is not None:
return result
else:
result = _get_from_memory(key)
if result is not None:
return result
# Cache miss - execute function
logger.debug(f"Cache miss for {target_func.__name__}")
result = await target_func(*args, **kwargs)
# Store result
if shared_cache:
_set_to_redis(redis_key, result)
else:
_set_to_memory(key, result)
return result
wrapper = async_wrapper
else:
# Sync function with threading.Lock
cache_lock = threading.Lock()
@wraps(target_func)
def sync_wrapper(*args: P.args, **kwargs: P.kwargs):
key = _make_hashable_key(args, kwargs)
redis_key = _make_redis_key(key) if shared_cache else ""
# Fast path: check cache without lock
if shared_cache:
result = _get_from_redis(redis_key)
if result is not None:
return result
else:
result = _get_from_memory(key)
if result is not None:
return result
# Slow path: acquire lock for cache miss/expiry
with cache_lock:
# Double-check: another thread might have populated cache
if shared_cache:
result = _get_from_redis(redis_key)
if result is not None:
return result
else:
result = _get_from_memory(key)
if result is not None:
return result
# Cache miss - execute function
logger.debug(f"Cache miss for {target_func.__name__}")
result = target_func(*args, **kwargs)
# Store result
if shared_cache:
_set_to_redis(redis_key, result)
else:
_set_to_memory(key, result)
return result
wrapper = sync_wrapper
# Add cache management methods
def cache_clear(pattern: str | None = None) -> None:
"""Clear cache entries. If pattern provided, clear matching entries."""
if shared_cache:
redis = _get_redis_client()
if pattern:
# Clear entries matching pattern
keys = list(redis.scan_iter(f"cache:{pattern}", count=100))
else:
# Clear all cache keys
keys = list(redis.scan_iter("cache:*", count=100))
if keys:
pipeline = redis.pipeline()
for key in keys:
pipeline.delete(key)
pipeline.execute()
else:
if pattern:
# For in-memory cache, pattern matching not supported
logger.warning(
"Pattern-based clearing not supported for in-memory cache"
)
else:
cache_storage.clear()
def cache_info() -> dict[str, int | None]:
if shared_cache:
redis = _get_redis_client()
cache_keys = list(redis.scan_iter("cache:*"))
return {
"size": len(cache_keys),
"maxsize": None, # Redis manages its own size
"ttl_seconds": ttl_seconds,
}
else:
return {
"size": len(cache_storage),
"maxsize": maxsize,
"ttl_seconds": ttl_seconds,
}
def cache_delete(*args, **kwargs) -> bool:
"""Delete a specific cache entry. Returns True if entry existed."""
key = _make_hashable_key(args, kwargs)
if shared_cache:
redis = _get_redis_client()
redis_key = _make_redis_key(key)
if redis.exists(redis_key):
redis.delete(redis_key)
return True
return False
else:
if key in cache_storage:
del cache_storage[key]
return True
return False
setattr(wrapper, "cache_clear", cache_clear)
setattr(wrapper, "cache_info", cache_info)
setattr(wrapper, "cache_delete", cache_delete)
return cast(CachedFunction, wrapper)
return decorator
def thread_cached(func):
"""
Thread-local cache decorator for both sync and async functions.
Each thread gets its own cache, which is useful for request-scoped caching
in web applications where you want to cache within a single request but
not across requests.
Args:
func: The function to cache
Returns:
Decorated function with thread-local caching
Example:
@thread_cached
def expensive_operation(param: str) -> dict:
return {"result": param}
@thread_cached # Works with async too
async def expensive_async_operation(param: str) -> dict:
return {"result": param}
"""
thread_local = threading.local()
def _clear():
if hasattr(thread_local, "cache"):
del thread_local.cache
if inspect.iscoroutinefunction(func):
@wraps(func)
async def async_wrapper(*args, **kwargs):
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = _make_hashable_key(args, kwargs)
if key not in cache:
cache[key] = await func(*args, **kwargs)
return cache[key]
setattr(async_wrapper, "clear_cache", _clear)
return async_wrapper
else:
@wraps(func)
def sync_wrapper(*args, **kwargs):
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = _make_hashable_key(args, kwargs)
if key not in cache:
cache[key] = func(*args, **kwargs)
return cache[key]
setattr(sync_wrapper, "clear_cache", _clear)
return sync_wrapper
def clear_thread_cache(func: Callable) -> None:
"""Clear thread-local cache for a function."""
if clear := getattr(func, "clear_cache", None):
clear()

View File

@@ -4,8 +4,7 @@ Centralized service client helpers with thread caching.
from typing import TYPE_CHECKING
from autogpt_libs.utils.cache import cached, thread_cached
from backend.util.cache import cached, thread_cached
from backend.util.settings import Settings
settings = Settings()
@@ -118,7 +117,7 @@ def get_integration_credentials_store() -> "IntegrationCredentialsStore":
# ============ Supabase Clients ============ #
@cached()
@cached(ttl_seconds=3600)
def get_supabase() -> "Client":
"""Get a process-cached synchronous Supabase client instance."""
from supabase import create_client
@@ -128,7 +127,7 @@ def get_supabase() -> "Client":
)
@cached()
@cached(ttl_seconds=3600)
async def get_async_supabase() -> "AClient":
"""Get a process-cached asynchronous Supabase client instance."""
from supabase import create_async_client

