mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-01-14 01:28:11 -05:00
Compare commits
79 Commits
fix/execut
...
hackathon-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
83f46d373d | ||
|
|
07153d5536 | ||
|
|
f3c747027b | ||
|
|
764e1026e5 | ||
|
|
0890ce00b5 | ||
|
|
7f952900ae | ||
|
|
dc5da41703 | ||
|
|
1f3a9d0922 | ||
|
|
c5c1d8d605 | ||
|
|
9ae54e2975 | ||
|
|
8063bb4503 | ||
|
|
2b28023266 | ||
|
|
1b8d8e3772 | ||
|
|
34eb6bdca1 | ||
|
|
44610bb778 | ||
|
|
9afa8a739b | ||
|
|
a76fa0f0a9 | ||
|
|
b0b556e24e | ||
|
|
60ba50431d | ||
|
|
4b8332a14f | ||
|
|
7097cedc1d | ||
|
|
5a60618c2d | ||
|
|
547c6f93d4 | ||
|
|
6dbd45eaf0 | ||
|
|
ca398f3cc5 | ||
|
|
16a14ca09e | ||
|
|
704b8a9207 | ||
|
|
1a5abcc36a | ||
|
|
419b966db1 | ||
|
|
9b8d917d99 | ||
|
|
6432d35db2 | ||
|
|
7d46a5c1dc | ||
|
|
a63370bc30 | ||
|
|
6a86f2e3ea | ||
|
|
679c7806f2 | ||
|
|
5c7391fcd7 | ||
|
|
faf9ad9b57 | ||
|
|
f5899acac0 | ||
|
|
e539280e98 | ||
|
|
72783dcc02 | ||
|
|
af13badf8f | ||
|
|
b491610ebf | ||
|
|
0b022073eb | ||
|
|
01eef83809 | ||
|
|
4644c09b9e | ||
|
|
374860ff2c | ||
|
|
e7e09ef4e1 | ||
|
|
5e691661a8 | ||
|
|
b0e8c17419 | ||
|
|
5a7c1e39dd | ||
|
|
53b03e746a | ||
|
|
db8b43bb3d | ||
|
|
923d8baedc | ||
|
|
a55b2e02dc | ||
|
|
6b6648b290 | ||
|
|
c0a9c0410b | ||
|
|
17a77b02c7 | ||
|
|
701fce83ca | ||
|
|
78d89d0faf | ||
|
|
4a52b7eca0 | ||
|
|
97847f59f7 | ||
|
|
22ca8955c5 | ||
|
|
43cbe2e011 | ||
|
|
5aaf07fbaf | ||
|
|
a318832414 | ||
|
|
0d2996e501 | ||
|
|
843c487500 | ||
|
|
47a3a5ef41 | ||
|
|
ec00aa951a | ||
|
|
9e37a66bca | ||
|
|
429a074848 | ||
|
|
36fb1ea004 | ||
|
|
a81ac150da | ||
|
|
49ee087496 | ||
|
|
fc25e008b3 | ||
|
|
b0855e8cf2 | ||
|
|
5e2146dd76 | ||
|
|
103a62c9da | ||
|
|
7f1245dc42 |
37
.branchlet.json
Normal file
37
.branchlet.json
Normal file
@@ -0,0 +1,37 @@
|
||||
{
|
||||
"worktreeCopyPatterns": [
|
||||
".env*",
|
||||
".vscode/**",
|
||||
".auth/**",
|
||||
".claude/**",
|
||||
"autogpt_platform/.env*",
|
||||
"autogpt_platform/backend/.env*",
|
||||
"autogpt_platform/frontend/.env*",
|
||||
"autogpt_platform/frontend/.auth/**",
|
||||
"autogpt_platform/db/docker/.env*"
|
||||
],
|
||||
"worktreeCopyIgnores": [
|
||||
"**/node_modules/**",
|
||||
"**/dist/**",
|
||||
"**/.git/**",
|
||||
"**/Thumbs.db",
|
||||
"**/.DS_Store",
|
||||
"**/.next/**",
|
||||
"**/__pycache__/**",
|
||||
"**/.ruff_cache/**",
|
||||
"**/.pytest_cache/**",
|
||||
"**/*.pyc",
|
||||
"**/playwright-report/**",
|
||||
"**/logs/**",
|
||||
"**/site/**"
|
||||
],
|
||||
"worktreePathTemplate": "$BASE_PATH.worktree",
|
||||
"postCreateCmd": [
|
||||
"cd autogpt_platform/autogpt_libs && poetry install",
|
||||
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
|
||||
"cd autogpt_platform/frontend && pnpm install",
|
||||
"cd docs && pip install -r requirements.txt"
|
||||
],
|
||||
"terminalCommand": "code .",
|
||||
"deleteBranchWithWorktree": false
|
||||
}
|
||||
@@ -16,6 +16,7 @@
|
||||
!autogpt_platform/backend/poetry.lock
|
||||
!autogpt_platform/backend/README.md
|
||||
!autogpt_platform/backend/.env
|
||||
!autogpt_platform/backend/gen_prisma_types_stub.py
|
||||
|
||||
# Platform - Market
|
||||
!autogpt_platform/market/market/
|
||||
|
||||
2
.github/workflows/claude-dependabot.yml
vendored
2
.github/workflows/claude-dependabot.yml
vendored
@@ -74,7 +74,7 @@ jobs:
|
||||
|
||||
- name: Generate Prisma Client
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry run prisma generate
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
|
||||
2
.github/workflows/claude.yml
vendored
2
.github/workflows/claude.yml
vendored
@@ -90,7 +90,7 @@ jobs:
|
||||
|
||||
- name: Generate Prisma Client
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry run prisma generate
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
|
||||
12
.github/workflows/copilot-setup-steps.yml
vendored
12
.github/workflows/copilot-setup-steps.yml
vendored
@@ -72,7 +72,7 @@ jobs:
|
||||
|
||||
- name: Generate Prisma Client
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry run prisma generate
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
@@ -108,6 +108,16 @@ jobs:
|
||||
# run: pnpm playwright install --with-deps chromium
|
||||
|
||||
# Docker setup for development environment
|
||||
- name: Free up disk space
|
||||
run: |
|
||||
# Remove large unused tools to free disk space for Docker builds
|
||||
sudo rm -rf /usr/share/dotnet
|
||||
sudo rm -rf /usr/local/lib/android
|
||||
sudo rm -rf /opt/ghc
|
||||
sudo rm -rf /opt/hostedtoolcache/CodeQL
|
||||
sudo docker system prune -af
|
||||
df -h
|
||||
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
|
||||
4
.github/workflows/platform-backend-ci.yml
vendored
4
.github/workflows/platform-backend-ci.yml
vendored
@@ -134,7 +134,7 @@ jobs:
|
||||
run: poetry install
|
||||
|
||||
- name: Generate Prisma Client
|
||||
run: poetry run prisma generate
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
- id: supabase
|
||||
name: Start Supabase
|
||||
@@ -176,7 +176,7 @@ jobs:
|
||||
}
|
||||
|
||||
- name: Run Database Migrations
|
||||
run: poetry run prisma migrate dev --name updates
|
||||
run: poetry run prisma migrate deploy
|
||||
env:
|
||||
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
|
||||
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}
|
||||
|
||||
@@ -12,6 +12,7 @@ reset-db:
|
||||
rm -rf db/docker/volumes/db/data
|
||||
cd backend && poetry run prisma migrate deploy
|
||||
cd backend && poetry run prisma generate
|
||||
cd backend && poetry run gen-prisma-stub
|
||||
|
||||
# View logs for core services
|
||||
logs-core:
|
||||
@@ -33,6 +34,7 @@ init-env:
|
||||
migrate:
|
||||
cd backend && poetry run prisma migrate deploy
|
||||
cd backend && poetry run prisma generate
|
||||
cd backend && poetry run gen-prisma-stub
|
||||
|
||||
run-backend:
|
||||
cd backend && poetry run app
|
||||
|
||||
1
autogpt_platform/backend/.gitignore
vendored
1
autogpt_platform/backend/.gitignore
vendored
@@ -18,3 +18,4 @@ load-tests/results/
|
||||
load-tests/*.json
|
||||
load-tests/*.log
|
||||
load-tests/node_modules/*
|
||||
migrations/*/rollback*.sql
|
||||
|
||||
@@ -48,7 +48,8 @@ RUN poetry install --no-ansi --no-root
|
||||
# Generate Prisma client
|
||||
COPY autogpt_platform/backend/schema.prisma ./
|
||||
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
|
||||
RUN poetry run prisma generate
|
||||
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
|
||||
RUN poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
FROM debian:13-slim AS server_dependencies
|
||||
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import uuid
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import orjson
|
||||
import pytest
|
||||
@@ -17,6 +18,17 @@ setup_test_data = setup_test_data
|
||||
setup_firecrawl_test_data = setup_firecrawl_test_data
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def mock_embedding_functions():
|
||||
"""Mock embedding functions for all tests to avoid database/API dependencies."""
|
||||
with patch(
|
||||
"backend.api.features.store.db.ensure_embedding",
|
||||
new_callable=AsyncMock,
|
||||
return_value=True,
|
||||
):
|
||||
yield
|
||||
|
||||
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent(setup_test_data):
|
||||
"""Test that the run_agent tool successfully executes an approved agent"""
|
||||
|
||||
@@ -489,7 +489,7 @@ async def update_agent_version_in_library(
|
||||
agent_graph_version: int,
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Updates the agent version in the library if useGraphIsActiveVersion is True.
|
||||
Updates the agent version in the library for any agent owned by the user.
|
||||
|
||||
Args:
|
||||
user_id: Owner of the LibraryAgent.
|
||||
@@ -498,20 +498,31 @@ async def update_agent_version_in_library(
|
||||
|
||||
Raises:
|
||||
DatabaseError: If there's an error with the update.
|
||||
NotFoundError: If no library agent is found for this user and agent.
|
||||
"""
|
||||
logger.debug(
|
||||
f"Updating agent version in library for user #{user_id}, "
|
||||
f"agent #{agent_graph_id} v{agent_graph_version}"
|
||||
)
|
||||
try:
|
||||
library_agent = await prisma.models.LibraryAgent.prisma().find_first_or_raise(
|
||||
async with transaction() as tx:
|
||||
library_agent = await prisma.models.LibraryAgent.prisma(tx).find_first_or_raise(
|
||||
where={
|
||||
"userId": user_id,
|
||||
"agentGraphId": agent_graph_id,
|
||||
"useGraphIsActiveVersion": True,
|
||||
},
|
||||
)
|
||||
lib = await prisma.models.LibraryAgent.prisma().update(
|
||||
|
||||
# Delete any conflicting LibraryAgent for the target version
|
||||
await prisma.models.LibraryAgent.prisma(tx).delete_many(
|
||||
where={
|
||||
"userId": user_id,
|
||||
"agentGraphId": agent_graph_id,
|
||||
"agentGraphVersion": agent_graph_version,
|
||||
"id": {"not": library_agent.id},
|
||||
}
|
||||
)
|
||||
|
||||
lib = await prisma.models.LibraryAgent.prisma(tx).update(
|
||||
where={"id": library_agent.id},
|
||||
data={
|
||||
"AgentGraph": {
|
||||
@@ -525,13 +536,13 @@ async def update_agent_version_in_library(
|
||||
},
|
||||
include={"AgentGraph": True},
|
||||
)
|
||||
if lib is None:
|
||||
raise NotFoundError(f"Library agent {library_agent.id} not found")
|
||||
|
||||
return library_model.LibraryAgent.from_db(lib)
|
||||
except prisma.errors.PrismaError as e:
|
||||
logger.error(f"Database error updating agent version in library: {e}")
|
||||
raise DatabaseError("Failed to update agent version in library") from e
|
||||
if lib is None:
|
||||
raise NotFoundError(
|
||||
f"Failed to update library agent for {agent_graph_id} v{agent_graph_version}"
|
||||
)
|
||||
|
||||
return library_model.LibraryAgent.from_db(lib)
|
||||
|
||||
|
||||
async def update_library_agent(
|
||||
@@ -825,6 +836,7 @@ async def add_store_agent_to_library(
|
||||
}
|
||||
},
|
||||
"isCreatedByUser": False,
|
||||
"useGraphIsActiveVersion": False,
|
||||
"settings": SafeJson(
|
||||
_initialize_graph_settings(graph_model).model_dump()
|
||||
),
|
||||
|
||||
@@ -48,6 +48,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
id: str
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
owner_user_id: str # ID of user who owns/created this agent graph
|
||||
|
||||
image_url: str | None
|
||||
|
||||
@@ -163,6 +164,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
id=agent.id,
|
||||
graph_id=agent.agentGraphId,
|
||||
graph_version=agent.agentGraphVersion,
|
||||
owner_user_id=agent.userId,
|
||||
image_url=agent.imageUrl,
|
||||
creator_name=creator_name,
|
||||
creator_image_url=creator_image_url,
|
||||
|
||||
@@ -42,6 +42,7 @@ async def test_get_library_agents_success(
|
||||
id="test-agent-1",
|
||||
graph_id="test-agent-1",
|
||||
graph_version=1,
|
||||
owner_user_id=test_user_id,
|
||||
name="Test Agent 1",
|
||||
description="Test Description 1",
|
||||
image_url=None,
|
||||
@@ -64,6 +65,7 @@ async def test_get_library_agents_success(
|
||||
id="test-agent-2",
|
||||
graph_id="test-agent-2",
|
||||
graph_version=1,
|
||||
owner_user_id=test_user_id,
|
||||
name="Test Agent 2",
|
||||
description="Test Description 2",
|
||||
image_url=None,
|
||||
@@ -138,6 +140,7 @@ async def test_get_favorite_library_agents_success(
|
||||
id="test-agent-1",
|
||||
graph_id="test-agent-1",
|
||||
graph_version=1,
|
||||
owner_user_id=test_user_id,
|
||||
name="Favorite Agent 1",
|
||||
description="Test Favorite Description 1",
|
||||
image_url=None,
|
||||
@@ -205,6 +208,7 @@ def test_add_agent_to_library_success(
|
||||
id="test-library-agent-id",
|
||||
graph_id="test-agent-1",
|
||||
graph_version=1,
|
||||
owner_user_id=test_user_id,
|
||||
name="Test Agent 1",
|
||||
description="Test Description 1",
|
||||
image_url=None,
|
||||
|
||||
@@ -1,8 +1,7 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import typing
|
||||
from datetime import datetime, timezone
|
||||
from typing import Literal
|
||||
from typing import Any, Literal
|
||||
|
||||
import fastapi
|
||||
import prisma.enums
|
||||
@@ -10,7 +9,7 @@ import prisma.errors
|
||||
import prisma.models
|
||||
import prisma.types
|
||||
|
||||
from backend.data.db import query_raw_with_schema, transaction
|
||||
from backend.data.db import transaction
|
||||
from backend.data.graph import (
|
||||
GraphMeta,
|
||||
GraphModel,
|
||||
@@ -30,6 +29,8 @@ from backend.util.settings import Settings
|
||||
|
||||
from . import exceptions as store_exceptions
|
||||
from . import model as store_model
|
||||
from .embeddings import ensure_embedding
|
||||
from .hybrid_search import hybrid_search
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
settings = Settings()
|
||||
@@ -50,128 +51,77 @@ async def get_store_agents(
|
||||
page_size: int = 20,
|
||||
) -> store_model.StoreAgentsResponse:
|
||||
"""
|
||||
Get PUBLIC store agents from the StoreAgent view
|
||||
Get PUBLIC store agents from the StoreAgent view.
|
||||
|
||||
Search behavior:
|
||||
- With search_query: Uses hybrid search (semantic + lexical)
|
||||
- Fallback: If embeddings unavailable, gracefully degrades to lexical-only
|
||||
- Rationale: User-facing endpoint prioritizes availability over accuracy
|
||||
|
||||
Note: Admin operations (approval) use fail-fast to prevent inconsistent state.
|
||||
"""
|
||||
logger.debug(
|
||||
f"Getting store agents. featured={featured}, creators={creators}, sorted_by={sorted_by}, search={search_query}, category={category}, page={page}"
|
||||
)
|
||||
|
||||
search_used_hybrid = False
|
||||
store_agents: list[store_model.StoreAgent] = []
|
||||
agents: list[dict[str, Any]] = []
|
||||
total = 0
|
||||
total_pages = 0
|
||||
|
||||
try:
|
||||
# If search_query is provided, use full-text search
|
||||
# If search_query is provided, use hybrid search (embeddings + tsvector)
|
||||
if search_query:
|
||||
offset = (page - 1) * page_size
|
||||
# Try hybrid search combining semantic and lexical signals
|
||||
# Falls back to lexical-only if OpenAI unavailable (user-facing, high SLA)
|
||||
try:
|
||||
agents, total = await hybrid_search(
|
||||
query=search_query,
|
||||
featured=featured,
|
||||
creators=creators,
|
||||
category=category,
|
||||
sorted_by="relevance", # Use hybrid scoring for relevance
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
search_used_hybrid = True
|
||||
except Exception as e:
|
||||
# Log error but fall back to lexical search for better UX
|
||||
logger.error(
|
||||
f"Hybrid search failed (likely OpenAI unavailable), "
|
||||
f"falling back to lexical search: {e}"
|
||||
)
|
||||
# search_used_hybrid remains False, will use fallback path below
|
||||
|
||||
# Whitelist allowed order_by columns
|
||||
ALLOWED_ORDER_BY = {
|
||||
"rating": "rating DESC, rank DESC",
|
||||
"runs": "runs DESC, rank DESC",
|
||||
"name": "agent_name ASC, rank ASC",
|
||||
"updated_at": "updated_at DESC, rank DESC",
|
||||
}
|
||||
# Convert hybrid search results (dict format) if hybrid succeeded
|
||||
if search_used_hybrid:
|
||||
total_pages = (total + page_size - 1) // page_size
|
||||
store_agents: list[store_model.StoreAgent] = []
|
||||
for agent in agents:
|
||||
try:
|
||||
store_agent = store_model.StoreAgent(
|
||||
slug=agent["slug"],
|
||||
agent_name=agent["agent_name"],
|
||||
agent_image=(
|
||||
agent["agent_image"][0] if agent["agent_image"] else ""
|
||||
),
|
||||
creator=agent["creator_username"] or "Needs Profile",
|
||||
creator_avatar=agent["creator_avatar"] or "",
|
||||
sub_heading=agent["sub_heading"],
|
||||
description=agent["description"],
|
||||
runs=agent["runs"],
|
||||
rating=agent["rating"],
|
||||
)
|
||||
store_agents.append(store_agent)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Error parsing Store agent from hybrid search results: {e}"
|
||||
)
|
||||
continue
|
||||
|
||||
# Validate and get order clause
|
||||
if sorted_by and sorted_by in ALLOWED_ORDER_BY:
|
||||
order_by_clause = ALLOWED_ORDER_BY[sorted_by]
|
||||
else:
|
||||
order_by_clause = "updated_at DESC, rank DESC"
|
||||
|
||||
# Build WHERE conditions and parameters list
|
||||
where_parts: list[str] = []
|
||||
params: list[typing.Any] = [search_query] # $1 - search term
|
||||
param_index = 2 # Start at $2 for next parameter
|
||||
|
||||
# Always filter for available agents
|
||||
where_parts.append("is_available = true")
|
||||
|
||||
if featured:
|
||||
where_parts.append("featured = true")
|
||||
|
||||
if creators and creators:
|
||||
# Use ANY with array parameter
|
||||
where_parts.append(f"creator_username = ANY(${param_index})")
|
||||
params.append(creators)
|
||||
param_index += 1
|
||||
|
||||
if category and category:
|
||||
where_parts.append(f"${param_index} = ANY(categories)")
|
||||
params.append(category)
|
||||
param_index += 1
|
||||
|
||||
sql_where_clause: str = " AND ".join(where_parts) if where_parts else "1=1"
|
||||
|
||||
# Add pagination params
|
||||
params.extend([page_size, offset])
|
||||
limit_param = f"${param_index}"
|
||||
offset_param = f"${param_index + 1}"
|
||||
|
||||
# Execute full-text search query with parameterized values
|
||||
sql_query = f"""
|
||||
SELECT
|
||||
slug,
|
||||
agent_name,
|
||||
agent_image,
|
||||
creator_username,
|
||||
creator_avatar,
|
||||
sub_heading,
|
||||
description,
|
||||
runs,
|
||||
rating,
|
||||
categories,
|
||||
featured,
|
||||
is_available,
|
||||
updated_at,
|
||||
ts_rank_cd(search, query) AS rank
|
||||
FROM {{schema_prefix}}"StoreAgent",
|
||||
plainto_tsquery('english', $1) AS query
|
||||
WHERE {sql_where_clause}
|
||||
AND search @@ query
|
||||
ORDER BY {order_by_clause}
|
||||
LIMIT {limit_param} OFFSET {offset_param}
|
||||
"""
|
||||
|
||||
# Count query for pagination - only uses search term parameter
|
||||
count_query = f"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM {{schema_prefix}}"StoreAgent",
|
||||
plainto_tsquery('english', $1) AS query
|
||||
WHERE {sql_where_clause}
|
||||
AND search @@ query
|
||||
"""
|
||||
|
||||
# Execute both queries with parameters
|
||||
agents = await query_raw_with_schema(sql_query, *params)
|
||||
|
||||
# For count, use params without pagination (last 2 params)
|
||||
count_params = params[:-2]
|
||||
count_result = await query_raw_with_schema(count_query, *count_params)
|
||||
|
||||
total = count_result[0]["count"] if count_result else 0
|
||||
total_pages = (total + page_size - 1) // page_size
|
||||
|
||||
# Convert raw results to StoreAgent models
|
||||
store_agents: list[store_model.StoreAgent] = []
|
||||
for agent in agents:
|
||||
try:
|
||||
store_agent = store_model.StoreAgent(
|
||||
slug=agent["slug"],
|
||||
agent_name=agent["agent_name"],
|
||||
agent_image=(
|
||||
agent["agent_image"][0] if agent["agent_image"] else ""
|
||||
),
|
||||
creator=agent["creator_username"] or "Needs Profile",
|
||||
creator_avatar=agent["creator_avatar"] or "",
|
||||
sub_heading=agent["sub_heading"],
|
||||
description=agent["description"],
|
||||
runs=agent["runs"],
|
||||
rating=agent["rating"],
|
||||
)
|
||||
store_agents.append(store_agent)
|
||||
except Exception as e:
|
||||
logger.error(f"Error parsing Store agent from search results: {e}")
|
||||
continue
|
||||
|
||||
else:
|
||||
# Non-search query path (original logic)
|
||||
if not search_used_hybrid:
|
||||
# Fallback path - use basic search or no search
|
||||
where_clause: prisma.types.StoreAgentWhereInput = {"is_available": True}
|
||||
if featured:
|
||||
where_clause["featured"] = featured
|
||||
@@ -180,6 +130,14 @@ async def get_store_agents(
|
||||
if category:
|
||||
where_clause["categories"] = {"has": category}
|
||||
|
||||
# Add basic text search if search_query provided but hybrid failed
|
||||
if search_query:
|
||||
where_clause["OR"] = [
|
||||
{"agent_name": {"contains": search_query, "mode": "insensitive"}},
|
||||
{"sub_heading": {"contains": search_query, "mode": "insensitive"}},
|
||||
{"description": {"contains": search_query, "mode": "insensitive"}},
|
||||
]
|
||||
|
||||
order_by = []
|
||||
if sorted_by == "rating":
|
||||
order_by.append({"rating": "desc"})
|
||||
@@ -188,7 +146,7 @@ async def get_store_agents(
|
||||
elif sorted_by == "name":
|
||||
order_by.append({"agent_name": "asc"})
|
||||
|
||||
agents = await prisma.models.StoreAgent.prisma().find_many(
|
||||
db_agents = await prisma.models.StoreAgent.prisma().find_many(
|
||||
where=where_clause,
|
||||
order=order_by,
|
||||
skip=(page - 1) * page_size,
|
||||
@@ -199,7 +157,7 @@ async def get_store_agents(
|
||||
total_pages = (total + page_size - 1) // page_size
|
||||
|
||||
store_agents: list[store_model.StoreAgent] = []
|
||||
for agent in agents:
|
||||
for agent in db_agents:
|
||||
try:
|
||||
# Create the StoreAgent object safely
|
||||
store_agent = store_model.StoreAgent(
|
||||
@@ -614,6 +572,7 @@ async def get_store_submissions(
|
||||
submission_models = []
|
||||
for sub in submissions:
|
||||
submission_model = store_model.StoreSubmission(
|
||||
listing_id=sub.listing_id,
|
||||
agent_id=sub.agent_id,
|
||||
agent_version=sub.agent_version,
|
||||
name=sub.name,
|
||||
@@ -667,35 +626,48 @@ async def delete_store_submission(
|
||||
submission_id: str,
|
||||
) -> bool:
|
||||
"""
|
||||
Delete a store listing submission as the submitting user.
|
||||
Delete a store submission version as the submitting user.
|
||||
|
||||
Args:
|
||||
user_id: ID of the authenticated user
|
||||
submission_id: ID of the submission to be deleted
|
||||
submission_id: StoreListingVersion ID to delete
|
||||
|
||||
Returns:
|
||||
bool: True if the submission was successfully deleted, False otherwise
|
||||
bool: True if successfully deleted
|
||||
"""
|
||||
logger.debug(f"Deleting store submission {submission_id} for user {user_id}")
|
||||
|
||||
try:
|
||||
# Verify the submission belongs to this user
|
||||
submission = await prisma.models.StoreListing.prisma().find_first(
|
||||
where={"agentGraphId": submission_id, "owningUserId": user_id}
|
||||
# Find the submission version with ownership check
|
||||
version = await prisma.models.StoreListingVersion.prisma().find_first(
|
||||
where={"id": submission_id}, include={"StoreListing": True}
|
||||
)
|
||||
|
||||
if not submission:
|
||||
logger.warning(f"Submission not found for user {user_id}: {submission_id}")
|
||||
raise store_exceptions.SubmissionNotFoundError(
|
||||
f"Submission not found for this user. User ID: {user_id}, Submission ID: {submission_id}"
|
||||
if (
|
||||
not version
|
||||
or not version.StoreListing
|
||||
or version.StoreListing.owningUserId != user_id
|
||||
):
|
||||
raise store_exceptions.SubmissionNotFoundError("Submission not found")
|
||||
|
||||
# Prevent deletion of approved submissions
|
||||
if version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
|
||||
raise store_exceptions.InvalidOperationError(
|
||||
"Cannot delete approved submissions"
|
||||
)
|
||||
|
||||
# Delete the submission
|
||||
await prisma.models.StoreListing.prisma().delete(where={"id": submission.id})
|
||||
|
||||
logger.debug(
|
||||
f"Successfully deleted submission {submission_id} for user {user_id}"
|
||||
# Delete the version
|
||||
await prisma.models.StoreListingVersion.prisma().delete(
|
||||
where={"id": version.id}
|
||||
)
|
||||
|
||||
# Clean up empty listing if this was the last version
|
||||
remaining = await prisma.models.StoreListingVersion.prisma().count(
|
||||
where={"storeListingId": version.storeListingId}
|
||||
)
|
||||
if remaining == 0:
|
||||
await prisma.models.StoreListing.prisma().delete(
|
||||
where={"id": version.storeListingId}
|
||||
)
|
||||
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
@@ -759,9 +731,15 @@ async def create_store_submission(
|
||||
logger.warning(
|
||||
f"Agent not found for user {user_id}: {agent_id} v{agent_version}"
|
||||
)
|
||||
raise store_exceptions.AgentNotFoundError(
|
||||
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
|
||||
)
|
||||
# Provide more user-friendly error message when agent_id is empty
|
||||
if not agent_id or agent_id.strip() == "":
|
||||
raise store_exceptions.AgentNotFoundError(
|
||||
"No agent selected. Please select an agent before submitting to the store."
|
||||
)
|
||||
else:
|
||||
raise store_exceptions.AgentNotFoundError(
|
||||
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
|
||||
)
|
||||
|
||||
# Check if listing already exists for this agent
|
||||
existing_listing = await prisma.models.StoreListing.prisma().find_first(
|
||||
@@ -833,6 +811,7 @@ async def create_store_submission(
|
||||
logger.debug(f"Created store listing for agent {agent_id}")
|
||||
# Return submission details
|
||||
return store_model.StoreSubmission(
|
||||
listing_id=listing.id,
|
||||
agent_id=agent_id,
|
||||
agent_version=agent_version,
|
||||
name=name,
|
||||
@@ -944,81 +923,56 @@ async def edit_store_submission(
|
||||
# Currently we are not allowing user to update the agent associated with a submission
|
||||
# If we allow it in future, then we need a check here to verify the agent belongs to this user.
|
||||
|
||||
# Check if we can edit this submission
|
||||
if current_version.submissionStatus == prisma.enums.SubmissionStatus.REJECTED:
|
||||
# Only allow editing of PENDING submissions
|
||||
if current_version.submissionStatus != prisma.enums.SubmissionStatus.PENDING:
|
||||
raise store_exceptions.InvalidOperationError(
|
||||
"Cannot edit a rejected submission"
|
||||
)
|
||||
|
||||
# For APPROVED submissions, we need to create a new version
|
||||
if current_version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
|
||||
# Create a new version for the existing listing
|
||||
return await create_store_version(
|
||||
user_id=user_id,
|
||||
agent_id=current_version.agentGraphId,
|
||||
agent_version=current_version.agentGraphVersion,
|
||||
store_listing_id=current_version.storeListingId,
|
||||
name=name,
|
||||
video_url=video_url,
|
||||
agent_output_demo_url=agent_output_demo_url,
|
||||
image_urls=image_urls,
|
||||
description=description,
|
||||
sub_heading=sub_heading,
|
||||
categories=categories,
|
||||
changes_summary=changes_summary,
|
||||
recommended_schedule_cron=recommended_schedule_cron,
|
||||
instructions=instructions,
|
||||
f"Cannot edit a {current_version.submissionStatus.value.lower()} submission. Only pending submissions can be edited."
|
||||
)
|
||||
|
||||
# For PENDING submissions, we can update the existing version
|
||||
elif current_version.submissionStatus == prisma.enums.SubmissionStatus.PENDING:
|
||||
# Update the existing version
|
||||
updated_version = await prisma.models.StoreListingVersion.prisma().update(
|
||||
where={"id": store_listing_version_id},
|
||||
data=prisma.types.StoreListingVersionUpdateInput(
|
||||
name=name,
|
||||
videoUrl=video_url,
|
||||
agentOutputDemoUrl=agent_output_demo_url,
|
||||
imageUrls=image_urls,
|
||||
description=description,
|
||||
categories=categories,
|
||||
subHeading=sub_heading,
|
||||
changesSummary=changes_summary,
|
||||
recommendedScheduleCron=recommended_schedule_cron,
|
||||
instructions=instructions,
|
||||
),
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
|
||||
)
|
||||
|
||||
if not updated_version:
|
||||
raise DatabaseError("Failed to update store listing version")
|
||||
return store_model.StoreSubmission(
|
||||
agent_id=current_version.agentGraphId,
|
||||
agent_version=current_version.agentGraphVersion,
|
||||
# Update the existing version
|
||||
updated_version = await prisma.models.StoreListingVersion.prisma().update(
|
||||
where={"id": store_listing_version_id},
|
||||
data=prisma.types.StoreListingVersionUpdateInput(
|
||||
name=name,
|
||||
sub_heading=sub_heading,
|
||||
slug=current_version.StoreListing.slug,
|
||||
videoUrl=video_url,
|
||||
agentOutputDemoUrl=agent_output_demo_url,
|
||||
imageUrls=image_urls,
|
||||
description=description,
|
||||
instructions=instructions,
|
||||
image_urls=image_urls,
|
||||
date_submitted=updated_version.submittedAt or updated_version.createdAt,
|
||||
status=updated_version.submissionStatus,
|
||||
runs=0,
|
||||
rating=0.0,
|
||||
store_listing_version_id=updated_version.id,
|
||||
changes_summary=changes_summary,
|
||||
video_url=video_url,
|
||||
categories=categories,
|
||||
version=updated_version.version,
|
||||
)
|
||||
subHeading=sub_heading,
|
||||
changesSummary=changes_summary,
|
||||
recommendedScheduleCron=recommended_schedule_cron,
|
||||
instructions=instructions,
|
||||
),
|
||||
)
|
||||
|
||||
else:
|
||||
raise store_exceptions.InvalidOperationError(
|
||||
f"Cannot edit submission with status: {current_version.submissionStatus}"
|
||||
)
|
||||
logger.debug(
|
||||
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
|
||||
)
|
||||
|
||||
if not updated_version:
|
||||
raise DatabaseError("Failed to update store listing version")
|
||||
return store_model.StoreSubmission(
|
||||
listing_id=current_version.StoreListing.id,
|
||||
agent_id=current_version.agentGraphId,
|
||||
agent_version=current_version.agentGraphVersion,
|
||||
name=name,
|
||||
sub_heading=sub_heading,
|
||||
slug=current_version.StoreListing.slug,
|
||||
description=description,
|
||||
instructions=instructions,
|
||||
image_urls=image_urls,
|
||||
date_submitted=updated_version.submittedAt or updated_version.createdAt,
|
||||
status=updated_version.submissionStatus,
|
||||
runs=0,
|
||||
rating=0.0,
|
||||
store_listing_version_id=updated_version.id,
|
||||
changes_summary=changes_summary,
|
||||
video_url=video_url,
|
||||
categories=categories,
|
||||
version=updated_version.version,
|
||||
)
|
||||
|
||||
except (
|
||||
store_exceptions.SubmissionNotFoundError,
|
||||
@@ -1097,38 +1051,78 @@ async def create_store_version(
|
||||
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
|
||||
)
|
||||
|
||||
# Get the latest version number
|
||||
latest_version = listing.Versions[0] if listing.Versions else None
|
||||
|
||||
next_version = (latest_version.version + 1) if latest_version else 1
|
||||
|
||||
# Create a new version for the existing listing
|
||||
new_version = await prisma.models.StoreListingVersion.prisma().create(
|
||||
data=prisma.types.StoreListingVersionCreateInput(
|
||||
version=next_version,
|
||||
agentGraphId=agent_id,
|
||||
agentGraphVersion=agent_version,
|
||||
name=name,
|
||||
videoUrl=video_url,
|
||||
agentOutputDemoUrl=agent_output_demo_url,
|
||||
imageUrls=image_urls,
|
||||
description=description,
|
||||
instructions=instructions,
|
||||
categories=categories,
|
||||
subHeading=sub_heading,
|
||||
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
|
||||
submittedAt=datetime.now(),
|
||||
changesSummary=changes_summary,
|
||||
recommendedScheduleCron=recommended_schedule_cron,
|
||||
storeListingId=store_listing_id,
|
||||
# Check if there's already a PENDING submission for this agent (any version)
|
||||
existing_pending_submission = (
|
||||
await prisma.models.StoreListingVersion.prisma().find_first(
|
||||
where=prisma.types.StoreListingVersionWhereInput(
|
||||
storeListingId=store_listing_id,
|
||||
agentGraphId=agent_id,
|
||||
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
|
||||
isDeleted=False,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
# Handle existing pending submission and create new one atomically
|
||||
async with transaction() as tx:
|
||||
# Get the latest version number first
|
||||
latest_listing = await prisma.models.StoreListing.prisma(tx).find_first(
|
||||
where=prisma.types.StoreListingWhereInput(
|
||||
id=store_listing_id, owningUserId=user_id
|
||||
),
|
||||
include={"Versions": {"order_by": {"version": "desc"}, "take": 1}},
|
||||
)
|
||||
|
||||
if not latest_listing:
|
||||
raise store_exceptions.ListingNotFoundError(
|
||||
f"Store listing not found. User ID: {user_id}, Listing ID: {store_listing_id}"
|
||||
)
|
||||
|
||||
latest_version = (
|
||||
latest_listing.Versions[0] if latest_listing.Versions else None
|
||||
)
|
||||
next_version = (latest_version.version + 1) if latest_version else 1
|
||||
|
||||
# If there's an existing pending submission, delete it atomically before creating new one
|
||||
if existing_pending_submission:
|
||||
logger.info(
|
||||
f"Found existing PENDING submission for agent {agent_id} (was v{existing_pending_submission.agentGraphVersion}, now v{agent_version}), replacing existing submission instead of creating duplicate"
|
||||
)
|
||||
await prisma.models.StoreListingVersion.prisma(tx).delete(
|
||||
where={"id": existing_pending_submission.id}
|
||||
)
|
||||
logger.debug(
|
||||
f"Deleted existing pending submission {existing_pending_submission.id}"
|
||||
)
|
||||
|
||||
# Create a new version for the existing listing
|
||||
new_version = await prisma.models.StoreListingVersion.prisma(tx).create(
|
||||
data=prisma.types.StoreListingVersionCreateInput(
|
||||
version=next_version,
|
||||
agentGraphId=agent_id,
|
||||
agentGraphVersion=agent_version,
|
||||
name=name,
|
||||
videoUrl=video_url,
|
||||
agentOutputDemoUrl=agent_output_demo_url,
|
||||
imageUrls=image_urls,
|
||||
description=description,
|
||||
instructions=instructions,
|
||||
categories=categories,
|
||||
subHeading=sub_heading,
|
||||
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
|
||||
submittedAt=datetime.now(),
|
||||
changesSummary=changes_summary,
|
||||
recommendedScheduleCron=recommended_schedule_cron,
|
||||
storeListingId=store_listing_id,
|
||||
)
|
||||
)
|
||||
|
||||
logger.debug(
|
||||
f"Created new version for listing {store_listing_id} of agent {agent_id}"
|
||||
)
|
||||
# Return submission details
|
||||
return store_model.StoreSubmission(
|
||||
listing_id=listing.id,
|
||||
agent_id=agent_id,
|
||||
agent_version=agent_version,
|
||||
name=name,
|
||||
@@ -1541,7 +1535,7 @@ async def review_store_submission(
|
||||
)
|
||||
|
||||
# Update the AgentGraph with store listing data
|
||||
await prisma.models.AgentGraph.prisma().update(
|
||||
await prisma.models.AgentGraph.prisma(tx).update(
|
||||
where={
|
||||
"graphVersionId": {
|
||||
"id": store_listing_version.agentGraphId,
|
||||
@@ -1556,6 +1550,23 @@ async def review_store_submission(
|
||||
},
|
||||
)
|
||||
|
||||
# Generate embedding for approved listing (blocking - admin operation)
|
||||
# Inside transaction: if embedding fails, entire transaction rolls back
|
||||
embedding_success = await ensure_embedding(
|
||||
version_id=store_listing_version_id,
|
||||
name=store_listing_version.name,
|
||||
description=store_listing_version.description,
|
||||
sub_heading=store_listing_version.subHeading,
|
||||
categories=store_listing_version.categories or [],
|
||||
tx=tx,
|
||||
)
|
||||
if not embedding_success:
|
||||
raise ValueError(
|
||||
f"Failed to generate embedding for listing {store_listing_version_id}. "
|
||||
"This is likely due to OpenAI API being unavailable. "
|
||||
"Please try again later or contact support if the issue persists."
