mirror of
https://github.com/Significant-Gravitas/AutoGPT.git
synced 2026-02-18 10:41:49 -05:00
Compare commits
11 Commits
gh-readonl
...
gitbook
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b84bc469c9 | ||
|
|
fdb7ff8111 | ||
|
|
0e42efb7d5 | ||
|
|
f2d82d8802 | ||
|
|
446c71fec8 | ||
|
|
ec4c2caa14 | ||
|
|
516e8b4b25 | ||
|
|
e7e118b5a8 | ||
|
|
92a7a7e6d6 | ||
|
|
e16995347f | ||
|
|
234d3acb4c |
@@ -29,7 +29,8 @@
|
||||
"postCreateCmd": [
|
||||
"cd autogpt_platform/autogpt_libs && poetry install",
|
||||
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
|
||||
"cd autogpt_platform/frontend && pnpm install"
|
||||
"cd autogpt_platform/frontend && pnpm install",
|
||||
"cd docs && pip install -r requirements.txt"
|
||||
],
|
||||
"terminalCommand": "code .",
|
||||
"deleteBranchWithWorktree": false
|
||||
|
||||
@@ -5,13 +5,42 @@
|
||||
!docs/
|
||||
|
||||
# Platform - Libs
|
||||
!autogpt_platform/autogpt_libs/
|
||||
!autogpt_platform/autogpt_libs/autogpt_libs/
|
||||
!autogpt_platform/autogpt_libs/pyproject.toml
|
||||
!autogpt_platform/autogpt_libs/poetry.lock
|
||||
!autogpt_platform/autogpt_libs/README.md
|
||||
|
||||
# Platform - Backend
|
||||
!autogpt_platform/backend/
|
||||
!autogpt_platform/backend/backend/
|
||||
!autogpt_platform/backend/test/e2e_test_data.py
|
||||
!autogpt_platform/backend/migrations/
|
||||
!autogpt_platform/backend/schema.prisma
|
||||
!autogpt_platform/backend/pyproject.toml
|
||||
!autogpt_platform/backend/poetry.lock
|
||||
!autogpt_platform/backend/README.md
|
||||
!autogpt_platform/backend/.env
|
||||
!autogpt_platform/backend/gen_prisma_types_stub.py
|
||||
|
||||
# Platform - Market
|
||||
!autogpt_platform/market/market/
|
||||
!autogpt_platform/market/scripts.py
|
||||
!autogpt_platform/market/schema.prisma
|
||||
!autogpt_platform/market/pyproject.toml
|
||||
!autogpt_platform/market/poetry.lock
|
||||
!autogpt_platform/market/README.md
|
||||
|
||||
# Platform - Frontend
|
||||
!autogpt_platform/frontend/
|
||||
!autogpt_platform/frontend/src/
|
||||
!autogpt_platform/frontend/public/
|
||||
!autogpt_platform/frontend/scripts/
|
||||
!autogpt_platform/frontend/package.json
|
||||
!autogpt_platform/frontend/pnpm-lock.yaml
|
||||
!autogpt_platform/frontend/tsconfig.json
|
||||
!autogpt_platform/frontend/README.md
|
||||
## config
|
||||
!autogpt_platform/frontend/*.config.*
|
||||
!autogpt_platform/frontend/.env.*
|
||||
!autogpt_platform/frontend/.env
|
||||
|
||||
# Classic - AutoGPT
|
||||
!classic/original_autogpt/autogpt/
|
||||
@@ -35,38 +64,6 @@
|
||||
# Classic - Frontend
|
||||
!classic/frontend/build/web/
|
||||
|
||||
# Explicitly re-ignore unwanted files from whitelisted directories
|
||||
# Note: These patterns MUST come after the whitelist rules to take effect
|
||||
|
||||
# Hidden files and directories (but keep frontend .env files needed for build)
|
||||
**/.*
|
||||
!autogpt_platform/frontend/.env
|
||||
!autogpt_platform/frontend/.env.default
|
||||
!autogpt_platform/frontend/.env.production
|
||||
|
||||
# Python artifacts
|
||||
**/__pycache__/
|
||||
**/*.pyc
|
||||
**/*.pyo
|
||||
**/.venv/
|
||||
**/.ruff_cache/
|
||||
**/.pytest_cache/
|
||||
**/.coverage
|
||||
**/htmlcov/
|
||||
|
||||
# Node artifacts
|
||||
**/node_modules/
|
||||
**/.next/
|
||||
**/storybook-static/
|
||||
**/playwright-report/
|
||||
**/test-results/
|
||||
|
||||
# Build artifacts
|
||||
**/dist/
|
||||
**/build/
|
||||
!autogpt_platform/frontend/src/**/build/
|
||||
**/target/
|
||||
|
||||
# Logs and temp files
|
||||
**/*.log
|
||||
**/*.tmp
|
||||
# Explicitly re-ignore some folders
|
||||
.*
|
||||
**/__pycache__
|
||||
|
||||
6
.github/copilot-instructions.md
vendored
6
.github/copilot-instructions.md
vendored
@@ -160,7 +160,7 @@ pnpm storybook # Start component development server
|
||||
|
||||
**Backend Entry Points:**
|
||||
|
||||
- `backend/backend/api/rest_api.py` - FastAPI application setup
|
||||
- `backend/backend/server/server.py` - FastAPI application setup
|
||||
- `backend/backend/data/` - Database models and user management
|
||||
- `backend/blocks/` - Agent execution blocks and logic
|
||||
|
||||
@@ -219,7 +219,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### API Development
|
||||
|
||||
1. Update routes in `/backend/backend/api/features/`
|
||||
1. Update routes in `/backend/backend/server/routers/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside route files
|
||||
4. For `data/*.py` changes, validate user ID checks
|
||||
@@ -285,7 +285,7 @@ Agents are built using a visual block-based system where each block performs a s
|
||||
|
||||
### Security Guidelines
|
||||
|
||||
**Cache Protection Middleware** (`/backend/backend/api/middleware/security.py`):
|
||||
**Cache Protection Middleware** (`/backend/backend/server/middleware/security.py`):
|
||||
|
||||
- Default: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses allow list approach for cacheable paths (static assets, health checks, public pages)
|
||||
|
||||
1229
.github/scripts/detect_overlaps.py
vendored
1229
.github/scripts/detect_overlaps.py
vendored
File diff suppressed because it is too large
Load Diff
2
.github/workflows/classic-frontend-ci.yml
vendored
2
.github/workflows/classic-frontend-ci.yml
vendored
@@ -49,7 +49,7 @@ jobs:
|
||||
|
||||
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
|
||||
if: github.event_name == 'push'
|
||||
uses: peter-evans/create-pull-request@v8
|
||||
uses: peter-evans/create-pull-request@v7
|
||||
with:
|
||||
add-paths: classic/frontend/build/web
|
||||
base: ${{ github.ref_name }}
|
||||
|
||||
46
.github/workflows/claude-ci-failure-auto-fix.yml
vendored
46
.github/workflows/claude-ci-failure-auto-fix.yml
vendored
@@ -22,7 +22,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event.workflow_run.head_branch }}
|
||||
fetch-depth: 0
|
||||
@@ -40,51 +40,9 @@ jobs:
|
||||
git checkout -b "$BRANCH_NAME"
|
||||
echo "branch_name=$BRANCH_NAME" >> $GITHUB_OUTPUT
|
||||
|
||||
# Backend Python/Poetry setup (so Claude can run linting/tests)
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
- name: Install Poetry
|
||||
run: |
|
||||
cd autogpt_platform/backend
|
||||
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
|
||||
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
|
||||
echo "$HOME/.local/bin" >> $GITHUB_PATH
|
||||
|
||||
- name: Install Python dependencies
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry install
|
||||
|
||||
- name: Generate Prisma Client
|
||||
working-directory: autogpt_platform/backend
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (so Claude can run linting/tests)
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: "22"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
|
||||
- name: Install JavaScript dependencies
|
||||
working-directory: autogpt_platform/frontend
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
- name: Get CI failure details
|
||||
id: failure_details
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const run = await github.rest.actions.getWorkflowRun({
|
||||
|
||||
29
.github/workflows/claude-dependabot.yml
vendored
29
.github/workflows/claude-dependabot.yml
vendored
@@ -30,7 +30,7 @@ jobs:
|
||||
actions: read # Required for CI access
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
|
||||
@@ -41,7 +41,7 @@ jobs:
|
||||
python-version: "3.11" # Use standard version matching CI
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -77,15 +77,27 @@ jobs:
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
- name: Set pnpm store directory
|
||||
run: |
|
||||
pnpm config set store-dir ~/.pnpm-store
|
||||
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache frontend dependencies
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install JavaScript dependencies
|
||||
working-directory: autogpt_platform/frontend
|
||||
@@ -112,7 +124,7 @@ jobs:
|
||||
# Phase 1: Cache and load Docker images for faster setup
|
||||
- name: Set up Docker image cache
|
||||
id: docker-cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/docker-cache
|
||||
# Use a versioned key for cache invalidation when image list changes
|
||||
@@ -297,7 +309,6 @@ jobs:
|
||||
uses: anthropics/claude-code-action@v1
|
||||
with:
|
||||
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
|
||||
allowed_bots: "dependabot[bot]"
|
||||
claude_args: |
|
||||
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*)"
|
||||
prompt: |
|
||||
|
||||
28
.github/workflows/claude.yml
vendored
28
.github/workflows/claude.yml
vendored
@@ -40,7 +40,7 @@ jobs:
|
||||
actions: read # Required for CI access
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
|
||||
@@ -57,7 +57,7 @@ jobs:
|
||||
python-version: "3.11" # Use standard version matching CI
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -93,15 +93,27 @@ jobs:
|
||||
run: poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
- name: Set pnpm store directory
|
||||
run: |
|
||||
pnpm config set store-dir ~/.pnpm-store
|
||||
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache frontend dependencies
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install JavaScript dependencies
|
||||
working-directory: autogpt_platform/frontend
|
||||
@@ -128,7 +140,7 @@ jobs:
|
||||
# Phase 1: Cache and load Docker images for faster setup
|
||||
- name: Set up Docker image cache
|
||||
id: docker-cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/docker-cache
|
||||
# Use a versioned key for cache invalidation when image list changes
|
||||
|
||||
6
.github/workflows/codeql.yml
vendored
6
.github/workflows/codeql.yml
vendored
@@ -58,11 +58,11 @@ jobs:
|
||||
# your codebase is analyzed, see https://docs.github.com/en/code-security/code-scanning/creating-an-advanced-setup-for-code-scanning/codeql-code-scanning-for-compiled-languages
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
|
||||
# Initializes the CodeQL tools for scanning.
|
||||
- name: Initialize CodeQL
|
||||
uses: github/codeql-action/init@v4
|
||||
uses: github/codeql-action/init@v3
|
||||
with:
|
||||
languages: ${{ matrix.language }}
|
||||
build-mode: ${{ matrix.build-mode }}
|
||||
@@ -93,6 +93,6 @@ jobs:
|
||||
exit 1
|
||||
|
||||
- name: Perform CodeQL Analysis
|
||||
uses: github/codeql-action/analyze@v4
|
||||
uses: github/codeql-action/analyze@v3
|
||||
with:
|
||||
category: "/language:${{matrix.language}}"
|
||||
|
||||
10
.github/workflows/copilot-setup-steps.yml
vendored
10
.github/workflows/copilot-setup-steps.yml
vendored
@@ -27,7 +27,7 @@ jobs:
|
||||
# If you do not check out your code, Copilot will do this for you.
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
submodules: true
|
||||
@@ -39,7 +39,7 @@ jobs:
|
||||
python-version: "3.11" # Use standard version matching CI
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -76,7 +76,7 @@ jobs:
|
||||
|
||||
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22"
|
||||
|
||||
@@ -89,7 +89,7 @@ jobs:
|
||||
echo "PNPM_HOME=$HOME/.pnpm-store" >> $GITHUB_ENV
|
||||
|
||||
- name: Cache frontend dependencies
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}
|
||||
@@ -132,7 +132,7 @@ jobs:
|
||||
# Phase 1: Cache and load Docker images for faster setup
|
||||
- name: Set up Docker image cache
|
||||
id: docker-cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/docker-cache
|
||||
# Use a versioned key for cache invalidation when image list changes
|
||||
|
||||
4
.github/workflows/docs-block-sync.yml
vendored
4
.github/workflows/docs-block-sync.yml
vendored
@@ -23,7 +23,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
|
||||
@@ -33,7 +33,7 @@ jobs:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
38
.github/workflows/docs-claude-review.yml
vendored
38
.github/workflows/docs-claude-review.yml
vendored
@@ -7,10 +7,6 @@ on:
|
||||
- "docs/integrations/**"
|
||||
- "autogpt_platform/backend/backend/blocks/**"
|
||||
|
||||
concurrency:
|
||||
group: claude-docs-review-${{ github.event.pull_request.number }}
|
||||
cancel-in-progress: true
|
||||
|
||||
jobs:
|
||||
claude-review:
|
||||
# Only run for PRs from members/collaborators
|
||||
@@ -27,7 +23,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
@@ -37,7 +33,7 @@ jobs:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
@@ -95,35 +91,5 @@ jobs:
|
||||
3. Read corresponding documentation files to verify accuracy
|
||||
4. Provide your feedback as a PR comment
|
||||
|
||||
## IMPORTANT: Comment Marker
|
||||
Start your PR comment with exactly this HTML comment marker on its own line:
|
||||
<!-- CLAUDE_DOCS_REVIEW -->
|
||||
|
||||
This marker is used to identify and replace your comment on subsequent runs.
|
||||
|
||||
Be constructive and specific. If everything looks good, say so!
|
||||
If there are issues, explain what's wrong and suggest how to fix it.
|
||||
|
||||
- name: Delete old Claude review comments
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
run: |
|
||||
# Get all comment IDs with our marker, sorted by creation date (oldest first)
|
||||
COMMENT_IDS=$(gh api \
|
||||
repos/${{ github.repository }}/issues/${{ github.event.pull_request.number }}/comments \
|
||||
--jq '[.[] | select(.body | contains("<!-- CLAUDE_DOCS_REVIEW -->"))] | sort_by(.created_at) | .[].id')
|
||||
|
||||
# Count comments
|
||||
COMMENT_COUNT=$(echo "$COMMENT_IDS" | grep -c . || true)
|
||||
|
||||
if [ "$COMMENT_COUNT" -gt 1 ]; then
|
||||
# Delete all but the last (newest) comment
|
||||
echo "$COMMENT_IDS" | head -n -1 | while read -r COMMENT_ID; do
|
||||
if [ -n "$COMMENT_ID" ]; then
|
||||
echo "Deleting old review comment: $COMMENT_ID"
|
||||
gh api -X DELETE repos/${{ github.repository }}/issues/comments/$COMMENT_ID
|
||||
fi
|
||||
done
|
||||
else
|
||||
echo "No old review comments to clean up"
|
||||
fi
|
||||
|
||||
4
.github/workflows/docs-enhance.yml
vendored
4
.github/workflows/docs-enhance.yml
vendored
@@ -28,7 +28,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 1
|
||||
|
||||
@@ -38,7 +38,7 @@ jobs:
|
||||
python-version: "3.11"
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
@@ -25,7 +25,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.event.inputs.git_ref || github.ref_name }}
|
||||
|
||||
@@ -52,7 +52,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Trigger deploy workflow
|
||||
uses: peter-evans/repository-dispatch@v4
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ secrets.DEPLOY_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
|
||||
@@ -17,7 +17,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
ref: ${{ github.ref_name || 'master' }}
|
||||
|
||||
@@ -45,7 +45,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Trigger deploy workflow
|
||||
uses: peter-evans/repository-dispatch@v4
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ secrets.DEPLOY_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
|
||||
13
.github/workflows/platform-backend-ci.yml
vendored
13
.github/workflows/platform-backend-ci.yml
vendored
@@ -41,18 +41,13 @@ jobs:
|
||||
ports:
|
||||
- 6379:6379
|
||||
rabbitmq:
|
||||
image: rabbitmq:4.1.4
|
||||
image: rabbitmq:3.12-management
|
||||
ports:
|
||||
- 5672:5672
|
||||
- 15672:15672
|
||||
env:
|
||||
RABBITMQ_DEFAULT_USER: ${{ env.RABBITMQ_DEFAULT_USER }}
|
||||
RABBITMQ_DEFAULT_PASS: ${{ env.RABBITMQ_DEFAULT_PASS }}
|
||||
options: >-
|
||||
--health-cmd "rabbitmq-diagnostics -q ping"
|
||||
--health-interval 30s
|
||||
--health-timeout 10s
|
||||
--health-retries 5
|
||||
--health-start-period 10s
|
||||
clamav:
|
||||
image: clamav/clamav-debian:latest
|
||||
ports:
|
||||
@@ -73,7 +68,7 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
submodules: true
|
||||
@@ -93,7 +88,7 @@ jobs:
|
||||
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Set up Python dependency cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.cache/pypoetry
|
||||
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
|
||||
|
||||
@@ -17,7 +17,7 @@ jobs:
|
||||
- name: Check comment permissions and deployment status
|
||||
id: check_status
|
||||
if: github.event_name == 'issue_comment' && github.event.issue.pull_request
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const commentBody = context.payload.comment.body.trim();
|
||||
@@ -55,7 +55,7 @@ jobs:
|
||||
|
||||
- name: Post permission denied comment
|
||||
if: steps.check_status.outputs.permission_denied == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
@@ -68,7 +68,7 @@ jobs:
|
||||
- name: Get PR details for deployment
|
||||
id: pr_details
|
||||
if: steps.check_status.outputs.should_deploy == 'true' || steps.check_status.outputs.should_undeploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const pr = await github.rest.pulls.get({
|
||||
@@ -82,7 +82,7 @@ jobs:
|
||||
|
||||
- name: Dispatch Deploy Event
|
||||
if: steps.check_status.outputs.should_deploy == 'true'
|
||||
uses: peter-evans/repository-dispatch@v4
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ secrets.DISPATCH_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
@@ -98,7 +98,7 @@ jobs:
|
||||
|
||||
- name: Post deploy success comment
|
||||
if: steps.check_status.outputs.should_deploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
@@ -110,7 +110,7 @@ jobs:
|
||||
|
||||
- name: Dispatch Undeploy Event (from comment)
|
||||
if: steps.check_status.outputs.should_undeploy == 'true'
|
||||
uses: peter-evans/repository-dispatch@v4
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ secrets.DISPATCH_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
@@ -126,7 +126,7 @@ jobs:
|
||||
|
||||
- name: Post undeploy success comment
|
||||
if: steps.check_status.outputs.should_undeploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
@@ -139,7 +139,7 @@ jobs:
|
||||
- name: Check deployment status on PR close
|
||||
id: check_pr_close
|
||||
if: github.event_name == 'pull_request' && github.event.action == 'closed'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
const comments = await github.rest.issues.listComments({
|
||||
@@ -168,7 +168,7 @@ jobs:
|
||||
github.event_name == 'pull_request' &&
|
||||
github.event.action == 'closed' &&
