Compare commits

...

76 Commits

Author SHA1 Message Date
Nicholas Tindle
d8d87f2853 Merge branch 'dev' into make-old-work 2026-01-29 19:32:34 -06:00
Nicholas Tindle
3b822cdaf7 chore(branchlet): Remove docs pip install from postCreateCmd (#11883)
### Changes 🏗️

- Removed `cd docs && pip install -r requirements.txt` from
`postCreateCmd` in `.branchlet.json`
- Docs dependencies will no longer be auto-installed during branchlet
worktree creation

### Rationale

The docs setup step was adding unnecessary overhead to the worktree
creation process. Developers who need to work on documentation can
manually install the docs requirements when needed.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified branchlet worktree creation still works without the docs
pip install step

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
2026-01-30 00:31:34 +00:00
Nicholas Tindle
791e1d8982 fix(classic): resolve CI lint, type, and test failures
- Fix line-too-long in test_permissions.py docstring
- Fix type annotation in validators.py (callable -> Callable)
- Add --fresh flag to benchmark tests to prevent state resumption
- Exclude direct_benchmark/adapters from pyright (optional deps)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-29 14:31:11 -06:00
Zamil Majdy
b2eb4831bd feat(chat): improve agent generator error propagation (#11884)
## Summary
- Add helper functions in `service.py` to create standardized error
responses with `error_type` classification
- Update service functions to return error dicts instead of `None`,
preserving error details from the Agent Generator microservice
- Update `core.py` to pass through error responses properly
- Update `create_agent.py` to handle error responses with user-friendly
messages based on error type

## Error Types Now Propagated
| Error Type | Description | User Message |
|------------|-------------|--------------|
| `llm_parse_error` | LLM returned unparseable response | "The AI had
trouble understanding this request" |
| `llm_timeout` / `timeout` | Request timed out | "The request took too
long" |
| `llm_rate_limit` / `rate_limit` | Rate limited | "The service is
currently busy" |
| `validation_error` | Agent validation failed | "The generated agent
failed validation" |
| `connection_error` | Could not connect to Agent Generator | Generic
error message |
| `http_error` | HTTP error from Agent Generator | Generic error message
|
| `unknown` | Unclassified error | Generic error message |

## Motivation
This enables better debugging for issues like SECRT-1817 where
decomposition failed due to transient LLM errors but the root cause was
unclear in the logs. Now:
1. Error details from the Agent Generator microservice are preserved
2. Users get more helpful error messages based on error type
3. Debugging is easier with `error_type` in response details

## Related PR
- Agent Generator side:
https://github.com/Significant-Gravitas/AutoGPT-Agent-Generator/pull/102

## Test Plan
- [ ] Test decomposition with various error scenarios (timeout, parse
error)
- [ ] Verify user-friendly messages are shown based on error type
- [ ] Check that error details are logged properly
2026-01-29 19:53:40 +00:00
Reinier van der Leer
4cd5da678d refactor(claude): Split autogpt_platform/CLAUDE.md into project-specific files (#11788)
Split `autogpt_platform/CLAUDE.md` into project-specific files, to make
the scope of the instructions clearer.

Also, some minor improvements:

- Change references to other Markdown files to @file/path.md syntax that
Claude recognizes
- Update ambiguous/incorrect/outdated instructions
- Remove trailing slashes
- Fix broken file path references in other docs (including comments)
2026-01-29 17:33:02 +00:00
Ubbe
b94c83aacc feat(frontend): Copilot speech to text via Whisper model (#11871)
## Changes 🏗️


https://github.com/user-attachments/assets/d9c12ac0-625c-4b38-8834-e494b5eda9c0

Add a "speech to text" feature in the Chat input fox of Copilot, similar
as what you have in ChatGPT.

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run locally and try the speech to text feature as part of the chat
input box

### For configuration changes:

We need to add `OPENAI_API_KEY=` to Vercel ( used in the Front-end )
both in Dev and Prod.

- [x] `.env.default` is updated or already compatible with my changes

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-29 17:46:36 +07:00
Nicholas Tindle
7668c17d9c feat(platform): add User Workspace for persistent CoPilot file storage (#11867)
Implements persistent User Workspace storage for CoPilot, enabling
blocks to save and retrieve files across sessions. Files are stored in
session-scoped virtual paths (`/sessions/{session_id}/`).

Fixes SECRT-1833

### Changes 🏗️

**Database & Storage:**
- Add `UserWorkspace` and `UserWorkspaceFile` Prisma models
- Implement `WorkspaceStorageBackend` abstraction (GCS for cloud, local
filesystem for self-hosted)
- Add `workspace_id` and `session_id` fields to `ExecutionContext`

**Backend API:**
- Add REST endpoints: `GET/POST /api/workspace/files`, `GET/DELETE
/api/workspace/files/{id}`, `GET /api/workspace/files/{id}/download`
- Add CoPilot tools: `list_workspace_files`, `read_workspace_file`,
`write_workspace_file`
- Integrate workspace storage into `store_media_file()` - returns
`workspace://file-id` references

**Block Updates:**
- Refactor all file-handling blocks to use unified `ExecutionContext`
parameter
- Update media-generating blocks to persist outputs to workspace
(AIImageGenerator, AIImageCustomizer, FluxKontext, TalkingHead, FAL
video, Bannerbear, etc.)

**Frontend:**
- Render `workspace://` image references in chat via proxy endpoint
- Add "AI cannot see this image" overlay indicator

**CoPilot Context Mapping:**
- Session = Agent (graph_id) = Run (graph_exec_id)
- Files scoped to `/sessions/{session_id}/`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [ ] I have tested my changes according to the test plan:
- [ ] Create CoPilot session, generate image with AIImageGeneratorBlock
  - [ ] Verify image returns `workspace://file-id` (not base64)
  - [ ] Verify image renders in chat with visibility indicator
  - [ ] Verify workspace files persist across sessions
  - [ ] Test list/read/write workspace files via CoPilot tools
  - [ ] Test local storage backend for self-hosted deployments

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

🤖 Generated with [Claude Code](https://claude.ai/code)

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Medium Risk**
> Introduces a new persistent file-storage surface area (DB tables,
storage backends, download API, and chat tools) and rewires
`store_media_file()`/block execution context across many blocks, so
regressions could impact file handling, access control, or storage
costs.
> 
> **Overview**
> Adds a **persistent per-user Workspace** (new
`UserWorkspace`/`UserWorkspaceFile` models plus `WorkspaceManager` +
`WorkspaceStorageBackend` with GCS/local implementations) and wires it
into the API via a new `/api/workspace/files/{file_id}/download` route
(including header-sanitized `Content-Disposition`) and shutdown
lifecycle hooks.
> 
> Extends `ExecutionContext` to carry execution identity +
`workspace_id`/`session_id`, updates executor tooling to clone
node-specific contexts, and updates `run_block` (CoPilot) to create a
session-scoped workspace and synthetic graph/run/node IDs.
> 
> Refactors `store_media_file()` to require `execution_context` +
`return_format` and to support `workspace://` references; migrates many
media/file-handling blocks and related tests to the new API and to
persist generated media as `workspace://...` (or fall back to data URIs
outside CoPilot), and adds CoPilot chat tools for
listing/reading/writing/deleting workspace files with safeguards against
context bloat.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
6abc70f793. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2026-01-29 05:49:47 +00:00
Nicholas Tindle
0040636948 fix(permissions): update wildcard handling for command patterns 2026-01-26 12:42:21 -06:00
Nicholas Tindle
c671af851f feat(classic): add platform_blocks to Agent, enable via PLATFORM_API_KEY
- Add PlatformBlocksComponent to Agent as a default component
- Component automatically enables when PLATFORM_API_KEY env var is set
- Config now uses UserConfigurable for env var support:
  - PLATFORM_API_KEY (required to enable)
  - PLATFORM_URL (default: https://platform.agpt.co)
  - PLATFORM_BLOCKS_ENABLED (default: true)
  - PLATFORM_TIMEOUT (default: 60)
- API key stored as SecretStr for security

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-22 17:30:24 -06:00
Nicholas Tindle
7dd181f4b0 feat(classic): make CWD the default agent workspace for CLI mode
In CLI mode, agents now work directly in the current directory instead of
being sandboxed to .autogpt/agents/{id}/workspace/. Agent state files are
still stored in .autogpt/agents/{id}/state.json.

Server mode retains the original sandboxed behavior for isolation.

Changes:
- Add workspace_root parameter to FileManagerComponent to detect CLI mode
- Update Agent to pass workspace_root when file_storage is rooted at workspace
- Adjust save_state paths based on mode (CLI uses .autogpt/ prefix)
- Add use_tools field to ActionProposal for parallel tool execution
- Support parallel tool execution in Agent.execute()

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-22 15:20:12 -06:00
Nicholas Tindle
114856cef1 refactor(classic): improve prompt strategies with both general and code-specific guidance
- SystemComponent: Keep both general constraints (physical objects) and
  code-specific constraints (don't modify tests, check dependencies, no secrets)
- SystemComponent: Keep both general best practices (self-review, reflection)
  and code-specific best practices (read before modify, mimic style, verify)
- LATS: Keep general phase instructions while adding coding task priorities
- one_shot: Remove redundant 'text' field from AssistantThoughts, use 'reasoning'
- one_shot: Fix intro to clarify when to use ask_user instead of contradicting it
- one_shot: Add efficiency guidelines and parallel execution support
- Update UI to display reasoning as main thoughts (remove redundant REASONING line)
- Update test fixtures to match new AssistantThoughts schema

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-22 12:27:32 -06:00
Nicholas Tindle
68b9bd0c51 refactor(classic): use platform API for blocks instead of local loading
Simplify the platform_blocks component to fetch blocks from the
platform API (/api/v1/blocks) instead of loading them locally from
the monorepo. This removes the dependency on having the platform
backend code available.

- Remove loader.py (no longer needed)
- Update client.py with list_blocks() method
- Simplify component.py to use API for both search and execute
- Remove user_id from config (not needed by API)
- Update tests for API-based approach

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-22 12:16:39 -06:00
Nicholas Tindle
ff076b1f15 feat(classic): add platform blocks component for classic agents
Add search_blocks and execute_block commands that expose platform blocks
to classic agents:

- search_blocks: Local search by name, description, or category (fast, offline)
- execute_block: Execute via platform API with automatic credential handling

The loader automatically discovers the platform backend from the monorepo
structure without requiring manual PYTHONPATH configuration.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-21 13:10:57 -06:00
Nicholas Tindle
57fbab500b feat(classic): add external benchmark adapters for GAIA, SWE-bench, and AgentBench
Integrate standard AI agent benchmarks into the direct_benchmark infrastructure
using a plugin-based adapter pattern:

- Add BenchmarkAdapter base class with setup(), load_challenges(), and evaluate()
- Implement GAIAAdapter for the GAIA benchmark (requires HF token)
- Implement SWEBenchAdapter for SWE-bench (requires Docker)
- Implement AgentBenchAdapter for AgentBench multi-environment benchmark
- Extend HarnessConfig with benchmark options (--benchmark, --benchmark-split, etc.)
- Modify ParallelExecutor to use adapter's evaluate() for external benchmarks
- Fix runner to record finish step (was being skipped, breaking answer extraction)
- Add optional benchmarks dependency group with datasets and huggingface-hub
- Increase default benchmark timeout to 900s

Usage:
  poetry run direct-benchmark run \
    --benchmark agent-bench \
    --benchmark-subset dbbench \
    --strategies one_shot \
    --models claude

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-21 13:06:32 -06:00
Nicholas Tindle
6faabef24d fix(classic): always recreate Docker containers for code execution
Docker containers cannot have their mount bindings updated after creation.
When running benchmarks or multiple agent instances, the same container name
could be reused with a different workspace directory, causing the container
to still reference the OLD mount path. This resulted in "python: can't open
file '/workspace/temp*.py'" errors.

The fix: remove existing containers before creating new ones to ensure fresh
mount bindings to the current workspace directory.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 23:57:02 -06:00
Nicholas Tindle
a67d475a69 fix(classic): handle parallel tool calls in action history
When prompts encourage parallel tool execution and the LLM makes multiple
tool calls simultaneously, the Anthropic API requires a tool_result message
for EACH tool_use. Previously, we only created one tool result for the first
tool call, causing "tool_use ids were found without tool_result blocks" errors.

This fix:
- Adds _make_result_messages() to create results for ALL tool calls
- Maps tool names to their outputs from parallel execution results
- Handles errors per-tool from the _errors list
- Falls back gracefully when results are missing

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 23:18:15 -06:00
Nicholas Tindle
326554d89a style(classic): update black to 24.10.0 and reformat
Update black version to match pre-commit hook (24.10.0) and reformat
all files with the new version.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 10:51:54 -06:00
Nicholas Tindle
5e22a1888a chore: add classic benchmark reports and workspaces to gitignore
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 10:42:55 -06:00
Nicholas Tindle
a4d7b0142f fix(classic): resolve all pyright type errors
- Add missing strategies (lats, multi_agent_debate) to PromptStrategyName
- Fix method override signatures for reasoning_effort parameter
- Fix Pydantic Field() overload issues with helper function
- Fix BeautifulSoup Tag type narrowing in web_fetch.py
- Fix Optional member access in playwright_browser.py and rewoo.py
- Convert hasattr patterns to getattr for proper type narrowing
- Add proper type casts for Literal types
- Fix file storage path type conversions
- Exclude legacy challenges/ from pyright checking

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 10:41:53 -06:00
Nicholas Tindle
7d6375f59c style(classic): fix flake8 line length issue
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:25:00 -06:00
Nicholas Tindle
aeec0ce509 chore: add test.db to gitignore 2026-01-20 01:24:22 -06:00
Nicholas Tindle
b32bfcaac5 chore: remove test.db from tracking 2026-01-20 01:24:00 -06:00
Nicholas Tindle
5373a6eb6e style(classic): fix code formatting with black
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:23:51 -06:00
Nicholas Tindle
98cde46ccb style(classic): fix import sorting with isort
Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:23:33 -06:00
Nicholas Tindle
bd10da10d9 ci: update pre-commit hooks for consolidated classic Poetry project
- Consolidate classic poetry-install hooks into single hook using classic/
- Update isort hook to work with consolidated project structure
- Simplify flake8 hooks to use single classic/.flake8 config
- Consolidate pyright hooks into single hook for classic/
- Add direct_benchmark to hook coverage

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:21:50 -06:00
Nicholas Tindle
60fdee1345 fix(classic): resolve linting and formatting issues for CI compliance
- Update .flake8 config to exclude workspace directories and ignore E203
- Fix import sorting (isort) across multiple files
- Fix code formatting (black) across multiple files
- Remove unused imports and fix line length issues (flake8)
- Fix f-strings without placeholders and unused variables

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:16:38 -06:00
Nicholas Tindle
6f2783468c feat(classic): add sub-agent architecture and LATS/multi-agent debate strategies
Add comprehensive sub-agent spawning infrastructure that enables prompt
strategies to coordinate multiple agents for advanced reasoning patterns.

New files:
- forge/agent/execution_context.py: ExecutionContext, ResourceBudget,
  SubAgentHandle, and AgentFactory protocol for sub-agent lifecycle
- agent_factory/default_factory.py: DefaultAgentFactory implementation
- prompt_strategies/lats.py: Language Agent Tree Search using MCTS
  with sub-agents for action expansion and evaluation
- prompt_strategies/multi_agent_debate.py: Multi-agent debate with
  proposal, critique, and consensus phases

Key changes:
- BaseMultiStepPromptStrategy gains spawn_sub_agent(), run_sub_agent(),
  spawn_and_run(), and run_parallel() methods
- Agent class accepts optional ExecutionContext and injects it into strategies
- Sub-agents enabled by default (enable_sub_agents=True)
- Resource limits: max_depth=5, max_sub_agents=25, max_cycles=25

All 7 strategies now available in benchmark:
one_shot, rewoo, plan_execute, reflexion, tree_of_thoughts, lats, multi_agent_debate

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 01:01:28 -06:00
Nicholas Tindle
c1031b286d ci(classic): update CI workflows for consolidated Poetry project
Update all classic CI workflows to use the single consolidated
pyproject.toml at classic/ instead of individual project directories.

Changes:
- classic-autogpt-ci.yml: Run from classic/, update cache key and test paths
- classic-forge-ci.yml: Run from classic/, update cache key and test paths
- classic-benchmark-ci.yml: Run from classic/, use direct-benchmark command
- classic-python-checks.yml: Simplify to single job (no matrix needed)
- classic-autogpts-ci.yml: Update to use direct-benchmark for smoke tests

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:53:50 -06:00
Nicholas Tindle
b849eafb7f feat(direct_benchmark): enable shell command execution with safety denylist
Enable agents to execute shell commands during benchmarks by setting
execute_local_commands=True and using denylist mode to block dangerous
commands (rm, sudo, chmod, kill, etc.) while allowing safe operations.

Also adds ExecutePython challenge to test code execution capability.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:52:06 -06:00
Nicholas Tindle
572c3f5e0d refactor(classic): consolidate Poetry projects into single pyproject.toml
Merge forge/, original_autogpt/, and direct_benchmark/ into a single Poetry
project to eliminate cross-project path dependency issues.

Changes:
- Create classic/pyproject.toml with merged dependencies from all three projects
- Remove individual pyproject.toml and poetry.lock files from subdirectories
- Update all CLAUDE.md files to reflect commands run from classic/ root
- Update all README.md files with new installation and usage instructions

All packages are now included via the packages directive:
- forge/forge (core agent framework)
- original_autogpt/autogpt (AutoGPT agent)
- direct_benchmark/direct_benchmark (benchmark harness)

CLI entry points preserved: autogpt, serve, direct-benchmark

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:49:56 -06:00
Nicholas Tindle
89003a585d feat(direct_benchmark): show "would have passed" for timed-out challenges
When a challenge times out but the agent's solution would have passed
evaluation, this is now clearly indicated:

- Completion blocks show "TIMEOUT (would have passed)" in yellow
- Recent completions panel shows hourglass icon + "would pass" suffix
- Summary table has new "Would Pass" column
- Final summary shows "+N would pass" count
- Success rate includes "would pass" challenges

The evaluator still runs on timed-out challenges to calculate the score,
but success remains False. This gives visibility into near-misses that
just needed more time.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:30:00 -06:00
Nicholas Tindle
0e65785228 fix(direct_benchmark): don't mark timed-out challenges as passed
Previously, the evaluator would run on all results including timed-out
challenges. If the agent happened to write a working solution before
timing out, evaluation would pass and override success=True, resulting
in contradictory output showing both PASS and "timed out".

Now we skip evaluation for timed-out challenges - they cannot pass.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:25:41 -06:00
Nicholas Tindle
f07dff1cdd fix(direct_benchmark): add pytest dependency for challenge evaluation
The TicTacToe and other challenges use pytest-based test files for
evaluation. Without pytest installed in the benchmark virtualenv,
these evaluations were silently failing.

Root cause: test.py imports pytest but the package wasn't a dependency,
causing ModuleNotFoundError during evaluation subprocess.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:21:12 -06:00
Nicholas Tindle
00e02a4696 feat(direct_benchmark): add run ID to completion blocks
Include config:challenge:attempt and timestamp in completion block
header for easier debugging and log correlation.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 00:14:23 -06:00
Nicholas Tindle
634bff8277 refactor(forge): replace Selenium with Playwright for web browsing
- Remove selenium.py and test_selenium.py
- Add playwright_browser.py with WebPlaywrightComponent
- Update web component exports to use Playwright
- Update dependencies in pyproject.toml/poetry.lock
- Minor agent and reflexion strategy improvements
- Update CLAUDE.md documentation

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:57:17 -06:00
Nicholas Tindle
d591f36c7b fix(direct_benchmark): track cost from LLM provider
Previously cost was hardcoded to 0.0. Now extracts cumulative cost
from MultiProvider.get_incurred_cost() after each step execution.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:37:12 -06:00
Nicholas Tindle
a347bed0b1 feat(direct_benchmark): add incremental resume and selective reset
Benchmarks now automatically save progress and resume from where they
left off. State is persisted to .benchmark_state.json in reports dir.

Features:
- Auto-resume: runs skip already-completed challenges
- --fresh: clear all state and start over
- --retry-failures: re-run only failed challenges
- --reset-strategy/model/challenge: selective resets
- `state show/clear/reset` subcommands for state management
- Config mismatch detection with auto-reset

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:32:27 -06:00
Nicholas Tindle
4eeb6ee2b0 feat(direct_benchmark): add CI mode for non-interactive environments
Add --ci flag that disables Rich Live display while preserving
completion blocks. Auto-detects CI environment via CI env var or
non-TTY stdout. Prints progress every 10 completions for visibility.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:21:10 -06:00
Nicholas Tindle
7db962b9f9 feat(direct_benchmark): dynamic column layout up to 10 wide
- Calculate max columns based on terminal width (up to 10)
- Reduced panel width from 35 to 30 chars to fit more
- Wider terminals can now show more parallel runs side-by-side

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:15:16 -06:00
Nicholas Tindle
9108b21541 fix(direct_benchmark): parallel execution and always show completion blocks
Fixes:
- Use run_key (config:challenge) instead of just config_name for tracking
  active runs - allows multiple challenges from same config to run in parallel
- Add asyncio.sleep(0) yields to let multiple tasks acquire semaphore
  and start before any proceed with work
- Always print completion blocks (not just failures) for visibility

This should properly show 8/8 active runs when running with --parallel 8.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:13:56 -06:00
Nicholas Tindle
ffe9325296 feat(direct_benchmark): multi-panel UI with copy-paste completion blocks
UI improvements:
- Multi-column layout: each active config gets its own panel showing
  challenge name and step history (last 6 steps with status)
- Copy-paste completion blocks: when a challenge finishes (especially
  failures), prints a detailed block with all steps for easy debugging
- Configurable logging: suppresses noisy LLM provider warnings unless
  --debug flag is set
- Pass debug flag through harness to UI

Example active runs panel:
┌─ one_shot/claude ─┬─ rewoo/claude ────┐
│ ReadFile          │ WriteFile         │
│   ✓ #1 read_file  │   ✓ #1 think      │
│   ✓ #2 write_file │   ✓ #2 plan       │
│   ● step 3: ...   │   ● step 3: ...   │
└───────────────────┴───────────────────┘

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:10:34 -06:00
Nicholas Tindle
0a616d9267 feat(direct_benchmark): add step-level logging with colored prefixes
- Add step callback to AgentRunner for real-time step logging
- BenchmarkUI now shows:
  - Active runs with current step info
  - Recent steps panel with colored config prefixes
  - Proper Live display refresh (implements __rich_console__)
- Each config gets a distinct color for easy identification
- Verbose mode prints step logs immediately with config prefix
- Fix Live display not updating (pass UI object, not rendered content)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 23:02:20 -06:00
Nicholas Tindle
ab95077e5b refactor(forge): remove VCR cassettes, use real API calls with skip for forks
- Remove vcrpy and pytest-recording dependencies
- Remove tests/vcr/ directory and vcr_cassettes submodule
- Remove .gitmodules (only had cassette submodule)
- Simplify CI workflow - no more cassette checkout/push/PAT_REVIEW
- Tests requiring API keys now skip if not set (fork PRs)
- Update CLAUDE.md files to remove cassette references
- Fix broken agbenchmark path in pyproject.toml

Security improvement: removes need for PAT with cross-repo write access.
Fork PRs will have API-dependent tests skipped (GitHub protects secrets).

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 22:51:57 -06:00
Nicholas Tindle
e477150979 Merge branch 'dev' into make-old-work 2026-01-19 22:30:46 -06:00
Nicholas Tindle
804430e243 refactor(classic): migrate from agbenchmark to direct_benchmark harness
- Remove old benchmark/ folder with agbenchmark framework
- Move challenges to direct_benchmark/challenges/
- Move analysis tools (analyze_reports.py, analyze_failures.py) to direct_benchmark/
- Move challenges_already_beaten.json to direct_benchmark/
- Update CI workflow to use direct_benchmark
- Update CLAUDE.md files with new benchmarking instructions
- Add benchmarking section to original_autogpt/CLAUDE.md

The direct_benchmark harness directly instantiates agents without HTTP
server overhead, enabling parallel execution with asyncio semaphore.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 22:29:51 -06:00
Nicholas Tindle
acb320d32d feat(classic): add noninteractive mode env var and benchmark config logging
- Add NONINTERACTIVE_MODE env var support to AppConfig for disabling
  user interaction during automated runs
- Benchmark harness now sets NONINTERACTIVE_MODE=True when starting agents
- Add agent configuration logging at server startup (model, strategy, etc.)
- Harness logs env vars being passed to agent for verification
- Add --agent-output flag to show full agent server output for debugging

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 19:40:24 -06:00
Nicholas Tindle
32f68d5999 feat(classic): add failure analysis tool and improve benchmark output
Benchmark improvements:
- Add analyze_failures.py for pattern detection and failure analysis
- Add informative step output: tool name, args, result status, cost
- Add --all and --matrix flags for comprehensive model/strategy testing
- Add --analyze-only and --no-analyze flags for flexible analysis control
- Auto-run failure analysis after benchmarks with markdown export
- Fix directory creation bug in ReportManager (add parents=True)

Prompt strategy enhancements:
- Implement full plan_execute, reflexion, rewoo, tree_of_thoughts strategies
- Add PROMPT_STRATEGY env var support for strategy selection
- Add extended thinking support for Anthropic models
- Add reasoning effort support for OpenAI o-series models

LLM provider improvements:
- Add thinking_budget_tokens config for Anthropic extended thinking
- Add reasoning_effort config for OpenAI reasoning models
- Improve error feedback for LLM self-correction

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 18:58:41 -06:00
Nicholas Tindle
49f56b4e8d feat(classic): enhance strategy benchmark harness with model comparison and bug fixes
- Add model comparison support to test harness (claude, openai, gpt5, opus presets)
- Add --models, --smart-llm, --fast-llm, --list-models CLI args
- Add real-time logging with timestamps and progress indicators
- Fix success parsing bug: read results[0].success instead of non-existent metrics.success
- Fix agbenchmark TestResult validation: use exception typename when value is empty
- Fix WebArena challenge validation: use strings instead of integers in instantiation_dict
- Fix Agent type annotations: create AnyActionProposal union for all prompt strategies
- Add pytest integration tests for the strategy benchmark harness

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 18:07:14 -06:00
Nicholas Tindle
bead811e73 docs(classic): add workspace, settings, and permissions documentation
Document the layered configuration system including:
- Workspace structure (.autogpt/ directory layout)
- Settings location (environment variables, workspace YAML, agent YAML)
- Permission system (check order, pattern syntax, approval scopes)
- Default security behavior

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 12:17:10 -06:00
Nicholas Tindle
013f728ebf feat(forge): improve tool call error feedback for LLM self-correction
When tool calls fail validation, the error messages now include:
- What arguments were actually provided
- The expected parameter schema with types and required/optional indicators

This helps LLMs understand and fix their mistakes when retrying,
rather than just being told a parameter is missing.

Example improved error:
  Invalid function call for write_file: 'contents' is a required property
  You provided: {"filename": 'story.txt'}
  Expected parameters: {"filename": string (required), "contents": string (required)}

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 11:49:17 -06:00
Nicholas Tindle
cda9572acd feat(forge): add lightweight web fetch component
Add WebFetchComponent for fast HTTP-based page fetching without browser
overhead. Uses trafilatura for intelligent content extraction.

Commands:
- fetch_webpage: Extract main content as text/markdown/xml
  - Removes navigation, ads, boilerplate automatically
  - Extracts page metadata (title, description, author, date)
  - Extracts and lists page links
  - Much faster than Selenium-based read_webpage

- fetch_raw_html: Get raw HTML for structure inspection
  - Optional truncation for large pages

Features:
- Trafilatura-powered content extraction (best-in-class accuracy)
- Automatic link extraction with relative URL resolution
- Page metadata extraction (OG tags, meta tags)
- Configurable timeout, max content length, max links
- Proper error handling for timeouts and HTTP errors
- 19 comprehensive tests

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 01:04:22 -06:00
Nicholas Tindle
e0784f8f6b refactor(forge): simplify deeply nested error handling in Anthropic provider
- Extract _get_tool_error_message helper method
- Replace 20+ levels of nesting with simple for loop
- Improve readability of tool_result construction
- Update benchmark poetry.lock

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 00:15:33 -06:00
Nicholas Tindle
3040f39136 feat(forge): modernize web search with tiered provider system
Replace basic DuckDuckGo-only search with a modern tiered system:

1. Tavily (primary) - AI-optimized results with content extraction
   - AI-generated answer summaries
   - Relevance scoring
   - Full page content extraction via search_and_extract command

2. Serper (secondary) - Fast, cheap Google SERP results
   - $0.30-1.00 per 1K queries
   - Real Google results without scraping

3. DDGS multi-engine (fallback) - Free, no API key required
   - Automatic fallback chain: DuckDuckGo → Bing → Brave → Google → etc.
   - 8 search backends supported

Key changes:
- Upgrade duckduckgo-search to ddgs v9.10 (renamed successor package)
- Add Tavily and Serper API integrations
- Implement automatic provider selection and fallback chain
- Add search_and_extract command for research with content extraction
- Add TAVILY_API_KEY and SERPER_API_KEY to env templates
- Update benchmark httpx constraint for ddgs compatibility
- 23 comprehensive tests for all providers and fallback scenarios

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 00:06:42 -06:00
Nicholas Tindle
515504c604 fix(classic): resolve pyright type errors in original_autogpt
- Change Agent class to use ActionProposal instead of OneShotAgentActionProposal
  to support multiple prompt strategy types
- Widen display_thoughts parameter type from AssistantThoughts to ModelWithSummary
- Fix speak attribute access in agent_protocol_server with hasattr check
- Add type: ignore comments for intentional thoughts field overrides in strategies
- Remove unused OneShotAgentActionProposal import

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:53:23 -06:00
Nicholas Tindle
18edeaeaf4 fix(classic): fix linting and formatting errors across codebase
- Fix 32+ flake8 E501 (line too long) errors by shortening descriptions
- Remove unused import in todo.py
- Fix test_todo.py argument order (config= keyword)
- Add type annotations to fix pyright errors where straightforward
- Add noqa comments for flake8 false positives in __init__.py
- Remove unused nonlocal declarations in main.py
- Run black and isort to fix formatting
- Update CLAUDE.md with improved linting commands

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:37:28 -06:00
Nicholas Tindle
44182aff9c feat(classic): add strategy benchmark test harness for CI
- Add test_prompt_strategies.py harness to compare prompt strategies
- Add pytest wrapper (test_strategy_benchmark.py) for CI integration
- Fix serve command (remove invalid --port flag, use AP_SERVER_PORT env)
- Fix test category (interface -> general)
- Add aiohttp-retry dependency for agbenchmark
- Add pytest markers: slow, integration, requires_agent

Usage:
  poetry run python agbenchmark_config/test_prompt_strategies.py --quick
  poetry run pytest tests/integration/test_strategy_benchmark.py -v

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 23:36:19 -06:00
Nicholas Tindle
864c5a7846 fix(classic): approve+feedback now executes command then sends feedback
Previously, when a user selected "Once" or "Always" with feedback (via Tab),
the command was NOT executed because UserFeedbackProvided was raised before
checking the approval scope. This fix changes the architecture from
exception-based to return-value-based.

Changes:
- Add PermissionCheckResult class with allowed, scope, and feedback fields
- Change check_command() to return PermissionCheckResult instead of bool
- Update prompt_fn signature to return (ApprovalScope, feedback) tuple
- Add pending_user_feedback mechanism to EpisodicActionHistory
- Update execute() to handle feedback after successful command execution
- Feedback message explicitly states "Command executed successfully"
- Add on_auto_approve callback for displaying auto-approved commands
- Add comprehensive tests for approval/denial with feedback scenarios

Behavior:
- Once + feedback → Execute command, then send feedback to agent
- Always + feedback → Execute command, save permission, send feedback
- Deny + feedback → Don't execute, send feedback to agent

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 22:32:43 -06:00
Nicholas Tindle
699fffb1a8 feat(classic): add Rich interactive selector for command approval
Adds a custom Rich-based interactive selector for the command approval
workflow. Features include:
- Arrow key navigation for selecting approval options
- Tab to add context to any selection (e.g., "Once + also check file x")
- Dedicated inline feedback option with shadow placeholder text
- Quick select with number keys 1-5
- Works within existing asyncio event loop (no prompt_toolkit dependency)

Also adds UIProvider abstraction pattern for future UI implementations.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 21:49:43 -06:00
Nicholas Tindle
f0641c2d26 fix(classic): auto-advance plan steps in Plan-Execute strategy
The strategy was stuck in a loop because it tracked plan steps but never
advanced them - the record_step_success() method existed but was never
called by the agent's execution loop.

Fix by using a _pending_step_advance flag to track when an action has
been proposed. On the next parse_response_content() call, advance the
previous step before processing the new response. This keeps step
tracking self-contained in the strategy without requiring agent changes.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 21:14:16 -06:00
Nicholas Tindle
94b6f74c95 feat(classic): add multiple prompt strategies for agent reasoning
Implement four new prompt strategies based on research papers:

- ReWOO: Reasoning Without Observation (5x token efficiency)
- Plan-and-Execute: Separate planning from execution phases
- Reflexion: Verbal reinforcement learning with episodic memory
- Tree of Thoughts: Deliberate problem solving with tree search

Each strategy extends a new BaseMultiStepPromptStrategy base class
with shared utilities. Strategies are selectable via PROMPT_STRATEGY
environment variable or config.prompt_strategy setting.