|
||||
)
|
||||
|
||||
await prisma.models.StoreListing.prisma(tx).update(
|
||||
where={"id": store_listing_version.StoreListing.id},
|
||||
data={
|
||||
@@ -1708,15 +1719,12 @@ async def review_store_submission(
|
||||
|
||||
# Convert to Pydantic model for consistency
|
||||
return store_model.StoreSubmission(
|
||||
listing_id=(submission.StoreListing.id if submission.StoreListing else ""),
|
||||
agent_id=submission.agentGraphId,
|
||||
agent_version=submission.agentGraphVersion,
|
||||
name=submission.name,
|
||||
sub_heading=submission.subHeading,
|
||||
slug=(
|
||||
submission.StoreListing.slug
|
||||
if hasattr(submission, "storeListing") and submission.StoreListing
|
||||
else ""
|
||||
),
|
||||
slug=(submission.StoreListing.slug if submission.StoreListing else ""),
|
||||
description=submission.description,
|
||||
instructions=submission.instructions,
|
||||
image_urls=submission.imageUrls or [],
|
||||
@@ -1818,9 +1826,7 @@ async def get_admin_listings_with_versions(
|
||||
where = prisma.types.StoreListingWhereInput(**where_dict)
|
||||
include = prisma.types.StoreListingInclude(
|
||||
Versions=prisma.types.FindManyStoreListingVersionArgsFromStoreListing(
|
||||
order_by=prisma.types._StoreListingVersion_version_OrderByInput(
|
||||
version="desc"
|
||||
)
|
||||
order_by={"version": "desc"}
|
||||
),
|
||||
OwningUser=True,
|
||||
)
|
||||
@@ -1845,6 +1851,7 @@ async def get_admin_listings_with_versions(
|
||||
# If we have versions, turn them into StoreSubmission models
|
||||
for version in listing.Versions or []:
|
||||
version_model = store_model.StoreSubmission(
|
||||
listing_id=listing.id,
|
||||
agent_id=version.agentGraphId,
|
||||
agent_version=version.agentGraphVersion,
|
||||
name=version.name,
|
||||
|
||||
@@ -0,0 +1,566 @@
|
||||
"""
|
||||
Unified Content Embeddings Service
|
||||
|
||||
Handles generation and storage of OpenAI embeddings for all content types
|
||||
(store listings, blocks, documentation, library agents) to enable semantic/hybrid search.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import time
|
||||
from typing import Any
|
||||
|
||||
import prisma
|
||||
from prisma.enums import ContentType
|
||||
from tiktoken import encoding_for_model
|
||||
|
||||
from backend.data.db import execute_raw_with_schema, query_raw_with_schema
|
||||
from backend.util.clients import get_openai_client
|
||||
from backend.util.json import dumps
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# OpenAI embedding model configuration
|
||||
EMBEDDING_MODEL = "text-embedding-3-small"
|
||||
# OpenAI embedding token limit (8,191 with 1 token buffer for safety)
|
||||
EMBEDDING_MAX_TOKENS = 8191
|
||||
|
||||
|
||||
def build_searchable_text(
|
||||
name: str,
|
||||
description: str,
|
||||
sub_heading: str,
|
||||
categories: list[str],
|
||||
) -> str:
|
||||
"""
|
||||
Build searchable text from listing version fields.
|
||||
|
||||
Combines relevant fields into a single string for embedding.
|
||||
"""
|
||||
parts = []
|
||||
|
||||
# Name is important - include it
|
||||
if name:
|
||||
parts.append(name)
|
||||
|
||||
# Sub-heading provides context
|
||||
if sub_heading:
|
||||
parts.append(sub_heading)
|
||||
|
||||
# Description is the main content
|
||||
if description:
|
||||
parts.append(description)
|
||||
|
||||
# Categories help with semantic matching
|
||||
if categories:
|
||||
parts.append(" ".join(categories))
|
||||
|
||||
return " ".join(parts)
|
||||
|
||||
|
||||
async def generate_embedding(text: str) -> list[float] | None:
|
||||
"""
|
||||
Generate embedding for text using OpenAI API.
|
||||
|
||||
Returns None if embedding generation fails.
|
||||
Fail-fast: no retries to maintain consistency with approval flow.
|
||||
"""
|
||||
try:
|
||||
client = get_openai_client()
|
||||
if not client:
|
||||
logger.error("openai_internal_api_key not set, cannot generate embedding")
|
||||
return None
|
||||
|
||||
# Truncate text to token limit using tiktoken
|
||||
# Character-based truncation is insufficient because token ratios vary by content type
|
||||
enc = encoding_for_model(EMBEDDING_MODEL)
|
||||
tokens = enc.encode(text)
|
||||
if len(tokens) > EMBEDDING_MAX_TOKENS:
|
||||
tokens = tokens[:EMBEDDING_MAX_TOKENS]
|
||||
truncated_text = enc.decode(tokens)
|
||||
logger.info(
|
||||
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
|
||||
)
|
||||
else:
|
||||
truncated_text = text
|
||||
|
||||
start_time = time.time()
|
||||
response = await client.embeddings.create(
|
||||
model=EMBEDDING_MODEL,
|
||||
input=truncated_text,
|
||||
)
|
||||
latency_ms = (time.time() - start_time) * 1000
|
||||
|
||||
embedding = response.data[0].embedding
|
||||
logger.info(
|
||||
f"Generated embedding: {len(embedding)} dims, "
|
||||
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
|
||||
)
|
||||
return embedding
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate embedding: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def store_embedding(
|
||||
version_id: str,
|
||||
embedding: list[float],
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Store embedding in the database.
|
||||
|
||||
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
|
||||
DEPRECATED: Use ensure_embedding() instead (includes searchable_text).
|
||||
"""
|
||||
return await store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id=version_id,
|
||||
embedding=embedding,
|
||||
searchable_text="", # Empty for backward compat; ensure_embedding() populates this
|
||||
metadata=None,
|
||||
user_id=None, # Store agents are public
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
|
||||
async def store_content_embedding(
|
||||
content_type: ContentType,
|
||||
content_id: str,
|
||||
embedding: list[float],
|
||||
searchable_text: str,
|
||||
metadata: dict | None = None,
|
||||
user_id: str | None = None,
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Store embedding in the unified content embeddings table.
|
||||
|
||||
New function for unified content embedding storage.
|
||||
Uses raw SQL since Prisma doesn't natively support pgvector.
|
||||
"""
|
||||
try:
|
||||
client = tx if tx else prisma.get_client()
|
||||
|
||||
# Convert embedding to PostgreSQL vector format
|
||||
embedding_str = embedding_to_vector_string(embedding)
|
||||
metadata_json = dumps(metadata or {})
|
||||
|
||||
# Upsert the embedding
|
||||
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
|
||||
await execute_raw_with_schema(
|
||||
"""
|
||||
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
|
||||
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
|
||||
)
|
||||
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
|
||||
ON CONFLICT ("contentType", "contentId", "userId")
|
||||
DO UPDATE SET
|
||||
"embedding" = $4::vector,
|
||||
"searchableText" = $5,
|
||||
"metadata" = $6::jsonb,
|
||||
"updatedAt" = NOW()
|
||||
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
|
||||
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
|
||||
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
embedding_str,
|
||||
searchable_text,
|
||||
metadata_json,
|
||||
client=client,
|
||||
)
|
||||
|
||||
logger.info(f"Stored embedding for {content_type}:{content_id}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to store embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def get_embedding(version_id: str) -> dict[str, Any] | None:
|
||||
"""
|
||||
Retrieve embedding record for a listing version.
|
||||
|
||||
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
|
||||
Returns dict with storeListingVersionId, embedding, timestamps or None if not found.
|
||||
"""
|
||||
result = await get_content_embedding(
|
||||
ContentType.STORE_AGENT, version_id, user_id=None
|
||||
)
|
||||
if result:
|
||||
# Transform to old format for backward compatibility
|
||||
return {
|
||||
"storeListingVersionId": result["contentId"],
|
||||
"embedding": result["embedding"],
|
||||
"createdAt": result["createdAt"],
|
||||
"updatedAt": result["updatedAt"],
|
||||
}
|
||||
return None
|
||||
|
||||
|
||||
async def get_content_embedding(
|
||||
content_type: ContentType, content_id: str, user_id: str | None = None
|
||||
) -> dict[str, Any] | None:
|
||||
"""
|
||||
Retrieve embedding record for any content type.
|
||||
|
||||
New function for unified content embedding retrieval.
|
||||
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
|
||||
"""
|
||||
try:
|
||||
result = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT
|
||||
"contentType",
|
||||
"contentId",
|
||||
"userId",
|
||||
"embedding"::text as "embedding",
|
||||
"searchableText",
|
||||
"metadata",
|
||||
"createdAt",
|
||||
"updatedAt"
|
||||
FROM {schema_prefix}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
)
|
||||
|
||||
if result and len(result) > 0:
|
||||
return result[0]
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get embedding for {content_type}:{content_id}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def ensure_embedding(
|
||||
version_id: str,
|
||||
name: str,
|
||||
description: str,
|
||||
sub_heading: str,
|
||||
categories: list[str],
|
||||
force: bool = False,
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Ensure an embedding exists for the listing version.
|
||||
|
||||
Creates embedding if missing. Use force=True to regenerate.
|
||||
Backward-compatible wrapper for store listings.
|
||||
|
||||
Args:
|
||||
version_id: The StoreListingVersion ID
|
||||
name: Agent name
|
||||
description: Agent description
|
||||
sub_heading: Agent sub-heading
|
||||
categories: Agent categories
|
||||
force: Force regeneration even if embedding exists
|
||||
tx: Optional transaction client
|
||||
|
||||
Returns:
|
||||
True if embedding exists/was created, False on failure
|
||||
"""
|
||||
try:
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_embedding(version_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(f"Embedding for version {version_id} already exists")
|
||||
return True
|
||||
|
||||
# Build searchable text for embedding
|
||||
searchable_text = build_searchable_text(
|
||||
name, description, sub_heading, categories
|
||||
)
|
||||
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
if embedding is None:
|
||||
logger.warning(f"Could not generate embedding for version {version_id}")
|
||||
return False
|
||||
|
||||
# Store the embedding with metadata using new function
|
||||
metadata = {
|
||||
"name": name,
|
||||
"subHeading": sub_heading,
|
||||
"categories": categories,
|
||||
}
|
||||
return await store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id=version_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata,
|
||||
user_id=None, # Store agents are public
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def delete_embedding(version_id: str) -> bool:
|
||||
"""
|
||||
Delete embedding for a listing version.
|
||||
|
||||
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
|
||||
Note: This is usually handled automatically by CASCADE delete,
|
||||
but provided for manual cleanup if needed.
|
||||
"""
|
||||
return await delete_content_embedding(ContentType.STORE_AGENT, version_id)
|
||||
|
||||
|
||||
async def delete_content_embedding(
|
||||
content_type: ContentType, content_id: str, user_id: str | None = None
|
||||
) -> bool:
|
||||
"""
|
||||
Delete embedding for any content type.
|
||||
|
||||
New function for unified content embedding deletion.
|
||||
Note: This is usually handled automatically by CASCADE delete,
|
||||
but provided for manual cleanup if needed.
|
||||
|
||||
Args:
|
||||
content_type: The type of content (STORE_AGENT, LIBRARY_AGENT, etc.)
|
||||
content_id: The unique identifier for the content
|
||||
user_id: Optional user ID. For public content (STORE_AGENT, BLOCK), pass None.
|
||||
For user-scoped content (LIBRARY_AGENT), pass the user's ID to avoid
|
||||
deleting embeddings belonging to other users.
|
||||
|
||||
Returns:
|
||||
True if deletion succeeded, False otherwise
|
||||
"""
|
||||
try:
|
||||
client = prisma.get_client()
|
||||
|
||||
await execute_raw_with_schema(
|
||||
"""
|
||||
DELETE FROM {schema_prefix}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = $1::{schema_prefix}"ContentType"
|
||||
AND "contentId" = $2
|
||||
AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
client=client,
|
||||
)
|
||||
|
||||
user_str = f" (user: {user_id})" if user_id else ""
|
||||
logger.info(f"Deleted embedding for {content_type}:{content_id}{user_str}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to delete embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def get_embedding_stats() -> dict[str, Any]:
|
||||
"""
|
||||
Get statistics about embedding coverage.
|
||||
|
||||
Returns counts of:
|
||||
- Total approved listing versions
|
||||
- Versions with embeddings
|
||||
- Versions without embeddings
|
||||
"""
|
||||
try:
|
||||
# Count approved versions
|
||||
approved_result = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM {schema_prefix}"StoreListingVersion"
|
||||
WHERE "submissionStatus" = 'APPROVED'
|
||||
AND "isDeleted" = false
|
||||
"""
|
||||
)
|
||||
total_approved = approved_result[0]["count"] if approved_result else 0
|
||||
|
||||
# Count versions with embeddings
|
||||
embedded_result = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT COUNT(*) as count
|
||||
FROM {schema_prefix}"StoreListingVersion" slv
|
||||
JOIN {schema_prefix}"UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
|
||||
WHERE slv."submissionStatus" = 'APPROVED'
|
||||
AND slv."isDeleted" = false
|
||||
"""
|
||||
)
|
||||
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
|
||||
|
||||
return {
|
||||
"total_approved": total_approved,
|
||||
"with_embeddings": with_embeddings,
|
||||
"without_embeddings": total_approved - with_embeddings,
|
||||
"coverage_percent": (
|
||||
round(with_embeddings / total_approved * 100, 1)
|
||||
if total_approved > 0
|
||||
else 0
|
||||
),
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get embedding stats: {e}")
|
||||
return {
|
||||
"total_approved": 0,
|
||||
"with_embeddings": 0,
|
||||
"without_embeddings": 0,
|
||||
"coverage_percent": 0,
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
|
||||
async def backfill_missing_embeddings(batch_size: int = 10) -> dict[str, Any]:
|
||||
"""
|
||||
Generate embeddings for approved listings that don't have them.
|
||||
|
||||
Args:
|
||||
batch_size: Number of embeddings to generate in one call
|
||||
|
||||
Returns:
|
||||
Dict with success/failure counts
|
||||
"""
|
||||
try:
|
||||
# Find approved versions without embeddings
|
||||
missing = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT
|
||||
slv.id,
|
||||
slv.name,
|
||||
slv.description,
|
||||
slv."subHeading",
|
||||
slv.categories
|
||||
FROM {schema_prefix}"StoreListingVersion" slv
|
||||
LEFT JOIN {schema_prefix}"UnifiedContentEmbedding" uce
|
||||
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{schema_prefix}"ContentType"
|
||||
WHERE slv."submissionStatus" = 'APPROVED'
|
||||
AND slv."isDeleted" = false
|
||||
AND uce."contentId" IS NULL
|
||||
LIMIT $1
|
||||
""",
|
||||
batch_size,
|
||||
)
|
||||
|
||||
if not missing:
|
||||
return {
|
||||
"processed": 0,
|
||||
"success": 0,
|
||||
"failed": 0,
|
||||
"message": "No missing embeddings",
|
||||
}
|
||||
|
||||
# Process embeddings concurrently for better performance
|
||||
embedding_tasks = [
|
||||
ensure_embedding(
|
||||
version_id=row["id"],
|
||||
name=row["name"],
|
||||
description=row["description"],
|
||||
sub_heading=row["subHeading"],
|
||||
categories=row["categories"] or [],
|
||||
)
|
||||
for row in missing
|
||||
]
|
||||
|
||||
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
|
||||
|
||||
success = sum(1 for result in results if result is True)
|
||||
failed = len(results) - success
|
||||
|
||||
return {
|
||||
"processed": len(missing),
|
||||
"success": success,
|
||||
"failed": failed,
|
||||
"message": f"Backfilled {success} embeddings, {failed} failed",
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to backfill embeddings: {e}")
|
||||
return {
|
||||
"processed": 0,
|
||||
"success": 0,
|
||||
"failed": 0,
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
|
||||
async def embed_query(query: str) -> list[float] | None:
|
||||
"""
|
||||
Generate embedding for a search query.
|
||||
|
||||
Same as generate_embedding but with clearer intent.
|
||||
"""
|
||||
return await generate_embedding(query)
|
||||
|
||||
|
||||
def embedding_to_vector_string(embedding: list[float]) -> str:
|
||||
"""Convert embedding list to PostgreSQL vector string format."""
|
||||
return "[" + ",".join(str(x) for x in embedding) + "]"
|
||||
|
||||
|
||||
async def ensure_content_embedding(
|
||||
content_type: ContentType,
|
||||
content_id: str,
|
||||
searchable_text: str,
|
||||
metadata: dict | None = None,
|
||||
user_id: str | None = None,
|
||||
force: bool = False,
|
||||
tx: prisma.Prisma | None = None,
|
||||
) -> bool:
|
||||
"""
|
||||
Ensure an embedding exists for any content type.
|
||||
|
||||
Generic function for creating embeddings for store agents, blocks, docs, etc.
|
||||
|
||||
Args:
|
||||
content_type: ContentType enum value (STORE_AGENT, BLOCK, etc.)
|
||||
content_id: Unique identifier for the content
|
||||
searchable_text: Combined text for embedding generation
|
||||
metadata: Optional metadata to store with embedding
|
||||
force: Force regeneration even if embedding exists
|
||||
tx: Optional transaction client
|
||||
|
||||
Returns:
|
||||
True if embedding exists/was created, False on failure
|
||||
"""
|
||||
try:
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_content_embedding(content_type, content_id, user_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(
|
||||
f"Embedding for {content_type}:{content_id} already exists"
|
||||
)
|
||||
return True
|
||||
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
if embedding is None:
|
||||
logger.warning(
|
||||
f"Could not generate embedding for {content_type}:{content_id}"
|
||||
)
|
||||
return False
|
||||
|
||||
# Store the embedding
|
||||
return await store_content_embedding(
|
||||
content_type=content_type,
|
||||
content_id=content_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata or {},
|
||||
user_id=user_id,
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
@@ -0,0 +1,329 @@
|
||||
"""
|
||||
Integration tests for embeddings with schema handling.
|
||||
|
||||
These tests verify that embeddings operations work correctly across different database schemas.
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import pytest
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.api.features.store import embeddings
|
||||
|
||||
# Schema prefix tests removed - functionality moved to db.raw_with_schema() helper
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_store_content_embedding_with_schema():
|
||||
"""Test storing embeddings with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
embedding=[0.1] * 1536,
|
||||
searchable_text="test text",
|
||||
metadata={"test": "data"},
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Verify the query was called
|
||||
assert mock_client.execute_raw.called
|
||||
|
||||
# Get the SQL query that was executed
|
||||
call_args = mock_client.execute_raw.call_args
|
||||
sql_query = call_args[0][0]
|
||||
|
||||
# Verify schema prefix is in the query
|
||||
assert '"platform"."UnifiedContentEmbedding"' in sql_query
|
||||
|
||||
# Verify result
|
||||
assert result is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_get_content_embedding_with_schema():
|
||||
"""Test retrieving embeddings with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
mock_client.query_raw.return_value = [
|
||||
{
|
||||
"contentType": "STORE_AGENT",
|
||||
"contentId": "test-id",
|
||||
"userId": None,
|
||||
"embedding": "[0.1, 0.2]",
|
||||
"searchableText": "test",
|
||||
"metadata": {},
|
||||
"createdAt": "2024-01-01",
|
||||
"updatedAt": "2024-01-01",
|
||||
}
|
||||
]
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.get_content_embedding(
|
||||
ContentType.STORE_AGENT,
|
||||
"test-id",
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Verify the query was called
|
||||
assert mock_client.query_raw.called
|
||||
|
||||
# Get the SQL query that was executed
|
||||
call_args = mock_client.query_raw.call_args
|
||||
sql_query = call_args[0][0]
|
||||
|
||||
# Verify schema prefix is in the query
|
||||
assert '"platform"."UnifiedContentEmbedding"' in sql_query
|
||||
|
||||
# Verify result
|
||||
assert result is not None
|
||||
assert result["contentId"] == "test-id"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_delete_content_embedding_with_schema():
|
||||
"""Test deleting embeddings with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.delete_content_embedding(
|
||||
ContentType.STORE_AGENT,
|
||||
"test-id",
|
||||
)
|
||||
|
||||
# Verify the query was called
|
||||
assert mock_client.execute_raw.called
|
||||
|
||||
# Get the SQL query that was executed
|
||||
call_args = mock_client.execute_raw.call_args
|
||||
sql_query = call_args[0][0]
|
||||
|
||||
# Verify schema prefix is in the query
|
||||
assert '"platform"."UnifiedContentEmbedding"' in sql_query
|
||||
|
||||
# Verify result
|
||||
assert result is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_get_embedding_stats_with_schema():
|
||||
"""Test embedding statistics with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
# Mock both query results
|
||||
mock_client.query_raw.side_effect = [
|
||||
[{"count": 100}], # total_approved
|
||||
[{"count": 80}], # with_embeddings
|
||||
]
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.get_embedding_stats()
|
||||
|
||||
# Verify both queries were called
|
||||
assert mock_client.query_raw.call_count == 2
|
||||
|
||||
# Get both SQL queries
|
||||
first_call = mock_client.query_raw.call_args_list[0]
|
||||
second_call = mock_client.query_raw.call_args_list[1]
|
||||
|
||||
first_sql = first_call[0][0]
|
||||
second_sql = second_call[0][0]
|
||||
|
||||
# Verify schema prefix in both queries
|
||||
assert '"platform"."StoreListingVersion"' in first_sql
|
||||
assert '"platform"."StoreListingVersion"' in second_sql
|
||||
assert '"platform"."UnifiedContentEmbedding"' in second_sql
|
||||
|
||||
# Verify results
|
||||
assert result["total_approved"] == 100
|
||||
assert result["with_embeddings"] == 80
|
||||
assert result["without_embeddings"] == 20
|
||||
assert result["coverage_percent"] == 80.0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_backfill_missing_embeddings_with_schema():
|
||||
"""Test backfilling embeddings with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
# Mock missing embeddings query
|
||||
mock_client.query_raw.return_value = [
|
||||
{
|
||||
"id": "version-1",
|
||||
"name": "Test Agent",
|
||||
"description": "Test description",
|
||||
"subHeading": "Test heading",
|
||||
"categories": ["test"],
|
||||
}
|
||||
]
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.ensure_embedding"
|
||||
) as mock_ensure:
|
||||
mock_ensure.return_value = True
|
||||
|
||||
result = await embeddings.backfill_missing_embeddings(batch_size=10)
|
||||
|
||||
# Verify the query was called
|
||||
assert mock_client.query_raw.called
|
||||
|
||||
# Get the SQL query
|
||||
call_args = mock_client.query_raw.call_args
|
||||
sql_query = call_args[0][0]
|
||||
|
||||
# Verify schema prefix in query
|
||||
assert '"platform"."StoreListingVersion"' in sql_query
|
||||
assert '"platform"."UnifiedContentEmbedding"' in sql_query
|
||||
|
||||
# Verify ensure_embedding was called
|
||||
assert mock_ensure.called
|
||||
|
||||
# Verify results
|
||||
assert result["processed"] == 1
|
||||
assert result["success"] == 1
|
||||
assert result["failed"] == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_ensure_content_embedding_with_schema():
|
||||
"""Test ensuring embeddings exist with proper schema handling."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_content_embedding"
|
||||
) as mock_get:
|
||||
# Simulate no existing embedding
|
||||
mock_get.return_value = None
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.generate_embedding"
|
||||
) as mock_generate:
|
||||
mock_generate.return_value = [0.1] * 1536
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.store_content_embedding"
|
||||
) as mock_store:
|
||||
mock_store.return_value = True
|
||||
|
||||
result = await embeddings.ensure_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
searchable_text="test text",
|
||||
metadata={"test": "data"},
|
||||
user_id=None,
|
||||
force=False,
|
||||
)
|
||||
|
||||
# Verify the flow
|
||||
assert mock_get.called
|
||||
assert mock_generate.called
|
||||
assert mock_store.called
|
||||
assert result is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_backward_compatibility_store_embedding():
|
||||
"""Test backward compatibility wrapper for store_embedding."""
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.store_content_embedding"
|
||||
) as mock_store:
|
||||
mock_store.return_value = True
|
||||
|
||||
result = await embeddings.store_embedding(
|
||||
version_id="test-version-id",
|
||||
embedding=[0.1] * 1536,
|
||||
tx=None,
|
||||
)
|
||||
|
||||
# Verify it calls the new function with correct parameters
|
||||
assert mock_store.called
|
||||
call_args = mock_store.call_args
|
||||
|
||||
assert call_args[1]["content_type"] == ContentType.STORE_AGENT
|
||||
assert call_args[1]["content_id"] == "test-version-id"
|
||||
assert call_args[1]["user_id"] is None
|
||||
assert result is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_backward_compatibility_get_embedding():
|
||||
"""Test backward compatibility wrapper for get_embedding."""
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_content_embedding"
|
||||
) as mock_get:
|
||||
mock_get.return_value = {
|
||||
"contentType": "STORE_AGENT",
|
||||
"contentId": "test-version-id",
|
||||
"embedding": "[0.1, 0.2]",
|
||||
"createdAt": "2024-01-01",
|
||||
"updatedAt": "2024-01-01",
|
||||
}
|
||||
|
||||
result = await embeddings.get_embedding("test-version-id")
|
||||
|
||||
# Verify it calls the new function
|
||||
assert mock_get.called
|
||||
|
||||
# Verify it transforms to old format
|
||||
assert result is not None
|
||||
assert result["storeListingVersionId"] == "test-version-id"
|
||||
assert "embedding" in result
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_schema_handling_error_cases():
|
||||
"""Test error handling in schema-aware operations."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch("prisma.get_client") as mock_get_client:
|
||||
mock_client = AsyncMock()
|
||||
mock_client.execute_raw.side_effect = Exception("Database error")
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
embedding=[0.1] * 1536,
|
||||
searchable_text="test",
|
||||
metadata=None,
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Should return False on error, not raise
|
||||
assert result is False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__, "-v", "-s"])
|
||||
@@ -0,0 +1,380 @@
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import prisma
|
||||
import pytest
|
||||
from prisma import Prisma
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.api.features.store import embeddings
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
async def setup_prisma():
|
||||
"""Setup Prisma client for tests."""
|
||||
try:
|
||||
Prisma()
|
||||
except prisma.errors.ClientAlreadyRegisteredError:
|
||||
pass
|
||||
yield
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_build_searchable_text():
|
||||
"""Test searchable text building from listing fields."""
|
||||
result = embeddings.build_searchable_text(
|
||||
name="AI Assistant",
|
||||
description="A helpful AI assistant for productivity",
|
||||
sub_heading="Boost your productivity",
|
||||
categories=["AI", "Productivity"],
|
||||
)
|
||||
|
||||
expected = "AI Assistant Boost your productivity A helpful AI assistant for productivity AI Productivity"
|
||||
assert result == expected
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_build_searchable_text_empty_fields():
|
||||
"""Test searchable text building with empty fields."""
|
||||
result = embeddings.build_searchable_text(
|
||||
name="", description="Test description", sub_heading="", categories=[]
|
||||
)
|
||||
|
||||
assert result == "Test description"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_generate_embedding_success():
|
||||
"""Test successful embedding generation."""
|
||||
# Mock OpenAI response
|
||||
mock_client = MagicMock()
|
||||
mock_response = MagicMock()
|
||||
mock_response.data = [MagicMock()]
|
||||
mock_response.data[0].embedding = [0.1, 0.2, 0.3] * 512 # 1536 dimensions
|
||||
|
||||
# Use AsyncMock for async embeddings.create method
|
||||
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
|
||||
|
||||
# Patch at the point of use in embeddings.py
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_openai_client"
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is not None
|
||||
assert len(result) == 1536
|
||||
assert result[0] == 0.1
|
||||
|
||||
mock_client.embeddings.create.assert_called_once_with(
|
||||
model="text-embedding-3-small", input="test text"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_generate_embedding_no_api_key():
|
||||
"""Test embedding generation without API key."""
|
||||
# Patch at the point of use in embeddings.py
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_openai_client"
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = None
|
||||
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_generate_embedding_api_error():
|
||||
"""Test embedding generation with API error."""
|
||||
mock_client = MagicMock()
|
||||
mock_client.embeddings.create = AsyncMock(side_effect=Exception("API Error"))
|
||||
|
||||
# Patch at the point of use in embeddings.py
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_openai_client"
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_generate_embedding_text_truncation():
|
||||
"""Test that long text is properly truncated using tiktoken."""
|
||||
from tiktoken import encoding_for_model
|
||||
|
||||
mock_client = MagicMock()
|
||||
mock_response = MagicMock()
|
||||
mock_response.data = [MagicMock()]
|
||||
mock_response.data[0].embedding = [0.1] * 1536
|
||||
|
||||
# Use AsyncMock for async embeddings.create method
|
||||
mock_client.embeddings.create = AsyncMock(return_value=mock_response)
|
||||
|
||||
# Patch at the point of use in embeddings.py
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.get_openai_client"
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
# Create text that will exceed 8191 tokens
|
||||
# Use varied characters to ensure token-heavy text: each word is ~1 token
|
||||
words = [f"word{i}" for i in range(10000)]
|
||||
long_text = " ".join(words) # ~10000 tokens
|
||||
|
||||
await embeddings.generate_embedding(long_text)
|
||||
|
||||
# Verify text was truncated to 8191 tokens
|
||||
call_args = mock_client.embeddings.create.call_args
|
||||
truncated_text = call_args.kwargs["input"]
|
||||
|
||||
# Count actual tokens in truncated text
|
||||
enc = encoding_for_model("text-embedding-3-small")
|
||||
actual_tokens = len(enc.encode(truncated_text))
|
||||
|
||||
# Should be at or just under 8191 tokens
|
||||
assert actual_tokens <= 8191
|
||||
# Should be close to the limit (not over-truncated)
|
||||
assert actual_tokens >= 8100
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_store_embedding_success(mocker):
|
||||
"""Test successful embedding storage."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_client.execute_raw = mocker.AsyncMock()
|
||||
|
||||
embedding = [0.1, 0.2, 0.3]
|
||||
|
||||
result = await embeddings.store_embedding(
|
||||
version_id="test-version-id", embedding=embedding, tx=mock_client
|
||||
)
|
||||
|
||||
assert result is True
|
||||
mock_client.execute_raw.assert_called_once()
|
||||
call_args = mock_client.execute_raw.call_args[0]
|
||||
assert "test-version-id" in call_args
|
||||
assert "[0.1,0.2,0.3]" in call_args
|
||||
assert None in call_args # userId should be None for store agents
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_store_embedding_database_error(mocker):
|
||||
"""Test embedding storage with database error."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_client.execute_raw.side_effect = Exception("Database error")
|
||||
|
||||
embedding = [0.1, 0.2, 0.3]
|
||||
|
||||
result = await embeddings.store_embedding(
|
||||
version_id="test-version-id", embedding=embedding, tx=mock_client
|
||||
)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_get_embedding_success(mocker):
|
||||
"""Test successful embedding retrieval."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_result = [
|
||||
{
|
||||
"contentType": "STORE_AGENT",
|
||||
"contentId": "test-version-id",
|
||||
"embedding": "[0.1,0.2,0.3]",
|
||||
"searchableText": "Test text",
|
||||
"metadata": {},
|
||||
"createdAt": "2024-01-01T00:00:00Z",
|
||||
"updatedAt": "2024-01-01T00:00:00Z",
|
||||
}
|
||||
]
|
||||
mock_client.query_raw.return_value = mock_result
|
||||
|
||||
with patch("prisma.get_client", return_value=mock_client):
|
||||
result = await embeddings.get_embedding("test-version-id")
|
||||
|
||||
assert result is not None
|
||||
assert result["storeListingVersionId"] == "test-version-id"
|
||||
assert result["embedding"] == "[0.1,0.2,0.3]"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_get_embedding_not_found(mocker):
|
||||
"""Test embedding retrieval when not found."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_client.query_raw.return_value = []
|
||||
|
||||
with patch("prisma.get_client", return_value=mock_client):
|
||||
result = await embeddings.get_embedding("test-version-id")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.generate_embedding")
|
||||
@patch("backend.api.features.store.embeddings.store_embedding")
|
||||
@patch("backend.api.features.store.embeddings.get_embedding")
|
||||
async def test_ensure_embedding_already_exists(mock_get, mock_store, mock_generate):
|
||||
"""Test ensure_embedding when embedding already exists."""
|
||||
mock_get.return_value = {"embedding": "[0.1,0.2,0.3]"}
|
||||
|
||||
result = await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
|
||||
assert result is True
|
||||
mock_generate.assert_not_called()
|
||||
mock_store.assert_not_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.generate_embedding")
|
||||
@patch("backend.api.features.store.embeddings.store_content_embedding")
|
||||
@patch("backend.api.features.store.embeddings.get_embedding")
|
||||
async def test_ensure_embedding_create_new(mock_get, mock_store, mock_generate):
|
||||
"""Test ensure_embedding creating new embedding."""
|
||||
mock_get.return_value = None
|
||||
mock_generate.return_value = [0.1, 0.2, 0.3]
|
||||
mock_store.return_value = True
|
||||
|
||||
result = await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
|
||||
assert result is True
|
||||
mock_generate.assert_called_once_with("Test Test heading Test description test")
|
||||
mock_store.assert_called_once_with(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
embedding=[0.1, 0.2, 0.3],
|
||||
searchable_text="Test Test heading Test description test",
|
||||
metadata={"name": "Test", "subHeading": "Test heading", "categories": ["test"]},
|
||||
user_id=None,
|
||||
tx=None,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.generate_embedding")
|
||||
@patch("backend.api.features.store.embeddings.get_embedding")
|
||||
async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
|
||||
"""Test ensure_embedding when generation fails."""
|
||||
mock_get.return_value = None
|
||||
mock_generate.return_value = None
|
||||
|
||||
result = await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_get_embedding_stats(mocker):
|
||||
"""Test embedding statistics retrieval."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
|
||||
# Mock approved count query
|
||||
mock_approved_result = [{"count": 100}]
|
||||
# Mock embedded count query
|
||||
mock_embedded_result = [{"count": 75}]
|
||||
|
||||
mock_client.query_raw.side_effect = [mock_approved_result, mock_embedded_result]
|
||||
|
||||
with patch("prisma.get_client", return_value=mock_client):
|
||||
result = await embeddings.get_embedding_stats()
|
||||
|
||||
assert result["total_approved"] == 100
|
||||
assert result["with_embeddings"] == 75
|
||||
assert result["without_embeddings"] == 25
|
||||
assert result["coverage_percent"] == 75.0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@patch("backend.api.features.store.embeddings.ensure_embedding")
|
||||
async def test_backfill_missing_embeddings_success(mock_ensure, mocker):
|
||||
"""Test backfill with successful embedding generation."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
|
||||
# Mock missing embeddings query
|
||||
mock_missing = [
|
||||
{
|
||||
"id": "version-1",
|
||||
"name": "Agent 1",
|
||||
"description": "Description 1",
|
||||
"subHeading": "Heading 1",
|
||||
"categories": ["AI"],
|
||||
},
|
||||
{
|
||||
"id": "version-2",
|
||||
"name": "Agent 2",
|
||||
"description": "Description 2",
|
||||
"subHeading": "Heading 2",
|
||||
"categories": ["Productivity"],
|
||||
},
|
||||
]
|
||||
mock_client.query_raw.return_value = mock_missing
|
||||
|
||||
# Mock ensure_embedding to succeed for first, fail for second
|
||||
mock_ensure.side_effect = [True, False]
|
||||
|
||||
with patch("prisma.get_client", return_value=mock_client):
|
||||
result = await embeddings.backfill_missing_embeddings(batch_size=5)
|
||||
|
||||
assert result["processed"] == 2
|
||||
assert result["success"] == 1
|
||||
assert result["failed"] == 1
|
||||
assert mock_ensure.call_count == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_backfill_missing_embeddings_no_missing(mocker):
|
||||
"""Test backfill when no embeddings are missing."""
|
||||
mock_client = mocker.AsyncMock()
|
||||
mock_client.query_raw.return_value = []
|
||||
|
||||
with patch("prisma.get_client", return_value=mock_client):
|
||||
result = await embeddings.backfill_missing_embeddings(batch_size=5)
|
||||
|
||||
assert result["processed"] == 0
|
||||
assert result["success"] == 0
|
||||
assert result["failed"] == 0
|
||||
assert result["message"] == "No missing embeddings"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_embedding_to_vector_string():
|
||||
"""Test embedding to PostgreSQL vector string conversion."""
|
||||
embedding = [0.1, 0.2, 0.3, -0.4]
|
||||
result = embeddings.embedding_to_vector_string(embedding)
|
||||
assert result == "[0.1,0.2,0.3,-0.4]"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_embed_query():
|
||||
"""Test embed_query function (alias for generate_embedding)."""
|
||||
with patch(
|
||||
"backend.api.features.store.embeddings.generate_embedding"
|
||||
) as mock_generate:
|
||||
mock_generate.return_value = [0.1, 0.2, 0.3]
|
||||
|
||||
result = await embeddings.embed_query("test query")
|
||||
|
||||
assert result == [0.1, 0.2, 0.3]
|
||||
mock_generate.assert_called_once_with("test query")
|
||||
@@ -0,0 +1,391 @@
|
||||
"""
|
||||
Hybrid Search for Store Agents
|
||||
|
||||
Combines semantic (embedding) search with lexical (tsvector) search
|
||||
for improved relevance in marketplace agent discovery.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from dataclasses import dataclass
|
||||
from datetime import datetime
|
||||
from typing import Any, Literal
|
||||
|
||||
from backend.api.features.store.embeddings import (
|
||||
embed_query,
|
||||
embedding_to_vector_string,
|
||||
)
|
||||
from backend.data.db import query_raw_with_schema
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class HybridSearchWeights:
|
||||
"""Weights for combining search signals."""
|
||||
|
||||
semantic: float = 0.30 # Embedding cosine similarity
|
||||
lexical: float = 0.30 # tsvector ts_rank_cd score
|
||||
category: float = 0.20 # Category match boost
|
||||
recency: float = 0.10 # Newer agents ranked higher
|
||||
popularity: float = 0.10 # Agent usage/runs (PageRank-like)
|
||||
|
||||
def __post_init__(self):
|
||||
"""Validate weights are non-negative and sum to approximately 1.0."""
|
||||
total = (
|
||||
self.semantic
|
||||
+ self.lexical
|
||||
+ self.category
|
||||
+ self.recency
|
||||
+ self.popularity
|
||||
)
|
||||
|
||||
if any(
|
||||
w < 0
|
||||
for w in [
|
||||
self.semantic,
|
||||
self.lexical,
|
||||
self.category,
|
||||
self.recency,
|
||||
self.popularity,
|
||||
]
|
||||
):
|
||||
raise ValueError("All weights must be non-negative")
|
||||
|
||||
if not (0.99 <= total <= 1.01):
|
||||
raise ValueError(f"Weights must sum to ~1.0, got {total:.3f}")
|
||||
|
||||
|
||||
DEFAULT_WEIGHTS = HybridSearchWeights()
|
||||
|
||||
# Minimum relevance score threshold - agents below this are filtered out
|
||||
# With weights (0.30 semantic + 0.30 lexical + 0.20 category + 0.10 recency + 0.10 popularity):
|
||||
# - 0.20 means at least ~60% semantic match OR strong lexical match required
|
||||
# - Ensures only genuinely relevant results are returned
|
||||
# - Recency/popularity alone (0.10 each) won't pass the threshold
|
||||
DEFAULT_MIN_SCORE = 0.20
|
||||
|
||||
|
||||
@dataclass
|
||||
class HybridSearchResult:
|
||||
"""A single search result with score breakdown."""
|
||||
|
||||
slug: str
|
||||
agent_name: str
|
||||
agent_image: str
|
||||
creator_username: str
|
||||
creator_avatar: str
|
||||
sub_heading: str
|
||||
description: str
|
||||
runs: int
|
||||
rating: float
|
||||
categories: list[str]
|
||||
featured: bool
|
||||
is_available: bool
|
||||
updated_at: datetime
|
||||
|
||||
# Score breakdown (for debugging/tuning)
|
||||
combined_score: float
|
||||
semantic_score: float = 0.0
|
||||
lexical_score: float = 0.0
|
||||
category_score: float = 0.0
|
||||
recency_score: float = 0.0
|
||||
popularity_score: float = 0.0
|
||||
|
||||
|
||||
async def hybrid_search(
|
||||
query: str,
|
||||
featured: bool = False,
|
||||
creators: list[str] | None = None,
|
||||
category: str | None = None,
|
||||
sorted_by: (
|
||||
Literal["relevance", "rating", "runs", "name", "updated_at"] | None
|
||||
) = None,
|
||||
page: int = 1,
|
||||
page_size: int = 20,
|
||||
weights: HybridSearchWeights | None = None,
|
||||
min_score: float | None = None,
|
||||
) -> tuple[list[dict[str, Any]], int]:
|
||||
"""
|
||||
Perform hybrid search combining semantic and lexical signals.