|
||||
steps.check_pr_close.outputs.should_undeploy == 'true'
|
||||
uses: peter-evans/repository-dispatch@v4
|
||||
uses: peter-evans/repository-dispatch@v3
|
||||
with:
|
||||
token: ${{ secrets.DISPATCH_TOKEN }}
|
||||
repository: Significant-Gravitas/AutoGPT_cloud_infrastructure
|
||||
@@ -187,7 +187,7 @@ jobs:
|
||||
github.event_name == 'pull_request' &&
|
||||
github.event.action == 'closed' &&
|
||||
steps.check_pr_close.outputs.should_undeploy == 'true'
|
||||
uses: actions/github-script@v8
|
||||
uses: actions/github-script@v7
|
||||
with:
|
||||
script: |
|
||||
await github.rest.issues.createComment({
|
||||
|
||||
275
.github/workflows/platform-frontend-ci.yml
vendored
275
.github/workflows/platform-frontend-ci.yml
vendored
@@ -6,16 +6,10 @@ on:
|
||||
paths:
|
||||
- ".github/workflows/platform-frontend-ci.yml"
|
||||
- "autogpt_platform/frontend/**"
|
||||
- "autogpt_platform/backend/Dockerfile"
|
||||
- "autogpt_platform/docker-compose.yml"
|
||||
- "autogpt_platform/docker-compose.platform.yml"
|
||||
pull_request:
|
||||
paths:
|
||||
- ".github/workflows/platform-frontend-ci.yml"
|
||||
- "autogpt_platform/frontend/**"
|
||||
- "autogpt_platform/backend/Dockerfile"
|
||||
- "autogpt_platform/docker-compose.yml"
|
||||
- "autogpt_platform/docker-compose.platform.yml"
|
||||
merge_group:
|
||||
workflow_dispatch:
|
||||
|
||||
@@ -32,31 +26,34 @@ jobs:
|
||||
setup:
|
||||
runs-on: ubuntu-latest
|
||||
outputs:
|
||||
components-changed: ${{ steps.filter.outputs.components }}
|
||||
cache-key: ${{ steps.cache-key.outputs.key }}
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Check for component changes
|
||||
uses: dorny/paths-filter@v3
|
||||
id: filter
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
filters: |
|
||||
components:
|
||||
- 'autogpt_platform/frontend/src/components/**'
|
||||
node-version: "22.18.0"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node
|
||||
uses: actions/setup-node@v6
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
- name: Generate cache key
|
||||
id: cache-key
|
||||
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Install dependencies to populate cache
|
||||
- name: Cache dependencies
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ steps.cache-key.outputs.key }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
lint:
|
||||
@@ -65,17 +62,24 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node
|
||||
uses: actions/setup-node@v6
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
@@ -86,27 +90,31 @@ jobs:
|
||||
chromatic:
|
||||
runs-on: ubuntu-latest
|
||||
needs: setup
|
||||
# Disabled: to re-enable, remove 'false &&' from the condition below
|
||||
if: >-
|
||||
false
|
||||
&& (github.ref == 'refs/heads/dev' || github.base_ref == 'dev')
|
||||
&& needs.setup.outputs.components-changed == 'true'
|
||||
# Only run on dev branch pushes or PRs targeting dev
|
||||
if: github.ref == 'refs/heads/dev' || github.base_ref == 'dev'
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node
|
||||
uses: actions/setup-node@v6
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
@@ -121,20 +129,30 @@ jobs:
|
||||
exitOnceUploaded: true
|
||||
|
||||
e2e_test:
|
||||
name: end-to-end tests
|
||||
runs-on: big-boi
|
||||
needs: setup
|
||||
strategy:
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
- name: Set up Platform - Copy default supabase .env
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Copy default supabase .env
|
||||
run: |
|
||||
cp ../.env.default ../.env
|
||||
|
||||
- name: Set up Platform - Copy backend .env and set OpenAI API key
|
||||
- name: Copy backend .env and set OpenAI API key
|
||||
run: |
|
||||
cp ../backend/.env.default ../backend/.env
|
||||
echo "OPENAI_INTERNAL_API_KEY=${{ secrets.OPENAI_API_KEY }}" >> ../backend/.env
|
||||
@@ -142,125 +160,77 @@ jobs:
|
||||
# Used by E2E test data script to generate embeddings for approved store agents
|
||||
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
|
||||
|
||||
- name: Set up Platform - Set up Docker Buildx
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
|
||||
- name: Cache Docker layers
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
driver: docker-container
|
||||
driver-opts: network=host
|
||||
path: /tmp/.buildx-cache
|
||||
key: ${{ runner.os }}-buildx-frontend-test-${{ hashFiles('autogpt_platform/docker-compose.yml', 'autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/pyproject.toml', 'autogpt_platform/backend/poetry.lock') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-buildx-frontend-test-
|
||||
|
||||
- name: Set up Platform - Expose GHA cache to docker buildx CLI
|
||||
uses: crazy-max/ghaction-github-runtime@v3
|
||||
|
||||
- name: Set up Platform - Build Docker images (with cache)
|
||||
working-directory: autogpt_platform
|
||||
- name: Run docker compose
|
||||
run: |
|
||||
pip install pyyaml
|
||||
|
||||
# Resolve extends and generate a flat compose file that bake can understand
|
||||
docker compose -f docker-compose.yml config > docker-compose.resolved.yml
|
||||
|
||||
# Add cache configuration to the resolved compose file
|
||||
python ../.github/workflows/scripts/docker-ci-fix-compose-build-cache.py \
|
||||
--source docker-compose.resolved.yml \
|
||||
--cache-from "type=gha" \
|
||||
--cache-to "type=gha,mode=max" \
|
||||
--backend-hash "${{ hashFiles('autogpt_platform/backend/Dockerfile', 'autogpt_platform/backend/poetry.lock', 'autogpt_platform/backend/backend') }}" \
|
||||
--frontend-hash "${{ hashFiles('autogpt_platform/frontend/Dockerfile', 'autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/src') }}" \
|
||||
--git-ref "${{ github.ref }}"
|
||||
|
||||
# Build with bake using the resolved compose file (now includes cache config)
|
||||
docker buildx bake --allow=fs.read=.. -f docker-compose.resolved.yml --load
|
||||
NEXT_PUBLIC_PW_TEST=true docker compose -f ../docker-compose.yml up -d
|
||||
env:
|
||||
NEXT_PUBLIC_PW_TEST: true
|
||||
DOCKER_BUILDKIT: 1
|
||||
BUILDX_CACHE_FROM: type=local,src=/tmp/.buildx-cache
|
||||
BUILDX_CACHE_TO: type=local,dest=/tmp/.buildx-cache-new,mode=max
|
||||
|
||||
- name: Set up tests - Cache E2E test data
|
||||
id: e2e-data-cache
|
||||
uses: actions/cache@v5
|
||||
with:
|
||||
path: /tmp/e2e_test_data.sql
|
||||
key: e2e-test-data-${{ hashFiles('autogpt_platform/backend/test/e2e_test_data.py', 'autogpt_platform/backend/migrations/**', '.github/workflows/platform-frontend-ci.yml') }}
|
||||
|
||||
- name: Set up Platform - Start Supabase DB + Auth
|
||||
- name: Move cache
|
||||
run: |
|
||||
docker compose -f ../docker-compose.resolved.yml up -d db auth --no-build
|
||||
echo "Waiting for database to be ready..."
|
||||
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done'
|
||||
echo "Waiting for auth service to be ready..."
|
||||
timeout 60 sh -c 'until docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -c "SELECT 1 FROM auth.users LIMIT 1" 2>/dev/null; do sleep 2; done' || echo "Auth schema check timeout, continuing..."
|
||||
rm -rf /tmp/.buildx-cache
|
||||
if [ -d "/tmp/.buildx-cache-new" ]; then
|
||||
mv /tmp/.buildx-cache-new /tmp/.buildx-cache
|
||||
fi
|
||||
|
||||
- name: Set up Platform - Run migrations
|
||||
- name: Wait for services to be ready
|
||||
run: |
|
||||
echo "Running migrations..."
|
||||
docker compose -f ../docker-compose.resolved.yml run --rm migrate
|
||||
echo "✅ Migrations completed"
|
||||
env:
|
||||
NEXT_PUBLIC_PW_TEST: true
|
||||
|
||||
- name: Set up tests - Load cached E2E test data
|
||||
if: steps.e2e-data-cache.outputs.cache-hit == 'true'
|
||||
run: |
|
||||
echo "✅ Found cached E2E test data, restoring..."
|
||||
{
|
||||
echo "SET session_replication_role = 'replica';"
|
||||
cat /tmp/e2e_test_data.sql
|
||||
echo "SET session_replication_role = 'origin';"
|
||||
} | docker compose -f ../docker-compose.resolved.yml exec -T db psql -U postgres -d postgres -b
|
||||
# Refresh materialized views after restore
|
||||
docker compose -f ../docker-compose.resolved.yml exec -T db \
|
||||
psql -U postgres -d postgres -b -c "SET search_path TO platform; SELECT refresh_store_materialized_views();" || true
|
||||
|
||||
echo "✅ E2E test data restored from cache"
|
||||
|
||||
- name: Set up Platform - Start (all other services)
|
||||
run: |
|
||||
docker compose -f ../docker-compose.resolved.yml up -d --no-build
|
||||
echo "Waiting for rest_server to be ready..."
|
||||
timeout 60 sh -c 'until curl -f http://localhost:8006/health 2>/dev/null; do sleep 2; done' || echo "Rest server health check timeout, continuing..."
|
||||
env:
|
||||
NEXT_PUBLIC_PW_TEST: true
|
||||
echo "Waiting for database to be ready..."
|
||||
timeout 60 sh -c 'until docker compose -f ../docker-compose.yml exec -T db pg_isready -U postgres 2>/dev/null; do sleep 2; done' || echo "Database ready check timeout, continuing..."
|
||||
|
||||
- name: Set up tests - Create E2E test data
|
||||
if: steps.e2e-data-cache.outputs.cache-hit != 'true'
|
||||
- name: Create E2E test data
|
||||
run: |
|
||||
echo "Creating E2E test data..."
|
||||
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.resolved.yml ps -q rest_server):/tmp/e2e_test_data.py
|
||||
docker compose -f ../docker-compose.resolved.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
|
||||
echo "❌ E2E test data creation failed!"
|
||||
docker compose -f ../docker-compose.resolved.yml logs --tail=50 rest_server
|
||||
exit 1
|
||||
}
|
||||
# First try to run the script from inside the container
|
||||
if docker compose -f ../docker-compose.yml exec -T rest_server test -f /app/autogpt_platform/backend/test/e2e_test_data.py; then
|
||||
echo "✅ Found e2e_test_data.py in container, running it..."
|
||||
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python backend/test/e2e_test_data.py" || {
|
||||
echo "❌ E2E test data creation failed!"
|
||||
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
|
||||
exit 1
|
||||
}
|
||||
else
|
||||
echo "⚠️ e2e_test_data.py not found in container, copying and running..."
|
||||
# Copy the script into the container and run it
|
||||
docker cp ../backend/test/e2e_test_data.py $(docker compose -f ../docker-compose.yml ps -q rest_server):/tmp/e2e_test_data.py || {
|
||||
echo "❌ Failed to copy script to container"
|
||||
exit 1
|
||||
}
|
||||
docker compose -f ../docker-compose.yml exec -T rest_server sh -c "cd /app/autogpt_platform && python /tmp/e2e_test_data.py" || {
|
||||
echo "❌ E2E test data creation failed!"
|
||||
docker compose -f ../docker-compose.yml logs --tail=50 rest_server
|
||||
exit 1
|
||||
}
|
||||
fi
|
||||
|
||||
# Dump auth.users + platform schema for cache (two separate dumps)
|
||||
echo "Dumping database for cache..."
|
||||
{
|
||||
docker compose -f ../docker-compose.resolved.yml exec -T db \
|
||||
pg_dump -U postgres --data-only --column-inserts \
|
||||
--table='auth.users' postgres
|
||||
docker compose -f ../docker-compose.resolved.yml exec -T db \
|
||||
pg_dump -U postgres --data-only --column-inserts \
|
||||
--schema=platform \
|
||||
--exclude-table='platform._prisma_migrations' \
|
||||
--exclude-table='platform.apscheduler_jobs' \
|
||||
--exclude-table='platform.apscheduler_jobs_batched_notifications' \
|
||||
postgres
|
||||
} > /tmp/e2e_test_data.sql
|
||||
|
||||
echo "✅ Database dump created for caching ($(wc -l < /tmp/e2e_test_data.sql) lines)"
|
||||
|
||||
- name: Set up tests - Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up tests - Set up Node
|
||||
uses: actions/setup-node@v6
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Set up tests - Install dependencies
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
- name: Set up tests - Install browser 'chromium'
|
||||
- name: Install Browser 'chromium'
|
||||
run: pnpm playwright install --with-deps chromium
|
||||
|
||||
- name: Run Playwright tests
|
||||
@@ -287,7 +257,7 @@ jobs:
|
||||
|
||||
- name: Print Final Docker Compose logs
|
||||
if: always()
|
||||
run: docker compose -f ../docker-compose.resolved.yml logs
|
||||
run: docker compose -f ../docker-compose.yml logs
|
||||
|
||||
integration_test:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -295,19 +265,26 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
- name: Enable corepack
|
||||
run: corepack enable
|
||||
|
||||
- name: Set up Node
|
||||
uses: actions/setup-node@v6
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
cache: "pnpm"
|
||||
cache-dependency-path: autogpt_platform/frontend/pnpm-lock.yaml
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml') }}
|
||||
${{ runner.os }}-pnpm-
|
||||
|
||||
- name: Install dependencies
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
16
.github/workflows/platform-fullstack-ci.yml
vendored
16
.github/workflows/platform-fullstack-ci.yml
vendored
@@ -29,10 +29,10 @@ jobs:
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
@@ -44,7 +44,7 @@ jobs:
|
||||
run: echo "key=${{ runner.os }}-pnpm-${{ hashFiles('autogpt_platform/frontend/pnpm-lock.yaml', 'autogpt_platform/frontend/package.json') }}" >> $GITHUB_OUTPUT
|
||||
|
||||
- name: Cache dependencies
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ steps.cache-key.outputs.key }}
|
||||
@@ -56,19 +56,19 @@ jobs:
|
||||
run: pnpm install --frozen-lockfile
|
||||
|
||||
types:
|
||||
runs-on: big-boi
|
||||
runs-on: ubuntu-latest
|
||||
needs: setup
|
||||
strategy:
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v6
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
submodules: recursive
|
||||
|
||||
- name: Set up Node.js
|
||||
uses: actions/setup-node@v6
|
||||
uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: "22.18.0"
|
||||
|
||||
@@ -85,10 +85,10 @@ jobs:
|
||||
|
||||
- name: Run docker compose
|
||||
run: |
|
||||
docker compose -f ../docker-compose.yml --profile local up -d deps_backend
|
||||
docker compose -f ../docker-compose.yml --profile local --profile deps_backend up -d
|
||||
|
||||
- name: Restore dependencies cache
|
||||
uses: actions/cache@v5
|
||||
uses: actions/cache@v4
|
||||
with:
|
||||
path: ~/.pnpm-store
|
||||
key: ${{ needs.setup.outputs.cache-key }}
|
||||
|
||||
39
.github/workflows/pr-overlap-check.yml
vendored
39
.github/workflows/pr-overlap-check.yml
vendored
@@ -1,39 +0,0 @@
|
||||
name: PR Overlap Detection
|
||||
|
||||
on:
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
branches:
|
||||
- dev
|
||||
- master
|
||||
|
||||
permissions:
|
||||
contents: read
|
||||
pull-requests: write
|
||||
|
||||
jobs:
|
||||
check-overlaps:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0 # Need full history for merge testing
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.11'
|
||||
|
||||
- name: Configure git
|
||||
run: |
|
||||
git config user.email "github-actions[bot]@users.noreply.github.com"
|
||||
git config user.name "github-actions[bot]"
|
||||
|
||||
- name: Run overlap detection
|
||||
env:
|
||||
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
# Always succeed - this check informs contributors, it shouldn't block merging
|
||||
continue-on-error: true
|
||||
run: |
|
||||
python .github/scripts/detect_overlaps.py ${{ github.event.pull_request.number }}
|
||||
2
.github/workflows/repo-workflow-checker.yml
vendored
2
.github/workflows/repo-workflow-checker.yml
vendored
@@ -11,7 +11,7 @@ jobs:
|
||||
steps:
|
||||
# - name: Wait some time for all actions to start
|
||||
# run: sleep 30
|
||||
- uses: actions/checkout@v6
|
||||
- uses: actions/checkout@v4
|
||||
# with:
|
||||
# fetch-depth: 0
|
||||
- name: Set up Python
|
||||
|
||||
@@ -1,195 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Add cache configuration to a resolved docker-compose file for all services
|
||||
that have a build key, and ensure image names match what docker compose expects.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
DEFAULT_BRANCH = "dev"
|
||||
CACHE_BUILDS_FOR_COMPONENTS = ["backend", "frontend"]
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Add cache config to a resolved compose file"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--source",
|
||||
required=True,
|
||||
help="Source compose file to read (should be output of `docker compose config`)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cache-from",
|
||||
default="type=gha",
|
||||
help="Cache source configuration",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--cache-to",
|
||||
default="type=gha,mode=max",
|
||||
help="Cache destination configuration",
|
||||
)
|
||||
for component in CACHE_BUILDS_FOR_COMPONENTS:
|
||||
parser.add_argument(
|
||||
f"--{component}-hash",
|
||||
default="",
|
||||
help=f"Hash for {component} cache scope (e.g., from hashFiles())",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--git-ref",
|
||||
default="",
|
||||
help="Git ref for branch-based cache scope (e.g., refs/heads/master)",
|
||||
)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Normalize git ref to a safe scope name (e.g., refs/heads/master -> master)
|
||||
git_ref_scope = ""
|
||||
if args.git_ref:
|
||||
git_ref_scope = args.git_ref.replace("refs/heads/", "").replace("/", "-")
|
||||
|
||||
with open(args.source, "r") as f:
|
||||
compose = yaml.safe_load(f)
|
||||
|
||||
# Get project name from compose file or default
|
||||
project_name = compose.get("name", "autogpt_platform")
|
||||
|
||||
def get_image_name(dockerfile: str, target: str) -> str:
|
||||
"""Generate image name based on Dockerfile folder and build target."""
|
||||
dockerfile_parts = dockerfile.replace("\\", "/").split("/")
|
||||
if len(dockerfile_parts) >= 2:
|
||||
folder_name = dockerfile_parts[-2] # e.g., "backend" or "frontend"
|
||||
else:
|
||||
folder_name = "app"
|
||||
return f"{project_name}-{folder_name}:{target}"
|
||||
|
||||
def get_build_key(dockerfile: str, target: str) -> str:
|
||||
"""Generate a unique key for a Dockerfile+target combination."""
|
||||
return f"{dockerfile}:{target}"
|
||||
|
||||
def get_component(dockerfile: str) -> str | None:
|
||||
"""Get component name (frontend/backend) from dockerfile path."""
