Compare commits

..

5 Commits

Author SHA1 Message Date
Bently
82bddd885b Merge branch 'dev' into update-install-scripts 2025-08-19 15:57:45 +01:00
Bentlybro
c71406af8b Simplify setup scripts and remove Sentry prompts
Refactored Windows and Linux setup scripts to streamline prerequisite checks, repository detection, and service startup. Removed Sentry configuration and related prompts for a simpler setup experience. Updated user messaging and improved error handling for common Docker issues.
2025-08-13 18:07:22 +01:00
Bently
468d1af802 Merge branch 'dev' into update-install-scripts 2025-08-08 12:47:12 +01:00
Bentlybro
a2c88c7786 Refactor setup scripts for improved reliability and clarity
Reworked both Windows (.bat) and Unix (.sh) setup scripts to improve error handling, logging, and user prompts. The scripts now check for prerequisites, handle Sentry enablement more clearly, ensure environment files are copied with error checks, and consolidate service startup into a single docker compose command with log output. Unused or redundant code was removed for maintainability.
2025-08-07 10:35:48 +01:00
Bentlybro
e79b7a95dc Remove auto-start of frontend dev server in setup scripts
The setup-autogpt.bat and setup-autogpt.sh scripts no longer automatically start the frontend development server after setup. Users are now instructed to manually stop services with 'docker compose down', and the scripts prompt for exit while keeping services running.
2025-08-07 10:03:45 +01:00
1007 changed files with 13328 additions and 70884 deletions

View File

@@ -1,322 +0,0 @@
# GitHub Copilot Instructions for AutoGPT
This file provides comprehensive onboarding information for GitHub Copilot coding agent to work efficiently with the AutoGPT repository.
## Repository Overview
**AutoGPT** is a powerful platform for creating, deploying, and managing continuous AI agents that automate complex workflows. This is a large monorepo (~150MB) containing multiple components:
- **AutoGPT Platform** (`autogpt_platform/`) - Main focus: Modern AI agent platform (Polyform Shield License)
- **Classic AutoGPT** (`classic/`) - Legacy agent system (MIT License)
- **Documentation** (`docs/`) - MkDocs-based documentation site
- **Infrastructure** - Docker configurations, CI/CD, and development tools
**Primary Languages & Frameworks:**
- **Backend**: Python 3.10-3.13, FastAPI, Prisma ORM, PostgreSQL, RabbitMQ
- **Frontend**: TypeScript, Next.js 15, React, Tailwind CSS, Radix UI
- **Development**: Docker, Poetry, pnpm, Playwright, Storybook
## Build and Validation Instructions
### Essential Setup Commands
**Always run these commands in the correct directory and in this order:**
1. **Initial Setup** (required once):
```bash
# Clone and enter repository
git clone <repo> && cd AutoGPT
# Start all services (database, redis, rabbitmq, clamav)
cd autogpt_platform && docker compose --profile local up deps --build --detach
```
2. **Backend Setup** (always run before backend development):
```bash
cd autogpt_platform/backend
poetry install # Install dependencies
poetry run prisma migrate dev # Run database migrations
poetry run prisma generate # Generate Prisma client
```
3. **Frontend Setup** (always run before frontend development):
```bash
cd autogpt_platform/frontend
pnpm install # Install dependencies
```
### Runtime Requirements
**Critical:** Always ensure Docker services are running before starting development:
```bash
cd autogpt_platform && docker compose --profile local up deps --build --detach
```
**Python Version:** Use Python 3.11 (required; managed by Poetry via pyproject.toml)
**Node.js Version:** Use Node.js 21+ with pnpm package manager
### Development Commands
**Backend Development:**
```bash
cd autogpt_platform/backend
poetry run serve # Start development server (port 8000)
poetry run test # Run all tests (requires ~5 minutes)
poetry run pytest path/to/test.py # Run specific test
poetry run format # Format code (Black + isort) - always run first
poetry run lint # Lint code (ruff) - run after format
```
**Frontend Development:**
```bash
cd autogpt_platform/frontend
pnpm dev # Start development server (port 3000) - use for active development
pnpm build # Build for production (only needed for E2E tests or deployment)
pnpm test # Run Playwright E2E tests (requires build first)
pnpm test-ui # Run tests with UI
pnpm format # Format and lint code
pnpm storybook # Start component development server
```
### Testing Strategy
**Backend Tests:**
- **Block Tests**: `poetry run pytest backend/blocks/test/test_block.py -xvs` (validates all blocks)
- **Specific Block**: `poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[BlockName]' -xvs`
- **Snapshot Tests**: Use `--snapshot-update` when output changes, always review with `git diff`
**Frontend Tests:**
- **E2E Tests**: Always run `pnpm dev` before `pnpm test` (Playwright requires running instance)
- **Component Tests**: Use Storybook for isolated component development
### Critical Validation Steps
**Before committing changes:**
1. Run `poetry run format` (backend) and `pnpm format` (frontend)
2. Ensure all tests pass in modified areas
3. Verify Docker services are still running
4. Check that database migrations apply cleanly
**Common Issues & Workarounds:**
- **Prisma issues**: Run `poetry run prisma generate` after schema changes
- **Permission errors**: Ensure Docker has proper permissions
- **Port conflicts**: Check the `docker-compose.yml` file for the current list of exposed ports. You can list all mapped ports with:
- **Test timeouts**: Backend tests can take 5+ minutes, use `-x` flag to stop on first failure
## Project Layout & Architecture
### Core Architecture
**AutoGPT Platform** (`autogpt_platform/`):
- `backend/` - FastAPI server with async support
- `backend/backend/` - Core API logic
- `backend/blocks/` - Agent execution blocks
- `backend/data/` - Database models and schemas
- `schema.prisma` - Database schema definition
- `frontend/` - Next.js application
- `src/app/` - App Router pages and layouts
- `src/components/` - Reusable React components
- `src/lib/` - Utilities and configurations
- `autogpt_libs/` - Shared Python utilities
- `docker-compose.yml` - Development stack orchestration
**Key Configuration Files:**
- `pyproject.toml` - Python dependencies and tooling
- `package.json` - Node.js dependencies and scripts
- `schema.prisma` - Database schema and migrations
- `next.config.mjs` - Next.js configuration
- `tailwind.config.ts` - Styling configuration
### Security & Middleware
**Cache Protection**: Backend includes middleware preventing sensitive data caching in browsers/proxies
**Authentication**: JWT-based with Supabase integration
**User ID Validation**: All data access requires user ID checks - verify this for any `data/*.py` changes
### Development Workflow
**GitHub Actions**: Multiple CI/CD workflows in `.github/workflows/`
- `platform-backend-ci.yml` - Backend testing and validation
- `platform-frontend-ci.yml` - Frontend testing and validation
- `platform-fullstack-ci.yml` - End-to-end integration tests
**Pre-commit Hooks**: Run linting and formatting checks
**Conventional Commits**: Use format `type(scope): description` (e.g., `feat(backend): add API`)
### Key Source Files
**Backend Entry Points:**
- `backend/backend/server/server.py` - FastAPI application setup
- `backend/backend/data/` - Database models and user management
- `backend/blocks/` - Agent execution blocks and logic
**Frontend Entry Points:**
- `frontend/src/app/layout.tsx` - Root application layout
- `frontend/src/app/page.tsx` - Home page
- `frontend/src/lib/supabase/` - Authentication and database client
**Protected Routes**: Update `frontend/lib/supabase/middleware.ts` when adding protected routes
### Agent Block System
Agents are built using a visual block-based system where each block performs a single action. Blocks are defined in `backend/blocks/` and must include:
- Block definition with input/output schemas
- Execution logic with proper error handling
- Tests validating functionality
### Database & ORM
**Prisma ORM** with PostgreSQL backend including pgvector for embeddings:
- Schema in `schema.prisma`
- Migrations in `backend/migrations/`
- Always run `prisma migrate dev` and `prisma generate` after schema changes
## Environment Configuration
### Configuration Files Priority Order
1. **Backend**: `/backend/.env.default` → `/backend/.env` (user overrides)
2. **Frontend**: `/frontend/.env.default` → `/frontend/.env` (user overrides)
3. **Platform**: `/.env.default` (Supabase/shared) → `/.env` (user overrides)
4. Docker Compose `environment:` sections override file-based config
5. Shell environment variables have highest precedence
### Docker Environment Setup
- All services use hardcoded defaults (no `${VARIABLE}` substitutions)
- The `env_file` directive loads variables INTO containers at runtime
- Backend/Frontend services use YAML anchors for consistent configuration
- Copy `.env.default` files to `.env` for local development customization
## Advanced Development Patterns
### Adding New Blocks
1. Create file in `/backend/backend/blocks/`
2. Inherit from `Block` base class with input/output schemas
3. Implement `run` method with proper error handling
4. Generate block UUID using `uuid.uuid4()`
5. Register in block registry
6. Write tests alongside block implementation
7. Consider how inputs/outputs connect with other blocks in graph editor
### API Development
1. Update routes in `/backend/backend/server/routers/`
2. Add/update Pydantic models in same directory
3. Write tests alongside route files
4. For `data/*.py` changes, validate user ID checks
5. Run `poetry run test` to verify changes
### Frontend Development
**📖 Complete Frontend Guide**: See `autogpt_platform/frontend/CONTRIBUTING.md` and `autogpt_platform/frontend/.cursorrules` for comprehensive patterns and conventions.
**Quick Reference:**
**Component Structure:**
- Separate render logic from data/behavior
- Structure: `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Exception: Small components (3-4 lines of logic) can be inline
- Render-only components can be direct files without folders
**Data Fetching:**
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Generated via Orval from backend OpenAPI spec
- Pattern: `use{Method}{Version}{OperationName}`
- Example: `useGetV2ListLibraryAgents`
- Regenerate with: `pnpm generate:api`
- **Never** use deprecated `BackendAPI` or `src/lib/autogpt-server-api/*`
**Code Conventions:**
- Use function declarations for components and handlers (not arrow functions)
- Only arrow functions for small inline lambdas (map, filter, etc.)
- Components: `PascalCase`, Hooks: `camelCase` with `use` prefix
- No barrel files or `index.ts` re-exports
- Minimal comments (code should be self-documenting)
**Styling:**
- Use Tailwind CSS utilities only
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
- Only use Phosphor Icons (`@phosphor-icons/react`)
- Prefer design tokens over hardcoded values
**Error Handling:**
- Render errors: Use `<ErrorCard />` component
- Mutation errors: Display with toast notifications
- Manual exceptions: Use `Sentry.captureException()`
- Global error boundaries already configured
**Testing:**
- Add/update Storybook stories for UI components (`pnpm storybook`)
- Run Playwright E2E tests with `pnpm test`
- Verify in Chromatic after PR
**Architecture:**
- Default to client components ("use client")
- Server components only for SEO or extreme TTFB needs
- Use React Query for server state (via generated hooks)
- Co-locate UI state in components/hooks
### Security Guidelines
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)
- Prevents sensitive data caching in browsers/proxies
- Add new cacheable endpoints to `CACHEABLE_PATHS`
### CI/CD Alignment
The repository has comprehensive CI workflows that test:
- **Backend**: Python 3.11-3.13, services (Redis/RabbitMQ/ClamAV), Prisma migrations, Poetry lock validation
- **Frontend**: Node.js 21, pnpm, Playwright with Docker Compose stack, API schema validation
- **Integration**: Full-stack type checking and E2E testing
Match these patterns when developing locally - the copilot setup environment mirrors these CI configurations.
## Collaboration with Other AI Assistants
This repository is actively developed with assistance from Claude (via CLAUDE.md files). When working on this codebase:
- Check for existing CLAUDE.md files that provide additional context
- Follow established patterns and conventions already in the codebase
- Maintain consistency with existing code style and architecture
- Consider that changes may be reviewed and extended by both human developers and AI assistants
## Trust These Instructions
These instructions are comprehensive and tested. Only perform additional searches if:
1. Information here is incomplete for your specific task
2. You encounter errors not covered by the workarounds
3. You need to understand implementation details not covered above
For detailed platform development patterns, refer to `autogpt_platform/CLAUDE.md` and `AGENTS.md` in the repository root.

View File

@@ -1,97 +0,0 @@
name: Auto Fix CI Failures
on:
workflow_run:
workflows: ["CI"]
types:
- completed
permissions:
contents: write
pull-requests: write
actions: read
issues: write
id-token: write # Required for OIDC token exchange
jobs:
auto-fix:
if: |
github.event.workflow_run.conclusion == 'failure' &&
github.event.workflow_run.pull_requests[0] &&
!startsWith(github.event.workflow_run.head_branch, 'claude-auto-fix-ci-')
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
ref: ${{ github.event.workflow_run.head_branch }}
fetch-depth: 0
token: ${{ secrets.GITHUB_TOKEN }}
- name: Setup git identity
run: |
git config --global user.email "claude[bot]@users.noreply.github.com"
git config --global user.name "claude[bot]"
- name: Create fix branch
id: branch
run: |
BRANCH_NAME="claude-auto-fix-ci-${{ github.event.workflow_run.head_branch }}-${{ github.run_id }}"
git checkout -b "$BRANCH_NAME"
echo "branch_name=$BRANCH_NAME" >> $GITHUB_OUTPUT
- name: Get CI failure details
id: failure_details
uses: actions/github-script@v7
with:
script: |
const run = await github.rest.actions.getWorkflowRun({
owner: context.repo.owner,
repo: context.repo.repo,
run_id: ${{ github.event.workflow_run.id }}
});
const jobs = await github.rest.actions.listJobsForWorkflowRun({
owner: context.repo.owner,
repo: context.repo.repo,
run_id: ${{ github.event.workflow_run.id }}
});
const failedJobs = jobs.data.jobs.filter(job => job.conclusion === 'failure');
let errorLogs = [];
for (const job of failedJobs) {
const logs = await github.rest.actions.downloadJobLogsForWorkflowRun({
owner: context.repo.owner,
repo: context.repo.repo,
job_id: job.id
});
errorLogs.push({
jobName: job.name,
logs: logs.data
});
}
return {
runUrl: run.data.html_url,
failedJobs: failedJobs.map(j => j.name),
errorLogs: errorLogs
};
- name: Fix CI failures with Claude
id: claude
uses: anthropics/claude-code-action@v1
with:
prompt: |
/fix-ci
Failed CI Run: ${{ fromJSON(steps.failure_details.outputs.result).runUrl }}
Failed Jobs: ${{ join(fromJSON(steps.failure_details.outputs.result).failedJobs, ', ') }}
PR Number: ${{ github.event.workflow_run.pull_requests[0].number }}
Branch Name: ${{ steps.branch.outputs.branch_name }}
Base Branch: ${{ github.event.workflow_run.head_branch }}
Repository: ${{ github.repository }}
Error logs:
${{ toJSON(fromJSON(steps.failure_details.outputs.result).errorLogs) }}
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
claude_args: "--allowedTools 'Edit,MultiEdit,Write,Read,Glob,Grep,LS,Bash(git:*),Bash(bun:*),Bash(npm:*),Bash(npx:*),Bash(gh:*)'"

View File

@@ -1,379 +0,0 @@
# Claude Dependabot PR Review Workflow
#
# This workflow automatically runs Claude analysis on Dependabot PRs to:
# - Identify dependency changes and their versions
# - Look up changelogs for updated packages
# - Assess breaking changes and security impacts
# - Provide actionable recommendations for the development team
#
# Triggered on: Dependabot PRs (opened, synchronize)
# Requirements: ANTHROPIC_API_KEY secret must be configured
name: Claude Dependabot PR Review
on:
pull_request:
types: [opened, synchronize]
jobs:
dependabot-review:
# Only run on Dependabot PRs
if: github.actor == 'dependabot[bot]'
runs-on: ubuntu-latest
timeout-minutes: 30
permissions:
contents: write
pull-requests: read
issues: read
id-token: write
actions: read # Required for CI access
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 1
# Backend Python/Poetry setup (mirrors platform-backend-ci.yml)
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
- name: Install Poetry
run: |
# Extract Poetry version from backend/poetry.lock (matches CI)
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
echo "Found Poetry version ${HEAD_POETRY_VERSION} in backend/poetry.lock"
# Install Poetry
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
# Add Poetry to PATH
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Check poetry.lock
working-directory: autogpt_platform/backend
run: |
poetry lock
if ! git diff --quiet --ignore-matching-lines="^# " poetry.lock; then
echo "Warning: poetry.lock not up to date, but continuing for setup"
git checkout poetry.lock # Reset for clean setup
fi
- name: Install Python dependencies
working-directory: autogpt_platform/backend
run: poetry install
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "21"
- name: Enable corepack
run: corepack enable
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend
run: pnpm install --frozen-lockfile
# Install Playwright browsers for frontend testing
# NOTE: Disabled to save ~1 minute of setup time. Re-enable if Copilot needs browser automation (e.g., for MCP)
# - name: Install Playwright browsers
# working-directory: autogpt_platform/frontend
# run: pnpm playwright install --with-deps chromium
# Docker setup for development environment
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Copy default environment files
working-directory: autogpt_platform
run: |
# Copy default environment files for development
cp .env.default .env
cp backend/.env.default backend/.env
cp frontend/.env.default frontend/.env
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes
key: docker-images-v2-${{ runner.os }}-${{ hashFiles('.github/workflows/copilot-setup-steps.yml') }}
restore-keys: |
docker-images-v2-${{ runner.os }}-
docker-images-v1-${{ runner.os }}-
- name: Load or pull Docker images
working-directory: autogpt_platform
run: |
mkdir -p ~/docker-cache
# Define image list for easy maintenance
IMAGES=(
"redis:latest"
"rabbitmq:management"
"clamav/clamav-debian:latest"
"busybox:latest"
"kong:2.8.1"
"supabase/gotrue:v2.170.0"
"supabase/postgres:15.8.1.049"
"supabase/postgres-meta:v0.86.1"
"supabase/studio:20250224-d10db0f"
)
# Check if any cached tar files exist (more reliable than cache-hit)
if ls ~/docker-cache/*.tar 1> /dev/null 2>&1; then
echo "Docker cache found, loading images in parallel..."
for image in "${IMAGES[@]}"; do
# Convert image name to filename (replace : and / with -)
filename=$(echo "$image" | tr ':/' '--')
if [ -f ~/docker-cache/${filename}.tar ]; then
echo "Loading $image..."
docker load -i ~/docker-cache/${filename}.tar || echo "Warning: Failed to load $image from cache" &
fi
done
wait
echo "All cached images loaded"
else
echo "No Docker cache found, pulling images in parallel..."
# Pull all images in parallel
for image in "${IMAGES[@]}"; do
docker pull "$image" &
done
wait
# Only save cache on main branches (not PRs) to avoid cache pollution
if [[ "${{ github.ref }}" == "refs/heads/master" ]] || [[ "${{ github.ref }}" == "refs/heads/dev" ]]; then
echo "Saving Docker images to cache in parallel..."
for image in "${IMAGES[@]}"; do
# Convert image name to filename (replace : and / with -)
filename=$(echo "$image" | tr ':/' '--')
echo "Saving $image..."
docker save -o ~/docker-cache/${filename}.tar "$image" || echo "Warning: Failed to save $image" &
done
wait
echo "Docker image cache saved"
else
echo "Skipping cache save for PR/feature branch"
fi
fi
echo "Docker images ready for use"
# Phase 2: Build migrate service with GitHub Actions cache
- name: Build migrate Docker image with cache
working-directory: autogpt_platform
run: |
# Build the migrate image with buildx for GHA caching
docker buildx build \
--cache-from type=gha \
--cache-to type=gha,mode=max \
--target migrate \
--tag autogpt_platform-migrate:latest \
--load \
-f backend/Dockerfile \
..
# Start services using pre-built images
- name: Start Docker services for development
working-directory: autogpt_platform
run: |
# Start essential services (migrate image already built with correct tag)
docker compose --profile local up deps --no-build --detach
echo "Waiting for services to be ready..."
# Wait for database to be ready
echo "Checking database readiness..."
timeout 30 sh -c 'until docker compose exec -T db pg_isready -U postgres 2>/dev/null; do
echo " Waiting for database..."
sleep 2
done' && echo "✅ Database is ready" || echo "⚠️ Database ready check timeout after 30s, continuing..."
# Check migrate service status
echo "Checking migration status..."
docker compose ps migrate || echo " Migrate service not visible in ps output"
# Wait for migrate service to complete
echo "Waiting for migrations to complete..."
timeout 30 bash -c '
ATTEMPTS=0
while [ $ATTEMPTS -lt 15 ]; do
ATTEMPTS=$((ATTEMPTS + 1))
# Check using docker directly (more reliable than docker compose ps)
CONTAINER_STATUS=$(docker ps -a --filter "label=com.docker.compose.service=migrate" --format "{{.Status}}" | head -1)
if [ -z "$CONTAINER_STATUS" ]; then
echo " Attempt $ATTEMPTS: Migrate container not found yet..."
elif echo "$CONTAINER_STATUS" | grep -q "Exited (0)"; then
echo "✅ Migrations completed successfully"
docker compose logs migrate --tail=5 2>/dev/null || true
exit 0
elif echo "$CONTAINER_STATUS" | grep -q "Exited ([1-9]"; then
EXIT_CODE=$(echo "$CONTAINER_STATUS" | grep -oE "Exited \([0-9]+\)" | grep -oE "[0-9]+")
echo "❌ Migrations failed with exit code: $EXIT_CODE"
echo "Migration logs:"
docker compose logs migrate --tail=20 2>/dev/null || true
exit 1
elif echo "$CONTAINER_STATUS" | grep -q "Up"; then
echo " Attempt $ATTEMPTS: Migrate container is running... ($CONTAINER_STATUS)"
else
echo " Attempt $ATTEMPTS: Migrate container status: $CONTAINER_STATUS"
fi
sleep 2
done
echo "⚠️ Timeout: Could not determine migration status after 30 seconds"
echo "Final container check:"
docker ps -a --filter "label=com.docker.compose.service=migrate" || true
echo "Migration logs (if available):"
docker compose logs migrate --tail=10 2>/dev/null || echo " No logs available"
' || echo "⚠️ Migration check completed with warnings, continuing..."
# Brief wait for other services to stabilize
echo "Waiting 5 seconds for other services to stabilize..."
sleep 5
# Verify installations and provide environment info
- name: Verify setup and show environment info
run: |
echo "=== Python Setup ==="
python --version
poetry --version
echo "=== Node.js Setup ==="
node --version
pnpm --version
echo "=== Additional Tools ==="
docker --version
docker compose version
gh --version || true
echo "=== Services Status ==="
cd autogpt_platform
docker compose ps || true
echo "=== Backend Dependencies ==="
cd backend
poetry show | head -10 || true
echo "=== Frontend Dependencies ==="
cd ../frontend
pnpm list --depth=0 | head -10 || true
echo "=== Environment Files ==="
ls -la ../.env* || true
ls -la .env* || true
ls -la ../backend/.env* || true
echo "✅ AutoGPT Platform development environment setup complete!"
echo "🚀 Ready for development with Docker services running"
echo "📝 Backend server: poetry run serve (port 8000)"
echo "🌐 Frontend server: pnpm dev (port 3000)"
- name: Run Claude Dependabot Analysis
id: claude_review
uses: anthropics/claude-code-action@v1
with:
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
claude_args: |
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*)"
prompt: |
You are Claude, an AI assistant specialized in reviewing Dependabot dependency update PRs.
Your primary tasks are:
1. **Analyze the dependency changes** in this Dependabot PR
2. **Look up changelogs** for all updated dependencies to understand what changed
3. **Identify breaking changes** and assess potential impact on the AutoGPT codebase
4. **Provide actionable recommendations** for the development team
## Analysis Process:
1. **Identify Changed Dependencies**:
- Use git diff to see what dependencies were updated
- Parse package.json, poetry.lock, requirements files, etc.
- List all package versions: old → new
2. **Changelog Research**:
- For each updated dependency, look up its changelog/release notes
- Use WebFetch to access GitHub releases, NPM package pages, PyPI project pages. The pr should also have some details
- Focus on versions between the old and new versions
- Identify: breaking changes, deprecations, security fixes, new features
3. **Breaking Change Assessment**:
- Categorize changes: BREAKING, MAJOR, MINOR, PATCH, SECURITY
- Assess impact on AutoGPT's usage patterns
- Check if AutoGPT uses affected APIs/features
- Look for migration guides or upgrade instructions
4. **Codebase Impact Analysis**:
- Search the AutoGPT codebase for usage of changed APIs
- Identify files that might be affected by breaking changes
- Check test files for deprecated usage patterns
- Look for configuration changes needed
## Output Format:
Provide a comprehensive review comment with:
### 🔍 Dependency Analysis Summary
- List of updated packages with version changes
- Overall risk assessment (LOW/MEDIUM/HIGH)
### 📋 Detailed Changelog Review
For each updated dependency:
- **Package**: name (old_version → new_version)
- **Changes**: Summary of key changes
- **Breaking Changes**: List any breaking changes
- **Security Fixes**: Note security improvements
- **Migration Notes**: Any upgrade steps needed
### ⚠️ Impact Assessment
- **Breaking Changes Found**: Yes/No with details
- **Affected Files**: List AutoGPT files that may need updates
- **Test Impact**: Any tests that may need updating
- **Configuration Changes**: Required config updates
### 🛠️ Recommendations
- **Action Required**: What the team should do
- **Testing Focus**: Areas to test thoroughly
- **Follow-up Tasks**: Any additional work needed
- **Merge Recommendation**: APPROVE/REVIEW_NEEDED/HOLD
### 📚 Useful Links
- Links to relevant changelogs, migration guides, documentation
Be thorough but concise. Focus on actionable insights that help the development team make informed decisions about the dependency updates.

View File

@@ -30,296 +30,18 @@ jobs:
github.event.issue.author_association == 'COLLABORATOR'
)
runs-on: ubuntu-latest
timeout-minutes: 45
permissions:
contents: write
contents: read
pull-requests: read
issues: read
id-token: write
actions: read # Required for CI access
steps:
- name: Checkout code
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 1
# Backend Python/Poetry setup (mirrors platform-backend-ci.yml)
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
- name: Install Poetry
run: |
# Extract Poetry version from backend/poetry.lock (matches CI)
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
echo "Found Poetry version ${HEAD_POETRY_VERSION} in backend/poetry.lock"
# Install Poetry
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
# Add Poetry to PATH
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Check poetry.lock
working-directory: autogpt_platform/backend
run: |
poetry lock
if ! git diff --quiet --ignore-matching-lines="^# " poetry.lock; then
echo "Warning: poetry.lock not up to date, but continuing for setup"
git checkout poetry.lock # Reset for clean setup
fi
- name: Install Python dependencies
working-directory: autogpt_platform/backend
run: poetry install
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "21"
- name: Enable corepack
run: corepack enable
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend
run: pnpm install --frozen-lockfile
# Install Playwright browsers for frontend testing
# NOTE: Disabled to save ~1 minute of setup time. Re-enable if Copilot needs browser automation (e.g., for MCP)
# - name: Install Playwright browsers
# working-directory: autogpt_platform/frontend
# run: pnpm playwright install --with-deps chromium
# Docker setup for development environment
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Copy default environment files
working-directory: autogpt_platform
run: |
# Copy default environment files for development
cp .env.default .env
cp backend/.env.default backend/.env
cp frontend/.env.default frontend/.env
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes
key: docker-images-v2-${{ runner.os }}-${{ hashFiles('.github/workflows/copilot-setup-steps.yml') }}
restore-keys: |
docker-images-v2-${{ runner.os }}-
docker-images-v1-${{ runner.os }}-
- name: Load or pull Docker images
working-directory: autogpt_platform
run: |
mkdir -p ~/docker-cache
# Define image list for easy maintenance
IMAGES=(
"redis:latest"
"rabbitmq:management"
"clamav/clamav-debian:latest"
"busybox:latest"
"kong:2.8.1"
"supabase/gotrue:v2.170.0"
"supabase/postgres:15.8.1.049"
"supabase/postgres-meta:v0.86.1"
"supabase/studio:20250224-d10db0f"
)
# Check if any cached tar files exist (more reliable than cache-hit)
if ls ~/docker-cache/*.tar 1> /dev/null 2>&1; then
echo "Docker cache found, loading images in parallel..."
for image in "${IMAGES[@]}"; do
# Convert image name to filename (replace : and / with -)
filename=$(echo "$image" | tr ':/' '--')
if [ -f ~/docker-cache/${filename}.tar ]; then
echo "Loading $image..."
docker load -i ~/docker-cache/${filename}.tar || echo "Warning: Failed to load $image from cache" &
fi
done
wait
echo "All cached images loaded"
else
echo "No Docker cache found, pulling images in parallel..."
# Pull all images in parallel
for image in "${IMAGES[@]}"; do
docker pull "$image" &
done
wait
# Only save cache on main branches (not PRs) to avoid cache pollution
if [[ "${{ github.ref }}" == "refs/heads/master" ]] || [[ "${{ github.ref }}" == "refs/heads/dev" ]]; then
echo "Saving Docker images to cache in parallel..."
for image in "${IMAGES[@]}"; do
# Convert image name to filename (replace : and / with -)
filename=$(echo "$image" | tr ':/' '--')
echo "Saving $image..."
docker save -o ~/docker-cache/${filename}.tar "$image" || echo "Warning: Failed to save $image" &
done
wait
echo "Docker image cache saved"
else
echo "Skipping cache save for PR/feature branch"
fi
fi
echo "Docker images ready for use"
# Phase 2: Build migrate service with GitHub Actions cache
- name: Build migrate Docker image with cache
working-directory: autogpt_platform
run: |
# Build the migrate image with buildx for GHA caching
docker buildx build \
--cache-from type=gha \
--cache-to type=gha,mode=max \
--target migrate \
--tag autogpt_platform-migrate:latest \
--load \
-f backend/Dockerfile \
..
# Start services using pre-built images
- name: Start Docker services for development
working-directory: autogpt_platform
run: |
# Start essential services (migrate image already built with correct tag)
docker compose --profile local up deps --no-build --detach
echo "Waiting for services to be ready..."
# Wait for database to be ready
echo "Checking database readiness..."
timeout 30 sh -c 'until docker compose exec -T db pg_isready -U postgres 2>/dev/null; do
echo " Waiting for database..."
sleep 2
done' && echo "✅ Database is ready" || echo "⚠️ Database ready check timeout after 30s, continuing..."
# Check migrate service status
echo "Checking migration status..."
docker compose ps migrate || echo " Migrate service not visible in ps output"
# Wait for migrate service to complete
echo "Waiting for migrations to complete..."
timeout 30 bash -c '
ATTEMPTS=0
while [ $ATTEMPTS -lt 15 ]; do
ATTEMPTS=$((ATTEMPTS + 1))
# Check using docker directly (more reliable than docker compose ps)
CONTAINER_STATUS=$(docker ps -a --filter "label=com.docker.compose.service=migrate" --format "{{.Status}}" | head -1)
if [ -z "$CONTAINER_STATUS" ]; then
echo " Attempt $ATTEMPTS: Migrate container not found yet..."
elif echo "$CONTAINER_STATUS" | grep -q "Exited (0)"; then
echo "✅ Migrations completed successfully"
docker compose logs migrate --tail=5 2>/dev/null || true
exit 0
elif echo "$CONTAINER_STATUS" | grep -q "Exited ([1-9]"; then
EXIT_CODE=$(echo "$CONTAINER_STATUS" | grep -oE "Exited \([0-9]+\)" | grep -oE "[0-9]+")
echo "❌ Migrations failed with exit code: $EXIT_CODE"
echo "Migration logs:"
docker compose logs migrate --tail=20 2>/dev/null || true
exit 1
elif echo "$CONTAINER_STATUS" | grep -q "Up"; then
echo " Attempt $ATTEMPTS: Migrate container is running... ($CONTAINER_STATUS)"
else
echo " Attempt $ATTEMPTS: Migrate container status: $CONTAINER_STATUS"
fi
sleep 2
done
echo "⚠️ Timeout: Could not determine migration status after 30 seconds"
echo "Final container check:"
docker ps -a --filter "label=com.docker.compose.service=migrate" || true
echo "Migration logs (if available):"
docker compose logs migrate --tail=10 2>/dev/null || echo " No logs available"
' || echo "⚠️ Migration check completed with warnings, continuing..."
# Brief wait for other services to stabilize
echo "Waiting 5 seconds for other services to stabilize..."
sleep 5
# Verify installations and provide environment info
- name: Verify setup and show environment info
run: |
echo "=== Python Setup ==="
python --version
poetry --version
echo "=== Node.js Setup ==="
node --version
pnpm --version
echo "=== Additional Tools ==="
docker --version
docker compose version
gh --version || true
echo "=== Services Status ==="
cd autogpt_platform
docker compose ps || true
echo "=== Backend Dependencies ==="
cd backend
poetry show | head -10 || true
echo "=== Frontend Dependencies ==="
cd ../frontend
pnpm list --depth=0 | head -10 || true
echo "=== Environment Files ==="
ls -la ../.env* || true
ls -la .env* || true
ls -la ../backend/.env* || true
echo "✅ AutoGPT Platform development environment setup complete!"
echo "🚀 Ready for development with Docker services running"
echo "📝 Backend server: poetry run serve (port 8000)"
echo "🌐 Frontend server: pnpm dev (port 3000)"
- name: Run Claude Code
id: claude
uses: anthropics/claude-code-action@v1
uses: anthropics/claude-code-action@beta
with:
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
claude_args: |
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*), Bash(gh pr edit:*)"
--model opus
additional_permissions: |
actions: read

View File

@@ -1,302 +0,0 @@
name: "Copilot Setup Steps"
# Automatically run the setup steps when they are changed to allow for easy validation, and
# allow manual testing through the repository's "Actions" tab
on:
workflow_dispatch:
push:
paths:
- .github/workflows/copilot-setup-steps.yml
pull_request:
paths:
- .github/workflows/copilot-setup-steps.yml
jobs:
# The job MUST be called `copilot-setup-steps` or it will not be picked up by Copilot.
copilot-setup-steps:
runs-on: ubuntu-latest
timeout-minutes: 45
# Set the permissions to the lowest permissions possible needed for your steps.
# Copilot will be given its own token for its operations.
permissions:
# If you want to clone the repository as part of your setup steps, for example to install dependencies, you'll need the `contents: read` permission. If you don't clone the repository in your setup steps, Copilot will do this for you automatically after the steps complete.
contents: read
# You can define any steps you want, and they will run before the agent starts.
# If you do not check out your code, Copilot will do this for you.
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
# Backend Python/Poetry setup (mirrors platform-backend-ci.yml)
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11" # Use standard version matching CI
- name: Set up Python dependency cache
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
- name: Install Poetry
run: |
# Extract Poetry version from backend/poetry.lock (matches CI)
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
echo "Found Poetry version ${HEAD_POETRY_VERSION} in backend/poetry.lock"
# Install Poetry
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
# Add Poetry to PATH
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Check poetry.lock
working-directory: autogpt_platform/backend
run: |
poetry lock
if ! git diff --quiet --ignore-matching-lines="^# " poetry.lock; then
echo "Warning: poetry.lock not up to date, but continuing for setup"
git checkout poetry.lock # Reset for clean setup
fi
- name: Install Python dependencies
working-directory: autogpt_platform/backend
run: poetry install
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "21"
- name: Enable corepack
run: corepack enable
- name: Set pnpm store directory
run: |
pnpm config set store-dir ~/.pnpm-store
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
- name: Cache frontend dependencies
uses: actions/cache@v4
with:
path: ~/.pnpm-store
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
restore-keys: |
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
${{ runner.os }}-pnpm-
- name: Install JavaScript dependencies
working-directory: autogpt_platform/frontend
run: pnpm install --frozen-lockfile
# Install Playwright browsers for frontend testing
# NOTE: Disabled to save ~1 minute of setup time. Re-enable if Copilot needs browser automation (e.g., for MCP)
# - name: Install Playwright browsers
# working-directory: autogpt_platform/frontend
# run: pnpm playwright install --with-deps chromium
# Docker setup for development environment
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
- name: Copy default environment files
working-directory: autogpt_platform
run: |
# Copy default environment files for development
cp .env.default .env
cp backend/.env.default backend/.env
cp frontend/.env.default frontend/.env
# Phase 1: Cache and load Docker images for faster setup
- name: Set up Docker image cache
id: docker-cache
uses: actions/cache@v4
with:
path: ~/docker-cache
# Use a versioned key for cache invalidation when image list changes
key: docker-images-v2-${{ runner.os }}-${{ hashFiles('.github/workflows/copilot-setup-steps.yml') }}
restore-keys: |
docker-images-v2-${{ runner.os }}-
docker-images-v1-${{ runner.os }}-
- name: Load or pull Docker images
working-directory: autogpt_platform
run: |
mkdir -p ~/docker-cache
# Define image list for easy maintenance
IMAGES=(
"redis:latest"
"rabbitmq:management"
"clamav/clamav-debian:latest"
"busybox:latest"
"kong:2.8.1"
"supabase/gotrue:v2.170.0"
"supabase/postgres:15.8.1.049"
"supabase/postgres-meta:v0.86.1"
"supabase/studio:20250224-d10db0f"
)
# Check if any cached tar files exist (more reliable than cache-hit)
if ls ~/docker-cache/*.tar 1> /dev/null 2>&1; then
echo "Docker cache found, loading images in parallel..."
for image in "${IMAGES[@]}"; do
# Convert image name to filename (replace : and / with -)
filename=$(echo "$image" | tr ':/' '--')
if [ -f ~/docker-cache/${filename}.tar ]; then
echo "Loading $image..."
docker load -i ~/docker-cache/${filename}.tar || echo "Warning: Failed to load $image from cache" &
fi
done
wait
echo "All cached images loaded"
else
echo "No Docker cache found, pulling images in parallel..."
# Pull all images in parallel
for image in "${IMAGES[@]}"; do
docker pull "$image" &
done
wait
# Only save cache on main branches (not PRs) to avoid cache pollution
if [[ "${{ github.ref }}" == "refs/heads/master" ]] || [[ "${{ github.ref }}" == "refs/heads/dev" ]]; then
echo "Saving Docker images to cache in parallel..."
for image in "${IMAGES[@]}"; do
# Convert image name to filename (replace : and / with -)
filename=$(echo "$image" | tr ':/' '--')
echo "Saving $image..."
docker save -o ~/docker-cache/${filename}.tar "$image" || echo "Warning: Failed to save $image" &
done
wait
echo "Docker image cache saved"
else
echo "Skipping cache save for PR/feature branch"
fi
fi
echo "Docker images ready for use"
# Phase 2: Build migrate service with GitHub Actions cache
- name: Build migrate Docker image with cache
working-directory: autogpt_platform
run: |
# Build the migrate image with buildx for GHA caching
docker buildx build \
--cache-from type=gha \
--cache-to type=gha,mode=max \
--target migrate \
--tag autogpt_platform-migrate:latest \
--load \
-f backend/Dockerfile \
..
# Start services using pre-built images
- name: Start Docker services for development
working-directory: autogpt_platform
run: |
# Start essential services (migrate image already built with correct tag)
docker compose --profile local up deps --no-build --detach
echo "Waiting for services to be ready..."
# Wait for database to be ready
echo "Checking database readiness..."
timeout 30 sh -c 'until docker compose exec -T db pg_isready -U postgres 2>/dev/null; do
echo " Waiting for database..."
sleep 2
done' && echo "✅ Database is ready" || echo "⚠️ Database ready check timeout after 30s, continuing..."
# Check migrate service status
echo "Checking migration status..."
docker compose ps migrate || echo " Migrate service not visible in ps output"
# Wait for migrate service to complete
echo "Waiting for migrations to complete..."
timeout 30 bash -c '
ATTEMPTS=0
while [ $ATTEMPTS -lt 15 ]; do
ATTEMPTS=$((ATTEMPTS + 1))
# Check using docker directly (more reliable than docker compose ps)
CONTAINER_STATUS=$(docker ps -a --filter "label=com.docker.compose.service=migrate" --format "{{.Status}}" | head -1)
if [ -z "$CONTAINER_STATUS" ]; then
echo " Attempt $ATTEMPTS: Migrate container not found yet..."
elif echo "$CONTAINER_STATUS" | grep -q "Exited (0)"; then
echo "✅ Migrations completed successfully"
docker compose logs migrate --tail=5 2>/dev/null || true
exit 0
elif echo "$CONTAINER_STATUS" | grep -q "Exited ([1-9]"; then
EXIT_CODE=$(echo "$CONTAINER_STATUS" | grep -oE "Exited \([0-9]+\)" | grep -oE "[0-9]+")
echo "❌ Migrations failed with exit code: $EXIT_CODE"
echo "Migration logs:"
docker compose logs migrate --tail=20 2>/dev/null || true
exit 1
elif echo "$CONTAINER_STATUS" | grep -q "Up"; then
echo " Attempt $ATTEMPTS: Migrate container is running... ($CONTAINER_STATUS)"
else
echo " Attempt $ATTEMPTS: Migrate container status: $CONTAINER_STATUS"
fi
sleep 2
done
echo "⚠️ Timeout: Could not determine migration status after 30 seconds"
echo "Final container check:"
docker ps -a --filter "label=com.docker.compose.service=migrate" || true
echo "Migration logs (if available):"
docker compose logs migrate --tail=10 2>/dev/null || echo " No logs available"
' || echo "⚠️ Migration check completed with warnings, continuing..."
# Brief wait for other services to stabilize
echo "Waiting 5 seconds for other services to stabilize..."
sleep 5
# Verify installations and provide environment info
- name: Verify setup and show environment info
run: |
echo "=== Python Setup ==="
python --version
poetry --version
echo "=== Node.js Setup ==="
node --version
pnpm --version
echo "=== Additional Tools ==="
docker --version
docker compose version
gh --version || true
echo "=== Services Status ==="
cd autogpt_platform
docker compose ps || true
echo "=== Backend Dependencies ==="
cd backend
poetry show | head -10 || true
echo "=== Frontend Dependencies ==="
cd ../frontend
pnpm list --depth=0 | head -10 || true
echo "=== Environment Files ==="
ls -la ../.env* || true
ls -la .env* || true
ls -la ../backend/.env* || true
echo "✅ AutoGPT Platform development environment setup complete!"
echo "🚀 Ready for development with Docker services running"
echo "📝 Backend server: poetry run serve (port 8000)"
echo "🌐 Frontend server: pnpm dev (port 3000)"

View File

@@ -3,7 +3,6 @@ name: AutoGPT Platform - Deploy Prod Environment
on:
release:
types: [published]
workflow_dispatch:
permissions:
contents: 'read'
@@ -18,8 +17,6 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
ref: ${{ github.ref_name || 'master' }}
- name: Set up Python
uses: actions/setup-python@v5
@@ -39,7 +36,7 @@ jobs:
DATABASE_URL: ${{ secrets.BACKEND_DATABASE_URL }}
DIRECT_URL: ${{ secrets.BACKEND_DATABASE_URL }}
trigger:
needs: migrate
runs-on: ubuntu-latest
@@ -50,5 +47,4 @@ jobs:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
event-type: build_deploy_prod
client-payload: |
{"ref": "${{ github.ref_name || 'master' }}", "repository": "${{ github.repository }}"}
client-payload: '{"ref": "${{ github.ref }}", "sha": "${{ github.sha }}", "repository": "${{ github.repository }}"}'

View File

@@ -5,13 +5,6 @@ on:
branches: [ dev ]
paths:
- 'autogpt_platform/**'
workflow_dispatch:
inputs:
git_ref:
description: 'Git ref (branch/tag) of AutoGPT to deploy'
required: true
default: 'master'
type: string
permissions:
contents: 'read'
@@ -26,8 +19,6 @@ jobs:
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
ref: ${{ github.event.inputs.git_ref || github.ref_name }}
- name: Set up Python
uses: actions/setup-python@v5
@@ -57,4 +48,4 @@ jobs:
token: ${{ secrets.DEPLOY_TOKEN }}
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
event-type: build_deploy_dev
client-payload: '{"ref": "${{ github.event.inputs.git_ref || github.ref }}", "repository": "${{ github.repository }}"}'
client-payload: '{"ref": "${{ github.ref }}", "sha": "${{ github.sha }}", "repository": "${{ github.repository }}"}'

View File

@@ -32,12 +32,14 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.11", "3.12", "3.13"]
python-version: ["3.11"]
runs-on: ubuntu-latest
services:
redis:
image: redis:latest
image: bitnami/redis:6.2
env:
REDIS_PASSWORD: testpassword
ports:
- 6379:6379
rabbitmq:
@@ -199,9 +201,10 @@ jobs:
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}
SUPABASE_URL: ${{ steps.supabase.outputs.API_URL }}
SUPABASE_SERVICE_ROLE_KEY: ${{ steps.supabase.outputs.SERVICE_ROLE_KEY }}
JWT_VERIFY_KEY: ${{ steps.supabase.outputs.JWT_SECRET }}
SUPABASE_JWT_SECRET: ${{ steps.supabase.outputs.JWT_SECRET }}
REDIS_HOST: "localhost"
REDIS_PORT: "6379"
REDIS_PASSWORD: "testpassword"
ENCRYPTION_KEY: "dvziYgz0KSK8FENhju0ZYi8-fRTfAdlz6YLhdB_jhNw=" # DO NOT USE IN PRODUCTION!!
env:

View File

@@ -160,7 +160,7 @@ jobs:
- name: Run docker compose
run: |
NEXT_PUBLIC_PW_TEST=true docker compose -f ../docker-compose.yml up -d
docker compose -f ../docker-compose.yml up -d
env:
DOCKER_BUILDKIT: 1
BUILDX_CACHE_FROM: type=local,src=/tmp/.buildx-cache

View File

@@ -1,3 +1,6 @@
[pr_reviewer]
num_code_suggestions=0
[pr_code_suggestions]
commitable_code_suggestions=false
num_code_suggestions=0

View File

@@ -61,41 +61,24 @@ poetry run pytest path/to/test.py --snapshot-update
```bash
# Install dependencies
cd frontend && pnpm i
# Generate API client from OpenAPI spec
pnpm generate:api
cd frontend && npm install
# Start development server
pnpm dev
npm run dev
# Run E2E tests
pnpm test
npm run test
# Run Storybook for component development
pnpm storybook
npm run storybook
# Build production
pnpm build
# Format and lint
pnpm format
npm run build
# Type checking
pnpm types
npm run types
```
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
**Key Frontend Conventions:**
- Separate render logic from data/behavior in components
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Use function declarations (not arrow functions) for components/handlers
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Only use Phosphor Icons
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
## Architecture Overview
### Backend Architecture
@@ -109,16 +92,11 @@ pnpm types
### Frontend Architecture
- **Framework**: Next.js 15 App Router (client-first approach)
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
- **State Management**: React Query for server state, co-located UI state in components/hooks
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
- **Framework**: Next.js App Router with React Server Components
- **State Management**: React hooks + Supabase client for real-time updates
- **Workflow Builder**: Visual graph editor using @xyflow/react
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
- **Icons**: Phosphor Icons only
- **UI Components**: Radix UI primitives with Tailwind CSS styling
- **Feature Flags**: LaunchDarkly integration
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
- **Testing**: Playwright for E2E, Storybook for component development
### Key Concepts
@@ -171,25 +149,14 @@ Key models (defined in `/backend/schema.prisma`):
**Adding a new block:**
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
- Provider configuration with `ProviderBuilder`
- Block schema definition
- Authentication (API keys, OAuth, webhooks)
- Testing and validation
- File organization
Quick steps:
1. Create new file in `/backend/backend/blocks/`
2. Configure provider using `ProviderBuilder` in `_config.py`
3. Inherit from `Block` base class
4. Define input/output schemas using `BlockSchema`
5. Implement async `run` method
6. Generate unique block ID using `uuid.uuid4()`
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
2. Inherit from `Block` base class
3. Define input/output schemas
4. Implement `run` method
5. Register in block registry
6. Generate the block uuid using `uuid.uuid4()`
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
Note: when making many new blocks analyze the interfaces for each of these blcoks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
ex: do the inputs and outputs tie well together?
**Modifying the API:**
@@ -201,20 +168,10 @@ ex: do the inputs and outputs tie well together?
**Frontend feature development:**
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
- Add `usePageName.ts` hook for logic
- Put sub-components in local `components/` folder
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
- Use design system components from `src/components/` (atoms, molecules, organisms)
- Never use `src/components/__legacy__/*`
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
- Regenerate with `pnpm generate:api`
- Pattern: `use{Method}{Version}{OperationName}`
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
1. Components go in `/frontend/src/components/`
2. Use existing UI components from `/frontend/src/components/ui/`
3. Add Storybook stories for new components
4. Test with Playwright if user-facing
### Security Implementation

View File

@@ -1,57 +0,0 @@
.PHONY: start-core stop-core logs-core format lint migrate run-backend run-frontend
# Run just Supabase + Redis + RabbitMQ
start-core:
docker compose up -d deps
# Stop core services
stop-core:
docker compose stop deps
reset-db:
rm -rf db/docker/volumes/db/data
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
# View logs for core services
logs-core:
docker compose logs -f deps
# Run formatting and linting for backend and frontend
format:
cd backend && poetry run format
cd frontend && pnpm format
cd frontend && pnpm lint
init-env:
cp -n .env.default .env || true
cd backend && cp -n .env.default .env || true
cd frontend && cp -n .env.default .env || true
# Run migrations for backend
migrate:
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
run-backend:
cd backend && poetry run app
run-frontend:
cd frontend && pnpm dev
test-data:
cd backend && poetry run python test/test_data_creator.py
help:
@echo "Usage: make <target>"
@echo "Targets:"
@echo " start-core - Start just the core services (Supabase, Redis, RabbitMQ) in background"
@echo " stop-core - Stop the core services"
@echo " reset-db - Reset the database by deleting the volume"
@echo " logs-core - Tail the logs for core services"
@echo " format - Format & lint backend (Python) and frontend (TypeScript) code"
@echo " migrate - Run backend database migrations"
@echo " run-backend - Run the backend FastAPI server"
@echo " run-frontend - Run the frontend Next.js development server"
@echo " test-data - Run the test data creator"

View File

@@ -38,37 +38,6 @@ To run the AutoGPT Platform, follow these steps:
4. After all the services are in ready state, open your browser and navigate to `http://localhost:3000` to access the AutoGPT Platform frontend.
### Running Just Core services
You can now run the following to enable just the core services.
```
# For help
make help
# Run just Supabase + Redis + RabbitMQ
make start-core
# Stop core services
make stop-core
# View logs from core services
make logs-core
# Run formatting and linting for backend and frontend
make format
# Run migrations for backend database
make migrate
# Run backend server
make run-backend
# Run frontend development server
make run-frontend
```
### Docker Compose Commands
Here are some useful Docker Compose commands for managing your AutoGPT Platform:

View File

@@ -0,0 +1,35 @@
import hashlib
import secrets
from typing import NamedTuple
class APIKeyContainer(NamedTuple):
"""Container for API key parts."""
raw: str
prefix: str
postfix: str
hash: str
class APIKeyManager:
PREFIX: str = "agpt_"
PREFIX_LENGTH: int = 8
POSTFIX_LENGTH: int = 8
def generate_api_key(self) -> APIKeyContainer:
"""Generate a new API key with all its parts."""
raw_key = f"{self.PREFIX}{secrets.token_urlsafe(32)}"
return APIKeyContainer(
raw=raw_key,
prefix=raw_key[: self.PREFIX_LENGTH],
postfix=raw_key[-self.POSTFIX_LENGTH :],
hash=hashlib.sha256(raw_key.encode()).hexdigest(),
)
def verify_api_key(self, provided_key: str, stored_hash: str) -> bool:
"""Verify if a provided API key matches the stored hash."""
if not provided_key.startswith(self.PREFIX):
return False
provided_hash = hashlib.sha256(provided_key.encode()).hexdigest()
return secrets.compare_digest(provided_hash, stored_hash)

View File

@@ -1,78 +0,0 @@
import hashlib
import secrets
from typing import NamedTuple
from cryptography.hazmat.primitives.kdf.scrypt import Scrypt
class APIKeyContainer(NamedTuple):
"""Container for API key parts."""
key: str
head: str
tail: str
hash: str
salt: str
class APIKeySmith:
PREFIX: str = "agpt_"
HEAD_LENGTH: int = 8
TAIL_LENGTH: int = 8
def generate_key(self) -> APIKeyContainer:
"""Generate a new API key with secure hashing."""
raw_key = f"{self.PREFIX}{secrets.token_urlsafe(32)}"
hash, salt = self.hash_key(raw_key)
return APIKeyContainer(
key=raw_key,
head=raw_key[: self.HEAD_LENGTH],
tail=raw_key[-self.TAIL_LENGTH :],
hash=hash,
salt=salt,
)
def verify_key(
self, provided_key: str, known_hash: str, known_salt: str | None = None
) -> bool:
"""
Verify an API key against a known hash (+ salt).
Supports verifying both legacy SHA256 and secure Scrypt hashes.
"""
if not provided_key.startswith(self.PREFIX):
return False
# Handle legacy SHA256 hashes (migration support)
if known_salt is None:
legacy_hash = hashlib.sha256(provided_key.encode()).hexdigest()
return secrets.compare_digest(legacy_hash, known_hash)
try:
salt_bytes = bytes.fromhex(known_salt)
provided_hash = self._hash_key_with_salt(provided_key, salt_bytes)
return secrets.compare_digest(provided_hash, known_hash)
except (ValueError, TypeError):
return False
def hash_key(self, raw_key: str) -> tuple[str, str]:
"""Migrate a legacy hash to secure hash format."""
salt = self._generate_salt()
hash = self._hash_key_with_salt(raw_key, salt)
return hash, salt.hex()
def _generate_salt(self) -> bytes:
"""Generate a random salt for hashing."""
return secrets.token_bytes(32)
def _hash_key_with_salt(self, raw_key: str, salt: bytes) -> str:
"""Hash API key using Scrypt with salt."""
kdf = Scrypt(
length=32,
salt=salt,
n=2**14, # CPU/memory cost parameter
r=8, # Block size parameter
p=1, # Parallelization parameter
)
key_hash = kdf.derive(raw_key.encode())
return key_hash.hex()