|
||||
|
||||
Args:
|
||||
query: Search query string
|
||||
featured: Filter for featured agents only
|
||||
creators: Filter by creator usernames
|
||||
category: Filter by category
|
||||
sorted_by: Sort order (relevance uses hybrid scoring)
|
||||
page: Page number (1-indexed)
|
||||
page_size: Results per page
|
||||
weights: Custom weights for search signals
|
||||
min_score: Minimum relevance score threshold (0-1). Results below
|
||||
this score are filtered out. Defaults to DEFAULT_MIN_SCORE.
|
||||
|
||||
Returns:
|
||||
Tuple of (results list, total count). Returns empty list if no
|
||||
results meet the minimum relevance threshold.
|
||||
"""
|
||||
# Validate inputs
|
||||
query = query.strip()
|
||||
if not query:
|
||||
return [], 0 # Empty query returns no results
|
||||
|
||||
if page < 1:
|
||||
page = 1
|
||||
if page_size < 1:
|
||||
page_size = 1
|
||||
if page_size > 100: # Cap at reasonable limit to prevent performance issues
|
||||
page_size = 100
|
||||
|
||||
if weights is None:
|
||||
weights = DEFAULT_WEIGHTS
|
||||
if min_score is None:
|
||||
min_score = DEFAULT_MIN_SCORE
|
||||
|
||||
offset = (page - 1) * page_size
|
||||
|
||||
# Generate query embedding
|
||||
query_embedding = await embed_query(query)
|
||||
|
||||
# Build WHERE clause conditions
|
||||
where_parts: list[str] = ["sa.is_available = true"]
|
||||
params: list[Any] = []
|
||||
param_index = 1
|
||||
|
||||
# Add search query for lexical matching
|
||||
params.append(query)
|
||||
query_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
# Add lowercased query for category matching
|
||||
params.append(query.lower())
|
||||
query_lower_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
if featured:
|
||||
where_parts.append("sa.featured = true")
|
||||
|
||||
if creators:
|
||||
where_parts.append(f"sa.creator_username = ANY(${param_index})")
|
||||
params.append(creators)
|
||||
param_index += 1
|
||||
|
||||
if category:
|
||||
where_parts.append(f"${param_index} = ANY(sa.categories)")
|
||||
params.append(category)
|
||||
param_index += 1
|
||||
|
||||
# Safe: where_parts only contains hardcoded strings with $N parameter placeholders
|
||||
# No user input is concatenated directly into the SQL string
|
||||
where_clause = " AND ".join(where_parts)
|
||||
|
||||
# Embedding is required for hybrid search - fail fast if unavailable
|
||||
if query_embedding is None or not query_embedding:
|
||||
# Log detailed error server-side
|
||||
logger.error(
|
||||
"Failed to generate query embedding. "
|
||||
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
|
||||
)
|
||||
# Raise generic error to client
|
||||
raise ValueError("Search service temporarily unavailable")
|
||||
|
||||
# Add embedding parameter
|
||||
embedding_str = embedding_to_vector_string(query_embedding)
|
||||
params.append(embedding_str)
|
||||
embedding_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
# Add weight parameters for SQL calculation
|
||||
params.append(weights.semantic)
|
||||
weight_semantic_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
params.append(weights.lexical)
|
||||
weight_lexical_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
params.append(weights.category)
|
||||
weight_category_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
params.append(weights.recency)
|
||||
weight_recency_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
params.append(weights.popularity)
|
||||
weight_popularity_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
# Add min_score parameter
|
||||
params.append(min_score)
|
||||
min_score_param = f"${param_index}"
|
||||
param_index += 1
|
||||
|
||||
# Optimized hybrid search query:
|
||||
# 1. Direct join to UnifiedContentEmbedding via contentId=storeListingVersionId (no redundant JOINs)
|
||||
# 2. UNION approach (deduplicates agents matching both branches)
|
||||
# 3. COUNT(*) OVER() to get total count in single query
|
||||
# 4. Optimized category matching with EXISTS + unnest
|
||||
# 5. Pre-calculated max values for lexical and popularity normalization
|
||||
# 6. Simplified recency calculation with linear decay
|
||||
# 7. Logarithmic popularity scaling to prevent viral agents from dominating
|
||||
sql_query = f"""
|
||||
WITH candidates AS (
|
||||
-- Lexical matches (uses GIN index on search column)
|
||||
SELECT sa."storeListingVersionId"
|
||||
FROM {{schema_prefix}}"StoreAgent" sa
|
||||
WHERE {where_clause}
|
||||
AND sa.search @@ plainto_tsquery('english', {query_param})
|
||||
|
||||
UNION
|
||||
|
||||
-- Semantic matches (uses HNSW index on embedding with KNN)
|
||||
SELECT "storeListingVersionId"
|
||||
FROM (
|
||||
SELECT sa."storeListingVersionId", uce.embedding
|
||||
FROM {{schema_prefix}}"StoreAgent" sa
|
||||
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
|
||||
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
|
||||
WHERE {where_clause}
|
||||
ORDER BY uce.embedding <=> {embedding_param}::vector
|
||||
LIMIT 200
|
||||
) semantic_results
|
||||
),
|
||||
search_scores AS (
|
||||
SELECT
|
||||
sa.slug,
|
||||
sa.agent_name,
|
||||
sa.agent_image,
|
||||
sa.creator_username,
|
||||
sa.creator_avatar,
|
||||
sa.sub_heading,
|
||||
sa.description,
|
||||
sa.runs,
|
||||
sa.rating,
|
||||
sa.categories,
|
||||
sa.featured,
|
||||
sa.is_available,
|
||||
sa.updated_at,
|
||||
-- Semantic score: cosine similarity (1 - distance)
|
||||
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
|
||||
-- Lexical score: ts_rank_cd (will be normalized later)
|
||||
COALESCE(ts_rank_cd(sa.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
|
||||
-- Category match: optimized with unnest for better performance
|
||||
CASE
|
||||
WHEN EXISTS (
|
||||
SELECT 1 FROM unnest(sa.categories) cat
|
||||
WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
|
||||
)
|
||||
THEN 1.0
|
||||
ELSE 0.0
|
||||
END as category_score,
|
||||
-- Recency score: linear decay over 90 days (simpler than exponential)
|
||||
GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score,
|
||||
-- Popularity raw: agent runs count (will be normalized with log scaling)
|
||||
sa.runs as popularity_raw
|
||||
FROM candidates c
|
||||
INNER JOIN {{schema_prefix}}"StoreAgent" sa
|
||||
ON c."storeListingVersionId" = sa."storeListingVersionId"
|
||||
LEFT JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
|
||||
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
|
||||
),
|
||||
max_lexical AS (
|
||||
SELECT MAX(lexical_raw) as max_val FROM search_scores
|
||||
),
|
||||
max_popularity AS (
|
||||
SELECT MAX(popularity_raw) as max_val FROM search_scores
|
||||
),
|
||||
normalized AS (
|
||||
SELECT
|
||||
ss.*,
|
||||
-- Normalize lexical score by pre-calculated max
|
||||
CASE
|
||||
WHEN ml.max_val > 0
|
||||
THEN ss.lexical_raw / ml.max_val
|
||||
ELSE 0
|
||||
END as lexical_score,
|
||||
-- Normalize popularity with logarithmic scaling to prevent viral agents from dominating
|
||||
-- LOG(1 + runs) / LOG(1 + max_runs) ensures score is 0-1 range
|
||||
CASE
|
||||
WHEN mp.max_val > 0 AND ss.popularity_raw > 0
|
||||
THEN LN(1 + ss.popularity_raw) / LN(1 + mp.max_val)
|
||||
ELSE 0
|
||||
END as popularity_score
|
||||
FROM search_scores ss
|
||||
CROSS JOIN max_lexical ml
|
||||
CROSS JOIN max_popularity mp
|
||||
),
|
||||
scored AS (
|
||||
SELECT
|
||||
slug,
|
||||
agent_name,
|
||||
agent_image,
|
||||
creator_username,
|
||||
creator_avatar,
|
||||
sub_heading,
|
||||
description,
|
||||
runs,
|
||||
rating,
|
||||
categories,
|
||||
featured,
|
||||
is_available,
|
||||
updated_at,
|
||||
semantic_score,
|
||||
lexical_score,
|
||||
category_score,
|
||||
recency_score,
|
||||
popularity_score,
|
||||
(
|
||||
{weight_semantic_param} * semantic_score +
|
||||
{weight_lexical_param} * lexical_score +
|
||||
{weight_category_param} * category_score +
|
||||
{weight_recency_param} * recency_score +
|
||||
{weight_popularity_param} * popularity_score
|
||||
) as combined_score
|
||||
FROM normalized
|
||||
),
|
||||
filtered AS (
|
||||
SELECT
|
||||
*,
|
||||
COUNT(*) OVER () as total_count
|
||||
FROM scored
|
||||
WHERE combined_score >= {min_score_param}
|
||||
)
|
||||
SELECT * FROM filtered
|
||||
ORDER BY combined_score DESC
|
||||
LIMIT ${param_index} OFFSET ${param_index + 1}
|
||||
"""
|
||||
|
||||
# Add pagination params
|
||||
params.extend([page_size, offset])
|
||||
|
||||
# Execute search query - includes total_count via window function
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
|
||||
# Extract total count from first result (all rows have same count)
|
||||
total = results[0]["total_count"] if results else 0
|
||||
|
||||
# Remove total_count from results before returning
|
||||
for result in results:
|
||||
result.pop("total_count", None)
|
||||
|
||||
# Log without sensitive query content
|
||||
logger.info(f"Hybrid search: {len(results)} results, {total} total")
|
||||
|
||||
return results, total
|
||||
|
||||
|
||||
async def hybrid_search_simple(
|
||||
query: str,
|
||||
page: int = 1,
|
||||
page_size: int = 20,
|
||||
) -> tuple[list[dict[str, Any]], int]:
|
||||
"""
|
||||
Simplified hybrid search for common use cases.
|
||||
|
||||
Uses default weights and no filters.
|
||||
"""
|
||||
return await hybrid_search(
|
||||
query=query,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
@@ -0,0 +1,334 @@
|
||||
"""
|
||||
Integration tests for hybrid search with schema handling.
|
||||
|
||||
These tests verify that hybrid search works correctly across different database schemas.
|
||||
"""
|
||||
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.api.features.store.hybrid_search import HybridSearchWeights, hybrid_search
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_with_schema_handling():
|
||||
"""Test that hybrid search correctly handles database schema prefixes."""
|
||||
# Test with a mock query to ensure schema handling works
|
||||
query = "test agent"
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
# Mock the query result
|
||||
mock_query.return_value = [
|
||||
{
|
||||
"slug": "test/agent",
|
||||
"agent_name": "Test Agent",
|
||||
"agent_image": "test.png",
|
||||
"creator_username": "test",
|
||||
"creator_avatar": "avatar.png",
|
||||
"sub_heading": "Test sub-heading",
|
||||
"description": "Test description",
|
||||
"runs": 10,
|
||||
"rating": 4.5,
|
||||
"categories": ["test"],
|
||||
"featured": False,
|
||||
"is_available": True,
|
||||
"updated_at": "2024-01-01T00:00:00Z",
|
||||
"combined_score": 0.8,
|
||||
"semantic_score": 0.7,
|
||||
"lexical_score": 0.6,
|
||||
"category_score": 0.5,
|
||||
"recency_score": 0.4,
|
||||
"total_count": 1,
|
||||
}
|
||||
]
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536 # Mock embedding
|
||||
|
||||
results, total = await hybrid_search(
|
||||
query=query,
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify the query was called
|
||||
assert mock_query.called
|
||||
# Verify the SQL template uses schema_prefix placeholder
|
||||
call_args = mock_query.call_args
|
||||
sql_template = call_args[0][0]
|
||||
assert "{schema_prefix}" in sql_template
|
||||
|
||||
# Verify results
|
||||
assert len(results) == 1
|
||||
assert total == 1
|
||||
assert results[0]["slug"] == "test/agent"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_with_public_schema():
|
||||
"""Test hybrid search when using public schema (no prefix needed)."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "public"
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
mock_query.return_value = []
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify the mock was set up correctly
|
||||
assert mock_schema.return_value == "public"
|
||||
|
||||
# Results should work even with empty results
|
||||
assert results == []
|
||||
assert total == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_with_custom_schema():
|
||||
"""Test hybrid search when using custom schema (e.g., 'platform')."""
|
||||
with patch("backend.data.db.get_database_schema") as mock_schema:
|
||||
mock_schema.return_value = "platform"
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
mock_query.return_value = []
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify the mock was set up correctly
|
||||
assert mock_schema.return_value == "platform"
|
||||
|
||||
assert results == []
|
||||
assert total == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_without_embeddings():
|
||||
"""Test hybrid search fails fast when embeddings are unavailable."""
|
||||
# Patch where the function is used, not where it's defined
|
||||
with patch("backend.api.features.store.hybrid_search.embed_query") as mock_embed:
|
||||
# Simulate embedding failure
|
||||
mock_embed.return_value = None
|
||||
|
||||
# Should raise ValueError with helpful message
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
await hybrid_search(
|
||||
query="test",
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify error message is generic (doesn't leak implementation details)
|
||||
assert "Search service temporarily unavailable" in str(exc_info.value)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_with_filters():
|
||||
"""Test hybrid search with various filters."""
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
mock_query.return_value = []
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
# Test with featured filter
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
featured=True,
|
||||
creators=["user1", "user2"],
|
||||
category="productivity",
|
||||
page=1,
|
||||
page_size=10,
|
||||
)
|
||||
|
||||
# Verify filters were applied in the query
|
||||
call_args = mock_query.call_args
|
||||
params = call_args[0][1:] # Skip SQL template
|
||||
|
||||
# Should have query, query_lower, creators array, category
|
||||
assert len(params) >= 4
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_weights():
|
||||
"""Test hybrid search with custom weights."""
|
||||
custom_weights = HybridSearchWeights(
|
||||
semantic=0.5,
|
||||
lexical=0.3,
|
||||
category=0.1,
|
||||
recency=0.1,
|
||||
popularity=0.0,
|
||||
)
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
mock_query.return_value = []
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
weights=custom_weights,
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify custom weights were used in the query
|
||||
call_args = mock_query.call_args
|
||||
sql_template = call_args[0][0]
|
||||
params = call_args[0][1:] # Get all parameters passed
|
||||
|
||||
# Check that SQL uses parameterized weights (not f-string interpolation)
|
||||
assert "$" in sql_template # Verify parameterization is used
|
||||
|
||||
# Check that custom weights are in the params
|
||||
assert 0.5 in params # semantic weight
|
||||
assert 0.3 in params # lexical weight
|
||||
assert 0.1 in params # category and recency weights
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_min_score_filtering():
|
||||
"""Test hybrid search minimum score threshold."""
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
# Return results with varying scores
|
||||
mock_query.return_value = [
|
||||
{
|
||||
"slug": "high-score/agent",
|
||||
"agent_name": "High Score Agent",
|
||||
"combined_score": 0.8,
|
||||
"total_count": 1,
|
||||
# ... other fields
|
||||
}
|
||||
]
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
# Test with custom min_score
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
min_score=0.5, # High threshold
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
# Verify min_score was applied in query
|
||||
call_args = mock_query.call_args
|
||||
sql_template = call_args[0][0]
|
||||
params = call_args[0][1:] # Get all parameters
|
||||
|
||||
# Check that SQL uses parameterized min_score
|
||||
assert "combined_score >=" in sql_template
|
||||
assert "$" in sql_template # Verify parameterization
|
||||
|
||||
# Check that custom min_score is in the params
|
||||
assert 0.5 in params
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_pagination():
|
||||
"""Test hybrid search pagination."""
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
mock_query.return_value = []
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
# Test page 2 with page_size 10
|
||||
results, total = await hybrid_search(
|
||||
query="test",
|
||||
page=2,
|
||||
page_size=10,
|
||||
)
|
||||
|
||||
# Verify pagination parameters
|
||||
call_args = mock_query.call_args
|
||||
params = call_args[0]
|
||||
|
||||
# Last two params should be LIMIT and OFFSET
|
||||
limit = params[-2]
|
||||
offset = params[-1]
|
||||
|
||||
assert limit == 10 # page_size
|
||||
assert offset == 10 # (page - 1) * page_size = (2 - 1) * 10
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.integration
|
||||
async def test_hybrid_search_error_handling():
|
||||
"""Test hybrid search error handling."""
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
# Simulate database error
|
||||
mock_query.side_effect = Exception("Database connection error")
|
||||
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_embed.return_value = [0.1] * 1536
|
||||
|
||||
# Should raise exception
|
||||
with pytest.raises(Exception) as exc_info:
|
||||
await hybrid_search(
|
||||
query="test",
|
||||
page=1,
|
||||
page_size=20,
|
||||
)
|
||||
|
||||
assert "Database connection error" in str(exc_info.value)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__, "-v", "-s"])
|
||||
@@ -110,6 +110,7 @@ class Profile(pydantic.BaseModel):
|
||||
|
||||
|
||||
class StoreSubmission(pydantic.BaseModel):
|
||||
listing_id: str
|
||||
agent_id: str
|
||||
agent_version: int
|
||||
name: str
|
||||
@@ -164,8 +165,12 @@ class StoreListingsWithVersionsResponse(pydantic.BaseModel):
|
||||
|
||||
|
||||
class StoreSubmissionRequest(pydantic.BaseModel):
|
||||
agent_id: str
|
||||
agent_version: int
|
||||
agent_id: str = pydantic.Field(
|
||||
..., min_length=1, description="Agent ID cannot be empty"
|
||||
)
|
||||
agent_version: int = pydantic.Field(
|
||||
..., gt=0, description="Agent version must be greater than 0"
|
||||
)
|
||||
slug: str
|
||||
name: str
|
||||
sub_heading: str
|
||||
|
||||
@@ -138,6 +138,7 @@ def test_creator_details():
|
||||
|
||||
def test_store_submission():
|
||||
submission = store_model.StoreSubmission(
|
||||
listing_id="listing123",
|
||||
agent_id="agent123",
|
||||
agent_version=1,
|
||||
sub_heading="Test subheading",
|
||||
@@ -159,6 +160,7 @@ def test_store_submissions_response():
|
||||
response = store_model.StoreSubmissionsResponse(
|
||||
submissions=[
|
||||
store_model.StoreSubmission(
|
||||
listing_id="listing123",
|
||||
agent_id="agent123",
|
||||
agent_version=1,
|
||||
sub_heading="Test subheading",
|
||||
|
||||
@@ -521,6 +521,7 @@ def test_get_submissions_success(
|
||||
mocked_value = store_model.StoreSubmissionsResponse(
|
||||
submissions=[
|
||||
store_model.StoreSubmission(
|
||||
listing_id="test-listing-id",
|
||||
name="Test Agent",
|
||||
description="Test agent description",
|
||||
image_urls=["test.jpg"],
|
||||
|
||||
@@ -6,6 +6,9 @@ import hashlib
|
||||
import hmac
|
||||
import logging
|
||||
from enum import Enum
|
||||
from typing import cast
|
||||
|
||||
from prisma.types import Serializable
|
||||
|
||||
from backend.sdk import (
|
||||
BaseWebhooksManager,
|
||||
@@ -84,7 +87,9 @@ class AirtableWebhookManager(BaseWebhooksManager):
|
||||
# update webhook config
|
||||
await update_webhook(
|
||||
webhook.id,
|
||||
config={"base_id": base_id, "cursor": response.cursor},
|
||||
config=cast(
|
||||
dict[str, Serializable], {"base_id": base_id, "cursor": response.cursor}
|
||||
),
|
||||
)
|
||||
|
||||
event_type = "notification"
|
||||
|
||||
184
autogpt_platform/backend/backend/blocks/helpers/review.py
Normal file
184
autogpt_platform/backend/backend/blocks/helpers/review.py
Normal file
@@ -0,0 +1,184 @@
|
||||
"""
|
||||
Shared helpers for Human-In-The-Loop (HITL) review functionality.
|
||||
Used by both the dedicated HumanInTheLoopBlock and blocks that require human review.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
|
||||
from prisma.enums import ReviewStatus
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.execution import ExecutionContext, ExecutionStatus
|
||||
from backend.data.human_review import ReviewResult
|
||||
from backend.executor.manager import async_update_node_execution_status
|
||||
from backend.util.clients import get_database_manager_async_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ReviewDecision(BaseModel):
|
||||
"""Result of a review decision."""
|
||||
|
||||
should_proceed: bool
|
||||
message: str
|
||||
review_result: ReviewResult
|
||||
|
||||
|
||||
class HITLReviewHelper:
|
||||
"""Helper class for Human-In-The-Loop review operations."""
|
||||
|
||||
@staticmethod
|
||||
async def get_or_create_human_review(**kwargs) -> Optional[ReviewResult]:
|
||||
"""Create or retrieve a human review from the database."""
|
||||
return await get_database_manager_async_client().get_or_create_human_review(
|
||||
**kwargs
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def update_node_execution_status(**kwargs) -> None:
|
||||
"""Update the execution status of a node."""
|
||||
await async_update_node_execution_status(
|
||||
db_client=get_database_manager_async_client(), **kwargs
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def update_review_processed_status(
|
||||
node_exec_id: str, processed: bool
|
||||
) -> None:
|
||||
"""Update the processed status of a review."""
|
||||
return await get_database_manager_async_client().update_review_processed_status(
|
||||
node_exec_id, processed
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def _handle_review_request(
|
||||
input_data: Any,
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
block_name: str = "Block",
|
||||
editable: bool = False,
|
||||
) -> Optional[ReviewResult]:
|
||||
"""
|
||||
Handle a review request for a block that requires human review.
|
||||
|
||||
Args:
|
||||
input_data: The input data to be reviewed
|
||||
user_id: ID of the user requesting the review
|
||||
node_exec_id: ID of the node execution
|
||||
graph_exec_id: ID of the graph execution
|
||||
graph_id: ID of the graph
|
||||
graph_version: Version of the graph
|
||||
execution_context: Current execution context
|
||||
block_name: Name of the block requesting review
|
||||
editable: Whether the reviewer can edit the data
|
||||
|
||||
Returns:
|
||||
ReviewResult if review is complete, None if waiting for human input
|
||||
|
||||
Raises:
|
||||
Exception: If review creation or status update fails
|
||||
"""
|
||||
# Skip review if safe mode is disabled - return auto-approved result
|
||||
if not execution_context.safe_mode:
|
||||
logger.info(
|
||||
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
|
||||
)
|
||||
return ReviewResult(
|
||||
data=input_data,
|
||||
status=ReviewStatus.APPROVED,
|
||||
message="Auto-approved (safe mode disabled)",
|
||||
processed=True,
|
||||
node_exec_id=node_exec_id,
|
||||
)
|
||||
|
||||
result = await HITLReviewHelper.get_or_create_human_review(
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
input_data=input_data,
|
||||
message=f"Review required for {block_name} execution",
|
||||
editable=editable,
|
||||
)
|
||||
|
||||
if result is None:
|
||||
logger.info(
|
||||
f"Block {block_name} pausing execution for node {node_exec_id} - awaiting human review"
|
||||
)
|
||||
await HITLReviewHelper.update_node_execution_status(
|
||||
exec_id=node_exec_id,
|
||||
status=ExecutionStatus.REVIEW,
|
||||
)
|
||||
return None # Signal that execution should pause
|
||||
|
||||
# Mark review as processed if not already done
|
||||
if not result.processed:
|
||||
await HITLReviewHelper.update_review_processed_status(
|
||||
node_exec_id=node_exec_id, processed=True
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
async def handle_review_decision(
|
||||
input_data: Any,
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
block_name: str = "Block",
|
||||
editable: bool = False,
|
||||
) -> Optional[ReviewDecision]:
|
||||
"""
|
||||
Handle a review request and return the decision in a single call.
|
||||
|
||||
Args:
|
||||
input_data: The input data to be reviewed
|
||||
user_id: ID of the user requesting the review
|
||||
node_exec_id: ID of the node execution
|
||||
graph_exec_id: ID of the graph execution
|
||||
graph_id: ID of the graph
|
||||
graph_version: Version of the graph
|
||||
execution_context: Current execution context
|
||||
block_name: Name of the block requesting review
|
||||
editable: Whether the reviewer can edit the data
|
||||
|
||||
Returns:
|
||||
ReviewDecision if review is complete (approved/rejected),
|
||||
None if execution should pause (awaiting review)
|
||||
"""
|
||||
review_result = await HITLReviewHelper._handle_review_request(
|
||||
input_data=input_data,
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
block_name=block_name,
|
||||
editable=editable,
|
||||
)
|
||||
|
||||
if review_result is None:
|
||||
# Still awaiting review - return None to pause execution
|
||||
return None
|
||||
|
||||
# Review is complete, determine outcome
|
||||
should_proceed = review_result.status == ReviewStatus.APPROVED
|
||||
message = review_result.message or (
|
||||
"Execution approved by reviewer"
|
||||
if should_proceed
|
||||
else "Execution rejected by reviewer"
|
||||
)
|
||||
|
||||
return ReviewDecision(
|
||||
should_proceed=should_proceed, message=message, review_result=review_result
|
||||
)
|
||||
@@ -3,6 +3,7 @@ from typing import Any
|
||||
|
||||
from prisma.enums import ReviewStatus
|
||||
|
||||
from backend.blocks.helpers.review import HITLReviewHelper
|
||||
from backend.data.block import (
|
||||
Block,
|
||||
BlockCategory,
|
||||
@@ -11,11 +12,9 @@ from backend.data.block import (
|
||||
BlockSchemaOutput,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.execution import ExecutionContext, ExecutionStatus
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.human_review import ReviewResult
|
||||
from backend.data.model import SchemaField
|
||||
from backend.executor.manager import async_update_node_execution_status
|
||||
from backend.util.clients import get_database_manager_async_client
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -72,32 +71,26 @@ class HumanInTheLoopBlock(Block):
|
||||
("approved_data", {"name": "John Doe", "age": 30}),
|
||||
],
|
||||
test_mock={
|
||||
"get_or_create_human_review": lambda *_args, **_kwargs: ReviewResult(
|
||||
data={"name": "John Doe", "age": 30},
|
||||
status=ReviewStatus.APPROVED,
|
||||
message="",
|
||||
processed=False,
|
||||
node_exec_id="test-node-exec-id",
|
||||
),
|
||||
"update_node_execution_status": lambda *_args, **_kwargs: None,
|
||||
"update_review_processed_status": lambda *_args, **_kwargs: None,
|
||||
"handle_review_decision": lambda **kwargs: type(
|
||||
"ReviewDecision",
|
||||
(),
|
||||
{
|
||||
"should_proceed": True,
|
||||
"message": "Test approval message",
|
||||
"review_result": ReviewResult(
|
||||
data={"name": "John Doe", "age": 30},
|
||||
status=ReviewStatus.APPROVED,
|
||||
message="",
|
||||
processed=False,
|
||||
node_exec_id="test-node-exec-id",
|
||||
),
|
||||
},
|
||||
)(),
|
||||
},
|
||||
)
|
||||
|
||||
async def get_or_create_human_review(self, **kwargs):
|
||||
return await get_database_manager_async_client().get_or_create_human_review(
|
||||
**kwargs
|
||||
)
|
||||
|
||||
async def update_node_execution_status(self, **kwargs):
|
||||
return await async_update_node_execution_status(
|
||||
db_client=get_database_manager_async_client(), **kwargs
|
||||
)
|
||||
|
||||
async def update_review_processed_status(self, node_exec_id: str, processed: bool):
|
||||
return await get_database_manager_async_client().update_review_processed_status(
|
||||
node_exec_id, processed
|
||||
)
|
||||
async def handle_review_decision(self, **kwargs):
|
||||
return await HITLReviewHelper.handle_review_decision(**kwargs)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
@@ -109,7 +102,7 @@ class HumanInTheLoopBlock(Block):
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
**kwargs,
|
||||
**_kwargs,
|
||||
) -> BlockOutput:
|
||||
if not execution_context.safe_mode:
|
||||
logger.info(
|
||||
@@ -119,48 +112,28 @@ class HumanInTheLoopBlock(Block):
|
||||
yield "review_message", "Auto-approved (safe mode disabled)"
|
||||
return
|
||||
|
||||
try:
|
||||
result = await self.get_or_create_human_review(
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
input_data=input_data.data,
|
||||
message=input_data.name,
|
||||
editable=input_data.editable,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Error in HITL block for node {node_exec_id}: {str(e)}")
|
||||
raise
|
||||
decision = await self.handle_review_decision(
|
||||
input_data=input_data.data,
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
block_name=self.name,
|
||||
editable=input_data.editable,
|
||||
)
|
||||
|
||||
if result is None:
|
||||
logger.info(
|
||||
f"HITL block pausing execution for node {node_exec_id} - awaiting human review"
|
||||
)
|
||||
try:
|
||||
await self.update_node_execution_status(
|
||||
exec_id=node_exec_id,
|
||||
status=ExecutionStatus.REVIEW,
|
||||
)
|
||||
return
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to update node status for HITL block {node_exec_id}: {str(e)}"
|
||||
)
|
||||
raise
|
||||
if decision is None:
|
||||
return
|
||||
|
||||
if not result.processed:
|
||||
await self.update_review_processed_status(
|
||||
node_exec_id=node_exec_id, processed=True
|
||||
)
|
||||
status = decision.review_result.status
|
||||
if status == ReviewStatus.APPROVED:
|
||||
yield "approved_data", decision.review_result.data
|
||||
elif status == ReviewStatus.REJECTED:
|
||||
yield "rejected_data", decision.review_result.data
|
||||
else:
|
||||
raise RuntimeError(f"Unexpected review status: {status}")
|
||||
|
||||
if result.status == ReviewStatus.APPROVED:
|
||||
yield "approved_data", result.data
|
||||
if result.message:
|
||||
yield "review_message", result.message
|
||||
|
||||
elif result.status == ReviewStatus.REJECTED:
|
||||
yield "rejected_data", result.data
|
||||
if result.message:
|
||||
yield "review_message", result.message
|
||||
if decision.message:
|
||||
yield "review_message", decision.message
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -18,6 +18,7 @@ from backend.data.model import (
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.request import DEFAULT_USER_AGENT
|
||||
|
||||
|
||||
class GetWikipediaSummaryBlock(Block, GetRequest):
|
||||
@@ -39,17 +40,27 @@ class GetWikipediaSummaryBlock(Block, GetRequest):
|
||||
output_schema=GetWikipediaSummaryBlock.Output,
|
||||
test_input={"topic": "Artificial Intelligence"},
|
||||
test_output=("summary", "summary content"),
|
||||
test_mock={"get_request": lambda url, json: {"extract": "summary content"}},
|
||||
test_mock={
|
||||
"get_request": lambda url, headers, json: {"extract": "summary content"}
|
||||
},
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
topic = input_data.topic
|
||||
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{topic}"
|
||||
# URL-encode the topic to handle spaces and special characters
|
||||
encoded_topic = quote(topic, safe="")
|
||||
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{encoded_topic}"
|
||||
|
||||
# Set headers per Wikimedia robot policy (https://w.wiki/4wJS)
|
||||
# - User-Agent: Required, must identify the bot
|
||||
# - Accept-Encoding: gzip recommended to reduce bandwidth
|
||||
headers = {
|
||||
"User-Agent": DEFAULT_USER_AGENT,
|
||||
"Accept-Encoding": "gzip, deflate",
|
||||
}
|
||||
|
||||
# Note: User-Agent is now automatically set by the request library
|
||||
# to comply with Wikimedia's robot policy (https://w.wiki/4wJS)
|
||||
try:
|
||||
response = await self.get_request(url, json=True)
|
||||
response = await self.get_request(url, headers=headers, json=True)
|
||||
if "extract" not in response:
|
||||
raise ValueError(f"Unable to parse Wikipedia response: {response}")
|
||||
yield "summary", response["extract"]
|
||||
|
||||
@@ -391,8 +391,12 @@ class SmartDecisionMakerBlock(Block):
|
||||
"""
|
||||
block = sink_node.block
|
||||
|
||||
# Use custom name from node metadata if set, otherwise fall back to block.name
|
||||
custom_name = sink_node.metadata.get("customized_name")
|
||||
tool_name = custom_name if custom_name else block.name
|
||||
|
||||
tool_function: dict[str, Any] = {
|
||||
"name": SmartDecisionMakerBlock.cleanup(block.name),
|
||||
"name": SmartDecisionMakerBlock.cleanup(tool_name),
|
||||
"description": block.description,
|
||||
}
|
||||
sink_block_input_schema = block.input_schema
|
||||
@@ -489,8 +493,12 @@ class SmartDecisionMakerBlock(Block):
|
||||
f"Sink graph metadata not found: {graph_id} {graph_version}"
|
||||
)
|
||||
|
||||
# Use custom name from node metadata if set, otherwise fall back to graph name
|
||||
custom_name = sink_node.metadata.get("customized_name")
|
||||
tool_name = custom_name if custom_name else sink_graph_meta.name
|
||||
|
||||
tool_function: dict[str, Any] = {
|
||||
"name": SmartDecisionMakerBlock.cleanup(sink_graph_meta.name),
|
||||
"name": SmartDecisionMakerBlock.cleanup(tool_name),
|
||||
"description": sink_graph_meta.description,
|
||||
}
|
||||
|
||||
@@ -981,10 +989,28 @@ class SmartDecisionMakerBlock(Block):
|
||||
graph_version: int,
|
||||
execution_context: ExecutionContext,
|
||||
execution_processor: "ExecutionProcessor",
|
||||
nodes_to_skip: set[str] | None = None,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
|
||||
tool_functions = await self._create_tool_node_signatures(node_id)
|
||||
original_tool_count = len(tool_functions)
|
||||
|
||||
# Filter out tools for nodes that should be skipped (e.g., missing optional credentials)
|
||||
if nodes_to_skip:
|
||||
tool_functions = [
|
||||
tf
|
||||
for tf in tool_functions
|
||||
if tf.get("function", {}).get("_sink_node_id") not in nodes_to_skip
|
||||
]
|
||||
|
||||
# Only raise error if we had tools but they were all filtered out
|
||||
if original_tool_count > 0 and not tool_functions:
|
||||
raise ValueError(
|
||||
"No available tools to execute - all downstream nodes are unavailable "
|
||||
"(possibly due to missing optional credentials)"
|
||||
)
|
||||
|
||||
yield "tool_functions", json.dumps(tool_functions)
|
||||
|
||||
conversation_history = input_data.conversation_history or []
|
||||
|
||||
@@ -1057,3 +1057,153 @@ async def test_smart_decision_maker_traditional_mode_default():
|
||||
) # Should yield individual tool parameters
|
||||
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
|
||||
assert "conversations" in outputs
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_uses_customized_name_for_blocks():
|
||||
"""Test that SmartDecisionMakerBlock uses customized_name from node metadata for tool names."""
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from backend.blocks.basic import StoreValueBlock
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node with customized_name in metadata
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-node-id"
|
||||
mock_node.block_id = StoreValueBlock().id
|
||||
mock_node.metadata = {"customized_name": "My Custom Tool Name"}
|
||||
mock_node.block = StoreValueBlock()
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "input"
|
||||
|
||||
# Call the function directly
|
||||
result = await SmartDecisionMakerBlock._create_block_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the customized name (cleaned up)
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "my_custom_tool_name" # Cleaned version
|
||||
assert result["function"]["_sink_node_id"] == "test-node-id"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_falls_back_to_block_name():
|
||||
"""Test that SmartDecisionMakerBlock falls back to block.name when no customized_name."""
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
from backend.blocks.basic import StoreValueBlock
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node without customized_name
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-node-id"
|
||||
mock_node.block_id = StoreValueBlock().id
|
||||
mock_node.metadata = {} # No customized_name
|
||||
mock_node.block = StoreValueBlock()
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "input"
|
||||
|
||||
# Call the function directly
|
||||
result = await SmartDecisionMakerBlock._create_block_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the block's default name
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "storevalueblock" # Default block name cleaned
|
||||
assert result["function"]["_sink_node_id"] == "test-node-id"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_uses_customized_name_for_agents():
|
||||
"""Test that SmartDecisionMakerBlock uses customized_name from metadata for agent nodes."""
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node with customized_name in metadata
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-agent-node-id"
|
||||
mock_node.metadata = {"customized_name": "My Custom Agent"}
|
||||
mock_node.input_default = {
|
||||
"graph_id": "test-graph-id",
|
||||
"graph_version": 1,
|
||||
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
|
||||
}
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "test_input"
|
||||
|
||||
# Mock the database client
|
||||
mock_graph_meta = MagicMock()
|
||||
mock_graph_meta.name = "Original Agent Name"
|
||||
mock_graph_meta.description = "Agent description"
|
||||
|
||||
mock_db_client = AsyncMock()
|
||||
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
|
||||
|
||||
with patch(
|
||||
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
|
||||
return_value=mock_db_client,
|
||||
):
|
||||
result = await SmartDecisionMakerBlock._create_agent_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the customized name (cleaned up)
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "my_custom_agent" # Cleaned version
|
||||
assert result["function"]["_sink_node_id"] == "test-agent-node-id"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_agent_falls_back_to_graph_name():
|
||||
"""Test that agent node falls back to graph name when no customized_name."""