|
||||
for component in CACHE_BUILDS_FOR_COMPONENTS:
|
||||
if component in dockerfile:
|
||||
return component
|
||||
return None
|
||||
|
||||
# First pass: collect all services with build configs and identify duplicates
|
||||
# Track which (dockerfile, target) combinations we've seen
|
||||
build_key_to_first_service: dict[str, str] = {}
|
||||
services_to_build: list[str] = []
|
||||
services_to_dedupe: list[str] = []
|
||||
|
||||
for service_name, service_config in compose.get("services", {}).items():
|
||||
if "build" not in service_config:
|
||||
continue
|
||||
|
||||
build_config = service_config["build"]
|
||||
dockerfile = build_config.get("dockerfile", "Dockerfile")
|
||||
target = build_config.get("target", "default")
|
||||
build_key = get_build_key(dockerfile, target)
|
||||
|
||||
if build_key not in build_key_to_first_service:
|
||||
# First service with this build config - it will do the actual build
|
||||
build_key_to_first_service[build_key] = service_name
|
||||
services_to_build.append(service_name)
|
||||
else:
|
||||
# Duplicate - will just use the image from the first service
|
||||
services_to_dedupe.append(service_name)
|
||||
|
||||
# Second pass: configure builds and deduplicate
|
||||
modified_services = []
|
||||
for service_name, service_config in compose.get("services", {}).items():
|
||||
if "build" not in service_config:
|
||||
continue
|
||||
|
||||
build_config = service_config["build"]
|
||||
dockerfile = build_config.get("dockerfile", "Dockerfile")
|
||||
target = build_config.get("target", "latest")
|
||||
image_name = get_image_name(dockerfile, target)
|
||||
|
||||
# Set image name for all services (needed for both builders and deduped)
|
||||
service_config["image"] = image_name
|
||||
|
||||
if service_name in services_to_dedupe:
|
||||
# Remove build config - this service will use the pre-built image
|
||||
del service_config["build"]
|
||||
continue
|
||||
|
||||
# This service will do the actual build - add cache config
|
||||
cache_from_list = []
|
||||
cache_to_list = []
|
||||
|
||||
component = get_component(dockerfile)
|
||||
if not component:
|
||||
# Skip services that don't clearly match frontend/backend
|
||||
continue
|
||||
|
||||
# Get the hash for this component
|
||||
component_hash = getattr(args, f"{component}_hash")
|
||||
|
||||
# Scope format: platform-{component}-{target}-{hash|ref}
|
||||
# Example: platform-backend-server-abc123
|
||||
|
||||
if "type=gha" in args.cache_from:
|
||||
# 1. Primary: exact hash match (most specific)
|
||||
if component_hash:
|
||||
hash_scope = f"platform-{component}-{target}-{component_hash}"
|
||||
cache_from_list.append(f"{args.cache_from},scope={hash_scope}")
|
||||
|
||||
# 2. Fallback: branch-based cache
|
||||
if git_ref_scope:
|
||||
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
|
||||
cache_from_list.append(f"{args.cache_from},scope={ref_scope}")
|
||||
|
||||
# 3. Fallback: dev branch cache (for PRs/feature branches)
|
||||
if git_ref_scope and git_ref_scope != DEFAULT_BRANCH:
|
||||
master_scope = f"platform-{component}-{target}-{DEFAULT_BRANCH}"
|
||||
cache_from_list.append(f"{args.cache_from},scope={master_scope}")
|
||||
|
||||
if "type=gha" in args.cache_to:
|
||||
# Write to both hash-based and branch-based scopes
|
||||
if component_hash:
|
||||
hash_scope = f"platform-{component}-{target}-{component_hash}"
|
||||
cache_to_list.append(f"{args.cache_to},scope={hash_scope}")
|
||||
|
||||
if git_ref_scope:
|
||||
ref_scope = f"platform-{component}-{target}-{git_ref_scope}"
|
||||
cache_to_list.append(f"{args.cache_to},scope={ref_scope}")
|
||||
|
||||
# Ensure we have at least one cache source/target
|
||||
if not cache_from_list:
|
||||
cache_from_list.append(args.cache_from)
|
||||
if not cache_to_list:
|
||||
cache_to_list.append(args.cache_to)
|
||||
|
||||
build_config["cache_from"] = cache_from_list
|
||||
build_config["cache_to"] = cache_to_list
|
||||
modified_services.append(service_name)
|
||||
|
||||
# Write back to the same file
|
||||
with open(args.source, "w") as f:
|
||||
yaml.dump(compose, f, default_flow_style=False, sort_keys=False)
|
||||
|
||||
print(f"Added cache config to {len(modified_services)} services in {args.source}:")
|
||||
for svc in modified_services:
|
||||
svc_config = compose["services"][svc]
|
||||
build_cfg = svc_config.get("build", {})
|
||||
cache_from_list = build_cfg.get("cache_from", ["none"])
|
||||
cache_to_list = build_cfg.get("cache_to", ["none"])
|
||||
print(f" - {svc}")
|
||||
print(f" image: {svc_config.get('image', 'N/A')}")
|
||||
print(f" cache_from: {cache_from_list}")
|
||||
print(f" cache_to: {cache_to_list}")
|
||||
if services_to_dedupe:
|
||||
print(
|
||||
f"Deduplicated {len(services_to_dedupe)} services (will use pre-built images):"
|
||||
)
|
||||
for svc in services_to_dedupe:
|
||||
print(f" - {svc} -> {compose['services'][svc].get('image', 'N/A')}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -178,6 +178,4 @@ autogpt_platform/backend/settings.py
|
||||
*.ign.*
|
||||
.test-contents
|
||||
.claude/settings.local.json
|
||||
CLAUDE.local.md
|
||||
/autogpt_platform/backend/logs
|
||||
.next
|
||||
24
AGENTS.md
24
AGENTS.md
@@ -16,6 +16,7 @@ See `docs/content/platform/getting-started.md` for setup instructions.
|
||||
- Format Python code with `poetry run format`.
|
||||
- Format frontend code using `pnpm format`.
|
||||
|
||||
|
||||
## Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
@@ -32,17 +33,14 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
- Do not use `useCallback` or `useMemo` unless asked to optimise a given function
|
||||
- Do not type hook returns, let Typescript infer as much as possible
|
||||
- Never type with `any`, if not types available use `unknown`
|
||||
|
||||
## Testing
|
||||
|
||||
@@ -51,8 +49,22 @@ See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
Always run the relevant linters and tests before committing.
|
||||
Use conventional commit messages for all commits (e.g. `feat(backend): add API`).
|
||||
Types: - feat - fix - refactor - ci - dx (developer experience)
|
||||
Scopes: - platform - platform/library - platform/marketplace - backend - backend/executor - frontend - frontend/library - frontend/marketplace - blocks
|
||||
Types:
|
||||
- feat
|
||||
- fix
|
||||
- refactor
|
||||
- ci
|
||||
- dx (developer experience)
|
||||
Scopes:
|
||||
- platform
|
||||
- platform/library
|
||||
- platform/marketplace
|
||||
- backend
|
||||
- backend/executor
|
||||
- frontend
|
||||
- frontend/library
|
||||
- frontend/marketplace
|
||||
- blocks
|
||||
|
||||
## Pull requests
|
||||
|
||||
|
||||
@@ -54,7 +54,7 @@ Before proceeding with the installation, ensure your system meets the following
|
||||
### Updated Setup Instructions:
|
||||
We've moved to a fully maintained and regularly updated documentation site.
|
||||
|
||||
👉 [Follow the official self-hosting guide here](https://agpt.co/docs/platform/getting-started/getting-started)
|
||||
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
|
||||
|
||||
|
||||
This tutorial assumes you have Docker, VSCode, git and npm installed.
|
||||
|
||||
@@ -6,30 +6,152 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
|
||||
|
||||
AutoGPT Platform is a monorepo containing:
|
||||
|
||||
- **Backend** (`backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`frontend`): Next.js React application
|
||||
- **Shared Libraries** (`autogpt_libs`): Common Python utilities
|
||||
- **Backend** (`/backend`): Python FastAPI server with async support
|
||||
- **Frontend** (`/frontend`): Next.js React application
|
||||
- **Shared Libraries** (`/autogpt_libs`): Common Python utilities
|
||||
|
||||
## Component Documentation
|
||||
## Essential Commands
|
||||
|
||||
- **Backend**: See @backend/CLAUDE.md for backend-specific commands, architecture, and development tasks
|
||||
- **Frontend**: See @frontend/CLAUDE.md for frontend-specific commands, architecture, and development patterns
|
||||
### Backend Development
|
||||
|
||||
## Key Concepts
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd backend && poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend server
|
||||
poetry run serve
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in TESTING.md
|
||||
|
||||
#### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
### Frontend Development
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
cd frontend && pnpm i
|
||||
|
||||
# Generate API client from OpenAPI spec
|
||||
pnpm generate:api
|
||||
|
||||
# Start development server
|
||||
pnpm dev
|
||||
|
||||
# Run E2E tests
|
||||
pnpm test
|
||||
|
||||
# Run Storybook for component development
|
||||
pnpm storybook
|
||||
|
||||
# Build production
|
||||
pnpm build
|
||||
|
||||
# Format and lint
|
||||
pnpm format
|
||||
|
||||
# Type checking
|
||||
pnpm types
|
||||
```
|
||||
|
||||
**📖 Complete Guide**: See `/frontend/CONTRIBUTING.md` and `/frontend/.cursorrules` for comprehensive frontend patterns.
|
||||
|
||||
**Key Frontend Conventions:**
|
||||
|
||||
- Separate render logic from data/behavior in components
|
||||
- Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Use function declarations (not arrow functions) for components/handlers
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Only use Phosphor Icons
|
||||
- Never use `src/components/__legacy__/*` or deprecated `BackendAPI`
|
||||
|
||||
## Architecture Overview
|
||||
|
||||
### Backend Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
### Frontend Architecture
|
||||
|
||||
- **Framework**: Next.js 15 App Router (client-first approach)
|
||||
- **Data Fetching**: Type-safe generated API hooks via Orval + React Query
|
||||
- **State Management**: React Query for server state, co-located UI state in components/hooks
|
||||
- **Component Structure**: Separate render logic (`.tsx`) from business logic (`use*.ts` hooks)
|
||||
- **Workflow Builder**: Visual graph editor using @xyflow/react
|
||||
- **UI Components**: shadcn/ui (Radix UI primitives) with Tailwind CSS styling
|
||||
- **Icons**: Phosphor Icons only
|
||||
- **Feature Flags**: LaunchDarkly integration
|
||||
- **Error Handling**: ErrorCard for render errors, toast for mutations, Sentry for exceptions
|
||||
- **Testing**: Playwright for E2E, Storybook for component development
|
||||
|
||||
### Key Concepts
|
||||
|
||||
1. **Agent Graphs**: Workflow definitions stored as JSON, executed by the backend
|
||||
2. **Blocks**: Reusable components in `backend/backend/blocks/` that perform specific tasks
|
||||
2. **Blocks**: Reusable components in `/backend/blocks/` that perform specific tasks
|
||||
3. **Integrations**: OAuth and API connections stored per user
|
||||
4. **Store**: Marketplace for sharing agent templates
|
||||
5. **Virus Scanning**: ClamAV integration for file upload security
|
||||
|
||||
### Testing Approach
|
||||
|
||||
- Backend uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
- Frontend uses Playwright for E2E tests
|
||||
- Component testing via Storybook
|
||||
|
||||
### Database Schema
|
||||
|
||||
Key models (defined in `/backend/schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
### Environment Configuration
|
||||
|
||||
#### Configuration Files
|
||||
|
||||
- **Backend**: `backend/.env.default` (defaults) → `backend/.env` (user overrides)
|
||||
- **Frontend**: `frontend/.env.default` (defaults) → `frontend/.env` (user overrides)
|
||||
- **Platform**: `.env.default` (Supabase/shared defaults) → `.env` (user overrides)
|
||||
- **Backend**: `/backend/.env.default` (defaults) → `/backend/.env` (user overrides)
|
||||
- **Frontend**: `/frontend/.env.default` (defaults) → `/frontend/.env` (user overrides)
|
||||
- **Platform**: `/.env.default` (Supabase/shared defaults) → `/.env` (user overrides)
|
||||
|
||||
#### Docker Environment Loading Order
|
||||
|
||||
@@ -45,17 +167,83 @@ AutoGPT Platform is a monorepo containing:
|
||||
- Backend/Frontend services use YAML anchors for consistent configuration
|
||||
- Supabase services (`db/docker/docker-compose.yml`) follow the same pattern
|
||||
|
||||
### Branching Strategy
|
||||
### Common Development Tasks
|
||||
|
||||
- **`dev`** is the main development branch. All PRs should target `dev`.
|
||||
- **`master`** is the production branch. Only used for production releases.
|
||||
**Adding a new block:**
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](../../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `/backend/backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
**Modifying the API:**
|
||||
|
||||
1. Update route in `/backend/backend/server/routers/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
### Frontend guidelines:
|
||||
|
||||
See `/frontend/CONTRIBUTING.md` for complete patterns. Quick reference:
|
||||
|
||||
1. **Pages**: Create in `src/app/(platform)/feature-name/page.tsx`
|
||||
- Add `usePageName.ts` hook for logic
|
||||
- Put sub-components in local `components/` folder
|
||||
2. **Components**: Structure as `ComponentName/ComponentName.tsx` + `useComponentName.ts` + `helpers.ts`
|
||||
- Use design system components from `src/components/` (atoms, molecules, organisms)
|
||||
- Never use `src/components/__legacy__/*`
|
||||
3. **Data fetching**: Use generated API hooks from `@/app/api/__generated__/endpoints/`
|
||||
- Regenerate with `pnpm generate:api`
|
||||
- Pattern: `use{Method}{Version}{OperationName}`
|
||||
4. **Styling**: Tailwind CSS only, use design tokens, Phosphor Icons only
|
||||
5. **Testing**: Add Storybook stories for new components, Playwright for E2E
|
||||
6. **Code conventions**: Function declarations (not arrow functions) for components/handlers
|
||||
- Component props should be `interface Props { ... }` (not exported) unless the interface needs to be used outside the component
|
||||
- Separate render logic from business logic (component.tsx + useComponent.ts + helpers.ts)
|
||||
- Colocate state when possible and avoid creating large components, use sub-components ( local `/components` folder next to the parent component ) when sensible
|
||||
- Avoid large hooks, abstract logic into `helpers.ts` files when sensible
|
||||
- Use function declarations for components, arrow functions only for callbacks
|
||||
- No barrel files or `index.ts` re-exports
|
||||
- Do not use `useCallback` or `useMemo` unless strictly needed
|
||||
- Avoid comments at all times unless the code is very complex
|
||||
|
||||
### Security Implementation
|
||||
|
||||
**Cache Protection Middleware:**
|
||||
|
||||
- Located in `/backend/backend/server/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`/static/*`, `/_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
|
||||
### Creating Pull Requests
|
||||
|
||||
- Create the PR against the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)
|
||||
- Use conventional commit messages (see below)
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description
|
||||
- Create the PR aginst the `dev` branch of the repository.
|
||||
- Ensure the branch name is descriptive (e.g., `feature/add-new-block`)/
|
||||
- Use conventional commit messages (see below)/
|
||||
- Fill out the .github/PULL_REQUEST_TEMPLATE.md template as the PR description/
|
||||
- Run the github pre-commit hooks to ensure code quality.
|
||||
|
||||
### Reviewing/Revising Pull Requests
|
||||
|
||||
1857
autogpt_platform/autogpt_libs/poetry.lock
generated
1857
autogpt_platform/autogpt_libs/poetry.lock
generated
File diff suppressed because it is too large
Load Diff
@@ -9,25 +9,25 @@ packages = [{ include = "autogpt_libs" }]
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<4.0"
|
||||
colorama = "^0.4.6"
|
||||
cryptography = "^46.0"
|
||||
cryptography = "^45.0"
|
||||
expiringdict = "^1.2.2"
|
||||
fastapi = "^0.128.7"
|
||||
google-cloud-logging = "^3.13.0"
|
||||
launchdarkly-server-sdk = "^9.15.0"
|
||||
pydantic = "^2.12.5"
|
||||
pydantic-settings = "^2.12.0"
|
||||
pyjwt = { version = "^2.11.0", extras = ["crypto"] }
|
||||
fastapi = "^0.116.1"
|
||||
google-cloud-logging = "^3.12.1"
|
||||
launchdarkly-server-sdk = "^9.12.0"
|
||||
pydantic = "^2.11.7"
|
||||
pydantic-settings = "^2.10.1"
|
||||
pyjwt = { version = "^2.10.1", extras = ["crypto"] }
|
||||
redis = "^6.2.0"
|
||||
supabase = "^2.28.0"
|
||||
uvicorn = "^0.40.0"
|
||||
supabase = "^2.16.0"
|
||||
uvicorn = "^0.35.0"
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
pyright = "^1.1.408"
|
||||
pyright = "^1.1.404"
|
||||
pytest = "^8.4.1"
|
||||
pytest-asyncio = "^1.3.0"
|
||||
pytest-mock = "^3.15.1"
|
||||
pytest-cov = "^7.0.0"
|
||||
ruff = "^0.15.0"
|
||||
pytest-asyncio = "^1.1.0"
|
||||
pytest-mock = "^3.14.1"
|
||||
pytest-cov = "^6.2.1"
|
||||
ruff = "^0.12.11"
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core"]
|
||||
|
||||
@@ -104,12 +104,6 @@ TWITTER_CLIENT_SECRET=
|
||||
# Make a new workspace for your OAuth APP -- trust me
|
||||
# https://linear.app/settings/api/applications/new
|
||||
# Callback URL: http://localhost:3000/auth/integrations/oauth_callback
|
||||
LINEAR_API_KEY=
|
||||
# Linear project and team IDs for the feature request tracker.
|
||||
# Find these in your Linear workspace URL: linear.app/<workspace>/project/<project-id>
|
||||
# and in team settings. Used by the chat copilot to file and search feature requests.
|
||||
LINEAR_FEATURE_REQUEST_PROJECT_ID=
|
||||
LINEAR_FEATURE_REQUEST_TEAM_ID=
|
||||
LINEAR_CLIENT_ID=
|
||||
LINEAR_CLIENT_SECRET=
|
||||
|
||||
@@ -158,7 +152,6 @@ REPLICATE_API_KEY=
|
||||
REVID_API_KEY=
|
||||
SCREENSHOTONE_API_KEY=
|
||||
UNREAL_SPEECH_API_KEY=
|
||||
ELEVENLABS_API_KEY=
|
||||
|
||||
# Data & Search Services
|
||||
E2B_API_KEY=
|
||||
@@ -185,10 +178,5 @@ AYRSHARE_JWT_KEY=
|
||||
SMARTLEAD_API_KEY=
|
||||
ZEROBOUNCE_API_KEY=
|
||||
|
||||
# PostHog Analytics
|
||||
# Get API key from https://posthog.com - Project Settings > Project API Key
|
||||
POSTHOG_API_KEY=
|
||||
POSTHOG_HOST=https://eu.i.posthog.com
|
||||
|
||||
# Other Services
|
||||
AUTOMOD_API_KEY=
|
||||
|
||||
3
autogpt_platform/backend/.gitignore
vendored
3
autogpt_platform/backend/.gitignore
vendored
@@ -19,6 +19,3 @@ load-tests/*.json
|
||||
load-tests/*.log
|
||||
load-tests/node_modules/*
|
||||
migrations/*/rollback*.sql
|
||||
|
||||
# Workspace files
|
||||
workspaces/
|
||||
|
||||
@@ -1,170 +0,0 @@
|
||||
# CLAUDE.md - Backend
|
||||
|
||||
This file provides guidance to Claude Code when working with the backend.
|
||||
|
||||
## Essential Commands
|
||||
|
||||
To run something with Python package dependencies you MUST use `poetry run ...`.
|
||||
|
||||
```bash
|
||||
# Install dependencies
|
||||
poetry install
|
||||
|
||||
# Run database migrations
|
||||
poetry run prisma migrate dev
|
||||
|
||||
# Start all services (database, redis, rabbitmq, clamav)
|
||||
docker compose up -d
|
||||
|
||||
# Run the backend as a whole
|
||||
poetry run app
|
||||
|
||||
# Run tests
|
||||
poetry run test
|
||||
|
||||
# Run specific test
|
||||
poetry run pytest path/to/test_file.py::test_function_name
|
||||
|
||||
# Run block tests (tests that validate all blocks work correctly)
|
||||
poetry run pytest backend/blocks/test/test_block.py -xvs
|
||||
|
||||
# Run tests for a specific block (e.g., GetCurrentTimeBlock)
|
||||
poetry run pytest 'backend/blocks/test/test_block.py::test_available_blocks[GetCurrentTimeBlock]' -xvs
|
||||
|
||||
# Lint and format
|
||||
# prefer format if you want to just "fix" it and only get the errors that can't be autofixed
|
||||
poetry run format # Black + isort
|
||||
poetry run lint # ruff
|
||||
```
|
||||
|
||||
More details can be found in @TESTING.md
|
||||
|
||||
### Creating/Updating Snapshots
|
||||
|
||||
When you first write a test or when the expected output changes:
|
||||
|
||||
```bash
|
||||
poetry run pytest path/to/test.py --snapshot-update
|
||||
```
|
||||
|
||||
⚠️ **Important**: Always review snapshot changes before committing! Use `git diff` to verify the changes are expected.