Fix JSONSchema generation issue where Optional/Union types created
anyOf schemas without direct type field - resolved by storing
plan/phase state in strategy instances rather than ActionProposal.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 20:33:10 -06:00
Nicholas Tindle
46aabab3ea feat(classic): upgrade to Python 3.12+ with CI testing on 3.12, 3.13, 3.14
- Update Python version constraint from ^3.10 to ^3.12 in all pyproject.toml
- Update classifiers to reflect Python 3.12, 3.13, 3.14 support
- Update dependencies for Python 3.13+ compatibility:
  - chromadb: ^0.4.10 -> ^1.4.0
  - numpy: >=1.26.0,<2.0.0 -> >=2.0.0
  - watchdog: 4.0.0 -> ^6.0.0
  - spacy: ^3.0.0 -> ^3.8.0 (numpy 2.x compatibility)
  - en-core-web-sm model: 3.7.1 -> 3.8.0
  - httpx (benchmark): ^0.24.0 -> ^0.27.0
- Update tool configuration:
  - Black target-version: py310 -> py312
  - Pyright pythonVersion: 3.10 -> 3.12
- Update Dockerfiles to use Python 3.12
- Update CI workflows to test on Python 3.12, 3.13, and 3.14
- Regenerate all poetry.lock files

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 20:25:11 -06:00
Nicholas Tindle
0a65df5102 fix(classic): always use native tool calling, fix N/A command loop
- Remove openai_functions config option - native tool calling is now always enabled
- Remove use_functions_api from BaseAgentConfiguration and prompt strategy
- Add use_prefill config to disable prefill for Anthropic (prefill + tools incompatible)
- Update anthropic dependency to ^0.45.0 for tools API support
- Simplify prompt strategy to always expect tool_calls from LLM response

This fixes the N/A command loop bug where models would output "N/A" as a
command name when function calling was disabled. With native tool calling
always enabled, models are forced to pick from valid tools only.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 19:54:40 -06:00
Nicholas Tindle
6fbd208fe3 chore: ignore .claude/settings.local.json in all directories
Update gitignore to use glob pattern for settings.local.json files
in any .claude directory. Also untrack the existing file.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:54:42 -06:00
Nicholas Tindle
8fc174ca87 refactor(classic): simplify log format by removing timestamps
Remove asctime from log formats since terminal output already has
timestamps from the logging infrastructure. Makes logs cleaner
and easier to read.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:47 -06:00
Nicholas Tindle
cacc89790f feat(classic): improve AutoGPT configuration and setup
Environment loading:
- Search for .env in multiple locations (cwd, ~/.autogpt, ~/.config/autogpt)
- Allows running autogpt from any directory
- Document search order in .env.template

Setup simplification:
- Remove interactive AI settings revision (was broken/unused)
- Simplify to just printing current settings
- Clean up unused imports

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:38 -06:00
Nicholas Tindle
b9113bee02 feat(classic): enhance existing components with new capabilities
CodeExecutorComponent:
- Add timeout and env_vars parameters to execution commands
- Add execute_shell_popen for streaming output
- Improve error handling with CodeTimeoutError

FileManagerComponent:
- Add file_info, file_search, file_copy, file_move commands
- Add directory_create, directory_list_tree commands
- Better path validation and error messages

GitOperationsComponent:
- Add git_log, git_show, git_branch commands
- Add git_stash, git_stash_pop, git_stash_list commands
- Add git_cherry_pick, git_revert, git_reset commands
- Add git_remote, git_fetch, git_pull, git_push commands

UserInteractionComponent:
- Add ask_multiple_choice for structured options
- Add notify_user for non-blocking notifications
- Add confirm_action for yes/no confirmations

WebSearchComponent:
- Minor error handling improvements

WebSeleniumComponent:
- Add get_page_content, execute_javascript commands
- Add take_element_screenshot command
- Add wait_for_element, scroll_page commands
- Improve element interaction reliability

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:27 -06:00
Nicholas Tindle
3f65da03e7 feat(classic): add new exception types for enhanced error handling
Add specialized exception classes for better error reporting:
- CodeTimeoutError: For code execution timeouts
- HTTPError: For HTTP request failures with status code/URL
- DataProcessingError: For JSON/CSV processing errors

Each exception includes helpful hints for users.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:52:10 -06:00
Nicholas Tindle
9e96d11b2d feat(classic): add utility components for agent capabilities
Add 6 new utility components to expand agent functionality:

- ArchiveHandlerComponent: ZIP/TAR archive operations (create, extract, list)
- ClipboardComponent: In-memory clipboard for copy/paste operations
- DataProcessorComponent: CSV/JSON data manipulation and analysis
- HTTPClientComponent: HTTP requests (GET, POST, PUT, DELETE)
- MathUtilsComponent: Mathematical calculations and statistics
- TextUtilsComponent: Text processing (regex, diff, encoding, hashing)

All components follow the forge component pattern with:
- CommandProvider for exposing commands
- DirectiveProvider for resources/best practices
- Comprehensive parameter validation

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:50:52 -06:00
Nicholas Tindle
4c264b7ae9 feat(classic): add TodoComponent with LLM-powered decomposition
Add a task management component modeled after Claude Code's TodoWrite:
- TodoItem with recursive sub_items for hierarchical task structure
- todo_write: atomic list replacement with sub-items support
- todo_read: retrieve current todos with nested structure
- todo_clear: clear all todos
- todo_decompose: use smart LLM to break down tasks into sub-steps

Features:
- Hierarchical task tracking with independent status per sub-item
- MessageProvider shows todos in LLM context with proper indentation
- DirectiveProvider adds best practices for task management
- Graceful fallback when LLM provider not configured

Integrates with:
- original_autogpt Agent (full LLM decomposition support)
- ForgeAgent (basic task tracking, no decomposition)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 18:49:48 -06:00
Nicholas Tindle
0adbc0bd05 fix(classic): update CI for removed frontend and helper scripts
Remove references to deleted files (./run, cli.py, setup.py, frontend/)
from CI workflows. Replace ./run agent start with direct poetry commands
to start agent servers in background.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:41:11 -06:00
Nicholas Tindle
8f3291bc92 feat(classic): add workspace permissions system for agent commands
Add a layered permission system that controls agent command execution:

- Create autogpt.yaml in .autogpt/ folder with default allow/deny rules
- File operations in workspace allowed by default
- Sensitive files (.env, .key, .pem) blocked by default
- Dangerous shell commands (sudo, rm -rf) blocked by default
- Interactive prompts for unknown commands (y=agent, Y=workspace, n=deny)
- Agent-specific permissions stored in .autogpt/agents/{id}/permissions.yaml

Files added:
- forge/forge/config/workspace_settings.py - Pydantic models for settings
- forge/forge/permissions.py - CommandPermissionManager with pattern matching

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:39:33 -06:00
Nicholas Tindle
7a20de880d chore: add .autogpt/ to gitignore
The .autogpt/ directory is where AutoGPT stores agent data when running
from any directory. This should not be committed to version control.

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:02:47 -06:00
Nicholas Tindle
ef8a6d2528 feat(classic): make AutoGPT installable and runnable from any directory
Add --workspace option to CLI that defaults to current working directory,
allowing users to run `autogpt` from any folder. Agent data is now stored
in `.autogpt/` subdirectory of the workspace instead of a hardcoded path.

Changes:
- Add -w/--workspace CLI option to run and serve commands
- Remove dependency on forge package location for PROJECT_ROOT
- Update config to use workspace instead of project_root
- Store agent data in .autogpt/ within workspace directory
- Update pyproject.toml files with proper PyPI metadata
- Fix outdated tests to match current implementation

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 17:00:36 -06:00
Nicholas Tindle
fd66be2aaa chore(classic): remove unneeded files and add CLAUDE.md docs
- Remove deprecated Flutter frontend (replaced by autogpt_platform)
- Remove shell scripts (run, setup, autogpt.sh, etc.)
- Remove tutorials (outdated)
- Remove CLI-USAGE.md and FORGE-QUICKSTART.md
- Add CLAUDE.md files for Claude Code guidance

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 16:17:35 -06:00
Nicholas Tindle
ae2cc97dc4 feat(classic): add modern Anthropic models and fix deprecated API
- Add Claude 3.5 v2, Claude 4 Sonnet, Claude 4 Opus, and Claude 4.5 Opus models
- Add rolling aliases (CLAUDE_SONNET, CLAUDE_OPUS, CLAUDE_HAIKU)
- Fix deprecated beta.tools.messages.create API call to use standard messages.create
- Update anthropic SDK from ^0.25.1 to >=0.40,<1.0

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-18 16:15:16 -06:00
Nicholas Tindle
ea521eed26 wip: add supprot for new openai models (non working) 2025-12-26 10:02:17 -06:00
2326 changed files with 42768 additions and 819049 deletions

View File

@@ -29,8 +29,7 @@
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install",
"cd docs && pip install -r requirements.txt"
"cd autogpt_platform/frontend && pnpm install"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false

View File

@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
**Backend Entry Points:**
- `backend/backend/server/server.py` - FastAPI application setup
- `backend/backend/api/rest_api.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
### API Development
1. Update routes in `/backend/backend/server/routers/`
1. Update routes in `/backend/backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside route files
4. For `data/*.py` changes, validate user ID checks
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)

View File

@@ -6,11 +6,15 @@ on:
paths:
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/direct_benchmark/**'
- 'classic/forge/**'
pull_request:
branches: [ master, dev, release-* ]
paths:
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/direct_benchmark/**'
- 'classic/forge/**'
concurrency:
group: ${{ format('classic-autogpt-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -19,47 +23,22 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic/original_autogpt
working-directory: classic
jobs:
test:
permissions:
contents: read
timeout-minutes: 30
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
runs-on: ubuntu-latest
steps:
# Quite slow on macOS (2~4 minutes to set up Docker)
# - name: Set up Docker (macOS)
# if: runner.os == 'macOS'
# uses: crazy-max/ghaction-setup-docker@v3
- name: Start MinIO service (Linux)
if: runner.os == 'Linux'
- name: Start MinIO service
working-directory: '.'
run: |
docker pull minio/minio:edge-cicd
docker run -d -p 9000:9000 minio/minio:edge-cicd
- name: Start MinIO service (macOS)
if: runner.os == 'macOS'
working-directory: ${{ runner.temp }}
run: |
brew install minio/stable/minio
mkdir data
minio server ./data &
# No MinIO on Windows:
# - Windows doesn't support running Linux Docker containers
# - It doesn't seem possible to start background processes on Windows. They are
# killed after the step returns.
# See: https://github.com/actions/runner/issues/598#issuecomment-2011890429
- name: Checkout repository
uses: actions/checkout@v4
with:
@@ -71,41 +50,23 @@ jobs:
git config --global user.name "Auto-GPT-Bot"
git config --global user.email "github-bot@agpt.co"
- name: Set up Python ${{ matrix.python-version }}
- name: Set up Python 3.12
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
python-version: "3.12"
- id: get_date
name: Get date
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/original_autogpt/poetry.lock') }}
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
run: |
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
- name: Install Python dependencies
run: poetry install
@@ -116,12 +77,12 @@ jobs:
--cov=autogpt --cov-branch --cov-report term-missing --cov-report xml \
--numprocesses=logical --durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
tests/unit tests/integration
original_autogpt/tests/unit original_autogpt/tests/integration
env:
CI: true
PLAIN_OUTPUT: True
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
S3_ENDPOINT_URL: ${{ runner.os != 'Windows' && 'http://127.0.0.1:9000' || '' }}
S3_ENDPOINT_URL: http://127.0.0.1:9000
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
@@ -135,11 +96,11 @@ jobs:
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: autogpt-agent,${{ runner.os }}
flags: autogpt-agent
- name: Upload logs to artifact
if: always()
uses: actions/upload-artifact@v4
with:
name: test-logs
path: classic/original_autogpt/logs/
path: classic/logs/

View File

@@ -11,9 +11,6 @@ on:
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
pull_request:
branches: [ master, dev, release-* ]
@@ -22,9 +19,6 @@ on:
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
defaults:
@@ -35,13 +29,9 @@ defaults:
jobs:
serve-agent-protocol:
runs-on: ubuntu-latest
strategy:
matrix:
agent-name: [ original_autogpt ]
fail-fast: false
timeout-minutes: 20
env:
min-python-version: '3.10'
min-python-version: '3.12'
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -55,22 +45,22 @@ jobs:
python-version: ${{ env.min-python-version }}
- name: Install Poetry
working-directory: ./classic/${{ matrix.agent-name }}/
run: |
curl -sSL https://install.python-poetry.org | python -
- name: Run regression tests
- name: Install dependencies
run: poetry install
- name: Run smoke tests with direct-benchmark
run: |
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
poetry run agbenchmark --mock --test=BasicRetrieval --test=Battleship --test=WebArenaTask_0
poetry run agbenchmark --test=WriteFile
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--tests ReadFile,WriteFile \
--json
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
AGENT_NAME: ${{ matrix.agent-name }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
REQUESTS_CA_BUNDLE: /etc/ssl/certs/ca-certificates.crt
HELICONE_CACHE_ENABLED: false
HELICONE_PROPERTY_AGENT: ${{ matrix.agent-name }}
REPORTS_FOLDER: ${{ format('../../reports/{0}', matrix.agent-name) }}
TELEMETRY_ENVIRONMENT: autogpt-ci
TELEMETRY_OPT_IN: ${{ github.ref_name == 'master' }}
NONINTERACTIVE_MODE: "true"
CI: true

View File

@@ -1,17 +1,21 @@
name: Classic - AGBenchmark CI
name: Classic - Direct Benchmark CI
on:
push:
branches: [ master, dev, ci-test* ]
paths:
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
- 'classic/direct_benchmark/**'
- 'classic/benchmark/agbenchmark/challenges/**'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- .github/workflows/classic-benchmark-ci.yml
pull_request:
branches: [ master, dev, release-* ]
paths:
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
- 'classic/direct_benchmark/**'
- 'classic/benchmark/agbenchmark/challenges/**'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- .github/workflows/classic-benchmark-ci.yml
concurrency:
@@ -23,23 +27,16 @@ defaults:
shell: bash
env:
min-python-version: '3.10'
min-python-version: '3.12'
jobs:
test:
permissions:
contents: read
benchmark-tests:
runs-on: ubuntu-latest
timeout-minutes: 30
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
defaults:
run:
shell: bash
working-directory: classic/benchmark
working-directory: classic
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -47,71 +44,88 @@ jobs:
fetch-depth: 0
submodules: true
- name: Set up Python ${{ matrix.python-version }}
- name: Set up Python ${{ env.min-python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
python-version: ${{ env.min-python-version }}
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/benchmark/poetry.lock') }}
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
- name: Install Poetry
run: |
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Python dependencies
- name: Install dependencies
run: poetry install
- name: Run pytest with coverage
- name: Run basic benchmark tests
run: |
poetry run pytest -vv \
--cov=agbenchmark --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
tests
echo "Testing ReadFile challenge with one_shot strategy..."
poetry run direct-benchmark run \
--fresh \
--strategies one_shot \
--models claude \
--tests ReadFile \
--json
echo "Testing WriteFile challenge..."
poetry run direct-benchmark run \
--fresh \
--strategies one_shot \
--models claude \
--tests WriteFile \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
- name: Upload test results to Codecov
if: ${{ !cancelled() }} # Run even if tests fail
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Test category filtering
run: |
echo "Testing coding category..."
poetry run direct-benchmark run \
--fresh \
--strategies one_shot \
--models claude \
--categories coding \
--tests ReadFile,WriteFile \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
- name: Upload coverage reports to Codecov
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: agbenchmark,${{ runner.os }}
- name: Test multiple strategies
run: |
echo "Testing multiple strategies..."
poetry run direct-benchmark run \
--fresh \
--strategies one_shot,plan_execute \
--models claude \
--tests ReadFile \
--parallel 2 \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
self-test-with-agent:
# Run regression tests on maintain challenges
regression-tests:
runs-on: ubuntu-latest
strategy:
matrix:
agent-name: [forge]
fail-fast: false
timeout-minutes: 20
timeout-minutes: 45
if: github.ref == 'refs/heads/master' || github.ref == 'refs/heads/dev'
defaults:
run:
shell: bash
working-directory: classic
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -126,51 +140,23 @@ jobs:
- name: Install Poetry
run: |
curl -sSL https://install.python-poetry.org | python -
curl -sSL https://install.python-poetry.org | python3 -
- name: Install dependencies
run: poetry install
- name: Run regression tests
working-directory: classic
run: |
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
set +e # Ignore non-zero exit codes and continue execution
echo "Running the following command: poetry run agbenchmark --maintain --mock"
poetry run agbenchmark --maintain --mock
EXIT_CODE=$?
set -e # Stop ignoring non-zero exit codes
# Check if the exit code was 5, and if so, exit with 0 instead
if [ $EXIT_CODE -eq 5 ]; then
echo "regression_tests.json is empty."
fi
echo "Running the following command: poetry run agbenchmark --mock"
poetry run agbenchmark --mock
echo "Running the following command: poetry run agbenchmark --mock --category=data"
poetry run agbenchmark --mock --category=data
echo "Running the following command: poetry run agbenchmark --mock --category=coding"
poetry run agbenchmark --mock --category=coding
# echo "Running the following command: poetry run agbenchmark --test=WriteFile"
# poetry run agbenchmark --test=WriteFile
cd ../benchmark
poetry install
echo "Adding the BUILD_SKILL_TREE environment variable. This will attempt to add new elements in the skill tree. If new elements are added, the CI fails because they should have been pushed"
export BUILD_SKILL_TREE=true
# poetry run agbenchmark --mock
# CHANGED=$(git diff --name-only | grep -E '(agbenchmark/challenges)|(../classic/frontend/assets)') || echo "No diffs"
# if [ ! -z "$CHANGED" ]; then
# echo "There are unstaged changes please run agbenchmark and commit those changes since they are needed."
# echo "$CHANGED"
# exit 1
# else
# echo "No unstaged changes."
# fi
echo "Running regression tests (previously beaten challenges)..."
poetry run direct-benchmark run \
--fresh \
--strategies one_shot \
--models claude \
--maintain \
--parallel 4 \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
TELEMETRY_ENVIRONMENT: autogpt-benchmark-ci
TELEMETRY_OPT_IN: ${{ github.ref_name == 'master' }}
NONINTERACTIVE_MODE: "true"

View File

@@ -6,13 +6,11 @@ on:
paths:
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
branches: [ master, dev, release-* ]
paths:
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
- '!classic/forge/tests/vcr_cassettes'
concurrency:
group: ${{ format('forge-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -21,115 +19,38 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic/forge
working-directory: classic
jobs:
test:
permissions:
contents: read
timeout-minutes: 30
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
runs-on: ubuntu-latest
steps:
# Quite slow on macOS (2~4 minutes to set up Docker)
# - name: Set up Docker (macOS)
# if: runner.os == 'macOS'
# uses: crazy-max/ghaction-setup-docker@v3
- name: Start MinIO service (Linux)
if: runner.os == 'Linux'
- name: Start MinIO service
working-directory: '.'
run: |
docker pull minio/minio:edge-cicd
docker run -d -p 9000:9000 minio/minio:edge-cicd
- name: Start MinIO service (macOS)
if: runner.os == 'macOS'
working-directory: ${{ runner.temp }}
run: |
brew install minio/stable/minio
mkdir data
minio server ./data &
# No MinIO on Windows:
# - Windows doesn't support running Linux Docker containers
# - It doesn't seem possible to start background processes on Windows. They are
# killed after the step returns.
# See: https://github.com/actions/runner/issues/598#issuecomment-2011890429
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
- name: Checkout cassettes
if: ${{ startsWith(github.event_name, 'pull_request') }}
env:
PR_BASE: ${{ github.event.pull_request.base.ref }}
PR_BRANCH: ${{ github.event.pull_request.head.ref }}
PR_AUTHOR: ${{ github.event.pull_request.user.login }}
run: |
cassette_branch="${PR_AUTHOR}-${PR_BRANCH}"
cassette_base_branch="${PR_BASE}"
cd tests/vcr_cassettes
if ! git ls-remote --exit-code --heads origin $cassette_base_branch ; then
cassette_base_branch="master"
fi
if git ls-remote --exit-code --heads origin $cassette_branch ; then
git fetch origin $cassette_branch
git fetch origin $cassette_base_branch
git checkout $cassette_branch
# Pick non-conflicting cassette updates from the base branch
git merge --no-commit --strategy-option=ours origin/$cassette_base_branch
echo "Using cassettes from mirror branch '$cassette_branch'," \
"synced to upstream branch '$cassette_base_branch'."
else
git checkout -b $cassette_branch
echo "Branch '$cassette_branch' does not exist in cassette submodule." \
"Using cassettes from '$cassette_base_branch'."
fi
- name: Set up Python ${{ matrix.python-version }}
- name: Set up Python 3.12
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
python-version: "3.12"
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/forge/poetry.lock') }}
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
run: |
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
- name: Install Python dependencies
run: poetry install
@@ -140,12 +61,15 @@ jobs:
--cov=forge --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
forge
forge/forge forge/tests
env:
CI: true
PLAIN_OUTPUT: True
# API keys - tests that need these will skip if not available
# Secrets are not available to fork PRs (GitHub security feature)
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
S3_ENDPOINT_URL: ${{ runner.os != 'Windows' && 'http://127.0.0.1:9000' || '' }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
S3_ENDPOINT_URL: http://127.0.0.1:9000
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
@@ -159,85 +83,11 @@ jobs:
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: forge,${{ runner.os }}
- id: setup_git_auth
name: Set up git token authentication
# Cassettes may be pushed even when tests fail
if: success() || failure()
run: |
config_key="http.${{ github.server_url }}/.extraheader"
if [ "${{ runner.os }}" = 'macOS' ]; then
base64_pat=$(echo -n "pat:${{ secrets.PAT_REVIEW }}" | base64)
else
base64_pat=$(echo -n "pat:${{ secrets.PAT_REVIEW }}" | base64 -w0)
fi
git config "$config_key" \
"Authorization: Basic $base64_pat"
cd tests/vcr_cassettes
git config "$config_key" \
"Authorization: Basic $base64_pat"
echo "config_key=$config_key" >> $GITHUB_OUTPUT
- id: push_cassettes
name: Push updated cassettes
# For pull requests, push updated cassettes even when tests fail
if: github.event_name == 'push' || (! github.event.pull_request.head.repo.fork && (success() || failure()))
env:
PR_BRANCH: ${{ github.event.pull_request.head.ref }}
PR_AUTHOR: ${{ github.event.pull_request.user.login }}
run: |
if [ "${{ startsWith(github.event_name, 'pull_request') }}" = "true" ]; then
is_pull_request=true
cassette_branch="${PR_AUTHOR}-${PR_BRANCH}"
else
cassette_branch="${{ github.ref_name }}"
fi
cd tests/vcr_cassettes
# Commit & push changes to cassettes if any
if ! git diff --quiet; then
git add .
git commit -m "Auto-update cassettes"
git push origin HEAD:$cassette_branch
if [ ! $is_pull_request ]; then
cd ../..
git add tests/vcr_cassettes
git commit -m "Update cassette submodule"
git push origin HEAD:$cassette_branch
fi
echo "updated=true" >> $GITHUB_OUTPUT
else
echo "updated=false" >> $GITHUB_OUTPUT
echo "No cassette changes to commit"
fi
- name: Post Set up git token auth
if: steps.setup_git_auth.outcome == 'success'
run: |
git config --unset-all '${{ steps.setup_git_auth.outputs.config_key }}'
git submodule foreach git config --unset-all '${{ steps.setup_git_auth.outputs.config_key }}'
- name: Apply "behaviour change" label and comment on PR
if: ${{ startsWith(github.event_name, 'pull_request') }}
run: |
PR_NUMBER="${{ github.event.pull_request.number }}"
TOKEN="${{ secrets.PAT_REVIEW }}"
REPO="${{ github.repository }}"
if [[ "${{ steps.push_cassettes.outputs.updated }}" == "true" ]]; then
echo "Adding label and comment..."
echo $TOKEN | gh auth login --with-token
gh issue edit $PR_NUMBER --add-label "behaviour change"
gh issue comment $PR_NUMBER --body "You changed AutoGPT's behaviour on ${{ runner.os }}. The cassettes have been updated and will be merged to the submodule when this Pull Request gets merged."
fi
flags: forge
- name: Upload logs to artifact
if: always()
uses: actions/upload-artifact@v4
with:
name: test-logs
path: classic/forge/logs/
path: classic/logs/

View File

@@ -1,60 +0,0 @@
name: Classic - Frontend CI/CD
on:
push:
branches:
- master
- dev
- 'ci-test*' # This will match any branch that starts with "ci-test"
paths:
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
pull_request:
paths:
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
jobs:
build:
permissions:
contents: write
pull-requests: write
runs-on: ubuntu-latest
env:
BUILD_BRANCH: ${{ format('classic-frontend-build/{0}', github.ref_name) }}
steps:
- name: Checkout Repo
uses: actions/checkout@v4
- name: Setup Flutter
uses: subosito/flutter-action@v2
with:
flutter-version: '3.13.2'
- name: Build Flutter to Web
run: |
cd classic/frontend
flutter build web --base-href /app/
# - name: Commit and Push to ${{ env.BUILD_BRANCH }}
# if: github.event_name == 'push'
# run: |
# git config --local user.email "action@github.com"
# git config --local user.name "GitHub Action"
# git add classic/frontend/build/web
# git checkout -B ${{ env.BUILD_BRANCH }}
# git commit -m "Update frontend build to ${GITHUB_SHA:0:7}" -a
# git push -f origin ${{ env.BUILD_BRANCH }}
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}
branch: ${{ env.BUILD_BRANCH }}
delete-branch: true
title: "Update frontend build in `${{ github.ref_name }}`"
body: "This PR updates the frontend build based on commit ${{ github.sha }}."
commit-message: "Update frontend build based on commit ${{ github.sha }}"

View File

@@ -7,7 +7,9 @@ on:
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/direct_benchmark/**'
- 'classic/pyproject.toml'
- 'classic/poetry.lock'
- '**.py'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
@@ -16,7 +18,9 @@ on:
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/direct_benchmark/**'
- 'classic/pyproject.toml'
- 'classic/poetry.lock'
- '**.py'
- '!classic/forge/tests/vcr_cassettes'
@@ -27,44 +31,13 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic
jobs:
get-changed-parts:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- id: changes-in
name: Determine affected subprojects
uses: dorny/paths-filter@v3
with:
filters: |
original_autogpt:
- classic/original_autogpt/autogpt/**
- classic/original_autogpt/tests/**
- classic/original_autogpt/poetry.lock
forge:
- classic/forge/forge/**
- classic/forge/tests/**
- classic/forge/poetry.lock
benchmark:
- classic/benchmark/agbenchmark/**
- classic/benchmark/tests/**
- classic/benchmark/poetry.lock
outputs:
changed-parts: ${{ steps.changes-in.outputs.changes }}
lint:
needs: get-changed-parts
runs-on: ubuntu-latest
env:
min-python-version: "3.10"
strategy:
matrix:
sub-package: ${{ fromJson(needs.get-changed-parts.outputs.changed-parts) }}
fail-fast: false
min-python-version: "3.12"
steps:
- name: Checkout repository
@@ -81,42 +54,31 @@ jobs:
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}
key: ${{ runner.os }}-poetry-${{ hashFiles('classic/poetry.lock') }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
# Install dependencies
- name: Install Python dependencies
run: poetry -C classic/${{ matrix.sub-package }} install
run: poetry install
# Lint
- name: Lint (isort)
run: poetry run isort --check .
working-directory: classic/${{ matrix.sub-package }}
- name: Lint (Black)
if: success() || failure()
run: poetry run black --check .
working-directory: classic/${{ matrix.sub-package }}
- name: Lint (Flake8)
if: success() || failure()
run: poetry run flake8 .
working-directory: classic/${{ matrix.sub-package }}
types:
needs: get-changed-parts
runs-on: ubuntu-latest
env:
min-python-version: "3.10"
strategy:
matrix:
sub-package: ${{ fromJson(needs.get-changed-parts.outputs.changed-parts) }}
fail-fast: false
min-python-version: "3.12"
steps:
- name: Checkout repository
@@ -133,19 +95,16 @@ jobs:
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}
key: ${{ runner.os }}-poetry-${{ hashFiles('classic/poetry.lock') }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
# Install dependencies
- name: Install Python dependencies
run: poetry -C classic/${{ matrix.sub-package }} install
run: poetry install
# Typecheck
- name: Typecheck
if: success() || failure()
run: poetry run pyright
working-directory: classic/${{ matrix.sub-package }}

10
.gitignore vendored
View File

@@ -3,6 +3,7 @@
classic/original_autogpt/keys.py
classic/original_autogpt/*.json
auto_gpt_workspace/*
.autogpt/
*.mpeg
.env
# Root .env files
@@ -159,6 +160,10 @@ CURRENT_BULLETIN.md
# AgBenchmark
classic/benchmark/agbenchmark/reports/
classic/reports/
classic/direct_benchmark/reports/
classic/.benchmark_workspaces/
classic/direct_benchmark/.benchmark_workspaces/
# Nodejs
package-lock.json
@@ -177,5 +182,10 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
**/.claude/settings.local.json
.claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs
# Test database
test.db

3
.gitmodules vendored
View File

@@ -1,3 +0,0 @@
[submodule "classic/forge/tests/vcr_cassettes"]
path = classic/forge/tests/vcr_cassettes
url = https://github.com/Significant-Gravitas/Auto-GPT-test-cassettes

View File

@@ -43,29 +43,10 @@ repos:
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - AutoGPT
alias: poetry-install-classic-autogpt
entry: poetry -C classic/original_autogpt install
# include forge source (since it's a path dependency)
files: ^classic/(original_autogpt|forge)/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Forge
alias: poetry-install-classic-forge
entry: poetry -C classic/forge install
files: ^classic/forge/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Benchmark
alias: poetry-install-classic-benchmark
entry: poetry -C classic/benchmark install
files: ^classic/benchmark/poetry\.lock$
name: Check & Install dependencies - Classic
alias: poetry-install-classic
entry: poetry -C classic install
files: ^classic/poetry\.lock$
types: [file]
language: system
pass_filenames: false
@@ -116,26 +97,10 @@ repos:
language: system
- id: isort
name: Lint (isort) - Classic - AutoGPT
alias: isort-classic-autogpt
entry: poetry -P classic/original_autogpt run isort -p autogpt
files: ^classic/original_autogpt/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Forge
alias: isort-classic-forge
entry: poetry -P classic/forge run isort -p forge
files: ^classic/forge/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Benchmark
alias: isort-classic-benchmark
entry: poetry -P classic/benchmark run isort -p agbenchmark
files: ^classic/benchmark/
name: Lint (isort) - Classic
alias: isort-classic
entry: bash -c 'cd classic && poetry run isort $(echo "$@" | sed "s|classic/||g")' --
files: ^classic/(original_autogpt|forge|direct_benchmark)/
types: [file, python]
language: system
@@ -149,26 +114,13 @@ repos:
- repo: https://github.com/PyCQA/flake8
rev: 7.0.0
# To have flake8 load the config of the individual subprojects, we have to call
# them separately.
# Use consolidated flake8 config at classic/.flake8
hooks:
- id: flake8
name: Lint (Flake8) - Classic - AutoGPT
alias: flake8-classic-autogpt
files: ^classic/original_autogpt/(autogpt|scripts|tests)/
args: [--config=classic/original_autogpt/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Forge
alias: flake8-classic-forge
files: ^classic/forge/(forge|tests)/
args: [--config=classic/forge/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Benchmark
alias: flake8-classic-benchmark
files: ^classic/benchmark/(agbenchmark|tests)/((?!reports).)*[/.]
args: [--config=classic/benchmark/.flake8]
name: Lint (Flake8) - Classic
alias: flake8-classic
files: ^classic/(original_autogpt|forge|direct_benchmark)/
args: [--config=classic/.flake8]
- repo: local
hooks:
@@ -204,29 +156,10 @@ repos:
pass_filenames: false
- id: pyright
name: Typecheck - Classic - AutoGPT
alias: pyright-classic-autogpt
entry: poetry -C classic/original_autogpt run pyright
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^(classic/original_autogpt/((autogpt|scripts|tests)/|poetry\.lock$)|classic/forge/(forge/.*(?<!_test)\.py|poetry\.lock)$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Forge
alias: pyright-classic-forge
entry: poetry -C classic/forge run pyright
files: ^classic/forge/(forge/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Benchmark
alias: pyright-classic-benchmark
entry: poetry -C classic/benchmark run pyright
files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
name: Typecheck - Classic
alias: pyright-classic
entry: poetry -C classic run pyright
files: ^classic/(original_autogpt|forge|direct_benchmark)/.*\.py$|^classic/poetry\.lock$
types: [file]
language: system
pass_filenames: false

View File

@@ -16,7 +16,6 @@ See `docs/content/platform/getting-started.md` for setup instructions.
- Format Python code with `poetry run format`.
- Format frontend code using `pnpm format`.
## Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
@@ -33,14 +32,17 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any`, if not types available use `unknown`
## Testing
@@ -49,22 +51,8 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
Always run the relevant linters and tests before committing.
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
Types:
- feat
- fix
- refactor
- ci
- dx (developer experience)
Scopes:
- platform
- platform/library
- platform/marketplace
- backend
- backend/executor
- frontend
- frontend/library
- frontend/marketplace
- blocks
Types: - feat - fix - refactor - ci - dx (developer experience)
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
## Pull requests

View File

@@ -6,152 +6,30 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
AutoGPT Platform is a monorepo containing:
- **Backend** (`/backend`): Python FastAPI server with async support
- **Frontend** (`/frontend`): Next.js React application
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
- **Backend** (`backend`): Python FastAPI server with async support
- **Frontend** (`frontend`): Next.js React application
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
## Essential Commands
## Component Documentation
### Backend Development
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
```bash
# Install dependencies
cd backend && poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend server
poetry run serve
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in TESTING.md
#### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
### Frontend Development
```bash
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
### Backend Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
### Frontend Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
## Key Concepts
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
3. **Integrations**: OAuth and API connections stored per user
4. **Store**: Marketplace for sharing agent templates
5. **Virus Scanning**: ClamAV integration for file upload security
### Testing Approach
- Backend uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
- Frontend uses Playwright for E2E tests
- Component testing via Storybook
### Database Schema
Key models (defined in `/backend/schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
### Environment Configuration
#### Configuration Files
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
#### Docker Environment Loading Order
@@ -167,83 +45,12 @@ Key models (defined in `/backend/schema.prisma`):
- Backend/Frontend services use YAML anchors for consistent configuration
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
### Common Development Tasks
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
**Modifying the API:**
1. Update route in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
### Frontend guidelines:
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
- Use function declarations for components, arrow functions only for callbacks
- No barrel files or `index.ts` re-exports
- Do not use `useCallback` or `useMemo` unless strictly needed
- Avoid comments at all times unless the code is very complex
### Security Implementation
**Cache Protection Middleware:**
- Located in `/backend/backend/server/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications
### Creating Pull Requests
- Create the PR aginst the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
- Use conventional commit messages (see below)/
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
- Create the PR against the `dev` branch of the repository.
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
- Use conventional commit messages (see below)
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
- Run the github pre-commit hooks to ensure code quality.
### Reviewing/Revising Pull Requests