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.data.graph import Link, Node
|
||||
|
||||
# Create a mock node without customized_name
|
||||
mock_node = MagicMock(spec=Node)
|
||||
mock_node.id = "test-agent-node-id"
|
||||
mock_node.metadata = {} # No customized_name
|
||||
mock_node.input_default = {
|
||||
"graph_id": "test-graph-id",
|
||||
"graph_version": 1,
|
||||
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
|
||||
}
|
||||
|
||||
# Create a mock link
|
||||
mock_link = MagicMock(spec=Link)
|
||||
mock_link.sink_name = "test_input"
|
||||
|
||||
# Mock the database client
|
||||
mock_graph_meta = MagicMock()
|
||||
mock_graph_meta.name = "Original Agent Name"
|
||||
mock_graph_meta.description = "Agent description"
|
||||
|
||||
mock_db_client = AsyncMock()
|
||||
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
|
||||
|
||||
with patch(
|
||||
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
|
||||
return_value=mock_db_client,
|
||||
):
|
||||
result = await SmartDecisionMakerBlock._create_agent_function_signature(
|
||||
mock_node, [mock_link]
|
||||
)
|
||||
|
||||
# Verify the tool name uses the graph's default name
|
||||
assert result["type"] == "function"
|
||||
assert result["function"]["name"] == "original_agent_name" # Graph name cleaned
|
||||
assert result["function"]["_sink_node_id"] == "test-agent-node-id"
|
||||
|
||||
@@ -15,6 +15,7 @@ async def test_smart_decision_maker_handles_dynamic_dict_fields():
|
||||
mock_node.block = CreateDictionaryBlock()
|
||||
mock_node.block_id = CreateDictionaryBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic dictionary fields
|
||||
mock_links = [
|
||||
@@ -77,6 +78,7 @@ async def test_smart_decision_maker_handles_dynamic_list_fields():
|
||||
mock_node.block = AddToListBlock()
|
||||
mock_node.block_id = AddToListBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic list fields
|
||||
mock_links = [
|
||||
|
||||
@@ -44,6 +44,7 @@ async def test_create_block_function_signature_with_dict_fields():
|
||||
mock_node.block = CreateDictionaryBlock()
|
||||
mock_node.block_id = CreateDictionaryBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic dictionary fields (source sanitized, sink original)
|
||||
mock_links = [
|
||||
@@ -106,6 +107,7 @@ async def test_create_block_function_signature_with_list_fields():
|
||||
mock_node.block = AddToListBlock()
|
||||
mock_node.block_id = AddToListBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic list fields
|
||||
mock_links = [
|
||||
@@ -159,6 +161,7 @@ async def test_create_block_function_signature_with_object_fields():
|
||||
mock_node.block = MatchTextPatternBlock()
|
||||
mock_node.block_id = MatchTextPatternBlock().id
|
||||
mock_node.input_default = {}
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Create mock links with dynamic object fields
|
||||
mock_links = [
|
||||
@@ -208,11 +211,13 @@ async def test_create_tool_node_signatures():
|
||||
mock_dict_node.block = CreateDictionaryBlock()
|
||||
mock_dict_node.block_id = CreateDictionaryBlock().id
|
||||
mock_dict_node.input_default = {}
|
||||
mock_dict_node.metadata = {}
|
||||
|
||||
mock_list_node = Mock()
|
||||
mock_list_node.block = AddToListBlock()
|
||||
mock_list_node.block_id = AddToListBlock().id
|
||||
mock_list_node.input_default = {}
|
||||
mock_list_node.metadata = {}
|
||||
|
||||
# Mock links with dynamic fields
|
||||
dict_link1 = Mock(
|
||||
@@ -423,6 +428,7 @@ async def test_mixed_regular_and_dynamic_fields():
|
||||
mock_node.block.name = "TestBlock"
|
||||
mock_node.block.description = "A test block"
|
||||
mock_node.block.input_schema = Mock()
|
||||
mock_node.metadata = {}
|
||||
|
||||
# Mock the get_field_schema to return a proper schema for regular fields
|
||||
def get_field_schema(field_name):
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
from .blog import WordPressCreatePostBlock
|
||||
from .blog import WordPressCreatePostBlock, WordPressGetAllPostsBlock
|
||||
|
||||
__all__ = ["WordPressCreatePostBlock"]
|
||||
__all__ = ["WordPressCreatePostBlock", "WordPressGetAllPostsBlock"]
|
||||
|
||||
@@ -161,7 +161,7 @@ async def oauth_exchange_code_for_tokens(
|
||||
grant_type="authorization_code",
|
||||
).model_dump(exclude_none=True)
|
||||
|
||||
response = await Requests().post(
|
||||
response = await Requests(raise_for_status=False).post(
|
||||
f"{WORDPRESS_BASE_URL}oauth2/token",
|
||||
headers=headers,
|
||||
data=data,
|
||||
@@ -205,7 +205,7 @@ async def oauth_refresh_tokens(
|
||||
grant_type="refresh_token",
|
||||
).model_dump(exclude_none=True)
|
||||
|
||||
response = await Requests().post(
|
||||
response = await Requests(raise_for_status=False).post(
|
||||
f"{WORDPRESS_BASE_URL}oauth2/token",
|
||||
headers=headers,
|
||||
data=data,
|
||||
@@ -252,7 +252,7 @@ async def validate_token(
|
||||
"token": token,
|
||||
}
|
||||
|
||||
response = await Requests().get(
|
||||
response = await Requests(raise_for_status=False).get(
|
||||
f"{WORDPRESS_BASE_URL}oauth2/token-info",
|
||||
params=params,
|
||||
)
|
||||
@@ -296,7 +296,7 @@ async def make_api_request(
|
||||
|
||||
url = f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}"
|
||||
|
||||
request_method = getattr(Requests(), method.lower())
|
||||
request_method = getattr(Requests(raise_for_status=False), method.lower())
|
||||
response = await request_method(
|
||||
url,
|
||||
headers=headers,
|
||||
@@ -476,6 +476,7 @@ async def create_post(
|
||||
data["tags"] = ",".join(str(t) for t in data["tags"])
|
||||
|
||||
# Make the API request
|
||||
site = normalize_site(site)
|
||||
endpoint = f"/rest/v1.1/sites/{site}/posts/new"
|
||||
|
||||
headers = {
|
||||
@@ -483,7 +484,7 @@ async def create_post(
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
}
|
||||
|
||||
response = await Requests().post(
|
||||
response = await Requests(raise_for_status=False).post(
|
||||
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
|
||||
headers=headers,
|
||||
data=data,
|
||||
@@ -499,3 +500,132 @@ async def create_post(
|
||||
)
|
||||
error_message = error_data.get("message", response.text)
|
||||
raise ValueError(f"Failed to create post: {response.status} - {error_message}")
|
||||
|
||||
|
||||
class Post(BaseModel):
|
||||
"""Response model for individual posts in a posts list response.
|
||||
|
||||
This is a simplified version compared to PostResponse, as the list endpoint
|
||||
returns less detailed information than the create/get single post endpoints.
|
||||
"""
|
||||
|
||||
ID: int
|
||||
site_ID: int
|
||||
author: PostAuthor
|
||||
date: datetime
|
||||
modified: datetime
|
||||
title: str
|
||||
URL: str
|
||||
short_URL: str
|
||||
content: str | None = None
|
||||
excerpt: str | None = None
|
||||
slug: str
|
||||
guid: str
|
||||
status: str
|
||||
sticky: bool
|
||||
password: str | None = ""
|
||||
parent: Union[Dict[str, Any], bool, None] = None
|
||||
type: str
|
||||
discussion: Dict[str, Union[str, bool, int]] | None = None
|
||||
likes_enabled: bool | None = None
|
||||
sharing_enabled: bool | None = None
|
||||
like_count: int | None = None
|
||||
i_like: bool | None = None
|
||||
is_reblogged: bool | None = None
|
||||
is_following: bool | None = None
|
||||
global_ID: str | None = None
|
||||
featured_image: str | None = None
|
||||
post_thumbnail: Dict[str, Any] | None = None
|
||||
format: str | None = None
|
||||
geo: Union[Dict[str, Any], bool, None] = None
|
||||
menu_order: int | None = None
|
||||
page_template: str | None = None
|
||||
publicize_URLs: List[str] | None = None
|
||||
terms: Dict[str, Dict[str, Any]] | None = None
|
||||
tags: Dict[str, Dict[str, Any]] | None = None
|
||||
categories: Dict[str, Dict[str, Any]] | None = None
|
||||
attachments: Dict[str, Dict[str, Any]] | None = None
|
||||
attachment_count: int | None = None
|
||||
metadata: List[Dict[str, Any]] | None = None
|
||||
meta: Dict[str, Any] | None = None
|
||||
capabilities: Dict[str, bool] | None = None
|
||||
revisions: List[int] | None = None
|
||||
other_URLs: Dict[str, Any] | None = None
|
||||
|
||||
|
||||
class PostsResponse(BaseModel):
|
||||
"""Response model for WordPress posts list."""
|
||||
|
||||
found: int
|
||||
posts: List[Post]
|
||||
meta: Dict[str, Any]
|
||||
|
||||
|
||||
def normalize_site(site: str) -> str:
|
||||
"""
|
||||
Normalize a site identifier by stripping protocol and trailing slashes.
|
||||
|
||||
Args:
|
||||
site: Site URL, domain, or ID (e.g., "https://myblog.wordpress.com/", "myblog.wordpress.com", "123456789")
|
||||
|
||||
Returns:
|
||||
Normalized site identifier (domain or ID only)
|
||||
"""
|
||||
site = site.strip()
|
||||
if site.startswith("https://"):
|
||||
site = site[8:]
|
||||
elif site.startswith("http://"):
|
||||
site = site[7:]
|
||||
return site.rstrip("/")
|
||||
|
||||
|
||||
async def get_posts(
|
||||
credentials: Credentials,
|
||||
site: str,
|
||||
status: PostStatus | None = None,
|
||||
number: int = 100,
|
||||
offset: int = 0,
|
||||
) -> PostsResponse:
|
||||
"""
|
||||
Get posts from a WordPress site.
|
||||
|
||||
Args:
|
||||
credentials: OAuth credentials
|
||||
site: Site ID or domain (e.g., "myblog.wordpress.com" or "123456789")
|
||||
status: Filter by post status using PostStatus enum, or None for all
|
||||
number: Number of posts to retrieve (max 100)
|
||||
offset: Number of posts to skip (for pagination)
|
||||
|
||||
Returns:
|
||||
PostsResponse with the list of posts
|
||||
"""
|
||||
site = normalize_site(site)
|
||||
endpoint = f"/rest/v1.1/sites/{site}/posts"
|
||||
|
||||
headers = {
|
||||
"Authorization": credentials.auth_header(),
|
||||
}
|
||||
|
||||
params: Dict[str, Any] = {
|
||||
"number": max(1, min(number, 100)), # 1–100 posts per request
|
||||
"offset": offset,
|
||||
}
|
||||
|
||||
if status:
|
||||
params["status"] = status.value
|
||||
response = await Requests(raise_for_status=False).get(
|
||||
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
|
||||
headers=headers,
|
||||
params=params,
|
||||
)
|
||||
|
||||
if response.ok:
|
||||
return PostsResponse.model_validate(response.json())
|
||||
|
||||
error_data = (
|
||||
response.json()
|
||||
if response.headers.get("content-type", "").startswith("application/json")
|
||||
else {}
|
||||
)
|
||||
error_message = error_data.get("message", response.text)
|
||||
raise ValueError(f"Failed to get posts: {response.status} - {error_message}")
|
||||
|
||||
@@ -9,7 +9,15 @@ from backend.sdk import (
|
||||
SchemaField,
|
||||
)
|
||||
|
||||
from ._api import CreatePostRequest, PostResponse, PostStatus, create_post
|
||||
from ._api import (
|
||||
CreatePostRequest,
|
||||
Post,
|
||||
PostResponse,
|
||||
PostsResponse,
|
||||
PostStatus,
|
||||
create_post,
|
||||
get_posts,
|
||||
)
|
||||
from ._config import wordpress
|
||||
|
||||
|
||||
@@ -49,8 +57,15 @@ class WordPressCreatePostBlock(Block):
|
||||
media_urls: list[str] = SchemaField(
|
||||
description="URLs of images to sideload and attach to the post", default=[]
|
||||
)
|
||||
publish_as_draft: bool = SchemaField(
|
||||
description="If True, publishes the post as a draft. If False, publishes it publicly.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
site: str = SchemaField(
|
||||
description="The site ID or domain (pass-through for chaining with other blocks)"
|
||||
)
|
||||
post_id: int = SchemaField(description="The ID of the created post")
|
||||
post_url: str = SchemaField(description="The full URL of the created post")
|
||||
short_url: str = SchemaField(description="The shortened wp.me URL")
|
||||
@@ -78,7 +93,9 @@ class WordPressCreatePostBlock(Block):
|
||||
tags=input_data.tags,
|
||||
featured_image=input_data.featured_image,
|
||||
media_urls=input_data.media_urls,
|
||||
status=PostStatus.PUBLISH,
|
||||
status=(
|
||||
PostStatus.DRAFT if input_data.publish_as_draft else PostStatus.PUBLISH
|
||||
),
|
||||
)
|
||||
|
||||
post_response: PostResponse = await create_post(
|
||||
@@ -87,7 +104,69 @@ class WordPressCreatePostBlock(Block):
|
||||
post_data=post_request,
|
||||
)
|
||||
|
||||
yield "site", input_data.site
|
||||
yield "post_id", post_response.ID
|
||||
yield "post_url", post_response.URL
|
||||
yield "short_url", post_response.short_URL
|
||||
yield "post_data", post_response.model_dump()
|
||||
|
||||
|
||||
class WordPressGetAllPostsBlock(Block):
|
||||
"""
|
||||
Fetches all posts from a WordPress.com site or Jetpack-enabled site.
|
||||
Supports filtering by status and pagination.
|
||||
"""
|
||||
|
||||
class Input(BlockSchemaInput):
|
||||
credentials: CredentialsMetaInput = wordpress.credentials_field()
|
||||
site: str = SchemaField(
|
||||
description="Site ID or domain (e.g., 'myblog.wordpress.com' or '123456789')"
|
||||
)
|
||||
status: PostStatus | None = SchemaField(
|
||||
description="Filter by post status, or None for all",
|
||||
default=None,
|
||||
)
|
||||
number: int = SchemaField(
|
||||
description="Number of posts to retrieve (max 100 per request)", default=20
|
||||
)
|
||||
offset: int = SchemaField(
|
||||
description="Number of posts to skip (for pagination)", default=0
|
||||
)
|
||||
|
||||
class Output(BlockSchemaOutput):
|
||||
site: str = SchemaField(
|
||||
description="The site ID or domain (pass-through for chaining with other blocks)"
|
||||
)
|
||||
found: int = SchemaField(description="Total number of posts found")
|
||||
posts: list[Post] = SchemaField(
|
||||
description="List of post objects with their details"
|
||||
)
|
||||
post: Post = SchemaField(
|
||||
description="Individual post object (yielded for each post)"
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="97728fa7-7f6f-4789-ba0c-f2c114119536",
|
||||
description="Fetch all posts from WordPress.com or Jetpack sites",
|
||||
categories={BlockCategory.SOCIAL},
|
||||
input_schema=self.Input,
|
||||
output_schema=self.Output,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: Credentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
posts_response: PostsResponse = await get_posts(
|
||||
credentials=credentials,
|
||||
site=input_data.site,
|
||||
status=input_data.status,
|
||||
number=input_data.number,
|
||||
offset=input_data.offset,
|
||||
)
|
||||
|
||||
yield "site", input_data.site
|
||||
yield "found", posts_response.found
|
||||
yield "posts", posts_response.posts
|
||||
for post in posts_response.posts:
|
||||
yield "post", post
|
||||
|
||||
@@ -50,6 +50,8 @@ from .model import (
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
from .graph import Link
|
||||
|
||||
app_config = Config()
|
||||
@@ -472,6 +474,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
self.block_type = block_type
|
||||
self.webhook_config = webhook_config
|
||||
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
|
||||
self.requires_human_review: bool = False
|
||||
|
||||
if self.webhook_config:
|
||||
if isinstance(self.webhook_config, BlockWebhookConfig):
|
||||
@@ -614,7 +617,77 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
block_id=self.id,
|
||||
) from ex
|
||||
|
||||
async def is_block_exec_need_review(
|
||||
self,
|
||||
input_data: BlockInput,
|
||||
*,
|
||||
user_id: str,
|
||||
node_exec_id: str,
|
||||
graph_exec_id: str,
|
||||
graph_id: str,
|
||||
graph_version: int,
|
||||
execution_context: "ExecutionContext",
|
||||
**kwargs,
|
||||
) -> tuple[bool, BlockInput]:
|
||||
"""
|
||||
Check if this block execution needs human review and handle the review process.
|
||||
|
||||
Returns:
|
||||
Tuple of (should_pause, input_data_to_use)
|
||||
- should_pause: True if execution should be paused for review
|
||||
- input_data_to_use: The input data to use (may be modified by reviewer)
|
||||
"""
|
||||
# Skip review if not required or safe mode is disabled
|
||||
if not self.requires_human_review or not execution_context.safe_mode:
|
||||
return False, input_data
|
||||
|
||||
from backend.blocks.helpers.review import HITLReviewHelper
|
||||
|
||||
# Handle the review request and get decision
|
||||
decision = await HITLReviewHelper.handle_review_decision(
|
||||
input_data=input_data,
|
||||
user_id=user_id,
|
||||
node_exec_id=node_exec_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph_version,
|
||||
execution_context=execution_context,
|
||||
block_name=self.name,
|
||||
editable=True,
|
||||
)
|
||||
|
||||
if decision is None:
|
||||
# We're awaiting review - pause execution
|
||||
return True, input_data
|
||||
|
||||
if not decision.should_proceed:
|
||||
# Review was rejected, raise an error to stop execution
|
||||
raise BlockExecutionError(
|
||||
message=f"Block execution rejected by reviewer: {decision.message}",
|
||||
block_name=self.name,
|
||||
block_id=self.id,
|
||||
)
|
||||
|
||||
# Review was approved - use the potentially modified data
|
||||
# ReviewResult.data must be a dict for block inputs
|
||||
reviewed_data = decision.review_result.data
|
||||
if not isinstance(reviewed_data, dict):
|
||||
raise BlockExecutionError(
|
||||
message=f"Review data must be a dict for block input, got {type(reviewed_data).__name__}",
|
||||
block_name=self.name,
|
||||
block_id=self.id,
|
||||
)
|
||||
return False, reviewed_data
|
||||
|
||||
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
|
||||
# Check for review requirement and get potentially modified input data
|
||||
should_pause, input_data = await self.is_block_exec_need_review(
|
||||
input_data, **kwargs
|
||||
)
|
||||
if should_pause:
|
||||
return
|
||||
|
||||
# Validate the input data (original or reviewer-modified) once
|
||||
if error := self.input_schema.validate_data(input_data):
|
||||
raise BlockInputError(
|
||||
message=f"Unable to execute block with invalid input data: {error}",
|
||||
@@ -622,6 +695,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
block_id=self.id,
|
||||
)
|
||||
|
||||
# Use the validated input data
|
||||
async for output_name, output_data in self.run(
|
||||
self.input_schema(**{k: v for k, v in input_data.items() if v is not None}),
|
||||
**kwargs,
|
||||
|
||||
@@ -38,6 +38,20 @@ POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT")
|
||||
if POOL_TIMEOUT:
|
||||
DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT)
|
||||
|
||||
# Add public schema to search_path for pgvector type access
|
||||
# The vector extension is in public schema, but search_path is determined by schema parameter
|
||||
# Extract the schema from DATABASE_URL or default to 'platform'
|
||||
parsed_url = urlparse(DATABASE_URL)
|
||||
url_params = dict(parse_qsl(parsed_url.query))
|
||||
db_schema = url_params.get("schema", "platform")
|
||||
# Build search_path, avoiding duplicates if db_schema is already 'public'
|
||||
search_path_schemas = list(
|
||||
dict.fromkeys([db_schema, "public"])
|
||||
) # Preserves order, removes duplicates
|
||||
search_path = ",".join(search_path_schemas)
|
||||
# This allows using ::vector without schema qualification
|
||||
DATABASE_URL = add_param(DATABASE_URL, "options", f"-c search_path={search_path}")
|
||||
|
||||
HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None
|
||||
|
||||
prisma = Prisma(
|
||||
@@ -108,21 +122,84 @@ def get_database_schema() -> str:
|
||||
return query_params.get("schema", "public")
|
||||
|
||||
|
||||
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
|
||||
"""Execute raw SQL query with proper schema handling."""
|
||||
async def _raw_with_schema(
|
||||
query_template: str,
|
||||
*args,
|
||||
execute: bool = False,
|
||||
client: Prisma | None = None,
|
||||
) -> list[dict] | int:
|
||||
"""Internal: Execute raw SQL with proper schema handling.
|
||||
|
||||
Use query_raw_with_schema() or execute_raw_with_schema() instead.
|
||||
|
||||
Args:
|
||||
query_template: SQL query with {schema_prefix} placeholder
|
||||
*args: Query parameters
|
||||
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
|
||||
client: Optional Prisma client for transactions (only used when execute=True).
|
||||
|
||||
Returns:
|
||||
- list[dict] if execute=False (query results)
|
||||
- int if execute=True (number of affected rows)
|
||||
"""
|
||||
schema = get_database_schema()
|
||||
schema_prefix = f'"{schema}".' if schema != "public" else ""
|
||||
formatted_query = query_template.format(schema_prefix=schema_prefix)
|
||||
|
||||
import prisma as prisma_module
|
||||
|
||||
result = await prisma_module.get_client().query_raw(
|
||||
formatted_query, *args # type: ignore
|
||||
)
|
||||
db_client = client if client else prisma_module.get_client()
|
||||
|
||||
if execute:
|
||||
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
|
||||
else:
|
||||
result = await db_client.query_raw(formatted_query, *args) # type: ignore
|
||||
|
||||
return result
|
||||
|
||||
|
||||
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
|
||||
"""Execute raw SQL SELECT query with proper schema handling.
|
||||
|
||||
Args:
|
||||
query_template: SQL query with {schema_prefix} placeholder
|
||||
*args: Query parameters
|
||||
|
||||
Returns:
|
||||
List of result rows as dictionaries
|
||||
|
||||
Example:
|
||||
results = await query_raw_with_schema(
|
||||
'SELECT * FROM {schema_prefix}"User" WHERE id = $1',
|
||||
user_id
|
||||
)
|
||||
"""
|
||||
return await _raw_with_schema(query_template, *args, execute=False) # type: ignore
|
||||
|
||||
|
||||
async def execute_raw_with_schema(
|
||||
query_template: str, *args, client: Prisma | None = None
|
||||
) -> int:
|
||||
"""Execute raw SQL command (INSERT/UPDATE/DELETE) with proper schema handling.
|
||||
|
||||
Args:
|
||||
query_template: SQL query with {schema_prefix} placeholder
|
||||
*args: Query parameters
|
||||
client: Optional Prisma client for transactions
|
||||
|
||||
Returns:
|
||||
Number of affected rows
|
||||
|
||||
Example:
|
||||
await execute_raw_with_schema(
|
||||
'INSERT INTO {schema_prefix}"User" (id, name) VALUES ($1, $2)',
|
||||
user_id, name,
|
||||
client=tx # Optional transaction client
|
||||
)
|
||||
"""
|
||||
return await _raw_with_schema(query_template, *args, execute=True, client=client) # type: ignore
|
||||
|
||||
|
||||
class BaseDbModel(BaseModel):
|
||||
id: str = Field(default_factory=lambda: str(uuid4()))
|
||||
|
||||
|
||||
@@ -383,6 +383,7 @@ class GraphExecutionWithNodes(GraphExecution):
|
||||
self,
|
||||
execution_context: ExecutionContext,
|
||||
compiled_nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
nodes_to_skip: Optional[set[str]] = None,
|
||||
):
|
||||
return GraphExecutionEntry(
|
||||
user_id=self.user_id,
|
||||
@@ -390,6 +391,7 @@ class GraphExecutionWithNodes(GraphExecution):
|
||||
graph_version=self.graph_version or 0,
|
||||
graph_exec_id=self.id,
|
||||
nodes_input_masks=compiled_nodes_input_masks,
|
||||
nodes_to_skip=nodes_to_skip or set(),
|
||||
execution_context=execution_context,
|
||||
)
|
||||
|
||||
@@ -1145,6 +1147,8 @@ class GraphExecutionEntry(BaseModel):
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None
|
||||
nodes_to_skip: set[str] = Field(default_factory=set)
|
||||
"""Node IDs that should be skipped due to optional credentials not being configured."""
|
||||
execution_context: ExecutionContext = Field(default_factory=ExecutionContext)
|
||||
|
||||
|
||||
|
||||
@@ -94,6 +94,15 @@ class Node(BaseDbModel):
|
||||
input_links: list[Link] = []
|
||||
output_links: list[Link] = []
|
||||
|
||||
@property
|
||||
def credentials_optional(self) -> bool:
|
||||
"""
|
||||
Whether credentials are optional for this node.
|
||||
When True and credentials are not configured, the node will be skipped
|
||||
during execution rather than causing a validation error.
|
||||
"""
|
||||
return self.metadata.get("credentials_optional", False)
|
||||
|
||||
@property
|
||||
def block(self) -> AnyBlockSchema | "_UnknownBlockBase":
|
||||
"""Get the block for this node. Returns UnknownBlock if block is deleted/missing."""
|
||||
@@ -235,7 +244,10 @@ class BaseGraph(BaseDbModel):
|
||||
return any(
|
||||
node.block_id
|
||||
for node in self.nodes
|
||||
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
if (
|
||||
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
or node.block.requires_human_review
|
||||
)
|
||||
)
|
||||
|
||||
@property
|
||||
@@ -326,7 +338,35 @@ class Graph(BaseGraph):
|
||||
@computed_field
|
||||
@property
|
||||
def credentials_input_schema(self) -> dict[str, Any]:
|
||||
return self._credentials_input_schema.jsonschema()
|
||||
schema = self._credentials_input_schema.jsonschema()
|
||||
|
||||
# Determine which credential fields are required based on credentials_optional metadata
|
||||
graph_credentials_inputs = self.aggregate_credentials_inputs()
|
||||
required_fields = []
|
||||
|
||||
# Build a map of node_id -> node for quick lookup
|
||||
all_nodes = {node.id: node for node in self.nodes}
|
||||
for sub_graph in self.sub_graphs:
|
||||
for node in sub_graph.nodes:
|
||||
all_nodes[node.id] = node
|
||||
|
||||
for field_key, (
|
||||
_field_info,
|
||||
node_field_pairs,
|
||||
) in graph_credentials_inputs.items():
|
||||
# A field is required if ANY node using it has credentials_optional=False
|
||||
is_required = False
|
||||
for node_id, _field_name in node_field_pairs:
|
||||
node = all_nodes.get(node_id)
|
||||
if node and not node.credentials_optional:
|
||||
is_required = True
|
||||
break
|
||||
|
||||
if is_required:
|
||||
required_fields.append(field_key)
|
||||
|
||||
schema["required"] = required_fields
|
||||
return schema
|
||||
|
||||
@property
|
||||
def _credentials_input_schema(self) -> type[BlockSchema]:
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import json
|
||||
from typing import Any
|
||||
from unittest.mock import AsyncMock, patch
|
||||
from uuid import UUID
|
||||
|
||||
import fastapi.exceptions
|
||||
@@ -18,6 +19,17 @@ from backend.usecases.sample import create_test_user
|
||||
from backend.util.test import SpinTestServer
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def mock_embedding_functions():
|
||||
"""Mock embedding functions for all tests to avoid database/API dependencies."""
|
||||
with patch(
|
||||
"backend.api.features.store.db.ensure_embedding",
|
||||
new_callable=AsyncMock,
|
||||
return_value=True,
|
||||
):
|
||||
yield
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_graph_creation(server: SpinTestServer, snapshot: Snapshot):
|
||||
"""
|
||||
@@ -396,3 +408,58 @@ async def test_access_store_listing_graph(server: SpinTestServer):
|
||||
created_graph.id, created_graph.version, "3e53486c-cf57-477e-ba2a-cb02dc828e1b"
|
||||
)
|
||||
assert got_graph is not None
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Tests for Optional Credentials Feature
|
||||
# ============================================================================
|
||||
|
||||
|
||||
def test_node_credentials_optional_default():
|
||||
"""Test that credentials_optional defaults to False when not set in metadata."""
|
||||
node = Node(
|
||||
id="test_node",
|
||||
block_id=StoreValueBlock().id,
|
||||
input_default={},
|
||||
metadata={},
|
||||
)
|
||||
assert node.credentials_optional is False
|
||||
|
||||
|
||||
def test_node_credentials_optional_true():
|
||||
"""Test that credentials_optional returns True when explicitly set."""
|
||||
node = Node(
|
||||
id="test_node",
|
||||
block_id=StoreValueBlock().id,
|
||||
input_default={},
|
||||
metadata={"credentials_optional": True},
|
||||
)
|
||||
assert node.credentials_optional is True
|
||||
|
||||
|
||||
def test_node_credentials_optional_false():
|
||||
"""Test that credentials_optional returns False when explicitly set to False."""
|
||||
node = Node(
|
||||
id="test_node",
|
||||
block_id=StoreValueBlock().id,
|
||||
input_default={},
|
||||
metadata={"credentials_optional": False},
|
||||
)
|
||||
assert node.credentials_optional is False
|
||||
|
||||
|
||||
def test_node_credentials_optional_with_other_metadata():
|
||||
"""Test that credentials_optional works correctly with other metadata present."""
|
||||
node = Node(
|
||||
id="test_node",
|
||||
block_id=StoreValueBlock().id,
|
||||
input_default={},
|
||||
metadata={
|
||||
"position": {"x": 100, "y": 200},
|
||||
"customized_name": "My Custom Node",
|
||||
"credentials_optional": True,
|
||||
},
|
||||
)
|
||||
assert node.credentials_optional is True
|
||||
assert node.metadata["position"] == {"x": 100, "y": 200}
|
||||
assert node.metadata["customized_name"] == "My Custom Node"
|
||||
|
||||
@@ -7,6 +7,10 @@ from backend.api.features.library.db import (
|
||||
list_library_agents,
|
||||
)
|
||||
from backend.api.features.store.db import get_store_agent_details, get_store_agents
|
||||
from backend.api.features.store.embeddings import (
|
||||
backfill_missing_embeddings,
|
||||
get_embedding_stats,
|
||||
)
|
||||
from backend.data import db
|
||||
from backend.data.analytics import (
|
||||
get_accuracy_trends_and_alerts,
|
||||
@@ -208,6 +212,10 @@ class DatabaseManager(AppService):
|
||||
get_store_agents = _(get_store_agents)
|
||||
get_store_agent_details = _(get_store_agent_details)
|
||||
|
||||
# Store Embeddings
|
||||
get_embedding_stats = _(get_embedding_stats)
|
||||
backfill_missing_embeddings = _(backfill_missing_embeddings)
|
||||
|
||||
# Summary data - async
|
||||
get_user_execution_summary_data = _(get_user_execution_summary_data)
|
||||
|
||||
@@ -259,6 +267,10 @@ class DatabaseManagerClient(AppServiceClient):
|
||||
get_store_agents = _(d.get_store_agents)
|
||||
get_store_agent_details = _(d.get_store_agent_details)
|
||||
|
||||
# Store Embeddings
|
||||
get_embedding_stats = _(d.get_embedding_stats)
|
||||
backfill_missing_embeddings = _(d.backfill_missing_embeddings)
|
||||
|
||||
|
||||
class DatabaseManagerAsyncClient(AppServiceClient):
|
||||
d = DatabaseManager
|
||||
|
||||
@@ -178,6 +178,7 @@ async def execute_node(
|
||||
execution_processor: "ExecutionProcessor",
|
||||
execution_stats: NodeExecutionStats | None = None,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
nodes_to_skip: Optional[set[str]] = None,
|
||||
) -> BlockOutput:
|
||||
"""
|
||||
Execute a node in the graph. This will trigger a block execution on a node,
|
||||
@@ -245,6 +246,7 @@ async def execute_node(
|
||||
"user_id": user_id,
|
||||
"execution_context": execution_context,
|
||||
"execution_processor": execution_processor,
|
||||
"nodes_to_skip": nodes_to_skip or set(),
|
||||
}
|
||||
|
||||
# Last-minute fetch credentials + acquire a system-wide read-write lock to prevent
|
||||
@@ -542,6 +544,7 @@ class ExecutionProcessor:
|
||||
node_exec_progress: NodeExecutionProgress,
|
||||
nodes_input_masks: Optional[NodesInputMasks],
|
||||
graph_stats_pair: tuple[GraphExecutionStats, threading.Lock],
|
||||
nodes_to_skip: Optional[set[str]] = None,
|
||||
) -> NodeExecutionStats:
|
||||
log_metadata = LogMetadata(
|
||||
logger=_logger,
|
||||
@@ -564,6 +567,7 @@ class ExecutionProcessor:
|
||||
db_client=db_client,
|
||||
log_metadata=log_metadata,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
nodes_to_skip=nodes_to_skip,
|
||||
)
|
||||
if isinstance(status, BaseException):
|
||||
raise status
|
||||
@@ -609,6 +613,7 @@ class ExecutionProcessor:
|
||||
db_client: "DatabaseManagerAsyncClient",
|
||||
log_metadata: LogMetadata,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
nodes_to_skip: Optional[set[str]] = None,
|
||||
) -> ExecutionStatus:
|
||||
status = ExecutionStatus.RUNNING
|
||||
|
||||
@@ -645,6 +650,7 @@ class ExecutionProcessor:
|
||||
execution_processor=self,
|
||||
execution_stats=stats,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
nodes_to_skip=nodes_to_skip,
|
||||
):
|
||||
await persist_output(output_name, output_data)
|
||||
|
||||
@@ -956,6 +962,21 @@ class ExecutionProcessor:
|
||||
|
||||
queued_node_exec = execution_queue.get()
|
||||
|
||||
# Check if this node should be skipped due to optional credentials
|
||||
if queued_node_exec.node_id in graph_exec.nodes_to_skip:
|
||||
log_metadata.info(
|
||||
f"Skipping node execution {queued_node_exec.node_exec_id} "
|
||||
f"for node {queued_node_exec.node_id} - optional credentials not configured"
|
||||
)
|
||||
# Mark the node as completed without executing
|
||||
# No outputs will be produced, so downstream nodes won't trigger
|
||||
update_node_execution_status(
|
||||
db_client=db_client,
|
||||
exec_id=queued_node_exec.node_exec_id,
|
||||
status=ExecutionStatus.COMPLETED,
|
||||
)
|
||||
continue
|
||||
|
||||
log_metadata.debug(
|
||||
f"Dispatching node execution {queued_node_exec.node_exec_id} "
|
||||
f"for node {queued_node_exec.node_id}",
|
||||
@@ -1016,6 +1037,7 @@ class ExecutionProcessor:
|
||||
execution_stats,
|
||||
execution_stats_lock,
|
||||
),
|
||||
nodes_to_skip=graph_exec.nodes_to_skip,
|
||||
),
|
||||
self.node_execution_loop,
|
||||
)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import fastapi.responses
|
||||
import pytest
|
||||
@@ -19,6 +20,17 @@ from backend.util.test import SpinTestServer, wait_execution
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@pytest.fixture(scope="session", autouse=True)
|
||||
def mock_embedding_functions():
|
||||
"""Mock embedding functions for all tests to avoid database/API dependencies."""
|
||||
with patch(
|
||||
"backend.api.features.store.db.ensure_embedding",
|
||||
new_callable=AsyncMock,
|
||||
return_value=True,
|
||||
):
|
||||
yield
|
||||
|
||||
|
||||
async def create_graph(s: SpinTestServer, g: graph.Graph, u: User) -> graph.Graph:
|
||||
logger.info(f"Creating graph for user {u.id}")
|
||||
return await s.agent_server.test_create_graph(CreateGraph(graph=g), u.id)
|
||||
|
||||
@@ -2,6 +2,7 @@ import asyncio
|
||||
import logging
|
||||
import os
|
||||
import threading
|
||||
import time
|
||||
import uuid
|
||||
from enum import Enum
|
||||
from typing import Optional
|
||||
@@ -37,7 +38,7 @@ from backend.monitoring import (
|
||||
report_execution_accuracy_alerts,
|
||||
report_late_executions,
|
||||
)
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.clients import get_database_manager_client, get_scheduler_client
|
||||
from backend.util.cloud_storage import cleanup_expired_files_async
|
||||
from backend.util.exceptions import (
|
||||
GraphNotFoundError,
|
||||
@@ -254,6 +255,74 @@ def execution_accuracy_alerts():
|
||||
return report_execution_accuracy_alerts()
|
||||
|
||||
|
||||
def ensure_embeddings_coverage():
|
||||
"""
|
||||
Ensure approved store agents have embeddings for hybrid search.
|
||||
|
||||
Processes ALL missing embeddings in batches of 10 until 100% coverage.
|
||||
Missing embeddings = agents invisible in hybrid search.
|
||||
|
||||
Schedule: Runs every 6 hours (balanced between coverage and API costs).
|
||||
- Catches agents approved between scheduled runs
|
||||
- Batch size 10: gradual processing to avoid rate limits
|
||||
- Manual trigger available via execute_ensure_embeddings_coverage endpoint
|
||||
"""
|
||||
db_client = get_database_manager_client()
|
||||
stats = db_client.get_embedding_stats()
|
||||
|
||||
# Check for error from get_embedding_stats() first
|
||||
if "error" in stats:
|
||||
logger.error(
|
||||
f"Failed to get embedding stats: {stats['error']} - skipping backfill"
|
||||
)
|
||||
return {"processed": 0, "success": 0, "failed": 0, "error": stats["error"]}
|
||||
|
||||
if stats["without_embeddings"] == 0:
|
||||
logger.info("All approved agents have embeddings, skipping backfill")
|
||||
return {"processed": 0, "success": 0, "failed": 0}
|
||||
|
||||
logger.info(
|
||||
f"Found {stats['without_embeddings']} agents without embeddings "
|
||||
f"({stats['coverage_percent']}% coverage) - processing all"
|
||||
)
|
||||
|
||||
total_processed = 0
|
||||
total_success = 0
|
||||
total_failed = 0
|
||||
|
||||
# Process in batches until no more missing embeddings
|
||||
while True:
|
||||
result = db_client.backfill_missing_embeddings(batch_size=10)
|
||||
|
||||
total_processed += result["processed"]
|
||||
total_success += result["success"]
|
||||
total_failed += result["failed"]
|
||||
|
||||
if result["processed"] == 0:
|
||||
# No more missing embeddings
|
||||
break
|
||||
|
||||
if result["success"] == 0 and result["processed"] > 0:
|
||||
# All attempts in this batch failed - stop to avoid infinite loop
|
||||
logger.error(
|
||||
f"All {result['processed']} embedding attempts failed - stopping backfill"
|
||||
)
|
||||
break
|
||||
|
||||
# Small delay between batches to avoid rate limits
|
||||
time.sleep(1)
|
||||
|
||||
logger.info(
|
||||
f"Embedding backfill completed: {total_success}/{total_processed} succeeded, "
|
||||
f"{total_failed} failed"
|
||||
)
|
||||
return {
|
||||
"processed": total_processed,
|
||||
"success": total_success,
|
||||
"failed": total_failed,
|
||||
}
|
||||
|
||||
|
||||
# Monitoring functions are now imported from monitoring module
|
||||
|
||||
|
||||
@@ -475,6 +544,19 @@ class Scheduler(AppService):
|
||||
jobstore=Jobstores.EXECUTION.value,
|
||||
)
|
||||
|
||||
# Embedding Coverage - Every 6 hours
|
||||
# Ensures all approved agents have embeddings for hybrid search
|
||||
# Critical: missing embeddings = agents invisible in search
|
||||
self.scheduler.add_job(
|
||||
ensure_embeddings_coverage,
|
||||
id="ensure_embeddings_coverage",
|
||||
trigger="interval",
|
||||
hours=6,
|
||||
replace_existing=True,
|
||||
max_instances=1, # Prevent overlapping runs
|
||||
jobstore=Jobstores.EXECUTION.value,
|
||||
)
|
||||
|
||||
self.scheduler.add_listener(job_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
|
||||
self.scheduler.add_listener(job_missed_listener, EVENT_JOB_MISSED)
|
||||
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
|
||||
@@ -632,6 +714,11 @@ class Scheduler(AppService):
|
||||
"""Manually trigger execution accuracy alert checking."""
|
||||
return execution_accuracy_alerts()
|
||||
|
||||
@expose
|
||||
def execute_ensure_embeddings_coverage(self):
|
||||
"""Manually trigger embedding backfill for approved store agents."""
|
||||
return ensure_embeddings_coverage()
|
||||
|
||||
|
||||
class SchedulerClient(AppServiceClient):
|
||||
@classmethod
|
||||
|
||||
@@ -239,14 +239,19 @@ async def _validate_node_input_credentials(
|
||||
graph: GraphModel,
|
||||
user_id: str,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
) -> dict[str, dict[str, str]]:
|
||||
) -> tuple[dict[str, dict[str, str]], set[str]]:
|
||||
"""
|
||||
Checks all credentials for all nodes of the graph and returns structured errors.
|
||||
Checks all credentials for all nodes of the graph and returns structured errors
|
||||
and a set of nodes that should be skipped due to optional missing credentials.
