mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-01-12 16:48:06 -05:00
Compare commits
1 Commits
fix/waitli
...
toggle-cor
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
50f39e55f7 |
@@ -3,7 +3,6 @@ name: AutoGPT Platform - Deploy Prod Environment
|
||||
on:
|
||||
release:
|
||||
types: [published]
|
||||
workflow_dispatch:
|
||||
|
||||
permissions:
|
||||
contents: 'read'
|
||||
@@ -18,8 +17,6 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.ref_name || 'master' }}
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
@@ -39,7 +36,7 @@ jobs:
|
||||
DATABASE_URL: ${{ secrets.BACKEND_DATABASE_URL }}
|
||||
DIRECT_URL: ${{ secrets.BACKEND_DATABASE_URL }}
|
||||
|
||||
|
||||
|
||||
trigger:
|
||||
needs: migrate
|
||||
runs-on: ubuntu-latest
|
||||
@@ -50,5 +47,4 @@ jobs:
|
||||
token: ${{ secrets.DEPLOY_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
event-type: build_deploy_prod
|
||||
client-payload: |
|
||||
{"ref": "${{ github.ref_name || 'master' }}", "repository": "${{ github.repository }}"}
|
||||
client-payload: '{"ref": "${{ github.ref }}", "sha": "${{ github.sha }}", "repository": "${{ github.repository }}"}'
|
||||
@@ -5,13 +5,6 @@ on:
|
||||
branches: [ dev ]
|
||||
paths:
|
||||
- 'autogpt_platform/**'
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
git_ref:
|
||||
description: 'Git ref (branch/tag) of AutoGPT to deploy'
|
||||
required: true
|
||||
default: 'master'
|
||||
type: string
|
||||
|
||||
permissions:
|
||||
contents: 'read'
|
||||
@@ -26,8 +19,6 @@ jobs:
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event.inputs.git_ref || github.ref_name }}
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
@@ -57,4 +48,4 @@ jobs:
|
||||
token: ${{ secrets.DEPLOY_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
event-type: build_deploy_dev
|
||||
client-payload: '{"ref": "${{ github.event.inputs.git_ref || github.ref }}", "repository": "${{ github.repository }}"}'
|
||||
client-payload: '{"ref": "${{ github.ref }}", "sha": "${{ github.sha }}", "repository": "${{ github.repository }}"}'
|
||||
|
||||
5
.github/workflows/platform-backend-ci.yml
vendored
5
.github/workflows/platform-backend-ci.yml
vendored
@@ -37,7 +37,9 @@ jobs:
|
||||
|
||||
services:
|
||||
redis:
|
||||
image: redis:latest
|
||||
image: bitnami/redis:6.2
|
||||
env:
|
||||
REDIS_PASSWORD: testpassword
|
||||
ports:
|
||||
- 6379:6379
|
||||
rabbitmq:
|
||||
@@ -202,6 +204,7 @@ jobs:
|
||||
JWT_VERIFY_KEY: ${{ steps.supabase.outputs.JWT_SECRET }}
|
||||
REDIS_HOST: "localhost"
|
||||
REDIS_PORT: "6379"
|
||||
REDIS_PASSWORD: "testpassword"
|
||||
ENCRYPTION_KEY: "dvziYgz0KSK8FENhju0ZYi8-fRTfAdlz6YLhdB_jhNw=" # DO NOT USE IN PRODUCTION!!
|
||||
|
||||
env:
|
||||
|
||||
@@ -1,3 +1,6 @@
|
||||
[pr_reviewer]
|
||||
num_code_suggestions=0
|
||||
|
||||
[pr_code_suggestions]
|
||||
commitable_code_suggestions=false
|
||||
num_code_suggestions=0
|
||||
|
||||
@@ -1,47 +0,0 @@
|
||||
.PHONY: start-core stop-core logs-core format lint migrate run-backend run-frontend
|
||||
|
||||
# Run just Supabase + Redis + RabbitMQ
|
||||
start-core:
|
||||
docker compose up -d deps
|
||||
|
||||
# Stop core services
|
||||
stop-core:
|
||||
docker compose stop deps
|
||||
|
||||
# View logs for core services
|
||||
logs-core:
|
||||
docker compose logs -f deps
|
||||
|
||||
# Run formatting and linting for backend and frontend
|
||||
format:
|
||||
cd backend && poetry run format
|
||||
cd frontend && pnpm format
|
||||
cd frontend && pnpm lint
|
||||
|
||||
init-env:
|
||||
cp -n .env.default .env || true
|
||||
cd backend && cp -n .env.default .env || true
|
||||
cd frontend && cp -n .env.default .env || true
|
||||
|
||||
|
||||
# Run migrations for backend
|
||||
migrate:
|
||||
cd backend && poetry run prisma migrate deploy
|
||||
cd backend && poetry run prisma generate
|
||||
|
||||
run-backend:
|
||||
cd backend && poetry run app
|
||||
|
||||
run-frontend:
|
||||
cd frontend && pnpm dev
|
||||
|
||||
help:
|
||||
@echo "Usage: make <target>"
|
||||
@echo "Targets:"
|
||||
@echo " start-core - Start just the core services (Supabase, Redis, RabbitMQ) in background"
|
||||
@echo " stop-core - Stop the core services"
|
||||
@echo " logs-core - Tail the logs for core services"
|
||||
@echo " format - Format & lint backend (Python) and frontend (TypeScript) code"
|
||||
@echo " migrate - Run backend database migrations"
|
||||
@echo " run-backend - Run the backend FastAPI server"
|
||||
@echo " run-frontend - Run the frontend Next.js development server"
|
||||
@@ -38,37 +38,6 @@ To run the AutoGPT Platform, follow these steps:
|
||||
|
||||
4. After all the services are in ready state, open your browser and navigate to `http://localhost:3000` to access the AutoGPT Platform frontend.
|
||||
|
||||
### Running Just Core services
|
||||
|
||||
You can now run the following to enable just the core services.
|
||||
|
||||
```
|
||||
# For help
|
||||
make help
|
||||
|
||||
# Run just Supabase + Redis + RabbitMQ
|
||||
make start-core
|
||||
|
||||
# Stop core services
|
||||
make stop-core
|
||||
|
||||
# View logs from core services
|
||||
make logs-core
|
||||
|
||||
# Run formatting and linting for backend and frontend
|
||||
make format
|
||||
|
||||
# Run migrations for backend database
|
||||
make migrate
|
||||
|
||||
# Run backend server
|
||||
make run-backend
|
||||
|
||||
# Run frontend development server
|
||||
make run-frontend
|
||||
|
||||
```
|
||||
|
||||
### Docker Compose Commands
|
||||
|
||||
Here are some useful Docker Compose commands for managing your AutoGPT Platform:
|
||||
|
||||
@@ -10,7 +10,7 @@ from .jwt_utils import get_jwt_payload, verify_user
|
||||
from .models import User
|
||||
|
||||
|
||||
async def requires_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User:
|
||||
def requires_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User:
|
||||
"""
|
||||
FastAPI dependency that requires a valid authenticated user.
|
||||
|
||||
@@ -20,9 +20,7 @@ async def requires_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -
|
||||
return verify_user(jwt_payload, admin_only=False)
|
||||
|
||||
|
||||
async def requires_admin_user(
|
||||
jwt_payload: dict = fastapi.Security(get_jwt_payload),
|
||||
) -> User:
|
||||
def requires_admin_user(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> User:
|
||||
"""
|
||||
FastAPI dependency that requires a valid admin user.
|
||||
|
||||
@@ -32,7 +30,7 @@ async def requires_admin_user(
|
||||
return verify_user(jwt_payload, admin_only=True)
|
||||
|
||||
|
||||
async def get_user_id(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> str:
|
||||
def get_user_id(jwt_payload: dict = fastapi.Security(get_jwt_payload)) -> str:
|
||||
"""
|
||||
FastAPI dependency that returns the ID of the authenticated user.
|
||||
|
||||
|
||||
@@ -45,7 +45,7 @@ class TestAuthDependencies:
|
||||
"""Create a test client."""
|
||||
return TestClient(app)
|
||||
|
||||
async def test_requires_user_with_valid_jwt_payload(self, mocker: MockerFixture):
|
||||
def test_requires_user_with_valid_jwt_payload(self, mocker: MockerFixture):
|
||||
"""Test requires_user with valid JWT payload."""
|
||||
jwt_payload = {"sub": "user-123", "role": "user", "email": "user@example.com"}
|
||||
|
||||
@@ -53,12 +53,12 @@ class TestAuthDependencies:
|
||||
mocker.patch(
|
||||
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
|
||||
)
|
||||
user = await requires_user(jwt_payload)
|
||||
user = requires_user(jwt_payload)
|
||||
assert isinstance(user, User)
|
||||
assert user.user_id == "user-123"
|
||||
assert user.role == "user"
|
||||
|
||||
async def test_requires_user_with_admin_jwt_payload(self, mocker: MockerFixture):
|
||||
def test_requires_user_with_admin_jwt_payload(self, mocker: MockerFixture):
|
||||
"""Test requires_user accepts admin users."""
|
||||
jwt_payload = {
|
||||
"sub": "admin-456",
|
||||
@@ -69,28 +69,28 @@ class TestAuthDependencies:
|
||||
mocker.patch(
|
||||
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
|
||||
)
|
||||
user = await requires_user(jwt_payload)
|
||||
user = requires_user(jwt_payload)
|
||||
assert user.user_id == "admin-456"
|
||||
assert user.role == "admin"
|
||||
|
||||
async def test_requires_user_missing_sub(self):
|
||||
def test_requires_user_missing_sub(self):
|
||||
"""Test requires_user with missing user ID."""
|
||||
jwt_payload = {"role": "user", "email": "user@example.com"}
|
||||
|
||||
with pytest.raises(HTTPException) as exc_info:
|
||||
await requires_user(jwt_payload)
|
||||
requires_user(jwt_payload)
|
||||
assert exc_info.value.status_code == 401
|
||||
assert "User ID not found" in exc_info.value.detail
|
||||
|
||||
async def test_requires_user_empty_sub(self):
|
||||
def test_requires_user_empty_sub(self):
|
||||
"""Test requires_user with empty user ID."""
|
||||
jwt_payload = {"sub": "", "role": "user"}
|
||||
|
||||
with pytest.raises(HTTPException) as exc_info:
|
||||
await requires_user(jwt_payload)
|
||||
requires_user(jwt_payload)
|
||||
assert exc_info.value.status_code == 401
|
||||
|
||||
async def test_requires_admin_user_with_admin(self, mocker: MockerFixture):
|
||||
def test_requires_admin_user_with_admin(self, mocker: MockerFixture):
|
||||
"""Test requires_admin_user with admin role."""
|
||||
jwt_payload = {
|
||||
"sub": "admin-789",
|
||||
@@ -101,51 +101,51 @@ class TestAuthDependencies:
|
||||
mocker.patch(
|
||||
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
|
||||
)
|
||||
user = await requires_admin_user(jwt_payload)
|
||||
user = requires_admin_user(jwt_payload)
|
||||
assert user.user_id == "admin-789"
|
||||
assert user.role == "admin"
|
||||
|
||||
async def test_requires_admin_user_with_regular_user(self):
|
||||
def test_requires_admin_user_with_regular_user(self):
|
||||
"""Test requires_admin_user rejects regular users."""
|
||||
jwt_payload = {"sub": "user-123", "role": "user", "email": "user@example.com"}
|
||||
|
||||
with pytest.raises(HTTPException) as exc_info:
|
||||
await requires_admin_user(jwt_payload)
|
||||
requires_admin_user(jwt_payload)
|
||||
assert exc_info.value.status_code == 403
|
||||
assert "Admin access required" in exc_info.value.detail
|
||||
|
||||
async def test_requires_admin_user_missing_role(self):
|
||||
def test_requires_admin_user_missing_role(self):
|
||||
"""Test requires_admin_user with missing role."""
|
||||
jwt_payload = {"sub": "user-123", "email": "user@example.com"}
|
||||
|
||||
with pytest.raises(KeyError):
|
||||
await requires_admin_user(jwt_payload)
|
||||
requires_admin_user(jwt_payload)
|
||||
|
||||
async def test_get_user_id_with_valid_payload(self, mocker: MockerFixture):
|
||||
def test_get_user_id_with_valid_payload(self, mocker: MockerFixture):
|
||||
"""Test get_user_id extracts user ID correctly."""
|
||||
jwt_payload = {"sub": "user-id-xyz", "role": "user"}
|
||||
|
||||
mocker.patch(
|
||||
"autogpt_libs.auth.dependencies.get_jwt_payload", return_value=jwt_payload
|
||||
)
|
||||
user_id = await get_user_id(jwt_payload)
|
||||
user_id = get_user_id(jwt_payload)
|
||||
assert user_id == "user-id-xyz"
|
||||
|
||||
async def test_get_user_id_missing_sub(self):
|
||||
def test_get_user_id_missing_sub(self):
|
||||
"""Test get_user_id with missing user ID."""
|
||||
jwt_payload = {"role": "user"}
|
||||
|
||||
with pytest.raises(HTTPException) as exc_info:
|
||||
await get_user_id(jwt_payload)
|
||||
get_user_id(jwt_payload)
|
||||
assert exc_info.value.status_code == 401
|
||||
assert "User ID not found" in exc_info.value.detail
|
||||
|
||||
async def test_get_user_id_none_sub(self):
|
||||
def test_get_user_id_none_sub(self):
|
||||
"""Test get_user_id with None user ID."""
|
||||
jwt_payload = {"sub": None, "role": "user"}
|
||||
|
||||
with pytest.raises(HTTPException) as exc_info:
|
||||
await get_user_id(jwt_payload)
|
||||
get_user_id(jwt_payload)
|
||||
assert exc_info.value.status_code == 401
|
||||
|
||||
|
||||
@@ -170,7 +170,7 @@ class TestAuthDependenciesIntegration:
|
||||
|
||||
return _create_token
|
||||
|
||||
async def test_endpoint_auth_enabled_no_token(self):
|
||||
def test_endpoint_auth_enabled_no_token(self):
|
||||
"""Test endpoints require token when auth is enabled."""
|
||||
app = FastAPI()
|
||||
|
||||
@@ -184,7 +184,7 @@ class TestAuthDependenciesIntegration:
|
||||
response = client.get("/test")
|
||||
assert response.status_code == 401
|
||||
|
||||
async def test_endpoint_with_valid_token(self, create_token):
|
||||
def test_endpoint_with_valid_token(self, create_token):
|
||||
"""Test endpoint with valid JWT token."""
|
||||
app = FastAPI()
|
||||
|
||||
@@ -203,7 +203,7 @@ class TestAuthDependenciesIntegration:
|
||||
assert response.status_code == 200
|
||||
assert response.json()["user_id"] == "test-user"
|
||||
|
||||
async def test_admin_endpoint_requires_admin_role(self, create_token):
|
||||
def test_admin_endpoint_requires_admin_role(self, create_token):
|
||||
"""Test admin endpoint rejects non-admin users."""
|
||||
app = FastAPI()
|
||||
|
||||
@@ -240,7 +240,7 @@ class TestAuthDependenciesIntegration:
|
||||
class TestAuthDependenciesEdgeCases:
|
||||
"""Edge case tests for authentication dependencies."""
|
||||
|
||||
async def test_dependency_with_complex_payload(self):
|
||||
def test_dependency_with_complex_payload(self):
|
||||
"""Test dependencies handle complex JWT payloads."""
|
||||
complex_payload = {
|
||||
"sub": "user-123",
|
||||
@@ -256,14 +256,14 @@ class TestAuthDependenciesEdgeCases:
|
||||
"exp": 9999999999,
|
||||
}
|
||||
|
||||
user = await requires_user(complex_payload)
|
||||
user = requires_user(complex_payload)
|
||||
assert user.user_id == "user-123"
|
||||
assert user.email == "test@example.com"
|
||||
|
||||
admin = await requires_admin_user(complex_payload)
|
||||
admin = requires_admin_user(complex_payload)
|
||||
assert admin.role == "admin"
|
||||
|
||||
async def test_dependency_with_unicode_in_payload(self):
|
||||
def test_dependency_with_unicode_in_payload(self):
|
||||
"""Test dependencies handle unicode in JWT payloads."""
|
||||
unicode_payload = {
|
||||
"sub": "user-😀-123",
|
||||
@@ -272,11 +272,11 @@ class TestAuthDependenciesEdgeCases:
|
||||
"name": "日本語",
|
||||
}
|
||||
|
||||
user = await requires_user(unicode_payload)
|
||||
user = requires_user(unicode_payload)
|
||||
assert "😀" in user.user_id
|
||||
assert user.email == "测试@example.com"
|
||||
|
||||
async def test_dependency_with_null_values(self):
|
||||
def test_dependency_with_null_values(self):
|
||||
"""Test dependencies handle null values in payload."""
|
||||
null_payload = {
|
||||
"sub": "user-123",
|
||||
@@ -286,18 +286,18 @@ class TestAuthDependenciesEdgeCases:
|
||||
"metadata": None,
|
||||
}
|
||||
|
||||
user = await requires_user(null_payload)
|
||||
user = requires_user(null_payload)
|
||||
assert user.user_id == "user-123"
|
||||
assert user.email is None
|
||||
|
||||
async def test_concurrent_requests_isolation(self):
|
||||
def test_concurrent_requests_isolation(self):
|
||||
"""Test that concurrent requests don't interfere with each other."""
|
||||
payload1 = {"sub": "user-1", "role": "user"}
|
||||
payload2 = {"sub": "user-2", "role": "admin"}
|
||||
|
||||
# Simulate concurrent processing
|
||||
user1 = await requires_user(payload1)
|
||||
user2 = await requires_admin_user(payload2)
|
||||
user1 = requires_user(payload1)
|
||||
user2 = requires_admin_user(payload2)
|
||||
|
||||
assert user1.user_id == "user-1"
|
||||
assert user2.user_id == "user-2"
|
||||
@@ -314,7 +314,7 @@ class TestAuthDependenciesEdgeCases:
|
||||
({"sub": "user", "role": "user"}, "Admin access required", True),
|
||||
],
|
||||
)
|
||||
async def test_dependency_error_cases(
|
||||
def test_dependency_error_cases(
|
||||
self, payload, expected_error: str, admin_only: bool
|
||||
):
|
||||
"""Test that errors propagate correctly through dependencies."""
|
||||
@@ -325,7 +325,7 @@ class TestAuthDependenciesEdgeCases:
|
||||
verify_user(payload, admin_only=admin_only)
|
||||
assert expected_error in exc_info.value.detail
|
||||
|
||||
async def test_dependency_valid_user(self):
|
||||
def test_dependency_valid_user(self):
|
||||
"""Test valid user case for dependency."""
|
||||
# Import verify_user to test it directly since dependencies use FastAPI Security
|
||||
from autogpt_libs.auth.jwt_utils import verify_user
|
||||
|
||||
@@ -16,7 +16,7 @@ bearer_jwt_auth = HTTPBearer(
|
||||
)
|
||||
|
||||
|
||||
async def get_jwt_payload(
|
||||
def get_jwt_payload(
|
||||
credentials: HTTPAuthorizationCredentials | None = Security(bearer_jwt_auth),
|
||||
) -> dict[str, Any]:
|
||||
"""
|
||||
|
||||
@@ -116,32 +116,32 @@ def test_parse_jwt_token_missing_audience():
|
||||
assert "Invalid token" in str(exc_info.value)
|
||||
|
||||
|
||||
async def test_get_jwt_payload_with_valid_token():
|
||||
def test_get_jwt_payload_with_valid_token():
|
||||
"""Test extracting JWT payload with valid bearer token."""
|
||||
token = create_token(TEST_USER_PAYLOAD)
|
||||
credentials = HTTPAuthorizationCredentials(scheme="Bearer", credentials=token)
|
||||
|
||||
result = await jwt_utils.get_jwt_payload(credentials)
|
||||
result = jwt_utils.get_jwt_payload(credentials)
|
||||
assert result["sub"] == "test-user-id"
|
||||
assert result["role"] == "user"
|
||||
|
||||
|
||||
async def test_get_jwt_payload_no_credentials():
|
||||
def test_get_jwt_payload_no_credentials():
|
||||
"""Test JWT payload when no credentials provided."""
|
||||
with pytest.raises(HTTPException) as exc_info:
|
||||
await jwt_utils.get_jwt_payload(None)
|
||||
jwt_utils.get_jwt_payload(None)
|
||||
assert exc_info.value.status_code == 401
|
||||
assert "Authorization header is missing" in exc_info.value.detail
|
||||
|
||||
|
||||
async def test_get_jwt_payload_invalid_token():
|
||||
def test_get_jwt_payload_invalid_token():
|
||||
"""Test JWT payload extraction with invalid token."""
|
||||
credentials = HTTPAuthorizationCredentials(
|
||||
scheme="Bearer", credentials="invalid.token.here"
|
||||
)
|
||||
|
||||
with pytest.raises(HTTPException) as exc_info:
|
||||
await jwt_utils.get_jwt_payload(credentials)
|
||||
jwt_utils.get_jwt_payload(credentials)
|
||||
assert exc_info.value.status_code == 401
|
||||
assert "Invalid token" in exc_info.value.detail
|
||||
|
||||
|
||||
@@ -4,7 +4,6 @@ import logging
|
||||
import os
|
||||
import socket
|
||||
import sys
|
||||
from logging.handlers import RotatingFileHandler
|
||||
from pathlib import Path
|
||||
|
||||
from pydantic import Field, field_validator
|
||||
@@ -140,13 +139,8 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
|
||||
print(f"Log directory: {config.log_dir}")
|
||||
|
||||
# Activity log handler (INFO and above)
|
||||
# Security fix: Use RotatingFileHandler with size limits to prevent disk exhaustion
|
||||
activity_log_handler = RotatingFileHandler(
|
||||
config.log_dir / LOG_FILE,
|
||||
mode="a",
|
||||
encoding="utf-8",
|
||||
maxBytes=10 * 1024 * 1024, # 10MB per file
|
||||
backupCount=3, # Keep 3 backup files (40MB total)
|
||||
activity_log_handler = logging.FileHandler(
|
||||
config.log_dir / LOG_FILE, "a", "utf-8"
|
||||
)
|
||||
activity_log_handler.setLevel(config.level)
|
||||
activity_log_handler.setFormatter(
|
||||
@@ -156,13 +150,8 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
|
||||
|
||||
if config.level == logging.DEBUG:
|
||||
# Debug log handler (all levels)
|
||||
# Security fix: Use RotatingFileHandler with size limits
|
||||
debug_log_handler = RotatingFileHandler(
|
||||
config.log_dir / DEBUG_LOG_FILE,
|
||||
mode="a",
|
||||
encoding="utf-8",
|
||||
maxBytes=10 * 1024 * 1024, # 10MB per file
|
||||
backupCount=3, # Keep 3 backup files (40MB total)
|
||||
debug_log_handler = logging.FileHandler(
|
||||
config.log_dir / DEBUG_LOG_FILE, "a", "utf-8"
|
||||
)
|
||||
debug_log_handler.setLevel(logging.DEBUG)
|
||||
debug_log_handler.setFormatter(
|
||||
@@ -171,13 +160,8 @@ def configure_logging(force_cloud_logging: bool = False) -> None:
|
||||
log_handlers.append(debug_log_handler)
|
||||
|
||||
# Error log handler (ERROR and above)
|
||||
# Security fix: Use RotatingFileHandler with size limits
|
||||
error_log_handler = RotatingFileHandler(
|
||||
config.log_dir / ERROR_LOG_FILE,
|
||||
mode="a",
|
||||
encoding="utf-8",
|
||||
maxBytes=10 * 1024 * 1024, # 10MB per file
|
||||
backupCount=3, # Keep 3 backup files (40MB total)
|
||||
error_log_handler = logging.FileHandler(
|
||||
config.log_dir / ERROR_LOG_FILE, "a", "utf-8"
|
||||
)
|
||||
error_log_handler.setLevel(logging.ERROR)
|
||||
error_log_handler.setFormatter(AGPTFormatter(DEBUG_LOG_FORMAT, no_color=True))
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
from typing import Optional
|
||||
|
||||
from pydantic import Field
|
||||
from pydantic_settings import BaseSettings, SettingsConfigDict
|
||||
|
||||
@@ -15,8 +13,8 @@ class RateLimitSettings(BaseSettings):
|
||||
default="6379", description="Redis port", validation_alias="REDIS_PORT"
|
||||
)
|
||||
|
||||
redis_password: Optional[str] = Field(
|
||||
default=None,
|
||||
redis_password: str = Field(
|
||||
default="password",
|
||||
description="Redis password",
|
||||
validation_alias="REDIS_PASSWORD",
|
||||
)
|
||||
|
||||
@@ -11,7 +11,7 @@ class RateLimiter:
|
||||
self,
|
||||
redis_host: str = RATE_LIMIT_SETTINGS.redis_host,
|
||||
redis_port: str = RATE_LIMIT_SETTINGS.redis_port,
|
||||
redis_password: str | None = RATE_LIMIT_SETTINGS.redis_password,
|
||||
redis_password: str = RATE_LIMIT_SETTINGS.redis_password,
|
||||
requests_per_minute: int = RATE_LIMIT_SETTINGS.requests_per_minute,
|
||||
):
|
||||
self.redis = Redis(
|
||||
|
||||
@@ -1,68 +1,90 @@
|
||||
import asyncio
|
||||
import inspect
|
||||
import logging
|
||||
import threading
|
||||
import time
|
||||
from functools import wraps
|
||||
from typing import (
|
||||
Any,
|
||||
Awaitable,
|
||||
Callable,
|
||||
ParamSpec,
|
||||
Protocol,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
cast,
|
||||
overload,
|
||||
runtime_checkable,
|
||||
)
|
||||
|
||||
P = ParamSpec("P")
|
||||
R = TypeVar("R")
|
||||
R_co = TypeVar("R_co", covariant=True)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _make_hashable_key(
|
||||
args: tuple[Any, ...], kwargs: dict[str, Any]
|
||||
) -> tuple[Any, ...]:
|
||||
"""
|
||||
Convert args and kwargs into a hashable cache key.
|
||||
@overload
|
||||
def thread_cached(func: Callable[P, Awaitable[R]]) -> Callable[P, Awaitable[R]]:
|
||||
pass
|
||||
|
||||
Handles unhashable types like dict, list, set by converting them to
|
||||
their sorted string representations.
|
||||
"""
|
||||
|
||||
def make_hashable(obj: Any) -> Any:
|
||||
"""Recursively convert an object to a hashable representation."""
|
||||
if isinstance(obj, dict):
|
||||
# Sort dict items to ensure consistent ordering
|
||||
return (
|
||||
"__dict__",
|
||||
tuple(sorted((k, make_hashable(v)) for k, v in obj.items())),
|
||||
)
|
||||
elif isinstance(obj, (list, tuple)):
|
||||
return ("__list__", tuple(make_hashable(item) for item in obj))
|
||||
elif isinstance(obj, set):
|
||||
return ("__set__", tuple(sorted(make_hashable(item) for item in obj)))
|
||||
elif hasattr(obj, "__dict__"):
|
||||
# Handle objects with __dict__ attribute
|
||||
return ("__obj__", obj.__class__.__name__, make_hashable(obj.__dict__))
|
||||
else:
|
||||
# For basic hashable types (str, int, bool, None, etc.)
|
||||
try:
|
||||
hash(obj)
|
||||
return obj
|
||||
except TypeError:
|
||||
# Fallback: convert to string representation
|
||||
return ("__str__", str(obj))
|
||||
@overload
|
||||
def thread_cached(func: Callable[P, R]) -> Callable[P, R]:
|
||||
pass
|
||||
|
||||
hashable_args = tuple(make_hashable(arg) for arg in args)
|
||||
hashable_kwargs = tuple(sorted((k, make_hashable(v)) for k, v in kwargs.items()))
|
||||
return (hashable_args, hashable_kwargs)
|
||||
|
||||
def thread_cached(
|
||||
func: Callable[P, R] | Callable[P, Awaitable[R]],
|
||||
) -> Callable[P, R] | Callable[P, Awaitable[R]]:
|
||||
thread_local = threading.local()
|
||||
|
||||
def _clear():
|
||||
if hasattr(thread_local, "cache"):
|
||||
del thread_local.cache
|
||||
|
||||
if inspect.iscoroutinefunction(func):
|
||||
|
||||
async def async_wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
|
||||
cache = getattr(thread_local, "cache", None)
|
||||
if cache is None:
|
||||
cache = thread_local.cache = {}
|
||||
key = (args, tuple(sorted(kwargs.items())))
|
||||
if key not in cache:
|
||||
cache[key] = await cast(Callable[P, Awaitable[R]], func)(
|
||||
*args, **kwargs
|
||||
)
|
||||
return cache[key]
|
||||
|
||||
setattr(async_wrapper, "clear_cache", _clear)
|
||||
return async_wrapper
|
||||
|
||||
else:
|
||||
|
||||
def sync_wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
|
||||
cache = getattr(thread_local, "cache", None)
|
||||
if cache is None:
|
||||
cache = thread_local.cache = {}
|
||||
key = (args, tuple(sorted(kwargs.items())))
|
||||
if key not in cache:
|
||||
cache[key] = func(*args, **kwargs)
|
||||
return cache[key]
|
||||
|
||||
setattr(sync_wrapper, "clear_cache", _clear)
|
||||
return sync_wrapper
|
||||
|
||||
|
||||
def clear_thread_cache(func: Callable) -> None:
|
||||
if clear := getattr(func, "clear_cache", None):
|
||||
clear()
|
||||
|
||||
|
||||
FuncT = TypeVar("FuncT")
|
||||
|
||||
|
||||
R_co = TypeVar("R_co", covariant=True)
|
||||
|
||||
|
||||
@runtime_checkable
|
||||
class CachedFunction(Protocol[P, R_co]):
|
||||
"""Protocol for cached functions with cache management methods."""
|
||||
class AsyncCachedFunction(Protocol[P, R_co]):
|
||||
"""Protocol for async functions with cache management methods."""
|
||||
|
||||
def cache_clear(self) -> None:
|
||||
"""Clear all cached entries."""
|
||||
@@ -72,180 +94,101 @@ class CachedFunction(Protocol[P, R_co]):
|
||||
"""Get cache statistics."""
|
||||
return {}
|
||||
|
||||
def cache_delete(self, *args: P.args, **kwargs: P.kwargs) -> bool:
|
||||
"""Delete a specific cache entry by its arguments. Returns True if entry existed."""
|
||||
return False
|
||||
|
||||
def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R_co:
|
||||
async def __call__(self, *args: P.args, **kwargs: P.kwargs) -> R_co:
|
||||
"""Call the cached function."""
|
||||
return None # type: ignore
|
||||
|
||||
|
||||
def cached(
|
||||
*,
|
||||
maxsize: int = 128,
|
||||
ttl_seconds: int | None = None,
|
||||
) -> Callable[[Callable], CachedFunction]:
|
||||
def async_ttl_cache(
|
||||
maxsize: int = 128, ttl_seconds: int | None = None
|
||||
) -> Callable[[Callable[P, Awaitable[R]]], AsyncCachedFunction[P, R]]:
|
||||
"""
|
||||
Thundering herd safe cache decorator for both sync and async functions.
|
||||
TTL (Time To Live) cache decorator for async functions.
|
||||
|
||||
Uses double-checked locking to prevent multiple threads/coroutines from
|
||||
executing the expensive operation simultaneously during cache misses.
|
||||
Similar to functools.lru_cache but works with async functions and includes optional TTL.
|
||||
|
||||
Args:
|
||||
func: The function to cache (when used without parentheses)
|
||||
maxsize: Maximum number of cached entries
|
||||
ttl_seconds: Time to live in seconds. If None, entries never expire
|
||||
ttl_seconds: Time to live in seconds. If None, entries never expire (like lru_cache)
|
||||
|
||||
Returns:
|
||||
Decorated function or decorator
|
||||
Decorator function
|
||||
|
||||
Example:
|
||||
@cache() # Default: maxsize=128, no TTL
|
||||
def expensive_sync_operation(param: str) -> dict:
|
||||
# With TTL
|
||||
@async_ttl_cache(maxsize=1000, ttl_seconds=300)
|
||||
async def api_call(param: str) -> dict:
|
||||
return {"result": param}
|
||||
|
||||
@cache() # Works with async too
|
||||
async def expensive_async_operation(param: str) -> dict:
|
||||
return {"result": param}
|
||||
|
||||
@cache(maxsize=1000, ttl_seconds=300) # Custom maxsize and TTL
|
||||
def another_operation(param: str) -> dict:
|
||||
# Without TTL (permanent cache like lru_cache)
|
||||
@async_ttl_cache(maxsize=1000)
|
||||
async def expensive_computation(param: str) -> dict:
|
||||
return {"result": param}
|
||||
"""
|
||||
|
||||
def decorator(target_func):
|
||||
# Cache storage and per-event-loop locks
|
||||
cache_storage = {}
|
||||
_event_loop_locks = {} # Maps event loop to its asyncio.Lock
|
||||
def decorator(
|
||||
async_func: Callable[P, Awaitable[R]],
|
||||
) -> AsyncCachedFunction[P, R]:
|
||||
# Cache storage - use union type to handle both cases
|
||||
cache_storage: dict[tuple, R | Tuple[R, float]] = {}
|
||||
|
||||
if inspect.iscoroutinefunction(target_func):
|
||||
@wraps(async_func)
|
||||
async def wrapper(*args: P.args, **kwargs: P.kwargs) -> R:
|
||||
# Create cache key from arguments
|
||||
key = (args, tuple(sorted(kwargs.items())))
|
||||
current_time = time.time()
|
||||
|
||||
def _get_cache_lock():
|
||||
"""Get or create an asyncio.Lock for the current event loop."""
|
||||
try:
|
||||
loop = asyncio.get_running_loop()
|
||||
except RuntimeError:
|
||||
# No event loop, use None as default key
|
||||
loop = None
|
||||
|
||||
if loop not in _event_loop_locks:
|
||||
return _event_loop_locks.setdefault(loop, asyncio.Lock())
|
||||
return _event_loop_locks[loop]
|
||||
|
||||
@wraps(target_func)
|
||||
async def async_wrapper(*args: P.args, **kwargs: P.kwargs):
|
||||
key = _make_hashable_key(args, kwargs)
|
||||
current_time = time.time()
|
||||
|
||||
# Fast path: check cache without lock
|
||||
if key in cache_storage:
|
||||
if ttl_seconds is None:
|
||||
logger.debug(f"Cache hit for {target_func.__name__}")
|
||||
return cache_storage[key]
|
||||
else:
|
||||
cached_data = cache_storage[key]
|
||||
if isinstance(cached_data, tuple):
|
||||
result, timestamp = cached_data
|
||||
if current_time - timestamp < ttl_seconds:
|
||||
logger.debug(f"Cache hit for {target_func.__name__}")
|
||||
return result
|
||||
|
||||
# Slow path: acquire lock for cache miss/expiry
|
||||
async with _get_cache_lock():
|
||||
# Double-check: another coroutine might have populated cache
|
||||
if key in cache_storage:
|
||||
if ttl_seconds is None:
|
||||
return cache_storage[key]
|
||||
# Check if we have a valid cached entry
|
||||
if key in cache_storage:
|
||||
if ttl_seconds is None:
|
||||
# No TTL - return cached result directly
|
||||
logger.debug(
|
||||
f"Cache hit for {async_func.__name__} with key: {str(key)[:50]}"
|
||||
)
|
||||
return cast(R, cache_storage[key])
|
||||
else:
|
||||
# With TTL - check expiration
|
||||
cached_data = cache_storage[key]
|
||||
if isinstance(cached_data, tuple):
|
||||
result, timestamp = cached_data
|
||||
if current_time - timestamp < ttl_seconds:
|
||||
logger.debug(
|
||||
f"Cache hit for {async_func.__name__} with key: {str(key)[:50]}"
|
||||
)
|
||||
return cast(R, result)
|
||||
else:
|
||||
cached_data = cache_storage[key]
|
||||
if isinstance(cached_data, tuple):
|
||||
result, timestamp = cached_data
|
||||
if current_time - timestamp < ttl_seconds:
|
||||
return result
|
||||
# Expired entry
|
||||
del cache_storage[key]
|
||||
logger.debug(
|
||||
f"Cache entry expired for {async_func.__name__}"
|
||||
)
|
||||
|
||||
# Cache miss - execute function
|
||||
logger.debug(f"Cache miss for {target_func.__name__}")
|
||||
result = await target_func(*args, **kwargs)
|
||||
# Cache miss or expired - fetch fresh data
|
||||
logger.debug(
|
||||
f"Cache miss for {async_func.__name__} with key: {str(key)[:50]}"
|
||||
)
|
||||
result = await async_func(*args, **kwargs)
|
||||
|
||||
# Store result
|
||||
if ttl_seconds is None:
|
||||
cache_storage[key] = result
|
||||
else:
|
||||
cache_storage[key] = (result, current_time)
|
||||
# Store in cache
|
||||
if ttl_seconds is None:
|
||||
cache_storage[key] = result
|
||||
else:
|
||||
cache_storage[key] = (result, current_time)
|
||||
|
||||
# Cleanup if needed
|
||||
if len(cache_storage) > maxsize:
|
||||
cutoff = maxsize // 2
|
||||
oldest_keys = (
|
||||
list(cache_storage.keys())[:-cutoff] if cutoff > 0 else []
|
||||
)
|
||||
for old_key in oldest_keys:
|
||||
cache_storage.pop(old_key, None)
|
||||
# Simple cleanup when cache gets too large
|
||||
if len(cache_storage) > maxsize:
|
||||
# Remove oldest entries (simple FIFO cleanup)
|
||||
cutoff = maxsize // 2
|
||||
oldest_keys = list(cache_storage.keys())[:-cutoff] if cutoff > 0 else []
|
||||
for old_key in oldest_keys:
|
||||
cache_storage.pop(old_key, None)
|
||||
logger.debug(
|
||||
f"Cache cleanup: removed {len(oldest_keys)} entries for {async_func.__name__}"
|
||||
)
|
||||
|
||||
return result
|
||||
return result
|
||||
|
||||
wrapper = async_wrapper
|
||||
|
||||
else:
|
||||
# Sync function with threading.Lock
|
||||
cache_lock = threading.Lock()
|
||||
|
||||
@wraps(target_func)
|
||||
def sync_wrapper(*args: P.args, **kwargs: P.kwargs):
|
||||
key = _make_hashable_key(args, kwargs)
|
||||
current_time = time.time()
|
||||
|
||||
# Fast path: check cache without lock
|
||||
if key in cache_storage:
|
||||
if ttl_seconds is None:
|
||||
logger.debug(f"Cache hit for {target_func.__name__}")
|
||||
return cache_storage[key]
|
||||
else:
|
||||
cached_data = cache_storage[key]
|
||||
if isinstance(cached_data, tuple):
|
||||
result, timestamp = cached_data
|
||||
if current_time - timestamp < ttl_seconds:
|
||||
logger.debug(f"Cache hit for {target_func.__name__}")
|
||||
return result
|
||||
|
||||
# Slow path: acquire lock for cache miss/expiry
|
||||
with cache_lock:
|
||||
# Double-check: another thread might have populated cache
|
||||
if key in cache_storage:
|
||||
if ttl_seconds is None:
|
||||
return cache_storage[key]
|
||||
else:
|
||||
cached_data = cache_storage[key]
|
||||
if isinstance(cached_data, tuple):
|
||||
result, timestamp = cached_data
|
||||
if current_time - timestamp < ttl_seconds:
|
||||
return result
|
||||
|
||||
# Cache miss - execute function
|
||||
logger.debug(f"Cache miss for {target_func.__name__}")
|
||||
result = target_func(*args, **kwargs)
|
||||
|
||||
# Store result
|
||||
if ttl_seconds is None:
|
||||
cache_storage[key] = result
|
||||
else:
|
||||
cache_storage[key] = (result, current_time)
|
||||
|
||||
# Cleanup if needed
|
||||
if len(cache_storage) > maxsize:
|
||||
cutoff = maxsize // 2
|
||||
oldest_keys = (
|
||||
list(cache_storage.keys())[:-cutoff] if cutoff > 0 else []
|
||||
)
|
||||
for old_key in oldest_keys:
|
||||
cache_storage.pop(old_key, None)
|
||||
|
||||
return result
|
||||
|
||||
wrapper = sync_wrapper
|
||||
|
||||
# Add cache management methods
|
||||
# Add cache management methods (similar to functools.lru_cache)
|
||||
def cache_clear() -> None:
|
||||
cache_storage.clear()
|
||||
|
||||
@@ -256,84 +199,68 @@ def cached(
|
||||
"ttl_seconds": ttl_seconds,
|
||||
}
|
||||
|
||||
def cache_delete(*args, **kwargs) -> bool:
|
||||
"""Delete a specific cache entry. Returns True if entry existed."""
|
||||
key = _make_hashable_key(args, kwargs)
|
||||
if key in cache_storage:
|
||||
del cache_storage[key]
|
||||
return True
|
||||
return False
|
||||
|
||||
# Attach methods to wrapper
|
||||
setattr(wrapper, "cache_clear", cache_clear)
|
||||
setattr(wrapper, "cache_info", cache_info)
|
||||
setattr(wrapper, "cache_delete", cache_delete)
|
||||
|
||||
return cast(CachedFunction, wrapper)
|
||||
return cast(AsyncCachedFunction[P, R], wrapper)
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
def thread_cached(func):
|
||||
"""
|
||||
Thread-local cache decorator for both sync and async functions.
|
||||
@overload
|
||||
def async_cache(
|
||||
func: Callable[P, Awaitable[R]],
|
||||
) -> AsyncCachedFunction[P, R]:
|
||||
pass
|
||||
|
||||
Each thread gets its own cache, which is useful for request-scoped caching
|
||||
in web applications where you want to cache within a single request but
|
||||
not across requests.
|
||||
|
||||
@overload
|
||||
def async_cache(
|
||||
func: None = None,
|
||||
*,
|
||||
maxsize: int = 128,
|
||||
) -> Callable[[Callable[P, Awaitable[R]]], AsyncCachedFunction[P, R]]:
|
||||
pass
|
||||
|
||||
|
||||
def async_cache(
|
||||
func: Callable[P, Awaitable[R]] | None = None,
|
||||
*,
|
||||
maxsize: int = 128,
|
||||
) -> (
|
||||
AsyncCachedFunction[P, R]
|
||||
| Callable[[Callable[P, Awaitable[R]]], AsyncCachedFunction[P, R]]
|
||||
):
|
||||
"""
|
||||
Process-level cache decorator for async functions (no TTL).
|
||||
|
||||
Similar to functools.lru_cache but works with async functions.
|
||||
This is a convenience wrapper around async_ttl_cache with ttl_seconds=None.
|
||||
|
||||
Args:
|
||||
func: The function to cache
|
||||
func: The async function to cache (when used without parentheses)
|
||||
maxsize: Maximum number of cached entries
|
||||
|
||||
Returns:
|
||||
Decorated function with thread-local caching
|
||||
Decorated function or decorator
|
||||
|
||||
Example:
|
||||
@thread_cached
|
||||
def expensive_operation(param: str) -> dict:
|
||||
# Without parentheses (uses default maxsize=128)
|
||||
@async_cache
|
||||
async def get_data(param: str) -> dict:
|
||||
return {"result": param}
|
||||
|
||||
@thread_cached # Works with async too
|
||||
async def expensive_async_operation(param: str) -> dict:
|
||||
# With parentheses and custom maxsize
|
||||
@async_cache(maxsize=1000)
|
||||
async def expensive_computation(param: str) -> dict:
|
||||
# Expensive computation here
|
||||
return {"result": param}
|
||||
"""
|
||||
thread_local = threading.local()
|
||||
|
||||
def _clear():
|
||||
if hasattr(thread_local, "cache"):
|
||||
del thread_local.cache
|
||||
|
||||
if inspect.iscoroutinefunction(func):
|
||||
|
||||
@wraps(func)
|
||||
async def async_wrapper(*args, **kwargs):
|
||||
cache = getattr(thread_local, "cache", None)
|
||||
if cache is None:
|
||||
cache = thread_local.cache = {}
|
||||
key = _make_hashable_key(args, kwargs)
|
||||
if key not in cache:
|
||||
cache[key] = await func(*args, **kwargs)
|
||||
return cache[key]
|
||||
|
||||
setattr(async_wrapper, "clear_cache", _clear)
|
||||
return async_wrapper
|
||||
|
||||
if func is None:
|
||||
# Called with parentheses @async_cache() or @async_cache(maxsize=...)
|
||||
return async_ttl_cache(maxsize=maxsize, ttl_seconds=None)
|
||||
else:
|
||||
|
||||
@wraps(func)
|
||||
def sync_wrapper(*args, **kwargs):
|
||||
cache = getattr(thread_local, "cache", None)
|
||||
if cache is None:
|
||||
cache = thread_local.cache = {}
|
||||
key = _make_hashable_key(args, kwargs)
|
||||
if key not in cache:
|
||||
cache[key] = func(*args, **kwargs)
|
||||
return cache[key]
|
||||
|
||||
setattr(sync_wrapper, "clear_cache", _clear)
|
||||
return sync_wrapper
|
||||
|
||||
|
||||
def clear_thread_cache(func: Callable) -> None:
|
||||
"""Clear thread-local cache for a function."""
|
||||
if clear := getattr(func, "clear_cache", None):
|
||||
clear()
|
||||
# Called without parentheses @async_cache
|
||||
decorator = async_ttl_cache(maxsize=maxsize, ttl_seconds=None)
|
||||
return decorator(func)
|
||||
|
||||
@@ -16,7 +16,12 @@ from unittest.mock import Mock
|
||||
|
||||
import pytest
|
||||
|
||||
from autogpt_libs.utils.cache import cached, clear_thread_cache, thread_cached
|
||||
from autogpt_libs.utils.cache import (
|
||||
async_cache,
|
||||
async_ttl_cache,
|
||||
clear_thread_cache,
|
||||
thread_cached,
|
||||
)
|
||||
|
||||
|
||||
class TestThreadCached:
|
||||
@@ -325,202 +330,102 @@ class TestThreadCached:
|
||||
assert mock.call_count == 2
|
||||
|
||||
|
||||
class TestCache:
|
||||
"""Tests for the unified @cache decorator (works for both sync and async)."""
|
||||
|
||||
def test_basic_sync_caching(self):
|
||||
"""Test basic sync caching functionality."""
|
||||
call_count = 0
|
||||
|
||||
@cached()
|
||||
def expensive_sync_function(x: int, y: int = 0) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
return x + y
|
||||
|
||||
# First call
|
||||
result1 = expensive_sync_function(1, 2)
|
||||
assert result1 == 3
|
||||
assert call_count == 1
|
||||
|
||||
# Second call with same args - should use cache
|
||||
result2 = expensive_sync_function(1, 2)
|
||||
assert result2 == 3
|
||||
assert call_count == 1
|
||||
|
||||
# Different args - should call function again
|
||||
result3 = expensive_sync_function(2, 3)
|
||||
assert result3 == 5
|
||||
assert call_count == 2
|
||||
class TestAsyncTTLCache:
|
||||
"""Tests for the @async_ttl_cache decorator."""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_basic_async_caching(self):
|
||||
"""Test basic async caching functionality."""
|
||||
async def test_basic_caching(self):
|
||||
"""Test basic caching functionality."""
|
||||
call_count = 0
|
||||
|
||||
@cached()
|
||||
async def expensive_async_function(x: int, y: int = 0) -> int:
|
||||
@async_ttl_cache(maxsize=10, ttl_seconds=60)
|
||||
async def cached_function(x: int, y: int = 0) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
await asyncio.sleep(0.01) # Simulate async work
|
||||
return x + y
|
||||
|
||||
# First call
|
||||
result1 = await expensive_async_function(1, 2)
|
||||
result1 = await cached_function(1, 2)
|
||||
assert result1 == 3
|
||||
assert call_count == 1
|
||||
|
||||
# Second call with same args - should use cache
|
||||
result2 = await expensive_async_function(1, 2)
|
||||
result2 = await cached_function(1, 2)
|
||||
assert result2 == 3
|
||||
assert call_count == 1
|
||||
assert call_count == 1 # No additional call
|
||||
|
||||
# Different args - should call function again
|
||||
result3 = await expensive_async_function(2, 3)
|
||||
result3 = await cached_function(2, 3)
|
||||
assert result3 == 5
|
||||
assert call_count == 2
|
||||
|
||||
def test_sync_thundering_herd_protection(self):
|
||||
"""Test that concurrent sync calls don't cause thundering herd."""
|
||||
call_count = 0
|
||||
results = []
|
||||
|
||||
@cached()
|
||||
def slow_function(x: int) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
time.sleep(0.1) # Simulate expensive operation
|
||||
return x * x
|
||||
|
||||
def worker():
|
||||
result = slow_function(5)
|
||||
results.append(result)
|
||||
|
||||
# Launch multiple concurrent threads
|
||||
with ThreadPoolExecutor(max_workers=5) as executor:
|
||||
futures = [executor.submit(worker) for _ in range(5)]
|
||||
for future in futures:
|
||||
future.result()
|
||||
|
||||
# All results should be the same
|
||||
assert all(result == 25 for result in results)
|
||||
# Only one thread should have executed the expensive operation
|
||||
assert call_count == 1
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_thundering_herd_protection(self):
|
||||
"""Test that concurrent async calls don't cause thundering herd."""
|
||||
async def test_ttl_expiration(self):
|
||||
"""Test that cache entries expire after TTL."""
|
||||
call_count = 0
|
||||
|
||||
@cached()
|
||||
async def slow_async_function(x: int) -> int:
|
||||
@async_ttl_cache(maxsize=10, ttl_seconds=1) # Short TTL
|
||||
async def short_lived_cache(x: int) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
await asyncio.sleep(0.1) # Simulate expensive operation
|
||||
return x * x
|
||||
|
||||
# Launch concurrent coroutines
|
||||
tasks = [slow_async_function(7) for _ in range(5)]
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
# All results should be the same
|
||||
assert all(result == 49 for result in results)
|
||||
# Only one coroutine should have executed the expensive operation
|
||||
assert call_count == 1
|
||||
|
||||
def test_ttl_functionality(self):
|
||||
"""Test TTL functionality with sync function."""
|
||||
call_count = 0
|
||||
|
||||
@cached(maxsize=10, ttl_seconds=1) # Short TTL
|
||||
def ttl_function(x: int) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
return x * 3
|
||||
return x * 2
|
||||
|
||||
# First call
|
||||
result1 = ttl_function(3)
|
||||
assert result1 == 9
|
||||
result1 = await short_lived_cache(5)
|
||||
assert result1 == 10
|
||||
assert call_count == 1
|
||||
|
||||
# Second call immediately - should use cache
|
||||
result2 = ttl_function(3)
|
||||
assert result2 == 9
|
||||
assert call_count == 1
|
||||
|
||||
# Wait for TTL to expire
|
||||
time.sleep(1.1)
|
||||
|
||||
# Third call after expiration - should call function again
|
||||
result3 = ttl_function(3)
|
||||
assert result3 == 9
|
||||
assert call_count == 2
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_ttl_functionality(self):
|
||||
"""Test TTL functionality with async function."""
|
||||
call_count = 0
|
||||
|
||||
@cached(maxsize=10, ttl_seconds=1) # Short TTL
|
||||
async def async_ttl_function(x: int) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
await asyncio.sleep(0.01)
|
||||
return x * 4
|
||||
|
||||
# First call
|
||||
result1 = await async_ttl_function(3)
|
||||
assert result1 == 12
|
||||
assert call_count == 1
|
||||
|
||||
# Second call immediately - should use cache
|
||||
result2 = await async_ttl_function(3)
|
||||
assert result2 == 12
|
||||
result2 = await short_lived_cache(5)
|
||||
assert result2 == 10
|
||||
assert call_count == 1
|
||||
|
||||
# Wait for TTL to expire
|
||||
await asyncio.sleep(1.1)
|
||||
|
||||
# Third call after expiration - should call function again
|
||||
result3 = await async_ttl_function(3)
|
||||
assert result3 == 12
|
||||
result3 = await short_lived_cache(5)
|
||||
assert result3 == 10
|
||||
assert call_count == 2
|
||||
|
||||
def test_cache_info(self):
|
||||
@pytest.mark.asyncio
|
||||
async def test_cache_info(self):
|
||||
"""Test cache info functionality."""
|
||||
|
||||
@cached(maxsize=10, ttl_seconds=60)
|
||||
def info_test_function(x: int) -> int:
|
||||
@async_ttl_cache(maxsize=5, ttl_seconds=300)
|
||||
async def info_test_function(x: int) -> int:
|
||||
return x * 3
|
||||
|
||||
# Check initial cache info
|
||||
info = info_test_function.cache_info()
|
||||
assert info["size"] == 0
|
||||
assert info["maxsize"] == 10
|
||||
assert info["ttl_seconds"] == 60
|
||||
assert info["maxsize"] == 5
|
||||
assert info["ttl_seconds"] == 300
|
||||
|
||||
# Add an entry
|
||||
info_test_function(1)
|
||||
await info_test_function(1)
|
||||
info = info_test_function.cache_info()
|
||||
assert info["size"] == 1
|
||||
|
||||
def test_cache_clear(self):
|
||||
@pytest.mark.asyncio
|
||||
async def test_cache_clear(self):
|
||||
"""Test cache clearing functionality."""
|
||||
call_count = 0
|
||||
|
||||
@cached()
|
||||
def clearable_function(x: int) -> int:
|
||||
@async_ttl_cache(maxsize=10, ttl_seconds=60)
|
||||
async def clearable_function(x: int) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
return x * 4
|
||||
|
||||
# First call
|
||||
result1 = clearable_function(2)
|
||||
result1 = await clearable_function(2)
|
||||
assert result1 == 8
|
||||
assert call_count == 1
|
||||
|
||||
# Second call - should use cache
|
||||
result2 = clearable_function(2)
|
||||
result2 = await clearable_function(2)
|
||||
assert result2 == 8
|
||||
assert call_count == 1
|
||||
|
||||
@@ -528,149 +433,273 @@ class TestCache:
|
||||
clearable_function.cache_clear()
|
||||
|
||||
# Third call after clear - should call function again
|
||||
result3 = clearable_function(2)
|
||||
result3 = await clearable_function(2)
|
||||
assert result3 == 8
|
||||
assert call_count == 2
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_cache_clear(self):
|
||||
"""Test cache clearing functionality with async function."""
|
||||
async def test_maxsize_cleanup(self):
|
||||
"""Test that cache cleans up when maxsize is exceeded."""
|
||||
call_count = 0
|
||||
|
||||
@cached()
|
||||
async def async_clearable_function(x: int) -> int:
|
||||
@async_ttl_cache(maxsize=3, ttl_seconds=60)
|
||||
async def size_limited_function(x: int) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
await asyncio.sleep(0.01)
|
||||
return x * 5
|
||||
return x**2
|
||||
|
||||
# First call
|
||||
result1 = await async_clearable_function(2)
|
||||
# Fill cache to maxsize
|
||||
await size_limited_function(1) # call_count: 1
|
||||
await size_limited_function(2) # call_count: 2
|
||||
await size_limited_function(3) # call_count: 3
|
||||
|
||||
info = size_limited_function.cache_info()
|
||||
assert info["size"] == 3
|
||||
|
||||
# Add one more entry - should trigger cleanup
|
||||
await size_limited_function(4) # call_count: 4
|
||||
|
||||
# Cache size should be reduced (cleanup removes oldest entries)
|
||||
info = size_limited_function.cache_info()
|
||||
assert info["size"] is not None and info["size"] <= 3 # Should be cleaned up
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_argument_variations(self):
|
||||
"""Test caching with different argument patterns."""
|
||||
call_count = 0
|
||||
|
||||
@async_ttl_cache(maxsize=10, ttl_seconds=60)
|
||||
async def arg_test_function(a: int, b: str = "default", *, c: int = 100) -> str:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
return f"{a}-{b}-{c}"
|
||||
|
||||
# Different ways to call with same logical arguments
|
||||
result1 = await arg_test_function(1, "test", c=200)
|
||||
assert call_count == 1
|
||||
|
||||
# Same arguments, same order - should use cache
|
||||
result2 = await arg_test_function(1, "test", c=200)
|
||||
assert call_count == 1
|
||||
assert result1 == result2
|
||||
|
||||
# Different arguments - should call function
|
||||
result3 = await arg_test_function(2, "test", c=200)
|
||||
assert call_count == 2
|
||||
assert result1 != result3
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_exception_handling(self):
|
||||
"""Test that exceptions are not cached."""
|
||||
call_count = 0
|
||||
|
||||
@async_ttl_cache(maxsize=10, ttl_seconds=60)
|
||||
async def exception_function(x: int) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
if x < 0:
|
||||
raise ValueError("Negative value not allowed")
|
||||
return x * 2
|
||||
|
||||
# Successful call - should be cached
|
||||
result1 = await exception_function(5)
|
||||
assert result1 == 10
|
||||
assert call_count == 1
|
||||
|
||||
# Second call - should use cache
|
||||
result2 = await async_clearable_function(2)
|
||||
# Same successful call - should use cache
|
||||
result2 = await exception_function(5)
|
||||
assert result2 == 10
|
||||
assert call_count == 1
|
||||
|
||||
# Clear cache
|
||||
async_clearable_function.cache_clear()
|
||||
|
||||
# Third call after clear - should call function again
|
||||
result3 = await async_clearable_function(2)
|
||||
assert result3 == 10
|
||||
# Exception call - should not be cached
|
||||
with pytest.raises(ValueError):
|
||||
await exception_function(-1)
|
||||
assert call_count == 2
|
||||
|
||||
# Same exception call - should call again (not cached)
|
||||
with pytest.raises(ValueError):
|
||||
await exception_function(-1)
|
||||
assert call_count == 3
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_function_returns_results_not_coroutines(self):
|
||||
"""Test that cached async functions return actual results, not coroutines."""
|
||||
async def test_concurrent_calls(self):
|
||||
"""Test caching behavior with concurrent calls."""
|
||||
call_count = 0
|
||||
|
||||
@cached()
|
||||
async def async_result_function(x: int) -> str:
|
||||
@async_ttl_cache(maxsize=10, ttl_seconds=60)
|
||||
async def concurrent_function(x: int) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
await asyncio.sleep(0.01)
|
||||
return f"result_{x}"
|
||||
await asyncio.sleep(0.05) # Simulate work
|
||||
return x * x
|
||||
|
||||
# Launch concurrent calls with same arguments
|
||||
tasks = [concurrent_function(3) for _ in range(5)]
|
||||
results = await asyncio.gather(*tasks)
|
||||
|
||||
# All results should be the same
|
||||
assert all(result == 9 for result in results)
|
||||
|
||||
# Note: Due to race conditions, call_count might be up to 5 for concurrent calls
|
||||
# This tests that the cache doesn't break under concurrent access
|
||||
assert 1 <= call_count <= 5
|
||||
|
||||
|
||||
class TestAsyncCache:
|
||||
"""Tests for the @async_cache decorator (no TTL)."""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_basic_caching_no_ttl(self):
|
||||
"""Test basic caching functionality without TTL."""
|
||||
call_count = 0
|
||||
|
||||
@async_cache(maxsize=10)
|
||||
async def cached_function(x: int, y: int = 0) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
await asyncio.sleep(0.01) # Simulate async work
|
||||
return x + y
|
||||
|
||||
# First call
|
||||
result1 = await async_result_function(1)
|
||||
assert result1 == "result_1"
|
||||
assert isinstance(result1, str) # Should be string, not coroutine
|
||||
result1 = await cached_function(1, 2)
|
||||
assert result1 == 3
|
||||
assert call_count == 1
|
||||
|
||||
# Second call - should return cached result (string), not coroutine
|
||||
result2 = await async_result_function(1)
|
||||
assert result2 == "result_1"
|
||||
assert isinstance(result2, str) # Should be string, not coroutine
|
||||
assert call_count == 1 # Function should not be called again
|
||||
# Second call with same args - should use cache
|
||||
result2 = await cached_function(1, 2)
|
||||
assert result2 == 3
|
||||
assert call_count == 1 # No additional call
|
||||
|
||||
# Verify results are identical
|
||||
assert result1 is result2 # Should be same cached object
|
||||
# Third call after some time - should still use cache (no TTL)
|
||||
await asyncio.sleep(0.05)
|
||||
result3 = await cached_function(1, 2)
|
||||
assert result3 == 3
|
||||
assert call_count == 1 # Still no additional call
|
||||
|
||||
def test_cache_delete(self):
|
||||
"""Test selective cache deletion functionality."""
|
||||
call_count = 0
|
||||
|
||||
@cached()
|
||||
def deletable_function(x: int) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
return x * 6
|
||||
|
||||
# First call for x=1
|
||||
result1 = deletable_function(1)
|
||||
assert result1 == 6
|
||||
assert call_count == 1
|
||||
|
||||
# First call for x=2
|
||||
result2 = deletable_function(2)
|
||||
assert result2 == 12
|
||||
# Different args - should call function again
|
||||
result4 = await cached_function(2, 3)
|
||||
assert result4 == 5
|
||||
assert call_count == 2
|
||||
|
||||
# Second calls - should use cache
|
||||
assert deletable_function(1) == 6
|
||||
assert deletable_function(2) == 12
|
||||
assert call_count == 2
|
||||
|
||||
# Delete specific entry for x=1
|
||||
was_deleted = deletable_function.cache_delete(1)
|
||||
assert was_deleted is True
|
||||
|
||||
# Call with x=1 should execute function again
|
||||
result3 = deletable_function(1)
|
||||
assert result3 == 6
|
||||
assert call_count == 3
|
||||
|
||||
# Call with x=2 should still use cache
|
||||
assert deletable_function(2) == 12
|
||||
assert call_count == 3
|
||||
|
||||
# Try to delete non-existent entry
|
||||
was_deleted = deletable_function.cache_delete(99)
|
||||
assert was_deleted is False
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_cache_delete(self):
|
||||
"""Test selective cache deletion functionality with async function."""
|
||||
async def test_no_ttl_vs_ttl_behavior(self):
|
||||
"""Test the difference between TTL and no-TTL caching."""
|
||||
ttl_call_count = 0
|
||||
no_ttl_call_count = 0
|
||||
|
||||
@async_ttl_cache(maxsize=10, ttl_seconds=1) # Short TTL
|
||||
async def ttl_function(x: int) -> int:
|
||||
nonlocal ttl_call_count
|
||||
ttl_call_count += 1
|
||||
return x * 2
|
||||
|
||||
@async_cache(maxsize=10) # No TTL
|
||||
async def no_ttl_function(x: int) -> int:
|
||||
nonlocal no_ttl_call_count
|
||||
no_ttl_call_count += 1
|
||||
return x * 2
|
||||
|
||||
# First calls
|
||||
await ttl_function(5)
|
||||
await no_ttl_function(5)
|
||||
assert ttl_call_count == 1
|
||||
assert no_ttl_call_count == 1
|
||||
|
||||
# Wait for TTL to expire
|
||||
await asyncio.sleep(1.1)
|
||||
|
||||
# Second calls after TTL expiry
|
||||
await ttl_function(5) # Should call function again (TTL expired)
|
||||
await no_ttl_function(5) # Should use cache (no TTL)
|
||||
assert ttl_call_count == 2 # TTL function called again
|
||||
assert no_ttl_call_count == 1 # No-TTL function still cached
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_async_cache_info(self):
|
||||
"""Test cache info for no-TTL cache."""
|
||||
|
||||
@async_cache(maxsize=5)
|
||||
async def info_test_function(x: int) -> int:
|
||||
return x * 3
|
||||
|
||||
# Check initial cache info
|
||||
info = info_test_function.cache_info()
|
||||
assert info["size"] == 0
|
||||
assert info["maxsize"] == 5
|
||||
assert info["ttl_seconds"] is None # No TTL
|
||||
|
||||
# Add an entry
|
||||
await info_test_function(1)
|
||||
info = info_test_function.cache_info()
|
||||
assert info["size"] == 1
|
||||
|
||||
|
||||
class TestTTLOptional:
|
||||
"""Tests for optional TTL functionality."""