View File

@@ -0,0 +1,124 @@
"""
Utilities for handling dynamic field names and delimiters in the AutoGPT Platform.
Dynamic fields allow graphs to connect complex data structures using special delimiters:
- _#_ for dictionary keys (e.g., "values_#_name" → values["name"])
- _$_ for list indices (e.g., "items_$_0" → items[0])
- _@_ for object attributes (e.g., "obj_@_attr" → obj.attr)
This module provides utilities for:
- Extracting base field names from dynamic field names
- Generating proper schemas for base fields
- Creating helper functions for field sanitization
"""
from backend.data.dynamic_fields import DICT_SPLIT, LIST_SPLIT, OBJC_SPLIT
# All dynamic field delimiters
DYNAMIC_DELIMITERS = (DICT_SPLIT, LIST_SPLIT, OBJC_SPLIT)
def extract_base_field_name(field_name: str) -> str:
"""
Extract the base field name from a dynamic field name.
Examples:
extract_base_field_name("values_#_name") → "values"
extract_base_field_name("items_$_0") → "items"
extract_base_field_name("obj_@_attr") → "obj"
extract_base_field_name("regular_field") → "regular_field"
Args:
field_name: The field name that may contain dynamic delimiters
Returns:
The base field name without any dynamic suffixes
"""
base_name = field_name
for delimiter in DYNAMIC_DELIMITERS:
if delimiter in base_name:
base_name = base_name.split(delimiter)[0]
return base_name
def is_dynamic_field(field_name: str) -> bool:
"""
Check if a field name contains dynamic delimiters.
Args:
field_name: The field name to check
Returns:
True if the field contains any dynamic delimiters, False otherwise
"""
return any(delimiter in field_name for delimiter in DYNAMIC_DELIMITERS)
def get_dynamic_field_description(
base_field_name: str, original_field_name: str
) -> str:
"""
Generate a description for a dynamic field based on its base field and structure.
Args:
base_field_name: The base field name (e.g., "values")
original_field_name: The full dynamic field name (e.g., "values_#_name")
Returns:
A descriptive string explaining what this dynamic field represents
"""
if DICT_SPLIT in original_field_name:
key_part = (
original_field_name.split(DICT_SPLIT, 1)[1].split(DICT_SPLIT[0])[0]
if DICT_SPLIT in original_field_name
else "key"
)
return f"Dictionary value for {base_field_name}['{key_part}']"
elif LIST_SPLIT in original_field_name:
index_part = (
original_field_name.split(LIST_SPLIT, 1)[1].split(LIST_SPLIT[0])[0]
if LIST_SPLIT in original_field_name
else "index"
)
return f"List item for {base_field_name}[{index_part}]"
elif OBJC_SPLIT in original_field_name:
attr_part = (
original_field_name.split(OBJC_SPLIT, 1)[1].split(OBJC_SPLIT[0])[0]
if OBJC_SPLIT in original_field_name
else "attr"
)
return f"Object attribute for {base_field_name}.{attr_part}"
else:
return f"Dynamic value for {base_field_name}"
def group_fields_by_base_name(field_names: list[str]) -> dict[str, list[str]]:
"""
Group a list of field names by their base field names.
Args:
field_names: List of field names that may contain dynamic delimiters
Returns:
Dictionary mapping base field names to lists of original field names
Example:
group_fields_by_base_name([
"values_#_name",
"values_#_age",
"items_$_0",
"regular_field"
])
{
"values": ["values_#_name", "values_#_age"],
"items": ["items_$_0"],
"regular_field": ["regular_field"]
}
"""
grouped = {}
for field_name in field_names:
base_name = extract_base_field_name(field_name)
if base_name not in grouped:
grouped[base_name] = []
grouped[base_name].append(field_name)
return grouped