|
||||
|
||||
Returns:
|
||||
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node
|
||||
tuple[
|
||||
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node,
|
||||
set[node_id]: Nodes that should be skipped (optional credentials not configured)
|
||||
]
|
||||
"""
|
||||
credential_errors: dict[str, dict[str, str]] = defaultdict(dict)
|
||||
nodes_to_skip: set[str] = set()
|
||||
|
||||
for node in graph.nodes:
|
||||
block = node.block
|
||||
@@ -256,27 +261,46 @@ async def _validate_node_input_credentials(
|
||||
if not credentials_fields:
|
||||
continue
|
||||
|
||||
# Track if any credential field is missing for this node
|
||||
has_missing_credentials = False
|
||||
|
||||
for field_name, credentials_meta_type in credentials_fields.items():
|
||||
try:
|
||||
# Check nodes_input_masks first, then input_default
|
||||
field_value = None
|
||||
if (
|
||||
nodes_input_masks
|
||||
and (node_input_mask := nodes_input_masks.get(node.id))
|
||||
and field_name in node_input_mask
|
||||
):
|
||||
credentials_meta = credentials_meta_type.model_validate(
|
||||
node_input_mask[field_name]
|
||||
)
|
||||
field_value = node_input_mask[field_name]
|
||||
elif field_name in node.input_default:
|
||||
credentials_meta = credentials_meta_type.model_validate(
|
||||
node.input_default[field_name]
|
||||
)
|
||||
else:
|
||||
# Missing credentials
|
||||
credential_errors[node.id][
|
||||
field_name
|
||||
] = "These credentials are required"
|
||||
continue
|
||||
# For optional credentials, don't use input_default - treat as missing
|
||||
# This prevents stale credential IDs from failing validation
|
||||
if node.credentials_optional:
|
||||
field_value = None
|
||||
else:
|
||||
field_value = node.input_default[field_name]
|
||||
|
||||
# Check if credentials are missing (None, empty, or not present)
|
||||
if field_value is None or (
|
||||
isinstance(field_value, dict) and not field_value.get("id")
|
||||
):
|
||||
has_missing_credentials = True
|
||||
# If node has credentials_optional flag, mark for skipping instead of error
|
||||
if node.credentials_optional:
|
||||
continue # Don't add error, will be marked for skip after loop
|
||||
else:
|
||||
credential_errors[node.id][
|
||||
field_name
|
||||
] = "These credentials are required"
|
||||
continue
|
||||
|
||||
credentials_meta = credentials_meta_type.model_validate(field_value)
|
||||
|
||||
except ValidationError as e:
|
||||
# Validation error means credentials were provided but invalid
|
||||
# This should always be an error, even if optional
|
||||
credential_errors[node.id][field_name] = f"Invalid credentials: {e}"
|
||||
continue
|
||||
|
||||
@@ -287,6 +311,7 @@ async def _validate_node_input_credentials(
|
||||
)
|
||||
except Exception as e:
|
||||
# Handle any errors fetching credentials
|
||||
# If credentials were explicitly configured but unavailable, it's an error
|
||||
credential_errors[node.id][
|
||||
field_name
|
||||
] = f"Credentials not available: {e}"
|
||||
@@ -313,7 +338,19 @@ async def _validate_node_input_credentials(
|
||||
] = "Invalid credentials: type/provider mismatch"
|
||||
continue
|
||||
|
||||
return credential_errors
|
||||
# If node has optional credentials and any are missing, mark for skipping
|
||||
# But only if there are no other errors for this node
|
||||
if (
|
||||
has_missing_credentials
|
||||
and node.credentials_optional
|
||||
and node.id not in credential_errors
|
||||
):
|
||||
nodes_to_skip.add(node.id)
|
||||
logger.info(
|
||||
f"Node #{node.id} will be skipped: optional credentials not configured"
|
||||
)
|
||||
|
||||
return credential_errors, nodes_to_skip
|
||||
|
||||
|
||||
def make_node_credentials_input_map(
|
||||
@@ -355,21 +392,25 @@ async def validate_graph_with_credentials(
|
||||
graph: GraphModel,
|
||||
user_id: str,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
) -> Mapping[str, Mapping[str, str]]:
|
||||
) -> tuple[Mapping[str, Mapping[str, str]], set[str]]:
|
||||
"""
|
||||
Validate graph including credentials and return structured errors per node.
|
||||
Validate graph including credentials and return structured errors per node,
|
||||
along with a set of nodes that should be skipped due to optional missing credentials.
|
||||
|
||||
Returns:
|
||||
dict[node_id, dict[field_name, error_message]]: Validation errors per node
|
||||
tuple[
|
||||
dict[node_id, dict[field_name, error_message]]: Validation errors per node,
|
||||
set[node_id]: Nodes that should be skipped (optional credentials not configured)
|
||||
]
|
||||
"""
|
||||
# Get input validation errors
|
||||
node_input_errors = GraphModel.validate_graph_get_errors(
|
||||
graph, for_run=True, nodes_input_masks=nodes_input_masks
|
||||
)
|
||||
|
||||
# Get credential input/availability/validation errors
|
||||
node_credential_input_errors = await _validate_node_input_credentials(
|
||||
graph, user_id, nodes_input_masks
|
||||
# Get credential input/availability/validation errors and nodes to skip
|
||||
node_credential_input_errors, nodes_to_skip = (
|
||||
await _validate_node_input_credentials(graph, user_id, nodes_input_masks)
|
||||
)
|
||||
|
||||
# Merge credential errors with structural errors
|
||||
@@ -378,7 +419,7 @@ async def validate_graph_with_credentials(
|
||||
node_input_errors[node_id] = {}
|
||||
node_input_errors[node_id].update(field_errors)
|
||||
|
||||
return node_input_errors
|
||||
return node_input_errors, nodes_to_skip
|
||||
|
||||
|
||||
async def _construct_starting_node_execution_input(
|
||||
@@ -386,7 +427,7 @@ async def _construct_starting_node_execution_input(
|
||||
user_id: str,
|
||||
graph_inputs: BlockInput,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
) -> list[tuple[str, BlockInput]]:
|
||||
) -> tuple[list[tuple[str, BlockInput]], set[str]]:
|
||||
"""
|
||||
Validates and prepares the input data for executing a graph.
|
||||
This function checks the graph for starting nodes, validates the input data
|
||||
@@ -400,11 +441,14 @@ async def _construct_starting_node_execution_input(
|
||||
node_credentials_map: `dict[node_id, dict[input_name, CredentialsMetaInput]]`
|
||||
|
||||
Returns:
|
||||
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID and
|
||||
the corresponding input data for that node.
|
||||
tuple[
|
||||
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID
|
||||
and the corresponding input data for that node.
|
||||
set[str]: Node IDs that should be skipped (optional credentials not configured)
|
||||
]
|
||||
"""
|
||||
# Use new validation function that includes credentials
|
||||
validation_errors = await validate_graph_with_credentials(
|
||||
validation_errors, nodes_to_skip = await validate_graph_with_credentials(
|
||||
graph, user_id, nodes_input_masks
|
||||
)
|
||||
n_error_nodes = len(validation_errors)
|
||||
@@ -445,7 +489,7 @@ async def _construct_starting_node_execution_input(
|
||||
"No starting nodes found for the graph, make sure an AgentInput or blocks with no inbound links are present as starting nodes."
|
||||
)
|
||||
|
||||
return nodes_input
|
||||
return nodes_input, nodes_to_skip
|
||||
|
||||
|
||||
async def validate_and_construct_node_execution_input(
|
||||
@@ -456,7 +500,7 @@ async def validate_and_construct_node_execution_input(
|
||||
graph_credentials_inputs: Optional[Mapping[str, CredentialsMetaInput]] = None,
|
||||
nodes_input_masks: Optional[NodesInputMasks] = None,
|
||||
is_sub_graph: bool = False,
|
||||
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks]:
|
||||
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks, set[str]]:
|
||||
"""
|
||||
Public wrapper that handles graph fetching, credential mapping, and validation+construction.
|
||||
This centralizes the logic used by both scheduler validation and actual execution.
|
||||
@@ -473,6 +517,7 @@ async def validate_and_construct_node_execution_input(
|
||||
GraphModel: Full graph object for the given `graph_id`.
|
||||
list[tuple[node_id, BlockInput]]: Starting node IDs with corresponding inputs.
|
||||
dict[str, BlockInput]: Node input masks including all passed-in credentials.
|
||||
set[str]: Node IDs that should be skipped (optional credentials not configured).
|
||||
|
||||
Raises:
|
||||
NotFoundError: If the graph is not found.
|
||||
@@ -514,14 +559,16 @@ async def validate_and_construct_node_execution_input(
|
||||
nodes_input_masks or {},
|
||||
)
|
||||
|
||||
starting_nodes_input = await _construct_starting_node_execution_input(
|
||||
graph=graph,
|
||||
user_id=user_id,
|
||||
graph_inputs=graph_inputs,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
starting_nodes_input, nodes_to_skip = (
|
||||
await _construct_starting_node_execution_input(
|
||||
graph=graph,
|
||||
user_id=user_id,
|
||||
graph_inputs=graph_inputs,
|
||||
nodes_input_masks=nodes_input_masks,
|
||||
)
|
||||
)
|
||||
|
||||
return graph, starting_nodes_input, nodes_input_masks
|
||||
return graph, starting_nodes_input, nodes_input_masks, nodes_to_skip
|
||||
|
||||
|
||||
def _merge_nodes_input_masks(
|
||||
@@ -779,6 +826,9 @@ async def add_graph_execution(
|
||||
|
||||
# Use existing execution's compiled input masks
|
||||
compiled_nodes_input_masks = graph_exec.nodes_input_masks or {}
|
||||
# For resumed executions, nodes_to_skip was already determined at creation time
|
||||
# TODO: Consider storing nodes_to_skip in DB if we need to preserve it across resumes
|
||||
nodes_to_skip: set[str] = set()
|
||||
|
||||
logger.info(f"Resuming graph execution #{graph_exec.id} for graph #{graph_id}")
|
||||
else:
|
||||
@@ -787,7 +837,7 @@ async def add_graph_execution(
|
||||
)
|
||||
|
||||
# Create new execution
|
||||
graph, starting_nodes_input, compiled_nodes_input_masks = (
|
||||
graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip = (
|
||||
await validate_and_construct_node_execution_input(
|
||||
graph_id=graph_id,
|
||||
user_id=user_id,
|
||||
@@ -836,6 +886,7 @@ async def add_graph_execution(
|
||||
try:
|
||||
graph_exec_entry = graph_exec.to_graph_execution_entry(
|
||||
compiled_nodes_input_masks=compiled_nodes_input_masks,
|
||||
nodes_to_skip=nodes_to_skip,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
logger.info(f"Publishing execution {graph_exec.id} to execution queue")
|
||||
|
||||
@@ -367,10 +367,13 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
)
|
||||
|
||||
# Setup mock returns
|
||||
# The function returns (graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip)
|
||||
nodes_to_skip: set[str] = set()
|
||||
mock_validate.return_value = (
|
||||
mock_graph,
|
||||
starting_nodes_input,
|
||||
compiled_nodes_input_masks,
|
||||
nodes_to_skip,
|
||||
)
|
||||
mock_prisma.is_connected.return_value = True
|
||||
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
|
||||
@@ -456,3 +459,212 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
# Both executions should succeed (though they create different objects)
|
||||
assert result1 == mock_graph_exec
|
||||
assert result2 == mock_graph_exec_2
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Tests for Optional Credentials Feature
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_validate_node_input_credentials_returns_nodes_to_skip(
|
||||
mocker: MockerFixture,
|
||||
):
|
||||
"""
|
||||
Test that _validate_node_input_credentials returns nodes_to_skip set
|
||||
for nodes with credentials_optional=True and missing credentials.
|
||||
"""
|
||||
from backend.executor.utils import _validate_node_input_credentials
|
||||
|
||||
# Create a mock node with credentials_optional=True
|
||||
mock_node = mocker.MagicMock()
|
||||
mock_node.id = "node-with-optional-creds"
|
||||
mock_node.credentials_optional = True
|
||||
mock_node.input_default = {} # No credentials configured
|
||||
|
||||
# Create a mock block with credentials field
|
||||
mock_block = mocker.MagicMock()
|
||||
mock_credentials_field_type = mocker.MagicMock()
|
||||
mock_block.input_schema.get_credentials_fields.return_value = {
|
||||
"credentials": mock_credentials_field_type
|
||||
}
|
||||
mock_node.block = mock_block
|
||||
|
||||
# Create mock graph
|
||||
mock_graph = mocker.MagicMock()
|
||||
mock_graph.nodes = [mock_node]
|
||||
|
||||
# Call the function
|
||||
errors, nodes_to_skip = await _validate_node_input_credentials(
|
||||
graph=mock_graph,
|
||||
user_id="test-user-id",
|
||||
nodes_input_masks=None,
|
||||
)
|
||||
|
||||
# Node should be in nodes_to_skip, not in errors
|
||||
assert mock_node.id in nodes_to_skip
|
||||
assert mock_node.id not in errors
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_validate_node_input_credentials_required_missing_creds_error(
|
||||
mocker: MockerFixture,
|
||||
):
|
||||
"""
|
||||
Test that _validate_node_input_credentials returns errors
|
||||
for nodes with credentials_optional=False and missing credentials.
|
||||
"""
|
||||
from backend.executor.utils import _validate_node_input_credentials
|
||||
|
||||
# Create a mock node with credentials_optional=False (required)
|
||||
mock_node = mocker.MagicMock()
|
||||
mock_node.id = "node-with-required-creds"
|
||||
mock_node.credentials_optional = False
|
||||
mock_node.input_default = {} # No credentials configured
|
||||
|
||||
# Create a mock block with credentials field
|
||||
mock_block = mocker.MagicMock()
|
||||
mock_credentials_field_type = mocker.MagicMock()
|
||||
mock_block.input_schema.get_credentials_fields.return_value = {
|
||||
"credentials": mock_credentials_field_type
|
||||
}
|
||||
mock_node.block = mock_block
|
||||
|
||||
# Create mock graph
|
||||
mock_graph = mocker.MagicMock()
|
||||
mock_graph.nodes = [mock_node]
|
||||
|
||||
# Call the function
|
||||
errors, nodes_to_skip = await _validate_node_input_credentials(
|
||||
graph=mock_graph,
|
||||
user_id="test-user-id",
|
||||
nodes_input_masks=None,
|
||||
)
|
||||
|
||||
# Node should be in errors, not in nodes_to_skip
|
||||
assert mock_node.id in errors
|
||||
assert "credentials" in errors[mock_node.id]
|
||||
assert "required" in errors[mock_node.id]["credentials"].lower()
|
||||
assert mock_node.id not in nodes_to_skip
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_validate_graph_with_credentials_returns_nodes_to_skip(
|
||||
mocker: MockerFixture,
|
||||
):
|
||||
"""
|
||||
Test that validate_graph_with_credentials returns nodes_to_skip set
|
||||
from _validate_node_input_credentials.
|
||||
"""
|
||||
from backend.executor.utils import validate_graph_with_credentials
|
||||
|
||||
# Mock _validate_node_input_credentials to return specific values
|
||||
mock_validate = mocker.patch(
|
||||
"backend.executor.utils._validate_node_input_credentials"
|
||||
)
|
||||
expected_errors = {"node1": {"field": "error"}}
|
||||
expected_nodes_to_skip = {"node2", "node3"}
|
||||
mock_validate.return_value = (expected_errors, expected_nodes_to_skip)
|
||||
|
||||
# Mock GraphModel with validate_graph_get_errors method
|
||||
mock_graph = mocker.MagicMock()
|
||||
mock_graph.validate_graph_get_errors.return_value = {}
|
||||
|
||||
# Call the function
|
||||
errors, nodes_to_skip = await validate_graph_with_credentials(
|
||||
graph=mock_graph,
|
||||
user_id="test-user-id",
|
||||
nodes_input_masks=None,
|
||||
)
|
||||
|
||||
# Verify nodes_to_skip is passed through
|
||||
assert nodes_to_skip == expected_nodes_to_skip
|
||||
assert "node1" in errors
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
|
||||
"""
|
||||
Test that add_graph_execution properly passes nodes_to_skip
|
||||
to the graph execution entry.
|
||||
"""
|
||||
from backend.data.execution import GraphExecutionWithNodes
|
||||
from backend.executor.utils import add_graph_execution
|
||||
|
||||
# Mock data
|
||||
graph_id = "test-graph-id"
|
||||
user_id = "test-user-id"
|
||||
inputs = {"test_input": "test_value"}
|
||||
graph_version = 1
|
||||
|
||||
# Mock the graph object
|
||||
mock_graph = mocker.MagicMock()
|
||||
mock_graph.version = graph_version
|
||||
|
||||
# Starting nodes and masks
|
||||
starting_nodes_input = [("node1", {"input1": "value1"})]
|
||||
compiled_nodes_input_masks = {}
|
||||
nodes_to_skip = {"skipped-node-1", "skipped-node-2"}
|
||||
|
||||
# Mock the graph execution object
|
||||
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionWithNodes)
|
||||
mock_graph_exec.id = "execution-id-123"
|
||||
mock_graph_exec.node_executions = []
|
||||
|
||||
# Track what's passed to to_graph_execution_entry
|
||||
captured_kwargs = {}
|
||||
|
||||
def capture_to_entry(**kwargs):
|
||||
captured_kwargs.update(kwargs)
|
||||
return mocker.MagicMock()
|
||||
|
||||
mock_graph_exec.to_graph_execution_entry.side_effect = capture_to_entry
|
||||
|
||||
# Setup mocks
|
||||
mock_validate = mocker.patch(
|
||||
"backend.executor.utils.validate_and_construct_node_execution_input"
|
||||
)
|
||||
mock_edb = mocker.patch("backend.executor.utils.execution_db")
|
||||
mock_prisma = mocker.patch("backend.executor.utils.prisma")
|
||||
mock_udb = mocker.patch("backend.executor.utils.user_db")
|
||||
mock_gdb = mocker.patch("backend.executor.utils.graph_db")
|
||||
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
|
||||
mock_get_event_bus = mocker.patch(
|
||||
"backend.executor.utils.get_async_execution_event_bus"
|
||||
)
|
||||
|
||||
# Setup returns - include nodes_to_skip in the tuple
|
||||
mock_validate.return_value = (
|
||||
mock_graph,
|
||||
starting_nodes_input,
|
||||
compiled_nodes_input_masks,
|
||||
nodes_to_skip, # This should be passed through
|
||||
)
|
||||
mock_prisma.is_connected.return_value = True
|
||||
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
|
||||
mock_edb.update_graph_execution_stats = mocker.AsyncMock(
|
||||
return_value=mock_graph_exec
|
||||
)
|
||||
mock_edb.update_node_execution_status_batch = mocker.AsyncMock()
|
||||
|
||||
mock_user = mocker.MagicMock()
|
||||
mock_user.timezone = "UTC"
|
||||
mock_settings = mocker.MagicMock()
|
||||
mock_settings.human_in_the_loop_safe_mode = True
|
||||
|
||||
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
|
||||
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
|
||||
mock_get_queue.return_value = mocker.AsyncMock()
|
||||
mock_get_event_bus.return_value = mocker.MagicMock(publish=mocker.AsyncMock())
|
||||
|
||||
# Call the function
|
||||
await add_graph_execution(
|
||||
graph_id=graph_id,
|
||||
user_id=user_id,
|
||||
inputs=inputs,
|
||||
graph_version=graph_version,
|
||||
)
|
||||
|
||||
# Verify nodes_to_skip was passed to to_graph_execution_entry
|
||||
assert "nodes_to_skip" in captured_kwargs
|
||||
assert captured_kwargs["nodes_to_skip"] == nodes_to_skip
|
||||
|
||||
@@ -8,6 +8,7 @@ from .discord import DiscordOAuthHandler
|
||||
from .github import GitHubOAuthHandler
|
||||
from .google import GoogleOAuthHandler
|
||||
from .notion import NotionOAuthHandler
|
||||
from .reddit import RedditOAuthHandler
|
||||
from .twitter import TwitterOAuthHandler
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -20,6 +21,7 @@ _ORIGINAL_HANDLERS = [
|
||||
GitHubOAuthHandler,
|
||||
GoogleOAuthHandler,
|
||||
NotionOAuthHandler,
|
||||
RedditOAuthHandler,
|
||||
TwitterOAuthHandler,
|
||||
TodoistOAuthHandler,
|
||||
]
|
||||
|
||||
208
autogpt_platform/backend/backend/integrations/oauth/reddit.py
Normal file
208
autogpt_platform/backend/backend/integrations/oauth/reddit.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import time
|
||||
import urllib.parse
|
||||
from typing import ClassVar, Optional
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import OAuth2Credentials
|
||||
from backend.integrations.oauth.base import BaseOAuthHandler
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.request import Requests
|
||||
from backend.util.settings import Settings
|
||||
|
||||
settings = Settings()
|
||||
|
||||
|
||||
class RedditOAuthHandler(BaseOAuthHandler):
|
||||
"""
|
||||
Reddit OAuth 2.0 handler.
|
||||
|
||||
Based on the documentation at:
|
||||
- https://github.com/reddit-archive/reddit/wiki/OAuth2
|
||||
|
||||
Notes:
|
||||
- Reddit requires `duration=permanent` to get refresh tokens
|
||||
- Access tokens expire after 1 hour (3600 seconds)
|
||||
- Reddit requires HTTP Basic Auth for token requests
|
||||
- Reddit requires a unique User-Agent header
|
||||
"""
|
||||
|
||||
PROVIDER_NAME = ProviderName.REDDIT
|
||||
DEFAULT_SCOPES: ClassVar[list[str]] = [
|
||||
"identity", # Get username, verify auth
|
||||
"read", # Access posts and comments
|
||||
"submit", # Submit new posts and comments
|
||||
"edit", # Edit own posts and comments
|
||||
"history", # Access user's post history
|
||||
"privatemessages", # Access inbox and send private messages
|
||||
"flair", # Access and set flair on posts/subreddits
|
||||
]
|
||||
|
||||
AUTHORIZE_URL = "https://www.reddit.com/api/v1/authorize"
|
||||
TOKEN_URL = "https://www.reddit.com/api/v1/access_token"
|
||||
USERNAME_URL = "https://oauth.reddit.com/api/v1/me"
|
||||
REVOKE_URL = "https://www.reddit.com/api/v1/revoke_token"
|
||||
|
||||
def __init__(self, client_id: str, client_secret: str, redirect_uri: str):
|
||||
self.client_id = client_id
|
||||
self.client_secret = client_secret
|
||||
self.redirect_uri = redirect_uri
|
||||
|
||||
def get_login_url(
|
||||
self, scopes: list[str], state: str, code_challenge: Optional[str]
|
||||
) -> str:
|
||||
"""Generate Reddit OAuth 2.0 authorization URL"""
|
||||
scopes = self.handle_default_scopes(scopes)
|
||||
|
||||
params = {
|
||||
"response_type": "code",
|
||||
"client_id": self.client_id,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
"scope": " ".join(scopes),
|
||||
"state": state,
|
||||
"duration": "permanent", # Required for refresh tokens
|
||||
}
|
||||
|
||||
return f"{self.AUTHORIZE_URL}?{urllib.parse.urlencode(params)}"
|
||||
|
||||
async def exchange_code_for_tokens(
|
||||
self, code: str, scopes: list[str], code_verifier: Optional[str]
|
||||
) -> OAuth2Credentials:
|
||||
"""Exchange authorization code for access tokens"""
|
||||
scopes = self.handle_default_scopes(scopes)
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
data = {
|
||||
"grant_type": "authorization_code",
|
||||
"code": code,
|
||||
"redirect_uri": self.redirect_uri,
|
||||
}
|
||||
|
||||
# Reddit requires HTTP Basic Auth for token requests
|
||||
auth = (self.client_id, self.client_secret)
|
||||
|
||||
response = await Requests().post(
|
||||
self.TOKEN_URL, headers=headers, data=data, auth=auth
|
||||
)
|
||||
|
||||
if not response.ok:
|
||||
error_text = response.text()
|
||||
raise ValueError(
|
||||
f"Reddit token exchange failed: {response.status} - {error_text}"
|
||||
)
|
||||
|
||||
tokens = response.json()
|
||||
|
||||
if "error" in tokens:
|
||||
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
|
||||
|
||||
username = await self._get_username(tokens["access_token"])
|
||||
|
||||
return OAuth2Credentials(
|
||||
provider=self.PROVIDER_NAME,
|
||||
title=None,
|
||||
username=username,
|
||||
access_token=tokens["access_token"],
|
||||
refresh_token=tokens.get("refresh_token"),
|
||||
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
|
||||
refresh_token_expires_at=None, # Reddit refresh tokens don't expire
|
||||
scopes=scopes,
|
||||
)
|
||||
|
||||
async def _get_username(self, access_token: str) -> str:
|
||||
"""Get the username from the access token"""
|
||||
headers = {
|
||||
"Authorization": f"Bearer {access_token}",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
response = await Requests().get(self.USERNAME_URL, headers=headers)
|
||||
|
||||
if not response.ok:
|
||||
raise ValueError(f"Failed to get Reddit username: {response.status}")
|
||||
|
||||
data = response.json()
|
||||
return data.get("name", "unknown")
|
||||
|
||||
async def _refresh_tokens(
|
||||
self, credentials: OAuth2Credentials
|
||||
) -> OAuth2Credentials:
|
||||
"""Refresh access tokens using refresh token"""
|
||||
if not credentials.refresh_token:
|
||||
raise ValueError("No refresh token available")
|
||||
|
||||
headers = {
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
data = {
|
||||
"grant_type": "refresh_token",
|
||||
"refresh_token": credentials.refresh_token.get_secret_value(),
|
||||
}
|
||||
|
||||
auth = (self.client_id, self.client_secret)
|
||||
|
||||
response = await Requests().post(
|
||||
self.TOKEN_URL, headers=headers, data=data, auth=auth
|
||||
)
|
||||
|
||||
if not response.ok:
|
||||
error_text = response.text()
|
||||
raise ValueError(
|
||||
f"Reddit token refresh failed: {response.status} - {error_text}"
|
||||
)
|
||||
|
||||
tokens = response.json()
|
||||
|
||||
if "error" in tokens:
|
||||
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
|
||||
|
||||
username = await self._get_username(tokens["access_token"])
|
||||
|
||||
# Reddit may or may not return a new refresh token
|
||||
new_refresh_token = tokens.get("refresh_token")
|
||||
if new_refresh_token:
|
||||
refresh_token: SecretStr | None = SecretStr(new_refresh_token)
|
||||
elif credentials.refresh_token:
|
||||
# Keep the existing refresh token
|
||||
refresh_token = credentials.refresh_token
|
||||
else:
|
||||
refresh_token = None
|
||||
|
||||
return OAuth2Credentials(
|
||||
id=credentials.id,
|
||||
provider=self.PROVIDER_NAME,
|
||||
title=credentials.title,
|
||||
username=username,
|
||||
access_token=tokens["access_token"],
|
||||
refresh_token=refresh_token,
|
||||
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
|
||||
refresh_token_expires_at=None,
|
||||
scopes=credentials.scopes,
|
||||
)
|
||||
|
||||
async def revoke_tokens(self, credentials: OAuth2Credentials) -> bool:
|
||||
"""Revoke the access token"""
|
||||
headers = {
|
||||
"Content-Type": "application/x-www-form-urlencoded",
|
||||
"User-Agent": settings.config.reddit_user_agent,
|
||||
}
|
||||
|
||||
data = {
|
||||
"token": credentials.access_token.get_secret_value(),
|
||||
"token_type_hint": "access_token",
|
||||
}
|
||||
|
||||
auth = (self.client_id, self.client_secret)
|
||||
|
||||
response = await Requests().post(
|
||||
self.REVOKE_URL, headers=headers, data=data, auth=auth
|
||||
)
|
||||
|
||||
# Reddit returns 204 No Content on successful revocation
|
||||
return response.ok
|
||||
@@ -10,6 +10,7 @@ from backend.util.settings import Settings
|
||||
settings = Settings()
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from openai import AsyncOpenAI
|
||||
from supabase import AClient, Client
|
||||
|
||||
from backend.data.execution import (
|
||||
@@ -139,6 +140,24 @@ async def get_async_supabase() -> "AClient":
|
||||
)
|
||||
|
||||
|
||||
# ============ OpenAI Client ============ #
|
||||
|
||||
|
||||
@cached(ttl_seconds=3600)
|
||||
def get_openai_client() -> "AsyncOpenAI | None":
|
||||
"""
|
||||
Get a process-cached async OpenAI client for embeddings.
|
||||
|
||||
Returns None if API key is not configured.
|
||||
"""
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
api_key = settings.secrets.openai_internal_api_key
|
||||
if not api_key:
|
||||
return None
|
||||
return AsyncOpenAI(api_key=api_key)
|
||||
|
||||
|
||||
# ============ Notification Queue Helpers ============ #
|
||||
|
||||
|
||||
|
||||
@@ -264,7 +264,7 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
|
||||
)
|
||||
|
||||
reddit_user_agent: str = Field(
|
||||
default="AutoGPT:1.0 (by /u/autogpt)",
|
||||
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
|
||||
description="The user agent for the Reddit API",
|
||||
)
|
||||
|
||||
|
||||
227
autogpt_platform/backend/gen_prisma_types_stub.py
Normal file
227
autogpt_platform/backend/gen_prisma_types_stub.py
Normal file
@@ -0,0 +1,227 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Generate a lightweight stub for prisma/types.py that collapses all exported
|
||||
symbols to Any. This prevents Pyright from spending time/budget on Prisma's
|
||||
query DSL types while keeping runtime behavior unchanged.
|
||||
|
||||
Usage:
|
||||
poetry run gen-prisma-stub
|
||||
|
||||
This script automatically finds the prisma package location and generates
|
||||
the types.pyi stub file in the same directory as types.py.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import ast
|
||||
import importlib.util
|
||||
import sys
|
||||
from pathlib import Path
|
||||
from typing import Iterable, Set
|
||||
|
||||
|
||||
def _iter_assigned_names(target: ast.expr) -> Iterable[str]:
|
||||
"""Extract names from assignment targets (handles tuple unpacking)."""
|
||||
if isinstance(target, ast.Name):
|
||||
yield target.id
|
||||
elif isinstance(target, (ast.Tuple, ast.List)):
|
||||
for elt in target.elts:
|
||||
yield from _iter_assigned_names(elt)
|
||||
|
||||
|
||||
def _is_private(name: str) -> bool:
|
||||
"""Check if a name is private (starts with _ but not __)."""
|
||||
return name.startswith("_") and not name.startswith("__")
|
||||
|
||||
|
||||
def _is_safe_type_alias(node: ast.Assign) -> bool:
|
||||
"""Check if an assignment is a safe type alias that shouldn't be stubbed.
|
||||
|
||||
Safe types are:
|
||||
- Literal types (don't cause type budget issues)
|
||||
- Simple type references (SortMode, SortOrder, etc.)
|
||||
- TypeVar definitions
|
||||
"""
|
||||
if not node.value:
|
||||
return False
|
||||
|
||||
# Check if it's a Subscript (like Literal[...], Union[...], TypeVar[...])
|
||||
if isinstance(node.value, ast.Subscript):
|
||||
# Get the base type name
|
||||
if isinstance(node.value.value, ast.Name):
|
||||
base_name = node.value.value.id
|
||||
# Literal types are safe
|
||||
if base_name == "Literal":
|
||||
return True
|
||||
# TypeVar is safe
|
||||
if base_name == "TypeVar":
|
||||
return True
|
||||
elif isinstance(node.value.value, ast.Attribute):
|
||||
# Handle typing_extensions.Literal etc.
|
||||
if node.value.value.attr == "Literal":
|
||||
return True
|
||||
|
||||
# Check if it's a simple Name reference (like SortMode = _types.SortMode)
|
||||
if isinstance(node.value, ast.Attribute):
|
||||
return True
|
||||
|
||||
# Check if it's a Call (like TypeVar(...))
|
||||
if isinstance(node.value, ast.Call):
|
||||
if isinstance(node.value.func, ast.Name):
|
||||
if node.value.func.id == "TypeVar":
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def collect_top_level_symbols(
|
||||
tree: ast.Module, source_lines: list[str]
|
||||
) -> tuple[Set[str], Set[str], list[str], Set[str]]:
|
||||
"""Collect all top-level symbols from an AST module.
|
||||
|
||||
Returns:
|
||||
Tuple of (class_names, function_names, safe_variable_sources, unsafe_variable_names)
|
||||
safe_variable_sources contains the actual source code lines for safe variables
|
||||
"""
|
||||
classes: Set[str] = set()
|
||||
functions: Set[str] = set()
|
||||
safe_variable_sources: list[str] = []
|
||||
unsafe_variables: Set[str] = set()
|
||||
|
||||
for node in tree.body:
|
||||
if isinstance(node, ast.ClassDef):
|
||||
if not _is_private(node.name):
|
||||
classes.add(node.name)
|
||||
elif isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef)):
|
||||
if not _is_private(node.name):
|
||||
functions.add(node.name)
|
||||
elif isinstance(node, ast.Assign):
|
||||
is_safe = _is_safe_type_alias(node)
|
||||
names = []
|
||||
for t in node.targets:
|
||||
for n in _iter_assigned_names(t):
|
||||
if not _is_private(n):
|
||||
names.append(n)
|
||||
if names:
|
||||
if is_safe:
|
||||
# Extract the source code for this assignment
|
||||
start_line = node.lineno - 1 # 0-indexed
|
||||
end_line = node.end_lineno if node.end_lineno else node.lineno
|
||||
source = "\n".join(source_lines[start_line:end_line])
|
||||
safe_variable_sources.append(source)
|
||||
else:
|
||||
unsafe_variables.update(names)
|
||||
elif isinstance(node, ast.AnnAssign) and node.target:
|
||||
# Annotated assignments are always stubbed
|
||||
for n in _iter_assigned_names(node.target):
|
||||
if not _is_private(n):
|
||||
unsafe_variables.add(n)
|
||||
|
||||
return classes, functions, safe_variable_sources, unsafe_variables
|
||||
|
||||
|
||||
def find_prisma_types_path() -> Path:
|
||||
"""Find the prisma types.py file in the installed package."""
|
||||
spec = importlib.util.find_spec("prisma")
|
||||
if spec is None or spec.origin is None:
|
||||
raise RuntimeError("Could not find prisma package. Is it installed?")
|
||||
|
||||
prisma_dir = Path(spec.origin).parent
|
||||
types_path = prisma_dir / "types.py"
|
||||
|
||||
if not types_path.exists():
|
||||
raise RuntimeError(f"prisma/types.py not found at {types_path}")
|
||||
|
||||
return types_path
|
||||
|
||||
|
||||
def generate_stub(src_path: Path, stub_path: Path) -> int:
|
||||
"""Generate the .pyi stub file from the source types.py."""
|
||||
code = src_path.read_text(encoding="utf-8", errors="ignore")
|
||||
source_lines = code.splitlines()
|
||||
tree = ast.parse(code, filename=str(src_path))
|
||||
classes, functions, safe_variable_sources, unsafe_variables = (
|
||||
collect_top_level_symbols(tree, source_lines)
|
||||
)
|
||||
|
||||
header = """\
|
||||
# -*- coding: utf-8 -*-
|
||||
# Auto-generated stub file - DO NOT EDIT
|
||||
# Generated by gen_prisma_types_stub.py
|
||||
#
|
||||
# This stub intentionally collapses complex Prisma query DSL types to Any.
|
||||
# Prisma's generated types can explode Pyright's type inference budgets
|
||||
# on large schemas. We collapse them to Any so the rest of the codebase
|
||||
# can remain strongly typed while keeping runtime behavior unchanged.
|
||||
#
|
||||
# Safe types (Literal, TypeVar, simple references) are preserved from the
|
||||
# original types.py to maintain proper type checking where possible.
|
||||
|
||||
from __future__ import annotations
|
||||
from typing import Any
|
||||
from typing_extensions import Literal
|
||||
|
||||
# Re-export commonly used typing constructs that may be imported from this module
|
||||
from typing import TYPE_CHECKING, TypeVar, Generic, Union, Optional, List, Dict
|
||||
|
||||
# Base type alias for stubbed Prisma types - allows any dict structure
|
||||
_PrismaDict = dict[str, Any]
|
||||
|
||||
"""
|
||||
|
||||
lines = [header]
|
||||
|
||||
# Include safe variable definitions (Literal types, TypeVars, etc.)
|
||||
lines.append("# Safe type definitions preserved from original types.py")
|
||||
for source in safe_variable_sources:
|
||||
lines.append(source)
|
||||
lines.append("")
|
||||
|
||||
# Stub all classes and unsafe variables uniformly as dict[str, Any] aliases
|
||||
# This allows:
|
||||
# 1. Use in type annotations: x: SomeType
|
||||
# 2. Constructor calls: SomeType(...)
|
||||
# 3. Dict literal assignments: x: SomeType = {...}
|
||||
lines.append(
|
||||
"# Stubbed types (collapsed to dict[str, Any] to prevent type budget exhaustion)"
|
||||
)
|
||||
all_stubbed = sorted(classes | unsafe_variables)
|
||||
for name in all_stubbed:
|
||||
lines.append(f"{name} = _PrismaDict")
|
||||
|
||||
lines.append("")
|
||||
|
||||
# Stub functions
|
||||
for name in sorted(functions):
|
||||
lines.append(f"def {name}(*args: Any, **kwargs: Any) -> Any: ...")
|
||||
|
||||
lines.append("")
|
||||
|
||||
stub_path.write_text("\n".join(lines), encoding="utf-8")
|
||||
return (
|
||||
len(classes)
|
||||
+ len(functions)
|
||||
+ len(safe_variable_sources)
|
||||
+ len(unsafe_variables)
|
||||
)
|
||||
|
||||
|
||||
def main() -> None:
|
||||
"""Main entry point."""
|
||||
try:
|
||||
types_path = find_prisma_types_path()
|
||||
stub_path = types_path.with_suffix(".pyi")
|
||||
|
||||
print(f"Found prisma types.py at: {types_path}")
|
||||
print(f"Generating stub at: {stub_path}")
|
||||
|
||||
num_symbols = generate_stub(types_path, stub_path)
|
||||
print(f"Generated {stub_path.name} with {num_symbols} Any-typed symbols")
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error: {e}", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
@@ -25,6 +25,9 @@ def run(*command: str) -> None:
|
||||
|
||||
|
||||
def lint():
|
||||
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
|
||||
run("gen-prisma-stub")
|
||||
|
||||
lint_step_args: list[list[str]] = [
|
||||
["ruff", "check", *TARGET_DIRS, "--exit-zero"],
|
||||
["ruff", "format", "--diff", "--check", LIBS_DIR],
|
||||
@@ -49,4 +52,6 @@ def format():
|
||||
run("ruff", "format", LIBS_DIR)
|
||||
run("isort", "--profile", "black", BACKEND_DIR)
|
||||
run("black", BACKEND_DIR)
|
||||
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
|
||||
run("gen-prisma-stub")
|
||||
run("pyright", *TARGET_DIRS)
|
||||
|
||||
@@ -0,0 +1,46 @@
|
||||
-- CreateExtension
|
||||
-- Supabase: pgvector must be enabled via Dashboard → Database → Extensions first
|
||||
-- Create in public schema so vector type is available across all schemas
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "vector" WITH SCHEMA "public";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'vector extension not available or already exists, skipping';
|
||||
END $$;
|
||||
|
||||
-- CreateEnum
|
||||
CREATE TYPE "ContentType" AS ENUM ('STORE_AGENT', 'BLOCK', 'INTEGRATION', 'DOCUMENTATION', 'LIBRARY_AGENT');
|
||||
|
||||
-- CreateTable
|
||||
CREATE TABLE "UnifiedContentEmbedding" (
|
||||
"id" TEXT NOT NULL,
|
||||
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
|
||||
"updatedAt" TIMESTAMP(3) NOT NULL,
|
||||
"contentType" "ContentType" NOT NULL,
|
||||
"contentId" TEXT NOT NULL,
|
||||
"userId" TEXT,
|
||||
"embedding" public.vector(1536) NOT NULL,
|
||||
"searchableText" TEXT NOT NULL,
|
||||
"metadata" JSONB NOT NULL DEFAULT '{}',
|
||||
|
||||
CONSTRAINT "UnifiedContentEmbedding_pkey" PRIMARY KEY ("id")
|
||||
);
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UnifiedContentEmbedding_contentType_idx" ON "UnifiedContentEmbedding"("contentType");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UnifiedContentEmbedding_userId_idx" ON "UnifiedContentEmbedding"("userId");
|
||||
|
||||
-- CreateIndex
|
||||
CREATE INDEX "UnifiedContentEmbedding_contentType_userId_idx" ON "UnifiedContentEmbedding"("contentType", "userId");
|
||||
|
||||
-- CreateIndex
|
||||
-- NULLS NOT DISTINCT ensures only one public (NULL userId) embedding per contentType+contentId
|
||||
-- Requires PostgreSQL 15+. Supabase uses PostgreSQL 15+.