View File

@@ -1,79 +0,0 @@
import hashlib
from autogpt_libs.api_key.keysmith import APIKeySmith
def test_generate_api_key():
keysmith = APIKeySmith()
key = keysmith.generate_key()
assert key.key.startswith(keysmith.PREFIX)
assert key.head == key.key[: keysmith.HEAD_LENGTH]
assert key.tail == key.key[-keysmith.TAIL_LENGTH :]
assert len(key.hash) == 64 # 32 bytes hex encoded
assert len(key.salt) == 64 # 32 bytes hex encoded
def test_verify_new_secure_key():
keysmith = APIKeySmith()
key = keysmith.generate_key()
# Test correct key validates
assert keysmith.verify_key(key.key, key.hash, key.salt) is True
# Test wrong key fails
wrong_key = f"{keysmith.PREFIX}wrongkey123"
assert keysmith.verify_key(wrong_key, key.hash, key.salt) is False
def test_verify_legacy_key():
keysmith = APIKeySmith()
legacy_key = f"{keysmith.PREFIX}legacykey123"
legacy_hash = hashlib.sha256(legacy_key.encode()).hexdigest()
# Test legacy key validates without salt
assert keysmith.verify_key(legacy_key, legacy_hash) is True
# Test wrong legacy key fails
wrong_key = f"{keysmith.PREFIX}wronglegacy"
assert keysmith.verify_key(wrong_key, legacy_hash) is False
def test_rehash_existing_key():
keysmith = APIKeySmith()
legacy_key = f"{keysmith.PREFIX}migratekey123"
# Migrate the legacy key
new_hash, new_salt = keysmith.hash_key(legacy_key)
# Verify migrated key works
assert keysmith.verify_key(legacy_key, new_hash, new_salt) is True
# Verify different key fails with migrated hash
wrong_key = f"{keysmith.PREFIX}wrongkey"
assert keysmith.verify_key(wrong_key, new_hash, new_salt) is False
def test_invalid_key_prefix():
keysmith = APIKeySmith()
key = keysmith.generate_key()
# Test key without proper prefix fails
invalid_key = "invalid_prefix_key"
assert keysmith.verify_key(invalid_key, key.hash, key.salt) is False
def test_secure_hash_requires_salt():
keysmith = APIKeySmith()
key = keysmith.generate_key()
# Secure hash without salt should fail
assert keysmith.verify_key(key.key, key.hash) is False
def test_invalid_salt_format():
keysmith = APIKeySmith()
key = keysmith.generate_key()
# Invalid salt format should fail gracefully
assert keysmith.verify_key(key.key, key.hash, "invalid_hex") is False

View File

@@ -1,13 +1,13 @@
from .config import verify_settings
from .dependencies import get_user_id, requires_admin_user, requires_user
from .helpers import add_auth_responses_to_openapi
from .depends import requires_admin_user, requires_user
from .jwt_utils import parse_jwt_token
from .middleware import APIKeyValidator, auth_middleware
from .models import User
__all__ = [
"verify_settings",
"get_user_id",
"requires_admin_user",
"parse_jwt_token",
"requires_user",
"add_auth_responses_to_openapi",
"requires_admin_user",
"APIKeyValidator",
"auth_middleware",
"User",
]

View File

@@ -1,90 +1,11 @@
import logging
import os
from jwt.algorithms import get_default_algorithms, has_crypto
logger = logging.getLogger(__name__)
class AuthConfigError(ValueError):
"""Raised when authentication configuration is invalid."""
pass
ALGO_RECOMMENDATION = (
"We highly recommend using an asymmetric algorithm such as ES256, "
"because when leaked, a shared secret would allow anyone to "
"forge valid tokens and impersonate users. "
"More info: https://supabase.com/docs/guides/auth/signing-keys#choosing-the-right-signing-algorithm" # noqa
)
class Settings:
def __init__(self):
self.JWT_VERIFY_KEY: str = os.getenv(
"JWT_VERIFY_KEY", os.getenv("SUPABASE_JWT_SECRET", "")
).strip()
self.JWT_ALGORITHM: str = os.getenv("JWT_SIGN_ALGORITHM", "HS256").strip()
self.validate()
def validate(self):
if not self.JWT_VERIFY_KEY:
raise AuthConfigError(
"JWT_VERIFY_KEY must be set. "
"An empty JWT secret would allow anyone to forge valid tokens."
)
if len(self.JWT_VERIFY_KEY) < 32:
logger.warning(
"⚠️ JWT_VERIFY_KEY appears weak (less than 32 characters). "
"Consider using a longer, cryptographically secure secret."
)
supported_algorithms = get_default_algorithms().keys()
if not has_crypto:
logger.warning(
"⚠️ Asymmetric JWT verification is not available "
"because the 'cryptography' package is not installed. "
+ ALGO_RECOMMENDATION
)
if (
self.JWT_ALGORITHM not in supported_algorithms
or self.JWT_ALGORITHM == "none"
):
raise AuthConfigError(
f"Invalid JWT_SIGN_ALGORITHM: '{self.JWT_ALGORITHM}'. "
"Supported algorithms are listed on "
"https://pyjwt.readthedocs.io/en/stable/algorithms.html"
)
if self.JWT_ALGORITHM.startswith("HS"):
logger.warning(
f"⚠️ JWT_SIGN_ALGORITHM is set to '{self.JWT_ALGORITHM}', "
"a symmetric shared-key signature algorithm. " + ALGO_RECOMMENDATION
)
self.JWT_SECRET_KEY: str = os.getenv("SUPABASE_JWT_SECRET", "")
self.ENABLE_AUTH: bool = os.getenv("ENABLE_AUTH", "false").lower() == "true"
self.JWT_ALGORITHM: str = "HS256"
_settings: Settings = None # type: ignore
def get_settings() -> Settings:
global _settings
if not _settings:
_settings = Settings()
return _settings
def verify_settings() -> None:
global _settings
if not _settings:
_settings = Settings() # calls validation indirectly
return
_settings.validate()
settings = Settings()

View File

@@ -1,306 +0,0 @@
"""
Comprehensive tests for auth configuration to ensure 100% line and branch coverage.
These tests verify critical security checks preventing JWT token forgery.
"""
import logging
import os
import pytest
from pytest_mock import MockerFixture
from autogpt_libs.auth.config import AuthConfigError, Settings
def test_environment_variable_precedence(mocker: MockerFixture):
"""Test that environment variables take precedence over defaults."""
secret = "environment-secret-key-with-proper-length-123456"
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": secret}, clear=True)
settings = Settings()
assert settings.JWT_VERIFY_KEY == secret
def test_environment_variable_backwards_compatible(mocker: MockerFixture):
"""Test that SUPABASE_JWT_SECRET is read if JWT_VERIFY_KEY is not set."""
secret = "environment-secret-key-with-proper-length-123456"
mocker.patch.dict(os.environ, {"SUPABASE_JWT_SECRET": secret}, clear=True)
settings = Settings()
assert settings.JWT_VERIFY_KEY == secret
def test_auth_config_error_inheritance():
"""Test that AuthConfigError is properly defined as an Exception."""
assert issubclass(AuthConfigError, Exception)
error = AuthConfigError("test message")
assert str(error) == "test message"
def test_settings_static_after_creation(mocker: MockerFixture):
"""Test that settings maintain their values after creation."""
secret = "immutable-secret-key-with-proper-length-12345"
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": secret}, clear=True)
settings = Settings()
original_secret = settings.JWT_VERIFY_KEY
# Changing environment after creation shouldn't affect settings
os.environ["JWT_VERIFY_KEY"] = "different-secret"
assert settings.JWT_VERIFY_KEY == original_secret
def test_settings_load_with_valid_secret(mocker: MockerFixture):
"""Test auth enabled with a valid JWT secret."""
valid_secret = "a" * 32 # 32 character secret
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": valid_secret}, clear=True)
settings = Settings()
assert settings.JWT_VERIFY_KEY == valid_secret
def test_settings_load_with_strong_secret(mocker: MockerFixture):
"""Test auth enabled with a cryptographically strong secret."""
strong_secret = "super-secret-jwt-token-with-at-least-32-characters-long"
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": strong_secret}, clear=True)
settings = Settings()
assert settings.JWT_VERIFY_KEY == strong_secret
assert len(settings.JWT_VERIFY_KEY) >= 32
def test_secret_empty_raises_error(mocker: MockerFixture):
"""Test that auth enabled with empty secret raises AuthConfigError."""
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": ""}, clear=True)
with pytest.raises(Exception) as exc_info:
Settings()
assert "JWT_VERIFY_KEY" in str(exc_info.value)
def test_secret_missing_raises_error(mocker: MockerFixture):
"""Test that auth enabled without secret env var raises AuthConfigError."""
mocker.patch.dict(os.environ, {}, clear=True)
with pytest.raises(Exception) as exc_info:
Settings()
assert "JWT_VERIFY_KEY" in str(exc_info.value)
@pytest.mark.parametrize("secret", [" ", " ", "\t", "\n", " \t\n "])
def test_secret_only_whitespace_raises_error(mocker: MockerFixture, secret: str):
"""Test that auth enabled with whitespace-only secret raises error."""
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": secret}, clear=True)
with pytest.raises(ValueError):
Settings()
def test_secret_weak_logs_warning(
mocker: MockerFixture, caplog: pytest.LogCaptureFixture
):
"""Test that weak JWT secret triggers warning log."""
weak_secret = "short" # Less than 32 characters
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": weak_secret}, clear=True)
with caplog.at_level(logging.WARNING):
settings = Settings()
assert settings.JWT_VERIFY_KEY == weak_secret
assert "key appears weak" in caplog.text.lower()
assert "less than 32 characters" in caplog.text
def test_secret_31_char_logs_warning(
mocker: MockerFixture, caplog: pytest.LogCaptureFixture
):
"""Test that 31-character secret triggers warning (boundary test)."""
secret_31 = "a" * 31 # Exactly 31 characters
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": secret_31}, clear=True)
with caplog.at_level(logging.WARNING):
settings = Settings()
assert len(settings.JWT_VERIFY_KEY) == 31
assert "key appears weak" in caplog.text.lower()
def test_secret_32_char_no_warning(
mocker: MockerFixture, caplog: pytest.LogCaptureFixture
):
"""Test that 32-character secret does not trigger warning (boundary test)."""
secret_32 = "a" * 32 # Exactly 32 characters
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": secret_32}, clear=True)
with caplog.at_level(logging.WARNING):
settings = Settings()
assert len(settings.JWT_VERIFY_KEY) == 32
assert "JWT secret appears weak" not in caplog.text
def test_secret_whitespace_stripped(mocker: MockerFixture):
"""Test that JWT secret whitespace is stripped."""
secret = "a" * 32
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": f" {secret} "}, clear=True)
settings = Settings()
assert settings.JWT_VERIFY_KEY == secret
def test_secret_with_special_characters(mocker: MockerFixture):
"""Test JWT secret with special characters."""
special_secret = "!@#$%^&*()_+-=[]{}|;:,.<>?`~" + "a" * 10 # 40 chars total
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": special_secret}, clear=True)
settings = Settings()
assert settings.JWT_VERIFY_KEY == special_secret
def test_secret_with_unicode(mocker: MockerFixture):
"""Test JWT secret with unicode characters."""
unicode_secret = "秘密🔐キー" + "a" * 25 # Ensure >32 bytes
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": unicode_secret}, clear=True)
settings = Settings()
assert settings.JWT_VERIFY_KEY == unicode_secret
def test_secret_very_long(mocker: MockerFixture):
"""Test JWT secret with excessive length."""
long_secret = "a" * 1000 # 1000 character secret
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": long_secret}, clear=True)
settings = Settings()
assert settings.JWT_VERIFY_KEY == long_secret
assert len(settings.JWT_VERIFY_KEY) == 1000
def test_secret_with_newline(mocker: MockerFixture):
"""Test JWT secret containing newlines."""
multiline_secret = "secret\nwith\nnewlines" + "a" * 20
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": multiline_secret}, clear=True)
settings = Settings()
assert settings.JWT_VERIFY_KEY == multiline_secret
def test_secret_base64_encoded(mocker: MockerFixture):
"""Test JWT secret that looks like base64."""
base64_secret = "dGhpc19pc19hX3NlY3JldF9rZXlfd2l0aF9wcm9wZXJfbGVuZ3Ro"
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": base64_secret}, clear=True)
settings = Settings()
assert settings.JWT_VERIFY_KEY == base64_secret
def test_secret_numeric_only(mocker: MockerFixture):
"""Test JWT secret with only numbers."""
numeric_secret = "1234567890" * 4 # 40 character numeric secret
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": numeric_secret}, clear=True)
settings = Settings()
assert settings.JWT_VERIFY_KEY == numeric_secret
def test_algorithm_default_hs256(mocker: MockerFixture):
"""Test that JWT algorithm defaults to HS256."""
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": "a" * 32}, clear=True)
settings = Settings()
assert settings.JWT_ALGORITHM == "HS256"
def test_algorithm_whitespace_stripped(mocker: MockerFixture):
"""Test that JWT algorithm whitespace is stripped."""
secret = "a" * 32
mocker.patch.dict(
os.environ,
{"JWT_VERIFY_KEY": secret, "JWT_SIGN_ALGORITHM": " HS256 "},
clear=True,
)
settings = Settings()
assert settings.JWT_ALGORITHM == "HS256"
def test_no_crypto_warning(mocker: MockerFixture, caplog: pytest.LogCaptureFixture):
"""Test warning when crypto package is not available."""
secret = "a" * 32
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": secret}, clear=True)
# Mock has_crypto to return False
mocker.patch("autogpt_libs.auth.config.has_crypto", False)
with caplog.at_level(logging.WARNING):
Settings()
assert "Asymmetric JWT verification is not available" in caplog.text
assert "cryptography" in caplog.text
def test_algorithm_invalid_raises_error(mocker: MockerFixture):
"""Test that invalid JWT algorithm raises AuthConfigError."""
secret = "a" * 32
mocker.patch.dict(
os.environ,
{"JWT_VERIFY_KEY": secret, "JWT_SIGN_ALGORITHM": "INVALID_ALG"},
clear=True,
)
with pytest.raises(AuthConfigError) as exc_info:
Settings()
assert "Invalid JWT_SIGN_ALGORITHM" in str(exc_info.value)
assert "INVALID_ALG" in str(exc_info.value)
def test_algorithm_none_raises_error(mocker: MockerFixture):
"""Test that 'none' algorithm raises AuthConfigError."""
secret = "a" * 32
mocker.patch.dict(
os.environ,
{"JWT_VERIFY_KEY": secret, "JWT_SIGN_ALGORITHM": "none"},
clear=True,
)
with pytest.raises(AuthConfigError) as exc_info:
Settings()
assert "Invalid JWT_SIGN_ALGORITHM" in str(exc_info.value)
@pytest.mark.parametrize("algorithm", ["HS256", "HS384", "HS512"])
def test_algorithm_symmetric_warning(
mocker: MockerFixture, caplog: pytest.LogCaptureFixture, algorithm: str
):
"""Test warning for symmetric algorithms (HS256, HS384, HS512)."""
secret = "a" * 32
mocker.patch.dict(
os.environ,
{"JWT_VERIFY_KEY": secret, "JWT_SIGN_ALGORITHM": algorithm},
clear=True,
)
with caplog.at_level(logging.WARNING):
settings = Settings()
assert algorithm in caplog.text
assert "symmetric shared-key signature algorithm" in caplog.text
assert settings.JWT_ALGORITHM == algorithm
@pytest.mark.parametrize(
"algorithm",
["ES256", "ES384", "ES512", "RS256", "RS384", "RS512", "PS256", "PS384", "PS512"],
)
def test_algorithm_asymmetric_no_warning(
mocker: MockerFixture, caplog: pytest.LogCaptureFixture, algorithm: str
):
"""Test that asymmetric algorithms do not trigger warning."""
secret = "a" * 32
mocker.patch.dict(
os.environ,
{"JWT_VERIFY_KEY": secret, "JWT_SIGN_ALGORITHM": algorithm},
clear=True,
)
with caplog.at_level(logging.WARNING):
settings = Settings()
# Should not contain the symmetric algorithm warning
assert "symmetric shared-key signature algorithm" not in caplog.text
assert settings.JWT_ALGORITHM == algorithm

View File

@@ -1,47 +0,0 @@
"""
FastAPI dependency functions for JWT-based authentication and authorization.
These are the high-level dependency functions used in route definitions.
"""
import fastapi
from .jwt_utils import get_jwt_payload, verify_user
from .models import User
async def requires_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User:
"""
FastAPI dependency that requires a valid authenticated user.
Raises:
HTTPException: 401 for authentication failures
"""
return verify_user(jwt_payload, admin_only=False)
async def requires_admin_user(
jwt_payload: dict = fastapi.Security(get_jwt_payload),
) -> User:
"""
FastAPI dependency that requires a valid admin user.
Raises:
HTTPException: 401 for authentication failures, 403 for insufficient permissions
"""
return verify_user(jwt_payload, admin_only=True)
async def get_user_id(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> str:
"""
FastAPI dependency that returns the ID of the authenticated user.
Raises:
HTTPException: 401 for authentication failures or missing user ID
"""
user_id = jwt_payload.get("sub")
if not user_id:
raise fastapi.HTTPException(
status_code=401, detail="User ID not found in token"
)
return user_id

View File

@@ -1,335 +0,0 @@
"""
Comprehensive integration tests for authentication dependencies.
Tests the full authentication flow from HTTP requests to user validation.
"""
import os
import pytest
from fastapi import FastAPI, HTTPException, Security
from fastapi.testclient import TestClient
from pytest_mock import MockerFixture
from autogpt_libs.auth.dependencies import (
get_user_id,
requires_admin_user,
requires_user,
)
from autogpt_libs.auth.models import User
class TestAuthDependencies:
"""Test suite for authentication dependency functions."""
@pytest.fixture
def app(self):
"""Create a test FastAPI application."""
app = FastAPI()
@app.get("/user")
def get_user_endpoint(user: User = Security(requires_user)):
return {"user_id": user.user_id, "role": user.role}
@app.get("/admin")
def get_admin_endpoint(user: User = Security(requires_admin_user)):
return {"user_id": user.user_id, "role": user.role}
@app.get("/user-id")
def get_user_id_endpoint(user_id: str = Security(get_user_id)):
return {"user_id": user_id}
return app
@pytest.fixture
def client(self, app):
"""Create a test client."""
return TestClient(app)
async def test_requires_user_with_valid_jwt_payload(self, mocker: MockerFixture):
"""Test requires_user with valid JWT payload."""
jwt_payload = {"sub": "user-123", "role": "user", "email": "user@example.com"}
# Mock get_jwt_payload to return our test payload
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = await requires_user(jwt_payload)
assert isinstance(user, User)
assert user.user_id == "user-123"
assert user.role == "user"
async def test_requires_user_with_admin_jwt_payload(self, mocker: MockerFixture):
"""Test requires_user accepts admin users."""
jwt_payload = {
"sub": "admin-456",
"role": "admin",
"email": "admin@example.com",
}
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = await requires_user(jwt_payload)
assert user.user_id == "admin-456"
assert user.role == "admin"
async def test_requires_user_missing_sub(self):
"""Test requires_user with missing user ID."""
jwt_payload = {"role": "user", "email": "user@example.com"}
with pytest.raises(HTTPException) as exc_info:
await requires_user(jwt_payload)
assert exc_info.value.status_code == 401
assert "User ID not found" in exc_info.value.detail
async def test_requires_user_empty_sub(self):
"""Test requires_user with empty user ID."""
jwt_payload = {"sub": "", "role": "user"}
with pytest.raises(HTTPException) as exc_info:
await requires_user(jwt_payload)
assert exc_info.value.status_code == 401
async def test_requires_admin_user_with_admin(self, mocker: MockerFixture):
"""Test requires_admin_user with admin role."""
jwt_payload = {
"sub": "admin-789",
"role": "admin",
"email": "admin@example.com",
}
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user = await requires_admin_user(jwt_payload)
assert user.user_id == "admin-789"
assert user.role == "admin"
async def test_requires_admin_user_with_regular_user(self):
"""Test requires_admin_user rejects regular users."""
jwt_payload = {"sub": "user-123", "role": "user", "email": "user@example.com"}
with pytest.raises(HTTPException) as exc_info:
await requires_admin_user(jwt_payload)
assert exc_info.value.status_code == 403
assert "Admin access required" in exc_info.value.detail
async def test_requires_admin_user_missing_role(self):
"""Test requires_admin_user with missing role."""
jwt_payload = {"sub": "user-123", "email": "user@example.com"}
with pytest.raises(KeyError):
await requires_admin_user(jwt_payload)
async def test_get_user_id_with_valid_payload(self, mocker: MockerFixture):
"""Test get_user_id extracts user ID correctly."""
jwt_payload = {"sub": "user-id-xyz", "role": "user"}
mocker.patch(
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
)
user_id = await get_user_id(jwt_payload)
assert user_id == "user-id-xyz"
async def test_get_user_id_missing_sub(self):
"""Test get_user_id with missing user ID."""
jwt_payload = {"role": "user"}
with pytest.raises(HTTPException) as exc_info:
await get_user_id(jwt_payload)
assert exc_info.value.status_code == 401
assert "User ID not found" in exc_info.value.detail
async def test_get_user_id_none_sub(self):
"""Test get_user_id with None user ID."""
jwt_payload = {"sub": None, "role": "user"}
with pytest.raises(HTTPException) as exc_info:
await get_user_id(jwt_payload)
assert exc_info.value.status_code == 401
class TestAuthDependenciesIntegration:
"""Integration tests for auth dependencies with FastAPI."""
acceptable_jwt_secret = "test-secret-with-proper-length-123456"
@pytest.fixture
def create_token(self, mocker: MockerFixture):
"""Helper to create JWT tokens."""
import jwt
mocker.patch.dict(
os.environ,
{"JWT_VERIFY_KEY": self.acceptable_jwt_secret},
clear=True,
)
def _create_token(payload, secret=self.acceptable_jwt_secret):
return jwt.encode(payload, secret, algorithm="HS256")
return _create_token
async def test_endpoint_auth_enabled_no_token(self):
"""Test endpoints require token when auth is enabled."""
app = FastAPI()
@app.get("/test")
def test_endpoint(user: User = Security(requires_user)):
return {"user_id": user.user_id}
client = TestClient(app)
# Should fail without auth header
response = client.get("/test")
assert response.status_code == 401
async def test_endpoint_with_valid_token(self, create_token):
"""Test endpoint with valid JWT token."""
app = FastAPI()
@app.get("/test")
def test_endpoint(user: User = Security(requires_user)):
return {"user_id": user.user_id, "role": user.role}
client = TestClient(app)
token = create_token(
{"sub": "test-user", "role": "user", "aud": "authenticated"},
secret=self.acceptable_jwt_secret,
)
response = client.get("/test", headers={"Authorization": f"Bearer {token}"})
assert response.status_code == 200
assert response.json()["user_id"] == "test-user"
async def test_admin_endpoint_requires_admin_role(self, create_token):
"""Test admin endpoint rejects non-admin users."""
app = FastAPI()
@app.get("/admin")
def admin_endpoint(user: User = Security(requires_admin_user)):
return {"user_id": user.user_id}
client = TestClient(app)
# Regular user token
user_token = create_token(
{"sub": "regular-user", "role": "user", "aud": "authenticated"},
secret=self.acceptable_jwt_secret,
)
response = client.get(
"/admin", headers={"Authorization": f"Bearer {user_token}"}
)
assert response.status_code == 403
# Admin token
admin_token = create_token(
{"sub": "admin-user", "role": "admin", "aud": "authenticated"},
secret=self.acceptable_jwt_secret,
)
response = client.get(
"/admin", headers={"Authorization": f"Bearer {admin_token}"}
)
assert response.status_code == 200
assert response.json()["user_id"] == "admin-user"
class TestAuthDependenciesEdgeCases:
"""Edge case tests for authentication dependencies."""
async def test_dependency_with_complex_payload(self):
"""Test dependencies handle complex JWT payloads."""
complex_payload = {
"sub": "user-123",
"role": "admin",
"email": "test@example.com",
"app_metadata": {"provider": "email", "providers": ["email"]},
"user_metadata": {
"full_name": "Test User",
"avatar_url": "https://example.com/avatar.jpg",
},
"aud": "authenticated",
"iat": 1234567890,
"exp": 9999999999,
}
user = await requires_user(complex_payload)
assert user.user_id == "user-123"
assert user.email == "test@example.com"
admin = await requires_admin_user(complex_payload)
assert admin.role == "admin"
async def test_dependency_with_unicode_in_payload(self):
"""Test dependencies handle unicode in JWT payloads."""
unicode_payload = {
"sub": "user-😀-123",
"role": "user",
"email": "测试@example.com",
"name": "日本語",
}
user = await requires_user(unicode_payload)
assert "😀" in user.user_id
assert user.email == "测试@example.com"
async def test_dependency_with_null_values(self):
"""Test dependencies handle null values in payload."""
null_payload = {
"sub": "user-123",
"role": "user",
"email": None,
"phone": None,
"metadata": None,
}
user = await requires_user(null_payload)
assert user.user_id == "user-123"
assert user.email is None
async def test_concurrent_requests_isolation(self):
"""Test that concurrent requests don't interfere with each other."""
payload1 = {"sub": "user-1", "role": "user"}
payload2 = {"sub": "user-2", "role": "admin"}
# Simulate concurrent processing
user1 = await requires_user(payload1)
user2 = await requires_admin_user(payload2)
assert user1.user_id == "user-1"
assert user2.user_id == "user-2"
assert user1.role == "user"
assert user2.role == "admin"
@pytest.mark.parametrize(
"payload,expected_error,admin_only",
[
(None, "Authorization header is missing", False),
({}, "User ID not found", False),
({"sub": ""}, "User ID not found", False),
({"role": "user"}, "User ID not found", False),
({"sub": "user", "role": "user"}, "Admin access required", True),
],
)
async def test_dependency_error_cases(
self, payload, expected_error: str, admin_only: bool
):
"""Test that errors propagate correctly through dependencies."""
# Import verify_user to test it directly since dependencies use FastAPI Security
from autogpt_libs.auth.jwt_utils import verify_user
with pytest.raises(HTTPException) as exc_info:
verify_user(payload, admin_only=admin_only)
assert expected_error in exc_info.value.detail
async def test_dependency_valid_user(self):
"""Test valid user case for dependency."""
# Import verify_user to test it directly since dependencies use FastAPI Security
from autogpt_libs.auth.jwt_utils import verify_user
# Valid case
user = verify_user({"sub": "user", "role": "user"}, admin_only=False)
assert user.user_id == "user"

View File

@@ -0,0 +1,46 @@
import fastapi
from .config import settings
from .middleware import auth_middleware
from .models import DEFAULT_USER_ID, User
def requires_user(payload: dict = fastapi.Depends(auth_middleware)) -> User:
return verify_user(payload, admin_only=False)
def requires_admin_user(
payload: dict = fastapi.Depends(auth_middleware),
) -> User:
return verify_user(payload, admin_only=True)
def verify_user(payload: dict | None, admin_only: bool) -> User:
if not payload:
if settings.ENABLE_AUTH:
raise fastapi.HTTPException(
status_code=401, detail="Authorization header is missing"
)
# This handles the case when authentication is disabled
payload = {"sub": DEFAULT_USER_ID, "role": "admin"}
user_id = payload.get("sub")
if not user_id:
raise fastapi.HTTPException(
status_code=401, detail="User ID not found in token"
)
if admin_only and payload["role"] != "admin":
raise fastapi.HTTPException(status_code=403, detail="Admin access required")
return User.from_payload(payload)
def get_user_id(payload: dict = fastapi.Depends(auth_middleware)) -> str:
user_id = payload.get("sub")
if not user_id:
raise fastapi.HTTPException(
status_code=401, detail="User ID not found in token"
)
return user_id

View File

@@ -0,0 +1,68 @@
import pytest
from .depends import requires_admin_user, requires_user, verify_user
def test_verify_user_no_payload():
user = verify_user(None, admin_only=False)
assert user.user_id == "3e53486c-cf57-477e-ba2a-cb02dc828e1a"
assert user.role == "admin"
def test_verify_user_no_user_id():
with pytest.raises(Exception):
verify_user({"role": "admin"}, admin_only=False)
def test_verify_user_not_admin():
with pytest.raises(Exception):
verify_user(
{"sub": "3e53486c-cf57-477e-ba2a-cb02dc828e1a", "role": "user"},
admin_only=True,
)
def test_verify_user_with_admin_role():
user = verify_user(
{"sub": "3e53486c-cf57-477e-ba2a-cb02dc828e1a", "role": "admin"},
admin_only=True,
)
assert user.user_id == "3e53486c-cf57-477e-ba2a-cb02dc828e1a"
assert user.role == "admin"
def test_verify_user_with_user_role():
user = verify_user(
{"sub": "3e53486c-cf57-477e-ba2a-cb02dc828e1a", "role": "user"},
admin_only=False,
)
assert user.user_id == "3e53486c-cf57-477e-ba2a-cb02dc828e1a"
assert user.role == "user"
def test_requires_user():
user = requires_user(
{"sub": "3e53486c-cf57-477e-ba2a-cb02dc828e1a", "role": "user"}
)
assert user.user_id == "3e53486c-cf57-477e-ba2a-cb02dc828e1a"
assert user.role == "user"
def test_requires_user_no_user_id():
with pytest.raises(Exception):
requires_user({"role": "user"})
def test_requires_admin_user():
user = requires_admin_user(
{"sub": "3e53486c-cf57-477e-ba2a-cb02dc828e1a", "role": "admin"}
)
assert user.user_id == "3e53486c-cf57-477e-ba2a-cb02dc828e1a"
assert user.role == "admin"
def test_requires_admin_user_not_admin():
with pytest.raises(Exception):
requires_admin_user(
{"sub": "3e53486c-cf57-477e-ba2a-cb02dc828e1a", "role": "user"}
)

View File

@@ -1,68 +0,0 @@
from fastapi import FastAPI
from fastapi.openapi.utils import get_openapi
from .jwt_utils import bearer_jwt_auth
def add_auth_responses_to_openapi(app: FastAPI) -> None:
"""
Set up custom OpenAPI schema generation that adds 401 responses
to all authenticated endpoints.
This is needed when using HTTPBearer with auto_error=False to get proper
401 responses instead of 403, but FastAPI only automatically adds security
responses when auto_error=True.
"""
def custom_openapi():
if app.openapi_schema:
return app.openapi_schema
openapi_schema = get_openapi(
title=app.title,
version=app.version,
description=app.description,
routes=app.routes,
)
# Add 401 response to all endpoints that have security requirements
for path, methods in openapi_schema["paths"].items():
for method, details in methods.items():
security_schemas = [
schema
for auth_option in details.get("security", [])
for schema in auth_option.keys()
]
if bearer_jwt_auth.scheme_name not in security_schemas:
continue
if "responses" not in details:
details["responses"] = {}
details["responses"]["401"] = {
"$ref": "#/components/responses/HTTP401NotAuthenticatedError"
}
# Ensure #/components/responses exists
if "components" not in openapi_schema:
openapi_schema["components"] = {}
if "responses" not in openapi_schema["components"]:
openapi_schema["components"]["responses"] = {}
# Define 401 response
openapi_schema["components"]["responses"]["HTTP401NotAuthenticatedError"] = {
"description": "Authentication required",
"content": {
"application/json": {
"schema": {
"type": "object",
"properties": {"detail": {"type": "string"}},
}
}
},
}
app.openapi_schema = openapi_schema
return app.openapi_schema
app.openapi = custom_openapi

View File

@@ -1,435 +0,0 @@
"""
Comprehensive tests for auth helpers module to achieve 100% coverage.
Tests OpenAPI schema generation and authentication response handling.
"""
from unittest import mock
from fastapi import FastAPI
from fastapi.openapi.utils import get_openapi
from autogpt_libs.auth.helpers import add_auth_responses_to_openapi
from autogpt_libs.auth.jwt_utils import bearer_jwt_auth
def test_add_auth_responses_to_openapi_basic():
"""Test adding 401 responses to OpenAPI schema."""
app = FastAPI(title="Test App", version="1.0.0")
# Add some test endpoints with authentication
from fastapi import Depends
from autogpt_libs.auth.dependencies import requires_user
@app.get("/protected", dependencies=[Depends(requires_user)])
def protected_endpoint():
return {"message": "Protected"}
@app.get("/public")
def public_endpoint():
return {"message": "Public"}
# Apply the OpenAPI customization
add_auth_responses_to_openapi(app)
# Get the OpenAPI schema
schema = app.openapi()
# Verify basic schema properties
assert schema["info"]["title"] == "Test App"
assert schema["info"]["version"] == "1.0.0"
# Verify 401 response component is added
assert "components" in schema
assert "responses" in schema["components"]
assert "HTTP401NotAuthenticatedError" in schema["components"]["responses"]
# Verify 401 response structure
error_response = schema["components"]["responses"]["HTTP401NotAuthenticatedError"]
assert error_response["description"] == "Authentication required"
assert "application/json" in error_response["content"]
assert "schema" in error_response["content"]["application/json"]
# Verify schema properties
response_schema = error_response["content"]["application/json"]["schema"]
assert response_schema["type"] == "object"
assert "detail" in response_schema["properties"]
assert response_schema["properties"]["detail"]["type"] == "string"
def test_add_auth_responses_to_openapi_with_security():
"""Test that 401 responses are added only to secured endpoints."""
app = FastAPI()
# Mock endpoint with security
from fastapi import Security
from autogpt_libs.auth.dependencies import get_user_id
@app.get("/secured")
def secured_endpoint(user_id: str = Security(get_user_id)):
return {"user_id": user_id}
@app.post("/also-secured")
def another_secured(user_id: str = Security(get_user_id)):
return {"status": "ok"}
@app.get("/unsecured")
def unsecured_endpoint():
return {"public": True}
# Apply OpenAPI customization
add_auth_responses_to_openapi(app)
# Get schema
schema = app.openapi()
# Check that secured endpoints have 401 responses
if "/secured" in schema["paths"]:
if "get" in schema["paths"]["/secured"]:
secured_get = schema["paths"]["/secured"]["get"]
if "responses" in secured_get:
assert "401" in secured_get["responses"]
assert (
secured_get["responses"]["401"]["$ref"]
== "#/components/responses/HTTP401NotAuthenticatedError"
)
if "/also-secured" in schema["paths"]:
if "post" in schema["paths"]["/also-secured"]:
secured_post = schema["paths"]["/also-secured"]["post"]
if "responses" in secured_post:
assert "401" in secured_post["responses"]
# Check that unsecured endpoint does not have 401 response
if "/unsecured" in schema["paths"]:
if "get" in schema["paths"]["/unsecured"]:
unsecured_get = schema["paths"]["/unsecured"]["get"]
if "responses" in unsecured_get:
assert "401" not in unsecured_get.get("responses", {})
def test_add_auth_responses_to_openapi_cached_schema():
"""Test that OpenAPI schema is cached after first generation."""
app = FastAPI()
# Apply customization
add_auth_responses_to_openapi(app)
# Get schema twice
schema1 = app.openapi()
schema2 = app.openapi()
# Should return the same cached object
assert schema1 is schema2
def test_add_auth_responses_to_openapi_existing_responses():
"""Test handling endpoints that already have responses defined."""
app = FastAPI()
from fastapi import Security
from autogpt_libs.auth.jwt_utils import get_jwt_payload
@app.get(
"/with-responses",
responses={
200: {"description": "Success"},
404: {"description": "Not found"},
},
)
def endpoint_with_responses(jwt: dict = Security(get_jwt_payload)):
return {"data": "test"}
# Apply customization
add_auth_responses_to_openapi(app)
schema = app.openapi()
# Check that existing responses are preserved and 401 is added
if "/with-responses" in schema["paths"]:
if "get" in schema["paths"]["/with-responses"]:
responses = schema["paths"]["/with-responses"]["get"].get("responses", {})
# Original responses should be preserved
if "200" in responses:
assert responses["200"]["description"] == "Success"
if "404" in responses:
assert responses["404"]["description"] == "Not found"
# 401 should be added
if "401" in responses:
assert (
responses["401"]["$ref"]
== "#/components/responses/HTTP401NotAuthenticatedError"
)
def test_add_auth_responses_to_openapi_no_security_endpoints():
"""Test with app that has no secured endpoints."""
app = FastAPI()
@app.get("/public1")
def public1():
return {"message": "public1"}
@app.post("/public2")
def public2():
return {"message": "public2"}
# Apply customization
add_auth_responses_to_openapi(app)
schema = app.openapi()
# Component should still be added for consistency
assert "HTTP401NotAuthenticatedError" in schema["components"]["responses"]
# But no endpoints should have 401 responses
for path in schema["paths"].values():
for method in path.values():
if isinstance(method, dict) and "responses" in method:
assert "401" not in method["responses"]
def test_add_auth_responses_to_openapi_multiple_security_schemes():
"""Test endpoints with multiple security requirements."""
app = FastAPI()
from fastapi import Security
from autogpt_libs.auth.dependencies import requires_admin_user, requires_user
from autogpt_libs.auth.models import User
@app.get("/multi-auth")
def multi_auth(
user: User = Security(requires_user),
admin: User = Security(requires_admin_user),
):
return {"status": "super secure"}
# Apply customization
add_auth_responses_to_openapi(app)
schema = app.openapi()
# Should have 401 response
if "/multi-auth" in schema["paths"]:
if "get" in schema["paths"]["/multi-auth"]:
responses = schema["paths"]["/multi-auth"]["get"].get("responses", {})
if "401" in responses:
assert (
responses["401"]["$ref"]
== "#/components/responses/HTTP401NotAuthenticatedError"
)
def test_add_auth_responses_to_openapi_empty_components():
"""Test when OpenAPI schema has no components section initially."""
app = FastAPI()
# Mock get_openapi to return schema without components
original_get_openapi = get_openapi
def mock_get_openapi(*args, **kwargs):
schema = original_get_openapi(*args, **kwargs)
# Remove components if it exists
if "components" in schema:
del schema["components"]
return schema
with mock.patch("autogpt_libs.auth.helpers.get_openapi", mock_get_openapi):
# Apply customization
add_auth_responses_to_openapi(app)
schema = app.openapi()
# Components should be created
assert "components" in schema
assert "responses" in schema["components"]
assert "HTTP401NotAuthenticatedError" in schema["components"]["responses"]
def test_add_auth_responses_to_openapi_all_http_methods():
"""Test that all HTTP methods are handled correctly."""
app = FastAPI()
from fastapi import Security
from autogpt_libs.auth.jwt_utils import get_jwt_payload
@app.get("/resource")
def get_resource(jwt: dict = Security(get_jwt_payload)):
return {"method": "GET"}
@app.post("/resource")
def post_resource(jwt: dict = Security(get_jwt_payload)):
return {"method": "POST"}
@app.put("/resource")
def put_resource(jwt: dict = Security(get_jwt_payload)):
return {"method": "PUT"}
@app.patch("/resource")
def patch_resource(jwt: dict = Security(get_jwt_payload)):
return {"method": "PATCH"}
@app.delete("/resource")
def delete_resource(jwt: dict = Security(get_jwt_payload)):
return {"method": "DELETE"}
# Apply customization
add_auth_responses_to_openapi(app)
schema = app.openapi()
# All methods should have 401 response
if "/resource" in schema["paths"]:
for method in ["get", "post", "put", "patch", "delete"]:
if method in schema["paths"]["/resource"]:
method_spec = schema["paths"]["/resource"][method]
if "responses" in method_spec:
assert "401" in method_spec["responses"]
def test_bearer_jwt_auth_scheme_config():
"""Test that bearer_jwt_auth is configured correctly."""
assert bearer_jwt_auth.scheme_name == "HTTPBearerJWT"
assert bearer_jwt_auth.auto_error is False
def test_add_auth_responses_with_no_routes():
"""Test OpenAPI generation with app that has no routes."""
app = FastAPI(title="Empty App")
# Apply customization to empty app
add_auth_responses_to_openapi(app)
schema = app.openapi()
# Should still have basic structure
assert schema["info"]["title"] == "Empty App"
assert "components" in schema
assert "responses" in schema["components"]
assert "HTTP401NotAuthenticatedError" in schema["components"]["responses"]
def test_custom_openapi_function_replacement():
"""Test that the custom openapi function properly replaces the default."""
app = FastAPI()
# Store original function
original_openapi = app.openapi
# Apply customization
add_auth_responses_to_openapi(app)
# Function should be replaced
assert app.openapi != original_openapi
assert callable(app.openapi)
def test_endpoint_without_responses_section():
"""Test endpoint that has security but no responses section initially."""
app = FastAPI()
from fastapi import Security
from fastapi.openapi.utils import get_openapi as original_get_openapi
from autogpt_libs.auth.jwt_utils import get_jwt_payload
# Create endpoint
@app.get("/no-responses")
def endpoint_without_responses(jwt: dict = Security(get_jwt_payload)):
return {"data": "test"}
# Mock get_openapi to remove responses from the endpoint
def mock_get_openapi(*args, **kwargs):
schema = original_get_openapi(*args, **kwargs)
# Remove responses from our endpoint to trigger line 40
if "/no-responses" in schema.get("paths", {}):
if "get" in schema["paths"]["/no-responses"]:
# Delete responses to force the code to create it
if "responses" in schema["paths"]["/no-responses"]["get"]:
del schema["paths"]["/no-responses"]["get"]["responses"]
return schema
with mock.patch("autogpt_libs.auth.helpers.get_openapi", mock_get_openapi):
# Apply customization
add_auth_responses_to_openapi(app)
# Get schema and verify 401 was added
schema = app.openapi()
# The endpoint should now have 401 response
if "/no-responses" in schema["paths"]:
if "get" in schema["paths"]["/no-responses"]:
responses = schema["paths"]["/no-responses"]["get"].get("responses", {})
assert "401" in responses
assert (
responses["401"]["$ref"]
== "#/components/responses/HTTP401NotAuthenticatedError"
)
def test_components_with_existing_responses():
"""Test when components already has a responses section."""
app = FastAPI()
# Mock get_openapi to return schema with existing components/responses
from fastapi.openapi.utils import get_openapi as original_get_openapi
def mock_get_openapi(*args, **kwargs):
schema = original_get_openapi(*args, **kwargs)
# Add existing components/responses
if "components" not in schema:
schema["components"] = {}
schema["components"]["responses"] = {
"ExistingResponse": {"description": "An existing response"}
}
return schema
with mock.patch("autogpt_libs.auth.helpers.get_openapi", mock_get_openapi):
# Apply customization
add_auth_responses_to_openapi(app)
schema = app.openapi()
# Both responses should exist
assert "ExistingResponse" in schema["components"]["responses"]
assert "HTTP401NotAuthenticatedError" in schema["components"]["responses"]
# Verify our 401 response structure
error_response = schema["components"]["responses"][
"HTTP401NotAuthenticatedError"
]
assert error_response["description"] == "Authentication required"
def test_openapi_schema_persistence():
"""Test that modifications to OpenAPI schema persist correctly."""
app = FastAPI()
from fastapi import Security
from autogpt_libs.auth.jwt_utils import get_jwt_payload
@app.get("/test")
def test_endpoint(jwt: dict = Security(get_jwt_payload)):
return {"test": True}
# Apply customization
add_auth_responses_to_openapi(app)
# Get schema multiple times
schema1 = app.openapi()
# Modify the cached schema (shouldn't affect future calls)
schema1["info"]["title"] = "Modified Title"
# Clear cache and get again
app.openapi_schema = None
schema2 = app.openapi()
# Should regenerate with original title
assert schema2["info"]["title"] == app.title
assert schema2["info"]["title"] != "Modified Title"

View File

@@ -1,48 +1,11 @@
import logging
from typing import Any
from typing import Any, Dict
import jwt
from fastapi import HTTPException, Security
from fastapi.security import HTTPAuthorizationCredentials, HTTPBearer
from .config import get_settings
from .models import User
logger = logging.getLogger(__name__)
# Bearer token authentication scheme
bearer_jwt_auth = HTTPBearer(
bearerFormat="jwt", scheme_name="HTTPBearerJWT", auto_error=False
)
from .config import settings
async def get_jwt_payload(
credentials: HTTPAuthorizationCredentials | None = Security(bearer_jwt_auth),
) -> dict[str, Any]:
"""
Extract and validate JWT payload from HTTP Authorization header.
This is the core authentication function that handles:
- Reading the `Authorization` header to obtain the JWT token
- Verifying the JWT token's signature
- Decoding the JWT token's payload
:param credentials: HTTP Authorization credentials from bearer token
:return: JWT payload dictionary
:raises HTTPException: 401 if authentication fails
"""
if not credentials:
raise HTTPException(status_code=401, detail="Authorization header is missing")
try:
payload = parse_jwt_token(credentials.credentials)
logger.debug("Token decoded successfully")
return payload
except ValueError as e:
raise HTTPException(status_code=401, detail=str(e))
def parse_jwt_token(token: str) -> dict[str, Any]:
def parse_jwt_token(token: str) -> Dict[str, Any]:
"""
Parse and validate a JWT token.
@@ -50,11 +13,10 @@ def parse_jwt_token(token: str) -> dict[str, Any]:
:return: The decoded payload
:raises ValueError: If the token is invalid or expired
"""
settings = get_settings()
try:
payload = jwt.decode(
token,
settings.JWT_VERIFY_KEY,
settings.JWT_SECRET_KEY,
algorithms=[settings.JWT_ALGORITHM],
audience="authenticated",
)
@@ -63,18 +25,3 @@ def parse_jwt_token(token: str) -> dict[str, Any]:
raise ValueError("Token has expired")
except jwt.InvalidTokenError as e:
raise ValueError(f"Invalid token: {str(e)}")
def verify_user(jwt_payload: dict | None, admin_only: bool) -> User:
if jwt_payload is None:
raise HTTPException(status_code=401, detail="Authorization header is missing")
user_id = jwt_payload.get("sub")
if not user_id:
raise HTTPException(status_code=401, detail="User ID not found in token")
if admin_only and jwt_payload["role"] != "admin":
raise HTTPException(status_code=403, detail="Admin access required")
return User.from_payload(jwt_payload)

View File

@@ -1,308 +0,0 @@
"""
Comprehensive tests for JWT token parsing and validation.
Ensures 100% line and branch coverage for JWT security functions.
"""
import os
from datetime import datetime, timedelta, timezone
import jwt
import pytest
from fastapi import HTTPException
from fastapi.security import HTTPAuthorizationCredentials
from pytest_mock import MockerFixture
from autogpt_libs.auth import config, jwt_utils
from autogpt_libs.auth.config import Settings
from autogpt_libs.auth.models import User
MOCK_JWT_SECRET = "test-secret-key-with-at-least-32-characters"
TEST_USER_PAYLOAD = {
"sub": "test-user-id",
"role": "user",
"aud": "authenticated",
"email": "test@example.com",
}
TEST_ADMIN_PAYLOAD = {
"sub": "admin-user-id",
"role": "admin",
"aud": "authenticated",
"email": "admin@example.com",
}
@pytest.fixture(autouse=True)
def mock_config(mocker: MockerFixture):
mocker.patch.dict(os.environ, {"JWT_VERIFY_KEY": MOCK_JWT_SECRET}, clear=True)
mocker.patch.object(config, "_settings", Settings())
yield
def create_token(payload, secret=None, algorithm="HS256"):
"""Helper to create JWT tokens."""
if secret is None:
secret = MOCK_JWT_SECRET
return jwt.encode(payload, secret, algorithm=algorithm)
def test_parse_jwt_token_valid():
"""Test parsing a valid JWT token."""
token = create_token(TEST_USER_PAYLOAD)
result = jwt_utils.parse_jwt_token(token)
assert result["sub"] == "test-user-id"
assert result["role"] == "user"
assert result["aud"] == "authenticated"
def test_parse_jwt_token_expired():
"""Test parsing an expired JWT token."""
expired_payload = {
**TEST_USER_PAYLOAD,
"exp": datetime.now(timezone.utc) - timedelta(hours=1),
}
token = create_token(expired_payload)
with pytest.raises(ValueError) as exc_info:
jwt_utils.parse_jwt_token(token)
assert "Token has expired" in str(exc_info.value)
def test_parse_jwt_token_invalid_signature():
"""Test parsing a token with invalid signature."""
# Create token with different secret
token = create_token(TEST_USER_PAYLOAD, secret="wrong-secret")
with pytest.raises(ValueError) as exc_info:
jwt_utils.parse_jwt_token(token)
assert "Invalid token" in str(exc_info.value)
def test_parse_jwt_token_malformed():
"""Test parsing a malformed token."""
malformed_tokens = [
"not.a.token",
"invalid",
"",
# Header only
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9",
# No signature
"eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzdWIiOiJ0ZXN0In0",
]
for token in malformed_tokens:
with pytest.raises(ValueError) as exc_info:
jwt_utils.parse_jwt_token(token)
assert "Invalid token" in str(exc_info.value)
def test_parse_jwt_token_wrong_audience():
"""Test parsing a token with wrong audience."""
wrong_aud_payload = {**TEST_USER_PAYLOAD, "aud": "wrong-audience"}
token = create_token(wrong_aud_payload)
with pytest.raises(ValueError) as exc_info:
jwt_utils.parse_jwt_token(token)
assert "Invalid token" in str(exc_info.value)
def test_parse_jwt_token_missing_audience():
"""Test parsing a token without audience claim."""
no_aud_payload = {k: v for k, v in TEST_USER_PAYLOAD.items() if k != "aud"}
token = create_token(no_aud_payload)
with pytest.raises(ValueError) as exc_info:
jwt_utils.parse_jwt_token(token)
assert "Invalid token" in str(exc_info.value)
async def test_get_jwt_payload_with_valid_token():
"""Test extracting JWT payload with valid bearer token."""
token = create_token(TEST_USER_PAYLOAD)
credentials = HTTPAuthorizationCredentials(scheme="Bearer", credentials=token)
result = await jwt_utils.get_jwt_payload(credentials)
assert result["sub"] == "test-user-id"
assert result["role"] == "user"
async def test_get_jwt_payload_no_credentials():
"""Test JWT payload when no credentials provided."""
with pytest.raises(HTTPException) as exc_info:
await jwt_utils.get_jwt_payload(None)
assert exc_info.value.status_code == 401
assert "Authorization header is missing" in exc_info.value.detail
async def test_get_jwt_payload_invalid_token():
"""Test JWT payload extraction with invalid token."""
credentials = HTTPAuthorizationCredentials(
scheme="Bearer", credentials="invalid.token.here"
)
with pytest.raises(HTTPException) as exc_info:
await jwt_utils.get_jwt_payload(credentials)
assert exc_info.value.status_code == 401
assert "Invalid token" in exc_info.value.detail
def test_verify_user_with_valid_user():
"""Test verifying a valid user."""
user = jwt_utils.verify_user(TEST_USER_PAYLOAD, admin_only=False)
assert isinstance(user, User)
assert user.user_id == "test-user-id"
assert user.role == "user"
assert user.email == "test@example.com"
def test_verify_user_with_admin():
"""Test verifying an admin user."""
user = jwt_utils.verify_user(TEST_ADMIN_PAYLOAD, admin_only=True)
assert isinstance(user, User)
assert user.user_id == "admin-user-id"
assert user.role == "admin"
def test_verify_user_admin_only_with_regular_user():
"""Test verifying regular user when admin is required."""
with pytest.raises(HTTPException) as exc_info:
jwt_utils.verify_user(TEST_USER_PAYLOAD, admin_only=True)
assert exc_info.value.status_code == 403
assert "Admin access required" in exc_info.value.detail
def test_verify_user_no_payload():
"""Test verifying user with no payload."""
with pytest.raises(HTTPException) as exc_info:
jwt_utils.verify_user(None, admin_only=False)
assert exc_info.value.status_code == 401
assert "Authorization header is missing" in exc_info.value.detail
def test_verify_user_missing_sub():
"""Test verifying user with payload missing 'sub' field."""
invalid_payload = {"role": "user", "email": "test@example.com"}
with pytest.raises(HTTPException) as exc_info:
jwt_utils.verify_user(invalid_payload, admin_only=False)
assert exc_info.value.status_code == 401
assert "User ID not found in token" in exc_info.value.detail
def test_verify_user_empty_sub():
"""Test verifying user with empty 'sub' field."""
invalid_payload = {"sub": "", "role": "user"}
with pytest.raises(HTTPException) as exc_info:
jwt_utils.verify_user(invalid_payload, admin_only=False)
assert exc_info.value.status_code == 401
assert "User ID not found in token" in exc_info.value.detail
def test_verify_user_none_sub():
"""Test verifying user with None 'sub' field."""
invalid_payload = {"sub": None, "role": "user"}
with pytest.raises(HTTPException) as exc_info:
jwt_utils.verify_user(invalid_payload, admin_only=False)
assert exc_info.value.status_code == 401
assert "User ID not found in token" in exc_info.value.detail
def test_verify_user_missing_role_admin_check():
"""Test verifying admin when role field is missing."""
no_role_payload = {"sub": "user-id"}
with pytest.raises(KeyError):
# This will raise KeyError when checking payload["role"]
jwt_utils.verify_user(no_role_payload, admin_only=True)
# ======================== EDGE CASES ======================== #
def test_jwt_with_additional_claims():
"""Test JWT token with additional custom claims."""
extra_claims_payload = {
"sub": "user-id",
"role": "user",
"aud": "authenticated",
"custom_claim": "custom_value",
"permissions": ["read", "write"],
"metadata": {"key": "value"},
}
token = create_token(extra_claims_payload)
result = jwt_utils.parse_jwt_token(token)
assert result["sub"] == "user-id"
assert result["custom_claim"] == "custom_value"
assert result["permissions"] == ["read", "write"]
def test_jwt_with_numeric_sub():
"""Test JWT token with numeric user ID."""
payload = {
"sub": 12345, # Numeric ID
"role": "user",
"aud": "authenticated",
}
# Should convert to string internally
user = jwt_utils.verify_user(payload, admin_only=False)
assert user.user_id == 12345
def test_jwt_with_very_long_sub():
"""Test JWT token with very long user ID."""
long_id = "a" * 1000
payload = {
"sub": long_id,
"role": "user",
"aud": "authenticated",
}
user = jwt_utils.verify_user(payload, admin_only=False)
assert user.user_id == long_id
def test_jwt_with_special_characters_in_claims():
"""Test JWT token with special characters in claims."""
payload = {
"sub": "user@example.com/special-chars!@#$%",
"role": "admin",
"aud": "authenticated",
"email": "test+special@example.com",
}
user = jwt_utils.verify_user(payload, admin_only=True)
assert "special-chars!@#$%" in user.user_id
def test_jwt_with_future_iat():
"""Test JWT token with issued-at time in future."""
future_payload = {
"sub": "user-id",
"role": "user",
"aud": "authenticated",
"iat": datetime.now(timezone.utc) + timedelta(hours=1),
}
token = create_token(future_payload)
# PyJWT validates iat claim and should reject future tokens
with pytest.raises(ValueError, match="not yet valid"):
jwt_utils.parse_jwt_token(token)
def test_jwt_with_different_algorithms():
"""Test that only HS256 algorithm is accepted."""
payload = {
"sub": "user-id",
"role": "user",
"aud": "authenticated",
}
# Try different algorithms
algorithms = ["HS384", "HS512", "none"]
for algo in algorithms:
if algo == "none":
# Special case for 'none' algorithm (security vulnerability if accepted)
token = create_token(payload, "", algorithm="none")
else:
token = create_token(payload, algorithm=algo)
with pytest.raises(ValueError) as exc_info:
jwt_utils.parse_jwt_token(token)
assert "Invalid token" in str(exc_info.value)