View File

@@ -0,0 +1,170 @@
# CLAUDE.md - Backend
This file provides guidance to Claude Code when working with the backend.
## Essential Commands
To run something with Python package dependencies you MUST use `poetry run ...`.
```bash
# Install dependencies
poetry install
# Run database migrations
poetry run prisma migrate dev
# Start all services (database, redis, rabbitmq, clamav)
docker compose up -d
# Run the backend as a whole
poetry run app
# Run tests
poetry run test
# Run specific test
poetry run pytest path/to/test_file.py::test_function_name
# Run block tests (tests that validate all blocks work correctly)
poetry run pytest backend/blocks/test/test_block.py -xvs
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
# Lint and format
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
poetry run format # Black + isort
poetry run lint # ruff
```
More details can be found in @TESTING.md
### Creating/Updating Snapshots
When you first write a test or when the expected output changes:
```bash
poetry run pytest path/to/test.py --snapshot-update
```
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
## Architecture
- **API Layer**: FastAPI with REST and WebSocket endpoints
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
- **Queue System**: RabbitMQ for async task processing
- **Execution Engine**: Separate executor service processes agent workflows
- **Authentication**: JWT-based with Supabase integration
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
## Testing Approach
- Uses pytest with snapshot testing for API responses
- Test files are colocated with source files (`*_test.py`)
## Database Schema
Key models (defined in `schema.prisma`):
- `User`: Authentication and profile data
- `AgentGraph`: Workflow definitions with version control
- `AgentGraphExecution`: Execution history and results
- `AgentNode`: Individual nodes in a workflow
- `StoreListing`: Marketplace listings for sharing agents
## Environment Configuration
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
## Common Development Tasks
### Adding a new block
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
#### Handling files in blocks with `store_media_file()`
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
| Format | Use When | Returns |
|--------|----------|---------|
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
**Examples:**
```python
# INPUT: Need to process file locally with ffmpeg
local_path = await store_media_file(
file=input_data.video,
execution_context=execution_context,
return_format="for_local_processing",
)
# local_path = "video.mp4" - use with Path/ffmpeg/etc
# INPUT: Need to send to external API like Replicate
image_b64 = await store_media_file(
file=input_data.image,
execution_context=execution_context,
return_format="for_external_api",
)
# image_b64 = "..." - send to API
# OUTPUT: Returning result from block
result_url = await store_media_file(
file=generated_image_url,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", result_url
# In CoPilot: result_url = "workspace://abc123"
# In graphs: result_url = "data:image/png;base64,..."
```
**Key points:**
- `for_block_output` is the ONLY format that auto-adapts to execution context
- Always use `for_block_output` for block outputs unless you have a specific reason not to
- Never hardcode workspace checks - let `for_block_output` handle it
### Modifying the API
1. Update route in `backend/api/features/`
2. Add/update Pydantic models in same directory
3. Write tests alongside the route file
4. Run `poetry run test` to verify
## Security Implementation
### Cache Protection Middleware
- Located in `backend/api/middleware/security.py`
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses an allow list approach - only explicitly permitted paths can be cached
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
- Applied to both main API server and external API applications

View File

@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
#### Using Global Auth Fixtures
Two global auth fixtures are provided by `backend/server/conftest.py`:
Two global auth fixtures are provided by `backend/api/conftest.py`:
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")

View File

@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
)
# Taken from backend/server/v2/store/db.py
# Taken from backend/api/features/store/db.py
def sanitize_query(query: str | None) -> str | None:
if query is None:
return query

View File

@@ -0,0 +1,79 @@
# CoPilot Tools - Future Ideas
## Multimodal Image Support for CoPilot
**Problem:** CoPilot uses a vision-capable model but can't "see" workspace images. When a block generates an image and returns `workspace://abc123`, CoPilot can't evaluate it (e.g., checking blog thumbnail quality).
**Backend Solution:**
When preparing messages for the LLM, detect `workspace://` image references and convert them to proper image content blocks:
```python
# Before sending to LLM, scan for workspace image references
# and inject them as image content parts
# Example message transformation:
# FROM: {"role": "assistant", "content": "Generated image: workspace://abc123"}
# TO: {"role": "assistant", "content": [
# {"type": "text", "text": "Generated image: workspace://abc123"},
# {"type": "image_url", "image_url": {"url": "data:image/png;base64,..."}}
# ]}
```
**Where to implement:**
- In the chat stream handler before calling the LLM
- Or in a message preprocessing step
- Need to fetch image from workspace, convert to base64, add as image content
**Considerations:**
- Only do this for image MIME types (image/png, image/jpeg, etc.)
- May want a size limit (don't pass 10MB images)
- Track which images were "shown" to the AI for frontend indicator
- Cost implications - vision API calls are more expensive
**Frontend Solution:**
Show visual indicator on workspace files in chat:
- If AI saw the image: normal display
- If AI didn't see it: overlay icon saying "AI can't see this image"
Requires response metadata indicating which `workspace://` refs were passed to the model.
---
## Output Post-Processing Layer for run_block
**Problem:** Many blocks produce large outputs that:
- Consume massive context (100KB base64 image = ~133KB tokens)
- Can't fit in conversation
- Break things and cause high LLM costs
**Proposed Solution:** Instead of modifying individual blocks or `store_media_file()`, implement a centralized output processor in `run_block.py` that handles outputs before they're returned to CoPilot.
**Benefits:**
1. **Centralized** - one place to handle all output processing
2. **Future-proof** - new blocks automatically get output processing
3. **Keeps blocks pure** - they don't need to know about context constraints
4. **Handles all large outputs** - not just images
**Processing Rules:**
- Detect base64 data URIs → save to workspace, return `workspace://` reference
- Truncate very long strings (>N chars) with truncation note
- Summarize large arrays/lists (e.g., "Array with 1000 items, first 5: [...]")
- Handle nested large outputs in dicts recursively
- Cap total output size
**Implementation Location:** `run_block.py` after block execution, before returning `BlockOutputResponse`
**Example:**
```python
def _process_outputs_for_context(
outputs: dict[str, list[Any]],
workspace_manager: WorkspaceManager,
max_string_length: int = 10000,
max_array_preview: int = 5,
) -> dict[str, list[Any]]:
"""Process block outputs to prevent context bloat."""
processed = {}
for name, values in outputs.items():
processed[name] = [_process_value(v, workspace_manager) for v in values]
return processed
```

View File

@@ -18,6 +18,12 @@ from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
from .workspace_files import (
DeleteWorkspaceFileTool,
ListWorkspaceFilesTool,
ReadWorkspaceFileTool,
WriteWorkspaceFileTool,
)
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolOutputAvailable
@@ -37,6 +43,11 @@ TOOL_REGISTRY: dict[str, BaseTool] = {
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
# Workspace tools for CoPilot file operations
"list_workspace_files": ListWorkspaceFilesTool(),
"read_workspace_file": ReadWorkspaceFileTool(),
"write_workspace_file": WriteWorkspaceFileTool(),
"delete_workspace_file": DeleteWorkspaceFileTool(),
}
# Export individual tool instances for backwards compatibility

View File

@@ -9,6 +9,7 @@ from .core import (
json_to_graph,
save_agent_to_library,
)
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
@@ -25,4 +26,6 @@ __all__ = [
# Service
"is_external_service_configured",
"check_external_service_health",
# Error handling
"get_user_message_for_error",
]

View File

@@ -64,7 +64,7 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
instructions: Structured instructions from decompose_goal
Returns:
Agent JSON dict or None on error
Agent JSON dict, error dict {"type": "error", ...}, or None on error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.
@@ -73,7 +73,10 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions)
if result:
# Ensure required fields
# Check if it's an error response - pass through as-is
if isinstance(result, dict) and result.get("type") == "error":
return result
# Ensure required fields for successful agent generation
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
@@ -267,7 +270,8 @@ async def generate_agent_patch(
current_agent: Current agent JSON
Returns:
Updated agent JSON, clarifying questions dict, or None on error
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
error dict {"type": "error", ...}, or None on unexpected error
Raises:
AgentGeneratorNotConfiguredError: If the external service is not configured.

View File

@@ -0,0 +1,43 @@
"""Error handling utilities for agent generator."""
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
This function maps internal error types to user-friendly messages,
providing a consistent experience across different agent operations.
Args:
error_type: The error type from the external service
(e.g., "llm_parse_error", "timeout", "rate_limit")
operation: Description of what operation failed, used in the default
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
Returns:
User-friendly error message suitable for display to the user
"""
if error_type == "llm_parse_error":
return (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
return (
validation_message
or "The request failed validation. Please try rephrasing."
)
elif error_type == "patch_error":
return "Failed to apply the changes. Please try a different approach."
elif error_type in ("timeout", "llm_timeout"):
return "The request took too long. Please try again."
elif error_type in ("rate_limit", "llm_rate_limit"):
return "The service is currently busy. Please try again in a moment."
else:
return f"Failed to {operation}. Please try again."

View File

@@ -14,6 +14,70 @@ from backend.util.settings import Settings
logger = logging.getLogger(__name__)
def _create_error_response(
error_message: str,
error_type: str = "unknown",
details: dict[str, Any] | None = None,
) -> dict[str, Any]:
"""Create a standardized error response dict.
Args:
error_message: Human-readable error message
error_type: Machine-readable error type
details: Optional additional error details
Returns:
Error dict with type="error" and error details
"""
response: dict[str, Any] = {
"type": "error",
"error": error_message,
"error_type": error_type,
}
if details:
response["details"] = details
return response
def _classify_http_error(e: httpx.HTTPStatusError) -> tuple[str, str]:
"""Classify an HTTP error into error_type and message.
Args:
e: The HTTP status error
Returns:
Tuple of (error_type, error_message)
"""
status = e.response.status_code
if status == 429:
return "rate_limit", f"Agent Generator rate limited: {e}"
elif status == 503:
return "service_unavailable", f"Agent Generator unavailable: {e}"
elif status == 504 or status == 408:
return "timeout", f"Agent Generator timed out: {e}"
else:
return "http_error", f"HTTP error calling Agent Generator: {e}"
def _classify_request_error(e: httpx.RequestError) -> tuple[str, str]:
"""Classify a request error into error_type and message.
Args:
e: The request error
Returns:
Tuple of (error_type, error_message)
"""
error_str = str(e).lower()
if "timeout" in error_str or "timed out" in error_str:
return "timeout", f"Agent Generator request timed out: {e}"
elif "connect" in error_str:
return "connection_error", f"Could not connect to Agent Generator: {e}"
else:
return "request_error", f"Request error calling Agent Generator: {e}"
_client: httpx.AsyncClient | None = None
_settings: Settings | None = None
@@ -67,7 +131,8 @@ async def decompose_goal_external(
- {"type": "instructions", "steps": [...]}
- {"type": "unachievable_goal", ...}
- {"type": "vague_goal", ...}
Or None on error
- {"type": "error", "error": "...", "error_type": "..."} on error
Or None on unexpected error
"""
client = _get_client()
@@ -83,8 +148,13 @@ async def decompose_goal_external(
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator decomposition failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Map the response to the expected format
response_type = data.get("type")
@@ -106,25 +176,37 @@ async def decompose_goal_external(
"type": "vague_goal",
"suggested_goal": data.get("suggested_goal"),
}
elif response_type == "error":
# Pass through error from the service
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
else:
logger.error(
f"Unknown response type from external service: {response_type}"
)
return None
return _create_error_response(
f"Unknown response type from Agent Generator: {response_type}",
"invalid_response",
)
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_external(
instructions: dict[str, Any]
instructions: dict[str, Any],
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
@@ -132,7 +214,7 @@ async def generate_agent_external(
instructions: Structured instructions from decompose_goal
Returns:
Agent JSON dict or None on error
Agent JSON dict on success, or error dict {"type": "error", ...} on error
"""
client = _get_client()
@@ -144,20 +226,28 @@ async def generate_agent_external(
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def generate_agent_patch_external(
@@ -170,7 +260,7 @@ async def generate_agent_patch_external(
current_agent: Current agent JSON
Returns:
Updated agent JSON, clarifying questions dict, or None on error
Updated agent JSON, clarifying questions dict, or error dict on error
"""
client = _get_client()
@@ -186,8 +276,13 @@ async def generate_agent_patch_external(
data = response.json()
if not data.get("success"):
logger.error(f"External service returned error: {data.get('error')}")
return None
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator patch generation failed: {error_msg} "
f"(type: {error_type})"
)
return _create_error_response(error_msg, error_type)
# Check if it's clarifying questions
if data.get("type") == "clarifying_questions":
@@ -196,18 +291,28 @@ async def generate_agent_patch_external(
"questions": data.get("questions", []),
}
# Check if it's an error passed through
if data.get("type") == "error":
return _create_error_response(
data.get("error", "Unknown error"),
data.get("error_type", "unknown"),
)
# Otherwise return the updated agent JSON
return data.get("agent_json")
except httpx.HTTPStatusError as e:
logger.error(f"HTTP error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_http_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except httpx.RequestError as e:
logger.error(f"Request error calling external agent generator: {e}")
return None
error_type, error_msg = _classify_request_error(e)
logger.error(error_msg)
return _create_error_response(error_msg, error_type)
except Exception as e:
logger.error(f"Unexpected error calling external agent generator: {e}")
return None
error_msg = f"Unexpected error calling Agent Generator: {e}"
logger.error(error_msg)
return _create_error_response(error_msg, "unexpected_error")
async def get_blocks_external() -> list[dict[str, Any]] | None:

View File

@@ -9,6 +9,7 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
decompose_goal,
generate_agent,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
@@ -117,11 +118,29 @@ class CreateAgentTool(BaseTool):
if decomposition_result is None:
return ErrorResponse(
message="Failed to analyze the goal. The agent generation service may be unavailable or timed out. Please try again.",
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
error="decomposition_failed",
details={"description": description[:100]},
session_id=session_id,
)
# Check if the result is an error from the external service
if decomposition_result.get("type") == "error":
error_msg = decomposition_result.get("error", "Unknown error")
error_type = decomposition_result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="analyze the goal",
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"decomposition_failed:{error_type}",
details={
"description": description[:100]
}, # Include context for debugging
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
@@ -186,11 +205,30 @@ class CreateAgentTool(BaseTool):
if agent_json is None:
return ErrorResponse(
message="Failed to generate the agent. The agent generation service may be unavailable or timed out. Please try again.",
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
error="generation_failed",
details={"description": description[:100]},
session_id=session_id,
)
# Check if the result is an error from the external service
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
error_msg = agent_json.get("error", "Unknown error")
error_type = agent_json.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message="The generated agent failed validation. Please try rephrasing your goal.",
)
return ErrorResponse(
message=user_message,
error=f"generation_failed:{error_type}",
details={
"description": description[:100]
}, # Include context for debugging
"description": description[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)

View File

@@ -9,6 +9,7 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_user_message_for_error,
save_agent_to_library,
)
from .base import BaseTool
@@ -152,6 +153,28 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Check if the result is an error from the external service
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
user_message = get_user_message_for_error(
error_type,
operation="generate the changes",
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
validation_message="The generated changes failed validation. Please try rephrasing your request.",
)
return ErrorResponse(
message=user_message,
error=f"update_generation_failed:{error_type}",
details={
"agent_id": agent_id,
"changes": changes[:100],
"service_error": error_msg,
"error_type": error_type,
},
session_id=session_id,
)
# Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])

View File

@@ -28,6 +28,12 @@ class ResponseType(str, Enum):
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
# Workspace response types
WORKSPACE_FILE_LIST = "workspace_file_list"
WORKSPACE_FILE_CONTENT = "workspace_file_content"
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
# Long-running operation types
OPERATION_STARTED = "operation_started"
OPERATION_PENDING = "operation_pending"

View File

@@ -1,6 +1,7 @@
"""Tool for executing blocks directly."""
import logging
import uuid
from collections import defaultdict
from typing import Any
@@ -8,6 +9,7 @@ from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsMetaInput
from backend.data.workspace import get_or_create_workspace
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
@@ -223,11 +225,48 @@ class RunBlockTool(BaseTool):
)
try:
# Fetch actual credentials and prepare kwargs for block execution
# Create execution context with defaults (blocks may require it)
# Get or create user's workspace for CoPilot file operations
workspace = await get_or_create_workspace(user_id)
# Generate synthetic IDs for CoPilot context
# Each chat session is treated as its own agent with one continuous run
# This means:
# - graph_id (agent) = session (memories scoped to session when limit_to_agent=True)
# - graph_exec_id (run) = session (memories scoped to session when limit_to_run=True)
# - node_exec_id = unique per block execution
synthetic_graph_id = f"copilot-session-{session.session_id}"
synthetic_graph_exec_id = f"copilot-session-{session.session_id}"
synthetic_node_id = f"copilot-node-{block_id}"
synthetic_node_exec_id = (
f"copilot-{session.session_id}-{uuid.uuid4().hex[:8]}"
)
# Create unified execution context with all required fields
execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=synthetic_graph_id,
graph_exec_id=synthetic_graph_exec_id,
graph_version=1, # Versions are 1-indexed
node_id=synthetic_node_id,
node_exec_id=synthetic_node_exec_id,
# Workspace with session scoping
workspace_id=workspace.id,
session_id=session.session_id,
)
# Prepare kwargs for block execution
# Keep individual kwargs for backwards compatibility with existing blocks
exec_kwargs: dict[str, Any] = {
"user_id": user_id,
"execution_context": ExecutionContext(),
"execution_context": execution_context,
# Legacy: individual kwargs for blocks not yet using execution_context
"workspace_id": workspace.id,
"graph_exec_id": synthetic_graph_exec_id,
"node_exec_id": synthetic_node_exec_id,
"node_id": synthetic_node_id,
"graph_version": 1, # Versions are 1-indexed
"graph_id": synthetic_graph_id,
}
for field_name, cred_meta in matched_credentials.items():

View File

@@ -0,0 +1,620 @@
"""CoPilot tools for workspace file operations."""
import base64
import logging
from typing import Any, Optional
from pydantic import BaseModel
from backend.api.features.chat.model import ChatSession
from backend.data.workspace import get_or_create_workspace
from backend.util.settings import Config
from backend.util.virus_scanner import scan_content_safe
from backend.util.workspace import WorkspaceManager
from .base import BaseTool
from .models import ErrorResponse, ResponseType, ToolResponseBase
logger = logging.getLogger(__name__)
class WorkspaceFileInfoData(BaseModel):
"""Data model for workspace file information (not a response itself)."""
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
class WorkspaceFileListResponse(ToolResponseBase):
"""Response containing list of workspace files."""
type: ResponseType = ResponseType.WORKSPACE_FILE_LIST
files: list[WorkspaceFileInfoData]
total_count: int
class WorkspaceFileContentResponse(ToolResponseBase):
"""Response containing workspace file content (legacy, for small text files)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_CONTENT
file_id: str
name: str
path: str
mime_type: str
content_base64: str
class WorkspaceFileMetadataResponse(ToolResponseBase):
"""Response containing workspace file metadata and download URL (prevents context bloat)."""
type: ResponseType = ResponseType.WORKSPACE_FILE_METADATA
file_id: str
name: str
path: str
mime_type: str
size_bytes: int
download_url: str
preview: str | None = None # First 500 chars for text files
class WorkspaceWriteResponse(ToolResponseBase):
"""Response after writing a file to workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_WRITTEN
file_id: str
name: str
path: str
size_bytes: int
class WorkspaceDeleteResponse(ToolResponseBase):
"""Response after deleting a file from workspace."""
type: ResponseType = ResponseType.WORKSPACE_FILE_DELETED
file_id: str
success: bool
class ListWorkspaceFilesTool(BaseTool):
"""Tool for listing files in user's workspace."""
@property
def name(self) -> str:
return "list_workspace_files"
@property
def description(self) -> str:
return (
"List files in the user's workspace. "
"Returns file names, paths, sizes, and metadata. "
"Optionally filter by path prefix."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path_prefix": {
"type": "string",
"description": (
"Optional path prefix to filter files "
"(e.g., '/documents/' to list only files in documents folder). "
"By default, only files from the current session are listed."
),
},
"limit": {
"type": "integer",
"description": "Maximum number of files to return (default 50, max 100)",
"minimum": 1,
"maximum": 100,
},
"include_all_sessions": {
"type": "boolean",
"description": (
"If true, list files from all sessions. "
"Default is false (only current session's files)."
),
},
},
"required": [],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
path_prefix: Optional[str] = kwargs.get("path_prefix")
limit = min(kwargs.get("limit", 50), 100)
include_all_sessions: bool = kwargs.get("include_all_sessions", False)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
files = await manager.list_files(
path=path_prefix,
limit=limit,
include_all_sessions=include_all_sessions,
)
total = await manager.get_file_count(
path=path_prefix,
include_all_sessions=include_all_sessions,
)
file_infos = [
WorkspaceFileInfoData(
file_id=f.id,
name=f.name,
path=f.path,
mime_type=f.mimeType,
size_bytes=f.sizeBytes,
)
for f in files
]
scope_msg = "all sessions" if include_all_sessions else "current session"
return WorkspaceFileListResponse(
files=file_infos,
total_count=total,
message=f"Found {len(files)} files in workspace ({scope_msg})",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error listing workspace files: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to list workspace files: {str(e)}",
error=str(e),
session_id=session_id,
)
class ReadWorkspaceFileTool(BaseTool):
"""Tool for reading file content from workspace."""
# Size threshold for returning full content vs metadata+URL
# Files larger than this return metadata with download URL to prevent context bloat
MAX_INLINE_SIZE_BYTES = 32 * 1024 # 32KB
# Preview size for text files
PREVIEW_SIZE = 500
@property
def name(self) -> str:
return "read_workspace_file"
@property
def description(self) -> str:
return (
"Read a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"For small text files, returns content directly. "
"For large or binary files, returns metadata and a download URL. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
"force_download_url": {
"type": "boolean",
"description": (
"If true, always return metadata+URL instead of inline content. "
"Default is false (auto-selects based on file size/type)."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
def _is_text_mime_type(self, mime_type: str) -> bool:
"""Check if the MIME type is a text-based type."""
text_types = [
"text/",
"application/json",
"application/xml",
"application/javascript",
"application/x-python",
"application/x-sh",
]
return any(mime_type.startswith(t) for t in text_types)
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
force_download_url: bool = kwargs.get("force_download_url", False)
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Get file info
if file_id:
file_info = await manager.get_file_info(file_id)
if file_info is None:
return ErrorResponse(
message=f"File not found: {file_id}",
session_id=session_id,
)
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
# Decide whether to return inline content or metadata+URL
is_small_file = file_info.sizeBytes <= self.MAX_INLINE_SIZE_BYTES
is_text_file = self._is_text_mime_type(file_info.mimeType)
# Return inline content for small text files (unless force_download_url)
if is_small_file and is_text_file and not force_download_url:
content = await manager.read_file_by_id(target_file_id)
content_b64 = base64.b64encode(content).decode("utf-8")
return WorkspaceFileContentResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
content_base64=content_b64,
message=f"Successfully read file: {file_info.name}",
session_id=session_id,
)
# Return metadata + workspace:// reference for large or binary files
# This prevents context bloat (100KB file = ~133KB as base64)
# Use workspace:// format so frontend urlTransform can add proxy prefix
download_url = f"workspace://{target_file_id}"
# Generate preview for text files
preview: str | None = None
if is_text_file:
try:
content = await manager.read_file_by_id(target_file_id)
preview_text = content[: self.PREVIEW_SIZE].decode(
"utf-8", errors="replace"
)
if len(content) > self.PREVIEW_SIZE:
preview_text += "..."
preview = preview_text
except Exception:
pass # Preview is optional
return WorkspaceFileMetadataResponse(
file_id=file_info.id,
name=file_info.name,
path=file_info.path,
mime_type=file_info.mimeType,
size_bytes=file_info.sizeBytes,
download_url=download_url,
preview=preview,
message=f"File: {file_info.name} ({file_info.sizeBytes} bytes). Use download_url to retrieve content.",
session_id=session_id,
)
except FileNotFoundError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error reading workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to read workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class WriteWorkspaceFileTool(BaseTool):
"""Tool for writing files to workspace."""
@property
def name(self) -> str:
return "write_workspace_file"
@property
def description(self) -> str:
return (
"Write or create a file in the user's workspace. "
"Provide the content as a base64-encoded string. "
f"Maximum file size is {Config().max_file_size_mb}MB. "
"Files are saved to the current session's folder by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"filename": {
"type": "string",
"description": "Name for the file (e.g., 'report.pdf')",
},
"content_base64": {
"type": "string",
"description": "Base64-encoded file content",
},
"path": {
"type": "string",
"description": (
"Optional virtual path where to save the file "
"(e.g., '/documents/report.pdf'). "
"Defaults to '/{filename}'. Scoped to current session."
),
},
"mime_type": {
"type": "string",
"description": (
"Optional MIME type of the file. "
"Auto-detected from filename if not provided."
),
},
"overwrite": {
"type": "boolean",
"description": "Whether to overwrite if file exists at path (default: false)",
},
},
"required": ["filename", "content_base64"],
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
filename: str = kwargs.get("filename", "")
content_b64: str = kwargs.get("content_base64", "")
path: Optional[str] = kwargs.get("path")
mime_type: Optional[str] = kwargs.get("mime_type")
overwrite: bool = kwargs.get("overwrite", False)
if not filename:
return ErrorResponse(
message="Please provide a filename",
session_id=session_id,
)
if not content_b64:
return ErrorResponse(
message="Please provide content_base64",
session_id=session_id,
)
# Decode content
try:
content = base64.b64decode(content_b64)
except Exception:
return ErrorResponse(
message="Invalid base64-encoded content",
session_id=session_id,
)
# Check size
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
return ErrorResponse(
message=f"File too large. Maximum size is {Config().max_file_size_mb}MB",
session_id=session_id,
)
try:
# Virus scan
await scan_content_safe(content, filename=filename)
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
file_record = await manager.write_file(
content=content,
filename=filename,
path=path,
mime_type=mime_type,
overwrite=overwrite,
)
return WorkspaceWriteResponse(
file_id=file_record.id,
name=file_record.name,
path=file_record.path,
size_bytes=file_record.sizeBytes,
message=f"Successfully wrote file: {file_record.name}",
session_id=session_id,
)
except ValueError as e:
return ErrorResponse(
message=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error writing workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to write workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)
class DeleteWorkspaceFileTool(BaseTool):
"""Tool for deleting files from workspace."""
@property
def name(self) -> str:
return "delete_workspace_file"
@property
def description(self) -> str:
return (
"Delete a file from the user's workspace. "
"Specify either file_id or path to identify the file. "
"Paths are scoped to the current session by default. "
"Use /sessions/<session_id>/... for cross-session access."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"file_id": {
"type": "string",
"description": "The file's unique ID (from list_workspace_files)",
},
"path": {
"type": "string",
"description": (
"The virtual file path (e.g., '/documents/report.pdf'). "
"Scoped to current session by default."
),
},
},
"required": [], # At least one must be provided
}
@property
def requires_auth(self) -> bool:
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
session_id = session.session_id
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
file_id: Optional[str] = kwargs.get("file_id")
path: Optional[str] = kwargs.get("path")
if not file_id and not path:
return ErrorResponse(
message="Please provide either file_id or path",
session_id=session_id,
)
try:
workspace = await get_or_create_workspace(user_id)
# Pass session_id for session-scoped file access
manager = WorkspaceManager(user_id, workspace.id, session_id)
# Determine the file_id to delete
target_file_id: str
if file_id:
target_file_id = file_id
else:
# path is guaranteed to be non-None here due to the check above
assert path is not None
file_info = await manager.get_file_info_by_path(path)
if file_info is None:
return ErrorResponse(
message=f"File not found at path: {path}",
session_id=session_id,
)
target_file_id = file_info.id
success = await manager.delete_file(target_file_id)
if not success:
return ErrorResponse(
message=f"File not found: {target_file_id}",
session_id=session_id,
)
return WorkspaceDeleteResponse(
file_id=target_file_id,
success=True,
message="File deleted successfully",
session_id=session_id,
)
except Exception as e:
logger.error(f"Error deleting workspace file: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to delete workspace file: {str(e)}",
error=str(e),
session_id=session_id,
)

View File

@@ -0,0 +1 @@
# Workspace API feature module

View File

@@ -0,0 +1,122 @@
"""
Workspace API routes for managing user file storage.
"""
import logging
import re
from typing import Annotated
from urllib.parse import quote
import fastapi
from autogpt_libs.auth.dependencies import get_user_id, requires_user
from fastapi.responses import Response
from backend.data.workspace import get_workspace, get_workspace_file
from backend.util.workspace_storage import get_workspace_storage
def _sanitize_filename_for_header(filename: str) -> str:
"""
Sanitize filename for Content-Disposition header to prevent header injection.
Removes/replaces characters that could break the header or inject new headers.
Uses RFC5987 encoding for non-ASCII characters.
"""
# Remove CR, LF, and null bytes (header injection prevention)
sanitized = re.sub(r"[\r\n\x00]", "", filename)
# Escape quotes
sanitized = sanitized.replace('"', '\\"')
# For non-ASCII, use RFC5987 filename* parameter
# Check if filename has non-ASCII characters
try:
sanitized.encode("ascii")
return f'attachment; filename="{sanitized}"'
except UnicodeEncodeError:
# Use RFC5987 encoding for UTF-8 filenames
encoded = quote(sanitized, safe="")
return f"attachment; filename*=UTF-8''{encoded}"
logger = logging.getLogger(__name__)
router = fastapi.APIRouter(
dependencies=[fastapi.Security(requires_user)],
)
def _create_streaming_response(content: bytes, file) -> Response:
"""Create a streaming response for file content."""
return Response(
content=content,
media_type=file.mimeType,
headers={
"Content-Disposition": _sanitize_filename_for_header(file.name),
"Content-Length": str(len(content)),
},
)
async def _create_file_download_response(file) -> Response:
"""
Create a download response for a workspace file.
Handles both local storage (direct streaming) and GCS (signed URL redirect
with fallback to streaming).
"""
storage = await get_workspace_storage()
# For local storage, stream the file directly
if file.storagePath.startswith("local://"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
# For GCS, try to redirect to signed URL, fall back to streaming
try:
url = await storage.get_download_url(file.storagePath, expires_in=300)
# If we got back an API path (fallback), stream directly instead
if url.startswith("/api/"):
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
return fastapi.responses.RedirectResponse(url=url, status_code=302)
except Exception as e:
# Log the signed URL failure with context
logger.error(
f"Failed to get signed URL for file {file.id} "
f"(storagePath={file.storagePath}): {e}",
exc_info=True,
)
# Fall back to streaming directly from GCS
try:
content = await storage.retrieve(file.storagePath)
return _create_streaming_response(content, file)
except Exception as fallback_error:
logger.error(
f"Fallback streaming also failed for file {file.id} "
f"(storagePath={file.storagePath}): {fallback_error}",
exc_info=True,
)
raise
@router.get(
"/files/{file_id}/download",
summary="Download file by ID",
)
async def download_file(
user_id: Annotated[str, fastapi.Security(get_user_id)],
file_id: str,
) -> Response:
"""
Download a file by its ID.
Returns the file content directly or redirects to a signed URL for GCS.
"""
workspace = await get_workspace(user_id)
if workspace is None:
raise fastapi.HTTPException(status_code=404, detail="Workspace not found")
file = await get_workspace_file(file_id, workspace.id)
if file is None:
raise fastapi.HTTPException(status_code=404, detail="File not found")
return await _create_file_download_response(file)

View File

@@ -32,6 +32,7 @@ import backend.api.features.postmark.postmark
import backend.api.features.store.model
import backend.api.features.store.routes
import backend.api.features.v1
import backend.api.features.workspace.routes as workspace_routes
import backend.data.block
import backend.data.db
import backend.data.graph
@@ -52,6 +53,7 @@ from backend.util.exceptions import (
)
from backend.util.feature_flag import initialize_launchdarkly, shutdown_launchdarkly
from backend.util.service import UnhealthyServiceError
from backend.util.workspace_storage import shutdown_workspace_storage
from .external.fastapi_app import external_api
from .features.analytics import router as analytics_router
@@ -124,6 +126,11 @@ async def lifespan_context(app: fastapi.FastAPI):
except Exception as e:
logger.warning(f"Error shutting down cloud storage handler: {e}")
try:
await shutdown_workspace_storage()
except Exception as e:
logger.warning(f"Error shutting down workspace storage: {e}")
await backend.data.db.disconnect()
@@ -315,6 +322,11 @@ app.include_router(
tags=["v2", "chat"],
prefix="/api/chat",
)
app.include_router(
workspace_routes.router,
tags=["workspace"],
prefix="/api/workspace",
)
app.include_router(
backend.api.features.oauth.router,
tags=["oauth"],

View File

@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -117,11 +118,13 @@ class AIImageCustomizerBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("image_url", "https://replicate.delivery/generated-image.jpg"),
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: MediaFileType(
"https://replicate.delivery/generated-image.jpg"
""
),
},
test_credentials=TEST_CREDENTIALS,
@@ -132,8 +135,7 @@ class AIImageCustomizerBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
@@ -141,10 +143,9 @@ class AIImageCustomizerBlock(Block):
processed_images = await asyncio.gather(
*(
store_media_file(
graph_exec_id=graph_exec_id,
file=img,
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
)
for img in input_data.images
)
@@ -158,7 +159,14 @@ class AIImageCustomizerBlock(Block):
aspect_ratio=input_data.aspect_ratio.value,
output_format=input_data.output_format.value,
)
yield "image_url", result
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
except Exception as e:
yield "error", str(e)

View File

@@ -6,6 +6,7 @@ from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.data.block import Block, BlockCategory, BlockSchemaInput, BlockSchemaOutput
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -13,6 +14,8 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
class ImageSize(str, Enum):
@@ -165,11 +168,13 @@ class AIImageGeneratorBlock(Block):
test_output=[
(
"image_url",
"https://replicate.delivery/generated-image.webp",
# Test output is a data URI since we now store images
lambda x: x.startswith(""
},
)
@@ -318,11 +323,24 @@ class AIImageGeneratorBlock(Block):
style_text = style_map.get(style, "")
return f"{style_text} of" if style_text else ""
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
try:
url = await self.generate_image(input_data, credentials)
if url:
yield "image_url", url
# Store the generated image to the user's workspace/execution folder
stored_url = await store_media_file(
file=MediaFileType(url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else:
yield "error", "Image generation returned an empty result."
except Exception as e:

View File

@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -21,7 +22,9 @@ from backend.data.model import (
)
from backend.integrations.providers import ProviderName
from backend.util.exceptions import BlockExecutionError
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -271,7 +274,10 @@ class AIShortformVideoCreatorBlock(Block):
"voice": Voice.LILY,
"video_style": VisualMediaType.STOCK_VIDEOS,
},
test_output=("video_url", "https://example.com/video.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -280,15 +286,21 @@ class AIShortformVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/video.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/video.mp4",
# Use data URI to avoid HTTP requests during tests
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Create a new Webhook.site URL
webhook_token, webhook_url = await self.create_webhook()
@@ -340,7 +352,13 @@ class AIShortformVideoCreatorBlock(Block):
)
video_url = await self.wait_for_video(credentials.api_key, pid)
logger.debug(f"Video ready: {video_url}")
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
class AIAdMakerVideoCreatorBlock(Block):
@@ -447,7 +465,10 @@ class AIAdMakerVideoCreatorBlock(Block):
"https://cdn.revid.ai/uploads/1747076315114-image.png",
],
},
test_output=("video_url", "https://example.com/ad.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -456,14 +477,21 @@ class AIAdMakerVideoCreatorBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/ad.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/ad.mp4",
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -531,7 +559,13 @@ class AIAdMakerVideoCreatorBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
class AIScreenshotToVideoAdBlock(Block):
@@ -626,7 +660,10 @@ class AIScreenshotToVideoAdBlock(Block):
"script": "Amazing numbers!",
"screenshot_url": "https://cdn.revid.ai/uploads/1747080376028-image.png",
},
test_output=("video_url", "https://example.com/screenshot.mp4"),
test_output=(
"video_url",
lambda x: x.startswith(("workspace://", "data:")),
),
test_mock={
"create_webhook": lambda *args, **kwargs: (
"test_uuid",
@@ -635,14 +672,21 @@ class AIScreenshotToVideoAdBlock(Block):
"create_video": lambda *args, **kwargs: {"pid": "test_pid"},
"check_video_status": lambda *args, **kwargs: {
"status": "ready",
"videoUrl": "https://example.com/screenshot.mp4",
"videoUrl": "data:video/mp4;base64,AAAA",
},
"wait_for_video": lambda *args, **kwargs: "https://example.com/screenshot.mp4",
"wait_for_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA",
},
test_credentials=TEST_CREDENTIALS,
)
async def run(self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs):
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
):
webhook_token, webhook_url = await self.create_webhook()
payload = {
@@ -710,4 +754,10 @@ class AIScreenshotToVideoAdBlock(Block):
raise RuntimeError("Failed to create video: No project ID returned")
video_url = await self.wait_for_video(credentials.api_key, pid)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url

View File

@@ -6,6 +6,7 @@ if TYPE_CHECKING:
from pydantic import SecretStr
from backend.data.execution import ExecutionContext
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -17,6 +18,8 @@ from backend.sdk import (
Requests,
SchemaField,
)
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
from ._config import bannerbear
@@ -135,15 +138,17 @@ class BannerbearTextOverlayBlock(Block):
},
test_output=[
("success", True),
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
# Output will be a workspace ref or data URI depending on context
("image_url", lambda x: x.startswith(("workspace://", "data:"))),
("uid", "test-uid-123"),
("status", "completed"),
],
test_mock={
# Use data URI to avoid HTTP requests during tests
"_make_api_request": lambda *args, **kwargs: {
"uid": "test-uid-123",
"status": "completed",
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
"image_url": "",
}
},
test_credentials=TEST_CREDENTIALS,
@@ -177,7 +182,12 @@ class BannerbearTextOverlayBlock(Block):
raise Exception(error_msg)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Build the modifications array
modifications = []
@@ -234,6 +244,18 @@ class BannerbearTextOverlayBlock(Block):
# Synchronous request - image should be ready
yield "success", True
yield "image_url", data.get("image_url", "")
# Store the generated image to workspace for persistence
image_url = data.get("image_url", "")
if image_url:
stored_url = await store_media_file(
file=MediaFileType(image_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "image_url", stored_url
else:
yield "image_url", ""
yield "uid", data.get("uid", "")
yield "status", data.get("status", "completed")

View File

@@ -9,6 +9,7 @@ from backend.data.block import (
BlockSchemaOutput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.type import MediaFileType, convert
@@ -17,10 +18,10 @@ from backend.util.type import MediaFileType, convert
class FileStoreBlock(Block):
class Input(BlockSchemaInput):
file_in: MediaFileType = SchemaField(
description="The file to store in the temporary directory, it can be a URL, data URI, or local path."
description="The file to download and store. Can be a URL (https://...), data URI, or local path."
)
base_64: bool = SchemaField(
description="Whether produce an output in base64 format (not recommended, you can pass the string path just fine accross blocks).",
description="Whether to produce output in base64 format (not recommended, you can pass the file reference across blocks).",
default=False,
advanced=True,
title="Produce Base64 Output",
@@ -28,13 +29,18 @@ class FileStoreBlock(Block):
class Output(BlockSchemaOutput):
file_out: MediaFileType = SchemaField(
description="The relative path to the stored file in the temporary directory."
description="Reference to the stored file. In CoPilot: workspace:// URI (visible in list_workspace_files). In graphs: data URI for passing to other blocks."
)
def __init__(self):
super().__init__(
id="cbb50872-625b-42f0-8203-a2ae78242d8a",
description="Stores the input file in the temporary directory.",
description=(
"Downloads and stores a file from a URL, data URI, or local path. "
"Use this to fetch images, documents, or other files for processing. "
"In CoPilot: saves to workspace (use list_workspace_files to see it). "
"In graphs: outputs a data URI to pass to other blocks."
),
categories={BlockCategory.BASIC, BlockCategory.MULTIMEDIA},
input_schema=FileStoreBlock.Input,
output_schema=FileStoreBlock.Output,
@@ -45,15 +51,18 @@ class FileStoreBlock(Block):
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "file_out", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.file_in,
user_id=user_id,
return_content=input_data.base_64,
execution_context=execution_context,
return_format=return_format,
)

View File

@@ -15,6 +15,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import APIKeyCredentials, SchemaField
from backend.util.file import store_media_file
from backend.util.request import Requests
@@ -666,8 +667,7 @@ class SendDiscordFileBlock(Block):
file: MediaFileType,
filename: str,
message_content: str,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
) -> dict:
intents = discord.Intents.default()
intents.guilds = True
@@ -731,10 +731,9 @@ class SendDiscordFileBlock(Block):
# Local file path - read from stored media file
# This would be a path from a previous block's output
stored_file = await store_media_file(
graph_exec_id=graph_exec_id,
file=file,
user_id=user_id,
return_content=True, # Get as data URI
execution_context=execution_context,
return_format="for_external_api", # Get content to send to Discord
)
# Now process as data URI
header, encoded = stored_file.split(",", 1)
@@ -781,8 +780,7 @@ class SendDiscordFileBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
@@ -793,8 +791,7 @@ class SendDiscordFileBlock(Block):
file=input_data.file,
filename=input_data.filename,
message_content=input_data.message_content,
graph_exec_id=graph_exec_id,
user_id=user_id,
execution_context=execution_context,
)
yield "status", result.get("status", "Unknown error")

View File

@@ -17,8 +17,11 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.request import ClientResponseError, Requests
from backend.util.type import MediaFileType
logger = logging.getLogger(__name__)
@@ -64,9 +67,13 @@ class AIVideoGeneratorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[("video_url", "https://fal.media/files/example/video.mp4")],
test_output=[
# Output will be a workspace ref or data URI depending on context
("video_url", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
"generate_video": lambda *args, **kwargs: "https://fal.media/files/example/video.mp4"
# Use data URI to avoid HTTP requests during tests
"generate_video": lambda *args, **kwargs: "data:video/mp4;base64,AAAA"
},
)
@@ -208,11 +215,22 @@ class AIVideoGeneratorBlock(Block):
raise RuntimeError(f"API request failed: {str(e)}")
async def run(
self, input_data: Input, *, credentials: FalCredentials, **kwargs
self,
input_data: Input,
*,
credentials: FalCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
video_url = await self.generate_video(input_data, credentials)
yield "video_url", video_url
# Store the generated video to the user's workspace for persistence
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
except Exception as e:
error_message = str(e)
yield "error", error_message

View File

@@ -12,6 +12,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -121,10 +122,12 @@ class AIImageEditorBlock(Block):
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("output_image", "https://replicate.com/output/edited-image.png"),
# Output will be a workspace ref or data URI depending on context
("output_image", lambda x: x.startswith(("workspace://", "data:"))),
],
test_mock={
"run_model": lambda *args, **kwargs: "https://replicate.com/output/edited-image.png",
# Use data URI to avoid HTTP requests during tests
"run_model": lambda *args, **kwargs: "",
},
test_credentials=TEST_CREDENTIALS,
)
@@ -134,8 +137,7 @@ class AIImageEditorBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
result = await self.run_model(
@@ -144,20 +146,25 @@ class AIImageEditorBlock(Block):
prompt=input_data.prompt,
input_image_b64=(
await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.input_image,
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_external_api", # Get content for Replicate API
)
if input_data.input_image
else None
),
aspect_ratio=input_data.aspect_ratio.value,
seed=input_data.seed,
user_id=user_id,
graph_exec_id=graph_exec_id,
user_id=execution_context.user_id or "",
graph_exec_id=execution_context.graph_exec_id or "",
)
yield "output_image", result
# Store the generated image to the user's workspace for persistence
stored_url = await store_media_file(
file=result,
execution_context=execution_context,
return_format="for_block_output",
)
yield "output_image", stored_url
async def run_model(
self,

View File

@@ -21,6 +21,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
from backend.util.settings import Settings
@@ -95,8 +96,7 @@ def _make_mime_text(
async def create_mime_message(
input_data,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
) -> str:
"""Create a MIME message with attachments and return base64-encoded raw message."""
@@ -117,12 +117,12 @@ async def create_mime_message(
if input_data.attachments:
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -582,27 +582,25 @@ class GmailSendBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._send_email(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "result", result
async def _send_email(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to or not input_data.subject or not input_data.body:
raise ValueError(
"At least one recipient, subject, and body are required for sending an email"
)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
raw_message = await create_mime_message(input_data, execution_context)
sent_message = await asyncio.to_thread(
lambda: service.users()
.messages()
@@ -692,30 +690,28 @@ class GmailCreateDraftBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._create_draft(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "result", GmailDraftResult(
id=result["id"], message_id=result["message"]["id"], status="draft_created"
)
async def _create_draft(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to or not input_data.subject:
raise ValueError(
"At least one recipient and subject are required for creating a draft"
)
raw_message = await create_mime_message(input_data, graph_exec_id, user_id)
raw_message = await create_mime_message(input_data, execution_context)
draft = await asyncio.to_thread(
lambda: service.users()
.drafts()
@@ -1100,7 +1096,7 @@ class GmailGetThreadBlock(GmailBase):
async def _build_reply_message(
service, input_data, graph_exec_id: str, user_id: str
service, input_data, execution_context: ExecutionContext
) -> tuple[str, str]:
"""
Builds a reply MIME message for Gmail threads.
@@ -1190,12 +1186,12 @@ async def _build_reply_message(
# Handle attachments
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
@@ -1311,16 +1307,14 @@ class GmailReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
message = await self._reply(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "messageId", message["id"]
yield "threadId", message.get("threadId", input_data.threadId)
@@ -1343,11 +1337,11 @@ class GmailReplyBlock(GmailBase):
yield "email", email
async def _reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id
service, input_data, execution_context
)
# Send the message
@@ -1441,16 +1435,14 @@ class GmailDraftReplyBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
draft = await self._create_draft_reply(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "draftId", draft["id"]
yield "messageId", draft["message"]["id"]
@@ -1458,11 +1450,11 @@ class GmailDraftReplyBlock(GmailBase):
yield "status", "draft_created"
async def _create_draft_reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id
service, input_data, execution_context
)
# Create draft with proper thread association
@@ -1629,23 +1621,21 @@ class GmailForwardBlock(GmailBase):
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
result = await self._forward_message(
service,
input_data,
graph_exec_id,
user_id,
execution_context,
)
yield "messageId", result["id"]
yield "threadId", result.get("threadId", "")
yield "status", "forwarded"
async def _forward_message(
self, service, input_data: Input, graph_exec_id: str, user_id: str
self, service, input_data: Input, execution_context: ExecutionContext
) -> dict:
if not input_data.to:
raise ValueError("At least one recipient is required for forwarding")
@@ -1727,12 +1717,12 @@ To: {original_to}
# Add any additional attachments
for attach in input_data.additionalAttachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
assert execution_context.graph_exec_id # Validated by store_media_file
abs_path = get_exec_file_path(execution_context.graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())

View File

@@ -15,6 +15,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
CredentialsField,
CredentialsMetaInput,
@@ -116,10 +117,9 @@ class SendWebRequestBlock(Block):
@staticmethod
async def _prepare_files(
graph_exec_id: str,
execution_context: ExecutionContext,
files_name: str,
files: list[MediaFileType],
user_id: str,
) -> list[tuple[str, tuple[str, BytesIO, str]]]:
"""
Prepare files for the request by storing them and reading their content.
@@ -127,11 +127,16 @@ class SendWebRequestBlock(Block):
(files_name, (filename, BytesIO, mime_type))
"""
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
graph_exec_id = execution_context.graph_exec_id
if graph_exec_id is None:
raise ValueError("graph_exec_id is required for file operations")
for media in files:
# Normalise to a list so we can repeat the same key
rel_path = await store_media_file(
graph_exec_id, media, user_id, return_content=False
file=media,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_path = get_exec_file_path(graph_exec_id, rel_path)
async with aiofiles.open(abs_path, "rb") as f:
@@ -143,7 +148,7 @@ class SendWebRequestBlock(Block):
return files_payload
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
) -> BlockOutput:
# ─── Parse/normalise body ────────────────────────────────────
body = input_data.body
@@ -174,7 +179,7 @@ class SendWebRequestBlock(Block):
files_payload: list[tuple[str, tuple[str, BytesIO, str]]] = []
if use_files:
files_payload = await self._prepare_files(
graph_exec_id, input_data.files_name, input_data.files, user_id
execution_context, input_data.files_name, input_data.files
)
# Enforce body format rules
@@ -238,9 +243,8 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
self,
input_data: Input,
*,
graph_exec_id: str,
execution_context: ExecutionContext,
credentials: HostScopedCredentials,
user_id: str,
**kwargs,
) -> BlockOutput:
# Create SendWebRequestBlock.Input from our input (removing credentials field)
@@ -271,6 +275,6 @@ class SendAuthenticatedWebRequestBlock(SendWebRequestBlock):
# Use parent class run method
async for output_name, output_data in super().run(
base_input, graph_exec_id=graph_exec_id, user_id=user_id, **kwargs
base_input, execution_context=execution_context, **kwargs
):
yield output_name, output_data

View File

@@ -12,6 +12,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import store_media_file
from backend.util.mock import MockObject
@@ -462,18 +463,21 @@ class AgentFileInputBlock(AgentInputBlock):
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
if not input_data.value:
return
# Determine return format based on user preference
# for_external_api: always returns data URI (base64) - honors "Produce Base64 Output"
# for_block_output: smart format - workspace:// in CoPilot, data URI in graphs
return_format = "for_external_api" if input_data.base_64 else "for_block_output"
yield "result", await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.value,
user_id=user_id,
return_content=input_data.base_64,
execution_context=execution_context,
return_format=return_format,
)

View File

@@ -1,6 +1,6 @@
import os
import tempfile
from typing import Literal, Optional
from typing import Optional
from moviepy.audio.io.AudioFileClip import AudioFileClip
from moviepy.video.fx.Loop import Loop
@@ -13,6 +13,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util.file import MediaFileType, get_exec_file_path, store_media_file
@@ -46,18 +47,19 @@ class MediaDurationBlock(Block):
self,
input_data: Input,
*,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# 1) Store the input media locally
local_media_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.media_in,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
assert execution_context.graph_exec_id is not None
media_abspath = get_exec_file_path(
execution_context.graph_exec_id, local_media_path
)
media_abspath = get_exec_file_path(graph_exec_id, local_media_path)
# 2) Load the clip
if input_data.is_video:
@@ -88,10 +90,6 @@ class LoopVideoBlock(Block):
default=None,
ge=1,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="How to return the output video. Either a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: str = SchemaField(
@@ -111,17 +109,19 @@ class LoopVideoBlock(Block):
self,
input_data: Input,
*,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the input video locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
input_abspath = get_exec_file_path(graph_exec_id, local_video_path)
@@ -149,12 +149,11 @@ class LoopVideoBlock(Block):
looped_clip = looped_clip.with_audio(clip.audio)
looped_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# Return as data URI
# Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out
@@ -177,10 +176,6 @@ class AddAudioToVideoBlock(Block):
description="Volume scale for the newly attached audio track (1.0 = original).",
default=1.0,
)
output_return_type: Literal["file_path", "data_uri"] = SchemaField(
description="Return the final output as a relative path or base64 data URI.",
default="file_path",
)
class Output(BlockSchemaOutput):
video_out: MediaFileType = SchemaField(
@@ -200,23 +195,24 @@ class AddAudioToVideoBlock(Block):
self,
input_data: Input,
*,
node_exec_id: str,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
assert execution_context.graph_exec_id is not None
assert execution_context.node_exec_id is not None
graph_exec_id = execution_context.graph_exec_id
node_exec_id = execution_context.node_exec_id
# 1) Store the inputs locally
local_video_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.video_in,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
local_audio_path = await store_media_file(
graph_exec_id=graph_exec_id,
file=input_data.audio_in,
user_id=user_id,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
abs_temp_dir = os.path.join(tempfile.gettempdir(), "exec_file", graph_exec_id)
@@ -240,12 +236,11 @@ class AddAudioToVideoBlock(Block):
output_abspath = os.path.join(abs_temp_dir, output_filename)
final_clip.write_videofile(output_abspath, codec="libx264", audio_codec="aac")
# 5) Return either path or data URI
# 5) Return output - for_block_output returns workspace:// if available, else data URI
video_out = await store_media_file(
graph_exec_id=graph_exec_id,
file=output_filename,
user_id=user_id,
return_content=input_data.output_return_type == "data_uri",
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_out", video_out

View File

@@ -11,6 +11,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -112,8 +113,7 @@ class ScreenshotWebPageBlock(Block):
@staticmethod
async def take_screenshot(
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
url: str,
viewport_width: int,
viewport_height: int,
@@ -155,12 +155,11 @@ class ScreenshotWebPageBlock(Block):
return {
"image": await store_media_file(
graph_exec_id=graph_exec_id,
file=MediaFileType(
f"data:image/{format.value};base64,{b64encode(content).decode('utf-8')}"
),
user_id=user_id,
return_content=True,
execution_context=execution_context,
return_format="for_block_output",
)
}
@@ -169,15 +168,13 @@ class ScreenshotWebPageBlock(Block):
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
try:
screenshot_data = await self.take_screenshot(
credentials=credentials,
graph_exec_id=graph_exec_id,
user_id=user_id,
execution_context=execution_context,
url=input_data.url,
viewport_width=input_data.viewport_width,
viewport_height=input_data.viewport_height,

View File

@@ -7,6 +7,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import ContributorDetails, SchemaField
from backend.util.file import get_exec_file_path, store_media_file
from backend.util.type import MediaFileType
@@ -98,7 +99,7 @@ class ReadSpreadsheetBlock(Block):
)
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
) -> BlockOutput:
import csv
from io import StringIO
@@ -106,14 +107,16 @@ class ReadSpreadsheetBlock(Block):
# Determine data source - prefer file_input if provided, otherwise use contents
if input_data.file_input:
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
# Get full file path
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
assert execution_context.graph_exec_id # Validated by store_media_file
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -10,6 +10,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
@@ -17,7 +18,9 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
@@ -102,7 +105,7 @@ class CreateTalkingAvatarVideoBlock(Block):
test_output=[
(
"video_url",
"https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
lambda x: x.startswith(("workspace://", "data:")),
),
],
test_mock={
@@ -110,9 +113,10 @@ class CreateTalkingAvatarVideoBlock(Block):
"id": "abcd1234-5678-efgh-ijkl-mnopqrstuvwx",
"status": "created",
},
# Use data URI to avoid HTTP requests during tests
"get_clip_status": lambda *args, **kwargs: {
"status": "done",
"result_url": "https://d-id.com/api/clips/abcd1234-5678-efgh-ijkl-mnopqrstuvwx/video",
"result_url": "data:video/mp4;base64,AAAA",
},
},
test_credentials=TEST_CREDENTIALS,
@@ -138,7 +142,12 @@ class CreateTalkingAvatarVideoBlock(Block):
return response.json()
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
# Create the clip
payload = {
@@ -165,7 +174,14 @@ class CreateTalkingAvatarVideoBlock(Block):
for _ in range(input_data.max_polling_attempts):
status_response = await self.get_clip_status(credentials.api_key, clip_id)
if status_response["status"] == "done":
yield "video_url", status_response["result_url"]
# Store the generated video to the user's workspace for persistence
video_url = status_response["result_url"]
stored_url = await store_media_file(
file=MediaFileType(video_url),
execution_context=execution_context,
return_format="for_block_output",
)
yield "video_url", stored_url
return
elif status_response["status"] == "error":
raise RuntimeError(

View File

@@ -12,6 +12,7 @@ from backend.blocks.iteration import StepThroughItemsBlock
from backend.blocks.llm import AITextSummarizerBlock
from backend.blocks.text import ExtractTextInformationBlock
from backend.blocks.xml_parser import XMLParserBlock
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
@@ -233,9 +234,12 @@ class TestStoreMediaFileSecurity:
with pytest.raises(ValueError, match="File too large"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(large_data_uri),
user_id="test_user",
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
)
@patch("backend.util.file.Path")
@@ -270,9 +274,12 @@ class TestStoreMediaFileSecurity:
# Should raise an error when directory size exceeds limit
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
await store_media_file(
graph_exec_id="test",
file=MediaFileType(
"data:text/plain;base64,dGVzdA=="
), # Small test file
user_id="test_user",
execution_context=ExecutionContext(
user_id="test_user",
graph_exec_id="test",
),
return_format="for_local_processing",
)

View File

@@ -11,10 +11,22 @@ from backend.blocks.http import (
HttpMethod,
SendAuthenticatedWebRequestBlock,
)
from backend.data.execution import ExecutionContext
from backend.data.model import HostScopedCredentials
from backend.util.request import Response
def make_test_context(
graph_exec_id: str = "test-exec-id",
user_id: str = "test-user-id",
) -> ExecutionContext:
"""Helper to create test ExecutionContext."""
return ExecutionContext(
user_id=user_id,
graph_exec_id=graph_exec_id,
)
class TestHttpBlockWithHostScopedCredentials:
"""Test suite for HTTP block integration with HostScopedCredentials."""
@@ -105,8 +117,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -161,8 +172,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=wildcard_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -208,8 +218,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=non_matching_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -258,8 +267,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=exact_match_credentials,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -318,8 +326,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=auto_discovered_creds, # Execution manager found these
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -382,8 +389,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=multi_header_creds,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))
@@ -471,8 +477,7 @@ class TestHttpBlockWithHostScopedCredentials:
async for output_name, output_data in http_block.run(
input_data,
credentials=test_creds,
graph_exec_id="test-exec-id",
user_id="test-user-id",
execution_context=make_test_context(),
):
result.append((output_name, output_data))

View File

@@ -11,6 +11,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.model import SchemaField
from backend.util import json, text
from backend.util.file import get_exec_file_path, store_media_file
@@ -444,18 +445,21 @@ class FileReadBlock(Block):
)
async def run(
self, input_data: Input, *, graph_exec_id: str, user_id: str, **_kwargs
self, input_data: Input, *, execution_context: ExecutionContext, **_kwargs
) -> BlockOutput:
# Store the media file properly (handles URLs, data URIs, etc.)
stored_file_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=input_data.file_input,
return_content=False,
execution_context=execution_context,
return_format="for_local_processing",
)
# Get full file path
file_path = get_exec_file_path(graph_exec_id, stored_file_path)
# Get full file path (graph_exec_id validated by store_media_file above)
if not execution_context.graph_exec_id:
raise ValueError("execution_context.graph_exec_id is required")
file_path = get_exec_file_path(
execution_context.graph_exec_id, stored_file_path
)
if not Path(file_path).exists():
raise ValueError(f"File does not exist: {file_path}")

View File

@@ -83,12 +83,29 @@ class ExecutionContext(BaseModel):
model_config = {"extra": "ignore"}
# Execution identity
user_id: Optional[str] = None
graph_id: Optional[str] = None
graph_exec_id: Optional[str] = None
graph_version: Optional[int] = None
node_id: Optional[str] = None
node_exec_id: Optional[str] = None
# Safety settings
human_in_the_loop_safe_mode: bool = True
sensitive_action_safe_mode: bool = False
# User settings
user_timezone: str = "UTC"
# Execution hierarchy
root_execution_id: Optional[str] = None
parent_execution_id: Optional[str] = None
# Workspace
workspace_id: Optional[str] = None
session_id: Optional[str] = None
# -------------------------- Models -------------------------- #

View File

@@ -0,0 +1,276 @@
"""
Database CRUD operations for User Workspace.
This module provides functions for managing user workspaces and workspace files.
"""
import logging
from datetime import datetime, timezone
from typing import Optional
from prisma.models import UserWorkspace, UserWorkspaceFile
from prisma.types import UserWorkspaceFileWhereInput
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
async def get_or_create_workspace(user_id: str) -> UserWorkspace:
"""
Get user's workspace, creating one if it doesn't exist.
Uses upsert to handle race conditions when multiple concurrent requests
attempt to create a workspace for the same user.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance
"""
workspace = await UserWorkspace.prisma().upsert(
where={"userId": user_id},
data={
"create": {"userId": user_id},
"update": {}, # No updates needed if exists
},
)
return workspace
async def get_workspace(user_id: str) -> Optional[UserWorkspace]:
"""
Get user's workspace if it exists.
Args:
user_id: The user's ID
Returns:
UserWorkspace instance or None
"""
return await UserWorkspace.prisma().find_unique(where={"userId": user_id})
async def create_workspace_file(
workspace_id: str,
file_id: str,
name: str,
path: str,
storage_path: str,
mime_type: str,
size_bytes: int,
checksum: Optional[str] = None,
metadata: Optional[dict] = None,
) -> UserWorkspaceFile:
"""
Create a new workspace file record.
Args:
workspace_id: The workspace ID
file_id: The file ID (same as used in storage path for consistency)
name: User-visible filename
path: Virtual path (e.g., "/documents/report.pdf")
storage_path: Actual storage path (GCS or local)
mime_type: MIME type of the file
size_bytes: File size in bytes
checksum: Optional SHA256 checksum
metadata: Optional additional metadata
Returns:
Created UserWorkspaceFile instance
"""
# Normalize path to start with /
if not path.startswith("/"):
path = f"/{path}"
file = await UserWorkspaceFile.prisma().create(
data={
"id": file_id,
"workspaceId": workspace_id,
"name": name,
"path": path,
"storagePath": storage_path,
"mimeType": mime_type,
"sizeBytes": size_bytes,
"checksum": checksum,
"metadata": SafeJson(metadata or {}),
}
)
logger.info(
f"Created workspace file {file.id} at path {path} "
f"in workspace {workspace_id}"
)
return file
async def get_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by ID.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
UserWorkspaceFile instance or None
"""
where_clause: dict = {"id": file_id, "isDeleted": False}
if workspace_id:
where_clause["workspaceId"] = workspace_id
return await UserWorkspaceFile.prisma().find_first(where=where_clause)
async def get_workspace_file_by_path(
workspace_id: str,
path: str,
) -> Optional[UserWorkspaceFile]:
"""
Get a workspace file by its virtual path.
Args:
workspace_id: The workspace ID
path: Virtual path
Returns:
UserWorkspaceFile instance or None
"""
# Normalize path
if not path.startswith("/"):
path = f"/{path}"
return await UserWorkspaceFile.prisma().find_first(
where={
"workspaceId": workspace_id,
"path": path,
"isDeleted": False,
}
)
async def list_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
limit: Optional[int] = None,
offset: int = 0,
) -> list[UserWorkspaceFile]:
"""
List files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/documents/")
include_deleted: Whether to include soft-deleted files
limit: Maximum number of files to return
offset: Number of files to skip
Returns:
List of UserWorkspaceFile instances
"""
where_clause: UserWorkspaceFileWhereInput = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().find_many(
where=where_clause,
order={"createdAt": "desc"},
take=limit,
skip=offset,
)
async def count_workspace_files(
workspace_id: str,
path_prefix: Optional[str] = None,
include_deleted: bool = False,
) -> int:
"""
Count files in a workspace.
Args:
workspace_id: The workspace ID
path_prefix: Optional path prefix to filter (e.g., "/sessions/abc123/")
include_deleted: Whether to include soft-deleted files
Returns:
Number of files
"""
where_clause: dict = {"workspaceId": workspace_id}
if not include_deleted:
where_clause["isDeleted"] = False
if path_prefix:
# Normalize prefix
if not path_prefix.startswith("/"):
path_prefix = f"/{path_prefix}"
where_clause["path"] = {"startswith": path_prefix}
return await UserWorkspaceFile.prisma().count(where=where_clause)
async def soft_delete_workspace_file(
file_id: str,
workspace_id: Optional[str] = None,
) -> Optional[UserWorkspaceFile]:
"""
Soft-delete a workspace file.
The path is modified to include a deletion timestamp to free up the original
path for new files while preserving the record for potential recovery.
Args:
file_id: The file ID
workspace_id: Optional workspace ID for validation
Returns:
Updated UserWorkspaceFile instance or None if not found
"""
# First verify the file exists and belongs to workspace
file = await get_workspace_file(file_id, workspace_id)
if file is None:
return None
deleted_at = datetime.now(timezone.utc)
# Modify path to free up the unique constraint for new files at original path
# Format: {original_path}__deleted__{timestamp}
deleted_path = f"{file.path}__deleted__{int(deleted_at.timestamp())}"
updated = await UserWorkspaceFile.prisma().update(
where={"id": file_id},
data={
"isDeleted": True,
"deletedAt": deleted_at,
"path": deleted_path,
},
)
logger.info(f"Soft-deleted workspace file {file_id}")
return updated
async def get_workspace_total_size(workspace_id: str) -> int:
"""
Get the total size of all files in a workspace.
Args:
workspace_id: The workspace ID
Returns:
Total size in bytes
"""
files = await list_workspace_files(workspace_id)
return sum(file.sizeBytes for file in files)

View File

@@ -236,7 +236,14 @@ async def execute_node(
input_size = len(input_data_str)
log_metadata.debug("Executed node with input", input=input_data_str)
# Create node-specific execution context to avoid race conditions
# (multiple nodes can execute concurrently and would otherwise mutate shared state)
execution_context = execution_context.model_copy(
update={"node_id": node_id, "node_exec_id": node_exec_id}
)
# Inject extra execution arguments for the blocks via kwargs
# Keep individual kwargs for backwards compatibility with existing blocks
extra_exec_kwargs: dict = {
"graph_id": graph_id,
"graph_version": graph_version,

View File

@@ -892,11 +892,19 @@ async def add_graph_execution(
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
execution_context = ExecutionContext(
# Execution identity
user_id=user_id,
graph_id=graph_id,
graph_exec_id=graph_exec.id,
graph_version=graph_exec.graph_version,
# Safety settings
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
# User settings
user_timezone=(
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
),
# Execution hierarchy
root_execution_id=graph_exec.id,
)

View File

@@ -348,6 +348,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = [] # Add this to avoid AttributeError
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
mock_graph_exec.graph_version = graph_version
mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock()
# Mock the queue and event bus
@@ -434,6 +435,9 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
# Create a second mock execution for the sanity check
mock_graph_exec_2 = mocker.MagicMock(spec=GraphExecutionWithNodes)
mock_graph_exec_2.id = "execution-id-456"
mock_graph_exec_2.node_executions = []
mock_graph_exec_2.status = ExecutionStatus.QUEUED
mock_graph_exec_2.graph_version = graph_version
mock_graph_exec_2.to_graph_execution_entry.return_value = mocker.MagicMock()
# Reset mocks and set up for second call
@@ -614,6 +618,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = []
mock_graph_exec.status = ExecutionStatus.QUEUED # Required for race condition check
mock_graph_exec.graph_version = graph_version
# Track what's passed to to_graph_execution_entry
captured_kwargs = {}

View File

@@ -13,6 +13,7 @@ import aiohttp
from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage
from backend.util.gcs_utils import download_with_fresh_session, generate_signed_url
from backend.util.settings import Config
logger = logging.getLogger(__name__)
@@ -251,7 +252,7 @@ class CloudStorageHandler:
f"in_task: {current_task is not None}"
)
# Parse bucket and blob name from path
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
parts = path.split("/", 1)
if len(parts) != 2:
raise ValueError(f"Invalid GCS path: {path}")
@@ -261,50 +262,19 @@ class CloudStorageHandler:
# Authorization check
self._validate_file_access(blob_name, user_id, graph_exec_id)
# Use a fresh client for each download to avoid session issues
# This is less efficient but more reliable with the executor's event loop
logger.info("[CloudStorage] Creating fresh GCS client for download")
# Create a new session specifically for this download
session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=10, force_close=True)
logger.info(
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
)
async_client = None
try:
# Create a new GCS client with the fresh session
async_client = async_gcs_storage.Storage(session=session)
logger.info(
f"[CloudStorage] About to download from GCS - bucket: {bucket_name}, blob: {blob_name}"
)
# Download content using the fresh client
content = await async_client.download(bucket_name, blob_name)
content = await download_with_fresh_session(bucket_name, blob_name)
logger.info(
f"[CloudStorage] GCS download successful - size: {len(content)} bytes"
)
# Clean up
await async_client.close()
await session.close()
return content
except FileNotFoundError:
raise
except Exception as e:
# Always try to clean up
if async_client is not None:
try:
await async_client.close()
except Exception as cleanup_error:
logger.warning(
f"[CloudStorage] Error closing GCS client: {cleanup_error}"
)
try:
await session.close()
except Exception as cleanup_error:
logger.warning(f"[CloudStorage] Error closing session: {cleanup_error}")
# Log the specific error for debugging
logger.error(
f"[CloudStorage] GCS download failed - error: {str(e)}, "
@@ -319,10 +289,6 @@ class CloudStorageHandler:
f"current_task: {current_task}, "
f"bucket: {bucket_name}, blob: redacted for privacy"
)
# Convert gcloud-aio exceptions to standard ones
if "404" in str(e) or "Not Found" in str(e):
raise FileNotFoundError(f"File not found: gcs://{path}")
raise
def _validate_file_access(
@@ -445,8 +411,7 @@ class CloudStorageHandler:
graph_exec_id: str | None = None,
) -> str:
"""Generate signed URL for GCS with authorization."""
# Parse bucket and blob name from path
# Parse bucket and blob name from path (path already has gcs:// prefix removed)
parts = path.split("/", 1)
if len(parts) != 2:
raise ValueError(f"Invalid GCS path: {path}")
@@ -456,21 +421,11 @@ class CloudStorageHandler:
# Authorization check
self._validate_file_access(blob_name, user_id, graph_exec_id)
# Use sync client for signed URLs since gcloud-aio doesn't support them
sync_client = self._get_sync_gcs_client()
bucket = sync_client.bucket(bucket_name)
blob = bucket.blob(blob_name)
# Generate signed URL asynchronously using sync client
url = await asyncio.to_thread(
blob.generate_signed_url,
version="v4",
expiration=datetime.now(timezone.utc) + timedelta(hours=expiration_hours),
method="GET",
return await generate_signed_url(
sync_client, bucket_name, blob_name, expiration_hours * 3600
)
return url
async def delete_expired_files(self, provider: str = "gcs") -> int:
"""
Delete files that have passed their expiration time.