|
||||
CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" ON "UnifiedContentEmbedding"("contentType", "contentId", "userId") NULLS NOT DISTINCT;
|
||||
|
||||
-- CreateIndex
|
||||
-- HNSW index for fast vector similarity search on embeddings
|
||||
-- Uses cosine distance operator (<=>), which matches the query in hybrid_search.py
|
||||
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" public.vector_cosine_ops);
|
||||
@@ -0,0 +1,71 @@
|
||||
-- Acknowledge Supabase-managed extensions to prevent drift warnings
|
||||
-- These extensions are pre-installed by Supabase in specific schemas
|
||||
-- This migration ensures they exist where available (Supabase) or skips gracefully (CI)
|
||||
|
||||
-- Create schemas (safe in both CI and Supabase)
|
||||
CREATE SCHEMA IF NOT EXISTS "extensions";
|
||||
|
||||
-- Extensions that exist in both CI and Supabase
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pgcrypto" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pgcrypto extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "uuid-ossp" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'uuid-ossp extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
-- Supabase-specific extensions (skip gracefully in CI)
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pg_stat_statements" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pg_stat_statements extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pg_net" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pg_net extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE EXTENSION IF NOT EXISTS "pgjwt" WITH SCHEMA "extensions";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pgjwt extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE SCHEMA IF NOT EXISTS "graphql";
|
||||
CREATE EXTENSION IF NOT EXISTS "pg_graphql" WITH SCHEMA "graphql";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pg_graphql extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE SCHEMA IF NOT EXISTS "pgsodium";
|
||||
CREATE EXTENSION IF NOT EXISTS "pgsodium" WITH SCHEMA "pgsodium";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'pgsodium extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
DO $$
|
||||
BEGIN
|
||||
CREATE SCHEMA IF NOT EXISTS "vault";
|
||||
CREATE EXTENSION IF NOT EXISTS "supabase_vault" WITH SCHEMA "vault";
|
||||
EXCEPTION WHEN OTHERS THEN
|
||||
RAISE NOTICE 'supabase_vault extension not available, skipping';
|
||||
END $$;
|
||||
|
||||
|
||||
-- Return to platform
|
||||
CREATE SCHEMA IF NOT EXISTS "platform";
|
||||
@@ -117,6 +117,7 @@ lint = "linter:lint"
|
||||
test = "run_tests:test"
|
||||
load-store-agents = "test.load_store_agents:run"
|
||||
export-api-schema = "backend.cli.generate_openapi_json:main"
|
||||
gen-prisma-stub = "gen_prisma_types_stub:main"
|
||||
oauth-tool = "backend.cli.oauth_tool:cli"
|
||||
|
||||
[tool.isort]
|
||||
@@ -134,6 +135,9 @@ ignore_patterns = []
|
||||
[tool.pytest.ini_options]
|
||||
asyncio_mode = "auto"
|
||||
asyncio_default_fixture_loop_scope = "session"
|
||||
# Disable syrupy plugin to avoid conflict with pytest-snapshot
|
||||
# Both provide --snapshot-update argument causing ArgumentError
|
||||
addopts = "-p no:syrupy"
|
||||
filterwarnings = [
|
||||
"ignore:'audioop' is deprecated:DeprecationWarning:discord.player",
|
||||
"ignore:invalid escape sequence:DeprecationWarning:tweepy.api",
|
||||
|
||||
@@ -1,14 +1,15 @@
|
||||
datasource db {
|
||||
provider = "postgresql"
|
||||
url = env("DATABASE_URL")
|
||||
directUrl = env("DIRECT_URL")
|
||||
provider = "postgresql"
|
||||
url = env("DATABASE_URL")
|
||||
directUrl = env("DIRECT_URL")
|
||||
extensions = [pgvector(map: "vector")]
|
||||
}
|
||||
|
||||
generator client {
|
||||
provider = "prisma-client-py"
|
||||
recursive_type_depth = -1
|
||||
interface = "asyncio"
|
||||
previewFeatures = ["views", "fullTextSearch"]
|
||||
previewFeatures = ["views", "fullTextSearch", "postgresqlExtensions"]
|
||||
partial_type_generator = "backend/data/partial_types.py"
|
||||
}
|
||||
|
||||
@@ -127,8 +128,8 @@ model BuilderSearchHistory {
|
||||
updatedAt DateTime @default(now()) @updatedAt
|
||||
|
||||
searchQuery String
|
||||
filter String[] @default([])
|
||||
byCreator String[] @default([])
|
||||
filter String[] @default([])
|
||||
byCreator String[] @default([])
|
||||
|
||||
userId String
|
||||
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
|
||||
@@ -721,26 +722,25 @@ view StoreAgent {
|
||||
storeListingVersionId String
|
||||
updated_at DateTime
|
||||
|
||||
slug String
|
||||
agent_name String
|
||||
agent_video String?
|
||||
agent_output_demo String?
|
||||
agent_image String[]
|
||||
slug String
|
||||
agent_name String
|
||||
agent_video String?
|
||||
agent_output_demo String?
|
||||
agent_image String[]
|
||||
|
||||
featured Boolean @default(false)
|
||||
creator_username String?
|
||||
creator_avatar String?
|
||||
sub_heading String
|
||||
description String
|
||||
categories String[]
|
||||
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
|
||||
runs Int
|
||||
rating Float
|
||||
versions String[]
|
||||
agentGraphVersions String[]
|
||||
agentGraphId String
|
||||
is_available Boolean @default(true)
|
||||
useForOnboarding Boolean @default(false)
|
||||
featured Boolean @default(false)
|
||||
creator_username String?
|
||||
creator_avatar String?
|
||||
sub_heading String
|
||||
description String
|
||||
categories String[]
|
||||
runs Int
|
||||
rating Float
|
||||
versions String[]
|
||||
agentGraphVersions String[]
|
||||
agentGraphId String
|
||||
is_available Boolean @default(true)
|
||||
useForOnboarding Boolean @default(false)
|
||||
|
||||
// Materialized views used (refreshed every 15 minutes via pg_cron):
|
||||
// - mv_agent_run_counts - Pre-aggregated agent execution counts by agentGraphId
|
||||
@@ -856,14 +856,14 @@ model StoreListingVersion {
|
||||
AgentGraph AgentGraph @relation(fields: [agentGraphId, agentGraphVersion], references: [id, version])
|
||||
|
||||
// Content fields
|
||||
name String
|
||||
subHeading String
|
||||
videoUrl String?
|
||||
agentOutputDemoUrl String?
|
||||
imageUrls String[]
|
||||
description String
|
||||
instructions String?
|
||||
categories String[]
|
||||
name String
|
||||
subHeading String
|
||||
videoUrl String?
|
||||
agentOutputDemoUrl String?
|
||||
imageUrls String[]
|
||||
description String
|
||||
instructions String?
|
||||
categories String[]
|
||||
|
||||
isFeatured Boolean @default(false)
|
||||
|
||||
@@ -899,6 +899,9 @@ model StoreListingVersion {
|
||||
// Reviews for this specific version
|
||||
Reviews StoreListingReview[]
|
||||
|
||||
// Note: Embeddings now stored in UnifiedContentEmbedding table
|
||||
// Use contentType=STORE_AGENT and contentId=storeListingVersionId
|
||||
|
||||
@@unique([storeListingId, version])
|
||||
@@index([storeListingId, submissionStatus, isAvailable])
|
||||
@@index([submissionStatus])
|
||||
@@ -906,6 +909,42 @@ model StoreListingVersion {
|
||||
@@index([agentGraphId, agentGraphVersion]) // Non-unique index for efficient lookups
|
||||
}
|
||||
|
||||
// Content type enum for unified search across store agents, blocks, docs
|
||||
// Note: BLOCK/INTEGRATION are file-based (Python classes), not DB records
|
||||
// DOCUMENTATION are file-based (.md files), not DB records
|
||||
// Only STORE_AGENT and LIBRARY_AGENT are stored in database
|
||||
enum ContentType {
|
||||
STORE_AGENT // Database: StoreListingVersion
|
||||
BLOCK // File-based: Python classes in /backend/blocks/
|
||||
INTEGRATION // File-based: Python classes (blocks with credentials)
|
||||
DOCUMENTATION // File-based: .md/.mdx files
|
||||
LIBRARY_AGENT // Database: User's personal agents
|
||||
}
|
||||
|
||||
// Unified embeddings table for all searchable content types
|
||||
// Supports both public content (userId=null) and user-specific content (userId=userID)
|
||||
model UnifiedContentEmbedding {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
// Content identification
|
||||
contentType ContentType
|
||||
contentId String // DB ID (storeListingVersionId) or file identifier (block.id, file_path)
|
||||
userId String? // NULL for public content (store, blocks, docs), userId for private content (library agents)
|
||||
|
||||
// Search data
|
||||
embedding Unsupported("vector(1536)") // pgvector embedding (extension in platform schema)
|
||||
searchableText String // Combined text for search and fallback
|
||||
metadata Json @default("{}") // Content-specific metadata
|
||||
|
||||
@@unique([contentType, contentId, userId], map: "UnifiedContentEmbedding_contentType_contentId_userId_key")
|
||||
@@index([contentType])
|
||||
@@index([userId])
|
||||
@@index([contentType, userId])
|
||||
@@index([embedding], map: "UnifiedContentEmbedding_embedding_idx")
|
||||
}
|
||||
|
||||
model StoreListingReview {
|
||||
id String @id @default(uuid())
|
||||
createdAt DateTime @default(now())
|
||||
@@ -998,16 +1037,16 @@ model OAuthApplication {
|
||||
updatedAt DateTime @updatedAt
|
||||
|
||||
// Application metadata
|
||||
name String
|
||||
description String?
|
||||
logoUrl String? // URL to app logo stored in GCS
|
||||
clientId String @unique
|
||||
clientSecret String // Hashed with Scrypt (same as API keys)
|
||||
clientSecretSalt String // Salt for Scrypt hashing
|
||||
name String
|
||||
description String?
|
||||
logoUrl String? // URL to app logo stored in GCS
|
||||
clientId String @unique
|
||||
clientSecret String // Hashed with Scrypt (same as API keys)
|
||||
clientSecretSalt String // Salt for Scrypt hashing
|
||||
|
||||
// OAuth configuration
|
||||
redirectUris String[] // Allowed callback URLs
|
||||
grantTypes String[] @default(["authorization_code", "refresh_token"])
|
||||
grantTypes String[] @default(["authorization_code", "refresh_token"])
|
||||
scopes APIKeyPermission[] // Which permissions the app can request
|
||||
|
||||
// Application management
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
"created_at": "2025-09-04T13:37:00",
|
||||
"credentials_input_schema": {
|
||||
"properties": {},
|
||||
"required": [],
|
||||
"title": "TestGraphCredentialsInputSchema",
|
||||
"type": "object"
|
||||
},
|
||||
|
||||
@@ -2,6 +2,7 @@
|
||||
{
|
||||
"credentials_input_schema": {
|
||||
"properties": {},
|
||||
"required": [],
|
||||
"title": "TestGraphCredentialsInputSchema",
|
||||
"type": "object"
|
||||
},
|
||||
|
||||
@@ -4,6 +4,7 @@
|
||||
"id": "test-agent-1",
|
||||
"graph_id": "test-agent-1",
|
||||
"graph_version": 1,
|
||||
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
|
||||
"image_url": null,
|
||||
"creator_name": "Test Creator",
|
||||
"creator_image_url": "",
|
||||
@@ -41,6 +42,7 @@
|
||||
"id": "test-agent-2",
|
||||
"graph_id": "test-agent-2",
|
||||
"graph_version": 1,
|
||||
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
|
||||
"image_url": null,
|
||||
"creator_name": "Test Creator",
|
||||
"creator_image_url": "",
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
{
|
||||
"submissions": [
|
||||
{
|
||||
"listing_id": "test-listing-id",
|
||||
"agent_id": "test-agent-id",
|
||||
"agent_version": 1,
|
||||
"name": "Test Agent",
|
||||
|
||||
@@ -37,7 +37,7 @@ services:
|
||||
context: ../
|
||||
dockerfile: autogpt_platform/backend/Dockerfile
|
||||
target: migrate
|
||||
command: ["sh", "-c", "poetry run prisma generate && poetry run prisma migrate deploy"]
|
||||
command: ["sh", "-c", "poetry run prisma generate && poetry run gen-prisma-stub && poetry run prisma migrate deploy"]
|
||||
develop:
|
||||
watch:
|
||||
- path: ./
|
||||
|
||||
@@ -92,7 +92,6 @@
|
||||
"react-currency-input-field": "4.0.3",
|
||||
"react-day-picker": "9.11.1",
|
||||
"react-dom": "18.3.1",
|
||||
"react-drag-drop-files": "2.4.0",
|
||||
"react-hook-form": "7.66.0",
|
||||
"react-icons": "5.5.0",
|
||||
"react-markdown": "9.0.3",
|
||||
|
||||
112
autogpt_platform/frontend/pnpm-lock.yaml
generated
112
autogpt_platform/frontend/pnpm-lock.yaml
generated
@@ -200,9 +200,6 @@ importers:
|
||||
react-dom:
|
||||
specifier: 18.3.1
|
||||
version: 18.3.1(react@18.3.1)
|
||||
react-drag-drop-files:
|
||||
specifier: 2.4.0
|
||||
version: 2.4.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
|
||||
react-hook-form:
|
||||
specifier: 7.66.0
|
||||
version: 7.66.0(react@18.3.1)
|
||||
@@ -1004,9 +1001,6 @@ packages:
|
||||
'@emotion/memoize@0.8.1':
|
||||
resolution: {integrity: sha512-W2P2c/VRW1/1tLox0mVUalvnWXxavmv/Oum2aPsRcoDJuob75FC3Y8FbpfLwUegRcxINtGUMPq0tFCvYNTBXNA==}
|
||||
|
||||
'@emotion/unitless@0.8.1':
|
||||
resolution: {integrity: sha512-KOEGMu6dmJZtpadb476IsZBclKvILjopjUii3V+7MnXIQCYh8W3NgNcgwo21n9LXZX6EDIKvqfjYxXebDwxKmQ==}
|
||||
|
||||
'@epic-web/invariant@1.0.0':
|
||||
resolution: {integrity: sha512-lrTPqgvfFQtR/eY/qkIzp98OGdNJu0m5ji3q/nJI8v3SXkRKEnWiOxMmbvcSoAIzv/cGiuvRy57k4suKQSAdwA==}
|
||||
|
||||
@@ -3122,9 +3116,6 @@ packages:
|
||||
'@types/statuses@2.0.6':
|
||||
resolution: {integrity: sha512-xMAgYwceFhRA2zY+XbEA7mxYbA093wdiW8Vu6gZPGWy9cmOyU9XesH1tNcEWsKFd5Vzrqx5T3D38PWx1FIIXkA==}
|
||||
|
||||
'@types/stylis@4.2.7':
|
||||
resolution: {integrity: sha512-VgDNokpBoKF+wrdvhAAfS55OMQpL6QRglwTwNC3kIgBrzZxA4WsFj+2eLfEA/uMUDzBcEhYmjSbwQakn/i3ajA==}
|
||||
|
||||
'@types/tedious@4.0.14':
|
||||
resolution: {integrity: sha512-KHPsfX/FoVbUGbyYvk1q9MMQHLPeRZhRJZdO45Q4YjvFkv4hMNghCWTvy7rdKessBsmtz4euWCWAB6/tVpI1Iw==}
|
||||
|
||||
@@ -3781,9 +3772,6 @@ packages:
|
||||
resolution: {integrity: sha512-QOSvevhslijgYwRx6Rv7zKdMF8lbRmx+uQGx2+vDc+KI/eBnsy9kit5aj23AgGu3pa4t9AgwbnXWqS+iOY+2aA==}
|
||||
engines: {node: '>= 6'}
|
||||
|
||||
camelize@1.0.1:
|
||||
resolution: {integrity: sha512-dU+Tx2fsypxTgtLoE36npi3UqcjSSMNYfkqgmoEhtZrraP5VWq0K7FkWVTYa8eMPtnU/G2txVsfdCJTn9uzpuQ==}
|
||||
|
||||
caniuse-lite@1.0.30001762:
|
||||
resolution: {integrity: sha512-PxZwGNvH7Ak8WX5iXzoK1KPZttBXNPuaOvI2ZYU7NrlM+d9Ov+TUvlLOBNGzVXAntMSMMlJPd+jY6ovrVjSmUw==}
|
||||
|
||||
@@ -3997,10 +3985,6 @@ packages:
|
||||
resolution: {integrity: sha512-r4ESw/IlusD17lgQi1O20Fa3qNnsckR126TdUuBgAu7GBYSIPvdNyONd3Zrxh0xCwA4+6w/TDArBPsMvhur+KQ==}
|
||||
engines: {node: '>= 0.10'}
|
||||
|
||||
css-color-keywords@1.0.0:
|
||||
resolution: {integrity: sha512-FyyrDHZKEjXDpNJYvVsV960FiqQyXc/LlYmsxl2BcdMb2WPx0OGRVgTg55rPSyLSNMqP52R9r8geSp7apN3Ofg==}
|
||||
engines: {node: '>=4'}
|
||||
|
||||
css-loader@6.11.0:
|
||||
resolution: {integrity: sha512-CTJ+AEQJjq5NzLga5pE39qdiSV56F8ywCIsqNIRF0r7BDgWsN25aazToqAFg7ZrtA/U016xudB3ffgweORxX7g==}
|
||||
engines: {node: '>= 12.13.0'}
|
||||
@@ -4016,9 +4000,6 @@ packages:
|
||||
css-select@4.3.0:
|
||||
resolution: {integrity: sha512-wPpOYtnsVontu2mODhA19JrqWxNsfdatRKd64kmpRbQgh1KtItko5sTnEpPdpSaJszTOhEMlF/RPz28qj4HqhQ==}
|
||||
|
||||
css-to-react-native@3.2.0:
|
||||
resolution: {integrity: sha512-e8RKaLXMOFii+02mOlqwjbD00KSEKqblnpO9e++1aXS1fPQOpS1YoqdVHBqPjHNoxeF2mimzVqawm2KCbEdtHQ==}
|
||||
|
||||
css-what@6.2.2:
|
||||
resolution: {integrity: sha512-u/O3vwbptzhMs3L1fQE82ZSLHQQfto5gyZzwteVIEyeaY5Fc7R4dapF/BvRoSYFeqfBk4m0V1Vafq5Pjv25wvA==}
|
||||
engines: {node: '>= 6'}
|
||||
@@ -6131,10 +6112,6 @@ packages:
|
||||
resolution: {integrity: sha512-PS08Iboia9mts/2ygV3eLpY5ghnUcfLV/EXTOW1E2qYxJKGGBUtNjN76FYHnMs36RmARn41bC0AZmn+rR0OVpQ==}
|
||||
engines: {node: ^10 || ^12 || >=14}
|
||||
|
||||
postcss@8.4.49:
|
||||
resolution: {integrity: sha512-OCVPnIObs4N29kxTjzLfUryOkvZEq+pf8jTF0lg8E7uETuWHA+v7j3c/xJmiqpX450191LlmZfUKkXxkTry7nA==}
|
||||
engines: {node: ^10 || ^12 || >=14}
|
||||
|
||||
postcss@8.5.6:
|
||||
resolution: {integrity: sha512-3Ybi1tAuwAP9s0r1UQ2J4n5Y0G05bJkpUIO0/bI9MhwmD70S5aTWbXGBwxHrelT+XM1k6dM0pk+SwNkpTRN7Pg==}
|
||||
engines: {node: ^10 || ^12 || >=14}
|
||||
@@ -6306,12 +6283,6 @@ packages:
|
||||
peerDependencies:
|
||||
react: ^18.3.1
|
||||
|
||||
react-drag-drop-files@2.4.0:
|
||||
resolution: {integrity: sha512-MGPV3HVVnwXEXq3gQfLtSU3jz5j5jrabvGedokpiSEMoONrDHgYl/NpIOlfsqGQ4zBv1bzzv7qbKURZNOX32PA==}
|
||||
peerDependencies:
|
||||
react: ^18.0.0
|
||||
react-dom: ^18.0.0
|
||||
|
||||
react-hook-form@7.66.0:
|
||||
resolution: {integrity: sha512-xXBqsWGKrY46ZqaHDo+ZUYiMUgi8suYu5kdrS20EG8KiL7VRQitEbNjm+UcrDYrNi1YLyfpmAeGjCZYXLT9YBw==}
|
||||
engines: {node: '>=18.0.0'}
|
||||
@@ -6678,9 +6649,6 @@ packages:
|
||||
engines: {node: '>= 0.10'}
|
||||
hasBin: true
|
||||
|
||||
shallowequal@1.1.0:
|
||||
resolution: {integrity: sha512-y0m1JoUZSlPAjXVtPPW70aZWfIL/dSP7AFkRnniLCrK/8MDKog3TySTBmckD+RObVxH0v4Tox67+F14PdED2oQ==}
|
||||
|
||||
sharp@0.34.5:
|
||||
resolution: {integrity: sha512-Ou9I5Ft9WNcCbXrU9cMgPBcCK8LiwLqcbywW3t4oDV37n1pzpuNLsYiAV8eODnjbtQlSDwZ2cUEeQz4E54Hltg==}
|
||||
engines: {node: ^18.17.0 || ^20.3.0 || >=21.0.0}
|
||||
@@ -6894,13 +6862,6 @@ packages:
|
||||
style-to-object@1.0.14:
|
||||
resolution: {integrity: sha512-LIN7rULI0jBscWQYaSswptyderlarFkjQ+t79nzty8tcIAceVomEVlLzH5VP4Cmsv6MtKhs7qaAiwlcp+Mgaxw==}
|
||||
|
||||
styled-components@6.2.0:
|
||||
resolution: {integrity: sha512-ryFCkETE++8jlrBmC+BoGPUN96ld1/Yp0s7t5bcXDobrs4XoXroY1tN+JbFi09hV6a5h3MzbcVi8/BGDP0eCgQ==}
|
||||
engines: {node: '>= 16'}
|
||||
peerDependencies:
|
||||
react: '>= 16.8.0'
|
||||
react-dom: '>= 16.8.0'
|
||||
|
||||
styled-jsx@5.1.6:
|
||||
resolution: {integrity: sha512-qSVyDTeMotdvQYoHWLNGwRFJHC+i+ZvdBRYosOFgC+Wg1vx4frN2/RG/NA7SYqqvKNLf39P2LSRA2pu6n0XYZA==}
|
||||
engines: {node: '>= 12.0.0'}
|
||||
@@ -6927,9 +6888,6 @@ packages:
|
||||
babel-plugin-macros:
|
||||
optional: true
|
||||
|
||||
stylis@4.3.6:
|
||||
resolution: {integrity: sha512-yQ3rwFWRfwNUY7H5vpU0wfdkNSnvnJinhF9830Swlaxl03zsOjCfmX0ugac+3LtK0lYSgwL/KXc8oYL3mG4YFQ==}
|
||||
|
||||
sucrase@3.35.1:
|
||||
resolution: {integrity: sha512-DhuTmvZWux4H1UOnWMB3sk0sbaCVOoQZjv8u1rDoTV0HTdGem9hkAZtl4JZy8P2z4Bg0nT+YMeOFyVr4zcG5Tw==}
|
||||
engines: {node: '>=16 || 14 >=14.17'}
|
||||
@@ -7096,9 +7054,6 @@ packages:
|
||||
tslib@1.14.1:
|
||||
resolution: {integrity: sha512-Xni35NKzjgMrwevysHTCArtLDpPvye8zV/0E4EyYn43P7/7qvQwPh9BGkHewbMulVntbigmcT7rdX3BNo9wRJg==}
|
||||
|
||||
tslib@2.6.2:
|
||||
resolution: {integrity: sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q==}
|
||||
|
||||
tslib@2.8.1:
|
||||
resolution: {integrity: sha512-oJFu94HQb+KVduSUQL7wnpmqnfmLsOA/nAh6b6EH0wCEoK0/mPeXU6c3wKDV83MkOuHPRHtSXKKU99IBazS/2w==}
|
||||
|
||||
@@ -8335,10 +8290,10 @@ snapshots:
|
||||
'@emotion/is-prop-valid@1.2.2':
|
||||
dependencies:
|
||||
'@emotion/memoize': 0.8.1
|
||||
optional: true
|
||||
|
||||
'@emotion/memoize@0.8.1': {}
|
||||
|
||||
'@emotion/unitless@0.8.1': {}
|
||||
'@emotion/memoize@0.8.1':
|
||||
optional: true
|
||||
|
||||
'@epic-web/invariant@1.0.0': {}
|
||||
|
||||
@@ -10734,8 +10689,6 @@ snapshots:
|
||||
|
||||
'@types/statuses@2.0.6': {}
|
||||
|
||||
'@types/stylis@4.2.7': {}
|
||||
|
||||
'@types/tedious@4.0.14':
|
||||
dependencies:
|
||||
'@types/node': 24.10.0
|
||||
@@ -11432,8 +11385,6 @@ snapshots:
|
||||
|
||||
camelcase-css@2.0.1: {}
|
||||
|
||||
camelize@1.0.1: {}
|
||||
|
||||
caniuse-lite@1.0.30001762: {}
|
||||
|
||||
case-sensitive-paths-webpack-plugin@2.4.0: {}
|
||||
@@ -11645,8 +11596,6 @@ snapshots:
|
||||
randombytes: 2.1.0
|
||||
randomfill: 1.0.4
|
||||
|
||||
css-color-keywords@1.0.0: {}
|
||||
|
||||
css-loader@6.11.0(webpack@5.104.1(esbuild@0.25.12)):
|
||||
dependencies:
|
||||
icss-utils: 5.1.0(postcss@8.5.6)
|
||||
@@ -11668,12 +11617,6 @@ snapshots:
|
||||
domutils: 2.8.0
|
||||
nth-check: 2.1.1
|
||||
|
||||
css-to-react-native@3.2.0:
|
||||
dependencies:
|
||||
camelize: 1.0.1
|
||||
css-color-keywords: 1.0.0
|
||||
postcss-value-parser: 4.2.0
|
||||
|
||||
css-what@6.2.2: {}
|
||||
|
||||
css.escape@1.5.1: {}
|
||||
@@ -12127,8 +12070,8 @@ snapshots:
|
||||
'@typescript-eslint/parser': 8.52.0(eslint@8.57.1)(typescript@5.9.3)
|
||||
eslint: 8.57.1
|
||||
eslint-import-resolver-node: 0.3.9
|
||||
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1)
|
||||
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
|
||||
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
|
||||
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
|
||||
eslint-plugin-jsx-a11y: 6.10.2(eslint@8.57.1)
|
||||
eslint-plugin-react: 7.37.5(eslint@8.57.1)
|
||||
eslint-plugin-react-hooks: 5.2.0(eslint@8.57.1)
|
||||
@@ -12147,7 +12090,7 @@ snapshots:
|
||||
transitivePeerDependencies:
|
||||
- supports-color
|
||||
|
||||
eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1):
|
||||
eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1):
|
||||
dependencies:
|
||||
'@nolyfill/is-core-module': 1.0.39
|
||||
debug: 4.4.3
|
||||
@@ -12158,22 +12101,22 @@ snapshots:
|
||||
tinyglobby: 0.2.15
|
||||
unrs-resolver: 1.11.1
|
||||
optionalDependencies:
|
||||
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
|
||||
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
|
||||
transitivePeerDependencies:
|
||||
- supports-color
|
||||
|
||||
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1):
|
||||
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
|
||||
dependencies:
|
||||
debug: 3.2.7
|
||||
optionalDependencies:
|
||||
'@typescript-eslint/parser': 8.52.0(eslint@8.57.1)(typescript@5.9.3)
|
||||
eslint: 8.57.1
|
||||
eslint-import-resolver-node: 0.3.9
|
||||
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1)
|
||||
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
|
||||
transitivePeerDependencies:
|
||||
- supports-color
|
||||
|
||||
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1):
|
||||
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
|
||||
dependencies:
|
||||
'@rtsao/scc': 1.1.0
|
||||
array-includes: 3.1.9
|
||||
@@ -12184,7 +12127,7 @@ snapshots:
|
||||
doctrine: 2.1.0
|
||||
eslint: 8.57.1
|
||||
eslint-import-resolver-node: 0.3.9
|
||||
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
|
||||
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
|
||||
hasown: 2.0.2
|
||||
is-core-module: 2.16.1
|
||||
is-glob: 4.0.3
|
||||
@@ -14259,12 +14202,6 @@ snapshots:
|
||||
picocolors: 1.1.1
|
||||
source-map-js: 1.2.1
|
||||
|
||||
postcss@8.4.49:
|
||||
dependencies:
|
||||
nanoid: 3.3.11
|
||||
picocolors: 1.1.1
|
||||
source-map-js: 1.2.1
|
||||
|
||||
postcss@8.5.6:
|
||||
dependencies:
|
||||
nanoid: 3.3.11
|
||||
@@ -14386,13 +14323,6 @@ snapshots:
|
||||
react: 18.3.1
|
||||
scheduler: 0.23.2
|
||||
|
||||
react-drag-drop-files@2.4.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
|
||||
dependencies:
|
||||
prop-types: 15.8.1
|
||||
react: 18.3.1
|
||||
react-dom: 18.3.1(react@18.3.1)
|
||||
styled-components: 6.2.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
|
||||
|
||||
react-hook-form@7.66.0(react@18.3.1):
|
||||
dependencies:
|
||||
react: 18.3.1
|
||||
@@ -14886,8 +14816,6 @@ snapshots:
|
||||
safe-buffer: 5.2.1
|
||||
to-buffer: 1.2.2
|
||||
|
||||
shallowequal@1.1.0: {}
|
||||
|
||||
sharp@0.34.5:
|
||||
dependencies:
|
||||
'@img/colour': 1.0.0
|
||||
@@ -15178,20 +15106,6 @@ snapshots:
|
||||
dependencies:
|
||||
inline-style-parser: 0.2.7
|
||||
|
||||
styled-components@6.2.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
|
||||
dependencies:
|
||||
'@emotion/is-prop-valid': 1.2.2
|
||||
'@emotion/unitless': 0.8.1
|
||||
'@types/stylis': 4.2.7
|
||||
css-to-react-native: 3.2.0
|
||||
csstype: 3.2.3
|
||||
postcss: 8.4.49
|
||||
react: 18.3.1
|
||||
react-dom: 18.3.1(react@18.3.1)
|
||||
shallowequal: 1.1.0
|
||||
stylis: 4.3.6
|
||||
tslib: 2.6.2
|
||||
|
||||
styled-jsx@5.1.6(@babel/core@7.28.5)(react@18.3.1):
|
||||
dependencies:
|
||||
client-only: 0.0.1
|
||||
@@ -15206,8 +15120,6 @@ snapshots:
|
||||
optionalDependencies:
|
||||
'@babel/core': 7.28.5
|
||||
|
||||
stylis@4.3.6: {}
|
||||
|
||||
sucrase@3.35.1:
|
||||
dependencies:
|
||||
'@jridgewell/gen-mapping': 0.3.13
|
||||
@@ -15390,8 +15302,6 @@ snapshots:
|
||||
|
||||
tslib@1.14.1: {}
|
||||
|
||||
tslib@2.6.2: {}
|
||||
|
||||
tslib@2.8.1: {}
|
||||
|
||||
tty-browserify@0.0.1: {}
|
||||
|
||||
BIN
autogpt_platform/frontend/public/integrations/webshare_proxy.png
Normal file
BIN
autogpt_platform/frontend/public/integrations/webshare_proxy.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 2.6 KiB |
BIN
autogpt_platform/frontend/public/integrations/wordpress.png
Normal file
BIN
autogpt_platform/frontend/public/integrations/wordpress.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 16 KiB |
@@ -66,6 +66,7 @@ export const RunInputDialog = ({
|
||||
formContext={{
|
||||
showHandles: false,
|
||||
size: "large",
|
||||
showOptionalToggle: false,
|
||||
}}
|
||||
/>
|
||||
</div>
|
||||
|
||||
@@ -66,7 +66,7 @@ export const useRunInputDialog = ({
|
||||
if (isCredentialFieldSchema(fieldSchema)) {
|
||||
dynamicUiSchema[fieldName] = {
|
||||
...dynamicUiSchema[fieldName],
|
||||
"ui:field": "credentials",
|
||||
"ui:field": "custom/credential_field",
|
||||
};
|
||||
}
|
||||
});
|
||||
@@ -76,12 +76,18 @@ export const useRunInputDialog = ({
|
||||
}, [credentialsSchema]);
|
||||
|
||||
const handleManualRun = async () => {
|
||||
// Filter out incomplete credentials (those without a valid id)
|
||||
// RJSF auto-populates const values (provider, type) but not id field
|
||||
const validCredentials = Object.fromEntries(
|
||||
Object.entries(credentialValues).filter(([_, cred]) => cred && cred.id),
|
||||
);
|
||||
|
||||
await executeGraph({
|
||||
graphId: flowID ?? "",
|
||||
graphVersion: flowVersion || null,
|
||||
data: {
|
||||
inputs: inputValues,
|
||||
credentials_inputs: credentialValues,
|
||||
credentials_inputs: validCredentials,
|
||||
source: "builder",
|
||||
},
|
||||
});
|
||||
|
||||
@@ -97,6 +97,9 @@ export const Flow = () => {
|
||||
onConnect={onConnect}
|
||||
onEdgesChange={onEdgesChange}
|
||||
onNodeDragStop={onNodeDragStop}
|
||||
onNodeContextMenu={(event) => {
|
||||
event.preventDefault();
|
||||
}}
|
||||
maxZoom={2}
|
||||
minZoom={0.1}
|
||||
onDragOver={onDragOver}
|
||||
|
||||
@@ -1,24 +1,25 @@
|
||||
import React from "react";
|
||||
import { Node as XYNode, NodeProps } from "@xyflow/react";
|
||||
import { RJSFSchema } from "@rjsf/utils";
|
||||
import { BlockUIType } from "../../../types";
|
||||
import { StickyNoteBlock } from "./components/StickyNoteBlock";
|
||||
import { BlockInfoCategoriesItem } from "@/app/api/__generated__/models/blockInfoCategoriesItem";
|
||||
import { BlockCost } from "@/app/api/__generated__/models/blockCost";
|
||||
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
|
||||
import { BlockCost } from "@/app/api/__generated__/models/blockCost";
|
||||
import { BlockInfoCategoriesItem } from "@/app/api/__generated__/models/blockInfoCategoriesItem";
|
||||
import { NodeExecutionResult } from "@/app/api/__generated__/models/nodeExecutionResult";
|
||||
import { NodeContainer } from "./components/NodeContainer";
|
||||
import { NodeHeader } from "./components/NodeHeader";
|
||||
import { FormCreator } from "../FormCreator";
|
||||
import { preprocessInputSchema } from "@/components/renderers/InputRenderer/utils/input-schema-pre-processor";
|
||||
import { OutputHandler } from "../OutputHandler";
|
||||
import { NodeAdvancedToggle } from "./components/NodeAdvancedToggle";
|
||||
import { NodeDataRenderer } from "./components/NodeOutput/NodeOutput";
|
||||
import { NodeExecutionBadge } from "./components/NodeExecutionBadge";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { WebhookDisclaimer } from "./components/WebhookDisclaimer";
|
||||
import { AyrshareConnectButton } from "./components/AyrshareConnectButton";
|
||||
import { NodeModelMetadata } from "@/app/api/__generated__/models/nodeModelMetadata";
|
||||
import { preprocessInputSchema } from "@/components/renderers/InputRenderer/utils/input-schema-pre-processor";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { RJSFSchema } from "@rjsf/utils";
|
||||
import { NodeProps, Node as XYNode } from "@xyflow/react";
|
||||
import React from "react";
|
||||
import { BlockUIType } from "../../../types";
|
||||
import { FormCreator } from "../FormCreator";
|
||||
import { OutputHandler } from "../OutputHandler";
|
||||
import { AyrshareConnectButton } from "./components/AyrshareConnectButton";
|
||||
import { NodeAdvancedToggle } from "./components/NodeAdvancedToggle";
|
||||
import { NodeContainer } from "./components/NodeContainer";
|
||||
import { NodeExecutionBadge } from "./components/NodeExecutionBadge";
|
||||
import { NodeHeader } from "./components/NodeHeader";
|
||||
import { NodeDataRenderer } from "./components/NodeOutput/NodeOutput";
|
||||
import { NodeRightClickMenu } from "./components/NodeRightClickMenu";
|
||||
import { StickyNoteBlock } from "./components/StickyNoteBlock";
|
||||
import { WebhookDisclaimer } from "./components/WebhookDisclaimer";
|
||||
|
||||
export type CustomNodeData = {
|
||||
hardcodedValues: {
|
||||
@@ -88,7 +89,7 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
|
||||
|
||||
// Currently all blockTypes design are similar - that's why i am using the same component for all of them
|
||||
// If in future - if we need some drastic change in some blockTypes design - we can create separate components for them
|
||||
return (
|
||||
const node = (
|
||||
<NodeContainer selected={selected} nodeId={nodeId} hasErrors={hasErrors}>
|
||||
<div className="rounded-xlarge bg-white">
|
||||
<NodeHeader data={data} nodeId={nodeId} />
|
||||
@@ -117,6 +118,15 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
|
||||
<NodeExecutionBadge nodeId={nodeId} />
|
||||
</NodeContainer>
|
||||
);
|
||||
|
||||
return (
|
||||
<NodeRightClickMenu
|
||||
nodeId={nodeId}
|
||||
subGraphID={data.hardcodedValues?.graph_id}
|
||||
>
|
||||
{node}
|
||||
</NodeRightClickMenu>
|
||||
);
|
||||
},
|
||||
);
|
||||
|
||||
|
||||
@@ -1,26 +1,31 @@
|
||||
import { Separator } from "@/components/__legacy__/ui/separator";
|
||||
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
|
||||
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
|
||||
import {
|
||||
DropdownMenu,
|
||||
DropdownMenuContent,
|
||||
DropdownMenuItem,
|
||||
DropdownMenuTrigger,
|
||||
} from "@/components/molecules/DropdownMenu/DropdownMenu";
|
||||
import { DotsThreeOutlineVerticalIcon } from "@phosphor-icons/react";
|
||||
import { Copy, Trash2, ExternalLink } from "lucide-react";
|
||||
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
|
||||
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
|
||||
import {
|
||||
SecondaryDropdownMenuContent,
|
||||
SecondaryDropdownMenuItem,
|
||||
SecondaryDropdownMenuSeparator,
|
||||
} from "@/components/molecules/SecondaryMenu/SecondaryMenu";
|
||||
import {
|
||||
ArrowSquareOutIcon,
|
||||
CopyIcon,
|
||||
DotsThreeOutlineVerticalIcon,
|
||||
TrashIcon,
|
||||
} from "@phosphor-icons/react";
|
||||
import { useReactFlow } from "@xyflow/react";
|
||||
|
||||
export const NodeContextMenu = ({
|
||||
nodeId,
|
||||
subGraphID,
|
||||
}: {
|
||||
type Props = {
|
||||
nodeId: string;
|
||||
subGraphID?: string;
|
||||
}) => {
|
||||
};
|
||||
|
||||
export const NodeContextMenu = ({ nodeId, subGraphID }: Props) => {
|
||||
const { deleteElements } = useReactFlow();
|
||||
|
||||
const handleCopy = () => {
|
||||
function handleCopy() {
|
||||
useNodeStore.setState((state) => ({
|
||||
nodes: state.nodes.map((node) => ({
|
||||
...node,
|
||||
@@ -30,47 +35,47 @@ export const NodeContextMenu = ({
|
||||
|
||||
useCopyPasteStore.getState().copySelectedNodes();
|
||||
useCopyPasteStore.getState().pasteNodes();
|
||||
};
|
||||
}
|
||||
|
||||
const handleDelete = () => {
|
||||
function handleDelete() {
|
||||
deleteElements({ nodes: [{ id: nodeId }] });
|
||||
};
|
||||
}
|
||||
|
||||
return (
|
||||
<DropdownMenu>
|
||||
<DropdownMenuTrigger className="py-2">
|
||||
<DotsThreeOutlineVerticalIcon size={16} weight="fill" />
|
||||
</DropdownMenuTrigger>
|
||||
<DropdownMenuContent
|
||||
side="right"
|
||||
align="start"
|
||||
className="rounded-xlarge"
|
||||
>
|
||||
<DropdownMenuItem onClick={handleCopy} className="hover:rounded-xlarge">
|
||||
<Copy className="mr-2 h-4 w-4" />
|
||||
Copy Node
|
||||
</DropdownMenuItem>
|
||||
<SecondaryDropdownMenuContent side="right" align="start">
|
||||
<SecondaryDropdownMenuItem onClick={handleCopy}>
|
||||
<CopyIcon size={20} className="mr-2 dark:text-gray-100" />
|
||||
<span className="dark:text-gray-100">Copy</span>
|
||||
</SecondaryDropdownMenuItem>
|
||||
<SecondaryDropdownMenuSeparator />