View File

@@ -0,0 +1,140 @@
import inspect
import logging
import secrets
from typing import Any, Callable, Optional
from fastapi import HTTPException, Request, Security
from fastapi.security import APIKeyHeader, HTTPBearer
from starlette.status import HTTP_401_UNAUTHORIZED
from .config import settings
from .jwt_utils import parse_jwt_token
security = HTTPBearer()
logger = logging.getLogger(__name__)
async def auth_middleware(request: Request):
if not settings.ENABLE_AUTH:
# If authentication is disabled, allow the request to proceed
logger.warning("Auth disabled")
return {}
security = HTTPBearer()
credentials = await security(request)
if not credentials:
raise HTTPException(status_code=401, detail="Authorization header is missing")
try:
payload = parse_jwt_token(credentials.credentials)
request.state.user = payload
logger.debug("Token decoded successfully")
except ValueError as e:
raise HTTPException(status_code=401, detail=str(e))
return payload
class APIKeyValidator:
"""
Configurable API key validator that supports custom validation functions
for FastAPI applications.
This class provides a flexible way to implement API key authentication with optional
custom validation logic. It can be used for simple token matching
or more complex validation scenarios like database lookups.
Examples:
Simple token validation:
```python
validator = APIKeyValidator(
header_name="X-API-Key",
expected_token="your-secret-token"
)
@app.get("/protected", dependencies=[Depends(validator.get_dependency())])
def protected_endpoint():
return {"message": "Access granted"}
```
Custom validation with database lookup:
```python
async def validate_with_db(api_key: str):
api_key_obj = await db.get_api_key(api_key)
return api_key_obj if api_key_obj and api_key_obj.is_active else None
validator = APIKeyValidator(
header_name="X-API-Key",
validate_fn=validate_with_db
)
```
Args:
header_name (str): The name of the header containing the API key
expected_token (Optional[str]): The expected API key value for simple token matching
validate_fn (Optional[Callable]): Custom validation function that takes an API key
string and returns a boolean or object. Can be async.
error_status (int): HTTP status code to use for validation errors
error_message (str): Error message to return when validation fails
"""
def __init__(
self,
header_name: str,
expected_token: Optional[str] = None,
validate_fn: Optional[Callable[[str], bool]] = None,
error_status: int = HTTP_401_UNAUTHORIZED,
error_message: str = "Invalid API key",
):
# Create the APIKeyHeader as a class property
self.security_scheme = APIKeyHeader(name=header_name)
self.expected_token = expected_token
self.custom_validate_fn = validate_fn
self.error_status = error_status
self.error_message = error_message
async def default_validator(self, api_key: str) -> bool:
if not self.expected_token:
raise ValueError(
"Expected Token Required to be set when uisng API Key Validator default validation"
)
return secrets.compare_digest(api_key, self.expected_token)
async def __call__(
self, request: Request, api_key: str = Security(APIKeyHeader)
) -> Any:
if api_key is None:
raise HTTPException(status_code=self.error_status, detail="Missing API key")
# Use custom validation if provided, otherwise use default equality check
validator = self.custom_validate_fn or self.default_validator
result = (
await validator(api_key)
if inspect.iscoroutinefunction(validator)
else validator(api_key)
)
if not result:
raise HTTPException(
status_code=self.error_status, detail=self.error_message
)
# Store validation result in request state if it's not just a boolean
if result is not True:
request.state.api_key = result
return result
def get_dependency(self):
"""
Returns a callable dependency that FastAPI will recognize as a security scheme
"""
async def validate_api_key(
request: Request, api_key: str = Security(self.security_scheme)
) -> Any:
return await self(request, api_key)
# This helps FastAPI recognize it as a security dependency
validate_api_key.__name__ = f"validate_{self.security_scheme.model.name}"
return validate_api_key

View File

@@ -4,7 +4,6 @@ import logging
import os
import socket
import sys
from logging.handlers import RotatingFileHandler
from pathlib import Path
from pydantic import Field, field_validator
@@ -94,36 +93,42 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
config = LoggingConfig()
log_handlers: list[logging.Handler] = []
structured_logging = config.enable_cloud_logging or force_cloud_logging
# Console output handlers
if not structured_logging:
stdout = logging.StreamHandler(stream=sys.stdout)
stdout.setLevel(config.level)
stdout.addFilter(BelowLevelFilter(logging.WARNING))
if config.level == logging.DEBUG:
stdout.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stdout.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
stdout = logging.StreamHandler(stream=sys.stdout)
stdout.setLevel(config.level)
stdout.addFilter(BelowLevelFilter(logging.WARNING))
if config.level == logging.DEBUG:
stdout.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stdout.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
stderr = logging.StreamHandler()
stderr.setLevel(logging.WARNING)
if config.level == logging.DEBUG:
stderr.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stderr.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
stderr = logging.StreamHandler()
stderr.setLevel(logging.WARNING)
if config.level == logging.DEBUG:
stderr.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT))
else:
stderr.setFormatter(AGPTFormatter(SIMPLE_LOG_FORMAT))
log_handlers += [stdout, stderr]
log_handlers += [stdout, stderr]
# Cloud logging setup
else:
# Use Google Cloud Structured Log Handler. Log entries are printed to stdout
# in a JSON format which is automatically picked up by Google Cloud Logging.
from google.cloud.logging.handlers import StructuredLogHandler
if config.enable_cloud_logging or force_cloud_logging:
import google.cloud.logging
from google.cloud.logging.handlers import CloudLoggingHandler
from google.cloud.logging_v2.handlers.transports import (
BackgroundThreadTransport,
)
structured_log_handler = StructuredLogHandler(stream=sys.stdout)
structured_log_handler.setLevel(config.level)
log_handlers.append(structured_log_handler)
client = google.cloud.logging.Client()
# Use BackgroundThreadTransport to prevent blocking the main thread
# and deadlocks when gRPC calls to Google Cloud Logging hang
cloud_handler = CloudLoggingHandler(
client,
name="autogpt_logs",
transport=BackgroundThreadTransport,
)
cloud_handler.setLevel(config.level)
log_handlers.append(cloud_handler)
# File logging setup
if config.enable_file_logging:
@@ -134,13 +139,8 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
print(f"Log directory: {config.log_dir}")
# Activity log handler (INFO and above)
# Security fix: Use RotatingFileHandler with size limits to prevent disk exhaustion
activity_log_handler = RotatingFileHandler(
config.log_dir / LOG_FILE,
mode="a",
encoding="utf-8",
maxBytes=10 * 1024 * 1024, # 10MB per file
backupCount=3, # Keep 3 backup files (40MB total)
activity_log_handler = logging.FileHandler(
config.log_dir / LOG_FILE, "a", "utf-8"
)
activity_log_handler.setLevel(config.level)
activity_log_handler.setFormatter(
@@ -150,13 +150,8 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
if config.level == logging.DEBUG:
# Debug log handler (all levels)
# Security fix: Use RotatingFileHandler with size limits
debug_log_handler = RotatingFileHandler(
config.log_dir / DEBUG_LOG_FILE,
mode="a",
encoding="utf-8",
maxBytes=10 * 1024 * 1024, # 10MB per file
backupCount=3, # Keep 3 backup files (40MB total)
debug_log_handler = logging.FileHandler(
config.log_dir / DEBUG_LOG_FILE, "a", "utf-8"
)
debug_log_handler.setLevel(logging.DEBUG)
debug_log_handler.setFormatter(
@@ -165,13 +160,8 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
log_handlers.append(debug_log_handler)
# Error log handler (ERROR and above)
# Security fix: Use RotatingFileHandler with size limits
error_log_handler = RotatingFileHandler(
config.log_dir / ERROR_LOG_FILE,
mode="a",
encoding="utf-8",
maxBytes=10 * 1024 * 1024, # 10MB per file
backupCount=3, # Keep 3 backup files (40MB total)
error_log_handler = logging.FileHandler(
config.log_dir / ERROR_LOG_FILE, "a", "utf-8"
)
error_log_handler.setLevel(logging.ERROR)
error_log_handler.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT, no_color=True))
@@ -179,13 +169,7 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
# Configure the root logger
logging.basicConfig(
format=(
"%(levelname)s %(message)s"
if structured_logging
else (
DEBUG_LOG_FORMAT if config.level == logging.DEBUG else SIMPLE_LOG_FORMAT
)
),
format=DEBUG_LOG_FORMAT if config.level == logging.DEBUG else SIMPLE_LOG_FORMAT,
level=config.level,
handlers=log_handlers,
)

View File

@@ -1,5 +1,3 @@
from typing import Optional
from pydantic import Field
from pydantic_settings import BaseSettings, SettingsConfigDict
@@ -15,8 +13,8 @@ class RateLimitSettings(BaseSettings):
default="6379", description="Redis port", validation_alias="REDIS_PORT"
)
redis_password: Optional[str] = Field(
default=None,
redis_password: str = Field(
default="password",
description="Redis password",
validation_alias="REDIS_PASSWORD",
)

View File

@@ -11,7 +11,7 @@ class RateLimiter:
self,
redis_host: str = RATE_LIMIT_SETTINGS.redis_host,
redis_port: str = RATE_LIMIT_SETTINGS.redis_port,
redis_password: str | None = RATE_LIMIT_SETTINGS.redis_password,
redis_password: str = RATE_LIMIT_SETTINGS.redis_password,
requests_per_minute: int = RATE_LIMIT_SETTINGS.requests_per_minute,
):
self.redis = Redis(

View File

@@ -0,0 +1,266 @@
import inspect
import logging
import threading
import time
from functools import wraps
from typing import (
Awaitable,
Callable,
ParamSpec,
Protocol,
Tuple,
TypeVar,
cast,
overload,
runtime_checkable,
)
P = ParamSpec("P")
R = TypeVar("R")
logger = logging.getLogger(__name__)
@overload
def thread_cached(func: Callable[P, Awaitable[R]]) -> Callable[P, Awaitable[R]]:
pass
@overload
def thread_cached(func: Callable[P, R]) -> Callable[P, R]:
pass
def thread_cached(
func: Callable[P, R] | Callable[P, Awaitable[R]],
) -> Callable[P, R] | Callable[P, Awaitable[R]]:
thread_local = threading.local()
def _clear():
if hasattr(thread_local, "cache"):
del thread_local.cache
if inspect.iscoroutinefunction(func):
async def async_wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = (args, tuple(sorted(kwargs.items())))
if key not in cache:
cache[key] = await cast(Callable[P, Awaitable[R]], func)(
*args, **kwargs
)
return cache[key]
setattr(async_wrapper, "clear_cache", _clear)
return async_wrapper
else:
def sync_wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
cache = getattr(thread_local, "cache", None)
if cache is None:
cache = thread_local.cache = {}
key = (args, tuple(sorted(kwargs.items())))
if key not in cache:
cache[key] = func(*args, **kwargs)
return cache[key]
setattr(sync_wrapper, "clear_cache", _clear)
return sync_wrapper
def clear_thread_cache(func: Callable) -> None:
if clear := getattr(func, "clear_cache", None):
clear()
FuncT = TypeVar("FuncT")
R_co = TypeVar("R_co", covariant=True)
@runtime_checkable
class AsyncCachedFunction(Protocol[P, R_co]):
"""Protocol for async functions with cache management methods."""
def cache_clear(self) -> None:
"""Clear all cached entries."""
return None
def cache_info(self) -> dict[str, int | None]:
"""Get cache statistics."""
return {}
async def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R_co:
"""Call the cached function."""
return None # type: ignore
def async_ttl_cache(
maxsize: int = 128, ttl_seconds: int | None = None
) -> Callable[[Callable[P, Awaitable[R]]], AsyncCachedFunction[P, R]]:
"""
TTL (Time To Live) cache decorator for async functions.
Similar to functools.lru_cache but works with async functions and includes optional TTL.
Args:
maxsize: Maximum number of cached entries
ttl_seconds: Time to live in seconds. If None, entries never expire (like lru_cache)
Returns:
Decorator function
Example:
# With TTL
@async_ttl_cache(maxsize=1000, ttl_seconds=300)
async def api_call(param: str) -> dict:
return {"result": param}
# Without TTL (permanent cache like lru_cache)
@async_ttl_cache(maxsize=1000)
async def expensive_computation(param: str) -> dict:
return {"result": param}
"""
def decorator(
async_func: Callable[P, Awaitable[R]],
) -> AsyncCachedFunction[P, R]:
# Cache storage - use union type to handle both cases
cache_storage: dict[tuple, R | Tuple[R, float]] = {}
@wraps(async_func)
async def wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
# Create cache key from arguments
key = (args, tuple(sorted(kwargs.items())))
current_time = time.time()
# Check if we have a valid cached entry
if key in cache_storage:
if ttl_seconds is None:
# No TTL - return cached result directly
logger.debug(
f"Cache hit for {async_func.__name__} with key: {str(key)[:50]}"
)
return cast(R, cache_storage[key])
else:
# With TTL - check expiration
cached_data = cache_storage[key]
if isinstance(cached_data, tuple):
result, timestamp = cached_data
if current_time - timestamp < ttl_seconds:
logger.debug(
f"Cache hit for {async_func.__name__} with key: {str(key)[:50]}"
)
return cast(R, result)
else:
# Expired entry
del cache_storage[key]
logger.debug(
f"Cache entry expired for {async_func.__name__}"
)
# Cache miss or expired - fetch fresh data
logger.debug(
f"Cache miss for {async_func.__name__} with key: {str(key)[:50]}"
)
result = await async_func(*args, **kwargs)
# Store in cache
if ttl_seconds is None:
cache_storage[key] = result
else:
cache_storage[key] = (result, current_time)
# Simple cleanup when cache gets too large
if len(cache_storage) > maxsize:
# Remove oldest entries (simple FIFO cleanup)
cutoff = maxsize // 2
oldest_keys = list(cache_storage.keys())[:-cutoff] if cutoff > 0 else []
for old_key in oldest_keys:
cache_storage.pop(old_key, None)
logger.debug(
f"Cache cleanup: removed {len(oldest_keys)} entries for {async_func.__name__}"
)
return result
# Add cache management methods (similar to functools.lru_cache)
def cache_clear() -> None:
cache_storage.clear()
def cache_info() -> dict[str, int | None]:
return {
"size": len(cache_storage),
"maxsize": maxsize,
"ttl_seconds": ttl_seconds,
}
# Attach methods to wrapper
setattr(wrapper, "cache_clear", cache_clear)
setattr(wrapper, "cache_info", cache_info)
return cast(AsyncCachedFunction[P, R], wrapper)
return decorator
@overload
def async_cache(
func: Callable[P, Awaitable[R]],
) -> AsyncCachedFunction[P, R]:
pass
@overload
def async_cache(
func: None = None,
*,
maxsize: int = 128,
) -> Callable[[Callable[P, Awaitable[R]]], AsyncCachedFunction[P, R]]:
pass
def async_cache(
func: Callable[P, Awaitable[R]] | None = None,
*,
maxsize: int = 128,
) -> (
AsyncCachedFunction[P, R]
| Callable[[Callable[P, Awaitable[R]]], AsyncCachedFunction[P, R]]
):
"""
Process-level cache decorator for async functions (no TTL).
Similar to functools.lru_cache but works with async functions.
This is a convenience wrapper around async_ttl_cache with ttl_seconds=None.
Args:
func: The async function to cache (when used without parentheses)
maxsize: Maximum number of cached entries
Returns:
Decorated function or decorator
Example:
# Without parentheses (uses default maxsize=128)
@async_cache
async def get_data(param: str) -> dict:
return {"result": param}
# With parentheses and custom maxsize
@async_cache(maxsize=1000)
async def expensive_computation(param: str) -> dict:
# Expensive computation here
return {"result": param}
"""
if func is None:
# Called with parentheses @async_cache() or @async_cache(maxsize=...)
return async_ttl_cache(maxsize=maxsize, ttl_seconds=None)
else:
# Called without parentheses @async_cache
decorator = async_ttl_cache(maxsize=maxsize, ttl_seconds=None)
return decorator(func)

View File

@@ -0,0 +1,705 @@
"""Tests for the @thread_cached decorator.
This module tests the thread-local caching functionality including:
- Basic caching for sync and async functions
- Thread isolation (each thread has its own cache)
- Cache clearing functionality
- Exception handling (exceptions are not cached)
- Argument handling (positional vs keyword arguments)
"""
import asyncio
import threading
import time
from concurrent.futures import ThreadPoolExecutor
from unittest.mock import Mock
import pytest
from autogpt_libs.utils.cache import (
async_cache,
async_ttl_cache,
clear_thread_cache,
thread_cached,
)
class TestThreadCached:
def test_sync_function_caching(self):
call_count = 0
@thread_cached
def expensive_function(x: int, y: int = 0) -> int:
nonlocal call_count
call_count += 1
return x + y
assert expensive_function(1, 2) == 3
assert call_count == 1
assert expensive_function(1, 2) == 3
assert call_count == 1
assert expensive_function(1, y=2) == 3
assert call_count == 2
assert expensive_function(2, 3) == 5
assert call_count == 3
assert expensive_function(1) == 1
assert call_count == 4
@pytest.mark.asyncio
async def test_async_function_caching(self):
call_count = 0
@thread_cached
async def expensive_async_function(x: int, y: int = 0) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01)
return x + y
assert await expensive_async_function(1, 2) == 3
assert call_count == 1
assert await expensive_async_function(1, 2) == 3
assert call_count == 1
assert await expensive_async_function(1, y=2) == 3
assert call_count == 2
assert await expensive_async_function(2, 3) == 5
assert call_count == 3
def test_thread_isolation(self):
call_count = 0
results = {}
@thread_cached
def thread_specific_function(x: int) -> str:
nonlocal call_count
call_count += 1
return f"{threading.current_thread().name}-{x}"
def worker(thread_id: int):
result1 = thread_specific_function(1)
result2 = thread_specific_function(1)
result3 = thread_specific_function(2)
results[thread_id] = (result1, result2, result3)
with ThreadPoolExecutor(max_workers=3) as executor:
futures = [executor.submit(worker, i) for i in range(3)]
for future in futures:
future.result()
assert call_count >= 2
for thread_id, (r1, r2, r3) in results.items():
assert r1 == r2
assert r1 != r3
@pytest.mark.asyncio
async def test_async_thread_isolation(self):
call_count = 0
results = {}
@thread_cached
async def async_thread_specific_function(x: int) -> str:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01)
return f"{threading.current_thread().name}-{x}"
async def async_worker(worker_id: int):
result1 = await async_thread_specific_function(1)
result2 = await async_thread_specific_function(1)
result3 = await async_thread_specific_function(2)
results[worker_id] = (result1, result2, result3)
tasks = [async_worker(i) for i in range(3)]
await asyncio.gather(*tasks)
for worker_id, (r1, r2, r3) in results.items():
assert r1 == r2
assert r1 != r3
def test_clear_cache_sync(self):
call_count = 0
@thread_cached
def clearable_function(x: int) -> int:
nonlocal call_count
call_count += 1
return x * 2
assert clearable_function(5) == 10
assert call_count == 1
assert clearable_function(5) == 10
assert call_count == 1
clear_thread_cache(clearable_function)
assert clearable_function(5) == 10
assert call_count == 2
@pytest.mark.asyncio
async def test_clear_cache_async(self):
call_count = 0
@thread_cached
async def clearable_async_function(x: int) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01)
return x * 2
assert await clearable_async_function(5) == 10
assert call_count == 1
assert await clearable_async_function(5) == 10
assert call_count == 1
clear_thread_cache(clearable_async_function)
assert await clearable_async_function(5) == 10
assert call_count == 2
def test_simple_arguments(self):
call_count = 0
@thread_cached
def simple_function(a: str, b: int, c: str = "default") -> str:
nonlocal call_count
call_count += 1
return f"{a}-{b}-{c}"
# First call with all positional args
result1 = simple_function("test", 42, "custom")
assert call_count == 1
# Same args, all positional - should hit cache
result2 = simple_function("test", 42, "custom")
assert call_count == 1
assert result1 == result2
# Same values but last arg as keyword - creates different cache key
result3 = simple_function("test", 42, c="custom")
assert call_count == 2
assert result1 == result3 # Same result, different cache entry
# Different value - new cache entry
result4 = simple_function("test", 43, "custom")
assert call_count == 3
assert result1 != result4
def test_positional_vs_keyword_args(self):
"""Test that positional and keyword arguments create different cache entries."""
call_count = 0
@thread_cached
def func(a: int, b: int = 10) -> str:
nonlocal call_count
call_count += 1
return f"result-{a}-{b}"
# All positional
result1 = func(1, 2)
assert call_count == 1
assert result1 == "result-1-2"
# Same values, but second arg as keyword
result2 = func(1, b=2)
assert call_count == 2 # Different cache key!
assert result2 == "result-1-2" # Same result
# Verify both are cached separately
func(1, 2) # Uses first cache entry
assert call_count == 2
func(1, b=2) # Uses second cache entry
assert call_count == 2
def test_exception_handling(self):
call_count = 0
@thread_cached
def failing_function(x: int) -> int:
nonlocal call_count
call_count += 1
if x < 0:
raise ValueError("Negative value")
return x * 2
assert failing_function(5) == 10
assert call_count == 1
with pytest.raises(ValueError):
failing_function(-1)
assert call_count == 2
with pytest.raises(ValueError):
failing_function(-1)
assert call_count == 3
assert failing_function(5) == 10
assert call_count == 3
@pytest.mark.asyncio
async def test_async_exception_handling(self):
call_count = 0
@thread_cached
async def async_failing_function(x: int) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01)
if x < 0:
raise ValueError("Negative value")
return x * 2
assert await async_failing_function(5) == 10
assert call_count == 1
with pytest.raises(ValueError):
await async_failing_function(-1)
assert call_count == 2
with pytest.raises(ValueError):
await async_failing_function(-1)
assert call_count == 3
def test_sync_caching_performance(self):
@thread_cached
def slow_function(x: int) -> int:
print(f"slow_function called with x={x}")
time.sleep(0.1)
return x * 2
start = time.time()
result1 = slow_function(5)
first_call_time = time.time() - start
print(f"First call took {first_call_time:.4f} seconds")
start = time.time()
result2 = slow_function(5)
second_call_time = time.time() - start
print(f"Second call took {second_call_time:.4f} seconds")
assert result1 == result2 == 10
assert first_call_time > 0.09
assert second_call_time < 0.01
@pytest.mark.asyncio
async def test_async_caching_performance(self):
@thread_cached
async def slow_async_function(x: int) -> int:
print(f"slow_async_function called with x={x}")
await asyncio.sleep(0.1)
return x * 2
start = time.time()
result1 = await slow_async_function(5)
first_call_time = time.time() - start
print(f"First async call took {first_call_time:.4f} seconds")
start = time.time()
result2 = await slow_async_function(5)
second_call_time = time.time() - start
print(f"Second async call took {second_call_time:.4f} seconds")
assert result1 == result2 == 10
assert first_call_time > 0.09
assert second_call_time < 0.01
def test_with_mock_objects(self):
mock = Mock(return_value=42)
@thread_cached
def function_using_mock(x: int) -> int:
return mock(x)
assert function_using_mock(1) == 42
assert mock.call_count == 1
assert function_using_mock(1) == 42
assert mock.call_count == 1
assert function_using_mock(2) == 42
assert mock.call_count == 2
class TestAsyncTTLCache:
"""Tests for the @async_ttl_cache decorator."""
@pytest.mark.asyncio
async def test_basic_caching(self):
"""Test basic caching functionality."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=60)
async def cached_function(x: int, y: int = 0) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01) # Simulate async work
return x + y
# First call
result1 = await cached_function(1, 2)
assert result1 == 3
assert call_count == 1
# Second call with same args - should use cache
result2 = await cached_function(1, 2)
assert result2 == 3
assert call_count == 1 # No additional call
# Different args - should call function again
result3 = await cached_function(2, 3)
assert result3 == 5
assert call_count == 2
@pytest.mark.asyncio
async def test_ttl_expiration(self):
"""Test that cache entries expire after TTL."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=1) # Short TTL
async def short_lived_cache(x: int) -> int:
nonlocal call_count
call_count += 1
return x * 2
# First call
result1 = await short_lived_cache(5)
assert result1 == 10
assert call_count == 1
# Second call immediately - should use cache
result2 = await short_lived_cache(5)
assert result2 == 10
assert call_count == 1
# Wait for TTL to expire
await asyncio.sleep(1.1)
# Third call after expiration - should call function again
result3 = await short_lived_cache(5)
assert result3 == 10
assert call_count == 2
@pytest.mark.asyncio
async def test_cache_info(self):
"""Test cache info functionality."""
@async_ttl_cache(maxsize=5, ttl_seconds=300)
async def info_test_function(x: int) -> int:
return x * 3
# Check initial cache info
info = info_test_function.cache_info()
assert info["size"] == 0
assert info["maxsize"] == 5
assert info["ttl_seconds"] == 300
# Add an entry
await info_test_function(1)
info = info_test_function.cache_info()
assert info["size"] == 1
@pytest.mark.asyncio
async def test_cache_clear(self):
"""Test cache clearing functionality."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=60)
async def clearable_function(x: int) -> int:
nonlocal call_count
call_count += 1
return x * 4
# First call
result1 = await clearable_function(2)
assert result1 == 8
assert call_count == 1
# Second call - should use cache
result2 = await clearable_function(2)
assert result2 == 8
assert call_count == 1
# Clear cache
clearable_function.cache_clear()
# Third call after clear - should call function again
result3 = await clearable_function(2)
assert result3 == 8
assert call_count == 2
@pytest.mark.asyncio
async def test_maxsize_cleanup(self):
"""Test that cache cleans up when maxsize is exceeded."""
call_count = 0
@async_ttl_cache(maxsize=3, ttl_seconds=60)
async def size_limited_function(x: int) -> int:
nonlocal call_count
call_count += 1
return x**2
# Fill cache to maxsize
await size_limited_function(1) # call_count: 1
await size_limited_function(2) # call_count: 2
await size_limited_function(3) # call_count: 3
info = size_limited_function.cache_info()
assert info["size"] == 3
# Add one more entry - should trigger cleanup
await size_limited_function(4) # call_count: 4
# Cache size should be reduced (cleanup removes oldest entries)
info = size_limited_function.cache_info()
assert info["size"] is not None and info["size"] <= 3 # Should be cleaned up
@pytest.mark.asyncio
async def test_argument_variations(self):
"""Test caching with different argument patterns."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=60)
async def arg_test_function(a: int, b: str = "default", *, c: int = 100) -> str:
nonlocal call_count
call_count += 1
return f"{a}-{b}-{c}"
# Different ways to call with same logical arguments
result1 = await arg_test_function(1, "test", c=200)
assert call_count == 1
# Same arguments, same order - should use cache
result2 = await arg_test_function(1, "test", c=200)
assert call_count == 1
assert result1 == result2
# Different arguments - should call function
result3 = await arg_test_function(2, "test", c=200)
assert call_count == 2
assert result1 != result3
@pytest.mark.asyncio
async def test_exception_handling(self):
"""Test that exceptions are not cached."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=60)
async def exception_function(x: int) -> int:
nonlocal call_count
call_count += 1
if x < 0:
raise ValueError("Negative value not allowed")
return x * 2
# Successful call - should be cached
result1 = await exception_function(5)
assert result1 == 10
assert call_count == 1
# Same successful call - should use cache
result2 = await exception_function(5)
assert result2 == 10
assert call_count == 1
# Exception call - should not be cached
with pytest.raises(ValueError):
await exception_function(-1)
assert call_count == 2
# Same exception call - should call again (not cached)
with pytest.raises(ValueError):
await exception_function(-1)
assert call_count == 3
@pytest.mark.asyncio
async def test_concurrent_calls(self):
"""Test caching behavior with concurrent calls."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=60)
async def concurrent_function(x: int) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.05) # Simulate work
return x * x
# Launch concurrent calls with same arguments
tasks = [concurrent_function(3) for _ in range(5)]
results = await asyncio.gather(*tasks)
# All results should be the same
assert all(result == 9 for result in results)
# Note: Due to race conditions, call_count might be up to 5 for concurrent calls
# This tests that the cache doesn't break under concurrent access
assert 1 <= call_count <= 5
class TestAsyncCache:
"""Tests for the @async_cache decorator (no TTL)."""
@pytest.mark.asyncio
async def test_basic_caching_no_ttl(self):
"""Test basic caching functionality without TTL."""
call_count = 0
@async_cache(maxsize=10)
async def cached_function(x: int, y: int = 0) -> int:
nonlocal call_count
call_count += 1
await asyncio.sleep(0.01) # Simulate async work
return x + y
# First call
result1 = await cached_function(1, 2)
assert result1 == 3
assert call_count == 1
# Second call with same args - should use cache
result2 = await cached_function(1, 2)
assert result2 == 3
assert call_count == 1 # No additional call
# Third call after some time - should still use cache (no TTL)
await asyncio.sleep(0.05)
result3 = await cached_function(1, 2)
assert result3 == 3
assert call_count == 1 # Still no additional call
# Different args - should call function again
result4 = await cached_function(2, 3)
assert result4 == 5
assert call_count == 2
@pytest.mark.asyncio
async def test_no_ttl_vs_ttl_behavior(self):
"""Test the difference between TTL and no-TTL caching."""
ttl_call_count = 0
no_ttl_call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=1) # Short TTL
async def ttl_function(x: int) -> int:
nonlocal ttl_call_count
ttl_call_count += 1
return x * 2
@async_cache(maxsize=10) # No TTL
async def no_ttl_function(x: int) -> int:
nonlocal no_ttl_call_count
no_ttl_call_count += 1
return x * 2
# First calls
await ttl_function(5)
await no_ttl_function(5)
assert ttl_call_count == 1
assert no_ttl_call_count == 1
# Wait for TTL to expire
await asyncio.sleep(1.1)
# Second calls after TTL expiry
await ttl_function(5) # Should call function again (TTL expired)
await no_ttl_function(5) # Should use cache (no TTL)
assert ttl_call_count == 2 # TTL function called again
assert no_ttl_call_count == 1 # No-TTL function still cached
@pytest.mark.asyncio
async def test_async_cache_info(self):
"""Test cache info for no-TTL cache."""
@async_cache(maxsize=5)
async def info_test_function(x: int) -> int:
return x * 3
# Check initial cache info
info = info_test_function.cache_info()
assert info["size"] == 0
assert info["maxsize"] == 5
assert info["ttl_seconds"] is None # No TTL
# Add an entry
await info_test_function(1)
info = info_test_function.cache_info()
assert info["size"] == 1
class TestTTLOptional:
"""Tests for optional TTL functionality."""
@pytest.mark.asyncio
async def test_ttl_none_behavior(self):
"""Test that ttl_seconds=None works like no TTL."""
call_count = 0
@async_ttl_cache(maxsize=10, ttl_seconds=None)
async def no_ttl_via_none(x: int) -> int:
nonlocal call_count
call_count += 1
return x**2
# First call
result1 = await no_ttl_via_none(3)
assert result1 == 9
assert call_count == 1
# Wait (would expire if there was TTL)
await asyncio.sleep(0.1)
# Second call - should still use cache
result2 = await no_ttl_via_none(3)
assert result2 == 9
assert call_count == 1 # No additional call
# Check cache info
info = no_ttl_via_none.cache_info()
assert info["ttl_seconds"] is None
@pytest.mark.asyncio
async def test_cache_options_comparison(self):
"""Test different cache options work as expected."""
ttl_calls = 0
no_ttl_calls = 0
@async_ttl_cache(maxsize=10, ttl_seconds=1) # With TTL
async def ttl_function(x: int) -> int:
nonlocal ttl_calls
ttl_calls += 1
return x * 10
@async_cache(maxsize=10) # Process-level cache (no TTL)
async def process_function(x: int) -> int:
nonlocal no_ttl_calls
no_ttl_calls += 1
return x * 10
# Both should cache initially
await ttl_function(3)
await process_function(3)
assert ttl_calls == 1
assert no_ttl_calls == 1
# Immediate second calls - both should use cache
await ttl_function(3)
await process_function(3)
assert ttl_calls == 1
assert no_ttl_calls == 1
# Wait for TTL to expire
await asyncio.sleep(1.1)
# After TTL expiry
await ttl_function(3) # Should call function again
await process_function(3) # Should still use cache
assert ttl_calls == 2 # TTL cache expired, called again
assert no_ttl_calls == 1 # Process cache never expires