View File

@@ -5,13 +5,26 @@ import shutil
import tempfile
import uuid
from pathlib import Path
from typing import TYPE_CHECKING, Literal
from urllib.parse import urlparse
from backend.util.cloud_storage import get_cloud_storage_handler
from backend.util.request import Requests
from backend.util.settings import Config
from backend.util.type import MediaFileType
from backend.util.virus_scanner import scan_content_safe
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
# Return format options for store_media_file
# - "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
# - "for_external_api": Returns data URI (base64) - use when sending content to external APIs
# - "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
MediaReturnFormat = Literal[
"for_local_processing", "for_external_api", "for_block_output"
]
TEMP_DIR = Path(tempfile.gettempdir()).resolve()
# Maximum filename length (conservative limit for most filesystems)
@@ -67,42 +80,56 @@ def clean_exec_files(graph_exec_id: str, file: str = "") -> None:
async def store_media_file(
graph_exec_id: str,
file: MediaFileType,
user_id: str,
return_content: bool = False,
execution_context: "ExecutionContext",
*,
return_format: MediaReturnFormat,
) -> MediaFileType:
"""
Safely handle 'file' (a data URI, a URL, or a local path relative to {temp}/exec_file/{exec_id}),
placing or verifying it under:
Safely handle 'file' (a data URI, a URL, a workspace:// reference, or a local path
relative to {temp}/exec_file/{exec_id}), placing or verifying it under:
{tempdir}/exec_file/{exec_id}/...
If 'return_content=True', return a data URI (data:<mime>;base64,<content>).
Otherwise, returns the file media path relative to the exec_id folder.
For each MediaFileType input:
- Data URI: decode and store locally
- URL: download and store locally
- workspace:// reference: read from workspace, store locally
- Local path: verify it exists in exec_file directory
For each MediaFileType type:
- Data URI:
-> decode and store in a new random file in that folder
- URL:
-> download and store in that folder
- Local path:
-> interpret as relative to that folder; verify it exists
(no copying, as it's presumably already there).
We realpath-check so no symlink or '..' can escape the folder.
Return format options:
- "for_local_processing": Returns local file path - use with ffmpeg, MoviePy, PIL, etc.
- "for_external_api": Returns data URI (base64) - use when sending to external APIs
- "for_block_output": Returns best format for output - workspace:// in CoPilot, data URI in graphs
:param graph_exec_id: The unique ID of the graph execution.
:param file: Data URI, URL, or local (relative) path.
:param return_content: If True, return a data URI of the file content.
If False, return the *relative* path inside the exec_id folder.
:return: The requested result: data URI or relative path of the media.
:param file: Data URI, URL, workspace://, or local (relative) path.
:param execution_context: ExecutionContext with user_id, graph_exec_id, workspace_id.
:param return_format: What to return: "for_local_processing", "for_external_api", or "for_block_output".
:return: The requested result based on return_format.
"""
# Extract values from execution_context
graph_exec_id = execution_context.graph_exec_id
user_id = execution_context.user_id
if not graph_exec_id:
raise ValueError("execution_context.graph_exec_id is required")
if not user_id:
raise ValueError("execution_context.user_id is required")
# Create workspace_manager if we have workspace_id (with session scoping)
# Import here to avoid circular import (file.py → workspace.py → data → blocks → file.py)
from backend.util.workspace import WorkspaceManager
workspace_manager: WorkspaceManager | None = None
if execution_context.workspace_id:
workspace_manager = WorkspaceManager(
user_id, execution_context.workspace_id, execution_context.session_id
)
# Build base path
base_path = Path(get_exec_file_path(graph_exec_id, ""))
base_path.mkdir(parents=True, exist_ok=True)
# Security fix: Add disk space limits to prevent DoS
MAX_FILE_SIZE = 100 * 1024 * 1024 # 100MB per file
MAX_FILE_SIZE_BYTES = Config().max_file_size_mb * 1024 * 1024
MAX_TOTAL_DISK_USAGE = 1024 * 1024 * 1024 # 1GB total per execution directory
# Check total disk usage in base_path
@@ -142,9 +169,57 @@ async def store_media_file(
"""
return str(absolute_path.relative_to(base))
# Check if this is a cloud storage path
# Get cloud storage handler for checking cloud paths
cloud_storage = await get_cloud_storage_handler()
if cloud_storage.is_cloud_path(file):
# Track if the input came from workspace (don't re-save it)
is_from_workspace = file.startswith("workspace://")
# Check if this is a workspace file reference
if is_from_workspace:
if workspace_manager is None:
raise ValueError(
"Workspace file reference requires workspace context. "
"This file type is only available in CoPilot sessions."
)
# Parse workspace reference
# workspace://abc123 - by file ID
# workspace:///path/to/file.txt - by virtual path
file_ref = file[12:] # Remove "workspace://"
if file_ref.startswith("/"):
# Path reference
workspace_content = await workspace_manager.read_file(file_ref)
file_info = await workspace_manager.get_file_info_by_path(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
else:
# ID reference
workspace_content = await workspace_manager.read_file_by_id(file_ref)
file_info = await workspace_manager.get_file_info(file_ref)
filename = sanitize_filename(
file_info.name if file_info else f"{uuid.uuid4()}.bin"
)
try:
target_path = _ensure_inside_base(base_path / filename, base_path)
except OSError as e:
raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Check file size limit
if len(workspace_content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(workspace_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Virus scan the workspace content before writing locally
await scan_content_safe(workspace_content, filename=filename)
target_path.write_bytes(workspace_content)
# Check if this is a cloud storage path
elif cloud_storage.is_cloud_path(file):
# Download from cloud storage and store locally
cloud_content = await cloud_storage.retrieve_file(
file, user_id=user_id, graph_exec_id=graph_exec_id
@@ -159,9 +234,9 @@ async def store_media_file(
raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Check file size limit
if len(cloud_content) > MAX_FILE_SIZE:
if len(cloud_content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE} bytes"
f"File too large: {len(cloud_content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Virus scan the cloud content before writing locally
@@ -189,9 +264,9 @@ async def store_media_file(
content = base64.b64decode(b64_content)
# Check file size limit
if len(content) > MAX_FILE_SIZE:
if len(content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE} bytes"
f"File too large: {len(content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Virus scan the base64 content before writing
@@ -199,23 +274,31 @@ async def store_media_file(
target_path.write_bytes(content)
elif file.startswith(("http://", "https://")):
# URL
# URL - download first to get Content-Type header
resp = await Requests().get(file)
# Check file size limit
if len(resp.content) > MAX_FILE_SIZE_BYTES:
raise ValueError(
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE_BYTES} bytes"
)
# Extract filename from URL path
parsed_url = urlparse(file)
filename = sanitize_filename(Path(parsed_url.path).name or f"{uuid.uuid4()}")
# If filename lacks extension, add one from Content-Type header
if "." not in filename:
content_type = resp.headers.get("Content-Type", "").split(";")[0].strip()
if content_type:
ext = _extension_from_mime(content_type)
filename = f"{filename}{ext}"
try:
target_path = _ensure_inside_base(base_path / filename, base_path)
except OSError as e:
raise ValueError(f"Invalid file path '{filename}': {e}") from e
# Download and save
resp = await Requests().get(file)
# Check file size limit
if len(resp.content) > MAX_FILE_SIZE:
raise ValueError(
f"File too large: {len(resp.content)} bytes > {MAX_FILE_SIZE} bytes"
)
# Virus scan the downloaded content before writing
await scan_content_safe(resp.content, filename=filename)
target_path.write_bytes(resp.content)
@@ -230,12 +313,44 @@ async def store_media_file(
if not target_path.is_file():
raise ValueError(f"Local file does not exist: {target_path}")
# Return result
if return_content:
return MediaFileType(_file_to_data_uri(target_path))
else:
# Return based on requested format
if return_format == "for_local_processing":
# Use when processing files locally with tools like ffmpeg, MoviePy, PIL
# Returns: relative path in exec_file directory (e.g., "image.png")
return MediaFileType(_strip_base_prefix(target_path, base_path))
elif return_format == "for_external_api":
# Use when sending content to external APIs that need base64
# Returns: data URI (e.g., "...")
return MediaFileType(_file_to_data_uri(target_path))
elif return_format == "for_block_output":
# Use when returning output from a block to user/next block
# Returns: workspace:// ref (CoPilot) or data URI (graph execution)
if workspace_manager is None:
# No workspace available (graph execution without CoPilot)
# Fallback to data URI so the content can still be used/displayed
return MediaFileType(_file_to_data_uri(target_path))
# Don't re-save if input was already from workspace
if is_from_workspace:
# Return original workspace reference
return MediaFileType(file)
# Save new content to workspace
content = target_path.read_bytes()
filename = target_path.name
file_record = await workspace_manager.write_file(
content=content,
filename=filename,
overwrite=True,
)
return MediaFileType(f"workspace://{file_record.id}")
else:
raise ValueError(f"Invalid return_format: {return_format}")
def get_dir_size(path: Path) -> int:
"""Get total size of directory."""

View File

@@ -7,10 +7,22 @@ from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.data.execution import ExecutionContext
from backend.util.file import store_media_file
from backend.util.type import MediaFileType
def make_test_context(
graph_exec_id: str = "test-exec-123",
user_id: str = "test-user-123",
) -> ExecutionContext:
"""Helper to create test ExecutionContext."""
return ExecutionContext(
user_id=user_id,
graph_exec_id=graph_exec_id,
)
class TestFileCloudIntegration:
"""Test cases for cloud storage integration in file utilities."""
@@ -70,10 +82,9 @@ class TestFileCloudIntegration:
mock_path_class.side_effect = path_constructor
result = await store_media_file(
graph_exec_id,
MediaFileType(cloud_path),
"test-user-123",
return_content=False,
file=MediaFileType(cloud_path),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_local_processing",
)
# Verify cloud storage operations
@@ -144,10 +155,9 @@ class TestFileCloudIntegration:
mock_path_obj.name = "image.png"
with patch("backend.util.file.Path", return_value=mock_path_obj):
result = await store_media_file(
graph_exec_id,
MediaFileType(cloud_path),
"test-user-123",
return_content=True,
file=MediaFileType(cloud_path),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_external_api",
)
# Verify result is a data URI
@@ -198,10 +208,9 @@ class TestFileCloudIntegration:
mock_resolved_path.relative_to.return_value = Path("test-uuid-789.txt")
await store_media_file(
graph_exec_id,
MediaFileType(data_uri),
"test-user-123",
return_content=False,
file=MediaFileType(data_uri),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_local_processing",
)
# Verify cloud handler was checked but not used for retrieval
@@ -234,5 +243,7 @@ class TestFileCloudIntegration:
FileNotFoundError, match="File not found in cloud storage"
):
await store_media_file(
graph_exec_id, MediaFileType(cloud_path), "test-user-123"
file=MediaFileType(cloud_path),
execution_context=make_test_context(graph_exec_id=graph_exec_id),
return_format="for_local_processing",
)

View File

@@ -0,0 +1,108 @@
"""
Shared GCS utilities for workspace and cloud storage backends.
This module provides common functionality for working with Google Cloud Storage,
including path parsing, client management, and signed URL generation.
"""
import asyncio
import logging
from datetime import datetime, timedelta, timezone
import aiohttp
from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage
logger = logging.getLogger(__name__)
def parse_gcs_path(path: str) -> tuple[str, str]:
"""
Parse a GCS path in the format 'gcs://bucket/blob' to (bucket, blob).
Args:
path: GCS path string (e.g., "gcs://my-bucket/path/to/file")
Returns:
Tuple of (bucket_name, blob_name)
Raises:
ValueError: If the path format is invalid
"""
if not path.startswith("gcs://"):
raise ValueError(f"Invalid GCS path: {path}")
path_without_prefix = path[6:] # Remove "gcs://"
parts = path_without_prefix.split("/", 1)
if len(parts) != 2:
raise ValueError(f"Invalid GCS path format: {path}")
return parts[0], parts[1]
async def download_with_fresh_session(bucket: str, blob: str) -> bytes:
"""
Download file content using a fresh session.
This approach avoids event loop issues that can occur when reusing
sessions across different async contexts (e.g., in executors).
Args:
bucket: GCS bucket name
blob: Blob path within the bucket
Returns:
File content as bytes
Raises:
FileNotFoundError: If the file doesn't exist
"""
session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=10, force_close=True)
)
client: async_gcs_storage.Storage | None = None
try:
client = async_gcs_storage.Storage(session=session)
content = await client.download(bucket, blob)
return content
except Exception as e:
if "404" in str(e) or "Not Found" in str(e):
raise FileNotFoundError(f"File not found: gcs://{bucket}/{blob}")
raise
finally:
if client:
try:
await client.close()
except Exception:
pass # Best-effort cleanup
await session.close()
async def generate_signed_url(
sync_client: gcs_storage.Client,
bucket_name: str,
blob_name: str,
expires_in: int,
) -> str:
"""
Generate a signed URL for temporary access to a GCS file.
Uses asyncio.to_thread() to run the sync operation without blocking.
Args:
sync_client: Sync GCS client with service account credentials
bucket_name: GCS bucket name
blob_name: Blob path within the bucket
expires_in: URL expiration time in seconds
Returns:
Signed URL string
"""
bucket = sync_client.bucket(bucket_name)
blob = bucket.blob(blob_name)
return await asyncio.to_thread(
blob.generate_signed_url,
version="v4",
expiration=datetime.now(timezone.utc) + timedelta(seconds=expires_in),
method="GET",
)

View File

@@ -263,6 +263,12 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="The name of the Google Cloud Storage bucket for media files",
)
workspace_storage_dir: str = Field(
default="",
description="Local directory for workspace file storage when GCS is not configured. "
"If empty, defaults to {app_data}/workspaces. Used for self-hosted deployments.",
)
reddit_user_agent: str = Field(
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
description="The user agent for the Reddit API",
@@ -389,6 +395,13 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
description="Maximum file size in MB for file uploads (1-1024 MB)",
)
max_file_size_mb: int = Field(
default=100,
ge=1,
le=1024,
description="Maximum file size in MB for workspace files (1-1024 MB)",
)
# AutoMod configuration
automod_enabled: bool = Field(
default=False,

View File

@@ -140,14 +140,29 @@ async def execute_block_test(block: Block):
setattr(block, mock_name, mock_obj)
# Populate credentials argument(s)
# Generate IDs for execution context
graph_id = str(uuid.uuid4())
node_id = str(uuid.uuid4())
graph_exec_id = str(uuid.uuid4())
node_exec_id = str(uuid.uuid4())
user_id = str(uuid.uuid4())
graph_version = 1 # Default version for tests
extra_exec_kwargs: dict = {
"graph_id": str(uuid.uuid4()),
"node_id": str(uuid.uuid4()),
"graph_exec_id": str(uuid.uuid4()),
"node_exec_id": str(uuid.uuid4()),
"user_id": str(uuid.uuid4()),
"graph_version": 1, # Default version for tests
"execution_context": ExecutionContext(),
"graph_id": graph_id,
"node_id": node_id,
"graph_exec_id": graph_exec_id,
"node_exec_id": node_exec_id,
"user_id": user_id,
"graph_version": graph_version,
"execution_context": ExecutionContext(
user_id=user_id,
graph_id=graph_id,
graph_exec_id=graph_exec_id,
graph_version=graph_version,
node_id=node_id,
node_exec_id=node_exec_id,
),
}
input_model = cast(type[BlockSchema], block.input_schema)

View File

@@ -0,0 +1,419 @@
"""
WorkspaceManager for managing user workspace file operations.
This module provides a high-level interface for workspace file operations,
combining the storage backend and database layer.
"""
import logging
import mimetypes
import uuid
from typing import Optional
from prisma.errors import UniqueViolationError
from prisma.models import UserWorkspaceFile
from backend.data.workspace import (
count_workspace_files,
create_workspace_file,
get_workspace_file,
get_workspace_file_by_path,
list_workspace_files,
soft_delete_workspace_file,
)
from backend.util.settings import Config
from backend.util.workspace_storage import compute_file_checksum, get_workspace_storage
logger = logging.getLogger(__name__)
class WorkspaceManager:
"""
Manages workspace file operations.
Combines storage backend operations with database record management.
Supports session-scoped file segmentation where files are stored in
session-specific virtual paths: /sessions/{session_id}/{filename}
"""
def __init__(
self, user_id: str, workspace_id: str, session_id: Optional[str] = None
):
"""
Initialize WorkspaceManager.
Args:
user_id: The user's ID
workspace_id: The workspace ID
session_id: Optional session ID for session-scoped file access
"""
self.user_id = user_id
self.workspace_id = workspace_id
self.session_id = session_id
# Session path prefix for file isolation
self.session_path = f"/sessions/{session_id}" if session_id else ""
def _resolve_path(self, path: str) -> str:
"""
Resolve a path, defaulting to session folder if session_id is set.
Cross-session access is allowed by explicitly using /sessions/other-session-id/...
Args:
path: Virtual path (e.g., "/file.txt" or "/sessions/abc123/file.txt")
Returns:
Resolved path with session prefix if applicable
"""
# If path explicitly references a session folder, use it as-is
if path.startswith("/sessions/"):
return path
# If we have a session context, prepend session path
if self.session_path:
# Normalize the path
if not path.startswith("/"):
path = f"/{path}"
return f"{self.session_path}{path}"
# No session context, use path as-is
return path if path.startswith("/") else f"/{path}"
def _get_effective_path(
self, path: Optional[str], include_all_sessions: bool
) -> Optional[str]:
"""
Get effective path for list/count operations based on session context.
Args:
path: Optional path prefix to filter
include_all_sessions: If True, don't apply session scoping
Returns:
Effective path prefix for database query
"""
if include_all_sessions:
# Normalize path to ensure leading slash (stored paths are normalized)
if path is not None and not path.startswith("/"):
return f"/{path}"
return path
elif path is not None:
# Resolve the provided path with session scoping
return self._resolve_path(path)
elif self.session_path:
# Default to session folder with trailing slash to prevent prefix collisions
# e.g., "/sessions/abc" should not match "/sessions/abc123"
return self.session_path.rstrip("/") + "/"
else:
# No session context, use path as-is
return path
async def read_file(self, path: str) -> bytes:
"""
Read file from workspace by virtual path.
When session_id is set, paths are resolved relative to the session folder
unless they explicitly reference /sessions/...
Args:
path: Virtual path (e.g., "/documents/report.pdf")
Returns:
File content as bytes
Raises:
FileNotFoundError: If file doesn't exist
"""
resolved_path = self._resolve_path(path)
file = await get_workspace_file_by_path(self.workspace_id, resolved_path)
if file is None:
raise FileNotFoundError(f"File not found at path: {resolved_path}")
storage = await get_workspace_storage()
return await storage.retrieve(file.storagePath)
async def read_file_by_id(self, file_id: str) -> bytes:
"""
Read file from workspace by file ID.
Args:
file_id: The file's ID
Returns:
File content as bytes
Raises:
FileNotFoundError: If file doesn't exist
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
raise FileNotFoundError(f"File not found: {file_id}")
storage = await get_workspace_storage()
return await storage.retrieve(file.storagePath)
async def write_file(
self,
content: bytes,
filename: str,
path: Optional[str] = None,
mime_type: Optional[str] = None,
overwrite: bool = False,
) -> UserWorkspaceFile:
"""
Write file to workspace.
When session_id is set, files are written to /sessions/{session_id}/...
by default. Use explicit /sessions/... paths for cross-session access.
Args:
content: File content as bytes
filename: Filename for the file
path: Virtual path (defaults to "/{filename}", session-scoped if session_id set)
mime_type: MIME type (auto-detected if not provided)
overwrite: Whether to overwrite existing file at path
Returns:
Created UserWorkspaceFile instance
Raises:
ValueError: If file exceeds size limit or path already exists
"""
# Enforce file size limit
max_file_size = Config().max_file_size_mb * 1024 * 1024
if len(content) > max_file_size:
raise ValueError(
f"File too large: {len(content)} bytes exceeds "
f"{Config().max_file_size_mb}MB limit"
)
# Determine path with session scoping
if path is None:
path = f"/{filename}"
elif not path.startswith("/"):
path = f"/{path}"
# Resolve path with session prefix
path = self._resolve_path(path)
# Check if file exists at path (only error for non-overwrite case)
# For overwrite=True, we let the write proceed and handle via UniqueViolationError
# This ensures the new file is written to storage BEFORE the old one is deleted,
# preventing data loss if the new write fails
if not overwrite:
existing = await get_workspace_file_by_path(self.workspace_id, path)
if existing is not None:
raise ValueError(f"File already exists at path: {path}")
# Auto-detect MIME type if not provided
if mime_type is None:
mime_type, _ = mimetypes.guess_type(filename)
mime_type = mime_type or "application/octet-stream"
# Compute checksum
checksum = compute_file_checksum(content)
# Generate unique file ID for storage
file_id = str(uuid.uuid4())
# Store file in storage backend
storage = await get_workspace_storage()
storage_path = await storage.store(
workspace_id=self.workspace_id,
file_id=file_id,
filename=filename,
content=content,
)
# Create database record - handle race condition where another request
# created a file at the same path between our check and create
try:
file = await create_workspace_file(
workspace_id=self.workspace_id,
file_id=file_id,
name=filename,
path=path,
storage_path=storage_path,
mime_type=mime_type,
size_bytes=len(content),
checksum=checksum,
)
except UniqueViolationError:
# Race condition: another request created a file at this path
if overwrite:
# Re-fetch and delete the conflicting file, then retry
existing = await get_workspace_file_by_path(self.workspace_id, path)
if existing:
await self.delete_file(existing.id)
# Retry the create - if this also fails, clean up storage file
try:
file = await create_workspace_file(
workspace_id=self.workspace_id,
file_id=file_id,
name=filename,
path=path,
storage_path=storage_path,
mime_type=mime_type,
size_bytes=len(content),
checksum=checksum,
)
except Exception:
# Clean up orphaned storage file on retry failure
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise
else:
# Clean up the orphaned storage file before raising
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise ValueError(f"File already exists at path: {path}")
except Exception:
# Any other database error (connection, validation, etc.) - clean up storage
try:
await storage.delete(storage_path)
except Exception as e:
logger.warning(f"Failed to clean up orphaned storage file: {e}")
raise
logger.info(
f"Wrote file {file.id} ({filename}) to workspace {self.workspace_id} "
f"at path {path}, size={len(content)} bytes"
)
return file
async def list_files(
self,
path: Optional[str] = None,
limit: Optional[int] = None,
offset: int = 0,
include_all_sessions: bool = False,
) -> list[UserWorkspaceFile]:
"""
List files in workspace.
When session_id is set and include_all_sessions is False (default),
only files in the current session's folder are listed.
Args:
path: Optional path prefix to filter (e.g., "/documents/")
limit: Maximum number of files to return
offset: Number of files to skip
include_all_sessions: If True, list files from all sessions.
If False (default), only list current session's files.
Returns:
List of UserWorkspaceFile instances
"""
effective_path = self._get_effective_path(path, include_all_sessions)
return await list_workspace_files(
workspace_id=self.workspace_id,
path_prefix=effective_path,
limit=limit,
offset=offset,
)
async def delete_file(self, file_id: str) -> bool:
"""
Delete a file (soft-delete).
Args:
file_id: The file's ID
Returns:
True if deleted, False if not found
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
return False
# Delete from storage
storage = await get_workspace_storage()
try:
await storage.delete(file.storagePath)
except Exception as e:
logger.warning(f"Failed to delete file from storage: {e}")
# Continue with database soft-delete even if storage delete fails
# Soft-delete database record
result = await soft_delete_workspace_file(file_id, self.workspace_id)
return result is not None
async def get_download_url(self, file_id: str, expires_in: int = 3600) -> str:
"""
Get download URL for a file.
Args:
file_id: The file's ID
expires_in: URL expiration in seconds (default 1 hour)
Returns:
Download URL (signed URL for GCS, API endpoint for local)
Raises:
FileNotFoundError: If file doesn't exist
"""
file = await get_workspace_file(file_id, self.workspace_id)
if file is None:
raise FileNotFoundError(f"File not found: {file_id}")
storage = await get_workspace_storage()
return await storage.get_download_url(file.storagePath, expires_in)
async def get_file_info(self, file_id: str) -> Optional[UserWorkspaceFile]:
"""
Get file metadata.
Args:
file_id: The file's ID
Returns:
UserWorkspaceFile instance or None
"""
return await get_workspace_file(file_id, self.workspace_id)
async def get_file_info_by_path(self, path: str) -> Optional[UserWorkspaceFile]:
"""
Get file metadata by path.
When session_id is set, paths are resolved relative to the session folder
unless they explicitly reference /sessions/...
Args:
path: Virtual path
Returns:
UserWorkspaceFile instance or None
"""
resolved_path = self._resolve_path(path)
return await get_workspace_file_by_path(self.workspace_id, resolved_path)
async def get_file_count(
self,
path: Optional[str] = None,
include_all_sessions: bool = False,
) -> int:
"""
Get number of files in workspace.
When session_id is set and include_all_sessions is False (default),
only counts files in the current session's folder.
Args:
path: Optional path prefix to filter (e.g., "/documents/")
include_all_sessions: If True, count all files in workspace.
If False (default), only count current session's files.
Returns:
Number of files
"""
effective_path = self._get_effective_path(path, include_all_sessions)
return await count_workspace_files(
self.workspace_id, path_prefix=effective_path
)

View File

@@ -0,0 +1,398 @@
"""
Workspace storage backend abstraction for supporting both cloud and local deployments.
This module provides a unified interface for storing workspace files, with implementations
for Google Cloud Storage (cloud deployments) and local filesystem (self-hosted deployments).
"""
import asyncio
import hashlib
import logging
from abc import ABC, abstractmethod
from datetime import datetime, timezone
from pathlib import Path
from typing import Optional
import aiofiles
import aiohttp
from gcloud.aio import storage as async_gcs_storage
from google.cloud import storage as gcs_storage
from backend.util.data import get_data_path
from backend.util.gcs_utils import (
download_with_fresh_session,
generate_signed_url,
parse_gcs_path,
)
from backend.util.settings import Config
logger = logging.getLogger(__name__)
class WorkspaceStorageBackend(ABC):
"""Abstract interface for workspace file storage."""
@abstractmethod
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""
Store file content, return storage path.
Args:
workspace_id: The workspace ID
file_id: Unique file ID for storage
filename: Original filename
content: File content as bytes
Returns:
Storage path string (cloud path or local path)
"""
pass
@abstractmethod
async def retrieve(self, storage_path: str) -> bytes:
"""
Retrieve file content from storage.
Args:
storage_path: The storage path returned from store()
Returns:
File content as bytes
"""
pass
@abstractmethod
async def delete(self, storage_path: str) -> None:
"""
Delete file from storage.
Args:
storage_path: The storage path to delete
"""
pass
@abstractmethod
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Get URL for downloading the file.
Args:
storage_path: The storage path
expires_in: URL expiration time in seconds (default 1 hour)
Returns:
Download URL (signed URL for GCS, direct API path for local)
"""
pass
class GCSWorkspaceStorage(WorkspaceStorageBackend):
"""Google Cloud Storage implementation for workspace storage."""
def __init__(self, bucket_name: str):
self.bucket_name = bucket_name
self._async_client: Optional[async_gcs_storage.Storage] = None
self._sync_client: Optional[gcs_storage.Client] = None
self._session: Optional[aiohttp.ClientSession] = None
async def _get_async_client(self) -> async_gcs_storage.Storage:
"""Get or create async GCS client."""
if self._async_client is None:
self._session = aiohttp.ClientSession(
connector=aiohttp.TCPConnector(limit=100, force_close=False)
)
self._async_client = async_gcs_storage.Storage(session=self._session)
return self._async_client
def _get_sync_client(self) -> gcs_storage.Client:
"""Get or create sync GCS client (for signed URLs)."""
if self._sync_client is None:
self._sync_client = gcs_storage.Client()
return self._sync_client
async def close(self) -> None:
"""Close all client connections."""
if self._async_client is not None:
try:
await self._async_client.close()
except Exception as e:
logger.warning(f"Error closing GCS client: {e}")
self._async_client = None
if self._session is not None:
try:
await self._session.close()
except Exception as e:
logger.warning(f"Error closing session: {e}")
self._session = None
def _build_blob_name(self, workspace_id: str, file_id: str, filename: str) -> str:
"""Build the blob path for workspace files."""
return f"workspaces/{workspace_id}/{file_id}/{filename}"
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""Store file in GCS."""
client = await self._get_async_client()
blob_name = self._build_blob_name(workspace_id, file_id, filename)
# Upload with metadata
upload_time = datetime.now(timezone.utc)
await client.upload(
self.bucket_name,
blob_name,
content,
metadata={
"uploaded_at": upload_time.isoformat(),
"workspace_id": workspace_id,
"file_id": file_id,
},
)
return f"gcs://{self.bucket_name}/{blob_name}"
async def retrieve(self, storage_path: str) -> bytes:
"""Retrieve file from GCS."""
bucket_name, blob_name = parse_gcs_path(storage_path)
return await download_with_fresh_session(bucket_name, blob_name)
async def delete(self, storage_path: str) -> None:
"""Delete file from GCS."""
bucket_name, blob_name = parse_gcs_path(storage_path)
client = await self._get_async_client()
try:
await client.delete(bucket_name, blob_name)
except Exception as e:
if "404" not in str(e) and "Not Found" not in str(e):
raise
# File already deleted, that's fine
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Generate download URL for GCS file.
Attempts to generate a signed URL if running with service account credentials.
Falls back to an API proxy endpoint if signed URL generation fails
(e.g., when running locally with user OAuth credentials).
"""
bucket_name, blob_name = parse_gcs_path(storage_path)
# Extract file_id from blob_name for fallback: workspaces/{workspace_id}/{file_id}/{filename}
blob_parts = blob_name.split("/")
file_id = blob_parts[2] if len(blob_parts) >= 3 else None
# Try to generate signed URL (requires service account credentials)
try:
sync_client = self._get_sync_client()
return await generate_signed_url(
sync_client, bucket_name, blob_name, expires_in
)
except AttributeError as e:
# Signed URL generation requires service account with private key.
# When running with user OAuth credentials, fall back to API proxy.
if "private key" in str(e) and file_id:
logger.debug(
"Cannot generate signed URL (no service account credentials), "
"falling back to API proxy endpoint"
)
return f"/api/workspace/files/{file_id}/download"
raise
class LocalWorkspaceStorage(WorkspaceStorageBackend):
"""Local filesystem implementation for workspace storage (self-hosted deployments)."""
def __init__(self, base_dir: Optional[str] = None):
"""
Initialize local storage backend.
Args:
base_dir: Base directory for workspace storage.
If None, defaults to {app_data}/workspaces
"""
if base_dir:
self.base_dir = Path(base_dir)
else:
self.base_dir = Path(get_data_path()) / "workspaces"
# Ensure base directory exists
self.base_dir.mkdir(parents=True, exist_ok=True)
def _build_file_path(self, workspace_id: str, file_id: str, filename: str) -> Path:
"""Build the local file path with path traversal protection."""
# Import here to avoid circular import
# (file.py imports workspace.py which imports workspace_storage.py)
from backend.util.file import sanitize_filename
# Sanitize filename to prevent path traversal (removes / and \ among others)
safe_filename = sanitize_filename(filename)
file_path = (self.base_dir / workspace_id / file_id / safe_filename).resolve()
# Verify the resolved path is still under base_dir
if not file_path.is_relative_to(self.base_dir.resolve()):
raise ValueError("Invalid filename: path traversal detected")
return file_path
def _parse_storage_path(self, storage_path: str) -> Path:
"""Parse local storage path to filesystem path."""
if storage_path.startswith("local://"):
relative_path = storage_path[8:] # Remove "local://"
else:
relative_path = storage_path
full_path = (self.base_dir / relative_path).resolve()
# Security check: ensure path is under base_dir
# Use is_relative_to() for robust path containment check
# (handles case-insensitive filesystems and edge cases)
if not full_path.is_relative_to(self.base_dir.resolve()):
raise ValueError("Invalid storage path: path traversal detected")
return full_path
async def store(
self,
workspace_id: str,
file_id: str,
filename: str,
content: bytes,
) -> str:
"""Store file locally."""
file_path = self._build_file_path(workspace_id, file_id, filename)
# Create parent directories
file_path.parent.mkdir(parents=True, exist_ok=True)
# Write file asynchronously
async with aiofiles.open(file_path, "wb") as f:
await f.write(content)
# Return relative path as storage path
relative_path = file_path.relative_to(self.base_dir)
return f"local://{relative_path}"
async def retrieve(self, storage_path: str) -> bytes:
"""Retrieve file from local storage."""
file_path = self._parse_storage_path(storage_path)
if not file_path.exists():
raise FileNotFoundError(f"File not found: {storage_path}")
async with aiofiles.open(file_path, "rb") as f:
return await f.read()
async def delete(self, storage_path: str) -> None:
"""Delete file from local storage."""
file_path = self._parse_storage_path(storage_path)
if file_path.exists():
# Remove file
file_path.unlink()
# Clean up empty parent directories
parent = file_path.parent
while parent != self.base_dir:
try:
if parent.exists() and not any(parent.iterdir()):
parent.rmdir()
else:
break
except OSError:
break
parent = parent.parent
async def get_download_url(self, storage_path: str, expires_in: int = 3600) -> str:
"""
Get download URL for local file.
For local storage, this returns an API endpoint path.
The actual serving is handled by the API layer.
"""
# Parse the storage path to get the components
if storage_path.startswith("local://"):
relative_path = storage_path[8:]
else:
relative_path = storage_path
# Return the API endpoint for downloading
# The file_id is extracted from the path: {workspace_id}/{file_id}/{filename}
parts = relative_path.split("/")
if len(parts) >= 2:
file_id = parts[1] # Second component is file_id
return f"/api/workspace/files/{file_id}/download"
else:
raise ValueError(f"Invalid storage path format: {storage_path}")
# Global storage backend instance
_workspace_storage: Optional[WorkspaceStorageBackend] = None
_storage_lock = asyncio.Lock()
async def get_workspace_storage() -> WorkspaceStorageBackend:
"""
Get the workspace storage backend instance.
Uses GCS if media_gcs_bucket_name is configured, otherwise uses local storage.
"""
global _workspace_storage
if _workspace_storage is None:
async with _storage_lock:
if _workspace_storage is None:
config = Config()
if config.media_gcs_bucket_name:
logger.info(
f"Using GCS workspace storage: {config.media_gcs_bucket_name}"
)
_workspace_storage = GCSWorkspaceStorage(
config.media_gcs_bucket_name
)
else:
storage_dir = (
config.workspace_storage_dir
if config.workspace_storage_dir
else None
)
logger.info(
f"Using local workspace storage: {storage_dir or 'default'}"
)
_workspace_storage = LocalWorkspaceStorage(storage_dir)
return _workspace_storage
async def shutdown_workspace_storage() -> None:
"""
Properly shutdown the global workspace storage backend.
Closes aiohttp sessions and other resources for GCS backend.
Should be called during application shutdown.
"""
global _workspace_storage
if _workspace_storage is not None:
async with _storage_lock:
if _workspace_storage is not None:
if isinstance(_workspace_storage, GCSWorkspaceStorage):
await _workspace_storage.close()
_workspace_storage = None
def compute_file_checksum(content: bytes) -> str:
"""Compute SHA256 checksum of file content."""
return hashlib.sha256(content).hexdigest()