|
||||
|
||||
## Architecture
|
||||
|
||||
- **API Layer**: FastAPI with REST and WebSocket endpoints
|
||||
- **Database**: PostgreSQL with Prisma ORM, includes pgvector for embeddings
|
||||
- **Queue System**: RabbitMQ for async task processing
|
||||
- **Execution Engine**: Separate executor service processes agent workflows
|
||||
- **Authentication**: JWT-based with Supabase integration
|
||||
- **Security**: Cache protection middleware prevents sensitive data caching in browsers/proxies
|
||||
|
||||
## Testing Approach
|
||||
|
||||
- Uses pytest with snapshot testing for API responses
|
||||
- Test files are colocated with source files (`*_test.py`)
|
||||
|
||||
## Database Schema
|
||||
|
||||
Key models (defined in `schema.prisma`):
|
||||
|
||||
- `User`: Authentication and profile data
|
||||
- `AgentGraph`: Workflow definitions with version control
|
||||
- `AgentGraphExecution`: Execution history and results
|
||||
- `AgentNode`: Individual nodes in a workflow
|
||||
- `StoreListing`: Marketplace listings for sharing agents
|
||||
|
||||
## Environment Configuration
|
||||
|
||||
- **Backend**: `.env.default` (defaults) → `.env` (user overrides)
|
||||
|
||||
## Common Development Tasks
|
||||
|
||||
### Adding a new block
|
||||
|
||||
Follow the comprehensive [Block SDK Guide](@../../docs/content/platform/block-sdk-guide.md) which covers:
|
||||
|
||||
- Provider configuration with `ProviderBuilder`
|
||||
- Block schema definition
|
||||
- Authentication (API keys, OAuth, webhooks)
|
||||
- Testing and validation
|
||||
- File organization
|
||||
|
||||
Quick steps:
|
||||
|
||||
1. Create new file in `backend/blocks/`
|
||||
2. Configure provider using `ProviderBuilder` in `_config.py`
|
||||
3. Inherit from `Block` base class
|
||||
4. Define input/output schemas using `BlockSchema`
|
||||
5. Implement async `run` method
|
||||
6. Generate unique block ID using `uuid.uuid4()`
|
||||
7. Test with `poetry run pytest backend/blocks/test/test_block.py`
|
||||
|
||||
Note: when making many new blocks analyze the interfaces for each of these blocks and picture if they would go well together in a graph-based editor or would they struggle to connect productively?
|
||||
ex: do the inputs and outputs tie well together?
|
||||
|
||||
If you get any pushback or hit complex block conditions check the new_blocks guide in the docs.
|
||||
|
||||
#### Handling files in blocks with `store_media_file()`
|
||||
|
||||
When blocks need to work with files (images, videos, documents), use `store_media_file()` from `backend.util.file`. The `return_format` parameter determines what you get back:
|
||||
|
||||
| Format | Use When | Returns |
|
||||
|--------|----------|---------|
|
||||
| `"for_local_processing"` | Processing with local tools (ffmpeg, MoviePy, PIL) | Local file path (e.g., `"image.png"`) |
|
||||
| `"for_external_api"` | Sending content to external APIs (Replicate, OpenAI) | Data URI (e.g., `"data:image/png;base64,..."`) |
|
||||
| `"for_block_output"` | Returning output from your block | Smart: `workspace://` in CoPilot, data URI in graphs |
|
||||
|
||||
**Examples:**
|
||||
|
||||
```python
|
||||
# INPUT: Need to process file locally with ffmpeg
|
||||
local_path = await store_media_file(
|
||||
file=input_data.video,
|
||||
execution_context=execution_context,
|
||||
return_format="for_local_processing",
|
||||
)
|
||||
# local_path = "video.mp4" - use with Path/ffmpeg/etc
|
||||
|
||||
# INPUT: Need to send to external API like Replicate
|
||||
image_b64 = await store_media_file(
|
||||
file=input_data.image,
|
||||
execution_context=execution_context,
|
||||
return_format="for_external_api",
|
||||
)
|
||||
# image_b64 = "..." - send to API
|
||||
|
||||
# OUTPUT: Returning result from block
|
||||
result_url = await store_media_file(
|
||||
file=generated_image_url,
|
||||
execution_context=execution_context,
|
||||
return_format="for_block_output",
|
||||
)
|
||||
yield "image_url", result_url
|
||||
# In CoPilot: result_url = "workspace://abc123"
|
||||
# In graphs: result_url = "data:image/png;base64,..."
|
||||
```
|
||||
|
||||
**Key points:**
|
||||
|
||||
- `for_block_output` is the ONLY format that auto-adapts to execution context
|
||||
- Always use `for_block_output` for block outputs unless you have a specific reason not to
|
||||
- Never hardcode workspace checks - let `for_block_output` handle it
|
||||
|
||||
### Modifying the API
|
||||
|
||||
1. Update route in `backend/api/features/`
|
||||
2. Add/update Pydantic models in same directory
|
||||
3. Write tests alongside the route file
|
||||
4. Run `poetry run test` to verify
|
||||
|
||||
## Security Implementation
|
||||
|
||||
### Cache Protection Middleware
|
||||
|
||||
- Located in `backend/api/middleware/security.py`
|
||||
- Default behavior: Disables caching for ALL endpoints with `Cache-Control: no-store, no-cache, must-revalidate, private`
|
||||
- Uses an allow list approach - only explicitly permitted paths can be cached
|
||||
- Cacheable paths include: static assets (`static/*`, `_next/static/*`), health checks, public store pages, documentation
|
||||
- Prevents sensitive data (auth tokens, API keys, user data) from being cached by browsers/proxies
|
||||
- To allow caching for a new endpoint, add it to `CACHEABLE_PATHS` in the middleware
|
||||
- Applied to both main API server and external API applications
|
||||
@@ -1,5 +1,3 @@
|
||||
# ============================ DEPENDENCY BUILDER ============================ #
|
||||
|
||||
FROM debian:13-slim AS builder
|
||||
|
||||
# Set environment variables
|
||||
@@ -53,62 +51,25 @@ COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/parti
|
||||
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
|
||||
RUN poetry run prisma generate && poetry run gen-prisma-stub
|
||||
|
||||
# =============================== DB MIGRATOR =============================== #
|
||||
|
||||
# Lightweight migrate stage - only needs Prisma CLI, not full Python environment
|
||||
FROM debian:13-slim AS migrate
|
||||
|
||||
WORKDIR /app/autogpt_platform/backend
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
# Install only what's needed for prisma migrate: Node.js and minimal Python for prisma-python
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
python3.13 \
|
||||
python3-pip \
|
||||
ca-certificates \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Copy Node.js from builder (needed for Prisma CLI)
|
||||
COPY --from=builder /usr/bin/node /usr/bin/node
|
||||
COPY --from=builder /usr/lib/node_modules /usr/lib/node_modules
|
||||
COPY --from=builder /usr/bin/npm /usr/bin/npm
|
||||
|
||||
# Copy Prisma binaries
|
||||
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
|
||||
|
||||
# Install prisma-client-py directly (much smaller than copying full venv)
|
||||
RUN pip3 install prisma>=0.15.0 --break-system-packages
|
||||
|
||||
COPY autogpt_platform/backend/schema.prisma ./
|
||||
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
|
||||
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
|
||||
COPY autogpt_platform/backend/migrations ./migrations
|
||||
|
||||
# ============================== BACKEND SERVER ============================== #
|
||||
|
||||
FROM debian:13-slim AS server
|
||||
FROM debian:13-slim AS server_dependencies
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
ENV POETRY_HOME=/opt/poetry \
|
||||
POETRY_NO_INTERACTION=1 \
|
||||
POETRY_VIRTUALENVS_CREATE=true \
|
||||
POETRY_VIRTUALENVS_IN_PROJECT=true \
|
||||
DEBIAN_FRONTEND=noninteractive
|
||||
ENV PATH=/opt/poetry/bin:$PATH
|
||||
|
||||
# Install Python, FFmpeg, ImageMagick, and CLI tools for agent use.
|
||||
# bubblewrap provides OS-level sandbox (whitelist-only FS + no network)
|
||||
# for the bash_exec MCP tool.
|
||||
# Using --no-install-recommends saves ~650MB by skipping unnecessary deps like llvm, mesa, etc.
|
||||
RUN apt-get update && apt-get install -y --no-install-recommends \
|
||||
# Install Python without upgrading system-managed packages
|
||||
RUN apt-get update && apt-get install -y \
|
||||
python3.13 \
|
||||
python3-pip \
|
||||
ffmpeg \
|
||||
imagemagick \
|
||||
jq \
|
||||
ripgrep \
|
||||
tree \
|
||||
bubblewrap \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Copy poetry (build-time only, for `poetry install --only-root` to create entry points)
|
||||
# Copy only necessary files from builder
|
||||
COPY --from=builder /app /app
|
||||
COPY --from=builder /usr/local/lib/python3* /usr/local/lib/python3*
|
||||
COPY --from=builder /usr/local/bin/poetry /usr/local/bin/poetry
|
||||
# Copy Node.js installation for Prisma
|
||||
@@ -118,25 +79,30 @@ COPY --from=builder /usr/bin/npm /usr/bin/npm
|
||||
COPY --from=builder /usr/bin/npx /usr/bin/npx
|
||||
COPY --from=builder /root/.cache/prisma-python/binaries /root/.cache/prisma-python/binaries
|
||||
|
||||
WORKDIR /app/autogpt_platform/backend
|
||||
|
||||
# Copy only the .venv from builder (not the entire /app directory)
|
||||
# The .venv includes the generated Prisma client
|
||||
COPY --from=builder /app/autogpt_platform/backend/.venv ./.venv
|
||||
ENV PATH="/app/autogpt_platform/backend/.venv/bin:$PATH"
|
||||
|
||||
# Copy dependency files + autogpt_libs (path dependency)
|
||||
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
|
||||
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml ./
|
||||
RUN mkdir -p /app/autogpt_platform/autogpt_libs
|
||||
RUN mkdir -p /app/autogpt_platform/backend
|
||||
|
||||
# Copy backend code + docs (for Copilot docs search)
|
||||
COPY autogpt_platform/backend ./
|
||||
COPY autogpt_platform/autogpt_libs /app/autogpt_platform/autogpt_libs
|
||||
|
||||
COPY autogpt_platform/backend/poetry.lock autogpt_platform/backend/pyproject.toml /app/autogpt_platform/backend/
|
||||
|
||||
WORKDIR /app/autogpt_platform/backend
|
||||
|
||||
FROM server_dependencies AS migrate
|
||||
|
||||
# Migration stage only needs schema and migrations - much lighter than full backend
|
||||
COPY autogpt_platform/backend/schema.prisma /app/autogpt_platform/backend/
|
||||
COPY autogpt_platform/backend/backend/data/partial_types.py /app/autogpt_platform/backend/backend/data/partial_types.py
|
||||
COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migrations
|
||||
|
||||
FROM server_dependencies AS server
|
||||
|
||||
COPY autogpt_platform/backend /app/autogpt_platform/backend
|
||||
COPY docs /app/docs
|
||||
# Install the project package to create entry point scripts in .venv/bin/
|
||||
# (e.g., rest, executor, ws, db, scheduler, notification - see [tool.poetry.scripts])
|
||||
RUN POETRY_VIRTUALENVS_CREATE=true POETRY_VIRTUALENVS_IN_PROJECT=true \
|
||||
poetry install --no-ansi --only-root
|
||||
RUN poetry install --no-ansi --only-root
|
||||
|
||||
ENV PORT=8000
|
||||
|
||||
CMD ["rest"]
|
||||
CMD ["poetry", "run", "rest"]
|
||||
|
||||
@@ -138,7 +138,7 @@ If the test doesn't need the `user_id` specifically, mocking is not necessary as
|
||||
|
||||
#### Using Global Auth Fixtures
|
||||
|
||||
Two global auth fixtures are provided by `backend/api/conftest.py`:
|
||||
Two global auth fixtures are provided by `backend/server/conftest.py`:
|
||||
|
||||
- `mock_jwt_user` - Regular user with `test_user_id` ("test-user-id")
|
||||
- `mock_jwt_admin` - Admin user with `admin_user_id` ("admin-user-id")
|
||||
|
||||
@@ -1,9 +1,4 @@
|
||||
"""Common test fixtures for server tests.
|
||||
|
||||
Note: Common fixtures like test_user_id, admin_user_id, target_user_id,
|
||||
setup_test_user, and setup_admin_user are defined in the parent conftest.py
|
||||
(backend/conftest.py) and are available here automatically.
|
||||
"""
|
||||
"""Common test fixtures for server tests."""
|
||||
|
||||
import pytest
|
||||
from pytest_snapshot.plugin import Snapshot
|
||||
@@ -16,6 +11,54 @@ def configured_snapshot(snapshot: Snapshot) -> Snapshot:
|
||||
return snapshot
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def test_user_id() -> str:
|
||||
"""Test user ID fixture."""
|
||||
return "3e53486c-cf57-477e-ba2a-cb02dc828e1a"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def admin_user_id() -> str:
|
||||
"""Admin user ID fixture."""
|
||||
return "4e53486c-cf57-477e-ba2a-cb02dc828e1b"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def target_user_id() -> str:
|
||||
"""Target user ID fixture."""
|
||||
return "5e53486c-cf57-477e-ba2a-cb02dc828e1c"
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def setup_test_user(test_user_id):
|
||||
"""Create test user in database before tests."""
|
||||
from backend.data.user import get_or_create_user
|
||||
|
||||
# Create the test user in the database using JWT token format
|
||||
user_data = {
|
||||
"sub": test_user_id,
|
||||
"email": "test@example.com",
|
||||
"user_metadata": {"name": "Test User"},
|
||||
}
|
||||
await get_or_create_user(user_data)
|
||||
return test_user_id
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
async def setup_admin_user(admin_user_id):
|
||||
"""Create admin user in database before tests."""
|
||||
from backend.data.user import get_or_create_user
|
||||
|
||||
# Create the admin user in the database using JWT token format
|
||||
user_data = {
|
||||
"sub": admin_user_id,
|
||||
"email": "test-admin@example.com",
|
||||
"user_metadata": {"name": "Test Admin"},
|
||||
}
|
||||
await get_or_create_user(user_data)
|
||||
return admin_user_id
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_jwt_user(test_user_id):
|
||||
"""Provide mock JWT payload for regular user testing."""
|
||||
|
||||
@@ -10,7 +10,7 @@ from typing_extensions import TypedDict
|
||||
|
||||
import backend.api.features.store.cache as store_cache
|
||||
import backend.api.features.store.model as store_model
|
||||
import backend.blocks
|
||||
import backend.data.block
|
||||
from backend.api.external.middleware import require_permission
|
||||
from backend.data import execution as execution_db
|
||||
from backend.data import graph as graph_db
|
||||
@@ -67,7 +67,7 @@ async def get_user_info(
|
||||
dependencies=[Security(require_permission(APIKeyPermission.READ_BLOCK))],
|
||||
)
|
||||
async def get_graph_blocks() -> Sequence[dict[Any, Any]]:
|
||||
blocks = [block() for block in backend.blocks.get_blocks().values()]
|
||||
blocks = [block() for block in backend.data.block.get_blocks().values()]
|
||||
return [b.to_dict() for b in blocks if not b.disabled]
|
||||
|
||||
|
||||
@@ -83,11 +83,9 @@ async def execute_graph_block(
|
||||
require_permission(APIKeyPermission.EXECUTE_BLOCK)
|
||||
),
|
||||
) -> CompletedBlockOutput:
|
||||
obj = backend.blocks.get_block(block_id)
|
||||
obj = backend.data.block.get_block(block_id)
|
||||
if not obj:
|
||||
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
|
||||
if obj.disabled:
|
||||
raise HTTPException(status_code=403, detail=f"Block #{block_id} is disabled.")
|
||||
|
||||
output = defaultdict(list)
|
||||
async for name, data in obj.execute(data):
|
||||
|
||||
@@ -15,9 +15,9 @@ from prisma.enums import APIKeyPermission
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from backend.api.external.middleware import require_permission
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.copilot.tools import find_agent_tool, run_agent_tool
|
||||
from backend.copilot.tools.models import ToolResponseBase
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools import find_agent_tool, run_agent_tool
|
||||
from backend.api.features.chat.tools.models import ToolResponseBase
|
||||
from backend.data.auth.base import APIAuthorizationInfo
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -10,15 +10,10 @@ import backend.api.features.library.db as library_db
|
||||
import backend.api.features.library.model as library_model
|
||||
import backend.api.features.store.db as store_db
|
||||
import backend.api.features.store.model as store_model
|
||||
import backend.data.block
|
||||
from backend.blocks import load_all_blocks
|
||||
from backend.blocks._base import (
|
||||
AnyBlockSchema,
|
||||
BlockCategory,
|
||||
BlockInfo,
|
||||
BlockSchema,
|
||||
BlockType,
|
||||
)
|
||||
from backend.blocks.llm import LlmModel
|
||||
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
|
||||
from backend.data.db import query_raw_with_schema
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.cache import cached
|
||||
@@ -27,7 +22,7 @@ from backend.util.models import Pagination
|
||||
from .model import (
|
||||
BlockCategoryResponse,
|
||||
BlockResponse,
|
||||
BlockTypeFilter,
|
||||
BlockType,
|
||||
CountResponse,
|
||||
FilterType,
|
||||
Provider,
|
||||
@@ -93,7 +88,7 @@ def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse
|
||||
def get_blocks(
|
||||
*,
|
||||
category: str | None = None,
|
||||
type: BlockTypeFilter | None = None,
|
||||
type: BlockType | None = None,
|
||||
provider: ProviderName | None = None,
|
||||
page: int = 1,
|
||||
page_size: int = 50,
|
||||
@@ -674,9 +669,9 @@ async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
|
||||
for block_type in load_all_blocks().values():
|
||||
block: AnyBlockSchema = block_type()
|
||||
if block.disabled or block.block_type in (
|
||||
BlockType.INPUT,
|
||||
BlockType.OUTPUT,
|
||||
BlockType.AGENT,
|
||||
backend.data.block.BlockType.INPUT,
|
||||
backend.data.block.BlockType.OUTPUT,
|
||||
backend.data.block.BlockType.AGENT,
|
||||
):
|
||||
continue
|
||||
# Find the execution count for this block
|
||||
|
||||
@@ -4,7 +4,7 @@ from pydantic import BaseModel
|
||||
|
||||
import backend.api.features.library.model as library_model
|
||||
import backend.api.features.store.model as store_model
|
||||
from backend.blocks._base import BlockInfo
|
||||
from backend.data.block import BlockInfo
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.models import Pagination
|
||||
|
||||
@@ -15,7 +15,7 @@ FilterType = Literal[
|
||||
"my_agents",
|
||||
]
|
||||
|
||||
BlockTypeFilter = Literal["all", "input", "action", "output"]
|
||||
BlockType = Literal["all", "input", "action", "output"]
|
||||
|
||||
|
||||
class SearchEntry(BaseModel):
|
||||
|
||||
@@ -17,7 +17,7 @@ router = fastapi.APIRouter(
|
||||
)
|
||||
|
||||
|
||||
# Taken from backend/api/features/store/db.py
|
||||
# Taken from backend/server/v2/store/db.py
|
||||
def sanitize_query(query: str | None) -> str | None:
|
||||
if query is None:
|
||||
return query
|
||||
@@ -88,7 +88,7 @@ async def get_block_categories(
|
||||
)
|
||||
async def get_blocks(
|
||||
category: Annotated[str | None, fastapi.Query()] = None,
|
||||
type: Annotated[builder_model.BlockTypeFilter | None, fastapi.Query()] = None,
|
||||
type: Annotated[builder_model.BlockType | None, fastapi.Query()] = None,
|
||||
provider: Annotated[ProviderName | None, fastapi.Query()] = None,
|
||||
page: Annotated[int, fastapi.Query()] = 1,
|
||||
page_size: Annotated[int, fastapi.Query()] = 50,
|
||||
|
||||
90
autogpt_platform/backend/backend/api/features/chat/config.py
Normal file
90
autogpt_platform/backend/backend/api/features/chat/config.py
Normal file
@@ -0,0 +1,90 @@
|
||||
"""Configuration management for chat system."""
|
||||
|
||||
import os
|
||||
|
||||
from pydantic import Field, field_validator
|
||||
from pydantic_settings import BaseSettings
|
||||
|
||||
|
||||
class ChatConfig(BaseSettings):
|
||||
"""Configuration for the chat system."""