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_ttl_none_behavior(self):
|
||||
"""Test that ttl_seconds=None works like no TTL."""
|
||||
call_count = 0
|
||||
|
||||
@cached()
|
||||
async def async_deletable_function(x: int) -> int:
|
||||
@async_ttl_cache(maxsize=10, ttl_seconds=None)
|
||||
async def no_ttl_via_none(x: int) -> int:
|
||||
nonlocal call_count
|
||||
call_count += 1
|
||||
await asyncio.sleep(0.01)
|
||||
return x * 7
|
||||
return x**2
|
||||
|
||||
# First call for x=1
|
||||
result1 = await async_deletable_function(1)
|
||||
assert result1 == 7
|
||||
# First call
|
||||
result1 = await no_ttl_via_none(3)
|
||||
assert result1 == 9
|
||||
assert call_count == 1
|
||||
|
||||
# First call for x=2
|
||||
result2 = await async_deletable_function(2)
|
||||
assert result2 == 14
|
||||
assert call_count == 2
|
||||
# Wait (would expire if there was TTL)
|
||||
await asyncio.sleep(0.1)
|
||||
|
||||
# Second calls - should use cache
|
||||
assert await async_deletable_function(1) == 7
|
||||
assert await async_deletable_function(2) == 14
|
||||
assert call_count == 2
|
||||
# Second call - should still use cache
|
||||
result2 = await no_ttl_via_none(3)
|
||||
assert result2 == 9
|
||||
assert call_count == 1 # No additional call
|
||||
|
||||
# Delete specific entry for x=1
|
||||
was_deleted = async_deletable_function.cache_delete(1)
|
||||
assert was_deleted is True
|
||||
# Check cache info
|
||||
info = no_ttl_via_none.cache_info()
|
||||
assert info["ttl_seconds"] is None
|
||||
|
||||
# Call with x=1 should execute function again
|
||||
result3 = await async_deletable_function(1)
|
||||
assert result3 == 7
|
||||
assert call_count == 3
|
||||
@pytest.mark.asyncio
|
||||
async def test_cache_options_comparison(self):
|
||||
"""Test different cache options work as expected."""
|
||||
ttl_calls = 0
|
||||
no_ttl_calls = 0
|
||||
|
||||
# Call with x=2 should still use cache
|
||||
assert await async_deletable_function(2) == 14
|
||||
assert call_count == 3
|
||||
@async_ttl_cache(maxsize=10, ttl_seconds=1) # With TTL
|
||||
async def ttl_function(x: int) -> int:
|
||||
nonlocal ttl_calls
|
||||
ttl_calls += 1
|
||||
return x * 10
|
||||
|
||||
# Try to delete non-existent entry
|
||||
was_deleted = async_deletable_function.cache_delete(99)
|
||||
assert was_deleted is False
|
||||
@async_cache(maxsize=10) # Process-level cache (no TTL)
|
||||
async def process_function(x: int) -> int:
|
||||
nonlocal no_ttl_calls
|
||||
no_ttl_calls += 1
|
||||
return x * 10
|
||||
|
||||
# Both should cache initially
|
||||
await ttl_function(3)
|
||||
await process_function(3)
|
||||
assert ttl_calls == 1
|
||||
assert no_ttl_calls == 1
|
||||
|
||||
# Immediate second calls - both should use cache
|
||||
await ttl_function(3)
|
||||
await process_function(3)
|
||||
assert ttl_calls == 1
|
||||
assert no_ttl_calls == 1
|
||||
|
||||
# Wait for TTL to expire
|
||||
await asyncio.sleep(1.1)
|
||||
|
||||
# After TTL expiry
|
||||
await ttl_function(3) # Should call function again
|
||||
await process_function(3) # Should still use cache
|
||||
assert ttl_calls == 2 # TTL cache expired, called again
|
||||
assert no_ttl_calls == 1 # Process cache never expires
|
||||
|
||||
@@ -21,7 +21,7 @@ PRISMA_SCHEMA="postgres/schema.prisma"
|
||||
# Redis Configuration
|
||||
REDIS_HOST=localhost
|
||||
REDIS_PORT=6379
|
||||
# REDIS_PASSWORD=
|
||||
REDIS_PASSWORD=password
|
||||
|
||||
# RabbitMQ Credentials
|
||||
RABBITMQ_DEFAULT_USER=rabbitmq_user_default
|
||||
@@ -66,11 +66,6 @@ NVIDIA_API_KEY=
|
||||
GITHUB_CLIENT_ID=
|
||||
GITHUB_CLIENT_SECRET=
|
||||
|
||||
# Notion OAuth App server credentials - https://developers.notion.com/docs/authorization
|
||||
# Configure a public integration
|
||||
NOTION_CLIENT_ID=
|
||||
NOTION_CLIENT_SECRET=
|
||||
|
||||
# Google OAuth App server credentials - https://console.cloud.google.com/apis/credentials, and enable gmail api and set scopes
|
||||
# https://console.cloud.google.com/apis/credentials/consent ?project=<your_project_id>
|
||||
# You'll need to add/enable the following scopes (minimum):
|
||||
|
||||
10
autogpt_platform/backend/.gitignore
vendored
10
autogpt_platform/backend/.gitignore
vendored
@@ -9,12 +9,4 @@ secrets/*
|
||||
!secrets/.gitkeep
|
||||
|
||||
*.ignore.*
|
||||
*.ign.*
|
||||
|
||||
# Load test results and reports
|
||||
load-tests/*_RESULTS.md
|
||||
load-tests/*_REPORT.md
|
||||
load-tests/results/
|
||||
load-tests/*.json
|
||||
load-tests/*.log
|
||||
load-tests/node_modules/*
|
||||
*.ign.*
|
||||
@@ -9,15 +9,8 @@ WORKDIR /app
|
||||
|
||||
RUN echo 'Acquire::http::Pipeline-Depth 0;\nAcquire::http::No-Cache true;\nAcquire::BrokenProxy true;\n' > /etc/apt/apt.conf.d/99fixbadproxy
|
||||
|
||||
# Install Node.js repository key and setup
|
||||
# Update package list and install Python and build dependencies
|
||||
RUN apt-get update --allow-releaseinfo-change --fix-missing \
|
||||
&& apt-get install -y curl ca-certificates gnupg \
|
||||
&& mkdir -p /etc/apt/keyrings \
|
||||
&& curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key | gpg --dearmor -o /etc/apt/keyrings/nodesource.gpg \
|
||||
&& echo "deb [signed-by=/etc/apt/keyrings/nodesource.gpg] https://deb.nodesource.com/node_20.x nodistro main" | tee /etc/apt/sources.list.d/nodesource.list
|
||||
|
||||
# Update package list and install Python, Node.js, and build dependencies
|
||||
RUN apt-get update \
|
||||
&& apt-get install -y \
|
||||
python3.13 \
|
||||
python3.13-dev \
|
||||
@@ -27,9 +20,7 @@ RUN apt-get update \
|
||||
libpq5 \
|
||||
libz-dev \
|
||||
libssl-dev \
|
||||
postgresql-client \
|
||||
nodejs \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
postgresql-client
|
||||
|
||||
ENV POETRY_HOME=/opt/poetry
|
||||
ENV POETRY_NO_INTERACTION=1
|
||||
@@ -63,18 +54,13 @@ ENV PATH=/opt/poetry/bin:$PATH
|
||||
# Install Python without upgrading system-managed packages
|
||||
RUN apt-get update && apt-get install -y \
|
||||
python3.13 \
|
||||
python3-pip \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
python3-pip
|
||||
|
||||
# Copy only necessary files from builder
|
||||
COPY --from=builder /app /app
|
||||
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
|
||||
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
|
||||
# Copy Node.js installation for Prisma
|
||||
COPY --from=builder /usr/bin/node /usr/bin/node
|
||||
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
|
||||
COPY --from=builder /usr/bin/npm /usr/bin/npm
|
||||
COPY --from=builder /usr/bin/npx /usr/bin/npx
|
||||
# Copy Prisma binaries
|
||||
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
|
||||
|
||||
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import functools
|
||||
import importlib
|
||||
import logging
|
||||
import os
|
||||
@@ -5,8 +6,6 @@ import re
|
||||
from pathlib import Path
|
||||
from typing import TYPE_CHECKING, TypeVar
|
||||
|
||||
from autogpt_libs.utils.cache import cached
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -16,7 +15,7 @@ if TYPE_CHECKING:
|
||||
T = TypeVar("T")
|
||||
|
||||
|
||||
@cached()
|
||||
@functools.cache
|
||||
def load_all_blocks() -> dict[str, type["Block"]]:
|
||||
from backend.data.block import Block
|
||||
from backend.util.settings import Config
|
||||
|
||||
@@ -1,214 +0,0 @@
|
||||
from typing import Any
|
||||
|
||||
from backend.blocks.llm import (
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
AIBlockBase,
|
||||
AICredentials,
|
||||
AICredentialsField,
|
||||
LlmModel,
|
||||
LLMResponse,
|
||||
llm_call,
|
||||
)
|
||||
from backend.data.block import BlockCategory, BlockOutput, BlockSchema
|
||||
from backend.data.model import APIKeyCredentials, NodeExecutionStats, SchemaField
|
||||
|
||||
|
||||
class AIConditionBlock(AIBlockBase):
|
||||
"""
|
||||
An AI-powered condition block that uses natural language to evaluate conditions.
|
||||
|
||||
This block allows users to define conditions in plain English (e.g., "the input is an email address",
|
||||
"the input is a city in the USA") and uses AI to determine if the input satisfies the condition.
|
||||
It provides the same yes/no data pass-through functionality as the standard ConditionBlock.
|
||||
"""
|
||||
|
||||
class Input(BlockSchema):
|
||||
input_value: Any = SchemaField(
|
||||
description="The input value to evaluate with the AI condition",
|
||||
placeholder="Enter the value to be evaluated (text, number, or any data)",
|
||||
)
|
||||
condition: str = SchemaField(
|
||||
description="A plaintext English description of the condition to evaluate",
|
||||
placeholder="E.g., 'the input is the body of an email', 'the input is a City in the USA', 'the input is an error or a refusal'",
|
||||
)
|
||||
yes_value: Any = SchemaField(
|
||||
description="(Optional) Value to output if the condition is true. If not provided, input_value will be used.",
|
||||
placeholder="Leave empty to use input_value, or enter a specific value",
|
||||
default=None,
|
||||
)
|
||||
no_value: Any = SchemaField(
|
||||
description="(Optional) Value to output if the condition is false. If not provided, input_value will be used.",
|
||||
placeholder="Leave empty to use input_value, or enter a specific value",
|
||||
default=None,
|
||||
)
|
||||
model: LlmModel = SchemaField(
|
||||
title="LLM Model",
|
||||
default=LlmModel.GPT4O,
|
||||
description="The language model to use for evaluating the condition.",
|
||||
advanced=False,
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
|
||||
class Output(BlockSchema):
|
||||
result: bool = SchemaField(
|
||||
description="The result of the AI condition evaluation (True or False)"
|
||||
)
|
||||
yes_output: Any = SchemaField(
|
||||
description="The output value if the condition is true"
|
||||
)
|
||||
no_output: Any = SchemaField(
|
||||
description="The output value if the condition is false"
|
||||
)
|
||||
error: str = SchemaField(
|
||||
description="Error message if the AI evaluation is uncertain or fails"
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="553ec5b8-6c45-4299-8d75-b394d05f72ff",
|
||||
input_schema=AIConditionBlock.Input,
|
||||
output_schema=AIConditionBlock.Output,
|
||||
description="Uses AI to evaluate natural language conditions and provide conditional outputs",
|
||||
categories={BlockCategory.AI, BlockCategory.LOGIC},
|
||||
test_input={
|
||||
"input_value": "john@example.com",
|
||||
"condition": "the input is an email address",
|
||||
"yes_value": "Valid email",
|
||||
"no_value": "Not an email",
|
||||
"model": LlmModel.GPT4O,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[
|
||||
("result", True),
|
||||
("yes_output", "Valid email"),
|
||||
],
|
||||
test_mock={
|
||||
"llm_call": lambda *args, **kwargs: LLMResponse(
|
||||
raw_response="",
|
||||
prompt=[],
|
||||
response="true",
|
||||
tool_calls=None,
|
||||
prompt_tokens=50,
|
||||
completion_tokens=10,
|
||||
reasoning=None,
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
async def llm_call(
|
||||
self,
|
||||
credentials: APIKeyCredentials,
|
||||
llm_model: LlmModel,
|
||||
prompt: list,
|
||||
max_tokens: int,
|
||||
) -> LLMResponse:
|
||||
"""Wrapper method for llm_call to enable mocking in tests."""
|
||||
return await llm_call(
|
||||
credentials=credentials,
|
||||
llm_model=llm_model,
|
||||
prompt=prompt,
|
||||
force_json_output=False,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
"""
|
||||
Evaluate the AI condition and return appropriate outputs.
|
||||
"""
|
||||
# Prepare the yes and no values, using input_value as default
|
||||
yes_value = (
|
||||
input_data.yes_value
|
||||
if input_data.yes_value is not None
|
||||
else input_data.input_value
|
||||
)
|
||||
no_value = (
|
||||
input_data.no_value
|
||||
if input_data.no_value is not None
|
||||
else input_data.input_value
|
||||
)
|
||||
|
||||
# Convert input_value to string for AI evaluation
|
||||
input_str = str(input_data.input_value)
|
||||
|
||||
# Create the prompt for AI evaluation
|
||||
prompt = [
|
||||
{
|
||||
"role": "system",
|
||||
"content": (
|
||||
"You are an AI assistant that evaluates conditions based on input data. "
|
||||
"You must respond with only 'true' or 'false' (lowercase) to indicate whether "
|
||||
"the given condition is met by the input value. Be accurate and consider the "
|
||||
"context and meaning of both the input and the condition."
|
||||
),
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": (
|
||||
f"Input value: {input_str}\n"
|
||||
f"Condition to evaluate: {input_data.condition}\n\n"
|
||||
f"Does the input value satisfy the condition? Respond with only 'true' or 'false'."
|
||||
),
|
||||
},
|
||||
]
|
||||
|
||||
# Call the LLM
|
||||
try:
|
||||
response = await self.llm_call(
|
||||
credentials=credentials,
|
||||
llm_model=input_data.model,
|
||||
prompt=prompt,
|
||||
max_tokens=10, # We only expect a true/false response
|
||||
)
|
||||
|
||||
# Extract the boolean result from the response
|
||||
response_text = response.response.strip().lower()
|
||||
if response_text == "true":
|
||||
result = True
|
||||
elif response_text == "false":
|
||||
result = False
|
||||
else:
|
||||
# If the response is not clear, try to interpret it using word boundaries
|
||||
import re
|
||||
|
||||
# Use word boundaries to avoid false positives like 'untrue' or '10'
|
||||
tokens = set(re.findall(r"\b(true|false|yes|no|1|0)\b", response_text))
|
||||
|
||||
if tokens == {"true"} or tokens == {"yes"} or tokens == {"1"}:
|
||||
result = True
|
||||
elif tokens == {"false"} or tokens == {"no"} or tokens == {"0"}:
|
||||
result = False
|
||||
else:
|
||||
# Unclear or conflicting response - default to False and yield error
|
||||
result = False
|
||||
yield "error", f"Unclear AI response: '{response.response}'"
|
||||
|
||||
# Update internal stats
|
||||
self.merge_stats(
|
||||
NodeExecutionStats(
|
||||
input_token_count=response.prompt_tokens,
|
||||
output_token_count=response.completion_tokens,
|
||||
)
|
||||
)
|
||||
self.prompt = response.prompt
|
||||
|
||||
except Exception as e:
|
||||
# In case of any error, default to False to be safe
|
||||
result = False
|
||||
# Log the error but don't fail the block execution
|
||||
import logging
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
logger.error(f"AI condition evaluation failed: {str(e)}")
|
||||
yield "error", f"AI evaluation failed: {str(e)}"
|
||||
|
||||
# Yield results
|
||||
yield "result", result
|
||||
|
||||
if result:
|
||||
yield "yes_output", yes_value
|
||||
else:
|
||||
yield "no_output", no_value
|
||||
@@ -241,7 +241,6 @@ class AirtableCreateRecordsBlock(Block):
|
||||
|
||||
class Output(BlockSchema):
|
||||
records: list[dict] = SchemaField(description="Array of created record objects")
|
||||
details: dict = SchemaField(description="Details of the created records")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
@@ -280,9 +279,6 @@ class AirtableCreateRecordsBlock(Block):
|
||||
result_records = normalized_data["records"]
|
||||
|
||||
yield "records", result_records
|
||||
details = data.get("details", None)
|
||||
if details:
|
||||
yield "details", details
|
||||
|
||||
|
||||
class AirtableUpdateRecordsBlock(Block):
|
||||
|
||||
@@ -1,10 +1,8 @@
|
||||
from enum import Enum
|
||||
from typing import Any, Literal, Optional
|
||||
from typing import Literal
|
||||
|
||||
from e2b_code_interpreter import AsyncSandbox
|
||||
from e2b_code_interpreter import Result as E2BExecutionResult
|
||||
from e2b_code_interpreter.charts import Chart as E2BExecutionResultChart
|
||||
from pydantic import BaseModel, JsonValue, SecretStr
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
|
||||
from backend.data.model import (
|
||||
@@ -38,135 +36,14 @@ class ProgrammingLanguage(Enum):
|
||||
JAVA = "java"
|
||||
|
||||
|
||||
class MainCodeExecutionResult(BaseModel):
|
||||
"""
|
||||
*Pydantic model mirroring `e2b_code_interpreter.Result`*
|
||||
|
||||
Represents the data to be displayed as a result of executing a cell in a Jupyter notebook.
|
||||
The result is similar to the structure returned by ipython kernel: https://ipython.readthedocs.io/en/stable/development/execution.html#execution-semantics
|
||||
|
||||
The result can contain multiple types of data, such as text, images, plots, etc. Each type of data is represented
|
||||
as a string, and the result can contain multiple types of data. The display calls don't have to have text representation,
|
||||
for the actual result the representation is always present for the result, the other representations are always optional.
|
||||
""" # noqa
|
||||
|
||||
class Chart(BaseModel, E2BExecutionResultChart):
|
||||
pass
|
||||
|
||||
text: Optional[str] = None
|
||||
html: Optional[str] = None
|
||||
markdown: Optional[str] = None
|
||||
svg: Optional[str] = None
|
||||
png: Optional[str] = None
|
||||
jpeg: Optional[str] = None
|
||||
pdf: Optional[str] = None
|
||||
latex: Optional[str] = None
|
||||
json: Optional[JsonValue] = None # type: ignore (reportIncompatibleMethodOverride)
|
||||
javascript: Optional[str] = None
|
||||
data: Optional[dict] = None
|
||||
chart: Optional[Chart] = None
|
||||
extra: Optional[dict] = None
|
||||
"""Extra data that can be included. Not part of the standard types."""
|
||||
|
||||
|
||||
class CodeExecutionResult(MainCodeExecutionResult):
|
||||
__doc__ = MainCodeExecutionResult.__doc__
|
||||
|
||||
is_main_result: bool = False
|
||||
"""Whether this data is the main result of the cell. Data can be produced by display calls of which can be multiple in a cell.""" # noqa
|
||||
|
||||
|
||||
class BaseE2BExecutorMixin:
|
||||
"""Shared implementation methods for E2B executor blocks."""
|
||||
|
||||
async def execute_code(
|
||||
self,
|
||||
api_key: str,
|
||||
code: str,
|
||||
language: ProgrammingLanguage,
|
||||
template_id: str = "",
|
||||
setup_commands: Optional[list[str]] = None,
|
||||
timeout: Optional[int] = None,
|
||||
sandbox_id: Optional[str] = None,
|
||||
dispose_sandbox: bool = False,
|
||||
):
|
||||
"""
|
||||
Unified code execution method that handles all three use cases:
|
||||
1. Create new sandbox and execute (ExecuteCodeBlock)
|
||||
2. Create new sandbox, execute, and return sandbox_id (InstantiateCodeSandboxBlock)
|
||||
3. Connect to existing sandbox and execute (ExecuteCodeStepBlock)
|
||||
""" # noqa
|
||||
sandbox = None
|
||||
try:
|
||||
if sandbox_id:
|
||||
# Connect to existing sandbox (ExecuteCodeStepBlock case)
|
||||
sandbox = await AsyncSandbox.connect(
|
||||
sandbox_id=sandbox_id, api_key=api_key
|
||||
)
|
||||
else:
|
||||
# Create new sandbox (ExecuteCodeBlock/InstantiateCodeSandboxBlock case)
|
||||
sandbox = await AsyncSandbox.create(
|
||||
api_key=api_key, template=template_id, timeout=timeout
|
||||
)
|
||||
if setup_commands:
|
||||
for cmd in setup_commands:
|
||||
await sandbox.commands.run(cmd)
|
||||
|
||||
# Execute the code
|
||||
execution = await sandbox.run_code(
|
||||
code,
|
||||
language=language.value,
|
||||
on_error=lambda e: sandbox.kill(), # Kill the sandbox on error
|
||||
)
|
||||
|
||||
if execution.error:
|
||||
raise Exception(execution.error)
|
||||
|
||||
results = execution.results
|
||||
text_output = execution.text
|
||||
stdout_logs = "".join(execution.logs.stdout)
|
||||
stderr_logs = "".join(execution.logs.stderr)
|
||||
|
||||
return results, text_output, stdout_logs, stderr_logs, sandbox.sandbox_id
|
||||
finally:
|
||||
# Dispose of sandbox if requested to reduce usage costs
|
||||
if dispose_sandbox and sandbox:
|
||||
await sandbox.kill()
|
||||
|
||||
def process_execution_results(
|
||||
self, results: list[E2BExecutionResult]
|
||||
) -> tuple[dict[str, Any] | None, list[dict[str, Any]]]:
|
||||
"""Process and filter execution results."""
|
||||
# Filter out empty formats and convert to dicts
|
||||
processed_results = [
|
||||
{
|
||||
f: value
|
||||
for f in [*r.formats(), "extra", "is_main_result"]
|
||||
if (value := getattr(r, f, None)) is not None
|
||||
}
|
||||
for r in results
|
||||
]
|
||||
if main_result := next(
|
||||
(r for r in processed_results if r.get("is_main_result")), None
|
||||
):
|
||||
# Make main_result a copy we can modify & remove is_main_result
|
||||
(main_result := {**main_result}).pop("is_main_result")
|
||||
|
||||
return main_result, processed_results
|
||||
|
||||
|
||||
class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
|
||||
class CodeExecutionBlock(Block):
|
||||
# TODO : Add support to upload and download files
|
||||
# NOTE: Currently, you can only customize the CPU and Memory
|
||||
# by creating a pre customized sandbox template
|
||||
# Currently, You can customized the CPU and Memory, only by creating a pre customized sandbox template
|
||||
class Input(BlockSchema):
|
||||
credentials: CredentialsMetaInput[
|
||||
Literal[ProviderName.E2B], Literal["api_key"]
|
||||
] = CredentialsField(
|
||||
description=(
|
||||
"Enter your API key for the E2B platform. "
|
||||
"You can get it in here - https://e2b.dev/docs"
|
||||
),
|
||||
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
|
||||
)
|
||||
|
||||
# Todo : Option to run commond in background
|
||||
@@ -199,14 +76,6 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
|
||||
description="Execution timeout in seconds", default=300
|
||||
)
|
||||
|
||||
dispose_sandbox: bool = SchemaField(
|
||||
description=(
|
||||
"Whether to dispose of the sandbox immediately after execution. "
|
||||
"If disabled, the sandbox will run until its timeout expires."
|
||||
),
|
||||
default=True,
|
||||
)
|
||||
|
||||
template_id: str = SchemaField(
|
||||
description=(
|
||||
"You can use an E2B sandbox template by entering its ID here. "
|
||||
@@ -218,16 +87,7 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
|
||||
)
|
||||
|
||||
class Output(BlockSchema):
|
||||
main_result: MainCodeExecutionResult = SchemaField(
|
||||
title="Main Result", description="The main result from the code execution"
|
||||
)
|
||||
results: list[CodeExecutionResult] = SchemaField(
|
||||
description="List of results from the code execution"
|
||||
)
|
||||
response: str = SchemaField(
|
||||
title="Main Text Output",
|
||||
description="Text output (if any) of the main execution result",
|
||||
)
|
||||
response: str = SchemaField(description="Response from code execution")
|
||||
stdout_logs: str = SchemaField(
|
||||
description="Standard output logs from execution"
|
||||
)
|
||||
@@ -237,10 +97,10 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="0b02b072-abe7-11ef-8372-fb5d162dd712",
|
||||
description="Executes code in a sandbox environment with internet access.",
|
||||
description="Executes code in an isolated sandbox environment with internet access.",
|
||||
categories={BlockCategory.DEVELOPER_TOOLS},
|
||||
input_schema=ExecuteCodeBlock.Input,
|
||||
output_schema=ExecuteCodeBlock.Output,
|
||||
input_schema=CodeExecutionBlock.Input,
|
||||
output_schema=CodeExecutionBlock.Output,
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_input={
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
@@ -251,59 +111,91 @@ class ExecuteCodeBlock(Block, BaseE2BExecutorMixin):
|
||||
"template_id": "",
|
||||
},
|
||||
test_output=[
|
||||
("results", []),
|
||||
("response", "Hello World"),
|
||||
("stdout_logs", "Hello World\n"),
|
||||
],
|
||||
test_mock={
|
||||
"execute_code": lambda api_key, code, language, template_id, setup_commands, timeout, dispose_sandbox: ( # noqa
|
||||
[], # results
|
||||
"Hello World", # text_output
|
||||
"Hello World\n", # stdout_logs
|
||||
"", # stderr_logs
|
||||
"sandbox_id", # sandbox_id
|
||||
"execute_code": lambda code, language, setup_commands, timeout, api_key, template_id: (
|
||||
"Hello World",
|
||||
"Hello World\n",
|
||||
"",
|
||||
),
|
||||
},
|
||||
)
|
||||
|
||||
async def execute_code(
|
||||
self,
|
||||
code: str,
|
||||
language: ProgrammingLanguage,
|
||||
setup_commands: list[str],
|
||||
timeout: int,
|
||||
api_key: str,
|
||||
template_id: str,
|
||||
):
|
||||
try:
|
||||
sandbox = None
|
||||
if template_id:
|
||||
sandbox = await AsyncSandbox.create(
|
||||
template=template_id, api_key=api_key, timeout=timeout
|
||||
)
|
||||
else:
|
||||
sandbox = await AsyncSandbox.create(api_key=api_key, timeout=timeout)
|
||||
|
||||
if not sandbox:
|
||||
raise Exception("Sandbox not created")
|
||||
|
||||
# Running setup commands
|
||||
for cmd in setup_commands:
|
||||
await sandbox.commands.run(cmd)
|
||||
|
||||
# Executing the code
|
||||
execution = await sandbox.run_code(
|
||||
code,
|
||||
language=language.value,
|
||||
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
|
||||
)
|
||||
|
||||
if execution.error:
|
||||
raise Exception(execution.error)
|
||||
|
||||
response = execution.text
|
||||
stdout_logs = "".join(execution.logs.stdout)
|
||||
stderr_logs = "".join(execution.logs.stderr)
|
||||
|
||||
return response, stdout_logs, stderr_logs
|
||||
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
results, text_output, stdout, stderr, _ = await self.execute_code(
|
||||
api_key=credentials.api_key.get_secret_value(),
|
||||
code=input_data.code,
|
||||
language=input_data.language,
|
||||
template_id=input_data.template_id,
|
||||
setup_commands=input_data.setup_commands,
|
||||
timeout=input_data.timeout,
|
||||
dispose_sandbox=input_data.dispose_sandbox,
|
||||
response, stdout_logs, stderr_logs = await self.execute_code(
|
||||
input_data.code,
|
||||
input_data.language,
|
||||
input_data.setup_commands,
|
||||
input_data.timeout,
|
||||
credentials.api_key.get_secret_value(),
|
||||
input_data.template_id,
|
||||
)
|
||||
|
||||
# Determine result object shape & filter out empty formats
|
||||
main_result, results = self.process_execution_results(results)
|
||||
if main_result:
|
||||
yield "main_result", main_result
|
||||
yield "results", results
|
||||
if text_output:
|
||||
yield "response", text_output
|
||||
if stdout:
|
||||
yield "stdout_logs", stdout
|
||||
if stderr:
|
||||
yield "stderr_logs", stderr
|
||||
if response:
|
||||
yield "response", response
|
||||
if stdout_logs:
|
||||
yield "stdout_logs", stdout_logs
|
||||
if stderr_logs:
|
||||
yield "stderr_logs", stderr_logs
|
||||
except Exception as e:
|
||||
yield "error", str(e)
|
||||
|
||||
|
||||
class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
|
||||
class InstantiationBlock(Block):
|
||||
class Input(BlockSchema):
|
||||
credentials: CredentialsMetaInput[
|
||||
Literal[ProviderName.E2B], Literal["api_key"]
|
||||
] = CredentialsField(
|
||||
description=(
|
||||
"Enter your API key for the E2B platform. "
|
||||
"You can get it in here - https://e2b.dev/docs"
|
||||
)
|
||||
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
|
||||
)
|
||||
|
||||
# Todo : Option to run commond in background
|
||||
@@ -348,10 +240,7 @@ class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
|
||||
|
||||
class Output(BlockSchema):
|
||||
sandbox_id: str = SchemaField(description="ID of the sandbox instance")
|
||||
response: str = SchemaField(
|
||||
title="Text Result",
|
||||
description="Text result (if any) of the setup code execution",
|
||||
)
|
||||
response: str = SchemaField(description="Response from code execution")
|
||||
stdout_logs: str = SchemaField(
|
||||
description="Standard output logs from execution"
|
||||
)
|
||||
@@ -361,13 +250,10 @@ class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="ff0861c9-1726-4aec-9e5b-bf53f3622112",
|
||||
description=(
|
||||
"Instantiate a sandbox environment with internet access "
|
||||
"in which you can execute code with the Execute Code Step block."
|
||||
),
|
||||
description="Instantiate an isolated sandbox environment with internet access where to execute code in.",
|
||||
categories={BlockCategory.DEVELOPER_TOOLS},
|
||||
input_schema=InstantiateCodeSandboxBlock.Input,
|
||||
output_schema=InstantiateCodeSandboxBlock.Output,
|
||||
input_schema=InstantiationBlock.Input,
|
||||
output_schema=InstantiationBlock.Output,
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_input={
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
@@ -383,12 +269,11 @@ class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
|
||||
("stdout_logs", "Hello World\n"),
|
||||
],
|
||||
test_mock={
|
||||
"execute_code": lambda api_key, code, language, template_id, setup_commands, timeout: ( # noqa
|
||||
[], # results
|
||||
"Hello World", # text_output
|
||||
"Hello World\n", # stdout_logs
|
||||
"", # stderr_logs
|
||||
"sandbox_id", # sandbox_id
|
||||
"execute_code": lambda setup_code, language, setup_commands, timeout, api_key, template_id: (
|
||||
"sandbox_id",
|
||||
"Hello World",
|
||||
"Hello World\n",
|
||||
"",
|
||||
),
|
||||
},
|
||||
)
|
||||
@@ -397,38 +282,78 @@ class InstantiateCodeSandboxBlock(Block, BaseE2BExecutorMixin):
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
_, text_output, stdout, stderr, sandbox_id = await self.execute_code(
|
||||
api_key=credentials.api_key.get_secret_value(),
|
||||
code=input_data.setup_code,
|
||||
language=input_data.language,
|
||||
template_id=input_data.template_id,
|
||||
setup_commands=input_data.setup_commands,
|
||||
timeout=input_data.timeout,
|
||||
sandbox_id, response, stdout_logs, stderr_logs = await self.execute_code(
|
||||
input_data.setup_code,
|
||||
input_data.language,
|
||||
input_data.setup_commands,
|
||||
input_data.timeout,
|
||||
credentials.api_key.get_secret_value(),
|
||||
input_data.template_id,
|
||||
)
|
||||
if sandbox_id:
|
||||
yield "sandbox_id", sandbox_id
|
||||
else:
|
||||
yield "error", "Sandbox ID not found"
|
||||
|
||||
if text_output:
|
||||
yield "response", text_output
|
||||
if stdout:
|
||||
yield "stdout_logs", stdout
|
||||
if stderr:
|
||||
yield "stderr_logs", stderr
|
||||
if response:
|
||||
yield "response", response
|
||||
if stdout_logs:
|
||||
yield "stdout_logs", stdout_logs
|
||||
if stderr_logs:
|
||||
yield "stderr_logs", stderr_logs
|
||||
except Exception as e:
|
||||
yield "error", str(e)
|
||||
|
||||
async def execute_code(
|
||||
self,
|
||||
code: str,
|
||||
language: ProgrammingLanguage,
|
||||
setup_commands: list[str],
|
||||
timeout: int,
|
||||
api_key: str,
|
||||
template_id: str,
|
||||
):
|
||||
try:
|
||||
sandbox = None
|
||||
if template_id:
|
||||
sandbox = await AsyncSandbox.create(
|
||||
template=template_id, api_key=api_key, timeout=timeout
|
||||
)
|
||||
else:
|
||||
sandbox = await AsyncSandbox.create(api_key=api_key, timeout=timeout)
|
||||
|
||||
class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
|
||||
if not sandbox:
|
||||
raise Exception("Sandbox not created")
|
||||
|
||||
# Running setup commands
|
||||
for cmd in setup_commands:
|
||||
await sandbox.commands.run(cmd)
|
||||
|
||||
# Executing the code
|
||||
execution = await sandbox.run_code(
|
||||
code,
|
||||
language=language.value,
|
||||
on_error=lambda e: sandbox.kill(), # Kill the sandbox if there is an error
|
||||
)
|
||||
|
||||
if execution.error:
|
||||
raise Exception(execution.error)
|
||||
|
||||
response = execution.text
|
||||
stdout_logs = "".join(execution.logs.stdout)
|
||||
stderr_logs = "".join(execution.logs.stderr)
|
||||
|
||||
return sandbox.sandbox_id, response, stdout_logs, stderr_logs
|
||||
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
|
||||
class StepExecutionBlock(Block):
|
||||
class Input(BlockSchema):
|
||||
credentials: CredentialsMetaInput[
|
||||
Literal[ProviderName.E2B], Literal["api_key"]
|
||||
] = CredentialsField(
|
||||
description=(
|
||||
"Enter your API key for the E2B platform. "
|
||||
"You can get it in here - https://e2b.dev/docs"
|
||||
),
|
||||
description="Enter your api key for the E2B Sandbox. You can get it in here - https://e2b.dev/docs",
|
||||
)
|
||||
|
||||
sandbox_id: str = SchemaField(
|
||||
@@ -449,22 +374,8 @@ class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
|
||||
advanced=False,
|
||||
)
|
||||
|
||||
dispose_sandbox: bool = SchemaField(
|
||||
description="Whether to dispose of the sandbox after executing this code.",
|
||||
default=False,
|
||||
)
|
||||
|
||||
class Output(BlockSchema):
|
||||
main_result: MainCodeExecutionResult = SchemaField(
|
||||
title="Main Result", description="The main result from the code execution"
|
||||
)
|
||||
results: list[CodeExecutionResult] = SchemaField(
|
||||
description="List of results from the code execution"
|
||||
)
|
||||
response: str = SchemaField(
|
||||
title="Main Text Output",
|
||||
description="Text output (if any) of the main execution result",
|
||||
)
|
||||
response: str = SchemaField(description="Response from code execution")
|
||||
stdout_logs: str = SchemaField(
|
||||
description="Standard output logs from execution"
|
||||
)
|
||||
@@ -474,10 +385,10 @@ class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="82b59b8e-ea10-4d57-9161-8b169b0adba6",
|
||||
description="Execute code in a previously instantiated sandbox.",
|
||||
description="Execute code in a previously instantiated sandbox environment.",
|
||||
categories={BlockCategory.DEVELOPER_TOOLS},
|
||||
input_schema=ExecuteCodeStepBlock.Input,
|
||||
output_schema=ExecuteCodeStepBlock.Output,
|
||||
input_schema=StepExecutionBlock.Input,
|
||||
output_schema=StepExecutionBlock.Output,
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_input={
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
@@ -486,43 +397,61 @@ class ExecuteCodeStepBlock(Block, BaseE2BExecutorMixin):
|
||||
"language": ProgrammingLanguage.PYTHON.value,
|
||||
},
|
||||
test_output=[
|
||||
("results", []),
|
||||
("response", "Hello World"),
|
||||
("stdout_logs", "Hello World\n"),
|
||||
],
|
||||
test_mock={
|
||||
"execute_code": lambda api_key, code, language, sandbox_id, dispose_sandbox: ( # noqa
|
||||
[], # results
|
||||
"Hello World", # text_output
|
||||
"Hello World\n", # stdout_logs
|
||||
"", # stderr_logs
|
||||
sandbox_id, # sandbox_id
|
||||
"execute_step_code": lambda sandbox_id, step_code, language, api_key: (
|
||||
"Hello World",
|
||||
"Hello World\n",
|
||||
"",
|
||||
),
|
||||
},
|
||||
)
|
||||
|
||||
async def execute_step_code(
|
||||
self,
|
||||
sandbox_id: str,
|
||||
code: str,
|
||||
language: ProgrammingLanguage,
|
||||
api_key: str,
|
||||
):
|
||||
try:
|
||||
sandbox = await AsyncSandbox.connect(sandbox_id=sandbox_id, api_key=api_key)
|
||||
if not sandbox:
|
||||
raise Exception("Sandbox not found")
|
||||
|
||||
# Executing the code
|
||||
execution = await sandbox.run_code(code, language=language.value)
|
||||
|
||||
if execution.error:
|
||||
raise Exception(execution.error)
|
||||
|
||||
response = execution.text
|
||||
stdout_logs = "".join(execution.logs.stdout)
|
||||
stderr_logs = "".join(execution.logs.stderr)
|
||||
|
||||
return response, stdout_logs, stderr_logs
|
||||
|
||||
except Exception as e:
|
||||
raise e
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
results, text_output, stdout, stderr, _ = await self.execute_code(
|
||||
api_key=credentials.api_key.get_secret_value(),
|
||||
code=input_data.step_code,
|
||||
language=input_data.language,
|
||||
sandbox_id=input_data.sandbox_id,
|
||||
dispose_sandbox=input_data.dispose_sandbox,
|
||||
response, stdout_logs, stderr_logs = await self.execute_step_code(
|
||||
input_data.sandbox_id,
|
||||
input_data.step_code,
|
||||
input_data.language,
|
||||
credentials.api_key.get_secret_value(),
|
||||
)
|
||||
|
||||
# Determine result object shape & filter out empty formats
|
||||
main_result, results = self.process_execution_results(results)
|
||||
if main_result:
|
||||
yield "main_result", main_result
|
||||
yield "results", results
|
||||
if text_output:
|
||||
yield "response", text_output
|
||||
if stdout:
|
||||
yield "stdout_logs", stdout
|
||||
if stderr:
|
||||
yield "stderr_logs", stderr
|
||||
if response:
|
||||
yield "response", response
|
||||
if stdout_logs:
|
||||
yield "stdout_logs", stdout_logs
|
||||
if stderr_logs:
|
||||
yield "stderr_logs", stderr_logs
|
||||
except Exception as e:
|
||||
yield "error", str(e)
|
||||
|
||||
@@ -90,7 +90,7 @@ class CodeExtractionBlock(Block):
|
||||
for aliases in language_aliases.values()
|
||||
for alias in aliases
|
||||
)
|
||||
+ r")[ \t]*\n[\s\S]*?```"
|
||||
+ r")\s+[\s\S]*?```"
|
||||
)
|
||||
|
||||
remaining_text = re.sub(pattern, "", input_data.text).strip()
|
||||
@@ -103,9 +103,7 @@ class CodeExtractionBlock(Block):
|
||||
# Escape special regex characters in the language string
|
||||
language = re.escape(language)
|
||||
# Extract all code blocks enclosed in ```language``` blocks
|
||||
pattern = re.compile(
|
||||
rf"```{language}[ \t]*\n(.*?)\n```", re.DOTALL | re.IGNORECASE
|
||||
)
|
||||
pattern = re.compile(rf"```{language}\s+(.*?)```", re.DOTALL | re.IGNORECASE)
|
||||
matches = pattern.finditer(text)
|
||||
# Combine all code blocks for this language with newlines between them
|
||||
code_blocks = [match.group(1).strip() for match in matches]
|
||||
|
||||
@@ -66,7 +66,6 @@ class AddToDictionaryBlock(Block):
|
||||
dictionary: dict[Any, Any] = SchemaField(
|
||||
default_factory=dict,
|
||||
description="The dictionary to add the entry to. If not provided, a new dictionary will be created.",
|
||||
advanced=False,
|
||||
)
|
||||
key: str = SchemaField(
|
||||
default="",
|
||||
|
||||
@@ -113,7 +113,6 @@ class DataForSeoClient:
|
||||
include_serp_info: bool = False,
|
||||
include_clickstream_data: bool = False,
|
||||
limit: int = 100,
|
||||
depth: Optional[int] = None,
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Get related keywords from DataForSEO Labs.
|
||||
@@ -126,7 +125,6 @@ class DataForSeoClient:
|
||||
include_serp_info: Include SERP data
|
||||
include_clickstream_data: Include clickstream metrics
|
||||
limit: Maximum number of results (up to 3000)
|
||||
depth: Keyword search depth (0-4), controls number of returned keywords
|
||||
|
||||
Returns:
|
||||
API response with related keywords
|
||||
@@ -150,8 +148,6 @@ class DataForSeoClient:
|
||||
task_data["include_clickstream_data"] = include_clickstream_data
|
||||
if limit is not None:
|
||||
task_data["limit"] = limit
|
||||
if depth is not None:
|
||||
task_data["depth"] = depth
|
||||
|
||||
payload = [task_data]
|
||||
|
||||
|
||||
@@ -90,7 +90,6 @@ class DataForSeoKeywordSuggestionsBlock(Block):
|
||||
seed_keyword: str = SchemaField(
|
||||
description="The seed keyword used for the query"
|
||||
)
|
||||
error: str = SchemaField(description="Error message if the API call failed")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
@@ -162,52 +161,43 @@ class DataForSeoKeywordSuggestionsBlock(Block):
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
"""Execute the keyword suggestions query."""
|
||||
try:
|
||||
client = DataForSeoClient(credentials)
|
||||
client = DataForSeoClient(credentials)
|
||||
|
||||
results = await self._fetch_keyword_suggestions(client, input_data)
|
||||
results = await self._fetch_keyword_suggestions(client, input_data)
|
||||
|
||||
# Process and format the results
|
||||
suggestions = []
|
||||
if results and len(results) > 0:
|
||||
# results is a list, get the first element
|
||||
first_result = results[0] if isinstance(results, list) else results
|
||||
items = (
|
||||
first_result.get("items", [])
|
||||
if isinstance(first_result, dict)
|
||||
else []
|
||||
# Process and format the results
|
||||
suggestions = []
|
||||
if results and len(results) > 0:
|
||||
# results is a list, get the first element
|
||||
first_result = results[0] if isinstance(results, list) else results
|
||||
items = (
|
||||
first_result.get("items", []) if isinstance(first_result, dict) else []
|
||||
)
|
||||
for item in items:
|
||||
# Create the KeywordSuggestion object
|
||||
suggestion = KeywordSuggestion(
|
||||
keyword=item.get("keyword", ""),
|
||||
search_volume=item.get("keyword_info", {}).get("search_volume"),
|
||||
competition=item.get("keyword_info", {}).get("competition"),
|
||||
cpc=item.get("keyword_info", {}).get("cpc"),
|
||||
keyword_difficulty=item.get("keyword_properties", {}).get(
|
||||
"keyword_difficulty"
|
||||
),
|
||||
serp_info=(
|
||||
item.get("serp_info") if input_data.include_serp_info else None
|
||||
),
|
||||
clickstream_data=(
|
||||
item.get("clickstream_keyword_info")
|
||||
if input_data.include_clickstream_data
|
||||
else None
|
||||
),
|
||||
)
|
||||
if items is None:
|
||||
items = []
|
||||
for item in items:
|
||||
# Create the KeywordSuggestion object
|
||||
suggestion = KeywordSuggestion(
|
||||
keyword=item.get("keyword", ""),
|
||||
search_volume=item.get("keyword_info", {}).get("search_volume"),
|
||||
competition=item.get("keyword_info", {}).get("competition"),
|
||||
cpc=item.get("keyword_info", {}).get("cpc"),
|
||||
keyword_difficulty=item.get("keyword_properties", {}).get(
|
||||
"keyword_difficulty"
|
||||
),
|
||||
serp_info=(
|
||||
item.get("serp_info")
|
||||
if input_data.include_serp_info
|
||||
else None
|
||||
),
|
||||
clickstream_data=(
|
||||
item.get("clickstream_keyword_info")
|
||||
if input_data.include_clickstream_data
|
||||
else None
|
||||
),
|
||||
)
|
||||
yield "suggestion", suggestion
|
||||
suggestions.append(suggestion)
|
||||
yield "suggestion", suggestion
|
||||
suggestions.append(suggestion)
|
||||
|
||||
yield "suggestions", suggestions
|
||||
yield "total_count", len(suggestions)
|
||||
yield "seed_keyword", input_data.keyword
|
||||
except Exception as e:
|
||||
yield "error", f"Failed to fetch keyword suggestions: {str(e)}"
|
||||
yield "suggestions", suggestions
|
||||
yield "total_count", len(suggestions)
|
||||
yield "seed_keyword", input_data.keyword
|
||||
|
||||
|
||||
class KeywordSuggestionExtractorBlock(Block):
|
||||
|
||||
@@ -78,12 +78,6 @@ class DataForSeoRelatedKeywordsBlock(Block):
|
||||
ge=1,
|
||||
le=3000,
|
||||
)
|
||||
depth: int = SchemaField(
|
||||
description="Keyword search depth (0-4). Controls the number of returned keywords: 0=1 keyword, 1=~8 keywords, 2=~72 keywords, 3=~584 keywords, 4=~4680 keywords",
|
||||
default=1,
|
||||
ge=0,
|
||||
le=4,
|
||||
)
|
||||
|
||||
class Output(BlockSchema):
|
||||
related_keywords: List[RelatedKeyword] = SchemaField(
|
||||
@@ -98,7 +92,6 @@ class DataForSeoRelatedKeywordsBlock(Block):
|
||||
seed_keyword: str = SchemaField(
|
||||
description="The seed keyword used for the query"
|
||||
)
|
||||
error: str = SchemaField(description="Error message if the API call failed")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
@@ -161,7 +154,6 @@ class DataForSeoRelatedKeywordsBlock(Block):
|
||||
include_serp_info=input_data.include_serp_info,
|
||||
include_clickstream_data=input_data.include_clickstream_data,
|
||||
limit=input_data.limit,
|
||||
depth=input_data.depth,
|
||||
)
|
||||
|
||||
async def run(
|
||||
@@ -172,60 +164,50 @@ class DataForSeoRelatedKeywordsBlock(Block):
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
"""Execute the related keywords query."""
|
||||
try:
|
||||
client = DataForSeoClient(credentials)
|
||||
client = DataForSeoClient(credentials)
|
||||
|
||||
results = await self._fetch_related_keywords(client, input_data)
|
||||
results = await self._fetch_related_keywords(client, input_data)
|
||||
|
||||
# Process and format the results
|
||||
related_keywords = []
|
||||
if results and len(results) > 0:
|
||||
# results is a list, get the first element
|
||||
first_result = results[0] if isinstance(results, list) else results
|
||||
items = (
|
||||
first_result.get("items", [])
|
||||
if isinstance(first_result, dict)
|
||||
else []
|
||||
# Process and format the results
|
||||
related_keywords = []
|
||||
if results and len(results) > 0:
|
||||
# results is a list, get the first element
|
||||
first_result = results[0] if isinstance(results, list) else results
|
||||
items = (
|
||||
first_result.get("items", []) if isinstance(first_result, dict) else []
|
||||
)
|
||||
for item in items:
|
||||
# Extract keyword_data from the item
|
||||
keyword_data = item.get("keyword_data", {})
|
||||
|
||||
# Create the RelatedKeyword object
|
||||
keyword = RelatedKeyword(
|
||||
keyword=keyword_data.get("keyword", ""),
|
||||
search_volume=keyword_data.get("keyword_info", {}).get(
|
||||
"search_volume"
|
||||
),
|
||||
competition=keyword_data.get("keyword_info", {}).get("competition"),
|
||||
cpc=keyword_data.get("keyword_info", {}).get("cpc"),
|
||||
keyword_difficulty=keyword_data.get("keyword_properties", {}).get(
|
||||
"keyword_difficulty"
|
||||
),
|
||||
serp_info=(
|
||||
keyword_data.get("serp_info")
|
||||
if input_data.include_serp_info
|
||||
else None
|
||||
),
|
||||
clickstream_data=(
|
||||
keyword_data.get("clickstream_keyword_info")
|
||||
if input_data.include_clickstream_data
|
||||
else None
|
||||
),
|
||||
)
|
||||
# Ensure items is never None
|
||||
if items is None:
|
||||
items = []
|
||||
for item in items:
|
||||
# Extract keyword_data from the item
|
||||
keyword_data = item.get("keyword_data", {})
|
||||
yield "related_keyword", keyword
|
||||
related_keywords.append(keyword)
|
||||
|
||||
# Create the RelatedKeyword object
|
||||
keyword = RelatedKeyword(
|
||||
keyword=keyword_data.get("keyword", ""),
|
||||
search_volume=keyword_data.get("keyword_info", {}).get(
|
||||
"search_volume"
|
||||
),
|
||||
competition=keyword_data.get("keyword_info", {}).get(
|
||||
"competition"
|
||||
),
|
||||
cpc=keyword_data.get("keyword_info", {}).get("cpc"),
|
||||
keyword_difficulty=keyword_data.get(
|
||||
"keyword_properties", {}
|
||||
).get("keyword_difficulty"),
|
||||
serp_info=(
|
||||
keyword_data.get("serp_info")
|
||||
if input_data.include_serp_info
|
||||
else None
|
||||
),
|
||||
clickstream_data=(
|
||||
keyword_data.get("clickstream_keyword_info")
|
||||
if input_data.include_clickstream_data
|
||||
else None
|
||||
),
|
||||
)
|
||||
yield "related_keyword", keyword
|
||||
related_keywords.append(keyword)
|
||||
|
||||
yield "related_keywords", related_keywords
|
||||
yield "total_count", len(related_keywords)
|
||||
yield "seed_keyword", input_data.keyword
|
||||
except Exception as e:
|
||||
yield "error", f"Failed to fetch related keywords: {str(e)}"
|
||||
yield "related_keywords", related_keywords
|
||||
yield "total_count", len(related_keywords)
|
||||
yield "seed_keyword", input_data.keyword
|
||||
|
||||
|
||||
class RelatedKeywordExtractorBlock(Block):
|
||||
|
||||
@@ -171,11 +171,11 @@ class SendDiscordMessageBlock(Block):
|
||||
description="The content of the message to send"
|
||||
)
|
||||
channel_name: str = SchemaField(
|
||||
description="Channel ID or channel name to send the message to"
|
||||
description="The name of the channel the message will be sent to"
|
||||
)
|
||||
server_name: str = SchemaField(
|
||||
description="Server name (only needed if using channel name)",
|
||||
advanced=True,
|
||||
description="The name of the server where the channel is located",
|
||||
advanced=True, # Optional field for server name
|
||||
default="",
|
||||
)
|
||||
|
||||
@@ -231,49 +231,25 @@ class SendDiscordMessageBlock(Block):
|
||||
@client.event
|
||||
async def on_ready():
|
||||
print(f"Logged in as {client.user}")
|
||||
channel = None
|
||||
for guild in client.guilds:
|
||||
if server_name and guild.name != server_name:
|
||||
continue
|
||||
for channel in guild.text_channels:
|
||||
if channel.name == channel_name:
|
||||
# Split message into chunks if it exceeds 2000 characters
|
||||
chunks = self.chunk_message(message_content)
|
||||
last_message = None
|
||||
for chunk in chunks:
|
||||
last_message = await channel.send(chunk)
|
||||
result["status"] = "Message sent"
|
||||
result["message_id"] = (
|
||||
str(last_message.id) if last_message else ""
|
||||
)
|
||||
result["channel_id"] = str(channel.id)
|
||||
await client.close()
|
||||
return
|
||||
|
||||
# Try to parse as channel ID first
|
||||
try:
|
||||
channel_id = int(channel_name)
|
||||
channel = client.get_channel(channel_id)
|
||||
except ValueError:
|
||||
# Not a valid ID, will try name lookup
|
||||
pass
|
||||
|
||||
# If not found by ID (or not an ID), try name lookup
|
||||
if not channel:
|
||||
for guild in client.guilds:
|
||||
if server_name and guild.name != server_name:
|
||||
continue
|
||||
for ch in guild.text_channels:
|
||||
if ch.name == channel_name:
|
||||
channel = ch
|
||||
break
|
||||
if channel:
|
||||
break
|
||||
|
||||
if not channel:
|
||||
result["status"] = f"Channel not found: {channel_name}"
|
||||
await client.close()
|
||||
return
|
||||
|
||||
# Type check - ensure it's a text channel that can send messages
|
||||
if not hasattr(channel, "send"):
|
||||
result["status"] = (
|
||||
f"Channel {channel_name} cannot receive messages (not a text channel)"
|
||||
)
|
||||
await client.close()
|
||||
return
|
||||
|
||||
# Split message into chunks if it exceeds 2000 characters
|
||||
chunks = self.chunk_message(message_content)
|
||||
last_message = None
|
||||
for chunk in chunks:
|
||||
last_message = await channel.send(chunk) # type: ignore
|
||||
result["status"] = "Message sent"
|
||||
result["message_id"] = str(last_message.id) if last_message else ""
|
||||
result["channel_id"] = str(channel.id)
|
||||
result["status"] = "Channel not found"
|
||||
await client.close()
|
||||
|
||||
await client.start(token)
|
||||
|
||||
@@ -1,12 +0,0 @@
|
||||
from enum import Enum
|
||||
|
||||
|
||||
class ScrapeFormat(Enum):
|
||||
MARKDOWN = "markdown"
|
||||
HTML = "html"
|
||||
RAW_HTML = "rawHtml"
|
||||
LINKS = "links"
|
||||
SCREENSHOT = "screenshot"
|
||||
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
|
||||
JSON = "json"
|
||||
CHANGE_TRACKING = "changeTracking"
|
||||
|
||||
@@ -1,28 +0,0 @@
|
||||
"""Utility functions for converting between our ScrapeFormat enum and firecrawl FormatOption types."""
|
||||
|
||||
from typing import List
|
||||
|
||||
from firecrawl.v2.types import FormatOption, ScreenshotFormat
|
||||
|
||||
from backend.blocks.firecrawl._api import ScrapeFormat
|
||||
|
||||
|
||||
def convert_to_format_options(
|
||||
formats: List[ScrapeFormat],
|
||||
) -> List[FormatOption]:
|
||||
"""Convert our ScrapeFormat enum values to firecrawl FormatOption types.
|
||||
|
||||
Handles special cases like screenshot@fullPage which needs to be converted
|
||||
to a ScreenshotFormat object.
|
||||
"""
|
||||
result: List[FormatOption] = []
|
||||
|
||||
for format_enum in formats:
|
||||
if format_enum.value == "screenshot@fullPage":
|
||||
# Special case: convert to ScreenshotFormat with full_page=True
|
||||
result.append(ScreenshotFormat(type="screenshot", full_page=True))
|
||||
else:
|
||||
# Regular string literals
|
||||
result.append(format_enum.value)
|
||||
|
||||
return result
|
||||
@@ -1,9 +1,8 @@
|
||||
from enum import Enum
|
||||
from typing import Any
|
||||
|
||||
from firecrawl import FirecrawlApp
|
||||
from firecrawl.v2.types import ScrapeOptions
|
||||
from firecrawl import FirecrawlApp, ScrapeOptions
|
||||
|
||||
from backend.blocks.firecrawl._api import ScrapeFormat
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -15,10 +14,21 @@ from backend.sdk import (
|
||||
)
|
||||
|
||||
from ._config import firecrawl
|
||||
from ._format_utils import convert_to_format_options
|
||||
|
||||
|
||||
class ScrapeFormat(Enum):
|
||||
MARKDOWN = "markdown"
|
||||
HTML = "html"
|
||||
RAW_HTML = "rawHtml"
|
||||
LINKS = "links"
|
||||
SCREENSHOT = "screenshot"
|
||||
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
|
||||
JSON = "json"
|
||||
CHANGE_TRACKING = "changeTracking"
|
||||
|
||||
|
||||
class FirecrawlCrawlBlock(Block):
|
||||
|
||||
class Input(BlockSchema):
|
||||
credentials: CredentialsMetaInput = firecrawl.credentials_field()
|
||||
url: str = SchemaField(description="The URL to crawl")
|
||||
@@ -68,17 +78,18 @@ class FirecrawlCrawlBlock(Block):
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
|
||||
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
# Sync call
|
||||
crawl_result = app.crawl(
|
||||
crawl_result = app.crawl_url(
|
||||
input_data.url,
|
||||
limit=input_data.limit,
|
||||
scrape_options=ScrapeOptions(
|
||||
formats=convert_to_format_options(input_data.formats),
|
||||
only_main_content=input_data.only_main_content,
|
||||
max_age=input_data.max_age,
|
||||
wait_for=input_data.wait_for,
|
||||
formats=[format.value for format in input_data.formats],
|
||||
onlyMainContent=input_data.only_main_content,
|
||||
maxAge=input_data.max_age,
|
||||
waitFor=input_data.wait_for,
|
||||
),
|
||||
)
|
||||
yield "data", crawl_result.data
|
||||
@@ -90,7 +101,7 @@ class FirecrawlCrawlBlock(Block):
|
||||
elif f == ScrapeFormat.HTML:
|
||||
yield "html", data.html
|
||||
elif f == ScrapeFormat.RAW_HTML:
|
||||
yield "raw_html", data.raw_html
|
||||
yield "raw_html", data.rawHtml
|
||||
elif f == ScrapeFormat.LINKS:
|
||||
yield "links", data.links
|
||||
elif f == ScrapeFormat.SCREENSHOT:
|
||||
@@ -98,6 +109,6 @@ class FirecrawlCrawlBlock(Block):
|
||||
elif f == ScrapeFormat.SCREENSHOT_FULL_PAGE:
|
||||
yield "screenshot_full_page", data.screenshot
|
||||
elif f == ScrapeFormat.CHANGE_TRACKING:
|
||||
yield "change_tracking", data.change_tracking
|
||||
yield "change_tracking", data.changeTracking
|
||||
elif f == ScrapeFormat.JSON:
|
||||
yield "json", data.json
|
||||
|
||||
@@ -20,6 +20,7 @@ from ._config import firecrawl
|
||||
|
||||
@cost(BlockCost(2, BlockCostType.RUN))
|
||||
class FirecrawlExtractBlock(Block):
|
||||
|
||||
class Input(BlockSchema):
|
||||
credentials: CredentialsMetaInput = firecrawl.credentials_field()
|
||||
urls: list[str] = SchemaField(
|
||||
@@ -52,6 +53,7 @@ class FirecrawlExtractBlock(Block):
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
|
||||
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
extract_result = app.extract(
|
||||
|
||||
@@ -1,5 +1,3 @@
|
||||
from typing import Any
|
||||
|
||||
from firecrawl import FirecrawlApp
|
||||
|
||||
from backend.sdk import (
|
||||
@@ -16,16 +14,14 @@ from ._config import firecrawl
|
||||
|
||||
|
||||
class FirecrawlMapWebsiteBlock(Block):
|
||||
|
||||
class Input(BlockSchema):
|
||||
credentials: CredentialsMetaInput = firecrawl.credentials_field()
|
||||
|
||||
url: str = SchemaField(description="The website url to map")
|
||||
|
||||
class Output(BlockSchema):
|
||||
links: list[str] = SchemaField(description="List of URLs found on the website")
|
||||
results: list[dict[str, Any]] = SchemaField(
|
||||
description="List of search results with url, title, and description"
|
||||
)
|
||||
links: list[str] = SchemaField(description="The links of the website")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
@@ -39,22 +35,12 @@ class FirecrawlMapWebsiteBlock(Block):
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
|
||||
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
# Sync call
|
||||
map_result = app.map(
|
||||
map_result = app.map_url(
|
||||
url=input_data.url,
|
||||
)
|
||||
|
||||
# Convert SearchResult objects to dicts
|
||||
results_data = [
|
||||
{
|
||||
"url": link.url,
|
||||
"title": link.title,
|
||||
"description": link.description,
|
||||
}
|
||||
for link in map_result.links
|
||||
]
|
||||
|
||||
yield "links", [link.url for link in map_result.links]
|
||||
yield "results", results_data
|
||||
yield "links", map_result.links
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
from enum import Enum
|
||||
from typing import Any
|
||||
|
||||
from firecrawl import FirecrawlApp
|
||||
|
||||
from backend.blocks.firecrawl._api import ScrapeFormat
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -14,10 +14,21 @@ from backend.sdk import (
|
||||
)
|
||||
|
||||
from ._config import firecrawl
|
||||
from ._format_utils import convert_to_format_options
|
||||
|
||||
|
||||
class ScrapeFormat(Enum):
|
||||
MARKDOWN = "markdown"
|
||||
HTML = "html"
|
||||
RAW_HTML = "rawHtml"
|
||||
LINKS = "links"
|
||||
SCREENSHOT = "screenshot"
|
||||
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
|
||||
JSON = "json"
|
||||
CHANGE_TRACKING = "changeTracking"
|
||||
|
||||
|
||||
class FirecrawlScrapeBlock(Block):
|
||||
|
||||
class Input(BlockSchema):
|
||||
credentials: CredentialsMetaInput = firecrawl.credentials_field()
|
||||
url: str = SchemaField(description="The URL to crawl")
|
||||
@@ -67,11 +78,12 @@ class FirecrawlScrapeBlock(Block):
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
|
||||
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
scrape_result = app.scrape(
|
||||
scrape_result = app.scrape_url(
|
||||
input_data.url,
|
||||
formats=convert_to_format_options(input_data.formats),
|
||||
formats=[format.value for format in input_data.formats],
|
||||
only_main_content=input_data.only_main_content,
|
||||
max_age=input_data.max_age,
|
||||
wait_for=input_data.wait_for,
|
||||
@@ -84,7 +96,7 @@ class FirecrawlScrapeBlock(Block):
|
||||
elif f == ScrapeFormat.HTML:
|
||||
yield "html", scrape_result.html
|
||||
elif f == ScrapeFormat.RAW_HTML:
|
||||
yield "raw_html", scrape_result.raw_html
|
||||
yield "raw_html", scrape_result.rawHtml
|
||||
elif f == ScrapeFormat.LINKS:
|
||||
yield "links", scrape_result.links
|
||||
elif f == ScrapeFormat.SCREENSHOT:
|
||||
@@ -92,6 +104,6 @@ class FirecrawlScrapeBlock(Block):
|
||||
elif f == ScrapeFormat.SCREENSHOT_FULL_PAGE:
|
||||
yield "screenshot_full_page", scrape_result.screenshot
|
||||
elif f == ScrapeFormat.CHANGE_TRACKING:
|
||||
yield "change_tracking", scrape_result.change_tracking
|
||||
yield "change_tracking", scrape_result.changeTracking
|
||||
elif f == ScrapeFormat.JSON:
|
||||
yield "json", scrape_result.json
|
||||
|
||||
@@ -1,9 +1,8 @@
|
||||
from enum import Enum
|
||||
from typing import Any
|
||||
|
||||
from firecrawl import FirecrawlApp
|
||||
from firecrawl.v2.types import ScrapeOptions
|
||||
from firecrawl import FirecrawlApp, ScrapeOptions
|
||||
|
||||
from backend.blocks.firecrawl._api import ScrapeFormat
|
||||
from backend.sdk import (
|
||||
APIKeyCredentials,
|
||||
Block,
|
||||
@@ -15,10 +14,21 @@ from backend.sdk import (
|
||||
)
|
||||
|
||||
from ._config import firecrawl
|
||||
from ._format_utils import convert_to_format_options
|
||||
|
||||
|
||||
class ScrapeFormat(Enum):
|
||||
MARKDOWN = "markdown"
|
||||
HTML = "html"
|
||||
RAW_HTML = "rawHtml"
|
||||
LINKS = "links"
|
||||
SCREENSHOT = "screenshot"
|
||||
SCREENSHOT_FULL_PAGE = "screenshot@fullPage"
|
||||
JSON = "json"
|
||||
CHANGE_TRACKING = "changeTracking"
|
||||
|
||||
|
||||
class FirecrawlSearchBlock(Block):
|
||||
|
||||
class Input(BlockSchema):
|
||||
credentials: CredentialsMetaInput = firecrawl.credentials_field()
|
||||
query: str = SchemaField(description="The query to search for")
|
||||
@@ -51,6 +61,7 @@ class FirecrawlSearchBlock(Block):
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
|
||||
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
|
||||
|
||||
# Sync call
|
||||
@@ -58,12 +69,11 @@ class FirecrawlSearchBlock(Block):
|
||||
input_data.query,
|
||||
limit=input_data.limit,
|
||||
scrape_options=ScrapeOptions(
|
||||
formats=convert_to_format_options(input_data.formats) or None,
|
||||
max_age=input_data.max_age,
|
||||
wait_for=input_data.wait_for,
|
||||
formats=[format.value for format in input_data.formats],
|
||||
maxAge=input_data.max_age,
|
||||
waitFor=input_data.wait_for,
|
||||
),
|
||||
)
|
||||
yield "data", scrape_result
|
||||
if hasattr(scrape_result, "web") and scrape_result.web:
|
||||
for site in scrape_result.web:
|
||||
yield "site", site
|
||||
for site in scrape_result.data:
|
||||
yield "site", site
|
||||
|
||||
@@ -10,6 +10,7 @@ from backend.util.settings import Config
|
||||
from backend.util.text import TextFormatter
|
||||
from backend.util.type import LongTextType, MediaFileType, ShortTextType
|
||||
|
||||
formatter = TextFormatter()
|
||||
config = Config()
|
||||
|
||||
|
||||
@@ -131,11 +132,6 @@ class AgentOutputBlock(Block):
|
||||
default="",
|
||||
advanced=True,
|
||||
)
|
||||
escape_html: bool = SchemaField(
|
||||
default=False,
|
||||
advanced=True,
|
||||
description="Whether to escape special characters in the inserted values to be HTML-safe. Enable for HTML output, disable for plain text.",
|
||||
)
|
||||
advanced: bool = SchemaField(
|
||||
description="Whether to treat the output as advanced.",
|
||||
default=False,
|
||||
@@ -197,7 +193,6 @@ class AgentOutputBlock(Block):
|
||||
"""
|
||||
if input_data.format:
|
||||
try:
|
||||
formatter = TextFormatter(autoescape=input_data.escape_html)
|
||||
yield "output", formatter.format_string(
|
||||
input_data.format, {input_data.name: input_data.value}
|
||||
)
|
||||
@@ -554,89 +549,6 @@ class AgentToggleInputBlock(AgentInputBlock):
|
||||
)
|
||||
|
||||
|
||||
class AgentTableInputBlock(AgentInputBlock):
|
||||
"""
|
||||
This block allows users to input data in a table format.
|
||||
|
||||
Configure the table columns at build time, then users can input
|
||||
rows of data at runtime. Each row is output as a dictionary
|
||||
with column names as keys.
|
||||
"""
|
||||
|
||||
class Input(AgentInputBlock.Input):
|
||||
value: Optional[list[dict[str, Any]]] = SchemaField(
|
||||
description="The table data as a list of dictionaries.",
|
||||
default=None,
|
||||
advanced=False,
|
||||
title="Default Value",
|
||||
)
|
||||
column_headers: list[str] = SchemaField(
|
||||
description="Column headers for the table.",
|
||||
default_factory=lambda: ["Column 1", "Column 2", "Column 3"],
|
||||
advanced=False,
|
||||
title="Column Headers",
|
||||
)
|
||||
|
||||
def generate_schema(self):
|
||||
"""Generate schema for the value field with table format."""
|
||||
schema = super().generate_schema()
|
||||
schema["type"] = "array"
|
||||
schema["format"] = "table"
|
||||
schema["items"] = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
header: {"type": "string"}
|
||||
for header in (
|
||||
self.column_headers or ["Column 1", "Column 2", "Column 3"]
|
||||
)
|
||||
},
|
||||
}
|
||||
if self.value is not None:
|
||||
schema["default"] = self.value
|
||||
return schema
|
||||
|
||||
class Output(AgentInputBlock.Output):
|
||||
result: list[dict[str, Any]] = SchemaField(
|
||||
description="The table data as a list of dictionaries with headers as keys."
|
||||
)
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="5603b273-f41e-4020-af7d-fbc9c6a8d928",
|
||||
description="Block for table data input with customizable headers.",
|
||||
disabled=not config.enable_agent_input_subtype_blocks,
|
||||
input_schema=AgentTableInputBlock.Input,
|
||||
output_schema=AgentTableInputBlock.Output,
|
||||
test_input=[
|
||||
{
|
||||
"name": "test_table",
|
||||
"column_headers": ["Name", "Age", "City"],
|
||||
"value": [
|
||||
{"Name": "John", "Age": "30", "City": "New York"},
|
||||
{"Name": "Jane", "Age": "25", "City": "London"},
|
||||
],
|
||||
"description": "Example table input",
|
||||
}
|
||||
],
|
||||
test_output=[
|
||||
(
|
||||
"result",
|
||||
[
|
||||
{"Name": "John", "Age": "30", "City": "New York"},
|
||||
{"Name": "Jane", "Age": "25", "City": "London"},
|
||||
],
|
||||
)
|
||||
],
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, *args, **kwargs) -> BlockOutput:
|
||||
"""
|
||||
Yields the table data as a list of dictionaries.
|
||||
"""
|
||||
# Pass through the value, defaulting to empty list if None
|
||||
yield "result", input_data.value if input_data.value is not None else []
|
||||
|
||||
|
||||
IO_BLOCK_IDs = [
|
||||
AgentInputBlock().id,
|
||||
AgentOutputBlock().id,
|
||||
@@ -648,5 +560,4 @@ IO_BLOCK_IDs = [
|
||||
AgentFileInputBlock().id,
|
||||
AgentDropdownInputBlock().id,
|
||||
AgentToggleInputBlock().id,
|
||||
AgentTableInputBlock().id,
|
||||
]
|
||||
|
||||
@@ -54,43 +54,20 @@ class StepThroughItemsBlock(Block):
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
# Security fix: Add limits to prevent DoS from large iterations
|
||||
MAX_ITEMS = 10000 # Maximum items to iterate
|
||||
MAX_ITEM_SIZE = 1024 * 1024 # 1MB per item
|
||||
|
||||
for data in [input_data.items, input_data.items_object, input_data.items_str]:
|
||||
if not data:
|
||||
continue
|
||||
|
||||
# Limit string size before parsing
|
||||
if isinstance(data, str):
|
||||
if len(data) > MAX_ITEM_SIZE:
|
||||
raise ValueError(
|
||||
f"Input too large: {len(data)} bytes > {MAX_ITEM_SIZE} bytes"
|
||||
)
|
||||
items = json.loads(data)
|
||||
else:
|
||||
items = data
|
||||
|
||||
# Check total item count
|
||||
if isinstance(items, (list, dict)):
|
||||
if len(items) > MAX_ITEMS:
|
||||
raise ValueError(f"Too many items: {len(items)} > {MAX_ITEMS}")
|
||||
|
||||
iteration_count = 0
|
||||
if isinstance(items, dict):
|
||||
# If items is a dictionary, iterate over its values
|
||||
for key, value in items.items():
|
||||
if iteration_count >= MAX_ITEMS:
|
||||
break
|
||||
yield "item", value
|
||||
yield "key", key # Fixed: should yield key, not item
|
||||
iteration_count += 1
|
||||
for item in items.values():
|
||||
yield "item", item
|
||||
yield "key", item
|
||||
else:
|
||||
# If items is a list, iterate over the list
|
||||
for index, item in enumerate(items):
|
||||
if iteration_count >= MAX_ITEMS:
|
||||
break
|
||||
yield "item", item
|
||||
yield "key", index
|
||||
iteration_count += 1
|
||||
|
||||
@@ -1,8 +1,5 @@
|
||||
from typing import List
|
||||
from urllib.parse import quote
|
||||
|
||||
from typing_extensions import TypedDict
|
||||
|
||||
from backend.blocks.jina._auth import (
|
||||
JinaCredentials,
|
||||
JinaCredentialsField,
|
||||
@@ -13,12 +10,6 @@ from backend.data.model import SchemaField
|
||||
from backend.util.request import Requests
|
||||
|
||||
|
||||
class Reference(TypedDict):
|
||||
url: str
|
||||
keyQuote: str
|
||||
isSupportive: bool
|
||||
|
||||
|
||||
class FactCheckerBlock(Block):
|
||||
class Input(BlockSchema):
|
||||
statement: str = SchemaField(
|
||||
@@ -32,10 +23,6 @@ class FactCheckerBlock(Block):
|
||||
)
|
||||
result: bool = SchemaField(description="The result of the factuality check")
|
||||
reason: str = SchemaField(description="The reason for the factuality result")
|
||||
references: List[Reference] = SchemaField(
|
||||
description="List of references supporting or contradicting the statement",
|
||||
default=[],
|
||||
)
|
||||
error: str = SchemaField(description="Error message if the check fails")
|
||||
|
||||
def __init__(self):
|
||||
@@ -66,11 +53,5 @@ class FactCheckerBlock(Block):
|
||||
yield "factuality", data["factuality"]
|
||||
yield "result", data["result"]
|
||||
yield "reason", data["reason"]
|
||||
|
||||
# Yield references if present in the response
|
||||
if "references" in data:
|
||||
yield "references", data["references"]
|
||||
else:
|
||||
yield "references", []
|
||||
else:
|
||||
raise RuntimeError(f"Expected 'data' key not found in response: {data}")
|
||||
|
||||
@@ -37,5 +37,5 @@ class Project(BaseModel):
|
||||
name: str
|
||||
description: str
|
||||
priority: int
|
||||
progress: float
|
||||
content: str | None
|
||||
progress: int
|
||||
content: str
|
||||
|
||||
@@ -1,9 +1,5 @@
|
||||
# This file contains a lot of prompt block strings that would trigger "line too long"
|
||||
# flake8: noqa: E501
|
||||
import ast
|
||||
import logging
|
||||
import re
|
||||
import secrets
|
||||
from abc import ABC
|
||||
from enum import Enum, EnumMeta
|
||||
from json import JSONDecodeError
|
||||
@@ -31,7 +27,7 @@ from backend.util.prompt import compress_prompt, estimate_token_count
|
||||
from backend.util.text import TextFormatter
|
||||
|
||||
logger = TruncatedLogger(logging.getLogger(__name__), "[LLM-Block]")
|
||||
fmt = TextFormatter(autoescape=False)
|
||||
fmt = TextFormatter()
|
||||
|
||||
LLMProviderName = Literal[
|
||||
ProviderName.AIML_API,
|
||||
@@ -101,8 +97,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
|
||||
CLAUDE_4_OPUS = "claude-opus-4-20250514"
|
||||
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
|
||||
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
|
||||
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
|
||||
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
|
||||
CLAUDE_3_5_SONNET = "claude-3-5-sonnet-latest"
|
||||
CLAUDE_3_5_HAIKU = "claude-3-5-haiku-latest"
|
||||
@@ -210,19 +204,13 @@ MODEL_METADATA = {
|
||||
"anthropic", 200000, 32000
|
||||
), # claude-opus-4-1-20250805
|
||||
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000
|
||||
"anthropic", 200000, 8192
|
||||
), # claude-4-opus-20250514
|
||||
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
"anthropic", 200000, 8192
|
||||
), # claude-4-sonnet-20250514
|
||||
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-sonnet-4-5-20250929
|
||||
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
), # claude-haiku-4-5-20251001
|
||||
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
"anthropic", 200000, 8192
|
||||
), # claude-3-7-sonnet-20250219
|
||||
LlmModel.CLAUDE_3_5_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 8192
|
||||
@@ -394,9 +382,7 @@ def extract_openai_tool_calls(response) -> list[ToolContentBlock] | None:
|
||||
return None
|
||||
|
||||
|
||||
def get_parallel_tool_calls_param(
|
||||
llm_model: LlmModel, parallel_tool_calls: bool | None
|
||||
):
|
||||
def get_parallel_tool_calls_param(llm_model: LlmModel, parallel_tool_calls):
|
||||
"""Get the appropriate parallel_tool_calls parameter for OpenAI-compatible APIs."""