View File

@@ -54,7 +54,7 @@ version = "1.2.0"
description = "Backport of asyncio.Runner, a context manager that controls event loop life cycle."
optional = false
python-versions = "<3.11,>=3.8"
groups = ["dev"]
groups = ["main"]
markers = "python_version < \"3.11\""
files = [
{file = "backports_asyncio_runner-1.2.0-py3-none-any.whl", hash = "sha256:0da0a936a8aeb554eccb426dc55af3ba63bcdc69fa1a600b5bb305413a4477b5"},
@@ -85,87 +85,6 @@ files = [
{file = "certifi-2025.7.14.tar.gz", hash = "sha256:8ea99dbdfaaf2ba2f9bac77b9249ef62ec5218e7c2b2e903378ed5fccf765995"},
]
[[package]]
name = "cffi"
version = "1.17.1"
description = "Foreign Function Interface for Python calling C code."
optional = false
python-versions = ">=3.8"
groups = ["main"]
markers = "platform_python_implementation != \"PyPy\""
files = [
{file = "cffi-1.17.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:df8b1c11f177bc2313ec4b2d46baec87a5f3e71fc8b45dab2ee7cae86d9aba14"},
{file = "cffi-1.17.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8f2cdc858323644ab277e9bb925ad72ae0e67f69e804f4898c070998d50b1a67"},
{file = "cffi-1.17.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:edae79245293e15384b51f88b00613ba9f7198016a5948b5dddf4917d4d26382"},
{file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45398b671ac6d70e67da8e4224a065cec6a93541bb7aebe1b198a61b58c7b702"},
{file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ad9413ccdeda48c5afdae7e4fa2192157e991ff761e7ab8fdd8926f40b160cc3"},
{file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5da5719280082ac6bd9aa7becb3938dc9f9cbd57fac7d2871717b1feb0902ab6"},
{file = "cffi-1.17.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2bb1a08b8008b281856e5971307cc386a8e9c5b625ac297e853d36da6efe9c17"},
{file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:045d61c734659cc045141be4bae381a41d89b741f795af1dd018bfb532fd0df8"},
{file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:6883e737d7d9e4899a8a695e00ec36bd4e5e4f18fabe0aca0efe0a4b44cdb13e"},
{file = "cffi-1.17.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:6b8b4a92e1c65048ff98cfe1f735ef8f1ceb72e3d5f0c25fdb12087a23da22be"},
{file = "cffi-1.17.1-cp310-cp310-win32.whl", hash = "sha256:c9c3d058ebabb74db66e431095118094d06abf53284d9c81f27300d0e0d8bc7c"},
{file = "cffi-1.17.1-cp310-cp310-win_amd64.whl", hash = "sha256:0f048dcf80db46f0098ccac01132761580d28e28bc0f78ae0d58048063317e15"},
{file = "cffi-1.17.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:a45e3c6913c5b87b3ff120dcdc03f6131fa0065027d0ed7ee6190736a74cd401"},
{file = "cffi-1.17.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:30c5e0cb5ae493c04c8b42916e52ca38079f1b235c2f8ae5f4527b963c401caf"},
{file = "cffi-1.17.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f75c7ab1f9e4aca5414ed4d8e5c0e303a34f4421f8a0d47a4d019ceff0ab6af4"},
{file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a1ed2dd2972641495a3ec98445e09766f077aee98a1c896dcb4ad0d303628e41"},
{file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:46bf43160c1a35f7ec506d254e5c890f3c03648a4dbac12d624e4490a7046cd1"},
{file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a24ed04c8ffd54b0729c07cee15a81d964e6fee0e3d4d342a27b020d22959dc6"},
{file = "cffi-1.17.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:610faea79c43e44c71e1ec53a554553fa22321b65fae24889706c0a84d4ad86d"},
{file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:a9b15d491f3ad5d692e11f6b71f7857e7835eb677955c00cc0aefcd0669adaf6"},
{file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:de2ea4b5833625383e464549fec1bc395c1bdeeb5f25c4a3a82b5a8c756ec22f"},
{file = "cffi-1.17.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fc48c783f9c87e60831201f2cce7f3b2e4846bf4d8728eabe54d60700b318a0b"},
{file = "cffi-1.17.1-cp311-cp311-win32.whl", hash = "sha256:85a950a4ac9c359340d5963966e3e0a94a676bd6245a4b55bc43949eee26a655"},
{file = "cffi-1.17.1-cp311-cp311-win_amd64.whl", hash = "sha256:caaf0640ef5f5517f49bc275eca1406b0ffa6aa184892812030f04c2abf589a0"},
{file = "cffi-1.17.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:805b4371bf7197c329fcb3ead37e710d1bca9da5d583f5073b799d5c5bd1eee4"},
{file = "cffi-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:733e99bc2df47476e3848417c5a4540522f234dfd4ef3ab7fafdf555b082ec0c"},
{file = "cffi-1.17.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1257bdabf294dceb59f5e70c64a3e2f462c30c7ad68092d01bbbfb1c16b1ba36"},
{file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da95af8214998d77a98cc14e3a3bd00aa191526343078b530ceb0bd710fb48a5"},
{file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d63afe322132c194cf832bfec0dc69a99fb9bb6bbd550f161a49e9e855cc78ff"},
{file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:f79fc4fc25f1c8698ff97788206bb3c2598949bfe0fef03d299eb1b5356ada99"},
{file = "cffi-1.17.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b62ce867176a75d03a665bad002af8e6d54644fad99a3c70905c543130e39d93"},
{file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:386c8bf53c502fff58903061338ce4f4950cbdcb23e2902d86c0f722b786bbe3"},
{file = "cffi-1.17.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4ceb10419a9adf4460ea14cfd6bc43d08701f0835e979bf821052f1805850fe8"},
{file = "cffi-1.17.1-cp312-cp312-win32.whl", hash = "sha256:a08d7e755f8ed21095a310a693525137cfe756ce62d066e53f502a83dc550f65"},
{file = "cffi-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:51392eae71afec0d0c8fb1a53b204dbb3bcabcb3c9b807eedf3e1e6ccf2de903"},
{file = "cffi-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f3a2b4222ce6b60e2e8b337bb9596923045681d71e5a082783484d845390938e"},
{file = "cffi-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:0984a4925a435b1da406122d4d7968dd861c1385afe3b45ba82b750f229811e2"},
{file = "cffi-1.17.1-cp313-cp313-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d01b12eeeb4427d3110de311e1774046ad344f5b1a7403101878976ecd7a10f3"},
{file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:706510fe141c86a69c8ddc029c7910003a17353970cff3b904ff0686a5927683"},
{file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:de55b766c7aa2e2a3092c51e0483d700341182f08e67c63630d5b6f200bb28e5"},
{file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c59d6e989d07460165cc5ad3c61f9fd8f1b4796eacbd81cee78957842b834af4"},
{file = "cffi-1.17.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd398dbc6773384a17fe0d3e7eeb8d1a21c2200473ee6806bb5e6a8e62bb73dd"},
{file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:3edc8d958eb099c634dace3c7e16560ae474aa3803a5df240542b305d14e14ed"},
{file = "cffi-1.17.1-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:72e72408cad3d5419375fc87d289076ee319835bdfa2caad331e377589aebba9"},
{file = "cffi-1.17.1-cp313-cp313-win32.whl", hash = "sha256:e03eab0a8677fa80d646b5ddece1cbeaf556c313dcfac435ba11f107ba117b5d"},
{file = "cffi-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:f6a16c31041f09ead72d69f583767292f750d24913dadacf5756b966aacb3f1a"},
{file = "cffi-1.17.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:636062ea65bd0195bc012fea9321aca499c0504409f413dc88af450b57ffd03b"},
{file = "cffi-1.17.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c7eac2ef9b63c79431bc4b25f1cd649d7f061a28808cbc6c47b534bd789ef964"},
{file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e221cf152cff04059d011ee126477f0d9588303eb57e88923578ace7baad17f9"},
{file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:31000ec67d4221a71bd3f67df918b1f88f676f1c3b535a7eb473255fdc0b83fc"},
{file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:6f17be4345073b0a7b8ea599688f692ac3ef23ce28e5df79c04de519dbc4912c"},
{file = "cffi-1.17.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2b1fac190ae3ebfe37b979cc1ce69c81f4e4fe5746bb401dca63a9062cdaf1"},
{file = "cffi-1.17.1-cp38-cp38-win32.whl", hash = "sha256:7596d6620d3fa590f677e9ee430df2958d2d6d6de2feeae5b20e82c00b76fbf8"},
{file = "cffi-1.17.1-cp38-cp38-win_amd64.whl", hash = "sha256:78122be759c3f8a014ce010908ae03364d00a1f81ab5c7f4a7a5120607ea56e1"},
{file = "cffi-1.17.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b2ab587605f4ba0bf81dc0cb08a41bd1c0a5906bd59243d56bad7668a6fc6c16"},
{file = "cffi-1.17.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:28b16024becceed8c6dfbc75629e27788d8a3f9030691a1dbf9821a128b22c36"},
{file = "cffi-1.17.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1d599671f396c4723d016dbddb72fe8e0397082b0a77a4fab8028923bec050e8"},
{file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ca74b8dbe6e8e8263c0ffd60277de77dcee6c837a3d0881d8c1ead7268c9e576"},
{file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f7f5baafcc48261359e14bcd6d9bff6d4b28d9103847c9e136694cb0501aef87"},
{file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:98e3969bcff97cae1b2def8ba499ea3d6f31ddfdb7635374834cf89a1a08ecf0"},
{file = "cffi-1.17.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cdf5ce3acdfd1661132f2a9c19cac174758dc2352bfe37d98aa7512c6b7178b3"},
{file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9755e4345d1ec879e3849e62222a18c7174d65a6a92d5b346b1863912168b595"},
{file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:f1e22e8c4419538cb197e4dd60acc919d7696e5ef98ee4da4e01d3f8cfa4cc5a"},
{file = "cffi-1.17.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:c03e868a0b3bc35839ba98e74211ed2b05d2119be4e8a0f224fba9384f1fe02e"},
{file = "cffi-1.17.1-cp39-cp39-win32.whl", hash = "sha256:e31ae45bc2e29f6b2abd0de1cc3b9d5205aa847cafaecb8af1476a609a2f6eb7"},
{file = "cffi-1.17.1-cp39-cp39-win_amd64.whl", hash = "sha256:d016c76bdd850f3c626af19b0542c9677ba156e4ee4fccfdd7848803533ef662"},
{file = "cffi-1.17.1.tar.gz", hash = "sha256:1c39c6016c32bc48dd54561950ebd6836e1670f2ae46128f67cf49e789c52824"},
]
[package.dependencies]
pycparser = "*"
[[package]]
name = "charset-normalizer"
version = "3.4.2"
@@ -289,176 +208,12 @@ version = "0.4.6"
description = "Cross-platform colored terminal text."
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
groups = ["main", "dev"]
groups = ["main"]
files = [
{file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
{file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
]
[[package]]
name = "coverage"
version = "7.10.5"
description = "Code coverage measurement for Python"
optional = false
python-versions = ">=3.9"
groups = ["dev"]
files = [
{file = "coverage-7.10.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c6a5c3414bfc7451b879141ce772c546985163cf553f08e0f135f0699a911801"},
{file = "coverage-7.10.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bc8e4d99ce82f1710cc3c125adc30fd1487d3cf6c2cd4994d78d68a47b16989a"},
{file = "coverage-7.10.5-cp310-cp310-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:02252dc1216e512a9311f596b3169fad54abcb13827a8d76d5630c798a50a754"},
{file = "coverage-7.10.5-cp310-cp310-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:73269df37883e02d460bee0cc16be90509faea1e3bd105d77360b512d5bb9c33"},
{file = "coverage-7.10.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1f8a81b0614642f91c9effd53eec284f965577591f51f547a1cbeb32035b4c2f"},
{file = "coverage-7.10.5-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6a29f8e0adb7f8c2b95fa2d4566a1d6e6722e0a637634c6563cb1ab844427dd9"},
{file = "coverage-7.10.5-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:fcf6ab569436b4a647d4e91accba12509ad9f2554bc93d3aee23cc596e7f99c3"},
{file = "coverage-7.10.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:90dc3d6fb222b194a5de60af8d190bedeeddcbc7add317e4a3cd333ee6b7c879"},
{file = "coverage-7.10.5-cp310-cp310-win32.whl", hash = "sha256:414a568cd545f9dc75f0686a0049393de8098414b58ea071e03395505b73d7a8"},
{file = "coverage-7.10.5-cp310-cp310-win_amd64.whl", hash = "sha256:e551f9d03347196271935fd3c0c165f0e8c049220280c1120de0084d65e9c7ff"},
{file = "coverage-7.10.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c177e6ffe2ebc7c410785307758ee21258aa8e8092b44d09a2da767834f075f2"},
{file = "coverage-7.10.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:14d6071c51ad0f703d6440827eaa46386169b5fdced42631d5a5ac419616046f"},
{file = "coverage-7.10.5-cp311-cp311-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:61f78c7c3bc272a410c5ae3fde7792b4ffb4acc03d35a7df73ca8978826bb7ab"},
{file = "coverage-7.10.5-cp311-cp311-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:f39071caa126f69d63f99b324fb08c7b1da2ec28cbb1fe7b5b1799926492f65c"},
{file = "coverage-7.10.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:343a023193f04d46edc46b2616cdbee68c94dd10208ecd3adc56fcc54ef2baa1"},
{file = "coverage-7.10.5-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:585ffe93ae5894d1ebdee69fc0b0d4b7c75d8007983692fb300ac98eed146f78"},
{file = "coverage-7.10.5-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:b0ef4e66f006ed181df29b59921bd8fc7ed7cd6a9289295cd8b2824b49b570df"},
{file = "coverage-7.10.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:eb7b0bbf7cc1d0453b843eca7b5fa017874735bef9bfdfa4121373d2cc885ed6"},
{file = "coverage-7.10.5-cp311-cp311-win32.whl", hash = "sha256:1d043a8a06987cc0c98516e57c4d3fc2c1591364831e9deb59c9e1b4937e8caf"},
{file = "coverage-7.10.5-cp311-cp311-win_amd64.whl", hash = "sha256:fefafcca09c3ac56372ef64a40f5fe17c5592fab906e0fdffd09543f3012ba50"},
{file = "coverage-7.10.5-cp311-cp311-win_arm64.whl", hash = "sha256:7e78b767da8b5fc5b2faa69bb001edafcd6f3995b42a331c53ef9572c55ceb82"},
{file = "coverage-7.10.5-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:c2d05c7e73c60a4cecc7d9b60dbfd603b4ebc0adafaef371445b47d0f805c8a9"},
{file = "coverage-7.10.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:32ddaa3b2c509778ed5373b177eb2bf5662405493baeff52278a0b4f9415188b"},
{file = "coverage-7.10.5-cp312-cp312-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:dd382410039fe062097aa0292ab6335a3f1e7af7bba2ef8d27dcda484918f20c"},
{file = "coverage-7.10.5-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:7fa22800f3908df31cea6fb230f20ac49e343515d968cc3a42b30d5c3ebf9b5a"},
{file = "coverage-7.10.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f366a57ac81f5e12797136552f5b7502fa053c861a009b91b80ed51f2ce651c6"},
{file = "coverage-7.10.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5f1dc8f1980a272ad4a6c84cba7981792344dad33bf5869361576b7aef42733a"},
{file = "coverage-7.10.5-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:2285c04ee8676f7938b02b4936d9b9b672064daab3187c20f73a55f3d70e6b4a"},
{file = "coverage-7.10.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c2492e4dd9daab63f5f56286f8a04c51323d237631eb98505d87e4c4ff19ec34"},
{file = "coverage-7.10.5-cp312-cp312-win32.whl", hash = "sha256:38a9109c4ee8135d5df5505384fc2f20287a47ccbe0b3f04c53c9a1989c2bbaf"},
{file = "coverage-7.10.5-cp312-cp312-win_amd64.whl", hash = "sha256:6b87f1ad60b30bc3c43c66afa7db6b22a3109902e28c5094957626a0143a001f"},
{file = "coverage-7.10.5-cp312-cp312-win_arm64.whl", hash = "sha256:672a6c1da5aea6c629819a0e1461e89d244f78d7b60c424ecf4f1f2556c041d8"},
{file = "coverage-7.10.5-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ef3b83594d933020f54cf65ea1f4405d1f4e41a009c46df629dd964fcb6e907c"},
{file = "coverage-7.10.5-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:2b96bfdf7c0ea9faebce088a3ecb2382819da4fbc05c7b80040dbc428df6af44"},
{file = "coverage-7.10.5-cp313-cp313-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:63df1fdaffa42d914d5c4d293e838937638bf75c794cf20bee12978fc8c4e3bc"},
{file = "coverage-7.10.5-cp313-cp313-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:8002dc6a049aac0e81ecec97abfb08c01ef0c1fbf962d0c98da3950ace89b869"},
{file = "coverage-7.10.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:63d4bb2966d6f5f705a6b0c6784c8969c468dbc4bcf9d9ded8bff1c7e092451f"},
{file = "coverage-7.10.5-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:1f672efc0731a6846b157389b6e6d5d5e9e59d1d1a23a5c66a99fd58339914d5"},
{file = "coverage-7.10.5-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:3f39cef43d08049e8afc1fde4a5da8510fc6be843f8dea350ee46e2a26b2f54c"},
{file = "coverage-7.10.5-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:2968647e3ed5a6c019a419264386b013979ff1fb67dd11f5c9886c43d6a31fc2"},
{file = "coverage-7.10.5-cp313-cp313-win32.whl", hash = "sha256:0d511dda38595b2b6934c2b730a1fd57a3635c6aa2a04cb74714cdfdd53846f4"},
{file = "coverage-7.10.5-cp313-cp313-win_amd64.whl", hash = "sha256:9a86281794a393513cf117177fd39c796b3f8e3759bb2764259a2abba5cce54b"},
{file = "coverage-7.10.5-cp313-cp313-win_arm64.whl", hash = "sha256:cebd8e906eb98bb09c10d1feed16096700b1198d482267f8bf0474e63a7b8d84"},
{file = "coverage-7.10.5-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:0520dff502da5e09d0d20781df74d8189ab334a1e40d5bafe2efaa4158e2d9e7"},
{file = "coverage-7.10.5-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:d9cd64aca68f503ed3f1f18c7c9174cbb797baba02ca8ab5112f9d1c0328cd4b"},
{file = "coverage-7.10.5-cp313-cp313t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:0913dd1613a33b13c4f84aa6e3f4198c1a21ee28ccb4f674985c1f22109f0aae"},
{file = "coverage-7.10.5-cp313-cp313t-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:1b7181c0feeb06ed8a02da02792f42f829a7b29990fef52eff257fef0885d760"},
{file = "coverage-7.10.5-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:36d42b7396b605f774d4372dd9c49bed71cbabce4ae1ccd074d155709dd8f235"},
{file = "coverage-7.10.5-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:b4fdc777e05c4940b297bf47bf7eedd56a39a61dc23ba798e4b830d585486ca5"},
{file = "coverage-7.10.5-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:42144e8e346de44a6f1dbd0a56575dd8ab8dfa7e9007da02ea5b1c30ab33a7db"},
{file = "coverage-7.10.5-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:66c644cbd7aed8fe266d5917e2c9f65458a51cfe5eeff9c05f15b335f697066e"},
{file = "coverage-7.10.5-cp313-cp313t-win32.whl", hash = "sha256:2d1b73023854068c44b0c554578a4e1ef1b050ed07cf8b431549e624a29a66ee"},
{file = "coverage-7.10.5-cp313-cp313t-win_amd64.whl", hash = "sha256:54a1532c8a642d8cc0bd5a9a51f5a9dcc440294fd06e9dda55e743c5ec1a8f14"},
{file = "coverage-7.10.5-cp313-cp313t-win_arm64.whl", hash = "sha256:74d5b63fe3f5f5d372253a4ef92492c11a4305f3550631beaa432fc9df16fcff"},
{file = "coverage-7.10.5-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:68c5e0bc5f44f68053369fa0d94459c84548a77660a5f2561c5e5f1e3bed7031"},
{file = "coverage-7.10.5-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:cf33134ffae93865e32e1e37df043bef15a5e857d8caebc0099d225c579b0fa3"},
{file = "coverage-7.10.5-cp314-cp314-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:ad8fa9d5193bafcf668231294241302b5e683a0518bf1e33a9a0dfb142ec3031"},
{file = "coverage-7.10.5-cp314-cp314-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:146fa1531973d38ab4b689bc764592fe6c2f913e7e80a39e7eeafd11f0ef6db2"},
{file = "coverage-7.10.5-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6013a37b8a4854c478d3219ee8bc2392dea51602dd0803a12d6f6182a0061762"},
{file = "coverage-7.10.5-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:eb90fe20db9c3d930fa2ad7a308207ab5b86bf6a76f54ab6a40be4012d88fcae"},
{file = "coverage-7.10.5-cp314-cp314-musllinux_1_2_i686.whl", hash = "sha256:384b34482272e960c438703cafe63316dfbea124ac62006a455c8410bf2a2262"},
{file = "coverage-7.10.5-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:467dc74bd0a1a7de2bedf8deaf6811f43602cb532bd34d81ffd6038d6d8abe99"},
{file = "coverage-7.10.5-cp314-cp314-win32.whl", hash = "sha256:556d23d4e6393ca898b2e63a5bca91e9ac2d5fb13299ec286cd69a09a7187fde"},
{file = "coverage-7.10.5-cp314-cp314-win_amd64.whl", hash = "sha256:f4446a9547681533c8fa3e3c6cf62121eeee616e6a92bd9201c6edd91beffe13"},
{file = "coverage-7.10.5-cp314-cp314-win_arm64.whl", hash = "sha256:5e78bd9cf65da4c303bf663de0d73bf69f81e878bf72a94e9af67137c69b9fe9"},
{file = "coverage-7.10.5-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:5661bf987d91ec756a47c7e5df4fbcb949f39e32f9334ccd3f43233bbb65e508"},
{file = "coverage-7.10.5-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:a46473129244db42a720439a26984f8c6f834762fc4573616c1f37f13994b357"},
{file = "coverage-7.10.5-cp314-cp314t-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:1f64b8d3415d60f24b058b58d859e9512624bdfa57a2d1f8aff93c1ec45c429b"},
{file = "coverage-7.10.5-cp314-cp314t-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:44d43de99a9d90b20e0163f9770542357f58860a26e24dc1d924643bd6aa7cb4"},
{file = "coverage-7.10.5-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:a931a87e5ddb6b6404e65443b742cb1c14959622777f2a4efd81fba84f5d91ba"},
{file = "coverage-7.10.5-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:f9559b906a100029274448f4c8b8b0a127daa4dade5661dfd821b8c188058842"},
{file = "coverage-7.10.5-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:b08801e25e3b4526ef9ced1aa29344131a8f5213c60c03c18fe4c6170ffa2874"},
{file = "coverage-7.10.5-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:ed9749bb8eda35f8b636fb7632f1c62f735a236a5d4edadd8bbcc5ea0542e732"},
{file = "coverage-7.10.5-cp314-cp314t-win32.whl", hash = "sha256:609b60d123fc2cc63ccee6d17e4676699075db72d14ac3c107cc4976d516f2df"},
{file = "coverage-7.10.5-cp314-cp314t-win_amd64.whl", hash = "sha256:0666cf3d2c1626b5a3463fd5b05f5e21f99e6aec40a3192eee4d07a15970b07f"},
{file = "coverage-7.10.5-cp314-cp314t-win_arm64.whl", hash = "sha256:bc85eb2d35e760120540afddd3044a5bf69118a91a296a8b3940dfc4fdcfe1e2"},
{file = "coverage-7.10.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:62835c1b00c4a4ace24c1a88561a5a59b612fbb83a525d1c70ff5720c97c0610"},
{file = "coverage-7.10.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:5255b3bbcc1d32a4069d6403820ac8e6dbcc1d68cb28a60a1ebf17e47028e898"},
{file = "coverage-7.10.5-cp39-cp39-manylinux1_i686.manylinux_2_28_i686.manylinux_2_5_i686.whl", hash = "sha256:3876385722e335d6e991c430302c24251ef9c2a9701b2b390f5473199b1b8ebf"},
{file = "coverage-7.10.5-cp39-cp39-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:8048ce4b149c93447a55d279078c8ae98b08a6951a3c4d2d7e87f4efc7bfe100"},
{file = "coverage-7.10.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4028e7558e268dd8bcf4d9484aad393cafa654c24b4885f6f9474bf53183a82a"},
{file = "coverage-7.10.5-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:03f47dc870eec0367fcdd603ca6a01517d2504e83dc18dbfafae37faec66129a"},
{file = "coverage-7.10.5-cp39-cp39-musllinux_1_2_i686.whl", hash = "sha256:2d488d7d42b6ded7ea0704884f89dcabd2619505457de8fc9a6011c62106f6e5"},
{file = "coverage-7.10.5-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b3dcf2ead47fa8be14224ee817dfc1df98043af568fe120a22f81c0eb3c34ad2"},
{file = "coverage-7.10.5-cp39-cp39-win32.whl", hash = "sha256:02650a11324b80057b8c9c29487020073d5e98a498f1857f37e3f9b6ea1b2426"},
{file = "coverage-7.10.5-cp39-cp39-win_amd64.whl", hash = "sha256:b45264dd450a10f9e03237b41a9a24e85cbb1e278e5a32adb1a303f58f0017f3"},
{file = "coverage-7.10.5-py3-none-any.whl", hash = "sha256:0be24d35e4db1d23d0db5c0f6a74a962e2ec83c426b5cac09f4234aadef38e4a"},
{file = "coverage-7.10.5.tar.gz", hash = "sha256:f2e57716a78bc3ae80b2207be0709a3b2b63b9f2dcf9740ee6ac03588a2015b6"},
]
[package.dependencies]
tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.11.0a6\" and extra == \"toml\""}
[package.extras]
toml = ["tomli ; python_full_version <= \"3.11.0a6\""]
[[package]]
name = "cryptography"
version = "45.0.6"
description = "cryptography is a package which provides cryptographic recipes and primitives to Python developers."
optional = false
python-versions = "!=3.9.0,!=3.9.1,>=3.7"
groups = ["main"]
files = [
{file = "cryptography-45.0.6-cp311-abi3-macosx_10_9_universal2.whl", hash = "sha256:048e7ad9e08cf4c0ab07ff7f36cc3115924e22e2266e034450a890d9e312dd74"},
{file = "cryptography-45.0.6-cp311-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:44647c5d796f5fc042bbc6d61307d04bf29bccb74d188f18051b635f20a9c75f"},
{file = "cryptography-45.0.6-cp311-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e40b80ecf35ec265c452eea0ba94c9587ca763e739b8e559c128d23bff7ebbbf"},
{file = "cryptography-45.0.6-cp311-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:00e8724bdad672d75e6f069b27970883179bd472cd24a63f6e620ca7e41cc0c5"},
{file = "cryptography-45.0.6-cp311-abi3-manylinux_2_28_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:7a3085d1b319d35296176af31c90338eeb2ddac8104661df79f80e1d9787b8b2"},
{file = "cryptography-45.0.6-cp311-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:1b7fa6a1c1188c7ee32e47590d16a5a0646270921f8020efc9a511648e1b2e08"},
{file = "cryptography-45.0.6-cp311-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:275ba5cc0d9e320cd70f8e7b96d9e59903c815ca579ab96c1e37278d231fc402"},
{file = "cryptography-45.0.6-cp311-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:f4028f29a9f38a2025abedb2e409973709c660d44319c61762202206ed577c42"},
{file = "cryptography-45.0.6-cp311-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:ee411a1b977f40bd075392c80c10b58025ee5c6b47a822a33c1198598a7a5f05"},
{file = "cryptography-45.0.6-cp311-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:e2a21a8eda2d86bb604934b6b37691585bd095c1f788530c1fcefc53a82b3453"},
{file = "cryptography-45.0.6-cp311-abi3-win32.whl", hash = "sha256:d063341378d7ee9c91f9d23b431a3502fc8bfacd54ef0a27baa72a0843b29159"},
{file = "cryptography-45.0.6-cp311-abi3-win_amd64.whl", hash = "sha256:833dc32dfc1e39b7376a87b9a6a4288a10aae234631268486558920029b086ec"},
{file = "cryptography-45.0.6-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:3436128a60a5e5490603ab2adbabc8763613f638513ffa7d311c900a8349a2a0"},
{file = "cryptography-45.0.6-cp37-abi3-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0d9ef57b6768d9fa58e92f4947cea96ade1233c0e236db22ba44748ffedca394"},
{file = "cryptography-45.0.6-cp37-abi3-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:ea3c42f2016a5bbf71825537c2ad753f2870191134933196bee408aac397b3d9"},
{file = "cryptography-45.0.6-cp37-abi3-manylinux_2_28_aarch64.whl", hash = "sha256:20ae4906a13716139d6d762ceb3e0e7e110f7955f3bc3876e3a07f5daadec5f3"},
{file = "cryptography-45.0.6-cp37-abi3-manylinux_2_28_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:2dac5ec199038b8e131365e2324c03d20e97fe214af051d20c49db129844e8b3"},
{file = "cryptography-45.0.6-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:18f878a34b90d688982e43f4b700408b478102dd58b3e39de21b5ebf6509c301"},
{file = "cryptography-45.0.6-cp37-abi3-manylinux_2_34_aarch64.whl", hash = "sha256:5bd6020c80c5b2b2242d6c48487d7b85700f5e0038e67b29d706f98440d66eb5"},
{file = "cryptography-45.0.6-cp37-abi3-manylinux_2_34_x86_64.whl", hash = "sha256:eccddbd986e43014263eda489abbddfbc287af5cddfd690477993dbb31e31016"},
{file = "cryptography-45.0.6-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:550ae02148206beb722cfe4ef0933f9352bab26b087af00e48fdfb9ade35c5b3"},
{file = "cryptography-45.0.6-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:5b64e668fc3528e77efa51ca70fadcd6610e8ab231e3e06ae2bab3b31c2b8ed9"},
{file = "cryptography-45.0.6-cp37-abi3-win32.whl", hash = "sha256:780c40fb751c7d2b0c6786ceee6b6f871e86e8718a8ff4bc35073ac353c7cd02"},
{file = "cryptography-45.0.6-cp37-abi3-win_amd64.whl", hash = "sha256:20d15aed3ee522faac1a39fbfdfee25d17b1284bafd808e1640a74846d7c4d1b"},
{file = "cryptography-45.0.6-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:705bb7c7ecc3d79a50f236adda12ca331c8e7ecfbea51edd931ce5a7a7c4f012"},
{file = "cryptography-45.0.6-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:826b46dae41a1155a0c0e66fafba43d0ede1dc16570b95e40c4d83bfcf0a451d"},
{file = "cryptography-45.0.6-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:cc4d66f5dc4dc37b89cfef1bd5044387f7a1f6f0abb490815628501909332d5d"},
{file = "cryptography-45.0.6-pp310-pypy310_pp73-manylinux_2_34_aarch64.whl", hash = "sha256:f68f833a9d445cc49f01097d95c83a850795921b3f7cc6488731e69bde3288da"},
{file = "cryptography-45.0.6-pp310-pypy310_pp73-manylinux_2_34_x86_64.whl", hash = "sha256:3b5bf5267e98661b9b888a9250d05b063220dfa917a8203744454573c7eb79db"},
{file = "cryptography-45.0.6-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:2384f2ab18d9be88a6e4f8972923405e2dbb8d3e16c6b43f15ca491d7831bd18"},
{file = "cryptography-45.0.6-pp311-pypy311_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fc022c1fa5acff6def2fc6d7819bbbd31ccddfe67d075331a65d9cfb28a20983"},
{file = "cryptography-45.0.6-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:3de77e4df42ac8d4e4d6cdb342d989803ad37707cf8f3fbf7b088c9cbdd46427"},
{file = "cryptography-45.0.6-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:599c8d7df950aa68baa7e98f7b73f4f414c9f02d0e8104a30c0182a07732638b"},
{file = "cryptography-45.0.6-pp311-pypy311_pp73-manylinux_2_34_aarch64.whl", hash = "sha256:31a2b9a10530a1cb04ffd6aa1cd4d3be9ed49f7d77a4dafe198f3b382f41545c"},
{file = "cryptography-45.0.6-pp311-pypy311_pp73-manylinux_2_34_x86_64.whl", hash = "sha256:e5b3dda1b00fb41da3af4c5ef3f922a200e33ee5ba0f0bc9ecf0b0c173958385"},
{file = "cryptography-45.0.6-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:629127cfdcdc6806dfe234734d7cb8ac54edaf572148274fa377a7d3405b0043"},
{file = "cryptography-45.0.6.tar.gz", hash = "sha256:5c966c732cf6e4a276ce83b6e4c729edda2df6929083a952cc7da973c539c719"},
]
[package.dependencies]
cffi = {version = ">=1.14", markers = "platform_python_implementation != \"PyPy\""}
[package.extras]
docs = ["sphinx (>=5.3.0)", "sphinx-inline-tabs ; python_full_version >= \"3.8.0\"", "sphinx-rtd-theme (>=3.0.0) ; python_full_version >= \"3.8.0\""]
docstest = ["pyenchant (>=3)", "readme-renderer (>=30.0)", "sphinxcontrib-spelling (>=7.3.1)"]
nox = ["nox (>=2024.4.15)", "nox[uv] (>=2024.3.2) ; python_full_version >= \"3.8.0\""]
pep8test = ["check-sdist ; python_full_version >= \"3.8.0\"", "click (>=8.0.1)", "mypy (>=1.4)", "ruff (>=0.3.6)"]
sdist = ["build (>=1.0.0)"]
ssh = ["bcrypt (>=3.1.5)"]
test = ["certifi (>=2024)", "cryptography-vectors (==45.0.6)", "pretend (>=0.7)", "pytest (>=7.4.0)", "pytest-benchmark (>=4.0)", "pytest-cov (>=2.10.1)", "pytest-xdist (>=3.5.0)"]
test-randomorder = ["pytest-randomly"]
[[package]]
name = "deprecation"
version = "2.1.0"
@@ -480,7 +235,7 @@ version = "1.3.0"
description = "Backport of PEP 654 (exception groups)"
optional = false
python-versions = ">=3.7"
groups = ["main", "dev"]
groups = ["main"]
markers = "python_version < \"3.11\""
files = [
{file = "exceptiongroup-1.3.0-py3-none-any.whl", hash = "sha256:4d111e6e0c13d0644cad6ddaa7ed0261a0b36971f6d23e7ec9b4b9097da78a10"},
@@ -955,7 +710,7 @@ version = "2.1.0"
description = "brain-dead simple config-ini parsing"
optional = false
python-versions = ">=3.8"
groups = ["dev"]
groups = ["main"]
files = [
{file = "iniconfig-2.1.0-py3-none-any.whl", hash = "sha256:9deba5723312380e77435581c6bf4935c94cbfab9b1ed33ef8d238ea168eb760"},
{file = "iniconfig-2.1.0.tar.gz", hash = "sha256:3abbd2e30b36733fee78f9c7f7308f2d0050e88f0087fd25c2645f63c773e1c7"},
@@ -1002,18 +757,6 @@ dynamodb = ["boto3 (>=1.9.71)"]
redis = ["redis (>=2.10.5)"]
test-filesource = ["pyyaml (>=5.3.1)", "watchdog (>=3.0.0)"]
[[package]]
name = "nodeenv"
version = "1.9.1"
description = "Node.js virtual environment builder"
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
groups = ["dev"]
files = [
{file = "nodeenv-1.9.1-py2.py3-none-any.whl", hash = "sha256:ba11c9782d29c27c70ffbdda2d7415098754709be8a7056d79a737cd901155c9"},
{file = "nodeenv-1.9.1.tar.gz", hash = "sha256:6ec12890a2dab7946721edbfbcd91f3319c6ccc9aec47be7c7e6b7011ee6645f"},
]
[[package]]
name = "opentelemetry-api"
version = "1.35.0"
@@ -1036,7 +779,7 @@ version = "25.0"
description = "Core utilities for Python packages"
optional = false
python-versions = ">=3.8"
groups = ["main", "dev"]
groups = ["main"]
files = [
{file = "packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484"},
{file = "packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f"},
@@ -1048,7 +791,7 @@ version = "1.6.0"
description = "plugin and hook calling mechanisms for python"
optional = false
python-versions = ">=3.9"
groups = ["dev"]
groups = ["main"]
files = [
{file = "pluggy-1.6.0-py3-none-any.whl", hash = "sha256:e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746"},
{file = "pluggy-1.6.0.tar.gz", hash = "sha256:7dcc130b76258d33b90f61b658791dede3486c3e6bfb003ee5c9bfb396dd22f3"},
@@ -1140,19 +883,6 @@ files = [
[package.dependencies]
pyasn1 = ">=0.6.1,<0.7.0"
[[package]]
name = "pycparser"
version = "2.22"
description = "C parser in Python"
optional = false
python-versions = ">=3.8"
groups = ["main"]
markers = "platform_python_implementation != \"PyPy\""
files = [
{file = "pycparser-2.22-py3-none-any.whl", hash = "sha256:c3702b6d3dd8c7abc1afa565d7e63d53a1d0bd86cdc24edd75470f4de499cfcc"},
{file = "pycparser-2.22.tar.gz", hash = "sha256:491c8be9c040f5390f5bf44a5b07752bd07f56edf992381b05c701439eec10f6"},
]
[[package]]
name = "pydantic"
version = "2.11.7"
@@ -1317,7 +1047,7 @@ version = "2.19.2"
description = "Pygments is a syntax highlighting package written in Python."
optional = false
python-versions = ">=3.8"
groups = ["dev"]
groups = ["main"]
files = [
{file = "pygments-2.19.2-py3-none-any.whl", hash = "sha256:86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b"},
{file = "pygments-2.19.2.tar.gz", hash = "sha256:636cb2477cec7f8952536970bc533bc43743542f70392ae026374600add5b887"},
@@ -1338,9 +1068,6 @@ files = [
{file = "pyjwt-2.10.1.tar.gz", hash = "sha256:3cc5772eb20009233caf06e9d8a0577824723b44e6648ee0a2aedb6cf9381953"},
]
[package.dependencies]
cryptography = {version = ">=3.4.0", optional = true, markers = "extra == \"crypto\""}
[package.extras]
crypto = ["cryptography (>=3.4.0)"]
dev = ["coverage[toml] (==5.0.4)", "cryptography (>=3.4.0)", "pre-commit", "pytest (>=6.0.0,<7.0.0)", "sphinx", "sphinx-rtd-theme", "zope.interface"]
@@ -1359,34 +1086,13 @@ files = [
{file = "pyrfc3339-2.0.1.tar.gz", hash = "sha256:e47843379ea35c1296c3b6c67a948a1a490ae0584edfcbdea0eaffb5dd29960b"},
]
[[package]]
name = "pyright"
version = "1.1.404"
description = "Command line wrapper for pyright"
optional = false
python-versions = ">=3.7"
groups = ["dev"]
files = [
{file = "pyright-1.1.404-py3-none-any.whl", hash = "sha256:c7b7ff1fdb7219c643079e4c3e7d4125f0dafcc19d253b47e898d130ea426419"},
{file = "pyright-1.1.404.tar.gz", hash = "sha256:455e881a558ca6be9ecca0b30ce08aa78343ecc031d37a198ffa9a7a1abeb63e"},
]
[package.dependencies]
nodeenv = ">=1.6.0"
typing-extensions = ">=4.1"
[package.extras]
all = ["nodejs-wheel-binaries", "twine (>=3.4.1)"]
dev = ["twine (>=3.4.1)"]
nodejs = ["nodejs-wheel-binaries"]
[[package]]
name = "pytest"
version = "8.4.1"
description = "pytest: simple powerful testing with Python"
optional = false
python-versions = ">=3.9"
groups = ["dev"]
groups = ["main"]
files = [
{file = "pytest-8.4.1-py3-none-any.whl", hash = "sha256:539c70ba6fcead8e78eebbf1115e8b589e7565830d7d006a8723f19ac8a0afb7"},
{file = "pytest-8.4.1.tar.gz", hash = "sha256:7c67fd69174877359ed9371ec3af8a3d2b04741818c51e5e99cc1742251fa93c"},
@@ -1410,7 +1116,7 @@ version = "1.1.0"
description = "Pytest support for asyncio"
optional = false
python-versions = ">=3.9"
groups = ["dev"]
groups = ["main"]
files = [
{file = "pytest_asyncio-1.1.0-py3-none-any.whl", hash = "sha256:5fe2d69607b0bd75c656d1211f969cadba035030156745ee09e7d71740e58ecf"},
{file = "pytest_asyncio-1.1.0.tar.gz", hash = "sha256:796aa822981e01b68c12e4827b8697108f7205020f24b5793b3c41555dab68ea"},
@@ -1424,33 +1130,13 @@ pytest = ">=8.2,<9"
docs = ["sphinx (>=5.3)", "sphinx-rtd-theme (>=1)"]
testing = ["coverage (>=6.2)", "hypothesis (>=5.7.1)"]
[[package]]
name = "pytest-cov"
version = "6.2.1"
description = "Pytest plugin for measuring coverage."
optional = false
python-versions = ">=3.9"
groups = ["dev"]
files = [
{file = "pytest_cov-6.2.1-py3-none-any.whl", hash = "sha256:f5bc4c23f42f1cdd23c70b1dab1bbaef4fc505ba950d53e0081d0730dd7e86d5"},
{file = "pytest_cov-6.2.1.tar.gz", hash = "sha256:25cc6cc0a5358204b8108ecedc51a9b57b34cc6b8c967cc2c01a4e00d8a67da2"},
]
[package.dependencies]
coverage = {version = ">=7.5", extras = ["toml"]}
pluggy = ">=1.2"
pytest = ">=6.2.5"
[package.extras]
testing = ["fields", "hunter", "process-tests", "pytest-xdist", "virtualenv"]
[[package]]
name = "pytest-mock"
version = "3.14.1"
description = "Thin-wrapper around the mock package for easier use with pytest"
optional = false
python-versions = ">=3.8"
groups = ["dev"]
groups = ["main"]
files = [
{file = "pytest_mock-3.14.1-py3-none-any.whl", hash = "sha256:178aefcd11307d874b4cd3100344e7e2d888d9791a6a1d9bfe90fbc1b74fd1d0"},
{file = "pytest_mock-3.14.1.tar.gz", hash = "sha256:159e9edac4c451ce77a5cdb9fc5d1100708d2dd4ba3c3df572f14097351af80e"},
@@ -1567,31 +1253,30 @@ pyasn1 = ">=0.1.3"
[[package]]
name = "ruff"
version = "0.12.11"
version = "0.12.3"
description = "An extremely fast Python linter and code formatter, written in Rust."
optional = false
python-versions = ">=3.7"
groups = ["dev"]
files = [
{file = "ruff-0.12.11-py3-none-linux_armv6l.whl", hash = "sha256:93fce71e1cac3a8bf9200e63a38ac5c078f3b6baebffb74ba5274fb2ab276065"},
{file = "ruff-0.12.11-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:b8e33ac7b28c772440afa80cebb972ffd823621ded90404f29e5ab6d1e2d4b93"},
{file = "ruff-0.12.11-py3-none-macosx_11_0_arm64.whl", hash = "sha256:d69fb9d4937aa19adb2e9f058bc4fbfe986c2040acb1a4a9747734834eaa0bfd"},
{file = "ruff-0.12.11-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:411954eca8464595077a93e580e2918d0a01a19317af0a72132283e28ae21bee"},
{file = "ruff-0.12.11-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:6a2c0a2e1a450f387bf2c6237c727dd22191ae8c00e448e0672d624b2bbd7fb0"},
{file = "ruff-0.12.11-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8ca4c3a7f937725fd2413c0e884b5248a19369ab9bdd850b5781348ba283f644"},
{file = "ruff-0.12.11-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:4d1df0098124006f6a66ecf3581a7f7e754c4df7644b2e6704cd7ca80ff95211"},
{file = "ruff-0.12.11-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5a8dd5f230efc99a24ace3b77e3555d3fbc0343aeed3fc84c8d89e75ab2ff793"},
{file = "ruff-0.12.11-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4dc75533039d0ed04cd33fb8ca9ac9620b99672fe7ff1533b6402206901c34ee"},
{file = "ruff-0.12.11-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4fc58f9266d62c6eccc75261a665f26b4ef64840887fc6cbc552ce5b29f96cc8"},
{file = "ruff-0.12.11-py3-none-manylinux_2_31_riscv64.whl", hash = "sha256:5a0113bd6eafd545146440225fe60b4e9489f59eb5f5f107acd715ba5f0b3d2f"},
{file = "ruff-0.12.11-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:0d737b4059d66295c3ea5720e6efc152623bb83fde5444209b69cd33a53e2000"},
{file = "ruff-0.12.11-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:916fc5defee32dbc1fc1650b576a8fed68f5e8256e2180d4d9855aea43d6aab2"},
{file = "ruff-0.12.11-py3-none-musllinux_1_2_i686.whl", hash = "sha256:c984f07d7adb42d3ded5be894fb4007f30f82c87559438b4879fe7aa08c62b39"},
{file = "ruff-0.12.11-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:e07fbb89f2e9249f219d88331c833860489b49cdf4b032b8e4432e9b13e8a4b9"},
{file = "ruff-0.12.11-py3-none-win32.whl", hash = "sha256:c792e8f597c9c756e9bcd4d87cf407a00b60af77078c96f7b6366ea2ce9ba9d3"},
{file = "ruff-0.12.11-py3-none-win_amd64.whl", hash = "sha256:a3283325960307915b6deb3576b96919ee89432ebd9c48771ca12ee8afe4a0fd"},
{file = "ruff-0.12.11-py3-none-win_arm64.whl", hash = "sha256:bae4d6e6a2676f8fb0f98b74594a048bae1b944aab17e9f5d504062303c6dbea"},
{file = "ruff-0.12.11.tar.gz", hash = "sha256:c6b09ae8426a65bbee5425b9d0b82796dbb07cb1af045743c79bfb163001165d"},
{file = "ruff-0.12.3-py3-none-linux_armv6l.whl", hash = "sha256:47552138f7206454eaf0c4fe827e546e9ddac62c2a3d2585ca54d29a890137a2"},
{file = "ruff-0.12.3-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:0a9153b000c6fe169bb307f5bd1b691221c4286c133407b8827c406a55282041"},
{file = "ruff-0.12.3-py3-none-macosx_11_0_arm64.whl", hash = "sha256:fa6b24600cf3b750e48ddb6057e901dd5b9aa426e316addb2a1af185a7509882"},
{file = "ruff-0.12.3-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e2506961bf6ead54887ba3562604d69cb430f59b42133d36976421bc8bd45901"},
{file = "ruff-0.12.3-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c4faaff1f90cea9d3033cbbcdf1acf5d7fb11d8180758feb31337391691f3df0"},
{file = "ruff-0.12.3-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40dced4a79d7c264389de1c59467d5d5cefd79e7e06d1dfa2c75497b5269a5a6"},
{file = "ruff-0.12.3-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:0262d50ba2767ed0fe212aa7e62112a1dcbfd46b858c5bf7bbd11f326998bafc"},
{file = "ruff-0.12.3-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:12371aec33e1a3758597c5c631bae9a5286f3c963bdfb4d17acdd2d395406687"},
{file = "ruff-0.12.3-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:560f13b6baa49785665276c963edc363f8ad4b4fc910a883e2625bdb14a83a9e"},
{file = "ruff-0.12.3-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:023040a3499f6f974ae9091bcdd0385dd9e9eb4942f231c23c57708147b06311"},
{file = "ruff-0.12.3-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:883d844967bffff5ab28bba1a4d246c1a1b2933f48cb9840f3fdc5111c603b07"},
{file = "ruff-0.12.3-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:2120d3aa855ff385e0e562fdee14d564c9675edbe41625c87eeab744a7830d12"},
{file = "ruff-0.12.3-py3-none-musllinux_1_2_i686.whl", hash = "sha256:6b16647cbb470eaf4750d27dddc6ebf7758b918887b56d39e9c22cce2049082b"},
{file = "ruff-0.12.3-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:e1417051edb436230023575b149e8ff843a324557fe0a265863b7602df86722f"},
{file = "ruff-0.12.3-py3-none-win32.whl", hash = "sha256:dfd45e6e926deb6409d0616078a666ebce93e55e07f0fb0228d4b2608b2c248d"},
{file = "ruff-0.12.3-py3-none-win_amd64.whl", hash = "sha256:a946cf1e7ba3209bdef039eb97647f1c77f6f540e5845ec9c114d3af8df873e7"},
{file = "ruff-0.12.3-py3-none-win_arm64.whl", hash = "sha256:5f9c7c9c8f84c2d7f27e93674d27136fbf489720251544c4da7fb3d742e011b1"},
{file = "ruff-0.12.3.tar.gz", hash = "sha256:f1b5a4b6668fd7b7ea3697d8d98857390b40c1320a63a178eee6be0899ea2d77"},
]
[[package]]
@@ -1725,7 +1410,7 @@ version = "2.2.1"
description = "A lil' TOML parser"
optional = false
python-versions = ">=3.8"
groups = ["dev"]
groups = ["main"]
markers = "python_version < \"3.11\""
files = [
{file = "tomli-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:678e4fa69e4575eb77d103de3df8a895e1591b48e740211bd1067378c69e8249"},
@@ -1768,7 +1453,7 @@ version = "4.14.1"
description = "Backported and Experimental Type Hints for Python 3.9+"
optional = false
python-versions = ">=3.9"
groups = ["main", "dev"]
groups = ["main"]
files = [
{file = "typing_extensions-4.14.1-py3-none-any.whl", hash = "sha256:d1e1e3b58374dc93031d6eda2420a48ea44a36c2b4766a4fdeb3710755731d76"},
{file = "typing_extensions-4.14.1.tar.gz", hash = "sha256:38b39f4aeeab64884ce9f74c94263ef78f3c22467c8724005483154c26648d36"},
@@ -1929,4 +1614,4 @@ type = ["pytest-mypy"]
[metadata]
lock-version = "2.1"
python-versions = ">=3.10,<4.0"
content-hash = "0c40b63c3c921846cf05ccfb4e685d4959854b29c2c302245f9832e20aac6954"
content-hash = "f67db13e6f68b1d67a55eee908c1c560bfa44da8509f98f842889a7570a9830f"

View File

@@ -9,25 +9,21 @@ packages = [{ include = "autogpt_libs" }]
[tool.poetry.dependencies]
python = ">=3.10,<4.0"
colorama = "^0.4.6"
cryptography = "^45.0"
expiringdict = "^1.2.2"
fastapi = "^0.116.1"
google-cloud-logging = "^3.12.1"
launchdarkly-server-sdk = "^9.12.0"
pydantic = "^2.11.7"
pydantic-settings = "^2.10.1"
pyjwt = { version = "^2.10.1", extras = ["crypto"] }
pyjwt = "^2.10.1"
pytest-asyncio = "^1.1.0"
pytest-mock = "^3.14.1"
redis = "^6.2.0"
supabase = "^2.16.0"
uvicorn = "^0.35.0"
[tool.poetry.group.dev.dependencies]
pyright = "^1.1.404"
pytest = "^8.4.1"
pytest-asyncio = "^1.1.0"
pytest-mock = "^3.14.1"
pytest-cov = "^6.2.1"
ruff = "^0.12.11"
ruff = "^0.12.3"
[build-system]
requires = ["poetry-core"]

View File

@@ -16,12 +16,13 @@ DB_SCHEMA=platform
DATABASE_URL="postgresql://${DB_USER}:${DB_PASS}@${DB_HOST}:${DB_PORT}/${DB_NAME}?schema=${DB_SCHEMA}&connect_timeout=${DB_CONNECT_TIMEOUT}"
DIRECT_URL="postgresql://${DB_USER}:${DB_PASS}@${DB_HOST}:${DB_PORT}/${DB_NAME}?schema=${DB_SCHEMA}&connect_timeout=${DB_CONNECT_TIMEOUT}"
PRISMA_SCHEMA="postgres/schema.prisma"
ENABLE_AUTH=true
## ===== REQUIRED SERVICE CREDENTIALS ===== ##
# Redis Configuration
REDIS_HOST=localhost
REDIS_PORT=6379
# REDIS_PASSWORD=
REDIS_PASSWORD=password
# RabbitMQ Credentials
RABBITMQ_DEFAULT_USER=rabbitmq_user_default
@@ -30,7 +31,7 @@ RABBITMQ_DEFAULT_PASS=k0VMxyIJF9S35f3x2uaw5IWAl6Y536O7
# Supabase Authentication
SUPABASE_URL=http://localhost:8000
SUPABASE_SERVICE_ROLE_KEY=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyAgCiAgICAicm9sZSI6ICJzZXJ2aWNlX3JvbGUiLAogICAgImlzcyI6ICJzdXBhYmFzZS1kZW1vIiwKICAgICJpYXQiOiAxNjQxNzY5MjAwLAogICAgImV4cCI6IDE3OTk1MzU2MDAKfQ.DaYlNEoUrrEn2Ig7tqibS-PHK5vgusbcbo7X36XVt4Q
JWT_VERIFY_KEY=your-super-secret-jwt-token-with-at-least-32-characters-long
SUPABASE_JWT_SECRET=your-super-secret-jwt-token-with-at-least-32-characters-long
## ===== REQUIRED SECURITY KEYS ===== ##
# Generate using: from cryptography.fernet import Fernet;Fernet.generate_key().decode()
@@ -66,11 +67,6 @@ NVIDIA_API_KEY=
GITHUB_CLIENT_ID=
GITHUB_CLIENT_SECRET=
# Notion OAuth App server credentials - https://developers.notion.com/docs/authorization
# Configure a public integration
NOTION_CLIENT_ID=
NOTION_CLIENT_SECRET=
# Google OAuth App server credentials - https://console.cloud.google.com/apis/credentials, and enable gmail api and set scopes
# https://console.cloud.google.com/apis/credentials/consent ?project=<your_project_id>
# You'll need to add/enable the following scopes (minimum):
@@ -110,15 +106,6 @@ TODOIST_CLIENT_SECRET=
NOTION_CLIENT_ID=
NOTION_CLIENT_SECRET=
# Discord OAuth App credentials
# 1. Go to https://discord.com/developers/applications
# 2. Create a new application
# 3. Go to OAuth2 section and add redirect URI: http://localhost:3000/auth/integrations/oauth_callback
# 4. Copy Client ID and Client Secret below
DISCORD_CLIENT_ID=
DISCORD_CLIENT_SECRET=
REDDIT_CLIENT_ID=
REDDIT_CLIENT_SECRET=
@@ -179,4 +166,4 @@ SMARTLEAD_API_KEY=
ZEROBOUNCE_API_KEY=
# Other Services
AUTOMOD_API_KEY=
AUTOMOD_API_KEY=

View File

@@ -9,12 +9,4 @@ secrets/*
!secrets/.gitkeep
*.ignore.*
*.ign.*
# Load test results and reports
load-tests/*_RESULTS.md
load-tests/*_REPORT.md
load-tests/results/
load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
*.ign.*

View File

@@ -1,43 +1,31 @@
FROM debian:13-slim AS builder
FROM python:3.11.10-slim-bookworm AS builder
# Set environment variables
ENV PYTHONDONTWRITEBYTECODE=1
ENV PYTHONUNBUFFERED=1
ENV DEBIAN_FRONTEND=noninteractive
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1
WORKDIR /app
RUN echo 'Acquire::http::Pipeline-Depth 0;\nAcquire::http::No-Cache true;\nAcquire::BrokenProxy true;\n' > /etc/apt/apt.conf.d/99fixbadproxy
# Install Node.js repository key and setup
# Update package list and install build dependencies in a single layer
RUN apt-get update --allow-releaseinfo-change --fix-missing \
&& apt-get install -y curl ca-certificates gnupg \
&& mkdir -p /etc/apt/keyrings \
&& curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key | gpg --dearmor -o /etc/apt/keyrings/nodesource.gpg \
&& echo "deb [signed-by=/etc/apt/keyrings/nodesource.gpg] https://deb.nodesource.com/node_20.x nodistro main" | tee /etc/apt/sources.list.d/nodesource.list
# Update package list and install Python, Node.js, and build dependencies
RUN apt-get update \
&& apt-get install -y \
python3.13 \
python3.13-dev \
python3.13-venv \
python3-pip \
build-essential \
libpq5 \
libz-dev \
libssl-dev \
postgresql-client \
nodejs \
&& rm -rf /var/lib/apt/lists/*
postgresql-client
ENV POETRY_HOME=/opt/poetry
ENV POETRY_NO_INTERACTION=1
ENV POETRY_VIRTUALENVS_CREATE=true
ENV POETRY_VIRTUALENVS_IN_PROJECT=true
ENV POETRY_VIRTUALENVS_CREATE=false
ENV PATH=/opt/poetry/bin:$PATH
RUN pip3 install poetry --break-system-packages
# Upgrade pip and setuptools to fix security vulnerabilities
RUN pip3 install --upgrade pip setuptools
RUN pip3 install poetry
# Copy and install dependencies
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
@@ -47,38 +35,29 @@ RUN poetry install --no-ansi --no-root
# Generate Prisma client
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
RUN poetry run prisma generate
FROM debian:13-slim AS server_dependencies
FROM python:3.11.10-slim-bookworm AS server_dependencies
WORKDIR /app
ENV POETRY_HOME=/opt/poetry \
POETRY_NO_INTERACTION=1 \
POETRY_VIRTUALENVS_CREATE=true \
POETRY_VIRTUALENVS_IN_PROJECT=true \
DEBIAN_FRONTEND=noninteractive
POETRY_VIRTUALENVS_CREATE=false
ENV PATH=/opt/poetry/bin:$PATH
# Install Python without upgrading system-managed packages
RUN apt-get update && apt-get install -y \
python3.13 \
python3-pip \
&& rm -rf /var/lib/apt/lists/*
# Upgrade pip and setuptools to fix security vulnerabilities
RUN pip3 install --upgrade pip setuptools
# Copy only necessary files from builder
COPY --from=builder /app /app
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
# Copy Node.js installation for Prisma
COPY --from=builder /usr/bin/node /usr/bin/node
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
COPY --from=builder /usr/bin/npm /usr/bin/npm
COPY --from=builder /usr/bin/npx /usr/bin/npx
COPY --from=builder /usr/local/lib/python3.11 /usr/local/lib/python3.11
COPY --from=builder /usr/local/bin /usr/local/bin
# Copy Prisma binaries
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
ENV PATH="/app/.venv/bin:$PATH"
RUN mkdir -p /app/autogpt_platform/autogpt_libs
RUN mkdir -p /app/autogpt_platform/backend
@@ -93,7 +72,6 @@ FROM server_dependencies AS migrate
# Migration stage only needs schema and migrations - much lighter than full backend
COPY autogpt_platform/backend/schema.prisma /app/autogpt_platform/backend/
COPY autogpt_platform/backend/backend/data/partial_types.py /app/autogpt_platform/backend/backend/data/partial_types.py
COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migrations
FROM server_dependencies AS server