|
||||
|
||||
# OpenAI API Configuration
|
||||
model: str = Field(
|
||||
default="anthropic/claude-opus-4.5", description="Default model to use"
|
||||
)
|
||||
title_model: str = Field(
|
||||
default="openai/gpt-4o-mini",
|
||||
description="Model to use for generating session titles (should be fast/cheap)",
|
||||
)
|
||||
api_key: str | None = Field(default=None, description="OpenAI API key")
|
||||
base_url: str | None = Field(
|
||||
default="https://openrouter.ai/api/v1",
|
||||
description="Base URL for API (e.g., for OpenRouter)",
|
||||
)
|
||||
|
||||
# Session TTL Configuration - 12 hours
|
||||
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
|
||||
|
||||
# Streaming Configuration
|
||||
max_context_messages: int = Field(
|
||||
default=50, ge=1, le=200, description="Maximum context messages"
|
||||
)
|
||||
|
||||
stream_timeout: int = Field(default=300, description="Stream timeout in seconds")
|
||||
max_retries: int = Field(default=3, description="Maximum number of retries")
|
||||
max_agent_runs: int = Field(default=3, description="Maximum number of agent runs")
|
||||
max_agent_schedules: int = Field(
|
||||
default=3, description="Maximum number of agent schedules"
|
||||
)
|
||||
|
||||
# Langfuse Prompt Management Configuration
|
||||
# Note: Langfuse credentials are in Settings().secrets (settings.py)
|
||||
langfuse_prompt_name: str = Field(
|
||||
default="CoPilot Prompt",
|
||||
description="Name of the prompt in Langfuse to fetch",
|
||||
)
|
||||
|
||||
@field_validator("api_key", mode="before")
|
||||
@classmethod
|
||||
def get_api_key(cls, v):
|
||||
"""Get API key from environment if not provided."""
|
||||
if v is None:
|
||||
# Try to get from environment variables
|
||||
# First check for CHAT_API_KEY (Pydantic prefix)
|
||||
v = os.getenv("CHAT_API_KEY")
|
||||
if not v:
|
||||
# Fall back to OPEN_ROUTER_API_KEY
|
||||
v = os.getenv("OPEN_ROUTER_API_KEY")
|
||||
if not v:
|
||||
# Fall back to OPENAI_API_KEY
|
||||
v = os.getenv("OPENAI_API_KEY")
|
||||
return v
|
||||
|
||||
@field_validator("base_url", mode="before")
|
||||
@classmethod
|
||||
def get_base_url(cls, v):
|
||||
"""Get base URL from environment if not provided."""
|
||||
if v is None:
|
||||
# Check for OpenRouter or custom base URL
|
||||
v = os.getenv("CHAT_BASE_URL")
|
||||
if not v:
|
||||
v = os.getenv("OPENROUTER_BASE_URL")
|
||||
if not v:
|
||||
v = os.getenv("OPENAI_BASE_URL")
|
||||
if not v:
|
||||
v = "https://openrouter.ai/api/v1"
|
||||
return v
|
||||
|
||||
# Prompt paths for different contexts
|
||||
PROMPT_PATHS: dict[str, str] = {
|
||||
"default": "prompts/chat_system.md",
|
||||
"onboarding": "prompts/onboarding_system.md",
|
||||
}
|
||||
|
||||
class Config:
|
||||
"""Pydantic config."""
|
||||
|
||||
env_file = ".env"
|
||||
env_file_encoding = "utf-8"
|
||||
extra = "ignore" # Ignore extra environment variables
|
||||
@@ -14,27 +14,29 @@ from prisma.types import (
|
||||
ChatSessionWhereInput,
|
||||
)
|
||||
|
||||
from backend.data import db
|
||||
from backend.data.db import transaction
|
||||
from backend.util.json import SafeJson
|
||||
|
||||
from .model import ChatMessage, ChatSession, ChatSessionInfo
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def get_chat_session(session_id: str) -> ChatSession | None:
|
||||
async def get_chat_session(session_id: str) -> PrismaChatSession | None:
|
||||
"""Get a chat session by ID from the database."""
|
||||
session = await PrismaChatSession.prisma().find_unique(
|
||||
where={"id": session_id},
|
||||
include={"Messages": {"order_by": {"sequence": "asc"}}},
|
||||
include={"Messages": True},
|
||||
)
|
||||
return ChatSession.from_db(session) if session else None
|
||||
if session and session.Messages:
|
||||
# Sort messages by sequence in Python - Prisma Python client doesn't support
|
||||
# order_by in include clauses (unlike Prisma JS), so we sort after fetching
|
||||
session.Messages.sort(key=lambda m: m.sequence)
|
||||
return session
|
||||
|
||||
|
||||
async def create_chat_session(
|
||||
session_id: str,
|
||||
user_id: str,
|
||||
) -> ChatSessionInfo:
|
||||
) -> PrismaChatSession:
|
||||
"""Create a new chat session in the database."""
|
||||
data = ChatSessionCreateInput(
|
||||
id=session_id,
|
||||
@@ -43,8 +45,10 @@ async def create_chat_session(
|
||||
successfulAgentRuns=SafeJson({}),
|
||||
successfulAgentSchedules=SafeJson({}),
|
||||
)
|
||||
prisma_session = await PrismaChatSession.prisma().create(data=data)
|
||||
return ChatSessionInfo.from_db(prisma_session)
|
||||
return await PrismaChatSession.prisma().create(
|
||||
data=data,
|
||||
include={"Messages": True},
|
||||
)
|
||||
|
||||
|
||||
async def update_chat_session(
|
||||
@@ -55,7 +59,7 @@ async def update_chat_session(
|
||||
total_prompt_tokens: int | None = None,
|
||||
total_completion_tokens: int | None = None,
|
||||
title: str | None = None,
|
||||
) -> ChatSession | None:
|
||||
) -> PrismaChatSession | None:
|
||||
"""Update a chat session's metadata."""
|
||||
data: ChatSessionUpdateInput = {"updatedAt": datetime.now(UTC)}
|
||||
|
||||
@@ -75,9 +79,12 @@ async def update_chat_session(
|
||||
session = await PrismaChatSession.prisma().update(
|
||||
where={"id": session_id},
|
||||
data=data,
|
||||
include={"Messages": {"order_by": {"sequence": "asc"}}},
|
||||
include={"Messages": True},
|
||||
)
|
||||
return ChatSession.from_db(session) if session else None
|
||||
if session and session.Messages:
|
||||
# Sort in Python - Prisma Python doesn't support order_by in include clauses
|
||||
session.Messages.sort(key=lambda m: m.sequence)
|
||||
return session
|
||||
|
||||
|
||||
async def add_chat_message(
|
||||
@@ -90,7 +97,7 @@ async def add_chat_message(
|
||||
refusal: str | None = None,
|
||||
tool_calls: list[dict[str, Any]] | None = None,
|
||||
function_call: dict[str, Any] | None = None,
|
||||
) -> ChatMessage:
|
||||
) -> PrismaChatMessage:
|
||||
"""Add a message to a chat session."""
|
||||
# Build input dict dynamically rather than using ChatMessageCreateInput directly
|
||||
# because Prisma's TypedDict validation rejects optional fields set to None.
|
||||
@@ -125,14 +132,14 @@ async def add_chat_message(
|
||||
),
|
||||
PrismaChatMessage.prisma().create(data=cast(ChatMessageCreateInput, data)),
|
||||
)
|
||||
return ChatMessage.from_db(message)
|
||||
return message
|
||||
|
||||
|
||||
async def add_chat_messages_batch(
|
||||
session_id: str,
|
||||
messages: list[dict[str, Any]],
|
||||
start_sequence: int,
|
||||
) -> list[ChatMessage]:
|
||||
) -> list[PrismaChatMessage]:
|
||||
"""Add multiple messages to a chat session in a batch.
|
||||
|
||||
Uses a transaction for atomicity - if any message creation fails,
|
||||
@@ -143,7 +150,7 @@ async def add_chat_messages_batch(
|
||||
|
||||
created_messages = []
|
||||
|
||||
async with db.transaction() as tx:
|
||||
async with transaction() as tx:
|
||||
for i, msg in enumerate(messages):
|
||||
# Build input dict dynamically rather than using ChatMessageCreateInput
|
||||
# directly because Prisma's TypedDict validation rejects optional fields
|
||||
@@ -183,22 +190,21 @@ async def add_chat_messages_batch(
|
||||
data={"updatedAt": datetime.now(UTC)},
|
||||
)
|
||||
|
||||
return [ChatMessage.from_db(m) for m in created_messages]
|
||||
return created_messages
|
||||
|
||||
|
||||
async def get_user_chat_sessions(
|
||||
user_id: str,
|
||||
limit: int = 50,
|
||||
offset: int = 0,
|
||||
) -> list[ChatSessionInfo]:
|
||||
) -> list[PrismaChatSession]:
|
||||
"""Get chat sessions for a user, ordered by most recent."""
|
||||
prisma_sessions = await PrismaChatSession.prisma().find_many(
|
||||
return await PrismaChatSession.prisma().find_many(
|
||||
where={"userId": user_id},
|
||||
order={"updatedAt": "desc"},
|
||||
take=limit,
|
||||
skip=offset,
|
||||
)
|
||||
return [ChatSessionInfo.from_db(s) for s in prisma_sessions]
|
||||
|
||||
|
||||
async def get_user_session_count(user_id: str) -> int:
|
||||
@@ -241,45 +247,3 @@ async def get_chat_session_message_count(session_id: str) -> int:
|
||||
"""Get the number of messages in a chat session."""
|
||||
count = await PrismaChatMessage.prisma().count(where={"sessionId": session_id})
|
||||
return count
|
||||
|
||||
|
||||
async def update_tool_message_content(
|
||||
session_id: str,
|
||||
tool_call_id: str,
|
||||
new_content: str,
|
||||
) -> bool:
|
||||
"""Update the content of a tool message in chat history.
|
||||
|
||||
Used by background tasks to update pending operation messages with final results.
|
||||
|
||||
Args:
|
||||
session_id: The chat session ID.
|
||||
tool_call_id: The tool call ID to find the message.
|
||||
new_content: The new content to set.
|
||||
|
||||
Returns:
|
||||
True if a message was updated, False otherwise.
|
||||
"""
|
||||
try:
|
||||
result = await PrismaChatMessage.prisma().update_many(
|
||||
where={
|
||||
"sessionId": session_id,
|
||||
"toolCallId": tool_call_id,
|
||||
},
|
||||
data={
|
||||
"content": new_content,
|
||||
},
|
||||
)
|
||||
if result == 0:
|
||||
logger.warning(
|
||||
f"No message found to update for session {session_id}, "
|
||||
f"tool_call_id {tool_call_id}"
|
||||
)
|
||||
return False
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to update tool message for session {session_id}, "
|
||||
f"tool_call_id {tool_call_id}: {e}"
|
||||
)
|
||||
return False
|
||||
@@ -2,7 +2,7 @@ import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
from datetime import UTC, datetime
|
||||
from typing import Any, Self, cast
|
||||
from typing import Any
|
||||
from weakref import WeakValueDictionary
|
||||
|
||||
from openai.types.chat import (
|
||||
@@ -23,17 +23,26 @@ from prisma.models import ChatMessage as PrismaChatMessage
|
||||
from prisma.models import ChatSession as PrismaChatSession
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.data.db_accessors import chat_db
|
||||
from backend.data.redis_client import get_redis_async
|
||||
from backend.util import json
|
||||
from backend.util.exceptions import DatabaseError, RedisError
|
||||
|
||||
from . import db as chat_db
|
||||
from .config import ChatConfig
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
config = ChatConfig()
|
||||
|
||||
|
||||
def _parse_json_field(value: str | dict | list | None, default: Any = None) -> Any:
|
||||
"""Parse a JSON field that may be stored as string or already parsed."""
|
||||
if value is None:
|
||||
return default
|
||||
if isinstance(value, str):
|
||||
return json.loads(value)
|
||||
return value
|
||||
|
||||
|
||||
# Redis cache key prefix for chat sessions
|
||||
CHAT_SESSION_CACHE_PREFIX = "chat:session:"
|
||||
|
||||
@@ -43,7 +52,28 @@ def _get_session_cache_key(session_id: str) -> str:
|
||||
return f"{CHAT_SESSION_CACHE_PREFIX}{session_id}"
|
||||
|
||||
|
||||
# ===================== Chat data models ===================== #
|
||||
# Session-level locks to prevent race conditions during concurrent upserts.
|
||||
# Uses WeakValueDictionary to automatically garbage collect locks when no longer referenced,
|
||||
# preventing unbounded memory growth while maintaining lock semantics for active sessions.
|
||||
# Invalidation: Locks are auto-removed by GC when no coroutine holds a reference (after
|
||||
# async with lock: completes). Explicit cleanup also occurs in delete_chat_session().
|
||||
_session_locks: WeakValueDictionary[str, asyncio.Lock] = WeakValueDictionary()
|
||||
_session_locks_mutex = asyncio.Lock()
|
||||
|
||||
|
||||
async def _get_session_lock(session_id: str) -> asyncio.Lock:
|
||||
"""Get or create a lock for a specific session to prevent concurrent upserts.
|
||||
|
||||
Uses WeakValueDictionary for automatic cleanup: locks are garbage collected
|
||||
when no coroutine holds a reference to them, preventing memory leaks from
|
||||
unbounded growth of session locks.
|
||||
"""
|
||||
async with _session_locks_mutex:
|
||||
lock = _session_locks.get(session_id)
|
||||
if lock is None:
|
||||
lock = asyncio.Lock()
|
||||
_session_locks[session_id] = lock
|
||||
return lock
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
@@ -55,19 +85,6 @@ class ChatMessage(BaseModel):
|
||||
tool_calls: list[dict] | None = None
|
||||
function_call: dict | None = None
|
||||
|
||||
@staticmethod
|
||||
def from_db(prisma_message: PrismaChatMessage) -> "ChatMessage":
|
||||
"""Convert a Prisma ChatMessage to a Pydantic ChatMessage."""
|
||||
return ChatMessage(
|
||||
role=prisma_message.role,
|
||||
content=prisma_message.content,
|
||||
name=prisma_message.name,
|
||||
tool_call_id=prisma_message.toolCallId,
|
||||
refusal=prisma_message.refusal,
|
||||
tool_calls=_parse_json_field(prisma_message.toolCalls),
|
||||
function_call=_parse_json_field(prisma_message.functionCall),
|
||||
)
|
||||
|
||||
|
||||
class Usage(BaseModel):
|
||||
prompt_tokens: int
|
||||
@@ -75,10 +92,11 @@ class Usage(BaseModel):
|
||||
total_tokens: int
|
||||
|
||||
|
||||
class ChatSessionInfo(BaseModel):
|
||||
class ChatSession(BaseModel):
|
||||
session_id: str
|
||||
user_id: str
|
||||
title: str | None = None
|
||||
messages: list[ChatMessage]
|
||||
usage: list[Usage]
|
||||
credentials: dict[str, dict] = {} # Map of provider -> credential metadata
|
||||
started_at: datetime
|
||||
@@ -86,9 +104,40 @@ class ChatSessionInfo(BaseModel):
|
||||
successful_agent_runs: dict[str, int] = {}
|
||||
successful_agent_schedules: dict[str, int] = {}
|
||||
|
||||
@classmethod
|
||||
def from_db(cls, prisma_session: PrismaChatSession) -> Self:
|
||||
"""Convert Prisma ChatSession to Pydantic ChatSession."""
|
||||
@staticmethod
|
||||
def new(user_id: str) -> "ChatSession":
|
||||
return ChatSession(
|
||||
session_id=str(uuid.uuid4()),
|
||||
user_id=user_id,
|
||||
title=None,
|
||||
messages=[],
|
||||
usage=[],
|
||||
credentials={},
|
||||
started_at=datetime.now(UTC),
|
||||
updated_at=datetime.now(UTC),
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def from_db(
|
||||
prisma_session: PrismaChatSession,
|
||||
prisma_messages: list[PrismaChatMessage] | None = None,
|
||||
) -> "ChatSession":
|
||||
"""Convert Prisma models to Pydantic ChatSession."""
|
||||
messages = []
|
||||
if prisma_messages:
|
||||
for msg in prisma_messages:
|
||||
messages.append(
|
||||
ChatMessage(
|
||||
role=msg.role,
|
||||
content=msg.content,
|
||||
name=msg.name,
|
||||
tool_call_id=msg.toolCallId,
|
||||
refusal=msg.refusal,
|
||||
tool_calls=_parse_json_field(msg.toolCalls),
|
||||
function_call=_parse_json_field(msg.functionCall),
|
||||
)
|
||||
)
|
||||
|
||||
# Parse JSON fields from Prisma
|
||||
credentials = _parse_json_field(prisma_session.credentials, default={})
|
||||
successful_agent_runs = _parse_json_field(
|
||||
@@ -110,10 +159,11 @@ class ChatSessionInfo(BaseModel):
|
||||
)
|
||||
)
|
||||
|
||||
return cls(
|
||||
return ChatSession(
|
||||
session_id=prisma_session.id,
|
||||
user_id=prisma_session.userId,
|
||||
title=prisma_session.title,
|
||||
messages=messages,
|
||||
usage=usage,
|
||||
credentials=credentials,
|
||||
started_at=prisma_session.createdAt,
|
||||
@@ -122,56 +172,6 @@ class ChatSessionInfo(BaseModel):
|
||||
successful_agent_schedules=successful_agent_schedules,
|
||||
)
|
||||
|
||||
|
||||
class ChatSession(ChatSessionInfo):
|
||||
messages: list[ChatMessage]
|
||||
|
||||
@classmethod
|
||||
def new(cls, user_id: str) -> Self:
|
||||
return cls(
|
||||
session_id=str(uuid.uuid4()),
|
||||
user_id=user_id,
|
||||
title=None,
|
||||
messages=[],
|
||||
usage=[],
|
||||
credentials={},
|
||||
started_at=datetime.now(UTC),
|
||||
updated_at=datetime.now(UTC),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_db(cls, prisma_session: PrismaChatSession) -> Self:
|
||||
"""Convert Prisma ChatSession to Pydantic ChatSession."""
|
||||
if prisma_session.Messages is None:
|
||||
raise ValueError(
|
||||
f"Prisma session {prisma_session.id} is missing Messages relation"
|
||||
)
|
||||
|
||||
return cls(
|
||||
**ChatSessionInfo.from_db(prisma_session).model_dump(),
|
||||
messages=[ChatMessage.from_db(m) for m in prisma_session.Messages],
|
||||
)
|
||||
|
||||
def add_tool_call_to_current_turn(self, tool_call: dict) -> None:
|
||||
"""Attach a tool_call to the current turn's assistant message.
|
||||
|
||||
Searches backwards for the most recent assistant message (stopping at
|
||||
any user message boundary). If found, appends the tool_call to it.
|
||||
Otherwise creates a new assistant message with the tool_call.
|
||||
"""
|
||||
for msg in reversed(self.messages):
|
||||
if msg.role == "user":
|
||||
break
|
||||
if msg.role == "assistant":
|
||||
if not msg.tool_calls:
|
||||
msg.tool_calls = []
|
||||
msg.tool_calls.append(tool_call)
|
||||
return
|
||||
|
||||
self.messages.append(
|
||||
ChatMessage(role="assistant", content="", tool_calls=[tool_call])
|
||||
)
|
||||
|
||||
def to_openai_messages(self) -> list[ChatCompletionMessageParam]:
|
||||
messages = []
|
||||
for message in self.messages:
|
||||
@@ -258,85 +258,115 @@ class ChatSession(ChatSessionInfo):
|
||||
name=message.name or "",
|
||||
)
|
||||
)
|
||||
return self._merge_consecutive_assistant_messages(messages)
|
||||
|
||||
@staticmethod
|
||||
def _merge_consecutive_assistant_messages(
|
||||
messages: list[ChatCompletionMessageParam],
|
||||
) -> list[ChatCompletionMessageParam]:
|
||||
"""Merge consecutive assistant messages into single messages.
|
||||
|
||||
Long-running tool flows can create split assistant messages: one with
|
||||
text content and another with tool_calls. Anthropic's API requires
|
||||
tool_result blocks to reference a tool_use in the immediately preceding
|
||||
assistant message, so these splits cause 400 errors via OpenRouter.