|
||||
if llm_model.startswith("o") or parallel_tool_calls is None:
|
||||
return openai.NOT_GIVEN
|
||||
@@ -407,8 +393,8 @@ async def llm_call(
|
||||
credentials: APIKeyCredentials,
|
||||
llm_model: LlmModel,
|
||||
prompt: list[dict],
|
||||
json_format: bool,
|
||||
max_tokens: int | None,
|
||||
force_json_output: bool = False,
|
||||
tools: list[dict] | None = None,
|
||||
ollama_host: str = "localhost:11434",
|
||||
parallel_tool_calls=None,
|
||||
@@ -421,7 +407,7 @@ async def llm_call(
|
||||
credentials: The API key credentials to use.
|
||||
llm_model: The LLM model to use.
|
||||
prompt: The prompt to send to the LLM.
|
||||
force_json_output: Whether the response should be in JSON format.
|
||||
json_format: Whether the response should be in JSON format.
|
||||
max_tokens: The maximum number of tokens to generate in the chat completion.
|
||||
tools: The tools to use in the chat completion.
|
||||
ollama_host: The host for ollama to use.
|
||||
@@ -460,7 +446,7 @@ async def llm_call(
|
||||
llm_model, parallel_tool_calls
|
||||
)
|
||||
|
||||
if force_json_output:
|
||||
if json_format:
|
||||
response_format = {"type": "json_object"}
|
||||
|
||||
response = await oai_client.chat.completions.create(
|
||||
@@ -573,7 +559,7 @@ async def llm_call(
|
||||
raise ValueError("Groq does not support tools.")
|
||||
|
||||
client = AsyncGroq(api_key=credentials.api_key.get_secret_value())
|
||||
response_format = {"type": "json_object"} if force_json_output else None
|
||||
response_format = {"type": "json_object"} if json_format else None
|
||||
response = await client.chat.completions.create(
|
||||
model=llm_model.value,
|
||||
messages=prompt, # type: ignore
|
||||
@@ -731,7 +717,7 @@ async def llm_call(
|
||||
)
|
||||
|
||||
response_format = None
|
||||
if force_json_output:
|
||||
if json_format:
|
||||
response_format = {"type": "json_object"}
|
||||
|
||||
parallel_tool_calls_param = get_parallel_tool_calls_param(
|
||||
@@ -794,17 +780,6 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
description="The language model to use for answering the prompt.",
|
||||
advanced=False,
|
||||
)
|
||||
force_json_output: bool = SchemaField(
|
||||
title="Restrict LLM to pure JSON output",
|
||||
default=False,
|
||||
description=(
|
||||
"Whether to force the LLM to produce a JSON-only response. "
|
||||
"This can increase the block's reliability, "
|
||||
"but may also reduce the quality of the response "
|
||||
"because it prohibits the LLM from reasoning "
|
||||
"before providing its JSON response."
|
||||
),
|
||||
)
|
||||
credentials: AICredentials = AICredentialsField()
|
||||
sys_prompt: str = SchemaField(
|
||||
title="System Prompt",
|
||||
@@ -873,18 +848,17 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
"llm_call": lambda *args, **kwargs: LLMResponse(
|
||||
raw_response="",
|
||||
prompt=[""],
|
||||
response=(
|
||||
'<json_output id="test123456">{\n'
|
||||
' "key1": "key1Value",\n'
|
||||
' "key2": "key2Value"\n'
|
||||
"}</json_output>"
|
||||
response=json.dumps(
|
||||
{
|
||||
"key1": "key1Value",
|
||||
"key2": "key2Value",
|
||||
}
|
||||
),
|
||||
tool_calls=None,
|
||||
prompt_tokens=0,
|
||||
completion_tokens=0,
|
||||
reasoning=None,
|
||||
),
|
||||
"get_collision_proof_output_tag_id": lambda *args: "test123456",
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
@@ -893,9 +867,9 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
credentials: APIKeyCredentials,
|
||||
llm_model: LlmModel,
|
||||
prompt: list[dict],
|
||||
json_format: bool,
|
||||
compress_prompt_to_fit: bool,
|
||||
max_tokens: int | None,
|
||||
force_json_output: bool = False,
|
||||
compress_prompt_to_fit: bool = True,
|
||||
tools: list[dict] | None = None,
|
||||
ollama_host: str = "localhost:11434",
|
||||
) -> LLMResponse:
|
||||
@@ -908,8 +882,8 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
credentials=credentials,
|
||||
llm_model=llm_model,
|
||||
prompt=prompt,
|
||||
json_format=json_format,
|
||||
max_tokens=max_tokens,
|
||||
force_json_output=force_json_output,
|
||||
tools=tools,
|
||||
ollama_host=ollama_host,
|
||||
compress_prompt_to_fit=compress_prompt_to_fit,
|
||||
@@ -921,6 +895,10 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
logger.debug(f"Calling LLM with input data: {input_data}")
|
||||
prompt = [json.to_dict(p) for p in input_data.conversation_history]
|
||||
|
||||
def trim_prompt(s: str) -> str:
|
||||
lines = s.strip().split("\n")
|
||||
return "\n".join([line.strip().lstrip("|") for line in lines])
|
||||
|
||||
values = input_data.prompt_values
|
||||
if values:
|
||||
input_data.prompt = fmt.format_string(input_data.prompt, values)
|
||||
@@ -929,15 +907,27 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
if input_data.sys_prompt:
|
||||
prompt.append({"role": "system", "content": input_data.sys_prompt})
|
||||
|
||||
# Use a one-time unique tag to prevent collisions with user/LLM content
|
||||
output_tag_id = self.get_collision_proof_output_tag_id()
|
||||
output_tag_start = f'<json_output id="{output_tag_id}">'
|
||||
if input_data.expected_format:
|
||||
sys_prompt = self.response_format_instructions(
|
||||
input_data.expected_format,
|
||||
list_mode=input_data.list_result,
|
||||
pure_json_mode=input_data.force_json_output,
|
||||
output_tag_start=output_tag_start,
|
||||
expected_format = [
|
||||
f'"{k}": "{v}"' for k, v in input_data.expected_format.items()
|
||||
]
|
||||
if input_data.list_result:
|
||||
format_prompt = (
|
||||
f'"results": [\n {{\n {", ".join(expected_format)}\n }}\n]'
|
||||
)
|
||||
else:
|
||||
format_prompt = "\n ".join(expected_format)
|
||||
|
||||
sys_prompt = trim_prompt(
|
||||
f"""
|
||||
|Reply strictly only in the following JSON format:
|
||||
|{{
|
||||
| {format_prompt}
|
||||
|}}
|
||||
|
|
||||
|Ensure the response is valid JSON. Do not include any additional text outside of the JSON.
|
||||
|If you cannot provide all the keys, provide an empty string for the values you cannot answer.
|
||||
"""
|
||||
)
|
||||
prompt.append({"role": "system", "content": sys_prompt})
|
||||
|
||||
@@ -955,21 +945,18 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
except JSONDecodeError as e:
|
||||
return f"JSON decode error: {e}"
|
||||
|
||||
error_feedback_message = ""
|
||||
logger.debug(f"LLM request: {prompt}")
|
||||
retry_prompt = ""
|
||||
llm_model = input_data.model
|
||||
|
||||
for retry_count in range(input_data.retry):
|
||||
logger.debug(f"LLM request: {prompt}")
|
||||
try:
|
||||
llm_response = await self.llm_call(
|
||||
credentials=credentials,
|
||||
llm_model=llm_model,
|
||||
prompt=prompt,
|
||||
compress_prompt_to_fit=input_data.compress_prompt_to_fit,
|
||||
force_json_output=(
|
||||
input_data.force_json_output
|
||||
and bool(input_data.expected_format)
|
||||
),
|
||||
json_format=bool(input_data.expected_format),
|
||||
ollama_host=input_data.ollama_host,
|
||||
max_tokens=input_data.max_tokens,
|
||||
)
|
||||
@@ -983,55 +970,16 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
logger.debug(f"LLM attempt-{retry_count} response: {response_text}")
|
||||
|
||||
if input_data.expected_format:
|
||||
try:
|
||||
response_obj = self.get_json_from_response(
|
||||
response_text,
|
||||
pure_json_mode=input_data.force_json_output,
|
||||
output_tag_start=output_tag_start,
|
||||
)
|
||||
except (ValueError, JSONDecodeError) as parse_error:
|
||||
censored_response = re.sub(r"[A-Za-z0-9]", "*", response_text)
|
||||
response_snippet = (
|
||||
f"{censored_response[:50]}...{censored_response[-30:]}"
|
||||
)
|
||||
logger.warning(
|
||||
f"Error getting JSON from LLM response: {parse_error}\n\n"
|
||||
f"Response start+end: `{response_snippet}`"
|
||||
)
|
||||
prompt.append({"role": "assistant", "content": response_text})
|
||||
|
||||
error_feedback_message = self.invalid_response_feedback(
|
||||
parse_error,
|
||||
was_parseable=False,
|
||||
list_mode=input_data.list_result,
|
||||
pure_json_mode=input_data.force_json_output,
|
||||
output_tag_start=output_tag_start,
|
||||
)
|
||||
prompt.append(
|
||||
{"role": "user", "content": error_feedback_message}
|
||||
)
|
||||
continue
|
||||
response_obj = json.loads(response_text)
|
||||
|
||||
# Handle object response for `force_json_output`+`list_result`
|
||||
if input_data.list_result and isinstance(response_obj, dict):
|
||||
if "results" in response_obj and isinstance(
|
||||
response_obj["results"], list
|
||||
):
|
||||
response_obj = response_obj["results"]
|
||||
else:
|
||||
error_feedback_message = (
|
||||
"Expected an array of objects in the 'results' key, "
|
||||
f"but got: {response_obj}"
|
||||
)
|
||||
prompt.append(
|
||||
{"role": "assistant", "content": response_text}
|
||||
)
|
||||
prompt.append(
|
||||
{"role": "user", "content": error_feedback_message}
|
||||
)
|
||||
continue
|
||||
if "results" in response_obj:
|
||||
response_obj = response_obj.get("results", [])
|
||||
elif len(response_obj) == 1:
|
||||
response_obj = list(response_obj.values())
|
||||
|
||||
validation_errors = "\n".join(
|
||||
response_error = "\n".join(
|
||||
[
|
||||
validation_error
|
||||
for response_item in (
|
||||
@@ -1043,7 +991,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
]
|
||||
)
|
||||
|
||||
if not validation_errors:
|
||||
if not response_error:
|
||||
self.merge_stats(
|
||||
NodeExecutionStats(
|
||||
llm_call_count=retry_count + 1,
|
||||
@@ -1053,16 +1001,6 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
yield "response", response_obj
|
||||
yield "prompt", self.prompt
|
||||
return
|
||||
|
||||
prompt.append({"role": "assistant", "content": response_text})
|
||||
error_feedback_message = self.invalid_response_feedback(
|
||||
validation_errors,
|
||||
was_parseable=True,
|
||||
list_mode=input_data.list_result,
|
||||
pure_json_mode=input_data.force_json_output,
|
||||
output_tag_start=output_tag_start,
|
||||
)
|
||||
prompt.append({"role": "user", "content": error_feedback_message})
|
||||
else:
|
||||
self.merge_stats(
|
||||
NodeExecutionStats(
|
||||
@@ -1073,6 +1011,21 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
yield "response", {"response": response_text}
|
||||
yield "prompt", self.prompt
|
||||
return
|
||||
|
||||
retry_prompt = trim_prompt(
|
||||
f"""
|
||||
|This is your previous error response:
|
||||
|--
|
||||
|{response_text}
|
||||
|--
|
||||
|
|
||||
|And this is the error:
|
||||
|--
|
||||
|{response_error}
|
||||
|--
|
||||
"""
|
||||
)
|
||||
prompt.append({"role": "user", "content": retry_prompt})
|
||||
except Exception as e:
|
||||
logger.exception(f"Error calling LLM: {e}")
|
||||
if (
|
||||
@@ -1085,133 +1038,9 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
|
||||
logger.debug(
|
||||
f"Reducing max_tokens to {input_data.max_tokens} for next attempt"
|
||||
)
|
||||
# Don't add retry prompt for token limit errors,
|
||||
# just retry with lower maximum output tokens
|
||||
retry_prompt = f"Error calling LLM: {e}"
|
||||
|
||||
error_feedback_message = f"Error calling LLM: {e}"
|
||||
|
||||
raise RuntimeError(error_feedback_message)
|
||||
|
||||
def response_format_instructions(
|
||||
self,
|
||||
expected_object_format: dict[str, str],
|
||||
*,
|
||||
list_mode: bool,
|
||||
pure_json_mode: bool,
|
||||
output_tag_start: str,
|
||||
) -> str:
|
||||
expected_output_format = json.dumps(expected_object_format, indent=2)
|
||||
output_type = "object" if not list_mode else "array"
|
||||
outer_output_type = "object" if pure_json_mode else output_type
|
||||
|
||||
if output_type == "array":
|
||||
indented_obj_format = expected_output_format.replace("\n", "\n ")
|
||||
expected_output_format = f"[\n {indented_obj_format},\n ...\n]"
|
||||
if pure_json_mode:
|
||||
indented_list_format = expected_output_format.replace("\n", "\n ")
|
||||
expected_output_format = (
|
||||
"{\n"
|
||||
' "reasoning": "... (optional)",\n' # for better performance
|
||||
f' "results": {indented_list_format}\n'
|
||||
"}"
|
||||
)
|
||||
|
||||
# Preserve indentation in prompt
|
||||
expected_output_format = expected_output_format.replace("\n", "\n|")
|
||||
|
||||
# Prepare prompt
|
||||
if not pure_json_mode:
|
||||
expected_output_format = (
|
||||
f"{output_tag_start}\n{expected_output_format}\n</json_output>"
|
||||
)
|
||||
|
||||
instructions = f"""
|
||||
|In your response you MUST include a valid JSON {outer_output_type} strictly following this format:
|
||||
|{expected_output_format}
|
||||
|
|
||||
|If you cannot provide all the keys, you MUST provide an empty string for the values you cannot answer.
|
||||
""".strip()
|
||||
|
||||
if not pure_json_mode:
|
||||
instructions += f"""
|
||||
|
|
||||
|You MUST enclose your final JSON answer in {output_tag_start}...</json_output> tags, even if the user specifies a different tag.
|
||||
|There MUST be exactly ONE {output_tag_start}...</json_output> block in your response, which MUST ONLY contain the JSON {outer_output_type} and nothing else. Other text outside this block is allowed.
|
||||
""".strip()
|
||||
|
||||
return trim_prompt(instructions)
|
||||
|
||||
def invalid_response_feedback(
|
||||
self,
|
||||
error,
|
||||
*,
|
||||
was_parseable: bool,
|
||||
list_mode: bool,
|
||||
pure_json_mode: bool,
|
||||
output_tag_start: str,
|
||||
) -> str:
|
||||
outer_output_type = "object" if not list_mode or pure_json_mode else "array"
|
||||
|
||||
if was_parseable:
|
||||
complaint = f"Your previous response did not match the expected {outer_output_type} format."
|
||||
else:
|
||||
complaint = f"Your previous response did not contain a parseable JSON {outer_output_type}."
|
||||
|
||||
indented_parse_error = str(error).replace("\n", "\n|")
|
||||
|
||||
instruction = (
|
||||
f"Please provide a {output_tag_start}...</json_output> block containing a"
|
||||
if not pure_json_mode
|
||||
else "Please provide a"
|
||||
) + f" valid JSON {outer_output_type} that matches the expected format."
|
||||
|
||||
return trim_prompt(
|
||||
f"""
|
||||
|{complaint}
|
||||
|
|
||||
|{indented_parse_error}
|
||||
|
|
||||
|{instruction}
|
||||
"""
|
||||
)
|
||||
|
||||
def get_json_from_response(
|
||||
self, response_text: str, *, pure_json_mode: bool, output_tag_start: str
|
||||
) -> dict[str, Any] | list[dict[str, Any]]:
|
||||
if pure_json_mode:
|
||||
# Handle pure JSON responses
|
||||
try:
|
||||
return json.loads(response_text)
|
||||
except JSONDecodeError as first_parse_error:
|
||||
# If that didn't work, try finding the { and } to deal with possible ```json fences etc.
|
||||
json_start = response_text.find("{")
|
||||
json_end = response_text.rfind("}")
|
||||
try:
|
||||
return json.loads(response_text[json_start : json_end + 1])
|
||||
except JSONDecodeError:
|
||||
# Raise the original error, as it's more likely to be relevant
|
||||
raise first_parse_error from None
|
||||
|
||||
if output_tag_start not in response_text:
|
||||
raise ValueError(
|
||||
"Response does not contain the expected "
|
||||
f"{output_tag_start}...</json_output> block."
|
||||
)
|
||||
json_output = (
|
||||
response_text.split(output_tag_start, 1)[1]
|
||||
.rsplit("</json_output>", 1)[0]
|
||||
.strip()
|
||||
)
|
||||
return json.loads(json_output)
|
||||
|
||||
def get_collision_proof_output_tag_id(self) -> str:
|
||||
return secrets.token_hex(8)
|
||||
|
||||
|
||||
def trim_prompt(s: str) -> str:
|
||||
"""Removes indentation up to and including `|` from a multi-line prompt."""
|
||||
lines = s.strip().split("\n")
|
||||
return "\n".join([line.strip().lstrip("|") for line in lines])
|
||||
raise RuntimeError(retry_prompt)
|
||||
|
||||
|
||||
class AITextGeneratorBlock(AIBlockBase):
|
||||
@@ -1408,27 +1237,11 @@ class AITextSummarizerBlock(AIBlockBase):
|
||||
|
||||
@staticmethod
|
||||
def _split_text(text: str, max_tokens: int, overlap: int) -> list[str]:
|
||||
# Security fix: Add validation to prevent DoS attacks
|
||||
# Limit text size to prevent memory exhaustion
|
||||
MAX_TEXT_LENGTH = 1_000_000 # 1MB character limit
|
||||
MAX_CHUNKS = 100 # Maximum number of chunks to prevent excessive memory use
|
||||
|
||||
if len(text) > MAX_TEXT_LENGTH:
|
||||
text = text[:MAX_TEXT_LENGTH]
|
||||
|
||||
# Ensure chunk_size is at least 1 to prevent infinite loops
|
||||
chunk_size = max(1, max_tokens - overlap)
|
||||
|
||||
# Ensure overlap is less than max_tokens to prevent invalid configurations
|
||||
if overlap >= max_tokens:
|
||||
overlap = max(0, max_tokens - 1)
|
||||
|
||||
words = text.split()
|
||||
chunks = []
|
||||
chunk_size = max_tokens - overlap
|
||||
|
||||
for i in range(0, len(words), chunk_size):
|
||||
if len(chunks) >= MAX_CHUNKS:
|
||||
break # Limit the number of chunks to prevent memory exhaustion
|
||||
chunk = " ".join(words[i : i + max_tokens])
|
||||
chunks.append(chunk)
|
||||
|
||||
|
||||
@@ -1,536 +0,0 @@
|
||||
"""
|
||||
Notion API helper functions and client for making authenticated requests.
|
||||
"""
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from backend.data.model import OAuth2Credentials
|
||||
from backend.util.request import Requests
|
||||
|
||||
NOTION_VERSION = "2022-06-28"
|
||||
|
||||
|
||||
class NotionAPIException(Exception):
|
||||
"""Exception raised for Notion API errors."""
|
||||
|
||||
def __init__(self, message: str, status_code: int):
|
||||
super().__init__(message)
|
||||
self.status_code = status_code
|
||||
|
||||
|
||||
class NotionClient:
|
||||
"""Client for interacting with the Notion API."""
|
||||
|
||||
def __init__(self, credentials: OAuth2Credentials):
|
||||
self.credentials = credentials
|
||||
self.headers = {
|
||||
"Authorization": credentials.auth_header(),
|
||||
"Notion-Version": NOTION_VERSION,
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
self.requests = Requests()
|
||||
|
||||
async def get_page(self, page_id: str) -> dict:
|
||||
"""
|
||||
Fetch a page by ID.
|
||||
|
||||
Args:
|
||||
page_id: The ID of the page to fetch.
|
||||
|
||||
Returns:
|
||||
The page object from Notion API.
|
||||
"""
|
||||
url = f"https://api.notion.com/v1/pages/{page_id}"
|
||||
response = await self.requests.get(url, headers=self.headers)
|
||||
|
||||
if not response.ok:
|
||||
raise NotionAPIException(
|
||||
f"Failed to fetch page: {response.status} - {response.text()}",
|
||||
response.status,
|
||||
)
|
||||
|
||||
return response.json()
|
||||
|
||||
async def get_blocks(self, block_id: str, recursive: bool = True) -> List[dict]:
|
||||
"""
|
||||
Fetch all blocks from a page or block.
|
||||
|
||||
Args:
|
||||
block_id: The ID of the page or block to fetch children from.
|
||||
recursive: Whether to fetch nested blocks recursively.
|
||||
|
||||
Returns:
|
||||
List of block objects.
|
||||
"""
|
||||
blocks = []
|
||||
cursor = None
|
||||
|
||||
while True:
|
||||
url = f"https://api.notion.com/v1/blocks/{block_id}/children"
|
||||
params = {"page_size": 100}
|
||||
if cursor:
|
||||
params["start_cursor"] = cursor
|
||||
|
||||
response = await self.requests.get(url, headers=self.headers, params=params)
|
||||
|
||||
if not response.ok:
|
||||
raise NotionAPIException(
|
||||
f"Failed to fetch blocks: {response.status} - {response.text()}",
|
||||
response.status,
|
||||
)
|
||||
|
||||
data = response.json()
|
||||
current_blocks = data.get("results", [])
|
||||
|
||||
# If recursive, fetch children for blocks that have them
|
||||
if recursive:
|
||||
for block in current_blocks:
|
||||
if block.get("has_children"):
|
||||
block["children"] = await self.get_blocks(
|
||||
block["id"], recursive=True
|
||||
)
|
||||
|
||||
blocks.extend(current_blocks)
|
||||
|
||||
if not data.get("has_more"):
|
||||
break
|
||||
cursor = data.get("next_cursor")
|
||||
|
||||
return blocks
|
||||
|
||||
async def query_database(
|
||||
self,
|
||||
database_id: str,
|
||||
filter_obj: Optional[dict] = None,
|
||||
sorts: Optional[List[dict]] = None,
|
||||
page_size: int = 100,
|
||||
) -> dict:
|
||||
"""
|
||||
Query a database with optional filters and sorts.
|
||||
|
||||
Args:
|
||||
database_id: The ID of the database to query.
|
||||
filter_obj: Optional filter object for the query.
|
||||
sorts: Optional list of sort objects.
|
||||
page_size: Number of results per page.
|
||||
|
||||
Returns:
|
||||
Query results including pages and pagination info.
|
||||
"""
|
||||
url = f"https://api.notion.com/v1/databases/{database_id}/query"
|
||||
|
||||
payload: Dict[str, Any] = {"page_size": page_size}
|
||||
if filter_obj:
|
||||
payload["filter"] = filter_obj
|
||||
if sorts:
|
||||
payload["sorts"] = sorts
|
||||
|
||||
response = await self.requests.post(url, headers=self.headers, json=payload)
|
||||
|
||||
if not response.ok:
|
||||
raise NotionAPIException(
|
||||
f"Failed to query database: {response.status} - {response.text()}",
|
||||
response.status,
|
||||
)
|
||||
|
||||
return response.json()
|
||||
|
||||
async def create_page(
|
||||
self,
|
||||
parent: dict,
|
||||
properties: dict,
|
||||
children: Optional[List[dict]] = None,
|
||||
icon: Optional[dict] = None,
|
||||
cover: Optional[dict] = None,
|
||||
) -> dict:
|
||||
"""
|
||||
Create a new page.
|
||||
|
||||
Args:
|
||||
parent: Parent object (page_id or database_id).
|
||||
properties: Page properties.
|
||||
children: Optional list of block children.
|
||||
icon: Optional icon object.
|
||||
cover: Optional cover object.
|
||||
|
||||
Returns:
|
||||
The created page object.
|
||||
"""
|
||||
url = "https://api.notion.com/v1/pages"
|
||||
|
||||
payload: Dict[str, Any] = {"parent": parent, "properties": properties}
|
||||
|
||||
if children:
|
||||
payload["children"] = children
|
||||
if icon:
|
||||
payload["icon"] = icon
|
||||
if cover:
|
||||
payload["cover"] = cover
|
||||
|
||||
response = await self.requests.post(url, headers=self.headers, json=payload)
|
||||
|
||||
if not response.ok:
|
||||
raise NotionAPIException(
|
||||
f"Failed to create page: {response.status} - {response.text()}",
|
||||
response.status,
|
||||
)
|
||||
|
||||
return response.json()
|
||||
|
||||
async def update_page(self, page_id: str, properties: dict) -> dict:
|
||||
"""
|
||||
Update a page's properties.
|
||||
|
||||
Args:
|
||||
page_id: The ID of the page to update.
|
||||
properties: Properties to update.
|
||||
|
||||
Returns:
|
||||
The updated page object.
|
||||
"""
|
||||
url = f"https://api.notion.com/v1/pages/{page_id}"
|
||||
|
||||
response = await self.requests.patch(
|
||||
url, headers=self.headers, json={"properties": properties}
|
||||
)
|
||||
|
||||
if not response.ok:
|
||||
raise NotionAPIException(
|
||||
f"Failed to update page: {response.status} - {response.text()}",
|
||||
response.status,
|
||||
)
|
||||
|
||||
return response.json()
|
||||
|
||||
async def append_blocks(self, block_id: str, children: List[dict]) -> dict:
|
||||
"""
|
||||
Append blocks to a page or block.
|
||||
|
||||
Args:
|
||||
block_id: The ID of the page or block to append to.
|
||||
children: List of block objects to append.
|
||||
|
||||
Returns:
|
||||
Response with the created blocks.
|
||||
"""
|
||||
url = f"https://api.notion.com/v1/blocks/{block_id}/children"
|
||||
|
||||
response = await self.requests.patch(
|
||||
url, headers=self.headers, json={"children": children}
|
||||
)
|
||||
|
||||
if not response.ok:
|
||||
raise NotionAPIException(
|
||||
f"Failed to append blocks: {response.status} - {response.text()}",
|
||||
response.status,
|
||||
)
|
||||
|
||||
return response.json()
|
||||
|
||||
async def search(
|
||||
self,
|
||||
query: str = "",
|
||||
filter_obj: Optional[dict] = None,
|
||||
sort: Optional[dict] = None,
|
||||
page_size: int = 100,
|
||||
) -> dict:
|
||||
"""
|
||||
Search for pages and databases.
|
||||
|
||||
Args:
|
||||
query: Search query text.
|
||||
filter_obj: Optional filter object.
|
||||
sort: Optional sort object.
|
||||
page_size: Number of results per page.
|
||||
|
||||
Returns:
|
||||
Search results.
|
||||
"""
|
||||
url = "https://api.notion.com/v1/search"
|
||||
|
||||
payload: Dict[str, Any] = {"page_size": page_size}
|
||||
if query:
|
||||
payload["query"] = query
|
||||
if filter_obj:
|
||||
payload["filter"] = filter_obj
|
||||
if sort:
|
||||
payload["sort"] = sort
|
||||
|
||||
response = await self.requests.post(url, headers=self.headers, json=payload)
|
||||
|
||||
if not response.ok:
|
||||
raise NotionAPIException(
|
||||
f"Search failed: {response.status} - {response.text()}", response.status
|
||||
)
|
||||
|
||||
return response.json()
|
||||
|
||||
|
||||
# Conversion helper functions
|
||||
|
||||
|
||||
def parse_rich_text(rich_text_array: List[dict]) -> str:
|
||||
"""
|
||||
Extract plain text from a Notion rich text array.
|
||||
|
||||
Args:
|
||||
rich_text_array: Array of rich text objects from Notion.
|
||||
|
||||
Returns:
|
||||
Plain text string.
|
||||
"""
|
||||
if not rich_text_array:
|
||||
return ""
|
||||
|
||||
text_parts = []
|
||||
for text_obj in rich_text_array:
|
||||
if "plain_text" in text_obj:
|
||||
text_parts.append(text_obj["plain_text"])
|
||||
|
||||
return "".join(text_parts)
|
||||
|
||||
|
||||
def rich_text_to_markdown(rich_text_array: List[dict]) -> str:
|
||||
"""
|
||||
Convert Notion rich text array to markdown with formatting.
|
||||
|
||||
Args:
|
||||
rich_text_array: Array of rich text objects from Notion.
|
||||
|
||||
Returns:
|
||||
Markdown formatted string.
|
||||
"""
|
||||
if not rich_text_array:
|
||||
return ""
|
||||
|
||||
markdown_parts = []
|
||||
|
||||
for text_obj in rich_text_array:
|
||||
text = text_obj.get("plain_text", "")
|
||||
annotations = text_obj.get("annotations", {})
|
||||
|
||||
# Apply formatting based on annotations
|
||||
if annotations.get("code"):
|
||||
text = f"`{text}`"
|
||||
else:
|
||||
if annotations.get("bold"):
|
||||
text = f"**{text}**"
|
||||
if annotations.get("italic"):
|
||||
text = f"*{text}*"
|
||||
if annotations.get("strikethrough"):
|
||||
text = f"~~{text}~~"
|
||||
if annotations.get("underline"):
|
||||
text = f"<u>{text}</u>"
|
||||
|
||||
# Handle links
|
||||
if text_obj.get("href"):
|
||||
text = f"[{text}]({text_obj['href']})"
|
||||
|
||||
markdown_parts.append(text)
|
||||
|
||||
return "".join(markdown_parts)
|
||||
|
||||
|
||||
def block_to_markdown(block: dict, indent_level: int = 0) -> str:
|
||||
"""
|
||||
Convert a single Notion block to markdown.
|
||||
|
||||
Args:
|
||||
block: Block object from Notion API.
|
||||
indent_level: Current indentation level for nested blocks.
|
||||
|
||||
Returns:
|
||||
Markdown string representation of the block.
|
||||
"""
|
||||
block_type = block.get("type")
|
||||
indent = " " * indent_level
|
||||
markdown_lines = []
|
||||
|
||||
# Handle different block types
|
||||
if block_type == "paragraph":
|
||||
text = rich_text_to_markdown(block["paragraph"].get("rich_text", []))
|
||||
if text:
|
||||
markdown_lines.append(f"{indent}{text}")
|
||||
|
||||
elif block_type == "heading_1":
|
||||
text = parse_rich_text(block["heading_1"].get("rich_text", []))
|
||||
markdown_lines.append(f"{indent}# {text}")
|
||||
|
||||
elif block_type == "heading_2":
|
||||
text = parse_rich_text(block["heading_2"].get("rich_text", []))
|
||||
markdown_lines.append(f"{indent}## {text}")
|
||||
|
||||
elif block_type == "heading_3":
|
||||
text = parse_rich_text(block["heading_3"].get("rich_text", []))
|
||||
markdown_lines.append(f"{indent}### {text}")
|
||||
|
||||
elif block_type == "bulleted_list_item":
|
||||
text = rich_text_to_markdown(block["bulleted_list_item"].get("rich_text", []))
|
||||
markdown_lines.append(f"{indent}- {text}")
|
||||
|
||||
elif block_type == "numbered_list_item":
|
||||
text = rich_text_to_markdown(block["numbered_list_item"].get("rich_text", []))
|
||||
# Note: This is simplified - proper numbering would need context
|
||||
markdown_lines.append(f"{indent}1. {text}")
|
||||
|
||||
elif block_type == "to_do":
|
||||
text = rich_text_to_markdown(block["to_do"].get("rich_text", []))
|
||||
checked = "x" if block["to_do"].get("checked") else " "
|
||||
markdown_lines.append(f"{indent}- [{checked}] {text}")
|
||||
|
||||
elif block_type == "toggle":
|
||||
text = rich_text_to_markdown(block["toggle"].get("rich_text", []))
|
||||
markdown_lines.append(f"{indent}<details>")
|
||||
markdown_lines.append(f"{indent}<summary>{text}</summary>")
|
||||
markdown_lines.append(f"{indent}")
|
||||
# Process children if they exist
|
||||
if block.get("children"):
|
||||
for child in block["children"]:
|
||||
child_markdown = block_to_markdown(child, indent_level + 1)
|
||||
if child_markdown:
|
||||
markdown_lines.append(child_markdown)
|
||||
markdown_lines.append(f"{indent}</details>")
|
||||
|
||||
elif block_type == "code":
|
||||
code = parse_rich_text(block["code"].get("rich_text", []))
|
||||
language = block["code"].get("language", "")
|
||||
markdown_lines.append(f"{indent}```{language}")
|
||||
markdown_lines.append(f"{indent}{code}")
|
||||
markdown_lines.append(f"{indent}```")
|
||||
|
||||
elif block_type == "quote":
|
||||
text = rich_text_to_markdown(block["quote"].get("rich_text", []))
|
||||
markdown_lines.append(f"{indent}> {text}")
|
||||
|
||||
elif block_type == "divider":
|
||||
markdown_lines.append(f"{indent}---")
|
||||
|
||||
elif block_type == "image":
|
||||
image = block["image"]
|
||||
url = image.get("external", {}).get("url") or image.get("file", {}).get(
|
||||
"url", ""
|
||||
)
|
||||
caption = parse_rich_text(image.get("caption", []))
|
||||
alt_text = caption if caption else "Image"
|
||||
markdown_lines.append(f"{indent}")
|
||||
if caption:
|
||||
markdown_lines.append(f"{indent}*{caption}*")
|
||||
|
||||
elif block_type == "video":
|
||||
video = block["video"]
|
||||
url = video.get("external", {}).get("url") or video.get("file", {}).get(
|
||||
"url", ""
|
||||
)
|
||||
caption = parse_rich_text(video.get("caption", []))
|
||||
markdown_lines.append(f"{indent}[Video]({url})")
|
||||
if caption:
|
||||
markdown_lines.append(f"{indent}*{caption}*")
|
||||
|
||||
elif block_type == "file":
|
||||
file = block["file"]
|
||||
url = file.get("external", {}).get("url") or file.get("file", {}).get("url", "")
|
||||
caption = parse_rich_text(file.get("caption", []))
|
||||
name = caption if caption else "File"
|
||||
markdown_lines.append(f"{indent}[{name}]({url})")
|
||||
|
||||
elif block_type == "bookmark":
|
||||
url = block["bookmark"].get("url", "")
|
||||
caption = parse_rich_text(block["bookmark"].get("caption", []))
|
||||
markdown_lines.append(f"{indent}[{caption if caption else url}]({url})")
|
||||
|
||||
elif block_type == "equation":
|
||||
expression = block["equation"].get("expression", "")
|
||||
markdown_lines.append(f"{indent}$${expression}$$")
|
||||
|
||||
elif block_type == "callout":
|
||||
text = rich_text_to_markdown(block["callout"].get("rich_text", []))
|
||||
icon = block["callout"].get("icon", {})
|
||||
if icon.get("emoji"):
|
||||
markdown_lines.append(f"{indent}> {icon['emoji']} {text}")
|
||||
else:
|
||||
markdown_lines.append(f"{indent}> ℹ️ {text}")
|
||||
|
||||
elif block_type == "child_page":
|
||||
title = block["child_page"].get("title", "Untitled")
|
||||
markdown_lines.append(f"{indent}📄 [{title}](notion://page/{block['id']})")
|
||||
|
||||
elif block_type == "child_database":
|
||||
title = block["child_database"].get("title", "Untitled Database")
|
||||
markdown_lines.append(f"{indent}🗂️ [{title}](notion://database/{block['id']})")
|
||||
|
||||
elif block_type == "table":
|
||||
# Tables are complex - for now just indicate there's a table
|
||||
markdown_lines.append(
|
||||
f"{indent}[Table with {block['table'].get('table_width', 0)} columns]"
|
||||
)
|
||||
|
||||
elif block_type == "column_list":
|
||||
# Process columns
|
||||
if block.get("children"):
|
||||
markdown_lines.append(f"{indent}<div style='display: flex'>")
|
||||
for column in block["children"]:
|
||||
markdown_lines.append(f"{indent}<div style='flex: 1'>")
|
||||
if column.get("children"):
|
||||
for child in column["children"]:
|
||||
child_markdown = block_to_markdown(child, indent_level + 1)
|
||||
if child_markdown:
|
||||
markdown_lines.append(child_markdown)
|
||||
markdown_lines.append(f"{indent}</div>")
|
||||
markdown_lines.append(f"{indent}</div>")
|
||||
|
||||
# Handle children for blocks that haven't been processed yet
|
||||
elif block.get("children") and block_type not in ["toggle", "column_list"]:
|
||||
for child in block["children"]:
|
||||
child_markdown = block_to_markdown(child, indent_level)
|
||||
if child_markdown:
|
||||
markdown_lines.append(child_markdown)
|
||||
|
||||
return "\n".join(markdown_lines) if markdown_lines else ""
|
||||
|
||||
|
||||
def blocks_to_markdown(blocks: List[dict]) -> str:
|
||||
"""
|
||||
Convert a list of Notion blocks to a markdown document.
|
||||
|
||||
Args:
|
||||
blocks: List of block objects from Notion API.
|
||||
|
||||
Returns:
|
||||
Complete markdown document as a string.
|
||||
"""
|
||||
markdown_parts = []
|
||||
|
||||
for i, block in enumerate(blocks):
|
||||
markdown = block_to_markdown(block)
|
||||
if markdown:
|
||||
markdown_parts.append(markdown)
|
||||
# Add spacing between top-level blocks (except lists)
|
||||
if i < len(blocks) - 1:
|
||||
next_type = blocks[i + 1].get("type", "")
|
||||
current_type = block.get("type", "")
|
||||
# Don't add extra spacing between list items
|
||||
list_types = {"bulleted_list_item", "numbered_list_item", "to_do"}
|
||||
if not (current_type in list_types and next_type in list_types):
|
||||
markdown_parts.append("")
|
||||
|
||||
return "\n".join(markdown_parts)
|
||||
|
||||
|
||||
def extract_page_title(page: dict) -> str:
|
||||
"""
|
||||
Extract the title from a Notion page object.
|
||||
|
||||
Args:
|
||||
page: Page object from Notion API.
|
||||
|
||||
Returns:
|
||||
Page title as a string.
|
||||
"""
|
||||
properties = page.get("properties", {})
|
||||
|
||||
# Find the title property (it has type "title")
|
||||
for prop_name, prop_value in properties.items():
|
||||
if prop_value.get("type") == "title":
|
||||
return parse_rich_text(prop_value.get("title", []))
|
||||
|
||||
return "Untitled"
|
||||
@@ -1,42 +0,0 @@
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import CredentialsField, CredentialsMetaInput, OAuth2Credentials
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.settings import Secrets
|
||||
|
||||
secrets = Secrets()
|
||||
NOTION_OAUTH_IS_CONFIGURED = bool(
|
||||
secrets.notion_client_id and secrets.notion_client_secret
|
||||
)
|
||||
|
||||
NotionCredentials = OAuth2Credentials
|
||||
NotionCredentialsInput = CredentialsMetaInput[
|
||||
Literal[ProviderName.NOTION], Literal["oauth2"]
|
||||
]
|
||||
|
||||
|
||||
def NotionCredentialsField() -> NotionCredentialsInput:
|
||||
"""Creates a Notion OAuth2 credentials field."""
|
||||
return CredentialsField(
|
||||
description="Connect your Notion account. Ensure the pages/databases are shared with the integration."
|
||||
)
|
||||
|
||||
|
||||
# Test credentials for Notion OAuth2
|
||||
TEST_CREDENTIALS = OAuth2Credentials(
|
||||
id="01234567-89ab-cdef-0123-456789abcdef",
|
||||
provider="notion",
|
||||
access_token=SecretStr("test_access_token"),
|
||||
title="Mock Notion OAuth",
|
||||
scopes=["read_content", "insert_content", "update_content"],
|
||||
username="testuser",
|
||||
)
|
||||
|
||||
TEST_CREDENTIALS_INPUT = {
|
||||
"provider": TEST_CREDENTIALS.provider,
|
||||
"id": TEST_CREDENTIALS.id,
|
||||
"type": TEST_CREDENTIALS.type,
|
||||
"title": TEST_CREDENTIALS.title,
|
||||
}
|
||||
@@ -1,360 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import model_validator
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
|
||||
from backend.data.model import OAuth2Credentials, SchemaField
|
||||
|
||||
from ._api import NotionClient
|
||||
from ._auth import (
|
||||
NOTION_OAUTH_IS_CONFIGURED,
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
NotionCredentialsField,
|
||||
NotionCredentialsInput,
|
||||
)
|
||||
|
||||
|
||||
class NotionCreatePageBlock(Block):
|
||||
"""Create a new page in Notion with content."""
|
||||
|
||||
class Input(BlockSchema):
|
||||
credentials: NotionCredentialsInput = NotionCredentialsField()
|
||||
parent_page_id: Optional[str] = SchemaField(
|
||||
description="Parent page ID to create the page under. Either this OR parent_database_id is required.",
|
||||
default=None,
|
||||
)
|
||||
parent_database_id: Optional[str] = SchemaField(
|
||||
description="Parent database ID to create the page in. Either this OR parent_page_id is required.",
|
||||
default=None,
|
||||
)
|
||||
title: str = SchemaField(
|
||||
description="Title of the new page",
|
||||
)
|
||||
content: Optional[str] = SchemaField(
|
||||
description="Content for the page. Can be plain text or markdown - will be converted to Notion blocks.",
|
||||
default=None,
|
||||
)
|
||||
properties: Optional[Dict[str, Any]] = SchemaField(
|
||||
description="Additional properties for database pages (e.g., {'Status': 'In Progress', 'Priority': 'High'})",
|
||||
default=None,
|
||||
)
|
||||
icon_emoji: Optional[str] = SchemaField(
|
||||
description="Emoji to use as the page icon (e.g., '📄', '🚀')", default=None
|
||||
)
|
||||
|
||||
@model_validator(mode="after")
|
||||
def validate_parent(self):
|
||||
"""Ensure either parent_page_id or parent_database_id is provided."""
|
||||
if not self.parent_page_id and not self.parent_database_id:
|
||||
raise ValueError(
|
||||
"Either parent_page_id or parent_database_id must be provided"
|
||||
)
|
||||
if self.parent_page_id and self.parent_database_id:
|
||||
raise ValueError(
|
||||
"Only one of parent_page_id or parent_database_id should be provided, not both"
|
||||
)
|
||||
return self
|
||||
|
||||
class Output(BlockSchema):
|
||||
page_id: str = SchemaField(description="ID of the created page.")
|
||||
page_url: str = SchemaField(description="URL of the created page.")
|
||||
error: str = SchemaField(description="Error message if the operation failed.")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="c15febe0-66ce-4c6f-aebd-5ab351653804",
|
||||
description="Create a new page in Notion. Requires EITHER a parent_page_id OR parent_database_id. Supports markdown content.",
|
||||
categories={BlockCategory.PRODUCTIVITY},
|
||||
input_schema=NotionCreatePageBlock.Input,
|
||||
output_schema=NotionCreatePageBlock.Output,
|
||||
disabled=not NOTION_OAUTH_IS_CONFIGURED,
|
||||
test_input={
|
||||
"parent_page_id": "00000000-0000-0000-0000-000000000000",
|
||||
"title": "Test Page",
|
||||
"content": "This is test content.",
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("page_id", "12345678-1234-1234-1234-123456789012"),
|
||||
(
|
||||
"page_url",
|
||||
"https://notion.so/Test-Page-12345678123412341234123456789012",
|
||||
),
|
||||
],
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_mock={
|
||||
"create_page": lambda *args, **kwargs: (
|
||||
"12345678-1234-1234-1234-123456789012",
|
||||
"https://notion.so/Test-Page-12345678123412341234123456789012",
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _markdown_to_blocks(content: str) -> List[dict]:
|
||||
"""Convert markdown content to Notion block objects."""
|
||||
if not content:
|
||||
return []
|
||||
|
||||
blocks = []
|
||||
lines = content.split("\n")
|
||||
i = 0
|
||||
|
||||
while i < len(lines):
|
||||
line = lines[i]
|
||||
|
||||
# Skip empty lines
|
||||
if not line.strip():
|
||||
i += 1
|
||||
continue
|
||||
|
||||
# Headings
|
||||
if line.startswith("### "):
|
||||
blocks.append(
|
||||
{
|
||||
"type": "heading_3",
|
||||
"heading_3": {
|
||||
"rich_text": [
|
||||
{"type": "text", "text": {"content": line[4:].strip()}}
|
||||
]
|
||||
},
|
||||
}
|
||||
)
|
||||
elif line.startswith("## "):
|
||||
blocks.append(
|
||||
{
|
||||
"type": "heading_2",
|
||||
"heading_2": {
|
||||
"rich_text": [
|
||||
{"type": "text", "text": {"content": line[3:].strip()}}
|
||||
]
|
||||
},
|
||||
}
|
||||
)
|
||||
elif line.startswith("# "):
|
||||
blocks.append(
|
||||
{
|
||||
"type": "heading_1",
|
||||
"heading_1": {
|
||||
"rich_text": [
|
||||
{"type": "text", "text": {"content": line[2:].strip()}}
|
||||
]
|
||||
},
|
||||
}
|
||||
)
|
||||
# Bullet points
|
||||
elif line.strip().startswith("- "):
|
||||
blocks.append(
|
||||
{
|
||||
"type": "bulleted_list_item",
|
||||
"bulleted_list_item": {
|
||||
"rich_text": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": {"content": line.strip()[2:].strip()},
|
||||
}
|
||||
]
|
||||
},
|
||||
}
|
||||
)
|
||||
# Numbered list
|
||||
elif line.strip() and line.strip()[0].isdigit() and ". " in line:
|
||||
content_start = line.find(". ") + 2
|
||||
blocks.append(
|
||||
{
|
||||
"type": "numbered_list_item",
|
||||
"numbered_list_item": {
|
||||
"rich_text": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": {"content": line[content_start:].strip()},
|
||||
}
|
||||
]
|
||||
},
|
||||
}
|
||||
)
|
||||
# Code block
|
||||
elif line.strip().startswith("```"):
|
||||
code_lines = []
|
||||
language = line[3:].strip() or "plain text"
|
||||
i += 1
|
||||
while i < len(lines) and not lines[i].strip().startswith("```"):
|
||||
code_lines.append(lines[i])
|
||||
i += 1
|
||||
blocks.append(
|
||||
{
|
||||
"type": "code",
|
||||
"code": {
|
||||
"rich_text": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": {"content": "\n".join(code_lines)},
|
||||
}
|
||||
],
|
||||
"language": language,
|
||||
},
|
||||
}
|
||||
)
|
||||
# Quote
|
||||
elif line.strip().startswith("> "):
|
||||
blocks.append(
|
||||
{
|
||||
"type": "quote",
|
||||
"quote": {
|
||||
"rich_text": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": {"content": line.strip()[2:].strip()},
|
||||
}
|
||||
]
|
||||
},
|
||||
}
|
||||
)
|
||||
# Horizontal rule
|
||||
elif line.strip() in ["---", "***", "___"]:
|
||||
blocks.append({"type": "divider", "divider": {}})
|
||||
# Regular paragraph
|
||||
else:
|
||||
# Parse for basic markdown formatting
|
||||
text_content = line.strip()
|
||||
rich_text = []
|
||||
|
||||
# Simple bold/italic parsing (this is simplified)
|
||||
if "**" in text_content or "*" in text_content:
|
||||
# For now, just pass as plain text
|
||||
# A full implementation would parse and create proper annotations
|
||||
rich_text = [{"type": "text", "text": {"content": text_content}}]
|
||||
else:
|
||||
rich_text = [{"type": "text", "text": {"content": text_content}}]
|
||||
|
||||
blocks.append(
|
||||
{"type": "paragraph", "paragraph": {"rich_text": rich_text}}
|
||||
)
|
||||
|
||||
i += 1
|
||||
|
||||
return blocks
|
||||
|
||||
@staticmethod
|
||||
def _build_properties(
|
||||
title: str, additional_properties: Optional[Dict[str, Any]] = None
|
||||
) -> Dict[str, Any]:
|
||||
"""Build properties object for page creation."""
|
||||
properties: Dict[str, Any] = {
|
||||
"title": {"title": [{"type": "text", "text": {"content": title}}]}
|
||||
}
|
||||
|
||||
if additional_properties:
|
||||
for key, value in additional_properties.items():
|
||||
if key.lower() == "title":
|
||||
continue # Skip title as we already have it
|
||||
|
||||
# Try to intelligently map property types
|
||||
if isinstance(value, bool):
|
||||
properties[key] = {"checkbox": value}
|
||||
elif isinstance(value, (int, float)):
|
||||
properties[key] = {"number": value}
|
||||
elif isinstance(value, list):
|
||||
# Assume multi-select
|
||||
properties[key] = {
|
||||
"multi_select": [{"name": str(item)} for item in value]
|
||||
}
|
||||
elif isinstance(value, str):
|
||||
# Could be select, rich_text, or other types
|
||||
# For simplicity, try common patterns
|
||||
if key.lower() in ["status", "priority", "type", "category"]:
|
||||
properties[key] = {"select": {"name": value}}
|
||||
elif key.lower() in ["url", "link"]:
|
||||
properties[key] = {"url": value}
|
||||
elif key.lower() in ["email"]:
|
||||
properties[key] = {"email": value}
|
||||
else:
|
||||
properties[key] = {
|
||||
"rich_text": [{"type": "text", "text": {"content": value}}]
|
||||
}
|
||||
|
||||
return properties
|
||||
|
||||
@staticmethod
|
||||
async def create_page(
|
||||
credentials: OAuth2Credentials,
|
||||
title: str,
|
||||
parent_page_id: Optional[str] = None,
|
||||
parent_database_id: Optional[str] = None,
|
||||
content: Optional[str] = None,
|
||||
properties: Optional[Dict[str, Any]] = None,
|
||||
icon_emoji: Optional[str] = None,
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Create a new Notion page.
|
||||
|
||||
Returns:
|
||||
Tuple of (page_id, page_url)
|
||||
"""
|
||||
if not parent_page_id and not parent_database_id:
|
||||
raise ValueError(
|
||||
"Either parent_page_id or parent_database_id must be provided"
|
||||
)
|
||||
if parent_page_id and parent_database_id:
|
||||
raise ValueError(
|
||||
"Only one of parent_page_id or parent_database_id should be provided, not both"
|
||||
)
|
||||
|
||||
client = NotionClient(credentials)
|
||||
|
||||
# Build parent object
|
||||
if parent_page_id:
|
||||
parent = {"type": "page_id", "page_id": parent_page_id}
|
||||
else:
|
||||
parent = {"type": "database_id", "database_id": parent_database_id}
|
||||
|
||||
# Build properties
|
||||
page_properties = NotionCreatePageBlock._build_properties(title, properties)
|
||||
|
||||
# Convert content to blocks if provided
|
||||
children = None
|
||||
if content:
|
||||
children = NotionCreatePageBlock._markdown_to_blocks(content)
|
||||
|
||||
# Build icon if provided
|
||||
icon = None
|
||||
if icon_emoji:
|
||||
icon = {"type": "emoji", "emoji": icon_emoji}
|
||||
|
||||
# Create the page
|
||||
result = await client.create_page(
|
||||
parent=parent, properties=page_properties, children=children, icon=icon
|
||||
)
|
||||
|
||||
page_id = result.get("id", "")
|
||||
page_url = result.get("url", "")
|
||||
|
||||
if not page_id or not page_url:
|
||||
raise ValueError("Failed to get page ID or URL from Notion response")
|
||||
|
||||
return page_id, page_url
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: OAuth2Credentials,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
page_id, page_url = await self.create_page(
|
||||
credentials,
|
||||
input_data.title,
|
||||
input_data.parent_page_id,
|
||||
input_data.parent_database_id,
|
||||
input_data.content,
|
||||
input_data.properties,
|
||||
input_data.icon_emoji,
|
||||
)
|
||||
yield "page_id", page_id
|
||||
yield "page_url", page_url
|
||||
except Exception as e:
|
||||
yield "error", str(e) if str(e) else "Unknown error"
|
||||
@@ -1,285 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
|
||||
from backend.data.model import OAuth2Credentials, SchemaField
|
||||
|
||||
from ._api import NotionClient, parse_rich_text
|
||||
from ._auth import (
|
||||
NOTION_OAUTH_IS_CONFIGURED,
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
NotionCredentialsField,
|
||||
NotionCredentialsInput,
|
||||
)
|
||||
|
||||
|
||||
class NotionReadDatabaseBlock(Block):
|
||||
"""Query a Notion database and retrieve entries with their properties."""
|
||||
|
||||
class Input(BlockSchema):
|
||||
credentials: NotionCredentialsInput = NotionCredentialsField()
|
||||
database_id: str = SchemaField(
|
||||
description="Notion database ID. Must be accessible by the connected integration.",
|
||||
)
|
||||
filter_property: Optional[str] = SchemaField(
|
||||
description="Property name to filter by (e.g., 'Status', 'Priority')",
|
||||
default=None,
|
||||
)
|
||||
filter_value: Optional[str] = SchemaField(
|
||||
description="Value to filter for in the specified property", default=None
|
||||
)
|
||||
sort_property: Optional[str] = SchemaField(
|
||||
description="Property name to sort by", default=None
|
||||
)
|
||||
sort_direction: Optional[str] = SchemaField(
|
||||
description="Sort direction: 'ascending' or 'descending'",
|
||||
default="ascending",
|
||||
)
|
||||
limit: int = SchemaField(
|
||||
description="Maximum number of entries to retrieve",
|
||||
default=100,
|
||||
ge=1,
|
||||
le=100,
|
||||
)
|
||||
|
||||
class Output(BlockSchema):
|
||||
entries: List[Dict[str, Any]] = SchemaField(
|
||||
description="List of database entries with their properties."
|
||||
)
|
||||
entry: Dict[str, Any] = SchemaField(
|
||||
description="Individual database entry (yields one per entry found)."
|
||||
)
|
||||
entry_ids: List[str] = SchemaField(
|
||||
description="List of entry IDs for batch operations."
|
||||
)
|
||||
entry_id: str = SchemaField(
|
||||
description="Individual entry ID (yields one per entry found)."
|
||||
)
|
||||
count: int = SchemaField(description="Number of entries retrieved.")
|
||||
database_title: str = SchemaField(description="Title of the database.")
|
||||
error: str = SchemaField(description="Error message if the operation failed.")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="fcd53135-88c9-4ba3-be50-cc6936286e6c",
|
||||
description="Query a Notion database with optional filtering and sorting, returning structured entries.",
|
||||
categories={BlockCategory.PRODUCTIVITY},
|
||||
input_schema=NotionReadDatabaseBlock.Input,
|
||||
output_schema=NotionReadDatabaseBlock.Output,
|
||||
disabled=not NOTION_OAUTH_IS_CONFIGURED,
|
||||
test_input={
|
||||
"database_id": "00000000-0000-0000-0000-000000000000",
|
||||
"limit": 10,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
(
|
||||
"entries",
|
||||
[{"Name": "Test Entry", "Status": "Active", "_id": "test-123"}],
|
||||
),
|
||||
("entry_ids", ["test-123"]),
|
||||
(
|
||||
"entry",
|
||||
{"Name": "Test Entry", "Status": "Active", "_id": "test-123"},
|
||||
),
|
||||
("entry_id", "test-123"),
|
||||
("count", 1),
|
||||
("database_title", "Test Database"),
|
||||
],
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_mock={
|
||||
"query_database": lambda *args, **kwargs: (
|
||||
[{"Name": "Test Entry", "Status": "Active", "_id": "test-123"}],
|
||||
1,
|
||||
"Test Database",
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _parse_property_value(prop: dict) -> Any:
|
||||
"""Parse a Notion property value into a simple Python type."""
|
||||
prop_type = prop.get("type")
|
||||
|
||||
if prop_type == "title":
|
||||
return parse_rich_text(prop.get("title", []))
|
||||
elif prop_type == "rich_text":
|
||||
return parse_rich_text(prop.get("rich_text", []))
|
||||
elif prop_type == "number":
|
||||
return prop.get("number")
|
||||
elif prop_type == "select":
|
||||
select = prop.get("select")
|
||||
return select.get("name") if select else None
|
||||
elif prop_type == "multi_select":
|
||||
return [item.get("name") for item in prop.get("multi_select", [])]
|
||||
elif prop_type == "date":
|
||||
date = prop.get("date")
|
||||
if date:
|
||||
return date.get("start")
|
||||
return None
|
||||
elif prop_type == "checkbox":
|
||||
return prop.get("checkbox", False)
|
||||
elif prop_type == "url":
|
||||
return prop.get("url")
|
||||
elif prop_type == "email":
|
||||
return prop.get("email")
|
||||
elif prop_type == "phone_number":
|
||||
return prop.get("phone_number")
|
||||
elif prop_type == "people":
|
||||
return [
|
||||
person.get("name", person.get("id"))
|
||||
for person in prop.get("people", [])
|
||||
]
|
||||
elif prop_type == "files":
|
||||
files = prop.get("files", [])
|
||||
return [
|
||||
f.get(
|
||||
"name",
|
||||
f.get("external", {}).get("url", f.get("file", {}).get("url")),
|
||||
)
|
||||
for f in files
|
||||
]
|
||||
elif prop_type == "relation":
|
||||
return [rel.get("id") for rel in prop.get("relation", [])]
|
||||
elif prop_type == "formula":
|
||||
formula = prop.get("formula", {})
|
||||
return formula.get(formula.get("type"))
|
||||
elif prop_type == "rollup":
|
||||
rollup = prop.get("rollup", {})
|
||||
return rollup.get(rollup.get("type"))
|
||||
elif prop_type == "created_time":
|
||||
return prop.get("created_time")
|
||||
elif prop_type == "created_by":
|
||||
return prop.get("created_by", {}).get(
|
||||
"name", prop.get("created_by", {}).get("id")
|
||||
)
|
||||
elif prop_type == "last_edited_time":
|
||||
return prop.get("last_edited_time")
|
||||
elif prop_type == "last_edited_by":
|
||||
return prop.get("last_edited_by", {}).get(
|
||||
"name", prop.get("last_edited_by", {}).get("id")
|
||||
)
|
||||
else:
|
||||
# Return the raw value for unknown types
|
||||
return prop
|
||||
|
||||
@staticmethod
|
||||
def _build_filter(property_name: str, value: str) -> dict:
|
||||
"""Build a simple filter object for a property."""
|
||||
# This is a simplified filter - in reality, you'd need to know the property type
|
||||
# For now, we'll try common filter types
|
||||
return {
|
||||
"or": [
|
||||
{"property": property_name, "rich_text": {"contains": value}},
|
||||
{"property": property_name, "title": {"contains": value}},
|
||||
{"property": property_name, "select": {"equals": value}},
|
||||
{"property": property_name, "multi_select": {"contains": value}},
|
||||
]
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
async def query_database(
|
||||
credentials: OAuth2Credentials,
|
||||
database_id: str,
|
||||
filter_property: Optional[str] = None,
|
||||
filter_value: Optional[str] = None,
|
||||
sort_property: Optional[str] = None,
|
||||
sort_direction: str = "ascending",
|
||||
limit: int = 100,
|
||||
) -> tuple[List[Dict[str, Any]], int, str]:
|
||||
"""
|
||||
Query a Notion database and parse the results.
|
||||
|
||||
Returns:
|
||||
Tuple of (entries_list, count, database_title)
|
||||
"""
|
||||
client = NotionClient(credentials)
|
||||
|
||||
# Build filter if specified
|
||||
filter_obj = None
|
||||
if filter_property and filter_value:
|
||||
filter_obj = NotionReadDatabaseBlock._build_filter(
|
||||
filter_property, filter_value
|
||||
)
|
||||
|
||||
# Build sorts if specified
|
||||
sorts = None
|
||||
if sort_property:
|
||||
sorts = [{"property": sort_property, "direction": sort_direction}]
|
||||
|
||||
# Query the database
|
||||
result = await client.query_database(
|
||||
database_id, filter_obj=filter_obj, sorts=sorts, page_size=limit
|
||||
)
|
||||
|
||||
# Parse the entries
|
||||
entries = []
|
||||
for page in result.get("results", []):
|
||||
entry = {}
|
||||
properties = page.get("properties", {})
|
||||
|
||||
for prop_name, prop_value in properties.items():
|
||||
entry[prop_name] = NotionReadDatabaseBlock._parse_property_value(
|
||||
prop_value
|
||||
)
|
||||
|
||||
# Add metadata
|
||||
entry["_id"] = page.get("id")
|
||||
entry["_url"] = page.get("url")
|
||||
entry["_created_time"] = page.get("created_time")
|
||||
entry["_last_edited_time"] = page.get("last_edited_time")
|
||||
|
||||
entries.append(entry)
|
||||
|
||||
# Get database title (we need to make a separate call for this)
|
||||
try:
|
||||
database_url = f"https://api.notion.com/v1/databases/{database_id}"
|
||||
db_response = await client.requests.get(
|
||||
database_url, headers=client.headers
|
||||
)
|
||||
if db_response.ok:
|
||||
db_data = db_response.json()
|
||||
db_title = parse_rich_text(db_data.get("title", []))
|
||||
else:
|
||||
db_title = "Unknown Database"
|
||||
except Exception:
|
||||
db_title = "Unknown Database"
|
||||
|
||||
return entries, len(entries), db_title
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: OAuth2Credentials,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
entries, count, db_title = await self.query_database(
|
||||
credentials,
|
||||
input_data.database_id,
|
||||
input_data.filter_property,
|
||||
input_data.filter_value,
|
||||
input_data.sort_property,
|
||||
input_data.sort_direction or "ascending",
|
||||
input_data.limit,
|
||||
)
|
||||
# Yield the complete list for batch operations
|
||||
yield "entries", entries
|
||||
|
||||
# Extract and yield IDs as a list for batch operations
|
||||
entry_ids = [entry["_id"] for entry in entries if "_id" in entry]
|
||||
yield "entry_ids", entry_ids
|
||||
|
||||
# Yield each individual entry and its ID for single connections
|
||||
for entry in entries:
|
||||
yield "entry", entry
|
||||
if "_id" in entry:
|
||||
yield "entry_id", entry["_id"]
|
||||
|
||||
yield "count", count
|
||||
yield "database_title", db_title
|
||||
except Exception as e:
|
||||
yield "error", str(e) if str(e) else "Unknown error"
|
||||
@@ -1,64 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
|
||||
from backend.data.model import OAuth2Credentials, SchemaField
|
||||
|
||||
from ._api import NotionClient
|
||||
from ._auth import (
|
||||
NOTION_OAUTH_IS_CONFIGURED,
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
NotionCredentialsField,
|
||||
NotionCredentialsInput,
|
||||
)
|
||||
|
||||
|
||||
class NotionReadPageBlock(Block):
|
||||
"""Read a Notion page by ID and return its raw JSON."""
|
||||
|
||||
class Input(BlockSchema):
|
||||
credentials: NotionCredentialsInput = NotionCredentialsField()
|
||||
page_id: str = SchemaField(
|
||||
description="Notion page ID. Must be accessible by the connected integration. You can get this from the page URL notion.so/A-Page-586edd711467478da59fe3ce29a1ffab would be 586edd711467478da59fe35e29a1ffab",
|
||||
)
|
||||
|
||||
class Output(BlockSchema):
|
||||
page: dict = SchemaField(description="Raw Notion page JSON.")
|
||||
error: str = SchemaField(description="Error message if the operation failed.")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="5246cc1d-34b7-452b-8fc5-3fb25fd8f542",
|
||||
description="Read a Notion page by its ID and return its raw JSON.",
|
||||
categories={BlockCategory.PRODUCTIVITY},
|
||||
input_schema=NotionReadPageBlock.Input,
|
||||
output_schema=NotionReadPageBlock.Output,
|
||||
disabled=not NOTION_OAUTH_IS_CONFIGURED,
|
||||
test_input={
|
||||
"page_id": "00000000-0000-0000-0000-000000000000",
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[("page", dict)],
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_mock={
|
||||
"get_page": lambda *args, **kwargs: {"object": "page", "id": "mocked"}
|
||||
},
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def get_page(credentials: OAuth2Credentials, page_id: str) -> dict:
|
||||
client = NotionClient(credentials)
|
||||
return await client.get_page(page_id)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: OAuth2Credentials,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
page = await self.get_page(credentials, input_data.page_id)
|
||||
yield "page", page
|
||||
except Exception as e:
|
||||
yield "error", str(e) if str(e) else "Unknown error"
|
||||
@@ -1,109 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
|
||||
from backend.data.model import OAuth2Credentials, SchemaField
|
||||
|
||||
from ._api import NotionClient, blocks_to_markdown, extract_page_title
|
||||
from ._auth import (
|
||||
NOTION_OAUTH_IS_CONFIGURED,
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
NotionCredentialsField,
|
||||
NotionCredentialsInput,
|
||||
)
|
||||
|
||||
|
||||
class NotionReadPageMarkdownBlock(Block):
|
||||
"""Read a Notion page and convert it to clean Markdown format."""
|
||||
|
||||
class Input(BlockSchema):
|
||||
credentials: NotionCredentialsInput = NotionCredentialsField()
|
||||
page_id: str = SchemaField(
|
||||
description="Notion page ID. Must be accessible by the connected integration. You can get this from the page URL notion.so/A-Page-586edd711467478da59fe35e29a1ffab would be 586edd711467478da59fe35e29a1ffab",
|
||||
)
|
||||
include_title: bool = SchemaField(
|
||||
description="Whether to include the page title as a header in the markdown",
|
||||
default=True,
|
||||
)
|
||||
|
||||
class Output(BlockSchema):
|
||||
markdown: str = SchemaField(description="Page content in Markdown format.")
|
||||
title: str = SchemaField(description="Page title.")
|
||||
error: str = SchemaField(description="Error message if the operation failed.")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="d1312c4d-fae2-4e70-893d-f4d07cce1d4e",
|
||||
description="Read a Notion page and convert it to Markdown format with proper formatting for headings, lists, links, and rich text.",
|
||||
categories={BlockCategory.PRODUCTIVITY},
|
||||
input_schema=NotionReadPageMarkdownBlock.Input,
|
||||
output_schema=NotionReadPageMarkdownBlock.Output,
|
||||
disabled=not NOTION_OAUTH_IS_CONFIGURED,
|
||||
test_input={
|
||||
"page_id": "00000000-0000-0000-0000-000000000000",
|
||||
"include_title": True,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
("markdown", "# Test Page\n\nThis is test content."),
|
||||
("title", "Test Page"),
|
||||
],
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_mock={
|
||||
"get_page_markdown": lambda *args, **kwargs: (
|
||||
"# Test Page\n\nThis is test content.",
|
||||
"Test Page",
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def get_page_markdown(
|
||||
credentials: OAuth2Credentials, page_id: str, include_title: bool = True
|
||||
) -> tuple[str, str]:
|
||||
"""
|
||||
Get a Notion page and convert it to markdown.
|
||||
|
||||
Args:
|
||||
credentials: OAuth2 credentials for Notion.
|
||||
page_id: The ID of the page to fetch.
|
||||
include_title: Whether to include the page title in the markdown.
|
||||
|
||||
Returns:
|
||||
Tuple of (markdown_content, title)
|
||||
"""
|
||||
client = NotionClient(credentials)
|
||||
|
||||
# Get page metadata
|
||||
page = await client.get_page(page_id)
|
||||
title = extract_page_title(page)
|
||||
|
||||
# Get all blocks from the page
|
||||
blocks = await client.get_blocks(page_id, recursive=True)
|
||||
|
||||
# Convert blocks to markdown
|
||||
content_markdown = blocks_to_markdown(blocks)
|
||||
|
||||
# Combine title and content if requested
|
||||
if include_title and title:
|
||||
full_markdown = f"# {title}\n\n{content_markdown}"
|
||||
else:
|
||||
full_markdown = content_markdown
|
||||
|
||||
return full_markdown, title
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: OAuth2Credentials,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
markdown, title = await self.get_page_markdown(
|
||||
credentials, input_data.page_id, input_data.include_title
|
||||
)
|
||||
yield "markdown", markdown
|
||||
yield "title", title
|
||||
except Exception as e:
|
||||
yield "error", str(e) if str(e) else "Unknown error"
|
||||
@@ -1,225 +0,0 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
|
||||
from backend.data.model import OAuth2Credentials, SchemaField
|
||||
|
||||
from ._api import NotionClient, extract_page_title, parse_rich_text
|
||||
from ._auth import (
|
||||
NOTION_OAUTH_IS_CONFIGURED,
|
||||
TEST_CREDENTIALS,
|
||||
TEST_CREDENTIALS_INPUT,
|
||||
NotionCredentialsField,
|
||||
NotionCredentialsInput,
|
||||
)
|
||||
|
||||
|
||||
class NotionSearchResult(BaseModel):
|
||||
"""Typed model for Notion search results."""
|
||||
|
||||
id: str
|
||||
type: str # 'page' or 'database'
|
||||
title: str
|
||||
url: str
|
||||
created_time: Optional[str] = None
|
||||
last_edited_time: Optional[str] = None
|
||||
parent_type: Optional[str] = None # 'page', 'database', or 'workspace'
|
||||
parent_id: Optional[str] = None
|
||||
icon: Optional[str] = None # emoji icon if present
|
||||
is_inline: Optional[bool] = None # for databases only
|
||||
|
||||
|
||||
class NotionSearchBlock(Block):
|
||||
"""Search across your Notion workspace for pages and databases."""
|
||||
|
||||
class Input(BlockSchema):
|
||||
credentials: NotionCredentialsInput = NotionCredentialsField()
|
||||
query: str = SchemaField(
|
||||
description="Search query text. Leave empty to get all accessible pages/databases.",
|
||||
default="",
|
||||
)
|
||||
filter_type: Optional[str] = SchemaField(
|
||||
description="Filter results by type: 'page' or 'database'. Leave empty for both.",
|
||||
default=None,
|
||||
)
|
||||
limit: int = SchemaField(
|
||||
description="Maximum number of results to return", default=20, ge=1, le=100
|
||||
)
|
||||
|
||||
class Output(BlockSchema):
|
||||
results: List[NotionSearchResult] = SchemaField(
|
||||
description="List of search results with title, type, URL, and metadata."
|
||||
)
|
||||
result: NotionSearchResult = SchemaField(
|
||||
description="Individual search result (yields one per result found)."