|
||||
|
||||
{subGraphID && (
|
||||
<DropdownMenuItem
|
||||
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
|
||||
className="hover:rounded-xlarge"
|
||||
>
|
||||
<ExternalLink className="mr-2 h-4 w-4" />
|
||||
Open Agent
|
||||
</DropdownMenuItem>
|
||||
<>
|
||||
<SecondaryDropdownMenuItem
|
||||
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
|
||||
>
|
||||
<ArrowSquareOutIcon
|
||||
size={20}
|
||||
className="mr-2 dark:text-gray-100"
|
||||
/>
|
||||
<span className="dark:text-gray-100">Open agent</span>
|
||||
</SecondaryDropdownMenuItem>
|
||||
<SecondaryDropdownMenuSeparator />
|
||||
</>
|
||||
)}
|
||||
|
||||
<Separator className="my-2" />
|
||||
|
||||
<DropdownMenuItem
|
||||
onClick={handleDelete}
|
||||
className="text-red-600 hover:rounded-xlarge"
|
||||
>
|
||||
<Trash2 className="mr-2 h-4 w-4" />
|
||||
Delete
|
||||
</DropdownMenuItem>
|
||||
</DropdownMenuContent>
|
||||
<SecondaryDropdownMenuItem variant="destructive" onClick={handleDelete}>
|
||||
<TrashIcon
|
||||
size={20}
|
||||
className="mr-2 text-red-500 dark:text-red-400"
|
||||
/>
|
||||
<span className="dark:text-red-400">Delete</span>
|
||||
</SecondaryDropdownMenuItem>
|
||||
</SecondaryDropdownMenuContent>
|
||||
</DropdownMenu>
|
||||
);
|
||||
};
|
||||
|
||||
@@ -1,25 +1,24 @@
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import { beautifyString, cn } from "@/lib/utils";
|
||||
import { NodeCost } from "./NodeCost";
|
||||
import { NodeBadges } from "./NodeBadges";
|
||||
import { NodeContextMenu } from "./NodeContextMenu";
|
||||
import { CustomNodeData } from "../CustomNode";
|
||||
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
|
||||
import { useState } from "react";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import {
|
||||
Tooltip,
|
||||
TooltipContent,
|
||||
TooltipProvider,
|
||||
TooltipTrigger,
|
||||
} from "@/components/atoms/Tooltip/BaseTooltip";
|
||||
import { beautifyString, cn } from "@/lib/utils";
|
||||
import { useState } from "react";
|
||||
import { CustomNodeData } from "../CustomNode";
|
||||
import { NodeBadges } from "./NodeBadges";
|
||||
import { NodeContextMenu } from "./NodeContextMenu";
|
||||
import { NodeCost } from "./NodeCost";
|
||||
|
||||
export const NodeHeader = ({
|
||||
data,
|
||||
nodeId,
|
||||
}: {
|
||||
type Props = {
|
||||
data: CustomNodeData;
|
||||
nodeId: string;
|
||||
}) => {
|
||||
};
|
||||
|
||||
export const NodeHeader = ({ data, nodeId }: Props) => {
|
||||
const updateNodeData = useNodeStore((state) => state.updateNodeData);
|
||||
const title = (data.metadata?.customized_name as string) || data.title;
|
||||
const [isEditingTitle, setIsEditingTitle] = useState(false);
|
||||
@@ -69,7 +68,10 @@ export const NodeHeader = ({
|
||||
<Tooltip>
|
||||
<TooltipTrigger asChild>
|
||||
<div>
|
||||
<Text variant="large-semibold" className="line-clamp-1">
|
||||
<Text
|
||||
variant="large-semibold"
|
||||
className="line-clamp-1 hover:cursor-text"
|
||||
>
|
||||
{beautifyString(title).replace("Block", "").trim()}
|
||||
</Text>
|
||||
</div>
|
||||
|
||||
@@ -151,7 +151,7 @@ export const NodeDataViewer: FC<NodeDataViewerProps> = ({
|
||||
</div>
|
||||
|
||||
<div className="flex justify-end pt-4">
|
||||
{outputItems.length > 0 && (
|
||||
{outputItems.length > 1 && (
|
||||
<OutputActions
|
||||
items={outputItems.map((item) => ({
|
||||
value: item.value,
|
||||
|
||||
@@ -0,0 +1,104 @@
|
||||
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
|
||||
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
|
||||
import {
|
||||
SecondaryMenuContent,
|
||||
SecondaryMenuItem,
|
||||
SecondaryMenuSeparator,
|
||||
} from "@/components/molecules/SecondaryMenu/SecondaryMenu";
|
||||
import { ArrowSquareOutIcon, CopyIcon, TrashIcon } from "@phosphor-icons/react";
|
||||
import * as ContextMenu from "@radix-ui/react-context-menu";
|
||||
import { useReactFlow } from "@xyflow/react";
|
||||
import { useEffect, useRef } from "react";
|
||||
import { CustomNode } from "../CustomNode";
|
||||
|
||||
type Props = {
|
||||
nodeId: string;
|
||||
subGraphID?: string;
|
||||
children: React.ReactNode;
|
||||
};
|
||||
|
||||
const DOUBLE_CLICK_TIMEOUT = 300;
|
||||
|
||||
export function NodeRightClickMenu({ nodeId, subGraphID, children }: Props) {
|
||||
const { deleteElements } = useReactFlow<CustomNode>();
|
||||
const lastRightClickTime = useRef<number>(0);
|
||||
const containerRef = useRef<HTMLDivElement>(null);
|
||||
|
||||
function copyNode() {
|
||||
useNodeStore.setState((state) => ({
|
||||
nodes: state.nodes.map((node) => ({
|
||||
...node,
|
||||
selected: node.id === nodeId,
|
||||
})),
|
||||
}));
|
||||
|
||||
useCopyPasteStore.getState().copySelectedNodes();
|
||||
useCopyPasteStore.getState().pasteNodes();
|
||||
}
|
||||
|
||||
function deleteNode() {
|
||||
deleteElements({ nodes: [{ id: nodeId }] });
|
||||
}
|
||||
|
||||
useEffect(() => {
|
||||
const container = containerRef.current;
|
||||
if (!container) return;
|
||||
|
||||
function handleContextMenu(e: MouseEvent) {
|
||||
const now = Date.now();
|
||||
const timeSinceLastClick = now - lastRightClickTime.current;
|
||||
|
||||
if (timeSinceLastClick < DOUBLE_CLICK_TIMEOUT) {
|
||||
e.stopImmediatePropagation();
|
||||
lastRightClickTime.current = 0;
|
||||
return;
|
||||
}
|
||||
|
||||
lastRightClickTime.current = now;
|
||||
}
|
||||
|
||||
container.addEventListener("contextmenu", handleContextMenu, true);
|
||||
|
||||
return () => {
|
||||
container.removeEventListener("contextmenu", handleContextMenu, true);
|
||||
};
|
||||
}, []);
|
||||
|
||||
return (
|
||||
<ContextMenu.Root>
|
||||
<ContextMenu.Trigger asChild>
|
||||
<div ref={containerRef}>{children}</div>
|
||||
</ContextMenu.Trigger>
|
||||
<SecondaryMenuContent>
|
||||
<SecondaryMenuItem onSelect={copyNode}>
|
||||
<CopyIcon size={20} className="mr-2 dark:text-gray-100" />
|
||||
<span className="dark:text-gray-100">Copy</span>
|
||||
</SecondaryMenuItem>
|
||||
<SecondaryMenuSeparator />
|
||||
|
||||
{subGraphID && (
|
||||
<>
|
||||
<SecondaryMenuItem
|
||||
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
|
||||
>
|
||||
<ArrowSquareOutIcon
|
||||
size={20}
|
||||
className="mr-2 dark:text-gray-100"
|
||||
/>
|
||||
<span className="dark:text-gray-100">Open agent</span>
|
||||
</SecondaryMenuItem>
|
||||
<SecondaryMenuSeparator />
|
||||
</>
|
||||
)}
|
||||
|
||||
<SecondaryMenuItem variant="destructive" onSelect={deleteNode}>
|
||||
<TrashIcon
|
||||
size={20}
|
||||
className="mr-2 text-red-500 dark:text-red-400"
|
||||
/>
|
||||
<span className="dark:text-red-400">Delete</span>
|
||||
</SecondaryMenuItem>
|
||||
</SecondaryMenuContent>
|
||||
</ContextMenu.Root>
|
||||
);
|
||||
}
|
||||
@@ -89,6 +89,18 @@ export function extractOptions(
|
||||
|
||||
// get display type and color for schema types [need for type display next to field name]
|
||||
export const getTypeDisplayInfo = (schema: any) => {
|
||||
if (
|
||||
schema?.type === "array" &&
|
||||
"format" in schema &&
|
||||
schema.format === "table"
|
||||
) {
|
||||
return {
|
||||
displayType: "table",
|
||||
colorClass: "!text-indigo-500",
|
||||
hexColor: "#6366f1",
|
||||
};
|
||||
}
|
||||
|
||||
if (schema?.type === "string" && schema?.format) {
|
||||
const formatMap: Record<
|
||||
string,
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
export const uiSchema = {
|
||||
credentials: {
|
||||
"ui:field": "credentials",
|
||||
"ui:field": "custom/credential_field",
|
||||
provider: { "ui:widget": "hidden" },
|
||||
type: { "ui:widget": "hidden" },
|
||||
id: { "ui:autofocus": true },
|
||||
|
||||
@@ -0,0 +1,57 @@
|
||||
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
|
||||
import { FilterChip } from "../FilterChip";
|
||||
import { categories } from "./constants";
|
||||
import { FilterSheet } from "../FilterSheet/FilterSheet";
|
||||
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
|
||||
|
||||
export const BlockMenuFilters = () => {
|
||||
const {
|
||||
filters,
|
||||
addFilter,
|
||||
removeFilter,
|
||||
categoryCounts,
|
||||
creators,
|
||||
addCreator,
|
||||
removeCreator,
|
||||
} = useBlockMenuStore();
|
||||
|
||||
const handleFilterClick = (filter: GetV2BuilderSearchFilterAnyOfItem) => {
|
||||
if (filters.includes(filter)) {
|
||||
removeFilter(filter);
|
||||
} else {
|
||||
addFilter(filter);
|
||||
}
|
||||
};
|
||||
|
||||
const handleCreatorClick = (creator: string) => {
|
||||
if (creators.includes(creator)) {
|
||||
removeCreator(creator);
|
||||
} else {
|
||||
addCreator(creator);
|
||||
}
|
||||
};
|
||||
|
||||
return (
|
||||
<div className="flex flex-wrap gap-2">
|
||||
<FilterSheet categories={categories} />
|
||||
{creators.length > 0 &&
|
||||
creators.map((creator) => (
|
||||
<FilterChip
|
||||
key={creator}
|
||||
name={"Created by " + creator.slice(0, 10) + "..."}
|
||||
selected={creators.includes(creator)}
|
||||
onClick={() => handleCreatorClick(creator)}
|
||||
/>
|
||||
))}
|
||||
{categories.map((category) => (
|
||||
<FilterChip
|
||||
key={category.key}
|
||||
name={category.name}
|
||||
selected={filters.includes(category.key)}
|
||||
onClick={() => handleFilterClick(category.key)}
|
||||
number={categoryCounts[category.key] ?? 0}
|
||||
/>
|
||||
))}
|
||||
</div>
|
||||
);
|
||||
};
|
||||
@@ -0,0 +1,15 @@
|
||||
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
|
||||
import { CategoryKey } from "./types";
|
||||
|
||||
export const categories: Array<{ key: CategoryKey; name: string }> = [
|
||||
{ key: GetV2BuilderSearchFilterAnyOfItem.blocks, name: "Blocks" },
|
||||
{
|
||||
key: GetV2BuilderSearchFilterAnyOfItem.integrations,
|
||||
name: "Integrations",
|
||||
},
|
||||
{
|
||||
key: GetV2BuilderSearchFilterAnyOfItem.marketplace_agents,
|
||||
name: "Marketplace agents",
|
||||
},
|
||||
{ key: GetV2BuilderSearchFilterAnyOfItem.my_agents, name: "My agents" },
|
||||
];
|
||||
@@ -0,0 +1,26 @@
|
||||
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
|
||||
|
||||
export type DefaultStateType =
|
||||
| "suggestion"
|
||||
| "all_blocks"
|
||||
| "input_blocks"
|
||||
| "action_blocks"
|
||||
| "output_blocks"
|
||||
| "integrations"
|
||||
| "marketplace_agents"
|
||||
| "my_agents";
|
||||
|
||||
export type CategoryKey = GetV2BuilderSearchFilterAnyOfItem;
|
||||
|
||||
export interface Filters {
|
||||
categories: {
|
||||
blocks: boolean;
|
||||
integrations: boolean;
|
||||
marketplace_agents: boolean;
|
||||
my_agents: boolean;
|
||||
providers: boolean;
|
||||
};
|
||||
createdBy: string[];
|
||||
}
|
||||
|
||||
export type CategoryCounts = Record<CategoryKey, number>;
|
||||
@@ -1,111 +1,14 @@
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import { useBlockMenuSearch } from "./useBlockMenuSearch";
|
||||
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
|
||||
import { LoadingSpinner } from "@/components/__legacy__/ui/loading";
|
||||
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
|
||||
import { MarketplaceAgentBlock } from "../MarketplaceAgentBlock";
|
||||
import { Block } from "../Block";
|
||||
import { UGCAgentBlock } from "../UGCAgentBlock";
|
||||
import { getSearchItemType } from "./helper";
|
||||
import { useBlockMenuStore } from "../../../../stores/blockMenuStore";
|
||||
import { blockMenuContainerStyle } from "../style";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { NoSearchResult } from "../NoSearchResult";
|
||||
import { BlockMenuFilters } from "../BlockMenuFilters/BlockMenuFilters";
|
||||
import { BlockMenuSearchContent } from "../BlockMenuSearchContent/BlockMenuSearchContent";
|
||||
|
||||
export const BlockMenuSearch = () => {
|
||||
const {
|
||||
searchResults,
|
||||
isFetchingNextPage,
|
||||
fetchNextPage,
|
||||
hasNextPage,
|
||||
searchLoading,
|
||||
handleAddLibraryAgent,
|
||||
handleAddMarketplaceAgent,
|
||||
addingLibraryAgentId,
|
||||
addingMarketplaceAgentSlug,
|
||||
} = useBlockMenuSearch();
|
||||
const { searchQuery } = useBlockMenuStore();
|
||||
|
||||
if (searchLoading) {
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
blockMenuContainerStyle,
|
||||
"flex items-center justify-center",
|
||||
)}
|
||||
>
|
||||
<LoadingSpinner className="size-13" />
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
if (searchResults.length === 0) {
|
||||
return <NoSearchResult />;
|
||||
}
|
||||
|
||||
return (
|
||||
<div className={blockMenuContainerStyle}>
|
||||
<BlockMenuFilters />
|
||||
<Text variant="body-medium">Search results</Text>
|
||||
<InfiniteScroll
|
||||
isFetchingNextPage={isFetchingNextPage}
|
||||
fetchNextPage={fetchNextPage}
|
||||
hasNextPage={hasNextPage}
|
||||
loader={<LoadingSpinner className="size-13" />}
|
||||
className="space-y-2.5"
|
||||
>
|
||||
{searchResults.map((item: SearchResponseItemsItem, index: number) => {
|
||||
const { type, data } = getSearchItemType(item);
|
||||
// backend give support to these 3 types only [right now] - we need to give support to integration and ai agent types in follow up PRs
|
||||
switch (type) {
|
||||
case "store_agent":
|
||||
return (
|
||||
<MarketplaceAgentBlock
|
||||
key={index}
|
||||
slug={data.slug}
|
||||
highlightedText={searchQuery}
|
||||
title={data.agent_name}
|
||||
image_url={data.agent_image}
|
||||
creator_name={data.creator}
|
||||
number_of_runs={data.runs}
|
||||
loading={addingMarketplaceAgentSlug === data.slug}
|
||||
onClick={() =>
|
||||
handleAddMarketplaceAgent({
|
||||
creator_name: data.creator,
|
||||
slug: data.slug,
|
||||
})
|
||||
}
|
||||
/>
|
||||
);
|
||||
case "block":
|
||||
return (
|
||||
<Block
|
||||
key={index}
|
||||
title={data.name}
|
||||
highlightedText={searchQuery}
|
||||
description={data.description}
|
||||
blockData={data}
|
||||
/>
|
||||
);
|
||||
|
||||
case "library_agent":
|
||||
return (
|
||||
<UGCAgentBlock
|
||||
key={index}
|
||||
title={data.name}
|
||||
highlightedText={searchQuery}
|
||||
image_url={data.image_url}
|
||||
version={data.graph_version}
|
||||
edited_time={data.updated_at}
|
||||
isLoading={addingLibraryAgentId === data.id}
|
||||
onClick={() => handleAddLibraryAgent(data)}
|
||||
/>
|
||||
);
|
||||
|
||||
default:
|
||||
return null;
|
||||
}
|
||||
})}
|
||||
</InfiniteScroll>
|
||||
<BlockMenuSearchContent />
|
||||
</div>
|
||||
);
|
||||
};
|
||||
|
||||
@@ -0,0 +1,108 @@
|
||||
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
|
||||
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
|
||||
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
|
||||
import { getSearchItemType } from "./helper";
|
||||
import { MarketplaceAgentBlock } from "../MarketplaceAgentBlock";
|
||||
import { Block } from "../Block";
|
||||
import { UGCAgentBlock } from "../UGCAgentBlock";
|
||||
import { useBlockMenuSearchContent } from "./useBlockMenuSearchContent";
|
||||
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { blockMenuContainerStyle } from "../style";
|
||||
import { NoSearchResult } from "../NoSearchResult";
|
||||
|
||||
export const BlockMenuSearchContent = () => {
|
||||
const {
|
||||
searchResults,
|
||||
isFetchingNextPage,
|
||||
fetchNextPage,
|
||||
hasNextPage,
|
||||
searchLoading,
|
||||
handleAddLibraryAgent,
|
||||
handleAddMarketplaceAgent,
|
||||
addingLibraryAgentId,
|
||||
addingMarketplaceAgentSlug,
|
||||
} = useBlockMenuSearchContent();
|
||||
|
||||
const { searchQuery } = useBlockMenuStore();
|
||||
|
||||
if (searchLoading) {
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
blockMenuContainerStyle,
|
||||
"flex items-center justify-center",
|
||||
)}
|
||||
>
|
||||
<LoadingSpinner className="size-13" />
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
if (searchResults.length === 0) {
|
||||
return <NoSearchResult />;
|
||||
}
|
||||
|
||||
return (
|
||||
<InfiniteScroll
|
||||
isFetchingNextPage={isFetchingNextPage}
|
||||
fetchNextPage={fetchNextPage}
|
||||
hasNextPage={hasNextPage}
|
||||
loader={<LoadingSpinner className="size-13" />}
|
||||
className="space-y-2.5"
|
||||
>
|
||||
{searchResults.map((item: SearchResponseItemsItem, index: number) => {
|
||||
const { type, data } = getSearchItemType(item);
|
||||
// backend give support to these 3 types only [right now] - we need to give support to integration and ai agent types in follow up PRs
|
||||
switch (type) {
|
||||
case "store_agent":
|
||||
return (
|
||||
<MarketplaceAgentBlock
|
||||
key={index}
|
||||
slug={data.slug}
|
||||
highlightedText={searchQuery}
|
||||
title={data.agent_name}
|
||||
image_url={data.agent_image}
|
||||
creator_name={data.creator}
|
||||
number_of_runs={data.runs}
|
||||
loading={addingMarketplaceAgentSlug === data.slug}
|
||||
onClick={() =>
|
||||
handleAddMarketplaceAgent({
|
||||
creator_name: data.creator,
|
||||
slug: data.slug,
|
||||
})
|
||||
}
|
||||
/>
|
||||
);
|
||||
case "block":
|
||||
return (
|
||||
<Block
|
||||
key={index}
|
||||
title={data.name}
|
||||
highlightedText={searchQuery}
|
||||
description={data.description}
|
||||
blockData={data}
|
||||
/>
|
||||
);
|
||||
|
||||
case "library_agent":
|
||||
return (
|
||||
<UGCAgentBlock
|
||||
key={index}
|
||||
title={data.name}
|
||||
highlightedText={searchQuery}
|
||||
image_url={data.image_url}
|
||||
version={data.graph_version}
|
||||
edited_time={data.updated_at}
|
||||
isLoading={addingLibraryAgentId === data.id}
|
||||
onClick={() => handleAddLibraryAgent(data)}
|
||||
/>
|
||||
);
|
||||
|
||||
default:
|
||||
return null;
|
||||
}
|
||||
})}
|
||||
</InfiniteScroll>
|
||||
);
|
||||
};
|
||||
@@ -23,9 +23,19 @@ import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
|
||||
import { getQueryClient } from "@/lib/react-query/queryClient";
|
||||
import { useToast } from "@/components/molecules/Toast/use-toast";
|
||||
import * as Sentry from "@sentry/nextjs";
|
||||
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
|
||||
|
||||
export const useBlockMenuSearchContent = () => {
|
||||
const {
|
||||
searchQuery,
|
||||
searchId,
|
||||
setSearchId,
|
||||
filters,
|
||||
setCreatorsList,
|
||||
creators,
|
||||
setCategoryCounts,
|
||||
} = useBlockMenuStore();
|
||||
|
||||
export const useBlockMenuSearch = () => {
|
||||
const { searchQuery, searchId, setSearchId } = useBlockMenuStore();
|
||||
const { toast } = useToast();
|
||||
const { addAgentToBuilder, addLibraryAgentToBuilder } =
|
||||
useAddAgentToBuilder();
|
||||
@@ -57,6 +67,8 @@ export const useBlockMenuSearch = () => {
|
||||
page_size: 8,
|
||||
search_query: searchQuery,
|
||||
search_id: searchId,
|
||||
filter: filters.length > 0 ? filters : undefined,
|
||||
by_creator: creators.length > 0 ? creators : undefined,
|
||||
},
|
||||
{
|
||||
query: { getNextPageParam: getPaginationNextPageNumber },
|
||||
@@ -98,6 +110,26 @@ export const useBlockMenuSearch = () => {
|
||||
}
|
||||
}, [searchQueryData, searchId, setSearchId]);
|
||||
|
||||
// from all the results, we need to get all the unique creators
|
||||
useEffect(() => {
|
||||
if (!searchQueryData?.pages?.length) {
|
||||
return;
|
||||
}
|
||||
const latestData = okData(searchQueryData.pages.at(-1));
|
||||
setCategoryCounts(
|
||||
(latestData?.total_items as Record<
|
||||
GetV2BuilderSearchFilterAnyOfItem,
|
||||
number
|
||||
>) || {
|
||||
blocks: 0,
|
||||
integrations: 0,
|
||||
marketplace_agents: 0,
|
||||
my_agents: 0,
|
||||
},
|
||||
);
|
||||
setCreatorsList(latestData?.items || []);
|
||||
}, [searchQueryData]);
|
||||
|
||||
useEffect(() => {
|
||||
if (searchId && !searchQuery) {
|
||||
resetSearchSession();
|
||||
@@ -1,7 +1,9 @@
|
||||
import { Button } from "@/components/__legacy__/ui/button";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { X } from "lucide-react";
|
||||
import React, { ButtonHTMLAttributes } from "react";
|
||||
import { XIcon } from "@phosphor-icons/react";
|
||||
import { AnimatePresence, motion } from "framer-motion";
|
||||
|
||||
import React, { ButtonHTMLAttributes, useState } from "react";
|
||||
|
||||
interface Props extends ButtonHTMLAttributes<HTMLButtonElement> {
|
||||
selected?: boolean;
|
||||
@@ -16,39 +18,51 @@ export const FilterChip: React.FC<Props> = ({
|
||||
className,
|
||||
...rest
|
||||
}) => {
|
||||
const [isHovered, setIsHovered] = useState(false);
|
||||
return (
|
||||
<Button
|
||||
className={cn(
|
||||
"group w-fit space-x-1 rounded-[1.5rem] border border-zinc-300 bg-transparent px-[0.625rem] py-[0.375rem] shadow-none transition-transform duration-300 ease-in-out",
|
||||
"hover:border-violet-500 hover:bg-transparent focus:ring-0 disabled:cursor-not-allowed",
|
||||
selected && "border-0 bg-violet-700 hover:border",
|
||||
className,
|
||||
)}
|
||||
{...rest}
|
||||
>
|
||||
<span
|
||||
<AnimatePresence mode="wait">
|
||||
<Button
|
||||
onMouseEnter={() => setIsHovered(true)}
|
||||
onMouseLeave={() => setIsHovered(false)}
|
||||
className={cn(
|
||||
"font-sans text-sm font-medium leading-[1.375rem] text-zinc-600 group-hover:text-zinc-600 group-disabled:text-zinc-400",
|
||||
selected && "text-zinc-50",
|
||||
"group w-fit space-x-1 rounded-[1.5rem] border border-zinc-300 bg-transparent px-[0.625rem] py-[0.375rem] shadow-none",
|
||||
"hover:border-violet-500 hover:bg-transparent focus:ring-0 disabled:cursor-not-allowed",
|
||||
selected && "border-0 bg-violet-700 hover:border",
|
||||
className,
|
||||
)}
|
||||
{...rest}
|
||||
>
|
||||
{name}
|
||||
</span>
|
||||
{selected && (
|
||||
<>
|
||||
<span className="flex h-4 w-4 items-center justify-center rounded-full bg-zinc-50 transition-all duration-300 ease-in-out group-hover:hidden">
|
||||
<X
|
||||
className="h-3 w-3 rounded-full text-violet-700"
|
||||
strokeWidth={2}
|
||||
/>
|
||||
</span>
|
||||
{number !== undefined && (
|
||||
<span className="hidden h-[1.375rem] items-center rounded-[1.25rem] bg-violet-700 p-[0.375rem] text-zinc-50 transition-all duration-300 ease-in-out animate-in fade-in zoom-in group-hover:flex">
|
||||
{number > 100 ? "100+" : number}
|
||||
</span>
|
||||
<span
|
||||
className={cn(
|
||||
"font-sans text-sm font-medium leading-[1.375rem] text-zinc-600 group-hover:text-zinc-600 group-disabled:text-zinc-400",
|
||||
selected && "text-zinc-50",
|
||||
)}
|
||||
</>
|
||||
)}
|
||||
</Button>
|
||||
>
|
||||
{name}
|
||||
</span>
|
||||
{selected && !isHovered && (
|
||||
<motion.span
|
||||
initial={{ opacity: 0.5, scale: 0.5, filter: "blur(20px)" }}
|
||||
animate={{ opacity: 1, scale: 1, filter: "blur(0px)" }}
|
||||
exit={{ opacity: 0.5, scale: 0.5, filter: "blur(20px)" }}
|
||||
transition={{ duration: 0.3, type: "spring", bounce: 0.2 }}
|
||||
className="flex h-4 w-4 items-center justify-center rounded-full bg-zinc-50"
|
||||
>
|
||||
<XIcon size={12} weight="bold" className="text-violet-700" />
|
||||
</motion.span>
|
||||
)}
|
||||
{number !== undefined && isHovered && (
|
||||
<motion.span
|
||||
initial={{ opacity: 0.5, scale: 0.5, filter: "blur(10px)" }}
|
||||
animate={{ opacity: 1, scale: 1, filter: "blur(0px)" }}
|
||||
exit={{ opacity: 0.5, scale: 0.5, filter: "blur(10px)" }}
|
||||
transition={{ duration: 0.3, type: "spring", bounce: 0.2 }}
|
||||
className="flex h-[1.375rem] items-center rounded-[1.25rem] bg-violet-700 p-[0.375rem] text-zinc-50"
|
||||
>
|
||||
{number > 100 ? "100+" : number}
|
||||
</motion.span>
|
||||
)}
|
||||
</Button>
|
||||
</AnimatePresence>
|
||||
);
|
||||
};
|
||||
|
||||
@@ -0,0 +1,156 @@
|
||||
import { FilterChip } from "../FilterChip";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { CategoryKey } from "../BlockMenuFilters/types";
|
||||
import { AnimatePresence, motion } from "framer-motion";
|
||||
import { XIcon } from "@phosphor-icons/react";
|
||||
import { Button } from "@/components/atoms/Button/Button";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import { Separator } from "@/components/__legacy__/ui/separator";
|
||||
import { Checkbox } from "@/components/__legacy__/ui/checkbox";
|
||||
import { useFilterSheet } from "./useFilterSheet";
|
||||
import { INITIAL_CREATORS_TO_SHOW } from "./constant";
|
||||
|
||||
export function FilterSheet({
|
||||
categories,
|
||||
}: {
|
||||
categories: Array<{ key: CategoryKey; name: string }>;
|
||||
}) {
|
||||
const {
|
||||
isOpen,
|
||||
localCategories,
|
||||
localCreators,
|
||||
displayedCreatorsCount,
|
||||
handleLocalCategoryChange,
|
||||
handleToggleShowMoreCreators,
|
||||
handleLocalCreatorChange,
|
||||
handleClearFilters,
|
||||
handleCloseButton,
|
||||
handleApplyFilters,
|
||||
hasLocalActiveFilters,
|
||||
visibleCreators,
|
||||
creators,
|
||||
handleOpenFilters,
|
||||
hasActiveFilters,
|
||||
} = useFilterSheet();
|
||||
|
||||
return (
|
||||
<div className="m-0 inline w-fit p-0">
|
||||
<FilterChip
|
||||
name={hasActiveFilters() ? "Edit filters" : "All filters"}
|
||||
onClick={handleOpenFilters}
|
||||
/>
|
||||
|
||||
<AnimatePresence>
|
||||
{isOpen && (
|
||||
<motion.div
|
||||
className={cn(
|
||||
"absolute bottom-2 left-2 top-2 z-20 w-3/4 max-w-[22.5rem] space-y-4 overflow-hidden rounded-[0.75rem] bg-white pb-4 shadow-[0_4px_12px_2px_rgba(0,0,0,0.1)]",
|
||||
)}
|
||||
initial={{ x: "-100%", filter: "blur(10px)" }}
|
||||
animate={{ x: 0, filter: "blur(0px)" }}
|
||||
exit={{ x: "-110%", filter: "blur(10px)" }}
|
||||
transition={{ duration: 0.4, type: "spring", bounce: 0.2 }}
|
||||
>
|
||||
{/* Top section */}
|
||||
<div className="flex items-center justify-between px-5 pt-4">
|
||||
<Text variant="body">Filters</Text>
|
||||
<Button
|
||||
className="p-0"
|
||||
variant="ghost"
|
||||
size="icon"
|
||||
onClick={handleCloseButton}
|
||||
>
|
||||
<XIcon size={20} />
|
||||
</Button>
|
||||
</div>
|
||||
|
||||
<Separator className="h-[1px] w-full text-zinc-300" />
|
||||
|
||||
{/* Category section */}
|
||||
<div className="space-y-4 px-5">
|
||||
<Text variant="large">Categories</Text>
|
||||
<div className="space-y-2">
|
||||
{categories.map((category) => (
|
||||
<div
|
||||
key={category.key}
|
||||
className="flex items-center space-x-2"
|
||||
>
|
||||
<Checkbox
|
||||
id={category.key}
|
||||
checked={localCategories.includes(category.key)}
|
||||
onCheckedChange={() =>
|
||||
handleLocalCategoryChange(category.key)
|
||||
}
|
||||
className="border border-[#D4D4D4] shadow-none data-[state=checked]:border-none data-[state=checked]:bg-violet-700 data-[state=checked]:text-white"
|
||||
/>
|
||||
<label
|
||||
htmlFor={category.key}
|
||||
className="font-sans text-sm leading-[1.375rem] text-zinc-600"
|
||||
>
|
||||
{category.name}
|
||||
</label>
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
</div>
|
||||
|
||||
{/* Created by section */}
|
||||
<div className="space-y-4 px-5">
|
||||
<p className="font-sans text-base font-medium text-zinc-800">
|
||||
Created by
|
||||
</p>
|
||||
<div className="space-y-2">
|
||||
{visibleCreators.map((creator, i) => (
|
||||
<div key={i} className="flex items-center space-x-2">
|
||||
<Checkbox
|
||||
id={`creator-${creator}`}
|
||||
checked={localCreators.includes(creator)}
|
||||
onCheckedChange={() => handleLocalCreatorChange(creator)}
|
||||
className="border border-[#D4D4D4] shadow-none data-[state=checked]:border-none data-[state=checked]:bg-violet-700 data-[state=checked]:text-white"
|
||||
/>
|
||||
<label
|
||||
htmlFor={`creator-${creator}`}
|
||||
className="font-sans text-sm leading-[1.375rem] text-zinc-600"
|
||||
>
|
||||
{creator}
|
||||
</label>
|
||||
</div>
|
||||
))}
|
||||
</div>
|
||||
{creators.length > INITIAL_CREATORS_TO_SHOW && (
|
||||
<Button
|
||||
variant={"link"}
|
||||
className="m-0 p-0 font-sans text-sm font-medium leading-[1.375rem] text-zinc-800 underline hover:text-zinc-600"
|
||||
onClick={handleToggleShowMoreCreators}
|
||||
>
|
||||
{displayedCreatorsCount < creators.length ? "More" : "Less"}
|
||||
</Button>
|
||||
)}
|
||||
</div>
|
||||
|
||||
{/* Footer section */}
|
||||
<div className="fixed bottom-0 flex w-full justify-between gap-3 border-t border-zinc-200 bg-white px-5 py-3">
|
||||
<Button
|
||||
size="small"
|
||||
variant={"outline"}
|
||||
onClick={handleClearFilters}
|
||||
className="rounded-[8px] px-2 py-1.5"
|
||||
>
|
||||
Clear
|
||||
</Button>
|
||||
|
||||
<Button
|
||||
size="small"
|
||||
onClick={handleApplyFilters}
|
||||
disabled={!hasLocalActiveFilters()}
|
||||
className="rounded-[8px] px-2 py-1.5"
|
||||
>
|
||||
Apply filters
|
||||
</Button>
|
||||
</div>
|
||||
</motion.div>
|
||||
)}
|
||||
</AnimatePresence>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1 @@
|
||||
export const INITIAL_CREATORS_TO_SHOW = 5;
|
||||
@@ -0,0 +1,100 @@
|
||||
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
|
||||
import { useState } from "react";
|
||||
import { INITIAL_CREATORS_TO_SHOW } from "./constant";
|
||||
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
|
||||
|
||||
export const useFilterSheet = () => {
|
||||
const { filters, creators_list, creators, setFilters, setCreators } =
|
||||
useBlockMenuStore();
|
||||
|
||||
const [isOpen, setIsOpen] = useState(false);
|
||||
const [localCategories, setLocalCategories] =
|
||||
useState<GetV2BuilderSearchFilterAnyOfItem[]>(filters);
|
||||
const [localCreators, setLocalCreators] = useState<string[]>(creators);
|
||||
const [displayedCreatorsCount, setDisplayedCreatorsCount] = useState(
|
||||
INITIAL_CREATORS_TO_SHOW,
|
||||
);
|
||||
|
||||
const handleLocalCategoryChange = (
|
||||
category: GetV2BuilderSearchFilterAnyOfItem,
|
||||
) => {
|
||||
setLocalCategories((prev) => {
|
||||
if (prev.includes(category)) {
|
||||
return prev.filter((c) => c !== category);
|
||||
}
|
||||
return [...prev, category];
|
||||
});
|
||||
};
|
||||
|
||||
const hasActiveFilters = () => {
|
||||
return filters.length > 0 || creators.length > 0;
|
||||
};
|
||||
|
||||
const handleToggleShowMoreCreators = () => {
|
||||
if (displayedCreatorsCount < creators.length) {
|
||||
setDisplayedCreatorsCount(creators.length);
|
||||
} else {
|
||||
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
|
||||
}
|
||||
};
|
||||
|
||||
const handleLocalCreatorChange = (creator: string) => {
|
||||
setLocalCreators((prev) => {
|
||||
if (prev.includes(creator)) {
|
||||
return prev.filter((c) => c !== creator);
|
||||
}
|
||||
return [...prev, creator];
|
||||
});
|
||||
};
|
||||
|
||||
const handleClearFilters = () => {
|
||||
setLocalCategories([]);
|
||||
setLocalCreators([]);
|
||||
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
|
||||
};
|
||||
|
||||
const handleCloseButton = () => {
|
||||
setIsOpen(false);
|
||||
setLocalCategories(filters);
|
||||
setLocalCreators(creators);
|
||||
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
|
||||
};
|
||||
|
||||
const handleApplyFilters = () => {
|
||||
setFilters(localCategories);
|
||||
setCreators(localCreators);
|
||||
setIsOpen(false);
|
||||
};
|
||||
|
||||
const handleOpenFilters = () => {
|
||||
setIsOpen(true);
|
||||
setLocalCategories(filters);
|
||||
setLocalCreators(creators);
|
||||
};
|
||||
|
||||
const hasLocalActiveFilters = () => {
|
||||
return localCategories.length > 0 || localCreators.length > 0;
|
||||
};
|
||||
|
||||
const visibleCreators = creators_list.slice(0, displayedCreatorsCount);
|
||||
|
||||
return {
|
||||
creators,
|
||||
isOpen,
|
||||
setIsOpen,
|
||||
localCategories,
|
||||
localCreators,
|
||||
displayedCreatorsCount,
|
||||
setDisplayedCreatorsCount,
|
||||
handleLocalCategoryChange,
|
||||
handleToggleShowMoreCreators,
|
||||
handleLocalCreatorChange,
|
||||
handleClearFilters,
|
||||
handleCloseButton,
|
||||
handleOpenFilters,
|
||||
handleApplyFilters,
|
||||
hasLocalActiveFilters,
|
||||
visibleCreators,
|
||||
hasActiveFilters,
|
||||
};
|
||||
};
|
||||
@@ -1,12 +1,30 @@
|
||||
import { create } from "zustand";
|
||||
import { DefaultStateType } from "../components/NewControlPanel/NewBlockMenu/types";
|
||||
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
|
||||
import { getSearchItemType } from "../components/NewControlPanel/NewBlockMenu/BlockMenuSearchContent/helper";
|
||||
import { StoreAgent } from "@/app/api/__generated__/models/storeAgent";
|
||||
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
|
||||
|
||||
type BlockMenuStore = {
|
||||
searchQuery: string;
|
||||
searchId: string | undefined;
|
||||
defaultState: DefaultStateType;
|
||||
integration: string | undefined;
|
||||
filters: GetV2BuilderSearchFilterAnyOfItem[];
|
||||
creators: string[];
|
||||