View File

@@ -0,0 +1,52 @@
-- CreateEnum
CREATE TYPE "WorkspaceFileSource" AS ENUM ('UPLOAD', 'EXECUTION', 'COPILOT', 'IMPORT');
-- CreateTable
CREATE TABLE "UserWorkspace" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"userId" TEXT NOT NULL,
CONSTRAINT "UserWorkspace_pkey" PRIMARY KEY ("id")
);
-- CreateTable
CREATE TABLE "UserWorkspaceFile" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"workspaceId" TEXT NOT NULL,
"name" TEXT NOT NULL,
"path" TEXT NOT NULL,
"storagePath" TEXT NOT NULL,
"mimeType" TEXT NOT NULL,
"sizeBytes" BIGINT NOT NULL,
"checksum" TEXT,
"isDeleted" BOOLEAN NOT NULL DEFAULT false,
"deletedAt" TIMESTAMP(3),
"source" "WorkspaceFileSource" NOT NULL DEFAULT 'UPLOAD',
"sourceExecId" TEXT,
"sourceSessionId" TEXT,
"metadata" JSONB NOT NULL DEFAULT '{}',
CONSTRAINT "UserWorkspaceFile_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE UNIQUE INDEX "UserWorkspace_userId_key" ON "UserWorkspace"("userId");
-- CreateIndex
CREATE INDEX "UserWorkspace_userId_idx" ON "UserWorkspace"("userId");
-- CreateIndex
CREATE INDEX "UserWorkspaceFile_workspaceId_isDeleted_idx" ON "UserWorkspaceFile"("workspaceId", "isDeleted");
-- CreateIndex
CREATE UNIQUE INDEX "UserWorkspaceFile_workspaceId_path_key" ON "UserWorkspaceFile"("workspaceId", "path");
-- AddForeignKey
ALTER TABLE "UserWorkspace" ADD CONSTRAINT "UserWorkspace_userId_fkey" FOREIGN KEY ("userId") REFERENCES "User"("id") ON DELETE CASCADE ON UPDATE CASCADE;
-- AddForeignKey
ALTER TABLE "UserWorkspaceFile" ADD CONSTRAINT "UserWorkspaceFile_workspaceId_fkey" FOREIGN KEY ("workspaceId") REFERENCES "UserWorkspace"("id") ON DELETE CASCADE ON UPDATE CASCADE;

View File

@@ -0,0 +1,16 @@
/*
Warnings:
- You are about to drop the column `source` on the `UserWorkspaceFile` table. All the data in the column will be lost.
- You are about to drop the column `sourceExecId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
- You are about to drop the column `sourceSessionId` on the `UserWorkspaceFile` table. All the data in the column will be lost.
*/
-- AlterTable
ALTER TABLE "UserWorkspaceFile" DROP COLUMN "source",
DROP COLUMN "sourceExecId",
DROP COLUMN "sourceSessionId";
-- DropEnum
DROP TYPE "WorkspaceFileSource";

View File

@@ -63,6 +63,7 @@ model User {
IntegrationWebhooks IntegrationWebhook[]
NotificationBatches UserNotificationBatch[]
PendingHumanReviews PendingHumanReview[]
Workspace UserWorkspace?
// OAuth Provider relations
OAuthApplications OAuthApplication[]
@@ -137,6 +138,53 @@ model CoPilotUnderstanding {
@@index([userId])
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
//////////////// USER WORKSPACE TABLES /////////////////
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// User's persistent file storage workspace
model UserWorkspace {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
userId String @unique
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
Files UserWorkspaceFile[]
@@index([userId])
}
// Individual files in a user's workspace
model UserWorkspaceFile {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
workspaceId String
Workspace UserWorkspace @relation(fields: [workspaceId], references: [id], onDelete: Cascade)
// File metadata
name String // User-visible filename
path String // Virtual path (e.g., "/documents/report.pdf")
storagePath String // Actual GCS or local storage path
mimeType String
sizeBytes BigInt
checksum String? // SHA256 for integrity
// File state
isDeleted Boolean @default(false)
deletedAt DateTime?
metadata Json @default("{}")
@@unique([workspaceId, path])
@@index([workspaceId, isDeleted])
}
model BuilderSearchHistory {
id String @id @default(uuid())
createdAt DateTime @default(now())

View File

@@ -151,15 +151,20 @@ class TestDecomposeGoalExternal:
@pytest.mark.asyncio
async def test_decompose_goal_handles_http_error(self):
"""Test decomposition handles HTTP errors gracefully."""
mock_response = MagicMock()
mock_response.status_code = 500
mock_client = AsyncMock()
mock_client.post.side_effect = httpx.HTTPStatusError(
"Server error", request=MagicMock(), response=MagicMock()
"Server error", request=MagicMock(), response=mock_response
)
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "http_error"
assert "Server error" in result.get("error", "")
@pytest.mark.asyncio
async def test_decompose_goal_handles_request_error(self):
@@ -170,7 +175,10 @@ class TestDecomposeGoalExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "connection_error"
assert "Connection failed" in result.get("error", "")
@pytest.mark.asyncio
async def test_decompose_goal_handles_service_error(self):
@@ -179,6 +187,7 @@ class TestDecomposeGoalExternal:
mock_response.json.return_value = {
"success": False,
"error": "Internal error",
"error_type": "internal_error",
}
mock_response.raise_for_status = MagicMock()
@@ -188,7 +197,10 @@ class TestDecomposeGoalExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.decompose_goal_external("Build a chatbot")
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error") == "Internal error"
assert result.get("error_type") == "internal_error"
class TestGenerateAgentExternal:
@@ -236,7 +248,10 @@ class TestGenerateAgentExternal:
with patch.object(service, "_get_client", return_value=mock_client):
result = await service.generate_agent_external({"steps": []})
assert result is None
assert result is not None
assert result.get("type") == "error"
assert result.get("error_type") == "connection_error"
assert "Connection failed" in result.get("error", "")
class TestGenerateAgentPatchExternal:

View File

@@ -34,3 +34,6 @@ NEXT_PUBLIC_PREVIEW_STEALING_DEV=
# PostHog Analytics
NEXT_PUBLIC_POSTHOG_KEY=
NEXT_PUBLIC_POSTHOG_HOST=https://eu.i.posthog.com
# OpenAI (for voice transcription)
OPENAI_API_KEY=

View File

@@ -0,0 +1,76 @@
# CLAUDE.md - Frontend
This file provides guidance to Claude Code when working with the frontend.
## Essential Commands
```bash
# Install dependencies
pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
# Start development server
pnpm dev
# Run E2E tests
pnpm test
# Run Storybook for component development
pnpm storybook
# Build production
pnpm build
# Format and lint
pnpm format
# Type checking
pnpm types
```
### Code Style
- Fully capitalize acronyms in symbols, e.g. `graphID`, `useBackendAPI`
- Use function declarations (not arrow functions) for components/handlers
## Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
## Environment Configuration
`.env.default` (defaults) → `.env` (user overrides)
## Feature Development
See @CONTRIBUTING.md for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Extract component logic into custom hooks grouped by concern, not by component. Each hook should represent a cohesive domain of functionality (e.g., useSearch, useFilters, usePagination) rather than bundling all state into one useComponentState hook.
- Put each hook in its own `.ts` file
- Put sub-components in local `components/` folder
- Component props should be `type Props = { ... }` (not exported) unless it needs to be used outside the component
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**:
- Use function declarations (not arrow functions) for components/handlers
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
- Do not type hook returns, let Typescript infer as much as possible
- Never type with `any` unless a variable/attribute can ACTUALLY be of any type

View File

@@ -73,9 +73,9 @@ export function useSessionsPagination({ enabled }: UseSessionsPaginationArgs) {
};
const reset = () => {
// Only reset the offset - keep existing sessions visible during refetch
// The effect will replace sessions when new data arrives at offset 0
setOffset(0);
setAccumulatedSessions([]);
setTotalCount(null);
};
return {

View File

@@ -5912,6 +5912,40 @@
}
}
},
"/api/workspace/files/{file_id}/download": {
"get": {
"tags": ["workspace"],
"summary": "Download file by ID",
"description": "Download a file by its ID.\n\nReturns the file content directly or redirects to a signed URL for GCS.",
"operationId": "getWorkspaceDownload file by id",
"security": [{ "HTTPBearerJWT": [] }],
"parameters": [
{
"name": "file_id",
"in": "path",
"required": true,
"schema": { "type": "string", "title": "File Id" }
}
],
"responses": {
"200": {
"description": "Successful Response",
"content": { "application/json": { "schema": {} } }
},
"401": {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
},
"422": {
"description": "Validation Error",
"content": {
"application/json": {
"schema": { "$ref": "#/components/schemas/HTTPValidationError" }
}
}
}
}
}
},
"/health": {
"get": {
"tags": ["health"],

View File

@@ -1,5 +1,6 @@
import {
ApiError,
getServerAuthToken,
makeAuthenticatedFileUpload,
makeAuthenticatedRequest,
} from "@/lib/autogpt-server-api/helpers";
@@ -15,6 +16,69 @@ function buildBackendUrl(path: string[], queryString: string): string {
return `${environment.getAGPTServerBaseUrl()}/${backendPath}${queryString}`;
}
/**
* Check if this is a workspace file download request that needs binary response handling.
*/
function isWorkspaceDownloadRequest(path: string[]): boolean {
// Match pattern: api/workspace/files/{id}/download (5 segments)
return (
path.length == 5 &&
path[0] === "api" &&
path[1] === "workspace" &&
path[2] === "files" &&
path[path.length - 1] === "download"
);
}
/**
* Handle workspace file download requests with proper binary response streaming.
*/
async function handleWorkspaceDownload(
req: NextRequest,
backendUrl: string,
): Promise<NextResponse> {
const token = await getServerAuthToken();
const headers: Record<string, string> = {};
if (token && token !== "no-token-found") {
headers["Authorization"] = `Bearer ${token}`;
}
const response = await fetch(backendUrl, {
method: "GET",
headers,
redirect: "follow", // Follow redirects to signed URLs
});
if (!response.ok) {
return NextResponse.json(
{ error: `Failed to download file: ${response.statusText}` },
{ status: response.status },
);
}
// Get the content type from the backend response
const contentType =
response.headers.get("Content-Type") || "application/octet-stream";
const contentDisposition = response.headers.get("Content-Disposition");
// Stream the response body
const responseHeaders: Record<string, string> = {
"Content-Type": contentType,
};
if (contentDisposition) {
responseHeaders["Content-Disposition"] = contentDisposition;
}
// Return the binary content
const arrayBuffer = await response.arrayBuffer();
return new NextResponse(arrayBuffer, {
status: 200,
headers: responseHeaders,
});
}
async function handleJsonRequest(
req: NextRequest,
method: string,
@@ -180,6 +244,11 @@ async function handler(
};
try {
// Handle workspace file downloads separately (binary response)
if (method === "GET" && isWorkspaceDownloadRequest(path)) {
return await handleWorkspaceDownload(req, backendUrl);
}
if (method === "GET" || method === "DELETE") {
responseBody = await handleGetDeleteRequest(method, backendUrl, req);
} else if (contentType?.includes("application/json")) {

View File

@@ -0,0 +1,77 @@
import { getServerAuthToken } from "@/lib/autogpt-server-api/helpers";
import { NextRequest, NextResponse } from "next/server";
const WHISPER_API_URL = "https://api.openai.com/v1/audio/transcriptions";
const MAX_FILE_SIZE = 25 * 1024 * 1024; // 25MB - Whisper's limit
function getExtensionFromMimeType(mimeType: string): string {
const subtype = mimeType.split("/")[1]?.split(";")[0];
return subtype || "webm";
}
export async function POST(request: NextRequest) {
const token = await getServerAuthToken();
if (!token || token === "no-token-found") {
return NextResponse.json({ error: "Unauthorized" }, { status: 401 });
}
const apiKey = process.env.OPENAI_API_KEY;
if (!apiKey) {
return NextResponse.json(
{ error: "OpenAI API key not configured" },
{ status: 401 },
);
}
try {
const formData = await request.formData();
const audioFile = formData.get("audio");
if (!audioFile || !(audioFile instanceof Blob)) {
return NextResponse.json(
{ error: "No audio file provided" },
{ status: 400 },
);
}
if (audioFile.size > MAX_FILE_SIZE) {
return NextResponse.json(
{ error: "File too large. Maximum size is 25MB." },
{ status: 413 },
);
}
const ext = getExtensionFromMimeType(audioFile.type);
const whisperFormData = new FormData();
whisperFormData.append("file", audioFile, `recording.${ext}`);
whisperFormData.append("model", "whisper-1");
const response = await fetch(WHISPER_API_URL, {
method: "POST",
headers: {
Authorization: `Bearer ${apiKey}`,
},
body: whisperFormData,
});
if (!response.ok) {
const errorData = await response.json().catch(() => ({}));
console.error("Whisper API error:", errorData);
return NextResponse.json(
{ error: errorData.error?.message || "Transcription failed" },
{ status: response.status },
);
}
const result = await response.json();
return NextResponse.json({ text: result.text });
} catch (error) {
console.error("Transcription error:", error);
return NextResponse.json(
{ error: "Failed to process audio" },
{ status: 500 },
);
}
}

View File

@@ -1,7 +1,14 @@
import { Button } from "@/components/atoms/Button/Button";
import { cn } from "@/lib/utils";
import { ArrowUpIcon, StopIcon } from "@phosphor-icons/react";
import {
ArrowUpIcon,
CircleNotchIcon,
MicrophoneIcon,
StopIcon,
} from "@phosphor-icons/react";
import { RecordingIndicator } from "./components/RecordingIndicator";
import { useChatInput } from "./useChatInput";
import { useVoiceRecording } from "./useVoiceRecording";
export interface Props {
onSend: (message: string) => void;
@@ -21,13 +28,36 @@ export function ChatInput({
className,
}: Props) {
const inputId = "chat-input";
const { value, handleKeyDown, handleSubmit, handleChange, hasMultipleLines } =
useChatInput({
onSend,
disabled: disabled || isStreaming,
maxRows: 4,
inputId,
});
const {
value,
setValue,
handleKeyDown: baseHandleKeyDown,
handleSubmit,
handleChange,
hasMultipleLines,
} = useChatInput({
onSend,
disabled: disabled || isStreaming,
maxRows: 4,
inputId,
});
const {
isRecording,
isTranscribing,
elapsedTime,
toggleRecording,
handleKeyDown,
showMicButton,
isInputDisabled,
audioStream,
} = useVoiceRecording({
setValue,
disabled: disabled || isStreaming,
isStreaming,
value,
baseHandleKeyDown,
});
return (
<form onSubmit={handleSubmit} className={cn("relative flex-1", className)}>
@@ -35,8 +65,11 @@ export function ChatInput({
<div
id={`${inputId}-wrapper`}
className={cn(
"relative overflow-hidden border border-neutral-200 bg-white shadow-sm",
"focus-within:border-zinc-400 focus-within:ring-1 focus-within:ring-zinc-400",
"relative overflow-hidden border bg-white shadow-sm",
"focus-within:ring-1",
isRecording
? "border-red-400 focus-within:border-red-400 focus-within:ring-red-400"
: "border-neutral-200 focus-within:border-zinc-400 focus-within:ring-zinc-400",
hasMultipleLines ? "rounded-xlarge" : "rounded-full",
)}
>
@@ -46,48 +79,94 @@ export function ChatInput({
value={value}
onChange={handleChange}
onKeyDown={handleKeyDown}
placeholder={placeholder}
disabled={disabled || isStreaming}
placeholder={
isTranscribing
? "Transcribing..."
: isRecording
? ""
: placeholder
}
disabled={isInputDisabled}
rows={1}
className={cn(
"w-full resize-none overflow-y-auto border-0 bg-transparent text-[1rem] leading-6 text-black",
"placeholder:text-zinc-400",
"focus:outline-none focus:ring-0",
"disabled:text-zinc-500",
hasMultipleLines ? "pb-6 pl-4 pr-4 pt-2" : "pb-4 pl-4 pr-14 pt-4",
hasMultipleLines
? "pb-6 pl-4 pr-4 pt-2"
: showMicButton
? "pb-4 pl-14 pr-14 pt-4"
: "pb-4 pl-4 pr-14 pt-4",
)}
/>
{isRecording && !value && (
<div className="pointer-events-none absolute inset-0 flex items-center justify-center">
<RecordingIndicator
elapsedTime={elapsedTime}
audioStream={audioStream}
/>
</div>
)}
</div>
<span id="chat-input-hint" className="sr-only">
Press Enter to send, Shift+Enter for new line
Press Enter to send, Shift+Enter for new line, Space to record voice
</span>
{isStreaming ? (
<Button
type="button"
variant="icon"
size="icon"
aria-label="Stop generating"
onClick={onStop}
className="absolute bottom-[7px] right-2 border-red-600 bg-red-600 text-white hover:border-red-800 hover:bg-red-800"
>
<StopIcon className="h-4 w-4" weight="bold" />
</Button>
) : (
<Button
type="submit"
variant="icon"
size="icon"
aria-label="Send message"
className={cn(
"absolute bottom-[7px] right-2 border-zinc-800 bg-zinc-800 text-white hover:border-zinc-900 hover:bg-zinc-900",
(disabled || !value.trim()) && "opacity-20",
)}
disabled={disabled || !value.trim()}
>
<ArrowUpIcon className="h-4 w-4" weight="bold" />
</Button>
{showMicButton && (
<div className="absolute bottom-[7px] left-2 flex items-center gap-1">
<Button
type="button"
variant="icon"
size="icon"
aria-label={isRecording ? "Stop recording" : "Start recording"}
onClick={toggleRecording}
disabled={disabled || isTranscribing}
className={cn(
isRecording
? "animate-pulse border-red-500 bg-red-500 text-white hover:border-red-600 hover:bg-red-600"
: isTranscribing
? "border-zinc-300 bg-zinc-100 text-zinc-400"
: "border-zinc-300 bg-white text-zinc-500 hover:border-zinc-400 hover:bg-zinc-50 hover:text-zinc-700",
)}
>
{isTranscribing ? (
<CircleNotchIcon className="h-4 w-4 animate-spin" />
) : (
<MicrophoneIcon className="h-4 w-4" weight="bold" />
)}
</Button>
</div>
)}
<div className="absolute bottom-[7px] right-2 flex items-center gap-1">
{isStreaming ? (
<Button
type="button"
variant="icon"
size="icon"
aria-label="Stop generating"
onClick={onStop}
className="border-red-600 bg-red-600 text-white hover:border-red-800 hover:bg-red-800"
>
<StopIcon className="h-4 w-4" weight="bold" />
</Button>
) : (
<Button
type="submit"
variant="icon"
size="icon"
aria-label="Send message"
className={cn(
"border-zinc-800 bg-zinc-800 text-white hover:border-zinc-900 hover:bg-zinc-900",
(disabled || !value.trim() || isRecording) && "opacity-20",
)}
disabled={disabled || !value.trim() || isRecording}
>
<ArrowUpIcon className="h-4 w-4" weight="bold" />
</Button>
)}
</div>
</div>
</form>
);

View File

@@ -0,0 +1,142 @@
"use client";
import { useEffect, useRef, useState } from "react";
interface Props {
stream: MediaStream | null;
barCount?: number;
barWidth?: number;
barGap?: number;
barColor?: string;
minBarHeight?: number;
maxBarHeight?: number;
}
export function AudioWaveform({
stream,
barCount = 24,
barWidth = 3,
barGap = 2,
barColor = "#ef4444", // red-500
minBarHeight = 4,
maxBarHeight = 32,
}: Props) {
const [bars, setBars] = useState<number[]>(() =>
Array(barCount).fill(minBarHeight),
);
const analyserRef = useRef<AnalyserNode | null>(null);
const audioContextRef = useRef<AudioContext | null>(null);
const sourceRef = useRef<MediaStreamAudioSourceNode | null>(null);
const animationRef = useRef<number | null>(null);
useEffect(() => {
if (!stream) {
setBars(Array(barCount).fill(minBarHeight));
return;
}
// Create audio context and analyser
const audioContext = new AudioContext();
const analyser = audioContext.createAnalyser();
analyser.fftSize = 512;
analyser.smoothingTimeConstant = 0.8;
// Connect the stream to the analyser
const source = audioContext.createMediaStreamSource(stream);
source.connect(analyser);
audioContextRef.current = audioContext;
analyserRef.current = analyser;
sourceRef.current = source;
const timeData = new Uint8Array(analyser.frequencyBinCount);
const updateBars = () => {
if (!analyserRef.current) return;
analyserRef.current.getByteTimeDomainData(timeData);
// Distribute time-domain data across bars
// This shows waveform amplitude, making all bars respond to audio
const newBars: number[] = [];
const samplesPerBar = timeData.length / barCount;
for (let i = 0; i < barCount; i++) {
// Sample waveform data for this bar
let maxAmplitude = 0;
const startIdx = Math.floor(i * samplesPerBar);
const endIdx = Math.floor((i + 1) * samplesPerBar);
for (let j = startIdx; j < endIdx && j < timeData.length; j++) {
// Convert to amplitude (distance from center 128)
const amplitude = Math.abs(timeData[j] - 128);
maxAmplitude = Math.max(maxAmplitude, amplitude);
}
// Map amplitude (0-128) to bar height
const normalized = (maxAmplitude / 128) * 255;
const height =
minBarHeight + (normalized / 255) * (maxBarHeight - minBarHeight);
newBars.push(height);
}
setBars(newBars);
animationRef.current = requestAnimationFrame(updateBars);
};
updateBars();
return () => {
if (animationRef.current) {
cancelAnimationFrame(animationRef.current);
}
if (sourceRef.current) {
sourceRef.current.disconnect();
}
if (audioContextRef.current) {
audioContextRef.current.close();
}
analyserRef.current = null;
audioContextRef.current = null;
sourceRef.current = null;
};
}, [stream, barCount, minBarHeight, maxBarHeight]);
const totalWidth = barCount * barWidth + (barCount - 1) * barGap;
return (
<div
className="flex items-center justify-center"
style={{
width: totalWidth,
height: maxBarHeight,
gap: barGap,
}}
>
{bars.map((height, i) => {
const barHeight = Math.max(minBarHeight, height);
return (
<div
key={i}
className="relative"
style={{
width: barWidth,
height: maxBarHeight,
}}
>
<div
className="absolute left-0 rounded-full transition-[height] duration-75"
style={{
width: barWidth,
height: barHeight,
top: "50%",
transform: "translateY(-50%)",
backgroundColor: barColor,
}}
/>
</div>
);
})}
</div>
);
}

View File

@@ -0,0 +1,26 @@
import { formatElapsedTime } from "../helpers";
import { AudioWaveform } from "./AudioWaveform";
type Props = {
elapsedTime: number;
audioStream: MediaStream | null;
};
export function RecordingIndicator({ elapsedTime, audioStream }: Props) {
return (
<div className="flex items-center gap-3">
<AudioWaveform
stream={audioStream}
barCount={20}
barWidth={3}
barGap={2}
barColor="#ef4444"
minBarHeight={4}
maxBarHeight={24}
/>
<span className="min-w-[3ch] text-sm font-medium text-red-500">
{formatElapsedTime(elapsedTime)}
</span>
</div>
);
}

View File

@@ -0,0 +1,6 @@
export function formatElapsedTime(ms: number): string {
const seconds = Math.floor(ms / 1000);
const minutes = Math.floor(seconds / 60);
const remainingSeconds = seconds % 60;
return `${minutes}:${remainingSeconds.toString().padStart(2, "0")}`;
}

View File

@@ -6,7 +6,7 @@ import {
useState,
} from "react";
interface UseChatInputArgs {
interface Args {
onSend: (message: string) => void;
disabled?: boolean;
maxRows?: number;
@@ -18,7 +18,7 @@ export function useChatInput({
disabled = false,
maxRows = 5,
inputId = "chat-input",
}: UseChatInputArgs) {
}: Args) {
const [value, setValue] = useState("");
const [hasMultipleLines, setHasMultipleLines] = useState(false);

View File

@@ -0,0 +1,240 @@
import { useToast } from "@/components/molecules/Toast/use-toast";
import React, {
KeyboardEvent,
useCallback,
useEffect,
useRef,
useState,
} from "react";
const MAX_RECORDING_DURATION = 2 * 60 * 1000; // 2 minutes in ms
interface Args {
setValue: React.Dispatch<React.SetStateAction<string>>;
disabled?: boolean;
isStreaming?: boolean;
value: string;
baseHandleKeyDown: (event: KeyboardEvent<HTMLTextAreaElement>) => void;
}
export function useVoiceRecording({
setValue,
disabled = false,
isStreaming = false,
value,
baseHandleKeyDown,
}: Args) {
const [isRecording, setIsRecording] = useState(false);
const [isTranscribing, setIsTranscribing] = useState(false);
const [error, setError] = useState<string | null>(null);
const [elapsedTime, setElapsedTime] = useState(0);
const mediaRecorderRef = useRef<MediaRecorder | null>(null);
const chunksRef = useRef<Blob[]>([]);
const timerRef = useRef<NodeJS.Timeout | null>(null);
const startTimeRef = useRef<number>(0);
const streamRef = useRef<MediaStream | null>(null);
const isRecordingRef = useRef(false);
const isSupported =
typeof window !== "undefined" &&
!!(navigator.mediaDevices && navigator.mediaDevices.getUserMedia);
const clearTimer = useCallback(() => {
if (timerRef.current) {
clearInterval(timerRef.current);
timerRef.current = null;
}
}, []);
const cleanup = useCallback(() => {
clearTimer();
if (streamRef.current) {
streamRef.current.getTracks().forEach((track) => track.stop());
streamRef.current = null;
}
mediaRecorderRef.current = null;
chunksRef.current = [];
setElapsedTime(0);
}, [clearTimer]);
const handleTranscription = useCallback(
(text: string) => {
setValue((prev) => {
const trimmedPrev = prev.trim();
if (trimmedPrev) {
return `${trimmedPrev} ${text}`;
}
return text;
});
},
[setValue],
);
const transcribeAudio = useCallback(
async (audioBlob: Blob) => {
setIsTranscribing(true);
setError(null);
try {
const formData = new FormData();
formData.append("audio", audioBlob);
const response = await fetch("/api/transcribe", {
method: "POST",
body: formData,
});
if (!response.ok) {
const data = await response.json().catch(() => ({}));
throw new Error(data.error || "Transcription failed");
}
const data = await response.json();
if (data.text) {
handleTranscription(data.text);
}
} catch (err) {
const message =
err instanceof Error ? err.message : "Transcription failed";
setError(message);
console.error("Transcription error:", err);
} finally {
setIsTranscribing(false);
}
},
[handleTranscription],
);
const stopRecording = useCallback(() => {
if (mediaRecorderRef.current && isRecordingRef.current) {
mediaRecorderRef.current.stop();
isRecordingRef.current = false;
setIsRecording(false);
clearTimer();
}
}, [clearTimer]);
const startRecording = useCallback(async () => {
if (disabled || isRecordingRef.current || isTranscribing) return;
setError(null);
chunksRef.current = [];
try {
const stream = await navigator.mediaDevices.getUserMedia({ audio: true });
streamRef.current = stream;
const mediaRecorder = new MediaRecorder(stream, {
mimeType: MediaRecorder.isTypeSupported("audio/webm")
? "audio/webm"
: "audio/mp4",
});
mediaRecorderRef.current = mediaRecorder;
mediaRecorder.ondataavailable = (event) => {
if (event.data.size > 0) {
chunksRef.current.push(event.data);
}
};
mediaRecorder.onstop = async () => {
const audioBlob = new Blob(chunksRef.current, {
type: mediaRecorder.mimeType,
});
// Cleanup stream
if (streamRef.current) {
streamRef.current.getTracks().forEach((track) => track.stop());
streamRef.current = null;
}
if (audioBlob.size > 0) {
await transcribeAudio(audioBlob);
}
};
mediaRecorder.start(1000); // Collect data every second
isRecordingRef.current = true;
setIsRecording(true);
startTimeRef.current = Date.now();
// Start elapsed time timer
timerRef.current = setInterval(() => {
const elapsed = Date.now() - startTimeRef.current;
setElapsedTime(elapsed);
// Auto-stop at max duration
if (elapsed >= MAX_RECORDING_DURATION) {
stopRecording();
}
}, 100);
} catch (err) {
console.error("Failed to start recording:", err);
if (err instanceof DOMException && err.name === "NotAllowedError") {
setError("Microphone permission denied");
} else {
setError("Failed to access microphone");
}
cleanup();
}
}, [disabled, isTranscribing, stopRecording, transcribeAudio, cleanup]);
const toggleRecording = useCallback(() => {
if (isRecording) {
stopRecording();
} else {
startRecording();
}
}, [isRecording, startRecording, stopRecording]);
const { toast } = useToast();
useEffect(() => {
if (error) {
toast({
title: "Voice recording failed",
description: error,
variant: "destructive",
});
}
}, [error, toast]);
const handleKeyDown = useCallback(
(event: KeyboardEvent<HTMLTextAreaElement>) => {
if (event.key === " " && !value.trim() && !isTranscribing) {
event.preventDefault();
toggleRecording();
return;
}
baseHandleKeyDown(event);
},
[value, isTranscribing, toggleRecording, baseHandleKeyDown],
);
const showMicButton = isSupported && !isStreaming;
const isInputDisabled = disabled || isStreaming || isTranscribing;
// Cleanup on unmount
useEffect(() => {
return () => {
cleanup();
};
}, [cleanup]);
return {
isRecording,
isTranscribing,
error,
elapsedTime,
startRecording,
stopRecording,
toggleRecording,
isSupported,
handleKeyDown,
showMicButton,
isInputDisabled,
audioStream: streamRef.current,
};
}

View File

@@ -1,6 +1,8 @@
"use client";
import { getGetWorkspaceDownloadFileByIdUrl } from "@/app/api/__generated__/endpoints/workspace/workspace";
import { cn } from "@/lib/utils";
import { EyeSlash } from "@phosphor-icons/react";
import React from "react";
import ReactMarkdown from "react-markdown";
import remarkGfm from "remark-gfm";
@@ -29,12 +31,88 @@ interface InputProps extends React.InputHTMLAttributes<HTMLInputElement> {
type?: string;
}
/**
* Converts a workspace:// URL to a proxy URL that routes through Next.js to the backend.
* workspace://abc123 -> /api/proxy/api/workspace/files/abc123/download
*
* Uses the generated API URL helper and routes through the Next.js proxy
* which handles authentication and proper backend routing.
*/
/**
* URL transformer for ReactMarkdown.
* Converts workspace:// URLs to proxy URLs that route through Next.js to the backend.
* workspace://abc123 -> /api/proxy/api/workspace/files/abc123/download
*
* This is needed because ReactMarkdown sanitizes URLs and only allows
* http, https, mailto, and tel protocols by default.
*/
function resolveWorkspaceUrl(src: string): string {
if (src.startsWith("workspace://")) {
const fileId = src.replace("workspace://", "");
// Use the generated API URL helper to get the correct path
const apiPath = getGetWorkspaceDownloadFileByIdUrl(fileId);
// Route through the Next.js proxy (same pattern as customMutator for client-side)
return `/api/proxy${apiPath}`;
}
return src;
}
/**
* Check if the image URL is a workspace file (AI cannot see these yet).
* After URL transformation, workspace files have URLs like /api/proxy/api/workspace/files/...
*/
function isWorkspaceImage(src: string | undefined): boolean {
return src?.includes("/workspace/files/") ?? false;
}
/**
* Custom image component that shows an indicator when the AI cannot see the image.
* Note: src is already transformed by urlTransform, so workspace:// is now /api/workspace/...
*/
function MarkdownImage(props: Record<string, unknown>) {
const src = props.src as string | undefined;
const alt = props.alt as string | undefined;
const aiCannotSee = isWorkspaceImage(src);
// If no src, show a placeholder
if (!src) {
return (
<span className="my-2 inline-block rounded border border-amber-200 bg-amber-50 px-2 py-1 text-sm text-amber-700">
[Image: {alt || "missing src"}]
</span>
);
}
return (
<span className="relative my-2 inline-block">
{/* eslint-disable-next-line @next/next/no-img-element */}
<img
src={src}
alt={alt || "Image"}
className="h-auto max-w-full rounded-md border border-zinc-200"
loading="lazy"
/>
{aiCannotSee && (
<span
className="absolute bottom-2 right-2 flex items-center gap-1 rounded bg-black/70 px-2 py-1 text-xs text-white"
title="The AI cannot see this image"
>
<EyeSlash size={14} />
<span>AI cannot see this image</span>
</span>
)}
</span>
);
}
export function MarkdownContent({ content, className }: MarkdownContentProps) {
return (
<div className={cn("markdown-content", className)}>
<ReactMarkdown
skipHtml={true}
remarkPlugins={[remarkGfm]}
urlTransform={resolveWorkspaceUrl}
components={{
code: ({ children, className, ...props }: CodeProps) => {
const isInline = !className?.includes("language-");
@@ -206,6 +284,9 @@ export function MarkdownContent({ content, className }: MarkdownContentProps) {
{children}
</td>
),
img: ({ src, alt, ...props }) => (
<MarkdownImage src={src} alt={alt} {...props} />
),
}}
>
{content}