|
||||
)
|
||||
result_ids: List[str] = SchemaField(
|
||||
description="List of IDs from search results for batch operations."
|
||||
)
|
||||
count: int = SchemaField(description="Number of results found.")
|
||||
error: str = SchemaField(description="Error message if the operation failed.")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="313515dd-9848-46ea-9cd6-3c627c892c56",
|
||||
description="Search your Notion workspace for pages and databases by text query.",
|
||||
categories={BlockCategory.PRODUCTIVITY, BlockCategory.SEARCH},
|
||||
input_schema=NotionSearchBlock.Input,
|
||||
output_schema=NotionSearchBlock.Output,
|
||||
disabled=not NOTION_OAUTH_IS_CONFIGURED,
|
||||
test_input={
|
||||
"query": "project",
|
||||
"limit": 5,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_output=[
|
||||
(
|
||||
"results",
|
||||
[
|
||||
NotionSearchResult(
|
||||
id="123",
|
||||
type="page",
|
||||
title="Project Plan",
|
||||
url="https://notion.so/Project-Plan-123",
|
||||
)
|
||||
],
|
||||
),
|
||||
("result_ids", ["123"]),
|
||||
(
|
||||
"result",
|
||||
NotionSearchResult(
|
||||
id="123",
|
||||
type="page",
|
||||
title="Project Plan",
|
||||
url="https://notion.so/Project-Plan-123",
|
||||
),
|
||||
),
|
||||
("count", 1),
|
||||
],
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_mock={
|
||||
"search_workspace": lambda *args, **kwargs: (
|
||||
[
|
||||
NotionSearchResult(
|
||||
id="123",
|
||||
type="page",
|
||||
title="Project Plan",
|
||||
url="https://notion.so/Project-Plan-123",
|
||||
)
|
||||
],
|
||||
1,
|
||||
)
|
||||
},
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
async def search_workspace(
|
||||
credentials: OAuth2Credentials,
|
||||
query: str = "",
|
||||
filter_type: Optional[str] = None,
|
||||
limit: int = 20,
|
||||
) -> tuple[List[NotionSearchResult], int]:
|
||||
"""
|
||||
Search the Notion workspace.
|
||||
|
||||
Returns:
|
||||
Tuple of (results_list, count)
|
||||
"""
|
||||
client = NotionClient(credentials)
|
||||
|
||||
# Build filter if type is specified
|
||||
filter_obj = None
|
||||
if filter_type:
|
||||
filter_obj = {"property": "object", "value": filter_type}
|
||||
|
||||
# Execute search
|
||||
response = await client.search(
|
||||
query=query, filter_obj=filter_obj, page_size=limit
|
||||
)
|
||||
|
||||
# Parse results
|
||||
results = []
|
||||
for item in response.get("results", []):
|
||||
result_data = {
|
||||
"id": item.get("id", ""),
|
||||
"type": item.get("object", ""),
|
||||
"url": item.get("url", ""),
|
||||
"created_time": item.get("created_time"),
|
||||
"last_edited_time": item.get("last_edited_time"),
|
||||
"title": "", # Will be set below
|
||||
}
|
||||
|
||||
# Extract title based on type
|
||||
if item.get("object") == "page":
|
||||
# For pages, get the title from properties
|
||||
result_data["title"] = extract_page_title(item)
|
||||
|
||||
# Add parent info
|
||||
parent = item.get("parent", {})
|
||||
if parent.get("type") == "page_id":
|
||||
result_data["parent_type"] = "page"
|
||||
result_data["parent_id"] = parent.get("page_id")
|
||||
elif parent.get("type") == "database_id":
|
||||
result_data["parent_type"] = "database"
|
||||
result_data["parent_id"] = parent.get("database_id")
|
||||
elif parent.get("type") == "workspace":
|
||||
result_data["parent_type"] = "workspace"
|
||||
|
||||
# Add icon if present
|
||||
icon = item.get("icon")
|
||||
if icon and icon.get("type") == "emoji":
|
||||
result_data["icon"] = icon.get("emoji")
|
||||
|
||||
elif item.get("object") == "database":
|
||||
# For databases, get title from the title array
|
||||
result_data["title"] = parse_rich_text(item.get("title", []))
|
||||
|
||||
# Add database-specific metadata
|
||||
result_data["is_inline"] = item.get("is_inline", False)
|
||||
|
||||
# Add parent info
|
||||
parent = item.get("parent", {})
|
||||
if parent.get("type") == "page_id":
|
||||
result_data["parent_type"] = "page"
|
||||
result_data["parent_id"] = parent.get("page_id")
|
||||
elif parent.get("type") == "workspace":
|
||||
result_data["parent_type"] = "workspace"
|
||||
|
||||
# Add icon if present
|
||||
icon = item.get("icon")
|
||||
if icon and icon.get("type") == "emoji":
|
||||
result_data["icon"] = icon.get("emoji")
|
||||
|
||||
results.append(NotionSearchResult(**result_data))
|
||||
|
||||
return results, len(results)
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
*,
|
||||
credentials: OAuth2Credentials,
|
||||
**kwargs,
|
||||
) -> BlockOutput:
|
||||
try:
|
||||
results, count = await self.search_workspace(
|
||||
credentials, input_data.query, input_data.filter_type, input_data.limit
|
||||
)
|
||||
|
||||
# Yield the complete list for batch operations
|
||||
yield "results", results
|
||||
|
||||
# Extract and yield IDs as a list for batch operations
|
||||
result_ids = [r.id for r in results]
|
||||
yield "result_ids", result_ids
|
||||
|
||||
# Yield each individual result for single connections
|
||||
for result in results:
|
||||
yield "result", result
|
||||
|
||||
yield "count", count
|
||||
except Exception as e:
|
||||
yield "error", str(e) if str(e) else "Unknown error"
|
||||
@@ -1,226 +0,0 @@
|
||||
# flake8: noqa: E501
|
||||
import logging
|
||||
from enum import Enum
|
||||
from typing import Any, Literal
|
||||
|
||||
import openai
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
|
||||
from backend.data.model import (
|
||||
APIKeyCredentials,
|
||||
CredentialsField,
|
||||
CredentialsMetaInput,
|
||||
NodeExecutionStats,
|
||||
SchemaField,
|
||||
)
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.logging import TruncatedLogger
|
||||
|
||||
logger = TruncatedLogger(logging.getLogger(__name__), "[Perplexity-Block]")
|
||||
|
||||
|
||||
class PerplexityModel(str, Enum):
|
||||
"""Perplexity sonar models available via OpenRouter"""
|
||||
|
||||
SONAR = "perplexity/sonar"
|
||||
SONAR_PRO = "perplexity/sonar-pro"
|
||||
SONAR_DEEP_RESEARCH = "perplexity/sonar-deep-research"
|
||||
|
||||
|
||||
PerplexityCredentials = CredentialsMetaInput[
|
||||
Literal[ProviderName.OPEN_ROUTER], Literal["api_key"]
|
||||
]
|
||||
|
||||
TEST_CREDENTIALS = APIKeyCredentials(
|
||||
id="test-perplexity-creds",
|
||||
provider="open_router",
|
||||
api_key=SecretStr("mock-openrouter-api-key"),
|
||||
title="Mock OpenRouter API key",
|
||||
expires_at=None,
|
||||
)
|
||||
TEST_CREDENTIALS_INPUT = {
|
||||
"provider": TEST_CREDENTIALS.provider,
|
||||
"id": TEST_CREDENTIALS.id,
|
||||
"type": TEST_CREDENTIALS.type,
|
||||
"title": TEST_CREDENTIALS.title,
|
||||
}
|
||||
|
||||
|
||||
def PerplexityCredentialsField() -> PerplexityCredentials:
|
||||
return CredentialsField(
|
||||
description="OpenRouter API key for accessing Perplexity models.",
|
||||
)
|
||||
|
||||
|
||||
class PerplexityBlock(Block):
|
||||
class Input(BlockSchema):
|
||||
prompt: str = SchemaField(
|
||||
description="The query to send to the Perplexity model.",
|
||||
placeholder="Enter your query here...",
|
||||
)
|
||||
model: PerplexityModel = SchemaField(
|
||||
title="Perplexity Model",
|
||||
default=PerplexityModel.SONAR,
|
||||
description="The Perplexity sonar model to use.",
|
||||
advanced=False,
|
||||
)
|
||||
credentials: PerplexityCredentials = PerplexityCredentialsField()
|
||||
system_prompt: str = SchemaField(
|
||||
title="System Prompt",
|
||||
default="",
|
||||
description="Optional system prompt to provide context to the model.",
|
||||
advanced=True,
|
||||
)
|
||||
max_tokens: int | None = SchemaField(
|
||||
advanced=True,
|
||||
default=None,
|
||||
description="The maximum number of tokens to generate.",
|
||||
)
|
||||
|
||||
class Output(BlockSchema):
|
||||
response: str = SchemaField(
|
||||
description="The response from the Perplexity model."
|
||||
)
|
||||
annotations: list[dict[str, Any]] = SchemaField(
|
||||
description="List of URL citations and annotations from the response."
|
||||
)
|
||||
error: str = SchemaField(description="Error message if the API call failed.")
|
||||
|
||||
def __init__(self):
|
||||
super().__init__(
|
||||
id="c8a5f2e9-8b3d-4a7e-9f6c-1d5e3c9b7a4f",
|
||||
description="Query Perplexity's sonar models with real-time web search capabilities and receive annotated responses with source citations.",
|
||||
categories={BlockCategory.AI, BlockCategory.SEARCH},
|
||||
input_schema=PerplexityBlock.Input,
|
||||
output_schema=PerplexityBlock.Output,
|
||||
test_input={
|
||||
"prompt": "What is the weather today?",
|
||||
"model": PerplexityModel.SONAR,
|
||||
"credentials": TEST_CREDENTIALS_INPUT,
|
||||
},
|
||||
test_credentials=TEST_CREDENTIALS,
|
||||
test_output=[
|
||||
("response", "The weather varies by location..."),
|
||||
("annotations", list),
|
||||
],
|
||||
test_mock={
|
||||
"call_perplexity": lambda *args, **kwargs: {
|
||||
"response": "The weather varies by location...",
|
||||
"annotations": [
|
||||
{
|
||||
"type": "url_citation",
|
||||
"url_citation": {
|
||||
"title": "weather.com",
|
||||
"url": "https://weather.com",
|
||||
},
|
||||
}
|
||||
],
|
||||
}
|
||||
},
|
||||
)
|
||||
self.execution_stats = NodeExecutionStats()
|
||||
|
||||
async def call_perplexity(
|
||||
self,
|
||||
credentials: APIKeyCredentials,
|
||||
model: PerplexityModel,
|
||||
prompt: str,
|
||||
system_prompt: str = "",
|
||||
max_tokens: int | None = None,
|
||||
) -> dict[str, Any]:
|
||||
"""Call Perplexity via OpenRouter and extract annotations."""
|
||||
client = openai.AsyncOpenAI(
|
||||
base_url="https://openrouter.ai/api/v1",
|
||||
api_key=credentials.api_key.get_secret_value(),
|
||||
)
|
||||
|
||||
messages = []
|
||||
if system_prompt:
|
||||
messages.append({"role": "system", "content": system_prompt})
|
||||
messages.append({"role": "user", "content": prompt})
|
||||
|
||||
try:
|
||||
response = await client.chat.completions.create(
|
||||
extra_headers={
|
||||
"HTTP-Referer": "https://agpt.co",
|
||||
"X-Title": "AutoGPT",
|
||||
},
|
||||
model=model.value,
|
||||
messages=messages,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
|
||||
if not response.choices:
|
||||
raise ValueError("No response from Perplexity via OpenRouter.")
|
||||
|
||||
# Extract the response content
|
||||
response_content = response.choices[0].message.content or ""
|
||||
|
||||
# Extract annotations if present in the message
|
||||
annotations = []
|
||||
if hasattr(response.choices[0].message, "annotations"):
|
||||
# If annotations are directly available
|
||||
annotations = response.choices[0].message.annotations
|
||||
else:
|
||||
# Check if there's a raw response with annotations
|
||||
raw = getattr(response.choices[0].message, "_raw_response", None)
|
||||
if isinstance(raw, dict) and "annotations" in raw:
|
||||
annotations = raw["annotations"]
|
||||
|
||||
if not annotations and hasattr(response, "model_extra"):
|
||||
# Check model_extra for annotations
|
||||
model_extra = response.model_extra
|
||||
if isinstance(model_extra, dict):
|
||||
# Check in choices
|
||||
if "choices" in model_extra and len(model_extra["choices"]) > 0:
|
||||
choice = model_extra["choices"][0]
|
||||
if "message" in choice and "annotations" in choice["message"]:
|
||||
annotations = choice["message"]["annotations"]
|
||||
|
||||
# Also check the raw response object for annotations
|
||||
if not annotations:
|
||||
raw = getattr(response, "_raw_response", None)
|
||||
if isinstance(raw, dict):
|
||||
# Check various possible locations for annotations
|
||||
if "annotations" in raw:
|
||||
annotations = raw["annotations"]
|
||||
elif "choices" in raw and len(raw["choices"]) > 0:
|
||||
choice = raw["choices"][0]
|
||||
if "message" in choice and "annotations" in choice["message"]:
|
||||
annotations = choice["message"]["annotations"]
|
||||
|
||||
# Update execution stats
|
||||
if response.usage:
|
||||
self.execution_stats.input_token_count = response.usage.prompt_tokens
|
||||
self.execution_stats.output_token_count = (
|
||||
response.usage.completion_tokens
|
||||
)
|
||||
|
||||
return {"response": response_content, "annotations": annotations or []}
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error calling Perplexity: {e}")
|
||||
raise
|
||||
|
||||
async def run(
|
||||
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
|
||||
) -> BlockOutput:
|
||||
logger.debug(f"Running Perplexity block with model: {input_data.model}")
|
||||
|
||||
try:
|
||||
result = await self.call_perplexity(
|
||||
credentials=credentials,
|
||||
model=input_data.model,
|
||||
prompt=input_data.prompt,
|
||||
system_prompt=input_data.system_prompt,
|
||||
max_tokens=input_data.max_tokens,
|
||||
)
|
||||
|
||||
yield "response", result["response"]
|
||||
yield "annotations", result["annotations"]
|
||||
|
||||
except Exception as e:
|
||||
error_msg = f"Error calling Perplexity: {str(e)}"
|
||||
logger.error(error_msg)
|
||||
yield "error", error_msg
|
||||
@@ -1,7 +1,4 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import urllib.parse
|
||||
import urllib.request
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any
|
||||
|
||||
@@ -104,38 +101,7 @@ class ReadRSSFeedBlock(Block):
|
||||
|
||||
@staticmethod
|
||||
def parse_feed(url: str) -> dict[str, Any]:
|
||||
# Security fix: Add protection against memory exhaustion attacks
|
||||
MAX_FEED_SIZE = 10 * 1024 * 1024 # 10MB limit for RSS feeds
|
||||
|
||||
# Validate URL
|
||||
parsed_url = urllib.parse.urlparse(url)
|
||||
if parsed_url.scheme not in ("http", "https"):
|
||||
raise ValueError(f"Invalid URL scheme: {parsed_url.scheme}")
|
||||
|
||||
# Download with size limit
|
||||
try:
|
||||
with urllib.request.urlopen(url, timeout=30) as response:
|
||||
# Check content length if available
|
||||
content_length = response.headers.get("Content-Length")
|
||||
if content_length and int(content_length) > MAX_FEED_SIZE:
|
||||
raise ValueError(
|
||||
f"Feed too large: {content_length} bytes exceeds {MAX_FEED_SIZE} limit"
|
||||
)
|
||||
|
||||
# Read with size limit
|
||||
content = response.read(MAX_FEED_SIZE + 1)
|
||||
if len(content) > MAX_FEED_SIZE:
|
||||
raise ValueError(
|
||||
f"Feed too large: exceeds {MAX_FEED_SIZE} byte limit"
|
||||
)
|
||||
|
||||
# Parse with feedparser using the validated content
|
||||
# feedparser has built-in protection against XML attacks
|
||||
return feedparser.parse(content) # type: ignore
|
||||
except Exception as e:
|
||||
# Log error and return empty feed
|
||||
logging.warning(f"Failed to parse RSS feed from {url}: {e}")
|
||||
return {"entries": []}
|
||||
return feedparser.parse(url) # type: ignore
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
keep_going = True
|
||||
|
||||
@@ -13,11 +13,6 @@ from backend.data.block import (
|
||||
BlockSchema,
|
||||
BlockType,
|
||||
)
|
||||
from backend.data.dynamic_fields import (
|
||||
extract_base_field_name,
|
||||
get_dynamic_field_description,
|
||||
is_dynamic_field,
|
||||
)
|
||||
from backend.data.model import NodeExecutionStats, SchemaField
|
||||
from backend.util import json
|
||||
from backend.util.clients import get_database_manager_async_client
|
||||
@@ -103,22 +98,6 @@ def _create_tool_response(call_id: str, output: Any) -> dict[str, Any]:
|
||||
return {"role": "tool", "tool_call_id": call_id, "content": content}
|
||||
|
||||
|
||||
def _convert_raw_response_to_dict(raw_response: Any) -> dict[str, Any]:
|
||||
"""
|
||||
Safely convert raw_response to dictionary format for conversation history.
|
||||
Handles different response types from different LLM providers.
|
||||
"""
|
||||
if isinstance(raw_response, str):
|
||||
# Ollama returns a string, convert to dict format
|
||||
return {"role": "assistant", "content": raw_response}
|
||||
elif isinstance(raw_response, dict):
|
||||
# Already a dict (from tests or some providers)
|
||||
return raw_response
|
||||
else:
|
||||
# OpenAI/Anthropic return objects, convert with json.to_dict
|
||||
return json.to_dict(raw_response)
|
||||
|
||||
|
||||
def get_pending_tool_calls(conversation_history: list[Any]) -> dict[str, int]:
|
||||
"""
|
||||
All the tool calls entry in the conversation history requires a response.
|
||||
@@ -282,7 +261,6 @@ class SmartDecisionMakerBlock(Block):
|
||||
|
||||
@staticmethod
|
||||
def cleanup(s: str):
|
||||
"""Clean up block names for use as tool function names."""
|
||||
return re.sub(r"[^a-zA-Z0-9_-]", "_", s).lower()
|
||||
|
||||
@staticmethod
|
||||
@@ -310,66 +288,41 @@ class SmartDecisionMakerBlock(Block):
|
||||
}
|
||||
sink_block_input_schema = block.input_schema
|
||||
properties = {}
|
||||
field_mapping = {} # clean_name -> original_name
|
||||
|
||||
for link in links:
|
||||
field_name = link.sink_name
|
||||
is_dynamic = is_dynamic_field(field_name)
|
||||
# Clean property key to ensure Anthropic API compatibility for ALL fields
|
||||
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
|
||||
field_mapping[clean_field_name] = field_name
|
||||
sink_name = SmartDecisionMakerBlock.cleanup(link.sink_name)
|
||||
|
||||
if is_dynamic:
|
||||
# For dynamic fields, use cleaned name but preserve original in description
|
||||
properties[clean_field_name] = {
|
||||
# Handle dynamic fields (e.g., values_#_*, items_$_*, etc.)
|
||||
# These are fields that get merged by the executor into their base field
|
||||
if (
|
||||
"_#_" in link.sink_name
|
||||
or "_$_" in link.sink_name
|
||||
or "_@_" in link.sink_name
|
||||
):
|
||||
# For dynamic fields, provide a generic string schema
|
||||
# The executor will handle merging these into the appropriate structure
|
||||
properties[sink_name] = {
|
||||
"type": "string",
|
||||
"description": get_dynamic_field_description(field_name),
|
||||
"description": f"Dynamic value for {link.sink_name}",
|
||||
}
|
||||
else:
|
||||
# For regular fields, use the block's schema directly
|
||||
# For regular fields, use the block's schema
|
||||
try:
|
||||
properties[clean_field_name] = (
|
||||
sink_block_input_schema.get_field_schema(field_name)
|
||||
properties[sink_name] = sink_block_input_schema.get_field_schema(
|
||||
link.sink_name
|
||||
)
|
||||
except (KeyError, AttributeError):
|
||||
# If field doesn't exist in schema, provide a generic one
|
||||
properties[clean_field_name] = {
|
||||
# If the field doesn't exist in the schema, provide a generic schema
|
||||
properties[sink_name] = {
|
||||
"type": "string",
|
||||
"description": f"Value for {field_name}",
|
||||
"description": f"Value for {link.sink_name}",
|
||||
}
|
||||
|
||||
# Build the parameters schema using a single unified path
|
||||
base_schema = block.input_schema.jsonschema()
|
||||
base_required = set(base_schema.get("required", []))
|
||||
|
||||
# Compute required fields at the leaf level:
|
||||
# - If a linked field is dynamic and its base is required in the block schema, require the leaf
|
||||
# - If a linked field is regular and is required in the block schema, require the leaf
|
||||
required_fields: set[str] = set()
|
||||
for link in links:
|
||||
field_name = link.sink_name
|
||||
is_dynamic = is_dynamic_field(field_name)
|
||||
# Always use cleaned field name for property key (Anthropic API compliance)
|
||||
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
|
||||
|
||||
if is_dynamic:
|
||||
base_name = extract_base_field_name(field_name)
|
||||
if base_name in base_required:
|
||||
required_fields.add(clean_field_name)
|
||||
else:
|
||||
if field_name in base_required:
|
||||
required_fields.add(clean_field_name)
|
||||
|
||||
tool_function["parameters"] = {
|
||||
"type": "object",
|
||||
**block.input_schema.jsonschema(),
|
||||
"properties": properties,
|
||||
"additionalProperties": False,
|
||||
"required": sorted(required_fields),
|
||||
}
|
||||
|
||||
# Store field mapping for later use in output processing
|
||||
tool_function["_field_mapping"] = field_mapping
|
||||
|
||||
return {"type": "function", "function": tool_function}
|
||||
|
||||
@staticmethod
|
||||
@@ -413,12 +366,13 @@ class SmartDecisionMakerBlock(Block):
|
||||
sink_block_properties = sink_block_input_schema.get("properties", {}).get(
|
||||
link.sink_name, {}
|
||||
)
|
||||
sink_name = SmartDecisionMakerBlock.cleanup(link.sink_name)
|
||||
description = (
|
||||
sink_block_properties["description"]
|
||||
if "description" in sink_block_properties
|
||||
else f"The {link.sink_name} of the tool"
|
||||
)
|
||||
properties[link.sink_name] = {
|
||||
properties[sink_name] = {
|
||||
"type": "string",
|
||||
"description": description,
|
||||
"default": json.dumps(sink_block_properties.get("default", None)),
|
||||
@@ -434,17 +388,24 @@ class SmartDecisionMakerBlock(Block):
|
||||
return {"type": "function", "function": tool_function}
|
||||
|
||||
@staticmethod
|
||||
async def _create_function_signature(
|
||||
node_id: str,
|
||||
) -> list[dict[str, Any]]:
|
||||
async def _create_function_signature(node_id: str) -> list[dict[str, Any]]:
|
||||
"""
|
||||
Creates function signatures for connected tools.
|
||||
Creates function signatures for tools linked to a specified node within a graph.
|
||||
|
||||
This method filters the graph links to identify those that are tools and are
|
||||
connected to the given node_id. It then constructs function signatures for each
|
||||
tool based on the metadata and input schema of the linked nodes.
|
||||
|
||||
Args:
|
||||
node_id: The node_id for which to create function signatures.
|
||||
|
||||
Returns:
|
||||
List of function signatures for tools
|
||||
list[dict[str, Any]]: A list of dictionaries, each representing a function signature
|
||||
for a tool, including its name, description, and parameters.
|
||||
|
||||
Raises:
|
||||
ValueError: If no tool links are found for the specified node_id, or if a sink node
|
||||
or its metadata cannot be found.
|
||||
"""
|
||||
db_client = get_database_manager_async_client()
|
||||
tools = [
|
||||
@@ -469,116 +430,20 @@ class SmartDecisionMakerBlock(Block):
|
||||
raise ValueError(f"Sink node not found: {links[0].sink_id}")
|
||||
|
||||
if sink_node.block_id == AgentExecutorBlock().id:
|
||||
tool_func = (
|
||||
return_tool_functions.append(
|
||||
await SmartDecisionMakerBlock._create_agent_function_signature(
|
||||
sink_node, links
|
||||
)
|
||||
)
|
||||
return_tool_functions.append(tool_func)
|
||||
else:
|
||||
tool_func = (
|
||||
return_tool_functions.append(
|
||||
await SmartDecisionMakerBlock._create_block_function_signature(
|
||||
sink_node, links
|
||||
)
|
||||
)
|
||||
return_tool_functions.append(tool_func)
|
||||
|
||||
return return_tool_functions
|
||||
|
||||
async def _attempt_llm_call_with_validation(
|
||||
self,
|
||||
credentials: llm.APIKeyCredentials,
|
||||
input_data: Input,
|
||||
current_prompt: list[dict],
|
||||
tool_functions: list[dict[str, Any]],
|
||||
):
|
||||
"""
|
||||
Attempt a single LLM call with tool validation.
|
||||
|
||||
Returns the response if successful, raises ValueError if validation fails.
|
||||
"""
|
||||
resp = await llm.llm_call(
|
||||
credentials=credentials,
|
||||
llm_model=input_data.model,
|
||||
prompt=current_prompt,
|
||||
max_tokens=input_data.max_tokens,
|
||||
tools=tool_functions,
|
||||
ollama_host=input_data.ollama_host,
|
||||
parallel_tool_calls=input_data.multiple_tool_calls,
|
||||
)
|
||||
|
||||
# Track LLM usage stats per call
|
||||
self.merge_stats(
|
||||
NodeExecutionStats(
|
||||
input_token_count=resp.prompt_tokens,
|
||||
output_token_count=resp.completion_tokens,
|
||||
llm_call_count=1,
|
||||
)
|
||||
)
|
||||
|
||||
if not resp.tool_calls:
|
||||
return resp
|
||||
validation_errors_list: list[str] = []
|
||||
for tool_call in resp.tool_calls:
|
||||
tool_name = tool_call.function.name
|
||||
try:
|
||||
tool_args = json.loads(tool_call.function.arguments)
|
||||
except Exception as e:
|
||||
validation_errors_list.append(
|
||||
f"Tool call '{tool_name}' has invalid JSON arguments: {e}"
|
||||
)
|
||||
continue
|
||||
|
||||
# Find the tool definition to get the expected arguments
|
||||
tool_def = next(
|
||||
(
|
||||
tool
|
||||
for tool in tool_functions
|
||||
if tool["function"]["name"] == tool_name
|
||||
),
|
||||
None,
|
||||
)
|
||||
if tool_def is None and len(tool_functions) == 1:
|
||||
tool_def = tool_functions[0]
|
||||
|
||||
# Get parameters schema from tool definition
|
||||
if (
|
||||
tool_def
|
||||
and "function" in tool_def
|
||||
and "parameters" in tool_def["function"]
|
||||
):
|
||||
parameters = tool_def["function"]["parameters"]
|
||||
expected_args = parameters.get("properties", {})
|
||||
required_params = set(parameters.get("required", []))
|
||||
else:
|
||||
expected_args = {arg: {} for arg in tool_args.keys()}
|
||||
required_params = set()
|
||||
|
||||
# Validate tool call arguments
|
||||
provided_args = set(tool_args.keys())
|
||||
expected_args_set = set(expected_args.keys())
|
||||
|
||||
# Check for unexpected arguments (typos)
|
||||
unexpected_args = provided_args - expected_args_set
|
||||
# Only check for missing REQUIRED parameters
|
||||
missing_required_args = required_params - provided_args
|
||||
|
||||
if unexpected_args or missing_required_args:
|
||||
error_msg = f"Tool call '{tool_name}' has parameter errors:"
|
||||
if unexpected_args:
|
||||
error_msg += f" Unknown parameters: {sorted(unexpected_args)}."
|
||||
if missing_required_args:
|
||||
error_msg += f" Missing required parameters: {sorted(missing_required_args)}."
|
||||
error_msg += f" Expected parameters: {sorted(expected_args_set)}."
|
||||
if required_params:
|
||||
error_msg += f" Required parameters: {sorted(required_params)}."
|
||||
validation_errors_list.append(error_msg)
|
||||
|
||||
if validation_errors_list:
|
||||
raise ValueError("; ".join(validation_errors_list))
|
||||
|
||||
return resp
|
||||
|
||||
async def run(
|
||||
self,
|
||||
input_data: Input,
|
||||
@@ -601,19 +466,27 @@ class SmartDecisionMakerBlock(Block):
|
||||
if pending_tool_calls and input_data.last_tool_output is None:
|
||||
raise ValueError(f"Tool call requires an output for {pending_tool_calls}")
|
||||
|
||||
# Only assign the last tool output to the first pending tool call
|
||||
tool_output = []
|
||||
if pending_tool_calls and input_data.last_tool_output is not None:
|
||||
# Get the first pending tool call ID
|
||||
first_call_id = next(iter(pending_tool_calls.keys()))
|
||||
tool_output.append(
|
||||
_create_tool_response(first_call_id, input_data.last_tool_output)
|
||||
)
|
||||
|
||||
# Add tool output to prompt right away
|
||||
prompt.extend(tool_output)
|
||||
|
||||
# Check if there are still pending tool calls after handling the first one
|
||||
remaining_pending_calls = get_pending_tool_calls(prompt)
|
||||
|
||||
# If there are still pending tool calls, yield the conversation and return early
|
||||
if remaining_pending_calls:
|
||||
yield "conversations", prompt
|
||||
return
|
||||
|
||||
# Fallback on adding tool output in the conversation history as user prompt.
|
||||
elif input_data.last_tool_output:
|
||||
logger.error(
|
||||
f"[SmartDecisionMakerBlock-node_exec_id={node_exec_id}] "
|
||||
@@ -646,33 +519,25 @@ class SmartDecisionMakerBlock(Block):
|
||||
):
|
||||
prompt.append({"role": "user", "content": prefix + input_data.prompt})
|
||||
|
||||
current_prompt = list(prompt)
|
||||
max_attempts = max(1, int(input_data.retry))
|
||||
response = None
|
||||
response = await llm.llm_call(
|
||||
credentials=credentials,
|
||||
llm_model=input_data.model,
|
||||
prompt=prompt,
|
||||
json_format=False,
|
||||
max_tokens=input_data.max_tokens,
|
||||
tools=tool_functions,
|
||||
ollama_host=input_data.ollama_host,
|
||||
parallel_tool_calls=input_data.multiple_tool_calls,
|
||||
)
|
||||
|
||||
last_error = None
|
||||
for attempt in range(max_attempts):
|
||||
try:
|
||||
response = await self._attempt_llm_call_with_validation(
|
||||
credentials, input_data, current_prompt, tool_functions
|
||||
)
|
||||
break
|
||||
|
||||
except ValueError as e:
|
||||
last_error = e
|
||||
error_feedback = (
|
||||
"Your tool call had parameter errors. Please fix the following issues and try again:\n"
|
||||
+ f"- {str(e)}\n"
|
||||
+ "\nPlease make sure to use the exact parameter names as specified in the function schema."
|
||||
)
|
||||
current_prompt = list(current_prompt) + [
|
||||
{"role": "user", "content": error_feedback}
|
||||
]
|
||||
|
||||
if response is None:
|
||||
raise last_error or ValueError(
|
||||
"Failed to get valid response after all retry attempts"
|
||||
# Track LLM usage stats
|
||||
self.merge_stats(
|
||||
NodeExecutionStats(
|
||||
input_token_count=response.prompt_tokens,
|
||||
output_token_count=response.completion_tokens,
|
||||
llm_call_count=1,
|
||||
)
|
||||
)
|
||||
|
||||
if not response.tool_calls:
|
||||
yield "finished", response.response
|
||||
@@ -682,6 +547,7 @@ class SmartDecisionMakerBlock(Block):
|
||||
tool_name = tool_call.function.name
|
||||
tool_args = json.loads(tool_call.function.arguments)
|
||||
|
||||
# Find the tool definition to get the expected arguments
|
||||
tool_def = next(
|
||||
(
|
||||
tool
|
||||
@@ -690,6 +556,7 @@ class SmartDecisionMakerBlock(Block):
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
if (
|
||||
tool_def
|
||||
and "function" in tool_def
|
||||
@@ -697,38 +564,20 @@ class SmartDecisionMakerBlock(Block):
|
||||
):
|
||||
expected_args = tool_def["function"]["parameters"].get("properties", {})
|
||||
else:
|
||||
expected_args = {arg: {} for arg in tool_args.keys()}
|
||||
expected_args = tool_args.keys()
|
||||
|
||||
# Get field mapping from tool definition
|
||||
field_mapping = (
|
||||
tool_def.get("function", {}).get("_field_mapping", {})
|
||||
if tool_def
|
||||
else {}
|
||||
)
|
||||
|
||||
for clean_arg_name in expected_args:
|
||||
# arg_name is now always the cleaned field name (for Anthropic API compliance)
|
||||
# Get the original field name from field mapping for proper emit key generation
|
||||
original_field_name = field_mapping.get(clean_arg_name, clean_arg_name)
|
||||
arg_value = tool_args.get(clean_arg_name)
|
||||
|
||||
sanitized_tool_name = self.cleanup(tool_name)
|
||||
sanitized_arg_name = self.cleanup(original_field_name)
|
||||
emit_key = f"tools_^_{sanitized_tool_name}_~_{sanitized_arg_name}"
|
||||
|
||||
logger.debug(
|
||||
"[SmartDecisionMakerBlock|geid:%s|neid:%s] emit %s",
|
||||
graph_exec_id,
|
||||
node_exec_id,
|
||||
emit_key,
|
||||
)
|
||||
yield emit_key, arg_value
|
||||
# Yield provided arguments and None for missing ones
|
||||
for arg_name in expected_args:
|
||||
if arg_name in tool_args:
|
||||
yield f"tools_^_{tool_name}_~_{arg_name}", tool_args[arg_name]
|
||||
else:
|
||||
yield f"tools_^_{tool_name}_~_{arg_name}", None
|
||||
|
||||
# Add reasoning to conversation history if available
|
||||
if response.reasoning:
|
||||
prompt.append(
|
||||
{"role": "assistant", "content": f"[Reasoning]: {response.reasoning}"}
|
||||
)
|
||||
|
||||
prompt.append(_convert_raw_response_to_dict(response.raw_response))
|
||||
|
||||
prompt.append(response.raw_response)
|
||||
yield "conversations", prompt
|
||||
|
||||
@@ -19,7 +19,7 @@ async def test_block_ids_valid(block: Type[Block]):
|
||||
# Skip list for blocks with known invalid UUIDs
|
||||
skip_blocks = {
|
||||
"GetWeatherInformationBlock",
|
||||
"ExecuteCodeBlock",
|
||||
"CodeExecutionBlock",
|
||||
"CountdownTimerBlock",
|
||||
"TwitterGetListTweetsBlock",
|
||||
"TwitterRemoveListMemberBlock",
|
||||
|
||||
@@ -1,269 +0,0 @@
|
||||
"""
|
||||
Test security fixes for various DoS vulnerabilities.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
from unittest.mock import patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.blocks.code_extraction_block import CodeExtractionBlock
|
||||
from backend.blocks.iteration import StepThroughItemsBlock
|
||||
from backend.blocks.llm import AITextSummarizerBlock
|
||||
from backend.blocks.text import ExtractTextInformationBlock
|
||||
from backend.blocks.xml_parser import XMLParserBlock
|
||||
from backend.util.file import store_media_file
|
||||
from backend.util.type import MediaFileType
|
||||
|
||||
|
||||
class TestCodeExtractionBlockSecurity:
|
||||
"""Test ReDoS fixes in CodeExtractionBlock."""
|
||||
|
||||
async def test_redos_protection(self):
|
||||
"""Test that the regex patterns don't cause ReDoS."""
|
||||
block = CodeExtractionBlock()
|
||||
|
||||
# Test with input that would previously cause ReDoS
|
||||
malicious_input = "```python" + " " * 10000 # Large spaces
|
||||
|
||||
result = []
|
||||
async for output_name, output_data in block.run(
|
||||
CodeExtractionBlock.Input(text=malicious_input)
|
||||
):
|
||||
result.append((output_name, output_data))
|
||||
|
||||
# Should complete without hanging
|
||||
assert len(result) >= 1
|
||||
assert any(name == "remaining_text" for name, _ in result)
|
||||
|
||||
|
||||
class TestAITextSummarizerBlockSecurity:
|
||||
"""Test memory exhaustion fixes in AITextSummarizerBlock."""
|
||||
|
||||
def test_split_text_limits(self):
|
||||
"""Test that _split_text has proper limits."""
|
||||
# Test text size limit
|
||||
large_text = "a" * 2_000_000 # 2MB text
|
||||
result = AITextSummarizerBlock._split_text(large_text, 1000, 100)
|
||||
|
||||
# Should be truncated to 1MB
|
||||
total_chars = sum(len(chunk) for chunk in result)
|
||||
assert total_chars <= 1_000_000 + 1000 # Allow for chunk boundary
|
||||
|
||||
# Test chunk count limit
|
||||
result = AITextSummarizerBlock._split_text("word " * 10000, 10, 9)
|
||||
assert len(result) <= 100 # MAX_CHUNKS limit
|
||||
|
||||
# Test parameter validation
|
||||
result = AITextSummarizerBlock._split_text(
|
||||
"test", 10, 15
|
||||
) # overlap > max_tokens
|
||||
assert len(result) >= 1 # Should still work
|
||||
|
||||
|
||||
class TestExtractTextInformationBlockSecurity:
|
||||
"""Test ReDoS and memory exhaustion fixes in ExtractTextInformationBlock."""
|
||||
|
||||
async def test_text_size_limits(self):
|
||||
"""Test text size limits."""
|
||||
block = ExtractTextInformationBlock()
|
||||
|
||||
# Test with large input
|
||||
large_text = "a" * 2_000_000 # 2MB
|
||||
|
||||
results = []
|
||||
async for output_name, output_data in block.run(
|
||||
ExtractTextInformationBlock.Input(
|
||||
text=large_text, pattern=r"a+", find_all=True, group=0
|
||||
)
|
||||
):
|
||||
results.append((output_name, output_data))
|
||||
|
||||
# Should complete and have limits applied
|
||||
matched_results = [r for name, r in results if name == "matched_results"]
|
||||
if matched_results:
|
||||
assert len(matched_results[0]) <= 1000 # MAX_MATCHES limit
|
||||
|
||||
async def test_dangerous_pattern_timeout(self):
|
||||
"""Test timeout protection for dangerous patterns."""
|
||||
block = ExtractTextInformationBlock()
|
||||
|
||||
# Test with potentially dangerous lookahead pattern
|
||||
test_input = "a" * 1000
|
||||
|
||||
# This should complete quickly due to timeout protection
|
||||
start_time = asyncio.get_event_loop().time()
|
||||
results = []
|
||||
async for output_name, output_data in block.run(
|
||||
ExtractTextInformationBlock.Input(
|
||||
text=test_input, pattern=r"(?=.+)", find_all=True, group=0
|
||||
)
|
||||
):
|
||||
results.append((output_name, output_data))
|
||||
|
||||
end_time = asyncio.get_event_loop().time()
|
||||
# Should complete within reasonable time (much less than 5s timeout)
|
||||
assert (end_time - start_time) < 10
|
||||
|
||||
async def test_redos_catastrophic_backtracking(self):
|
||||
"""Test that ReDoS patterns with catastrophic backtracking are handled."""
|
||||
block = ExtractTextInformationBlock()
|
||||
|
||||
# Pattern that causes catastrophic backtracking: (a+)+b
|
||||
# With input "aaaaaaaaaaaaaaaaaaaaaaaaaaaa" (no 'b'), this causes exponential time
|
||||
dangerous_pattern = r"(a+)+b"
|
||||
test_input = "a" * 30 # 30 'a's without a 'b' at the end
|
||||
|
||||
# This should be handled by timeout protection or pattern detection
|
||||
start_time = asyncio.get_event_loop().time()
|
||||
results = []
|
||||
|
||||
async for output_name, output_data in block.run(
|
||||
ExtractTextInformationBlock.Input(
|
||||
text=test_input, pattern=dangerous_pattern, find_all=True, group=0
|
||||
)
|
||||
):
|
||||
results.append((output_name, output_data))
|
||||
|
||||
end_time = asyncio.get_event_loop().time()
|
||||
elapsed = end_time - start_time
|
||||
|
||||
# Should complete within timeout (6 seconds to be safe)
|
||||
# The current threading.Timer approach doesn't work, so this will likely fail
|
||||
# demonstrating the need for a fix
|
||||
assert elapsed < 6, f"Regex took {elapsed}s, timeout mechanism failed"
|
||||
|
||||
# Should return empty results on timeout or no match
|
||||
matched_results = [r for name, r in results if name == "matched_results"]
|
||||
assert matched_results[0] == [] # No matches expected
|
||||
|
||||
|
||||
class TestStepThroughItemsBlockSecurity:
|
||||
"""Test iteration limits in StepThroughItemsBlock."""
|
||||
|
||||
async def test_item_count_limits(self):
|
||||
"""Test maximum item count limits."""
|
||||
block = StepThroughItemsBlock()
|
||||
|
||||
# Test with too many items
|
||||
large_list = list(range(20000)) # Exceeds MAX_ITEMS (10000)
|
||||
|
||||
with pytest.raises(ValueError, match="Too many items"):
|
||||
async for _ in block.run(StepThroughItemsBlock.Input(items=large_list)):
|
||||
pass
|
||||
|
||||
async def test_string_size_limits(self):
|
||||
"""Test string input size limits."""
|
||||
block = StepThroughItemsBlock()
|
||||
|
||||
# Test with large JSON string
|
||||
large_string = '["item"]' * 200000 # Large JSON string
|
||||
|
||||
with pytest.raises(ValueError, match="Input too large"):
|
||||
async for _ in block.run(
|
||||
StepThroughItemsBlock.Input(items_str=large_string)
|
||||
):
|
||||
pass
|
||||
|
||||
async def test_normal_iteration_works(self):
|
||||
"""Test that normal iteration still works."""
|
||||
block = StepThroughItemsBlock()
|
||||
|
||||
results = []
|
||||
async for output_name, output_data in block.run(
|
||||
StepThroughItemsBlock.Input(items=[1, 2, 3])
|
||||
):
|
||||
results.append((output_name, output_data))
|
||||
|
||||
# Should have 6 outputs (item, key for each of 3 items)
|
||||
assert len(results) == 6
|
||||
items = [data for name, data in results if name == "item"]
|
||||
assert items == [1, 2, 3]
|
||||
|
||||
|
||||
class TestXMLParserBlockSecurity:
|
||||
"""Test XML size limits in XMLParserBlock."""
|
||||
|
||||
async def test_xml_size_limits(self):
|
||||
"""Test XML input size limits."""
|
||||
block = XMLParserBlock()
|
||||
|
||||
# Test with large XML - need to exceed 10MB limit
|
||||
# Each "<item>data</item>" is 17 chars, need ~620K items for >10MB
|
||||
large_xml = "<root>" + "<item>data</item>" * 620000 + "</root>"
|
||||
|
||||
with pytest.raises(ValueError, match="XML too large"):
|
||||
async for _ in block.run(XMLParserBlock.Input(input_xml=large_xml)):
|
||||
pass
|
||||
|
||||
|
||||
class TestStoreMediaFileSecurity:
|
||||
"""Test file storage security limits."""
|
||||
|
||||
@patch("backend.util.file.scan_content_safe")
|
||||
@patch("backend.util.file.get_cloud_storage_handler")
|
||||
async def test_file_size_limits(self, mock_cloud_storage, mock_scan):
|
||||
"""Test file size limits."""
|
||||
# Mock cloud storage handler - get_cloud_storage_handler is async
|
||||
# but is_cloud_path and parse_cloud_path are sync methods
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
mock_handler = MagicMock()
|
||||
mock_handler.is_cloud_path.return_value = False
|
||||
|
||||
# Make get_cloud_storage_handler an async function that returns the mock handler
|
||||
async def async_get_handler():
|
||||
return mock_handler
|
||||
|
||||
mock_cloud_storage.side_effect = async_get_handler
|
||||
mock_scan.return_value = None
|
||||
|
||||
# Test with large base64 content
|
||||
large_content = "a" * (200 * 1024 * 1024) # 200MB
|
||||
large_data_uri = f"data:text/plain;base64,{large_content}"
|
||||
|
||||
with pytest.raises(ValueError, match="File too large"):
|
||||
await store_media_file(
|
||||
graph_exec_id="test",
|
||||
file=MediaFileType(large_data_uri),
|
||||
user_id="test_user",
|
||||
)
|
||||
|
||||
@patch("backend.util.file.Path")
|
||||
@patch("backend.util.file.scan_content_safe")
|
||||
@patch("backend.util.file.get_cloud_storage_handler")
|
||||
async def test_directory_size_limits(self, mock_cloud_storage, mock_scan, MockPath):
|
||||
"""Test directory size limits."""
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
mock_handler = MagicMock()
|
||||
mock_handler.is_cloud_path.return_value = False
|
||||
|
||||
async def async_get_handler():
|
||||
return mock_handler
|
||||
|
||||
mock_cloud_storage.side_effect = async_get_handler
|
||||
mock_scan.return_value = None
|
||||
|
||||
# Create mock path instance for the execution directory
|
||||
mock_path_instance = MagicMock()
|
||||
mock_path_instance.exists.return_value = True
|
||||
|
||||
# Mock glob to return files that total > 1GB
|
||||
mock_file = MagicMock()
|
||||
mock_file.is_file.return_value = True
|
||||
mock_file.stat.return_value.st_size = 2 * 1024 * 1024 * 1024 # 2GB
|
||||
mock_path_instance.glob.return_value = [mock_file]
|
||||
|
||||
# Make Path() return our mock
|
||||
MockPath.return_value = mock_path_instance
|
||||
|
||||
# Should raise an error when directory size exceeds limit
|
||||
with pytest.raises(ValueError, match="Disk usage limit exceeded"):
|
||||
await store_media_file(
|
||||
graph_exec_id="test",
|
||||
file=MediaFileType(
|
||||
"data:text/plain;base64,dGVzdA=="
|
||||
), # Small test file
|
||||
user_id="test_user",
|
||||
)
|
||||
@@ -30,6 +30,7 @@ class TestLLMStatsTracking:
|
||||
credentials=llm.TEST_CREDENTIALS,
|
||||
llm_model=llm.LlmModel.GPT4O,
|
||||
prompt=[{"role": "user", "content": "Hello"}],
|
||||
json_format=False,
|
||||
max_tokens=100,
|
||||
)
|
||||
|
||||
@@ -41,8 +42,6 @@ class TestLLMStatsTracking:
|
||||
@pytest.mark.asyncio
|
||||
async def test_ai_structured_response_block_tracks_stats(self):
|
||||
"""Test that AIStructuredResponseGeneratorBlock correctly tracks stats."""
|
||||
from unittest.mock import patch
|
||||
|
||||
import backend.blocks.llm as llm
|
||||
|
||||
block = llm.AIStructuredResponseGeneratorBlock()
|
||||
@@ -52,7 +51,7 @@ class TestLLMStatsTracking:
|
||||
return llm.LLMResponse(
|
||||
raw_response="",
|
||||
prompt=[],
|
||||
response='<json_output id="test123456">{"key1": "value1", "key2": "value2"}</json_output>',
|
||||
response='{"key1": "value1", "key2": "value2"}',
|
||||
tool_calls=None,
|
||||
prompt_tokens=15,
|
||||
completion_tokens=25,
|
||||
@@ -70,12 +69,10 @@ class TestLLMStatsTracking:
|
||||
)
|
||||
|
||||
outputs = {}
|
||||
# Mock secrets.token_hex to return consistent ID
|
||||
with patch("secrets.token_hex", return_value="test123456"):
|
||||
async for output_name, output_data in block.run(
|
||||
input_data, credentials=llm.TEST_CREDENTIALS
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
async for output_name, output_data in block.run(
|
||||
input_data, credentials=llm.TEST_CREDENTIALS
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
# Check stats
|
||||
assert block.execution_stats.input_token_count == 15
|
||||
@@ -146,7 +143,7 @@ class TestLLMStatsTracking:
|
||||
return llm.LLMResponse(
|
||||
raw_response="",
|
||||
prompt=[],
|
||||
response='<json_output id="test123456">{"wrong": "format"}</json_output>',
|
||||
response='{"wrong": "format"}',
|
||||
tool_calls=None,
|
||||
prompt_tokens=10,
|
||||
completion_tokens=15,
|
||||
@@ -157,7 +154,7 @@ class TestLLMStatsTracking:
|
||||
return llm.LLMResponse(
|
||||
raw_response="",
|
||||
prompt=[],
|
||||
response='<json_output id="test123456">{"key1": "value1", "key2": "value2"}</json_output>',
|
||||
response='{"key1": "value1", "key2": "value2"}',
|
||||
tool_calls=None,
|
||||
prompt_tokens=20,
|
||||
completion_tokens=25,
|
||||
@@ -176,12 +173,10 @@ class TestLLMStatsTracking:
|
||||
)
|
||||
|
||||
outputs = {}
|
||||
# Mock secrets.token_hex to return consistent ID
|
||||
with patch("secrets.token_hex", return_value="test123456"):
|
||||
async for output_name, output_data in block.run(
|
||||
input_data, credentials=llm.TEST_CREDENTIALS
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
async for output_name, output_data in block.run(
|
||||
input_data, credentials=llm.TEST_CREDENTIALS
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
# Check stats - should accumulate both calls
|
||||
# For 2 attempts: attempt 1 (failed) + attempt 2 (success) = 2 total
|
||||
@@ -274,8 +269,7 @@ class TestLLMStatsTracking:
|
||||
mock_response.choices = [
|
||||
MagicMock(
|
||||
message=MagicMock(
|
||||
content='<json_output id="test123456">{"summary": "Test chunk summary"}</json_output>',
|
||||
tool_calls=None,
|
||||
content='{"summary": "Test chunk summary"}', tool_calls=None
|
||||
)
|
||||
)
|
||||
]
|
||||
@@ -283,7 +277,7 @@ class TestLLMStatsTracking:
|
||||
mock_response.choices = [
|
||||
MagicMock(
|
||||
message=MagicMock(
|
||||
content='<json_output id="test123456">{"final_summary": "Test final summary"}</json_output>',
|
||||
content='{"final_summary": "Test final summary"}',
|
||||
tool_calls=None,
|
||||
)
|
||||
)
|
||||
@@ -304,13 +298,11 @@ class TestLLMStatsTracking:
|
||||
max_tokens=1000, # Large enough to avoid chunking
|
||||
)
|
||||
|
||||
# Mock secrets.token_hex to return consistent ID
|
||||
with patch("secrets.token_hex", return_value="test123456"):
|
||||
outputs = {}
|
||||
async for output_name, output_data in block.run(
|
||||
input_data, credentials=llm.TEST_CREDENTIALS
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
outputs = {}
|
||||
async for output_name, output_data in block.run(
|
||||
input_data, credentials=llm.TEST_CREDENTIALS
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
print(f"Actual calls made: {call_count}")
|
||||
print(f"Block stats: {block.execution_stats}")
|
||||
@@ -465,7 +457,7 @@ class TestLLMStatsTracking:
|
||||
return llm.LLMResponse(
|
||||
raw_response="",
|
||||
prompt=[],
|
||||
response='<json_output id="test123456">{"result": "test"}</json_output>',
|
||||
response='{"result": "test"}',
|
||||
tool_calls=None,
|
||||
prompt_tokens=10,
|
||||
completion_tokens=20,
|
||||
@@ -484,12 +476,10 @@ class TestLLMStatsTracking:
|
||||
|
||||
# Run the block
|
||||
outputs = {}
|
||||
# Mock secrets.token_hex to return consistent ID
|
||||
with patch("secrets.token_hex", return_value="test123456"):
|
||||
async for output_name, output_data in block.run(
|
||||
input_data, credentials=llm.TEST_CREDENTIALS
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
async for output_name, output_data in block.run(
|
||||
input_data, credentials=llm.TEST_CREDENTIALS
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
# Block finished - now grab and assert stats
|
||||
assert block.execution_stats is not None
|
||||
|
||||
@@ -216,17 +216,8 @@ async def test_smart_decision_maker_tracks_llm_stats():
|
||||
}
|
||||
|
||||
# Mock the _create_function_signature method to avoid database calls
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_response,
|
||||
), patch.object(
|
||||
SmartDecisionMakerBlock,
|
||||
"_create_function_signature",
|
||||
new_callable=AsyncMock,
|
||||
return_value=[],
|
||||
with patch("backend.blocks.llm.llm_call", return_value=mock_response), patch.object(
|
||||
SmartDecisionMakerBlock, "_create_function_signature", return_value=[]
|
||||
):
|
||||
|
||||
# Create test input
|
||||
@@ -258,471 +249,3 @@ async def test_smart_decision_maker_tracks_llm_stats():
|
||||
# Verify outputs
|
||||
assert "finished" in outputs # Should have finished since no tool calls
|
||||
assert outputs["finished"] == "I need to think about this."
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_parameter_validation():
|
||||
"""Test that SmartDecisionMakerBlock correctly validates tool call parameters."""
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import backend.blocks.llm as llm_module
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
|
||||
block = SmartDecisionMakerBlock()
|
||||
|
||||
# Mock tool functions with specific parameter schema
|
||||
mock_tool_functions = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "search_keywords",
|
||||
"description": "Search for keywords with difficulty filtering",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"query": {"type": "string", "description": "Search query"},
|
||||
"max_keyword_difficulty": {
|
||||
"type": "integer",
|
||||
"description": "Maximum keyword difficulty (required)",
|
||||
},
|
||||
"optional_param": {
|
||||
"type": "string",
|
||||
"description": "Optional parameter with default",
|
||||
"default": "default_value",
|
||||
},
|
||||
},
|
||||
"required": ["query", "max_keyword_difficulty"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
# Test case 1: Tool call with TYPO in parameter name (should retry and eventually fail)
|
||||
mock_tool_call_with_typo = MagicMock()
|
||||
mock_tool_call_with_typo.function.name = "search_keywords"
|
||||
mock_tool_call_with_typo.function.arguments = '{"query": "test", "maximum_keyword_difficulty": 50}' # TYPO: maximum instead of max
|
||||
|
||||
mock_response_with_typo = MagicMock()
|
||||
mock_response_with_typo.response = None
|
||||
mock_response_with_typo.tool_calls = [mock_tool_call_with_typo]
|
||||
mock_response_with_typo.prompt_tokens = 50
|
||||
mock_response_with_typo.completion_tokens = 25
|
||||
mock_response_with_typo.reasoning = None
|
||||
mock_response_with_typo.raw_response = {"role": "assistant", "content": None}
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_response_with_typo,
|
||||
) as mock_llm_call, patch.object(
|
||||
SmartDecisionMakerBlock,
|
||||
"_create_function_signature",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_tool_functions,
|
||||
):
|
||||
|
||||
input_data = SmartDecisionMakerBlock.Input(
|
||||
prompt="Search for keywords",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
retry=2, # Set retry to 2 for testing
|
||||
)
|
||||
|
||||
# Should raise ValueError after retries due to typo'd parameter name
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
outputs = {}
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
graph_id="test-graph-id",
|
||||
node_id="test-node-id",
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
# Verify error message contains details about the typo
|
||||
error_msg = str(exc_info.value)
|
||||
assert "Tool call 'search_keywords' has parameter errors" in error_msg
|
||||
assert "Unknown parameters: ['maximum_keyword_difficulty']" in error_msg
|
||||
|
||||
# Verify that LLM was called the expected number of times (retries)
|
||||
assert mock_llm_call.call_count == 2 # Should retry based on input_data.retry
|
||||
|
||||
# Test case 2: Tool call missing REQUIRED parameter (should raise ValueError)
|
||||
mock_tool_call_missing_required = MagicMock()
|
||||
mock_tool_call_missing_required.function.name = "search_keywords"
|
||||
mock_tool_call_missing_required.function.arguments = (
|
||||
'{"query": "test"}' # Missing required max_keyword_difficulty
|
||||
)
|
||||
|
||||
mock_response_missing_required = MagicMock()
|
||||
mock_response_missing_required.response = None
|
||||
mock_response_missing_required.tool_calls = [mock_tool_call_missing_required]
|
||||
mock_response_missing_required.prompt_tokens = 50
|
||||
mock_response_missing_required.completion_tokens = 25
|
||||
mock_response_missing_required.reasoning = None
|
||||
mock_response_missing_required.raw_response = {"role": "assistant", "content": None}
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_response_missing_required,
|
||||
), patch.object(
|
||||
SmartDecisionMakerBlock,
|
||||
"_create_function_signature",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_tool_functions,
|
||||
):
|
||||
|
||||
input_data = SmartDecisionMakerBlock.Input(
|
||||
prompt="Search for keywords",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
)
|
||||
|
||||
# Should raise ValueError due to missing required parameter
|
||||
with pytest.raises(ValueError) as exc_info:
|
||||
outputs = {}
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
graph_id="test-graph-id",
|
||||
node_id="test-node-id",
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
error_msg = str(exc_info.value)
|
||||
assert "Tool call 'search_keywords' has parameter errors" in error_msg
|
||||
assert "Missing required parameters: ['max_keyword_difficulty']" in error_msg
|
||||
|
||||
# Test case 3: Valid tool call with OPTIONAL parameter missing (should succeed)
|
||||
mock_tool_call_valid = MagicMock()
|
||||
mock_tool_call_valid.function.name = "search_keywords"
|
||||
mock_tool_call_valid.function.arguments = '{"query": "test", "max_keyword_difficulty": 50}' # optional_param missing, but that's OK
|
||||
|
||||
mock_response_valid = MagicMock()
|
||||
mock_response_valid.response = None
|
||||
mock_response_valid.tool_calls = [mock_tool_call_valid]
|
||||
mock_response_valid.prompt_tokens = 50
|
||||
mock_response_valid.completion_tokens = 25
|
||||
mock_response_valid.reasoning = None
|
||||
mock_response_valid.raw_response = {"role": "assistant", "content": None}
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_response_valid,
|
||||
), patch.object(
|
||||
SmartDecisionMakerBlock,
|
||||
"_create_function_signature",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_tool_functions,
|
||||
):
|
||||
|
||||
input_data = SmartDecisionMakerBlock.Input(
|
||||
prompt="Search for keywords",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
)
|
||||
|
||||
# Should succeed - optional parameter missing is OK
|
||||
outputs = {}
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
graph_id="test-graph-id",
|
||||
node_id="test-node-id",
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
# Verify tool outputs were generated correctly
|
||||
assert "tools_^_search_keywords_~_query" in outputs
|
||||
assert outputs["tools_^_search_keywords_~_query"] == "test"
|
||||
assert "tools_^_search_keywords_~_max_keyword_difficulty" in outputs
|
||||
assert outputs["tools_^_search_keywords_~_max_keyword_difficulty"] == 50
|
||||
# Optional parameter should be None when not provided
|
||||
assert "tools_^_search_keywords_~_optional_param" in outputs
|
||||
assert outputs["tools_^_search_keywords_~_optional_param"] is None
|
||||
|
||||
# Test case 4: Valid tool call with ALL parameters (should succeed)
|
||||
mock_tool_call_all_params = MagicMock()
|
||||
mock_tool_call_all_params.function.name = "search_keywords"
|
||||
mock_tool_call_all_params.function.arguments = '{"query": "test", "max_keyword_difficulty": 50, "optional_param": "custom_value"}'
|
||||
|
||||
mock_response_all_params = MagicMock()
|
||||
mock_response_all_params.response = None
|
||||
mock_response_all_params.tool_calls = [mock_tool_call_all_params]
|
||||
mock_response_all_params.prompt_tokens = 50
|
||||
mock_response_all_params.completion_tokens = 25
|
||||
mock_response_all_params.reasoning = None
|
||||
mock_response_all_params.raw_response = {"role": "assistant", "content": None}
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_response_all_params,
|
||||
), patch.object(
|
||||
SmartDecisionMakerBlock,
|
||||
"_create_function_signature",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_tool_functions,
|
||||
):
|
||||
|
||||
input_data = SmartDecisionMakerBlock.Input(
|
||||
prompt="Search for keywords",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
)
|
||||
|
||||
# Should succeed with all parameters
|
||||
outputs = {}
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
graph_id="test-graph-id",
|
||||
node_id="test-node-id",
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
# Verify all tool outputs were generated correctly
|
||||
assert outputs["tools_^_search_keywords_~_query"] == "test"
|
||||
assert outputs["tools_^_search_keywords_~_max_keyword_difficulty"] == 50
|
||||
assert outputs["tools_^_search_keywords_~_optional_param"] == "custom_value"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_smart_decision_maker_raw_response_conversion():
|
||||
"""Test that SmartDecisionMaker correctly handles different raw_response types with retry mechanism."""