|
||||
"""
|
||||
if len(messages) < 2:
|
||||
return messages
|
||||
|
||||
result: list[ChatCompletionMessageParam] = [messages[0]]
|
||||
for msg in messages[1:]:
|
||||
prev = result[-1]
|
||||
if prev.get("role") != "assistant" or msg.get("role") != "assistant":
|
||||
result.append(msg)
|
||||
continue
|
||||
|
||||
prev = cast(ChatCompletionAssistantMessageParam, prev)
|
||||
curr = cast(ChatCompletionAssistantMessageParam, msg)
|
||||
|
||||
curr_content = curr.get("content") or ""
|
||||
if curr_content:
|
||||
prev_content = prev.get("content") or ""
|
||||
prev["content"] = (
|
||||
f"{prev_content}\n{curr_content}" if prev_content else curr_content
|
||||
)
|
||||
|
||||
curr_tool_calls = curr.get("tool_calls")
|
||||
if curr_tool_calls:
|
||||
prev_tool_calls = prev.get("tool_calls")
|
||||
prev["tool_calls"] = (
|
||||
list(prev_tool_calls) + list(curr_tool_calls)
|
||||
if prev_tool_calls
|
||||
else list(curr_tool_calls)
|
||||
)
|
||||
return result
|
||||
return messages
|
||||
|
||||
|
||||
def _parse_json_field(value: str | dict | list | None, default: Any = None) -> Any:
|
||||
"""Parse a JSON field that may be stored as string or already parsed."""
|
||||
if value is None:
|
||||
return default
|
||||
if isinstance(value, str):
|
||||
return json.loads(value)
|
||||
return value
|
||||
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
|
||||
"""Get a chat session from Redis cache."""
|
||||
redis_key = _get_session_cache_key(session_id)
|
||||
async_redis = await get_redis_async()
|
||||
raw_session: bytes | None = await async_redis.get(redis_key)
|
||||
|
||||
if raw_session is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
session = ChatSession.model_validate_json(raw_session)
|
||||
logger.info(
|
||||
f"Loading session {session_id} from cache: "
|
||||
f"message_count={len(session.messages)}, "
|
||||
f"roles={[m.role for m in session.messages]}"
|
||||
)
|
||||
return session
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to deserialize session {session_id}: {e}", exc_info=True)
|
||||
raise RedisError(f"Corrupted session data for {session_id}") from e
|
||||
|
||||
|
||||
# ================ Chat cache + DB operations ================ #
|
||||
|
||||
# NOTE: Database calls are automatically routed through DatabaseManager if Prisma is not
|
||||
# connected directly.
|
||||
|
||||
|
||||
async def cache_chat_session(session: ChatSession) -> None:
|
||||
"""Cache a chat session in Redis (without persisting to the database)."""
|
||||
async def _cache_session(session: ChatSession) -> None:
|
||||
"""Cache a chat session in Redis."""
|
||||
redis_key = _get_session_cache_key(session.session_id)
|
||||
async_redis = await get_redis_async()
|
||||
await async_redis.setex(redis_key, config.session_ttl, session.model_dump_json())
|
||||
|
||||
|
||||
async def invalidate_session_cache(session_id: str) -> None:
|
||||
"""Invalidate a chat session from Redis cache.
|
||||
async def cache_chat_session(session: ChatSession) -> None:
|
||||
"""Cache a chat session without persisting to the database."""
|
||||
await _cache_session(session)
|
||||
|
||||
Used by background tasks to ensure fresh data is loaded on next access.
|
||||
This is best-effort - Redis failures are logged but don't fail the operation.
|
||||
"""
|
||||
try:
|
||||
redis_key = _get_session_cache_key(session_id)
|
||||
async_redis = await get_redis_async()
|
||||
await async_redis.delete(redis_key)
|
||||
except Exception as e:
|
||||
# Best-effort: log but don't fail - cache will expire naturally
|
||||
logger.warning(f"Failed to invalidate session cache for {session_id}: {e}")
|
||||
|
||||
async def _get_session_from_db(session_id: str) -> ChatSession | None:
|
||||
"""Get a chat session from the database."""
|
||||
prisma_session = await chat_db.get_chat_session(session_id)
|
||||
if not prisma_session:
|
||||
return None
|
||||
|
||||
messages = prisma_session.Messages
|
||||
logger.info(
|
||||
f"Loading session {session_id} from DB: "
|
||||
f"has_messages={messages is not None}, "
|
||||
f"message_count={len(messages) if messages else 0}, "
|
||||
f"roles={[m.role for m in messages] if messages else []}"
|
||||
)
|
||||
|
||||
return ChatSession.from_db(prisma_session, messages)
|
||||
|
||||
|
||||
async def _save_session_to_db(
|
||||
session: ChatSession, existing_message_count: int
|
||||
) -> None:
|
||||
"""Save or update a chat session in the database."""
|
||||
# Check if session exists in DB
|
||||
existing = await chat_db.get_chat_session(session.session_id)
|
||||
|
||||
if not existing:
|
||||
# Create new session
|
||||
await chat_db.create_chat_session(
|
||||
session_id=session.session_id,
|
||||
user_id=session.user_id,
|
||||
)
|
||||
existing_message_count = 0
|
||||
|
||||
# Calculate total tokens from usage
|
||||
total_prompt = sum(u.prompt_tokens for u in session.usage)
|
||||
total_completion = sum(u.completion_tokens for u in session.usage)
|
||||
|
||||
# Update session metadata
|
||||
await chat_db.update_chat_session(
|
||||
session_id=session.session_id,
|
||||
credentials=session.credentials,
|
||||
successful_agent_runs=session.successful_agent_runs,
|
||||
successful_agent_schedules=session.successful_agent_schedules,
|
||||
total_prompt_tokens=total_prompt,
|
||||
total_completion_tokens=total_completion,
|
||||
)
|
||||
|
||||
# Add new messages (only those after existing count)
|
||||
new_messages = session.messages[existing_message_count:]
|
||||
if new_messages:
|
||||
messages_data = []
|
||||
for msg in new_messages:
|
||||
messages_data.append(
|
||||
{
|
||||
"role": msg.role,
|
||||
"content": msg.content,
|
||||
"name": msg.name,
|
||||
"tool_call_id": msg.tool_call_id,
|
||||
"refusal": msg.refusal,
|
||||
"tool_calls": msg.tool_calls,
|
||||
"function_call": msg.function_call,
|
||||
}
|
||||
)
|
||||
logger.info(
|
||||
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
|
||||
f"roles={[m['role'] for m in messages_data]}, "
|
||||
f"start_sequence={existing_message_count}"
|
||||
)
|
||||
await chat_db.add_chat_messages_batch(
|
||||
session_id=session.session_id,
|
||||
messages=messages_data,
|
||||
start_sequence=existing_message_count,
|
||||
)
|
||||
|
||||
|
||||
async def get_chat_session(
|
||||
@@ -370,7 +400,7 @@ async def get_chat_session(
|
||||
logger.warning(f"Unexpected cache error for session {session_id}: {e}")
|
||||
|
||||
# Fall back to database
|
||||
logger.debug(f"Session {session_id} not in cache, checking database")
|
||||
logger.info(f"Session {session_id} not in cache, checking database")
|
||||
session = await _get_session_from_db(session_id)
|
||||
|
||||
if session is None:
|
||||
@@ -386,7 +416,7 @@ async def get_chat_session(
|
||||
|
||||
# Cache the session from DB
|
||||
try:
|
||||
await cache_chat_session(session)
|
||||
await _cache_session(session)
|
||||
logger.info(f"Cached session {session_id} from database")
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to cache session {session_id}: {e}")
|
||||
@@ -394,45 +424,9 @@ async def get_chat_session(
|
||||
return session
|
||||
|
||||
|
||||
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
|
||||
"""Get a chat session from Redis cache."""
|
||||
redis_key = _get_session_cache_key(session_id)
|
||||
async_redis = await get_redis_async()
|
||||
raw_session: bytes | None = await async_redis.get(redis_key)
|
||||
|
||||
if raw_session is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
session = ChatSession.model_validate_json(raw_session)
|
||||
logger.info(
|
||||
f"Loading session {session_id} from cache: "
|
||||
f"message_count={len(session.messages)}, "
|
||||
f"roles={[m.role for m in session.messages]}"
|
||||
)
|
||||
return session
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to deserialize session {session_id}: {e}", exc_info=True)
|
||||
raise RedisError(f"Corrupted session data for {session_id}") from e
|
||||
|
||||
|
||||
async def _get_session_from_db(session_id: str) -> ChatSession | None:
|
||||
"""Get a chat session from the database."""
|
||||
session = await chat_db().get_chat_session(session_id)
|
||||
if not session:
|
||||
return None
|
||||
|
||||
logger.info(
|
||||
f"Loaded session {session_id} from DB: "
|
||||
f"has_messages={bool(session.messages)}, "
|
||||
f"message_count={len(session.messages)}, "
|
||||
f"roles={[m.role for m in session.messages]}"
|
||||
)
|
||||
|
||||
return session
|
||||
|
||||
|
||||
async def upsert_chat_session(session: ChatSession) -> ChatSession:
|
||||
async def upsert_chat_session(
|
||||
session: ChatSession,
|
||||
) -> ChatSession:
|
||||
"""Update a chat session in both cache and database.
|
||||
|
||||
Uses session-level locking to prevent race conditions when concurrent
|
||||
@@ -450,7 +444,7 @@ async def upsert_chat_session(session: ChatSession) -> ChatSession:
|
||||
|
||||
async with lock:
|
||||
# Get existing message count from DB for incremental saves
|
||||
existing_message_count = await chat_db().get_chat_session_message_count(
|
||||
existing_message_count = await chat_db.get_chat_session_message_count(
|
||||
session.session_id
|
||||
)
|
||||
|
||||
@@ -467,7 +461,7 @@ async def upsert_chat_session(session: ChatSession) -> ChatSession:
|
||||
|
||||
# Save to cache (best-effort, even if DB failed)
|
||||
try:
|
||||
await cache_chat_session(session)
|
||||
await _cache_session(session)
|
||||
except Exception as e:
|
||||
# If DB succeeded but cache failed, raise cache error
|
||||
if db_error is None:
|
||||
@@ -488,99 +482,6 @@ async def upsert_chat_session(session: ChatSession) -> ChatSession:
|
||||
return session
|
||||
|
||||
|
||||
async def _save_session_to_db(
|
||||
session: ChatSession, existing_message_count: int
|
||||
) -> None:
|
||||
"""Save or update a chat session in the database."""
|
||||
db = chat_db()
|
||||
|
||||
# Check if session exists in DB
|
||||
existing = await db.get_chat_session(session.session_id)
|
||||
|
||||
if not existing:
|
||||
# Create new session
|
||||
await db.create_chat_session(
|
||||
session_id=session.session_id,
|
||||
user_id=session.user_id,
|
||||
)
|
||||
existing_message_count = 0
|
||||
|
||||
# Calculate total tokens from usage
|
||||
total_prompt = sum(u.prompt_tokens for u in session.usage)
|
||||
total_completion = sum(u.completion_tokens for u in session.usage)
|
||||
|
||||
# Update session metadata
|
||||
await db.update_chat_session(
|
||||
session_id=session.session_id,
|
||||
credentials=session.credentials,
|
||||
successful_agent_runs=session.successful_agent_runs,
|
||||
successful_agent_schedules=session.successful_agent_schedules,
|
||||
total_prompt_tokens=total_prompt,
|
||||
total_completion_tokens=total_completion,
|
||||
)
|
||||
|
||||
# Add new messages (only those after existing count)
|
||||
new_messages = session.messages[existing_message_count:]
|
||||
if new_messages:
|
||||
messages_data = []
|
||||
for msg in new_messages:
|
||||
messages_data.append(
|
||||
{
|
||||
"role": msg.role,
|
||||
"content": msg.content,
|
||||
"name": msg.name,
|
||||
"tool_call_id": msg.tool_call_id,
|
||||
"refusal": msg.refusal,
|
||||
"tool_calls": msg.tool_calls,
|
||||
"function_call": msg.function_call,
|
||||
}
|
||||
)
|
||||
logger.info(
|
||||
f"Saving {len(new_messages)} new messages to DB for session {session.session_id}: "
|
||||
f"roles={[m['role'] for m in messages_data]}, "
|
||||
f"start_sequence={existing_message_count}"
|
||||
)
|
||||
await db.add_chat_messages_batch(
|
||||
session_id=session.session_id,
|
||||
messages=messages_data,
|
||||
start_sequence=existing_message_count,
|
||||
)
|
||||
|
||||
|
||||
async def append_and_save_message(session_id: str, message: ChatMessage) -> ChatSession:
|
||||
"""Atomically append a message to a session and persist it.
|
||||
|
||||
Acquires the session lock, re-fetches the latest session state,
|
||||
appends the message, and saves — preventing message loss when
|
||||
concurrent requests modify the same session.
|
||||
"""
|
||||
lock = await _get_session_lock(session_id)
|
||||
|
||||
async with lock:
|
||||
session = await get_chat_session(session_id)
|
||||
if session is None:
|
||||
raise ValueError(f"Session {session_id} not found")
|
||||
|
||||
session.messages.append(message)
|
||||
existing_message_count = await chat_db().get_chat_session_message_count(
|
||||
session_id
|
||||
)
|
||||
|
||||
try:
|
||||
await _save_session_to_db(session, existing_message_count)
|
||||
except Exception as e:
|
||||
raise DatabaseError(
|
||||
f"Failed to persist message to session {session_id}"
|
||||
) from e
|
||||
|
||||
try:
|
||||
await cache_chat_session(session)
|
||||
except Exception as e:
|
||||
logger.warning(f"Cache write failed for session {session_id}: {e}")
|
||||
|
||||
return session
|
||||
|
||||
|
||||
async def create_chat_session(user_id: str) -> ChatSession:
|
||||
"""Create a new chat session and persist it.
|
||||
|
||||
@@ -593,7 +494,7 @@ async def create_chat_session(user_id: str) -> ChatSession:
|
||||
|
||||
# Create in database first - fail fast if this fails
|
||||
try:
|
||||
await chat_db().create_chat_session(
|
||||
await chat_db.create_chat_session(
|
||||
session_id=session.session_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
@@ -605,7 +506,7 @@ async def create_chat_session(user_id: str) -> ChatSession:
|
||||
|
||||
# Cache the session (best-effort optimization, DB is source of truth)
|
||||
try:
|
||||
await cache_chat_session(session)
|
||||
await _cache_session(session)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to cache new session {session.session_id}: {e}")
|
||||
|
||||
@@ -616,16 +517,20 @@ async def get_user_sessions(
|
||||
user_id: str,
|
||||
limit: int = 50,
|
||||
offset: int = 0,
|
||||
) -> tuple[list[ChatSessionInfo], int]:
|
||||
) -> tuple[list[ChatSession], int]:
|
||||
"""Get chat sessions for a user from the database with total count.
|
||||
|
||||
Returns:
|
||||
A tuple of (sessions, total_count) where total_count is the overall
|
||||
number of sessions for the user (not just the current page).
|
||||
"""
|
||||
db = chat_db()
|
||||
sessions = await db.get_user_chat_sessions(user_id, limit, offset)
|
||||
total_count = await db.get_user_session_count(user_id)
|
||||
prisma_sessions = await chat_db.get_user_chat_sessions(user_id, limit, offset)
|
||||
total_count = await chat_db.get_user_session_count(user_id)
|
||||
|
||||
sessions = []
|
||||
for prisma_session in prisma_sessions:
|
||||
# Convert without messages for listing (lighter weight)
|
||||
sessions.append(ChatSession.from_db(prisma_session, None))
|
||||
|
||||
return sessions, total_count
|
||||
|
||||
@@ -643,7 +548,7 @@ async def delete_chat_session(session_id: str, user_id: str | None = None) -> bo
|
||||
"""
|
||||
# Delete from database first (with optional user_id validation)
|
||||
# This confirms ownership before invalidating cache
|
||||
deleted = await chat_db().delete_chat_session(session_id, user_id)
|
||||
deleted = await chat_db.delete_chat_session(session_id, user_id)
|
||||
|
||||
if not deleted:
|
||||
return False
|
||||
@@ -678,52 +583,20 @@ async def update_session_title(session_id: str, title: str) -> bool:
|
||||
True if updated successfully, False otherwise.
|
||||
"""
|
||||
try:
|
||||
result = await chat_db().update_chat_session(session_id=session_id, title=title)
|
||||
result = await chat_db.update_chat_session(session_id=session_id, title=title)
|
||||
if result is None:
|
||||
logger.warning(f"Session {session_id} not found for title update")
|
||||
return False
|
||||
|
||||
# Update title in cache if it exists (instead of invalidating).
|
||||
# This prevents race conditions where cache invalidation causes
|
||||
# the frontend to see stale DB data while streaming is still in progress.
|
||||
# Invalidate cache so next fetch gets updated title
|
||||
try:
|
||||
cached = await _get_session_from_cache(session_id)
|
||||
if cached:
|
||||
cached.title = title
|
||||
await cache_chat_session(cached)
|
||||
redis_key = _get_session_cache_key(session_id)
|
||||
async_redis = await get_redis_async()
|
||||
await async_redis.delete(redis_key)
|
||||
except Exception as e:
|
||||
# Not critical - title will be correct on next full cache refresh
|
||||
logger.warning(
|
||||
f"Failed to update title in cache for session {session_id}: {e}"
|
||||
)
|
||||
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
|
||||
|
||||
return True
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to update title for session {session_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
# ==================== Chat session locks ==================== #
|
||||
|
||||
_session_locks: WeakValueDictionary[str, asyncio.Lock] = WeakValueDictionary()
|
||||
_session_locks_mutex = asyncio.Lock()
|
||||
|
||||
|
||||
async def _get_session_lock(session_id: str) -> asyncio.Lock:
|
||||
"""Get or create a lock for a specific session to prevent concurrent upserts.
|
||||
|
||||
This was originally added to solve the specific problem of race conditions between
|
||||
the session title thread and the conversation thread, which always occurs on the
|
||||
same instance as we prevent rapid request sends on the frontend.
|
||||
|
||||
Uses WeakValueDictionary for automatic cleanup: locks are garbage collected
|
||||
when no coroutine holds a reference to them, preventing memory leaks from
|
||||
unbounded growth of session locks. Explicit cleanup also occurs
|
||||
in `delete_chat_session()`.
|
||||
"""
|
||||
async with _session_locks_mutex:
|
||||
lock = _session_locks.get(session_id)
|
||||
if lock is None:
|
||||
lock = asyncio.Lock()
|
||||
_session_locks[session_id] = lock
|
||||
return lock
|
||||
119
autogpt_platform/backend/backend/api/features/chat/model_test.py
Normal file
119
autogpt_platform/backend/backend/api/features/chat/model_test.py
Normal file
@@ -0,0 +1,119 @@
|
||||
import pytest
|
||||
|
||||
from .model import (
|
||||
ChatMessage,
|
||||
ChatSession,
|
||||
Usage,
|
||||
get_chat_session,
|
||||
upsert_chat_session,
|
||||
)
|
||||
|
||||
messages = [
|
||||
ChatMessage(content="Hello, how are you?", role="user"),
|
||||
ChatMessage(
|
||||
content="I'm fine, thank you!",
|
||||
role="assistant",
|
||||
tool_calls=[
|
||||
{
|
||||
"id": "t123",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "get_weather",
|
||||
"arguments": '{"city": "New York"}',
|
||||
},
|
||||
}
|
||||
],
|
||||
),
|
||||
ChatMessage(
|
||||
content="I'm using the tool to get the weather",
|
||||
role="tool",
|
||||
tool_call_id="t123",
|
||||
),
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_chatsession_serialization_deserialization():
|
||||
s = ChatSession.new(user_id="abc123")
|
||||
s.messages = messages
|
||||
s.usage = [Usage(prompt_tokens=100, completion_tokens=200, total_tokens=300)]
|
||||
serialized = s.model_dump_json()
|
||||
s2 = ChatSession.model_validate_json(serialized)
|
||||
assert s2.model_dump() == s.model_dump()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_chatsession_redis_storage(setup_test_user, test_user_id):
|
||||
|
||||
s = ChatSession.new(user_id=test_user_id)
|
||||
s.messages = messages
|
||||
|
||||
s = await upsert_chat_session(s)
|
||||
|
||||
s2 = await get_chat_session(
|
||||
session_id=s.session_id,
|
||||
user_id=s.user_id,
|
||||
)
|
||||
|
||||
assert s2 == s
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_chatsession_redis_storage_user_id_mismatch(
|
||||
setup_test_user, test_user_id
|
||||
):
|
||||
|
||||
s = ChatSession.new(user_id=test_user_id)
|
||||
s.messages = messages
|
||||
s = await upsert_chat_session(s)
|
||||
|
||||
s2 = await get_chat_session(s.session_id, "different_user_id")
|
||||
|
||||
assert s2 is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_chatsession_db_storage(setup_test_user, test_user_id):
|
||||
"""Test that messages are correctly saved to and loaded from DB (not cache)."""