View File

@@ -37,6 +37,87 @@ export function getErrorMessage(result: unknown): string {
return "An error occurred";
}
/**
* Check if a value is a workspace file reference.
*/
function isWorkspaceRef(value: unknown): value is string {
return typeof value === "string" && value.startsWith("workspace://");
}
/**
* Check if a workspace reference appears to be an image based on common patterns.
* Since workspace refs don't have extensions, we check the context or assume image
* for certain block types.
*
* TODO: Replace keyword matching with MIME type encoded in workspace ref.
* e.g., workspace://abc123#image/png or workspace://abc123#video/mp4
* This would let frontend render correctly without fragile keyword matching.
*/
function isLikelyImageRef(value: string, outputKey?: string): boolean {
if (!isWorkspaceRef(value)) return false;
// Check output key name for video-related hints (these are NOT images)
const videoKeywords = ["video", "mp4", "mov", "avi", "webm", "movie", "clip"];
if (outputKey) {
const lowerKey = outputKey.toLowerCase();
if (videoKeywords.some((kw) => lowerKey.includes(kw))) {
return false;
}
}
// Check output key name for image-related hints
const imageKeywords = [
"image",
"img",
"photo",
"picture",
"thumbnail",
"avatar",
"icon",
"screenshot",
];
if (outputKey) {
const lowerKey = outputKey.toLowerCase();
if (imageKeywords.some((kw) => lowerKey.includes(kw))) {
return true;
}
}
// Default to treating workspace refs as potential images
// since that's the most common case for generated content
return true;
}
/**
* Format a single output value, converting workspace refs to markdown images.
*/
function formatOutputValue(value: unknown, outputKey?: string): string {
if (isWorkspaceRef(value) && isLikelyImageRef(value, outputKey)) {
// Format as markdown image
return `![${outputKey || "Generated image"}](${value})`;
}
if (typeof value === "string") {
// Check for data URIs (images)
if (value.startsWith("data:image/")) {
return `![${outputKey || "Generated image"}](${value})`;
}
return value;
}
if (Array.isArray(value)) {
return value
.map((item, idx) => formatOutputValue(item, `${outputKey}_${idx}`))
.join("\n\n");
}
if (typeof value === "object" && value !== null) {
return JSON.stringify(value, null, 2);
}
return String(value);
}
function getToolCompletionPhrase(toolName: string): string {
const toolCompletionPhrases: Record<string, string> = {
add_understanding: "Updated your business information",
@@ -127,10 +208,26 @@ export function formatToolResponse(result: unknown, toolName: string): string {
case "block_output":
const blockName = (response.block_name as string) || "Block";
const outputs = response.outputs as Record<string, unknown> | undefined;
const outputs = response.outputs as Record<string, unknown[]> | undefined;
if (outputs && Object.keys(outputs).length > 0) {
const outputKeys = Object.keys(outputs);
return `${blockName} executed successfully. Outputs: ${outputKeys.join(", ")}`;
const formattedOutputs: string[] = [];
for (const [key, values] of Object.entries(outputs)) {
if (!Array.isArray(values) || values.length === 0) continue;
// Format each value in the output array
for (const value of values) {
const formatted = formatOutputValue(value, key);
if (formatted) {
formattedOutputs.push(formatted);
}
}
}
if (formattedOutputs.length > 0) {
return `${blockName} executed successfully.\n\n${formattedOutputs.join("\n\n")}`;
}
return `${blockName} executed successfully.`;
}
return `${blockName} executed successfully.`;

View File

@@ -516,7 +516,7 @@ export type GraphValidationErrorResponse = {
/* *** LIBRARY *** */
/* Mirror of backend/server/v2/library/model.py:LibraryAgent */
/* Mirror of backend/api/features/library/model.py:LibraryAgent */
export type LibraryAgent = {
id: LibraryAgentID;
graph_id: GraphID;
@@ -616,7 +616,7 @@ export enum LibraryAgentSortEnum {
/* *** CREDENTIALS *** */
/* Mirror of backend/server/integrations/router.py:CredentialsMetaResponse */
/* Mirror of backend/api/features/integrations/router.py:CredentialsMetaResponse */
export type CredentialsMetaResponse = {
id: string;
provider: CredentialsProviderName;
@@ -628,13 +628,13 @@ export type CredentialsMetaResponse = {
is_system?: boolean;
};
/* Mirror of backend/server/integrations/router.py:CredentialsDeletionResponse */
/* Mirror of backend/api/features/integrations/router.py:CredentialsDeletionResponse */
export type CredentialsDeleteResponse = {
deleted: true;
revoked: boolean | null;
};
/* Mirror of backend/server/integrations/router.py:CredentialsDeletionNeedsConfirmationResponse */
/* Mirror of backend/api/features/integrations/router.py:CredentialsDeletionNeedsConfirmationResponse */
export type CredentialsDeleteNeedConfirmationResponse = {
deleted: false;
need_confirmation: true;
@@ -888,7 +888,7 @@ export type Schedule = {
export type ScheduleID = Brand<string, "ScheduleID">;
/* Mirror of backend/server/routers/v1.py:ScheduleCreationRequest */
/* Mirror of backend/api/features/v1.py:ScheduleCreationRequest */
export type ScheduleCreatable = {
graph_id: GraphID;
graph_version: number;

View File

@@ -1,12 +1,15 @@
[flake8]
max-line-length = 88
extend-ignore = E203
exclude =
.tox,
__pycache__,
*.pyc,
.env
venv*/*,
.venv/*,
reports/*,
dist/*,
data/*,
.env,
venv*,
.venv,
reports,
dist,
data,
.benchmark_workspaces,
.autogpt,

291
classic/CLAUDE.md Normal file
View File

@@ -0,0 +1,291 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
AutoGPT Classic is an experimental, **unsupported** project demonstrating autonomous GPT-4 operation. Dependencies will not be updated, and the codebase contains known vulnerabilities. This is preserved for educational/historical purposes.
## Repository Structure
```
classic/
├── pyproject.toml # Single consolidated Poetry project
├── poetry.lock # Single lock file
├── forge/
│ └── forge/ # Core agent framework package
├── original_autogpt/
│ └── autogpt/ # AutoGPT agent package
├── direct_benchmark/
│ └── direct_benchmark/ # Benchmark harness package
└── benchmark/ # Challenge definitions (data, not code)
```
All packages are managed by a single `pyproject.toml` at the classic/ root.
## Common Commands
### Setup & Install
```bash
# Install everything from classic/ directory
cd classic
poetry install
```
### Running Agents
```bash
# Run forge agent
poetry run python -m forge
# Run original autogpt server
poetry run serve --debug
# Run autogpt CLI
poetry run autogpt
```
Agents run on `http://localhost:8000` by default.
### Benchmarking
```bash
# Run benchmarks
poetry run direct-benchmark run
# Run specific strategies and models
poetry run direct-benchmark run \
--strategies one_shot,rewoo \
--models claude \
--parallel 4
# Run a single test
poetry run direct-benchmark run --tests ReadFile
# List available commands
poetry run direct-benchmark --help
```
### Testing
```bash
poetry run pytest # All tests
poetry run pytest forge/tests/ # Forge tests only
poetry run pytest original_autogpt/tests/ # AutoGPT tests only
poetry run pytest -k test_name # Single test by name
poetry run pytest path/to/test.py # Specific test file
poetry run pytest --cov # With coverage
```
### Linting & Formatting
Run from the classic/ directory:
```bash
# Format everything (recommended to run together)
poetry run black . && poetry run isort .
# Check formatting (CI-style, no changes)
poetry run black --check . && poetry run isort --check-only .
# Lint
poetry run flake8 # Style linting
# Type check
poetry run pyright # Type checking (some errors are expected in infrastructure code)
```
Note: Always run linters over the entire directory, not specific files, for best results.
## Architecture
### Forge (Core Framework)
The `forge` package is the foundation that other components depend on:
- `forge/agent/` - Agent implementation and protocols
- `forge/llm/` - Multi-provider LLM integrations (OpenAI, Anthropic, Groq, LiteLLM)
- `forge/components/` - Reusable agent components
- `forge/file_storage/` - File system abstraction
- `forge/config/` - Configuration management
### Original AutoGPT
- `original_autogpt/autogpt/app/` - CLI application entry points
- `original_autogpt/autogpt/agents/` - Agent implementations
- `original_autogpt/autogpt/agent_factory/` - Agent creation logic
### Direct Benchmark
Benchmark harness for testing agent performance:
- `direct_benchmark/direct_benchmark/` - CLI and harness code
- `benchmark/agbenchmark/challenges/` - Test cases organized by category (code, retrieval, data, etc.)
- Reports generated in `direct_benchmark/reports/`
### Package Structure
All three packages are included in a single Poetry project. Imports are fully qualified:
- `from forge.agent.base import BaseAgent`
- `from autogpt.agents.agent import Agent`
- `from direct_benchmark.harness import BenchmarkHarness`
## Code Style
- Python 3.12 target
- Line length: 88 characters (Black default)
- Black for formatting, isort for imports (profile="black")
- Type hints with Pyright checking
## Testing Patterns
- Async support via pytest-asyncio
- Fixtures defined in `conftest.py` files provide: `tmp_project_root`, `storage`, `config`, `llm_provider`, `agent`
- Tests requiring API keys (OPENAI_API_KEY, ANTHROPIC_API_KEY) will skip if not set
## Environment Setup
Copy `.env.example` to `.env` in the relevant directory and add your API keys:
```bash
cp .env.example .env
# Edit .env with your OPENAI_API_KEY, etc.
```
## Workspaces
Agents operate within a **workspace** - a directory containing all agent data and files. The workspace root defaults to the current working directory.
### Workspace Structure
```
{workspace}/
├── .autogpt/
│ ├── autogpt.yaml # Workspace-level permissions
│ ├── ap_server.db # Agent Protocol database (server mode)
│ └── agents/
│ └── AutoGPT-{agent_id}/
│ ├── state.json # Agent profile, directives, action history
│ ├── permissions.yaml # Agent-specific permission overrides
│ └── workspace/ # Agent's sandboxed working directory
```
### Key Concepts
- **Multiple agents** can coexist in the same workspace (each gets its own subdirectory)
- **File access** is sandboxed to the agent's `workspace/` directory by default
- **State persistence** - agent state saves to `state.json` and survives across sessions
- **Storage backends** - supports local filesystem, S3, and GCS (via `FILE_STORAGE_BACKEND` env var)
### Specifying a Workspace
```bash
# Default: uses current directory
cd /path/to/my/project && poetry run autogpt
# Or specify explicitly via CLI (if supported)
poetry run autogpt --workspace /path/to/workspace
```
## Settings Location
Configuration uses a **layered system** with three levels (in order of precedence):
### 1. Environment Variables (Global)
Loaded from `.env` file in the working directory:
```bash
# Required
OPENAI_API_KEY=sk-...
# Optional LLM settings
SMART_LLM=gpt-4o # Model for complex reasoning
FAST_LLM=gpt-4o-mini # Model for simple tasks
EMBEDDING_MODEL=text-embedding-3-small
# Optional search providers (for web search component)
TAVILY_API_KEY=tvly-...
SERPER_API_KEY=...
GOOGLE_API_KEY=...
GOOGLE_CUSTOM_SEARCH_ENGINE_ID=...
# Optional infrastructure
LOG_LEVEL=DEBUG # DEBUG, INFO, WARNING, ERROR
DATABASE_STRING=sqlite:///agent.db # Agent Protocol database
PORT=8000 # Server port
FILE_STORAGE_BACKEND=local # local, s3, or gcs
```
### 2. Workspace Settings (`{workspace}/.autogpt/autogpt.yaml`)
Workspace-wide permissions that apply to **all agents** in this workspace:
```yaml
allow:
- read_file({workspace}/**)
- write_to_file({workspace}/**)
- list_folder({workspace}/**)
- web_search(*)
deny:
- read_file(**.env)
- read_file(**.env.*)
- read_file(**.key)
- read_file(**.pem)
- execute_shell(rm -rf:*)
- execute_shell(sudo:*)
```
Auto-generated with sensible defaults if missing.
### 3. Agent Settings (`{workspace}/.autogpt/agents/{id}/permissions.yaml`)
Agent-specific permission overrides:
```yaml
allow:
- execute_python(*)
- web_search(*)
deny:
- execute_shell(*)
```
## Permissions
The permission system uses **pattern matching** with a **first-match-wins** evaluation order.
### Permission Check Order
1. Agent deny list → **Block**
2. Workspace deny list → **Block**
3. Agent allow list → **Allow**
4. Workspace allow list → **Allow**
5. Session denied list → **Block** (commands denied during this session)
6. **Prompt user** → Interactive approval (if in interactive mode)
### Pattern Syntax
Format: `command_name(glob_pattern)`
| Pattern | Description |
|---------|-------------|
| `read_file({workspace}/**)` | Read any file in workspace (recursive) |
| `write_to_file({workspace}/*.txt)` | Write only .txt files in workspace root |
| `execute_shell(python:**)` | Execute Python commands only |
| `execute_shell(git:*)` | Execute any git command |
| `web_search(*)` | Allow all web searches |
Special tokens:
- `{workspace}` - Replaced with actual workspace path
- `**` - Matches any path including `/`
- `*` - Matches any characters except `/`
### Interactive Approval Scopes
When prompted for permission, users can choose:
| Scope | Effect |
|-------|--------|
| **Once** | Allow this one time only (not saved) |
| **Agent** | Always allow for this agent (saves to agent `permissions.yaml`) |
| **Workspace** | Always allow for all agents (saves to `autogpt.yaml`) |
| **Deny** | Deny this command (saves to appropriate deny list) |
### Default Security
Out of the box, the following are **denied by default**:
- Reading sensitive files (`.env`, `.key`, `.pem`)
- Destructive shell commands (`rm -rf`, `sudo`)
- Operations outside the workspace directory

View File

@@ -1,182 +0,0 @@
## CLI Documentation
This document describes how to interact with the project's CLI (Command Line Interface). It includes the types of outputs you can expect from each command. Note that the `agents stop` command will terminate any process running on port 8000.
### 1. Entry Point for the CLI
Running the `./run` command without any parameters will display the help message, which provides a list of available commands and options. Additionally, you can append `--help` to any command to view help information specific to that command.
```sh
./run
```
**Output**:
```
Usage: cli.py [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.
Commands:
agent Commands to create, start and stop agents
benchmark Commands to start the benchmark and list tests and categories
setup Installs dependencies needed for your system.
```
If you need assistance with any command, simply add the `--help` parameter to the end of your command, like so:
```sh
./run COMMAND --help
```
This will display a detailed help message regarding that specific command, including a list of any additional options and arguments it accepts.
### 2. Setup Command
```sh
./run setup
```
**Output**:
```
Setup initiated
Installation has been completed.
```
This command initializes the setup of the project.
### 3. Agents Commands
**a. List All Agents**
```sh
./run agent list
```
**Output**:
```
Available agents: 🤖
🐙 forge
🐙 autogpt
```
Lists all the available agents.
**b. Create a New Agent**
```sh
./run agent create my_agent
```
**Output**:
```
🎉 New agent 'my_agent' created and switched to the new directory in agents folder.
```
Creates a new agent named 'my_agent'.
**c. Start an Agent**
```sh
./run agent start my_agent
```
**Output**:
```
... (ASCII Art representing the agent startup)
[Date and Time] [forge.sdk.db] [DEBUG] 🐛 Initializing AgentDB with database_string: sqlite:///agent.db
[Date and Time] [forge.sdk.agent] [INFO] 📝 Agent server starting on http://0.0.0.0:8000
```
Starts the 'my_agent' and displays startup ASCII art and logs.
**d. Stop an Agent**
```sh
./run agent stop
```
**Output**:
```
Agent stopped
```
Stops the running agent.
### 4. Benchmark Commands
**a. List Benchmark Categories**
```sh
./run benchmark categories list
```
**Output**:
```
Available categories: 📚
📖 code
📖 safety
📖 memory
... (and so on)
```
Lists all available benchmark categories.
**b. List Benchmark Tests**
```sh
./run benchmark tests list
```
**Output**:
```
Available tests: 📚
📖 interface
🔬 Search - TestSearch
🔬 Write File - TestWriteFile
... (and so on)
```
Lists all available benchmark tests.
**c. Show Details of a Benchmark Test**
```sh
./run benchmark tests details TestWriteFile
```
**Output**:
```
TestWriteFile
-------------
Category: interface
Task: Write the word 'Washington' to a .txt file
... (and other details)
```
Displays the details of the 'TestWriteFile' benchmark test.
**d. Start Benchmark for the Agent**
```sh
./run benchmark start my_agent
```
**Output**:
```
(more details about the testing process shown whilst the test are running)
============= 13 failed, 1 passed in 0.97s ============...
```
Displays the results of the benchmark tests on 'my_agent'.

View File

@@ -2,7 +2,7 @@
ARG BUILD_TYPE=dev
# Use an official Python base image from the Docker Hub
FROM python:3.10-slim AS autogpt-base
FROM python:3.12-slim AS autogpt-base
# Install browsers
RUN apt-get update && apt-get install -y \
@@ -34,9 +34,6 @@ COPY original_autogpt/pyproject.toml original_autogpt/poetry.lock ./
# Include forge so it can be used as a path dependency
COPY forge/ ../forge
# Include frontend
COPY frontend/ ../frontend
# Set the entrypoint
ENTRYPOINT ["poetry", "run", "autogpt"]
CMD []

View File

@@ -1,173 +0,0 @@
# Quickstart Guide
> For the complete getting started [tutorial series](https://aiedge.medium.com/autogpt-forge-e3de53cc58ec) <- click here
Welcome to the Quickstart Guide! This guide will walk you through setting up, building, and running your own AutoGPT agent. Whether you're a seasoned AI developer or just starting out, this guide will provide you with the steps to jumpstart your journey in AI development with AutoGPT.
## System Requirements
This project supports Linux (Debian-based), Mac, and Windows Subsystem for Linux (WSL). If you use a Windows system, you must install WSL. You can find the installation instructions for WSL [here](https://learn.microsoft.com/en-us/windows/wsl/).
## Getting Setup
1. **Fork the Repository**
To fork the repository, follow these steps:
- Navigate to the main page of the repository.
![Repository](../docs/content/imgs/quickstart/001_repo.png)
- In the top-right corner of the page, click Fork.
![Create Fork UI](../docs/content/imgs/quickstart/002_fork.png)
- On the next page, select your GitHub account to create the fork.
- Wait for the forking process to complete. You now have a copy of the repository in your GitHub account.
2. **Clone the Repository**
To clone the repository, you need to have Git installed on your system. If you don't have Git installed, download it from [here](https://git-scm.com/downloads). Once you have Git installed, follow these steps:
- Open your terminal.
- Navigate to the directory where you want to clone the repository.
- Run the git clone command for the fork you just created
![Clone the Repository](../docs/content/imgs/quickstart/003_clone.png)
- Then open your project in your ide
![Open the Project in your IDE](../docs/content/imgs/quickstart/004_ide.png)
4. **Setup the Project**
Next, we need to set up the required dependencies. We have a tool to help you perform all the tasks on the repo.
It can be accessed by running the `run` command by typing `./run` in the terminal.
The first command you need to use is `./run setup.` This will guide you through setting up your system.
Initially, you will get instructions for installing Flutter and Chrome and setting up your GitHub access token like the following image:
![Setup the Project](../docs/content/imgs/quickstart/005_setup.png)
### For Windows Users
If you're a Windows user and experience issues after installing WSL, follow the steps below to resolve them.
#### Update WSL
Run the following command in Powershell or Command Prompt:
1. Enable the optional WSL and Virtual Machine Platform components.
2. Download and install the latest Linux kernel.
3. Set WSL 2 as the default.
4. Download and install the Ubuntu Linux distribution (a reboot may be required).
```shell
wsl --install
```
For more detailed information and additional steps, refer to [Microsoft's WSL Setup Environment Documentation](https://learn.microsoft.com/en-us/windows/wsl/setup/environment).
#### Resolve FileNotFoundError or "No such file or directory" Errors
When you run `./run setup`, if you encounter errors like `No such file or directory` or `FileNotFoundError`, it might be because Windows-style line endings (CRLF - Carriage Return Line Feed) are not compatible with Unix/Linux style line endings (LF - Line Feed).
To resolve this, you can use the `dos2unix` utility to convert the line endings in your script from CRLF to LF. Heres how to install and run `dos2unix` on the script:
```shell
sudo apt update
sudo apt install dos2unix
dos2unix ./run
```
After executing the above commands, running `./run setup` should work successfully.
#### Store Project Files within the WSL File System
If you continue to experience issues, consider storing your project files within the WSL file system instead of the Windows file system. This method avoids path translations and permissions issues and provides a more consistent development environment.
You can keep running the command to get feedback on where you are up to with your setup.
When setup has been completed, the command will return an output like this:
![Setup Complete](../docs/content/imgs/quickstart/006_setup_complete.png)
## Creating Your Agent
After completing the setup, the next step is to create your agent template.
Execute the command `./run agent create YOUR_AGENT_NAME`, where `YOUR_AGENT_NAME` should be replaced with your chosen name.
Tips for naming your agent:
* Give it its own unique name, or name it after yourself
* Include an important aspect of your agent in the name, such as its purpose
Examples: `SwiftyosAssistant`, `PwutsPRAgent`, `MySuperAgent`
![Create an Agent](../docs/content/imgs/quickstart/007_create_agent.png)
## Running your Agent
Your agent can be started using the command: `./run agent start YOUR_AGENT_NAME`
This starts the agent on the URL: `http://localhost:8000/`
![Start the Agent](../docs/content/imgs/quickstart/009_start_agent.png)
The front end can be accessed from `http://localhost:8000/`; first, you must log in using either a Google account or your GitHub account.
![Login](../docs/content/imgs/quickstart/010_login.png)
Upon logging in, you will get a page that looks something like this: your task history down the left-hand side of the page, and the 'chat' window to send tasks to your agent.
![Login](../docs/content/imgs/quickstart/011_home.png)
When you have finished with your agent or just need to restart it, use Ctl-C to end the session. Then, you can re-run the start command.
If you are having issues and want to ensure the agent has been stopped, there is a `./run agent stop` command, which will kill the process using port 8000, which should be the agent.
## Benchmarking your Agent
The benchmarking system can also be accessed using the CLI too:
```bash
agpt % ./run benchmark
Usage: cli.py benchmark [OPTIONS] COMMAND [ARGS]...
Commands to start the benchmark and list tests and categories
Options:
--help Show this message and exit.
Commands:
categories Benchmark categories group command
start Starts the benchmark command
tests Benchmark tests group command
agpt % ./run benchmark categories
Usage: cli.py benchmark categories [OPTIONS] COMMAND [ARGS]...
Benchmark categories group command
Options:
--help Show this message and exit.
Commands:
list List benchmark categories command
agpt % ./run benchmark tests
Usage: cli.py benchmark tests [OPTIONS] COMMAND [ARGS]...
Benchmark tests group command
Options:
--help Show this message and exit.
Commands:
details Benchmark test details command
list List benchmark tests command
```
The benchmark has been split into different categories of skills you can test your agent on. You can see what categories are available with
```bash
./run benchmark categories list
# And what tests are available with
./run benchmark tests list
```
![Login](../docs/content/imgs/quickstart/012_tests.png)
Finally, you can run the benchmark with
```bash
./run benchmark start YOUR_AGENT_NAME
```
>

View File

@@ -4,7 +4,7 @@ AutoGPT Classic was an experimental project to demonstrate autonomous GPT-4 oper
## Project Status
⚠️ **This project is unsupported, and dependencies will not be updated. It was an experiment that has concluded its initial research phase. If you want to use AutoGPT, you should use the [AutoGPT Platform](/autogpt_platform)**
**This project is unsupported, and dependencies will not be updated.** It was an experiment that has concluded its initial research phase. If you want to use AutoGPT, you should use the [AutoGPT Platform](/autogpt_platform).
For those interested in autonomous AI agents, we recommend exploring more actively maintained alternatives or referring to this codebase for educational purposes only.
@@ -16,37 +16,171 @@ AutoGPT Classic was one of the first implementations of autonomous AI agents - A
- Learn from the results and adjust its approach
- Chain multiple actions together to achieve an objective
## Key Features
- 🔄 Autonomous task chaining
- 🛠 Tool and API integration capabilities
- 💾 Memory management for context retention
- 🔍 Web browsing and information gathering
- 📝 File operations and content creation
- 🔄 Self-prompting and task breakdown
## Structure
The project is organized into several key components:
- `/benchmark` - Performance testing tools
- `/forge` - Core autonomous agent framework
- `/frontend` - User interface components
- `/original_autogpt` - Original implementation
```
classic/
├── pyproject.toml # Single consolidated Poetry project
├── poetry.lock # Single lock file
├── forge/ # Core autonomous agent framework
├── original_autogpt/ # Original implementation
├── direct_benchmark/ # Benchmark harness
└── benchmark/ # Challenge definitions (data)
```
## Getting Started
While this project is no longer actively maintained, you can still explore the codebase:
### Prerequisites
- Python 3.12+
- [Poetry](https://python-poetry.org/docs/#installation)
### Installation
1. Clone the repository:
```bash
# Clone the repository
git clone https://github.com/Significant-Gravitas/AutoGPT.git
cd classic
# Install everything
poetry install
```
2. Review the documentation:
- For reference, see the [documentation](https://docs.agpt.co). You can browse at the same point in time as this commit so the docs don't change.
- Check `CLI-USAGE.md` for command-line interface details
- Refer to `TROUBLESHOOTING.md` for common issues
### Configuration
Configuration uses a layered system:
1. **Environment variables** (`.env` file)
2. **Workspace settings** (`.autogpt/autogpt.yaml`)
3. **Agent settings** (`.autogpt/agents/{id}/permissions.yaml`)
Copy the example environment file and add your API keys:
```bash
cp .env.example .env
```
Key environment variables:
```bash
# Required
OPENAI_API_KEY=sk-...
# Optional LLM settings
SMART_LLM=gpt-4o # Model for complex reasoning
FAST_LLM=gpt-4o-mini # Model for simple tasks
# Optional search providers
TAVILY_API_KEY=tvly-...
SERPER_API_KEY=...
# Optional infrastructure
LOG_LEVEL=DEBUG
PORT=8000
FILE_STORAGE_BACKEND=local # local, s3, or gcs
```
### Running
All commands run from the `classic/` directory:
```bash
# Run forge agent
poetry run python -m forge
# Run original autogpt server
poetry run serve --debug
# Run autogpt CLI
poetry run autogpt
```
Agents run on `http://localhost:8000` by default.
### Benchmarking
```bash
poetry run direct-benchmark run
```
### Testing
```bash
poetry run pytest # All tests
poetry run pytest forge/tests/ # Forge tests only
poetry run pytest original_autogpt/tests/ # AutoGPT tests only
```
## Workspaces
Agents operate within a **workspace** directory that contains all agent data and files:
```
{workspace}/
├── .autogpt/
│ ├── autogpt.yaml # Workspace-level permissions
│ ├── ap_server.db # Agent Protocol database (server mode)
│ └── agents/
│ └── AutoGPT-{agent_id}/
│ ├── state.json # Agent profile, directives, history
│ ├── permissions.yaml # Agent-specific permissions
│ └── workspace/ # Agent's sandboxed working directory
```
- The workspace defaults to the current working directory
- Multiple agents can coexist in the same workspace
- Agent file access is sandboxed to their `workspace/` subdirectory
- State persists across sessions via `state.json`
## Permissions
AutoGPT uses a **layered permission system** with pattern matching:
### Permission Files
| File | Scope | Location |
|------|-------|----------|
| `autogpt.yaml` | All agents in workspace | `.autogpt/autogpt.yaml` |
| `permissions.yaml` | Single agent | `.autogpt/agents/{id}/permissions.yaml` |
### Permission Format
```yaml
allow:
- read_file({workspace}/**) # Read any file in workspace
- write_to_file({workspace}/**) # Write any file in workspace
- web_search(*) # All web searches
deny:
- read_file(**.env) # Block .env files
- execute_shell(sudo:*) # Block sudo commands
```
### Check Order (First Match Wins)
1. Agent deny → Block
2. Workspace deny → Block
3. Agent allow → Allow
4. Workspace allow → Allow
5. Prompt user → Interactive approval
### Interactive Approval
When prompted, users can approve commands with different scopes:
- **Once** - Allow this one time only
- **Agent** - Always allow for this agent
- **Workspace** - Always allow for all agents
- **Deny** - Block this command
### Default Security
Denied by default:
- Sensitive files (`.env`, `.key`, `.pem`)
- Destructive commands (`rm -rf`, `sudo`)
- Operations outside the workspace
## Security Notice
This codebase has **known vulnerabilities** and issues with its dependencies. It will not be updated to new dependencies. Use for educational purposes only.
## License
@@ -55,27 +189,3 @@ This project segment is licensed under the MIT License - see the [LICENSE](LICEN
## Documentation
Please refer to the [documentation](https://docs.agpt.co) for more detailed information about the project's architecture and concepts.
You can browse at the same point in time as this commit so the docs don't change.
## Historical Impact
AutoGPT Classic played a significant role in advancing the field of autonomous AI agents:
- Demonstrated practical implementation of AI autonomy
- Inspired numerous derivative projects and research
- Contributed to the development of AI agent architectures
- Helped identify key challenges in AI autonomy
## Security Notice
If you're studying this codebase, please understand this has KNOWN vulnerabilities and issues with its dependencies. It will not be updated to new dependencies.
## Community & Support
While active development has concluded:
- The codebase remains available for study and reference
- Historical discussions can be found in project issues
- Related research and developments continue in the broader AI agent community
## Acknowledgments
Thanks to all contributors who participated in this experimental project and helped advance the field of autonomous AI agents.

View File

@@ -1,4 +0,0 @@
AGENT_NAME=mini-agi
REPORTS_FOLDER="reports/mini-agi"
OPENAI_API_KEY="sk-" # for LLM eval
BUILD_SKILL_TREE=false # set to true to build the skill tree.

View File

@@ -1,12 +0,0 @@
[flake8]
max-line-length = 88
# Ignore rules that conflict with Black code style
extend-ignore = E203, W503
exclude =
__pycache__/,
*.pyc,
.pytest_cache/,
venv*/,
.venv/,
reports/,
agbenchmark/reports/,