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import backend.blocks.llm as llm_module
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
|
||||
block = SmartDecisionMakerBlock()
|
||||
|
||||
# Mock tool functions
|
||||
mock_tool_functions = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "test_tool",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {"param": {"type": "string"}},
|
||||
"required": ["param"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
# Test case 1: Simulate ChatCompletionMessage raw_response that caused the original error
|
||||
class MockChatCompletionMessage:
|
||||
"""Simulate OpenAI's ChatCompletionMessage object that lacks .get() method"""
|
||||
|
||||
def __init__(self, role, content, tool_calls=None):
|
||||
self.role = role
|
||||
self.content = content
|
||||
self.tool_calls = tool_calls or []
|
||||
|
||||
# This is what caused the error - no .get() method
|
||||
# def get(self, key, default=None): # Intentionally missing
|
||||
|
||||
# First response: has invalid parameter name (triggers retry)
|
||||
mock_tool_call_invalid = MagicMock()
|
||||
mock_tool_call_invalid.function.name = "test_tool"
|
||||
mock_tool_call_invalid.function.arguments = (
|
||||
'{"wrong_param": "test_value"}' # Invalid parameter name
|
||||
)
|
||||
|
||||
mock_response_retry = MagicMock()
|
||||
mock_response_retry.response = None
|
||||
mock_response_retry.tool_calls = [mock_tool_call_invalid]
|
||||
mock_response_retry.prompt_tokens = 50
|
||||
mock_response_retry.completion_tokens = 25
|
||||
mock_response_retry.reasoning = None
|
||||
# This would cause the original error without our fix
|
||||
mock_response_retry.raw_response = MockChatCompletionMessage(
|
||||
role="assistant", content=None, tool_calls=[mock_tool_call_invalid]
|
||||
)
|
||||
|
||||
# Second response: successful (correct parameter name)
|
||||
mock_tool_call_valid = MagicMock()
|
||||
mock_tool_call_valid.function.name = "test_tool"
|
||||
mock_tool_call_valid.function.arguments = (
|
||||
'{"param": "test_value"}' # Correct parameter name
|
||||
)
|
||||
|
||||
mock_response_success = MagicMock()
|
||||
mock_response_success.response = None
|
||||
mock_response_success.tool_calls = [mock_tool_call_valid]
|
||||
mock_response_success.prompt_tokens = 50
|
||||
mock_response_success.completion_tokens = 25
|
||||
mock_response_success.reasoning = None
|
||||
mock_response_success.raw_response = MockChatCompletionMessage(
|
||||
role="assistant", content=None, tool_calls=[mock_tool_call_valid]
|
||||
)
|
||||
|
||||
# Mock llm_call to return different responses on different calls
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call", new_callable=AsyncMock
|
||||
) as mock_llm_call, patch.object(
|
||||
SmartDecisionMakerBlock,
|
||||
"_create_function_signature",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_tool_functions,
|
||||
):
|
||||
# First call returns response that will trigger retry due to validation error
|
||||
# Second call returns successful response
|
||||
mock_llm_call.side_effect = [mock_response_retry, mock_response_success]
|
||||
|
||||
input_data = SmartDecisionMakerBlock.Input(
|
||||
prompt="Test prompt",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
retry=2,
|
||||
)
|
||||
|
||||
# Should succeed after retry, demonstrating our helper function works
|
||||
outputs = {}
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
graph_id="test-graph-id",
|
||||
node_id="test-node-id",
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
# Verify the tool output was generated successfully
|
||||
assert "tools_^_test_tool_~_param" in outputs
|
||||
assert outputs["tools_^_test_tool_~_param"] == "test_value"
|
||||
|
||||
# Verify conversation history was properly maintained
|
||||
assert "conversations" in outputs
|
||||
conversations = outputs["conversations"]
|
||||
assert len(conversations) > 0
|
||||
|
||||
# The conversations should contain properly converted raw_response objects as dicts
|
||||
# This would have failed with the original bug due to ChatCompletionMessage.get() error
|
||||
for msg in conversations:
|
||||
assert isinstance(msg, dict), f"Expected dict, got {type(msg)}"
|
||||
if msg.get("role") == "assistant":
|
||||
# Should have been converted from ChatCompletionMessage to dict
|
||||
assert "role" in msg
|
||||
|
||||
# Verify LLM was called twice (initial + 1 retry)
|
||||
assert mock_llm_call.call_count == 2
|
||||
|
||||
# Test case 2: Test with different raw_response types (Ollama string, dict)
|
||||
# Test Ollama string response
|
||||
mock_response_ollama = MagicMock()
|
||||
mock_response_ollama.response = "I'll help you with that."
|
||||
mock_response_ollama.tool_calls = None
|
||||
mock_response_ollama.prompt_tokens = 30
|
||||
mock_response_ollama.completion_tokens = 15
|
||||
mock_response_ollama.reasoning = None
|
||||
mock_response_ollama.raw_response = (
|
||||
"I'll help you with that." # Ollama returns string
|
||||
)
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_response_ollama,
|
||||
), patch.object(
|
||||
SmartDecisionMakerBlock,
|
||||
"_create_function_signature",
|
||||
new_callable=AsyncMock,
|
||||
return_value=[], # No tools for this test
|
||||
):
|
||||
input_data = SmartDecisionMakerBlock.Input(
|
||||
prompt="Simple prompt",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
)
|
||||
|
||||
outputs = {}
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
graph_id="test-graph-id",
|
||||
node_id="test-node-id",
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
# Should finish since no tool calls
|
||||
assert "finished" in outputs
|
||||
assert outputs["finished"] == "I'll help you with that."
|
||||
|
||||
# Test case 3: Test with dict raw_response (some providers/tests)
|
||||
mock_response_dict = MagicMock()
|
||||
mock_response_dict.response = "Test response"
|
||||
mock_response_dict.tool_calls = None
|
||||
mock_response_dict.prompt_tokens = 25
|
||||
mock_response_dict.completion_tokens = 10
|
||||
mock_response_dict.reasoning = None
|
||||
mock_response_dict.raw_response = {
|
||||
"role": "assistant",
|
||||
"content": "Test response",
|
||||
} # Dict format
|
||||
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
with patch(
|
||||
"backend.blocks.llm.llm_call",
|
||||
new_callable=AsyncMock,
|
||||
return_value=mock_response_dict,
|
||||
), patch.object(
|
||||
SmartDecisionMakerBlock,
|
||||
"_create_function_signature",
|
||||
new_callable=AsyncMock,
|
||||
return_value=[],
|
||||
):
|
||||
input_data = SmartDecisionMakerBlock.Input(
|
||||
prompt="Another test",
|
||||
model=llm_module.LlmModel.GPT4O,
|
||||
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
|
||||
)
|
||||
|
||||
outputs = {}
|
||||
async for output_name, output_data in block.run(
|
||||
input_data,
|
||||
credentials=llm_module.TEST_CREDENTIALS,
|
||||
graph_id="test-graph-id",
|
||||
node_id="test-node-id",
|
||||
graph_exec_id="test-exec-id",
|
||||
node_exec_id="test-node-exec-id",
|
||||
user_id="test-user-id",
|
||||
):
|
||||
outputs[output_name] = output_data
|
||||
|
||||
assert "finished" in outputs
|
||||
assert outputs["finished"] == "Test response"
|
||||
|
||||
@@ -48,24 +48,16 @@ async def test_smart_decision_maker_handles_dynamic_dict_fields():
|
||||
assert "parameters" in signature["function"]
|
||||
assert "properties" in signature["function"]["parameters"]
|
||||
|
||||
# Check that dynamic fields are handled with original names
|
||||
# Check that dynamic fields are handled
|
||||
properties = signature["function"]["parameters"]["properties"]
|
||||
assert len(properties) == 3 # Should have all three fields
|
||||
|
||||
# Check that field names are cleaned (for Anthropic API compatibility)
|
||||
assert "values___name" in properties
|
||||
assert "values___age" in properties
|
||||
assert "values___city" in properties
|
||||
|
||||
# Each dynamic field should have proper schema with descriptive text
|
||||
for field_name, prop_value in properties.items():
|
||||
# Each dynamic field should have proper schema
|
||||
for prop_value in properties.values():
|
||||
assert "type" in prop_value
|
||||
assert prop_value["type"] == "string" # Dynamic fields get string type
|
||||
assert "description" in prop_value
|
||||
# Check that descriptions properly explain the dynamic field
|
||||
if field_name == "values___name":
|
||||
assert "Dictionary field 'name'" in prop_value["description"]
|
||||
assert "values['name']" in prop_value["description"]
|
||||
assert "Dynamic value for" in prop_value["description"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -104,18 +96,10 @@ async def test_smart_decision_maker_handles_dynamic_list_fields():
|
||||
properties = signature["function"]["parameters"]["properties"]
|
||||
assert len(properties) == 2 # Should have both list items
|
||||
|
||||
# Check that field names are cleaned (for Anthropic API compatibility)
|
||||
assert "entries___0" in properties
|
||||
assert "entries___1" in properties
|
||||
|
||||
# Each dynamic field should have proper schema with descriptive text
|
||||
for field_name, prop_value in properties.items():
|
||||
# Each dynamic field should have proper schema
|
||||
for prop_value in properties.values():
|
||||
assert prop_value["type"] == "string"
|
||||
assert "description" in prop_value
|
||||
# Check that descriptions properly explain the list field
|
||||
if field_name == "entries___0":
|
||||
assert "List item 0" in prop_value["description"]
|
||||
assert "entries[0]" in prop_value["description"]
|
||||
assert "Dynamic value for" in prop_value["description"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
||||
@@ -1,553 +0,0 @@
|
||||
"""Comprehensive tests for SmartDecisionMakerBlock dynamic field handling."""
|
||||
|
||||
import json
|
||||
from unittest.mock import AsyncMock, Mock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from backend.blocks.data_manipulation import AddToListBlock, CreateDictionaryBlock
|
||||
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
|
||||
from backend.blocks.text import MatchTextPatternBlock
|
||||
from backend.data.dynamic_fields import get_dynamic_field_description
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_dynamic_field_description_generation():
|
||||
"""Test that dynamic field descriptions are generated correctly."""
|
||||
# Test dictionary field description
|
||||
desc = get_dynamic_field_description("values_#_name")
|
||||
assert "Dictionary field 'name' for base field 'values'" in desc
|
||||
assert "values['name']" in desc
|
||||
|
||||
# Test list field description
|
||||
desc = get_dynamic_field_description("items_$_0")
|
||||
assert "List item 0 for base field 'items'" in desc
|
||||
assert "items[0]" in desc
|
||||
|
||||
# Test object field description
|
||||
desc = get_dynamic_field_description("user_@_email")
|
||||
assert "Object attribute 'email' for base field 'user'" in desc
|
||||
assert "user.email" in desc
|
||||
|
||||
# Test regular field fallback
|
||||
desc = get_dynamic_field_description("regular_field")
|
||||
assert desc == "Value for regular_field"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_block_function_signature_with_dict_fields():
|
||||
"""Test that function signatures are created correctly for dictionary dynamic fields."""
|
||||
block = SmartDecisionMakerBlock()
|
||||
|
||||
# Create a mock node for CreateDictionaryBlock
|
||||
mock_node = Mock()
|
||||
mock_node.block = CreateDictionaryBlock()
|
||||
mock_node.block_id = CreateDictionaryBlock().id
|
||||
mock_node.input_default = {}
|
||||
|
||||
# Create mock links with dynamic dictionary fields (source sanitized, sink original)
|
||||
mock_links = [
|
||||
Mock(
|
||||
source_name="tools_^_create_dict_~_values___name", # Sanitized source
|
||||
sink_name="values_#_name", # Original sink
|
||||
sink_id="dict_node_id",
|
||||
source_id="smart_decision_node_id",
|
||||
),
|
||||
Mock(
|
||||
source_name="tools_^_create_dict_~_values___age", # Sanitized source
|
||||
sink_name="values_#_age", # Original sink
|
||||
sink_id="dict_node_id",
|
||||
source_id="smart_decision_node_id",
|
||||
),
|
||||
Mock(
|
||||
source_name="tools_^_create_dict_~_values___email", # Sanitized source
|
||||
sink_name="values_#_email", # Original sink
|
||||
sink_id="dict_node_id",
|
||||
source_id="smart_decision_node_id",
|
||||
),
|
||||
]
|
||||
|
||||
# Generate function signature
|
||||
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
|
||||
|
||||
# Verify the signature structure
|
||||
assert signature["type"] == "function"
|
||||
assert "function" in signature
|
||||
assert "parameters" in signature["function"]
|
||||
assert "properties" in signature["function"]["parameters"]
|
||||
|
||||
# Check that dynamic fields are handled with original names
|
||||
properties = signature["function"]["parameters"]["properties"]
|
||||
assert len(properties) == 3
|
||||
|
||||
# Check cleaned field names (for Anthropic API compatibility)
|
||||
assert "values___name" in properties
|
||||
assert "values___age" in properties
|
||||
assert "values___email" in properties
|
||||
|
||||
# Check descriptions mention they are dictionary fields
|
||||
assert "Dictionary field" in properties["values___name"]["description"]
|
||||
assert "values['name']" in properties["values___name"]["description"]
|
||||
|
||||
assert "Dictionary field" in properties["values___age"]["description"]
|
||||
assert "values['age']" in properties["values___age"]["description"]
|
||||
|
||||
assert "Dictionary field" in properties["values___email"]["description"]
|
||||
assert "values['email']" in properties["values___email"]["description"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_block_function_signature_with_list_fields():
|
||||
"""Test that function signatures are created correctly for list dynamic fields."""
|
||||
block = SmartDecisionMakerBlock()
|
||||
|
||||
# Create a mock node for AddToListBlock
|
||||
mock_node = Mock()
|
||||
mock_node.block = AddToListBlock()
|
||||
mock_node.block_id = AddToListBlock().id
|
||||
mock_node.input_default = {}
|
||||
|
||||
# Create mock links with dynamic list fields
|
||||
mock_links = [
|
||||
Mock(
|
||||
source_name="tools_^_add_list_~_0",
|
||||
sink_name="entries_$_0", # Dynamic list field
|
||||
sink_id="list_node_id",
|
||||
source_id="smart_decision_node_id",
|
||||
),
|
||||
Mock(
|
||||
source_name="tools_^_add_list_~_1",
|
||||
sink_name="entries_$_1", # Dynamic list field
|
||||
sink_id="list_node_id",
|
||||
source_id="smart_decision_node_id",
|
||||
),
|
||||
Mock(
|
||||
source_name="tools_^_add_list_~_2",
|
||||
sink_name="entries_$_2", # Dynamic list field
|
||||
sink_id="list_node_id",
|
||||
source_id="smart_decision_node_id",
|
||||
),
|
||||
]
|
||||
|
||||
# Generate function signature
|
||||
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
|
||||
|
||||
# Verify the signature structure
|
||||
assert signature["type"] == "function"
|
||||
properties = signature["function"]["parameters"]["properties"]
|
||||
|
||||
# Check cleaned field names (for Anthropic API compatibility)
|
||||
assert "entries___0" in properties
|
||||
assert "entries___1" in properties
|
||||
assert "entries___2" in properties
|
||||
|
||||
# Check descriptions mention they are list items
|
||||
assert "List item 0" in properties["entries___0"]["description"]
|
||||
assert "entries[0]" in properties["entries___0"]["description"]
|
||||
|
||||
assert "List item 1" in properties["entries___1"]["description"]
|
||||
assert "entries[1]" in properties["entries___1"]["description"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_block_function_signature_with_object_fields():
|
||||
"""Test that function signatures are created correctly for object dynamic fields."""
|
||||
block = SmartDecisionMakerBlock()
|
||||
|
||||
# Create a mock node for MatchTextPatternBlock (simulating object fields)
|
||||
mock_node = Mock()
|
||||
mock_node.block = MatchTextPatternBlock()
|
||||
mock_node.block_id = MatchTextPatternBlock().id
|
||||
mock_node.input_default = {}
|
||||
|
||||
# Create mock links with dynamic object fields
|
||||
mock_links = [
|
||||
Mock(
|
||||
source_name="tools_^_extract_~_user_name",
|
||||
sink_name="data_@_user_name", # Dynamic object field
|
||||
sink_id="extract_node_id",
|
||||
source_id="smart_decision_node_id",
|
||||
),
|
||||
Mock(
|
||||
source_name="tools_^_extract_~_user_email",
|
||||
sink_name="data_@_user_email", # Dynamic object field
|
||||
sink_id="extract_node_id",
|
||||
source_id="smart_decision_node_id",
|
||||
),
|
||||
]
|
||||
|
||||
# Generate function signature
|
||||
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
|
||||
|
||||
# Verify the signature structure
|
||||
properties = signature["function"]["parameters"]["properties"]
|
||||
|
||||
# Check cleaned field names (for Anthropic API compatibility)
|
||||
assert "data___user_name" in properties
|
||||
assert "data___user_email" in properties
|
||||
|
||||
# Check descriptions mention they are object attributes
|
||||
assert "Object attribute" in properties["data___user_name"]["description"]
|
||||
assert "data.user_name" in properties["data___user_name"]["description"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_function_signature():
|
||||
"""Test that the mapping between sanitized and original field names is built correctly."""
|
||||
block = SmartDecisionMakerBlock()
|
||||
|
||||
# Mock the database client and connected nodes
|
||||
with patch(
|
||||
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
|
||||
) as mock_db:
|
||||
mock_client = AsyncMock()
|
||||
mock_db.return_value = mock_client
|
||||
|
||||
# Create mock nodes and links
|
||||
mock_dict_node = Mock()
|
||||
mock_dict_node.block = CreateDictionaryBlock()
|
||||
mock_dict_node.block_id = CreateDictionaryBlock().id
|
||||
mock_dict_node.input_default = {}
|
||||
|
||||
mock_list_node = Mock()
|
||||
mock_list_node.block = AddToListBlock()
|
||||
mock_list_node.block_id = AddToListBlock().id
|
||||
mock_list_node.input_default = {}
|
||||
|
||||
# Mock links with dynamic fields
|
||||
dict_link1 = Mock(
|
||||
source_name="tools_^_create_dictionary_~_name",
|
||||
sink_name="values_#_name",
|
||||
sink_id="dict_node_id",
|
||||
source_id="test_node_id",
|
||||
)
|
||||
dict_link2 = Mock(
|
||||
source_name="tools_^_create_dictionary_~_age",
|
||||
sink_name="values_#_age",
|
||||
sink_id="dict_node_id",
|
||||
source_id="test_node_id",
|
||||
)
|
||||
list_link = Mock(
|
||||
source_name="tools_^_add_to_list_~_0",
|
||||
sink_name="entries_$_0",
|
||||
sink_id="list_node_id",
|
||||
source_id="test_node_id",
|
||||
)
|
||||
|
||||
mock_client.get_connected_output_nodes.return_value = [
|
||||
(dict_link1, mock_dict_node),
|
||||
(dict_link2, mock_dict_node),
|
||||
(list_link, mock_list_node),
|
||||
]
|
||||
|
||||
# Call the method that builds signatures
|
||||
tool_functions = await block._create_function_signature("test_node_id")
|
||||
|
||||
# Verify we got 2 tool functions (one for dict, one for list)
|
||||
assert len(tool_functions) == 2
|
||||
|
||||
# Verify the tool functions contain the dynamic field names
|
||||
dict_tool = next(
|
||||
(
|
||||
tool
|
||||
for tool in tool_functions
|
||||
if tool["function"]["name"] == "createdictionaryblock"
|
||||
),
|
||||
None,
|
||||
)
|
||||
assert dict_tool is not None
|
||||
dict_properties = dict_tool["function"]["parameters"]["properties"]
|
||||
assert "values___name" in dict_properties
|
||||
assert "values___age" in dict_properties
|
||||
|
||||
list_tool = next(
|
||||
(
|
||||
tool
|
||||
for tool in tool_functions
|
||||
if tool["function"]["name"] == "addtolistblock"
|
||||
),
|
||||
None,
|
||||
)
|
||||
assert list_tool is not None
|
||||
list_properties = list_tool["function"]["parameters"]["properties"]
|
||||
assert "entries___0" in list_properties
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_output_yielding_with_dynamic_fields():
|
||||
"""Test that outputs are yielded correctly with dynamic field names mapped back."""
|
||||
block = SmartDecisionMakerBlock()
|
||||
|
||||
# No more sanitized mapping needed since we removed sanitization
|
||||
|
||||
# Mock LLM response with tool calls
|
||||
mock_response = Mock()
|
||||
mock_response.tool_calls = [
|
||||
Mock(
|
||||
function=Mock(
|
||||
arguments=json.dumps(
|
||||
{
|
||||
"values___name": "Alice",
|
||||
"values___age": 30,
|
||||
"values___email": "alice@example.com",
|
||||
}
|
||||
),
|
||||
)
|
||||
)
|
||||
]
|
||||
# Ensure function name is a real string, not a Mock name
|
||||
mock_response.tool_calls[0].function.name = "createdictionaryblock"
|
||||
mock_response.reasoning = "Creating a dictionary with user information"
|
||||
mock_response.raw_response = {"role": "assistant", "content": "test"}
|
||||
mock_response.prompt_tokens = 100
|
||||
mock_response.completion_tokens = 50
|
||||
|
||||
# Mock the LLM call
|
||||
with patch(
|
||||
"backend.blocks.smart_decision_maker.llm.llm_call", new_callable=AsyncMock
|
||||
) as mock_llm:
|
||||
mock_llm.return_value = mock_response
|
||||
|
||||
# Mock the function signature creation
|
||||
with patch.object(
|
||||
block, "_create_function_signature", new_callable=AsyncMock
|
||||
) as mock_sig:
|
||||
mock_sig.return_value = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "createdictionaryblock",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"values___name": {"type": "string"},
|
||||
"values___age": {"type": "number"},
|
||||
"values___email": {"type": "string"},
|
||||
},
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
# Create input data
|
||||
from backend.blocks import llm
|
||||
|
||||
input_data = block.input_schema(
|
||||
prompt="Create a user dictionary",
|
||||
credentials=llm.TEST_CREDENTIALS_INPUT,
|
||||
model=llm.LlmModel.GPT4O,
|
||||
)
|
||||
|
||||
# Run the block
|
||||
outputs = {}
|
||||
async for output_name, output_value in block.run(
|
||||
input_data,
|
||||
credentials=llm.TEST_CREDENTIALS,
|
||||
graph_id="test_graph",
|
||||
node_id="test_node",
|
||||
graph_exec_id="test_exec",
|
||||
node_exec_id="test_node_exec",
|
||||
user_id="test_user",
|
||||
):
|
||||
outputs[output_name] = output_value
|
||||
|
||||
# Verify the outputs use sanitized field names (matching frontend normalizeToolName)
|
||||
assert "tools_^_createdictionaryblock_~_values___name" in outputs
|
||||
assert outputs["tools_^_createdictionaryblock_~_values___name"] == "Alice"
|
||||
|
||||
assert "tools_^_createdictionaryblock_~_values___age" in outputs
|
||||
assert outputs["tools_^_createdictionaryblock_~_values___age"] == 30
|
||||
|
||||
assert "tools_^_createdictionaryblock_~_values___email" in outputs
|
||||
assert (
|
||||
outputs["tools_^_createdictionaryblock_~_values___email"]
|
||||
== "alice@example.com"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_mixed_regular_and_dynamic_fields():
|
||||
"""Test handling of blocks with both regular and dynamic fields."""
|
||||
block = SmartDecisionMakerBlock()
|
||||
|
||||
# Create a mock node
|
||||
mock_node = Mock()
|
||||
mock_node.block = Mock()
|
||||
mock_node.block.name = "TestBlock"
|
||||
mock_node.block.description = "A test block"
|
||||
mock_node.block.input_schema = Mock()
|
||||
|
||||
# Mock the get_field_schema to return a proper schema for regular fields
|
||||
def get_field_schema(field_name):
|
||||
if field_name == "regular_field":
|
||||
return {"type": "string", "description": "A regular field"}
|
||||
elif field_name == "values":
|
||||
return {"type": "object", "description": "A dictionary field"}
|
||||
else:
|
||||
raise KeyError(f"Field {field_name} not found")
|
||||
|
||||
mock_node.block.input_schema.get_field_schema = get_field_schema
|
||||
mock_node.block.input_schema.jsonschema = Mock(
|
||||
return_value={"properties": {}, "required": []}
|
||||
)
|
||||
|
||||
# Create links with both regular and dynamic fields
|
||||
mock_links = [
|
||||
Mock(
|
||||
source_name="tools_^_test_~_regular",
|
||||
sink_name="regular_field", # Regular field
|
||||
sink_id="test_node_id",
|
||||
source_id="smart_decision_node_id",
|
||||
),
|
||||
Mock(
|
||||
source_name="tools_^_test_~_dict_key",
|
||||
sink_name="values_#_key1", # Dynamic dict field
|
||||
sink_id="test_node_id",
|
||||
source_id="smart_decision_node_id",
|
||||
),
|
||||
Mock(
|
||||
source_name="tools_^_test_~_dict_key2",
|
||||
sink_name="values_#_key2", # Dynamic dict field
|
||||
sink_id="test_node_id",
|
||||
source_id="smart_decision_node_id",
|
||||
),
|
||||
]
|
||||
|
||||
# Generate function signature
|
||||
signature = await block._create_block_function_signature(mock_node, mock_links) # type: ignore
|
||||
|
||||
# Check properties
|
||||
properties = signature["function"]["parameters"]["properties"]
|
||||
assert len(properties) == 3
|
||||
|
||||
# Regular field should have its original schema
|
||||
assert "regular_field" in properties
|
||||
assert properties["regular_field"]["description"] == "A regular field"
|
||||
|
||||
# Dynamic fields should have generated descriptions
|
||||
assert "values___key1" in properties
|
||||
assert "Dictionary field" in properties["values___key1"]["description"]
|
||||
|
||||
assert "values___key2" in properties
|
||||
assert "Dictionary field" in properties["values___key2"]["description"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_validation_errors_dont_pollute_conversation():
|
||||
"""Test that validation errors are only used during retries and don't pollute the conversation."""
|
||||
block = SmartDecisionMakerBlock()
|
||||
|
||||
# Track conversation history changes
|
||||
conversation_snapshots = []
|
||||
|
||||
# Mock response with invalid tool call (missing required parameter)
|
||||
invalid_response = Mock()
|
||||
invalid_response.tool_calls = [
|
||||
Mock(
|
||||
function=Mock(
|
||||
arguments=json.dumps({"wrong_param": "value"}), # Wrong parameter name
|
||||
)
|
||||
)
|
||||
]
|
||||
# Ensure function name is a real string, not a Mock name
|
||||
invalid_response.tool_calls[0].function.name = "test_tool"
|
||||
invalid_response.reasoning = None
|
||||
invalid_response.raw_response = {"role": "assistant", "content": "invalid"}
|
||||
invalid_response.prompt_tokens = 100
|
||||
invalid_response.completion_tokens = 50
|
||||
|
||||
# Mock valid response after retry
|
||||
valid_response = Mock()
|
||||
valid_response.tool_calls = [
|
||||
Mock(function=Mock(arguments=json.dumps({"correct_param": "value"})))
|
||||
]
|
||||
# Ensure function name is a real string, not a Mock name
|
||||
valid_response.tool_calls[0].function.name = "test_tool"
|
||||
valid_response.reasoning = None
|
||||
valid_response.raw_response = {"role": "assistant", "content": "valid"}
|
||||
valid_response.prompt_tokens = 100
|
||||
valid_response.completion_tokens = 50
|
||||
|
||||
call_count = 0
|
||||
|
||||
async def mock_llm_call(**kwargs):
|
||||
nonlocal call_count
|
||||
# Capture conversation state
|
||||
conversation_snapshots.append(kwargs.get("prompt", []).copy())
|
||||
call_count += 1
|
||||
if call_count == 1:
|
||||
return invalid_response
|
||||
else:
|
||||
return valid_response
|
||||
|
||||
# Mock the LLM call
|
||||
with patch(
|
||||
"backend.blocks.smart_decision_maker.llm.llm_call", new_callable=AsyncMock
|
||||
) as mock_llm:
|
||||
mock_llm.side_effect = mock_llm_call
|
||||
|
||||
# Mock the function signature creation
|
||||
with patch.object(
|
||||
block, "_create_function_signature", new_callable=AsyncMock
|
||||
) as mock_sig:
|
||||
mock_sig.return_value = [
|
||||
{
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "test_tool",
|
||||
"parameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"correct_param": {
|
||||
"type": "string",
|
||||
"description": "The correct parameter",
|
||||
}
|
||||
},
|
||||
"required": ["correct_param"],
|
||||
},
|
||||
},
|
||||
}
|
||||
]
|
||||
|
||||
# Create input data
|
||||
from backend.blocks import llm
|
||||
|
||||
input_data = block.input_schema(
|
||||
prompt="Test prompt",
|
||||
credentials=llm.TEST_CREDENTIALS_INPUT,
|
||||
model=llm.LlmModel.GPT4O,
|
||||
retry=3, # Allow retries
|
||||
)
|
||||
|
||||
# Run the block
|
||||
outputs = {}
|
||||
async for output_name, output_value in block.run(
|
||||
input_data,
|
||||
credentials=llm.TEST_CREDENTIALS,
|
||||
graph_id="test_graph",
|
||||
node_id="test_node",
|
||||
graph_exec_id="test_exec",
|
||||
node_exec_id="test_node_exec",
|
||||
user_id="test_user",
|
||||
):
|
||||
outputs[output_name] = output_value
|
||||
|
||||
# Verify we had 2 LLM calls (initial + retry)
|
||||
assert call_count == 2
|
||||
|
||||
# Check the final conversation output
|
||||
final_conversation = outputs.get("conversations", [])
|
||||
|
||||
# The final conversation should NOT contain the validation error message
|
||||
error_messages = [
|
||||
msg
|
||||
for msg in final_conversation
|
||||
if msg.get("role") == "user"
|
||||
and "parameter errors" in msg.get("content", "")
|
||||
]
|
||||
assert (
|
||||
len(error_messages) == 0
|
||||
), "Validation error leaked into final conversation"
|
||||
|
||||
# The final conversation should only have the successful response
|
||||
assert final_conversation[-1]["content"] == "valid"
|
||||
@@ -1,131 +0,0 @@
|
||||
import pytest
|
||||
|
||||
from backend.blocks.io import AgentTableInputBlock
|
||||
from backend.util.test import execute_block_test
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_table_input_block():
|
||||
"""Test the AgentTableInputBlock with basic input/output."""
|
||||
block = AgentTableInputBlock()
|
||||
await execute_block_test(block)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_table_input_with_data():
|
||||
"""Test AgentTableInputBlock with actual table data."""
|
||||
block = AgentTableInputBlock()
|
||||
|
||||
input_data = block.Input(
|
||||
name="test_table",
|
||||
column_headers=["Name", "Age", "City"],
|
||||
value=[
|
||||
{"Name": "John", "Age": "30", "City": "New York"},
|
||||
{"Name": "Jane", "Age": "25", "City": "London"},
|
||||
{"Name": "Bob", "Age": "35", "City": "Paris"},
|
||||
],
|
||||
)
|
||||
|
||||
output_data = []
|
||||
async for output_name, output_value in block.run(input_data):
|
||||
output_data.append((output_name, output_value))
|
||||
|
||||
assert len(output_data) == 1
|
||||
assert output_data[0][0] == "result"
|
||||
|
||||
result = output_data[0][1]
|
||||
assert len(result) == 3
|
||||
assert result[0]["Name"] == "John"
|
||||
assert result[1]["Age"] == "25"
|
||||
assert result[2]["City"] == "Paris"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_table_input_empty_data():
|
||||
"""Test AgentTableInputBlock with empty data."""
|
||||
block = AgentTableInputBlock()
|
||||
|
||||
input_data = block.Input(
|
||||
name="empty_table", column_headers=["Col1", "Col2"], value=[]
|
||||
)
|
||||
|
||||
output_data = []
|
||||
async for output_name, output_value in block.run(input_data):
|
||||
output_data.append((output_name, output_value))
|
||||
|
||||
assert len(output_data) == 1
|
||||
assert output_data[0][0] == "result"
|
||||
assert output_data[0][1] == []
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_table_input_with_missing_columns():
|
||||
"""Test AgentTableInputBlock passes through data with missing columns as-is."""
|
||||
block = AgentTableInputBlock()
|
||||
|
||||
input_data = block.Input(
|
||||
name="partial_table",
|
||||
column_headers=["Name", "Age", "City"],
|
||||
value=[
|
||||
{"Name": "John", "Age": "30"}, # Missing City
|
||||
{"Name": "Jane", "City": "London"}, # Missing Age
|
||||
{"Age": "35", "City": "Paris"}, # Missing Name
|
||||
],
|
||||
)
|
||||
|
||||
output_data = []
|
||||
async for output_name, output_value in block.run(input_data):
|
||||
output_data.append((output_name, output_value))
|
||||
|
||||
result = output_data[0][1]
|
||||
assert len(result) == 3
|
||||
|
||||
# Check data is passed through as-is
|
||||
assert result[0] == {"Name": "John", "Age": "30"}
|
||||
assert result[1] == {"Name": "Jane", "City": "London"}
|
||||
assert result[2] == {"Age": "35", "City": "Paris"}
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_table_input_none_value():
|
||||
"""Test AgentTableInputBlock with None value returns empty list."""
|
||||
block = AgentTableInputBlock()
|
||||
|
||||
input_data = block.Input(
|
||||
name="none_table", column_headers=["Name", "Age"], value=None
|
||||
)
|
||||
|
||||
output_data = []
|
||||
async for output_name, output_value in block.run(input_data):
|
||||
output_data.append((output_name, output_value))
|
||||
|
||||
assert len(output_data) == 1
|
||||
assert output_data[0][0] == "result"
|
||||
assert output_data[0][1] == []
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_table_input_with_default_headers():
|
||||
"""Test AgentTableInputBlock with default column headers."""
|
||||
block = AgentTableInputBlock()
|
||||
|
||||
# Don't specify column_headers, should use defaults
|
||||
input_data = block.Input(
|
||||
name="default_headers_table",
|
||||
value=[
|
||||
{"Column 1": "A", "Column 2": "B", "Column 3": "C"},
|
||||
{"Column 1": "D", "Column 2": "E", "Column 3": "F"},
|
||||
],
|
||||
)
|
||||
|
||||
output_data = []
|
||||
async for output_name, output_value in block.run(input_data):
|
||||
output_data.append((output_name, output_value))
|
||||
|
||||
assert len(output_data) == 1
|
||||
assert output_data[0][0] == "result"
|
||||
|
||||
result = output_data[0][1]
|
||||
assert len(result) == 2
|
||||
assert result[0]["Column 1"] == "A"
|
||||
assert result[1]["Column 3"] == "F"
|
||||
@@ -2,8 +2,6 @@ import re
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
import regex # Has built-in timeout support
|
||||
|
||||
from backend.data.block import Block, BlockCategory, BlockOutput, BlockSchema
|
||||
from backend.data.model import SchemaField
|
||||
from backend.util import json, text
|
||||
@@ -139,11 +137,6 @@ class ExtractTextInformationBlock(Block):
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
# Security fix: Add limits to prevent ReDoS and memory exhaustion
|
||||
MAX_TEXT_LENGTH = 1_000_000 # 1MB character limit
|
||||
MAX_MATCHES = 1000 # Maximum number of matches to prevent memory exhaustion
|
||||
MAX_MATCH_LENGTH = 10_000 # Maximum length per match
|
||||
|
||||
flags = 0
|
||||
if not input_data.case_sensitive:
|
||||
flags = flags | re.IGNORECASE
|
||||
@@ -155,85 +148,20 @@ class ExtractTextInformationBlock(Block):
|
||||
else:
|
||||
txt = json.dumps(input_data.text)
|
||||
|
||||
# Limit text size to prevent DoS
|
||||
if len(txt) > MAX_TEXT_LENGTH:
|
||||
txt = txt[:MAX_TEXT_LENGTH]
|
||||
|
||||
# Validate regex pattern to prevent dangerous patterns
|
||||
dangerous_patterns = [
|
||||
r".*\+.*\+", # Nested quantifiers
|
||||
r".*\*.*\*", # Nested quantifiers
|
||||
r"(?=.*\+)", # Lookahead with quantifier
|
||||
r"(?=.*\*)", # Lookahead with quantifier
|
||||
r"\(.+\)\+", # Group with nested quantifier
|
||||
r"\(.+\)\*", # Group with nested quantifier
|
||||
r"\([^)]+\+\)\+", # Nested quantifiers like (a+)+
|
||||
r"\([^)]+\*\)\*", # Nested quantifiers like (a*)*
|
||||
matches = [
|
||||
match.group(input_data.group)
|
||||
for match in re.finditer(input_data.pattern, txt, flags)
|
||||
if input_data.group <= len(match.groups())
|
||||
]
|
||||
|
||||
# Check if pattern is potentially dangerous
|
||||
is_dangerous = any(
|
||||
re.search(dangerous, input_data.pattern) for dangerous in dangerous_patterns
|
||||
)
|
||||
|
||||
# Use regex module with timeout for dangerous patterns
|
||||
# For safe patterns, use standard re module for compatibility
|
||||
try:
|
||||
matches = []
|
||||
match_count = 0
|
||||
|
||||
if is_dangerous:
|
||||
# Use regex module with timeout (5 seconds) for dangerous patterns
|
||||
# The regex module supports timeout parameter in finditer
|
||||
try:
|
||||
for match in regex.finditer(
|
||||
input_data.pattern, txt, flags=flags, timeout=5.0
|
||||
):
|
||||
if match_count >= MAX_MATCHES:
|
||||
break
|
||||
if input_data.group <= len(match.groups()):
|
||||
match_text = match.group(input_data.group)
|
||||
# Limit match length to prevent memory exhaustion
|
||||
if len(match_text) > MAX_MATCH_LENGTH:
|
||||
match_text = match_text[:MAX_MATCH_LENGTH]
|
||||
matches.append(match_text)
|
||||
match_count += 1
|
||||
except regex.error as e:
|
||||
# Timeout occurred or regex error
|
||||
if "timeout" in str(e).lower():
|
||||
# Timeout - return empty results
|
||||
pass
|
||||
else:
|
||||
# Other regex error
|
||||
raise
|
||||
else:
|
||||
# Use standard re module for non-dangerous patterns
|
||||
for match in re.finditer(input_data.pattern, txt, flags):
|
||||
if match_count >= MAX_MATCHES:
|
||||
break
|
||||
if input_data.group <= len(match.groups()):
|
||||
match_text = match.group(input_data.group)
|
||||
# Limit match length to prevent memory exhaustion
|
||||
if len(match_text) > MAX_MATCH_LENGTH:
|
||||
match_text = match_text[:MAX_MATCH_LENGTH]
|
||||
matches.append(match_text)
|
||||
match_count += 1
|
||||
|
||||
if not input_data.find_all:
|
||||
matches = matches[:1]
|
||||
|
||||
for match in matches:
|
||||
yield "positive", match
|
||||
if not matches:
|
||||
yield "negative", input_data.text
|
||||
|
||||
yield "matched_results", matches
|
||||
yield "matched_count", len(matches)
|
||||
except Exception:
|
||||
# Return empty results on any regex error
|
||||
if not input_data.find_all:
|
||||
matches = matches[:1]
|
||||
for match in matches:
|
||||
yield "positive", match
|
||||
if not matches:
|
||||
yield "negative", input_data.text
|
||||
yield "matched_results", []
|
||||
yield "matched_count", 0
|
||||
|
||||
yield "matched_results", matches
|
||||
yield "matched_count", len(matches)
|
||||
|
||||
|
||||
class FillTextTemplateBlock(Block):
|
||||
@@ -244,11 +172,6 @@ class FillTextTemplateBlock(Block):
|
||||
format: str = SchemaField(
|
||||
description="Template to format the text using `values`. Use Jinja2 syntax."
|
||||
)
|
||||
escape_html: bool = SchemaField(
|
||||
default=False,
|
||||
advanced=True,
|
||||
description="Whether to escape special characters in the inserted values to be HTML-safe. Enable for HTML output, disable for plain text.",
|
||||
)
|
||||
|
||||
class Output(BlockSchema):
|
||||
output: str = SchemaField(description="Formatted text")
|
||||
@@ -282,7 +205,6 @@ class FillTextTemplateBlock(Block):
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
formatter = text.TextFormatter(autoescape=input_data.escape_html)
|
||||
yield "output", formatter.format_string(input_data.format, input_data.values)
|
||||
|
||||
|
||||
|
||||
@@ -270,17 +270,13 @@ class GetCurrentDateBlock(Block):
|
||||
test_output=[
|
||||
(
|
||||
"date",
|
||||
lambda t: abs(
|
||||
datetime.now().date() - datetime.strptime(t, "%Y-%m-%d").date()
|
||||
)
|
||||
<= timedelta(days=8), # 7 days difference + 1 day error margin.
|
||||
lambda t: abs(datetime.now() - datetime.strptime(t, "%Y-%m-%d"))
|
||||
< timedelta(days=8), # 7 days difference + 1 day error margin.
|
||||
),
|
||||
(
|
||||
"date",
|
||||
lambda t: abs(
|
||||
datetime.now().date() - datetime.strptime(t, "%m/%d/%Y").date()
|
||||
)
|
||||
<= timedelta(days=8),
|
||||
lambda t: abs(datetime.now() - datetime.strptime(t, "%m/%d/%Y"))
|
||||
< timedelta(days=8),
|
||||
# 7 days difference + 1 day error margin.
|
||||
),
|
||||
(
|
||||
@@ -386,7 +382,7 @@ class GetCurrentDateAndTimeBlock(Block):
|
||||
lambda t: abs(
|
||||
datetime.now().date() - datetime.strptime(t, "%Y/%m/%d").date()
|
||||
)
|
||||
<= timedelta(days=1), # Date format only, no time component
|
||||
< timedelta(days=1), # Date format only, no time component
|
||||
),
|
||||
(
|
||||
"date_time",
|
||||
|
||||
@@ -26,14 +26,6 @@ class XMLParserBlock(Block):
|
||||
)
|
||||
|
||||
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
|
||||
# Security fix: Add size limits to prevent XML bomb attacks
|
||||
MAX_XML_SIZE = 10 * 1024 * 1024 # 10MB limit for XML input
|
||||
|
||||
if len(input_data.input_xml) > MAX_XML_SIZE:
|
||||
raise ValueError(
|
||||
f"XML too large: {len(input_data.input_xml)} bytes > {MAX_XML_SIZE} bytes"
|
||||
)
|
||||
|
||||
try:
|
||||
tokens = tokenize(input_data.input_xml)
|
||||
parser = Parser(tokens)
|
||||
|
||||
@@ -9,7 +9,6 @@ from prisma.models import APIKey as PrismaAPIKey
|
||||
from prisma.types import APIKeyWhereUniqueInput
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from backend.data.includes import MAX_USER_API_KEYS_FETCH
|
||||
from backend.util.exceptions import NotAuthorizedError, NotFoundError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -179,13 +178,9 @@ async def revoke_api_key(key_id: str, user_id: str) -> APIKeyInfo:
|
||||
return APIKeyInfo.from_db(updated_api_key)
|
||||
|
||||
|
||||
async def list_user_api_keys(
|
||||
user_id: str, limit: int = MAX_USER_API_KEYS_FETCH
|
||||
) -> list[APIKeyInfo]:
|
||||
async def list_user_api_keys(user_id: str) -> list[APIKeyInfo]:
|
||||
api_keys = await PrismaAPIKey.prisma().find_many(
|
||||
where={"userId": user_id},
|
||||
order={"createdAt": "desc"},
|
||||
take=limit,
|
||||
where={"userId": user_id}, order={"createdAt": "desc"}
|
||||
)
|
||||
|
||||
return [APIKeyInfo.from_db(key) for key in api_keys]
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import functools
|
||||
import inspect
|
||||
import logging
|
||||
import os
|
||||
@@ -20,7 +21,6 @@ from typing import (
|
||||
|
||||
import jsonref
|
||||
import jsonschema
|
||||
from autogpt_libs.utils.cache import cached
|
||||
from prisma.models import AgentBlock
|
||||
from prisma.types import AgentBlockCreateInput
|
||||
from pydantic import BaseModel
|
||||
@@ -722,7 +722,7 @@ def get_block(block_id: str) -> Block[BlockSchema, BlockSchema] | None:
|
||||
return cls() if cls else None
|
||||
|
||||
|
||||
@cached()
|
||||
@functools.cache
|
||||
def get_webhook_block_ids() -> Sequence[str]:
|
||||
return [
|
||||
id
|
||||
@@ -731,7 +731,7 @@ def get_webhook_block_ids() -> Sequence[str]:
|
||||
]
|
||||
|
||||
|
||||
@cached()
|
||||
@functools.cache
|
||||
def get_io_block_ids() -> Sequence[str]:
|
||||
return [
|
||||
id
|
||||
|
||||
@@ -69,8 +69,6 @@ MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.CLAUDE_4_1_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_OPUS: 21,
|
||||
LlmModel.CLAUDE_4_SONNET: 5,
|
||||
LlmModel.CLAUDE_4_5_HAIKU: 4,
|
||||
LlmModel.CLAUDE_4_5_SONNET: 9,
|
||||
LlmModel.CLAUDE_3_7_SONNET: 5,
|
||||
LlmModel.CLAUDE_3_5_SONNET: 4,
|
||||
LlmModel.CLAUDE_3_5_HAIKU: 1, # $0.80 / $4.00
|
||||
|
||||
@@ -23,7 +23,6 @@ from pydantic import BaseModel
|
||||
|
||||
from backend.data import db
|
||||
from backend.data.block_cost_config import BLOCK_COSTS
|
||||
from backend.data.includes import MAX_CREDIT_REFUND_REQUESTS_FETCH
|
||||
from backend.data.model import (
|
||||
AutoTopUpConfig,
|
||||
RefundRequest,
|
||||
@@ -906,9 +905,7 @@ class UserCredit(UserCreditBase):
|
||||
),
|
||||
)
|
||||
|
||||
async def get_refund_requests(
|
||||
self, user_id: str, limit: int = MAX_CREDIT_REFUND_REQUESTS_FETCH
|
||||
) -> list[RefundRequest]:
|
||||
async def get_refund_requests(self, user_id: str) -> list[RefundRequest]:
|
||||
return [
|
||||
RefundRequest(
|
||||
id=r.id,
|
||||
@@ -924,7 +921,6 @@ class UserCredit(UserCreditBase):
|
||||
for r in await CreditRefundRequest.prisma().find_many(
|
||||
where={"userId": user_id},
|
||||
order={"createdAt": "desc"},
|
||||
take=limit,
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
@@ -83,7 +83,7 @@ async def disconnect():
|
||||
|
||||
|
||||
# Transaction timeout constant (in milliseconds)
|
||||
TRANSACTION_TIMEOUT = 30000 # 30 seconds - Increased from 15s to prevent timeout errors during graph creation under load
|
||||
TRANSACTION_TIMEOUT = 15000 # 15 seconds - Increased from 5s to prevent timeout errors
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
|
||||
@@ -1,284 +0,0 @@
|
||||
"""
|
||||
Utilities for handling dynamic field names with special delimiters.
|
||||
|
||||
Dynamic fields allow graphs to connect complex data structures using special delimiters:
|
||||
- _#_ for dictionary keys (e.g., "values_#_name" → values["name"])
|
||||
- _$_ for list indices (e.g., "items_$_0" → items[0])
|
||||
- _@_ for object attributes (e.g., "obj_@_attr" → obj.attr)
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
from backend.util.mock import MockObject
|
||||
|
||||
# Dynamic field delimiters
|
||||
LIST_SPLIT = "_$_"
|
||||
DICT_SPLIT = "_#_"
|
||||
OBJC_SPLIT = "_@_"
|
||||
|
||||
DYNAMIC_DELIMITERS = (LIST_SPLIT, DICT_SPLIT, OBJC_SPLIT)
|
||||
|
||||
|
||||
def extract_base_field_name(field_name: str) -> str:
|
||||
"""
|
||||
Extract the base field name from a dynamic field name by removing all dynamic suffixes.
|
||||
|
||||
Examples:
|
||||
extract_base_field_name("values_#_name") → "values"
|
||||
extract_base_field_name("items_$_0") → "items"
|
||||
extract_base_field_name("obj_@_attr") → "obj"
|
||||
extract_base_field_name("regular_field") → "regular_field"
|
||||
|
||||
Args:
|
||||
field_name: The field name that may contain dynamic delimiters
|
||||
|
||||
Returns:
|
||||
The base field name without any dynamic suffixes
|
||||
"""
|
||||
base_name = field_name
|
||||
for delimiter in DYNAMIC_DELIMITERS:
|
||||
if delimiter in base_name:
|
||||
base_name = base_name.split(delimiter)[0]
|
||||
return base_name
|
||||
|
||||
|
||||
def is_dynamic_field(field_name: str) -> bool:
|
||||
"""
|
||||
Check if a field name contains dynamic delimiters.
|
||||
|
||||
Args:
|
||||
field_name: The field name to check
|
||||
|
||||
Returns:
|
||||
True if the field contains any dynamic delimiters, False otherwise
|
||||
"""
|
||||
return any(delimiter in field_name for delimiter in DYNAMIC_DELIMITERS)
|
||||
|
||||
|
||||
def get_dynamic_field_description(field_name: str) -> str:
|
||||
"""
|
||||
Generate a description for a dynamic field based on its structure.
|
||||
|
||||
Args:
|
||||
field_name: The full dynamic field name (e.g., "values_#_name")
|
||||
|
||||
Returns:
|
||||
A descriptive string explaining what this dynamic field represents
|
||||
"""
|
||||
base_name = extract_base_field_name(field_name)
|
||||
|
||||
if DICT_SPLIT in field_name:
|
||||
# Extract the key part after _#_
|
||||
parts = field_name.split(DICT_SPLIT)
|
||||
if len(parts) > 1:
|
||||
key = parts[1].split("_")[0] if "_" in parts[1] else parts[1]
|
||||
return f"Dictionary field '{key}' for base field '{base_name}' ({base_name}['{key}'])"
|
||||
elif LIST_SPLIT in field_name:
|
||||
# Extract the index part after _$_
|
||||
parts = field_name.split(LIST_SPLIT)
|
||||
if len(parts) > 1:
|
||||
index = parts[1].split("_")[0] if "_" in parts[1] else parts[1]
|
||||
return (
|
||||
f"List item {index} for base field '{base_name}' ({base_name}[{index}])"
|
||||
)
|
||||
elif OBJC_SPLIT in field_name:
|
||||
# Extract the attribute part after _@_
|
||||
parts = field_name.split(OBJC_SPLIT)
|
||||
if len(parts) > 1:
|
||||
# Get the full attribute name (everything after _@_)
|
||||
attr = parts[1]
|
||||
return f"Object attribute '{attr}' for base field '{base_name}' ({base_name}.{attr})"
|
||||
|
||||
return f"Value for {field_name}"
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# Dynamic field parsing and merging utilities
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
|
||||
def _next_delim(s: str) -> tuple[str | None, int]:
|
||||
"""
|
||||
Return the *earliest* delimiter appearing in `s` and its index.
|
||||
|
||||
If none present → (None, -1).
|
||||
"""
|
||||
first: str | None = None
|
||||
pos = len(s) # sentinel: larger than any real index
|
||||
for d in DYNAMIC_DELIMITERS:
|
||||
i = s.find(d)
|
||||
if 0 <= i < pos:
|
||||
first, pos = d, i
|
||||
return first, (pos if first else -1)
|
||||
|
||||
|
||||
def _tokenise(path: str) -> list[tuple[str, str]] | None:
|
||||
"""
|
||||
Convert the raw path string (starting with a delimiter) into
|
||||
[ (delimiter, identifier), … ] or None if the syntax is malformed.
|
||||
"""
|
||||
tokens: list[tuple[str, str]] = []
|
||||
while path:
|
||||
# 1. Which delimiter starts this chunk?
|
||||
delim = next((d for d in DYNAMIC_DELIMITERS if path.startswith(d)), None)
|
||||
if delim is None:
|
||||
return None # invalid syntax
|
||||
|
||||
# 2. Slice off the delimiter, then up to the next delimiter (or EOS)
|
||||
path = path[len(delim) :]
|
||||
nxt_delim, pos = _next_delim(path)
|
||||
token, path = (
|
||||
path[: pos if pos != -1 else len(path)],
|
||||
path[pos if pos != -1 else len(path) :],
|
||||
)
|
||||
if token == "":
|
||||
return None # empty identifier is invalid
|
||||
tokens.append((delim, token))
|
||||
return tokens
|
||||
|
||||
|
||||
def parse_execution_output(output: tuple[str, Any], name: str) -> Any:
|
||||
"""
|
||||
Retrieve a nested value out of `output` using the flattened *name*.
|
||||
|
||||
On any failure (wrong name, wrong type, out-of-range, bad path)
|
||||
returns **None**.
|
||||
|
||||
Args:
|
||||
output: Tuple of (base_name, data) representing a block output entry
|
||||
name: The flattened field name to extract from the output data
|
||||
|
||||
Returns:
|
||||
The value at the specified path, or None if not found/invalid
|
||||
"""
|
||||
base_name, data = output
|
||||
|
||||
# Exact match → whole object
|
||||
if name == base_name:
|
||||
return data
|
||||
|
||||
# Must start with the expected name
|
||||
if not name.startswith(base_name):
|
||||
return None
|
||||
path = name[len(base_name) :]
|
||||
if not path:
|
||||
return None # nothing left to parse
|
||||
|
||||
tokens = _tokenise(path)
|
||||
if tokens is None:
|
||||
return None
|
||||
|
||||
cur: Any = data
|
||||
for delim, ident in tokens:
|
||||
if delim == LIST_SPLIT:
|
||||
# list[index]
|
||||
try:
|
||||
idx = int(ident)
|
||||
except ValueError:
|
||||
return None
|
||||
if not isinstance(cur, list) or idx >= len(cur):
|
||||
return None
|
||||
cur = cur[idx]
|
||||
|
||||
elif delim == DICT_SPLIT:
|
||||
if not isinstance(cur, dict) or ident not in cur:
|
||||
return None
|
||||
cur = cur[ident]
|
||||
|
||||
elif delim == OBJC_SPLIT:
|
||||
if not hasattr(cur, ident):
|
||||
return None
|
||||
cur = getattr(cur, ident)
|
||||
|
||||
else:
|
||||
return None # unreachable
|
||||
|
||||
return cur
|
||||
|
||||
|
||||
def _assign(container: Any, tokens: list[tuple[str, str]], value: Any) -> Any:
|
||||
"""
|
||||
Recursive helper that *returns* the (possibly new) container with
|
||||
`value` assigned along the remaining `tokens` path.
|
||||
"""
|
||||
if not tokens:
|
||||
return value # leaf reached
|
||||
|
||||
delim, ident = tokens[0]
|
||||
rest = tokens[1:]
|
||||
|
||||
# ---------- list ----------
|
||||
if delim == LIST_SPLIT:
|
||||
try:
|
||||
idx = int(ident)
|
||||
except ValueError:
|
||||
raise ValueError("index must be an integer")
|
||||
|
||||
if container is None:
|
||||
container = []
|
||||
elif not isinstance(container, list):
|
||||
container = list(container) if hasattr(container, "__iter__") else []
|
||||
|
||||
while len(container) <= idx:
|
||||
container.append(None)
|
||||
container[idx] = _assign(container[idx], rest, value)
|
||||
return container
|
||||
|
||||
# ---------- dict ----------
|
||||
if delim == DICT_SPLIT:
|
||||
if container is None:
|
||||
container = {}
|
||||
elif not isinstance(container, dict):
|
||||
container = dict(container) if hasattr(container, "items") else {}
|
||||
container[ident] = _assign(container.get(ident), rest, value)
|
||||
return container
|
||||
|
||||
# ---------- object ----------
|
||||
if delim == OBJC_SPLIT:
|
||||
if container is None:
|
||||
container = MockObject()
|
||||
elif not hasattr(container, "__dict__"):
|
||||
# If it's not an object, create a new one
|
||||
container = MockObject()
|
||||
setattr(
|
||||
container,
|
||||
ident,
|
||||
_assign(getattr(container, ident, None), rest, value),
|
||||
)
|
||||
return container
|
||||
|
||||
return value # unreachable
|
||||
|
||||
|
||||
def merge_execution_input(data: dict[str, Any]) -> dict[str, Any]:
|
||||
"""
|
||||
Reconstruct nested objects from a *flattened* dict of key → value.
|
||||
|
||||
Raises ValueError on syntactically invalid list indices.
|
||||
|
||||
Args:
|
||||
data: Dictionary with potentially flattened dynamic field keys
|
||||
|
||||
Returns:
|
||||
Dictionary with nested objects reconstructed from flattened keys
|
||||
"""
|
||||
merged: dict[str, Any] = {}
|
||||
|
||||
for key, value in data.items():
|
||||
# Split off the base name (before the first delimiter, if any)
|
||||
delim, pos = _next_delim(key)
|
||||
if delim is None:
|
||||
merged[key] = value
|
||||
continue
|
||||
|
||||
base, path = key[:pos], key[pos:]
|
||||
tokens = _tokenise(path)
|
||||
if tokens is None:
|
||||
# Invalid key; treat as scalar under the raw name
|
||||
merged[key] = value
|
||||
continue
|
||||
|
||||
merged[base] = _assign(merged.get(base), tokens, value)
|
||||
|
||||
data.update(merged)
|
||||
return data
|
||||
@@ -38,8 +38,8 @@ from prisma.types import (
|
||||
from pydantic import BaseModel, ConfigDict, JsonValue, ValidationError
|
||||
from pydantic.fields import Field
|
||||
|
||||
from backend.server.v2.store.exceptions import DatabaseError
|
||||
from backend.util import type as type_utils
|
||||
from backend.util.exceptions import DatabaseError
|
||||
from backend.util.json import SafeJson
|
||||
from backend.util.models import Pagination
|
||||
from backend.util.retry import func_retry
|
||||
@@ -92,31 +92,6 @@ ExecutionStatus = AgentExecutionStatus
|
||||
NodeInputMask = Mapping[str, JsonValue]
|
||||
NodesInputMasks = Mapping[str, NodeInputMask]
|
||||
|
||||
# dest: source
|
||||
VALID_STATUS_TRANSITIONS = {
|
||||
ExecutionStatus.QUEUED: [
|
||||
ExecutionStatus.INCOMPLETE,
|
||||
],
|
||||
ExecutionStatus.RUNNING: [
|
||||
ExecutionStatus.INCOMPLETE,
|
||||
ExecutionStatus.QUEUED,
|
||||
ExecutionStatus.TERMINATED, # For resuming halted execution
|
||||
],
|
||||
ExecutionStatus.COMPLETED: [
|
||||
ExecutionStatus.RUNNING,
|
||||
],
|
||||
ExecutionStatus.FAILED: [
|
||||
ExecutionStatus.INCOMPLETE,
|
||||
ExecutionStatus.QUEUED,
|
||||
ExecutionStatus.RUNNING,
|
||||
],
|
||||
ExecutionStatus.TERMINATED: [
|
||||
ExecutionStatus.INCOMPLETE,
|
||||
ExecutionStatus.QUEUED,
|
||||
ExecutionStatus.RUNNING,
|
||||
],
|
||||
}
|
||||
|
||||
|
||||
class GraphExecutionMeta(BaseDbModel):
|
||||
id: str # type: ignore # Override base class to make this required
|
||||
@@ -130,8 +105,6 @@ class GraphExecutionMeta(BaseDbModel):
|
||||
status: ExecutionStatus
|
||||
started_at: datetime
|
||||
ended_at: datetime
|
||||
is_shared: bool = False
|
||||
share_token: Optional[str] = None
|
||||
|
||||
class Stats(BaseModel):
|
||||
model_config = ConfigDict(
|
||||
@@ -248,8 +221,6 @@ class GraphExecutionMeta(BaseDbModel):
|
||||
if stats
|
||||
else None
|
||||
),
|
||||
is_shared=_graph_exec.isShared,
|
||||
share_token=_graph_exec.shareToken,
|
||||
)
|
||||
|
||||
|
||||
@@ -478,48 +449,6 @@ async def get_graph_executions(
|
||||
return [GraphExecutionMeta.from_db(execution) for execution in executions]
|
||||
|
||||
|
||||
async def get_graph_executions_count(
|
||||
user_id: Optional[str] = None,
|
||||
graph_id: Optional[str] = None,
|
||||
statuses: Optional[list[ExecutionStatus]] = None,
|
||||
created_time_gte: Optional[datetime] = None,
|
||||
created_time_lte: Optional[datetime] = None,
|
||||
) -> int:
|
||||
"""
|
||||
Get count of graph executions with optional filters.
|
||||
|
||||
Args:
|
||||
user_id: Optional user ID to filter by
|
||||
graph_id: Optional graph ID to filter by
|
||||
statuses: Optional list of execution statuses to filter by
|
||||
created_time_gte: Optional minimum creation time
|
||||
created_time_lte: Optional maximum creation time
|
||||
|
||||
Returns:
|
||||
Count of matching graph executions
|
||||
"""
|
||||
where_filter: AgentGraphExecutionWhereInput = {
|
||||
"isDeleted": False,
|
||||
}
|
||||
|
||||
if user_id:
|
||||
where_filter["userId"] = user_id
|
||||
|
||||
if graph_id:
|
||||
where_filter["agentGraphId"] = graph_id
|
||||
|
||||
if created_time_gte or created_time_lte:
|
||||
where_filter["createdAt"] = {
|
||||
"gte": created_time_gte or datetime.min.replace(tzinfo=timezone.utc),
|
||||
"lte": created_time_lte or datetime.max.replace(tzinfo=timezone.utc),
|
||||
}
|
||||
if statuses:
|
||||
where_filter["OR"] = [{"executionStatus": status} for status in statuses]
|
||||
|
||||
count = await AgentGraphExecution.prisma().count(where=where_filter)
|
||||
return count
|
||||
|
||||
|
||||
class GraphExecutionsPaginated(BaseModel):
|
||||
"""Response schema for paginated graph executions."""
|
||||
|
||||
@@ -651,7 +580,7 @@ async def create_graph_execution(
|
||||
data={
|
||||
"agentGraphId": graph_id,
|
||||
"agentGraphVersion": graph_version,
|
||||
"executionStatus": ExecutionStatus.INCOMPLETE,
|
||||
"executionStatus": ExecutionStatus.QUEUED,
|
||||
"inputs": SafeJson(inputs),
|
||||
"credentialInputs": (
|
||||
SafeJson(credential_inputs) if credential_inputs else Json({})
|
||||
@@ -798,11 +727,6 @@ async def update_graph_execution_stats(
|
||||
status: ExecutionStatus | None = None,
|
||||
stats: GraphExecutionStats | None = None,
|
||||
) -> GraphExecution | None:
|
||||
if not status and not stats:
|
||||
raise ValueError(
|
||||
f"Must provide either status or stats to update for execution {graph_exec_id}"
|
||||
)
|
||||
|
||||
update_data: AgentGraphExecutionUpdateManyMutationInput = {}
|
||||
|
||||
if stats:
|
||||
@@ -814,25 +738,20 @@ async def update_graph_execution_stats(
|
||||
if status:
|
||||
update_data["executionStatus"] = status
|
||||
|
||||
where_clause: AgentGraphExecutionWhereInput = {"id": graph_exec_id}
|
||||
|
||||
if status:
|
||||
if allowed_from := VALID_STATUS_TRANSITIONS.get(status, []):
|
||||
# Add OR clause to check if current status is one of the allowed source statuses
|
||||
where_clause["AND"] = [
|
||||
{"id": graph_exec_id},
|
||||
{"OR": [{"executionStatus": s} for s in allowed_from]},
|
||||
]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Status {status} cannot be set via update for execution {graph_exec_id}. "
|
||||
f"This status can only be set at creation or is not a valid target status."
|
||||
)
|
||||
|
||||
await AgentGraphExecution.prisma().update_many(
|
||||
where=where_clause,
|
||||
updated_count = await AgentGraphExecution.prisma().update_many(
|
||||
where={
|
||||
"id": graph_exec_id,
|
||||
"OR": [
|
||||
{"executionStatus": ExecutionStatus.RUNNING},
|
||||
{"executionStatus": ExecutionStatus.QUEUED},
|
||||
# Terminated graph can be resumed.
|
||||
{"executionStatus": ExecutionStatus.TERMINATED},
|
||||
],
|
||||
},
|
||||
data=update_data,
|
||||
)
|
||||
if updated_count == 0:
|
||||
return None
|
||||
|
||||
graph_exec = await AgentGraphExecution.prisma().find_unique_or_raise(
|
||||
where={"id": graph_exec_id},
|
||||
@@ -840,7 +759,6 @@ async def update_graph_execution_stats(
|
||||
[*get_io_block_ids(), *get_webhook_block_ids()]
|
||||
),
|
||||
)
|
||||
|
||||
return GraphExecution.from_db(graph_exec)
|
||||
|
||||
|
||||
@@ -1067,18 +985,6 @@ class NodeExecutionEvent(NodeExecutionResult):
|
||||
)
|
||||
|
||||
|
||||
class SharedExecutionResponse(BaseModel):
|
||||
"""Public-safe response for shared executions"""
|
||||
|
||||
id: str
|
||||
graph_name: str
|
||||
graph_description: Optional[str]
|
||||
status: ExecutionStatus
|
||||
created_at: datetime
|
||||
outputs: CompletedBlockOutput # Only the final outputs, no intermediate data
|
||||
# Deliberately exclude: user_id, inputs, credentials, node details
|
||||
|
||||
|
||||
ExecutionEvent = Annotated[
|
||||
GraphExecutionEvent | NodeExecutionEvent, Field(discriminator="event_type")
|
||||
]
|
||||
@@ -1256,98 +1162,3 @@ async def get_block_error_stats(
|
||||
)
|
||||
for row in result
|
||||
]
|
||||
|
||||
|
||||
async def update_graph_execution_share_status(
|
||||
execution_id: str,
|
||||
user_id: str,
|
||||
is_shared: bool,
|
||||
share_token: str | None,
|
||||
shared_at: datetime | None,
|
||||
) -> None:
|
||||
"""Update the sharing status of a graph execution."""
|
||||
await AgentGraphExecution.prisma().update(
|
||||
where={"id": execution_id},
|
||||
data={
|
||||
"isShared": is_shared,
|
||||
"shareToken": share_token,
|
||||
"sharedAt": shared_at,
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
async def get_graph_execution_by_share_token(
|
||||
share_token: str,
|
||||
) -> SharedExecutionResponse | None:
|
||||
"""Get a shared execution with limited public-safe data."""
|
||||
execution = await AgentGraphExecution.prisma().find_first(
|
||||
where={
|
||||
"shareToken": share_token,
|
||||
"isShared": True,
|
||||
"isDeleted": False,
|
||||
},
|
||||
include={
|
||||
"AgentGraph": True,
|
||||
"NodeExecutions": {
|
||||
"include": {
|
||||
"Output": True,
|
||||
"Node": {
|
||||
"include": {
|
||||
"AgentBlock": True,
|
||||
}
|
||||
},
|
||||
},
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
if not execution:
|
||||
return None
|
||||
|
||||
# Extract outputs from OUTPUT blocks only (consistent with GraphExecution.from_db)
|
||||
outputs: CompletedBlockOutput = defaultdict(list)
|
||||
if execution.NodeExecutions:
|
||||
for node_exec in execution.NodeExecutions:
|
||||
if node_exec.Node and node_exec.Node.agentBlockId:
|
||||
# Get the block definition to check its type
|
||||
block = get_block(node_exec.Node.agentBlockId)
|
||||
|
||||
if block and block.block_type == BlockType.OUTPUT:
|
||||
# For OUTPUT blocks, the data is stored in executionData or Input
|
||||
# The executionData contains the structured input with 'name' and 'value' fields
|
||||
if hasattr(node_exec, "executionData") and node_exec.executionData:
|
||||
exec_data = type_utils.convert(
|
||||
node_exec.executionData, dict[str, Any]
|
||||
)
|
||||
if "name" in exec_data:
|
||||
name = exec_data["name"]
|
||||
value = exec_data.get("value")
|
||||
outputs[name].append(value)
|
||||
elif node_exec.Input:
|
||||
# Build input_data from Input relation
|
||||
input_data = {}
|
||||
for data in node_exec.Input:
|
||||
if data.name and data.data is not None:
|
||||
input_data[data.name] = type_utils.convert(
|
||||
data.data, JsonValue
|
||||
)
|
||||
|
||||
if "name" in input_data:
|
||||
name = input_data["name"]
|
||||
value = input_data.get("value")
|
||||
outputs[name].append(value)
|
||||
|
||||
return SharedExecutionResponse(
|
||||
id=execution.id,
|
||||
graph_name=(
|
||||
execution.AgentGraph.name
|
||||
if (execution.AgentGraph and execution.AgentGraph.name)
|
||||
else "Untitled Agent"
|
||||
),
|
||||
graph_description=(
|
||||
execution.AgentGraph.description if execution.AgentGraph else None
|
||||
),
|
||||
status=ExecutionStatus(execution.executionStatus),
|
||||
created_at=execution.createdAt,
|
||||
outputs=outputs,
|
||||
)
|
||||
|
||||
@@ -7,7 +7,7 @@ from prisma.enums import AgentExecutionStatus
|
||||
from backend.data.execution import get_graph_executions
|
||||
from backend.data.graph import get_graph_metadata
|
||||
from backend.data.model import UserExecutionSummaryStats
|
||||
from backend.util.exceptions import DatabaseError
|
||||
from backend.server.v2.store.exceptions import DatabaseError
|
||||
from backend.util.logging import TruncatedLogger
|
||||
|
||||
logger = TruncatedLogger(logging.getLogger(__name__), prefix="[SummaryData]")
|
||||
|
||||
@@ -1,7 +1,6 @@
|
||||
import logging
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timezone
|
||||
from typing import TYPE_CHECKING, Any, Literal, Optional, cast
|
||||
|
||||
from prisma.enums import SubmissionStatus
|
||||
@@ -20,8 +19,6 @@ from backend.blocks.agent import AgentExecutorBlock
|
||||
from backend.blocks.io import AgentInputBlock, AgentOutputBlock
|
||||
from backend.blocks.llm import LlmModel
|
||||
from backend.data.db import prisma as db
|
||||
from backend.data.dynamic_fields import extract_base_field_name
|
||||
from backend.data.includes import MAX_GRAPH_VERSIONS_FETCH
|
||||
from backend.data.model import (
|
||||
CredentialsField,
|
||||
CredentialsFieldInfo,
|
||||
@@ -31,17 +28,8 @@ from backend.data.model import (
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util import type as type_utils
|
||||
from backend.util.json import SafeJson
|
||||
from backend.util.models import Pagination
|
||||
|
||||
from .block import (
|
||||
Block,
|
||||
BlockInput,
|
||||
BlockSchema,
|
||||
BlockType,
|
||||
EmptySchema,
|
||||
get_block,
|
||||
get_blocks,
|
||||
)
|
||||
from .block import Block, BlockInput, BlockSchema, BlockType, get_block, get_blocks
|
||||
from .db import BaseDbModel, query_raw_with_schema, transaction
|
||||
from .includes import AGENT_GRAPH_INCLUDE, AGENT_NODE_INCLUDE
|
||||
|
||||
@@ -82,15 +70,12 @@ class Node(BaseDbModel):
|
||||
output_links: list[Link] = []
|
||||
|
||||
@property
|
||||
def block(self) -> "Block[BlockSchema, BlockSchema] | _UnknownBlockBase":
|
||||
"""Get the block for this node. Returns UnknownBlock if block is deleted/missing."""
|
||||
def block(self) -> Block[BlockSchema, BlockSchema]:
|
||||
block = get_block(self.block_id)
|
||||
if not block:
|
||||
# Log warning but don't raise exception - return a placeholder block for deleted blocks
|
||||
logger.warning(
|
||||
f"Block #{self.block_id} does not exist for Node #{self.id} (deleted/missing block), using UnknownBlock"
|
||||
raise ValueError(
|
||||
f"Block #{self.block_id} does not exist -> Node #{self.id} is invalid"
|
||||
)
|
||||
return _UnknownBlockBase(self.block_id)
|
||||
return block
|
||||
|
||||
|
||||
@@ -129,20 +114,17 @@ class NodeModel(Node):
|
||||
Returns a copy of the node model, stripped of any non-transferable properties
|
||||
"""
|
||||
stripped_node = self.model_copy(deep=True)
|
||||
|
||||
# Remove credentials and other (possible) secrets from node input
|
||||
# Remove credentials from node input
|
||||
if stripped_node.input_default:
|
||||
stripped_node.input_default = NodeModel._filter_secrets_from_node_input(
|
||||
stripped_node.input_default, self.block.input_schema.jsonschema()
|
||||
)
|
||||
|
||||
# Remove default secret value from secret input nodes
|
||||
if (
|
||||
stripped_node.block.block_type == BlockType.INPUT
|
||||
and stripped_node.input_default.get("secret", False) is True
|
||||
and "value" in stripped_node.input_default
|
||||
):
|
||||
del stripped_node.input_default["value"]
|
||||
stripped_node.input_default["value"] = ""
|
||||
|
||||
# Remove webhook info
|
||||
stripped_node.webhook_id = None
|
||||
@@ -159,10 +141,8 @@ class NodeModel(Node):
|
||||
result = {}
|
||||
for key, value in input_data.items():
|
||||
field_schema: dict | None = field_schemas.get(key)
|
||||
if (field_schema and field_schema.get("secret", False)) or (
|
||||
any(sensitive_key in key.lower() for sensitive_key in sensitive_keys)
|
||||
# Prevent removing `secret` flag on input nodes
|
||||
and type(value) is not bool
|
||||
if (field_schema and field_schema.get("secret", False)) or any(
|
||||
sensitive_key in key.lower() for sensitive_key in sensitive_keys
|
||||
):
|
||||
# This is a secret value -> filter this key-value pair out
|
||||
continue
|
||||
@@ -180,7 +160,6 @@ class BaseGraph(BaseDbModel):
|
||||
is_active: bool = True
|
||||
name: str
|
||||
description: str
|
||||
instructions: str | None = None
|
||||
recommended_schedule_cron: str | None = None
|
||||
nodes: list[Node] = []
|
||||
links: list[Link] = []
|
||||
@@ -402,8 +381,6 @@ class GraphModel(Graph):
|
||||
user_id: str
|
||||
nodes: list[NodeModel] = [] # type: ignore
|
||||
|
||||
created_at: datetime
|
||||
|
||||
@property
|
||||
def starting_nodes(self) -> list[NodeModel]:
|
||||
outbound_nodes = {link.sink_id for link in self.links}
|
||||
@@ -416,10 +393,6 @@ class GraphModel(Graph):
|
||||
if node.id not in outbound_nodes or node.id in input_nodes
|
||||
]
|
||||
|
||||
@property
|
||||
def webhook_input_node(self) -> NodeModel | None: # type: ignore
|
||||
return cast(NodeModel, super().webhook_input_node)
|
||||
|
||||
def meta(self) -> "GraphMeta":
|
||||
"""
|
||||
Returns a GraphMeta object with metadata about the graph.
|
||||
@@ -721,11 +694,9 @@ class GraphModel(Graph):
|
||||
version=graph.version,
|
||||
forked_from_id=graph.forkedFromId,
|
||||
forked_from_version=graph.forkedFromVersion,
|
||||
created_at=graph.createdAt,
|
||||
is_active=graph.isActive,
|
||||
name=graph.name or "",
|
||||
description=graph.description or "",
|
||||
instructions=graph.instructions,
|
||||
recommended_schedule_cron=graph.recommendedScheduleCron,
|
||||
nodes=[NodeModel.from_db(node, for_export) for node in graph.Nodes or []],
|
||||
links=list(
|
||||
@@ -747,7 +718,7 @@ def _is_tool_pin(name: str) -> bool:
|
||||
|
||||
|
||||
def _sanitize_pin_name(name: str) -> str:
|
||||
sanitized_name = extract_base_field_name(name)
|
||||
sanitized_name = name.split("_#_")[0].split("_@_")[0].split("_$_")[0]
|
||||
if _is_tool_pin(sanitized_name):
|
||||
return "tools"
|
||||
return sanitized_name
|
||||
@@ -765,13 +736,6 @@ class GraphMeta(Graph):
|
||||
return GraphMeta(**graph.model_dump())
|
||||
|
||||
|
||||
class GraphsPaginated(BaseModel):
|
||||
"""Response schema for paginated graphs."""
|
||||
|
||||
graphs: list[GraphMeta]
|
||||
pagination: Pagination
|
||||
|
||||
|
||||
# --------------------- CRUD functions --------------------- #
|
||||
|
||||
|
||||
@@ -800,42 +764,31 @@ async def set_node_webhook(node_id: str, webhook_id: str | None) -> NodeModel:
|
||||
return NodeModel.from_db(node)
|
||||
|
||||
|
||||
async def list_graphs_paginated(
|
||||
async def list_graphs(
|
||||
user_id: str,
|
||||
page: int = 1,
|
||||
page_size: int = 25,
|
||||
filter_by: Literal["active"] | None = "active",
|
||||
) -> GraphsPaginated:
|
||||
) -> list[GraphMeta]:
|
||||
"""
|
||||
Retrieves paginated graph metadata objects.
|
||||
Retrieves graph metadata objects.
|
||||
Default behaviour is to get all currently active graphs.
|
||||
|
||||
Args:
|
||||
user_id: The ID of the user that owns the graphs.
|
||||
page: Page number (1-based).
|
||||
page_size: Number of graphs per page.
|
||||
filter_by: An optional filter to either select graphs.
|
||||
user_id: The ID of the user that owns the graph.
|
||||
|
||||
Returns:
|
||||
GraphsPaginated: Paginated list of graph metadata.
|
||||
list[GraphMeta]: A list of objects representing the retrieved graphs.
|
||||
"""
|
||||
where_clause: AgentGraphWhereInput = {"userId": user_id}
|
||||
|
||||
if filter_by == "active":
|
||||
where_clause["isActive"] = True
|
||||
|
||||
# Get total count
|
||||
total_count = await AgentGraph.prisma().count(where=where_clause)
|
||||
total_pages = (total_count + page_size - 1) // page_size
|
||||
|
||||
# Get paginated results
|
||||
offset = (page - 1) * page_size
|
||||
graphs = await AgentGraph.prisma().find_many(
|
||||
where=where_clause,
|
||||
distinct=["id"],
|
||||
order={"version": "desc"},
|
||||
include=AGENT_GRAPH_INCLUDE,
|
||||
skip=offset,
|
||||
take=page_size,
|
||||
)
|
||||
|
||||
graph_models: list[GraphMeta] = []
|
||||
@@ -849,15 +802,7 @@ async def list_graphs_paginated(
|
||||
logger.error(f"Error processing graph {graph.id}: {e}")
|
||||
continue
|
||||
|
||||
return GraphsPaginated(
|
||||
graphs=graph_models,
|
||||
pagination=Pagination(
|
||||
total_items=total_count,
|
||||
total_pages=total_pages,
|
||||
current_page=page,
|
||||
page_size=page_size,
|
||||
),
|
||||
)
|
||||
return graph_models
|
||||
|
||||
|
||||
async def get_graph_metadata(graph_id: str, version: int | None = None) -> Graph | None:
|
||||
@@ -1077,14 +1022,11 @@ async def set_graph_active_version(graph_id: str, version: int, user_id: str) ->
|
||||
)
|
||||
|
||||
|
||||
async def get_graph_all_versions(
|
||||
graph_id: str, user_id: str, limit: int = MAX_GRAPH_VERSIONS_FETCH
|
||||
) -> list[GraphModel]:
|
||||
async def get_graph_all_versions(graph_id: str, user_id: str) -> list[GraphModel]:
|
||||
graph_versions = await AgentGraph.prisma().find_many(
|
||||
where={"id": graph_id, "userId": user_id},
|
||||
order={"version": "desc"},
|
||||
include=AGENT_GRAPH_INCLUDE,
|
||||
take=limit,
|
||||
)
|
||||
|
||||
if not graph_versions:
|
||||
@@ -1202,7 +1144,6 @@ def make_graph_model(creatable_graph: Graph, user_id: str) -> GraphModel:
|
||||
return GraphModel(
|
||||
**creatable_graph.model_dump(exclude={"nodes"}),
|
||||
user_id=user_id,
|
||||
created_at=datetime.now(tz=timezone.utc),
|
||||
nodes=[
|
||||
NodeModel(
|
||||
**creatable_node.model_dump(),
|
||||
@@ -1333,34 +1274,3 @@ async def migrate_llm_models(migrate_to: LlmModel):
|
||||
id,
|
||||
path,
|
||||
)
|
||||
|
||||
|
||||
# Simple placeholder class for deleted/missing blocks
|
||||
class _UnknownBlockBase(Block):
|
||||
"""
|
||||
Placeholder for deleted/missing blocks that inherits from Block
|
||||
but uses a name that doesn't end with 'Block' to avoid auto-discovery.