|
||||
from backend.data.redis_client import get_redis_async
|
||||
|
||||
# Create session with messages including assistant message
|
||||
s = ChatSession.new(user_id=test_user_id)
|
||||
s.messages = messages # Contains user, assistant, and tool messages
|
||||
assert s.session_id is not None, "Session id is not set"
|
||||
# Upsert to save to both cache and DB
|
||||
s = await upsert_chat_session(s)
|
||||
|
||||
# Clear the Redis cache to force DB load
|
||||
redis_key = f"chat:session:{s.session_id}"
|
||||
async_redis = await get_redis_async()
|
||||
await async_redis.delete(redis_key)
|
||||
|
||||
# Load from DB (cache was cleared)
|
||||
s2 = await get_chat_session(
|
||||
session_id=s.session_id,
|
||||
user_id=s.user_id,
|
||||
)
|
||||
|
||||
assert s2 is not None, "Session not found after loading from DB"
|
||||
assert len(s2.messages) == len(
|
||||
s.messages
|
||||
), f"Message count mismatch: expected {len(s.messages)}, got {len(s2.messages)}"
|
||||
|
||||
# Verify all roles are present
|
||||
roles = [m.role for m in s2.messages]
|
||||
assert "user" in roles, f"User message missing. Roles found: {roles}"
|
||||
assert "assistant" in roles, f"Assistant message missing. Roles found: {roles}"
|
||||
assert "tool" in roles, f"Tool message missing. Roles found: {roles}"
|
||||
|
||||
# Verify message content
|
||||
for orig, loaded in zip(s.messages, s2.messages):
|
||||
assert orig.role == loaded.role, f"Role mismatch: {orig.role} != {loaded.role}"
|
||||
assert (
|
||||
orig.content == loaded.content
|
||||
), f"Content mismatch for {orig.role}: {orig.content} != {loaded.content}"
|
||||
if orig.tool_calls:
|
||||
assert (
|
||||
loaded.tool_calls is not None
|
||||
), f"Tool calls missing for {orig.role} message"
|
||||
assert len(orig.tool_calls) == len(loaded.tool_calls)
|
||||
@@ -10,8 +10,6 @@ from typing import Any
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from backend.util.json import dumps as json_dumps
|
||||
|
||||
|
||||
class ResponseType(str, Enum):
|
||||
"""Types of streaming responses following AI SDK protocol."""
|
||||
@@ -20,10 +18,6 @@ class ResponseType(str, Enum):
|
||||
START = "start"
|
||||
FINISH = "finish"
|
||||
|
||||
# Step lifecycle (one LLM API call within a message)
|
||||
START_STEP = "start-step"
|
||||
FINISH_STEP = "finish-step"
|
||||
|
||||
# Text streaming
|
||||
TEXT_START = "text-start"
|
||||
TEXT_DELTA = "text-delta"
|
||||
@@ -37,7 +31,6 @@ class ResponseType(str, Enum):
|
||||
# Other
|
||||
ERROR = "error"
|
||||
USAGE = "usage"
|
||||
HEARTBEAT = "heartbeat"
|
||||
|
||||
|
||||
class StreamBaseResponse(BaseModel):
|
||||
@@ -58,20 +51,6 @@ class StreamStart(StreamBaseResponse):
|
||||
|
||||
type: ResponseType = ResponseType.START
|
||||
messageId: str = Field(..., description="Unique message ID")
|
||||
taskId: str | None = Field(
|
||||
default=None,
|
||||
description="Task ID for SSE reconnection. Clients can reconnect using GET /tasks/{taskId}/stream",
|
||||
)
|
||||
|
||||
def to_sse(self) -> str:
|
||||
"""Convert to SSE format, excluding non-protocol fields like taskId."""
|
||||
import json
|
||||
|
||||
data: dict[str, Any] = {
|
||||
"type": self.type.value,
|
||||
"messageId": self.messageId,
|
||||
}
|
||||
return f"data: {json.dumps(data)}\n\n"
|
||||
|
||||
|
||||
class StreamFinish(StreamBaseResponse):
|
||||
@@ -80,26 +59,6 @@ class StreamFinish(StreamBaseResponse):
|
||||
type: ResponseType = ResponseType.FINISH
|
||||
|
||||
|
||||
class StreamStartStep(StreamBaseResponse):
|
||||
"""Start of a step (one LLM API call within a message).
|
||||
|
||||
The AI SDK uses this to add a step-start boundary to message.parts,
|
||||
enabling visual separation between multiple LLM calls in a single message.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.START_STEP
|
||||
|
||||
|
||||
class StreamFinishStep(StreamBaseResponse):
|
||||
"""End of a step (one LLM API call within a message).
|
||||
|
||||
The AI SDK uses this to reset activeTextParts and activeReasoningParts,
|
||||
so the next LLM call in a tool-call continuation starts with clean state.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.FINISH_STEP
|
||||
|
||||
|
||||
# ========== Text Streaming ==========
|
||||
|
||||
|
||||
@@ -153,7 +112,7 @@ class StreamToolOutputAvailable(StreamBaseResponse):
|
||||
type: ResponseType = ResponseType.TOOL_OUTPUT_AVAILABLE
|
||||
toolCallId: str = Field(..., description="Tool call ID this responds to")
|
||||
output: str | dict[str, Any] = Field(..., description="Tool execution output")
|
||||
# Keep these for internal backend use
|
||||
# Additional fields for internal use (not part of AI SDK spec but useful)
|
||||
toolName: str | None = Field(
|
||||
default=None, description="Name of the tool that was executed"
|
||||
)
|
||||
@@ -161,17 +120,6 @@ class StreamToolOutputAvailable(StreamBaseResponse):
|
||||
default=True, description="Whether the tool execution succeeded"
|
||||
)
|
||||
|
||||
def to_sse(self) -> str:
|
||||
"""Convert to SSE format, excluding non-spec fields."""
|
||||
import json
|
||||
|
||||
data = {
|
||||
"type": self.type.value,
|
||||
"toolCallId": self.toolCallId,
|
||||
"output": self.output,
|
||||
}
|
||||
return f"data: {json.dumps(data)}\n\n"
|
||||
|
||||
|
||||
# ========== Other ==========
|
||||
|
||||
@@ -194,32 +142,3 @@ class StreamError(StreamBaseResponse):
|
||||
details: dict[str, Any] | None = Field(
|
||||
default=None, description="Additional error details"
|
||||
)
|
||||
|
||||
def to_sse(self) -> str:
|
||||
"""Convert to SSE format, only emitting fields required by AI SDK protocol.
|
||||
|
||||
The AI SDK uses z.strictObject({type, errorText}) which rejects
|
||||
any extra fields like `code` or `details`.
|
||||
"""
|
||||
data = {
|
||||
"type": self.type.value,
|
||||
"errorText": self.errorText,
|
||||
}
|
||||
return f"data: {json_dumps(data)}\n\n"
|
||||
|
||||
|
||||
class StreamHeartbeat(StreamBaseResponse):
|
||||
"""Heartbeat to keep SSE connection alive during long-running operations.
|
||||
|
||||
Uses SSE comment format (: comment) which is ignored by clients but keeps
|
||||
the connection alive through proxies and load balancers.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.HEARTBEAT
|
||||
toolCallId: str | None = Field(
|
||||
default=None, description="Tool call ID if heartbeat is for a specific tool"
|
||||
)
|
||||
|
||||
def to_sse(self) -> str:
|
||||
"""Convert to SSE comment format to keep connection alive."""
|
||||
return ": heartbeat\n\n"
|
||||
@@ -1,60 +1,20 @@
|
||||
"""Chat API routes for chat session management and streaming via SSE."""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import uuid as uuid_module
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Annotated
|
||||
|
||||
from autogpt_libs import auth
|
||||
from fastapi import APIRouter, Depends, Header, HTTPException, Query, Response, Security
|
||||
from fastapi import APIRouter, Depends, Query, Security
|
||||
from fastapi.responses import StreamingResponse
|
||||
from pydantic import BaseModel
|
||||
|
||||
from backend.copilot import service as chat_service
|
||||
from backend.copilot import stream_registry
|
||||
from backend.copilot.completion_handler import (
|
||||
process_operation_failure,
|
||||
process_operation_success,
|
||||
)
|
||||
from backend.copilot.config import ChatConfig
|
||||
from backend.copilot.executor.utils import enqueue_copilot_task
|
||||
from backend.copilot.model import (
|
||||
ChatMessage,
|
||||
ChatSession,
|
||||
append_and_save_message,
|
||||
create_chat_session,
|
||||
delete_chat_session,
|
||||
get_chat_session,
|
||||
get_user_sessions,
|
||||
)
|
||||
from backend.copilot.response_model import StreamError, StreamFinish, StreamHeartbeat
|
||||
from backend.copilot.tools.models import (
|
||||
AgentDetailsResponse,
|
||||
AgentOutputResponse,
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
AgentsFoundResponse,
|
||||
BlockDetailsResponse,
|
||||
BlockListResponse,
|
||||
BlockOutputResponse,
|
||||
ClarificationNeededResponse,
|
||||
DocPageResponse,
|
||||
DocSearchResultsResponse,
|
||||
ErrorResponse,
|
||||
ExecutionStartedResponse,
|
||||
InputValidationErrorResponse,
|
||||
NeedLoginResponse,
|
||||
NoResultsResponse,
|
||||
OperationInProgressResponse,
|
||||
OperationPendingResponse,
|
||||
OperationStartedResponse,
|
||||
SetupRequirementsResponse,
|
||||
UnderstandingUpdatedResponse,
|
||||
)
|
||||
from backend.copilot.tracking import track_user_message
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
from . import service as chat_service
|
||||
from .config import ChatConfig
|
||||
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
|
||||
|
||||
config = ChatConfig()
|
||||
|
||||
|
||||
@@ -95,15 +55,6 @@ class CreateSessionResponse(BaseModel):
|
||||
user_id: str | None
|
||||
|
||||
|
||||
class ActiveStreamInfo(BaseModel):
|
||||
"""Information about an active stream for reconnection."""
|
||||
|
||||
task_id: str
|
||||
last_message_id: str # Redis Stream message ID for resumption
|
||||
operation_id: str # Operation ID for completion tracking
|
||||
tool_name: str # Name of the tool being executed
|
||||
|
||||
|
||||
class SessionDetailResponse(BaseModel):
|
||||
"""Response model providing complete details for a chat session, including messages."""
|
||||
|
||||
@@ -112,7 +63,6 @@ class SessionDetailResponse(BaseModel):
|
||||
updated_at: str
|
||||
user_id: str | None
|
||||
messages: list[dict]
|
||||
active_stream: ActiveStreamInfo | None = None # Present if stream is still active
|
||||
|
||||
|
||||
class SessionSummaryResponse(BaseModel):
|
||||
@@ -131,14 +81,6 @@ class ListSessionsResponse(BaseModel):
|
||||
total: int
|
||||
|
||||
|
||||
class OperationCompleteRequest(BaseModel):
|
||||
"""Request model for external completion webhook."""
|
||||
|
||||
success: bool
|
||||
result: dict | str | None = None
|
||||
error: str | None = None
|
||||
|
||||
|
||||
# ========== Routes ==========
|
||||
|
||||
|
||||
@@ -213,43 +155,6 @@ async def create_session(
|
||||
)
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/sessions/{session_id}",
|
||||
dependencies=[Security(auth.requires_user)],
|
||||
status_code=204,
|
||||
responses={404: {"description": "Session not found or access denied"}},
|
||||
)
|
||||
async def delete_session(
|
||||
session_id: str,
|
||||
user_id: Annotated[str, Security(auth.get_user_id)],
|
||||
) -> Response:
|
||||
"""
|
||||
Delete a chat session.
|
||||
|
||||
Permanently removes a chat session and all its messages.
|
||||
Only the owner can delete their sessions.
|
||||
|
||||
Args:
|
||||
session_id: The session ID to delete.
|
||||
user_id: The authenticated user's ID.
|
||||
|
||||
Returns:
|
||||
204 No Content on success.
|
||||
|
||||
Raises:
|
||||
HTTPException: 404 if session not found or not owned by user.
|
||||
"""
|
||||
deleted = await delete_chat_session(session_id, user_id)
|
||||
|
||||
if not deleted:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail=f"Session {session_id} not found or access denied",
|
||||
)
|
||||
|
||||
return Response(status_code=204)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/sessions/{session_id}",
|
||||
)
|
||||
@@ -261,14 +166,13 @@ async def get_session(
|
||||
Retrieve the details of a specific chat session.
|
||||
|
||||
Looks up a chat session by ID for the given user (if authenticated) and returns all session data including messages.
|
||||
If there's an active stream for this session, returns the task_id for reconnection.
|
||||
|
||||
Args:
|
||||
session_id: The unique identifier for the desired chat session.
|
||||
user_id: The optional authenticated user ID, or None for anonymous access.
|
||||
|
||||
Returns:
|
||||
SessionDetailResponse: Details for the requested session, including active_stream info if applicable.
|
||||
SessionDetailResponse: Details for the requested session, or None if not found.
|
||||
|
||||
"""
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
@@ -276,32 +180,11 @@ async def get_session(
|
||||
raise NotFoundError(f"Session {session_id} not found.")
|
||||
|
||||
messages = [message.model_dump() for message in session.messages]
|
||||
|
||||
# Check if there's an active stream for this session
|
||||
active_stream_info = None
|
||||
active_task, last_message_id = await stream_registry.get_active_task_for_session(
|
||||
session_id, user_id
|
||||
)
|
||||
logger.info(
|
||||
f"[GET_SESSION] session={session_id}, active_task={active_task is not None}, "
|
||||
f"msg_count={len(messages)}, last_role={messages[-1].get('role') if messages else 'none'}"
|
||||
f"Returning session {session_id}: "
|
||||
f"message_count={len(messages)}, "
|
||||
f"roles={[m.get('role') for m in messages]}"
|
||||
)
|
||||
if active_task:
|
||||
# Filter out the in-progress assistant message from the session response.
|
||||
# The client will receive the complete assistant response through the SSE
|
||||
# stream replay instead, preventing duplicate content.
|
||||
if messages and messages[-1].get("role") == "assistant":
|
||||
messages = messages[:-1]
|
||||
|
||||
# Use "0-0" as last_message_id to replay the stream from the beginning.
|
||||
# Since we filtered out the cached assistant message, the client needs
|
||||
# the full stream to reconstruct the response.
|
||||
active_stream_info = ActiveStreamInfo(
|
||||
task_id=active_task.task_id,
|
||||
last_message_id="0-0",
|
||||
operation_id=active_task.operation_id,
|
||||
tool_name=active_task.tool_name,
|
||||
)
|
||||
|
||||
return SessionDetailResponse(
|
||||
id=session.session_id,
|
||||
@@ -309,7 +192,6 @@ async def get_session(
|
||||
updated_at=session.updated_at.isoformat(),
|
||||
user_id=session.user_id or None,
|
||||
messages=messages,
|
||||
active_stream=active_stream_info,
|
||||
)
|
||||
|
||||
|
||||
@@ -329,225 +211,49 @@ async def stream_chat_post(
|
||||
- Tool call UI elements (if invoked)
|
||||
- Tool execution results
|
||||
|
||||
The AI generation runs in a background task that continues even if the client disconnects.
|
||||
All chunks are written to Redis for reconnection support. If the client disconnects,
|
||||
they can reconnect using GET /tasks/{task_id}/stream to resume from where they left off.
|
||||
|
||||
Args:
|
||||
session_id: The chat session identifier to associate with the streamed messages.
|
||||
request: Request body containing message, is_user_message, and optional context.
|
||||
user_id: Optional authenticated user ID.
|
||||
Returns:
|
||||
StreamingResponse: SSE-formatted response chunks. First chunk is a "start" event
|
||||
containing the task_id for reconnection.
|
||||
StreamingResponse: SSE-formatted response chunks.
|
||||
|
||||
"""
|
||||
import asyncio
|
||||
import time
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
|
||||
stream_start_time = time.perf_counter()
|
||||
log_meta = {"component": "ChatStream", "session_id": session_id}
|
||||
if user_id:
|
||||
log_meta["user_id"] = user_id
|
||||
|
||||
logger.info(
|
||||
f"[TIMING] stream_chat_post STARTED, session={session_id}, "
|
||||
f"user={user_id}, message_len={len(request.message)}",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
await _validate_and_get_session(session_id, user_id)
|
||||
logger.info(
|
||||
f"[TIMING] session validated in {(time.perf_counter() - stream_start_time) * 1000:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"duration_ms": (time.perf_counter() - stream_start_time) * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