View File

@@ -0,0 +1,175 @@
"""Tests for dynamic field utilities."""
from backend.util.dynamic_fields import (
extract_base_field_name,
get_dynamic_field_description,
group_fields_by_base_name,
is_dynamic_field,
)
class TestExtractBaseFieldName:
"""Test extracting base field names from dynamic field names."""
def test_extract_dict_field(self):
"""Test extracting base name from dictionary fields."""
assert extract_base_field_name("values_#_name") == "values"
assert extract_base_field_name("data_#_key1_#_key2") == "data"
assert extract_base_field_name("config_#_database_#_host") == "config"
def test_extract_list_field(self):
"""Test extracting base name from list fields."""
assert extract_base_field_name("items_$_0") == "items"
assert extract_base_field_name("results_$_5_$_10") == "results"
assert extract_base_field_name("nested_$_0_$_1_$_2") == "nested"
def test_extract_object_field(self):
"""Test extracting base name from object fields."""
assert extract_base_field_name("user_@_name") == "user"
assert extract_base_field_name("response_@_data_@_items") == "response"
assert extract_base_field_name("obj_@_attr1_@_attr2") == "obj"
def test_extract_mixed_fields(self):
"""Test extracting base name from mixed dynamic fields."""
assert extract_base_field_name("data_$_0_#_key") == "data"
assert extract_base_field_name("items_#_user_@_name") == "items"
assert extract_base_field_name("complex_$_0_@_attr_#_key") == "complex"
def test_extract_regular_field(self):
"""Test extracting base name from regular (non-dynamic) fields."""
assert extract_base_field_name("regular_field") == "regular_field"
assert extract_base_field_name("simple") == "simple"
assert extract_base_field_name("") == ""
def test_extract_field_with_underscores(self):
"""Test fields with regular underscores (not dynamic delimiters)."""
assert extract_base_field_name("field_name_here") == "field_name_here"
assert extract_base_field_name("my_field_#_key") == "my_field"
class TestIsDynamicField:
"""Test identifying dynamic fields."""
def test_is_dynamic_dict_field(self):
"""Test identifying dictionary dynamic fields."""
assert is_dynamic_field("values_#_name") is True
assert is_dynamic_field("data_#_key1_#_key2") is True
def test_is_dynamic_list_field(self):
"""Test identifying list dynamic fields."""
assert is_dynamic_field("items_$_0") is True
assert is_dynamic_field("results_$_5_$_10") is True
def test_is_dynamic_object_field(self):
"""Test identifying object dynamic fields."""
assert is_dynamic_field("user_@_name") is True
assert is_dynamic_field("response_@_data_@_items") is True
def test_is_dynamic_mixed_field(self):
"""Test identifying mixed dynamic fields."""
assert is_dynamic_field("data_$_0_#_key") is True
assert is_dynamic_field("items_#_user_@_name") is True
def test_is_not_dynamic_field(self):
"""Test identifying non-dynamic fields."""
assert is_dynamic_field("regular_field") is False
assert is_dynamic_field("field_name_here") is False
assert is_dynamic_field("simple") is False
assert is_dynamic_field("") is False
class TestGetDynamicFieldDescription:
"""Test generating descriptions for dynamic fields."""
def test_dict_field_description(self):
"""Test descriptions for dictionary fields."""
desc = get_dynamic_field_description("values", "values_#_name")
assert "Dictionary value for values['name']" == desc
desc = get_dynamic_field_description("config", "config_#_database")
assert "Dictionary value for config['database']" == desc
def test_list_field_description(self):
"""Test descriptions for list fields."""
desc = get_dynamic_field_description("items", "items_$_0")
assert "List item for items[0]" == desc
desc = get_dynamic_field_description("results", "results_$_5")
assert "List item for results[5]" == desc
def test_object_field_description(self):
"""Test descriptions for object fields."""
desc = get_dynamic_field_description("user", "user_@_name")
assert "Object attribute for user.name" == desc
desc = get_dynamic_field_description("response", "response_@_data")
assert "Object attribute for response.data" == desc
def test_fallback_description(self):
"""Test fallback description for non-dynamic fields."""
desc = get_dynamic_field_description("field", "field")
assert "Dynamic value for field" == desc
class TestGroupFieldsByBaseName:
"""Test grouping fields by their base names."""
def test_group_mixed_fields(self):
"""Test grouping a mix of dynamic and regular fields."""
fields = [
"values_#_name",
"values_#_age",
"items_$_0",
"items_$_1",
"user_@_email",
"regular_field",
"another_field",
]
result = group_fields_by_base_name(fields)
expected = {
"values": ["values_#_name", "values_#_age"],
"items": ["items_$_0", "items_$_1"],
"user": ["user_@_email"],
"regular_field": ["regular_field"],
"another_field": ["another_field"],
}
assert result == expected
def test_group_empty_list(self):
"""Test grouping an empty list."""
result = group_fields_by_base_name([])
assert result == {}
def test_group_single_field(self):
"""Test grouping a single field."""
result = group_fields_by_base_name(["values_#_name"])
assert result == {"values": ["values_#_name"]}
def test_group_complex_dynamic_fields(self):
"""Test grouping complex nested dynamic fields."""
fields = [
"data_$_0_#_key1",
"data_$_0_#_key2",
"data_$_1_#_key1",
"other_@_attr",
]
result = group_fields_by_base_name(fields)
expected = {
"data": ["data_$_0_#_key1", "data_$_0_#_key2", "data_$_1_#_key1"],
"other": ["other_@_attr"],
}
assert result == expected
def test_preserve_order(self):
"""Test that field order is preserved within groups."""
fields = ["values_#_c", "values_#_a", "values_#_b"]
result = group_fields_by_base_name(fields)
# Should preserve the original order
assert result["values"] == ["values_#_c", "values_#_a", "values_#_b"]

View File

@@ -5,12 +5,12 @@ from functools import wraps
from typing import Any, Awaitable, Callable, TypeVar
import ldclient
from autogpt_libs.utils.cache import cached
from fastapi import HTTPException
from ldclient import Context, LDClient
from ldclient.config import Config
from typing_extensions import ParamSpec
from backend.util.cache import cached
from backend.util.settings import Settings
logger = logging.getLogger(__name__)