|
||||
"""
|
||||
|
||||
def __init__(self, block_id: str = "00000000-0000-0000-0000-000000000000"):
|
||||
# Initialize with minimal valid Block parameters
|
||||
super().__init__(
|
||||
id=block_id,
|
||||
description=f"Unknown or deleted block (original ID: {block_id})",
|
||||
disabled=True,
|
||||
input_schema=EmptySchema,
|
||||
output_schema=EmptySchema,
|
||||
categories=set(),
|
||||
contributors=[],
|
||||
static_output=False,
|
||||
block_type=BlockType.STANDARD,
|
||||
webhook_config=None,
|
||||
)
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return "UnknownBlock"
|
||||
|
||||
async def run(self, input_data, **kwargs):
|
||||
"""Always yield an error for missing blocks."""
|
||||
yield "error", f"Block {self.id} no longer exists"
|
||||
|
||||
@@ -201,56 +201,25 @@ async def test_get_input_schema(server: SpinTestServer, snapshot: Snapshot):
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_clean_graph(server: SpinTestServer):
|
||||
"""
|
||||
Test the stripped_for_export function that:
|
||||
1. Removes sensitive/secret fields from node inputs
|
||||
2. Removes webhook information
|
||||
3. Preserves non-sensitive data including input block values
|
||||
Test the clean_graph function that:
|
||||
1. Clears input block values
|
||||
2. Removes credentials from nodes
|
||||
"""
|
||||
# Create a graph with input blocks containing both sensitive and normal data
|
||||
# Create a graph with input blocks and credentials
|
||||
graph = Graph(
|
||||
id="test_clean_graph",
|
||||
name="Test Clean Graph",
|
||||
description="Test graph cleaning",
|
||||
nodes=[
|
||||
Node(
|
||||
id="input_node",
|
||||
block_id=AgentInputBlock().id,
|
||||
input_default={
|
||||
"_test_id": "input_node",
|
||||
"name": "test_input",
|
||||
"value": "test value", # This should be preserved
|
||||
"value": "test value",
|
||||
"description": "Test input description",
|
||||
},
|
||||
),
|
||||
Node(
|
||||
block_id=AgentInputBlock().id,
|
||||
input_default={
|
||||
"_test_id": "input_node_secret",
|
||||
"name": "secret_input",
|
||||
"value": "another value",
|
||||
"secret": True, # This makes the input secret
|
||||
},
|
||||
),
|
||||
Node(
|
||||
block_id=StoreValueBlock().id,
|
||||
input_default={
|
||||
"_test_id": "node_with_secrets",
|
||||
"input": "normal_value",
|
||||
"control_test_input": "should be preserved",
|
||||
"api_key": "secret_api_key_123", # Should be filtered
|
||||
"password": "secret_password_456", # Should be filtered
|
||||
"token": "secret_token_789", # Should be filtered
|
||||
"credentials": { # Should be filtered
|
||||
"id": "fake-github-credentials-id",
|
||||
"provider": "github",
|
||||
"type": "api_key",
|
||||
},
|
||||
"anthropic_credentials": { # Should be filtered
|
||||
"id": "fake-anthropic-credentials-id",
|
||||
"provider": "anthropic",
|
||||
"type": "api_key",
|
||||
},
|
||||
},
|
||||
),
|
||||
],
|
||||
links=[],
|
||||
)
|
||||
@@ -262,54 +231,15 @@ async def test_clean_graph(server: SpinTestServer):
|
||||
)
|
||||
|
||||
# Clean the graph
|
||||
cleaned_graph = await server.agent_server.test_get_graph(
|
||||
created_graph = await server.agent_server.test_get_graph(
|
||||
created_graph.id, created_graph.version, DEFAULT_USER_ID, for_export=True
|
||||
)
|
||||
|
||||
# Verify sensitive fields are removed but normal fields are preserved
|
||||
# # Verify input block value is cleared
|
||||
input_node = next(
|
||||
n for n in cleaned_graph.nodes if n.input_default["_test_id"] == "input_node"
|
||||
n for n in created_graph.nodes if n.block_id == AgentInputBlock().id
|
||||
)
|
||||
|
||||
# Non-sensitive fields should be preserved
|
||||
assert input_node.input_default["name"] == "test_input"
|
||||
assert input_node.input_default["value"] == "test value" # Should be preserved now
|
||||
assert input_node.input_default["description"] == "Test input description"
|
||||
|
||||
# Sensitive fields should be filtered out
|
||||
assert "api_key" not in input_node.input_default
|
||||
assert "password" not in input_node.input_default
|
||||
|
||||
# Verify secret input node preserves non-sensitive fields but removes secret value
|
||||
secret_node = next(
|
||||
n
|
||||
for n in cleaned_graph.nodes
|
||||
if n.input_default["_test_id"] == "input_node_secret"
|
||||
)
|
||||
assert secret_node.input_default["name"] == "secret_input"
|
||||
assert "value" not in secret_node.input_default # Secret default should be removed
|
||||
assert secret_node.input_default["secret"] is True
|
||||
|
||||
# Verify sensitive fields are filtered from nodes with secrets
|
||||
secrets_node = next(
|
||||
n
|
||||
for n in cleaned_graph.nodes
|
||||
if n.input_default["_test_id"] == "node_with_secrets"
|
||||
)
|
||||
# Normal fields should be preserved
|
||||
assert secrets_node.input_default["input"] == "normal_value"
|
||||
assert secrets_node.input_default["control_test_input"] == "should be preserved"
|
||||
# Sensitive fields should be filtered out
|
||||
assert "api_key" not in secrets_node.input_default
|
||||
assert "password" not in secrets_node.input_default
|
||||
assert "token" not in secrets_node.input_default
|
||||
assert "credentials" not in secrets_node.input_default
|
||||
assert "anthropic_credentials" not in secrets_node.input_default
|
||||
|
||||
# Verify webhook info is removed (if any nodes had it)
|
||||
for node in cleaned_graph.nodes:
|
||||
assert node.webhook_id is None
|
||||
assert node.webhook is None
|
||||
assert input_node.input_default["value"] == ""
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
|
||||
@@ -14,7 +14,6 @@ AGENT_GRAPH_INCLUDE: prisma.types.AgentGraphInclude = {
|
||||
"Nodes": {"include": AGENT_NODE_INCLUDE}
|
||||
}
|
||||
|
||||
|
||||
EXECUTION_RESULT_ORDER: list[prisma.types.AgentNodeExecutionOrderByInput] = [
|
||||
{"queuedTime": "desc"},
|
||||
# Fallback: Incomplete execs has no queuedTime.
|
||||
@@ -29,13 +28,6 @@ EXECUTION_RESULT_INCLUDE: prisma.types.AgentNodeExecutionInclude = {
|
||||
}
|
||||
|
||||
MAX_NODE_EXECUTIONS_FETCH = 1000
|
||||
MAX_LIBRARY_AGENT_EXECUTIONS_FETCH = 10
|
||||
|
||||
# Default limits for potentially large result sets
|
||||
MAX_CREDIT_REFUND_REQUESTS_FETCH = 100
|
||||
MAX_INTEGRATION_WEBHOOKS_FETCH = 100
|
||||
MAX_USER_API_KEYS_FETCH = 500
|
||||
MAX_GRAPH_VERSIONS_FETCH = 50
|
||||
|
||||
GRAPH_EXECUTION_INCLUDE_WITH_NODES: prisma.types.AgentGraphExecutionInclude = {
|
||||
"NodeExecutions": {
|
||||
@@ -79,56 +71,13 @@ INTEGRATION_WEBHOOK_INCLUDE: prisma.types.IntegrationWebhookInclude = {
|
||||
}
|
||||
|
||||
|
||||
def library_agent_include(
|
||||
user_id: str,
|
||||
include_nodes: bool = True,
|
||||
include_executions: bool = True,
|
||||
execution_limit: int = MAX_LIBRARY_AGENT_EXECUTIONS_FETCH,
|
||||
) -> prisma.types.LibraryAgentInclude:
|
||||
"""
|
||||
Fully configurable includes for library agent queries with performance optimization.
|
||||
|
||||
Args:
|
||||
user_id: User ID for filtering user-specific data
|
||||
include_nodes: Whether to include graph nodes (default: True, needed for get_sub_graphs)
|
||||
include_executions: Whether to include executions (default: True, safe with execution_limit)
|
||||
execution_limit: Limit on executions to fetch (default: MAX_LIBRARY_AGENT_EXECUTIONS_FETCH)
|
||||
|
||||
Defaults maintain backward compatibility and safety - includes everything needed for all functionality.
|
||||
For performance optimization, explicitly set include_nodes=False and include_executions=False
|
||||
for listing views where frontend fetches data separately.
|
||||
|
||||
Performance impact:
|
||||
- Default (full nodes + limited executions): Original performance, works everywhere
|
||||
- Listing optimization (no nodes/executions): ~2s for 15 agents vs potential timeouts
|
||||
- Unlimited executions: varies by user (thousands of executions = timeouts)
|
||||
"""
|
||||
result: prisma.types.LibraryAgentInclude = {
|
||||
"Creator": True, # Always needed for creator info
|
||||
}
|
||||
|
||||
# Build AgentGraph include based on requested options
|
||||
if include_nodes or include_executions:
|
||||
agent_graph_include = {}
|
||||
|
||||
# Add nodes if requested (always full nodes)
|
||||
if include_nodes:
|
||||
agent_graph_include.update(AGENT_GRAPH_INCLUDE) # Full nodes
|
||||
|
||||
# Add executions if requested
|
||||
if include_executions:
|
||||
agent_graph_include["Executions"] = {
|
||||
"where": {"userId": user_id},
|
||||
"order_by": {"createdAt": "desc"},
|
||||
"take": execution_limit,
|
||||
def library_agent_include(user_id: str) -> prisma.types.LibraryAgentInclude:
|
||||
return {
|
||||
"AgentGraph": {
|
||||
"include": {
|
||||
**AGENT_GRAPH_INCLUDE,
|
||||
"Executions": {"where": {"userId": user_id}},
|
||||
}
|
||||
|
||||
result["AgentGraph"] = cast(
|
||||
prisma.types.AgentGraphArgsFromLibraryAgent,
|
||||
{"include": agent_graph_include},
|
||||
)
|
||||
else:
|
||||
# Default: Basic metadata only (fast - recommended for most use cases)
|
||||
result["AgentGraph"] = True # Basic graph metadata (name, description, id)
|
||||
|
||||
return result
|
||||
},
|
||||
"Creator": True,
|
||||
}
|
||||
|
||||
@@ -11,10 +11,7 @@ from prisma.types import (
|
||||
from pydantic import Field, computed_field
|
||||
|
||||
from backend.data.event_bus import AsyncRedisEventBus
|
||||
from backend.data.includes import (
|
||||
INTEGRATION_WEBHOOK_INCLUDE,
|
||||
MAX_INTEGRATION_WEBHOOKS_FETCH,
|
||||
)
|
||||
from backend.data.includes import INTEGRATION_WEBHOOK_INCLUDE
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.integrations.webhooks.utils import webhook_ingress_url
|
||||
from backend.server.v2.library.model import LibraryAgentPreset
|
||||
@@ -131,36 +128,22 @@ async def get_webhook(
|
||||
|
||||
@overload
|
||||
async def get_all_webhooks_by_creds(
|
||||
user_id: str,
|
||||
credentials_id: str,
|
||||
*,
|
||||
include_relations: Literal[True],
|
||||
limit: int = MAX_INTEGRATION_WEBHOOKS_FETCH,
|
||||
user_id: str, credentials_id: str, *, include_relations: Literal[True]
|
||||
) -> list[WebhookWithRelations]: ...
|
||||
@overload
|
||||
async def get_all_webhooks_by_creds(
|
||||
user_id: str,
|
||||
credentials_id: str,
|
||||
*,
|
||||
include_relations: Literal[False] = False,
|
||||
limit: int = MAX_INTEGRATION_WEBHOOKS_FETCH,
|
||||
user_id: str, credentials_id: str, *, include_relations: Literal[False] = False
|
||||
) -> list[Webhook]: ...
|
||||
|
||||
|
||||
async def get_all_webhooks_by_creds(
|
||||
user_id: str,
|
||||
credentials_id: str,
|
||||
*,
|
||||
include_relations: bool = False,
|
||||
limit: int = MAX_INTEGRATION_WEBHOOKS_FETCH,
|
||||
user_id: str, credentials_id: str, *, include_relations: bool = False
|
||||
) -> list[Webhook] | list[WebhookWithRelations]:
|
||||
if not credentials_id:
|
||||
raise ValueError("credentials_id must not be empty")
|
||||
webhooks = await IntegrationWebhook.prisma().find_many(
|
||||
where={"userId": user_id, "credentialsId": credentials_id},
|
||||
include=INTEGRATION_WEBHOOK_INCLUDE if include_relations else None,
|
||||
order={"createdAt": "desc"},
|
||||
take=limit,
|
||||
)
|
||||
return [
|
||||
(WebhookWithRelations if include_relations else Webhook).from_db(webhook)
|
||||
|
||||
@@ -270,7 +270,6 @@ def SchemaField(
|
||||
min_length: Optional[int] = None,
|
||||
max_length: Optional[int] = None,
|
||||
discriminator: Optional[str] = None,
|
||||
format: Optional[str] = None,
|
||||
json_schema_extra: Optional[dict[str, Any]] = None,
|
||||
) -> T:
|
||||
if default is PydanticUndefined and default_factory is None:
|
||||
@@ -286,7 +285,6 @@ def SchemaField(
|
||||
"advanced": advanced,
|
||||
"hidden": hidden,
|
||||
"depends_on": depends_on,
|
||||
"format": format,
|
||||
**(json_schema_extra or {}),
|
||||
}.items()
|
||||
if v is not None
|
||||
|
||||
@@ -15,7 +15,7 @@ from prisma.types import (
|
||||
# from backend.notifications.models import NotificationEvent
|
||||
from pydantic import BaseModel, ConfigDict, EmailStr, Field, field_validator
|
||||
|
||||
from backend.util.exceptions import DatabaseError
|
||||
from backend.server.v2.store.exceptions import DatabaseError
|
||||
from backend.util.json import SafeJson
|
||||
from backend.util.logging import TruncatedLogger
|
||||
|
||||
@@ -235,7 +235,6 @@ class BaseEventModel(BaseModel):
|
||||
|
||||
|
||||
class NotificationEventModel(BaseEventModel, Generic[NotificationDataType_co]):
|
||||
id: Optional[str] = None # None when creating, populated when reading from DB
|
||||
data: NotificationDataType_co
|
||||
|
||||
@property
|
||||
@@ -379,7 +378,6 @@ class NotificationPreference(BaseModel):
|
||||
|
||||
|
||||
class UserNotificationEventDTO(BaseModel):
|
||||
id: str # Added to track notifications for removal
|
||||
type: NotificationType
|
||||
data: dict
|
||||
created_at: datetime
|
||||
@@ -388,7 +386,6 @@ class UserNotificationEventDTO(BaseModel):
|
||||
@staticmethod
|
||||
def from_db(model: NotificationEvent) -> "UserNotificationEventDTO":
|
||||
return UserNotificationEventDTO(
|
||||
id=model.id,
|
||||
type=model.type,
|
||||
data=dict(model.data),
|
||||
created_at=model.createdAt,
|
||||
@@ -544,79 +541,6 @@ async def empty_user_notification_batch(
|
||||
) from e
|
||||
|
||||
|
||||
async def clear_all_user_notification_batches(user_id: str) -> None:
|
||||
"""Clear ALL notification batches for a user across all types.
|
||||
|
||||
Used when user's email is bounced/inactive and we should stop
|
||||
trying to send them ANY emails.
|
||||
"""
|
||||
try:
|
||||
# Delete all notification events for this user
|
||||
await NotificationEvent.prisma().delete_many(
|
||||
where={"UserNotificationBatch": {"is": {"userId": user_id}}}
|
||||
)
|
||||
|
||||
# Delete all batches for this user
|
||||
await UserNotificationBatch.prisma().delete_many(where={"userId": user_id})
|
||||
|
||||
logger.info(f"Cleared all notification batches for user {user_id}")
|
||||
except Exception as e:
|
||||
raise DatabaseError(
|
||||
f"Failed to clear all notification batches for user {user_id}: {e}"
|
||||
) from e
|
||||
|
||||
|
||||
async def remove_notifications_from_batch(
|
||||
user_id: str, notification_type: NotificationType, notification_ids: list[str]
|
||||
) -> None:
|
||||
"""Remove specific notifications from a user's batch by their IDs.
|
||||
|
||||
This is used after successful sending to remove only the
|
||||
sent notifications, preventing duplicates on retry.
|
||||
"""
|
||||
if not notification_ids:
|
||||
return
|
||||
|
||||
try:
|
||||
# Delete the specific notification events
|
||||
deleted_count = await NotificationEvent.prisma().delete_many(
|
||||
where={
|
||||
"id": {"in": notification_ids},
|
||||
"UserNotificationBatch": {
|
||||
"is": {"userId": user_id, "type": notification_type}
|
||||
},
|
||||
}
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Removed {deleted_count} notifications from batch for user {user_id}"
|
||||
)
|
||||
|
||||
# Check if batch is now empty and delete it if so
|
||||
remaining = await NotificationEvent.prisma().count(
|
||||
where={
|
||||
"UserNotificationBatch": {
|
||||
"is": {"userId": user_id, "type": notification_type}
|
||||
}
|
||||
}
|
||||
)
|
||||
|
||||
if remaining == 0:
|
||||
await UserNotificationBatch.prisma().delete_many(
|
||||
where=UserNotificationBatchWhereInput(
|
||||
userId=user_id,
|
||||
type=notification_type,
|
||||
)
|
||||
)
|
||||
logger.info(
|
||||
f"Deleted empty batch for user {user_id} and type {notification_type}"
|
||||
)
|
||||
except Exception as e:
|
||||
raise DatabaseError(
|
||||
f"Failed to remove notifications from batch for user {user_id} and type {notification_type}: {e}"
|
||||
) from e
|
||||
|
||||
|
||||
async def get_user_notification_batch(
|
||||
user_id: str,
|
||||
notification_type: NotificationType,
|
||||
|
||||
@@ -1,16 +1,15 @@
|
||||
import re
|
||||
from datetime import datetime
|
||||
from typing import Any, Optional
|
||||
|
||||
import prisma
|
||||
import pydantic
|
||||
from autogpt_libs.utils.cache import cached
|
||||
from prisma.enums import OnboardingStep
|
||||
from prisma.models import UserOnboarding
|
||||
from prisma.types import UserOnboardingCreateInput, UserOnboardingUpdateInput
|
||||
|
||||
from backend.data.block import get_blocks
|
||||
from backend.data.credit import get_user_credit_model
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.server.v2.store.model import StoreAgentDetails
|
||||
from backend.util.json import SafeJson
|
||||
@@ -31,7 +30,7 @@ user_credit = get_user_credit_model()
|
||||
|
||||
class UserOnboardingUpdate(pydantic.BaseModel):
|
||||
completedSteps: Optional[list[OnboardingStep]] = None
|
||||
walletShown: Optional[bool] = None
|
||||
notificationDot: Optional[bool] = None
|
||||
notified: Optional[list[OnboardingStep]] = None
|
||||
usageReason: Optional[str] = None
|
||||
integrations: Optional[list[str]] = None
|
||||
@@ -40,8 +39,6 @@ class UserOnboardingUpdate(pydantic.BaseModel):
|
||||
agentInput: Optional[dict[str, Any]] = None
|
||||
onboardingAgentExecutionId: Optional[str] = None
|
||||
agentRuns: Optional[int] = None
|
||||
lastRunAt: Optional[datetime] = None
|
||||
consecutiveRunDays: Optional[int] = None
|
||||
|
||||
|
||||
async def get_user_onboarding(user_id: str):
|
||||
@@ -60,22 +57,16 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
|
||||
update["completedSteps"] = list(set(data.completedSteps))
|
||||
for step in (
|
||||
OnboardingStep.AGENT_NEW_RUN,
|
||||
OnboardingStep.MARKETPLACE_VISIT,
|
||||
OnboardingStep.RUN_AGENTS,
|
||||
OnboardingStep.MARKETPLACE_ADD_AGENT,
|
||||
OnboardingStep.MARKETPLACE_RUN_AGENT,
|
||||
OnboardingStep.BUILDER_SAVE_AGENT,
|
||||
OnboardingStep.RE_RUN_AGENT,
|
||||
OnboardingStep.SCHEDULE_AGENT,
|
||||
OnboardingStep.RUN_AGENTS,
|
||||
OnboardingStep.RUN_3_DAYS,
|
||||
OnboardingStep.TRIGGER_WEBHOOK,
|
||||
OnboardingStep.RUN_14_DAYS,
|
||||
OnboardingStep.RUN_AGENTS_100,
|
||||
OnboardingStep.BUILDER_RUN_AGENT,
|
||||
):
|
||||
if step in data.completedSteps:
|
||||
await reward_user(user_id, step)
|
||||
if data.walletShown is not None:
|
||||
update["walletShown"] = data.walletShown
|
||||
if data.notificationDot is not None:
|
||||
update["notificationDot"] = data.notificationDot
|
||||
if data.notified is not None:
|
||||
update["notified"] = list(set(data.notified))
|
||||
if data.usageReason is not None:
|
||||
@@ -92,10 +83,6 @@ async def update_user_onboarding(user_id: str, data: UserOnboardingUpdate):
|
||||
update["onboardingAgentExecutionId"] = data.onboardingAgentExecutionId
|
||||
if data.agentRuns is not None:
|
||||
update["agentRuns"] = data.agentRuns
|
||||
if data.lastRunAt is not None:
|
||||
update["lastRunAt"] = data.lastRunAt
|
||||
if data.consecutiveRunDays is not None:
|
||||
update["consecutiveRunDays"] = data.consecutiveRunDays
|
||||
|
||||
return await UserOnboarding.prisma().upsert(
|
||||
where={"userId": user_id},
|
||||
@@ -114,28 +101,16 @@ async def reward_user(user_id: str, step: OnboardingStep):
|
||||
# This is seen as a reward for the GET_RESULTS step in the wallet
|
||||
case OnboardingStep.AGENT_NEW_RUN:
|
||||
reward = 300
|
||||
case OnboardingStep.MARKETPLACE_VISIT:
|
||||
reward = 100
|
||||
case OnboardingStep.RUN_AGENTS:
|
||||
reward = 300
|
||||
case OnboardingStep.MARKETPLACE_ADD_AGENT:
|
||||
reward = 100
|
||||
case OnboardingStep.MARKETPLACE_RUN_AGENT:
|
||||
reward = 100
|
||||
case OnboardingStep.BUILDER_SAVE_AGENT:
|
||||
reward = 100
|
||||
case OnboardingStep.RE_RUN_AGENT:
|
||||
case OnboardingStep.BUILDER_RUN_AGENT:
|
||||
reward = 100
|
||||
case OnboardingStep.SCHEDULE_AGENT:
|
||||
reward = 100
|
||||
case OnboardingStep.RUN_AGENTS:
|
||||
reward = 300
|
||||
case OnboardingStep.RUN_3_DAYS:
|
||||
reward = 100
|
||||
case OnboardingStep.TRIGGER_WEBHOOK:
|
||||
reward = 100
|
||||
case OnboardingStep.RUN_14_DAYS:
|
||||
reward = 300
|
||||
case OnboardingStep.RUN_AGENTS_100:
|
||||
reward = 300
|
||||
|
||||
if reward == 0:
|
||||
return
|
||||
@@ -157,22 +132,6 @@ async def reward_user(user_id: str, step: OnboardingStep):
|
||||
)
|
||||
|
||||
|
||||
async def complete_webhook_trigger_step(user_id: str):
|
||||
"""
|
||||
Completes the TRIGGER_WEBHOOK onboarding step for the user if not already completed.
|
||||
"""
|
||||
|
||||
onboarding = await get_user_onboarding(user_id)
|
||||
if OnboardingStep.TRIGGER_WEBHOOK not in onboarding.completedSteps:
|
||||
await update_user_onboarding(
|
||||
user_id,
|
||||
UserOnboardingUpdate(
|
||||
completedSteps=onboarding.completedSteps
|
||||
+ [OnboardingStep.TRIGGER_WEBHOOK]
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
def clean_and_split(text: str) -> list[str]:
|
||||
"""
|
||||
Removes all special characters from a string, truncates it to 100 characters,
|
||||
@@ -277,14 +236,8 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
|
||||
for word in user_onboarding.integrations
|
||||
]
|
||||
|
||||
where_clause["is_available"] = True
|
||||
|
||||
# Try to take only agents that are available and allowed for onboarding
|
||||
storeAgents = await prisma.models.StoreAgent.prisma().find_many(
|
||||
where={
|
||||
"is_available": True,
|
||||
"useForOnboarding": True,
|
||||
},
|
||||
where=prisma.types.StoreAgentWhereInput(**where_clause),
|
||||
order=[
|
||||
{"featured": "desc"},
|
||||
{"runs": "desc"},
|
||||
@@ -293,16 +246,59 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
|
||||
take=100,
|
||||
)
|
||||
|
||||
# If not enough agents found, relax the useForOnboarding filter
|
||||
agentListings = await prisma.models.StoreListingVersion.prisma().find_many(
|
||||
where={
|
||||
"id": {"in": [agent.storeListingVersionId for agent in storeAgents]},
|
||||
},
|
||||
include={"AgentGraph": True},
|
||||
)
|
||||
|
||||
for listing in agentListings:
|
||||
agent = listing.AgentGraph
|
||||
if agent is None:
|
||||
continue
|
||||
graph = GraphModel.from_db(agent)
|
||||
# Remove agents with empty input schema
|
||||
if not graph.input_schema:
|
||||
storeAgents = [
|
||||
a for a in storeAgents if a.storeListingVersionId != listing.id
|
||||
]
|
||||
continue
|
||||
|
||||
# Remove agents with empty credentials
|
||||
# Get nodes from this agent that have credentials
|
||||
nodes = await prisma.models.AgentNode.prisma().find_many(
|
||||
where={
|
||||
"agentGraphId": agent.id,
|
||||
"agentBlockId": {"in": list(CREDENTIALS_FIELDS.keys())},
|
||||
},
|
||||
)
|
||||
for node in nodes:
|
||||
block_id = node.agentBlockId
|
||||
field_name = CREDENTIALS_FIELDS[block_id]
|
||||
# If there are no credentials or they are empty, remove the agent
|
||||
# FIXME ignores default values
|
||||
if (
|
||||
field_name not in node.constantInput
|
||||
or node.constantInput[field_name] is None
|
||||
):
|
||||
storeAgents = [
|
||||
a for a in storeAgents if a.storeListingVersionId != listing.id
|
||||
]
|
||||
break
|
||||
|
||||
# If there are less than 2 agents, add more agents to the list
|
||||
if len(storeAgents) < 2:
|
||||
storeAgents = await prisma.models.StoreAgent.prisma().find_many(
|
||||
where=prisma.types.StoreAgentWhereInput(**where_clause),
|
||||
storeAgents += await prisma.models.StoreAgent.prisma().find_many(
|
||||
where={
|
||||
"listing_id": {"not_in": [agent.listing_id for agent in storeAgents]},
|
||||
},
|
||||
order=[
|
||||
{"featured": "desc"},
|
||||
{"runs": "desc"},
|
||||
{"rating": "desc"},
|
||||
],
|
||||
take=100,
|
||||
take=2 - len(storeAgents),
|
||||
)
|
||||
|
||||
# Calculate points for the first X agents and choose the top 2
|
||||
@@ -337,13 +333,8 @@ async def get_recommended_agents(user_id: str) -> list[StoreAgentDetails]:
|
||||
]
|
||||
|
||||
|
||||
@cached(maxsize=1, ttl_seconds=300) # Cache for 5 minutes since this rarely changes
|
||||
async def onboarding_enabled() -> bool:
|
||||
"""
|
||||
Check if onboarding should be enabled based on store agent count.
|
||||
Cached to prevent repeated slow database queries.
|
||||
"""
|
||||
# Use a more efficient query that stops counting after finding enough agents
|
||||
count = await prisma.models.StoreAgent.prisma().count(take=MIN_AGENT_COUNT + 1)
|
||||
# Onboarding is enabled if there are at least 2 agents in the store
|
||||
|
||||
# Onboading is enabled if there are at least 2 agents in the store
|
||||
return count >= MIN_AGENT_COUNT
|
||||
|
||||
@@ -1,7 +1,8 @@
|
||||
import logging
|
||||
import os
|
||||
from functools import cache
|
||||
|
||||
from autogpt_libs.utils.cache import cached, thread_cached
|
||||
from autogpt_libs.utils.cache import thread_cached
|
||||
from dotenv import load_dotenv
|
||||
from redis import Redis
|
||||
from redis.asyncio import Redis as AsyncRedis
|
||||
@@ -12,7 +13,7 @@ load_dotenv()
|
||||
|
||||
HOST = os.getenv("REDIS_HOST", "localhost")
|
||||
PORT = int(os.getenv("REDIS_PORT", "6379"))
|
||||
PASSWORD = os.getenv("REDIS_PASSWORD", None)
|
||||
PASSWORD = os.getenv("REDIS_PASSWORD", "password")
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -34,7 +35,7 @@ def disconnect():
|
||||
get_redis().close()
|
||||
|
||||
|
||||
@cached()
|
||||
@cache
|
||||
def get_redis() -> Redis:
|
||||
return connect()
|
||||
|
||||
|
||||
@@ -7,7 +7,6 @@ from typing import Optional, cast
|
||||
from urllib.parse import quote_plus
|
||||
|
||||
from autogpt_libs.auth.models import DEFAULT_USER_ID
|
||||
from autogpt_libs.utils.cache import cached
|
||||
from fastapi import HTTPException
|
||||
from prisma.enums import NotificationType
|
||||
from prisma.models import User as PrismaUser
|
||||
@@ -16,19 +15,15 @@ from prisma.types import JsonFilter, UserCreateInput, UserUpdateInput
|
||||
from backend.data.db import prisma
|
||||
from backend.data.model import User, UserIntegrations, UserMetadata
|
||||
from backend.data.notifications import NotificationPreference, NotificationPreferenceDTO
|
||||
from backend.server.v2.store.exceptions import DatabaseError
|
||||
from backend.util.encryption import JSONCryptor
|
||||
from backend.util.exceptions import DatabaseError
|
||||
from backend.util.json import SafeJson
|
||||
from backend.util.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
settings = Settings()
|
||||
|
||||
# Cache decorator alias for consistent user lookup caching
|
||||
cache_user_lookup = cached(maxsize=1000, ttl_seconds=300)
|
||||
|
||||
|
||||
@cache_user_lookup
|
||||
async def get_or_create_user(user_data: dict) -> User:
|
||||
try:
|
||||
user_id = user_data.get("sub")
|
||||
@@ -54,7 +49,6 @@ async def get_or_create_user(user_data: dict) -> User:
|
||||
raise DatabaseError(f"Failed to get or create user {user_data}: {e}") from e
|
||||
|
||||
|
||||
@cache_user_lookup
|
||||
async def get_user_by_id(user_id: str) -> User:
|
||||
user = await prisma.user.find_unique(where={"id": user_id})
|
||||
if not user:
|
||||
@@ -70,7 +64,6 @@ async def get_user_email_by_id(user_id: str) -> Optional[str]:
|
||||
raise DatabaseError(f"Failed to get user email for user {user_id}: {e}") from e
|
||||
|
||||
|
||||
@cache_user_lookup
|
||||
async def get_user_by_email(email: str) -> Optional[User]:
|
||||
try:
|
||||
user = await prisma.user.find_unique(where={"email": email})
|
||||
@@ -81,17 +74,7 @@ async def get_user_by_email(email: str) -> Optional[User]:
|
||||
|
||||
async def update_user_email(user_id: str, email: str):
|
||||
try:
|
||||
# Get old email first for cache invalidation
|
||||
old_user = await prisma.user.find_unique(where={"id": user_id})
|
||||
old_email = old_user.email if old_user else None
|
||||
|
||||
await prisma.user.update(where={"id": user_id}, data={"email": email})
|
||||
|
||||
# Selectively invalidate only the specific user entries
|
||||
get_user_by_id.cache_delete(user_id)
|
||||
if old_email:
|
||||
get_user_by_email.cache_delete(old_email)
|
||||
get_user_by_email.cache_delete(email)
|
||||
except Exception as e:
|
||||
raise DatabaseError(
|
||||
f"Failed to update user email for user {user_id}: {e}"
|
||||
@@ -131,8 +114,6 @@ async def update_user_integrations(user_id: str, data: UserIntegrations):
|
||||
where={"id": user_id},
|
||||
data={"integrations": encrypted_data},
|
||||
)
|
||||
# Invalidate cache for this user
|
||||
get_user_by_id.cache_delete(user_id)
|
||||
|
||||
|
||||
async def migrate_and_encrypt_user_integrations():
|
||||
@@ -304,10 +285,6 @@ async def update_user_notification_preference(
|
||||
)
|
||||
if not user:
|
||||
raise ValueError(f"User not found with ID: {user_id}")
|
||||
|
||||
# Invalidate cache for this user since notification preferences are part of user data
|
||||
get_user_by_id.cache_delete(user_id)
|
||||
|
||||
preferences: dict[NotificationType, bool] = {
|
||||
NotificationType.AGENT_RUN: user.notifyOnAgentRun or True,
|
||||
NotificationType.ZERO_BALANCE: user.notifyOnZeroBalance or True,
|
||||
@@ -346,44 +323,12 @@ async def set_user_email_verification(user_id: str, verified: bool) -> None:
|
||||
where={"id": user_id},
|
||||
data={"emailVerified": verified},
|
||||
)
|
||||
# Invalidate cache for this user
|
||||
get_user_by_id.cache_delete(user_id)
|
||||
except Exception as e:
|
||||
raise DatabaseError(
|
||||
f"Failed to set email verification status for user {user_id}: {e}"
|
||||
) from e
|
||||
|
||||
|
||||
async def disable_all_user_notifications(user_id: str) -> None:
|
||||
"""Disable all notification preferences for a user.
|
||||
|
||||
Used when user's email bounces/is inactive to prevent any future notifications.
|
||||
"""
|
||||
try:
|
||||
await PrismaUser.prisma().update(
|
||||
where={"id": user_id},
|
||||
data={
|
||||
"notifyOnAgentRun": False,
|
||||
"notifyOnZeroBalance": False,
|
||||
"notifyOnLowBalance": False,
|
||||
"notifyOnBlockExecutionFailed": False,
|
||||
"notifyOnContinuousAgentError": False,
|
||||
"notifyOnDailySummary": False,
|
||||
"notifyOnWeeklySummary": False,
|
||||
"notifyOnMonthlySummary": False,
|
||||
"notifyOnAgentApproved": False,
|
||||
"notifyOnAgentRejected": False,
|
||||
},
|
||||
)
|
||||
# Invalidate cache for this user
|
||||
get_user_by_id.cache_delete(user_id)
|
||||
logger.info(f"Disabled all notification preferences for user {user_id}")
|
||||
except Exception as e:
|
||||
raise DatabaseError(
|
||||
f"Failed to disable notifications for user {user_id}: {e}"
|
||||
) from e
|
||||
|
||||
|
||||
async def get_user_email_verification(user_id: str) -> bool:
|
||||
"""Get the email verification status for a user."""
|
||||
try:
|
||||
@@ -462,10 +407,6 @@ async def update_user_timezone(user_id: str, timezone: str) -> User:
|
||||
)
|
||||
if not user:
|
||||
raise ValueError(f"User not found with ID: {user_id}")
|
||||
|
||||
# Invalidate cache for this user
|
||||
get_user_by_id.cache_delete(user_id)
|
||||
|
||||
return User.from_db(user)
|
||||
except Exception as e:
|
||||
raise DatabaseError(f"Failed to update timezone for user {user_id}: {e}") from e
|
||||
|
||||
@@ -4,12 +4,7 @@ Module for generating AI-based activity status for graph executions.
|
||||
|
||||
import json
|
||||
import logging
|
||||
from typing import TYPE_CHECKING, Any, TypedDict
|
||||
|
||||
try:
|
||||
from typing import NotRequired
|
||||
except ImportError:
|
||||
from typing_extensions import NotRequired
|
||||
from typing import TYPE_CHECKING, Any, NotRequired, TypedDict
|
||||
|
||||
from pydantic import SecretStr
|
||||
|
||||
@@ -112,7 +107,7 @@ async def generate_activity_status_for_execution(
|
||||
# Check if we have OpenAI API key
|
||||
try:
|
||||
settings = Settings()
|
||||
if not settings.secrets.openai_internal_api_key:
|
||||
if not settings.secrets.openai_api_key:
|
||||
logger.debug(
|
||||
"OpenAI API key not configured, skipping activity status generation"
|
||||
)
|
||||
@@ -151,35 +146,17 @@ async def generate_activity_status_for_execution(
|
||||
"Focus on the ACTUAL TASK the user wanted done, not the internal workflow steps. "
|
||||
"Avoid technical terms like 'workflow', 'execution', 'components', 'nodes', 'processing', etc. "
|
||||
"Keep it to 3 sentences maximum. Be conversational and human-friendly.\n\n"
|
||||
"UNDERSTAND THE INTENDED PURPOSE:\n"
|
||||
"- FIRST: Read the graph description carefully to understand what the user wanted to accomplish\n"
|
||||
"- The graph name and description tell you the main goal/intention of this automation\n"
|
||||
"- Use this intended purpose as your PRIMARY criteria for success/failure evaluation\n"
|
||||
"- Ask yourself: 'Did this execution actually accomplish what the graph was designed to do?'\n\n"
|
||||
"CRITICAL OUTPUT ANALYSIS:\n"
|
||||
"- Check if blocks that should produce user-facing results actually produced outputs\n"
|
||||
"- Blocks with names containing 'Output', 'Post', 'Create', 'Send', 'Publish', 'Generate' are usually meant to produce final results\n"
|
||||
"- If these critical blocks have NO outputs (empty recent_outputs), the task likely FAILED even if status shows 'completed'\n"
|
||||
"- Sub-agents (AgentExecutorBlock) that produce no outputs usually indicate failed sub-tasks\n"
|
||||
"- Most importantly: Does the execution result match what the graph description promised to deliver?\n\n"
|
||||
"SUCCESS EVALUATION BASED ON INTENTION:\n"
|
||||
"- If the graph is meant to 'create blog posts' → check if blog content was actually created\n"
|
||||
"- If the graph is meant to 'send emails' → check if emails were actually sent\n"
|
||||
"- If the graph is meant to 'analyze data' → check if analysis results were produced\n"
|
||||
"- If the graph is meant to 'generate reports' → check if reports were generated\n"
|
||||
"- Technical completion ≠ goal achievement. Focus on whether the USER'S INTENDED OUTCOME was delivered\n\n"
|
||||
"IMPORTANT: Be HONEST about what actually happened:\n"
|
||||
"- If the input was invalid/nonsensical, say so directly\n"
|
||||
"- If the task failed, explain what went wrong in simple terms\n"
|
||||
"- If errors occurred, focus on what the user needs to know\n"
|
||||
"- Only claim success if the INTENDED PURPOSE was genuinely accomplished AND produced expected outputs\n"
|
||||
"- Don't sugar-coat failures or present them as helpful feedback\n"
|
||||
"- ESPECIALLY: If the graph's main purpose wasn't achieved, this is a failure regardless of 'completed' status\n\n"
|
||||
"- Only claim success if the task was genuinely completed\n"
|
||||
"- Don't sugar-coat failures or present them as helpful feedback\n\n"
|
||||
"Understanding Errors:\n"
|
||||
"- Node errors: Individual steps may fail but the overall task might still complete (e.g., one data source fails but others work)\n"
|
||||
"- Graph error (in overall_status.graph_error): This means the entire execution failed and nothing was accomplished\n"
|
||||
"- Missing outputs from critical blocks: Even if no errors, this means the task failed to produce expected results\n"
|
||||
"- Focus on whether the graph's intended purpose was fulfilled, not whether technical steps completed"
|
||||
"- Even if execution shows 'completed', check if critical nodes failed that would prevent the desired outcome\n"
|
||||
"- Focus on the end result the user wanted, not whether technical steps completed"
|
||||
),
|
||||
},
|
||||
{
|
||||
@@ -188,28 +165,15 @@ async def generate_activity_status_for_execution(
|
||||
f"A user ran '{graph_name}' to accomplish something. Based on this execution data, "
|
||||
f"write what they achieved in simple, user-friendly terms:\n\n"
|
||||
f"{json.dumps(execution_data, indent=2)}\n\n"
|
||||
"ANALYSIS CHECKLIST:\n"
|
||||
"1. READ graph_info.description FIRST - this tells you what the user intended to accomplish\n"
|
||||
"2. Check overall_status.graph_error - if present, the entire execution failed\n"
|
||||
"3. Look for nodes with 'Output', 'Post', 'Create', 'Send', 'Publish', 'Generate' in their block_name\n"
|
||||
"4. Check if these critical blocks have empty recent_outputs arrays - this indicates failure\n"
|
||||
"5. Look for AgentExecutorBlock (sub-agents) with no outputs - this suggests sub-task failures\n"
|
||||
"6. Count how many nodes produced outputs vs total nodes - low ratio suggests problems\n"
|
||||
"7. MOST IMPORTANT: Does the execution outcome match what graph_info.description promised?\n\n"
|
||||
"INTENTION-BASED EVALUATION:\n"
|
||||
"- If description mentions 'blog writing' → did it create blog content?\n"
|
||||
"- If description mentions 'email automation' → were emails actually sent?\n"
|
||||
"- If description mentions 'data analysis' → were analysis results produced?\n"
|
||||
"- If description mentions 'content generation' → was content actually generated?\n"
|
||||
"- If description mentions 'social media posting' → were posts actually made?\n"
|
||||
"- Match the outputs to the stated intention, not just technical completion\n\n"
|
||||
"CRITICAL: Check overall_status.graph_error FIRST - if present, the entire execution failed.\n"
|
||||
"Then check individual node errors to understand partial failures.\n\n"
|
||||
"Write 1-3 sentences about what the user accomplished, such as:\n"
|
||||
"- 'I analyzed your resume and provided detailed feedback for the IT industry.'\n"
|
||||
"- 'I couldn't complete the task because critical steps failed to produce any results.'\n"
|
||||
"- 'I failed to generate the content you requested due to missing API access.'\n"
|
||||
"- 'I couldn't analyze your resume because the input was just nonsensical text.'\n"
|
||||
"- 'I failed to complete the task due to missing API access.'\n"
|
||||
"- 'I extracted key information from your documents and organized it into a summary.'\n"
|
||||
"- 'The task failed because the blog post creation step didn't produce any output.'\n\n"
|
||||
"BE CRITICAL: If the graph's intended purpose (from description) wasn't achieved, report this as a failure even if status is 'completed'."
|
||||
"- 'The task failed to run due to system configuration issues.'\n\n"
|
||||
"Focus on what ACTUALLY happened, not what was attempted."
|
||||
),
|
||||
},
|
||||
]
|
||||
@@ -223,7 +187,7 @@ async def generate_activity_status_for_execution(
|
||||
credentials = APIKeyCredentials(
|
||||
id="openai",
|
||||
provider="openai",
|
||||
api_key=SecretStr(settings.secrets.openai_internal_api_key),
|
||||
api_key=SecretStr(settings.secrets.openai_api_key),
|
||||
title="System OpenAI",
|
||||
)
|
||||
|
||||
@@ -233,7 +197,6 @@ async def generate_activity_status_for_execution(
|
||||
logger.debug(
|
||||
f"Generated activity status for {graph_exec_id}: {activity_status}"
|
||||
)
|
||||
|
||||
return activity_status
|
||||
|
||||
except Exception as e:
|
||||
@@ -460,6 +423,7 @@ async def _call_llm_direct(
|
||||
credentials=credentials,
|
||||
llm_model=LlmModel.GPT4O_MINI,
|
||||
prompt=prompt,
|
||||
json_format=False,
|
||||
max_tokens=150,
|
||||
compress_prompt_to_fit=True,
|
||||
)
|
||||
|
||||
@@ -468,7 +468,7 @@ class TestGenerateActivityStatusForExecution:
|
||||
):
|
||||
|
||||
mock_get_block.side_effect = lambda block_id: mock_blocks.get(block_id)
|
||||
mock_settings.return_value.secrets.openai_internal_api_key = "test_key"
|
||||
mock_settings.return_value.secrets.openai_api_key = "test_key"
|
||||
mock_llm.return_value = (
|
||||
"I analyzed your data and provided the requested insights."
|
||||
)
|
||||
@@ -520,7 +520,7 @@ class TestGenerateActivityStatusForExecution:
|
||||
"backend.executor.activity_status_generator.is_feature_enabled",
|
||||
return_value=True,
|
||||
):
|
||||
mock_settings.return_value.secrets.openai_internal_api_key = ""
|
||||
mock_settings.return_value.secrets.openai_api_key = ""
|
||||
|
||||
result = await generate_activity_status_for_execution(
|
||||
graph_exec_id="test_exec",
|
||||
@@ -546,7 +546,7 @@ class TestGenerateActivityStatusForExecution:
|
||||
"backend.executor.activity_status_generator.is_feature_enabled",
|
||||
return_value=True,
|
||||
):
|
||||
mock_settings.return_value.secrets.openai_internal_api_key = "test_key"
|
||||
mock_settings.return_value.secrets.openai_api_key = "test_key"
|
||||
|
||||
result = await generate_activity_status_for_execution(
|
||||
graph_exec_id="test_exec",
|
||||
@@ -581,7 +581,7 @@ class TestGenerateActivityStatusForExecution:
|
||||
):
|
||||
|
||||
mock_get_block.side_effect = lambda block_id: mock_blocks.get(block_id)
|
||||
mock_settings.return_value.secrets.openai_internal_api_key = "test_key"
|
||||
mock_settings.return_value.secrets.openai_api_key = "test_key"
|
||||
mock_llm.return_value = "Agent completed execution."
|
||||
|
||||
result = await generate_activity_status_for_execution(
|
||||
@@ -633,7 +633,7 @@ class TestIntegration:
|
||||
):
|
||||
|
||||
mock_get_block.side_effect = lambda block_id: mock_blocks.get(block_id)
|
||||
mock_settings.return_value.secrets.openai_internal_api_key = "test_key"
|
||||
mock_settings.return_value.secrets.openai_api_key = "test_key"
|
||||
|
||||
mock_response = LLMResponse(
|
||||
raw_response={},
|
||||
|
||||
@@ -1,115 +0,0 @@
|
||||
"""Redis-based distributed locking for cluster coordination."""
|
||||
|
||||
import logging
|
||||
import time
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from redis import Redis
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ClusterLock:
|
||||
"""Simple Redis-based distributed lock for preventing duplicate execution."""
|
||||
|
||||
def __init__(self, redis: "Redis", key: str, owner_id: str, timeout: int = 300):
|
||||
self.redis = redis
|
||||
self.key = key
|
||||
self.owner_id = owner_id
|
||||
self.timeout = timeout
|
||||
self._last_refresh = 0.0
|
||||
|
||||
def try_acquire(self) -> str | None:
|
||||
"""Try to acquire the lock.
|
||||
|
||||
Returns:
|
||||
- owner_id (self.owner_id) if successfully acquired
|
||||
- different owner_id if someone else holds the lock
|
||||
- None if Redis is unavailable or other error
|
||||
"""
|
||||
try:
|
||||
success = self.redis.set(self.key, self.owner_id, nx=True, ex=self.timeout)
|
||||
if success:
|
||||
self._last_refresh = time.time()
|
||||
return self.owner_id # Successfully acquired
|
||||
|
||||
# Failed to acquire, get current owner
|
||||
current_value = self.redis.get(self.key)
|
||||
if current_value:
|
||||
current_owner = (
|
||||
current_value.decode("utf-8")
|
||||
if isinstance(current_value, bytes)
|
||||
else str(current_value)
|
||||
)
|
||||
return current_owner
|
||||
|
||||
# Key doesn't exist but we failed to set it - race condition or Redis issue
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"ClusterLock.try_acquire failed for key {self.key}: {e}")
|
||||
return None
|
||||
|
||||
def refresh(self) -> bool:
|
||||
"""Refresh lock TTL if we still own it.
|
||||
|
||||
Rate limited to at most once every timeout/10 seconds (minimum 1 second).
|
||||
During rate limiting, still verifies lock existence but skips TTL extension.
|
||||
Setting _last_refresh to 0 bypasses rate limiting for testing.
|
||||
"""
|
||||
# Calculate refresh interval: max(timeout // 10, 1)
|
||||
refresh_interval = max(self.timeout // 10, 1)
|
||||
current_time = time.time()
|
||||
|
||||
# Check if we're within the rate limit period
|
||||
# _last_refresh == 0 forces a refresh (bypasses rate limiting for testing)
|
||||
is_rate_limited = (
|
||||
self._last_refresh > 0
|
||||
and (current_time - self._last_refresh) < refresh_interval
|
||||
)
|
||||
|
||||
try:
|
||||
# Always verify lock existence, even during rate limiting
|
||||
current_value = self.redis.get(self.key)
|
||||
if not current_value:
|
||||
self._last_refresh = 0
|
||||
return False
|
||||
|
||||
stored_owner = (
|
||||
current_value.decode("utf-8")
|
||||
if isinstance(current_value, bytes)
|
||||
else str(current_value)
|
||||
)
|
||||
if stored_owner != self.owner_id:
|
||||
self._last_refresh = 0
|
||||
return False
|
||||
|
||||
# If rate limited, return True but don't update TTL or timestamp
|
||||
if is_rate_limited:
|
||||
return True
|
||||
|
||||
# Perform actual refresh
|
||||
if self.redis.expire(self.key, self.timeout):
|
||||
self._last_refresh = current_time
|
||||
return True
|
||||
|
||||
self._last_refresh = 0
|
||||
return False
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"ClusterLock.refresh failed for key {self.key}: {e}")
|
||||
self._last_refresh = 0
|
||||
return False
|
||||
|
||||
def release(self):
|
||||
"""Release the lock."""
|
||||
if self._last_refresh == 0:
|
||||
return
|
||||
|
||||
try:
|
||||
self.redis.delete(self.key)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
self._last_refresh = 0.0
|
||||
@@ -1,507 +0,0 @@
|
||||
"""
|
||||
Integration tests for ClusterLock - Redis-based distributed locking.
|
||||
|
||||
Tests the complete lock lifecycle without mocking Redis to ensure
|
||||
real-world behavior is correct. Covers acquisition, refresh, expiry,
|
||||
contention, and error scenarios.
|
||||
"""
|
||||
|
||||
import logging
|
||||
import time
|
||||
import uuid
|
||||
from threading import Thread
|
||||
|
||||
import pytest
|
||||
import redis
|
||||
|
||||
from .cluster_lock import ClusterLock
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def redis_client():
|
||||
"""Get Redis client for testing using same config as backend."""
|
||||
from backend.data.redis_client import HOST, PASSWORD, PORT
|
||||
|
||||
# Use same config as backend but without decode_responses since ClusterLock needs raw bytes
|
||||
client = redis.Redis(
|
||||
host=HOST,
|
||||
port=PORT,
|
||||
password=PASSWORD,
|
||||
decode_responses=False, # ClusterLock needs raw bytes for ownership verification
|
||||
)
|
||||
|
||||
# Clean up any existing test keys
|
||||
try:
|
||||
for key in client.scan_iter(match="test_lock:*"):
|
||||
client.delete(key)
|
||||
except Exception:
|
||||
pass # Ignore cleanup errors
|
||||
|
||||
return client
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def lock_key():
|
||||
"""Generate unique lock key for each test."""
|
||||
return f"test_lock:{uuid.uuid4()}"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def owner_id():
|
||||
"""Generate unique owner ID for each test."""
|
||||
return str(uuid.uuid4())
|
||||
|
||||
|
||||
class TestClusterLockBasic:
|
||||
"""Basic lock acquisition and release functionality."""
|
||||
|
||||
def test_lock_acquisition_success(self, redis_client, lock_key, owner_id):
|
||||
"""Test basic lock acquisition succeeds."""
|
||||
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
|
||||
|
||||
# Lock should be acquired successfully
|
||||
result = lock.try_acquire()
|
||||
assert result == owner_id # Returns our owner_id when successfully acquired
|
||||
assert lock._last_refresh > 0
|
||||
|
||||
# Lock key should exist in Redis
|
||||
assert redis_client.exists(lock_key) == 1
|
||||
assert redis_client.get(lock_key).decode("utf-8") == owner_id
|
||||
|
||||
def test_lock_acquisition_contention(self, redis_client, lock_key):
|
||||
"""Test second acquisition fails when lock is held."""
|
||||
owner1 = str(uuid.uuid4())
|
||||
owner2 = str(uuid.uuid4())
|
||||
|
||||
lock1 = ClusterLock(redis_client, lock_key, owner1, timeout=60)
|
||||
lock2 = ClusterLock(redis_client, lock_key, owner2, timeout=60)
|
||||
|
||||
# First lock should succeed
|
||||
result1 = lock1.try_acquire()
|
||||
assert result1 == owner1 # Successfully acquired, returns our owner_id
|
||||
|
||||
# Second lock should fail and return the first owner
|
||||
result2 = lock2.try_acquire()
|
||||
assert result2 == owner1 # Returns the current owner (first owner)
|
||||
assert lock2._last_refresh == 0
|
||||
|
||||
def test_lock_release_deletes_redis_key(self, redis_client, lock_key, owner_id):
|
||||
"""Test lock release deletes Redis key and marks locally as released."""
|
||||
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
|
||||
|
||||
lock.try_acquire()
|
||||
assert lock._last_refresh > 0
|
||||
assert redis_client.exists(lock_key) == 1
|
||||
|
||||
# Release should delete Redis key and mark locally as released
|
||||
lock.release()
|
||||
assert lock._last_refresh == 0
|
||||
assert lock._last_refresh == 0.0
|
||||
|
||||
# Redis key should be deleted for immediate release
|
||||
assert redis_client.exists(lock_key) == 0
|
||||
|
||||
# Another lock should be able to acquire immediately
|
||||
new_owner_id = str(uuid.uuid4())
|
||||
new_lock = ClusterLock(redis_client, lock_key, new_owner_id, timeout=60)
|
||||
assert new_lock.try_acquire() == new_owner_id
|
||||
|
||||
|
||||
class TestClusterLockRefresh:
|
||||
"""Lock refresh and TTL management."""
|
||||
|
||||
def test_lock_refresh_success(self, redis_client, lock_key, owner_id):
|
||||
"""Test lock refresh extends TTL."""
|
||||
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
|
||||
|
||||
lock.try_acquire()
|
||||
original_ttl = redis_client.ttl(lock_key)
|
||||
|
||||
# Wait a bit then refresh
|
||||
time.sleep(1)
|
||||
lock._last_refresh = 0 # Force refresh past rate limit
|
||||
assert lock.refresh() is True
|
||||
|
||||
# TTL should be reset to full timeout (allow for small timing differences)
|
||||
new_ttl = redis_client.ttl(lock_key)
|
||||
assert new_ttl >= original_ttl or new_ttl >= 58 # Allow for timing variance
|
||||
|
||||
def test_lock_refresh_rate_limiting(self, redis_client, lock_key, owner_id):
|
||||
"""Test refresh is rate-limited to timeout/10."""
|
||||
lock = ClusterLock(
|
||||
redis_client, lock_key, owner_id, timeout=100
|
||||
) # 100s timeout
|
||||
|
||||
lock.try_acquire()
|
||||
|
||||
# First refresh should work
|
||||
assert lock.refresh() is True
|
||||
first_refresh_time = lock._last_refresh
|
||||
|
||||
# Immediate second refresh should be skipped (rate limited) but verify key exists
|
||||
assert lock.refresh() is True # Returns True but skips actual refresh
|
||||
assert lock._last_refresh == first_refresh_time # Time unchanged
|
||||
|
||||
def test_lock_refresh_verifies_existence_during_rate_limit(
|
||||
self, redis_client, lock_key, owner_id
|
||||
):
|
||||
"""Test refresh verifies lock existence even during rate limiting."""
|
||||
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=100)
|
||||
|
||||
lock.try_acquire()
|
||||
|
||||
# Manually delete the key (simulates expiry or external deletion)
|
||||
redis_client.delete(lock_key)
|
||||
|
||||
# Refresh should detect missing key even during rate limit period
|
||||
assert lock.refresh() is False
|
||||
assert lock._last_refresh == 0
|
||||
|
||||
def test_lock_refresh_ownership_lost(self, redis_client, lock_key, owner_id):
|
||||
"""Test refresh fails when ownership is lost."""
|
||||
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
|
||||
|
||||
lock.try_acquire()
|
||||
|
||||
# Simulate another process taking the lock
|
||||
different_owner = str(uuid.uuid4())
|
||||
redis_client.set(lock_key, different_owner, ex=60)
|
||||
|
||||
# Force refresh past rate limit and verify it fails
|
||||
lock._last_refresh = 0 # Force refresh past rate limit
|
||||
assert lock.refresh() is False
|
||||
assert lock._last_refresh == 0
|
||||
|
||||
def test_lock_refresh_when_not_acquired(self, redis_client, lock_key, owner_id):
|
||||
"""Test refresh fails when lock was never acquired."""
|
||||
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
|
||||
|
||||
# Refresh without acquiring should fail
|
||||
assert lock.refresh() is False
|
||||
|
||||
|
||||
class TestClusterLockExpiry:
|
||||
"""Lock expiry and timeout behavior."""
|
||||
|
||||
def test_lock_natural_expiry(self, redis_client, lock_key, owner_id):
|
||||
"""Test lock expires naturally via Redis TTL."""
|
||||
lock = ClusterLock(
|
||||
redis_client, lock_key, owner_id, timeout=2
|
||||
) # 2 second timeout
|
||||
|
||||
lock.try_acquire()
|
||||
assert redis_client.exists(lock_key) == 1
|
||||
|
||||
# Wait for expiry
|
||||
time.sleep(3)
|
||||
assert redis_client.exists(lock_key) == 0
|
||||
|
||||
# New lock with same key should succeed
|
||||
new_lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
|
||||
assert new_lock.try_acquire() == owner_id
|
||||
|
||||
def test_lock_refresh_prevents_expiry(self, redis_client, lock_key, owner_id):
|
||||
"""Test refreshing prevents lock from expiring."""
|
||||
lock = ClusterLock(
|
||||
redis_client, lock_key, owner_id, timeout=3
|
||||
) # 3 second timeout
|
||||
|
||||
lock.try_acquire()
|
||||
|
||||
# Wait and refresh before expiry
|
||||
time.sleep(1)
|
||||
lock._last_refresh = 0 # Force refresh past rate limit
|
||||
assert lock.refresh() is True
|
||||
|
||||
# Wait beyond original timeout
|
||||
time.sleep(2.5)
|
||||
assert redis_client.exists(lock_key) == 1 # Should still exist
|
||||
|
||||
|
||||
class TestClusterLockConcurrency:
|
||||
"""Concurrent access patterns."""
|
||||
|
||||
def test_multiple_threads_contention(self, redis_client, lock_key):
|
||||
"""Test multiple threads competing for same lock."""
|
||||
num_threads = 5
|
||||
successful_acquisitions = []
|
||||
|
||||
def try_acquire_lock(thread_id):
|
||||
owner_id = f"thread_{thread_id}"
|
||||
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
|
||||
if lock.try_acquire() == owner_id:
|
||||
successful_acquisitions.append(thread_id)
|
||||
time.sleep(0.1) # Hold lock briefly
|
||||
lock.release()
|
||||
|
||||
threads = []
|
||||
for i in range(num_threads):
|
||||
thread = Thread(target=try_acquire_lock, args=(i,))
|
||||
threads.append(thread)
|
||||
thread.start()
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
# Only one thread should have acquired the lock
|
||||
assert len(successful_acquisitions) == 1
|
||||
|
||||
def test_sequential_lock_reuse(self, redis_client, lock_key):
|
||||
"""Test lock can be reused after natural expiry."""
|
||||
owners = [str(uuid.uuid4()) for _ in range(3)]
|
||||
|
||||
for i, owner_id in enumerate(owners):
|
||||
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=1) # 1 second
|
||||
|
||||
assert lock.try_acquire() == owner_id
|
||||
time.sleep(1.5) # Wait for expiry
|
||||
|
||||
# Verify lock expired
|
||||
assert redis_client.exists(lock_key) == 0
|
||||
|
||||
def test_refresh_during_concurrent_access(self, redis_client, lock_key):
|
||||
"""Test lock refresh works correctly during concurrent access attempts."""
|
||||
owner1 = str(uuid.uuid4())
|
||||
owner2 = str(uuid.uuid4())
|
||||
|
||||
lock1 = ClusterLock(redis_client, lock_key, owner1, timeout=5)
|
||||
lock2 = ClusterLock(redis_client, lock_key, owner2, timeout=5)
|
||||
|
||||
# Thread 1 holds lock and refreshes
|
||||
assert lock1.try_acquire() == owner1
|
||||
|
||||
def refresh_continuously():
|
||||
for _ in range(10):
|
||||
lock1._last_refresh = 0 # Force refresh
|
||||
lock1.refresh()
|
||||
time.sleep(0.1)
|
||||
|
||||
def try_acquire_continuously():
|
||||
attempts = 0
|
||||
while attempts < 20:
|
||||
if lock2.try_acquire() == owner2:
|
||||
return True
|
||||
time.sleep(0.1)
|
||||
attempts += 1
|
||||
return False
|
||||
|
||||
refresh_thread = Thread(target=refresh_continuously)
|
||||
acquire_thread = Thread(target=try_acquire_continuously)
|
||||
|
||||
refresh_thread.start()
|
||||
acquire_thread.start()
|
||||
|
||||
refresh_thread.join()
|
||||
acquire_thread.join()
|
||||
|
||||
# Lock1 should still own the lock due to refreshes
|
||||
assert lock1._last_refresh > 0
|
||||
assert lock2._last_refresh == 0
|
||||
|
||||
|
||||
class TestClusterLockErrorHandling:
|
||||
"""Error handling and edge cases."""
|
||||
|
||||
def test_redis_connection_failure_on_acquire(self, lock_key, owner_id):
|
||||
"""Test graceful handling when Redis is unavailable during acquisition."""
|
||||
# Use invalid Redis connection
|
||||
bad_redis = redis.Redis(
|
||||
host="invalid_host", port=1234, socket_connect_timeout=1
|
||||
)
|
||||
lock = ClusterLock(bad_redis, lock_key, owner_id, timeout=60)
|
||||
|
||||
# Should return None for Redis connection failures
|
||||
result = lock.try_acquire()
|
||||
assert result is None # Returns None when Redis fails
|
||||
assert lock._last_refresh == 0
|
||||
|
||||
def test_redis_connection_failure_on_refresh(
|
||||
self, redis_client, lock_key, owner_id
|
||||
):
|
||||
"""Test graceful handling when Redis fails during refresh."""
|
||||
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
|
||||
|
||||
# Acquire normally
|
||||
assert lock.try_acquire() == owner_id
|
||||
|
||||
# Replace Redis client with failing one
|
||||
lock.redis = redis.Redis(
|
||||
host="invalid_host", port=1234, socket_connect_timeout=1
|
||||
)
|
||||
|
||||
# Refresh should fail gracefully
|
||||
lock._last_refresh = 0 # Force refresh
|
||||
assert lock.refresh() is False
|
||||
assert lock._last_refresh == 0
|
||||
|
||||
def test_invalid_lock_parameters(self, redis_client):
|
||||
"""Test validation of lock parameters."""
|
||||
owner_id = str(uuid.uuid4())
|
||||
|
||||
# All parameters are now simple - no validation needed
|
||||
# Just test basic construction works
|
||||
lock = ClusterLock(redis_client, "test_key", owner_id, timeout=60)
|
||||
assert lock.key == "test_key"
|
||||
assert lock.owner_id == owner_id
|
||||
assert lock.timeout == 60
|
||||
|
||||
def test_refresh_after_redis_key_deleted(self, redis_client, lock_key, owner_id):
|
||||
"""Test refresh behavior when Redis key is manually deleted."""
|
||||
lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
|
||||
|
||||
lock.try_acquire()
|
||||
|
||||
# Manually delete the key (simulates external deletion)
|
||||
redis_client.delete(lock_key)
|
||||
|
||||
# Refresh should fail and mark as not acquired
|
||||
lock._last_refresh = 0 # Force refresh
|
||||
assert lock.refresh() is False
|
||||
assert lock._last_refresh == 0
|
||||
|
||||
|
||||
class TestClusterLockDynamicRefreshInterval:
|
||||
"""Dynamic refresh interval based on timeout."""
|
||||
|
||||
def test_refresh_interval_calculation(self, redis_client, lock_key, owner_id):
|
||||
"""Test refresh interval is calculated as max(timeout/10, 1)."""
|
||||
test_cases = [
|
||||
(5, 1), # 5/10 = 0, but minimum is 1
|
||||
(10, 1), # 10/10 = 1
|
||||
(30, 3), # 30/10 = 3
|
||||
(100, 10), # 100/10 = 10
|
||||
(200, 20), # 200/10 = 20
|
||||
(1000, 100), # 1000/10 = 100
|
||||
]
|
||||
|
||||
for timeout, expected_interval in test_cases:
|
||||
lock = ClusterLock(
|
||||
redis_client, f"{lock_key}_{timeout}", owner_id, timeout=timeout
|
||||
)
|
||||
lock.try_acquire()
|
||||
|
||||
# Calculate expected interval using same logic as implementation
|
||||
refresh_interval = max(timeout // 10, 1)
|
||||
assert refresh_interval == expected_interval
|
||||
|
||||
# Test rate limiting works with calculated interval
|
||||
assert lock.refresh() is True
|
||||
first_refresh_time = lock._last_refresh
|
||||
|
||||
# Sleep less than interval - should be rate limited
|
||||
time.sleep(0.1)
|
||||
assert lock.refresh() is True
|
||||
assert lock._last_refresh == first_refresh_time # No actual refresh
|
||||
|
||||
|
||||
class TestClusterLockRealWorldScenarios:
|
||||
"""Real-world usage patterns."""
|
||||
|
||||
def test_execution_coordination_simulation(self, redis_client):
|
||||
"""Simulate graph execution coordination across multiple pods."""
|
||||
graph_exec_id = str(uuid.uuid4())
|
||||
lock_key = f"execution:{graph_exec_id}"
|
||||
|
||||
# Simulate 3 pods trying to execute same graph
|
||||
pods = [f"pod_{i}" for i in range(3)]
|
||||
execution_results = {}
|
||||
|
||||
def execute_graph(pod_id):
|
||||
"""Simulate graph execution with cluster lock."""
|
||||
lock = ClusterLock(redis_client, lock_key, pod_id, timeout=300)
|
||||
|
||||
if lock.try_acquire() == pod_id:
|
||||
# Simulate execution work
|
||||
execution_results[pod_id] = "executed"
|
||||
time.sleep(0.1)
|
||||
lock.release()
|
||||
else:
|
||||
execution_results[pod_id] = "rejected"
|
||||
|
||||
threads = []
|
||||
for pod_id in pods:
|
||||
thread = Thread(target=execute_graph, args=(pod_id,))
|
||||
threads.append(thread)
|
||||
thread.start()
|
||||
|
||||
for thread in threads:
|
||||
thread.join()
|
||||
|
||||
# Only one pod should have executed
|
||||
executed_count = sum(
|
||||
1 for result in execution_results.values() if result == "executed"
|
||||
)
|
||||
rejected_count = sum(
|
||||
1 for result in execution_results.values() if result == "rejected"
|
||||
)
|
||||
|
||||
assert executed_count == 1
|
||||
assert rejected_count == 2
|
||||
|
||||
def test_long_running_execution_with_refresh(
|
||||
self, redis_client, lock_key, owner_id
|
||||
):
|
||||
"""Test lock maintains ownership during long execution with periodic refresh."""
|
||||
lock = ClusterLock(
|
||||
redis_client, lock_key, owner_id, timeout=30
|
||||
) # 30 second timeout, refresh interval = max(30//10, 1) = 3 seconds
|
||||
|
||||
def long_execution_with_refresh():
|
||||
"""Simulate long-running execution with periodic refresh."""
|
||||
assert lock.try_acquire() == owner_id
|
||||
|
||||
# Simulate 10 seconds of work with refreshes every 2 seconds
|
||||
# This respects rate limiting - actual refreshes will happen at 0s, 3s, 6s, 9s
|
||||
try:
|
||||
for i in range(5): # 5 iterations * 2 seconds = 10 seconds total
|
||||
time.sleep(2)
|
||||
refresh_success = lock.refresh()
|
||||
assert refresh_success is True, f"Refresh failed at iteration {i}"
|
||||
return "completed"
|
||||
finally:
|
||||
lock.release()
|
||||
|
||||
# Should complete successfully without losing lock
|
||||
result = long_execution_with_refresh()
|
||||
assert result == "completed"
|
||||
|
||||
def test_graceful_degradation_pattern(self, redis_client, lock_key):
|
||||
"""Test graceful degradation when Redis becomes unavailable."""