creators_list: string[];
|
||||
categoryCounts: Record<GetV2BuilderSearchFilterAnyOfItem, number>;
|
||||
|
||||
setCategoryCounts: (
|
||||
counts: Record<GetV2BuilderSearchFilterAnyOfItem, number>,
|
||||
) => void;
|
||||
setCreatorsList: (searchData: SearchResponseItemsItem[]) => void;
|
||||
addCreator: (creator: string) => void;
|
||||
setCreators: (creators: string[]) => void;
|
||||
removeCreator: (creator: string) => void;
|
||||
addFilter: (filter: GetV2BuilderSearchFilterAnyOfItem) => void;
|
||||
setFilters: (filters: GetV2BuilderSearchFilterAnyOfItem[]) => void;
|
||||
removeFilter: (filter: GetV2BuilderSearchFilterAnyOfItem) => void;
|
||||
setSearchQuery: (query: string) => void;
|
||||
setSearchId: (id: string | undefined) => void;
|
||||
setDefaultState: (state: DefaultStateType) => void;
|
||||
@@ -19,11 +37,44 @@ export const useBlockMenuStore = create<BlockMenuStore>((set) => ({
|
||||
searchId: undefined,
|
||||
defaultState: DefaultStateType.SUGGESTION,
|
||||
integration: undefined,
|
||||
filters: [],
|
||||
creators: [], // creator filters that are applied to the search results
|
||||
creators_list: [], // all creators that are available to filter by
|
||||
categoryCounts: {
|
||||
blocks: 0,
|
||||
integrations: 0,
|
||||
marketplace_agents: 0,
|
||||
my_agents: 0,
|
||||
},
|
||||
|
||||
setCategoryCounts: (counts) => set({ categoryCounts: counts }),
|
||||
setCreatorsList: (searchData) => {
|
||||
const marketplaceAgents = searchData.filter((item) => {
|
||||
return getSearchItemType(item).type === "store_agent";
|
||||
}) as StoreAgent[];
|
||||
|
||||
const newCreators = marketplaceAgents.map((agent) => agent.creator);
|
||||
|
||||
set((state) => ({
|
||||
creators_list: Array.from(
|
||||
new Set([...state.creators_list, ...newCreators]),
|
||||
),
|
||||
}));
|
||||
},
|
||||
setCreators: (creators) => set({ creators }),
|
||||
setFilters: (filters) => set({ filters }),
|
||||
setSearchQuery: (query) => set({ searchQuery: query }),
|
||||
setSearchId: (id) => set({ searchId: id }),
|
||||
setDefaultState: (state) => set({ defaultState: state }),
|
||||
setIntegration: (integration) => set({ integration }),
|
||||
addFilter: (filter) =>
|
||||
set((state) => ({ filters: [...state.filters, filter] })),
|
||||
removeFilter: (filter) =>
|
||||
set((state) => ({ filters: state.filters.filter((f) => f !== filter) })),
|
||||
addCreator: (creator) =>
|
||||
set((state) => ({ creators: [...state.creators, creator] })),
|
||||
removeCreator: (creator) =>
|
||||
set((state) => ({ creators: state.creators.filter((c) => c !== creator) })),
|
||||
reset: () =>
|
||||
set({
|
||||
searchQuery: "",
|
||||
|
||||
@@ -68,6 +68,9 @@ type NodeStore = {
|
||||
clearAllNodeErrors: () => void; // Add this
|
||||
|
||||
syncHardcodedValuesWithHandleIds: (nodeId: string) => void;
|
||||
|
||||
// Credentials optional helpers
|
||||
setCredentialsOptional: (nodeId: string, optional: boolean) => void;
|
||||
};
|
||||
|
||||
export const useNodeStore = create<NodeStore>((set, get) => ({
|
||||
@@ -226,6 +229,9 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
|
||||
...(node.data.metadata?.customized_name !== undefined && {
|
||||
customized_name: node.data.metadata.customized_name,
|
||||
}),
|
||||
...(node.data.metadata?.credentials_optional !== undefined && {
|
||||
credentials_optional: node.data.metadata.credentials_optional,
|
||||
}),
|
||||
},
|
||||
};
|
||||
},
|
||||
@@ -342,4 +348,30 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
|
||||
}));
|
||||
}
|
||||
},
|
||||
|
||||
setCredentialsOptional: (nodeId: string, optional: boolean) => {
|
||||
set((state) => ({
|
||||
nodes: state.nodes.map((n) =>
|
||||
n.id === nodeId
|
||||
? {
|
||||
...n,
|
||||
data: {
|
||||
...n.data,
|
||||
metadata: {
|
||||
...n.data.metadata,
|
||||
credentials_optional: optional,
|
||||
},
|
||||
},
|
||||
}
|
||||
: n,
|
||||
),
|
||||
}));
|
||||
|
||||
const newState = {
|
||||
nodes: get().nodes,
|
||||
edges: useEdgeStore.getState().edges,
|
||||
};
|
||||
|
||||
useHistoryStore.getState().pushState(newState);
|
||||
},
|
||||
}));
|
||||
|
||||
@@ -34,7 +34,9 @@ type Props = {
|
||||
onSelectCredentials: (newValue?: CredentialsMetaInput) => void;
|
||||
onLoaded?: (loaded: boolean) => void;
|
||||
readOnly?: boolean;
|
||||
isOptional?: boolean;
|
||||
showTitle?: boolean;
|
||||
variant?: "default" | "node";
|
||||
};
|
||||
|
||||
export function CredentialsInput({
|
||||
@@ -45,7 +47,9 @@ export function CredentialsInput({
|
||||
siblingInputs,
|
||||
onLoaded,
|
||||
readOnly = false,
|
||||
isOptional = false,
|
||||
showTitle = true,
|
||||
variant = "default",
|
||||
}: Props) {
|
||||
const hookData = useCredentialsInput({
|
||||
schema,
|
||||
@@ -54,6 +58,7 @@ export function CredentialsInput({
|
||||
siblingInputs,
|
||||
onLoaded,
|
||||
readOnly,
|
||||
isOptional,
|
||||
});
|
||||
|
||||
if (!isLoaded(hookData)) {
|
||||
@@ -94,7 +99,14 @@ export function CredentialsInput({
|
||||
<div className={cn("mb-6", className)}>
|
||||
{showTitle && (
|
||||
<div className="mb-2 flex items-center gap-2">
|
||||
<Text variant="large-medium">{displayName} credentials</Text>
|
||||
<Text variant="large-medium">
|
||||
{displayName} credentials
|
||||
{isOptional && (
|
||||
<span className="ml-1 text-sm font-normal text-gray-500">
|
||||
(optional)
|
||||
</span>
|
||||
)}
|
||||
</Text>
|
||||
{schema.description && (
|
||||
<InformationTooltip description={schema.description} />
|
||||
)}
|
||||
@@ -103,14 +115,17 @@ export function CredentialsInput({
|
||||
|
||||
{hasCredentialsToShow ? (
|
||||
<>
|
||||
{credentialsToShow.length > 1 && !readOnly ? (
|
||||
{(credentialsToShow.length > 1 || isOptional) && !readOnly ? (
|
||||
<CredentialsSelect
|
||||
credentials={credentialsToShow}
|
||||
provider={provider}
|
||||
displayName={displayName}
|
||||
selectedCredentials={selectedCredential}
|
||||
onSelectCredential={handleCredentialSelect}
|
||||
onClearCredential={() => onSelectCredential(undefined)}
|
||||
readOnly={readOnly}
|
||||
allowNone={isOptional}
|
||||
variant={variant}
|
||||
/>
|
||||
) : (
|
||||
<div className="mb-4 space-y-2">
|
||||
|
||||
@@ -30,6 +30,8 @@ type CredentialRowProps = {
|
||||
readOnly?: boolean;
|
||||
showCaret?: boolean;
|
||||
asSelectTrigger?: boolean;
|
||||
/** When "node", applies compact styling for node context */
|
||||
variant?: "default" | "node";
|
||||
};
|
||||
|
||||
export function CredentialRow({
|
||||
@@ -41,14 +43,22 @@ export function CredentialRow({
|
||||
readOnly = false,
|
||||
showCaret = false,
|
||||
asSelectTrigger = false,
|
||||
variant = "default",
|
||||
}: CredentialRowProps) {
|
||||
const ProviderIcon = providerIcons[provider] || fallbackIcon;
|
||||
const isNodeVariant = variant === "node";
|
||||
|
||||
return (
|
||||
<div
|
||||
className={cn(
|
||||
"flex items-center gap-3 rounded-medium border border-zinc-200 bg-white p-3 transition-colors",
|
||||
asSelectTrigger ? "border-0 bg-transparent" : readOnly ? "w-fit" : "",
|
||||
asSelectTrigger && isNodeVariant
|
||||
? "min-w-0 flex-1 overflow-hidden border-0 bg-transparent"
|
||||
: asSelectTrigger
|
||||
? "border-0 bg-transparent"
|
||||
: readOnly
|
||||
? "w-fit"
|
||||
: "",
|
||||
)}
|
||||
onClick={readOnly || showCaret || asSelectTrigger ? undefined : onSelect}
|
||||
style={
|
||||
@@ -61,19 +71,31 @@ export function CredentialRow({
|
||||
<ProviderIcon className="h-3 w-3 text-white" />
|
||||
</div>
|
||||
<IconKey className="h-5 w-5 shrink-0 text-zinc-800" />
|
||||
<div className="flex min-w-0 flex-1 flex-nowrap items-center gap-4">
|
||||
<div
|
||||
className={cn(
|
||||
"flex min-w-0 flex-1 flex-nowrap items-center gap-4",
|
||||
isNodeVariant && "overflow-hidden",
|
||||
)}
|
||||
>
|
||||
<Text
|
||||
variant="body"
|
||||
className="line-clamp-1 flex-[0_0_50%] text-ellipsis tracking-tight"
|
||||
className={cn(
|
||||
"tracking-tight",
|
||||
isNodeVariant
|
||||
? "truncate"
|
||||
: "line-clamp-1 flex-[0_0_50%] text-ellipsis",
|
||||
)}
|
||||
>
|
||||
{getCredentialDisplayName(credential, displayName)}
|
||||
</Text>
|
||||
<Text
|
||||
variant="large"
|
||||
className="lex-[0_0_40%] relative top-1 hidden overflow-hidden whitespace-nowrap font-mono tracking-tight md:block"
|
||||
>
|
||||
{"*".repeat(MASKED_KEY_LENGTH)}
|
||||
</Text>
|
||||
{!(asSelectTrigger && isNodeVariant) && (
|
||||
<Text
|
||||
variant="large"
|
||||
className="relative top-1 hidden overflow-hidden whitespace-nowrap font-mono tracking-tight md:block"
|
||||
>
|
||||
{"*".repeat(MASKED_KEY_LENGTH)}
|
||||
</Text>
|
||||
)}
|
||||
</div>
|
||||
{showCaret && !asSelectTrigger && (
|
||||
<CaretDown className="h-4 w-4 shrink-0 text-gray-400" />
|
||||
|
||||
@@ -7,6 +7,7 @@ import {
|
||||
} from "@/components/__legacy__/ui/select";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import { CredentialsMetaInput } from "@/lib/autogpt-server-api/types";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { useEffect } from "react";
|
||||
import { getCredentialDisplayName } from "../../helpers";
|
||||
import { CredentialRow } from "../CredentialRow/CredentialRow";
|
||||
@@ -23,7 +24,11 @@ interface Props {
|
||||
displayName: string;
|
||||
selectedCredentials?: CredentialsMetaInput;
|
||||
onSelectCredential: (credentialId: string) => void;
|
||||
onClearCredential?: () => void;
|
||||
readOnly?: boolean;
|
||||
allowNone?: boolean;
|
||||
/** When "node", applies compact styling for node context */
|
||||
variant?: "default" | "node";
|
||||
}
|
||||
|
||||
export function CredentialsSelect({
|
||||
@@ -32,22 +37,38 @@ export function CredentialsSelect({
|
||||
displayName,
|
||||
selectedCredentials,
|
||||
onSelectCredential,
|
||||
onClearCredential,
|
||||
readOnly = false,
|
||||
allowNone = true,
|
||||
variant = "default",
|
||||
}: Props) {
|
||||
// Auto-select first credential if none is selected
|
||||
// Auto-select first credential if none is selected (only if allowNone is false)
|
||||
useEffect(() => {
|
||||
if (!selectedCredentials && credentials.length > 0) {
|
||||
if (!allowNone && !selectedCredentials && credentials.length > 0) {
|
||||
onSelectCredential(credentials[0].id);
|
||||
}
|
||||
}, [selectedCredentials, credentials, onSelectCredential]);
|
||||
}, [allowNone, selectedCredentials, credentials, onSelectCredential]);
|
||||
|
||||
const handleValueChange = (value: string) => {
|
||||
if (value === "__none__") {
|
||||
onClearCredential?.();
|
||||
} else {
|
||||
onSelectCredential(value);
|
||||
}
|
||||
};
|
||||
|
||||
return (
|
||||
<div className="mb-4 w-full">
|
||||
<Select
|
||||
value={selectedCredentials?.id || ""}
|
||||
onValueChange={(value) => onSelectCredential(value)}
|
||||
value={selectedCredentials?.id || (allowNone ? "__none__" : "")}
|
||||
onValueChange={handleValueChange}
|
||||
>
|
||||
<SelectTrigger className="h-auto min-h-12 w-full rounded-medium border-zinc-200 p-0 pr-4 shadow-none">
|
||||
<SelectTrigger
|
||||
className={cn(
|
||||
"h-auto min-h-12 w-full rounded-medium border-zinc-200 p-0 pr-4 shadow-none",
|
||||
variant === "node" && "overflow-hidden",
|
||||
)}
|
||||
>
|
||||
{selectedCredentials ? (
|
||||
<SelectValue key={selectedCredentials.id} asChild>
|
||||
<CredentialRow
|
||||
@@ -63,6 +84,7 @@ export function CredentialsSelect({
|
||||
onDelete={() => {}}
|
||||
readOnly={readOnly}
|
||||
asSelectTrigger={true}
|
||||
variant={variant}
|
||||
/>
|
||||
</SelectValue>
|
||||
) : (
|
||||
@@ -70,6 +92,15 @@ export function CredentialsSelect({
|
||||
)}
|
||||
</SelectTrigger>
|
||||
<SelectContent>
|
||||
{allowNone && (
|
||||
<SelectItem key="__none__" value="__none__">
|
||||
<div className="flex items-center gap-2">
|
||||
<Text variant="body" className="tracking-tight text-gray-500">
|
||||
None (skip this credential)
|
||||
</Text>
|
||||
</div>
|
||||
</SelectItem>
|
||||
)}
|
||||
{credentials.map((credential) => (
|
||||
<SelectItem key={credential.id} value={credential.id}>
|
||||
<div className="flex items-center gap-2">
|
||||
|
||||
@@ -22,6 +22,7 @@ type Params = {
|
||||
siblingInputs?: Record<string, any>;
|
||||
onLoaded?: (loaded: boolean) => void;
|
||||
readOnly?: boolean;
|
||||
isOptional?: boolean;
|
||||
};
|
||||
|
||||
export function useCredentialsInput({
|
||||
@@ -31,6 +32,7 @@ export function useCredentialsInput({
|
||||
siblingInputs,
|
||||
onLoaded,
|
||||
readOnly = false,
|
||||
isOptional = false,
|
||||
}: Params) {
|
||||
const [isAPICredentialsModalOpen, setAPICredentialsModalOpen] =
|
||||
useState(false);
|
||||
@@ -99,13 +101,20 @@ export function useCredentialsInput({
|
||||
: null;
|
||||
}, [credentials]);
|
||||
|
||||
// Auto-select the one available credential
|
||||
// Auto-select the one available credential (only if not optional)
|
||||
useEffect(() => {
|
||||
if (readOnly) return;
|
||||
if (isOptional) return; // Don't auto-select when credential is optional
|
||||
if (singleCredential && !selectedCredential) {
|
||||
onSelectCredential(singleCredential);
|
||||
}
|
||||
}, [singleCredential, selectedCredential, onSelectCredential, readOnly]);
|
||||
}, [
|
||||
singleCredential,
|
||||
selectedCredential,
|
||||
onSelectCredential,
|
||||
readOnly,
|
||||
isOptional,
|
||||
]);
|
||||
|
||||
if (
|
||||
!credentials ||
|
||||
|
||||
@@ -8,6 +8,7 @@ import { WebhookTriggerBanner } from "../WebhookTriggerBanner/WebhookTriggerBann
|
||||
|
||||
export function ModalRunSection() {
|
||||
const {
|
||||
agent,
|
||||
defaultRunType,
|
||||
presetName,
|
||||
setPresetName,
|
||||
@@ -24,6 +25,11 @@ export function ModalRunSection() {
|
||||
const inputFields = Object.entries(agentInputFields || {});
|
||||
const credentialFields = Object.entries(agentCredentialsInputFields || {});
|
||||
|
||||
// Get the list of required credentials from the schema
|
||||
const requiredCredentials = new Set(
|
||||
(agent.credentials_input_schema?.required as string[]) || [],
|
||||
);
|
||||
|
||||
return (
|
||||
<div className="flex flex-col gap-4">
|
||||
{defaultRunType === "automatic-trigger" ||
|
||||
@@ -99,14 +105,12 @@ export function ModalRunSection() {
|
||||
schema={
|
||||
{ ...inputSubSchema, discriminator: undefined } as any
|
||||
}
|
||||
selectedCredentials={
|
||||
(inputCredentials && inputCredentials[key]) ??
|
||||
inputSubSchema.default
|
||||
}
|
||||
selectedCredentials={inputCredentials?.[key]}
|
||||
onSelectCredentials={(value) =>
|
||||
setInputCredentialsValue(key, value)
|
||||
}
|
||||
siblingInputs={inputValues}
|
||||
isOptional={!requiredCredentials.has(key)}
|
||||
/>
|
||||
),
|
||||
)}
|
||||
|
||||
@@ -163,15 +163,21 @@ export function useAgentRunModal(
|
||||
}, [agentInputSchema.required, inputValues]);
|
||||
|
||||
const [allCredentialsAreSet, missingCredentials] = useMemo(() => {
|
||||
const availableCredentials = new Set(Object.keys(inputCredentials));
|
||||
const allCredentials = new Set(
|
||||
Object.keys(agentCredentialsInputFields || {}) ?? [],
|
||||
);
|
||||
const missing = [...allCredentials].filter(
|
||||
(key) => !availableCredentials.has(key),
|
||||
// Only check required credentials from schema, not all properties
|
||||
// Credentials marked as optional in node metadata won't be in the required array
|
||||
const requiredCredentials = new Set(
|
||||
(agent.credentials_input_schema?.required as string[]) || [],
|
||||
);
|
||||
|
||||
// Check if required credentials have valid id (not just key existence)
|
||||
// A credential is valid only if it has an id field set
|
||||
const missing = [...requiredCredentials].filter((key) => {
|
||||
const cred = inputCredentials[key];
|
||||
return !cred || !cred.id;
|
||||
});
|
||||
|
||||
return [missing.length === 0, missing];
|
||||
}, [agentCredentialsInputFields, inputCredentials]);
|
||||
}, [agent.credentials_input_schema, inputCredentials]);
|
||||
|
||||
const credentialsRequired = useMemo(
|
||||
() => Object.keys(agentCredentialsInputFields || {}).length > 0,
|
||||
@@ -239,12 +245,18 @@ export function useAgentRunModal(
|
||||
});
|
||||
} else {
|
||||
// Manual execution
|
||||
// Filter out incomplete credentials (optional ones not selected)
|
||||
// Only send credentials that have a valid id field
|
||||
const validCredentials = Object.fromEntries(
|
||||
Object.entries(inputCredentials).filter(([_, cred]) => cred && cred.id),
|
||||
);
|
||||
|
||||
executeGraphMutation.mutate({
|
||||
graphId: agent.graph_id,
|
||||
graphVersion: agent.graph_version,
|
||||
data: {
|
||||
inputs: inputValues,
|
||||
credentials_inputs: inputCredentials,
|
||||
credentials_inputs: validCredentials,
|
||||
source: "library",
|
||||
},
|
||||
});
|
||||
|
||||
@@ -1,17 +1,25 @@
|
||||
"use client";
|
||||
|
||||
import { getV1GetGraphVersion } from "@/app/api/__generated__/endpoints/graphs/graphs";
|
||||
import {
|
||||
getGetV2ListLibraryAgentsQueryKey,
|
||||
useDeleteV2DeleteLibraryAgent,
|
||||
} from "@/app/api/__generated__/endpoints/library/library";
|
||||
import { GraphExecutionJobInfo } from "@/app/api/__generated__/models/graphExecutionJobInfo";
|
||||
import { GraphExecutionMeta } from "@/app/api/__generated__/models/graphExecutionMeta";
|
||||
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
|
||||
import { LibraryAgentPreset } from "@/app/api/__generated__/models/libraryAgentPreset";
|
||||
import { Button } from "@/components/atoms/Button/Button";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import { Dialog } from "@/components/molecules/Dialog/Dialog";
|
||||
import { ShowMoreText } from "@/components/molecules/ShowMoreText/ShowMoreText";
|
||||
import { useToast } from "@/components/molecules/Toast/use-toast";
|
||||
import { exportAsJSONFile } from "@/lib/utils";
|
||||
import { formatDate } from "@/lib/utils/time";
|
||||
import { useQueryClient } from "@tanstack/react-query";
|
||||
import Link from "next/link";
|
||||
import { useRouter } from "next/navigation";
|
||||
import { useState } from "react";
|
||||
import { RunAgentModal } from "../modals/RunAgentModal/RunAgentModal";
|
||||
import { RunDetailCard } from "../selected-views/RunDetailCard/RunDetailCard";
|
||||
import { EmptyTasksIllustration } from "./EmptyTasksIllustration";
|
||||
@@ -30,6 +38,41 @@ export function EmptyTasks({
|
||||
onScheduleCreated,
|
||||
}: Props) {
|
||||
const { toast } = useToast();
|
||||
const queryClient = useQueryClient();
|
||||
const router = useRouter();
|
||||
const [showDeleteDialog, setShowDeleteDialog] = useState(false);
|
||||
const [isDeletingAgent, setIsDeletingAgent] = useState(false);
|
||||
|
||||
const { mutateAsync: deleteAgent } = useDeleteV2DeleteLibraryAgent();
|
||||
|
||||
async function handleDeleteAgent() {
|
||||
if (!agent.id) return;
|
||||
|
||||
setIsDeletingAgent(true);
|
||||
|
||||
try {
|
||||
await deleteAgent({ libraryAgentId: agent.id });
|
||||
|
||||
await queryClient.refetchQueries({
|
||||
queryKey: getGetV2ListLibraryAgentsQueryKey(),
|
||||
});
|
||||
|
||||
toast({ title: "Agent deleted" });
|
||||
setShowDeleteDialog(false);
|
||||
router.push("/library");
|
||||
} catch (error: unknown) {
|
||||
toast({
|
||||
title: "Failed to delete agent",
|
||||
description:
|
||||
error instanceof Error
|
||||
? error.message
|
||||
: "An unexpected error occurred.",
|
||||
variant: "destructive",
|
||||
});
|
||||
} finally {
|
||||
setIsDeletingAgent(false);
|
||||
}
|
||||
}
|
||||
|
||||
async function handleExport() {
|
||||
try {
|
||||
@@ -147,9 +190,50 @@ export function EmptyTasks({
|
||||
<Button variant="secondary" size="small" onClick={handleExport}>
|
||||
Export agent to file
|
||||
</Button>
|
||||
<Button
|
||||
variant="secondary"
|
||||
size="small"
|
||||
onClick={() => setShowDeleteDialog(true)}
|
||||
>
|
||||
Delete agent
|
||||
</Button>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<Dialog
|
||||
controlled={{
|
||||
isOpen: showDeleteDialog,
|
||||
set: setShowDeleteDialog,
|
||||
}}
|
||||
styling={{ maxWidth: "32rem" }}
|
||||
title="Delete agent"
|
||||
>
|
||||
<Dialog.Content>
|
||||
<div>
|
||||
<Text variant="large">
|
||||
Are you sure you want to delete this agent? This action cannot be
|
||||
undone.
|
||||
</Text>
|
||||
<Dialog.Footer>
|
||||
<Button
|
||||
variant="secondary"
|
||||
disabled={isDeletingAgent}
|
||||
onClick={() => setShowDeleteDialog(false)}
|
||||
>
|
||||
Cancel
|
||||
</Button>
|
||||
<Button
|
||||
variant="destructive"
|
||||
onClick={handleDeleteAgent}
|
||||
loading={isDeletingAgent}
|
||||
>
|
||||
Delete Agent
|
||||
</Button>
|
||||
</Dialog.Footer>
|
||||
</div>
|
||||
</Dialog.Content>
|
||||
</Dialog>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
@@ -83,7 +83,9 @@ function renderCode(
|
||||
</div>
|
||||
)}
|
||||
<pre className="overflow-x-auto rounded-md bg-muted p-3">
|
||||
<code className="font-mono text-sm">{codeValue}</code>
|
||||
<code className="whitespace-pre-wrap break-words font-mono text-sm">
|
||||
{codeValue}
|
||||
</code>
|
||||
</pre>
|
||||
</div>
|
||||
);
|
||||
|
||||
@@ -13,7 +13,7 @@ import { LoadingSelectedContent } from "../LoadingSelectedContent";
|
||||
import { RunDetailCard } from "../RunDetailCard/RunDetailCard";
|
||||
import { RunDetailHeader } from "../RunDetailHeader/RunDetailHeader";
|
||||
import { SelectedViewLayout } from "../SelectedViewLayout";
|
||||
import { SelectedScheduleActions } from "./components/SelectedScheduleActions";
|
||||
import { SelectedScheduleActions } from "./components/SelectedScheduleActions/SelectedScheduleActions";
|
||||
import { useSelectedScheduleView } from "./useSelectedScheduleView";
|
||||
|
||||
interface Props {
|
||||
|
||||
@@ -1,40 +0,0 @@
|
||||
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
|
||||
import { Button } from "@/components/atoms/Button/Button";
|
||||
import { EyeIcon } from "@phosphor-icons/react";
|
||||
import { AgentActionsDropdown } from "../../AgentActionsDropdown";
|
||||
import { useScheduleDetailHeader } from "../../RunDetailHeader/useScheduleDetailHeader";
|
||||
import { SelectedActionsWrap } from "../../SelectedActionsWrap";
|
||||
|
||||
type Props = {
|
||||
agent: LibraryAgent;
|
||||
scheduleId: string;
|
||||
onDeleted?: () => void;
|
||||
};
|
||||
|
||||
export function SelectedScheduleActions({ agent, scheduleId }: Props) {
|
||||
const { openInBuilderHref } = useScheduleDetailHeader(
|
||||
agent.graph_id,
|
||||
scheduleId,
|
||||
agent.graph_version,
|
||||
);
|
||||
|
||||
return (
|
||||
<>
|
||||
<SelectedActionsWrap>
|
||||
{openInBuilderHref && (
|
||||
<Button
|
||||
variant="icon"
|
||||
size="icon"
|
||||
as="NextLink"
|
||||
href={openInBuilderHref}
|
||||
target="_blank"
|
||||
aria-label="View scheduled task details"
|
||||
>
|
||||
<EyeIcon weight="bold" size={18} className="text-zinc-700" />
|
||||
</Button>
|
||||
)}
|
||||
<AgentActionsDropdown agent={agent} scheduleId={scheduleId} />
|
||||
</SelectedActionsWrap>
|
||||
</>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,96 @@
|
||||
"use client";
|
||||
|
||||
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
|
||||
import { Button } from "@/components/atoms/Button/Button";
|
||||
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import { Dialog } from "@/components/molecules/Dialog/Dialog";
|
||||
import { EyeIcon, TrashIcon } from "@phosphor-icons/react";
|
||||
import { AgentActionsDropdown } from "../../../AgentActionsDropdown";
|
||||
import { SelectedActionsWrap } from "../../../SelectedActionsWrap";
|
||||
import { useSelectedScheduleActions } from "./useSelectedScheduleActions";
|
||||
|
||||
type Props = {
|
||||
agent: LibraryAgent;
|
||||
scheduleId: string;
|
||||
onDeleted?: () => void;
|
||||
};
|
||||
|
||||
export function SelectedScheduleActions({
|
||||
agent,
|
||||
scheduleId,
|
||||
onDeleted,
|
||||
}: Props) {
|
||||
const {
|
||||
openInBuilderHref,
|
||||
showDeleteDialog,
|
||||
setShowDeleteDialog,
|
||||
handleDelete,
|
||||
isDeleting,
|
||||
} = useSelectedScheduleActions({ agent, scheduleId, onDeleted });
|
||||
|
||||
return (
|
||||
<>
|
||||
<SelectedActionsWrap>
|
||||
{openInBuilderHref && (
|
||||
<Button
|
||||
variant="icon"
|
||||
size="icon"
|
||||
as="NextLink"
|
||||
href={openInBuilderHref}
|
||||
target="_blank"
|
||||
aria-label="View scheduled task details"
|
||||
>
|
||||
<EyeIcon weight="bold" size={18} className="text-zinc-700" />
|
||||
</Button>
|
||||
)}
|
||||
<Button
|
||||
variant="icon"
|
||||
size="icon"
|
||||
aria-label="Delete schedule"
|
||||
onClick={() => setShowDeleteDialog(true)}
|
||||
disabled={isDeleting}
|
||||
>
|
||||
{isDeleting ? (
|
||||
<LoadingSpinner size="small" />
|
||||
) : (
|
||||
<TrashIcon weight="bold" size={18} />
|
||||
)}
|
||||
</Button>
|
||||
<AgentActionsDropdown agent={agent} scheduleId={scheduleId} />
|
||||
</SelectedActionsWrap>
|
||||
|
||||
<Dialog
|
||||
controlled={{
|
||||
isOpen: showDeleteDialog,
|
||||
set: setShowDeleteDialog,
|
||||
}}
|
||||
styling={{ maxWidth: "32rem" }}
|
||||
title="Delete schedule"
|
||||
>
|
||||
<Dialog.Content>
|
||||
<Text variant="large">
|
||||
Are you sure you want to delete this schedule? This action cannot be
|
||||
undone.
|
||||
</Text>
|
||||
<Dialog.Footer>
|
||||
<Button
|
||||
variant="secondary"
|
||||
onClick={() => setShowDeleteDialog(false)}
|
||||
disabled={isDeleting}
|
||||
>
|
||||
Cancel
|
||||
</Button>
|
||||
<Button
|
||||
variant="destructive"
|
||||
onClick={handleDelete}
|
||||
loading={isDeleting}
|
||||
>
|
||||
Delete Schedule
|
||||
</Button>
|
||||
</Dialog.Footer>
|
||||
</Dialog.Content>
|
||||
</Dialog>
|
||||
</>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,65 @@
|
||||
"use client";
|
||||
|
||||
import {
|
||||
getGetV1ListExecutionSchedulesForAGraphQueryOptions,
|
||||
useDeleteV1DeleteExecutionSchedule,
|
||||
} from "@/app/api/__generated__/endpoints/schedules/schedules";
|
||||
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
|
||||
import { useToast } from "@/components/molecules/Toast/use-toast";
|
||||
import { useQueryClient } from "@tanstack/react-query";
|
||||
import { useState } from "react";
|
||||
|
||||
interface UseSelectedScheduleActionsProps {
|
||||
agent: LibraryAgent;
|
||||
scheduleId: string;
|
||||
onDeleted?: () => void;
|
||||
}
|
||||
|
||||
export function useSelectedScheduleActions({
|
||||
agent,
|
||||
scheduleId,
|
||||
onDeleted,
|
||||
}: UseSelectedScheduleActionsProps) {
|
||||
const { toast } = useToast();
|
||||
const queryClient = useQueryClient();
|
||||
const [showDeleteDialog, setShowDeleteDialog] = useState(false);
|
||||
|
||||
const deleteMutation = useDeleteV1DeleteExecutionSchedule({
|
||||
mutation: {
|
||||
onSuccess: () => {
|
||||
toast({ title: "Schedule deleted" });
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: getGetV1ListExecutionSchedulesForAGraphQueryOptions(
|
||||
agent.graph_id,
|
||||
).queryKey,
|
||||
});
|
||||
setShowDeleteDialog(false);
|
||||
onDeleted?.();
|
||||
},
|
||||
onError: (error: unknown) =>
|
||||
toast({
|
||||
title: "Failed to delete schedule",
|
||||
description:
|
||||
error instanceof Error
|
||||
? error.message
|
||||
: "An unexpected error occurred.",
|
||||
variant: "destructive",
|
||||
}),
|
||||
},
|
||||
});
|
||||
|
||||
function handleDelete() {
|
||||
if (!scheduleId) return;
|
||||
deleteMutation.mutate({ scheduleId });
|
||||
}
|
||||
|
||||
const openInBuilderHref = `/build?flowID=${agent.graph_id}&flowVersion=${agent.graph_version}`;
|
||||
|
||||
return {
|
||||
openInBuilderHref,
|
||||
showDeleteDialog,
|
||||
setShowDeleteDialog,
|
||||
handleDelete,
|
||||
isDeleting: deleteMutation.isPending,
|
||||
};
|
||||
}
|
||||
@@ -40,15 +40,17 @@ export function useMarketplaceUpdate({ agent }: UseMarketplaceUpdateProps) {
|
||||
},
|
||||
);
|
||||
|
||||
// Get user's submissions to check for pending submissions
|
||||
const { data: submissionsData } = useGetV2ListMySubmissions(
|
||||
{ page: 1, page_size: 50 }, // Get enough to cover recent submissions
|
||||
{
|
||||
query: {
|
||||
enabled: !!user?.id, // Only fetch if user is authenticated
|
||||
// Get user's submissions - only fetch if user is the creator
|
||||
const { data: submissionsData, isLoading: isSubmissionsLoading } =
|
||||
useGetV2ListMySubmissions(
|
||||
{ page: 1, page_size: 50 },
|
||||
{
|
||||
query: {
|
||||
// Only fetch if user is the creator
|
||||
enabled: !!(user?.id && agent?.owner_user_id === user.id),
|
||||
},
|
||||
},
|
||||
},
|
||||
);
|
||||
);
|
||||
|
||||
const updateToLatestMutation = usePatchV2UpdateLibraryAgent({
|
||||
mutation: {
|
||||
@@ -78,16 +80,45 @@ export function useMarketplaceUpdate({ agent }: UseMarketplaceUpdateProps) {
|
||||
// Check if marketplace has a newer version than user's current version
|
||||
const marketplaceUpdateInfo = React.useMemo(() => {
|
||||
const storeAgent = okData(storeAgentData) as any;
|
||||
if (!agent || !storeAgent) {
|
||||
|
||||
if (!agent || isSubmissionsLoading) {
|
||||
return {
|
||||
hasUpdate: false,
|
||||
latestVersion: undefined,
|
||||
isUserCreator: false,
|
||||
hasPublishUpdate: false,
|
||||
};
|
||||
}
|
||||
|
||||
const isUserCreator = agent?.owner_user_id === user?.id;
|
||||
|
||||
const submissionsResponse = okData(submissionsData) as any;
|
||||
const agentSubmissions =
|
||||
submissionsResponse?.submissions?.filter(
|
||||
(submission: StoreSubmission) => submission.agent_id === agent.graph_id,
|
||||
) || [];
|
||||
|
||||
const highestSubmittedVersion =
|
||||
agentSubmissions.length > 0
|
||||
? Math.max(
|
||||
...agentSubmissions.map(
|
||||
(submission: StoreSubmission) => submission.agent_version,
|
||||
),
|
||||
)
|
||||
: 0;
|
||||
|
||||
const hasUnpublishedChanges =
|
||||
isUserCreator && agent.graph_version > highestSubmittedVersion;
|
||||
|
||||
if (!storeAgent) {
|
||||
return {
|
||||
hasUpdate: false,
|
||||
latestVersion: undefined,
|
||||
isUserCreator,
|
||||
hasPublishUpdate: agentSubmissions.length > 0 && hasUnpublishedChanges,
|
||||
};
|
||||
}
|
||||
|
||||
// Get the latest version from the marketplace
|
||||
// agentGraphVersions array contains graph version numbers as strings, get the highest one
|
||||
const latestMarketplaceVersion =
|
||||
storeAgent.agentGraphVersions?.length > 0
|
||||
? Math.max(
|
||||
@@ -97,32 +128,11 @@ export function useMarketplaceUpdate({ agent }: UseMarketplaceUpdateProps) {
|
||||
)
|
||||
: undefined;
|
||||
|
||||
// Determine if the user is the creator of this agent
|
||||
// Compare current user ID with the marketplace listing creator ID
|
||||
const isUserCreator =
|
||||
user?.id && agent.marketplace_listing?.creator.id === user.id;
|
||||
|
||||
// Check if there's a pending submission for this specific agent version
|
||||
const submissionsResponse = okData(submissionsData) as any;
|
||||
const hasPendingSubmissionForCurrentVersion =
|
||||
isUserCreator &&
|
||||
submissionsResponse?.submissions?.some(
|
||||
(submission: StoreSubmission) =>
|
||||
submission.agent_id === agent.graph_id &&
|
||||
submission.agent_version === agent.graph_version &&
|
||||
submission.status === "PENDING",
|
||||
);
|
||||
|
||||
// If user is creator and their version is newer than marketplace, show publish update banner
|
||||
// BUT only if there's no pending submission for this version
|
||||
const hasPublishUpdate =
|
||||
isUserCreator &&
|
||||
!hasPendingSubmissionForCurrentVersion &&
|
||||
latestMarketplaceVersion !== undefined &&
|
||||
agent.graph_version > latestMarketplaceVersion;
|
||||
agent.graph_version >
|
||||
Math.max(latestMarketplaceVersion || 0, highestSubmittedVersion);
|
||||
|
||||
// If marketplace version is newer than user's version, show update banner
|
||||
// This applies to both creators and non-creators
|
||||
const hasMarketplaceUpdate =
|
||||
latestMarketplaceVersion !== undefined &&
|
||||
latestMarketplaceVersion > agent.graph_version;
|
||||
@@ -133,7 +143,7 @@ export function useMarketplaceUpdate({ agent }: UseMarketplaceUpdateProps) {
|
||||
isUserCreator,
|
||||
hasPublishUpdate,
|
||||
};
|
||||
}, [agent, storeAgentData, user, submissionsData]);
|
||||
}, [agent, storeAgentData, user, submissionsData, isSubmissionsLoading]);
|
||||
|
||||
const handlePublishUpdate = () => {
|
||||
setModalOpen(true);
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user