View File

@@ -66,6 +66,18 @@ async def store_media_file(
base_path = Path(get_exec_file_path(graph_exec_id, ""))
base_path.mkdir(parents=True, exist_ok=True)
# Security fix: Add disk space limits to prevent DoS
MAX_FILE_SIZE = 100 * 1024 * 1024 # 100MB per file
MAX_TOTAL_DISK_USAGE = 1024 * 1024 * 1024 # 1GB total per execution directory
# Check total disk usage in base_path
if base_path.exists():
current_usage = get_dir_size(base_path)
if current_usage > MAX_TOTAL_DISK_USAGE:
raise ValueError(
f"Disk usage limit exceeded: {current_usage} bytes > {MAX_TOTAL_DISK_USAGE} bytes"
)
# Helper functions
def _extension_from_mime(mime: str) -> str:
ext = mimetypes.guess_extension(mime, strict=False)
@@ -108,6 +120,12 @@ async def store_media_file(
filename = Path(path_part).name or f"{uuid.uuid4()}.bin"
target_path = _ensure_inside_base(base_path / filename, base_path)
# Check file size limit
if len(cloud_content) > MAX_FILE_SIZE:
raise ValueError(
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE} bytes"
)
# Virus scan the cloud content before writing locally
await scan_content_safe(cloud_content, filename=filename)
target_path.write_bytes(cloud_content)
@@ -129,6 +147,12 @@ async def store_media_file(
target_path = _ensure_inside_base(base_path / filename, base_path)
content = base64.b64decode(b64_content)
# Check file size limit
if len(content) > MAX_FILE_SIZE:
raise ValueError(
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE} bytes"
)
# Virus scan the base64 content before writing
await scan_content_safe(content, filename=filename)
target_path.write_bytes(content)
@@ -142,6 +166,12 @@ async def store_media_file(
# Download and save
resp = await Requests().get(file)
# Check file size limit
if len(resp.content) > MAX_FILE_SIZE:
raise ValueError(
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE} bytes"
)
# Virus scan the downloaded content before writing
await scan_content_safe(resp.content, filename=filename)
target_path.write_bytes(resp.content)
@@ -159,6 +189,18 @@ async def store_media_file(
return MediaFileType(_strip_base_prefix(target_path, base_path))
def get_dir_size(path: Path) -> int:
"""Get total size of directory."""
total = 0
try:
for entry in path.glob("**/*"):
if entry.is_file():
total += entry.stat().st_size
except Exception:
pass
return total
def get_mime_type(file: str) -> str:
"""
Get the MIME type of a file, whether it's a data URI, URL, or local path.

View File

@@ -1,20 +1,18 @@
import json
import re
from typing import Any, Type, TypeGuard, TypeVar, overload
import jsonschema
import orjson
from fastapi.encoders import jsonable_encoder
from prisma import Json
from pydantic import BaseModel
from .type import type_match
# Try to import orjson for better performance
try:
import orjson
HAS_ORJSON = True
except ImportError:
HAS_ORJSON = False
# Precompiled regex to remove PostgreSQL-incompatible control characters
# Removes \u0000-\u0008, \u000B-\u000C, \u000E-\u001F, \u007F (keeps tab \u0009, newline \u000A, carriage return \u000D)
POSTGRES_CONTROL_CHARS = re.compile(r"[\x00-\x08\x0B-\x0C\x0E-\x1F\x7F]")
def to_dict(data) -> dict:
@@ -23,22 +21,28 @@ def to_dict(data) -> dict:
return jsonable_encoder(data)
def dumps(data: Any, *args: Any, **kwargs: Any) -> str:
def dumps(
data: Any, *args: Any, indent: int | None = None, option: int = 0, **kwargs: Any
) -> str:
"""
Serialize data to JSON string with automatic conversion of Pydantic models and complex types.
This function converts the input data to a JSON-serializable format using FastAPI's
jsonable_encoder before dumping to JSON. It handles Pydantic models, complex types,
and ensures proper serialization. Uses orjson for better performance when available.
and ensures proper serialization.
Parameters
----------
data : Any
The data to serialize. Can be any type including Pydantic models, dicts, lists, etc.
*args : Any
Additional positional arguments passed to json.dumps() (ignored if using orjson)
Additional positional arguments
indent : int | None
If not None, pretty-print with indentation
option : int
orjson option flags (default: 0)
**kwargs : Any
Additional keyword arguments passed to json.dumps() (limited support with orjson)
Additional keyword arguments. Supported: default, ensure_ascii, separators, indent
Returns
-------
@@ -55,16 +59,19 @@ def dumps(data: Any, *args: Any, **kwargs: Any) -> str:
"""
serializable_data = to_dict(data)
if HAS_ORJSON:
# orjson is faster but has limited options support
option = 0
if kwargs.get("indent") is not None:
option |= orjson.OPT_INDENT_2
# orjson.dumps returns bytes, so we decode to str
return orjson.dumps(serializable_data, option=option).decode("utf-8")
else:
# Fallback to standard json
return json.dumps(serializable_data, *args, **kwargs)
# Handle indent parameter
if indent is not None or kwargs.get("indent") is not None:
option |= orjson.OPT_INDENT_2
# orjson only accepts specific parameters, filter out stdlib json params
# ensure_ascii: orjson always produces UTF-8 (better than ASCII)
# separators: orjson uses compact separators by default
supported_orjson_params = {"default"}
orjson_kwargs = {k: v for k, v in kwargs.items() if k in supported_orjson_params}
return orjson.dumps(serializable_data, option=option, **orjson_kwargs).decode(
"utf-8"
)
T = TypeVar("T")
@@ -81,14 +88,7 @@ def loads(data: str | bytes, *args, **kwargs) -> Any: ...
def loads(
data: str | bytes, *args, target_type: Type[T] | None = None, **kwargs
) -> Any:
if HAS_ORJSON:
# orjson can handle both str and bytes directly
parsed = orjson.loads(data)
else:
# Standard json requires string input
if isinstance(data, bytes):
data = data.decode("utf-8")
parsed = json.loads(data, *args, **kwargs)
parsed = orjson.loads(data)
if target_type:
return type_match(parsed, target_type)
@@ -123,41 +123,20 @@ def convert_pydantic_to_json(output_data: Any) -> Any:
return output_data
def _sanitize_null_bytes(data: Any) -> Any:
"""
Recursively sanitize null bytes from data structures to prevent PostgreSQL 22P05 errors.
PostgreSQL cannot store null bytes (\u0000) in text fields.
"""
if isinstance(data, str):
return data.replace("\u0000", "")
elif isinstance(data, dict):
return {key: _sanitize_null_bytes(value) for key, value in data.items()}
elif isinstance(data, list):
return [_sanitize_null_bytes(item) for item in data]
elif isinstance(data, tuple):
return tuple(_sanitize_null_bytes(item) for item in data)
else:
# For other types (int, float, bool, None, etc.), return as-is
return data
def SafeJson(data: Any) -> Json:
"""
Safely serialize data and return Prisma's Json type.
Sanitizes null bytes to prevent PostgreSQL 22P05 errors.
"""
# Sanitize null bytes before serialization
sanitized_data = _sanitize_null_bytes(data)
if isinstance(sanitized_data, BaseModel):
return Json(
sanitized_data.model_dump(
mode="json",
warnings="error",
exclude_none=True,
fallback=lambda v: None,
)
if isinstance(data, BaseModel):
json_string = data.model_dump_json(
warnings="error",
exclude_none=True,
fallback=lambda v: None,
)
# Round-trip through JSON to ensure proper serialization with fallback for non-serializable values
json_string = dumps(sanitized_data, default=lambda v: None)
return Json(json.loads(json_string))
else:
json_string = dumps(data, default=lambda v: None)
# Remove PostgreSQL-incompatible control characters in single regex operation
sanitized_json = POSTGRES_CONTROL_CHARS.sub("", json_string)
return Json(json.loads(sanitized_json))