View File

@@ -132,58 +132,17 @@ def test_endpoint_success(snapshot: Snapshot):
### Testing with Authentication
For the main API routes that use JWT authentication, auth is provided by the `autogpt_libs.auth` module. If the test actually uses the `user_id`, the recommended approach for testing is to mock the `get_jwt_payload` function, which underpins all higher-level auth functions used in the API (`requires_user`, `requires_admin_user`, `get_user_id`).
If the test doesn't need the `user_id` specifically, mocking is not necessary as during tests auth is disabled anyway (see `conftest.py`).
#### Using Global Auth Fixtures
Two global auth fixtures are provided by `backend/server/conftest.py`:
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")
These provide the easiest way to set up authentication mocking in test modules:
```python
import fastapi
import fastapi.testclient
import pytest
from backend.server.v2.myroute import router
def override_auth_middleware():
return {"sub": "test-user-id"}
app = fastapi.FastAPI()
app.include_router(router)
client = fastapi.testclient.TestClient(app)
def override_get_user_id():
return "test-user-id"
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_user):
"""Setup auth overrides for all tests in this module"""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_user['get_jwt_payload']
yield
app.dependency_overrides.clear()
app.dependency_overrides[auth_middleware] = override_auth_middleware
app.dependency_overrides[get_user_id] = override_get_user_id
```
For admin-only endpoints, use `mock_jwt_admin` instead:
```python
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_admin):
"""Setup auth overrides for admin tests"""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_admin['get_jwt_payload']
yield
app.dependency_overrides.clear()
```
The IDs are also available separately as fixtures:
- `test_user_id`
- `admin_user_id`
- `target_user_id` (for admin <-> user operations)
### Mocking External Services
```python
@@ -194,10 +153,10 @@ def test_external_api_call(mocker, snapshot):
"backend.services.external_api.call",
return_value=mock_response
)
response = client.post("/api/process")
assert response.status_code == 200
snapshot.snapshot_dir = "snapshots"
snapshot.assert_match(
json.dumps(response.json(), indent=2, sort_keys=True),
@@ -228,17 +187,6 @@ def test_external_api_call(mocker, snapshot):
- Use `async def` with `@pytest.mark.asyncio` for testing async functions directly
### 5. Fixtures
#### Global Fixtures (conftest.py)
Authentication fixtures are available globally from `conftest.py`:
- `mock_jwt_user` - Standard user authentication
- `mock_jwt_admin` - Admin user authentication
- `configured_snapshot` - Pre-configured snapshot fixture
#### Custom Fixtures
Create reusable fixtures for common test data:
```python
@@ -254,18 +202,9 @@ def test_create_user(sample_user, snapshot):
# ... test implementation
```
#### Test Isolation
All tests must use fixtures that ensure proper isolation:
- Authentication overrides are automatically cleaned up after each test
- Database connections are properly managed with cleanup
- Mock objects are reset between tests
## CI/CD Integration
The GitHub Actions workflow automatically runs tests on:
- Pull requests
- Pushes to main branch
@@ -277,19 +216,16 @@ Snapshot tests work in CI by:
## Troubleshooting
### Snapshot Mismatches
- Review the diff carefully
- If changes are expected: `poetry run pytest --snapshot-update`
- If changes are unexpected: Fix the code causing the difference
### Async Test Issues
- Ensure async functions use `@pytest.mark.asyncio`
- Use `AsyncMock` for mocking async functions
- FastAPI TestClient handles async automatically
### Import Errors
- Check that all dependencies are in `pyproject.toml`
- Run `poetry install` to ensure dependencies are installed
- Verify import paths are correct
@@ -298,4 +234,4 @@ Snapshot tests work in CI by:
Snapshot testing provides a powerful way to ensure API responses remain consistent. Combined with traditional assertions, it creates a robust test suite that catches regressions while remaining maintainable.
Remember: Good tests are as important as good code!
Remember: Good tests are as important as good code!

View File

@@ -1,3 +1,4 @@
import functools
import importlib
import logging
import os
@@ -5,8 +6,6 @@ import re
from pathlib import Path
from typing import TYPE_CHECKING, TypeVar
from backend.util.cache import cached
logger = logging.getLogger(__name__)
@@ -16,7 +15,7 @@ if TYPE_CHECKING:
T = TypeVar("T")
@cached(ttl_seconds=3600)
@functools.cache
def load_all_blocks() -> dict[str, type["Block"]]:
from backend.data.block import Block
from backend.util.settings import Config

View File

@@ -1,6 +1,8 @@
import logging
from typing import Any, Optional
from pydantic import JsonValue
from backend.data.block import (
Block,
BlockCategory,
@@ -10,7 +12,7 @@ from backend.data.block import (
BlockType,
get_block,
)
from backend.data.execution import ExecutionStatus, NodesInputMasks
from backend.data.execution import ExecutionStatus
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util.json import validate_with_jsonschema
from backend.util.retry import func_retry
@@ -23,15 +25,12 @@ class AgentExecutorBlock(Block):
user_id: str = SchemaField(description="User ID")
graph_id: str = SchemaField(description="Graph ID")
graph_version: int = SchemaField(description="Graph Version")
agent_name: Optional[str] = SchemaField(
default=None, description="Name to display in the Builder UI"
)
inputs: BlockInput = SchemaField(description="Input data for the graph")
input_schema: dict = SchemaField(description="Input schema for the graph")
output_schema: dict = SchemaField(description="Output schema for the graph")
nodes_input_masks: Optional[NodesInputMasks] = SchemaField(
nodes_input_masks: Optional[dict[str, dict[str, JsonValue]]] = SchemaField(
default=None, hidden=True
)

View File

@@ -1,214 +0,0 @@
from typing import Any
from backend.blocks.llm import (
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
AIBlockBase,
AICredentials,
AICredentialsField,
LlmModel,
LLMResponse,
llm_call,
)
from backend.data.block import BlockCategory, BlockOutput, BlockSchema
from backend.data.model import APIKeyCredentials, NodeExecutionStats, SchemaField
class AIConditionBlock(AIBlockBase):
"""
An AI-powered condition block that uses natural language to evaluate conditions.
This block allows users to define conditions in plain English (e.g., "the input is an email address",
"the input is a city in the USA") and uses AI to determine if the input satisfies the condition.
It provides the same yes/no data pass-through functionality as the standard ConditionBlock.
"""
class Input(BlockSchema):
input_value: Any = SchemaField(
description="The input value to evaluate with the AI condition",
placeholder="Enter the value to be evaluated (text, number, or any data)",
)
condition: str = SchemaField(
description="A plaintext English description of the condition to evaluate",
placeholder="E.g., 'the input is the body of an email', 'the input is a City in the USA', 'the input is an error or a refusal'",
)
yes_value: Any = SchemaField(
description="(Optional) Value to output if the condition is true. If not provided, input_value will be used.",
placeholder="Leave empty to use input_value, or enter a specific value",
default=None,
)
no_value: Any = SchemaField(
description="(Optional) Value to output if the condition is false. If not provided, input_value will be used.",
placeholder="Leave empty to use input_value, or enter a specific value",
default=None,
)
model: LlmModel = SchemaField(
title="LLM Model",
default=LlmModel.GPT4O,
description="The language model to use for evaluating the condition.",
advanced=False,
)
credentials: AICredentials = AICredentialsField()
class Output(BlockSchema):
result: bool = SchemaField(
description="The result of the AI condition evaluation (True or False)"
)
yes_output: Any = SchemaField(
description="The output value if the condition is true"
)
no_output: Any = SchemaField(
description="The output value if the condition is false"
)
error: str = SchemaField(
description="Error message if the AI evaluation is uncertain or fails"
)
def __init__(self):
super().__init__(
id="553ec5b8-6c45-4299-8d75-b394d05f72ff",
input_schema=AIConditionBlock.Input,
output_schema=AIConditionBlock.Output,
description="Uses AI to evaluate natural language conditions and provide conditional outputs",
categories={BlockCategory.AI, BlockCategory.LOGIC},
test_input={
"input_value": "john@example.com",
"condition": "the input is an email address",
"yes_value": "Valid email",
"no_value": "Not an email",
"model": LlmModel.GPT4O,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("result", True),
("yes_output", "Valid email"),
],
test_mock={
"llm_call": lambda *args, **kwargs: LLMResponse(
raw_response="",
prompt=[],
response="true",
tool_calls=None,
prompt_tokens=50,
completion_tokens=10,
reasoning=None,
)
},
)
async def llm_call(
self,
credentials: APIKeyCredentials,
llm_model: LlmModel,
prompt: list,
max_tokens: int,
) -> LLMResponse:
"""Wrapper method for llm_call to enable mocking in tests."""
return await llm_call(
credentials=credentials,
llm_model=llm_model,
prompt=prompt,
force_json_output=False,
max_tokens=max_tokens,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
"""
Evaluate the AI condition and return appropriate outputs.
"""
# Prepare the yes and no values, using input_value as default
yes_value = (
input_data.yes_value
if input_data.yes_value is not None
else input_data.input_value
)
no_value = (
input_data.no_value
if input_data.no_value is not None
else input_data.input_value
)
# Convert input_value to string for AI evaluation
input_str = str(input_data.input_value)
# Create the prompt for AI evaluation
prompt = [
{
"role": "system",
"content": (
"You are an AI assistant that evaluates conditions based on input data. "
"You must respond with only 'true' or 'false' (lowercase) to indicate whether "
"the given condition is met by the input value. Be accurate and consider the "
"context and meaning of both the input and the condition."
),
},
{
"role": "user",
"content": (
f"Input value: {input_str}\n"
f"Condition to evaluate: {input_data.condition}\n\n"
f"Does the input value satisfy the condition? Respond with only 'true' or 'false'."
),
},
]
# Call the LLM
try:
response = await self.llm_call(
credentials=credentials,
llm_model=input_data.model,
prompt=prompt,
max_tokens=10, # We only expect a true/false response
)
# Extract the boolean result from the response
response_text = response.response.strip().lower()
if response_text == "true":
result = True
elif response_text == "false":
result = False
else:
# If the response is not clear, try to interpret it using word boundaries
import re
# Use word boundaries to avoid false positives like 'untrue' or '10'
tokens = set(re.findall(r"\b(true|false|yes|no|1|0)\b", response_text))
if tokens == {"true"} or tokens == {"yes"} or tokens == {"1"}:
result = True
elif tokens == {"false"} or tokens == {"no"} or tokens == {"0"}:
result = False
else:
# Unclear or conflicting response - default to False and yield error
result = False
yield "error", f"Unclear AI response: '{response.response}'"
# Update internal stats
self.merge_stats(
NodeExecutionStats(
input_token_count=response.prompt_tokens,
output_token_count=response.completion_tokens,
)
)
self.prompt = response.prompt
except Exception as e:
# In case of any error, default to False to be safe
result = False
# Log the error but don't fail the block execution
import logging
logger = logging.getLogger(__name__)
logger.error(f"AI condition evaluation failed: {str(e)}")
yield "error", f"AI evaluation failed: {str(e)}"
# Yield results
yield "result", result
if result:
yield "yes_output", yes_value
else:
yield "no_output", no_value

View File

@@ -1,154 +0,0 @@
from enum import Enum
from typing import Literal
from pydantic import SecretStr
from replicate.client import Client as ReplicateClient
from replicate.helpers import FileOutput
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import MediaFileType
class GeminiImageModel(str, Enum):
NANO_BANANA = "google/nano-banana"
class OutputFormat(str, Enum):
JPG = "jpg"
PNG = "png"
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="replicate",
api_key=SecretStr("mock-replicate-api-key"),
title="Mock Replicate API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
class AIImageCustomizerBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.REPLICATE], Literal["api_key"]
] = CredentialsField(
description="Replicate API key with permissions for Google Gemini image models",
)
prompt: str = SchemaField(
description="A text description of the image you want to generate",
title="Prompt",
)
model: GeminiImageModel = SchemaField(
description="The AI model to use for image generation and editing",
default=GeminiImageModel.NANO_BANANA,
title="Model",
)
images: list[MediaFileType] = SchemaField(
description="Optional list of input images to reference or modify",
default=[],
title="Input Images",
)
output_format: OutputFormat = SchemaField(
description="Format of the output image",
default=OutputFormat.PNG,
title="Output Format",
)
class Output(BlockSchema):
image_url: MediaFileType = SchemaField(description="URL of the generated image")
error: str = SchemaField(description="Error message if generation failed")
def __init__(self):
super().__init__(
id="d76bbe4c-930e-4894-8469-b66775511f71",
description=(
"Generate and edit custom images using Google's Nano-Banana model from Gemini 2.5. "
"Provide a prompt and optional reference images to create or modify images."
),
categories={BlockCategory.AI, BlockCategory.MULTIMEDIA},
input_schema=AIImageCustomizerBlock.Input,
output_schema=AIImageCustomizerBlock.Output,
test_input={
"prompt": "Make the scene more vibrant and colorful",
"model": GeminiImageModel.NANO_BANANA,
"images": [],
"output_format": OutputFormat.JPG,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("image_url", "https://replicate.delivery/generated-image.jpg"),
],
test_mock={
"run_model": lambda *args, **kwargs: MediaFileType(
"https://replicate.delivery/generated-image.jpg"
),
},
test_credentials=TEST_CREDENTIALS,
)
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
try:
result = await self.run_model(
api_key=credentials.api_key,
model_name=input_data.model.value,
prompt=input_data.prompt,
images=input_data.images,
output_format=input_data.output_format.value,
)
yield "image_url", result
except Exception as e:
yield "error", str(e)
async def run_model(
self,
api_key: SecretStr,
model_name: str,
prompt: str,
images: list[MediaFileType],
output_format: str,
) -> MediaFileType:
client = ReplicateClient(api_token=api_key.get_secret_value())
input_params: dict = {
"prompt": prompt,
"output_format": output_format,
}
# Add images to input if provided (API expects "image_input" parameter)
if images:
input_params["image_input"] = [str(img) for img in images]
output: FileOutput | str = await client.async_run( # type: ignore
model_name,
input=input_params,
wait=False,
)
if isinstance(output, FileOutput):
return MediaFileType(output.url)
if isinstance(output, str):
return MediaFileType(output)
raise ValueError("No output received from the model")

View File

@@ -166,7 +166,7 @@ class AIMusicGeneratorBlock(Block):
output_format=input_data.output_format,
normalization_strategy=input_data.normalization_strategy,
)
if result and isinstance(result, str) and result.startswith("http"):
if result and result != "No output received":
yield "result", result
return
else:

View File

@@ -661,167 +661,6 @@ async def update_field(
#################################################################
async def get_table_schema(
credentials: Credentials,
base_id: str,
table_id_or_name: str,
) -> dict:
"""
Get the schema for a specific table, including all field definitions.
Args:
credentials: Airtable API credentials
base_id: The base ID
table_id_or_name: The table ID or name
Returns:
Dict containing table schema with fields information
"""
# First get all tables to find the right one
response = await Requests().get(
f"https://api.airtable.com/v0/meta/bases/{base_id}/tables",
headers={"Authorization": credentials.auth_header()},
)
data = response.json()
tables = data.get("tables", [])
# Find the matching table
for table in tables:
if table.get("id") == table_id_or_name or table.get("name") == table_id_or_name:
return table
raise ValueError(f"Table '{table_id_or_name}' not found in base '{base_id}'")
def get_empty_value_for_field(field_type: str) -> Any:
"""
Return the appropriate empty value for a given Airtable field type.
Args:
field_type: The Airtable field type
Returns:
The appropriate empty value for that field type
"""
# Fields that should be false when empty
if field_type == "checkbox":
return False
# Fields that should be empty arrays
if field_type in [
"multipleSelects",
"multipleRecordLinks",
"multipleAttachments",
"multipleLookupValues",
"multipleCollaborators",
]:
return []
# Fields that should be 0 when empty (numeric types)
if field_type in [
"number",
"percent",
"currency",
"rating",
"duration",
"count",
"autoNumber",
]:
return 0
# Fields that should be empty strings
if field_type in [
"singleLineText",
"multilineText",
"email",
"url",
"phoneNumber",
"richText",
"barcode",
]:
return ""
# Everything else gets null (dates, single selects, formulas, etc.)
return None
async def normalize_records(
records: list[dict],
table_schema: dict,
include_field_metadata: bool = False,
) -> dict:
"""
Normalize Airtable records to include all fields with proper empty values.
Args:
records: List of record objects from Airtable API
table_schema: Table schema containing field definitions
include_field_metadata: Whether to include field metadata in response
Returns:
Dict with normalized records and optionally field metadata
"""
fields = table_schema.get("fields", [])
# Normalize each record
normalized_records = []
for record in records:
normalized = {
"id": record.get("id"),
"createdTime": record.get("createdTime"),
"fields": {},
}
# Add existing fields
existing_fields = record.get("fields", {})
# Add all fields from schema, using empty values for missing ones
for field in fields:
field_name = field["name"]
field_type = field["type"]
if field_name in existing_fields:
# Field exists, use its value
normalized["fields"][field_name] = existing_fields[field_name]
else:
# Field is missing, add appropriate empty value
normalized["fields"][field_name] = get_empty_value_for_field(field_type)
normalized_records.append(normalized)
# Build result dictionary
if include_field_metadata:
field_metadata = {}
for field in fields:
metadata = {"type": field["type"], "id": field["id"]}
# Add type-specific metadata
options = field.get("options", {})
if field["type"] == "currency" and "symbol" in options:
metadata["symbol"] = options["symbol"]
metadata["precision"] = options.get("precision", 2)
elif field["type"] == "duration" and "durationFormat" in options:
metadata["format"] = options["durationFormat"]
elif field["type"] == "percent" and "precision" in options:
metadata["precision"] = options["precision"]
elif (
field["type"] in ["singleSelect", "multipleSelects"]
and "choices" in options
):
metadata["choices"] = [choice["name"] for choice in options["choices"]]
elif field["type"] == "rating" and "max" in options:
metadata["max"] = options["max"]
metadata["icon"] = options.get("icon", "star")
metadata["color"] = options.get("color", "yellowBright")
field_metadata[field["name"]] = metadata
return {"records": normalized_records, "field_metadata": field_metadata}
else:
return {"records": normalized_records}
async def list_records(
credentials: Credentials,
base_id: str,
@@ -1410,26 +1249,3 @@ async def list_bases(
)
return response.json()
async def get_base_tables(
credentials: Credentials,
base_id: str,
) -> list[dict]:
"""
Get all tables for a specific base.
Args:
credentials: Airtable API credentials
base_id: The ID of the base
Returns:
list[dict]: List of table objects with their schemas
"""
response = await Requests().get(
f"https://api.airtable.com/v0/meta/bases/{base_id}/tables",
headers={"Authorization": credentials.auth_header()},
)
data = response.json()
return data.get("tables", [])

View File

@@ -14,13 +14,13 @@ from backend.sdk import (
SchemaField,
)
from ._api import create_base, get_base_tables, list_bases
from ._api import create_base, list_bases
from ._config import airtable
class AirtableCreateBaseBlock(Block):
"""
Creates a new base in an Airtable workspace, or returns existing base if one with the same name exists.
Creates a new base in an Airtable workspace.
"""
class Input(BlockSchema):
@@ -31,10 +31,6 @@ class AirtableCreateBaseBlock(Block):
description="The workspace ID where the base will be created"
)
name: str = SchemaField(description="The name of the new base")
find_existing: bool = SchemaField(
description="If true, return existing base with same name instead of creating duplicate",
default=True,
)
tables: list[dict] = SchemaField(
description="At least one table and field must be specified. Array of table objects to create in the base. Each table should have 'name' and 'fields' properties",
default=[
@@ -54,18 +50,14 @@ class AirtableCreateBaseBlock(Block):
)
class Output(BlockSchema):
base_id: str = SchemaField(description="The ID of the created or found base")
base_id: str = SchemaField(description="The ID of the created base")
tables: list[dict] = SchemaField(description="Array of table objects")
table: dict = SchemaField(description="A single table object")
was_created: bool = SchemaField(
description="True if a new base was created, False if existing was found",
default=True,
)
def __init__(self):
super().__init__(
id="f59b88a8-54ce-4676-a508-fd614b4e8dce",
description="Create or find a base in Airtable",
description="Create a new base in Airtable",
categories={BlockCategory.DATA},
input_schema=self.Input,
output_schema=self.Output,
@@ -74,31 +66,6 @@ class AirtableCreateBaseBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
# If find_existing is true, check if a base with this name already exists
if input_data.find_existing:
# List all bases to check for existing one with same name
# Note: Airtable API doesn't have a direct search, so we need to list and filter
existing_bases = await list_bases(credentials)
for base in existing_bases.get("bases", []):
if base.get("name") == input_data.name:
# Base already exists, return it
base_id = base.get("id")
yield "base_id", base_id
yield "was_created", False
# Get the tables for this base
try:
tables = await get_base_tables(credentials, base_id)
yield "tables", tables
for table in tables:
yield "table", table
except Exception:
# If we can't get tables, return empty list
yield "tables", []
return
# No existing base found or find_existing is false, create new one
data = await create_base(
credentials,
input_data.workspace_id,
@@ -107,7 +74,6 @@ class AirtableCreateBaseBlock(Block):
)
yield "base_id", data.get("id", None)
yield "was_created", True
yield "tables", data.get("tables", [])
for table in data.get("tables", []):
yield "table", table

View File

@@ -2,7 +2,7 @@
Airtable record operation blocks.
"""
from typing import Optional, cast
from typing import Optional
from backend.sdk import (
APIKeyCredentials,
@@ -18,9 +18,7 @@ from ._api import (
create_record,
delete_multiple_records,
get_record,
get_table_schema,
list_records,
normalize_records,
update_multiple_records,
)
from ._config import airtable
@@ -56,24 +54,12 @@ class AirtableListRecordsBlock(Block):
return_fields: list[str] = SchemaField(
description="Specific fields to return (comma-separated)", default=[]
)
normalize_output: bool = SchemaField(
description="Normalize output to include all fields with proper empty values (disable to skip schema fetch and get raw Airtable response)",
default=True,
)
include_field_metadata: bool = SchemaField(
description="Include field type and configuration metadata (requires normalize_output=true)",
default=False,
)
class Output(BlockSchema):
records: list[dict] = SchemaField(description="Array of record objects")
offset: Optional[str] = SchemaField(
description="Offset for next page (null if no more records)", default=None
)
field_metadata: Optional[dict] = SchemaField(
description="Field type and configuration metadata (only when include_field_metadata=true)",
default=None,
)
def __init__(self):
super().__init__(
@@ -87,7 +73,6 @@ class AirtableListRecordsBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
data = await list_records(
credentials,
input_data.base_id,
@@ -103,33 +88,8 @@ class AirtableListRecordsBlock(Block):
fields=input_data.return_fields if input_data.return_fields else None,
)
records = data.get("records", [])
# Normalize output if requested
if input_data.normalize_output:
# Fetch table schema
table_schema = await get_table_schema(
credentials, input_data.base_id, input_data.table_id_or_name
)
# Normalize the records
normalized_data = await normalize_records(
records,
table_schema,
include_field_metadata=input_data.include_field_metadata,
)
yield "records", normalized_data["records"]
yield "offset", data.get("offset", None)
if (
input_data.include_field_metadata
and "field_metadata" in normalized_data
):
yield "field_metadata", normalized_data["field_metadata"]
else:
yield "records", records
yield "offset", data.get("offset", None)
yield "records", data.get("records", [])
yield "offset", data.get("offset", None)
class AirtableGetRecordBlock(Block):
@@ -144,23 +104,11 @@ class AirtableGetRecordBlock(Block):
base_id: str = SchemaField(description="The Airtable base ID")
table_id_or_name: str = SchemaField(description="Table ID or name")
record_id: str = SchemaField(description="The record ID to retrieve")
normalize_output: bool = SchemaField(
description="Normalize output to include all fields with proper empty values (disable to skip schema fetch and get raw Airtable response)",
default=True,
)
include_field_metadata: bool = SchemaField(
description="Include field type and configuration metadata (requires normalize_output=true)",
default=False,
)
class Output(BlockSchema):
id: str = SchemaField(description="The record ID")
fields: dict = SchemaField(description="The record fields")
created_time: str = SchemaField(description="The record created time")
field_metadata: Optional[dict] = SchemaField(
description="Field type and configuration metadata (only when include_field_metadata=true)",
default=None,
)
def __init__(self):
super().__init__(
@@ -174,7 +122,6 @@ class AirtableGetRecordBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
record = await get_record(
credentials,
input_data.base_id,
@@ -182,34 +129,9 @@ class AirtableGetRecordBlock(Block):
input_data.record_id,
)
# Normalize output if requested
if input_data.normalize_output:
# Fetch table schema
table_schema = await get_table_schema(
credentials, input_data.base_id, input_data.table_id_or_name
)
# Normalize the single record (wrap in list and unwrap result)
normalized_data = await normalize_records(
[record],
table_schema,
include_field_metadata=input_data.include_field_metadata,
)
normalized_record = normalized_data["records"][0]
yield "id", normalized_record.get("id", None)
yield "fields", normalized_record.get("fields", None)
yield "created_time", normalized_record.get("createdTime", None)
if (
input_data.include_field_metadata
and "field_metadata" in normalized_data
):
yield "field_metadata", normalized_data["field_metadata"]
else:
yield "id", record.get("id", None)
yield "fields", record.get("fields", None)
yield "created_time", record.get("createdTime", None)
yield "id", record.get("id", None)
yield "fields", record.get("fields", None)
yield "created_time", record.get("createdTime", None)
class AirtableCreateRecordsBlock(Block):
@@ -226,10 +148,6 @@ class AirtableCreateRecordsBlock(Block):
records: list[dict] = SchemaField(
description="Array of records to create (each with 'fields' object)"
)
skip_normalization: bool = SchemaField(
description="Skip output normalization to get raw Airtable response (faster but may have missing fields)",
default=False,
)
typecast: bool = SchemaField(
description="Automatically convert string values to appropriate types",
default=False,
@@ -255,7 +173,7 @@ class AirtableCreateRecordsBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
# The create_record API expects records in a specific format
data = await create_record(
credentials,
input_data.base_id,
@@ -264,22 +182,8 @@ class AirtableCreateRecordsBlock(Block):
typecast=input_data.typecast if input_data.typecast else None,
return_fields_by_field_id=input_data.return_fields_by_field_id,
)
result_records = cast(list[dict], data.get("records", []))
# Normalize output unless explicitly disabled
if not input_data.skip_normalization and result_records:
# Fetch table schema
table_schema = await get_table_schema(
credentials, input_data.base_id, input_data.table_id_or_name
)
# Normalize the records
normalized_data = await normalize_records(
result_records, table_schema, include_field_metadata=False
)
result_records = normalized_data["records"]
yield "records", result_records
yield "records", data.get("records", [])
details = data.get("details", None)
if details:
yield "details", details

View File

@@ -1,205 +0,0 @@
"""
Meeting BaaS API client module.
All API calls centralized for consistency and maintainability.
"""
from typing import Any, Dict, List, Optional
from backend.sdk import Requests
class MeetingBaasAPI:
"""Client for Meeting BaaS API endpoints."""
BASE_URL = "https://api.meetingbaas.com"
def __init__(self, api_key: str):
"""Initialize API client with authentication key."""
self.api_key = api_key
self.headers = {"x-meeting-baas-api-key": api_key}
self.requests = Requests()
# Bot Management Endpoints
async def join_meeting(
self,
bot_name: str,
meeting_url: str,
reserved: bool = False,
bot_image: Optional[str] = None,
entry_message: Optional[str] = None,
start_time: Optional[int] = None,
speech_to_text: Optional[Dict[str, Any]] = None,
webhook_url: Optional[str] = None,
automatic_leave: Optional[Dict[str, Any]] = None,
extra: Optional[Dict[str, Any]] = None,
recording_mode: str = "speaker_view",
streaming: Optional[Dict[str, Any]] = None,
deduplication_key: Optional[str] = None,
zoom_sdk_id: Optional[str] = None,
zoom_sdk_pwd: Optional[str] = None,
) -> Dict[str, Any]:
"""
Deploy a bot to join and record a meeting.
POST /bots
"""
body = {
"bot_name": bot_name,
"meeting_url": meeting_url,
"reserved": reserved,
"recording_mode": recording_mode,
}
# Add optional fields if provided
if bot_image is not None:
body["bot_image"] = bot_image
if entry_message is not None:
body["entry_message"] = entry_message
if start_time is not None:
body["start_time"] = start_time
if speech_to_text is not None:
body["speech_to_text"] = speech_to_text
if webhook_url is not None:
body["webhook_url"] = webhook_url
if automatic_leave is not None:
body["automatic_leave"] = automatic_leave
if extra is not None:
body["extra"] = extra
if streaming is not None:
body["streaming"] = streaming
if deduplication_key is not None:
body["deduplication_key"] = deduplication_key
if zoom_sdk_id is not None:
body["zoom_sdk_id"] = zoom_sdk_id
if zoom_sdk_pwd is not None:
body["zoom_sdk_pwd"] = zoom_sdk_pwd
response = await self.requests.post(
f"{self.BASE_URL}/bots",
headers=self.headers,
json=body,
)
return response.json()
async def leave_meeting(self, bot_id: str) -> bool:
"""
Remove a bot from an ongoing meeting.
DELETE /bots/{uuid}
"""
response = await self.requests.delete(
f"{self.BASE_URL}/bots/{bot_id}",
headers=self.headers,
)
return response.status in [200, 204]
async def retranscribe(
self,
bot_uuid: str,
speech_to_text: Optional[Dict[str, Any]] = None,
webhook_url: Optional[str] = None,
) -> Dict[str, Any]:
"""
Re-run transcription on a bot's audio.
POST /bots/retranscribe
"""
body: Dict[str, Any] = {"bot_uuid": bot_uuid}
if speech_to_text is not None:
body["speech_to_text"] = speech_to_text
if webhook_url is not None:
body["webhook_url"] = webhook_url
response = await self.requests.post(
f"{self.BASE_URL}/bots/retranscribe",
headers=self.headers,
json=body,
)
if response.status == 202:
return {"accepted": True}
return response.json()
# Data Retrieval Endpoints
async def get_meeting_data(
self, bot_id: str, include_transcripts: bool = True
) -> Dict[str, Any]:
"""
Retrieve meeting data including recording and transcripts.
GET /bots/meeting_data
"""
params = {
"bot_id": bot_id,
"include_transcripts": str(include_transcripts).lower(),
}
response = await self.requests.get(
f"{self.BASE_URL}/bots/meeting_data",
headers=self.headers,
params=params,
)
return response.json()
async def get_screenshots(self, bot_id: str) -> List[Dict[str, Any]]:
"""
Retrieve screenshots captured during a meeting.
GET /bots/{uuid}/screenshots
"""
response = await self.requests.get(
f"{self.BASE_URL}/bots/{bot_id}/screenshots",
headers=self.headers,
)
result = response.json()
# Ensure we return a list
if isinstance(result, list):
return result
return []
async def delete_data(self, bot_id: str) -> bool:
"""
Delete a bot's recorded data.
POST /bots/{uuid}/delete_data
"""
response = await self.requests.post(
f"{self.BASE_URL}/bots/{bot_id}/delete_data",
headers=self.headers,
)
return response.status == 200
async def list_bots_with_metadata(
self,
limit: Optional[int] = None,
offset: Optional[int] = None,
sort_by: Optional[str] = None,
sort_order: Optional[str] = None,
filter_by: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
"""
List bots with metadata including IDs, names, and meeting details.
GET /bots/bots_with_metadata
"""
params = {}
if limit is not None:
params["limit"] = limit
if offset is not None:
params["offset"] = offset
if sort_by is not None:
params["sort_by"] = sort_by
if sort_order is not None:
params["sort_order"] = sort_order
if filter_by is not None:
params.update(filter_by)
response = await self.requests.get(
f"{self.BASE_URL}/bots/bots_with_metadata",
headers=self.headers,
params=params,
)
return response.json()

View File

@@ -1,13 +0,0 @@
"""
Shared configuration for all Meeting BaaS blocks using the SDK pattern.
"""
from backend.sdk import BlockCostType, ProviderBuilder
# Configure the Meeting BaaS provider with API key authentication
baas = (
ProviderBuilder("baas")
.with_api_key("MEETING_BAAS_API_KEY", "Meeting BaaS API Key")
.with_base_cost(5, BlockCostType.RUN) # Higher cost for meeting recording service
.build()
)

View File

@@ -1,217 +0,0 @@
"""
Meeting BaaS bot (recording) blocks.
"""
from typing import Optional
from backend.sdk import (
APIKeyCredentials,
Block,
BlockCategory,
BlockOutput,
BlockSchema,
CredentialsMetaInput,
SchemaField,
)
from ._api import MeetingBaasAPI
from ._config import baas
class BaasBotJoinMeetingBlock(Block):
"""
Deploy a bot immediately or at a scheduled start_time to join and record a meeting.
"""
class Input(BlockSchema):
credentials: CredentialsMetaInput = baas.credentials_field(
description="Meeting BaaS API credentials"
)
meeting_url: str = SchemaField(
description="The URL of the meeting the bot should join"
)
bot_name: str = SchemaField(
description="Display name for the bot in the meeting"
)
bot_image: str = SchemaField(
description="URL to an image for the bot's avatar (16:9 ratio recommended)",
default="",
)
entry_message: str = SchemaField(
description="Chat message the bot will post upon entry", default=""
)
reserved: bool = SchemaField(
description="Use a reserved bot slot (joins 4 min before meeting)",
default=False,
)
start_time: Optional[int] = SchemaField(
description="Unix timestamp (ms) when bot should join", default=None
)
webhook_url: str | None = SchemaField(
description="URL to receive webhook events for this bot", default=None
)
timeouts: dict = SchemaField(
description="Automatic leave timeouts configuration", default={}
)
extra: dict = SchemaField(
description="Custom metadata to attach to the bot", default={}
)
class Output(BlockSchema):
bot_id: str = SchemaField(description="UUID of the deployed bot")
join_response: dict = SchemaField(
description="Full response from join operation"
)
def __init__(self):
super().__init__(
id="377d1a6a-a99b-46cf-9af3-1d1b12758e04",
description="Deploy a bot to join and record a meeting",
categories={BlockCategory.COMMUNICATION},
input_schema=self.Input,
output_schema=self.Output,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
api_key = credentials.api_key.get_secret_value()
api = MeetingBaasAPI(api_key)
# Call API with all parameters
data = await api.join_meeting(
bot_name=input_data.bot_name,
meeting_url=input_data.meeting_url,
reserved=input_data.reserved,
bot_image=input_data.bot_image if input_data.bot_image else None,
entry_message=(
input_data.entry_message if input_data.entry_message else None
),
start_time=input_data.start_time,
speech_to_text={"provider": "Default"},
webhook_url=input_data.webhook_url if input_data.webhook_url else None,
automatic_leave=input_data.timeouts if input_data.timeouts else None,
extra=input_data.extra if input_data.extra else None,
)
yield "bot_id", data.get("bot_id", "")
yield "join_response", data
class BaasBotLeaveMeetingBlock(Block):
"""
Force the bot to exit the call.
"""
class Input(BlockSchema):
credentials: CredentialsMetaInput = baas.credentials_field(
description="Meeting BaaS API credentials"
)
bot_id: str = SchemaField(description="UUID of the bot to remove from meeting")
class Output(BlockSchema):
left: bool = SchemaField(description="Whether the bot successfully left")
def __init__(self):
super().__init__(
id="bf77d128-8b25-4280-b5c7-2d553ba7e482",
description="Remove a bot from an ongoing meeting",
categories={BlockCategory.COMMUNICATION},
input_schema=self.Input,
output_schema=self.Output,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
api_key = credentials.api_key.get_secret_value()
api = MeetingBaasAPI(api_key)
# Leave meeting
left = await api.leave_meeting(input_data.bot_id)
yield "left", left
class BaasBotFetchMeetingDataBlock(Block):
"""
Pull MP4 URL, transcript & metadata for a completed meeting.
"""
class Input(BlockSchema):
credentials: CredentialsMetaInput = baas.credentials_field(
description="Meeting BaaS API credentials"
)
bot_id: str = SchemaField(description="UUID of the bot whose data to fetch")
include_transcripts: bool = SchemaField(
description="Include transcript data in response", default=True
)
class Output(BlockSchema):
mp4_url: str = SchemaField(
description="URL to download the meeting recording (time-limited)"
)
transcript: list = SchemaField(description="Meeting transcript data")
metadata: dict = SchemaField(description="Meeting metadata and bot information")
def __init__(self):
super().__init__(
id="ea7c1309-303c-4da1-893f-89c0e9d64e78",
description="Retrieve recorded meeting data",
categories={BlockCategory.DATA},
input_schema=self.Input,
output_schema=self.Output,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
api_key = credentials.api_key.get_secret_value()
api = MeetingBaasAPI(api_key)
# Fetch meeting data
data = await api.get_meeting_data(
bot_id=input_data.bot_id,
include_transcripts=input_data.include_transcripts,
)
yield "mp4_url", data.get("mp4", "")
yield "transcript", data.get("bot_data", {}).get("transcripts", [])
yield "metadata", data.get("bot_data", {}).get("bot", {})
class BaasBotDeleteRecordingBlock(Block):
"""
Purge MP4 + transcript data for privacy or storage management.
"""
class Input(BlockSchema):
credentials: CredentialsMetaInput = baas.credentials_field(
description="Meeting BaaS API credentials"
)
bot_id: str = SchemaField(description="UUID of the bot whose data to delete")
class Output(BlockSchema):
deleted: bool = SchemaField(
description="Whether the data was successfully deleted"
)
def __init__(self):
super().__init__(
id="bf8d1aa6-42d8-4944-b6bd-6bac554c0d3b",
description="Permanently delete a meeting's recorded data",
categories={BlockCategory.DATA},
input_schema=self.Input,
output_schema=self.Output,
)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
api_key = credentials.api_key.get_secret_value()
api = MeetingBaasAPI(api_key)
# Delete recording data
deleted = await api.delete_data(input_data.bot_id)
yield "deleted", deleted

View File

@@ -1,3 +0,0 @@
from .text_overlay import BannerbearTextOverlayBlock
__all__ = ["BannerbearTextOverlayBlock"]

View File

@@ -1,8 +0,0 @@
from backend.sdk import BlockCostType, ProviderBuilder
bannerbear = (
ProviderBuilder("bannerbear")
.with_api_key("BANNERBEAR_API_KEY", "Bannerbear API Key")
.with_base_cost(1, BlockCostType.RUN)
.build()
)

View File

@@ -1,239 +0,0 @@
import uuid
from typing import TYPE_CHECKING, Any, Dict, List
if TYPE_CHECKING:
pass
from pydantic import SecretStr
from backend.sdk import (
APIKeyCredentials,
Block,
BlockCategory,
BlockOutput,
BlockSchema,
CredentialsMetaInput,
Requests,
SchemaField,
)
from ._config import bannerbear
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="bannerbear",
api_key=SecretStr("mock-bannerbear-api-key"),
title="Mock Bannerbear API Key",
)
class TextModification(BlockSchema):
name: str = SchemaField(
description="The name of the layer to modify in the template"
)
text: str = SchemaField(description="The text content to add to this layer")
color: str = SchemaField(
description="Hex color code for the text (e.g., '#FF0000')",
default="",
advanced=True,
)
font_family: str = SchemaField(
description="Font family to use for the text",
default="",
advanced=True,
)
font_size: int = SchemaField(
description="Font size in pixels",
default=0,
advanced=True,
)
font_weight: str = SchemaField(
description="Font weight (e.g., 'bold', 'normal')",
default="",
advanced=True,
)
text_align: str = SchemaField(
description="Text alignment (left, center, right)",
default="",
advanced=True,
)
class BannerbearTextOverlayBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = bannerbear.credentials_field(
description="API credentials for Bannerbear"
)
template_id: str = SchemaField(
description="The unique ID of your Bannerbear template"
)
project_id: str = SchemaField(
description="Optional: Project ID (required when using Master API Key)",
default="",
advanced=True,
)
text_modifications: List[TextModification] = SchemaField(
description="List of text layers to modify in the template"
)
image_url: str = SchemaField(
description="Optional: URL of an image to use in the template",
default="",
advanced=True,
)
image_layer_name: str = SchemaField(
description="Optional: Name of the image layer in the template",
default="photo",
advanced=True,
)
webhook_url: str = SchemaField(
description="Optional: URL to receive webhook notification when image is ready",
default="",
advanced=True,
)
metadata: str = SchemaField(
description="Optional: Custom metadata to attach to the image",
default="",
advanced=True,
)
class Output(BlockSchema):
success: bool = SchemaField(
description="Whether the image generation was successfully initiated"
)
image_url: str = SchemaField(
description="URL of the generated image (if synchronous) or placeholder"
)
uid: str = SchemaField(description="Unique identifier for the generated image")
status: str = SchemaField(description="Status of the image generation")
error: str = SchemaField(description="Error message if the operation failed")
def __init__(self):
super().__init__(
id="c7d3a5c2-05fc-450e-8dce-3b0e04626009",
description="Add text overlay to images using Bannerbear templates. Perfect for creating social media graphics, marketing materials, and dynamic image content.",
categories={BlockCategory.PRODUCTIVITY, BlockCategory.AI},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"template_id": "jJWBKNELpQPvbX5R93Gk",
"text_modifications": [
{
"name": "headline",
"text": "Amazing Product Launch!",
"color": "#FF0000",
},
{
"name": "subtitle",
"text": "50% OFF Today Only",
},
],
"credentials": {
"provider": "bannerbear",
"id": str(uuid.uuid4()),
"type": "api_key",
},
},
test_output=[
("success", True),
("image_url", "https://cdn.bannerbear.com/test-image.jpg"),
("uid", "test-uid-123"),
("status", "completed"),
],
test_mock={
"_make_api_request": lambda *args, **kwargs: {
"uid": "test-uid-123",
"status": "completed",
"image_url": "https://cdn.bannerbear.com/test-image.jpg",
}
},
test_credentials=TEST_CREDENTIALS,
)
async def _make_api_request(self, payload: dict, api_key: str) -> dict:
"""Make the actual API request to Bannerbear. This is separated for easy mocking in tests."""
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
response = await Requests().post(
"https://sync.api.bannerbear.com/v2/images",
headers=headers,
json=payload,
)
if response.status in [200, 201, 202]:
return response.json()
else:
error_msg = f"API request failed with status {response.status}"
if response.text:
try:
error_data = response.json()
error_msg = (
f"{error_msg}: {error_data.get('message', response.text)}"
)
except Exception:
error_msg = f"{error_msg}: {response.text}"
raise Exception(error_msg)
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
# Build the modifications array
modifications = []
# Add text modifications
for text_mod in input_data.text_modifications:
mod_data: Dict[str, Any] = {
"name": text_mod.name,
"text": text_mod.text,
}
# Add optional text styling parameters only if they have values
if text_mod.color and text_mod.color.strip():
mod_data["color"] = text_mod.color
if text_mod.font_family and text_mod.font_family.strip():
mod_data["font_family"] = text_mod.font_family
if text_mod.font_size and text_mod.font_size > 0:
mod_data["font_size"] = text_mod.font_size
if text_mod.font_weight and text_mod.font_weight.strip():
mod_data["font_weight"] = text_mod.font_weight
if text_mod.text_align and text_mod.text_align.strip():
mod_data["text_align"] = text_mod.text_align
modifications.append(mod_data)
# Add image modification if provided and not empty
if input_data.image_url and input_data.image_url.strip():
modifications.append(
{
"name": input_data.image_layer_name,
"image_url": input_data.image_url,
}
)
# Build the request payload - only include non-empty optional fields
payload = {
"template": input_data.template_id,
"modifications": modifications,
}
# Add project_id if provided (required for Master API keys)
if input_data.project_id and input_data.project_id.strip():
payload["project_id"] = input_data.project_id
if input_data.webhook_url and input_data.webhook_url.strip():
payload["webhook_url"] = input_data.webhook_url
if input_data.metadata and input_data.metadata.strip():
payload["metadata"] = input_data.metadata
# Make the API request using the private method
data = await self._make_api_request(
payload, credentials.api_key.get_secret_value()
)
# Synchronous request - image should be ready
yield "success", True
yield "image_url", data.get("image_url", "")
yield "uid", data.get("uid", "")
yield "status", data.get("status", "completed")

View File

@@ -1,10 +1,8 @@
from enum import Enum
from typing import Any, Literal, Optional
from typing import Literal
from e2b_code_interpreter import AsyncSandbox
from e2b_code_interpreter import Result as E2BExecutionResult
from e2b_code_interpreter.charts import Chart as E2BExecutionResultChart
from pydantic import BaseModel, JsonValue, SecretStr
from pydantic import SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
@@ -38,135 +36,14 @@ class ProgrammingLanguage(Enum):
JAVA = "java"
class MainCodeExecutionResult(BaseModel):
"""
*Pydantic model mirroring `e2b_code_interpreter.Result`*
Represents the data to be displayed as a result of executing a cell in a Jupyter notebook.
The result is similar to the structure returned by ipython kernel: https://ipython.readthedocs.io/en/stable/development/execution.html#execution-semantics
The result can contain multiple types of data, such as text, images, plots, etc. Each type of data is represented
as a string, and the result can contain multiple types of data. The display calls don't have to have text representation,
for the actual result the representation is always present for the result, the other representations are always optional.
""" # noqa
class Chart(BaseModel, E2BExecutionResultChart):
pass
text: Optional[str] = None
html: Optional[str] = None
markdown: Optional[str] = None
svg: Optional[str] = None
png: Optional[str] = None
jpeg: Optional[str] = None
pdf: Optional[str] = None
latex: Optional[str] = None
json: Optional[JsonValue] = None # type: ignore (reportIncompatibleMethodOverride)
javascript: Optional[str] = None
data: Optional[dict] = None
chart: Optional[Chart] = None
extra: Optional[dict] = None
"""Extra data that can be included. Not part of the standard types."""
class CodeExecutionResult(MainCodeExecutionResult):
__doc__ = MainCodeExecutionResult.__doc__
is_main_result: bool = False
"""Whether this data is the main result of the cell. Data can be produced by display calls of which can be multiple in a cell.""" # noqa
class BaseE2BExecutorMixin:
"""Shared implementation methods for E2B executor blocks."""
async def execute_code(
self,
api_key: str,
code: str,
language: ProgrammingLanguage,
template_id: str = "",
setup_commands: Optional[list[str]] = None,
timeout: Optional[int] = None,
sandbox_id: Optional[str] = None,
dispose_sandbox: bool = False,
):
"""
Unified code execution method that handles all three use cases:
1. Create new sandbox and execute (ExecuteCodeBlock)
2. Create new sandbox, execute, and return sandbox_id (InstantiateCodeSandboxBlock)
3. Connect to existing sandbox and execute (ExecuteCodeStepBlock)
""" # noqa
sandbox = None
try:
if sandbox_id:
# Connect to existing sandbox (ExecuteCodeStepBlock case)
sandbox = await AsyncSandbox.connect(
sandbox_id=sandbox_id, api_key=api_key
)
else:
# Create new sandbox (ExecuteCodeBlock/InstantiateCodeSandboxBlock case)
sandbox = await AsyncSandbox.create(
api_key=api_key, template=template_id, timeout=timeout
)
if setup_commands:
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Execute the code
execution = await sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox on error
)
if execution.error:
raise Exception(execution.error)
results = execution.results
text_output = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return results, text_output, stdout_logs, stderr_logs, sandbox.sandbox_id
finally:
# Dispose of sandbox if requested to reduce usage costs
if dispose_sandbox and sandbox:
await sandbox.kill()
def process_execution_results(
self, results: list[E2BExecutionResult]
) -> tuple[dict[str, Any] | None, list[dict[str, Any]]]:
"""Process and filter execution results."""
# Filter out empty formats and convert to dicts
processed_results = [
{
f: value
for f in [*r.formats(), "extra", "is_main_result"]
if (value := getattr(r, f, None)) is not None
}
for r in results
]
if main_result := next(
(r for r in processed_results if r.get("is_main_result")), None
):
# Make main_result a copy we can modify & remove is_main_result
(main_result := {**main_result}).pop("is_main_result")
return main_result, processed_results
class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
class CodeExecutionBlock(Block):
# TODO : Add support to upload and download files
# NOTE: Currently, you can only customize the CPU and Memory
# by creating a pre customized sandbox template
# Currently, You can customized the CPU and Memory, only by creating a pre customized sandbox template
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description=(
"Enter your API key for the E2B platform. "
"You can get it in here - https://e2b.dev/docs"
),
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
)
# Todo : Option to run commond in background
@@ -199,14 +76,6 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
description="Execution timeout in seconds", default=300
)
dispose_sandbox: bool = SchemaField(
description=(
"Whether to dispose of the sandbox immediately after execution. "
"If disabled, the sandbox will run until its timeout expires."
),
default=True,
)
template_id: str = SchemaField(
description=(
"You can use an E2B sandbox template by entering its ID here. "
@@ -218,16 +87,7 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
)
class Output(BlockSchema):
main_result: MainCodeExecutionResult = SchemaField(
title="Main Result", description="The main result from the code execution"
)
results: list[CodeExecutionResult] = SchemaField(
description="List of results from the code execution"
)
response: str = SchemaField(
title="Main Text Output",
description="Text output (if any) of the main execution result",
)
response: str = SchemaField(description="Response from code execution")
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
@@ -237,10 +97,10 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
def __init__(self):
super().__init__(
id="0b02b072-abe7-11ef-8372-fb5d162dd712",
description="Executes code in a sandbox environment with internet access.",
description="Executes code in an isolated sandbox environment with internet access.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=ExecuteCodeBlock.Input,
output_schema=ExecuteCodeBlock.Output,
input_schema=CodeExecutionBlock.Input,
output_schema=CodeExecutionBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
@@ -251,59 +111,91 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
"template_id": "",
},
test_output=[
("results", []),
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_code": lambda api_key, code, language, template_id, setup_commands, timeout, dispose_sandbox: ( # noqa
[], # results
"Hello World", # text_output
"Hello World\n", # stdout_logs
"", # stderr_logs
"sandbox_id", # sandbox_id
"execute_code": lambda code, language, setup_commands, timeout, api_key, template_id: (
"Hello World",
"Hello World\n",
"",
),
},
)
async def execute_code(
self,
code: str,
language: ProgrammingLanguage,
setup_commands: list[str],
timeout: int,
api_key: str,
template_id: str,
):
try:
sandbox = None
if template_id:
sandbox = await AsyncSandbox.create(
template=template_id, api_key=api_key, timeout=timeout
)
else:
sandbox = await AsyncSandbox.create(api_key=api_key, timeout=timeout)
if not sandbox:
raise Exception("Sandbox not created")
# Running setup commands
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Executing the code
execution = await sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return response, stdout_logs, stderr_logs
except Exception as e:
raise e
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
results, text_output, stdout, stderr, _ = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.code,
language=input_data.language,
template_id=input_data.template_id,
setup_commands=input_data.setup_commands,
timeout=input_data.timeout,
dispose_sandbox=input_data.dispose_sandbox,
response, stdout_logs, stderr_logs = await self.execute_code(
input_data.code,
input_data.language,
input_data.setup_commands,
input_data.timeout,
credentials.api_key.get_secret_value(),
input_data.template_id,
)
# Determine result object shape & filter out empty formats
main_result, results = self.process_execution_results(results)
if main_result:
yield "main_result", main_result
yield "results", results
if text_output:
yield "response", text_output
if stdout:
yield "stdout_logs", stdout
if stderr:
yield "stderr_logs", stderr
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
except Exception as e:
yield "error", str(e)
class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
class InstantiationBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description=(
"Enter your API key for the E2B platform. "
"You can get it in here - https://e2b.dev/docs"
)
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
)
# Todo : Option to run commond in background
@@ -348,10 +240,7 @@ class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
class Output(BlockSchema):
sandbox_id: str = SchemaField(description="ID of the sandbox instance")
response: str = SchemaField(
title="Text Result",
description="Text result (if any) of the setup code execution",
)
response: str = SchemaField(description="Response from code execution")
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
@@ -361,13 +250,10 @@ class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
def __init__(self):
super().__init__(
id="ff0861c9-1726-4aec-9e5b-bf53f3622112",
description=(
"Instantiate a sandbox environment with internet access "
"in which you can execute code with the Execute Code Step block."
),
description="Instantiate an isolated sandbox environment with internet access where to execute code in.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=InstantiateCodeSandboxBlock.Input,
output_schema=InstantiateCodeSandboxBlock.Output,
input_schema=InstantiationBlock.Input,
output_schema=InstantiationBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
@@ -383,12 +269,11 @@ class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_code": lambda api_key, code, language, template_id, setup_commands, timeout: ( # noqa
[], # results
"Hello World", # text_output
"Hello World\n", # stdout_logs
"", # stderr_logs
"sandbox_id", # sandbox_id
"execute_code": lambda setup_code, language, setup_commands, timeout, api_key, template_id: (
"sandbox_id",
"Hello World",
"Hello World\n",
"",
),
},
)
@@ -397,38 +282,78 @@ class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
_, text_output, stdout, stderr, sandbox_id = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.setup_code,
language=input_data.language,
template_id=input_data.template_id,
setup_commands=input_data.setup_commands,
timeout=input_data.timeout,
sandbox_id, response, stdout_logs, stderr_logs = await self.execute_code(
input_data.setup_code,
input_data.language,
input_data.setup_commands,
input_data.timeout,
credentials.api_key.get_secret_value(),
input_data.template_id,
)
if sandbox_id:
yield "sandbox_id", sandbox_id
else:
yield "error", "Sandbox ID not found"
if text_output:
yield "response", text_output
if stdout:
yield "stdout_logs", stdout
if stderr:
yield "stderr_logs", stderr
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
except Exception as e:
yield "error", str(e)
async def execute_code(
self,
code: str,
language: ProgrammingLanguage,
setup_commands: list[str],
timeout: int,
api_key: str,
template_id: str,
):
try:
sandbox = None
if template_id:
sandbox = await AsyncSandbox.create(
template=template_id, api_key=api_key, timeout=timeout
)
else:
sandbox = await AsyncSandbox.create(api_key=api_key, timeout=timeout)
class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
if not sandbox:
raise Exception("Sandbox not created")
# Running setup commands
for cmd in setup_commands:
await sandbox.commands.run(cmd)
# Executing the code
execution = await sandbox.run_code(
code,
language=language.value,
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return sandbox.sandbox_id, response, stdout_logs, stderr_logs
except Exception as e:
raise e
class StepExecutionBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput[
Literal[ProviderName.E2B], Literal["api_key"]
] = CredentialsField(
description=(
"Enter your API key for the E2B platform. "
"You can get it in here - https://e2b.dev/docs"
),
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
)
sandbox_id: str = SchemaField(
@@ -449,22 +374,8 @@ class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
advanced=False,
)
dispose_sandbox: bool = SchemaField(
description="Whether to dispose of the sandbox after executing this code.",
default=False,
)
class Output(BlockSchema):
main_result: MainCodeExecutionResult = SchemaField(
title="Main Result", description="The main result from the code execution"