|
||||
owner_id = str(uuid.uuid4())
|
||||
lock = ClusterLock(
|
||||
redis_client, lock_key, owner_id, timeout=3
|
||||
) # Use shorter timeout
|
||||
|
||||
# Normal operation
|
||||
assert lock.try_acquire() == owner_id
|
||||
lock._last_refresh = 0 # Force refresh past rate limit
|
||||
assert lock.refresh() is True
|
||||
|
||||
# Simulate Redis becoming unavailable
|
||||
original_redis = lock.redis
|
||||
lock.redis = redis.Redis(
|
||||
host="invalid_host",
|
||||
port=1234,
|
||||
socket_connect_timeout=1,
|
||||
decode_responses=False,
|
||||
)
|
||||
|
||||
# Should degrade gracefully
|
||||
lock._last_refresh = 0 # Force refresh past rate limit
|
||||
assert lock.refresh() is False
|
||||
assert lock._last_refresh == 0
|
||||
|
||||
# Restore Redis and verify can acquire again
|
||||
lock.redis = original_redis
|
||||
# Wait for original lock to expire (use longer wait for 3s timeout)
|
||||
time.sleep(4)
|
||||
|
||||
new_lock = ClusterLock(redis_client, lock_key, owner_id, timeout=60)
|
||||
assert new_lock.try_acquire() == owner_id
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Run specific test for quick validation
|
||||
pytest.main([__file__, "-v"])
|
||||
@@ -9,7 +9,6 @@ from backend.data.execution import (
|
||||
get_execution_kv_data,
|
||||
get_graph_execution_meta,
|
||||
get_graph_executions,
|
||||
get_graph_executions_count,
|
||||
get_latest_node_execution,
|
||||
get_node_execution,
|
||||
get_node_executions,
|
||||
@@ -29,13 +28,11 @@ from backend.data.graph import (
|
||||
get_node,
|
||||
)
|
||||
from backend.data.notifications import (
|
||||
clear_all_user_notification_batches,
|
||||
create_or_add_to_user_notification_batch,
|
||||
empty_user_notification_batch,
|
||||
get_all_batches_by_type,
|
||||
get_user_notification_batch,
|
||||
get_user_notification_oldest_message_in_batch,
|
||||
remove_notifications_from_batch,
|
||||
)
|
||||
from backend.data.user import (
|
||||
get_active_user_ids_in_timerange,
|
||||
@@ -74,6 +71,7 @@ async def _get_credits(user_id: str) -> int:
|
||||
|
||||
|
||||
class DatabaseManager(AppService):
|
||||
|
||||
def run_service(self) -> None:
|
||||
logger.info(f"[{self.service_name}] ⏳ Connecting to Database...")
|
||||
self.run_and_wait(db.connect())
|
||||
@@ -87,16 +85,6 @@ class DatabaseManager(AppService):
|
||||
async def health_check(self) -> str:
|
||||
if not db.is_connected():
|
||||
raise UnhealthyServiceError("Database is not connected")
|
||||
|
||||
try:
|
||||
# Test actual database connectivity by executing a simple query
|
||||
# This will fail if Prisma query engine is not responding
|
||||
result = await db.query_raw_with_schema("SELECT 1 as health_check")
|
||||
if not result or result[0].get("health_check") != 1:
|
||||
raise UnhealthyServiceError("Database query test failed")
|
||||
except Exception as e:
|
||||
raise UnhealthyServiceError(f"Database health check failed: {e}")
|
||||
|
||||
return await super().health_check()
|
||||
|
||||
@classmethod
|
||||
@@ -113,7 +101,6 @@ class DatabaseManager(AppService):
|
||||
|
||||
# Executions
|
||||
get_graph_executions = _(get_graph_executions)
|
||||
get_graph_executions_count = _(get_graph_executions_count)
|
||||
get_graph_execution_meta = _(get_graph_execution_meta)
|
||||
create_graph_execution = _(create_graph_execution)
|
||||
get_node_execution = _(get_node_execution)
|
||||
@@ -150,12 +137,10 @@ class DatabaseManager(AppService):
|
||||
get_user_notification_preference = _(get_user_notification_preference)
|
||||
|
||||
# Notifications - async
|
||||
clear_all_user_notification_batches = _(clear_all_user_notification_batches)
|
||||
create_or_add_to_user_notification_batch = _(
|
||||
create_or_add_to_user_notification_batch
|
||||
)
|
||||
empty_user_notification_batch = _(empty_user_notification_batch)
|
||||
remove_notifications_from_batch = _(remove_notifications_from_batch)
|
||||
get_all_batches_by_type = _(get_all_batches_by_type)
|
||||
get_user_notification_batch = _(get_user_notification_batch)
|
||||
get_user_notification_oldest_message_in_batch = _(
|
||||
@@ -184,7 +169,6 @@ class DatabaseManagerClient(AppServiceClient):
|
||||
|
||||
# Executions
|
||||
get_graph_executions = _(d.get_graph_executions)
|
||||
get_graph_executions_count = _(d.get_graph_executions_count)
|
||||
get_graph_execution_meta = _(d.get_graph_execution_meta)
|
||||
get_node_executions = _(d.get_node_executions)
|
||||
update_node_execution_status = _(d.update_node_execution_status)
|
||||
@@ -247,12 +231,10 @@ class DatabaseManagerAsyncClient(AppServiceClient):
|
||||
get_user_notification_preference = d.get_user_notification_preference
|
||||
|
||||
# Notifications
|
||||
clear_all_user_notification_batches = d.clear_all_user_notification_batches
|
||||
create_or_add_to_user_notification_batch = (
|
||||
d.create_or_add_to_user_notification_batch
|
||||
)
|
||||
empty_user_notification_batch = d.empty_user_notification_batch
|
||||
remove_notifications_from_batch = d.remove_notifications_from_batch
|
||||
get_all_batches_by_type = d.get_all_batches_by_type
|
||||
get_user_notification_batch = d.get_user_notification_batch
|
||||
get_user_notification_oldest_message_in_batch = (
|
||||
|
||||
@@ -3,42 +3,16 @@ import logging
|
||||
import os
|
||||
import threading
|
||||
import time
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from concurrent.futures import Future, ThreadPoolExecutor
|
||||
from contextlib import asynccontextmanager
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import TYPE_CHECKING, Any, Optional, TypeVar, cast
|
||||
|
||||
import sentry_sdk
|
||||
from pika.adapters.blocking_connection import BlockingChannel
|
||||
from pika.spec import Basic, BasicProperties
|
||||
from prometheus_client import Gauge, start_http_server
|
||||
from redis.asyncio.lock import Lock as AsyncRedisLock
|
||||
from redis.asyncio.lock import Lock as RedisLock
|
||||
|
||||
from backend.blocks.agent import AgentExecutorBlock
|
||||
from backend.blocks.io import AgentOutputBlock
|
||||
from backend.data import redis_client as redis
|
||||
from backend.data.block import (
|
||||
BlockInput,
|
||||
BlockOutput,
|
||||
BlockOutputEntry,
|
||||
BlockSchema,
|
||||
get_block,
|
||||
)
|
||||
from backend.data.credit import UsageTransactionMetadata
|
||||
from backend.data.dynamic_fields import parse_execution_output
|
||||
from backend.data.execution import (
|
||||
ExecutionQueue,
|
||||
ExecutionStatus,
|
||||
GraphExecution,
|
||||
GraphExecutionEntry,
|
||||
NodeExecutionEntry,
|
||||
NodeExecutionResult,
|
||||
NodesInputMasks,
|
||||
UserContext,
|
||||
)
|
||||
from backend.data.graph import Link, Node
|
||||
from backend.data.model import GraphExecutionStats, NodeExecutionStats
|
||||
from backend.data.notifications import (
|
||||
AgentRunData,
|
||||
@@ -51,21 +25,50 @@ from backend.data.rabbitmq import SyncRabbitMQ
|
||||
from backend.executor.activity_status_generator import (
|
||||
generate_activity_status_for_execution,
|
||||
)
|
||||
from backend.executor.utils import LogMetadata
|
||||
from backend.notifications.notifications import queue_notification
|
||||
from backend.util.exceptions import InsufficientBalanceError, ModerationError
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.executor import DatabaseManagerClient, DatabaseManagerAsyncClient
|
||||
|
||||
from prometheus_client import Gauge, start_http_server
|
||||
|
||||
from backend.blocks.agent import AgentExecutorBlock
|
||||
from backend.data import redis_client as redis
|
||||
from backend.data.block import (
|
||||
BlockInput,
|
||||
BlockOutput,
|
||||
BlockOutputEntry,
|
||||
BlockSchema,
|
||||
get_block,
|
||||
)
|
||||
from backend.data.credit import UsageTransactionMetadata
|
||||
from backend.data.execution import (
|
||||
ExecutionQueue,
|
||||
ExecutionStatus,
|
||||
GraphExecution,
|
||||
GraphExecutionEntry,
|
||||
NodeExecutionEntry,
|
||||
NodeExecutionResult,
|
||||
NodesInputMasks,
|
||||
UserContext,
|
||||
)
|
||||
from backend.data.graph import Link, Node
|
||||
from backend.executor.utils import (
|
||||
GRACEFUL_SHUTDOWN_TIMEOUT_SECONDS,
|
||||
GRAPH_EXECUTION_CANCEL_QUEUE_NAME,
|
||||
GRAPH_EXECUTION_QUEUE_NAME,
|
||||
CancelExecutionEvent,
|
||||
ExecutionOutputEntry,
|
||||
LogMetadata,
|
||||
NodeExecutionProgress,
|
||||
block_usage_cost,
|
||||
create_execution_queue_config,
|
||||
execution_usage_cost,
|
||||
parse_execution_output,
|
||||
validate_exec,
|
||||
)
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.notifications.notifications import queue_notification
|
||||
from backend.server.v2.AutoMod.manager import automod_manager
|
||||
from backend.util import json
|
||||
from backend.util.clients import (
|
||||
@@ -81,24 +84,13 @@ from backend.util.decorator import (
|
||||
error_logged,
|
||||
time_measured,
|
||||
)
|
||||
from backend.util.exceptions import InsufficientBalanceError, ModerationError
|
||||
from backend.util.file import clean_exec_files
|
||||
from backend.util.logging import TruncatedLogger, configure_logging
|
||||
from backend.util.metrics import DiscordChannel
|
||||
from backend.util.process import AppProcess, set_service_name
|
||||
from backend.util.retry import (
|
||||
continuous_retry,
|
||||
func_retry,
|
||||
send_rate_limited_discord_alert,
|
||||
)
|
||||
from backend.util.retry import continuous_retry, func_retry
|
||||
from backend.util.settings import Settings
|
||||
|
||||
from .cluster_lock import ClusterLock
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.executor import DatabaseManagerAsyncClient, DatabaseManagerClient
|
||||
|
||||
|
||||
_logger = logging.getLogger(__name__)
|
||||
logger = TruncatedLogger(_logger, prefix="[GraphExecutor]")
|
||||
settings = Settings()
|
||||
@@ -114,7 +106,6 @@ utilization_gauge = Gauge(
|
||||
"Ratio of active graph runs to max graph workers",
|
||||
)
|
||||
|
||||
|
||||
# Thread-local storage for ExecutionProcessor instances
|
||||
_tls = threading.local()
|
||||
|
||||
@@ -126,14 +117,10 @@ def init_worker():
|
||||
|
||||
|
||||
def execute_graph(
|
||||
graph_exec_entry: "GraphExecutionEntry",
|
||||
cancel_event: threading.Event,
|
||||
cluster_lock: ClusterLock,
|
||||
graph_exec_entry: "GraphExecutionEntry", cancel_event: threading.Event
|
||||
):
|
||||
"""Execute graph using thread-local ExecutionProcessor instance"""
|
||||
return _tls.processor.on_graph_execution(
|
||||
graph_exec_entry, cancel_event, cluster_lock
|
||||
)
|
||||
return _tls.processor.on_graph_execution(graph_exec_entry, cancel_event)
|
||||
|
||||
|
||||
T = TypeVar("T")
|
||||
@@ -190,7 +177,6 @@ async def execute_node(
|
||||
_input_data.inputs = input_data
|
||||
if nodes_input_masks:
|
||||
_input_data.nodes_input_masks = nodes_input_masks
|
||||
_input_data.user_id = user_id
|
||||
input_data = _input_data.model_dump()
|
||||
data.inputs = input_data
|
||||
|
||||
@@ -225,23 +211,6 @@ async def execute_node(
|
||||
extra_exec_kwargs[field_name] = credentials
|
||||
|
||||
output_size = 0
|
||||
|
||||
# sentry tracking nonsense to get user counts for blocks because isolation scopes don't work :(
|
||||
scope = sentry_sdk.get_current_scope()
|
||||
|
||||
# save the tags
|
||||
original_user = scope._user
|
||||
original_tags = dict(scope._tags) if scope._tags else {}
|
||||
# Set user ID for error tracking
|
||||
scope.set_user({"id": user_id})
|
||||
|
||||
scope.set_tag("graph_id", graph_id)
|
||||
scope.set_tag("node_id", node_id)
|
||||
scope.set_tag("block_name", node_block.name)
|
||||
scope.set_tag("block_id", node_block.id)
|
||||
for k, v in (data.user_context or UserContext(timezone="UTC")).model_dump().items():
|
||||
scope.set_tag(f"user_context.{k}", v)
|
||||
|
||||
try:
|
||||
async for output_name, output_data in node_block.execute(
|
||||
input_data, **extra_exec_kwargs
|
||||
@@ -250,12 +219,6 @@ async def execute_node(
|
||||
output_size += len(json.dumps(output_data))
|
||||
log_metadata.debug("Node produced output", **{output_name: output_data})
|
||||
yield output_name, output_data
|
||||
except Exception:
|
||||
# Capture exception WITH context still set before restoring scope
|
||||
sentry_sdk.capture_exception(scope=scope)
|
||||
sentry_sdk.flush() # Ensure it's sent before we restore scope
|
||||
# Re-raise to maintain normal error flow
|
||||
raise
|
||||
finally:
|
||||
# Ensure credentials are released even if execution fails
|
||||
if creds_lock and (await creds_lock.locked()) and (await creds_lock.owned()):
|
||||
@@ -270,10 +233,6 @@ async def execute_node(
|
||||
execution_stats.input_size = input_size
|
||||
execution_stats.output_size = output_size
|
||||
|
||||
# Restore scope AFTER error has been captured
|
||||
scope._user = original_user
|
||||
scope._tags = original_tags
|
||||
|
||||
|
||||
async def _enqueue_next_nodes(
|
||||
db_client: "DatabaseManagerAsyncClient",
|
||||
@@ -470,7 +429,7 @@ class ExecutionProcessor:
|
||||
graph_id=node_exec.graph_id,
|
||||
node_eid=node_exec.node_exec_id,
|
||||
node_id=node_exec.node_id,
|
||||
block_name=b.name if (b := get_block(node_exec.block_id)) else "-",
|
||||
block_name="-",
|
||||
)
|
||||
db_client = get_db_async_client()
|
||||
node = await db_client.get_node(node_exec.node_id)
|
||||
@@ -598,6 +557,7 @@ class ExecutionProcessor:
|
||||
await persist_output(
|
||||
"error", str(stats.error) or type(stats.error).__name__
|
||||
)
|
||||
|
||||
return status
|
||||
|
||||
@func_retry
|
||||
@@ -623,7 +583,6 @@ class ExecutionProcessor:
|
||||
self,
|
||||
graph_exec: GraphExecutionEntry,
|
||||
cancel: threading.Event,
|
||||
cluster_lock: ClusterLock,
|
||||
):
|
||||
log_metadata = LogMetadata(
|
||||
logger=_logger,
|
||||
@@ -646,7 +605,7 @@ class ExecutionProcessor:
|
||||
)
|
||||
return
|
||||
|
||||
if exec_meta.status in [ExecutionStatus.QUEUED, ExecutionStatus.INCOMPLETE]:
|
||||
if exec_meta.status == ExecutionStatus.QUEUED:
|
||||
log_metadata.info(f"⚙️ Starting graph execution #{graph_exec.graph_exec_id}")
|
||||
exec_meta.status = ExecutionStatus.RUNNING
|
||||
send_execution_update(
|
||||
@@ -682,7 +641,6 @@ class ExecutionProcessor:
|
||||
cancel=cancel,
|
||||
log_metadata=log_metadata,
|
||||
execution_stats=exec_stats,
|
||||
cluster_lock=cluster_lock,
|
||||
)
|
||||
exec_stats.walltime += timing_info.wall_time
|
||||
exec_stats.cputime += timing_info.cpu_time
|
||||
@@ -784,7 +742,6 @@ class ExecutionProcessor:
|
||||
cancel: threading.Event,
|
||||
log_metadata: LogMetadata,
|
||||
execution_stats: GraphExecutionStats,
|
||||
cluster_lock: ClusterLock,
|
||||
) -> ExecutionStatus:
|
||||
"""
|
||||
Returns:
|
||||
@@ -970,7 +927,7 @@ class ExecutionProcessor:
|
||||
and execution_queue.empty()
|
||||
and (running_node_execution or running_node_evaluation)
|
||||
):
|
||||
cluster_lock.refresh()
|
||||
# There is nothing to execute, and no output to process, let's relax for a while.
|
||||
time.sleep(0.1)
|
||||
|
||||
# loop done --------------------------------------------------
|
||||
@@ -1012,31 +969,16 @@ class ExecutionProcessor:
|
||||
if isinstance(e, Exception)
|
||||
else Exception(f"{e.__class__.__name__}: {e}")
|
||||
)
|
||||
if not execution_stats.error:
|
||||
execution_stats.error = str(error)
|
||||
|
||||
known_errors = (InsufficientBalanceError, ModerationError)
|
||||
if isinstance(error, known_errors):
|
||||
execution_stats.error = str(error)
|
||||
return ExecutionStatus.FAILED
|
||||
|
||||
execution_status = ExecutionStatus.FAILED
|
||||
log_metadata.exception(
|
||||
f"Failed graph execution {graph_exec.graph_exec_id}: {error}"
|
||||
)
|
||||
|
||||
# Send rate-limited Discord alert for unknown/unexpected errors
|
||||
send_rate_limited_discord_alert(
|
||||
"graph_execution",
|
||||
error,
|
||||
"unknown_error",
|
||||
f"🚨 **Unknown Graph Execution Error**\n"
|
||||
f"User: {graph_exec.user_id}\n"
|
||||
f"Graph ID: {graph_exec.graph_id}\n"
|
||||
f"Execution ID: {graph_exec.graph_exec_id}\n"
|
||||
f"Error Type: {type(error).__name__}\n"
|
||||
f"Error: {str(error)[:200]}{'...' if len(str(error)) > 200 else ''}\n",
|
||||
)
|
||||
|
||||
raise
|
||||
|
||||
finally:
|
||||
@@ -1211,9 +1153,9 @@ class ExecutionProcessor:
|
||||
f"❌ **Insufficient Funds Alert**\n"
|
||||
f"User: {user_email or user_id}\n"
|
||||
f"Agent: {metadata.name if metadata else 'Unknown Agent'}\n"
|
||||
f"Current balance: ${e.balance / 100:.2f}\n"
|
||||
f"Attempted cost: ${abs(e.amount) / 100:.2f}\n"
|
||||
f"Shortfall: ${abs(shortfall) / 100:.2f}\n"
|
||||
f"Current balance: ${e.balance/100:.2f}\n"
|
||||
f"Attempted cost: ${abs(e.amount)/100:.2f}\n"
|
||||
f"Shortfall: ${abs(shortfall)/100:.2f}\n"
|
||||
f"[View User Details]({base_url}/admin/spending?search={user_email})"
|
||||
)
|
||||
|
||||
@@ -1260,9 +1202,9 @@ class ExecutionProcessor:
|
||||
alert_message = (
|
||||
f"⚠️ **Low Balance Alert**\n"
|
||||
f"User: {user_email or user_id}\n"
|
||||
f"Balance dropped below ${LOW_BALANCE_THRESHOLD / 100:.2f}\n"
|
||||
f"Current balance: ${current_balance / 100:.2f}\n"
|
||||
f"Transaction cost: ${transaction_cost / 100:.2f}\n"
|
||||
f"Balance dropped below ${LOW_BALANCE_THRESHOLD/100:.2f}\n"
|
||||
f"Current balance: ${current_balance/100:.2f}\n"
|
||||
f"Transaction cost: ${transaction_cost/100:.2f}\n"
|
||||
f"[View User Details]({base_url}/admin/spending?search={user_email})"
|
||||
)
|
||||
get_notification_manager_client().discord_system_alert(
|
||||
@@ -1277,7 +1219,6 @@ class ExecutionManager(AppProcess):
|
||||
super().__init__()
|
||||
self.pool_size = settings.config.num_graph_workers
|
||||
self.active_graph_runs: dict[str, tuple[Future, threading.Event]] = {}
|
||||
self.executor_id = str(uuid.uuid4())
|
||||
|
||||
self._executor = None
|
||||
self._stop_consuming = None
|
||||
@@ -1287,8 +1228,6 @@ class ExecutionManager(AppProcess):
|
||||
self._run_thread = None
|
||||
self._run_client = None
|
||||
|
||||
self._execution_locks = {}
|
||||
|
||||
@property
|
||||
def cancel_thread(self) -> threading.Thread:
|
||||
if self._cancel_thread is None:
|
||||
@@ -1493,78 +1432,20 @@ class ExecutionManager(AppProcess):
|
||||
return
|
||||
|
||||
graph_exec_id = graph_exec_entry.graph_exec_id
|
||||
user_id = graph_exec_entry.user_id
|
||||
graph_id = graph_exec_entry.graph_id
|
||||
logger.info(
|
||||
f"[{self.service_name}] Received RUN for graph_exec_id={graph_exec_id}, user_id={user_id}"
|
||||
f"[{self.service_name}] Received RUN for graph_exec_id={graph_exec_id}"
|
||||
)
|
||||
|
||||
# Check user rate limit before processing
|
||||
try:
|
||||
# Only check executions from the last 24 hours for performance
|
||||
current_running_count = get_db_client().get_graph_executions_count(
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
statuses=[ExecutionStatus.RUNNING],
|
||||
created_time_gte=datetime.now(timezone.utc) - timedelta(hours=24),
|
||||
)
|
||||
|
||||
if (
|
||||
current_running_count
|
||||
>= settings.config.max_concurrent_graph_executions_per_user
|
||||
):
|
||||
logger.warning(
|
||||
f"[{self.service_name}] Rate limit exceeded for user {user_id} on graph {graph_id}: "
|
||||
f"{current_running_count}/{settings.config.max_concurrent_graph_executions_per_user} running executions"
|
||||
)
|
||||
_ack_message(reject=True, requeue=True)
|
||||
return
|
||||
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"[{self.service_name}] Failed to check rate limit for user {user_id}: {e}, proceeding with execution"
|
||||
)
|
||||
# If rate limit check fails, proceed to avoid blocking executions
|
||||
|
||||
# Check for local duplicate execution first
|
||||
if graph_exec_id in self.active_graph_runs:
|
||||
logger.warning(
|
||||
f"[{self.service_name}] Graph {graph_exec_id} already running locally; rejecting duplicate."
|
||||
# TODO: Make this check cluster-wide, prevent duplicate runs across executor pods.
|
||||
logger.error(
|
||||
f"[{self.service_name}] Graph {graph_exec_id} already running; rejecting duplicate run."
|
||||
)
|
||||
_ack_message(reject=True, requeue=True)
|
||||
_ack_message(reject=True, requeue=False)
|
||||
return
|
||||
|
||||
# Try to acquire cluster-wide execution lock
|
||||
cluster_lock = ClusterLock(
|
||||
redis=redis.get_redis(),
|
||||
key=f"exec_lock:{graph_exec_id}",
|
||||
owner_id=self.executor_id,
|
||||
timeout=settings.config.cluster_lock_timeout,
|
||||
)
|
||||
current_owner = cluster_lock.try_acquire()
|
||||
if current_owner != self.executor_id:
|
||||
# Either someone else has it or Redis is unavailable
|
||||
if current_owner is not None:
|
||||
logger.warning(
|
||||
f"[{self.service_name}] Graph {graph_exec_id} already running on pod {current_owner}"
|
||||
)
|
||||
else:
|
||||
logger.warning(
|
||||
f"[{self.service_name}] Could not acquire lock for {graph_exec_id} - Redis unavailable"
|
||||
)
|
||||
_ack_message(reject=True, requeue=True)
|
||||
return
|
||||
self._execution_locks[graph_exec_id] = cluster_lock
|
||||
|
||||
logger.info(
|
||||
f"[{self.service_name}] Acquired cluster lock for {graph_exec_id} with executor {self.executor_id}"
|
||||
)
|
||||
|
||||
cancel_event = threading.Event()
|
||||
|
||||
future = self.executor.submit(
|
||||
execute_graph, graph_exec_entry, cancel_event, cluster_lock
|
||||
)
|
||||
future = self.executor.submit(execute_graph, graph_exec_entry, cancel_event)
|
||||
self.active_graph_runs[graph_exec_id] = (future, cancel_event)
|
||||
self._update_prompt_metrics()
|
||||
|
||||
@@ -1583,10 +1464,6 @@ class ExecutionManager(AppProcess):
|
||||
f"[{self.service_name}] Error in run completion callback: {e}"
|
||||
)
|
||||
finally:
|
||||
# Release the cluster-wide execution lock
|
||||
if graph_exec_id in self._execution_locks:
|
||||
self._execution_locks[graph_exec_id].release()
|
||||
del self._execution_locks[graph_exec_id]
|
||||
self._cleanup_completed_runs()
|
||||
|
||||
future.add_done_callback(_on_run_done)
|
||||
@@ -1669,10 +1546,6 @@ class ExecutionManager(AppProcess):
|
||||
f"{prefix} ⏳ Still waiting for {len(self.active_graph_runs)} executions: {ids}"
|
||||
)
|
||||
|
||||
for graph_exec_id in self.active_graph_runs:
|
||||
if lock := self._execution_locks.get(graph_exec_id):
|
||||
lock.refresh()
|
||||
|
||||
time.sleep(wait_interval)
|
||||
waited += wait_interval
|
||||
|
||||
@@ -1690,15 +1563,6 @@ class ExecutionManager(AppProcess):
|
||||
except Exception as e:
|
||||
logger.error(f"{prefix} ⚠️ Error during executor shutdown: {type(e)} {e}")
|
||||
|
||||
# Release remaining execution locks
|
||||
try:
|
||||
for lock in self._execution_locks.values():
|
||||
lock.release()
|
||||
self._execution_locks.clear()
|
||||
logger.info(f"{prefix} ✅ Released execution locks")
|
||||
except Exception as e:
|
||||
logger.warning(f"{prefix} ⚠️ Failed to release all locks: {e}")
|
||||
|
||||
# Disconnect the run execution consumer
|
||||
self._stop_message_consumers(
|
||||
self.run_thread,
|
||||
@@ -1804,18 +1668,15 @@ def update_graph_execution_state(
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def synchronized(key: str, timeout: int = settings.config.cluster_lock_timeout):
|
||||
async def synchronized(key: str, timeout: int = 60):
|
||||
r = await redis.get_redis_async()
|
||||
lock: AsyncRedisLock = r.lock(f"lock:{key}", timeout=timeout)
|
||||
lock: RedisLock = r.lock(f"lock:{key}", timeout=timeout)
|
||||
try:
|
||||
await lock.acquire()
|
||||
yield
|
||||
finally:
|
||||
if await lock.locked() and await lock.owned():
|
||||
try:
|
||||
await lock.release()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to release lock for key {key}: {e}")
|
||||
await lock.release()
|
||||
|
||||
|
||||
def increment_execution_count(user_id: str) -> int:
|
||||
|
||||
@@ -191,22 +191,15 @@ class GraphExecutionJobInfo(GraphExecutionJobArgs):
|
||||
id: str
|
||||
name: str
|
||||
next_run_time: str
|
||||
timezone: str = Field(default="UTC", description="Timezone used for scheduling")
|
||||
|
||||
@staticmethod
|
||||
def from_db(
|
||||
job_args: GraphExecutionJobArgs, job_obj: JobObj
|
||||
) -> "GraphExecutionJobInfo":
|
||||
# Extract timezone from the trigger if it's a CronTrigger
|
||||
timezone_str = "UTC"
|
||||
if hasattr(job_obj.trigger, "timezone"):
|
||||
timezone_str = str(job_obj.trigger.timezone)
|
||||
|
||||
return GraphExecutionJobInfo(
|
||||
id=job_obj.id,
|
||||
name=job_obj.name,
|
||||
next_run_time=job_obj.next_run_time.isoformat(),
|
||||
timezone=timezone_str,
|
||||
**job_args.model_dump(),
|
||||
)
|
||||
|
||||
@@ -402,7 +395,6 @@ class Scheduler(AppService):
|
||||
input_data: BlockInput,
|
||||
input_credentials: dict[str, CredentialsMetaInput],
|
||||
name: Optional[str] = None,
|
||||
user_timezone: str | None = None,
|
||||
) -> GraphExecutionJobInfo:
|
||||
# Validate the graph before scheduling to prevent runtime failures
|
||||
# We don't need the return value, just want the validation to run
|
||||
@@ -416,18 +408,7 @@ class Scheduler(AppService):
|
||||
)
|
||||
)
|
||||
|
||||
# Use provided timezone or default to UTC
|
||||
# Note: Timezone should be passed from the client to avoid database lookups
|
||||
if not user_timezone:
|
||||
user_timezone = "UTC"
|
||||
logger.warning(
|
||||
f"No timezone provided for user {user_id}, using UTC for scheduling. "
|
||||
f"Client should pass user's timezone for correct scheduling."
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Scheduling job for user {user_id} with timezone {user_timezone} (cron: {cron})"
|
||||
)
|
||||
logger.info(f"Scheduling job for user {user_id} in UTC (cron: {cron})")
|
||||
|
||||
job_args = GraphExecutionJobArgs(
|
||||
user_id=user_id,
|
||||
@@ -441,12 +422,12 @@ class Scheduler(AppService):
|
||||
execute_graph,
|
||||
kwargs=job_args.model_dump(),
|
||||
name=name,
|
||||
trigger=CronTrigger.from_crontab(cron, timezone=user_timezone),
|
||||
trigger=CronTrigger.from_crontab(cron, timezone="UTC"),
|
||||
jobstore=Jobstores.EXECUTION.value,
|
||||
replace_existing=True,
|
||||
)
|
||||
logger.info(
|
||||
f"Added job {job.id} with cron schedule '{cron}' in timezone {user_timezone}, input data: {input_data}"
|
||||
f"Added job {job.id} with cron schedule '{cron}' in UTC, input data: {input_data}"
|
||||
)
|
||||
return GraphExecutionJobInfo.from_db(job_args, job)
|
||||
|
||||
|
||||
@@ -4,7 +4,7 @@ import threading
|
||||
import time
|
||||
from collections import defaultdict
|
||||
from concurrent.futures import Future
|
||||
from typing import Mapping, Optional, cast
|
||||
from typing import Any, Mapping, Optional, cast
|
||||
|
||||
from pydantic import BaseModel, JsonValue, ValidationError
|
||||
|
||||
@@ -20,9 +20,6 @@ from backend.data.block import (
|
||||
)
|
||||
from backend.data.block_cost_config import BLOCK_COSTS
|
||||
from backend.data.db import prisma
|
||||
|
||||
# Import dynamic field utilities from centralized location
|
||||
from backend.data.dynamic_fields import merge_execution_input
|
||||
from backend.data.execution import (
|
||||
ExecutionStatus,
|
||||
GraphExecutionStats,
|
||||
@@ -42,6 +39,7 @@ from backend.util.clients import (
|
||||
)
|
||||
from backend.util.exceptions import GraphValidationError, NotFoundError
|
||||
from backend.util.logging import TruncatedLogger
|
||||
from backend.util.mock import MockObject
|
||||
from backend.util.settings import Config
|
||||
from backend.util.type import convert
|
||||
|
||||
@@ -188,7 +186,195 @@ def _is_cost_filter_match(cost_filter: BlockInput, input_data: BlockInput) -> bo
|
||||
|
||||
# ============ Execution Input Helpers ============ #
|
||||
|
||||
# Dynamic field utilities are now imported from backend.data.dynamic_fields
|
||||
# --------------------------------------------------------------------------- #
|
||||
# Delimiters
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
LIST_SPLIT = "_$_"
|
||||
DICT_SPLIT = "_#_"
|
||||
OBJC_SPLIT = "_@_"
|
||||
|
||||
_DELIMS = (LIST_SPLIT, DICT_SPLIT, OBJC_SPLIT)
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# Tokenisation utilities
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
|
||||
def _next_delim(s: str) -> tuple[str | None, int]:
|
||||
"""
|
||||
Return the *earliest* delimiter appearing in `s` and its index.
|
||||
|
||||
If none present → (None, -1).
|
||||
"""
|
||||
first: str | None = None
|
||||
pos = len(s) # sentinel: larger than any real index
|
||||
for d in _DELIMS:
|
||||
i = s.find(d)
|
||||
if 0 <= i < pos:
|
||||
first, pos = d, i
|
||||
return first, (pos if first else -1)
|
||||
|
||||
|
||||
def _tokenise(path: str) -> list[tuple[str, str]] | None:
|
||||
"""
|
||||
Convert the raw path string (starting with a delimiter) into
|
||||
[ (delimiter, identifier), … ] or None if the syntax is malformed.
|
||||
"""
|
||||
tokens: list[tuple[str, str]] = []
|
||||
while path:
|
||||
# 1. Which delimiter starts this chunk?
|
||||
delim = next((d for d in _DELIMS if path.startswith(d)), None)
|
||||
if delim is None:
|
||||
return None # invalid syntax
|
||||
|
||||
# 2. Slice off the delimiter, then up to the next delimiter (or EOS)
|
||||
path = path[len(delim) :]
|
||||
nxt_delim, pos = _next_delim(path)
|
||||
token, path = (
|
||||
path[: pos if pos != -1 else len(path)],
|
||||
path[pos if pos != -1 else len(path) :],
|
||||
)
|
||||
if token == "":
|
||||
return None # empty identifier is invalid
|
||||
tokens.append((delim, token))
|
||||
return tokens
|
||||
|
||||
|
||||
# --------------------------------------------------------------------------- #
|
||||
# Public API – parsing (flattened ➜ concrete)
|
||||
# --------------------------------------------------------------------------- #
|
||||
|
||||
|
||||
def parse_execution_output(output: BlockOutputEntry, name: str) -> JsonValue | None:
|
||||
"""
|
||||
Retrieve a nested value out of `output` using the flattened *name*.
|
||||
|
||||
On any failure (wrong name, wrong type, out-of-range, bad path)
|
||||
returns **None**.
|
||||
"""
|
||||
base_name, data = output
|
||||
|
||||
# Exact match → whole object
|
||||
if name == base_name:
|
||||
return data
|
||||
|
||||
# Must start with the expected name
|
||||
if not name.startswith(base_name):
|
||||
return None
|
||||
path = name[len(base_name) :]
|
||||
if not path:
|
||||
return None # nothing left to parse
|
||||
|
||||
tokens = _tokenise(path)
|
||||
if tokens is None:
|
||||
return None
|
||||
|
||||
cur: JsonValue = data
|
||||
for delim, ident in tokens:
|
||||
if delim == LIST_SPLIT:
|
||||
# list[index]
|
||||
try:
|
||||
idx = int(ident)
|
||||
except ValueError:
|
||||
return None
|
||||
if not isinstance(cur, list) or idx >= len(cur):
|
||||
return None
|
||||
cur = cur[idx]
|
||||
|
||||
elif delim == DICT_SPLIT:
|
||||
if not isinstance(cur, dict) or ident not in cur:
|
||||
return None
|
||||
cur = cur[ident]
|
||||
|
||||
elif delim == OBJC_SPLIT:
|
||||
if not hasattr(cur, ident):
|
||||
return None
|
||||
cur = getattr(cur, ident)
|
||||
|
||||
else:
|
||||
return None # unreachable
|
||||
|
||||
return cur
|
||||
|
||||
|
||||
def _assign(container: Any, tokens: list[tuple[str, str]], value: Any) -> Any:
|
||||
"""
|
||||
Recursive helper that *returns* the (possibly new) container with
|
||||
`value` assigned along the remaining `tokens` path.
|
||||
"""
|
||||
if not tokens:
|
||||
return value # leaf reached
|
||||
|
||||
delim, ident = tokens[0]
|
||||
rest = tokens[1:]
|
||||
|
||||
# ---------- list ----------
|
||||
if delim == LIST_SPLIT:
|
||||
try:
|
||||
idx = int(ident)
|
||||
except ValueError:
|
||||
raise ValueError("index must be an integer")
|
||||
|
||||
if container is None:
|
||||
container = []
|
||||
elif not isinstance(container, list):
|
||||
container = list(container) if hasattr(container, "__iter__") else []
|
||||
|
||||
while len(container) <= idx:
|
||||
container.append(None)
|
||||
container[idx] = _assign(container[idx], rest, value)
|
||||
return container
|
||||
|
||||
# ---------- dict ----------
|
||||
if delim == DICT_SPLIT:
|
||||
if container is None:
|
||||
container = {}
|
||||
elif not isinstance(container, dict):
|
||||
container = dict(container) if hasattr(container, "items") else {}
|
||||
container[ident] = _assign(container.get(ident), rest, value)
|
||||
return container
|
||||
|
||||
# ---------- object ----------
|
||||
if delim == OBJC_SPLIT:
|
||||
if container is None or not isinstance(container, MockObject):
|
||||
container = MockObject()
|
||||
setattr(
|
||||
container,
|
||||
ident,
|
||||
_assign(getattr(container, ident, None), rest, value),
|
||||
)
|
||||
return container
|
||||
|
||||
return value # unreachable
|
||||
|
||||
|
||||
def merge_execution_input(data: BlockInput) -> BlockInput:
|
||||
"""
|
||||
Reconstruct nested objects from a *flattened* dict of key → value.
|
||||
|
||||
Raises ValueError on syntactically invalid list indices.
|
||||
"""
|
||||
merged: BlockInput = {}
|
||||
|
||||
for key, value in data.items():
|
||||
# Split off the base name (before the first delimiter, if any)
|
||||
delim, pos = _next_delim(key)
|
||||
if delim is None:
|
||||
merged[key] = value
|
||||
continue
|
||||
|
||||
base, path = key[:pos], key[pos:]
|
||||
tokens = _tokenise(path)
|
||||
if tokens is None:
|
||||
# Invalid key; treat as scalar under the raw name
|
||||
merged[key] = value
|
||||
continue
|
||||
|
||||
merged[base] = _assign(merged.get(base), tokens, value)
|
||||
|
||||
data.update(merged)
|
||||
return data
|
||||
|
||||
|
||||
def validate_exec(
|
||||
@@ -728,30 +914,29 @@ async def add_graph_execution(
|
||||
preset_id=preset_id,
|
||||
)
|
||||
|
||||
# Fetch user context for the graph execution
|
||||
user_context = await get_user_context(user_id)
|
||||
|
||||
queue = await get_async_execution_queue()
|
||||
graph_exec_entry = graph_exec.to_graph_execution_entry(
|
||||
user_context=await get_user_context(user_id),
|
||||
compiled_nodes_input_masks=compiled_nodes_input_masks,
|
||||
user_context, compiled_nodes_input_masks
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Created graph execution #{graph_exec.id} for graph "
|
||||
f"#{graph_id} with {len(starting_nodes_input)} starting nodes. "
|
||||
f"Now publishing to execution queue."
|
||||
)
|
||||
|
||||
exec_queue = await get_async_execution_queue()
|
||||
await exec_queue.publish_message(
|
||||
await queue.publish_message(
|
||||
routing_key=GRAPH_EXECUTION_ROUTING_KEY,
|
||||
message=graph_exec_entry.model_dump_json(),
|
||||
exchange=GRAPH_EXECUTION_EXCHANGE,
|
||||
)
|
||||
logger.info(f"Published execution {graph_exec.id} to RabbitMQ queue")
|
||||
|
||||
graph_exec.status = ExecutionStatus.QUEUED
|
||||
await edb.update_graph_execution_stats(
|
||||
graph_exec_id=graph_exec.id,
|
||||
status=graph_exec.status,
|
||||
)
|
||||
await get_async_execution_event_bus().publish(graph_exec)
|
||||
bus = get_async_execution_event_bus()
|
||||
await bus.publish(graph_exec)
|
||||
|
||||
return graph_exec
|
||||
except BaseException as e:
|
||||
|
||||
@@ -3,7 +3,7 @@ from typing import cast
|
||||
import pytest
|
||||
from pytest_mock import MockerFixture
|
||||
|
||||
from backend.data.dynamic_fields import merge_execution_input, parse_execution_output
|
||||
from backend.executor.utils import merge_execution_input, parse_execution_output
|
||||
from backend.util.mock import MockObject
|
||||
|
||||
|
||||
@@ -316,7 +316,6 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
# Mock the graph execution object
|
||||
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionWithNodes)
|
||||
mock_graph_exec.id = "execution-id-123"
|
||||
mock_graph_exec.node_executions = [] # Add this to avoid AttributeError
|
||||
mock_graph_exec.to_graph_execution_entry.return_value = mocker.MagicMock()
|
||||
|
||||
# Mock user context
|
||||
@@ -347,10 +346,6 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
)
|
||||
mock_prisma.is_connected.return_value = True
|
||||
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
|
||||
mock_edb.update_graph_execution_stats = mocker.AsyncMock(
|
||||
return_value=mock_graph_exec
|
||||
)
|
||||
mock_edb.update_node_execution_status_batch = mocker.AsyncMock()
|
||||
mock_get_user_context.return_value = mock_user_context
|
||||
mock_get_queue.return_value = mock_queue
|
||||
mock_get_event_bus.return_value = mock_event_bus
|
||||
|
||||
@@ -151,10 +151,7 @@ class IntegrationCredentialsManager:
|
||||
fresh_credentials = await oauth_handler.refresh_tokens(credentials)
|
||||
await self.store.update_creds(user_id, fresh_credentials)
|
||||
if _lock and (await _lock.locked()) and (await _lock.owned()):
|
||||
try:
|
||||
await _lock.release()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to release OAuth refresh lock: {e}")
|
||||
await _lock.release()
|
||||
|
||||
credentials = fresh_credentials
|
||||
return credentials
|
||||
@@ -187,10 +184,7 @@ class IntegrationCredentialsManager:
|
||||
yield
|
||||
finally:
|
||||
if (await lock.locked()) and (await lock.owned()):
|
||||
try:
|
||||
await lock.release()
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to release credentials lock: {e}")
|
||||
await lock.release()
|
||||
|
||||
async def release_all_locks(self):
|
||||
"""Call this on process termination to ensure all locks are released"""
|
||||
|
||||
@@ -1,14 +1,13 @@
|
||||
import functools
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
from autogpt_libs.utils.cache import cached
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from ..providers import ProviderName
|
||||
from ._base import BaseWebhooksManager
|
||||
|
||||
|
||||
# --8<-- [start:load_webhook_managers]
|
||||
@cached()
|
||||
@functools.cache
|
||||
def load_webhook_managers() -> dict["ProviderName", type["BaseWebhooksManager"]]:
|
||||
webhook_managers = {}
|
||||
|
||||
|
||||
@@ -7,9 +7,10 @@ from backend.data.graph import set_node_webhook
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
|
||||
from . import get_webhook_manager, supports_webhooks
|
||||
from .utils import setup_webhook_for_block
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.data.graph import BaseGraph, GraphModel, NodeModel
|
||||
from backend.data.graph import BaseGraph, GraphModel, Node, NodeModel
|
||||
from backend.data.model import Credentials
|
||||
|
||||
from ._base import BaseWebhooksManager
|
||||
@@ -42,19 +43,32 @@ async def _on_graph_activate(graph: "BaseGraph", user_id: str) -> "BaseGraph": .
|
||||
|
||||
async def _on_graph_activate(graph: "BaseGraph | GraphModel", user_id: str):
|
||||
get_credentials = credentials_manager.cached_getter(user_id)
|
||||
updated_nodes = []
|
||||
for new_node in graph.nodes:
|
||||
block_input_schema = cast(BlockSchema, new_node.block.input_schema)
|
||||
|
||||
for creds_field_name in block_input_schema.get_credentials_fields().keys():
|
||||
# Prevent saving graph with non-existent credentials
|
||||
if (
|
||||
creds_meta := new_node.input_default.get(creds_field_name)
|
||||
) and not await get_credentials(creds_meta["id"]):
|
||||
raise ValueError(
|
||||
f"Node #{new_node.id} input '{creds_field_name}' updated with "
|
||||
f"non-existent credentials #{creds_meta['id']}"
|
||||
node_credentials = None
|
||||
if (
|
||||
# Webhook-triggered blocks are only allowed to have 1 credentials input
|
||||
(
|
||||
creds_field_name := next(
|
||||
iter(block_input_schema.get_credentials_fields()), None
|
||||
)
|
||||
)
|
||||
and (creds_meta := new_node.input_default.get(creds_field_name))
|
||||
and not (node_credentials := await get_credentials(creds_meta["id"]))
|
||||
):
|
||||
raise ValueError(
|
||||
f"Node #{new_node.id} input '{creds_field_name}' updated with "
|
||||
f"non-existent credentials #{creds_meta['id']}"
|
||||
)
|
||||
|
||||
updated_node = await on_node_activate(
|
||||
user_id, graph.id, new_node, credentials=node_credentials
|
||||
)
|
||||
updated_nodes.append(updated_node)
|
||||
|
||||
graph.nodes = updated_nodes
|
||||
return graph
|
||||
|
||||
|
||||
@@ -71,14 +85,20 @@ async def on_graph_deactivate(graph: "GraphModel", user_id: str):
|
||||
block_input_schema = cast(BlockSchema, node.block.input_schema)
|
||||
|
||||
node_credentials = None
|
||||
for creds_field_name in block_input_schema.get_credentials_fields().keys():
|
||||
if (creds_meta := node.input_default.get(creds_field_name)) and not (
|
||||
node_credentials := await get_credentials(creds_meta["id"])
|
||||
):
|
||||
logger.warning(
|
||||
f"Node #{node.id} input '{creds_field_name}' referenced "
|
||||
f"non-existent credentials #{creds_meta['id']}"
|
||||
if (
|
||||
# Webhook-triggered blocks are only allowed to have 1 credentials input
|
||||
(
|
||||
creds_field_name := next(
|
||||
iter(block_input_schema.get_credentials_fields()), None
|
||||
)
|
||||
)
|
||||
and (creds_meta := node.input_default.get(creds_field_name))
|
||||
and not (node_credentials := await get_credentials(creds_meta["id"]))
|
||||
):
|
||||
logger.error(
|
||||
f"Node #{node.id} input '{creds_field_name}' referenced non-existent "
|
||||
f"credentials #{creds_meta['id']}"
|
||||
)
|
||||
|
||||
updated_node = await on_node_deactivate(
|
||||
user_id, node, credentials=node_credentials
|
||||
@@ -89,6 +109,32 @@ async def on_graph_deactivate(graph: "GraphModel", user_id: str):
|
||||
return graph
|
||||
|
||||
|
||||
async def on_node_activate(
|
||||
user_id: str,
|
||||
graph_id: str,
|
||||
node: "Node",
|
||||
*,
|
||||
credentials: Optional["Credentials"] = None,
|
||||
) -> "Node":
|
||||
"""Hook to be called when the node is activated/created"""
|
||||
|
||||
if node.block.webhook_config:
|
||||
new_webhook, feedback = await setup_webhook_for_block(
|
||||
user_id=user_id,
|
||||
trigger_block=node.block,
|
||||
trigger_config=node.input_default,
|
||||
for_graph_id=graph_id,
|
||||
)
|
||||
if new_webhook:
|
||||
node = await set_node_webhook(node.id, new_webhook.id)
|
||||
else:
|
||||
logger.debug(
|
||||
f"Node #{node.id} does not have everything for a webhook: {feedback}"
|
||||
)
|
||||
|
||||
return node
|
||||
|
||||
|
||||
async def on_node_deactivate(
|
||||
user_id: str,
|
||||
node: "NodeModel",
|
||||
|
||||
@@ -4,6 +4,7 @@ from typing import TYPE_CHECKING, Optional, cast
|
||||
from pydantic import JsonValue
|
||||
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.settings import Config
|
||||
|
||||
from . import get_webhook_manager, supports_webhooks
|
||||
@@ -12,7 +13,6 @@ if TYPE_CHECKING:
|
||||
from backend.data.block import Block, BlockSchema
|
||||
from backend.data.integrations import Webhook
|
||||
from backend.data.model import Credentials
|
||||
from backend.integrations.providers import ProviderName
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
app_config = Config()
|
||||
@@ -20,7 +20,7 @@ credentials_manager = IntegrationCredentialsManager()
|
||||
|
||||
|
||||
# TODO: add test to assert this matches the actual API route
|
||||
def webhook_ingress_url(provider_name: "ProviderName", webhook_id: str) -> str:
|
||||
def webhook_ingress_url(provider_name: ProviderName, webhook_id: str) -> str:
|
||||
return (
|
||||
f"{app_config.platform_base_url}/api/integrations/{provider_name.value}"
|
||||
f"/webhooks/{webhook_id}/ingress"
|
||||
@@ -144,69 +144,3 @@ async def setup_webhook_for_block(
|
||||
)
|
||||
logger.debug(f"Acquired webhook: {webhook}")
|
||||
return webhook, None
|
||||
|
||||
|
||||
async def migrate_legacy_triggered_graphs():
|
||||
from prisma.models import AgentGraph
|
||||
|
||||
from backend.data.graph import AGENT_GRAPH_INCLUDE, GraphModel, set_node_webhook
|
||||
from backend.data.model import is_credentials_field_name
|
||||
from backend.server.v2.library.db import create_preset
|
||||
from backend.server.v2.library.model import LibraryAgentPresetCreatable
|
||||
|
||||
triggered_graphs = [
|
||||
GraphModel.from_db(_graph)
|
||||
for _graph in await AgentGraph.prisma().find_many(
|
||||
where={
|
||||
"isActive": True,
|
||||
"Nodes": {"some": {"NOT": [{"webhookId": None}]}},
|
||||
},
|
||||
include=AGENT_GRAPH_INCLUDE,
|
||||
)
|
||||
]
|
||||
|
||||
n_migrated_webhooks = 0
|
||||
|
||||
for graph in triggered_graphs:
|
||||
try:
|
||||
if not (
|
||||
(trigger_node := graph.webhook_input_node) and trigger_node.webhook_id
|
||||
):
|
||||
continue
|
||||
|
||||
# Use trigger node's inputs for the preset
|
||||
preset_credentials = {
|
||||
field_name: creds_meta
|
||||
for field_name, creds_meta in trigger_node.input_default.items()
|
||||
if is_credentials_field_name(field_name)
|
||||
}
|
||||
preset_inputs = {
|
||||
field_name: value
|
||||
for field_name, value in trigger_node.input_default.items()
|
||||
if not is_credentials_field_name(field_name)
|
||||
}
|
||||
|
||||
# Create a triggered preset for the graph
|
||||
await create_preset(
|
||||
graph.user_id,
|
||||
LibraryAgentPresetCreatable(
|
||||
graph_id=graph.id,
|
||||
graph_version=graph.version,
|
||||
inputs=preset_inputs,
|
||||
credentials=preset_credentials,
|
||||
name=graph.name,
|
||||
description=graph.description,
|
||||
webhook_id=trigger_node.webhook_id,
|
||||
is_active=True,
|
||||
),
|
||||
)
|
||||
|
||||
# Detach webhook from the graph node
|
||||
await set_node_webhook(trigger_node.id, None)
|
||||
|
||||
n_migrated_webhooks += 1
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to migrate graph #{graph.id} trigger to preset: {e}")
|
||||
continue
|
||||
|
||||
logger.info(f"Migrated {n_migrated_webhooks} node triggers to triggered presets")
|
||||
|
||||
@@ -1,287 +0,0 @@
|
||||
"""
|
||||
Prometheus instrumentation for FastAPI services.
|
||||
|
||||
This module provides centralized metrics collection and instrumentation
|
||||
for all FastAPI services in the AutoGPT platform.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from fastapi import FastAPI
|
||||
from prometheus_client import Counter, Gauge, Histogram, Info
|
||||
from prometheus_fastapi_instrumentator import Instrumentator, metrics
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Custom business metrics with controlled cardinality
|
||||
GRAPH_EXECUTIONS = Counter(
|
||||
"autogpt_graph_executions_total",
|
||||
"Total number of graph executions",
|
||||
labelnames=[
|
||||
"status"
|
||||
], # Removed graph_id and user_id to prevent cardinality explosion
|
||||
)
|
||||
|
||||
GRAPH_EXECUTIONS_BY_USER = Counter(
|
||||
"autogpt_graph_executions_by_user_total",
|
||||
"Total number of graph executions by user (sampled)",
|
||||
labelnames=["status"], # Only status, user_id tracked separately when needed
|
||||
)
|
||||
|
||||
BLOCK_EXECUTIONS = Counter(
|
||||
"autogpt_block_executions_total",
|
||||
"Total number of block executions",
|
||||
labelnames=["block_type", "status"], # block_type is bounded
|
||||
)
|
||||
|
||||
BLOCK_DURATION = Histogram(
|
||||
"autogpt_block_duration_seconds",
|
||||
"Duration of block executions in seconds",
|
||||
labelnames=["block_type"],
|
||||
buckets=[0.1, 0.25, 0.5, 1, 2.5, 5, 10, 30, 60],
|
||||
)
|
||||
|
||||
WEBSOCKET_CONNECTIONS = Gauge(
|
||||
"autogpt_websocket_connections_total",
|
||||
"Total number of active WebSocket connections",
|
||||
# Removed user_id label - track total only to prevent cardinality explosion
|
||||
)
|
||||
|
||||
SCHEDULER_JOBS = Gauge(
|
||||
"autogpt_scheduler_jobs",
|
||||
"Current number of scheduled jobs",
|
||||
labelnames=["job_type", "status"],
|
||||
)
|
||||
|
||||
DATABASE_QUERIES = Histogram(
|
||||
"autogpt_database_query_duration_seconds",
|
||||
"Duration of database queries in seconds",
|
||||
labelnames=["operation", "table"],
|
||||
buckets=[0.01, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5],
|
||||
)
|
||||
|
||||
RABBITMQ_MESSAGES = Counter(
|
||||
"autogpt_rabbitmq_messages_total",
|
||||
"Total number of RabbitMQ messages",
|
||||
labelnames=["queue", "status"],
|
||||
)
|
||||
|
||||
AUTHENTICATION_ATTEMPTS = Counter(
|
||||
"autogpt_auth_attempts_total",
|
||||
"Total number of authentication attempts",
|
||||
labelnames=["method", "status"],
|
||||
)
|
||||
|
||||
API_KEY_USAGE = Counter(
|
||||
"autogpt_api_key_usage_total",
|
||||
"API key usage by provider",
|
||||
labelnames=["provider", "block_type", "status"],
|
||||
)
|
||||
|
||||
# Function/operation level metrics with controlled cardinality
|
||||
GRAPH_OPERATIONS = Counter(
|
||||
"autogpt_graph_operations_total",
|
||||
"Graph operations by type",
|
||||
labelnames=["operation", "status"], # create, update, delete, execute, etc.
|
||||
)
|
||||
|
||||
USER_OPERATIONS = Counter(
|
||||
"autogpt_user_operations_total",
|
||||
"User operations by type",
|
||||
labelnames=["operation", "status"], # login, register, update_profile, etc.
|
||||
)
|
||||
|
||||
RATE_LIMIT_HITS = Counter(
|
||||
"autogpt_rate_limit_hits_total",
|
||||
"Number of rate limit hits",
|
||||
labelnames=["endpoint"], # Removed user_id to prevent cardinality explosion
|
||||
)
|
||||
|
||||
SERVICE_INFO = Info(
|
||||
"autogpt_service",
|
||||
"Service information",
|
||||
)
|
||||
|
||||
|
||||
def instrument_fastapi(
|
||||
app: FastAPI,
|
||||
service_name: str,
|
||||
expose_endpoint: bool = True,
|
||||
endpoint: str = "/metrics",
|
||||
include_in_schema: bool = False,
|
||||
excluded_handlers: Optional[list] = None,
|
||||
) -> Instrumentator:
|
||||
"""
|
||||
Instrument a FastAPI application with Prometheus metrics.
|
||||
|
||||
Args:
|
||||
app: FastAPI application instance
|
||||
service_name: Name of the service for metrics labeling
|
||||
expose_endpoint: Whether to expose /metrics endpoint
|
||||
endpoint: Path for metrics endpoint
|
||||
include_in_schema: Whether to include metrics endpoint in OpenAPI schema
|
||||
excluded_handlers: List of paths to exclude from metrics
|
||||
|
||||
Returns:
|
||||
Configured Instrumentator instance
|
||||
"""
|
||||
|
||||
# Set service info
|
||||
try:
|
||||
from importlib.metadata import version
|
||||
|
||||
service_version = version("autogpt-platform-backend")
|
||||
except Exception:
|
||||
service_version = "unknown"
|
||||
|
||||
SERVICE_INFO.info(
|
||||
{
|
||||
"service": service_name,
|
||||
"version": service_version,
|
||||
}
|
||||
)
|
||||
|
||||
# Create instrumentator with default metrics
|
||||
instrumentator = Instrumentator(
|
||||
should_group_status_codes=True,
|
||||
should_ignore_untemplated=True,
|
||||
should_respect_env_var=True,
|
||||
should_instrument_requests_inprogress=True,
|
||||
excluded_handlers=excluded_handlers or ["/health", "/readiness"],
|
||||
env_var_name="ENABLE_METRICS",
|
||||
inprogress_name="autogpt_http_requests_inprogress",
|
||||
inprogress_labels=True,
|
||||
)
|
||||
|
||||
# Add default HTTP metrics
|
||||
instrumentator.add(
|
||||
metrics.default(
|
||||
metric_namespace="autogpt",
|
||||
metric_subsystem=service_name.replace("-", "_"),
|
||||
)
|
||||
)
|
||||
|
||||
# Add request size metrics
|
||||
instrumentator.add(
|
||||
metrics.request_size(
|
||||
metric_namespace="autogpt",
|
||||
metric_subsystem=service_name.replace("-", "_"),
|
||||
)
|
||||
)
|
||||
|
||||
# Add response size metrics
|
||||
instrumentator.add(
|
||||
metrics.response_size(
|
||||
metric_namespace="autogpt",
|
||||
metric_subsystem=service_name.replace("-", "_"),
|
||||
)
|
||||
)
|
||||
|
||||
# Add latency metrics with custom buckets for better granularity
|
||||
instrumentator.add(
|
||||
metrics.latency(
|
||||
metric_namespace="autogpt",
|
||||
metric_subsystem=service_name.replace("-", "_"),
|
||||
buckets=[0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 30, 60],
|
||||
)
|
||||
)
|
||||
|
||||
# Add combined metrics (requests by method and status)
|
||||
instrumentator.add(
|
||||
metrics.combined_size(
|
||||
metric_namespace="autogpt",
|
||||
metric_subsystem=service_name.replace("-", "_"),
|
||||
)
|
||||
)
|
||||
|
||||
# Instrument the app
|
||||
instrumentator.instrument(app)
|
||||
|
||||
# Expose metrics endpoint if requested
|
||||
if expose_endpoint:
|
||||
instrumentator.expose(
|
||||
app,
|
||||
endpoint=endpoint,
|
||||
include_in_schema=include_in_schema,
|
||||
tags=["monitoring"] if include_in_schema else None,
|
||||
)
|
||||
logger.info(f"Metrics endpoint exposed at {endpoint} for {service_name}")
|
||||
|
||||
return instrumentator
|
||||
|
||||
|
||||
def record_graph_execution(graph_id: str, status: str, user_id: str):
|
||||
"""Record a graph execution event.
|
||||
|
||||
Args:
|
||||
graph_id: Graph identifier (kept for future sampling/debugging)
|
||||
status: Execution status (success/error/validation_error)
|
||||
user_id: User identifier (kept for future sampling/debugging)
|
||||
"""
|
||||
# Track overall executions without high-cardinality labels
|
||||
GRAPH_EXECUTIONS.labels(status=status).inc()
|
||||
|
||||
# Optionally track per-user executions (implement sampling if needed)
|
||||
# For now, just track status to avoid cardinality explosion
|
||||
GRAPH_EXECUTIONS_BY_USER.labels(status=status).inc()
|
||||
|
||||
|
||||
def record_block_execution(block_type: str, status: str, duration: float):
|
||||
"""Record a block execution event with duration."""
|
||||
BLOCK_EXECUTIONS.labels(block_type=block_type, status=status).inc()
|
||||
BLOCK_DURATION.labels(block_type=block_type).observe(duration)
|
||||
|
||||
|
||||
def update_websocket_connections(user_id: str, delta: int):
|
||||
"""Update the number of active WebSocket connections.
|
||||
|
||||
Args:
|
||||
user_id: User identifier (kept for future sampling/debugging)
|
||||
delta: Change in connection count (+1 for connect, -1 for disconnect)
|
||||
"""
|
||||
# Track total connections without user_id to prevent cardinality explosion
|
||||
if delta > 0:
|
||||
WEBSOCKET_CONNECTIONS.inc(delta)
|
||||
else:
|
||||
WEBSOCKET_CONNECTIONS.dec(abs(delta))
|
||||
|
||||
|
||||
def record_database_query(operation: str, table: str, duration: float):
|
||||
"""Record a database query with duration."""
|
||||
DATABASE_QUERIES.labels(operation=operation, table=table).observe(duration)
|
||||
|
||||
|
||||
def record_rabbitmq_message(queue: str, status: str):
|
||||
"""Record a RabbitMQ message event."""
|
||||
RABBITMQ_MESSAGES.labels(queue=queue, status=status).inc()
|
||||
|
||||
|
||||
def record_authentication_attempt(method: str, status: str):
|
||||
"""Record an authentication attempt."""
|
||||
AUTHENTICATION_ATTEMPTS.labels(method=method, status=status).inc()
|
||||
|
||||
|
||||
def record_api_key_usage(provider: str, block_type: str, status: str):
|
||||
"""Record API key usage by provider and block."""
|
||||
API_KEY_USAGE.labels(provider=provider, block_type=block_type, status=status).inc()
|
||||
|
||||
|
||||
def record_rate_limit_hit(endpoint: str, user_id: str):
|
||||
"""Record a rate limit hit.
|
||||
|
||||
Args:
|
||||
endpoint: API endpoint that was rate limited
|
||||
user_id: User identifier (kept for future sampling/debugging)
|
||||
"""
|
||||
RATE_LIMIT_HITS.labels(endpoint=endpoint).inc()
|
||||
|
||||
|
||||
def record_graph_operation(operation: str, status: str):
|
||||
"""Record a graph operation (create, update, delete, execute, etc.)."""
|
||||
GRAPH_OPERATIONS.labels(operation=operation, status=status).inc()
|
||||
|
||||
|
||||
def record_user_operation(operation: str, status: str):
|
||||
"""Record a user operation (login, register, etc.)."""
|
||||
USER_OPERATIONS.labels(operation=operation, status=status).inc()
|
||||
@@ -25,11 +25,7 @@ from backend.data.notifications import (
|
||||
get_summary_params_type,
|
||||
)
|
||||
from backend.data.rabbitmq import Exchange, ExchangeType, Queue, RabbitMQConfig
|
||||
from backend.data.user import (
|
||||
disable_all_user_notifications,
|
||||
generate_unsubscribe_link,
|
||||
set_user_email_verification,
|
||||
)
|
||||
from backend.data.user import generate_unsubscribe_link
|
||||
from backend.notifications.email import EmailSender
|
||||
from backend.util.clients import get_database_manager_async_client
|
||||
from backend.util.logging import TruncatedLogger
|
||||
@@ -42,7 +38,7 @@ from backend.util.service import (
|
||||
endpoint_to_sync,
|
||||
expose,
|
||||
)
|
||||
from backend.util.settings import AppEnvironment, Settings
|
||||
from backend.util.settings import Settings
|
||||
|
||||
logger = TruncatedLogger(logging.getLogger(__name__), "[NotificationManager]")
|
||||
settings = Settings()
|
||||
@@ -128,12 +124,6 @@ def get_routing_key(event_type: NotificationType) -> str:
|
||||
|
||||
def queue_notification(event: NotificationEventModel) -> NotificationResult:
|
||||
"""Queue a notification - exposed method for other services to call"""
|
||||
# Disable in production
|
||||
if settings.config.app_env == AppEnvironment.PRODUCTION:
|
||||
return NotificationResult(
|
||||
success=True,
|
||||
message="Queueing notifications is disabled in production",
|
||||
)
|
||||
try:
|
||||
logger.debug(f"Received Request to queue {event=}")
|
||||
|
||||
@@ -161,12 +151,6 @@ def queue_notification(event: NotificationEventModel) -> NotificationResult:
|
||||
|
||||
async def queue_notification_async(event: NotificationEventModel) -> NotificationResult:
|
||||
"""Queue a notification - exposed method for other services to call"""
|
||||
# Disable in production
|
||||
if settings.config.app_env == AppEnvironment.PRODUCTION:
|
||||
return NotificationResult(
|
||||
success=True,
|
||||
message="Queueing notifications is disabled in production",
|
||||
)
|
||||
try:
|
||||
logger.debug(f"Received Request to queue {event=}")
|
||||
|
||||
@@ -229,9 +213,6 @@ class NotificationManager(AppService):
|
||||
|
||||
@expose
|
||||
async def queue_weekly_summary(self):
|
||||
# disable in prod
|
||||
if settings.config.app_env == AppEnvironment.PRODUCTION:
|
||||
return
|
||||
# Use the existing event loop instead of creating a new one with asyncio.run()
|
||||
asyncio.create_task(self._queue_weekly_summary())
|
||||
|
||||
@@ -245,9 +226,7 @@ class NotificationManager(AppService):
|
||||
logger.info(
|
||||
f"Querying for active users between {start_time} and {current_time}"
|
||||
)
|
||||
users = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_active_user_ids_in_timerange(
|
||||
users = await get_database_manager_async_client().get_active_user_ids_in_timerange(
|
||||
end_time=current_time.isoformat(),
|
||||
start_time=start_time.isoformat(),
|
||||
)
|
||||
@@ -274,9 +253,6 @@ class NotificationManager(AppService):
|
||||
async def process_existing_batches(
|
||||
self, notification_types: list[NotificationType]
|
||||
):
|
||||
# disable in prod
|
||||
if settings.config.app_env == AppEnvironment.PRODUCTION:
|
||||
return
|
||||
# Use the existing event loop instead of creating a new process
|
||||
asyncio.create_task(self._process_existing_batches(notification_types))
|
||||
|
||||
@@ -290,15 +266,15 @@ class NotificationManager(AppService):
|
||||
|
||||
for notification_type in notification_types:
|
||||
# Get all batches for this notification type
|
||||
batches = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_all_batches_by_type(notification_type)
|
||||
batches = (
|
||||
await get_database_manager_async_client().get_all_batches_by_type(
|
||||
notification_type
|
||||
)
|
||||
)
|
||||
|
||||
for batch in batches:
|
||||
# Check if batch has aged out
|
||||
oldest_message = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_notification_oldest_message_in_batch(
|
||||
oldest_message = await get_database_manager_async_client().get_user_notification_oldest_message_in_batch(
|
||||
batch.user_id, notification_type
|
||||
)
|
||||
|
||||
@@ -313,9 +289,9 @@ class NotificationManager(AppService):
|
||||
|
||||
# If batch has aged out, process it
|
||||
if oldest_message.created_at + max_delay < current_time:
|
||||
recipient_email = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_email_by_id(batch.user_id)
|
||||
recipient_email = await get_database_manager_async_client().get_user_email_by_id(
|
||||
batch.user_id
|
||||
)
|
||||
|
||||
if not recipient_email:
|
||||
logger.error(
|
||||
@@ -332,25 +308,21 @@ class NotificationManager(AppService):
|
||||
f"User {batch.user_id} does not want to receive {notification_type} notifications"
|
||||
)
|
||||
# Clear the batch
|
||||
await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).empty_user_notification_batch(
|
||||
await get_database_manager_async_client().empty_user_notification_batch(
|
||||
batch.user_id, notification_type
|
||||
)
|
||||
continue
|
||||
|
||||
batch_data = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_notification_batch(batch.user_id, notification_type)
|
||||
batch_data = await get_database_manager_async_client().get_user_notification_batch(
|
||||
batch.user_id, notification_type
|
||||
)
|
||||
|
||||
if not batch_data or not batch_data.notifications:
|
||||
logger.error(
|
||||
f"Batch data not found for user {batch.user_id}"
|
||||
)
|
||||
# Clear the batch
|
||||
await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).empty_user_notification_batch(
|
||||
await get_database_manager_async_client().empty_user_notification_batch(
|
||||
batch.user_id, notification_type
|
||||
)
|
||||
continue
|
||||
@@ -386,9 +358,7 @@ class NotificationManager(AppService):
|
||||
)
|
||||
|
||||
# Clear the batch
|
||||
await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).empty_user_notification_batch(
|
||||
await get_database_manager_async_client().empty_user_notification_batch(
|
||||
batch.user_id, notification_type
|
||||
)
|
||||
|
||||
@@ -443,13 +413,15 @@ class NotificationManager(AppService):
|
||||
self, user_id: str, event_type: NotificationType
|
||||
) -> bool:
|
||||
"""Check if a user wants to receive a notification based on their preferences and email verification status"""
|
||||
validated_email = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_email_verification(user_id)
|
||||
validated_email = (
|
||||
await get_database_manager_async_client().get_user_email_verification(
|
||||
user_id
|
||||
)
|
||||
)
|
||||
preference = (
|
||||
await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_notification_preference(user_id)
|
||||
await get_database_manager_async_client().get_user_notification_preference(
|
||||
user_id
|
||||
)
|
||||
).preferences.get(event_type, True)
|
||||
# only if both are true, should we email this person
|
||||
return validated_email and preference
|
||||
@@ -465,9 +437,7 @@ class NotificationManager(AppService):
|
||||
|
||||
try:
|
||||
# Get summary data from the database
|
||||
summary_data = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_execution_summary_data(
|
||||
summary_data = await get_database_manager_async_client().get_user_execution_summary_data(
|
||||
user_id=user_id,
|
||||
start_time=params.start_date,
|
||||
end_time=params.end_date,
|
||||
@@ -554,13 +524,13 @@ class NotificationManager(AppService):
|
||||
self, user_id: str, event_type: NotificationType, event: NotificationEventModel
|
||||
) -> bool:
|
||||
|
||||
await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).create_or_add_to_user_notification_batch(user_id, event_type, event)
|
||||
await get_database_manager_async_client().create_or_add_to_user_notification_batch(
|
||||
user_id, event_type, event
|
||||
)
|
||||
|
||||
oldest_message = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_notification_oldest_message_in_batch(user_id, event_type)
|
||||
oldest_message = await get_database_manager_async_client().get_user_notification_oldest_message_in_batch(
|
||||
user_id, event_type
|
||||
)
|
||||
if not oldest_message:
|
||||
logger.error(
|
||||
f"Batch for user {user_id} and type {event_type} has no oldest message whichshould never happen!!!!!!!!!!!!!!!!"