View File

@@ -4,6 +4,7 @@ from enum import Enum
import sentry_sdk
from pydantic import SecretStr
from sentry_sdk.integrations.anthropic import AnthropicIntegration
from sentry_sdk.integrations.asyncio import AsyncioIntegration
from sentry_sdk.integrations.logging import LoggingIntegration
from backend.util.settings import Settings
@@ -25,6 +26,7 @@ def sentry_init():
environment=f"app:{settings.config.app_env.value}-behave:{settings.config.behave_as.value}",
_experiments={"enable_logs": True},
integrations=[
AsyncioIntegration(),
LoggingIntegration(sentry_logs_level=logging.INFO),
AnthropicIntegration(
include_prompts=False,

View File

@@ -19,9 +19,48 @@ def _msg_tokens(msg: dict, enc) -> int:
"""
OpenAI counts ≈3 wrapper tokens per chat message, plus 1 if "name"
is present, plus the tokenised content length.
For tool calls, we need to count tokens in tool_calls and content fields.
"""
WRAPPER = 3 + (1 if "name" in msg else 0)
return WRAPPER + _tok_len(msg.get("content") or "", enc)
# Count content tokens
content_tokens = _tok_len(msg.get("content") or "", enc)
# Count tool call tokens for both OpenAI and Anthropic formats
tool_call_tokens = 0
# OpenAI format: tool_calls array at message level
if "tool_calls" in msg and isinstance(msg["tool_calls"], list):
for tool_call in msg["tool_calls"]:
# Count the tool call structure tokens
tool_call_tokens += _tok_len(tool_call.get("id", ""), enc)
tool_call_tokens += _tok_len(tool_call.get("type", ""), enc)
if "function" in tool_call:
tool_call_tokens += _tok_len(tool_call["function"].get("name", ""), enc)
tool_call_tokens += _tok_len(
tool_call["function"].get("arguments", ""), enc
)
# Anthropic format: tool_use within content array
content = msg.get("content")
if isinstance(content, list):
for item in content:
if isinstance(item, dict) and item.get("type") == "tool_use":
# Count the tool use structure tokens
tool_call_tokens += _tok_len(item.get("id", ""), enc)
tool_call_tokens += _tok_len(item.get("name", ""), enc)
tool_call_tokens += _tok_len(json.dumps(item.get("input", {})), enc)
elif isinstance(item, dict) and item.get("type") == "tool_result":
# Count tool result tokens
tool_call_tokens += _tok_len(item.get("tool_use_id", ""), enc)
tool_call_tokens += _tok_len(item.get("content", ""), enc)
elif isinstance(item, dict) and "content" in item:
# Other content types with content field
tool_call_tokens += _tok_len(item.get("content", ""), enc)
# For list content, override content_tokens since we counted everything above
content_tokens = 0
return WRAPPER + content_tokens + tool_call_tokens
def _truncate_middle_tokens(text: str, enc, max_tok: int) -> str:

View File

@@ -0,0 +1,278 @@
"""Tests for prompt utility functions, especially tool call token counting."""
import pytest
from tiktoken import encoding_for_model
from backend.util import json
from backend.util.prompt import _msg_tokens, estimate_token_count
class TestMsgTokens:
"""Test the _msg_tokens function with various message types."""
@pytest.fixture
def enc(self):
"""Get the encoding for gpt-4o model."""
return encoding_for_model("gpt-4o")
def test_regular_message_token_counting(self, enc):
"""Test that regular messages are counted correctly (backward compatibility)."""
msg = {"role": "user", "content": "What's the weather like in San Francisco?"}
tokens = _msg_tokens(msg, enc)
# Should be wrapper (3) + content tokens
expected = 3 + len(enc.encode(msg["content"]))
assert tokens == expected
assert tokens > 3 # Has content
def test_regular_message_with_name(self, enc):
"""Test that messages with name field get extra wrapper token."""
msg = {"role": "user", "name": "test_user", "content": "Hello!"}
tokens = _msg_tokens(msg, enc)
# Should be wrapper (3 + 1 for name) + content tokens
expected = 4 + len(enc.encode(msg["content"]))
assert tokens == expected
def test_openai_tool_call_token_counting(self, enc):
"""Test OpenAI format tool call token counting."""
msg = {
"role": "assistant",
"content": None,
"tool_calls": [
{
"id": "call_abc123",
"type": "function",
"function": {
"name": "get_weather",
"arguments": '{"location": "San Francisco", "unit": "celsius"}',
},
}
],
}
tokens = _msg_tokens(msg, enc)
# Should count wrapper + all tool call components
expected_tool_tokens = (
len(enc.encode("call_abc123"))
+ len(enc.encode("function"))
+ len(enc.encode("get_weather"))
+ len(enc.encode('{"location": "San Francisco", "unit": "celsius"}'))
)
expected = 3 + expected_tool_tokens # wrapper + tool tokens
assert tokens == expected
assert tokens > 8 # Should be significantly more than just wrapper
def test_openai_multiple_tool_calls(self, enc):
"""Test OpenAI format with multiple tool calls."""
msg = {
"role": "assistant",
"content": None,
"tool_calls": [
{
"id": "call_1",
"type": "function",
"function": {"name": "func1", "arguments": '{"arg": "value1"}'},
},
{
"id": "call_2",
"type": "function",
"function": {"name": "func2", "arguments": '{"arg": "value2"}'},
},
],
}
tokens = _msg_tokens(msg, enc)
# Should count all tool calls
assert tokens > 20 # Should be more than single tool call
def test_anthropic_tool_use_token_counting(self, enc):
"""Test Anthropic format tool use token counting."""
msg = {
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_xyz456",
"name": "get_weather",
"input": {"location": "San Francisco", "unit": "celsius"},
}
],
}
tokens = _msg_tokens(msg, enc)
# Should count wrapper + tool use components
expected_tool_tokens = (
len(enc.encode("toolu_xyz456"))
+ len(enc.encode("get_weather"))
+ len(
enc.encode(json.dumps({"location": "San Francisco", "unit": "celsius"}))
)
)
expected = 3 + expected_tool_tokens # wrapper + tool tokens
assert tokens == expected
assert tokens > 8 # Should be significantly more than just wrapper
def test_anthropic_tool_result_token_counting(self, enc):
"""Test Anthropic format tool result token counting."""
msg = {
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_xyz456",
"content": "The weather in San Francisco is 22°C and sunny.",
}
],
}
tokens = _msg_tokens(msg, enc)
# Should count wrapper + tool result components
expected_tool_tokens = len(enc.encode("toolu_xyz456")) + len(
enc.encode("The weather in San Francisco is 22°C and sunny.")
)
expected = 3 + expected_tool_tokens # wrapper + tool tokens
assert tokens == expected
assert tokens > 8 # Should be significantly more than just wrapper
def test_anthropic_mixed_content(self, enc):
"""Test Anthropic format with mixed content types."""
msg = {
"role": "assistant",
"content": [
{"type": "text", "content": "I'll check the weather for you."},
{
"type": "tool_use",
"id": "toolu_123",
"name": "get_weather",
"input": {"location": "SF"},
},
],
}
tokens = _msg_tokens(msg, enc)
# Should count all content items
assert tokens > 15 # Should count both text and tool use
def test_empty_content(self, enc):
"""Test message with empty or None content."""
msg = {"role": "assistant", "content": None}
tokens = _msg_tokens(msg, enc)
assert tokens == 3 # Just wrapper tokens
msg["content"] = ""
tokens = _msg_tokens(msg, enc)
assert tokens == 3 # Just wrapper tokens
def test_string_content_with_tool_calls(self, enc):
"""Test OpenAI format where content is string but tool_calls exist."""
msg = {
"role": "assistant",
"content": "Let me check that for you.",
"tool_calls": [
{
"id": "call_123",
"type": "function",
"function": {"name": "test_func", "arguments": "{}"},
}
],
}
tokens = _msg_tokens(msg, enc)
# Should count both content and tool calls
content_tokens = len(enc.encode("Let me check that for you."))
tool_tokens = (
len(enc.encode("call_123"))
+ len(enc.encode("function"))
+ len(enc.encode("test_func"))
+ len(enc.encode("{}"))
)
expected = 3 + content_tokens + tool_tokens
assert tokens == expected
class TestEstimateTokenCount:
"""Test the estimate_token_count function with conversations containing tool calls."""
def test_conversation_with_tool_calls(self):
"""Test token counting for a complete conversation with tool calls."""
conversation = [
{"role": "user", "content": "What's the weather like in San Francisco?"},
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_123",
"name": "get_weather",
"input": {"location": "San Francisco"},
}
],
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_123",
"content": "22°C and sunny",
}
],
},
{
"role": "assistant",
"content": "The weather in San Francisco is 22°C and sunny.",
},
]
total_tokens = estimate_token_count(conversation)
# Verify total equals sum of individual messages
enc = encoding_for_model("gpt-4o")
expected_total = sum(_msg_tokens(msg, enc) for msg in conversation)
assert total_tokens == expected_total
assert total_tokens > 40 # Should be substantial for this conversation
def test_openai_conversation(self):
"""Test token counting for OpenAI format conversation."""
conversation = [
{"role": "user", "content": "Calculate 2 + 2"},
{
"role": "assistant",
"tool_calls": [
{
"id": "call_calc",
"type": "function",
"function": {
"name": "calculate",
"arguments": '{"expression": "2 + 2"}',
},
}
],
},
{"role": "tool", "tool_call_id": "call_calc", "content": "4"},
{"role": "assistant", "content": "The result is 4."},
]
total_tokens = estimate_token_count(conversation)
# Verify total equals sum of individual messages
enc = encoding_for_model("gpt-4o")
expected_total = sum(_msg_tokens(msg, enc) for msg in conversation)
assert total_tokens == expected_total
assert total_tokens > 20 # Should be substantial