)
results: list[CodeExecutionResult] = SchemaField(
description="List of results from the code execution"
)
response: str = SchemaField(
title="Main Text Output",
description="Text output (if any) of the main execution result",
)
response: str = SchemaField(description="Response from code execution")
stdout_logs: str = SchemaField(
description="Standard output logs from execution"
)
@@ -474,10 +385,10 @@ class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
def __init__(self):
super().__init__(
id="82b59b8e-ea10-4d57-9161-8b169b0adba6",
description="Execute code in a previously instantiated sandbox.",
description="Execute code in a previously instantiated sandbox environment.",
categories={BlockCategory.DEVELOPER_TOOLS},
input_schema=ExecuteCodeStepBlock.Input,
output_schema=ExecuteCodeStepBlock.Output,
input_schema=StepExecutionBlock.Input,
output_schema=StepExecutionBlock.Output,
test_credentials=TEST_CREDENTIALS,
test_input={
"credentials": TEST_CREDENTIALS_INPUT,
@@ -486,43 +397,61 @@ class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
"language": ProgrammingLanguage.PYTHON.value,
},
test_output=[
("results", []),
("response", "Hello World"),
("stdout_logs", "Hello World\n"),
],
test_mock={
"execute_code": lambda api_key, code, language, sandbox_id, dispose_sandbox: ( # noqa
[], # results
"Hello World", # text_output
"Hello World\n", # stdout_logs
"", # stderr_logs
sandbox_id, # sandbox_id
"execute_step_code": lambda sandbox_id, step_code, language, api_key: (
"Hello World",
"Hello World\n",
"",
),
},
)
async def execute_step_code(
self,
sandbox_id: str,
code: str,
language: ProgrammingLanguage,
api_key: str,
):
try:
sandbox = await AsyncSandbox.connect(sandbox_id=sandbox_id, api_key=api_key)
if not sandbox:
raise Exception("Sandbox not found")
# Executing the code
execution = await sandbox.run_code(code, language=language.value)
if execution.error:
raise Exception(execution.error)
response = execution.text
stdout_logs = "".join(execution.logs.stdout)
stderr_logs = "".join(execution.logs.stderr)
return response, stdout_logs, stderr_logs
except Exception as e:
raise e
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
results, text_output, stdout, stderr, _ = await self.execute_code(
api_key=credentials.api_key.get_secret_value(),
code=input_data.step_code,
language=input_data.language,
sandbox_id=input_data.sandbox_id,
dispose_sandbox=input_data.dispose_sandbox,
response, stdout_logs, stderr_logs = await self.execute_step_code(
input_data.sandbox_id,
input_data.step_code,
input_data.language,
credentials.api_key.get_secret_value(),
)
# Determine result object shape & filter out empty formats
main_result, results = self.process_execution_results(results)
if main_result:
yield "main_result", main_result
yield "results", results
if text_output:
yield "response", text_output
if stdout:
yield "stdout_logs", stdout
if stderr:
yield "stderr_logs", stderr
if response:
yield "response", response
if stdout_logs:
yield "stdout_logs", stdout_logs
if stderr_logs:
yield "stderr_logs", stderr_logs
except Exception as e:
yield "error", str(e)

View File

@@ -90,7 +90,7 @@ class CodeExtractionBlock(Block):
for aliases in language_aliases.values()
for alias in aliases
)
+ r")[ \t]*\n[\s\S]*?```"
+ r")\s+[\s\S]*?```"
)
remaining_text = re.sub(pattern, "", input_data.text).strip()
@@ -103,9 +103,7 @@ class CodeExtractionBlock(Block):
# Escape special regex characters in the language string
language = re.escape(language)
# Extract all code blocks enclosed in ```language``` blocks
pattern = re.compile(
rf"```{language}[ \t]*\n(.*?)\n```", re.DOTALL | re.IGNORECASE
)
pattern = re.compile(rf"```{language}\s+(.*?)```", re.DOTALL | re.IGNORECASE)
matches = pattern.finditer(text)
# Combine all code blocks for this language with newlines between them
code_blocks = [match.group(1).strip() for match in matches]

View File

@@ -66,7 +66,6 @@ class AddToDictionaryBlock(Block):
dictionary: dict[Any, Any] = SchemaField(
default_factory=dict,
description="The dictionary to add the entry to. If not provided, a new dictionary will be created.",
advanced=False,
)
key: str = SchemaField(
default="",

View File

@@ -1,182 +0,0 @@
"""
DataForSEO API client with async support using the SDK patterns.
"""
import base64
from typing import Any, Dict, List, Optional
from backend.sdk import Requests, UserPasswordCredentials
class DataForSeoClient:
"""Client for the DataForSEO API using async requests."""
API_URL = "https://api.dataforseo.com"
def __init__(self, credentials: UserPasswordCredentials):
self.credentials = credentials
self.requests = Requests(
trusted_origins=["https://api.dataforseo.com"],
raise_for_status=False,
)
def _get_headers(self) -> Dict[str, str]:
"""Generate the authorization header using Basic Auth."""
username = self.credentials.username.get_secret_value()
password = self.credentials.password.get_secret_value()
credentials_str = f"{username}:{password}"
encoded = base64.b64encode(credentials_str.encode("ascii")).decode("ascii")
return {
"Authorization": f"Basic {encoded}",
"Content-Type": "application/json",
}
async def keyword_suggestions(
self,
keyword: str,
location_code: Optional[int] = None,
language_code: Optional[str] = None,
include_seed_keyword: bool = True,
include_serp_info: bool = False,
include_clickstream_data: bool = False,
limit: int = 100,
) -> List[Dict[str, Any]]:
"""
Get keyword suggestions from DataForSEO Labs.
Args:
keyword: Seed keyword
location_code: Location code for targeting
language_code: Language code (e.g., "en")
include_seed_keyword: Include seed keyword in results
include_serp_info: Include SERP data
include_clickstream_data: Include clickstream metrics
limit: Maximum number of results (up to 3000)
Returns:
API response with keyword suggestions
"""
endpoint = f"{self.API_URL}/v3/dataforseo_labs/google/keyword_suggestions/live"
# Build payload only with non-None values to avoid sending null fields
task_data: dict[str, Any] = {
"keyword": keyword,
}
if location_code is not None:
task_data["location_code"] = location_code
if language_code is not None:
task_data["language_code"] = language_code
if include_seed_keyword is not None:
task_data["include_seed_keyword"] = include_seed_keyword
if include_serp_info is not None:
task_data["include_serp_info"] = include_serp_info
if include_clickstream_data is not None:
task_data["include_clickstream_data"] = include_clickstream_data
if limit is not None:
task_data["limit"] = limit
payload = [task_data]
response = await self.requests.post(
endpoint,
headers=self._get_headers(),
json=payload,
)
data = response.json()
# Check for API errors
if response.status != 200:
error_message = data.get("status_message", "Unknown error")
raise Exception(
f"DataForSEO API error ({response.status}): {error_message}"
)
# Extract the results from the response
if data.get("tasks") and len(data["tasks"]) > 0:
task = data["tasks"][0]
if task.get("status_code") == 20000: # Success code
return task.get("result", [])
else:
error_msg = task.get("status_message", "Task failed")
raise Exception(f"DataForSEO task error: {error_msg}")
return []
async def related_keywords(
self,
keyword: str,
location_code: Optional[int] = None,
language_code: Optional[str] = None,
include_seed_keyword: bool = True,
include_serp_info: bool = False,
include_clickstream_data: bool = False,
limit: int = 100,
depth: Optional[int] = None,
) -> List[Dict[str, Any]]:
"""
Get related keywords from DataForSEO Labs.
Args:
keyword: Seed keyword
location_code: Location code for targeting
language_code: Language code (e.g., "en")
include_seed_keyword: Include seed keyword in results
include_serp_info: Include SERP data
include_clickstream_data: Include clickstream metrics
limit: Maximum number of results (up to 3000)
depth: Keyword search depth (0-4), controls number of returned keywords
Returns:
API response with related keywords
"""
endpoint = f"{self.API_URL}/v3/dataforseo_labs/google/related_keywords/live"
# Build payload only with non-None values to avoid sending null fields
task_data: dict[str, Any] = {
"keyword": keyword,
}
if location_code is not None:
task_data["location_code"] = location_code
if language_code is not None:
task_data["language_code"] = language_code
if include_seed_keyword is not None:
task_data["include_seed_keyword"] = include_seed_keyword
if include_serp_info is not None:
task_data["include_serp_info"] = include_serp_info
if include_clickstream_data is not None:
task_data["include_clickstream_data"] = include_clickstream_data
if limit is not None:
task_data["limit"] = limit
if depth is not None:
task_data["depth"] = depth
payload = [task_data]
response = await self.requests.post(
endpoint,
headers=self._get_headers(),
json=payload,
)
data = response.json()
# Check for API errors
if response.status != 200:
error_message = data.get("status_message", "Unknown error")
raise Exception(
f"DataForSEO API error ({response.status}): {error_message}"
)
# Extract the results from the response
if data.get("tasks") and len(data["tasks"]) > 0:
task = data["tasks"][0]
if task.get("status_code") == 20000: # Success code
return task.get("result", [])
else:
error_msg = task.get("status_message", "Task failed")
raise Exception(f"DataForSEO task error: {error_msg}")
return []

View File

@@ -1,17 +0,0 @@
"""
Configuration for all DataForSEO blocks using the new SDK pattern.
"""
from backend.sdk import BlockCostType, ProviderBuilder
# Build the DataForSEO provider with username/password authentication
dataforseo = (
ProviderBuilder("dataforseo")
.with_user_password(
username_env_var="DATAFORSEO_USERNAME",
password_env_var="DATAFORSEO_PASSWORD",
title="DataForSEO Credentials",
)
.with_base_cost(1, BlockCostType.RUN)
.build()
)

View File

@@ -1,283 +0,0 @@
"""
DataForSEO Google Keyword Suggestions block.
"""
from typing import Any, Dict, List, Optional
from backend.sdk import (
Block,
BlockCategory,
BlockOutput,
BlockSchema,
CredentialsMetaInput,
SchemaField,
UserPasswordCredentials,
)
from ._api import DataForSeoClient
from ._config import dataforseo
class KeywordSuggestion(BlockSchema):
"""Schema for a keyword suggestion result."""
keyword: str = SchemaField(description="The keyword suggestion")
search_volume: Optional[int] = SchemaField(
description="Monthly search volume", default=None
)
competition: Optional[float] = SchemaField(
description="Competition level (0-1)", default=None
)
cpc: Optional[float] = SchemaField(
description="Cost per click in USD", default=None
)
keyword_difficulty: Optional[int] = SchemaField(
description="Keyword difficulty score", default=None
)
serp_info: Optional[Dict[str, Any]] = SchemaField(
description="data from SERP for each keyword", default=None
)
clickstream_data: Optional[Dict[str, Any]] = SchemaField(
description="Clickstream data metrics", default=None
)
class DataForSeoKeywordSuggestionsBlock(Block):
"""Block for getting keyword suggestions from DataForSEO Labs."""
class Input(BlockSchema):
credentials: CredentialsMetaInput = dataforseo.credentials_field(
description="DataForSEO credentials (username and password)"
)
keyword: str = SchemaField(description="Seed keyword to get suggestions for")
location_code: Optional[int] = SchemaField(
description="Location code for targeting (e.g., 2840 for USA)",
default=2840, # USA
)
language_code: Optional[str] = SchemaField(
description="Language code (e.g., 'en' for English)",
default="en",
)
include_seed_keyword: bool = SchemaField(
description="Include the seed keyword in results",
default=True,
)
include_serp_info: bool = SchemaField(
description="Include SERP information",
default=False,
)
include_clickstream_data: bool = SchemaField(
description="Include clickstream metrics",
default=False,
)
limit: int = SchemaField(
description="Maximum number of results (up to 3000)",
default=100,
ge=1,
le=3000,
)
class Output(BlockSchema):
suggestions: List[KeywordSuggestion] = SchemaField(
description="List of keyword suggestions with metrics"
)
suggestion: KeywordSuggestion = SchemaField(
description="A single keyword suggestion with metrics"
)
total_count: int = SchemaField(
description="Total number of suggestions returned"
)
seed_keyword: str = SchemaField(
description="The seed keyword used for the query"
)
error: str = SchemaField(description="Error message if the API call failed")
def __init__(self):
super().__init__(
id="73c3e7c4-2b3f-4e9f-9e3e-8f7a5c3e2d45",
description="Get keyword suggestions from DataForSEO Labs Google API",
categories={BlockCategory.SEARCH, BlockCategory.DATA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"credentials": dataforseo.get_test_credentials().model_dump(),
"keyword": "digital marketing",
"location_code": 2840,
"language_code": "en",
"limit": 1,
},
test_credentials=dataforseo.get_test_credentials(),
test_output=[
(
"suggestion",
lambda x: hasattr(x, "keyword")
and x.keyword == "digital marketing strategy",
),
("suggestions", lambda x: isinstance(x, list) and len(x) == 1),
("total_count", 1),
("seed_keyword", "digital marketing"),
],
test_mock={
"_fetch_keyword_suggestions": lambda *args, **kwargs: [
{
"items": [
{
"keyword": "digital marketing strategy",
"keyword_info": {
"search_volume": 10000,
"competition": 0.5,
"cpc": 2.5,
},
"keyword_properties": {
"keyword_difficulty": 50,
},
}
]
}
]
},
)
async def _fetch_keyword_suggestions(
self,
client: DataForSeoClient,
input_data: Input,
) -> Any:
"""Private method to fetch keyword suggestions - can be mocked for testing."""
return await client.keyword_suggestions(
keyword=input_data.keyword,
location_code=input_data.location_code,
language_code=input_data.language_code,
include_seed_keyword=input_data.include_seed_keyword,
include_serp_info=input_data.include_serp_info,
include_clickstream_data=input_data.include_clickstream_data,
limit=input_data.limit,
)
async def run(
self,
input_data: Input,
*,
credentials: UserPasswordCredentials,
**kwargs,
) -> BlockOutput:
"""Execute the keyword suggestions query."""
try:
client = DataForSeoClient(credentials)
results = await self._fetch_keyword_suggestions(client, input_data)
# Process and format the results
suggestions = []
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
items = (
first_result.get("items", [])
if isinstance(first_result, dict)
else []
)
if items is None:
items = []
for item in items:
# Create the KeywordSuggestion object
suggestion = KeywordSuggestion(
keyword=item.get("keyword", ""),
search_volume=item.get("keyword_info", {}).get("search_volume"),
competition=item.get("keyword_info", {}).get("competition"),
cpc=item.get("keyword_info", {}).get("cpc"),
keyword_difficulty=item.get("keyword_properties", {}).get(
"keyword_difficulty"
),
serp_info=(
item.get("serp_info")
if input_data.include_serp_info
else None
),
clickstream_data=(
item.get("clickstream_keyword_info")
if input_data.include_clickstream_data
else None
),
)
yield "suggestion", suggestion
suggestions.append(suggestion)
yield "suggestions", suggestions
yield "total_count", len(suggestions)
yield "seed_keyword", input_data.keyword
except Exception as e:
yield "error", f"Failed to fetch keyword suggestions: {str(e)}"
class KeywordSuggestionExtractorBlock(Block):
"""Extracts individual fields from a KeywordSuggestion object."""
class Input(BlockSchema):
suggestion: KeywordSuggestion = SchemaField(
description="The keyword suggestion object to extract fields from"
)
class Output(BlockSchema):
keyword: str = SchemaField(description="The keyword suggestion")
search_volume: Optional[int] = SchemaField(
description="Monthly search volume", default=None
)
competition: Optional[float] = SchemaField(
description="Competition level (0-1)", default=None
)
cpc: Optional[float] = SchemaField(
description="Cost per click in USD", default=None
)
keyword_difficulty: Optional[int] = SchemaField(
description="Keyword difficulty score", default=None
)
serp_info: Optional[Dict[str, Any]] = SchemaField(
description="data from SERP for each keyword", default=None
)
clickstream_data: Optional[Dict[str, Any]] = SchemaField(
description="Clickstream data metrics", default=None
)
def __init__(self):
super().__init__(
id="4193cb94-677c-48b0-9eec-6ac72fffd0f2",
description="Extract individual fields from a KeywordSuggestion object",
categories={BlockCategory.DATA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"suggestion": KeywordSuggestion(
keyword="test keyword",
search_volume=1000,
competition=0.5,
cpc=2.5,
keyword_difficulty=60,
).model_dump()
},
test_output=[
("keyword", "test keyword"),
("search_volume", 1000),
("competition", 0.5),
("cpc", 2.5),
("keyword_difficulty", 60),
("serp_info", None),
("clickstream_data", None),
],
)
async def run(
self,
input_data: Input,
**kwargs,
) -> BlockOutput:
"""Extract fields from the KeywordSuggestion object."""
suggestion = input_data.suggestion
yield "keyword", suggestion.keyword
yield "search_volume", suggestion.search_volume
yield "competition", suggestion.competition
yield "cpc", suggestion.cpc
yield "keyword_difficulty", suggestion.keyword_difficulty
yield "serp_info", suggestion.serp_info
yield "clickstream_data", suggestion.clickstream_data

View File

@@ -1,301 +0,0 @@
"""
DataForSEO Google Related Keywords block.
"""
from typing import Any, Dict, List, Optional
from backend.sdk import (
Block,
BlockCategory,
BlockOutput,
BlockSchema,
CredentialsMetaInput,
SchemaField,
UserPasswordCredentials,
)
from ._api import DataForSeoClient
from ._config import dataforseo
class RelatedKeyword(BlockSchema):
"""Schema for a related keyword result."""
keyword: str = SchemaField(description="The related keyword")
search_volume: Optional[int] = SchemaField(
description="Monthly search volume", default=None
)
competition: Optional[float] = SchemaField(
description="Competition level (0-1)", default=None
)
cpc: Optional[float] = SchemaField(
description="Cost per click in USD", default=None
)
keyword_difficulty: Optional[int] = SchemaField(
description="Keyword difficulty score", default=None
)
serp_info: Optional[Dict[str, Any]] = SchemaField(
description="SERP data for the keyword", default=None
)
clickstream_data: Optional[Dict[str, Any]] = SchemaField(
description="Clickstream data metrics", default=None
)
class DataForSeoRelatedKeywordsBlock(Block):
"""Block for getting related keywords from DataForSEO Labs."""
class Input(BlockSchema):
credentials: CredentialsMetaInput = dataforseo.credentials_field(
description="DataForSEO credentials (username and password)"
)
keyword: str = SchemaField(
description="Seed keyword to find related keywords for"
)
location_code: Optional[int] = SchemaField(
description="Location code for targeting (e.g., 2840 for USA)",
default=2840, # USA
)
language_code: Optional[str] = SchemaField(
description="Language code (e.g., 'en' for English)",
default="en",
)
include_seed_keyword: bool = SchemaField(
description="Include the seed keyword in results",
default=True,
)
include_serp_info: bool = SchemaField(
description="Include SERP information",
default=False,
)
include_clickstream_data: bool = SchemaField(
description="Include clickstream metrics",
default=False,
)
limit: int = SchemaField(
description="Maximum number of results (up to 3000)",
default=100,
ge=1,
le=3000,
)
depth: int = SchemaField(
description="Keyword search depth (0-4). Controls the number of returned keywords: 0=1 keyword, 1=~8 keywords, 2=~72 keywords, 3=~584 keywords, 4=~4680 keywords",
default=1,
ge=0,
le=4,
)
class Output(BlockSchema):
related_keywords: List[RelatedKeyword] = SchemaField(
description="List of related keywords with metrics"
)
related_keyword: RelatedKeyword = SchemaField(
description="A related keyword with metrics"
)
total_count: int = SchemaField(
description="Total number of related keywords returned"
)
seed_keyword: str = SchemaField(
description="The seed keyword used for the query"
)
error: str = SchemaField(description="Error message if the API call failed")
def __init__(self):
super().__init__(
id="8f2e4d6a-1b3c-4a5e-9d7f-2c8e6a4b3f1d",
description="Get related keywords from DataForSEO Labs Google API",
categories={BlockCategory.SEARCH, BlockCategory.DATA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"credentials": dataforseo.get_test_credentials().model_dump(),
"keyword": "content marketing",
"location_code": 2840,
"language_code": "en",
"limit": 1,
},
test_credentials=dataforseo.get_test_credentials(),
test_output=[
(
"related_keyword",
lambda x: hasattr(x, "keyword") and x.keyword == "content strategy",
),
("related_keywords", lambda x: isinstance(x, list) and len(x) == 1),
("total_count", 1),
("seed_keyword", "content marketing"),
],
test_mock={
"_fetch_related_keywords": lambda *args, **kwargs: [
{
"items": [
{
"keyword_data": {
"keyword": "content strategy",
"keyword_info": {
"search_volume": 8000,
"competition": 0.4,
"cpc": 3.0,
},
"keyword_properties": {
"keyword_difficulty": 45,
},
}
}
]
}
]
},
)
async def _fetch_related_keywords(
self,
client: DataForSeoClient,
input_data: Input,
) -> Any:
"""Private method to fetch related keywords - can be mocked for testing."""
return await client.related_keywords(
keyword=input_data.keyword,
location_code=input_data.location_code,
language_code=input_data.language_code,
include_seed_keyword=input_data.include_seed_keyword,
include_serp_info=input_data.include_serp_info,
include_clickstream_data=input_data.include_clickstream_data,
limit=input_data.limit,
depth=input_data.depth,
)
async def run(
self,
input_data: Input,
*,
credentials: UserPasswordCredentials,
**kwargs,
) -> BlockOutput:
"""Execute the related keywords query."""
try:
client = DataForSeoClient(credentials)
results = await self._fetch_related_keywords(client, input_data)
# Process and format the results
related_keywords = []
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
items = (
first_result.get("items", [])
if isinstance(first_result, dict)
else []
)
# Ensure items is never None
if items is None:
items = []
for item in items:
# Extract keyword_data from the item
keyword_data = item.get("keyword_data", {})
# Create the RelatedKeyword object
keyword = RelatedKeyword(
keyword=keyword_data.get("keyword", ""),
search_volume=keyword_data.get("keyword_info", {}).get(
"search_volume"
),
competition=keyword_data.get("keyword_info", {}).get(
"competition"
),
cpc=keyword_data.get("keyword_info", {}).get("cpc"),
keyword_difficulty=keyword_data.get(
"keyword_properties", {}
).get("keyword_difficulty"),
serp_info=(
keyword_data.get("serp_info")
if input_data.include_serp_info
else None
),
clickstream_data=(
keyword_data.get("clickstream_keyword_info")
if input_data.include_clickstream_data
else None
),
)
yield "related_keyword", keyword
related_keywords.append(keyword)
yield "related_keywords", related_keywords
yield "total_count", len(related_keywords)
yield "seed_keyword", input_data.keyword
except Exception as e:
yield "error", f"Failed to fetch related keywords: {str(e)}"
class RelatedKeywordExtractorBlock(Block):
"""Extracts individual fields from a RelatedKeyword object."""
class Input(BlockSchema):
related_keyword: RelatedKeyword = SchemaField(
description="The related keyword object to extract fields from"
)
class Output(BlockSchema):
keyword: str = SchemaField(description="The related keyword")
search_volume: Optional[int] = SchemaField(
description="Monthly search volume", default=None
)
competition: Optional[float] = SchemaField(
description="Competition level (0-1)", default=None
)
cpc: Optional[float] = SchemaField(
description="Cost per click in USD", default=None
)
keyword_difficulty: Optional[int] = SchemaField(
description="Keyword difficulty score", default=None
)
serp_info: Optional[Dict[str, Any]] = SchemaField(
description="SERP data for the keyword", default=None
)
clickstream_data: Optional[Dict[str, Any]] = SchemaField(
description="Clickstream data metrics", default=None
)
def __init__(self):
super().__init__(
id="98342061-09d2-4952-bf77-0761fc8cc9a8",
description="Extract individual fields from a RelatedKeyword object",
categories={BlockCategory.DATA},
input_schema=self.Input,
output_schema=self.Output,
test_input={
"related_keyword": RelatedKeyword(
keyword="test related keyword",
search_volume=800,
competition=0.4,
cpc=3.0,
keyword_difficulty=55,
).model_dump()
},
test_output=[
("keyword", "test related keyword"),
("search_volume", 800),
("competition", 0.4),
("cpc", 3.0),
("keyword_difficulty", 55),
("serp_info", None),
("clickstream_data", None),
],
)
async def run(
self,
input_data: Input,
**kwargs,
) -> BlockOutput:
"""Extract fields from the RelatedKeyword object."""
related_keyword = input_data.related_keyword
yield "keyword", related_keyword.keyword
yield "search_volume", related_keyword.search_volume
yield "competition", related_keyword.competition
yield "cpc", related_keyword.cpc
yield "keyword_difficulty", related_keyword.keyword_difficulty
yield "serp_info", related_keyword.serp_info
yield "clickstream_data", related_keyword.clickstream_data

View File

@@ -2,29 +2,45 @@ import base64
import io
import mimetypes
from pathlib import Path
from typing import Any
from typing import Any, Literal
import aiohttp
import discord
from pydantic import SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import APIKeyCredentials, SchemaField
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import store_media_file
from backend.util.request import Requests
from backend.util.type import MediaFileType
from ._auth import (
TEST_BOT_CREDENTIALS,
TEST_BOT_CREDENTIALS_INPUT,
DiscordBotCredentialsField,
DiscordBotCredentialsInput,
)
DiscordCredentials = CredentialsMetaInput[
Literal[ProviderName.DISCORD], Literal["api_key"]
]
# Keep backward compatibility alias
DiscordCredentials = DiscordBotCredentialsInput
DiscordCredentialsField = DiscordBotCredentialsField
TEST_CREDENTIALS = TEST_BOT_CREDENTIALS
TEST_CREDENTIALS_INPUT = TEST_BOT_CREDENTIALS_INPUT
def DiscordCredentialsField() -> DiscordCredentials:
return CredentialsField(description="Discord bot token")
TEST_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="discord",
api_key=SecretStr("test_api_key"),
title="Mock Discord API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.type,
}
class ReadDiscordMessagesBlock(Block):
@@ -114,9 +130,10 @@ class ReadDiscordMessagesBlock(Block):
if message.attachments:
attachment = message.attachments[0] # Process the first attachment
if attachment.filename.endswith((".txt", ".py")):
response = await Requests().get(attachment.url)
file_content = response.text()
self.output_data += f"\n\nFile from user: {attachment.filename}\nContent: {file_content}"
async with aiohttp.ClientSession() as session:
async with session.get(attachment.url) as response:
file_content = response.text()
self.output_data += f"\n\nFile from user: {attachment.filename}\nContent: {file_content}"
await client.close()
@@ -170,11 +187,11 @@ class SendDiscordMessageBlock(Block):
description="The content of the message to send"
)
channel_name: str = SchemaField(
description="Channel ID or channel name to send the message to"
description="The name of the channel the message will be sent to"
)
server_name: str = SchemaField(
description="Server name (only needed if using channel name)",
advanced=True,
description="The name of the server where the channel is located",
advanced=True, # Optional field for server name
default="",
)
@@ -230,49 +247,25 @@ class SendDiscordMessageBlock(Block):
@client.event
async def on_ready():
print(f"Logged in as {client.user}")
channel = None
for guild in client.guilds:
if server_name and guild.name != server_name:
continue
for channel in guild.text_channels:
if channel.name == channel_name:
# Split message into chunks if it exceeds 2000 characters
chunks = self.chunk_message(message_content)
last_message = None
for chunk in chunks:
last_message = await channel.send(chunk)
result["status"] = "Message sent"
result["message_id"] = (
str(last_message.id) if last_message else ""
)
result["channel_id"] = str(channel.id)
await client.close()
return
# Try to parse as channel ID first
try:
channel_id = int(channel_name)
channel = client.get_channel(channel_id)
except ValueError:
# Not a valid ID, will try name lookup
pass
# If not found by ID (or not an ID), try name lookup
if not channel:
for guild in client.guilds:
if server_name and guild.name != server_name:
continue
for ch in guild.text_channels:
if ch.name == channel_name:
channel = ch
break
if channel:
break
if not channel:
result["status"] = f"Channel not found: {channel_name}"
await client.close()
return
# Type check - ensure it's a text channel that can send messages
if not hasattr(channel, "send"):
result["status"] = (
f"Channel {channel_name} cannot receive messages (not a text channel)"
)
await client.close()
return
# Split message into chunks if it exceeds 2000 characters
chunks = self.chunk_message(message_content)
last_message = None
for chunk in chunks:
last_message = await channel.send(chunk) # type: ignore
result["status"] = "Message sent"
result["message_id"] = str(last_message.id) if last_message else ""
result["channel_id"] = str(channel.id)
result["status"] = "Channel not found"
await client.close()
await client.start(token)
@@ -698,15 +691,16 @@ class SendDiscordFileBlock(Block):
elif file.startswith(("http://", "https://")):
# URL - download the file
response = await Requests().get(file)
file_bytes = response.content
async with aiohttp.ClientSession() as session:
async with session.get(file) as response:
file_bytes = await response.read()
# Try to get filename from URL if not provided
if not filename:
from urllib.parse import urlparse
# Try to get filename from URL if not provided
if not filename:
from urllib.parse import urlparse
path = urlparse(file).path
detected_filename = Path(path).name or "download"
path = urlparse(file).path
detected_filename = Path(path).name or "download"
else:
# Local file path - read from stored media file
# This would be a path from a previous block's output

View File

@@ -1,117 +0,0 @@
"""
Discord API helper functions for making authenticated requests.
"""
import logging
from typing import Optional
from pydantic import BaseModel
from backend.data.model import OAuth2Credentials
from backend.util.request import Requests
logger = logging.getLogger(__name__)
class DiscordAPIException(Exception):
"""Exception raised for Discord API errors."""
def __init__(self, message: str, status_code: int):
super().__init__(message)
self.status_code = status_code
class DiscordOAuthUser(BaseModel):
"""Model for Discord OAuth user response."""
user_id: str
username: str
avatar_url: str
banner: Optional[str] = None
accent_color: Optional[int] = None
def get_api(credentials: OAuth2Credentials) -> Requests:
"""
Create a Requests instance configured for Discord API calls with OAuth2 credentials.
Args:
credentials: The OAuth2 credentials containing the access token.
Returns:
A configured Requests instance for Discord API calls.
"""
return Requests(
trusted_origins=[],
extra_headers={
"Authorization": f"Bearer {credentials.access_token.get_secret_value()}",
"Content-Type": "application/json",
},
raise_for_status=False,
)
async def get_current_user(credentials: OAuth2Credentials) -> DiscordOAuthUser:
"""
Fetch the current user's information using Discord OAuth2 API.
Reference: https://discord.com/developers/docs/resources/user#get-current-user
Args:
credentials: The OAuth2 credentials.
Returns:
A model containing user data with avatar URL.
Raises:
DiscordAPIException: If the API request fails.
"""
api = get_api(credentials)
response = await api.get("https://discord.com/api/oauth2/@me")
if not response.ok:
error_text = response.text()
raise DiscordAPIException(
f"Failed to fetch user info: {response.status} - {error_text}",
response.status,
)
data = response.json()
logger.info(f"Discord OAuth2 API Response: {data}")
# The /api/oauth2/@me endpoint returns a user object nested in the response
user_info = data.get("user", {})
logger.info(f"User info extracted: {user_info}")
# Build avatar URL
user_id = user_info.get("id")
avatar_hash = user_info.get("avatar")
if avatar_hash:
# Custom avatar
avatar_ext = "gif" if avatar_hash.startswith("a_") else "png"
avatar_url = (
f"https://cdn.discordapp.com/avatars/{user_id}/{avatar_hash}.{avatar_ext}"
)
else:
# Default avatar based on discriminator or user ID
discriminator = user_info.get("discriminator", "0")
if discriminator == "0":
# New username system - use user ID for default avatar
default_avatar_index = (int(user_id) >> 22) % 6
else:
# Legacy discriminator system
default_avatar_index = int(discriminator) % 5
avatar_url = (
f"https://cdn.discordapp.com/embed/avatars/{default_avatar_index}.png"
)
result = DiscordOAuthUser(
user_id=user_id,
username=user_info.get("username", ""),
avatar_url=avatar_url,
banner=user_info.get("banner"),
accent_color=user_info.get("accent_color"),
)
logger.info(f"Returning user data: {result.model_dump()}")
return result

View File

@@ -1,74 +0,0 @@
from typing import Literal
from pydantic import SecretStr
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
OAuth2Credentials,
)
from backend.integrations.providers import ProviderName
from backend.util.settings import Secrets
secrets = Secrets()
DISCORD_OAUTH_IS_CONFIGURED = bool(
secrets.discord_client_id and secrets.discord_client_secret
)
# Bot token credentials (existing)
DiscordBotCredentials = APIKeyCredentials
DiscordBotCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.DISCORD], Literal["api_key"]
]
# OAuth2 credentials (new)
DiscordOAuthCredentials = OAuth2Credentials
DiscordOAuthCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.DISCORD], Literal["oauth2"]
]
def DiscordBotCredentialsField() -> DiscordBotCredentialsInput:
"""Creates a Discord bot token credentials field."""
return CredentialsField(description="Discord bot token")
def DiscordOAuthCredentialsField(scopes: list[str]) -> DiscordOAuthCredentialsInput:
"""Creates a Discord OAuth2 credentials field."""
return CredentialsField(
description="Discord OAuth2 credentials",
required_scopes=set(scopes) | {"identify"}, # Basic user info scope
)
# Test credentials for bot tokens
TEST_BOT_CREDENTIALS = APIKeyCredentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="discord",
api_key=SecretStr("test_api_key"),
title="Mock Discord API key",
expires_at=None,
)
TEST_BOT_CREDENTIALS_INPUT = {
"provider": TEST_BOT_CREDENTIALS.provider,
"id": TEST_BOT_CREDENTIALS.id,
"type": TEST_BOT_CREDENTIALS.type,
"title": TEST_BOT_CREDENTIALS.type,
}
# Test credentials for OAuth2
TEST_OAUTH_CREDENTIALS = OAuth2Credentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="discord",
access_token=SecretStr("test_access_token"),
title="Mock Discord OAuth",
scopes=["identify"],
username="testuser",
)
TEST_OAUTH_CREDENTIALS_INPUT = {
"provider": TEST_OAUTH_CREDENTIALS.provider,
"id": TEST_OAUTH_CREDENTIALS.id,
"type": TEST_OAUTH_CREDENTIALS.type,
"title": TEST_OAUTH_CREDENTIALS.type,
}

View File

@@ -1,99 +0,0 @@
"""
Discord OAuth-based blocks.
"""
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import OAuth2Credentials, SchemaField
from ._api import DiscordOAuthUser, get_current_user
from ._auth import (
DISCORD_OAUTH_IS_CONFIGURED,
TEST_OAUTH_CREDENTIALS,
TEST_OAUTH_CREDENTIALS_INPUT,
DiscordOAuthCredentialsField,
DiscordOAuthCredentialsInput,
)
class DiscordGetCurrentUserBlock(Block):
"""
Gets information about the currently authenticated Discord user using OAuth2.
This block requires Discord OAuth2 credentials (not bot tokens).
"""
class Input(BlockSchema):
credentials: DiscordOAuthCredentialsInput = DiscordOAuthCredentialsField(
["identify"]
)
class Output(BlockSchema):
user_id: str = SchemaField(description="The authenticated user's Discord ID")
username: str = SchemaField(description="The user's username")
avatar_url: str = SchemaField(description="URL to the user's avatar image")
banner_url: str = SchemaField(
description="URL to the user's banner image (if set)", default=""
)
accent_color: int = SchemaField(
description="The user's accent color as an integer", default=0
)
def __init__(self):
super().__init__(
id="8c7e39b8-4e9d-4f3a-b4e1-2a8c9d5f6e3b",
input_schema=DiscordGetCurrentUserBlock.Input,
output_schema=DiscordGetCurrentUserBlock.Output,
description="Gets information about the currently authenticated Discord user using OAuth2 credentials.",
categories={BlockCategory.SOCIAL},
disabled=not DISCORD_OAUTH_IS_CONFIGURED,
test_input={
"credentials": TEST_OAUTH_CREDENTIALS_INPUT,
},
test_credentials=TEST_OAUTH_CREDENTIALS,
test_output=[
("user_id", "123456789012345678"),
("username", "testuser"),
(
"avatar_url",
"https://cdn.discordapp.com/avatars/123456789012345678/avatar.png",
),
("banner_url", ""),
("accent_color", 0),
],
test_mock={
"get_user": lambda _: DiscordOAuthUser(
user_id="123456789012345678",
username="testuser",
avatar_url="https://cdn.discordapp.com/avatars/123456789012345678/avatar.png",
banner=None,
accent_color=0,
)
},
)
@staticmethod
async def get_user(credentials: OAuth2Credentials) -> DiscordOAuthUser:
user_info = await get_current_user(credentials)
return user_info
async def run(
self, input_data: Input, *, credentials: OAuth2Credentials, **kwargs
) -> BlockOutput:
try:
result = await self.get_user(credentials)
# Yield each output field
yield "user_id", result.user_id
yield "username", result.username
yield "avatar_url", result.avatar_url
# Handle banner URL if banner hash exists
if result.banner:
banner_url = f"https://cdn.discordapp.com/banners/{result.user_id}/{result.banner}.png"
yield "banner_url", banner_url
else:
yield "banner_url", ""
yield "accent_color", result.accent_color or 0
except Exception as e:
raise ValueError(f"Failed to get Discord user info: {e}")

View File

@@ -93,11 +93,11 @@ class Webset(BaseModel):
"""
Set of key-value pairs you want to associate with this object.
"""
created_at: Annotated[datetime | None, Field(alias="createdAt")] = None
created_at: Annotated[datetime, Field(alias="createdAt")] | None = None
"""
The date and time the webset was created
"""
updated_at: Annotated[datetime | None, Field(alias="updatedAt")] = None
updated_at: Annotated[datetime, Field(alias="updatedAt")] | None = None
"""
The date and time the webset was last updated
"""

View File

@@ -1,12 +0,0 @@
from enum import Enum
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"

View File

@@ -1,28 +0,0 @@
"""Utility functions for converting between our ScrapeFormat enum and firecrawl FormatOption types."""
from typing import List
from firecrawl.v2.types import FormatOption, ScreenshotFormat
from backend.blocks.firecrawl._api import ScrapeFormat
def convert_to_format_options(
formats: List[ScrapeFormat],
) -> List[FormatOption]:
"""Convert our ScrapeFormat enum values to firecrawl FormatOption types.
Handles special cases like screenshot@fullPage which needs to be converted
to a ScreenshotFormat object.
"""
result: List[FormatOption] = []
for format_enum in formats:
if format_enum.value == "screenshot@fullPage":
# Special case: convert to ScreenshotFormat with full_page=True
result.append(ScreenshotFormat(type="screenshot", full_page=True))
else:
# Regular string literals
result.append(format_enum.value)
return result

View File

@@ -1,9 +1,8 @@
from enum import Enum
from typing import Any
from firecrawl import FirecrawlApp
from firecrawl.v2.types import ScrapeOptions
from firecrawl import FirecrawlApp, ScrapeOptions
from backend.blocks.firecrawl._api import ScrapeFormat
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -15,10 +14,21 @@ from backend.sdk import (
)
from ._config import firecrawl
from ._format_utils import convert_to_format_options
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"
class FirecrawlCrawlBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
url: str = SchemaField(description="The URL to crawl")
@@ -68,17 +78,18 @@ class FirecrawlCrawlBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
# Sync call
crawl_result = app.crawl(
crawl_result = app.crawl_url(
input_data.url,
limit=input_data.limit,
scrape_options=ScrapeOptions(
formats=convert_to_format_options(input_data.formats),
only_main_content=input_data.only_main_content,
max_age=input_data.max_age,
wait_for=input_data.wait_for,
formats=[format.value for format in input_data.formats],
onlyMainContent=input_data.only_main_content,
maxAge=input_data.max_age,
waitFor=input_data.wait_for,
),
)
yield "data", crawl_result.data
@@ -90,7 +101,7 @@ class FirecrawlCrawlBlock(Block):
elif f == ScrapeFormat.HTML:
yield "html", data.html
elif f == ScrapeFormat.RAW_HTML:
yield "raw_html", data.raw_html
yield "raw_html", data.rawHtml
elif f == ScrapeFormat.LINKS:
yield "links", data.links
elif f == ScrapeFormat.SCREENSHOT:
@@ -98,6 +109,6 @@ class FirecrawlCrawlBlock(Block):
elif f == ScrapeFormat.SCREENSHOT_FULL_PAGE:
yield "screenshot_full_page", data.screenshot
elif f == ScrapeFormat.CHANGE_TRACKING:
yield "change_tracking", data.change_tracking
yield "change_tracking", data.changeTracking
elif f == ScrapeFormat.JSON:
yield "json", data.json

View File

@@ -20,6 +20,7 @@ from ._config import firecrawl
@cost(BlockCost(2, BlockCostType.RUN))
class FirecrawlExtractBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
urls: list[str] = SchemaField(
@@ -52,6 +53,7 @@ class FirecrawlExtractBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
extract_result = app.extract(

View File

@@ -1,5 +1,3 @@
from typing import Any
from firecrawl import FirecrawlApp
from backend.sdk import (
@@ -16,16 +14,14 @@ from ._config import firecrawl
class FirecrawlMapWebsiteBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
url: str = SchemaField(description="The website url to map")
class Output(BlockSchema):
links: list[str] = SchemaField(description="List of URLs found on the website")
results: list[dict[str, Any]] = SchemaField(
description="List of search results with url, title, and description"
)
links: list[str] = SchemaField(description="The links of the website")
def __init__(self):
super().__init__(
@@ -39,22 +35,12 @@ class FirecrawlMapWebsiteBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
# Sync call
map_result = app.map(
map_result = app.map_url(
url=input_data.url,
)
# Convert SearchResult objects to dicts
results_data = [
{
"url": link.url,
"title": link.title,
"description": link.description,
}
for link in map_result.links
]
yield "links", [link.url for link in map_result.links]
yield "results", results_data
yield "links", map_result.links

View File

@@ -1,8 +1,8 @@
from enum import Enum
from typing import Any
from firecrawl import FirecrawlApp
from backend.blocks.firecrawl._api import ScrapeFormat
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -14,10 +14,21 @@ from backend.sdk import (
)
from ._config import firecrawl
from ._format_utils import convert_to_format_options
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"
class FirecrawlScrapeBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
url: str = SchemaField(description="The URL to crawl")
@@ -67,11 +78,12 @@ class FirecrawlScrapeBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
scrape_result = app.scrape(
scrape_result = app.scrape_url(
input_data.url,
formats=convert_to_format_options(input_data.formats),
formats=[format.value for format in input_data.formats],
only_main_content=input_data.only_main_content,
max_age=input_data.max_age,
wait_for=input_data.wait_for,
@@ -84,7 +96,7 @@ class FirecrawlScrapeBlock(Block):
elif f == ScrapeFormat.HTML:
yield "html", scrape_result.html
elif f == ScrapeFormat.RAW_HTML:
yield "raw_html", scrape_result.raw_html
yield "raw_html", scrape_result.rawHtml
elif f == ScrapeFormat.LINKS:
yield "links", scrape_result.links
elif f == ScrapeFormat.SCREENSHOT:
@@ -92,6 +104,6 @@ class FirecrawlScrapeBlock(Block):
elif f == ScrapeFormat.SCREENSHOT_FULL_PAGE:
yield "screenshot_full_page", scrape_result.screenshot
elif f == ScrapeFormat.CHANGE_TRACKING:
yield "change_tracking", scrape_result.change_tracking
yield "change_tracking", scrape_result.changeTracking
elif f == ScrapeFormat.JSON:
yield "json", scrape_result.json

View File

@@ -1,9 +1,8 @@
from enum import Enum
from typing import Any
from firecrawl import FirecrawlApp
from firecrawl.v2.types import ScrapeOptions
from firecrawl import FirecrawlApp, ScrapeOptions
from backend.blocks.firecrawl._api import ScrapeFormat
from backend.sdk import (
APIKeyCredentials,
Block,
@@ -15,10 +14,21 @@ from backend.sdk import (
)
from ._config import firecrawl
from ._format_utils import convert_to_format_options
class ScrapeFormat(Enum):
MARKDOWN = "markdown"
HTML = "html"
RAW_HTML = "rawHtml"
LINKS = "links"
SCREENSHOT = "screenshot"
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
JSON = "json"
CHANGE_TRACKING = "changeTracking"
class FirecrawlSearchBlock(Block):
class Input(BlockSchema):
credentials: CredentialsMetaInput = firecrawl.credentials_field()
query: str = SchemaField(description="The query to search for")
@@ -51,6 +61,7 @@ class FirecrawlSearchBlock(Block):
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
# Sync call
@@ -58,12 +69,11 @@ class FirecrawlSearchBlock(Block):
input_data.query,
limit=input_data.limit,
scrape_options=ScrapeOptions(
formats=convert_to_format_options(input_data.formats) or None,
max_age=input_data.max_age,
wait_for=input_data.wait_for,
formats=[format.value for format in input_data.formats],
maxAge=input_data.max_age,
waitFor=input_data.wait_for,
),
)
yield "data", scrape_result
if hasattr(scrape_result, "web") and scrape_result.web:
for site in scrape_result.web:
yield "site", site
for site in scrape_result.data:
yield "site", site

View File

@@ -1094,117 +1094,6 @@ class GmailGetThreadBlock(GmailBase):
return thread
async def _build_reply_message(
service, input_data, graph_exec_id: str, user_id: str
) -> tuple[str, str]:
"""
Builds a reply MIME message for Gmail threads.
Returns:
tuple: (base64-encoded raw message, threadId)
"""
# Get parent message for reply context
parent = await asyncio.to_thread(
lambda: service.users()
.messages()
.get(
userId="me",
id=input_data.parentMessageId,
format="metadata",
metadataHeaders=[
"Subject",
"References",
"Message-ID",
"From",
"To",
"Cc",
"Reply-To",
],
)
.execute()
)
# Build headers dictionary, preserving all values for duplicate headers
headers = {}
for h in parent.get("payload", {}).get("headers", []):
name = h["name"].lower()
value = h["value"]
if name in headers:
# For duplicate headers, keep the first occurrence (most relevant for reply context)
continue
headers[name] = value
# Determine recipients if not specified
if not (input_data.to or input_data.cc or input_data.bcc):
if input_data.replyAll:
recipients = [parseaddr(headers.get("from", ""))[1]]
recipients += [addr for _, addr in getaddresses([headers.get("to", "")])]
recipients += [addr for _, addr in getaddresses([headers.get("cc", "")])]
# Use dict.fromkeys() for O(n) deduplication while preserving order
input_data.to = list(dict.fromkeys(filter(None, recipients)))
else:
# Check Reply-To header first, fall back to From header
reply_to = headers.get("reply-to", "")
from_addr = headers.get("from", "")
sender = parseaddr(reply_to if reply_to else from_addr)[1]
input_data.to = [sender] if sender else []
# Set subject with Re: prefix if not already present
if input_data.subject:
subject = input_data.subject
else:
parent_subject = headers.get("subject", "").strip()
# Only add "Re:" if not already present (case-insensitive check)
if parent_subject.lower().startswith("re:"):
subject = parent_subject
else:
subject = f"Re: {parent_subject}" if parent_subject else "Re:"
# Build references header for proper threading
references = headers.get("references", "").split()
if headers.get("message-id"):
references.append(headers["message-id"])
# Create MIME message
msg = MIMEMultipart()
if input_data.to:
msg["To"] = ", ".join(input_data.to)
if input_data.cc:
msg["Cc"] = ", ".join(input_data.cc)
if input_data.bcc:
msg["Bcc"] = ", ".join(input_data.bcc)
msg["Subject"] = subject
if headers.get("message-id"):
msg["In-Reply-To"] = headers["message-id"]
if references:
msg["References"] = " ".join(references)
# Use the helper function for consistent content type handling
msg.attach(_make_mime_text(input_data.body, input_data.content_type))
# Handle attachments
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
encoders.encode_base64(part)
part.add_header(
"Content-Disposition", f"attachment; filename={Path(abs_path).name}"
)
msg.attach(part)
# Encode message
raw = base64.urlsafe_b64encode(msg.as_bytes()).decode("utf-8")
return raw, input_data.threadId
class GmailReplyBlock(GmailBase):
"""
Replies to Gmail threads with intelligent content type detection.
@@ -1341,144 +1230,91 @@ class GmailReplyBlock(GmailBase):
async def _reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id
)
# Send the message
return await asyncio.to_thread(
parent = await asyncio.to_thread(
lambda: service.users()
.messages()
.send(userId="me", body={"threadId": thread_id, "raw": raw})
.execute()
)
class GmailDraftReplyBlock(GmailBase):
"""
Creates draft replies to Gmail threads with intelligent content type detection.
Features:
- Automatic HTML detection: Draft replies containing HTML tags are formatted as text/html
- No hard-wrap for plain text: Plain text draft replies preserve natural line flow
- Manual content type override: Use content_type parameter to force specific format
- Reply-all functionality: Option to reply to all original recipients
- Thread preservation: Maintains proper email threading with headers
- Full Unicode/emoji support with UTF-8 encoding
"""
class Input(BlockSchema):
credentials: GoogleCredentialsInput = GoogleCredentialsField(
[
"https://www.googleapis.com/auth/gmail.modify",
"https://www.googleapis.com/auth/gmail.readonly",
]
)
threadId: str = SchemaField(description="Thread ID to reply in")
parentMessageId: str = SchemaField(
description="ID of the message being replied to"
)
to: list[str] = SchemaField(description="To recipients", default_factory=list)
cc: list[str] = SchemaField(description="CC recipients", default_factory=list)
bcc: list[str] = SchemaField(description="BCC recipients", default_factory=list)
replyAll: bool = SchemaField(
description="Reply to all original recipients", default=False
)
subject: str = SchemaField(description="Email subject", default="")
body: str = SchemaField(description="Email body (plain text or HTML)")
content_type: Optional[Literal["auto", "plain", "html"]] = SchemaField(
description="Content type: 'auto' (default - detects HTML), 'plain', or 'html'",
default=None,
advanced=True,
)
attachments: list[MediaFileType] = SchemaField(
description="Files to attach", default_factory=list, advanced=True
)
class Output(BlockSchema):
draftId: str = SchemaField(description="Created draft ID")
messageId: str = SchemaField(description="Draft message ID")
threadId: str = SchemaField(description="Thread ID")
status: str = SchemaField(description="Draft creation status")
error: str = SchemaField(description="Error message if any")
def __init__(self):
super().__init__(
id="d7a9f3e2-8b4c-4d6f-9e1a-3c5b7f8d2a6e",
description="Create draft replies to Gmail threads with automatic HTML detection and proper text formatting. Plain text draft replies maintain natural paragraph flow without 78-character line wrapping. HTML content is automatically detected and formatted correctly.",
categories={BlockCategory.COMMUNICATION},
input_schema=GmailDraftReplyBlock.Input,
output_schema=GmailDraftReplyBlock.Output,
disabled=not GOOGLE_OAUTH_IS_CONFIGURED,
test_input={
"threadId": "t1",
"parentMessageId": "m1",
"body": "Thanks for your message. I'll review and get back to you.",
"replyAll": False,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("draftId", "draft1"),
("messageId", "m2"),
("threadId", "t1"),
("status", "draft_created"),
],
test_mock={
"_create_draft_reply": lambda *args, **kwargs: {
"id": "draft1",
"message": {"id": "m2", "threadId": "t1"},
}
},
)
async def run(
self,
input_data: Input,
*,
credentials: GoogleCredentials,
graph_exec_id: str,
user_id: str,
**kwargs,
) -> BlockOutput:
service = self._build_service(credentials, **kwargs)
draft = await self._create_draft_reply(
service,
input_data,
graph_exec_id,
user_id,
)
yield "draftId", draft["id"]
yield "messageId", draft["message"]["id"]
yield "threadId", draft["message"].get("threadId", input_data.threadId)
yield "status", "draft_created"
async def _create_draft_reply(
self, service, input_data: Input, graph_exec_id: str, user_id: str
) -> dict:
# Build the reply message using the shared helper
raw, thread_id = await _build_reply_message(
service, input_data, graph_exec_id, user_id
)
# Create draft with proper thread association
draft = await asyncio.to_thread(
lambda: service.users()
.drafts()
.create(
.get(
userId="me",
body={
"message": {
"threadId": thread_id,
"raw": raw,
}
},
id=input_data.parentMessageId,
format="metadata",
metadataHeaders=[
"Subject",
"References",
"Message-ID",
"From",
"To",
"Cc",
"Reply-To",
],
)
.execute()
)
return draft
headers = {
h["name"].lower(): h["value"]
for h in parent.get("payload", {}).get("headers", [])
}
if not (input_data.to or input_data.cc or input_data.bcc):
if input_data.replyAll:
recipients = [parseaddr(headers.get("from", ""))[1]]
recipients += [
addr for _, addr in getaddresses([headers.get("to", "")])
]
recipients += [
addr for _, addr in getaddresses([headers.get("cc", "")])
]
dedup: list[str] = []
for r in recipients:
if r and r not in dedup:
dedup.append(r)
input_data.to = dedup
else:
sender = parseaddr(headers.get("reply-to", headers.get("from", "")))[1]
input_data.to = [sender] if sender else []
subject = input_data.subject or (f"Re: {headers.get('subject', '')}".strip())
references = headers.get("references", "").split()
if headers.get("message-id"):
references.append(headers["message-id"])
msg = MIMEMultipart()
if input_data.to:
msg["To"] = ", ".join(input_data.to)
if input_data.cc:
msg["Cc"] = ", ".join(input_data.cc)
if input_data.bcc:
msg["Bcc"] = ", ".join(input_data.bcc)
msg["Subject"] = subject
if headers.get("message-id"):
msg["In-Reply-To"] = headers["message-id"]
if references:
msg["References"] = " ".join(references)
# Use the new helper function for consistent content type handling
msg.attach(_make_mime_text(input_data.body, input_data.content_type))
for attach in input_data.attachments:
local_path = await store_media_file(
user_id=user_id,
graph_exec_id=graph_exec_id,
file=attach,
return_content=False,
)
abs_path = get_exec_file_path(graph_exec_id, local_path)
part = MIMEBase("application", "octet-stream")
with open(abs_path, "rb") as f:
part.set_payload(f.read())
encoders.encode_base64(part)
part.add_header(
"Content-Disposition", f"attachment; filename={Path(abs_path).name}"
)
msg.attach(part)
raw = base64.urlsafe_b64encode(msg.as_bytes()).decode("utf-8")
return await asyncio.to_thread(
lambda: service.users()
.messages()
.send(userId="me", body={"threadId": input_data.threadId, "raw": raw})
.execute()
)
class GmailGetProfileBlock(GmailBase):

View File

@@ -30,7 +30,6 @@ TEST_CREDENTIALS_INPUT = {
class IdeogramModelName(str, Enum):
V3 = "V_3"
V2 = "V_2"
V1 = "V_1"
V1_TURBO = "V_1_TURBO"
@@ -96,8 +95,8 @@ class IdeogramModelBlock(Block):
title="Prompt",
)
ideogram_model_name: IdeogramModelName = SchemaField(
description="The name of the Image Generation Model, e.g., V_3",
default=IdeogramModelName.V3,
description="The name of the Image Generation Model, e.g., V_2",
default=IdeogramModelName.V2,
title="Image Generation Model",
advanced=False,
)
@@ -237,111 +236,6 @@ class IdeogramModelBlock(Block):
negative_prompt: Optional[str],
color_palette_name: str,
custom_colors: Optional[list[str]],
):
# Use V3 endpoint for V3 model, legacy endpoint for others
if model_name == "V_3":
return await self._run_model_v3(
api_key,
prompt,
seed,
aspect_ratio,
magic_prompt_option,
style_type,
negative_prompt,
color_palette_name,
custom_colors,
)
else:
return await self._run_model_legacy(
api_key,
model_name,
prompt,
seed,
aspect_ratio,
magic_prompt_option,
style_type,
negative_prompt,
color_palette_name,
custom_colors,
)
async def _run_model_v3(
self,
api_key: SecretStr,
prompt: str,
seed: Optional[int],
aspect_ratio: str,
magic_prompt_option: str,
style_type: str,
negative_prompt: Optional[str],
color_palette_name: str,
custom_colors: Optional[list[str]],
):
url = "https://api.ideogram.ai/v1/ideogram-v3/generate"
headers = {
"Api-Key": api_key.get_secret_value(),
"Content-Type": "application/json",
}
# Map legacy aspect ratio values to V3 format
aspect_ratio_map = {
"ASPECT_10_16": "10x16",
"ASPECT_16_10": "16x10",
"ASPECT_9_16": "9x16",
"ASPECT_16_9": "16x9",
"ASPECT_3_2": "3x2",
"ASPECT_2_3": "2x3",
"ASPECT_4_3": "4x3",
"ASPECT_3_4": "3x4",
"ASPECT_1_1": "1x1",
"ASPECT_1_3": "1x3",
"ASPECT_3_1": "3x1",
# Additional V3 supported ratios
"ASPECT_1_2": "1x2",
"ASPECT_2_1": "2x1",
"ASPECT_4_5": "4x5",
"ASPECT_5_4": "5x4",
}
v3_aspect_ratio = aspect_ratio_map.get(
aspect_ratio, "1x1"
) # Default to 1x1 if not found
# Use JSON for V3 endpoint (simpler than multipart/form-data)
data: Dict[str, Any] = {
"prompt": prompt,
"aspect_ratio": v3_aspect_ratio,
"magic_prompt": magic_prompt_option,
"style_type": style_type,
}
if seed is not None:
data["seed"] = seed
if negative_prompt:
data["negative_prompt"] = negative_prompt
# Note: V3 endpoint may have different color palette support
# For now, we'll omit color palettes for V3 to avoid errors
try:
response = await Requests().post(url, headers=headers, json=data)
return response.json()["data"][0]["url"]
except RequestException as e:
raise Exception(f"Failed to fetch image with V3 endpoint: {str(e)}")
async def _run_model_legacy(
self,
api_key: SecretStr,
model_name: str,
prompt: str,
seed: Optional[int],
aspect_ratio: str,
magic_prompt_option: str,
style_type: str,
negative_prompt: Optional[str],
color_palette_name: str,
custom_colors: Optional[list[str]],
):
url = "https://api.ideogram.ai/generate"
headers = {
@@ -355,33 +249,28 @@ class IdeogramModelBlock(Block):
"model": model_name,
"aspect_ratio": aspect_ratio,
"magic_prompt_option": magic_prompt_option,
"style_type": style_type,
}
}
# Only add style_type for V2, V2_TURBO, and V3 models (V1 models don't support it)
if model_name in ["V_2", "V_2_TURBO", "V_3"]:
data["image_request"]["style_type"] = style_type
if seed is not None:
data["image_request"]["seed"] = seed
if negative_prompt:
data["image_request"]["negative_prompt"] = negative_prompt
# Only add color palette for V2 and V2_TURBO models (V1 models don't support it)
if model_name in ["V_2", "V_2_TURBO"]:
if color_palette_name != "NONE":
data["color_palette"] = {"name": color_palette_name}
elif custom_colors:
data["color_palette"] = {
"members": [{"color_hex": color} for color in custom_colors]
}
if color_palette_name != "NONE":
data["color_palette"] = {"name": color_palette_name}
elif custom_colors:
data["color_palette"] = {
"members": [{"color_hex": color} for color in custom_colors]
}
try:
response = await Requests().post(url, headers=headers, json=data)
return response.json()["data"][0]["url"]
except RequestException as e:
raise Exception(f"Failed to fetch image with legacy endpoint: {str(e)}")
raise Exception(f"Failed to fetch image: {str(e)}")
async def upscale_image(self, api_key: SecretStr, image_url: str):
url = "https://api.ideogram.ai/upscale"

View File

@@ -10,6 +10,7 @@ from backend.util.settings import Config
from backend.util.text import TextFormatter
from backend.util.type import LongTextType, MediaFileType, ShortTextType
formatter = TextFormatter()
config = Config()
@@ -131,11 +132,6 @@ class AgentOutputBlock(Block):
default="",
advanced=True,
)