|
||||
@@ -610,9 +580,11 @@ class NotificationManager(AppService):
|
||||
return False
|
||||
logger.debug(f"Processing immediate notification: {event}")
|
||||
|
||||
recipient_email = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_email_by_id(event.user_id)
|
||||
recipient_email = (
|
||||
await get_database_manager_async_client().get_user_email_by_id(
|
||||
event.user_id
|
||||
)
|
||||
)
|
||||
if not recipient_email:
|
||||
logger.error(f"User email not found for user {event.user_id}")
|
||||
return False
|
||||
@@ -647,9 +619,11 @@ class NotificationManager(AppService):
|
||||
return False
|
||||
logger.info(f"Processing batch notification: {event}")
|
||||
|
||||
recipient_email = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_email_by_id(event.user_id)
|
||||
recipient_email = (
|
||||
await get_database_manager_async_client().get_user_email_by_id(
|
||||
event.user_id
|
||||
)
|
||||
)
|
||||
if not recipient_email:
|
||||
logger.error(f"User email not found for user {event.user_id}")
|
||||
return False
|
||||
@@ -668,9 +642,11 @@ class NotificationManager(AppService):
|
||||
if not should_send:
|
||||
logger.info("Batch not old enough to send")
|
||||
return False
|
||||
batch = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_notification_batch(event.user_id, event.type)
|
||||
batch = (
|
||||
await get_database_manager_async_client().get_user_notification_batch(
|
||||
event.user_id, event.type
|
||||
)
|
||||
)
|
||||
if not batch or not batch.notifications:
|
||||
logger.error(f"Batch not found for user {event.user_id}")
|
||||
return False
|
||||
@@ -681,7 +657,6 @@ class NotificationManager(AppService):
|
||||
get_notif_data_type(db_event.type)
|
||||
].model_validate(
|
||||
{
|
||||
"id": db_event.id, # Include ID from database
|
||||
"user_id": event.user_id,
|
||||
"type": db_event.type,
|
||||
"data": db_event.data,
|
||||
@@ -704,9 +679,6 @@ class NotificationManager(AppService):
|
||||
chunk_sent = False
|
||||
for attempt_size in [chunk_size, 50, 25, 10, 5, 1]:
|
||||
chunk = batch_messages[i : i + attempt_size]
|
||||
chunk_ids = [
|
||||
msg.id for msg in chunk if msg.id
|
||||
] # Extract IDs for removal
|
||||
|
||||
try:
|
||||
# Try to render the email to check its size
|
||||
@@ -733,23 +705,6 @@ class NotificationManager(AppService):
|
||||
user_unsub_link=unsub_link,
|
||||
)
|
||||
|
||||
# Remove successfully sent notifications immediately
|
||||
if chunk_ids:
|
||||
try:
|
||||
await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).remove_notifications_from_batch(
|
||||
event.user_id, event.type, chunk_ids
|
||||
)
|
||||
logger.info(
|
||||
f"Removed {len(chunk_ids)} sent notifications from batch"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to remove sent notifications: {e}"
|
||||
)
|
||||
# Continue anyway - better to risk duplicates than lose emails
|
||||
|
||||
# Track successful sends
|
||||
successfully_sent_count += len(chunk)
|
||||
|
||||
@@ -767,137 +722,13 @@ class NotificationManager(AppService):
|
||||
i += len(chunk)
|
||||
chunk_sent = True
|
||||
break
|
||||
else:
|
||||
# Message is too large even after size reduction
|
||||
if attempt_size == 1:
|
||||
logger.error(
|
||||
f"Failed to send notification at index {i}: "
|
||||
f"Single notification exceeds email size limit "
|
||||
f"({len(test_message):,} chars > {MAX_EMAIL_SIZE:,} chars). "
|
||||
f"Removing permanently from batch - will not retry."
|
||||
)
|
||||
|
||||
# Remove the oversized notification permanently - it will NEVER fit
|
||||
if chunk_ids:
|
||||
try:
|
||||
await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).remove_notifications_from_batch(
|
||||
event.user_id, event.type, chunk_ids
|
||||
)
|
||||
logger.info(
|
||||
f"Removed oversized notification {chunk_ids[0]} from batch permanently"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to remove oversized notification: {e}"
|
||||
)
|
||||
|
||||
failed_indices.append(i)
|
||||
i += 1
|
||||
chunk_sent = True
|
||||
break
|
||||
# Try smaller chunk size
|
||||
continue
|
||||
except Exception as e:
|
||||
# Check if it's a Postmark API error
|
||||
if attempt_size == 1:
|
||||
# Single notification failed - determine the actual cause
|
||||
error_message = str(e).lower()
|
||||
error_type = type(e).__name__
|
||||
|
||||
# Check for HTTP 406 - Inactive recipient (common in Postmark errors)
|
||||
if "406" in error_message or "inactive" in error_message:
|
||||
logger.warning(
|
||||
f"Failed to send notification at index {i}: "
|
||||
f"Recipient marked as inactive by Postmark. "
|
||||
f"Error: {e}. Disabling ALL notifications for this user."
|
||||
)
|
||||
|
||||
# 1. Mark email as unverified
|
||||
try:
|
||||
await set_user_email_verification(
|
||||
event.user_id, False
|
||||
)
|
||||
logger.info(
|
||||
f"Set email verification to false for user {event.user_id}"
|
||||
)
|
||||
except Exception as deactivation_error:
|
||||
logger.error(
|
||||
f"Failed to deactivate email for user {event.user_id}: "
|
||||
f"{deactivation_error}"
|
||||
)
|
||||
|
||||
# 2. Disable all notification preferences
|
||||
try:
|
||||
await disable_all_user_notifications(event.user_id)
|
||||
logger.info(
|
||||
f"Disabled all notification preferences for user {event.user_id}"
|
||||
)
|
||||
except Exception as disable_error:
|
||||
logger.error(
|
||||
f"Failed to disable notification preferences: {disable_error}"
|
||||
)
|
||||
|
||||
# 3. Clear ALL notification batches for this user
|
||||
try:
|
||||
await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).clear_all_user_notification_batches(event.user_id)
|
||||
logger.info(
|
||||
f"Cleared ALL notification batches for user {event.user_id}"
|
||||
)
|
||||
except Exception as remove_error:
|
||||
logger.error(
|
||||
f"Failed to clear batches for inactive recipient: {remove_error}"
|
||||
)
|
||||
|
||||
# Stop processing - we've nuked everything for this user
|
||||
return True
|
||||
# Check for HTTP 422 - Malformed data
|
||||
elif (
|
||||
"422" in error_message
|
||||
or "unprocessable" in error_message
|
||||
):
|
||||
logger.error(
|
||||
f"Failed to send notification at index {i}: "
|
||||
f"Malformed notification data rejected by Postmark. "
|
||||
f"Error: {e}. Removing from batch permanently."
|
||||
)
|
||||
|
||||
# Remove from batch - 422 means bad data that won't fix itself
|
||||
if chunk_ids:
|
||||
try:
|
||||
await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).remove_notifications_from_batch(
|
||||
event.user_id, event.type, chunk_ids
|
||||
)
|
||||
logger.info(
|
||||
"Removed malformed notification from batch permanently"
|
||||
)
|
||||
except Exception as remove_error:
|
||||
logger.error(
|
||||
f"Failed to remove malformed notification: {remove_error}"
|
||||
)
|
||||
# Check if it's a ValueError for size limit
|
||||
elif (
|
||||
isinstance(e, ValueError)
|
||||
and "too large" in error_message
|
||||
):
|
||||
logger.error(
|
||||
f"Failed to send notification at index {i}: "
|
||||
f"Notification size exceeds email limit. "
|
||||
f"Error: {e}. Skipping this notification."
|
||||
)
|
||||
# Other API errors
|
||||
else:
|
||||
logger.error(
|
||||
f"Failed to send notification at index {i}: "
|
||||
f"Email API error ({error_type}): {e}. "
|
||||
f"Skipping this notification."
|
||||
)
|
||||
|
||||
# Even single notification is too large
|
||||
logger.error(
|
||||
f"Single notification too large to send: {e}. "
|
||||
f"Skipping notification at index {i}"
|
||||
)
|
||||
failed_indices.append(i)
|
||||
i += 1
|
||||
chunk_sent = True
|
||||
@@ -911,20 +742,18 @@ class NotificationManager(AppService):
|
||||
failed_indices.append(i)
|
||||
i += 1
|
||||
|
||||
# Check what remains in the batch (notifications are removed as sent)
|
||||
remaining_batch = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_notification_batch(event.user_id, event.type)
|
||||
|
||||
if not remaining_batch or not remaining_batch.notifications:
|
||||
# Only empty the batch if ALL notifications were sent successfully
|
||||
if successfully_sent_count == len(batch_messages):
|
||||
logger.info(
|
||||
f"All {successfully_sent_count} notifications sent and removed from batch"
|
||||
f"Successfully sent all {successfully_sent_count} notifications, clearing batch"
|
||||
)
|
||||
await get_database_manager_async_client().empty_user_notification_batch(
|
||||
event.user_id, event.type
|
||||
)
|
||||
else:
|
||||
remaining_count = len(remaining_batch.notifications)
|
||||
logger.warning(
|
||||
f"Sent {successfully_sent_count} notifications. "
|
||||
f"{remaining_count} remain in batch for retry due to errors."
|
||||
f"Only sent {successfully_sent_count} of {len(batch_messages)} notifications. "
|
||||
f"Failed indices: {failed_indices}. Batch will be retained for retry."
|
||||
)
|
||||
return True
|
||||
except Exception as e:
|
||||
@@ -942,9 +771,11 @@ class NotificationManager(AppService):
|
||||
|
||||
logger.info(f"Processing summary notification: {model}")
|
||||
|
||||
recipient_email = await get_database_manager_async_client(
|
||||
should_retry=False
|
||||
).get_user_email_by_id(event.user_id)
|
||||
recipient_email = (
|
||||
await get_database_manager_async_client().get_user_email_by_id(
|
||||
event.user_id
|
||||
)
|
||||
)
|
||||
if not recipient_email:
|
||||
logger.error(f"User email not found for user {event.user_id}")
|
||||
return False
|
||||
|
||||
@@ -1,598 +0,0 @@
|
||||
"""Tests for notification error handling in NotificationManager."""
|
||||
|
||||
from datetime import datetime, timezone
|
||||
from unittest.mock import AsyncMock, MagicMock, Mock, patch
|
||||
|
||||
import pytest
|
||||
from prisma.enums import NotificationType
|
||||
|
||||
from backend.data.notifications import AgentRunData, NotificationEventModel
|
||||
from backend.notifications.notifications import NotificationManager
|
||||
|
||||
|
||||
class TestNotificationErrorHandling:
|
||||
"""Test cases for notification error handling in NotificationManager."""
|
||||
|
||||
@pytest.fixture
|
||||
def notification_manager(self):
|
||||
"""Create a NotificationManager instance for testing."""
|
||||
with patch("backend.notifications.notifications.AppService.__init__"):
|
||||
manager = NotificationManager()
|
||||
manager.email_sender = MagicMock()
|
||||
# Mock the _get_template method used by _process_batch
|
||||
template_mock = Mock()
|
||||
template_mock.base_template = "base"
|
||||
template_mock.subject_template = "subject"
|
||||
template_mock.body_template = "body"
|
||||
manager.email_sender._get_template = Mock(return_value=template_mock)
|
||||
# Mock the formatter
|
||||
manager.email_sender.formatter = Mock()
|
||||
manager.email_sender.formatter.format_email = Mock(
|
||||
return_value=("subject", "body content")
|
||||
)
|
||||
manager.email_sender.formatter.env = Mock()
|
||||
manager.email_sender.formatter.env.globals = {
|
||||
"base_url": "http://example.com"
|
||||
}
|
||||
return manager
|
||||
|
||||
@pytest.fixture
|
||||
def sample_batch_event(self):
|
||||
"""Create a sample batch event for testing."""
|
||||
return NotificationEventModel(
|
||||
type=NotificationType.AGENT_RUN,
|
||||
user_id="user_1",
|
||||
created_at=datetime.now(timezone.utc),
|
||||
data=AgentRunData(
|
||||
agent_name="Test Agent",
|
||||
credits_used=10.0,
|
||||
execution_time=5.0,
|
||||
node_count=3,
|
||||
graph_id="graph_1",
|
||||
outputs=[],
|
||||
),
|
||||
)
|
||||
|
||||
@pytest.fixture
|
||||
def sample_batch_notifications(self):
|
||||
"""Create sample batch notifications for testing."""
|
||||
notifications = []
|
||||
for i in range(3):
|
||||
notification = Mock()
|
||||
notification.type = NotificationType.AGENT_RUN
|
||||
notification.data = {
|
||||
"agent_name": f"Test Agent {i}",
|
||||
"credits_used": 10.0 * (i + 1),
|
||||
"execution_time": 5.0 * (i + 1),
|
||||
"node_count": 3 + i,
|
||||
"graph_id": f"graph_{i}",
|
||||
"outputs": [],
|
||||
}
|
||||
notification.created_at = datetime.now(timezone.utc)
|
||||
notifications.append(notification)
|
||||
return notifications
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_406_stops_all_processing_for_user(
|
||||
self, notification_manager, sample_batch_event
|
||||
):
|
||||
"""Test that 406 inactive recipient error stops ALL processing for that user."""
|
||||
with patch("backend.notifications.notifications.logger"), patch(
|
||||
"backend.notifications.notifications.set_user_email_verification",
|
||||
new_callable=AsyncMock,
|
||||
) as mock_set_verification, patch(
|
||||
"backend.notifications.notifications.disable_all_user_notifications",
|
||||
new_callable=AsyncMock,
|
||||
) as mock_disable_all, patch(
|
||||
"backend.notifications.notifications.get_database_manager_async_client"
|
||||
) as mock_db_client, patch(
|
||||
"backend.notifications.notifications.generate_unsubscribe_link"
|
||||
) as mock_unsub_link:
|
||||
|
||||
# Create batch of 5 notifications
|
||||
notifications = []
|
||||
for i in range(5):
|
||||
notification = Mock()
|
||||
notification.id = f"notif_{i}"
|
||||
notification.type = NotificationType.AGENT_RUN
|
||||
notification.data = {
|
||||
"agent_name": f"Test Agent {i}",
|
||||
"credits_used": 10.0 * (i + 1),
|
||||
"execution_time": 5.0 * (i + 1),
|
||||
"node_count": 3 + i,
|
||||
"graph_id": f"graph_{i}",
|
||||
"outputs": [],
|
||||
}
|
||||
notification.created_at = datetime.now(timezone.utc)
|
||||
notifications.append(notification)
|
||||
|
||||
# Setup mocks
|
||||
mock_db = mock_db_client.return_value
|
||||
mock_db.get_user_email_by_id = AsyncMock(return_value="test@example.com")
|
||||
mock_db.get_user_notification_batch = AsyncMock(
|
||||
return_value=Mock(notifications=notifications)
|
||||
)
|
||||
mock_db.clear_all_user_notification_batches = AsyncMock()
|
||||
mock_db.remove_notifications_from_batch = AsyncMock()
|
||||
mock_unsub_link.return_value = "http://example.com/unsub"
|
||||
|
||||
# Mock internal methods
|
||||
notification_manager._should_email_user_based_on_preference = AsyncMock(
|
||||
return_value=True
|
||||
)
|
||||
notification_manager._should_batch = AsyncMock(return_value=True)
|
||||
notification_manager._parse_message = Mock(return_value=sample_batch_event)
|
||||
|
||||
# Track calls
|
||||
call_count = [0]
|
||||
|
||||
def send_side_effect(*args, **kwargs):
|
||||
data = kwargs.get("data", [])
|
||||
if isinstance(data, list) and len(data) == 1:
|
||||
current_call = call_count[0]
|
||||
call_count[0] += 1
|
||||
|
||||
# First two succeed, third hits 406
|
||||
if current_call < 2:
|
||||
return None
|
||||
else:
|
||||
raise Exception("Recipient marked as inactive (406)")
|
||||
# Force single processing
|
||||
raise Exception("Force single processing")
|
||||
|
||||
notification_manager.email_sender.send_templated.side_effect = (
|
||||
send_side_effect
|
||||
)
|
||||
|
||||
# Act
|
||||
result = await notification_manager._process_batch(
|
||||
sample_batch_event.model_dump_json()
|
||||
)
|
||||
|
||||
# Assert
|
||||
assert result is True
|
||||
|
||||
# Only 3 calls should have been made (2 successful, 1 failed with 406)
|
||||
assert call_count[0] == 3
|
||||
|
||||
# User should be deactivated
|
||||
mock_set_verification.assert_called_once_with("user_1", False)
|
||||
mock_disable_all.assert_called_once_with("user_1")
|
||||
mock_db.clear_all_user_notification_batches.assert_called_once_with(
|
||||
"user_1"
|
||||
)
|
||||
|
||||
# No further processing should occur after 406
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_422_permanently_removes_malformed_notification(
|
||||
self, notification_manager, sample_batch_event
|
||||
):
|
||||
"""Test that 422 error permanently removes the malformed notification from batch and continues with others."""
|
||||
with patch("backend.notifications.notifications.logger") as mock_logger, patch(
|
||||
"backend.notifications.notifications.get_database_manager_async_client"
|
||||
) as mock_db_client, patch(
|
||||
"backend.notifications.notifications.generate_unsubscribe_link"
|
||||
) as mock_unsub_link:
|
||||
|
||||
# Create batch of 5 notifications
|
||||
notifications = []
|
||||
for i in range(5):
|
||||
notification = Mock()
|
||||
notification.id = f"notif_{i}"
|
||||
notification.type = NotificationType.AGENT_RUN
|
||||
notification.data = {
|
||||
"agent_name": f"Test Agent {i}",
|
||||
"credits_used": 10.0 * (i + 1),
|
||||
"execution_time": 5.0 * (i + 1),
|
||||
"node_count": 3 + i,
|
||||
"graph_id": f"graph_{i}",
|
||||
"outputs": [],
|
||||
}
|
||||
notification.created_at = datetime.now(timezone.utc)
|
||||
notifications.append(notification)
|
||||
|
||||
# Setup mocks
|
||||
mock_db = mock_db_client.return_value
|
||||
mock_db.get_user_email_by_id = AsyncMock(return_value="test@example.com")
|
||||
mock_db.get_user_notification_batch = AsyncMock(
|
||||
side_effect=[
|
||||
Mock(notifications=notifications),
|
||||
Mock(notifications=[]), # Empty after processing
|
||||
]
|
||||
)
|
||||
mock_db.remove_notifications_from_batch = AsyncMock()
|
||||
mock_unsub_link.return_value = "http://example.com/unsub"
|
||||
|
||||
# Mock internal methods
|
||||
notification_manager._should_email_user_based_on_preference = AsyncMock(
|
||||
return_value=True
|
||||
)
|
||||
notification_manager._should_batch = AsyncMock(return_value=True)
|
||||
notification_manager._parse_message = Mock(return_value=sample_batch_event)
|
||||
|
||||
# Track calls
|
||||
call_count = [0]
|
||||
successful_indices = []
|
||||
removed_notification_ids = []
|
||||
|
||||
# Capture what gets removed
|
||||
def remove_side_effect(user_id, notif_type, notif_ids):
|
||||
removed_notification_ids.extend(notif_ids)
|
||||
return None
|
||||
|
||||
mock_db.remove_notifications_from_batch.side_effect = remove_side_effect
|
||||
|
||||
def send_side_effect(*args, **kwargs):
|
||||
data = kwargs.get("data", [])
|
||||
if isinstance(data, list) and len(data) == 1:
|
||||
current_call = call_count[0]
|
||||
call_count[0] += 1
|
||||
|
||||
# Index 2 has malformed data (422)
|
||||
if current_call == 2:
|
||||
raise Exception(
|
||||
"Unprocessable entity (422): Malformed email data"
|
||||
)
|
||||
else:
|
||||
successful_indices.append(current_call)
|
||||
return None
|
||||
# Force single processing
|
||||
raise Exception("Force single processing")
|
||||
|
||||
notification_manager.email_sender.send_templated.side_effect = (
|
||||
send_side_effect
|
||||
)
|
||||
|
||||
# Act
|
||||
result = await notification_manager._process_batch(
|
||||
sample_batch_event.model_dump_json()
|
||||
)
|
||||
|
||||
# Assert
|
||||
assert result is True
|
||||
assert call_count[0] == 5 # All 5 attempted
|
||||
assert len(successful_indices) == 4 # 4 succeeded (all except index 2)
|
||||
assert 2 not in successful_indices # Index 2 failed
|
||||
|
||||
# Verify 422 error was logged
|
||||
error_calls = [call[0][0] for call in mock_logger.error.call_args_list]
|
||||
assert any(
|
||||
"422" in call or "malformed" in call.lower() for call in error_calls
|
||||
)
|
||||
|
||||
# Verify all notifications were removed (4 successful + 1 malformed)
|
||||
assert mock_db.remove_notifications_from_batch.call_count == 5
|
||||
assert (
|
||||
"notif_2" in removed_notification_ids
|
||||
) # Malformed one was removed permanently
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_oversized_notification_permanently_removed(
|
||||
self, notification_manager, sample_batch_event
|
||||
):
|
||||
"""Test that oversized notifications are permanently removed from batch but others continue."""
|
||||
with patch("backend.notifications.notifications.logger") as mock_logger, patch(
|
||||
"backend.notifications.notifications.get_database_manager_async_client"
|
||||
) as mock_db_client, patch(
|
||||
"backend.notifications.notifications.generate_unsubscribe_link"
|
||||
) as mock_unsub_link:
|
||||
|
||||
# Create batch of 5 notifications
|
||||
notifications = []
|
||||
for i in range(5):
|
||||
notification = Mock()
|
||||
notification.id = f"notif_{i}"
|
||||
notification.type = NotificationType.AGENT_RUN
|
||||
notification.data = {
|
||||
"agent_name": f"Test Agent {i}",
|
||||
"credits_used": 10.0 * (i + 1),
|
||||
"execution_time": 5.0 * (i + 1),
|
||||
"node_count": 3 + i,
|
||||
"graph_id": f"graph_{i}",
|
||||
"outputs": [],
|
||||
}
|
||||
notification.created_at = datetime.now(timezone.utc)
|
||||
notifications.append(notification)
|
||||
|
||||
# Setup mocks
|
||||
mock_db = mock_db_client.return_value
|
||||
mock_db.get_user_email_by_id = AsyncMock(return_value="test@example.com")
|
||||
mock_db.get_user_notification_batch = AsyncMock(
|
||||
side_effect=[
|
||||
Mock(notifications=notifications),
|
||||
Mock(notifications=[]), # Empty after processing
|
||||
]
|
||||
)
|
||||
mock_db.remove_notifications_from_batch = AsyncMock()
|
||||
mock_unsub_link.return_value = "http://example.com/unsub"
|
||||
|
||||
# Mock internal methods
|
||||
notification_manager._should_email_user_based_on_preference = AsyncMock(
|
||||
return_value=True
|
||||
)
|
||||
notification_manager._should_batch = AsyncMock(return_value=True)
|
||||
notification_manager._parse_message = Mock(return_value=sample_batch_event)
|
||||
|
||||
# Override formatter to simulate oversized on index 3
|
||||
# original_format = notification_manager.email_sender.formatter.format_email
|
||||
|
||||
def format_side_effect(*args, **kwargs):
|
||||
# Check if we're formatting index 3
|
||||
data = kwargs.get("data", {}).get("notifications", [])
|
||||
if data and len(data) == 1:
|
||||
# Check notification content to identify index 3
|
||||
if any(
|
||||
"Test Agent 3" in str(n.data)
|
||||
for n in data
|
||||
if hasattr(n, "data")
|
||||
):
|
||||
# Return oversized message for index 3
|
||||
return ("subject", "x" * 5_000_000) # Over 4.5MB limit
|
||||
return ("subject", "normal sized content")
|
||||
|
||||
notification_manager.email_sender.formatter.format_email = Mock(
|
||||
side_effect=format_side_effect
|
||||
)
|
||||
|
||||
# Track calls
|
||||
successful_indices = []
|
||||
|
||||
def send_side_effect(*args, **kwargs):
|
||||
data = kwargs.get("data", [])
|
||||
if isinstance(data, list) and len(data) == 1:
|
||||
# Track which notification was sent based on content
|
||||
for i, notif in enumerate(notifications):
|
||||
if any(
|
||||
f"Test Agent {i}" in str(n.data)
|
||||
for n in data
|
||||
if hasattr(n, "data")
|
||||
):
|
||||
successful_indices.append(i)
|
||||
return None
|
||||
return None
|
||||
# Force single processing
|
||||
raise Exception("Force single processing")
|
||||
|
||||
notification_manager.email_sender.send_templated.side_effect = (
|
||||
send_side_effect
|
||||
)
|
||||
|
||||
# Act
|
||||
result = await notification_manager._process_batch(
|
||||
sample_batch_event.model_dump_json()
|
||||
)
|
||||
|
||||
# Assert
|
||||
assert result is True
|
||||
assert (
|
||||
len(successful_indices) == 4
|
||||
) # Only 4 sent (index 3 skipped due to size)
|
||||
assert 3 not in successful_indices # Index 3 was not sent
|
||||
|
||||
# Verify oversized error was logged
|
||||
error_calls = [call[0][0] for call in mock_logger.error.call_args_list]
|
||||
assert any(
|
||||
"exceeds email size limit" in call or "oversized" in call.lower()
|
||||
for call in error_calls
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_generic_api_error_keeps_notification_for_retry(
|
||||
self, notification_manager, sample_batch_event
|
||||
):
|
||||
"""Test that generic API errors keep notifications in batch for retry while others continue."""
|
||||
with patch("backend.notifications.notifications.logger") as mock_logger, patch(
|
||||
"backend.notifications.notifications.get_database_manager_async_client"
|
||||
) as mock_db_client, patch(
|
||||
"backend.notifications.notifications.generate_unsubscribe_link"
|
||||
) as mock_unsub_link:
|
||||
|
||||
# Create batch of 5 notifications
|
||||
notifications = []
|
||||
for i in range(5):
|
||||
notification = Mock()
|
||||
notification.id = f"notif_{i}"
|
||||
notification.type = NotificationType.AGENT_RUN
|
||||
notification.data = {
|
||||
"agent_name": f"Test Agent {i}",
|
||||
"credits_used": 10.0 * (i + 1),
|
||||
"execution_time": 5.0 * (i + 1),
|
||||
"node_count": 3 + i,
|
||||
"graph_id": f"graph_{i}",
|
||||
"outputs": [],
|
||||
}
|
||||
notification.created_at = datetime.now(timezone.utc)
|
||||
notifications.append(notification)
|
||||
|
||||
# Notification that failed with generic error
|
||||
failed_notifications = [notifications[1]] # Only index 1 remains for retry
|
||||
|
||||
# Setup mocks
|
||||
mock_db = mock_db_client.return_value
|
||||
mock_db.get_user_email_by_id = AsyncMock(return_value="test@example.com")
|
||||
mock_db.get_user_notification_batch = AsyncMock(
|
||||
side_effect=[
|
||||
Mock(notifications=notifications),
|
||||
Mock(
|
||||
notifications=failed_notifications
|
||||
), # Failed ones remain for retry
|
||||
]
|
||||
)
|
||||
mock_db.remove_notifications_from_batch = AsyncMock()
|
||||
mock_unsub_link.return_value = "http://example.com/unsub"
|
||||
|
||||
# Mock internal methods
|
||||
notification_manager._should_email_user_based_on_preference = AsyncMock(
|
||||
return_value=True
|
||||
)
|
||||
notification_manager._should_batch = AsyncMock(return_value=True)
|
||||
notification_manager._parse_message = Mock(return_value=sample_batch_event)
|
||||
|
||||
# Track calls
|
||||
successful_indices = []
|
||||
failed_indices = []
|
||||
removed_notification_ids = []
|
||||
|
||||
# Capture what gets removed
|
||||
def remove_side_effect(user_id, notif_type, notif_ids):
|
||||
removed_notification_ids.extend(notif_ids)
|
||||
return None
|
||||
|
||||
mock_db.remove_notifications_from_batch.side_effect = remove_side_effect
|
||||
|
||||
def send_side_effect(*args, **kwargs):
|
||||
data = kwargs.get("data", [])
|
||||
if isinstance(data, list) and len(data) == 1:
|
||||
# Track which notification based on content
|
||||
for i, notif in enumerate(notifications):
|
||||
if any(
|
||||
f"Test Agent {i}" in str(n.data)
|
||||
for n in data
|
||||
if hasattr(n, "data")
|
||||
):
|
||||
# Index 1 has generic API error
|
||||
if i == 1:
|
||||
failed_indices.append(i)
|
||||
raise Exception("Network timeout - temporary failure")
|
||||
else:
|
||||
successful_indices.append(i)
|
||||
return None
|
||||
return None
|
||||
# Force single processing
|
||||
raise Exception("Force single processing")
|
||||
|
||||
notification_manager.email_sender.send_templated.side_effect = (
|
||||
send_side_effect
|
||||
)
|
||||
|
||||
# Act
|
||||
result = await notification_manager._process_batch(
|
||||
sample_batch_event.model_dump_json()
|
||||
)
|
||||
|
||||
# Assert
|
||||
assert result is True
|
||||
assert len(successful_indices) == 4 # 4 succeeded (0, 2, 3, 4)
|
||||
assert len(failed_indices) == 1 # 1 failed
|
||||
assert 1 in failed_indices # Index 1 failed
|
||||
|
||||
# Verify generic error was logged
|
||||
error_calls = [call[0][0] for call in mock_logger.error.call_args_list]
|
||||
assert any(
|
||||
"api error" in call.lower() or "skipping" in call.lower()
|
||||
for call in error_calls
|
||||
)
|
||||
|
||||
# Only successful ones should be removed from batch (failed one stays for retry)
|
||||
assert mock_db.remove_notifications_from_batch.call_count == 4
|
||||
assert (
|
||||
"notif_1" not in removed_notification_ids
|
||||
) # Failed one NOT removed (stays for retry)
|
||||
assert "notif_0" in removed_notification_ids # Successful one removed
|
||||
assert "notif_2" in removed_notification_ids # Successful one removed
|
||||
assert "notif_3" in removed_notification_ids # Successful one removed
|
||||
assert "notif_4" in removed_notification_ids # Successful one removed
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_batch_all_notifications_sent_successfully(
|
||||
self, notification_manager, sample_batch_event
|
||||
):
|
||||
"""Test successful batch processing where all notifications are sent without errors."""
|
||||
with patch("backend.notifications.notifications.logger") as mock_logger, patch(
|
||||
"backend.notifications.notifications.get_database_manager_async_client"
|
||||
) as mock_db_client, patch(
|
||||
"backend.notifications.notifications.generate_unsubscribe_link"
|
||||
) as mock_unsub_link:
|
||||
|
||||
# Create batch of 5 notifications
|
||||
notifications = []
|
||||
for i in range(5):
|
||||
notification = Mock()
|
||||
notification.id = f"notif_{i}"
|
||||
notification.type = NotificationType.AGENT_RUN
|
||||
notification.data = {
|
||||
"agent_name": f"Test Agent {i}",
|
||||
"credits_used": 10.0 * (i + 1),
|
||||
"execution_time": 5.0 * (i + 1),
|
||||
"node_count": 3 + i,
|
||||
"graph_id": f"graph_{i}",
|
||||
"outputs": [],
|
||||
}
|
||||
notification.created_at = datetime.now(timezone.utc)
|
||||
notifications.append(notification)
|
||||
|
||||
# Setup mocks
|
||||
mock_db = mock_db_client.return_value
|
||||
mock_db.get_user_email_by_id = AsyncMock(return_value="test@example.com")
|
||||
mock_db.get_user_notification_batch = AsyncMock(
|
||||
side_effect=[
|
||||
Mock(notifications=notifications),
|
||||
Mock(notifications=[]), # Empty after all sent successfully
|
||||
]
|
||||
)
|
||||
mock_db.remove_notifications_from_batch = AsyncMock()
|
||||
mock_unsub_link.return_value = "http://example.com/unsub"
|
||||
|
||||
# Mock internal methods
|
||||
notification_manager._should_email_user_based_on_preference = AsyncMock(
|
||||
return_value=True
|
||||
)
|
||||
notification_manager._should_batch = AsyncMock(return_value=True)
|
||||
notification_manager._parse_message = Mock(return_value=sample_batch_event)
|
||||
|
||||
# Track successful sends
|
||||
successful_indices = []
|
||||
removed_notification_ids = []
|
||||
|
||||
# Capture what gets removed
|
||||
def remove_side_effect(user_id, notif_type, notif_ids):
|
||||
removed_notification_ids.extend(notif_ids)
|
||||
return None
|
||||
|
||||
mock_db.remove_notifications_from_batch.side_effect = remove_side_effect
|
||||
|
||||
def send_side_effect(*args, **kwargs):
|
||||
data = kwargs.get("data", [])
|
||||
if isinstance(data, list) and len(data) == 1:
|
||||
# Track which notification was sent
|
||||
for i, notif in enumerate(notifications):
|
||||
if any(
|
||||
f"Test Agent {i}" in str(n.data)
|
||||
for n in data
|
||||
if hasattr(n, "data")
|
||||
):
|
||||
successful_indices.append(i)
|
||||
return None
|
||||
return None # Success
|
||||
# Force single processing
|
||||
raise Exception("Force single processing")
|
||||
|
||||
notification_manager.email_sender.send_templated.side_effect = (
|
||||
send_side_effect
|
||||
)
|
||||
|
||||
# Act
|
||||
result = await notification_manager._process_batch(
|
||||
sample_batch_event.model_dump_json()
|
||||
)
|
||||
|
||||
# Assert
|
||||
assert result is True
|
||||
|
||||
# All 5 notifications should be sent successfully
|
||||
assert len(successful_indices) == 5
|
||||
assert successful_indices == [0, 1, 2, 3, 4]
|
||||
|
||||
# All notifications should be removed from batch
|
||||
assert mock_db.remove_notifications_from_batch.call_count == 5
|
||||
assert len(removed_notification_ids) == 5
|
||||
for i in range(5):
|
||||
assert f"notif_{i}" in removed_notification_ids
|
||||
|
||||
# No errors should be logged
|
||||
assert mock_logger.error.call_count == 0
|
||||
|
||||
# Info message about successful sends should be logged
|
||||
info_calls = [call[0][0] for call in mock_logger.info.call_args_list]
|
||||
assert any("sent and removed" in call.lower() for call in info_calls)
|
||||
@@ -6,10 +6,10 @@ import logging
|
||||
import threading
|
||||
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Type
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic import BaseModel, SecretStr
|
||||
|
||||
from backend.blocks.basic import Block
|
||||
from backend.data.model import Credentials
|
||||
from backend.data.model import APIKeyCredentials, Credentials
|
||||
from backend.integrations.oauth.base import BaseOAuthHandler
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.integrations.webhooks._base import BaseWebhooksManager
|
||||
@@ -17,8 +17,6 @@ from backend.integrations.webhooks._base import BaseWebhooksManager
|
||||
if TYPE_CHECKING:
|
||||
from backend.sdk.provider import Provider
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SDKOAuthCredentials(BaseModel):
|
||||
"""OAuth credentials configuration for SDK providers."""
|
||||
@@ -104,8 +102,21 @@ class AutoRegistry:
|
||||
"""Register an environment variable as an API key for a provider."""
|
||||
with cls._lock:
|
||||
cls._api_key_mappings[provider] = env_var_name
|
||||
# Note: The credential itself is created by ProviderBuilder.with_api_key()
|
||||
# We only store the mapping here to avoid duplication
|
||||
|
||||
# Dynamically check if the env var exists and create credential
|
||||
import os
|
||||
|
||||
api_key = os.getenv(env_var_name)
|
||||
if api_key:
|
||||
credential = APIKeyCredentials(
|
||||
id=f"{provider}-default",
|
||||
provider=provider,
|
||||
api_key=SecretStr(api_key),
|
||||
title=f"Default {provider} credentials",
|
||||
)
|
||||
# Check if credential already exists to avoid duplicates
|
||||
if not any(c.id == credential.id for c in cls._default_credentials):
|
||||
cls._default_credentials.append(credential)
|
||||
|
||||
@classmethod
|
||||
def get_all_credentials(cls) -> List[Credentials]:
|
||||
@@ -199,43 +210,3 @@ class AutoRegistry:
|
||||
webhooks.load_webhook_managers = patched_load
|
||||
except Exception as e:
|
||||
logging.warning(f"Failed to patch webhook managers: {e}")
|
||||
|
||||
# Patch credentials store to include SDK-registered credentials
|
||||
try:
|
||||
import sys
|
||||
from typing import Any
|
||||
|
||||
# Get the module from sys.modules to respect mocking
|
||||
if "backend.integrations.credentials_store" in sys.modules:
|
||||
creds_store: Any = sys.modules["backend.integrations.credentials_store"]
|
||||
else:
|
||||
import backend.integrations.credentials_store
|
||||
|
||||
creds_store: Any = backend.integrations.credentials_store
|
||||
|
||||
if hasattr(creds_store, "IntegrationCredentialsStore"):
|
||||
store_class = creds_store.IntegrationCredentialsStore
|
||||
if hasattr(store_class, "get_all_creds"):
|
||||
original_get_all_creds = store_class.get_all_creds
|
||||
|
||||
async def patched_get_all_creds(self, user_id: str):
|
||||
# Get original credentials
|
||||
original_creds = await original_get_all_creds(self, user_id)
|
||||
|
||||
# Add SDK-registered credentials
|
||||
sdk_creds = cls.get_all_credentials()
|
||||
|
||||
# Combine credentials, avoiding duplicates by ID
|
||||
existing_ids = {c.id for c in original_creds}
|
||||
for cred in sdk_creds:
|
||||
if cred.id not in existing_ids:
|
||||
original_creds.append(cred)
|
||||
|
||||
return original_creds
|
||||
|
||||
store_class.get_all_creds = patched_get_all_creds
|
||||
logger.info(
|
||||
"Successfully patched IntegrationCredentialsStore.get_all_creds"
|
||||
)
|
||||
except Exception as e:
|
||||
logging.warning(f"Failed to patch credentials store: {e}")
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
from fastapi import FastAPI
|
||||
|
||||
from backend.monitoring.instrumentation import instrument_fastapi
|
||||
from backend.server.middleware.security import SecurityHeadersMiddleware
|
||||
|
||||
from .routes.v1 import v1_router
|
||||
@@ -14,12 +13,3 @@ external_app = FastAPI(
|
||||
|
||||
external_app.add_middleware(SecurityHeadersMiddleware)
|
||||
external_app.include_router(v1_router, prefix="/v1")
|
||||
|
||||
# Add Prometheus instrumentation
|
||||
instrument_fastapi(
|
||||
external_app,
|
||||
service_name="external-api",
|
||||
expose_endpoint=True,
|
||||
endpoint="/metrics",
|
||||
include_in_schema=True,
|
||||
)
|
||||
|
||||
@@ -49,7 +49,7 @@ class GraphExecutionResult(TypedDict):
|
||||
tags=["blocks"],
|
||||
dependencies=[Security(require_permission(APIKeyPermission.READ_BLOCK))],
|
||||
)
|
||||
async def get_graph_blocks() -> Sequence[dict[Any, Any]]:
|
||||
def get_graph_blocks() -> Sequence[dict[Any, Any]]:
|
||||
blocks = [block() for block in backend.data.block.get_blocks().values()]
|
||||
return [b.to_dict() for b in blocks if not b.disabled]
|
||||
|
||||
|
||||
@@ -32,7 +32,6 @@ from backend.data.model import (
|
||||
OAuth2Credentials,
|
||||
UserIntegrations,
|
||||
)
|
||||
from backend.data.onboarding import complete_webhook_trigger_step
|
||||
from backend.data.user import get_user_integrations
|
||||
from backend.executor.utils import add_graph_execution
|
||||
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
|
||||
@@ -64,7 +63,7 @@ class LoginResponse(BaseModel):
|
||||
state_token: str
|
||||
|
||||
|
||||
@router.get("/{provider}/login", summary="Initiate OAuth flow")
|
||||
@router.get("/{provider}/login")
|
||||
async def login(
|
||||
provider: Annotated[
|
||||
ProviderName, Path(title="The provider to initiate an OAuth flow for")
|
||||
@@ -102,7 +101,7 @@ class CredentialsMetaResponse(BaseModel):
|
||||
)
|
||||
|
||||
|
||||
@router.post("/{provider}/callback", summary="Exchange OAuth code for tokens")
|
||||
@router.post("/{provider}/callback")
|
||||
async def callback(
|
||||
provider: Annotated[
|
||||
ProviderName, Path(title="The target provider for this OAuth exchange")
|
||||
@@ -180,7 +179,7 @@ async def callback(
|
||||
)
|
||||
|
||||
|
||||
@router.get("/credentials", summary="List Credentials")
|
||||
@router.get("/credentials")
|
||||
async def list_credentials(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> list[CredentialsMetaResponse]:
|
||||
@@ -221,9 +220,7 @@ async def list_credentials_by_provider(
|
||||
]
|
||||
|
||||
|
||||
@router.get(
|
||||
"/{provider}/credentials/{cred_id}", summary="Get Specific Credential By ID"
|
||||
)
|
||||
@router.get("/{provider}/credentials/{cred_id}")
|
||||
async def get_credential(
|
||||
provider: Annotated[
|
||||
ProviderName, Path(title="The provider to retrieve credentials for")
|
||||
@@ -244,7 +241,7 @@ async def get_credential(
|
||||
return credential
|
||||
|
||||
|
||||
@router.post("/{provider}/credentials", status_code=201, summary="Create Credentials")
|
||||
@router.post("/{provider}/credentials", status_code=201)
|
||||
async def create_credentials(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
provider: Annotated[
|
||||
@@ -370,8 +367,6 @@ async def webhook_ingress_generic(
|
||||
return
|
||||
|
||||
executions: list[Awaitable] = []
|
||||
await complete_webhook_trigger_step(user_id)
|
||||
|
||||
for node in webhook.triggered_nodes:
|
||||
logger.debug(f"Webhook-attached node: {node}")
|
||||
if not node.is_triggered_by_event_type(event_type):
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
import re
|
||||
from typing import Set
|
||||
|
||||
from starlette.types import ASGIApp, Message, Receive, Scope, Send
|
||||
from fastapi import Request, Response
|
||||
from starlette.middleware.base import BaseHTTPMiddleware
|
||||
from starlette.types import ASGIApp
|
||||
|
||||
|
||||
class SecurityHeadersMiddleware:
|
||||
class SecurityHeadersMiddleware(BaseHTTPMiddleware):
|
||||
"""
|
||||
Middleware to add security headers to responses, with cache control
|
||||
disabled by default for all endpoints except those explicitly allowed.
|
||||
@@ -23,8 +25,6 @@ class SecurityHeadersMiddleware:
|
||||
"/api/health",
|
||||
"/api/v1/health",
|
||||
"/api/status",
|
||||
"/api/blocks",
|
||||
"/api/v1/blocks",
|
||||
# Public store/marketplace pages (read-only)
|
||||
"/api/store/agents",
|
||||
"/api/v1/store/agents",
|
||||
@@ -49,7 +49,7 @@ class SecurityHeadersMiddleware:
|
||||
}
|
||||
|
||||
def __init__(self, app: ASGIApp):
|
||||
self.app = app
|
||||
super().__init__(app)
|
||||
# Compile regex patterns for wildcard matching
|
||||
self.cacheable_patterns = [
|
||||
re.compile(pattern.replace("*", "[^/]+"))
|
||||
@@ -72,42 +72,22 @@ class SecurityHeadersMiddleware:
|
||||
|
||||
return False
|
||||
|
||||
async def __call__(self, scope: Scope, receive: Receive, send: Send) -> None:
|
||||
"""Pure ASGI middleware implementation for better performance than BaseHTTPMiddleware."""
|
||||
if scope["type"] != "http":
|
||||
await self.app(scope, receive, send)
|
||||
return
|
||||
async def dispatch(self, request: Request, call_next):
|
||||
response: Response = await call_next(request)
|
||||
|
||||
# Extract path from scope
|
||||
path = scope["path"]
|
||||
# Add general security headers
|
||||
response.headers["X-Content-Type-Options"] = "nosniff"
|
||||
response.headers["X-Frame-Options"] = "DENY"
|
||||
response.headers["X-XSS-Protection"] = "1; mode=block"
|
||||
response.headers["Referrer-Policy"] = "strict-origin-when-cross-origin"
|
||||
|
||||
async def send_wrapper(message: Message) -> None:
|
||||
if message["type"] == "http.response.start":
|
||||
# Add security headers to the response
|
||||
headers = dict(message.get("headers", []))
|
||||
# Default: Disable caching for all endpoints
|
||||
# Only allow caching for explicitly permitted paths
|
||||
if not self.is_cacheable_path(request.url.path):
|
||||
response.headers["Cache-Control"] = (
|
||||
"no-store, no-cache, must-revalidate, private"
|
||||
)
|
||||
response.headers["Pragma"] = "no-cache"
|
||||
response.headers["Expires"] = "0"
|
||||
|
||||
# Add general security headers (HTTP spec requires proper capitalization)
|
||||
headers[b"X-Content-Type-Options"] = b"nosniff"
|
||||
headers[b"X-Frame-Options"] = b"DENY"
|
||||
headers[b"X-XSS-Protection"] = b"1; mode=block"
|
||||
headers[b"Referrer-Policy"] = b"strict-origin-when-cross-origin"
|
||||
|
||||
# Add noindex header for shared execution pages
|
||||
if "/public/shared" in path:
|
||||
headers[b"X-Robots-Tag"] = b"noindex, nofollow"
|
||||
|
||||
# Default: Disable caching for all endpoints
|
||||
# Only allow caching for explicitly permitted paths
|
||||
if not self.is_cacheable_path(path):
|
||||
headers[b"Cache-Control"] = (
|
||||
b"no-store, no-cache, must-revalidate, private"
|
||||
)
|
||||
headers[b"Pragma"] = b"no-cache"
|
||||
headers[b"Expires"] = b"0"
|
||||
|
||||
# Convert headers back to list format
|
||||
message["headers"] = list(headers.items())
|
||||
|
||||
await send(message)
|
||||
|
||||
await self.app(scope, receive, send_wrapper)
|
||||
return response
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import contextlib
|
||||
import logging
|
||||
import platform
|
||||
from enum import Enum
|
||||
from typing import Any, Optional
|
||||
|
||||
@@ -12,7 +11,6 @@ import uvicorn
|
||||
from autogpt_libs.auth import add_auth_responses_to_openapi
|
||||
from autogpt_libs.auth import verify_settings as verify_auth_settings
|
||||
from fastapi.exceptions import RequestValidationError
|
||||
from fastapi.middleware.gzip import GZipMiddleware
|
||||
from fastapi.routing import APIRoute
|
||||
from prisma.errors import PrismaError
|
||||
|
||||
@@ -20,7 +18,6 @@ import backend.data.block
|
||||
import backend.data.db
|
||||
import backend.data.graph
|
||||
import backend.data.user
|
||||
import backend.integrations.webhooks.utils
|
||||
import backend.server.routers.postmark.postmark
|
||||
import backend.server.routers.v1
|
||||
import backend.server.v2.admin.credit_admin_routes
|
||||
@@ -39,7 +36,6 @@ import backend.util.settings
|
||||
from backend.blocks.llm import LlmModel
|
||||
from backend.data.model import Credentials
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.monitoring.instrumentation import instrument_fastapi
|
||||
from backend.server.external.api import external_app
|
||||
from backend.server.middleware.security import SecurityHeadersMiddleware
|
||||
from backend.util import json
|
||||
@@ -72,26 +68,6 @@ async def lifespan_context(app: fastapi.FastAPI):
|
||||
|
||||
await backend.data.db.connect()
|
||||
|
||||
# Configure thread pool for FastAPI sync operation performance
|
||||
# CRITICAL: FastAPI automatically runs ALL sync functions in this thread pool:
|
||||
# - Any endpoint defined with 'def' (not async def)
|
||||
# - Any dependency function defined with 'def' (not async def)
|
||||
# - Manual run_in_threadpool() calls (like JWT decoding)
|
||||
# Default pool size is only 40 threads, causing bottlenecks under high concurrency
|
||||
config = backend.util.settings.Config()
|
||||
try:
|
||||
import anyio.to_thread
|
||||
|
||||
anyio.to_thread.current_default_thread_limiter().total_tokens = (
|
||||
config.fastapi_thread_pool_size
|
||||
)
|
||||
logger.info(
|
||||
f"Thread pool size set to {config.fastapi_thread_pool_size} for sync endpoint/dependency performance"
|
||||
)
|
||||
except (ImportError, AttributeError) as e:
|
||||
logger.warning(f"Could not configure thread pool size: {e}")
|
||||
# Continue without thread pool configuration
|
||||
|
||||
# Ensure SDK auto-registration is patched before initializing blocks
|
||||
from backend.sdk.registry import AutoRegistry
|
||||
|
||||
@@ -102,8 +78,6 @@ async def lifespan_context(app: fastapi.FastAPI):
|
||||
await backend.data.user.migrate_and_encrypt_user_integrations()
|
||||
await backend.data.graph.fix_llm_provider_credentials()
|
||||
await backend.data.graph.migrate_llm_models(LlmModel.GPT4O)
|
||||
await backend.integrations.webhooks.utils.migrate_legacy_triggered_graphs()
|
||||
|
||||
with launch_darkly_context():
|
||||
yield
|
||||
|
||||
@@ -162,22 +136,9 @@ app = fastapi.FastAPI(
|
||||
|
||||
app.add_middleware(SecurityHeadersMiddleware)
|
||||
|
||||
# Add GZip compression middleware for large responses (like /api/blocks)
|
||||
app.add_middleware(GZipMiddleware, minimum_size=50_000) # 50KB threshold
|
||||
|
||||
# Add 401 responses to authenticated endpoints in OpenAPI spec
|
||||
add_auth_responses_to_openapi(app)
|
||||
|
||||
# Add Prometheus instrumentation
|
||||
instrument_fastapi(
|
||||
app,
|
||||
service_name="rest-api",
|
||||
expose_endpoint=True,
|
||||
endpoint="/metrics",
|
||||
include_in_schema=settings.config.app_env
|
||||
== backend.util.settings.AppEnvironment.LOCAL,
|
||||
)
|
||||
|
||||
|
||||
def handle_internal_http_error(status_code: int = 500, log_error: bool = True):
|
||||
def handler(request: fastapi.Request, exc: Exception):
|
||||
@@ -291,35 +252,25 @@ async def health():
|
||||
|
||||
class AgentServer(backend.util.service.AppProcess):
|
||||
def run(self):
|
||||
server_app = starlette.middleware.cors.CORSMiddleware(
|
||||
app=app,
|
||||
allow_origins=settings.config.backend_cors_allow_origins,
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"], # Allows all methods
|
||||
allow_headers=["*"], # Allows all headers
|
||||
|
||||
if settings.config.enable_cors_all_origins:
|
||||
server_app = starlette.middleware.cors.CORSMiddleware(
|
||||
app=app,
|
||||
allow_origins=settings.config.backend_cors_allow_origins,
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"], # Allows all methods
|
||||
allow_headers=["*"], # Allows all headers
|
||||
)
|
||||
else:
|
||||
logger.info("CORS is disabled")
|
||||
server_app = app
|
||||
|
||||
uvicorn.run(
|
||||
server_app,
|
||||
host=backend.util.settings.Config().agent_api_host,
|
||||
port=backend.util.settings.Config().agent_api_port,
|
||||
log_config=None,
|
||||
)
|
||||
config = backend.util.settings.Config()
|
||||
|
||||
# Configure uvicorn with performance optimizations from Kludex FastAPI tips
|
||||
uvicorn_config = {
|
||||
"app": server_app,
|
||||
"host": config.agent_api_host,
|
||||
"port": config.agent_api_port,
|
||||
"log_config": None,
|
||||
# Use httptools for HTTP parsing (if available)
|
||||
"http": "httptools",
|
||||
# Only use uvloop on Unix-like systems (not supported on Windows)
|
||||
"loop": "uvloop" if platform.system() != "Windows" else "auto",
|
||||
}
|
||||
|
||||
# Only add debug in local environment (not supported in all uvicorn versions)
|
||||
if config.app_env == backend.util.settings.AppEnvironment.LOCAL:
|
||||
import os
|
||||
|
||||
# Enable asyncio debug mode via environment variable
|
||||
os.environ["PYTHONASYNCIODEBUG"] = "1"
|
||||
|
||||
uvicorn.run(**uvicorn_config)
|
||||
|
||||
def cleanup(self):
|
||||
super().cleanup()
|
||||
|
||||
@@ -1,17 +1,14 @@
|
||||
import asyncio
|
||||
import base64
|
||||
import logging
|
||||
import time
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timezone
|
||||
from datetime import datetime
|
||||
from typing import Annotated, Any, Sequence
|
||||
|
||||
import pydantic
|
||||
import stripe
|
||||
from autogpt_libs.auth import get_user_id, requires_user
|
||||
from autogpt_libs.auth.jwt_utils import get_jwt_payload
|
||||
from autogpt_libs.utils.cache import cached
|
||||
from fastapi import (
|
||||
APIRouter,
|
||||
Body,
|
||||
@@ -24,8 +21,6 @@ from fastapi import (
|
||||
Security,
|
||||
UploadFile,
|
||||
)
|
||||
from fastapi.concurrency import run_in_threadpool
|
||||
from pydantic import BaseModel
|
||||
from starlette.status import HTTP_204_NO_CONTENT, HTTP_404_NOT_FOUND
|
||||
from typing_extensions import Optional, TypedDict
|
||||
|
||||
@@ -41,10 +36,10 @@ from backend.data.credit import (
|
||||
RefundRequest,
|
||||
TransactionHistory,
|
||||
get_auto_top_up,
|
||||
get_block_costs,
|
||||
get_user_credit_model,
|
||||
set_auto_top_up,
|
||||
)
|
||||
from backend.data.execution import UserContext
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.notifications import NotificationPreference, NotificationPreferenceDTO
|
||||
from backend.data.onboarding import (
|
||||
@@ -68,11 +63,6 @@ from backend.integrations.webhooks.graph_lifecycle_hooks import (
|
||||
on_graph_activate,
|
||||
on_graph_deactivate,
|
||||
)
|
||||
from backend.monitoring.instrumentation import (
|
||||
record_block_execution,
|
||||
record_graph_execution,
|
||||
record_graph_operation,
|
||||
)
|
||||
from backend.server.model import (
|
||||
CreateAPIKeyRequest,
|
||||
CreateAPIKeyResponse,
|
||||
@@ -87,9 +77,9 @@ from backend.server.model import (
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.cloud_storage import get_cloud_storage_handler
|
||||
from backend.util.exceptions import GraphValidationError, NotFoundError
|
||||
from backend.util.json import dumps
|
||||
from backend.util.settings import Settings
|
||||
from backend.util.timezone_utils import (
|
||||
convert_cron_to_utc,
|
||||
convert_utc_time_to_user_timezone,
|
||||
get_user_timezone_or_utc,
|
||||
)
|
||||
@@ -107,7 +97,6 @@ def _create_file_size_error(size_bytes: int, max_size_mb: int) -> HTTPException:
|
||||
settings = Settings()
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
_user_credit_model = get_user_credit_model()
|
||||
|
||||
# Define the API routes
|
||||
@@ -266,69 +255,18 @@ async def is_onboarding_enabled():
|
||||
########################################################
|
||||
|
||||
|
||||
def _compute_blocks_sync() -> str:
|
||||
"""
|
||||
Synchronous function to compute blocks data.
|
||||
This does the heavy lifting: instantiate 226+ blocks, compute costs, serialize.
|
||||
"""
|
||||
from backend.data.credit import get_block_cost
|
||||
|
||||
block_classes = get_blocks()
|
||||
result = []
|
||||
|
||||
for block_class in block_classes.values():
|
||||
block_instance = block_class()
|
||||
if not block_instance.disabled:
|
||||
costs = get_block_cost(block_instance)
|
||||
# Convert BlockCost BaseModel objects to dictionaries for JSON serialization
|
||||
costs_dict = [
|
||||
cost.model_dump() if isinstance(cost, BaseModel) else cost
|
||||
for cost in costs
|
||||
]
|
||||
result.append({**block_instance.to_dict(), "costs": costs_dict})
|
||||
|
||||
# Use our JSON utility which properly handles complex types through to_dict conversion
|
||||
return dumps(result)
|
||||
|
||||
|
||||
@cached()
|
||||
async def _get_cached_blocks() -> str:
|
||||
"""
|
||||
Async cached function with thundering herd protection.
|
||||
On cache miss: runs heavy work in thread pool
|
||||
On cache hit: returns cached string immediately (no thread pool needed)
|
||||
"""
|
||||
# Only run in thread pool on cache miss - cache hits return immediately
|
||||
return await run_in_threadpool(_compute_blocks_sync)
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
path="/blocks",
|
||||
summary="List available blocks",
|
||||
tags=["blocks"],
|
||||
dependencies=[Security(requires_user)],
|
||||
responses={
|
||||
200: {
|
||||
"description": "Successful Response",
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"items": {"additionalProperties": True, "type": "object"},
|
||||
"type": "array",
|
||||
"title": "Response Getv1List Available Blocks",
|
||||
}
|
||||
}
|
||||
},
|
||||
}
|
||||
},
|
||||
)
|
||||
async def get_graph_blocks() -> Response:
|
||||
# Cache hit: returns immediately, Cache miss: runs in thread pool
|
||||
content = await _get_cached_blocks()
|
||||
return Response(
|
||||
content=content,
|
||||
media_type="application/json",
|
||||
)
|
||||
def get_graph_blocks() -> Sequence[dict[Any, Any]]:
|
||||
blocks = [block() for block in get_blocks().values()]
|
||||
costs = get_block_costs()
|
||||
return [
|
||||
{**b.to_dict(), "costs": costs.get(b.id, [])} for b in blocks if not b.disabled
|
||||
]
|
||||
|
||||
|
||||
@v1_router.post(
|
||||
@@ -337,45 +275,15 @@ async def get_graph_blocks() -> Response:
|
||||
tags=["blocks"],
|
||||
dependencies=[Security(requires_user)],
|
||||
)
|
||||
async def execute_graph_block(
|
||||
block_id: str, data: BlockInput, user_id: Annotated[str, Security(get_user_id)]
|
||||
) -> CompletedBlockOutput:
|
||||
async def execute_graph_block(block_id: str, data: BlockInput) -> CompletedBlockOutput:
|
||||
obj = get_block(block_id)
|
||||
if not obj:
|
||||
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
|
||||
|
||||
# Get user context for block execution
|
||||
user = await get_user_by_id(user_id)
|
||||
if not user:
|
||||
raise HTTPException(status_code=404, detail="User not found.")
|
||||
|
||||
user_context = UserContext(timezone=user.timezone)
|
||||
|
||||
start_time = time.time()
|
||||
try:
|
||||
output = defaultdict(list)
|
||||
async for name, data in obj.execute(
|
||||
data,
|
||||
user_context=user_context,
|
||||
user_id=user_id,
|
||||
# Note: graph_exec_id and graph_id are not available for direct block execution
|
||||
):
|
||||
output[name].append(data)
|
||||
|
||||
# Record successful block execution with duration
|
||||
duration = time.time() - start_time
|
||||
block_type = obj.__class__.__name__
|
||||
record_block_execution(
|
||||
block_type=block_type, status="success", duration=duration
|
||||
)
|
||||
|
||||
return output
|
||||
except Exception:
|
||||
# Record failed block execution
|
||||
duration = time.time() - start_time
|
||||
block_type = obj.__class__.__name__
|
||||
record_block_execution(block_type=block_type, status="error", duration=duration)
|
||||
raise
|
||||
output = defaultdict(list)
|
||||
async for name, data in obj.execute(data):
|
||||
output[name].append(data)
|
||||
return output
|
||||
|
||||
|
||||
@v1_router.post(
|
||||
@@ -668,13 +576,7 @@ class DeleteGraphResponse(TypedDict):
|
||||
async def list_graphs(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> Sequence[graph_db.GraphMeta]:
|
||||
paginated_result = await graph_db.list_graphs_paginated(
|
||||
user_id=user_id,
|
||||
page=1,
|
||||
page_size=250,
|
||||
filter_by="active",
|
||||
)
|
||||
return paginated_result.graphs
|
||||
return await graph_db.list_graphs(filter_by="active", user_id=user_id)
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
@@ -877,7 +779,7 @@ async def execute_graph(
|
||||
)
|
||||
|
||||
try:
|
||||
result = await execution_utils.add_graph_execution(
|
||||
return await execution_utils.add_graph_execution(
|
||||
graph_id=graph_id,
|
||||
user_id=user_id,
|
||||
inputs=inputs,
|
||||
@@ -885,16 +787,7 @@ async def execute_graph(
|
||||
graph_version=graph_version,
|
||||
graph_credentials_inputs=credentials_inputs,
|
||||
)
|
||||
# Record successful graph execution
|
||||
record_graph_execution(graph_id=graph_id, status="success", user_id=user_id)
|
||||
record_graph_operation(operation="execute", status="success")
|
||||
return result
|
||||
except GraphValidationError as e:
|
||||
# Record failed graph execution
|
||||
record_graph_execution(
|
||||
graph_id=graph_id, status="validation_error", user_id=user_id
|
||||
)
|
||||
record_graph_operation(operation="execute", status="validation_error")
|
||||
# Return structured validation errors that the frontend can parse
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
@@ -905,11 +798,6 @@ async def execute_graph(
|
||||
"node_errors": e.node_errors,
|
||||
},
|
||||
)
|
||||
except Exception:
|
||||
# Record any other failures
|
||||
record_graph_execution(graph_id=graph_id, status="error", user_id=user_id)
|
||||
record_graph_operation(operation="execute", status="error")
|
||||
raise
|
||||
|
||||
|
||||
@v1_router.post(
|
||||
@@ -963,12 +851,7 @@ async def _stop_graph_run(
|
||||
async def list_graphs_executions(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> list[execution_db.GraphExecutionMeta]:
|
||||
paginated_result = await execution_db.get_graph_executions_paginated(
|
||||
user_id=user_id,
|
||||
page=1,
|
||||
page_size=250,
|
||||
)
|
||||
return paginated_result.executions
|
||||
return await execution_db.get_graph_executions(user_id=user_id)
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
@@ -1039,99 +922,6 @@ async def delete_graph_execution(
|
||||
)
|
||||
|
||||
|
||||
class ShareRequest(pydantic.BaseModel):
|
||||
"""Optional request body for share endpoint."""
|
||||
|
||||
pass # Empty body is fine
|
||||
|
||||
|
||||
class ShareResponse(pydantic.BaseModel):
|
||||
"""Response from share endpoints."""
|
||||
|
||||
share_url: str
|
||||
share_token: str
|
||||
|
||||
|
||||
@v1_router.post(
|
||||
"/graphs/{graph_id}/executions/{graph_exec_id}/share",
|
||||
dependencies=[Security(requires_user)],
|
||||
)
|
||||
async def enable_execution_sharing(
|
||||
graph_id: Annotated[str, Path],
|
||||
graph_exec_id: Annotated[str, Path],
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
_body: ShareRequest = Body(default=ShareRequest()),
|
||||
) -> ShareResponse:
|
||||
"""Enable sharing for a graph execution."""
|
||||
# Verify the execution belongs to the user
|
||||
execution = await execution_db.get_graph_execution(
|
||||
user_id=user_id, execution_id=graph_exec_id
|
||||
)
|
||||
if not execution:
|
||||
raise HTTPException(status_code=404, detail="Execution not found")
|
||||
|
||||
# Generate a unique share token
|
||||
share_token = str(uuid.uuid4())
|
||||
|
||||
# Update the execution with share info
|
||||
await execution_db.update_graph_execution_share_status(
|
||||
execution_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
is_shared=True,
|
||||
share_token=share_token,
|
||||
shared_at=datetime.now(timezone.utc),
|
||||
)
|
||||
|
||||
# Return the share URL
|
||||
frontend_url = Settings().config.frontend_base_url or "http://localhost:3000"
|
||||
share_url = f"{frontend_url}/share/{share_token}"
|
||||
|
||||
return ShareResponse(share_url=share_url, share_token=share_token)
|
||||
|
||||
|
||||
@v1_router.delete(
|
||||
"/graphs/{graph_id}/executions/{graph_exec_id}/share",
|
||||
status_code=HTTP_204_NO_CONTENT,
|
||||
dependencies=[Security(requires_user)],
|
||||
)
|
||||
async def disable_execution_sharing(
|
||||
graph_id: Annotated[str, Path],
|
||||
graph_exec_id: Annotated[str, Path],
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> None:
|
||||
"""Disable sharing for a graph execution."""
|
||||
# Verify the execution belongs to the user
|
||||
execution = await execution_db.get_graph_execution(
|
||||
user_id=user_id, execution_id=graph_exec_id
|
||||
)
|
||||
if not execution:
|
||||
raise HTTPException(status_code=404, detail="Execution not found")
|
||||
|
||||
# Remove share info
|
||||
await execution_db.update_graph_execution_share_status(
|
||||
execution_id=graph_exec_id,
|
||||
user_id=user_id,
|
||||
is_shared=False,
|
||||
share_token=None,
|
||||
shared_at=None,
|
||||
)
|
||||
|
||||
|
||||
@v1_router.get("/public/shared/{share_token}")
|
||||
async def get_shared_execution(
|
||||
share_token: Annotated[
|
||||
str,
|
||||
Path(regex=r"^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$"),
|
||||
],
|
||||
) -> execution_db.SharedExecutionResponse:
|
||||
"""Get a shared graph execution by share token (no auth required)."""
|
||||
execution = await execution_db.get_graph_execution_by_share_token(share_token)
|
||||
if not execution:
|
||||
raise HTTPException(status_code=404, detail="Shared execution not found")
|
||||
|
||||
return execution
|
||||
|
||||
|
||||
########################################################
|
||||
##################### Schedules ########################
|
||||
########################################################
|
||||
@@ -1143,10 +933,6 @@ class ScheduleCreationRequest(pydantic.BaseModel):
|
||||
cron: str
|
||||
inputs: dict[str, Any]
|
||||
credentials: dict[str, CredentialsMetaInput] = pydantic.Field(default_factory=dict)
|
||||
timezone: Optional[str] = pydantic.Field(
|
||||
default=None,
|
||||
description="User's timezone for scheduling (e.g., 'America/New_York'). If not provided, will use user's saved timezone or UTC.",
|
||||
)
|
||||
|
||||
|
||||
@v1_router.post(
|
||||
@@ -1171,22 +957,26 @@ async def create_graph_execution_schedule(
|
||||
detail=f"Graph #{graph_id} v{schedule_params.graph_version} not found.",
|
||||
)
|
||||
|
||||
# Use timezone from request if provided, otherwise fetch from user profile
|
||||
if schedule_params.timezone:
|
||||
user_timezone = schedule_params.timezone
|
||||
else:
|
||||
user = await get_user_by_id(user_id)
|
||||
user_timezone = get_user_timezone_or_utc(user.timezone if user else None)
|
||||
user = await get_user_by_id(user_id)
|
||||
user_timezone = get_user_timezone_or_utc(user.timezone if user else None)
|
||||
|
||||
# Convert cron expression from user timezone to UTC
|
||||
try:
|
||||
utc_cron = convert_cron_to_utc(schedule_params.cron, user_timezone)
|
||||
except ValueError as e:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Invalid cron expression for timezone {user_timezone}: {e}",
|
||||
)
|
||||
|
||||
result = await get_scheduler_client().add_execution_schedule(
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
graph_version=graph.version,
|
||||
name=schedule_params.name,
|
||||
cron=schedule_params.cron,
|
||||
cron=utc_cron, # Send UTC cron to scheduler
|
||||
input_data=schedule_params.inputs,
|
||||
input_credentials=schedule_params.credentials,
|
||||
user_timezone=user_timezone,
|
||||
)
|
||||
|
||||
# Convert the next_run_time back to user timezone for display
|
||||
@@ -1208,11 +998,24 @@ async def list_graph_execution_schedules(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
graph_id: str = Path(),
|
||||
) -> list[scheduler.GraphExecutionJobInfo]:
|
||||
return await get_scheduler_client().get_execution_schedules(
|
||||
schedules = await get_scheduler_client().get_execution_schedules(
|
||||
user_id=user_id,
|
||||
graph_id=graph_id,
|
||||
)
|
||||
|
||||
# Get user timezone for conversion
|
||||
user = await get_user_by_id(user_id)
|
||||
user_timezone = get_user_timezone_or_utc(user.timezone if user else None)
|
||||
|
||||
# Convert next_run_time to user timezone for display
|
||||
for schedule in schedules:
|
||||
if schedule.next_run_time:
|
||||
schedule.next_run_time = convert_utc_time_to_user_timezone(
|
||||
schedule.next_run_time, user_timezone
|
||||
)
|
||||
|
||||
return schedules
|
||||
|
||||
|
||||
@v1_router.get(
|
||||
path="/schedules",
|
||||
@@ -1223,7 +1026,20 @@ async def list_graph_execution_schedules(
|
||||
async def list_all_graphs_execution_schedules(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> list[scheduler.GraphExecutionJobInfo]:
|
||||
return await get_scheduler_client().get_execution_schedules(user_id=user_id)
|
||||
schedules = await get_scheduler_client().get_execution_schedules(user_id=user_id)
|
||||
|
||||
# Get user timezone for conversion
|
||||
user = await get_user_by_id(user_id)
|
||||
user_timezone = get_user_timezone_or_utc(user.timezone if user else None)
|
||||
|
||||
# Convert UTC next_run_time to user timezone for display
|
||||
for schedule in schedules:
|
||||
if schedule.next_run_time:
|
||||
schedule.next_run_time = convert_utc_time_to_user_timezone(
|
||||
schedule.next_run_time, user_timezone
|
||||
)
|
||||
|
||||
return schedules
|
||||
|
||||
|
||||
@v1_router.delete(
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user