View File

@@ -21,10 +21,10 @@ logger = logging.getLogger(__name__)
EXCESSIVE_RETRY_THRESHOLD = 50
def _send_retry_alert(
def _send_critical_retry_alert(
func_name: str, attempt_number: int, exception: Exception, context: str = ""
):
"""Send alert for excessive retry attempts."""
"""Send alert when a function is approaching the retry failure threshold."""
try:
# Import here to avoid circular imports
from backend.util.clients import get_notification_manager_client
@@ -33,19 +33,19 @@ def _send_retry_alert(
prefix = f"{context}: " if context else ""
alert_msg = (
f"🚨 Excessive Retry Alert: {prefix}'{func_name}' has failed {attempt_number} times!\n\n"
f"🚨 CRITICAL: Operation Approaching Failure Threshold: {prefix}'{func_name}'\n\n"
f"Current attempt: {attempt_number}/{EXCESSIVE_RETRY_THRESHOLD}\n"
f"Error: {type(exception).__name__}: {exception}\n\n"
f"This indicates a persistent issue that requires investigation. "
f"The operation has been retrying for an extended period."
f"This operation is about to fail permanently. Investigate immediately."
)
notification_client.discord_system_alert(alert_msg)
logger.critical(
f"ALERT SENT: Excessive retries detected for {func_name} after {attempt_number} attempts"
f"CRITICAL ALERT SENT: Operation {func_name} at attempt {attempt_number}"
)
except Exception as alert_error:
logger.error(f"Failed to send retry alert: {alert_error}")
logger.error(f"Failed to send critical retry alert: {alert_error}")
# Don't let alerting failures break the main flow
@@ -59,22 +59,23 @@ def _create_retry_callback(context: str = ""):
prefix = f"{context}: " if context else ""
# Send alert if we've exceeded the threshold
if attempt_number >= EXCESSIVE_RETRY_THRESHOLD:
_send_retry_alert(func_name, attempt_number, exception, context)
if retry_state.outcome.failed and retry_state.next_action is None:
# Final failure
# Final failure - just log the error (alert was already sent at excessive threshold)
logger.error(
f"{prefix}Giving up after {attempt_number} attempts for '{func_name}': "
f"{type(exception).__name__}: {exception}"
)
else:
# Retry attempt
logger.warning(
f"{prefix}Retry attempt {attempt_number} for '{func_name}': "
f"{type(exception).__name__}: {exception}"
)
# Retry attempt - send critical alert only once at threshold
if attempt_number == EXCESSIVE_RETRY_THRESHOLD:
_send_critical_retry_alert(
func_name, attempt_number, exception, context
)
else:
logger.warning(
f"{prefix}Retry attempt {attempt_number} for '{func_name}': "
f"{type(exception).__name__}: {exception}"
)
return callback
@@ -138,13 +139,6 @@ def conn_retry(
def on_retry(retry_state):
prefix = _log_prefix(resource_name, conn_id)
exception = retry_state.outcome.exception()
attempt_number = retry_state.attempt_number
# Send alert if we've exceeded the threshold
if attempt_number >= EXCESSIVE_RETRY_THRESHOLD:
func_name = f"{resource_name}:{action_name}"
context = f"Connection retry {resource_name}"
_send_retry_alert(func_name, attempt_number, exception, context)
if retry_state.outcome.failed and retry_state.next_action is None:
logger.error(f"{prefix} {action_name} failed after retries: {exception}")