escape_html: bool = SchemaField(
default=False,
advanced=True,
description="Whether to escape special characters in the inserted values to be HTML-safe. Enable for HTML output, disable for plain text.",
)
advanced: bool = SchemaField(
description="Whether to treat the output as advanced.",
default=False,
@@ -197,7 +193,6 @@ class AgentOutputBlock(Block):
"""
if input_data.format:
try:
formatter = TextFormatter(autoescape=input_data.escape_html)
yield "output", formatter.format_string(
input_data.format, {input_data.name: input_data.value}
)
@@ -554,89 +549,6 @@ class AgentToggleInputBlock(AgentInputBlock):
)
class AgentTableInputBlock(AgentInputBlock):
"""
This block allows users to input data in a table format.
Configure the table columns at build time, then users can input
rows of data at runtime. Each row is output as a dictionary
with column names as keys.
"""
class Input(AgentInputBlock.Input):
value: Optional[list[dict[str, Any]]] = SchemaField(
description="The table data as a list of dictionaries.",
default=None,
advanced=False,
title="Default Value",
)
column_headers: list[str] = SchemaField(
description="Column headers for the table.",
default_factory=lambda: ["Column 1", "Column 2", "Column 3"],
advanced=False,
title="Column Headers",
)
def generate_schema(self):
"""Generate schema for the value field with table format."""
schema = super().generate_schema()
schema["type"] = "array"
schema["format"] = "table"
schema["items"] = {
"type": "object",
"properties": {
header: {"type": "string"}
for header in (
self.column_headers or ["Column 1", "Column 2", "Column 3"]
)
},
}
if self.value is not None:
schema["default"] = self.value
return schema
class Output(AgentInputBlock.Output):
result: list[dict[str, Any]] = SchemaField(
description="The table data as a list of dictionaries with headers as keys."
)
def __init__(self):
super().__init__(
id="5603b273-f41e-4020-af7d-fbc9c6a8d928",
description="Block for table data input with customizable headers.",
disabled=not config.enable_agent_input_subtype_blocks,
input_schema=AgentTableInputBlock.Input,
output_schema=AgentTableInputBlock.Output,
test_input=[
{
"name": "test_table",
"column_headers": ["Name", "Age", "City"],
"value": [
{"Name": "John", "Age": "30", "City": "New York"},
{"Name": "Jane", "Age": "25", "City": "London"},
],
"description": "Example table input",
}
],
test_output=[
(
"result",
[
{"Name": "John", "Age": "30", "City": "New York"},
{"Name": "Jane", "Age": "25", "City": "London"},
],
)
],
)
async def run(self, input_data: Input, *args, **kwargs) -> BlockOutput:
"""
Yields the table data as a list of dictionaries.
"""
# Pass through the value, defaulting to empty list if None
yield "result", input_data.value if input_data.value is not None else []
IO_BLOCK_IDs = [
AgentInputBlock().id,
AgentOutputBlock().id,
@@ -648,5 +560,4 @@ IO_BLOCK_IDs = [
AgentFileInputBlock().id,
AgentDropdownInputBlock().id,
AgentToggleInputBlock().id,
AgentTableInputBlock().id,
]

View File

@@ -2,7 +2,7 @@ from typing import Any
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.json import loads
from backend.util.json import json
class StepThroughItemsBlock(Block):
@@ -54,43 +54,20 @@ class StepThroughItemsBlock(Block):
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Security fix: Add limits to prevent DoS from large iterations
MAX_ITEMS = 10000 # Maximum items to iterate
MAX_ITEM_SIZE = 1024 * 1024 # 1MB per item
for data in [input_data.items, input_data.items_object, input_data.items_str]:
if not data:
continue
# Limit string size before parsing
if isinstance(data, str):
if len(data) > MAX_ITEM_SIZE:
raise ValueError(
f"Input too large: {len(data)} bytes > {MAX_ITEM_SIZE} bytes"
)
items = loads(data)
items = json.loads(data)
else:
items = data
# Check total item count
if isinstance(items, (list, dict)):
if len(items) > MAX_ITEMS:
raise ValueError(f"Too many items: {len(items)} > {MAX_ITEMS}")
iteration_count = 0
if isinstance(items, dict):
# If items is a dictionary, iterate over its values
for key, value in items.items():
if iteration_count >= MAX_ITEMS:
break
yield "item", value
yield "key", key # Fixed: should yield key, not item
iteration_count += 1
for item in items.values():
yield "item", item
yield "key", item
else:
# If items is a list, iterate over the list
for index, item in enumerate(items):
if iteration_count >= MAX_ITEMS:
break
yield "item", item
yield "key", index
iteration_count += 1

View File

@@ -1,8 +1,5 @@
from typing import List
from urllib.parse import quote
from typing_extensions import TypedDict
from backend.blocks.jina._auth import (
JinaCredentials,
JinaCredentialsField,
@@ -13,12 +10,6 @@ from backend.data.model import SchemaField
from backend.util.request import Requests
class Reference(TypedDict):
url: str
keyQuote: str
isSupportive: bool
class FactCheckerBlock(Block):
class Input(BlockSchema):
statement: str = SchemaField(
@@ -32,10 +23,6 @@ class FactCheckerBlock(Block):
)
result: bool = SchemaField(description="The result of the factuality check")
reason: str = SchemaField(description="The reason for the factuality result")
references: List[Reference] = SchemaField(
description="List of references supporting or contradicting the statement",
default=[],
)
error: str = SchemaField(description="Error message if the check fails")
def __init__(self):
@@ -66,11 +53,5 @@ class FactCheckerBlock(Block):
yield "factuality", data["factuality"]
yield "result", data["result"]
yield "reason", data["reason"]
# Yield references if present in the response
if "references" in data:
yield "references", data["references"]
else:
yield "references", []
else:
raise RuntimeError(f"Expected 'data' key not found in response: {data}")

View File

@@ -62,10 +62,10 @@ TEST_CREDENTIALS_OAUTH = OAuth2Credentials(
title="Mock Linear API key",
username="mock-linear-username",
access_token=SecretStr("mock-linear-access-token"),
access_token_expires_at=1672531200, # Mock expiration time for short-lived token
access_token_expires_at=None,
refresh_token=SecretStr("mock-linear-refresh-token"),
refresh_token_expires_at=None,
scopes=["read", "write"],
scopes=["mock-linear-scopes"],
)
TEST_CREDENTIALS_API_KEY = APIKeyCredentials(

View File

@@ -2,9 +2,7 @@
Linear OAuth handler implementation.
"""
import base64
import json
import time
from typing import Optional
from urllib.parse import urlencode
@@ -40,9 +38,8 @@ class LinearOAuthHandler(BaseOAuthHandler):
self.client_secret = client_secret
self.redirect_uri = redirect_uri
self.auth_base_url = "https://linear.app/oauth/authorize"
self.token_url = "https://api.linear.app/oauth/token"
self.token_url = "https://api.linear.app/oauth/token" # Correct token URL
self.revoke_url = "https://api.linear.app/oauth/revoke"
self.migrate_url = "https://api.linear.app/oauth/migrate_old_token"
def get_login_url(
self, scopes: list[str], state: str, code_challenge: Optional[str]
@@ -85,84 +82,19 @@ class LinearOAuthHandler(BaseOAuthHandler):
return True # Linear doesn't return JSON on successful revoke
async def migrate_old_token(
self, credentials: OAuth2Credentials
) -> OAuth2Credentials:
"""
Migrate an old long-lived token to a new short-lived token with refresh token.
This uses Linear's /oauth/migrate_old_token endpoint to exchange current
long-lived tokens for short-lived tokens with refresh tokens without
requiring users to re-authorize.
"""
if not credentials.access_token:
raise ValueError("No access token to migrate")
request_body = {
"client_id": self.client_id,
"client_secret": self.client_secret,
}
headers = {
"Authorization": f"Bearer {credentials.access_token.get_secret_value()}",
"Content-Type": "application/x-www-form-urlencoded",
}
response = await Requests().post(
self.migrate_url, data=request_body, headers=headers
)
if not response.ok:
try:
error_data = response.json()
error_message = error_data.get("error", "Unknown error")
error_description = error_data.get("error_description", "")
if error_description:
error_message = f"{error_message}: {error_description}"
except json.JSONDecodeError:
error_message = response.text
raise LinearAPIException(
f"Failed to migrate Linear token ({response.status}): {error_message}",
response.status,
)
token_data = response.json()
# Extract token expiration
now = int(time.time())
expires_in = token_data.get("expires_in")
access_token_expires_at = None
if expires_in:
access_token_expires_at = now + expires_in
new_credentials = OAuth2Credentials(
provider=self.PROVIDER_NAME,
title=credentials.title,
username=credentials.username,
access_token=token_data["access_token"],
scopes=credentials.scopes, # Preserve original scopes
refresh_token=token_data.get("refresh_token"),
access_token_expires_at=access_token_expires_at,
refresh_token_expires_at=None,
)
new_credentials.id = credentials.id
return new_credentials
async def _refresh_tokens(
self, credentials: OAuth2Credentials
) -> OAuth2Credentials:
if not credentials.refresh_token:
raise ValueError(
"No refresh token available. Token may need to be migrated to the new refresh token system."
)
"No refresh token available."
) # Linear uses non-expiring tokens
return await self._request_tokens(
{
"refresh_token": credentials.refresh_token.get_secret_value(),
"grant_type": "refresh_token",
},
current_credentials=credentials,
}
)
async def _request_tokens(
@@ -170,33 +102,16 @@ class LinearOAuthHandler(BaseOAuthHandler):
params: dict[str, str],
current_credentials: Optional[OAuth2Credentials] = None,
) -> OAuth2Credentials:
# Determine if this is a refresh token request
is_refresh = params.get("grant_type") == "refresh_token"
# Build request body with appropriate grant_type
request_body = {
"client_id": self.client_id,
"client_secret": self.client_secret,
"grant_type": "authorization_code", # Ensure grant_type is correct
**params,
}
# Set default grant_type if not provided
if "grant_type" not in request_body:
request_body["grant_type"] = "authorization_code"
headers = {"Content-Type": "application/x-www-form-urlencoded"}
# For refresh token requests, support HTTP Basic Authentication as recommended
if is_refresh:
# Option 1: Use HTTP Basic Auth (preferred by Linear)
client_credentials = f"{self.client_id}:{self.client_secret}"
encoded_credentials = base64.b64encode(client_credentials.encode()).decode()
headers["Authorization"] = f"Basic {encoded_credentials}"
# Remove client credentials from body when using Basic Auth
request_body.pop("client_id", None)
request_body.pop("client_secret", None)
headers = {
"Content-Type": "application/x-www-form-urlencoded"
} # Correct header for token request
response = await Requests().post(
self.token_url, data=request_body, headers=headers
)
@@ -205,9 +120,6 @@ class LinearOAuthHandler(BaseOAuthHandler):
try:
error_data = response.json()
error_message = error_data.get("error", "Unknown error")
error_description = error_data.get("error_description", "")
if error_description:
error_message = f"{error_message}: {error_description}"
except json.JSONDecodeError:
error_message = response.text
raise LinearAPIException(
@@ -217,84 +129,27 @@ class LinearOAuthHandler(BaseOAuthHandler):
token_data = response.json()
# Extract token expiration if provided (for new refresh token implementation)
now = int(time.time())
expires_in = token_data.get("expires_in")
access_token_expires_at = None
if expires_in:
access_token_expires_at = now + expires_in
# Get username - preserve from current credentials if refreshing
username = None
if current_credentials and is_refresh:
username = current_credentials.username
elif "user" in token_data:
username = token_data["user"].get("name", "Unknown User")
else:
# Fetch username using the access token
username = await self._request_username(token_data["access_token"])
# Note: Linear access tokens do not expire, so we set expires_at to None
new_credentials = OAuth2Credentials(
provider=self.PROVIDER_NAME,
title=current_credentials.title if current_credentials else None,
username=username or "Unknown User",
username=token_data.get("user", {}).get(
"name", "Unknown User"
), # extract name or set appropriate
access_token=token_data["access_token"],
scopes=(
token_data["scope"].split(",")
if "scope" in token_data
else (current_credentials.scopes if current_credentials else [])
),
refresh_token=token_data.get("refresh_token"),
access_token_expires_at=access_token_expires_at,
refresh_token_expires_at=None, # Linear doesn't provide refresh token expiration
scopes=token_data["scope"].split(
","
), # Linear returns comma-separated scopes
refresh_token=token_data.get(
"refresh_token"
), # Linear uses non-expiring tokens so this might be null
access_token_expires_at=None,
refresh_token_expires_at=None,
)
if current_credentials:
new_credentials.id = current_credentials.id
return new_credentials
async def get_access_token(self, credentials: OAuth2Credentials) -> str:
"""
Returns a valid access token, handling migration and refresh as needed.
This overrides the base implementation to handle Linear's token migration
from old long-lived tokens to new short-lived tokens with refresh tokens.
"""
# If token has no expiration and no refresh token, it might be an old token
# that needs migration
if (
credentials.access_token_expires_at is None
and credentials.refresh_token is None
):
try:
# Attempt to migrate the old token
migrated_credentials = await self.migrate_old_token(credentials)
# Update the credentials store would need to be handled by the caller
# For now, use the migrated credentials for this request
credentials = migrated_credentials
except LinearAPIException:
# Migration failed, try to use the old token as-is
# This maintains backward compatibility
pass
# Use the standard refresh logic from the base class
if self.needs_refresh(credentials):
credentials = await self.refresh_tokens(credentials)
return credentials.access_token.get_secret_value()
def needs_migration(self, credentials: OAuth2Credentials) -> bool:
"""
Check if credentials represent an old long-lived token that needs migration.
Old tokens have no expiration time and no refresh token.
"""
return (
credentials.access_token_expires_at is None
and credentials.refresh_token is None
)
async def _request_username(self, access_token: str) -> Optional[str]:
# Use the LinearClient to fetch user details using GraphQL
from ._api import LinearClient

View File

@@ -37,5 +37,5 @@ class Project(BaseModel):
name: str
description: str
priority: int
progress: float
content: str | None
progress: int
content: str

View File

@@ -1,9 +1,5 @@
# This file contains a lot of prompt block strings that would trigger "line too long"
# flake8: noqa: E501
import ast
import logging
import re
import secrets
from abc import ABC
from enum import Enum, EnumMeta
from json import JSONDecodeError
@@ -31,7 +27,7 @@ from backend.util.prompt import compress_prompt, estimate_token_count
from backend.util.text import TextFormatter
logger = TruncatedLogger(logging.getLogger(__name__), "[LLM-Block]")
fmt = TextFormatter(autoescape=False)
fmt = TextFormatter()
LLMProviderName = Literal[
ProviderName.AIML_API,
@@ -101,9 +97,9 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
CLAUDE_4_OPUS = "claude-opus-4-20250514"
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_3_5_SONNET = "claude-3-5-sonnet-latest"
CLAUDE_3_5_HAIKU = "claude-3-5-haiku-latest"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
@@ -208,20 +204,20 @@ MODEL_METADATA = {
"anthropic", 200000, 32000
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 32000
"anthropic", 200000, 8192
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 8192
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 8192
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata(
"anthropic", 200000, 8192
), # claude-3-5-sonnet-20241022
LlmModel.CLAUDE_3_5_HAIKU: ModelMetadata(
"anthropic", 200000, 8192
), # claude-3-5-haiku-20241022
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096
), # claude-3-haiku-20240307
@@ -386,9 +382,7 @@ def extract_openai_tool_calls(response) -> list[ToolContentBlock] | None:
return None
def get_parallel_tool_calls_param(
llm_model: LlmModel, parallel_tool_calls: bool | None
):
def get_parallel_tool_calls_param(llm_model: LlmModel, parallel_tool_calls):
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
if llm_model.startswith("o") or parallel_tool_calls is None:
return openai.NOT_GIVEN
@@ -399,8 +393,8 @@ async def llm_call(
credentials: APIKeyCredentials,
llm_model: LlmModel,
prompt: list[dict],
json_format: bool,
max_tokens: int | None,
force_json_output: bool = False,
tools: list[dict] | None = None,
ollama_host: str = "localhost:11434",
parallel_tool_calls=None,
@@ -413,7 +407,7 @@ async def llm_call(
credentials: The API key credentials to use.
llm_model: The LLM model to use.
prompt: The prompt to send to the LLM.
force_json_output: Whether the response should be in JSON format.
json_format: Whether the response should be in JSON format.
max_tokens: The maximum number of tokens to generate in the chat completion.
tools: The tools to use in the chat completion.
ollama_host: The host for ollama to use.
@@ -452,7 +446,7 @@ async def llm_call(
llm_model, parallel_tool_calls
)
if force_json_output:
if json_format:
response_format = {"type": "json_object"}
response = await oai_client.chat.completions.create(
@@ -565,7 +559,7 @@ async def llm_call(
raise ValueError("Groq does not support tools.")
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
response_format = {"type": "json_object"} if force_json_output else None
response_format = {"type": "json_object"} if json_format else None
response = await client.chat.completions.create(
model=llm_model.value,
messages=prompt, # type: ignore
@@ -723,7 +717,7 @@ async def llm_call(
)
response_format = None
if force_json_output:
if json_format:
response_format = {"type": "json_object"}
parallel_tool_calls_param = get_parallel_tool_calls_param(
@@ -786,17 +780,6 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
description="The language model to use for answering the prompt.",
advanced=False,
)
force_json_output: bool = SchemaField(
title="Restrict LLM to pure JSON output",
default=False,
description=(
"Whether to force the LLM to produce a JSON-only response. "
"This can increase the block's reliability, "
"but may also reduce the quality of the response "
"because it prohibits the LLM from reasoning "
"before providing its JSON response."
),
)
credentials: AICredentials = AICredentialsField()
sys_prompt: str = SchemaField(
title="System Prompt",
@@ -865,18 +848,17 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
"llm_call": lambda *args, **kwargs: LLMResponse(
raw_response="",
prompt=[""],
response=(
'<json_output id="test123456">{\n'
' "key1": "key1Value",\n'
' "key2": "key2Value"\n'
"}</json_output>"
response=json.dumps(
{
"key1": "key1Value",
"key2": "key2Value",
}
),
tool_calls=None,
prompt_tokens=0,
completion_tokens=0,
reasoning=None,
),
"get_collision_proof_output_tag_id": lambda *args: "test123456",
)
},
)
@@ -885,9 +867,9 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
credentials: APIKeyCredentials,
llm_model: LlmModel,
prompt: list[dict],
json_format: bool,
compress_prompt_to_fit: bool,
max_tokens: int | None,
force_json_output: bool = False,
compress_prompt_to_fit: bool = True,
tools: list[dict] | None = None,
ollama_host: str = "localhost:11434",
) -> LLMResponse:
@@ -900,8 +882,8 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
credentials=credentials,
llm_model=llm_model,
prompt=prompt,
json_format=json_format,
max_tokens=max_tokens,
force_json_output=force_json_output,
tools=tools,
ollama_host=ollama_host,
compress_prompt_to_fit=compress_prompt_to_fit,
@@ -913,6 +895,10 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
logger.debug(f"Calling LLM with input data: {input_data}")
prompt = [json.to_dict(p) for p in input_data.conversation_history]
def trim_prompt(s: str) -> str:
lines = s.strip().split("\n")
return "\n".join([line.strip().lstrip("|") for line in lines])
values = input_data.prompt_values
if values:
input_data.prompt = fmt.format_string(input_data.prompt, values)
@@ -921,15 +907,27 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
if input_data.sys_prompt:
prompt.append({"role": "system", "content": input_data.sys_prompt})
# Use a one-time unique tag to prevent collisions with user/LLM content
output_tag_id = self.get_collision_proof_output_tag_id()
output_tag_start = f'<json_output id="{output_tag_id}">'
if input_data.expected_format:
sys_prompt = self.response_format_instructions(
input_data.expected_format,
list_mode=input_data.list_result,
pure_json_mode=input_data.force_json_output,
output_tag_start=output_tag_start,
expected_format = [
f'"{k}": "{v}"' for k, v in input_data.expected_format.items()
]
if input_data.list_result:
format_prompt = (
f'"results": [\n {{\n {", ".join(expected_format)}\n }}\n]'
)
else:
format_prompt = "\n ".join(expected_format)
sys_prompt = trim_prompt(
f"""
|Reply strictly only in the following JSON format:
|{{
| {format_prompt}
|}}
|
|Ensure the response is valid JSON. Do not include any additional text outside of the JSON.
|If you cannot provide all the keys, provide an empty string for the values you cannot answer.
"""
)
prompt.append({"role": "system", "content": sys_prompt})
@@ -947,21 +945,18 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
except JSONDecodeError as e:
return f"JSON decode error: {e}"
error_feedback_message = ""
logger.debug(f"LLM request: {prompt}")
retry_prompt = ""
llm_model = input_data.model
for retry_count in range(input_data.retry):
logger.debug(f"LLM request: {prompt}")
try:
llm_response = await self.llm_call(
credentials=credentials,
llm_model=llm_model,
prompt=prompt,
compress_prompt_to_fit=input_data.compress_prompt_to_fit,
force_json_output=(
input_data.force_json_output
and bool(input_data.expected_format)
),
json_format=bool(input_data.expected_format),
ollama_host=input_data.ollama_host,
max_tokens=input_data.max_tokens,
)
@@ -975,55 +970,16 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
logger.debug(f"LLM attempt-{retry_count} response: {response_text}")
if input_data.expected_format:
try:
response_obj = self.get_json_from_response(
response_text,
pure_json_mode=input_data.force_json_output,
output_tag_start=output_tag_start,
)
except (ValueError, JSONDecodeError) as parse_error:
censored_response = re.sub(r"[A-Za-z0-9]", "*", response_text)
response_snippet = (
f"{censored_response[:50]}...{censored_response[-30:]}"
)
logger.warning(
f"Error getting JSON from LLM response: {parse_error}\n\n"
f"Response start+end: `{response_snippet}`"
)
prompt.append({"role": "assistant", "content": response_text})
error_feedback_message = self.invalid_response_feedback(
parse_error,
was_parseable=False,
list_mode=input_data.list_result,
pure_json_mode=input_data.force_json_output,
output_tag_start=output_tag_start,
)
prompt.append(
{"role": "user", "content": error_feedback_message}
)
continue
response_obj = json.loads(response_text)
# Handle object response for `force_json_output`+`list_result`
if input_data.list_result and isinstance(response_obj, dict):
if "results" in response_obj and isinstance(
response_obj["results"], list
):
response_obj = response_obj["results"]
else:
error_feedback_message = (
"Expected an array of objects in the 'results' key, "
f"but got: {response_obj}"
)
prompt.append(
{"role": "assistant", "content": response_text}
)
prompt.append(
{"role": "user", "content": error_feedback_message}
)
continue
if "results" in response_obj:
response_obj = response_obj.get("results", [])
elif len(response_obj) == 1:
response_obj = list(response_obj.values())
validation_errors = "\n".join(
response_error = "\n".join(
[
validation_error
for response_item in (
@@ -1035,7 +991,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
]
)
if not validation_errors:
if not response_error:
self.merge_stats(
NodeExecutionStats(
llm_call_count=retry_count + 1,
@@ -1045,16 +1001,6 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
yield "response", response_obj
yield "prompt", self.prompt
return
prompt.append({"role": "assistant", "content": response_text})
error_feedback_message = self.invalid_response_feedback(
validation_errors,
was_parseable=True,
list_mode=input_data.list_result,
pure_json_mode=input_data.force_json_output,
output_tag_start=output_tag_start,
)
prompt.append({"role": "user", "content": error_feedback_message})
else:
self.merge_stats(
NodeExecutionStats(
@@ -1065,6 +1011,21 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
yield "response", {"response": response_text}
yield "prompt", self.prompt
return
retry_prompt = trim_prompt(
f"""
|This is your previous error response:
|--
|{response_text}
|--
|
|And this is the error:
|--
|{response_error}
|--
"""
)
prompt.append({"role": "user", "content": retry_prompt})
except Exception as e:
logger.exception(f"Error calling LLM: {e}")
if (
@@ -1077,133 +1038,9 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
logger.debug(
f"Reducing max_tokens to {input_data.max_tokens} for next attempt"
)
# Don't add retry prompt for token limit errors,
# just retry with lower maximum output tokens
retry_prompt = f"Error calling LLM: {e}"
error_feedback_message = f"Error calling LLM: {e}"
raise RuntimeError(error_feedback_message)
def response_format_instructions(
self,
expected_object_format: dict[str, str],
*,
list_mode: bool,
pure_json_mode: bool,
output_tag_start: str,
) -> str:
expected_output_format = json.dumps(expected_object_format, indent=2)
output_type = "object" if not list_mode else "array"
outer_output_type = "object" if pure_json_mode else output_type
if output_type == "array":
indented_obj_format = expected_output_format.replace("\n", "\n ")
expected_output_format = f"[\n {indented_obj_format},\n ...\n]"
if pure_json_mode:
indented_list_format = expected_output_format.replace("\n", "\n ")
expected_output_format = (
"{\n"
' "reasoning": "... (optional)",\n' # for better performance
f' "results": {indented_list_format}\n'
"}"
)
# Preserve indentation in prompt
expected_output_format = expected_output_format.replace("\n", "\n|")
# Prepare prompt
if not pure_json_mode:
expected_output_format = (
f"{output_tag_start}\n{expected_output_format}\n</json_output>"
)
instructions = f"""
|In your response you MUST include a valid JSON {outer_output_type} strictly following this format:
|{expected_output_format}
|
|If you cannot provide all the keys, you MUST provide an empty string for the values you cannot answer.
""".strip()
if not pure_json_mode:
instructions += f"""
|
|You MUST enclose your final JSON answer in {output_tag_start}...</json_output> tags, even if the user specifies a different tag.
|There MUST be exactly ONE {output_tag_start}...</json_output> block in your response, which MUST ONLY contain the JSON {outer_output_type} and nothing else. Other text outside this block is allowed.
""".strip()
return trim_prompt(instructions)
def invalid_response_feedback(
self,
error,
*,
was_parseable: bool,
list_mode: bool,
pure_json_mode: bool,
output_tag_start: str,
) -> str:
outer_output_type = "object" if not list_mode or pure_json_mode else "array"
if was_parseable:
complaint = f"Your previous response did not match the expected {outer_output_type} format."
else:
complaint = f"Your previous response did not contain a parseable JSON {outer_output_type}."
indented_parse_error = str(error).replace("\n", "\n|")
instruction = (
f"Please provide a {output_tag_start}...</json_output> block containing a"
if not pure_json_mode
else "Please provide a"
) + f" valid JSON {outer_output_type} that matches the expected format."
return trim_prompt(
f"""
|{complaint}
|
|{indented_parse_error}
|
|{instruction}
"""
)
def get_json_from_response(
self, response_text: str, *, pure_json_mode: bool, output_tag_start: str
) -> dict[str, Any] | list[dict[str, Any]]:
if pure_json_mode:
# Handle pure JSON responses
try:
return json.loads(response_text)
except JSONDecodeError as first_parse_error:
# If that didn't work, try finding the { and } to deal with possible ```json fences etc.
json_start = response_text.find("{")
json_end = response_text.rfind("}")
try:
return json.loads(response_text[json_start : json_end + 1])
except JSONDecodeError:
# Raise the original error, as it's more likely to be relevant
raise first_parse_error from None
if output_tag_start not in response_text:
raise ValueError(
"Response does not contain the expected "
f"{output_tag_start}...</json_output> block."
)
json_output = (
response_text.split(output_tag_start, 1)[1]
.rsplit("</json_output>", 1)[0]
.strip()
)
return json.loads(json_output)
def get_collision_proof_output_tag_id(self) -> str:
return secrets.token_hex(8)
def trim_prompt(s: str) -> str:
"""Removes indentation up to and including `|` from a multi-line prompt."""
lines = s.strip().split("\n")
return "\n".join([line.strip().lstrip("|") for line in lines])
raise RuntimeError(retry_prompt)
class AITextGeneratorBlock(AIBlockBase):
@@ -1400,27 +1237,11 @@ class AITextSummarizerBlock(AIBlockBase):
@staticmethod
def _split_text(text: str, max_tokens: int, overlap: int) -> list[str]:
# Security fix: Add validation to prevent DoS attacks
# Limit text size to prevent memory exhaustion
MAX_TEXT_LENGTH = 1_000_000 # 1MB character limit
MAX_CHUNKS = 100 # Maximum number of chunks to prevent excessive memory use
if len(text) > MAX_TEXT_LENGTH:
text = text[:MAX_TEXT_LENGTH]
# Ensure chunk_size is at least 1 to prevent infinite loops
chunk_size = max(1, max_tokens - overlap)
# Ensure overlap is less than max_tokens to prevent invalid configurations
if overlap >= max_tokens:
overlap = max(0, max_tokens - 1)
words = text.split()
chunks = []
chunk_size = max_tokens - overlap
for i in range(0, len(words), chunk_size):
if len(chunks) >= MAX_CHUNKS:
break # Limit the number of chunks to prevent memory exhaustion
chunk = " ".join(words[i : i + max_tokens])
chunks.append(chunk)
@@ -1554,9 +1375,7 @@ class AIConversationBlock(AIBlockBase):
("prompt", list),
],
test_mock={
"llm_call": lambda *args, **kwargs: dict(
response="The 2020 World Series was played at Globe Life Field in Arlington, Texas."
)
"llm_call": lambda *args, **kwargs: "The 2020 World Series was played at Globe Life Field in Arlington, Texas."
},
)
@@ -1585,7 +1404,7 @@ class AIConversationBlock(AIBlockBase):
),
credentials=credentials,
)
yield "response", response["response"]
yield "response", response
yield "prompt", self.prompt

View File

@@ -1,536 +0,0 @@
"""
Notion API helper functions and client for making authenticated requests.
"""
from typing import Any, Dict, List, Optional
from backend.data.model import OAuth2Credentials
from backend.util.request import Requests
NOTION_VERSION = "2022-06-28"
class NotionAPIException(Exception):
"""Exception raised for Notion API errors."""
def __init__(self, message: str, status_code: int):
super().__init__(message)
self.status_code = status_code
class NotionClient:
"""Client for interacting with the Notion API."""
def __init__(self, credentials: OAuth2Credentials):
self.credentials = credentials
self.headers = {
"Authorization": credentials.auth_header(),
"Notion-Version": NOTION_VERSION,
"Content-Type": "application/json",
}
self.requests = Requests()
async def get_page(self, page_id: str) -> dict:
"""
Fetch a page by ID.
Args:
page_id: The ID of the page to fetch.
Returns:
The page object from Notion API.
"""
url = f"https://api.notion.com/v1/pages/{page_id}"
response = await self.requests.get(url, headers=self.headers)
if not response.ok:
raise NotionAPIException(
f"Failed to fetch page: {response.status} - {response.text()}",
response.status,
)
return response.json()
async def get_blocks(self, block_id: str, recursive: bool = True) -> List[dict]:
"""
Fetch all blocks from a page or block.
Args:
block_id: The ID of the page or block to fetch children from.
recursive: Whether to fetch nested blocks recursively.
Returns:
List of block objects.
"""
blocks = []
cursor = None
while True:
url = f"https://api.notion.com/v1/blocks/{block_id}/children"
params = {"page_size": 100}
if cursor:
params["start_cursor"] = cursor
response = await self.requests.get(url, headers=self.headers, params=params)
if not response.ok:
raise NotionAPIException(
f"Failed to fetch blocks: {response.status} - {response.text()}",
response.status,
)
data = response.json()
current_blocks = data.get("results", [])
# If recursive, fetch children for blocks that have them
if recursive:
for block in current_blocks:
if block.get("has_children"):
block["children"] = await self.get_blocks(
block["id"], recursive=True
)
blocks.extend(current_blocks)
if not data.get("has_more"):
break
cursor = data.get("next_cursor")
return blocks
async def query_database(
self,
database_id: str,
filter_obj: Optional[dict] = None,
sorts: Optional[List[dict]] = None,
page_size: int = 100,
) -> dict:
"""
Query a database with optional filters and sorts.
Args:
database_id: The ID of the database to query.
filter_obj: Optional filter object for the query.
sorts: Optional list of sort objects.
page_size: Number of results per page.
Returns:
Query results including pages and pagination info.
"""
url = f"https://api.notion.com/v1/databases/{database_id}/query"
payload: Dict[str, Any] = {"page_size": page_size}
if filter_obj:
payload["filter"] = filter_obj
if sorts:
payload["sorts"] = sorts
response = await self.requests.post(url, headers=self.headers, json=payload)
if not response.ok:
raise NotionAPIException(
f"Failed to query database: {response.status} - {response.text()}",
response.status,
)
return response.json()
async def create_page(
self,
parent: dict,
properties: dict,
children: Optional[List[dict]] = None,
icon: Optional[dict] = None,
cover: Optional[dict] = None,
) -> dict:
"""
Create a new page.
Args:
parent: Parent object (page_id or database_id).
properties: Page properties.
children: Optional list of block children.
icon: Optional icon object.
cover: Optional cover object.
Returns:
The created page object.
"""
url = "https://api.notion.com/v1/pages"
payload: Dict[str, Any] = {"parent": parent, "properties": properties}
if children:
payload["children"] = children
if icon:
payload["icon"] = icon
if cover:
payload["cover"] = cover
response = await self.requests.post(url, headers=self.headers, json=payload)
if not response.ok:
raise NotionAPIException(
f"Failed to create page: {response.status} - {response.text()}",
response.status,
)
return response.json()
async def update_page(self, page_id: str, properties: dict) -> dict:
"""
Update a page's properties.
Args:
page_id: The ID of the page to update.
properties: Properties to update.
Returns:
The updated page object.
"""
url = f"https://api.notion.com/v1/pages/{page_id}"
response = await self.requests.patch(
url, headers=self.headers, json={"properties": properties}
)
if not response.ok:
raise NotionAPIException(
f"Failed to update page: {response.status} - {response.text()}",
response.status,
)
return response.json()
async def append_blocks(self, block_id: str, children: List[dict]) -> dict:
"""
Append blocks to a page or block.
Args:
block_id: The ID of the page or block to append to.
children: List of block objects to append.
Returns:
Response with the created blocks.
"""
url = f"https://api.notion.com/v1/blocks/{block_id}/children"
response = await self.requests.patch(
url, headers=self.headers, json={"children": children}
)
if not response.ok:
raise NotionAPIException(
f"Failed to append blocks: {response.status} - {response.text()}",
response.status,
)
return response.json()
async def search(
self,
query: str = "",
filter_obj: Optional[dict] = None,
sort: Optional[dict] = None,
page_size: int = 100,
) -> dict:
"""
Search for pages and databases.
Args:
query: Search query text.
filter_obj: Optional filter object.
sort: Optional sort object.
page_size: Number of results per page.
Returns:
Search results.
"""
url = "https://api.notion.com/v1/search"
payload: Dict[str, Any] = {"page_size": page_size}
if query:
payload["query"] = query
if filter_obj:
payload["filter"] = filter_obj
if sort:
payload["sort"] = sort
response = await self.requests.post(url, headers=self.headers, json=payload)
if not response.ok:
raise NotionAPIException(
f"Search failed: {response.status} - {response.text()}", response.status
)
return response.json()
# Conversion helper functions
def parse_rich_text(rich_text_array: List[dict]) -> str:
"""
Extract plain text from a Notion rich text array.
Args:
rich_text_array: Array of rich text objects from Notion.
Returns:
Plain text string.
"""
if not rich_text_array:
return ""
text_parts = []
for text_obj in rich_text_array:
if "plain_text" in text_obj:
text_parts.append(text_obj["plain_text"])
return "".join(text_parts)
def rich_text_to_markdown(rich_text_array: List[dict]) -> str:
"""
Convert Notion rich text array to markdown with formatting.
Args:
rich_text_array: Array of rich text objects from Notion.
Returns:
Markdown formatted string.
"""
if not rich_text_array:
return ""
markdown_parts = []
for text_obj in rich_text_array:
text = text_obj.get("plain_text", "")
annotations = text_obj.get("annotations", {})
# Apply formatting based on annotations
if annotations.get("code"):
text = f"`{text}`"
else:
if annotations.get("bold"):
text = f"**{text}**"
if annotations.get("italic"):
text = f"*{text}*"
if annotations.get("strikethrough"):
text = f"~~{text}~~"
if annotations.get("underline"):
text = f"<u>{text}</u>"
# Handle links
if text_obj.get("href"):
text = f"[{text}]({text_obj['href']})"
markdown_parts.append(text)
return "".join(markdown_parts)
def block_to_markdown(block: dict, indent_level: int = 0) -> str:
"""
Convert a single Notion block to markdown.
Args:
block: Block object from Notion API.
indent_level: Current indentation level for nested blocks.
Returns:
Markdown string representation of the block.
"""
block_type = block.get("type")
indent = " " * indent_level
markdown_lines = []
# Handle different block types
if block_type == "paragraph":
text = rich_text_to_markdown(block["paragraph"].get("rich_text", []))
if text:
markdown_lines.append(f"{indent}{text}")
elif block_type == "heading_1":
text = parse_rich_text(block["heading_1"].get("rich_text", []))
markdown_lines.append(f"{indent}# {text}")
elif block_type == "heading_2":
text = parse_rich_text(block["heading_2"].get("rich_text", []))
markdown_lines.append(f"{indent}## {text}")
elif block_type == "heading_3":
text = parse_rich_text(block["heading_3"].get("rich_text", []))
markdown_lines.append(f"{indent}### {text}")
elif block_type == "bulleted_list_item":
text = rich_text_to_markdown(block["bulleted_list_item"].get("rich_text", []))
markdown_lines.append(f"{indent}- {text}")
elif block_type == "numbered_list_item":
text = rich_text_to_markdown(block["numbered_list_item"].get("rich_text", []))
# Note: This is simplified - proper numbering would need context
markdown_lines.append(f"{indent}1. {text}")
elif block_type == "to_do":
text = rich_text_to_markdown(block["to_do"].get("rich_text", []))
checked = "x" if block["to_do"].get("checked") else " "
markdown_lines.append(f"{indent}- [{checked}] {text}")
elif block_type == "toggle":
text = rich_text_to_markdown(block["toggle"].get("rich_text", []))
markdown_lines.append(f"{indent}<details>")
markdown_lines.append(f"{indent}<summary>{text}</summary>")
markdown_lines.append(f"{indent}")
# Process children if they exist
if block.get("children"):
for child in block["children"]:
child_markdown = block_to_markdown(child, indent_level + 1)
if child_markdown:
markdown_lines.append(child_markdown)
markdown_lines.append(f"{indent}</details>")
elif block_type == "code":
code = parse_rich_text(block["code"].get("rich_text", []))
language = block["code"].get("language", "")
markdown_lines.append(f"{indent}```{language}")
markdown_lines.append(f"{indent}{code}")
markdown_lines.append(f"{indent}```")
elif block_type == "quote":
text = rich_text_to_markdown(block["quote"].get("rich_text", []))
markdown_lines.append(f"{indent}> {text}")
elif block_type == "divider":
markdown_lines.append(f"{indent}---")
elif block_type == "image":
image = block["image"]
url = image.get("external", {}).get("url") or image.get("file", {}).get(
"url", ""
)
caption = parse_rich_text(image.get("caption", []))
alt_text = caption if caption else "Image"
markdown_lines.append(f"{indent}![{alt_text}]({url})")
if caption:
markdown_lines.append(f"{indent}*{caption}*")
elif block_type == "video":
video = block["video"]
url = video.get("external", {}).get("url") or video.get("file", {}).get(
"url", ""
)
caption = parse_rich_text(video.get("caption", []))
markdown_lines.append(f"{indent}[Video]({url})")
if caption:
markdown_lines.append(f"{indent}*{caption}*")
elif block_type == "file":
file = block["file"]
url = file.get("external", {}).get("url") or file.get("file", {}).get("url", "")
caption = parse_rich_text(file.get("caption", []))
name = caption if caption else "File"
markdown_lines.append(f"{indent}[{name}]({url})")
elif block_type == "bookmark":
url = block["bookmark"].get("url", "")
caption = parse_rich_text(block["bookmark"].get("caption", []))
markdown_lines.append(f"{indent}[{caption if caption else url}]({url})")
elif block_type == "equation":
expression = block["equation"].get("expression", "")
markdown_lines.append(f"{indent}$${expression}$$")
elif block_type == "callout":
text = rich_text_to_markdown(block["callout"].get("rich_text", []))
icon = block["callout"].get("icon", {})
if icon.get("emoji"):
markdown_lines.append(f"{indent}> {icon['emoji']} {text}")
else:
markdown_lines.append(f"{indent}> {text}")
elif block_type == "child_page":
title = block["child_page"].get("title", "Untitled")
markdown_lines.append(f"{indent}📄 [{title}](notion://page/{block['id']})")
elif block_type == "child_database":
title = block["child_database"].get("title", "Untitled Database")
markdown_lines.append(f"{indent}🗂️ [{title}](notion://database/{block['id']})")
elif block_type == "table":
# Tables are complex - for now just indicate there's a table
markdown_lines.append(
f"{indent}[Table with {block['table'].get('table_width', 0)} columns]"
)
elif block_type == "column_list":
# Process columns
if block.get("children"):
markdown_lines.append(f"{indent}<div style='display: flex'>")
for column in block["children"]:
markdown_lines.append(f"{indent}<div style='flex: 1'>")
if column.get("children"):
for child in column["children"]:
child_markdown = block_to_markdown(child, indent_level + 1)
if child_markdown:
markdown_lines.append(child_markdown)
markdown_lines.append(f"{indent}</div>")
markdown_lines.append(f"{indent}</div>")
# Handle children for blocks that haven't been processed yet
elif block.get("children") and block_type not in ["toggle", "column_list"]:
for child in block["children"]:
child_markdown = block_to_markdown(child, indent_level)
if child_markdown:
markdown_lines.append(child_markdown)
return "\n".join(markdown_lines) if markdown_lines else ""
def blocks_to_markdown(blocks: List[dict]) -> str:
"""
Convert a list of Notion blocks to a markdown document.
Args:
blocks: List of block objects from Notion API.
Returns:
Complete markdown document as a string.
"""
markdown_parts = []
for i, block in enumerate(blocks):
markdown = block_to_markdown(block)
if markdown:
markdown_parts.append(markdown)
# Add spacing between top-level blocks (except lists)
if i < len(blocks) - 1:
next_type = blocks[i + 1].get("type", "")
current_type = block.get("type", "")
# Don't add extra spacing between list items
list_types = {"bulleted_list_item", "numbered_list_item", "to_do"}
if not (current_type in list_types and next_type in list_types):
markdown_parts.append("")
return "\n".join(markdown_parts)
def extract_page_title(page: dict) -> str:
"""
Extract the title from a Notion page object.
Args:
page: Page object from Notion API.
Returns:
Page title as a string.
"""
properties = page.get("properties", {})
# Find the title property (it has type "title")
for prop_name, prop_value in properties.items():
if prop_value.get("type") == "title":
return parse_rich_text(prop_value.get("title", []))
return "Untitled"

View File

@@ -1,42 +0,0 @@
from typing import Literal
from pydantic import SecretStr
from backend.data.model import CredentialsField, CredentialsMetaInput, OAuth2Credentials
from backend.integrations.providers import ProviderName
from backend.util.settings import Secrets
secrets = Secrets()
NOTION_OAUTH_IS_CONFIGURED = bool(
secrets.notion_client_id and secrets.notion_client_secret
)
NotionCredentials = OAuth2Credentials
NotionCredentialsInput = CredentialsMetaInput[
Literal[ProviderName.NOTION], Literal["oauth2"]
]
def NotionCredentialsField() -> NotionCredentialsInput:
"""Creates a Notion OAuth2 credentials field."""
return CredentialsField(
description="Connect your Notion account. Ensure the pages/databases are shared with the integration."
)
# Test credentials for Notion OAuth2
TEST_CREDENTIALS = OAuth2Credentials(
id="01234567-89ab-cdef-0123-456789abcdef",
provider="notion",
access_token=SecretStr("test_access_token"),
title="Mock Notion OAuth",
scopes=["read_content", "insert_content", "update_content"],
username="testuser",
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}

View File

@@ -1,360 +0,0 @@
from __future__ import annotations
from typing import Any, Dict, List, Optional
from pydantic import model_validator
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import OAuth2Credentials, SchemaField
from ._api import NotionClient
from ._auth import (
NOTION_OAUTH_IS_CONFIGURED,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
NotionCredentialsField,
NotionCredentialsInput,
)
class NotionCreatePageBlock(Block):
"""Create a new page in Notion with content."""
class Input(BlockSchema):
credentials: NotionCredentialsInput = NotionCredentialsField()
parent_page_id: Optional[str] = SchemaField(
description="Parent page ID to create the page under. Either this OR parent_database_id is required.",
default=None,
)
parent_database_id: Optional[str] = SchemaField(
description="Parent database ID to create the page in. Either this OR parent_page_id is required.",
default=None,
)
title: str = SchemaField(
description="Title of the new page",
)
content: Optional[str] = SchemaField(
description="Content for the page. Can be plain text or markdown - will be converted to Notion blocks.",
default=None,
)
properties: Optional[Dict[str, Any]] = SchemaField(
description="Additional properties for database pages (e.g., {'Status': 'In Progress', 'Priority': 'High'})",
default=None,
)
icon_emoji: Optional[str] = SchemaField(
description="Emoji to use as the page icon (e.g., '📄', '🚀')", default=None
)
@model_validator(mode="after")
def validate_parent(self):
"""Ensure either parent_page_id or parent_database_id is provided."""
if not self.parent_page_id and not self.parent_database_id:
raise ValueError(
"Either parent_page_id or parent_database_id must be provided"
)
if self.parent_page_id and self.parent_database_id:
raise ValueError(
"Only one of parent_page_id or parent_database_id should be provided, not both"
)
return self
class Output(BlockSchema):
page_id: str = SchemaField(description="ID of the created page.")
page_url: str = SchemaField(description="URL of the created page.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="c15febe0-66ce-4c6f-aebd-5ab351653804",
description="Create a new page in Notion. Requires EITHER a parent_page_id OR parent_database_id. Supports markdown content.",
categories={BlockCategory.PRODUCTIVITY},
input_schema=NotionCreatePageBlock.Input,
output_schema=NotionCreatePageBlock.Output,
disabled=not NOTION_OAUTH_IS_CONFIGURED,
test_input={
"parent_page_id": "00000000-0000-0000-0000-000000000000",
"title": "Test Page",
"content": "This is test content.",
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("page_id", "12345678-1234-1234-1234-123456789012"),
(
"page_url",
"https://notion.so/Test-Page-12345678123412341234123456789012",
),
],
test_credentials=TEST_CREDENTIALS,
test_mock={
"create_page": lambda *args, **kwargs: (
"12345678-1234-1234-1234-123456789012",
"https://notion.so/Test-Page-12345678123412341234123456789012",
)
},
)
@staticmethod
def _markdown_to_blocks(content: str) -> List[dict]:
"""Convert markdown content to Notion block objects."""
if not content:
return []
blocks = []
lines = content.split("\n")
i = 0
while i < len(lines):
line = lines[i]
# Skip empty lines
if not line.strip():
i += 1
continue
# Headings
if line.startswith("### "):
blocks.append(
{
"type": "heading_3",
"heading_3": {
"rich_text": [
{"type": "text", "text": {"content": line[4:].strip()}}
]
},
}
)
elif line.startswith("## "):
blocks.append(
{
"type": "heading_2",
"heading_2": {
"rich_text": [
{"type": "text", "text": {"content": line[3:].strip()}}
]
},
}
)
elif line.startswith("# "):
blocks.append(
{
"type": "heading_1",
"heading_1": {
"rich_text": [
{"type": "text", "text": {"content": line[2:].strip()}}
]
},
}
)
# Bullet points
elif line.strip().startswith("- "):
blocks.append(
{
"type": "bulleted_list_item",
"bulleted_list_item": {
"rich_text": [
{
"type": "text",
"text": {"content": line.strip()[2:].strip()},
}
]
},
}
)
# Numbered list
elif line.strip() and line.strip()[0].isdigit() and ". " in line:
content_start = line.find(". ") + 2
blocks.append(
{
"type": "numbered_list_item",
"numbered_list_item": {
"rich_text": [
{
"type": "text",
"text": {"content": line[content_start:].strip()},
}
]
},
}
)
# Code block
elif line.strip().startswith("```"):
code_lines = []
language = line[3:].strip() or "plain text"
i += 1
while i < len(lines) and not lines[i].strip().startswith("```"):
code_lines.append(lines[i])
i += 1
blocks.append(
{
"type": "code",
"code": {
"rich_text": [
{
"type": "text",
"text": {"content": "\n".join(code_lines)},
}
],
"language": language,
},
}
)
# Quote
elif line.strip().startswith("> "):
blocks.append(
{
"type": "quote",
"quote": {
"rich_text": [
{
"type": "text",
"text": {"content": line.strip()[2:].strip()},
}
]
},
}
)
# Horizontal rule
elif line.strip() in ["---", "***", "___"]:
blocks.append({"type": "divider", "divider": {}})
# Regular paragraph
else:
# Parse for basic markdown formatting
text_content = line.strip()
rich_text = []
# Simple bold/italic parsing (this is simplified)
if "**" in text_content or "*" in text_content:
# For now, just pass as plain text
# A full implementation would parse and create proper annotations
rich_text = [{"type": "text", "text": {"content": text_content}}]
else:
rich_text = [{"type": "text", "text": {"content": text_content}}]
blocks.append(
{"type": "paragraph", "paragraph": {"rich_text": rich_text}}
)
i += 1
return blocks
@staticmethod
def _build_properties(
title: str, additional_properties: Optional[Dict[str, Any]] = None
) -> Dict[str, Any]:
"""Build properties object for page creation."""
properties: Dict[str, Any] = {
"title": {"title": [{"type": "text", "text": {"content": title}}]}
}
if additional_properties:
for key, value in additional_properties.items():
if key.lower() == "title":
continue # Skip title as we already have it
# Try to intelligently map property types
if isinstance(value, bool):
properties[key] = {"checkbox": value}
elif isinstance(value, (int, float)):
properties[key] = {"number": value}
elif isinstance(value, list):
# Assume multi-select
properties[key] = {
"multi_select": [{"name": str(item)} for item in value]
}
elif isinstance(value, str):
# Could be select, rich_text, or other types
# For simplicity, try common patterns
if key.lower() in ["status", "priority", "type", "category"]:
properties[key] = {"select": {"name": value}}
elif key.lower() in ["url", "link"]:
properties[key] = {"url": value}
elif key.lower() in ["email"]:
properties[key] = {"email": value}
else:
properties[key] = {
"rich_text": [{"type": "text", "text": {"content": value}}]
}
return properties
@staticmethod
async def create_page(
credentials: OAuth2Credentials,
title: str,
parent_page_id: Optional[str] = None,
parent_database_id: Optional[str] = None,
content: Optional[str] = None,
properties: Optional[Dict[str, Any]] = None,
icon_emoji: Optional[str] = None,
) -> tuple[str, str]:
"""
Create a new Notion page.
Returns:
Tuple of (page_id, page_url)
"""
if not parent_page_id and not parent_database_id:
raise ValueError(
"Either parent_page_id or parent_database_id must be provided"
)
if parent_page_id and parent_database_id:
raise ValueError(
"Only one of parent_page_id or parent_database_id should be provided, not both"
)
client = NotionClient(credentials)
# Build parent object
if parent_page_id:
parent = {"type": "page_id", "page_id": parent_page_id}
else:
parent = {"type": "database_id", "database_id": parent_database_id}
# Build properties
page_properties = NotionCreatePageBlock._build_properties(title, properties)
# Convert content to blocks if provided
children = None
if content:
children = NotionCreatePageBlock._markdown_to_blocks(content)
# Build icon if provided
icon = None
if icon_emoji:
icon = {"type": "emoji", "emoji": icon_emoji}
# Create the page
result = await client.create_page(
parent=parent, properties=page_properties, children=children, icon=icon
)
page_id = result.get("id", "")
page_url = result.get("url", "")
if not page_id or not page_url:
raise ValueError("Failed to get page ID or URL from Notion response")
return page_id, page_url
async def run(
self,
input_data: Input,
*,
credentials: OAuth2Credentials,
**kwargs,
) -> BlockOutput:
try:
page_id, page_url = await self.create_page(
credentials,
input_data.title,
input_data.parent_page_id,
input_data.parent_database_id,
input_data.content,
input_data.properties,
input_data.icon_emoji,
)
yield "page_id", page_id
yield "page_url", page_url
except Exception as e:
yield "error", str(e) if str(e) else "Unknown error"

View File

@@ -1,285 +0,0 @@
from __future__ import annotations
from typing import Any, Dict, List, Optional
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import OAuth2Credentials, SchemaField
from ._api import NotionClient, parse_rich_text
from ._auth import (
NOTION_OAUTH_IS_CONFIGURED,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
NotionCredentialsField,
NotionCredentialsInput,
)
class NotionReadDatabaseBlock(Block):
"""Query a Notion database and retrieve entries with their properties."""
class Input(BlockSchema):
credentials: NotionCredentialsInput = NotionCredentialsField()
database_id: str = SchemaField(
description="Notion database ID. Must be accessible by the connected integration.",
)
filter_property: Optional[str] = SchemaField(
description="Property name to filter by (e.g., 'Status', 'Priority')",
default=None,
)
filter_value: Optional[str] = SchemaField(
description="Value to filter for in the specified property", default=None
)
sort_property: Optional[str] = SchemaField(
description="Property name to sort by", default=None
)
sort_direction: Optional[str] = SchemaField(
description="Sort direction: 'ascending' or 'descending'",
default="ascending",
)
limit: int = SchemaField(
description="Maximum number of entries to retrieve",
default=100,
ge=1,
le=100,
)
class Output(BlockSchema):
entries: List[Dict[str, Any]] = SchemaField(
description="List of database entries with their properties."
)
entry: Dict[str, Any] = SchemaField(
description="Individual database entry (yields one per entry found)."
)
entry_ids: List[str] = SchemaField(
description="List of entry IDs for batch operations."
)
entry_id: str = SchemaField(
description="Individual entry ID (yields one per entry found)."
)
count: int = SchemaField(description="Number of entries retrieved.")
database_title: str = SchemaField(description="Title of the database.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="fcd53135-88c9-4ba3-be50-cc6936286e6c",
description="Query a Notion database with optional filtering and sorting, returning structured entries.",
categories={BlockCategory.PRODUCTIVITY},
input_schema=NotionReadDatabaseBlock.Input,
output_schema=NotionReadDatabaseBlock.Output,
disabled=not NOTION_OAUTH_IS_CONFIGURED,
test_input={
"database_id": "00000000-0000-0000-0000-000000000000",
"limit": 10,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
(
"entries",
[{"Name": "Test Entry", "Status": "Active", "_id": "test-123"}],
),
("entry_ids", ["test-123"]),
(
"entry",
{"Name": "Test Entry", "Status": "Active", "_id": "test-123"},
),
("entry_id", "test-123"),
("count", 1),
("database_title", "Test Database"),
],
test_credentials=TEST_CREDENTIALS,
test_mock={
"query_database": lambda *args, **kwargs: (
[{"Name": "Test Entry", "Status": "Active", "_id": "test-123"}],
1,
"Test Database",
)
},
)
@staticmethod
def _parse_property_value(prop: dict) -> Any:
"""Parse a Notion property value into a simple Python type."""
prop_type = prop.get("type")
if prop_type == "title":
return parse_rich_text(prop.get("title", []))
elif prop_type == "rich_text":
return parse_rich_text(prop.get("rich_text", []))
elif prop_type == "number":
return prop.get("number")
elif prop_type == "select":
select = prop.get("select")
return select.get("name") if select else None
elif prop_type == "multi_select":
return [item.get("name") for item in prop.get("multi_select", [])]
elif prop_type == "date":
date = prop.get("date")
if date:
return date.get("start")
return None
elif prop_type == "checkbox":
return prop.get("checkbox", False)
elif prop_type == "url":
return prop.get("url")
elif prop_type == "email":
return prop.get("email")
elif prop_type == "phone_number":
return prop.get("phone_number")
elif prop_type == "people":
return [
person.get("name", person.get("id"))
for person in prop.get("people", [])
]
elif prop_type == "files":
files = prop.get("files", [])
return [
f.get(
"name",
f.get("external", {}).get("url", f.get("file", {}).get("url")),
)
for f in files
]
elif prop_type == "relation":
return [rel.get("id") for rel in prop.get("relation", [])]
elif prop_type == "formula":
formula = prop.get("formula", {})
return formula.get(formula.get("type"))
elif prop_type == "rollup":
rollup = prop.get("rollup", {})
return rollup.get(rollup.get("type"))
elif prop_type == "created_time":
return prop.get("created_time")
elif prop_type == "created_by":
return prop.get("created_by", {}).get(
"name", prop.get("created_by", {}).get("id")
)
elif prop_type == "last_edited_time":
return prop.get("last_edited_time")
elif prop_type == "last_edited_by":
return prop.get("last_edited_by", {}).get(
"name", prop.get("last_edited_by", {}).get("id")
)
else:
# Return the raw value for unknown types
return prop
@staticmethod
def _build_filter(property_name: str, value: str) -> dict:
"""Build a simple filter object for a property."""
# This is a simplified filter - in reality, you'd need to know the property type
# For now, we'll try common filter types
return {
"or": [
{"property": property_name, "rich_text": {"contains": value}},
{"property": property_name, "title": {"contains": value}},
{"property": property_name, "select": {"equals": value}},
{"property": property_name, "multi_select": {"contains": value}},
]
}
@staticmethod
async def query_database(
credentials: OAuth2Credentials,
database_id: str,
filter_property: Optional[str] = None,
filter_value: Optional[str] = None,
sort_property: Optional[str] = None,
sort_direction: str = "ascending",
limit: int = 100,
) -> tuple[List[Dict[str, Any]], int, str]:
"""
Query a Notion database and parse the results.
Returns:
Tuple of (entries_list, count, database_title)
"""
client = NotionClient(credentials)
# Build filter if specified
filter_obj = None
if filter_property and filter_value:
filter_obj = NotionReadDatabaseBlock._build_filter(
filter_property, filter_value
)
# Build sorts if specified
sorts = None