View File

@@ -1,174 +0,0 @@
agbenchmark_config/workspace/
backend/backend_stdout.txt
reports/df*.pkl
reports/raw*
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/
.DS_Store
```
secrets.json
agbenchmark_config/challenges_already_beaten.json
agbenchmark_config/challenges/pri_*
agbenchmark_config/updates.json
agbenchmark_config/reports/*
agbenchmark_config/reports/success_rate.json
agbenchmark_config/reports/regression_tests.json

View File

@@ -1,21 +0,0 @@
MIT License
Copyright (c) 2024 AutoGPT
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -1,25 +0,0 @@
# Auto-GPT Benchmarks
Built for the purpose of benchmarking the performance of agents regardless of how they work.
Objectively know how well your agent is performing in categories like code, retrieval, memory, and safety.
Save time and money while doing it through smart dependencies. The best part? It's all automated.
## Scores:
<img width="733" alt="Screenshot 2023-07-25 at 10 35 01 AM" src="https://github.com/Significant-Gravitas/Auto-GPT-Benchmarks/assets/9652976/98963e0b-18b9-4b17-9a6a-4d3e4418af70">
## Ranking overall:
- 1- [Beebot](https://github.com/AutoPackAI/beebot)
- 2- [mini-agi](https://github.com/muellerberndt/mini-agi)
- 3- [Auto-GPT](https://github.com/Significant-Gravitas/AutoGPT)
## Detailed results:
<img width="733" alt="Screenshot 2023-07-25 at 10 42 15 AM" src="https://github.com/Significant-Gravitas/Auto-GPT-Benchmarks/assets/9652976/39be464c-c842-4437-b28a-07d878542a83">
[Click here to see the results and the raw data!](https://docs.google.com/spreadsheets/d/1WXm16P2AHNbKpkOI0LYBpcsGG0O7D8HYTG5Uj0PaJjA/edit#gid=203558751)!
More agents coming soon !

View File

@@ -1,69 +0,0 @@
## As a user
1. `pip install auto-gpt-benchmarks`
2. Add boilerplate code to run and kill agent
3. `agbenchmark`
- `--category challenge_category` to run tests in a specific category
- `--mock` to only run mock tests if they exists for each test
- `--noreg` to skip any tests that have passed in the past. When you run without this flag and a previous challenge that passed fails, it will now not be regression tests
4. We call boilerplate code for your agent
5. Show pass rate of tests, logs, and any other metrics
## Contributing
##### Diagrams: https://whimsical.com/agbenchmark-5n4hXBq1ZGzBwRsK4TVY7x
### To run the existing mocks
1. clone the repo `auto-gpt-benchmarks`
2. `pip install poetry`
3. `poetry shell`
4. `poetry install`
5. `cp .env_example .env`
6. `git submodule update --init --remote --recursive`
7. `uvicorn server:app --reload`
8. `agbenchmark --mock`
Keep config the same and watch the logs :)
### To run with mini-agi
1. Navigate to `auto-gpt-benchmarks/agent/mini-agi`
2. `pip install -r requirements.txt`
3. `cp .env_example .env`, set `PROMPT_USER=false` and add your `OPENAI_API_KEY=`. Sset `MODEL="gpt-3.5-turbo"` if you don't have access to `gpt-4` yet. Also make sure you have Python 3.10^ installed
4. set `AGENT_NAME=mini-agi` in `.env` file and where you want your `REPORTS_FOLDER` to be
5. Make sure to follow the commands above, and remove mock flag `agbenchmark`
- To add requirements `poetry add requirement`.
Feel free to create prs to merge with `main` at will (but also feel free to ask for review) - if you can't send msg in R&D chat for access.
If you push at any point and break things - it'll happen to everyone - fix it asap. Step 1 is to revert `master` to last working commit
Let people know what beautiful code you write does, document everything well
Share your progress :)
#### Dataset
Manually created, existing challenges within Auto-Gpt, https://osu-nlp-group.github.io/Mind2Web/
## How do I add new agents to agbenchmark ?
Example with smol developer.
1- Create a github branch with your agent following the same pattern as this example:
https://github.com/smol-ai/developer/pull/114/files
2- Create the submodule and the github workflow by following the same pattern as this example:
https://github.com/Significant-Gravitas/Auto-GPT-Benchmarks/pull/48/files
## How do I run agent in different environments?
**To just use as the benchmark for your agent**. `pip install` the package and run `agbenchmark`
**For internal Auto-GPT ci runs**, specify the `AGENT_NAME` you want you use and set the `HOME_ENV`.
Ex. `AGENT_NAME=mini-agi`
**To develop agent alongside benchmark**, you can specify the `AGENT_NAME` you want you use and add as a submodule to the repo

View File

@@ -1,352 +0,0 @@
import logging
import os
import sys
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Optional
import click
from click_default_group import DefaultGroup
from dotenv import load_dotenv
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.utils.logging import configure_logging
load_dotenv()
# try:
# if os.getenv("HELICONE_API_KEY"):
# import helicone # noqa
# helicone_enabled = True
# else:
# helicone_enabled = False
# except ImportError:
# helicone_enabled = False
class InvalidInvocationError(ValueError):
pass
logger = logging.getLogger(__name__)
BENCHMARK_START_TIME_DT = datetime.now(timezone.utc)
BENCHMARK_START_TIME = BENCHMARK_START_TIME_DT.strftime("%Y-%m-%dT%H:%M:%S+00:00")
# if helicone_enabled:
# from helicone.lock import HeliconeLockManager
# HeliconeLockManager.write_custom_property(
# "benchmark_start_time", BENCHMARK_START_TIME
# )
@click.group(cls=DefaultGroup, default_if_no_args=True)
@click.option("--debug", is_flag=True, help="Enable debug output")
def cli(
debug: bool,
) -> Any:
configure_logging(logging.DEBUG if debug else logging.INFO)
@cli.command(hidden=True)
def start():
raise DeprecationWarning(
"`agbenchmark start` is deprecated. Use `agbenchmark run` instead."
)
@cli.command(default=True)
@click.option(
"-N", "--attempts", default=1, help="Number of times to run each challenge."
)
@click.option(
"-c",
"--category",
multiple=True,
help="(+) Select a category to run.",
)
@click.option(
"-s",
"--skip-category",
multiple=True,
help="(+) Exclude a category from running.",
)
@click.option("--test", multiple=True, help="(+) Select a test to run.")
@click.option("--maintain", is_flag=True, help="Run only regression tests.")
@click.option("--improve", is_flag=True, help="Run only non-regression tests.")
@click.option(
"--explore",
is_flag=True,
help="Run only challenges that have never been beaten.",
)
@click.option(
"--no-dep",
is_flag=True,
help="Run all (selected) challenges, regardless of dependency success/failure.",
)
@click.option("--cutoff", type=int, help="Override the challenge time limit (seconds).")
@click.option("--nc", is_flag=True, help="Disable the challenge time limit.")
@click.option("--mock", is_flag=True, help="Run with mock")
@click.option("--keep-answers", is_flag=True, help="Keep answers")
@click.option(
"--backend",
is_flag=True,
help="Write log output to a file instead of the terminal.",
)
# @click.argument(
# "agent_path",
# type=click.Path(exists=True, file_okay=False, path_type=Path),
# required=False,
# )
def run(
maintain: bool,
improve: bool,
explore: bool,
mock: bool,
no_dep: bool,
nc: bool,
keep_answers: bool,
test: tuple[str],
category: tuple[str],
skip_category: tuple[str],
attempts: int,
cutoff: Optional[int] = None,
backend: Optional[bool] = False,
# agent_path: Optional[Path] = None,
) -> None:
"""
Run the benchmark on the agent in the current directory.
Options marked with (+) can be specified multiple times, to select multiple items.
"""
from agbenchmark.main import run_benchmark, validate_args
agbenchmark_config = AgentBenchmarkConfig.load()
logger.debug(f"agbenchmark_config: {agbenchmark_config.agbenchmark_config_dir}")
try:
validate_args(
maintain=maintain,
improve=improve,
explore=explore,
tests=test,
categories=category,
skip_categories=skip_category,
no_cutoff=nc,
cutoff=cutoff,
)
except InvalidInvocationError as e:
logger.error("Error: " + "\n".join(e.args))
sys.exit(1)
original_stdout = sys.stdout # Save the original standard output
exit_code = None
if backend:
with open("backend/backend_stdout.txt", "w") as f:
sys.stdout = f
exit_code = run_benchmark(
config=agbenchmark_config,
maintain=maintain,
improve=improve,
explore=explore,
mock=mock,
no_dep=no_dep,
no_cutoff=nc,
keep_answers=keep_answers,
tests=test,
categories=category,
skip_categories=skip_category,
attempts_per_challenge=attempts,
cutoff=cutoff,
)
sys.stdout = original_stdout
else:
exit_code = run_benchmark(
config=agbenchmark_config,
maintain=maintain,
improve=improve,
explore=explore,
mock=mock,
no_dep=no_dep,
no_cutoff=nc,
keep_answers=keep_answers,
tests=test,
categories=category,
skip_categories=skip_category,
attempts_per_challenge=attempts,
cutoff=cutoff,
)
sys.exit(exit_code)
@cli.command()
@click.option("--port", type=int, help="Port to run the API on.")
def serve(port: Optional[int] = None):
"""Serve the benchmark frontend and API on port 8080."""
import uvicorn
from agbenchmark.app import setup_fastapi_app
config = AgentBenchmarkConfig.load()
app = setup_fastapi_app(config)
# Run the FastAPI application using uvicorn
port = port or int(os.getenv("PORT", 8080))
uvicorn.run(app, host="0.0.0.0", port=port)
@cli.command()
def config():
"""Displays info regarding the present AGBenchmark config."""
from .utils.utils import pretty_print_model
try:
config = AgentBenchmarkConfig.load()
except FileNotFoundError as e:
click.echo(e, err=True)
return 1
pretty_print_model(config, include_header=False)
@cli.group()
def challenge():
logging.getLogger().setLevel(logging.WARNING)
@challenge.command("list")
@click.option(
"--all", "include_unavailable", is_flag=True, help="Include unavailable challenges."
)
@click.option(
"--names", "only_names", is_flag=True, help="List only the challenge names."
)
@click.option("--json", "output_json", is_flag=True)
def list_challenges(include_unavailable: bool, only_names: bool, output_json: bool):
"""Lists [available|all] challenges."""
import json
from tabulate import tabulate
from .challenges.builtin import load_builtin_challenges
from .challenges.webarena import load_webarena_challenges
from .utils.data_types import Category, DifficultyLevel
from .utils.utils import sorted_by_enum_index
DIFFICULTY_COLORS = {
difficulty: color
for difficulty, color in zip(
DifficultyLevel,
["black", "blue", "cyan", "green", "yellow", "red", "magenta", "white"],
)
}
CATEGORY_COLORS = {
category: f"bright_{color}"
for category, color in zip(
Category,
["blue", "cyan", "green", "yellow", "magenta", "red", "white", "black"],
)
}
# Load challenges
challenges = filter(
lambda c: c.info.available or include_unavailable,
[
*load_builtin_challenges(),
*load_webarena_challenges(skip_unavailable=False),
],
)
challenges = sorted_by_enum_index(
challenges, DifficultyLevel, key=lambda c: c.info.difficulty
)
if only_names:
if output_json:
click.echo(json.dumps([c.info.name for c in challenges]))
return
for c in challenges:
click.echo(
click.style(c.info.name, fg=None if c.info.available else "black")
)
return
if output_json:
click.echo(
json.dumps([json.loads(c.info.model_dump_json()) for c in challenges])
)
return
headers = tuple(
click.style(h, bold=True) for h in ("Name", "Difficulty", "Categories")
)
table = [
tuple(
v if challenge.info.available else click.style(v, fg="black")
for v in (
challenge.info.name,
(
click.style(
challenge.info.difficulty.value,
fg=DIFFICULTY_COLORS[challenge.info.difficulty],
)
if challenge.info.difficulty
else click.style("-", fg="black")
),
" ".join(
click.style(cat.value, fg=CATEGORY_COLORS[cat])
for cat in sorted_by_enum_index(challenge.info.category, Category)
),
)
)
for challenge in challenges
]
click.echo(tabulate(table, headers=headers))
@challenge.command()
@click.option("--json", is_flag=True)
@click.argument("name")
def info(name: str, json: bool):
from itertools import chain
from .challenges.builtin import load_builtin_challenges
from .challenges.webarena import load_webarena_challenges
from .utils.utils import pretty_print_model
for challenge in chain(
load_builtin_challenges(),
load_webarena_challenges(skip_unavailable=False),
):
if challenge.info.name != name:
continue
if json:
click.echo(challenge.info.model_dump_json())
break
pretty_print_model(challenge.info)
break
else:
click.echo(click.style(f"Unknown challenge '{name}'", fg="red"), err=True)
@cli.command()
def version():
"""Print version info for the AGBenchmark application."""
import toml
package_root = Path(__file__).resolve().parent.parent
pyproject = toml.load(package_root / "pyproject.toml")
version = pyproject["tool"]["poetry"]["version"]
click.echo(f"AGBenchmark version {version}")
if __name__ == "__main__":
cli()

View File

@@ -1,111 +0,0 @@
import logging
import time
from pathlib import Path
from typing import AsyncIterator, Optional
from agent_protocol_client import (
AgentApi,
ApiClient,
Configuration,
Step,
TaskRequestBody,
)
from agbenchmark.agent_interface import get_list_of_file_paths
from agbenchmark.config import AgentBenchmarkConfig
logger = logging.getLogger(__name__)
async def run_api_agent(
task: str,
config: AgentBenchmarkConfig,
timeout: int,
artifacts_location: Optional[Path] = None,
*,
mock: bool = False,
) -> AsyncIterator[Step]:
configuration = Configuration(host=config.host)
async with ApiClient(configuration) as api_client:
api_instance = AgentApi(api_client)
task_request_body = TaskRequestBody(input=task, additional_input=None)
start_time = time.time()
response = await api_instance.create_agent_task(
task_request_body=task_request_body
)
task_id = response.task_id
if artifacts_location:
logger.debug("Uploading task input artifacts to agent...")
await upload_artifacts(
api_instance, artifacts_location, task_id, "artifacts_in"
)
logger.debug("Running agent until finished or timeout...")
while True:
step = await api_instance.execute_agent_task_step(task_id=task_id)
yield step
if time.time() - start_time > timeout:
raise TimeoutError("Time limit exceeded")
if step and mock:
step.is_last = True
if not step or step.is_last:
break
if artifacts_location:
# In "mock" mode, we cheat by giving the correct artifacts to pass the test
if mock:
logger.debug("Uploading mock artifacts to agent...")
await upload_artifacts(
api_instance, artifacts_location, task_id, "artifacts_out"
)
logger.debug("Downloading agent artifacts...")
await download_agent_artifacts_into_folder(
api_instance, task_id, config.temp_folder
)
async def download_agent_artifacts_into_folder(
api_instance: AgentApi, task_id: str, folder: Path
):
artifacts = await api_instance.list_agent_task_artifacts(task_id=task_id)
for artifact in artifacts.artifacts:
# current absolute path of the directory of the file
if artifact.relative_path:
path: str = (
artifact.relative_path
if not artifact.relative_path.startswith("/")
else artifact.relative_path[1:]
)
folder = (folder / path).parent
if not folder.exists():
folder.mkdir(parents=True)
file_path = folder / artifact.file_name
logger.debug(f"Downloading agent artifact {artifact.file_name} to {folder}")
with open(file_path, "wb") as f:
content = await api_instance.download_agent_task_artifact(
task_id=task_id, artifact_id=artifact.artifact_id
)
f.write(content)
async def upload_artifacts(
api_instance: AgentApi, artifacts_location: Path, task_id: str, type: str
) -> None:
for file_path in get_list_of_file_paths(artifacts_location, type):
relative_path: Optional[str] = "/".join(
str(file_path).split(f"{type}/", 1)[-1].split("/")[:-1]
)
if not relative_path:
relative_path = None
await api_instance.upload_agent_task_artifacts(
task_id=task_id, file=str(file_path), relative_path=relative_path
)

View File

@@ -1,27 +0,0 @@
import os
import shutil
from pathlib import Path
from dotenv import load_dotenv
load_dotenv()
HELICONE_GRAPHQL_LOGS = os.getenv("HELICONE_GRAPHQL_LOGS", "").lower() == "true"
def get_list_of_file_paths(
challenge_dir_path: str | Path, artifact_folder_name: str
) -> list[Path]:
source_dir = Path(challenge_dir_path) / artifact_folder_name
if not source_dir.exists():
return []
return list(source_dir.iterdir())
def copy_challenge_artifacts_into_workspace(
challenge_dir_path: str | Path, artifact_folder_name: str, workspace: str | Path
) -> None:
file_paths = get_list_of_file_paths(challenge_dir_path, artifact_folder_name)
for file_path in file_paths:
if file_path.is_file():
shutil.copy(file_path, workspace)

View File

@@ -1,339 +0,0 @@
import datetime
import glob
import json
import logging
import sys
import time
import uuid
from collections import deque
from multiprocessing import Process
from pathlib import Path
from typing import Optional
import httpx
import psutil
from agent_protocol_client import AgentApi, ApiClient, ApiException, Configuration
from agent_protocol_client.models import Task, TaskRequestBody
from fastapi import APIRouter, FastAPI, HTTPException, Request, Response
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel, ConfigDict, ValidationError
from agbenchmark.challenges import ChallengeInfo
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.reports.processing.report_types_v2 import (
BenchmarkRun,
Metrics,
RepositoryInfo,
RunDetails,
TaskInfo,
)
from agbenchmark.schema import TaskEvalRequestBody
from agbenchmark.utils.utils import write_pretty_json
sys.path.append(str(Path(__file__).parent.parent))
logger = logging.getLogger(__name__)
CHALLENGES: dict[str, ChallengeInfo] = {}
challenges_path = Path(__file__).parent / "challenges"
challenge_spec_files = deque(
glob.glob(
f"{challenges_path}/**/data.json",
recursive=True,
)
)
logger.debug("Loading challenges...")
while challenge_spec_files:
challenge_spec_file = Path(challenge_spec_files.popleft())
challenge_relpath = challenge_spec_file.relative_to(challenges_path.parent)
if challenge_relpath.is_relative_to("challenges/deprecated"):
continue
logger.debug(f"Loading {challenge_relpath}...")
try:
challenge_info = ChallengeInfo.model_validate_json(
challenge_spec_file.read_text()
)
except ValidationError as e:
if logging.getLogger().level == logging.DEBUG:
logger.warning(f"Spec file {challenge_relpath} failed to load:\n{e}")
logger.debug(f"Invalid challenge spec: {challenge_spec_file.read_text()}")
continue
if not challenge_info.eval_id:
challenge_info.eval_id = str(uuid.uuid4())
# this will sort all the keys of the JSON systematically
# so that the order is always the same
write_pretty_json(challenge_info.model_dump(), challenge_spec_file)
CHALLENGES[challenge_info.eval_id] = challenge_info
class BenchmarkTaskInfo(BaseModel):
task_id: str
start_time: datetime.datetime
challenge_info: ChallengeInfo
task_informations: dict[str, BenchmarkTaskInfo] = {}
def find_agbenchmark_without_uvicorn():
pids = []
for process in psutil.process_iter(
attrs=[
"pid",
"cmdline",
"name",
"username",
"status",
"cpu_percent",
"memory_info",
"create_time",
"cwd",
"connections",
]
):
try:
# Convert the process.info dictionary values to strings and concatenate them
full_info = " ".join([str(v) for k, v in process.as_dict().items()])
if "agbenchmark" in full_info and "uvicorn" not in full_info:
pids.append(process.pid)
except (psutil.NoSuchProcess, psutil.AccessDenied, psutil.ZombieProcess):
pass
return pids
class CreateReportRequest(BaseModel):
test: str
test_run_id: str
# category: Optional[str] = []
mock: Optional[bool] = False
model_config = ConfigDict(extra="forbid")
updates_list = []
origins = [
"http://localhost:8000",
"http://localhost:8080",
"http://127.0.0.1:5000",
"http://localhost:5000",
]
def stream_output(pipe):
for line in pipe:
print(line, end="")
def setup_fastapi_app(agbenchmark_config: AgentBenchmarkConfig) -> FastAPI:
from agbenchmark.agent_api_interface import upload_artifacts
from agbenchmark.challenges import get_challenge_from_source_uri
from agbenchmark.main import run_benchmark
configuration = Configuration(
host=agbenchmark_config.host or "http://localhost:8000"
)
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
router = APIRouter()
@router.post("/reports")
def run_single_test(body: CreateReportRequest) -> dict:
pids = find_agbenchmark_without_uvicorn()
logger.info(f"pids already running with agbenchmark: {pids}")
logger.debug(f"Request to /reports: {body.model_dump()}")
# Start the benchmark in a separate thread
benchmark_process = Process(
target=lambda: run_benchmark(
config=agbenchmark_config,
tests=(body.test,),
mock=body.mock or False,
)
)
benchmark_process.start()
# Wait for the benchmark to finish, with a timeout of 200 seconds
timeout = 200
start_time = time.time()
while benchmark_process.is_alive():
if time.time() - start_time > timeout:
logger.warning(f"Benchmark run timed out after {timeout} seconds")
benchmark_process.terminate()
break
time.sleep(1)
else:
logger.debug(f"Benchmark finished running in {time.time() - start_time} s")
# List all folders in the current working directory
reports_folder = agbenchmark_config.reports_folder
folders = [folder for folder in reports_folder.iterdir() if folder.is_dir()]
# Sort the folders based on their names
sorted_folders = sorted(folders, key=lambda x: x.name)
# Get the last folder
latest_folder = sorted_folders[-1] if sorted_folders else None
# Read report.json from this folder
if latest_folder:
report_path = latest_folder / "report.json"
logger.debug(f"Getting latest report from {report_path}")
if report_path.exists():
with report_path.open() as file:
data = json.load(file)
logger.debug(f"Report data: {data}")
else:
raise HTTPException(
502,
"Could not get result after running benchmark: "
f"'report.json' does not exist in '{latest_folder}'",
)
else:
raise HTTPException(
504, "Could not get result after running benchmark: no reports found"
)
return data
@router.post("/agent/tasks", tags=["agent"])
async def create_agent_task(task_eval_request: TaskEvalRequestBody) -> Task:
"""
Creates a new task using the provided TaskEvalRequestBody and returns a Task.
Args:
task_eval_request: `TaskRequestBody` including an eval_id.
Returns:
Task: A new task with task_id, input, additional_input,
and empty lists for artifacts and steps.
Example:
Request (TaskEvalRequestBody defined in schema.py):
{
...,
"eval_id": "50da533e-3904-4401-8a07-c49adf88b5eb"
}
Response (Task defined in `agent_protocol_client.models`):
{
"task_id": "50da533e-3904-4401-8a07-c49adf88b5eb",
"input": "Write the word 'Washington' to a .txt file",
"artifacts": []
}
"""
try:
challenge_info = CHALLENGES[task_eval_request.eval_id]
async with ApiClient(configuration) as api_client:
api_instance = AgentApi(api_client)
task_input = challenge_info.task
task_request_body = TaskRequestBody(
input=task_input, additional_input=None
)
task_response = await api_instance.create_agent_task(
task_request_body=task_request_body
)
task_info = BenchmarkTaskInfo(
task_id=task_response.task_id,
start_time=datetime.datetime.now(datetime.timezone.utc),
challenge_info=challenge_info,
)
task_informations[task_info.task_id] = task_info
if input_artifacts_dir := challenge_info.task_artifacts_dir:
await upload_artifacts(
api_instance,
input_artifacts_dir,
task_response.task_id,
"artifacts_in",
)
return task_response
except ApiException as e:
logger.error(f"Error whilst trying to create a task:\n{e}")
logger.error(
"The above error was caused while processing request: "
f"{task_eval_request}"
)
raise HTTPException(500)
@router.post("/agent/tasks/{task_id}/steps")
async def proxy(request: Request, task_id: str):
timeout = httpx.Timeout(300.0, read=300.0) # 5 minutes
async with httpx.AsyncClient(timeout=timeout) as client:
# Construct the new URL
new_url = f"{configuration.host}/ap/v1/agent/tasks/{task_id}/steps"
# Forward the request
response = await client.post(
new_url,
content=await request.body(),
headers=dict(request.headers),
)
# Return the response from the forwarded request
return Response(content=response.content, status_code=response.status_code)
@router.post("/agent/tasks/{task_id}/evaluations")
async def create_evaluation(task_id: str) -> BenchmarkRun:
task_info = task_informations[task_id]
challenge = get_challenge_from_source_uri(task_info.challenge_info.source_uri)
try:
async with ApiClient(configuration) as api_client:
api_instance = AgentApi(api_client)
eval_results = await challenge.evaluate_task_state(
api_instance, task_id
)
eval_info = BenchmarkRun(
repository_info=RepositoryInfo(),
run_details=RunDetails(
command=f"agbenchmark --test={challenge.info.name}",
benchmark_start_time=(
task_info.start_time.strftime("%Y-%m-%dT%H:%M:%S+00:00")
),
test_name=challenge.info.name,
),
task_info=TaskInfo(
data_path=challenge.info.source_uri,
is_regression=None,
category=[c.value for c in challenge.info.category],
task=challenge.info.task,
answer=challenge.info.reference_answer or "",
description=challenge.info.description or "",
),
metrics=Metrics(
success=all(e.passed for e in eval_results),
success_percentage=(
100 * sum(e.score for e in eval_results) / len(eval_results)
if eval_results # avoid division by 0
else 0
),
attempted=True,
),
config={},
)
logger.debug(
f"Returning evaluation data:\n{eval_info.model_dump_json(indent=4)}"
)
return eval_info
except ApiException as e:
logger.error(f"Error {e} whilst trying to evaluate task: {task_id}")
raise HTTPException(500)
app.include_router(router, prefix="/ap/v1")
return app

View File

@@ -1,128 +0,0 @@
import json
import sys
from datetime import datetime
from pathlib import Path
from typing import Optional
from pydantic import Field, ValidationInfo, field_validator
from pydantic_settings import BaseSettings
def _calculate_info_test_path(base_path: Path, benchmark_start_time: datetime) -> Path:
"""
Calculates the path to the directory where the test report will be saved.
"""
# Ensure the reports path exists
base_path.mkdir(parents=True, exist_ok=True)
# Get current UTC date-time stamp
date_stamp = benchmark_start_time.strftime("%Y%m%dT%H%M%S")
# Default run name
run_name = "full_run"
# Map command-line arguments to their respective labels
arg_labels = {
"--test": None,
"--category": None,
"--maintain": "maintain",
"--improve": "improve",
"--explore": "explore",
}
# Identify the relevant command-line argument
for arg, label in arg_labels.items():
if arg in sys.argv:
test_arg = sys.argv[sys.argv.index(arg) + 1] if label is None else None
run_name = arg.strip("--")
if test_arg:
run_name = f"{run_name}_{test_arg}"
break
# Create the full new directory path with ISO standard UTC date-time stamp
report_path = base_path / f"{date_stamp}_{run_name}"
# Ensure the new directory is created
# FIXME: this is not a desirable side-effect of loading the config
report_path.mkdir(exist_ok=True)
return report_path
class AgentBenchmarkConfig(BaseSettings, extra="allow"):
"""
Configuration model and loader for the AGBenchmark.
Projects that want to use AGBenchmark should contain an agbenchmark_config folder
with a config.json file that - at minimum - specifies the `host` at which the
subject application exposes an Agent Protocol compliant API.
"""
agbenchmark_config_dir: Path = Field(exclude=True)
"""Path to the agbenchmark_config folder of the subject agent application."""
categories: list[str] | None = None
"""Categories to benchmark the agent for. If omitted, all categories are assumed."""
host: str
"""Host (scheme://address:port) of the subject agent application."""
reports_folder: Path = Field(None)
"""
Path to the folder where new reports should be stored.
Defaults to {agbenchmark_config_dir}/reports.
"""
@classmethod
def load(cls, config_dir: Optional[Path] = None) -> "AgentBenchmarkConfig":
config_dir = config_dir or cls.find_config_folder()
with (config_dir / "config.json").open("r") as f:
return cls(
agbenchmark_config_dir=config_dir,
**json.load(f),
)
@staticmethod
def find_config_folder(for_dir: Path = Path.cwd()) -> Path:
"""
Find the closest ancestor folder containing an agbenchmark_config folder,
and returns the path of that agbenchmark_config folder.
"""
current_directory = for_dir
while current_directory != Path("/"):
if (path := current_directory / "agbenchmark_config").exists():
if (path / "config.json").is_file():
return path
current_directory = current_directory.parent
raise FileNotFoundError(
"No 'agbenchmark_config' directory found in the path hierarchy."
)
@property
def config_file(self) -> Path:
return self.agbenchmark_config_dir / "config.json"
@field_validator("reports_folder", mode="before")
def set_reports_folder(cls, value: Path, info: ValidationInfo):
if not value:
return info.data["agbenchmark_config_dir"] / "reports"
return value
def get_report_dir(self, benchmark_start_time: datetime) -> Path:
return _calculate_info_test_path(self.reports_folder, benchmark_start_time)
@property
def regression_tests_file(self) -> Path:
return self.reports_folder / "regression_tests.json"
@property
def success_rate_file(self) -> Path:
return self.reports_folder / "success_rate.json"
@property
def challenges_already_beaten_file(self) -> Path:
return self.agbenchmark_config_dir / "challenges_already_beaten.json"
@property
def temp_folder(self) -> Path:
return self.agbenchmark_config_dir / "temp_folder"

View File

@@ -1,339 +0,0 @@
import contextlib
import json
import logging
import os
import shutil
import threading
import time
from pathlib import Path
from typing import Generator
import pytest
from agbenchmark.challenges import OPTIONAL_CATEGORIES, BaseChallenge
from agbenchmark.config import AgentBenchmarkConfig
from agbenchmark.reports.processing.report_types import Test
from agbenchmark.reports.ReportManager import RegressionTestsTracker
from agbenchmark.reports.reports import (
add_test_result_to_report,
make_empty_test_report,
session_finish,
)
from agbenchmark.utils.data_types import Category
GLOBAL_TIMEOUT = (
1500 # The tests will stop after 25 minutes so we can send the reports.
)
agbenchmark_config = AgentBenchmarkConfig.load()
logger = logging.getLogger(__name__)
pytest_plugins = ["agbenchmark.utils.dependencies"]
collect_ignore = ["challenges"]
@pytest.fixture(scope="module")
def config() -> AgentBenchmarkConfig:
return agbenchmark_config
@pytest.fixture(autouse=True)
def temp_folder() -> Generator[Path, None, None]:
"""
Pytest fixture that sets up and tears down the temporary folder for each test.
It is automatically used in every test due to the 'autouse=True' parameter.
"""
# create output directory if it doesn't exist
if not os.path.exists(agbenchmark_config.temp_folder):
os.makedirs(agbenchmark_config.temp_folder, exist_ok=True)
yield agbenchmark_config.temp_folder
# teardown after test function completes
if not os.getenv("KEEP_TEMP_FOLDER_FILES"):
for filename in os.listdir(agbenchmark_config.temp_folder):
file_path = os.path.join(agbenchmark_config.temp_folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
logger.warning(f"Failed to delete {file_path}. Reason: {e}")
def pytest_addoption(parser: pytest.Parser) -> None:
"""
Pytest hook that adds command-line options to the `pytest` command.
The added options are specific to agbenchmark and control its behavior:
* `--mock` is used to run the tests in mock mode.
* `--host` is used to specify the host for the tests.
* `--category` is used to run only tests of a specific category.
* `--nc` is used to run the tests without caching.
* `--cutoff` is used to specify a cutoff time for the tests.
* `--improve` is used to run only the tests that are marked for improvement.
* `--maintain` is used to run only the tests that are marked for maintenance.
* `--explore` is used to run the tests in exploration mode.
* `--test` is used to run a specific test.
* `--no-dep` is used to run the tests without dependencies.
* `--keep-answers` is used to keep the answers of the tests.
Args:
parser: The Pytest CLI parser to which the command-line options are added.
"""
parser.addoption("-N", "--attempts", action="store")
parser.addoption("--no-dep", action="store_true")
parser.addoption("--mock", action="store_true")
parser.addoption("--host", default=None)
parser.addoption("--nc", action="store_true")
parser.addoption("--cutoff", action="store")
parser.addoption("--category", action="append")
parser.addoption("--test", action="append")
parser.addoption("--improve", action="store_true")
parser.addoption("--maintain", action="store_true")
parser.addoption("--explore", action="store_true")
parser.addoption("--keep-answers", action="store_true")
def pytest_configure(config: pytest.Config) -> None:
# Register category markers to prevent "unknown marker" warnings
for category in Category:
config.addinivalue_line("markers", f"{category.value}: {category}")
@pytest.fixture(autouse=True)
def check_regression(request: pytest.FixtureRequest) -> None:
"""
Fixture that checks for every test if it should be treated as a regression test,
and whether to skip it based on that.
The test name is retrieved from the `request` object. Regression reports are loaded
from the path specified in the benchmark configuration.
Effect:
* If the `--improve` option is used and the current test is considered a regression
test, it is skipped.
* If the `--maintain` option is used and the current test is not considered a
regression test, it is also skipped.
Args:
request: The request object from which the test name and the benchmark
configuration are retrieved.
"""
with contextlib.suppress(FileNotFoundError):
rt_tracker = RegressionTestsTracker(agbenchmark_config.regression_tests_file)
assert isinstance(request.node, pytest.Function)
assert isinstance(request.node.parent, pytest.Class)
test_name = request.node.parent.name
challenge_location = getattr(request.node.cls, "CHALLENGE_LOCATION", "")
skip_string = f"Skipping {test_name} at {challenge_location}"
# Check if the test name exists in the regression tests
is_regression_test = rt_tracker.has_regression_test(test_name)
if request.config.getoption("--improve") and is_regression_test:
pytest.skip(f"{skip_string} because it's a regression test")
elif request.config.getoption("--maintain") and not is_regression_test:
pytest.skip(f"{skip_string} because it's not a regression test")
@pytest.fixture(autouse=True, scope="session")
def mock(request: pytest.FixtureRequest) -> bool:
"""
Pytest fixture that retrieves the value of the `--mock` command-line option.
The `--mock` option is used to run the tests in mock mode.
Args:
request: The `pytest.FixtureRequest` from which the `--mock` option value
is retrieved.
Returns:
bool: Whether `--mock` is set for this session.
"""
mock = request.config.getoption("--mock")
assert isinstance(mock, bool)
return mock
test_reports: dict[str, Test] = {}
def pytest_runtest_makereport(item: pytest.Item, call: pytest.CallInfo) -> None:
"""
Pytest hook that is called when a test report is being generated.
It is used to generate and finalize reports for each test.
Args:
item: The test item for which the report is being generated.
call: The call object from which the test result is retrieved.
"""
challenge: type[BaseChallenge] = item.cls # type: ignore
challenge_id = challenge.info.eval_id
if challenge_id not in test_reports:
test_reports[challenge_id] = make_empty_test_report(challenge.info)
if call.when == "setup":
test_name = item.nodeid.split("::")[1]
item.user_properties.append(("test_name", test_name))
if call.when == "call":
add_test_result_to_report(
test_reports[challenge_id], item, call, agbenchmark_config
)
def timeout_monitor(start_time: int) -> None:
"""
Function that limits the total execution time of the test suite.
This function is supposed to be run in a separate thread and calls `pytest.exit`
if the total execution time has exceeded the global timeout.
Args:
start_time (int): The start time of the test suite.
"""
while time.time() - start_time < GLOBAL_TIMEOUT:
time.sleep(1) # check every second
pytest.exit("Test suite exceeded the global timeout", returncode=1)
def pytest_sessionstart(session: pytest.Session) -> None:
"""
Pytest hook that is called at the start of a test session.
Sets up and runs a `timeout_monitor` in a separate thread.
"""
start_time = time.time()
t = threading.Thread(target=timeout_monitor, args=(start_time,))
t.daemon = True # Daemon threads are abruptly stopped at shutdown
t.start()
def pytest_sessionfinish(session: pytest.Session) -> None:
"""
Pytest hook that is called at the end of a test session.
Finalizes and saves the test reports.
"""
session_finish(agbenchmark_config)
def pytest_generate_tests(metafunc: pytest.Metafunc):
n = metafunc.config.getoption("-N")
metafunc.parametrize("i_attempt", range(int(n)) if type(n) is str else [0])
def pytest_collection_modifyitems(
items: list[pytest.Function], config: pytest.Config
) -> None:
"""
Pytest hook that is called after initial test collection has been performed.
Modifies the collected test items based on the agent benchmark configuration,
adding the dependency marker and category markers.
Args:
items: The collected test items to be modified.
config: The active pytest configuration.
"""
rt_tracker = RegressionTestsTracker(agbenchmark_config.regression_tests_file)
try:
challenges_beaten_in_the_past = json.loads(
agbenchmark_config.challenges_already_beaten_file.read_bytes()
)
except FileNotFoundError:
challenges_beaten_in_the_past = {}
selected_tests: tuple[str] = config.getoption("--test") # type: ignore
selected_categories: tuple[str] = config.getoption("--category") # type: ignore
# Can't use a for-loop to remove items in-place
i = 0
while i < len(items):
item = items[i]
assert item.cls and issubclass(item.cls, BaseChallenge)
challenge = item.cls
challenge_name = challenge.info.name
if not issubclass(challenge, BaseChallenge):
item.warn(
pytest.PytestCollectionWarning(
f"Non-challenge item collected: {challenge}"
)
)
i += 1
continue
# --test: remove the test from the set if it's not specifically selected
if selected_tests and challenge.info.name not in selected_tests:
items.remove(item)
continue
# Filter challenges for --maintain, --improve, and --explore:
# --maintain -> only challenges expected to be passed (= regression tests)
# --improve -> only challenges that so far are not passed (reliably)
# --explore -> only challenges that have never been passed
is_regression_test = rt_tracker.has_regression_test(challenge.info.name)
has_been_passed = challenges_beaten_in_the_past.get(challenge.info.name, False)
if (
(config.getoption("--maintain") and not is_regression_test)
or (config.getoption("--improve") and is_regression_test)
or (config.getoption("--explore") and has_been_passed)
):
items.remove(item)
continue
dependencies = challenge.info.dependencies
if (
config.getoption("--test")
or config.getoption("--no-dep")
or config.getoption("--maintain")
):
# Ignore dependencies:
# --test -> user selected specific tests to run, don't care about deps
# --no-dep -> ignore dependency relations regardless of test selection
# --maintain -> all "regression" tests must pass, so run all of them
dependencies = []
elif config.getoption("--improve"):
# Filter dependencies, keep only deps that are not "regression" tests
dependencies = [
d for d in dependencies if not rt_tracker.has_regression_test(d)
]
# Set category markers
challenge_categories = set(c.value for c in challenge.info.category)
for category in challenge_categories:
item.add_marker(category)
# Enforce category selection
if selected_categories:
if not challenge_categories.intersection(set(selected_categories)):
items.remove(item)
continue
# # Filter dependencies, keep only deps from selected categories
# dependencies = [
# d for d in dependencies
# if not set(d.categories).intersection(set(selected_categories))
# ]
# Skip items in optional categories that are not selected for the subject agent
challenge_optional_categories = challenge_categories & set(OPTIONAL_CATEGORIES)
if challenge_optional_categories and not (
agbenchmark_config.categories
and challenge_optional_categories.issubset(
set(agbenchmark_config.categories)
)
):
logger.debug(
f"Skipping {challenge_name}: "
f"category {' and '.join(challenge_optional_categories)} is optional, "
"and not explicitly selected in the benchmark config."
)
items.remove(item)
continue
# Add marker for the DependencyManager
item.add_marker(pytest.mark.depends(on=dependencies, name=challenge_name))
i += 1

View File

@@ -1,26 +0,0 @@
"""
AGBenchmark's test discovery endpoint for Pytest.
This module is picked up by Pytest's *_test.py file matching pattern, and all challenge
classes in the module that conform to the `Test*` pattern are collected.
"""
import importlib
import logging
from itertools import chain
from agbenchmark.challenges.builtin import load_builtin_challenges
from agbenchmark.challenges.webarena import load_webarena_challenges
logger = logging.getLogger(__name__)
DATA_CATEGORY = {}
# Load challenges and attach them to this module
for challenge in chain(load_builtin_challenges(), load_webarena_challenges()):
# Attach the Challenge class to this module so it can be discovered by pytest
module = importlib.import_module(__name__)
setattr(module, challenge.__name__, challenge)
# Build a map of challenge names and their primary category
DATA_CATEGORY[challenge.info.name] = challenge.info.category[0].value

Some files were not shown because too many files have changed in this diff Show More