View File

@@ -7,7 +7,7 @@ import os
import threading
import time
from abc import ABC, abstractmethod
from functools import cached_property, update_wrapper
from functools import update_wrapper
from typing import (
Any,
Awaitable,
@@ -375,6 +375,8 @@ def get_service_client(
self.base_url = f"http://{host}:{port}".rstrip("/")
self._connection_failure_count = 0
self._last_client_reset = 0
self._async_clients = {} # None key for default async client
self._sync_clients = {} # For sync clients (no event loop concept)
def _create_sync_client(self) -> httpx.Client:
return httpx.Client(
@@ -398,13 +400,33 @@ def get_service_client(
),
)
@cached_property
@property
def sync_client(self) -> httpx.Client:
return self._create_sync_client()
"""Get the sync client (thread-safe singleton)."""
# Use service name as key for better identification
service_name = service_client_type.get_service_type().__name__
if client := self._sync_clients.get(service_name):
return client
return self._sync_clients.setdefault(
service_name, self._create_sync_client()
)
@cached_property
@property
def async_client(self) -> httpx.AsyncClient:
return self._create_async_client()
"""Get the appropriate async client for the current context.
Returns per-event-loop client when in async context,
falls back to default client otherwise.
"""
try:
loop = asyncio.get_running_loop()
except RuntimeError:
# No event loop, use None as default key
loop = None
if client := self._async_clients.get(loop):
return client
return self._async_clients.setdefault(loop, self._create_async_client())
def _handle_connection_error(self, error: Exception) -> None:
"""Handle connection errors and implement self-healing"""
@@ -423,10 +445,8 @@ def get_service_client(
# Clear cached clients to force recreation on next access
# Only recreate when there's actually a problem
if hasattr(self, "sync_client"):
delattr(self, "sync_client")
if hasattr(self, "async_client"):
delattr(self, "async_client")
self._sync_clients.clear()
self._async_clients.clear()
# Reset counters
self._connection_failure_count = 0
@@ -492,28 +512,37 @@ def get_service_client(
raise
async def aclose(self) -> None:
if hasattr(self, "sync_client"):
self.sync_client.close()
if hasattr(self, "async_client"):
await self.async_client.aclose()
# Close all sync clients
for client in self._sync_clients.values():
client.close()
self._sync_clients.clear()
# Close all async clients (including default with None key)
for client in self._async_clients.values():
await client.aclose()
self._async_clients.clear()
def close(self) -> None:
if hasattr(self, "sync_client"):
self.sync_client.close()
# Note: Cannot close async client synchronously
# Close all sync clients
for client in self._sync_clients.values():
client.close()
self._sync_clients.clear()
# Note: Cannot close async clients synchronously
# They will be cleaned up by garbage collection
def __del__(self):
"""Cleanup HTTP clients on garbage collection to prevent resource leaks."""
try:
if hasattr(self, "sync_client"):
self.sync_client.close()
if hasattr(self, "async_client"):
# Note: Can't await in __del__, so we just close sync
# The async client will be cleaned up by garbage collection
# Close any remaining sync clients
for client in self._sync_clients.values():
client.close()
# Warn if async clients weren't properly closed
if self._async_clients:
import warnings
warnings.warn(
"DynamicClient async client not explicitly closed. "
"DynamicClient async clients not explicitly closed. "
"Call aclose() before destroying the client.",
ResourceWarning,
stacklevel=2,

View File

@@ -59,6 +59,19 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
le=1000,
description="Maximum number of workers to use for graph execution.",
)
# FastAPI Thread Pool Configuration
# IMPORTANT: FastAPI automatically offloads ALL sync functions to a thread pool:
# - Sync endpoint functions (def instead of async def)
# - Sync dependency functions (def instead of async def)
# - Manually called run_in_threadpool() operations
# Default thread pool size is only 40, which becomes a bottleneck under high concurrency
fastapi_thread_pool_size: int = Field(
default=60,
ge=40,
le=500,
description="Thread pool size for FastAPI sync operations. All sync endpoints and dependencies automatically use this pool. Higher values support more concurrent sync operations but use more memory.",
)
pyro_host: str = Field(
default="localhost",
description="The default hostname of the Pyro server.",
@@ -127,6 +140,10 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
default=5 * 60,
description="Time in seconds after which the execution stuck on QUEUED status is considered late.",
)
cluster_lock_timeout: int = Field(
default=300,
description="Cluster lock timeout in seconds for graph execution coordination.",
)
execution_late_notification_checkrange_secs: int = Field(
default=60 * 60,
description="Time in seconds for how far back to check for the late executions.",
@@ -241,6 +258,19 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="The vhost for the RabbitMQ server",
)
redis_host: str = Field(
default="localhost",
description="The host for the Redis server",
)
redis_port: int = Field(
default=6379,
description="The port for the Redis server",
)
redis_password: str = Field(
default="",
description="The password for the Redis server (empty string if no password)",
)
postmark_sender_email: str = Field(
default="invalid@invalid.com",
description="The email address to use for sending emails",

View File

@@ -215,3 +215,29 @@ class TestSafeJson:
}
result = SafeJson(data)
assert isinstance(result, Json)
def test_control_character_sanitization(self):
"""Test that PostgreSQL-incompatible control characters are sanitized by SafeJson."""
# Test data with problematic control characters that would cause PostgreSQL errors
problematic_data = {
"null_byte": "data with \x00 null",
"bell_char": "data with \x07 bell",
"form_feed": "data with \x0C feed",
"escape_char": "data with \x1B escape",
"delete_char": "data with \x7F delete",
}
# SafeJson should successfully process data with control characters
result = SafeJson(problematic_data)
assert isinstance(result, Json)
# Test that safe whitespace characters are preserved
safe_data = {
"with_tab": "text with \t tab",
"with_newline": "text with \n newline",
"with_carriage_return": "text with \r carriage return",
"normal_text": "completely normal text",
}
safe_result = SafeJson(safe_data)
assert isinstance(safe_result, Json)

Some files were not shown because too many files have changed in this diff Show More