if sort_property:
sorts = [{"property": sort_property, "direction": sort_direction}]
# Query the database
result = await client.query_database(
database_id, filter_obj=filter_obj, sorts=sorts, page_size=limit
)
# Parse the entries
entries = []
for page in result.get("results", []):
entry = {}
properties = page.get("properties", {})
for prop_name, prop_value in properties.items():
entry[prop_name] = NotionReadDatabaseBlock._parse_property_value(
prop_value
)
# Add metadata
entry["_id"] = page.get("id")
entry["_url"] = page.get("url")
entry["_created_time"] = page.get("created_time")
entry["_last_edited_time"] = page.get("last_edited_time")
entries.append(entry)
# Get database title (we need to make a separate call for this)
try:
database_url = f"https://api.notion.com/v1/databases/{database_id}"
db_response = await client.requests.get(
database_url, headers=client.headers
)
if db_response.ok:
db_data = db_response.json()
db_title = parse_rich_text(db_data.get("title", []))
else:
db_title = "Unknown Database"
except Exception:
db_title = "Unknown Database"
return entries, len(entries), db_title
async def run(
self,
input_data: Input,
*,
credentials: OAuth2Credentials,
**kwargs,
) -> BlockOutput:
try:
entries, count, db_title = await self.query_database(
credentials,
input_data.database_id,
input_data.filter_property,
input_data.filter_value,
input_data.sort_property,
input_data.sort_direction or "ascending",
input_data.limit,
)
# Yield the complete list for batch operations
yield "entries", entries
# Extract and yield IDs as a list for batch operations
entry_ids = [entry["_id"] for entry in entries if "_id" in entry]
yield "entry_ids", entry_ids
# Yield each individual entry and its ID for single connections
for entry in entries:
yield "entry", entry
if "_id" in entry:
yield "entry_id", entry["_id"]
yield "count", count
yield "database_title", db_title
except Exception as e:
yield "error", str(e) if str(e) else "Unknown error"

View File

@@ -1,64 +0,0 @@
from __future__ import annotations
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import OAuth2Credentials, SchemaField
from ._api import NotionClient
from ._auth import (
NOTION_OAUTH_IS_CONFIGURED,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
NotionCredentialsField,
NotionCredentialsInput,
)
class NotionReadPageBlock(Block):
"""Read a Notion page by ID and return its raw JSON."""
class Input(BlockSchema):
credentials: NotionCredentialsInput = NotionCredentialsField()
page_id: str = SchemaField(
description="Notion page ID. Must be accessible by the connected integration. You can get this from the page URL notion.so/A-Page-586edd711467478da59fe3ce29a1ffab would be 586edd711467478da59fe35e29a1ffab",
)
class Output(BlockSchema):
page: dict = SchemaField(description="Raw Notion page JSON.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="5246cc1d-34b7-452b-8fc5-3fb25fd8f542",
description="Read a Notion page by its ID and return its raw JSON.",
categories={BlockCategory.PRODUCTIVITY},
input_schema=NotionReadPageBlock.Input,
output_schema=NotionReadPageBlock.Output,
disabled=not NOTION_OAUTH_IS_CONFIGURED,
test_input={
"page_id": "00000000-0000-0000-0000-000000000000",
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[("page", dict)],
test_credentials=TEST_CREDENTIALS,
test_mock={
"get_page": lambda *args, **kwargs: {"object": "page", "id": "mocked"}
},
)
@staticmethod
async def get_page(credentials: OAuth2Credentials, page_id: str) -> dict:
client = NotionClient(credentials)
return await client.get_page(page_id)
async def run(
self,
input_data: Input,
*,
credentials: OAuth2Credentials,
**kwargs,
) -> BlockOutput:
try:
page = await self.get_page(credentials, input_data.page_id)
yield "page", page
except Exception as e:
yield "error", str(e) if str(e) else "Unknown error"

View File

@@ -1,109 +0,0 @@
from __future__ import annotations
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import OAuth2Credentials, SchemaField
from ._api import NotionClient, blocks_to_markdown, extract_page_title
from ._auth import (
NOTION_OAUTH_IS_CONFIGURED,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
NotionCredentialsField,
NotionCredentialsInput,
)
class NotionReadPageMarkdownBlock(Block):
"""Read a Notion page and convert it to clean Markdown format."""
class Input(BlockSchema):
credentials: NotionCredentialsInput = NotionCredentialsField()
page_id: str = SchemaField(
description="Notion page ID. Must be accessible by the connected integration. You can get this from the page URL notion.so/A-Page-586edd711467478da59fe35e29a1ffab would be 586edd711467478da59fe35e29a1ffab",
)
include_title: bool = SchemaField(
description="Whether to include the page title as a header in the markdown",
default=True,
)
class Output(BlockSchema):
markdown: str = SchemaField(description="Page content in Markdown format.")
title: str = SchemaField(description="Page title.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="d1312c4d-fae2-4e70-893d-f4d07cce1d4e",
description="Read a Notion page and convert it to Markdown format with proper formatting for headings, lists, links, and rich text.",
categories={BlockCategory.PRODUCTIVITY},
input_schema=NotionReadPageMarkdownBlock.Input,
output_schema=NotionReadPageMarkdownBlock.Output,
disabled=not NOTION_OAUTH_IS_CONFIGURED,
test_input={
"page_id": "00000000-0000-0000-0000-000000000000",
"include_title": True,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("markdown", "# Test Page\n\nThis is test content."),
("title", "Test Page"),
],
test_credentials=TEST_CREDENTIALS,
test_mock={
"get_page_markdown": lambda *args, **kwargs: (
"# Test Page\n\nThis is test content.",
"Test Page",
)
},
)
@staticmethod
async def get_page_markdown(
credentials: OAuth2Credentials, page_id: str, include_title: bool = True
) -> tuple[str, str]:
"""
Get a Notion page and convert it to markdown.
Args:
credentials: OAuth2 credentials for Notion.
page_id: The ID of the page to fetch.
include_title: Whether to include the page title in the markdown.
Returns:
Tuple of (markdown_content, title)
"""
client = NotionClient(credentials)
# Get page metadata
page = await client.get_page(page_id)
title = extract_page_title(page)
# Get all blocks from the page
blocks = await client.get_blocks(page_id, recursive=True)
# Convert blocks to markdown
content_markdown = blocks_to_markdown(blocks)
# Combine title and content if requested
if include_title and title:
full_markdown = f"# {title}\n\n{content_markdown}"
else:
full_markdown = content_markdown
return full_markdown, title
async def run(
self,
input_data: Input,
*,
credentials: OAuth2Credentials,
**kwargs,
) -> BlockOutput:
try:
markdown, title = await self.get_page_markdown(
credentials, input_data.page_id, input_data.include_title
)
yield "markdown", markdown
yield "title", title
except Exception as e:
yield "error", str(e) if str(e) else "Unknown error"

View File

@@ -1,225 +0,0 @@
from __future__ import annotations
from typing import List, Optional
from pydantic import BaseModel
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import OAuth2Credentials, SchemaField
from ._api import NotionClient, extract_page_title, parse_rich_text
from ._auth import (
NOTION_OAUTH_IS_CONFIGURED,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
NotionCredentialsField,
NotionCredentialsInput,
)
class NotionSearchResult(BaseModel):
"""Typed model for Notion search results."""
id: str
type: str # 'page' or 'database'
title: str
url: str
created_time: Optional[str] = None
last_edited_time: Optional[str] = None
parent_type: Optional[str] = None # 'page', 'database', or 'workspace'
parent_id: Optional[str] = None
icon: Optional[str] = None # emoji icon if present
is_inline: Optional[bool] = None # for databases only
class NotionSearchBlock(Block):
"""Search across your Notion workspace for pages and databases."""
class Input(BlockSchema):
credentials: NotionCredentialsInput = NotionCredentialsField()
query: str = SchemaField(
description="Search query text. Leave empty to get all accessible pages/databases.",
default="",
)
filter_type: Optional[str] = SchemaField(
description="Filter results by type: 'page' or 'database'. Leave empty for both.",
default=None,
)
limit: int = SchemaField(
description="Maximum number of results to return", default=20, ge=1, le=100
)
class Output(BlockSchema):
results: List[NotionSearchResult] = SchemaField(
description="List of search results with title, type, URL, and metadata."
)
result: NotionSearchResult = SchemaField(
description="Individual search result (yields one per result found)."
)
result_ids: List[str] = SchemaField(
description="List of IDs from search results for batch operations."
)
count: int = SchemaField(description="Number of results found.")
error: str = SchemaField(description="Error message if the operation failed.")
def __init__(self):
super().__init__(
id="313515dd-9848-46ea-9cd6-3c627c892c56",
description="Search your Notion workspace for pages and databases by text query.",
categories={BlockCategory.PRODUCTIVITY, BlockCategory.SEARCH},
input_schema=NotionSearchBlock.Input,
output_schema=NotionSearchBlock.Output,
disabled=not NOTION_OAUTH_IS_CONFIGURED,
test_input={
"query": "project",
"limit": 5,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
(
"results",
[
NotionSearchResult(
id="123",
type="page",
title="Project Plan",
url="https://notion.so/Project-Plan-123",
)
],
),
("result_ids", ["123"]),
(
"result",
NotionSearchResult(
id="123",
type="page",
title="Project Plan",
url="https://notion.so/Project-Plan-123",
),
),
("count", 1),
],
test_credentials=TEST_CREDENTIALS,
test_mock={
"search_workspace": lambda *args, **kwargs: (
[
NotionSearchResult(
id="123",
type="page",
title="Project Plan",
url="https://notion.so/Project-Plan-123",
)
],
1,
)
},
)
@staticmethod
async def search_workspace(
credentials: OAuth2Credentials,
query: str = "",
filter_type: Optional[str] = None,
limit: int = 20,
) -> tuple[List[NotionSearchResult], int]:
"""
Search the Notion workspace.
Returns:
Tuple of (results_list, count)
"""
client = NotionClient(credentials)
# Build filter if type is specified
filter_obj = None
if filter_type:
filter_obj = {"property": "object", "value": filter_type}
# Execute search
response = await client.search(
query=query, filter_obj=filter_obj, page_size=limit
)
# Parse results
results = []
for item in response.get("results", []):
result_data = {
"id": item.get("id", ""),
"type": item.get("object", ""),
"url": item.get("url", ""),
"created_time": item.get("created_time"),
"last_edited_time": item.get("last_edited_time"),
"title": "", # Will be set below
}
# Extract title based on type
if item.get("object") == "page":
# For pages, get the title from properties
result_data["title"] = extract_page_title(item)
# Add parent info
parent = item.get("parent", {})
if parent.get("type") == "page_id":
result_data["parent_type"] = "page"
result_data["parent_id"] = parent.get("page_id")
elif parent.get("type") == "database_id":
result_data["parent_type"] = "database"
result_data["parent_id"] = parent.get("database_id")
elif parent.get("type") == "workspace":
result_data["parent_type"] = "workspace"
# Add icon if present
icon = item.get("icon")
if icon and icon.get("type") == "emoji":
result_data["icon"] = icon.get("emoji")
elif item.get("object") == "database":
# For databases, get title from the title array
result_data["title"] = parse_rich_text(item.get("title", []))
# Add database-specific metadata
result_data["is_inline"] = item.get("is_inline", False)
# Add parent info
parent = item.get("parent", {})
if parent.get("type") == "page_id":
result_data["parent_type"] = "page"
result_data["parent_id"] = parent.get("page_id")
elif parent.get("type") == "workspace":
result_data["parent_type"] = "workspace"
# Add icon if present
icon = item.get("icon")
if icon and icon.get("type") == "emoji":
result_data["icon"] = icon.get("emoji")
results.append(NotionSearchResult(**result_data))
return results, len(results)
async def run(
self,
input_data: Input,
*,
credentials: OAuth2Credentials,
**kwargs,
) -> BlockOutput:
try:
results, count = await self.search_workspace(
credentials, input_data.query, input_data.filter_type, input_data.limit
)
# Yield the complete list for batch operations
yield "results", results
# Extract and yield IDs as a list for batch operations
result_ids = [r.id for r in results]
yield "result_ids", result_ids
# Yield each individual result for single connections
for result in results:
yield "result", result
yield "count", count
except Exception as e:
yield "error", str(e) if str(e) else "Unknown error"

View File

@@ -1,226 +0,0 @@
# flake8: noqa: E501
import logging
from enum import Enum
from typing import Any, Literal
import openai
from pydantic import SecretStr
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
NodeExecutionStats,
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.logging import TruncatedLogger
logger = TruncatedLogger(logging.getLogger(__name__), "[Perplexity-Block]")
class PerplexityModel(str, Enum):
"""Perplexity sonar models available via OpenRouter"""
SONAR = "perplexity/sonar"
SONAR_PRO = "perplexity/sonar-pro"
SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
PerplexityCredentials = CredentialsMetaInput[
Literal[ProviderName.OPEN_ROUTER], Literal["api_key"]
]
TEST_CREDENTIALS = APIKeyCredentials(
id="test-perplexity-creds",
provider="open_router",
api_key=SecretStr("mock-openrouter-api-key"),
title="Mock OpenRouter API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
def PerplexityCredentialsField() -> PerplexityCredentials:
return CredentialsField(
description="OpenRouter API key for accessing Perplexity models.",
)
class PerplexityBlock(Block):
class Input(BlockSchema):
prompt: str = SchemaField(
description="The query to send to the Perplexity model.",
placeholder="Enter your query here...",
)
model: PerplexityModel = SchemaField(
title="Perplexity Model",
default=PerplexityModel.SONAR,
description="The Perplexity sonar model to use.",
advanced=False,
)
credentials: PerplexityCredentials = PerplexityCredentialsField()
system_prompt: str = SchemaField(
title="System Prompt",
default="",
description="Optional system prompt to provide context to the model.",
advanced=True,
)
max_tokens: int | None = SchemaField(
advanced=True,
default=None,
description="The maximum number of tokens to generate.",
)
class Output(BlockSchema):
response: str = SchemaField(
description="The response from the Perplexity model."
)
annotations: list[dict[str, Any]] = SchemaField(
description="List of URL citations and annotations from the response."
)
error: str = SchemaField(description="Error message if the API call failed.")
def __init__(self):
super().__init__(
id="c8a5f2e9-8b3d-4a7e-9f6c-1d5e3c9b7a4f",
description="Query Perplexity's sonar models with real-time web search capabilities and receive annotated responses with source citations.",
categories={BlockCategory.AI, BlockCategory.SEARCH},
input_schema=PerplexityBlock.Input,
output_schema=PerplexityBlock.Output,
test_input={
"prompt": "What is the weather today?",
"model": PerplexityModel.SONAR,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("response", "The weather varies by location..."),
("annotations", list),
],
test_mock={
"call_perplexity": lambda *args, **kwargs: {
"response": "The weather varies by location...",
"annotations": [
{
"type": "url_citation",
"url_citation": {
"title": "weather.com",
"url": "https://weather.com",
},
}
],
}
},
)
self.execution_stats = NodeExecutionStats()
async def call_perplexity(
self,
credentials: APIKeyCredentials,
model: PerplexityModel,
prompt: str,
system_prompt: str = "",
max_tokens: int | None = None,
) -> dict[str, Any]:
"""Call Perplexity via OpenRouter and extract annotations."""
client = openai.AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=credentials.api_key.get_secret_value(),
)
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": prompt})
try:
response = await client.chat.completions.create(
extra_headers={
"HTTP-Referer": "https://agpt.co",
"X-Title": "AutoGPT",
},
model=model.value,
messages=messages,
max_tokens=max_tokens,
)
if not response.choices:
raise ValueError("No response from Perplexity via OpenRouter.")
# Extract the response content
response_content = response.choices[0].message.content or ""
# Extract annotations if present in the message
annotations = []
if hasattr(response.choices[0].message, "annotations"):
# If annotations are directly available
annotations = response.choices[0].message.annotations
else:
# Check if there's a raw response with annotations
raw = getattr(response.choices[0].message, "_raw_response", None)
if isinstance(raw, dict) and "annotations" in raw:
annotations = raw["annotations"]
if not annotations and hasattr(response, "model_extra"):
# Check model_extra for annotations
model_extra = response.model_extra
if isinstance(model_extra, dict):
# Check in choices
if "choices" in model_extra and len(model_extra["choices"]) > 0:
choice = model_extra["choices"][0]
if "message" in choice and "annotations" in choice["message"]:
annotations = choice["message"]["annotations"]
# Also check the raw response object for annotations
if not annotations:
raw = getattr(response, "_raw_response", None)
if isinstance(raw, dict):
# Check various possible locations for annotations
if "annotations" in raw:
annotations = raw["annotations"]
elif "choices" in raw and len(raw["choices"]) > 0:
choice = raw["choices"][0]
if "message" in choice and "annotations" in choice["message"]:
annotations = choice["message"]["annotations"]
# Update execution stats
if response.usage:
self.execution_stats.input_token_count = response.usage.prompt_tokens
self.execution_stats.output_token_count = (
response.usage.completion_tokens
)
return {"response": response_content, "annotations": annotations or []}
except Exception as e:
logger.error(f"Error calling Perplexity: {e}")
raise
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
logger.debug(f"Running Perplexity block with model: {input_data.model}")
try:
result = await self.call_perplexity(
credentials=credentials,
model=input_data.model,
prompt=input_data.prompt,
system_prompt=input_data.system_prompt,
max_tokens=input_data.max_tokens,
)
yield "response", result["response"]
yield "annotations", result["annotations"]
except Exception as e:
error_msg = f"Error calling Perplexity: {str(e)}"
logger.error(error_msg)
yield "error", error_msg

View File

@@ -1,5 +1,4 @@
import asyncio
import logging
from datetime import datetime, timedelta, timezone
from typing import Any
@@ -8,7 +7,6 @@ import pydantic
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.request import Requests
class RSSEntry(pydantic.BaseModel):
@@ -102,33 +100,8 @@ class ReadRSSFeedBlock(Block):
)
@staticmethod
async def parse_feed(url: str) -> dict[str, Any]:
# Security fix: Add protection against memory exhaustion attacks
MAX_FEED_SIZE = 10 * 1024 * 1024 # 10MB limit for RSS feeds
# Download feed content with size limit
try:
response = await Requests(raise_for_status=True).get(url)
# Check content length if available
content_length = response.headers.get("Content-Length")
if content_length and int(content_length) > MAX_FEED_SIZE:
raise ValueError(
f"Feed too large: {content_length} bytes exceeds {MAX_FEED_SIZE} limit"
)
# Get content with size limit
content = response.content
if len(content) > MAX_FEED_SIZE:
raise ValueError(f"Feed too large: exceeds {MAX_FEED_SIZE} byte limit")
# Parse with feedparser using the validated content
# feedparser has built-in protection against XML attacks
return feedparser.parse(content) # type: ignore
except Exception as e:
# Log error and return empty feed
logging.warning(f"Failed to parse RSS feed from {url}: {e}")
return {"entries": []}
def parse_feed(url: str) -> dict[str, Any]:
return feedparser.parse(url) # type: ignore
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
keep_going = True
@@ -138,7 +111,7 @@ class ReadRSSFeedBlock(Block):
while keep_going:
keep_going = input_data.run_continuously
feed = await self.parse_feed(input_data.rss_url)
feed = self.parse_feed(input_data.rss_url)
all_entries = []
for entry in feed["entries"]:

View File

@@ -13,11 +13,6 @@ from backend.data.block import (
BlockSchema,
BlockType,
)
from backend.data.dynamic_fields import (
extract_base_field_name,
get_dynamic_field_description,
is_dynamic_field,
)
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util import json
from backend.util.clients import get_database_manager_async_client
@@ -103,22 +98,6 @@ def _create_tool_response(call_id: str, output: Any) -> dict[str, Any]:
return {"role": "tool", "tool_call_id": call_id, "content": content}
def _convert_raw_response_to_dict(raw_response: Any) -> dict[str, Any]:
"""
Safely convert raw_response to dictionary format for conversation history.
Handles different response types from different LLM providers.
"""
if isinstance(raw_response, str):
# Ollama returns a string, convert to dict format
return {"role": "assistant", "content": raw_response}
elif isinstance(raw_response, dict):
# Already a dict (from tests or some providers)
return raw_response
else:
# OpenAI/Anthropic return objects, convert with json.to_dict
return json.to_dict(raw_response)
def get_pending_tool_calls(conversation_history: list[Any]) -> dict[str, int]:
"""
All the tool calls entry in the conversation history requires a response.
@@ -282,7 +261,6 @@ class SmartDecisionMakerBlock(Block):
@staticmethod
def cleanup(s: str):
"""Clean up block names for use as tool function names."""
return re.sub(r"[^a-zA-Z0-9_-]", "_", s).lower()
@staticmethod
@@ -310,66 +288,41 @@ class SmartDecisionMakerBlock(Block):
}
sink_block_input_schema = block.input_schema
properties = {}
field_mapping = {} # clean_name -> original_name
for link in links:
field_name = link.sink_name
is_dynamic = is_dynamic_field(field_name)
# Clean property key to ensure Anthropic API compatibility for ALL fields
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
field_mapping[clean_field_name] = field_name
sink_name = SmartDecisionMakerBlock.cleanup(link.sink_name)
if is_dynamic:
# For dynamic fields, use cleaned name but preserve original in description
properties[clean_field_name] = {
# Handle dynamic fields (e.g., values_#_*, items_$_*, etc.)
# These are fields that get merged by the executor into their base field
if (
"_#_" in link.sink_name
or "_$_" in link.sink_name
or "_@_" in link.sink_name
):
# For dynamic fields, provide a generic string schema
# The executor will handle merging these into the appropriate structure
properties[sink_name] = {
"type": "string",
"description": get_dynamic_field_description(field_name),
"description": f"Dynamic value for {link.sink_name}",
}
else:
# For regular fields, use the block's schema directly
# For regular fields, use the block's schema
try:
properties[clean_field_name] = (
sink_block_input_schema.get_field_schema(field_name)
properties[sink_name] = sink_block_input_schema.get_field_schema(
link.sink_name
)
except (KeyError, AttributeError):
# If field doesn't exist in schema, provide a generic one
properties[clean_field_name] = {
# If the field doesn't exist in the schema, provide a generic schema
properties[sink_name] = {
"type": "string",
"description": f"Value for {field_name}",
"description": f"Value for {link.sink_name}",
}
# Build the parameters schema using a single unified path
base_schema = block.input_schema.jsonschema()
base_required = set(base_schema.get("required", []))
# Compute required fields at the leaf level:
# - If a linked field is dynamic and its base is required in the block schema, require the leaf
# - If a linked field is regular and is required in the block schema, require the leaf
required_fields: set[str] = set()
for link in links:
field_name = link.sink_name
is_dynamic = is_dynamic_field(field_name)
# Always use cleaned field name for property key (Anthropic API compliance)
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
if is_dynamic:
base_name = extract_base_field_name(field_name)
if base_name in base_required:
required_fields.add(clean_field_name)
else:
if field_name in base_required:
required_fields.add(clean_field_name)
tool_function["parameters"] = {
"type": "object",
**block.input_schema.jsonschema(),
"properties": properties,
"additionalProperties": False,
"required": sorted(required_fields),
}
# Store field mapping for later use in output processing
tool_function["_field_mapping"] = field_mapping
return {"type": "function", "function": tool_function}
@staticmethod
@@ -413,12 +366,13 @@ class SmartDecisionMakerBlock(Block):
sink_block_properties = sink_block_input_schema.get("properties", {}).get(
link.sink_name, {}
)
sink_name = SmartDecisionMakerBlock.cleanup(link.sink_name)
description = (
sink_block_properties["description"]
if "description" in sink_block_properties
else f"The {link.sink_name} of the tool"
)
properties[link.sink_name] = {
properties[sink_name] = {
"type": "string",
"description": description,
"default": json.dumps(sink_block_properties.get("default", None)),
@@ -434,17 +388,24 @@ class SmartDecisionMakerBlock(Block):
return {"type": "function", "function": tool_function}
@staticmethod
async def _create_function_signature(
node_id: str,
) -> list[dict[str, Any]]:
async def _create_function_signature(node_id: str) -> list[dict[str, Any]]:
"""
Creates function signatures for connected tools.
Creates function signatures for tools linked to a specified node within a graph.
This method filters the graph links to identify those that are tools and are
connected to the given node_id. It then constructs function signatures for each
tool based on the metadata and input schema of the linked nodes.
Args:
node_id: The node_id for which to create function signatures.
Returns:
List of function signatures for tools
list[dict[str, Any]]: A list of dictionaries, each representing a function signature
for a tool, including its name, description, and parameters.
Raises:
ValueError: If no tool links are found for the specified node_id, or if a sink node
or its metadata cannot be found.
"""
db_client = get_database_manager_async_client()
tools = [
@@ -469,116 +430,20 @@ class SmartDecisionMakerBlock(Block):
raise ValueError(f"Sink node not found: {links[0].sink_id}")
if sink_node.block_id == AgentExecutorBlock().id:
tool_func = (
return_tool_functions.append(
await SmartDecisionMakerBlock._create_agent_function_signature(
sink_node, links
)
)
return_tool_functions.append(tool_func)
else:
tool_func = (
return_tool_functions.append(
await SmartDecisionMakerBlock._create_block_function_signature(
sink_node, links
)
)
return_tool_functions.append(tool_func)
return return_tool_functions
async def _attempt_llm_call_with_validation(
self,
credentials: llm.APIKeyCredentials,
input_data: Input,
current_prompt: list[dict],
tool_functions: list[dict[str, Any]],
):
"""
Attempt a single LLM call with tool validation.
Returns the response if successful, raises ValueError if validation fails.
"""
resp = await llm.llm_call(
credentials=credentials,
llm_model=input_data.model,
prompt=current_prompt,
max_tokens=input_data.max_tokens,
tools=tool_functions,
ollama_host=input_data.ollama_host,
parallel_tool_calls=input_data.multiple_tool_calls,
)
# Track LLM usage stats per call
self.merge_stats(
NodeExecutionStats(
input_token_count=resp.prompt_tokens,
output_token_count=resp.completion_tokens,
llm_call_count=1,
)
)
if not resp.tool_calls:
return resp
validation_errors_list: list[str] = []
for tool_call in resp.tool_calls:
tool_name = tool_call.function.name
try:
tool_args = json.loads(tool_call.function.arguments)
except Exception as e:
validation_errors_list.append(
f"Tool call '{tool_name}' has invalid JSON arguments: {e}"
)
continue
# Find the tool definition to get the expected arguments
tool_def = next(
(
tool
for tool in tool_functions
if tool["function"]["name"] == tool_name
),
None,
)
if tool_def is None and len(tool_functions) == 1:
tool_def = tool_functions[0]
# Get parameters schema from tool definition
if (
tool_def
and "function" in tool_def
and "parameters" in tool_def["function"]
):
parameters = tool_def["function"]["parameters"]
expected_args = parameters.get("properties", {})
required_params = set(parameters.get("required", []))
else:
expected_args = {arg: {} for arg in tool_args.keys()}
required_params = set()
# Validate tool call arguments
provided_args = set(tool_args.keys())
expected_args_set = set(expected_args.keys())
# Check for unexpected arguments (typos)
unexpected_args = provided_args - expected_args_set
# Only check for missing REQUIRED parameters
missing_required_args = required_params - provided_args
if unexpected_args or missing_required_args:
error_msg = f"Tool call '{tool_name}' has parameter errors:"
if unexpected_args:
error_msg += f" Unknown parameters: {sorted(unexpected_args)}."
if missing_required_args:
error_msg += f" Missing required parameters: {sorted(missing_required_args)}."
error_msg += f" Expected parameters: {sorted(expected_args_set)}."
if required_params:
error_msg += f" Required parameters: {sorted(required_params)}."
validation_errors_list.append(error_msg)
if validation_errors_list:
raise ValueError("; ".join(validation_errors_list))
return resp
async def run(
self,
input_data: Input,
@@ -601,19 +466,27 @@ class SmartDecisionMakerBlock(Block):
if pending_tool_calls and input_data.last_tool_output is None:
raise ValueError(f"Tool call requires an output for {pending_tool_calls}")
# Only assign the last tool output to the first pending tool call
tool_output = []
if pending_tool_calls and input_data.last_tool_output is not None:
# Get the first pending tool call ID
first_call_id = next(iter(pending_tool_calls.keys()))
tool_output.append(
_create_tool_response(first_call_id, input_data.last_tool_output)
)
# Add tool output to prompt right away
prompt.extend(tool_output)
# Check if there are still pending tool calls after handling the first one
remaining_pending_calls = get_pending_tool_calls(prompt)
# If there are still pending tool calls, yield the conversation and return early
if remaining_pending_calls:
yield "conversations", prompt
return
# Fallback on adding tool output in the conversation history as user prompt.
elif input_data.last_tool_output:
logger.error(
f"[SmartDecisionMakerBlock-node_exec_id={node_exec_id}] "
@@ -646,33 +519,25 @@ class SmartDecisionMakerBlock(Block):
):
prompt.append({"role": "user", "content": prefix + input_data.prompt})
current_prompt = list(prompt)
max_attempts = max(1, int(input_data.retry))
response = None
response = await llm.llm_call(
credentials=credentials,
llm_model=input_data.model,
prompt=prompt,
json_format=False,
max_tokens=input_data.max_tokens,
tools=tool_functions,
ollama_host=input_data.ollama_host,
parallel_tool_calls=input_data.multiple_tool_calls,
)
last_error = None
for attempt in range(max_attempts):
try:
response = await self._attempt_llm_call_with_validation(
credentials, input_data, current_prompt, tool_functions
)
break
except ValueError as e:
last_error = e
error_feedback = (
"Your tool call had parameter errors. Please fix the following issues and try again:\n"
+ f"- {str(e)}\n"
+ "\nPlease make sure to use the exact parameter names as specified in the function schema."
)
current_prompt = list(current_prompt) + [
{"role": "user", "content": error_feedback}
]
if response is None:
raise last_error or ValueError(
"Failed to get valid response after all retry attempts"
# Track LLM usage stats
self.merge_stats(
NodeExecutionStats(
input_token_count=response.prompt_tokens,
output_token_count=response.completion_tokens,
llm_call_count=1,
)
)
if not response.tool_calls:
yield "finished", response.response
@@ -682,6 +547,7 @@ class SmartDecisionMakerBlock(Block):
tool_name = tool_call.function.name
tool_args = json.loads(tool_call.function.arguments)
# Find the tool definition to get the expected arguments
tool_def = next(
(
tool
@@ -690,6 +556,7 @@ class SmartDecisionMakerBlock(Block):
),
None,
)
if (
tool_def
and "function" in tool_def
@@ -697,38 +564,20 @@ class SmartDecisionMakerBlock(Block):
):
expected_args = tool_def["function"]["parameters"].get("properties", {})
else:
expected_args = {arg: {} for arg in tool_args.keys()}
expected_args = tool_args.keys()
# Get field mapping from tool definition
field_mapping = (
tool_def.get("function", {}).get("_field_mapping", {})
if tool_def
else {}
)
for clean_arg_name in expected_args:
# arg_name is now always the cleaned field name (for Anthropic API compliance)
# Get the original field name from field mapping for proper emit key generation
original_field_name = field_mapping.get(clean_arg_name, clean_arg_name)
arg_value = tool_args.get(clean_arg_name)
sanitized_tool_name = self.cleanup(tool_name)
sanitized_arg_name = self.cleanup(original_field_name)
emit_key = f"tools_^_{sanitized_tool_name}_~_{sanitized_arg_name}"
logger.debug(
"[SmartDecisionMakerBlock|geid:%s|neid:%s] emit %s",
graph_exec_id,
node_exec_id,
emit_key,
)
yield emit_key, arg_value
# Yield provided arguments and None for missing ones
for arg_name in expected_args:
if arg_name in tool_args:
yield f"tools_^_{tool_name}_~_{arg_name}", tool_args[arg_name]
else:
yield f"tools_^_{tool_name}_~_{arg_name}", None
# Add reasoning to conversation history if available
if response.reasoning:
prompt.append(
{"role": "assistant", "content": f"[Reasoning]: {response.reasoning}"}
)
prompt.append(_convert_raw_response_to_dict(response.raw_response))
prompt.append(response.raw_response)
yield "conversations", prompt

View File

@@ -1,8 +0,0 @@
from backend.sdk import BlockCostType, ProviderBuilder
stagehand = (
ProviderBuilder("stagehand")
.with_api_key("STAGEHAND_API_KEY", "Stagehand API Key")
.with_base_cost(1, BlockCostType.RUN)
.build()
)

View File

@@ -1,401 +0,0 @@
import logging
import signal
import threading
import warnings
from contextlib import contextmanager
from enum import Enum
# Monkey patch Stagehands to prevent signal handling in worker threads
import stagehand.main
from stagehand import Stagehand
from backend.blocks.llm import (
MODEL_METADATA,
AICredentials,
AICredentialsField,
LlmModel,
ModelMetadata,
)
from backend.blocks.stagehand._config import stagehand as stagehand_provider
from backend.sdk import (
APIKeyCredentials,
Block,
BlockCategory,
BlockOutput,
BlockSchema,
CredentialsMetaInput,
SchemaField,
)
# Suppress false positive cleanup warning of litellm (a dependency of stagehand)
warnings.filterwarnings(
"ignore",
message="coroutine 'close_litellm_async_clients' was never awaited",
category=RuntimeWarning,
)
# Store the original method
original_register_signal_handlers = stagehand.main.Stagehand._register_signal_handlers
def safe_register_signal_handlers(self):
"""Only register signal handlers in the main thread"""
if threading.current_thread() is threading.main_thread():
original_register_signal_handlers(self)
else:
# Skip signal handling in worker threads
pass
# Replace the method
stagehand.main.Stagehand._register_signal_handlers = safe_register_signal_handlers
@contextmanager
def disable_signal_handling():
"""Context manager to temporarily disable signal handling"""
if threading.current_thread() is not threading.main_thread():
# In worker threads, temporarily replace signal.signal with a no-op
original_signal = signal.signal
def noop_signal(*args, **kwargs):
pass
signal.signal = noop_signal
try:
yield
finally:
signal.signal = original_signal
else:
# In main thread, don't modify anything
yield
logger = logging.getLogger(__name__)
class StagehandRecommendedLlmModel(str, Enum):
"""
This is subset of LLModel from autogpt_platform/backend/backend/blocks/llm.py
It contains only the models recommended by Stagehand
"""
# OpenAI
GPT41 = "gpt-4.1-2025-04-14"
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
# Anthropic
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
@property
def provider_name(self) -> str:
"""
Returns the provider name for the model in the required format for Stagehand:
provider/model_name
"""
model_metadata = MODEL_METADATA[LlmModel(self.value)]
model_name = self.value
if len(model_name.split("/")) == 1 and not self.value.startswith(
model_metadata.provider
):
assert (
model_metadata.provider != "open_router"
), "Logic failed and open_router provider attempted to be prepended to model name! in stagehand/_config.py"
model_name = f"{model_metadata.provider}/{model_name}"
logger.error(f"Model name: {model_name}")
return model_name
@property
def provider(self) -> str:
return MODEL_METADATA[LlmModel(self.value)].provider
@property
def metadata(self) -> ModelMetadata:
return MODEL_METADATA[LlmModel(self.value)]
@property
def context_window(self) -> int:
return MODEL_METADATA[LlmModel(self.value)].context_window
@property
def max_output_tokens(self) -> int | None:
return MODEL_METADATA[LlmModel(self.value)].max_output_tokens
class StagehandObserveBlock(Block):
class Input(BlockSchema):
# Browserbase credentials (Stagehand provider) or raw API key
stagehand_credentials: CredentialsMetaInput = (
stagehand_provider.credentials_field(
description="Stagehand/Browserbase API key"
)
)
browserbase_project_id: str = SchemaField(
description="Browserbase project ID (required if using Browserbase)",
)
# Model selection and credentials (provider-discriminated like llm.py)
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
url: str = SchemaField(
description="URL to navigate to.",
)
instruction: str = SchemaField(
description="Natural language description of elements or actions to discover.",
)
iframes: bool = SchemaField(
description="Whether to search within iframes. If True, Stagehand will search for actions within iframes.",
default=True,
)
domSettleTimeoutMs: int = SchemaField(
description="Timeout in milliseconds for DOM settlement.Wait longer for dynamic content",
default=45000,
)
class Output(BlockSchema):
selector: str = SchemaField(description="XPath selector to locate element.")
description: str = SchemaField(description="Human-readable description")
method: str | None = SchemaField(description="Suggested action method")
arguments: list[str] | None = SchemaField(
description="Additional action parameters"
)
def __init__(self):
super().__init__(
id="d3863944-0eaf-45c4-a0c9-63e0fe1ee8b9",
description="Find suggested actions for your workflows",
categories={BlockCategory.AI, BlockCategory.DEVELOPER_TOOLS},
input_schema=StagehandObserveBlock.Input,
output_schema=StagehandObserveBlock.Output,
)
async def run(
self,
input_data: Input,
*,
stagehand_credentials: APIKeyCredentials,
model_credentials: APIKeyCredentials,
**kwargs,
) -> BlockOutput:
logger.info(f"OBSERVE: Stagehand credentials: {stagehand_credentials}")
logger.info(
f"OBSERVE: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
)
with disable_signal_handling():
stagehand = Stagehand(
api_key=stagehand_credentials.api_key.get_secret_value(),
project_id=input_data.browserbase_project_id,
model_name=input_data.model.provider_name,
model_api_key=model_credentials.api_key.get_secret_value(),
)
await stagehand.init()
page = stagehand.page
assert page is not None, "Stagehand page is not initialized"
await page.goto(input_data.url)
observe_results = await page.observe(
input_data.instruction,
iframes=input_data.iframes,
domSettleTimeoutMs=input_data.domSettleTimeoutMs,
)
for result in observe_results:
yield "selector", result.selector
yield "description", result.description
yield "method", result.method
yield "arguments", result.arguments
class StagehandActBlock(Block):
class Input(BlockSchema):
# Browserbase credentials (Stagehand provider) or raw API key
stagehand_credentials: CredentialsMetaInput = (
stagehand_provider.credentials_field(
description="Stagehand/Browserbase API key"
)
)
browserbase_project_id: str = SchemaField(
description="Browserbase project ID (required if using Browserbase)",
)
# Model selection and credentials (provider-discriminated like llm.py)
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
url: str = SchemaField(
description="URL to navigate to.",
)
action: list[str] = SchemaField(
description="Action to perform. Suggested actions are: click, fill, type, press, scroll, select from dropdown. For multi-step actions, add an entry for each step.",
)
variables: dict[str, str] = SchemaField(
description="Variables to use in the action. Variables contains data you want the action to use.",
default_factory=dict,
)
iframes: bool = SchemaField(
description="Whether to search within iframes. If True, Stagehand will search for actions within iframes.",
default=True,
)
domSettleTimeoutMs: int = SchemaField(
description="Timeout in milliseconds for DOM settlement.Wait longer for dynamic content",
default=45000,
)
timeoutMs: int = SchemaField(
description="Timeout in milliseconds for DOM ready. Extended timeout for slow-loading forms",
default=60000,
)
class Output(BlockSchema):
success: bool = SchemaField(
description="Whether the action was completed successfully"
)
message: str = SchemaField(description="Details about the actions execution.")
action: str = SchemaField(description="Action performed")
def __init__(self):
super().__init__(
id="86eba68b-9549-4c0b-a0db-47d85a56cc27",
description="Interact with a web page by performing actions on a web page. Use it to build self-healing and deterministic automations that adapt to website chang.",
categories={BlockCategory.AI, BlockCategory.DEVELOPER_TOOLS},
input_schema=StagehandActBlock.Input,
output_schema=StagehandActBlock.Output,
)
async def run(
self,
input_data: Input,
*,
stagehand_credentials: APIKeyCredentials,
model_credentials: APIKeyCredentials,
**kwargs,
) -> BlockOutput:
logger.info(f"ACT: Stagehand credentials: {stagehand_credentials}")
logger.info(
f"ACT: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
)
with disable_signal_handling():
stagehand = Stagehand(
api_key=stagehand_credentials.api_key.get_secret_value(),
project_id=input_data.browserbase_project_id,
model_name=input_data.model.provider_name,
model_api_key=model_credentials.api_key.get_secret_value(),
)
await stagehand.init()
page = stagehand.page
assert page is not None, "Stagehand page is not initialized"
await page.goto(input_data.url)
for action in input_data.action:
action_results = await page.act(
action,
variables=input_data.variables,
iframes=input_data.iframes,
domSettleTimeoutMs=input_data.domSettleTimeoutMs,
timeoutMs=input_data.timeoutMs,
)
yield "success", action_results.success
yield "message", action_results.message
yield "action", action_results.action
class StagehandExtractBlock(Block):
class Input(BlockSchema):
# Browserbase credentials (Stagehand provider) or raw API key
stagehand_credentials: CredentialsMetaInput = (
stagehand_provider.credentials_field(
description="Stagehand/Browserbase API key"
)
)
browserbase_project_id: str = SchemaField(
description="Browserbase project ID (required if using Browserbase)",
)
# Model selection and credentials (provider-discriminated like llm.py)
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
url: str = SchemaField(
description="URL to navigate to.",
)
instruction: str = SchemaField(
description="Natural language description of elements or actions to discover.",
)
iframes: bool = SchemaField(
description="Whether to search within iframes. If True, Stagehand will search for actions within iframes.",
default=True,
)
domSettleTimeoutMs: int = SchemaField(
description="Timeout in milliseconds for DOM settlement.Wait longer for dynamic content",
default=45000,
)
class Output(BlockSchema):
extraction: str = SchemaField(description="Extracted data from the page.")
def __init__(self):
super().__init__(
id="fd3c0b18-2ba6-46ae-9339-fcb40537ad98",
description="Extract structured data from a webpage.",
categories={BlockCategory.AI, BlockCategory.DEVELOPER_TOOLS},
input_schema=StagehandExtractBlock.Input,
output_schema=StagehandExtractBlock.Output,
)
async def run(
self,
input_data: Input,
*,
stagehand_credentials: APIKeyCredentials,
model_credentials: APIKeyCredentials,
**kwargs,
) -> BlockOutput:
logger.info(f"EXTRACT: Stagehand credentials: {stagehand_credentials}")
logger.info(
f"EXTRACT: Model credentials: {model_credentials} for provider {model_credentials.provider} secret: {model_credentials.api_key.get_secret_value()}"
)
with disable_signal_handling():
stagehand = Stagehand(
api_key=stagehand_credentials.api_key.get_secret_value(),
project_id=input_data.browserbase_project_id,
model_name=input_data.model.provider_name,
model_api_key=model_credentials.api_key.get_secret_value(),
)
await stagehand.init()
page = stagehand.page
assert page is not None, "Stagehand page is not initialized"
await page.goto(input_data.url)
extraction = await page.extract(
input_data.instruction,
iframes=input_data.iframes,
domSettleTimeoutMs=input_data.domSettleTimeoutMs,
)
yield "extraction", str(extraction.model_dump()["extraction"])

View File

@@ -1,283 +0,0 @@
import logging
from typing import Any
from pydantic import BaseModel
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.clients import get_database_manager_async_client
logger = logging.getLogger(__name__)
# Duplicate pydantic models for store data so we don't accidently change the data shape in the blocks unintentionally when editing the backend
class LibraryAgent(BaseModel):
"""Model representing an agent in the user's library."""
library_agent_id: str = ""
agent_id: str = ""
agent_version: int = 0
agent_name: str = ""
description: str = ""
creator: str = ""
is_archived: bool = False
categories: list[str] = []
class AddToLibraryFromStoreBlock(Block):
"""
Block that adds an agent from the store to the user's library.
This enables users to easily import agents from the marketplace into their personal collection.
"""
class Input(BlockSchema):
store_listing_version_id: str = SchemaField(
description="The ID of the store listing version to add to library"
)
agent_name: str | None = SchemaField(
description="Optional custom name for the agent in your library",
default=None,
)
class Output(BlockSchema):
success: bool = SchemaField(
description="Whether the agent was successfully added to library"
)
library_agent_id: str = SchemaField(
description="The ID of the library agent entry"
)
agent_id: str = SchemaField(description="The ID of the agent graph")
agent_version: int = SchemaField(
description="The version number of the agent graph"
)
agent_name: str = SchemaField(description="The name of the agent")
message: str = SchemaField(description="Success or error message")
def __init__(self):
super().__init__(
id="2602a7b1-3f4d-4e5f-9c8b-1a2b3c4d5e6f",
description="Add an agent from the store to your personal library",
categories={BlockCategory.BASIC},
input_schema=AddToLibraryFromStoreBlock.Input,
output_schema=AddToLibraryFromStoreBlock.Output,
test_input={
"store_listing_version_id": "test-listing-id",
"agent_name": "My Custom Agent",
},
test_output=[
("success", True),
("library_agent_id", "test-library-id"),
("agent_id", "test-agent-id"),
("agent_version", 1),
("agent_name", "Test Agent"),
("message", "Agent successfully added to library"),
],
test_mock={
"_add_to_library": lambda *_, **__: LibraryAgent(
library_agent_id="test-library-id",
agent_id="test-agent-id",
agent_version=1,
agent_name="Test Agent",
)
},
)
async def run(
self,
input_data: Input,
*,
user_id: str,
**kwargs,
) -> BlockOutput:
library_agent = await self._add_to_library(
user_id=user_id,
store_listing_version_id=input_data.store_listing_version_id,
custom_name=input_data.agent_name,
)
yield "success", True
yield "library_agent_id", library_agent.library_agent_id
yield "agent_id", library_agent.agent_id
yield "agent_version", library_agent.agent_version
yield "agent_name", library_agent.agent_name
yield "message", "Agent successfully added to library"
async def _add_to_library(
self,
user_id: str,
store_listing_version_id: str,
custom_name: str | None = None,
) -> LibraryAgent:
"""
Add a store agent to the user's library using the existing library database function.
"""
library_agent = (
await get_database_manager_async_client().add_store_agent_to_library(
store_listing_version_id=store_listing_version_id, user_id=user_id
)
)
# If custom name is provided, we could update the library agent name here
# For now, we'll just return the agent info
agent_name = custom_name if custom_name else library_agent.name
return LibraryAgent(
library_agent_id=library_agent.id,
agent_id=library_agent.graph_id,
agent_version=library_agent.graph_version,
agent_name=agent_name,
)
class ListLibraryAgentsBlock(Block):
"""
Block that lists all agents in the user's library.
"""
class Input(BlockSchema):
search_query: str | None = SchemaField(
description="Optional search query to filter agents", default=None
)
limit: int = SchemaField(
description="Maximum number of agents to return", default=50, ge=1, le=100
)
page: int = SchemaField(
description="Page number for pagination", default=1, ge=1
)
class Output(BlockSchema):
agents: list[LibraryAgent] = SchemaField(
description="List of agents in the library",
default_factory=list,
)
agent: LibraryAgent = SchemaField(
description="Individual library agent (yielded for each agent)"
)
total_count: int = SchemaField(
description="Total number of agents in library", default=0
)
page: int = SchemaField(description="Current page number", default=1)
total_pages: int = SchemaField(description="Total number of pages", default=1)
def __init__(self):
super().__init__(
id="082602d3-a74d-4600-9e9c-15b3af7eae98",
description="List all agents in your personal library",
categories={BlockCategory.BASIC, BlockCategory.DATA},
input_schema=ListLibraryAgentsBlock.Input,
output_schema=ListLibraryAgentsBlock.Output,
test_input={
"search_query": None,
"limit": 10,
"page": 1,
},
test_output=[
(
"agents",
[
LibraryAgent(
library_agent_id="test-lib-id",
agent_id="test-agent-id",
agent_version=1,
agent_name="Test Library Agent",
description="A test agent in library",
creator="Test User",
),
],
),
("total_count", 1),
("page", 1),
("total_pages", 1),
(
"agent",
LibraryAgent(
library_agent_id="test-lib-id",
agent_id="test-agent-id",
agent_version=1,
agent_name="Test Library Agent",
description="A test agent in library",
creator="Test User",
),
),
],
test_mock={
"_list_library_agents": lambda *_, **__: {
"agents": [
LibraryAgent(
library_agent_id="test-lib-id",
agent_id="test-agent-id",
agent_version=1,
agent_name="Test Library Agent",
description="A test agent in library",
creator="Test User",
)
],
"total": 1,
"page": 1,
"total_pages": 1,
}
},
)
async def run(
self,
input_data: Input,
*,
user_id: str,
**kwargs,
) -> BlockOutput:
result = await self._list_library_agents(
user_id=user_id,
search_query=input_data.search_query,
limit=input_data.limit,
page=input_data.page,
)
agents = result["agents"]
yield "agents", agents
yield "total_count", result["total"]
yield "page", result["page"]
yield "total_pages", result["total_pages"]
# Yield each agent individually for better graph connectivity
for agent in agents:
yield "agent", agent
async def _list_library_agents(
self,
user_id: str,
search_query: str | None = None,
limit: int = 50,
page: int = 1,
) -> dict[str, Any]:
"""
List agents in the user's library using the database client.
"""
result = await get_database_manager_async_client().list_library_agents(
user_id=user_id,
search_term=search_query,
page=page,
page_size=limit,
)
agents = [
LibraryAgent(
library_agent_id=agent.id,
agent_id=agent.graph_id,
agent_version=agent.graph_version,
agent_name=agent.name,
description=getattr(agent, "description", ""),
creator=getattr(agent, "creator", ""),
is_archived=getattr(agent, "is_archived", False),
categories=getattr(agent, "categories", []),
)
for agent in result.agents
]
return {
"agents": agents,
"total": result.pagination.total_items,
"page": result.pagination.current_page,
"total_pages": result.pagination.total_pages,
}

View File

@@ -1,311 +0,0 @@
import logging
from typing import Literal
from pydantic import BaseModel
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
from backend.data.model import SchemaField
from backend.util.clients import get_database_manager_async_client
logger = logging.getLogger(__name__)
# Duplicate pydantic models for store data so we don't accidently change the data shape in the blocks unintentionally when editing the backend
class StoreAgent(BaseModel):
"""Model representing a store agent."""
slug: str = ""
name: str = ""
description: str = ""
creator: str = ""
rating: float = 0.0
runs: int = 0
categories: list[str] = []
class StoreAgentDict(BaseModel):
"""Dictionary representation of a store agent."""
slug: str
name: str
description: str
creator: str
rating: float
runs: int
class SearchAgentsResponse(BaseModel):
"""Response from searching store agents."""
agents: list[StoreAgentDict]
total_count: int
class StoreAgentDetails(BaseModel):
"""Detailed information about a store agent."""
found: bool
store_listing_version_id: str = ""
agent_name: str = ""
description: str = ""
creator: str = ""
categories: list[str] = []
runs: int = 0
rating: float = 0.0
class GetStoreAgentDetailsBlock(Block):
"""
Block that retrieves detailed information about an agent from the store.
"""
class Input(BlockSchema):
creator: str = SchemaField(description="The username of the agent creator")
slug: str = SchemaField(description="The name of the agent")
class Output(BlockSchema):
found: bool = SchemaField(
description="Whether the agent was found in the store"
)
store_listing_version_id: str = SchemaField(
description="The store listing version ID"
)
agent_name: str = SchemaField(description="Name of the agent")
description: str = SchemaField(description="Description of the agent")
creator: str = SchemaField(description="Creator of the agent")
categories: list[str] = SchemaField(
description="Categories the agent belongs to", default_factory=list
)
runs: int = SchemaField(
description="Number of times the agent has been run", default=0
)
rating: float = SchemaField(
description="Average rating of the agent", default=0.0
)
def __init__(self):
super().__init__(
id="b604f0ec-6e0d-40a7-bf55-9fd09997cced",
description="Get detailed information about an agent from the store",
categories={BlockCategory.BASIC, BlockCategory.DATA},
input_schema=GetStoreAgentDetailsBlock.Input,
output_schema=GetStoreAgentDetailsBlock.Output,
test_input={"creator": "test-creator", "slug": "test-agent-slug"},
test_output=[
("found", True),
("store_listing_version_id", "test-listing-id"),
("agent_name", "Test Agent"),
("description", "A test agent"),
("creator", "Test Creator"),
("categories", ["productivity", "automation"]),
("runs", 100),
("rating", 4.5),
],
test_mock={
"_get_agent_details": lambda *_, **__: StoreAgentDetails(
found=True,
store_listing_version_id="test-listing-id",
agent_name="Test Agent",
description="A test agent",
creator="Test Creator",
categories=["productivity", "automation"],
runs=100,
rating=4.5,
)
},
static_output=True,
)
async def run(
self,
input_data: Input,
**kwargs,
) -> BlockOutput:
details = await self._get_agent_details(
creator=input_data.creator, slug=input_data.slug
)
yield "found", details.found
yield "store_listing_version_id", details.store_listing_version_id
yield "agent_name", details.agent_name
yield "description", details.description
yield "creator", details.creator
yield "categories", details.categories
yield "runs", details.runs
yield "rating", details.rating
async def _get_agent_details(self, creator: str, slug: str) -> StoreAgentDetails:
"""
Retrieve detailed information about a store agent.
"""
# Get by specific version ID
agent_details = (
await get_database_manager_async_client().get_store_agent_details(
username=creator, agent_name=slug
)
)
return StoreAgentDetails(
found=True,
store_listing_version_id=agent_details.store_listing_version_id,
agent_name=agent_details.agent_name,
description=agent_details.description,
creator=agent_details.creator,
categories=(
agent_details.categories if hasattr(agent_details, "categories") else []
),
runs=agent_details.runs,
rating=agent_details.rating,
)
class SearchStoreAgentsBlock(Block):
"""
Block that searches for agents in the store based on various criteria.
"""
class Input(BlockSchema):
query: str | None = SchemaField(
description="Search query to find agents", default=None
)
category: str | None = SchemaField(
description="Filter by category", default=None
)
sort_by: Literal["rating", "runs", "name", "recent"] = SchemaField(
description="How to sort the results", default="rating"
)
limit: int = SchemaField(
description="Maximum number of results to return", default=10, ge=1, le=100
)
class Output(BlockSchema):
agents: list[StoreAgent] = SchemaField(
description="List of agents matching the search criteria",
default_factory=list,
)
agent: StoreAgent = SchemaField(description="Basic information of the agent")
total_count: int = SchemaField(
description="Total number of agents found", default=0
)
def __init__(self):
super().__init__(
id="39524701-026c-4328-87cc-1b88c8e2cb4c",
description="Search for agents in the store",
categories={BlockCategory.BASIC, BlockCategory.DATA},
input_schema=SearchStoreAgentsBlock.Input,
output_schema=SearchStoreAgentsBlock.Output,
test_input={
"query": "productivity",
"category": None,
"sort_by": "rating",
"limit": 10,
},
test_output=[
(
"agents",
[
{
"slug": "test-agent",
"name": "Test Agent",
"description": "A test agent",
"creator": "Test Creator",
"rating": 4.5,
"runs": 100,
}
],
),
("total_count", 1),
(
"agent",
{
"slug": "test-agent",
"name": "Test Agent",
"description": "A test agent",
"creator": "Test Creator",
"rating": 4.5,
"runs": 100,
},
),
],
test_mock={
"_search_agents": lambda *_, **__: SearchAgentsResponse(
agents=[
StoreAgentDict(
slug="test-agent",
name="Test Agent",
description="A test agent",
creator="Test Creator",
rating=4.5,
runs=100,
)
],
total_count=1,
)
},
)
async def run(
self,
input_data: Input,
**kwargs,
) -> BlockOutput:
result = await self._search_agents(
query=input_data.query,
category=input_data.category,
sort_by=input_data.sort_by,
limit=input_data.limit,
)
agents = result.agents
total_count = result.total_count
# Convert to dict for output
agents_as_dicts = [agent.model_dump() for agent in agents]
yield "agents", agents_as_dicts
yield "total_count", total_count
for agent_dict in agents_as_dicts:
yield "agent", agent_dict
async def _search_agents(
self,
query: str | None = None,
category: str | None = None,
sort_by: str = "rating",
limit: int = 10,
) -> SearchAgentsResponse:
"""
Search for agents in the store using the existing store database function.
"""
# Map our sort_by to the store's sorted_by parameter
sorted_by_map = {
"rating": "most_popular",
"runs": "most_runs",
"name": "alphabetical",
"recent": "recently_updated",
}
result = await get_database_manager_async_client().get_store_agents(
featured=False,
creators=None,
sorted_by=sorted_by_map.get(sort_by, "most_popular"),
search_query=query,
category=category,
page=1,
page_size=limit,
)
agents = [
StoreAgentDict(
slug=agent.slug,
name=agent.agent_name,
description=agent.description,
creator=agent.creator,
rating=agent.rating,
runs=agent.runs,
)
for agent in result.agents
]
return SearchAgentsResponse(agents=agents, total_count=len(agents))

View File

@@ -19,7 +19,7 @@ async def test_block_ids_valid(block: Type[Block]):
# Skip list for blocks with known invalid UUIDs
skip_blocks = {
"GetWeatherInformationBlock",
"ExecuteCodeBlock",
"CodeExecutionBlock",
"CountdownTimerBlock",
"TwitterGetListTweetsBlock",
"TwitterRemoveListMemberBlock",

Some files were not shown because too many files have changed in this diff Show More