# Atomically append user message to session BEFORE creating task to avoid
|
||||
# race condition where GET_SESSION sees task as "running" but message isn't
|
||||
# saved yet. append_and_save_message re-fetches inside a lock to prevent
|
||||
# message loss from concurrent requests.
|
||||
if request.message:
|
||||
message = ChatMessage(
|
||||
role="user" if request.is_user_message else "assistant",
|
||||
content=request.message,
|
||||
)
|
||||
if request.is_user_message:
|
||||
track_user_message(
|
||||
user_id=user_id,
|
||||
session_id=session_id,
|
||||
message_length=len(request.message),
|
||||
)
|
||||
logger.info(f"[STREAM] Saving user message to session {session_id}")
|
||||
await append_and_save_message(session_id, message)
|
||||
logger.info(f"[STREAM] User message saved for session {session_id}")
|
||||
|
||||
# Create a task in the stream registry for reconnection support
|
||||
task_id = str(uuid_module.uuid4())
|
||||
operation_id = str(uuid_module.uuid4())
|
||||
log_meta["task_id"] = task_id
|
||||
|
||||
task_create_start = time.perf_counter()
|
||||
await stream_registry.create_task(
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
tool_call_id="chat_stream", # Not a tool call, but needed for the model
|
||||
tool_name="chat",
|
||||
operation_id=operation_id,
|
||||
)
|
||||
logger.info(
|
||||
f"[TIMING] create_task completed in {(time.perf_counter() - task_create_start) * 1000:.1f}ms",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"duration_ms": (time.perf_counter() - task_create_start) * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
await enqueue_copilot_task(
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
operation_id=operation_id,
|
||||
message=request.message,
|
||||
is_user_message=request.is_user_message,
|
||||
context=request.context,
|
||||
)
|
||||
|
||||
setup_time = (time.perf_counter() - stream_start_time) * 1000
|
||||
logger.info(
|
||||
f"[TIMING] Task enqueued to RabbitMQ, setup={setup_time:.1f}ms",
|
||||
extra={"json_fields": {**log_meta, "setup_time_ms": setup_time}},
|
||||
)
|
||||
|
||||
# SSE endpoint that subscribes to the task's stream
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
import time as time_module
|
||||
|
||||
event_gen_start = time_module.perf_counter()
|
||||
chunk_count = 0
|
||||
first_chunk_type: str | None = None
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session_id,
|
||||
request.message,
|
||||
is_user_message=request.is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
context=request.context,
|
||||
):
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Chat stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
logger.info(
|
||||
f"[TIMING] event_generator STARTED, task={task_id}, session={session_id}, "
|
||||
f"user={user_id}",
|
||||
extra={"json_fields": log_meta},
|
||||
"Chat stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_count": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
subscriber_queue = None
|
||||
first_chunk_yielded = False
|
||||
chunks_yielded = 0
|
||||
try:
|
||||
# Subscribe to the task stream (this replays existing messages + live updates)
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=task_id,
|
||||
user_id=user_id,
|
||||
last_message_id="0-0", # Get all messages from the beginning
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
yield StreamFinish().to_sse()
|
||||
yield "data: [DONE]\n\n"
|
||||
return
|
||||
|
||||
# Read from the subscriber queue and yield to SSE
|
||||
logger.info(
|
||||
"[TIMING] Starting to read from subscriber_queue",
|
||||
extra={"json_fields": log_meta},
|
||||
)
|
||||
while True:
|
||||
try:
|
||||
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
|
||||
chunks_yielded += 1
|
||||
|
||||
if not first_chunk_yielded:
|
||||
first_chunk_yielded = True
|
||||
elapsed = time_module.perf_counter() - event_gen_start
|
||||
logger.info(
|
||||
f"[TIMING] FIRST CHUNK from queue at {elapsed:.2f}s, "
|
||||
f"type={type(chunk).__name__}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"chunk_type": type(chunk).__name__,
|
||||
"elapsed_ms": elapsed * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
|
||||
yield chunk.to_sse()
|
||||
|
||||
# Check for finish signal
|
||||
if isinstance(chunk, StreamFinish):
|
||||
total_time = time_module.perf_counter() - event_gen_start
|
||||
logger.info(
|
||||
f"[TIMING] StreamFinish received in {total_time:.2f}s; "
|
||||
f"n_chunks={chunks_yielded}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"chunks_yielded": chunks_yielded,
|
||||
"total_time_ms": total_time * 1000,
|
||||
}
|
||||
},
|
||||
)
|
||||
break
|
||||
except asyncio.TimeoutError:
|
||||
yield StreamHeartbeat().to_sse()
|
||||
|
||||
except GeneratorExit:
|
||||
logger.info(
|
||||
f"[TIMING] GeneratorExit (client disconnected), chunks={chunks_yielded}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"chunks_yielded": chunks_yielded,
|
||||
"reason": "client_disconnect",
|
||||
}
|
||||
},
|
||||
)
|
||||
pass # Client disconnected - background task continues
|
||||
except Exception as e:
|
||||
elapsed = (time_module.perf_counter() - event_gen_start) * 1000
|
||||
logger.error(
|
||||
f"[TIMING] event_generator ERROR after {elapsed:.1f}ms: {e}",
|
||||
extra={
|
||||
"json_fields": {**log_meta, "elapsed_ms": elapsed, "error": str(e)}
|
||||
},
|
||||
)
|
||||
# Surface error to frontend so it doesn't appear stuck
|
||||
yield StreamError(
|
||||
errorText="An error occurred. Please try again.",
|
||||
code="stream_error",
|
||||
).to_sse()
|
||||
yield StreamFinish().to_sse()
|
||||
finally:
|
||||
# Unsubscribe when client disconnects or stream ends
|
||||
if subscriber_queue is not None:
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(
|
||||
task_id, subscriber_queue
|
||||
)
|
||||
except Exception as unsub_err:
|
||||
logger.error(
|
||||
f"Error unsubscribing from task {task_id}: {unsub_err}",
|
||||
exc_info=True,
|
||||
)
|
||||
# AI SDK protocol termination - always yield even if unsubscribe fails
|
||||
total_time = time_module.perf_counter() - event_gen_start
|
||||
logger.info(
|
||||
f"[TIMING] event_generator FINISHED in {total_time:.2f}s; "
|
||||
f"task={task_id}, session={session_id}, n_chunks={chunks_yielded}",
|
||||
extra={
|
||||
"json_fields": {
|
||||
**log_meta,
|
||||
"total_time_ms": total_time * 1000,
|
||||
"chunks_yielded": chunks_yielded,
|
||||
}
|
||||
},
|
||||
)
|
||||
yield "data: [DONE]\n\n"
|
||||
# AI SDK protocol termination
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(
|
||||
event_generator(),
|
||||
@@ -564,90 +270,63 @@ async def stream_chat_post(
|
||||
@router.get(
|
||||
"/sessions/{session_id}/stream",
|
||||
)
|
||||
async def resume_session_stream(
|
||||
async def stream_chat_get(
|
||||
session_id: str,
|
||||
message: Annotated[str, Query(min_length=1, max_length=10000)],
|
||||
user_id: str | None = Depends(auth.get_user_id),
|
||||
is_user_message: bool = Query(default=True),
|
||||
):
|
||||
"""
|
||||
Resume an active stream for a session.
|
||||
Stream chat responses for a session (GET - legacy endpoint).
|
||||
|
||||
Called by the AI SDK's ``useChat(resume: true)`` on page load.
|
||||
Checks for an active (in-progress) task on the session and either replays
|
||||
the full SSE stream or returns 204 No Content if nothing is running.
|
||||
Streams the AI/completion responses in real time over Server-Sent Events (SSE), including:
|
||||
- Text fragments as they are generated
|
||||
- Tool call UI elements (if invoked)
|
||||
- Tool execution results
|
||||
|
||||
Args:
|
||||
session_id: The chat session identifier.
|
||||
session_id: The chat session identifier to associate with the streamed messages.
|
||||
message: The user's new message to process.
|
||||
user_id: Optional authenticated user ID.
|
||||
|
||||
is_user_message: Whether the message is a user message.
|
||||
Returns:
|
||||
StreamingResponse (SSE) when an active stream exists,
|
||||
or 204 No Content when there is nothing to resume.
|
||||
StreamingResponse: SSE-formatted response chunks.
|
||||
|
||||
"""
|
||||
import asyncio
|
||||
|
||||
active_task, _last_id = await stream_registry.get_active_task_for_session(
|
||||
session_id, user_id
|
||||
)
|
||||
|
||||
if not active_task:
|
||||
return Response(status_code=204)
|
||||
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=active_task.task_id,
|
||||
user_id=user_id,
|
||||
last_message_id="0-0", # Full replay so useChat rebuilds the message
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
return Response(status_code=204)
|
||||
session = await _validate_and_get_session(session_id, user_id)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
chunk_count = 0
|
||||
first_chunk_type: str | None = None
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
chunk = await asyncio.wait_for(subscriber_queue.get(), timeout=30.0)
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Resume stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
|
||||
if isinstance(chunk, StreamFinish):
|
||||
break
|
||||
except asyncio.TimeoutError:
|
||||
yield StreamHeartbeat().to_sse()
|
||||
except GeneratorExit:
|
||||
pass
|
||||
except Exception as e:
|
||||
logger.error(f"Error in resume stream for session {session_id}: {e}")
|
||||
finally:
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(
|
||||
active_task.task_id, subscriber_queue
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session_id,
|
||||
message,
|
||||
is_user_message=is_user_message,
|
||||
user_id=user_id,
|
||||
session=session, # Pass pre-fetched session to avoid double-fetch
|
||||
):
|
||||
if chunk_count < 3:
|
||||
logger.info(
|
||||
"Chat stream chunk",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_type": str(chunk.type),
|
||||
},
|
||||
)
|
||||
except Exception as unsub_err:
|
||||
logger.error(
|
||||
f"Error unsubscribing from task {active_task.task_id}: {unsub_err}",
|
||||
exc_info=True,
|
||||
)
|
||||
logger.info(
|
||||
"Resume stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"n_chunks": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
yield "data: [DONE]\n\n"
|
||||
if not first_chunk_type:
|
||||
first_chunk_type = str(chunk.type)
|
||||
chunk_count += 1
|
||||
yield chunk.to_sse()
|
||||
logger.info(
|
||||
"Chat stream completed",
|
||||
extra={
|
||||
"session_id": session_id,
|
||||
"chunk_count": chunk_count,
|
||||
"first_chunk_type": first_chunk_type,
|
||||
},
|
||||
)
|
||||
# AI SDK protocol termination
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(
|
||||
event_generator(),
|
||||
@@ -655,8 +334,8 @@ async def resume_session_stream(
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
"x-vercel-ai-ui-message-stream": "v1",
|
||||
"X-Accel-Buffering": "no", # Disable nginx buffering
|
||||
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
|
||||
},
|
||||
)
|
||||
|
||||
@@ -687,249 +366,6 @@ async def session_assign_user(
|
||||
return {"status": "ok"}
|
||||
|
||||
|
||||
# ========== Task Streaming (SSE Reconnection) ==========
|
||||
|
||||
|
||||
@router.get(
|
||||
"/tasks/{task_id}/stream",
|
||||
)
|
||||
async def stream_task(
|
||||
task_id: str,
|
||||
user_id: str | None = Depends(auth.get_user_id),
|
||||
last_message_id: str = Query(
|
||||
default="0-0",
|
||||
description="Last Redis Stream message ID received (e.g., '1706540123456-0'). Use '0-0' for full replay.",
|
||||
),
|
||||
):
|
||||
"""
|
||||
Reconnect to a long-running task's SSE stream.
|
||||
|
||||
When a long-running operation (like agent generation) starts, the client
|
||||
receives a task_id. If the connection drops, the client can reconnect
|
||||
using this endpoint to resume receiving updates.
|
||||
|
||||
Args:
|
||||
task_id: The task ID from the operation_started response.
|
||||
user_id: Authenticated user ID for ownership validation.
|
||||
last_message_id: Last Redis Stream message ID received ("0-0" for full replay).
|
||||
|
||||
Returns:
|
||||
StreamingResponse: SSE-formatted response chunks starting after last_message_id.
|
||||
|
||||
Raises:
|
||||
HTTPException: 404 if task not found, 410 if task expired, 403 if access denied.
|
||||
"""
|
||||
# Check task existence and expiry before subscribing
|
||||
task, error_code = await stream_registry.get_task_with_expiry_info(task_id)
|
||||
|
||||
if error_code == "TASK_EXPIRED":
|
||||
raise HTTPException(
|
||||
status_code=410,
|
||||
detail={
|
||||
"code": "TASK_EXPIRED",
|
||||
"message": "This operation has expired. Please try again.",
|
||||
},
|
||||
)
|
||||
|
||||
if error_code == "TASK_NOT_FOUND":
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={
|
||||
"code": "TASK_NOT_FOUND",
|
||||
"message": f"Task {task_id} not found.",
|
||||
},
|
||||
)
|
||||
|
||||
# Validate ownership if task has an owner
|
||||
if task and task.user_id and user_id != task.user_id:
|
||||
raise HTTPException(
|
||||
status_code=403,
|
||||
detail={
|
||||
"code": "ACCESS_DENIED",
|
||||
"message": "You do not have access to this task.",
|
||||
},
|
||||
)
|
||||
|
||||
# Get subscriber queue from stream registry
|
||||
subscriber_queue = await stream_registry.subscribe_to_task(
|
||||
task_id=task_id,
|
||||
user_id=user_id,
|
||||
last_message_id=last_message_id,
|
||||
)
|
||||
|
||||
if subscriber_queue is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail={
|
||||
"code": "TASK_NOT_FOUND",
|
||||
"message": f"Task {task_id} not found or access denied.",
|
||||
},
|
||||
)
|
||||
|
||||
async def event_generator() -> AsyncGenerator[str, None]:
|
||||
heartbeat_interval = 15.0 # Send heartbeat every 15 seconds
|
||||
try:
|
||||
while True:
|
||||
try:
|
||||
# Wait for next chunk with timeout for heartbeats
|
||||
chunk = await asyncio.wait_for(
|
||||
subscriber_queue.get(), timeout=heartbeat_interval
|
||||
)
|
||||
yield chunk.to_sse()
|
||||
|
||||
# Check for finish signal
|
||||
if isinstance(chunk, StreamFinish):
|
||||
break
|
||||
except asyncio.TimeoutError:
|
||||
# Send heartbeat to keep connection alive
|
||||
yield StreamHeartbeat().to_sse()
|
||||
except Exception as e:
|
||||
logger.error(f"Error in task stream {task_id}: {e}", exc_info=True)
|
||||
finally:
|
||||
# Unsubscribe when client disconnects or stream ends
|
||||
try:
|
||||
await stream_registry.unsubscribe_from_task(task_id, subscriber_queue)
|
||||
except Exception as unsub_err:
|
||||
logger.error(
|
||||
f"Error unsubscribing from task {task_id}: {unsub_err}",
|
||||
exc_info=True,
|
||||
)
|
||||
# AI SDK protocol termination - always yield even if unsubscribe fails
|
||||
yield "data: [DONE]\n\n"
|
||||
|
||||
return StreamingResponse(
|
||||
event_generator(),
|
||||
media_type="text/event-stream",
|
||||
headers={
|
||||
"Cache-Control": "no-cache",
|
||||
"Connection": "keep-alive",
|
||||
"X-Accel-Buffering": "no",
|
||||
"x-vercel-ai-ui-message-stream": "v1",
|
||||
},
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/tasks/{task_id}",
|
||||
)
|
||||
async def get_task_status(
|
||||
task_id: str,
|
||||
user_id: str | None = Depends(auth.get_user_id),
|
||||
) -> dict:
|
||||
"""
|
||||
Get the status of a long-running task.
|
||||
|
||||
Args:
|
||||
task_id: The task ID to check.
|
||||
user_id: Authenticated user ID for ownership validation.
|
||||
|
||||
Returns:
|
||||
dict: Task status including task_id, status, tool_name, and operation_id.
|
||||
|
||||
Raises:
|
||||
NotFoundError: If task_id is not found or user doesn't have access.
|
||||
"""
|
||||
task = await stream_registry.get_task(task_id)
|
||||
|
||||
if task is None:
|
||||
raise NotFoundError(f"Task {task_id} not found.")
|
||||
|
||||
# Validate ownership - if task has an owner, requester must match
|
||||
if task.user_id and user_id != task.user_id:
|
||||
raise NotFoundError(f"Task {task_id} not found.")
|
||||
|
||||
return {
|
||||
"task_id": task.task_id,
|
||||
"session_id": task.session_id,
|
||||
"status": task.status,
|
||||
"tool_name": task.tool_name,
|
||||
"operation_id": task.operation_id,
|
||||
"created_at": task.created_at.isoformat(),
|
||||
}
|
||||
|
||||
|
||||
# ========== External Completion Webhook ==========
|
||||
|
||||
|
||||
@router.post(
|
||||
"/operations/{operation_id}/complete",
|
||||
status_code=200,
|
||||
)
|
||||
async def complete_operation(
|
||||
operation_id: str,
|
||||
request: OperationCompleteRequest,
|
||||
x_api_key: str | None = Header(default=None),
|
||||
) -> dict:
|
||||
"""
|
||||
External completion webhook for long-running operations.
|
||||
|
||||
Called by Agent Generator (or other services) when an operation completes.
|
||||
This triggers the stream registry to publish completion and continue LLM generation.
|
||||
|
||||
Args:
|
||||
operation_id: The operation ID to complete.
|
||||
request: Completion payload with success status and result/error.
|
||||
x_api_key: Internal API key for authentication.
|
||||
|
||||
Returns:
|
||||
dict: Status of the completion.
|
||||
|
||||
Raises:
|
||||
HTTPException: If API key is invalid or operation not found.
|
||||
"""
|
||||
# Validate internal API key - reject if not configured or invalid
|
||||
if not config.internal_api_key:
|
||||
logger.error(
|
||||
"Operation complete webhook rejected: CHAT_INTERNAL_API_KEY not configured"
|
||||
)
|
||||
raise HTTPException(
|
||||
status_code=503,
|
||||
detail="Webhook not available: internal API key not configured",
|
||||
)
|
||||
if x_api_key != config.internal_api_key:
|
||||
raise HTTPException(status_code=401, detail="Invalid API key")
|
||||
|
||||
# Find task by operation_id
|
||||
task = await stream_registry.find_task_by_operation_id(operation_id)
|
||||
if task is None:
|
||||
raise HTTPException(
|
||||
status_code=404,
|
||||
detail=f"Operation {operation_id} not found",
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Received completion webhook for operation {operation_id} "
|
||||
f"(task_id={task.task_id}, success={request.success})"
|
||||
)
|
||||
|
||||
if request.success:
|
||||
await process_operation_success(task, request.result)
|
||||
else:
|
||||
await process_operation_failure(task, request.error)
|
||||
|
||||
return {"status": "ok", "task_id": task.task_id}
|
||||
|
||||
|
||||
# ========== Configuration ==========
|
||||
|
||||
|
||||
@router.get("/config/ttl", status_code=200)
|
||||
async def get_ttl_config() -> dict:
|
||||
"""
|
||||
Get the stream TTL configuration.
|
||||
|
||||
Returns the Time-To-Live settings for chat streams, which determines
|
||||
how long clients can reconnect to an active stream.
|
||||
|
||||
Returns:
|
||||
dict: TTL configuration with seconds and milliseconds values.
|
||||
"""
|
||||
return {
|
||||
"stream_ttl_seconds": config.stream_ttl,
|
||||
"stream_ttl_ms": config.stream_ttl * 1000,
|
||||
}
|
||||
|
||||
|
||||
# ========== Health Check ==========
|
||||
|
||||
|
||||
@@ -966,43 +402,3 @@ async def health_check() -> dict:
|
||||
"service": "chat",
|
||||
"version": "0.1.0",
|
||||
}
|
||||
|
||||
|
||||
# ========== Schema Export (for OpenAPI / Orval codegen) ==========
|
||||
|
||||
ToolResponseUnion = (
|
||||
AgentsFoundResponse
|
||||
| NoResultsResponse
|
||||
| AgentDetailsResponse
|
||||
| SetupRequirementsResponse
|
||||
| ExecutionStartedResponse
|
||||
| NeedLoginResponse
|
||||
| ErrorResponse
|
||||
| InputValidationErrorResponse
|
||||
| AgentOutputResponse
|
||||
| UnderstandingUpdatedResponse
|
||||
| AgentPreviewResponse
|
||||
| AgentSavedResponse
|
||||
| ClarificationNeededResponse
|
||||
| BlockListResponse
|
||||
| BlockDetailsResponse
|
||||
| BlockOutputResponse
|
||||
| DocSearchResultsResponse
|
||||
| DocPageResponse
|
||||
| OperationStartedResponse
|
||||
| OperationPendingResponse
|
||||
| OperationInProgressResponse
|
||||
)
|
||||
|
||||
|
||||
@router.get(
|
||||
"/schema/tool-responses",
|
||||
response_model=ToolResponseUnion,
|
||||
include_in_schema=True,
|
||||
summary="[Dummy] Tool response type export for codegen",
|
||||
description="This endpoint is not meant to be called. It exists solely to "
|
||||
"expose tool response models in the OpenAPI schema for frontend codegen.",
|
||||
)
|
||||
async def _tool_response_schema() -> ToolResponseUnion: # type: ignore[return]
|
||||
"""Never called at runtime. Exists only so Orval generates TS types."""
|
||||
raise HTTPException(status_code=501, detail="Schema-only endpoint")
|
||||
|
||||
910
autogpt_platform/backend/backend/api/features/chat/service.py
Normal file
910
autogpt_platform/backend/backend/api/features/chat/service.py
Normal file
@@ -0,0 +1,910 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import time
|
||||
from asyncio import CancelledError
|
||||
from collections.abc import AsyncGenerator
|
||||
from typing import Any
|
||||
|
||||
import orjson
|
||||
from langfuse import get_client, propagate_attributes
|
||||
from langfuse.openai import openai # type: ignore
|
||||
from openai import (
|
||||
APIConnectionError,
|
||||
APIError,
|
||||
APIStatusError,
|
||||
PermissionDeniedError,
|
||||
RateLimitError,
|
||||
)
|
||||
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam
|
||||
|
||||
from backend.data.understanding import (
|
||||
format_understanding_for_prompt,
|
||||
get_business_understanding,
|
||||
)
|
||||
from backend.util.exceptions import NotFoundError
|
||||
from backend.util.settings import Settings
|
||||
|
||||
from .config import ChatConfig
|
||||
from .model import (
|
||||
ChatMessage,
|
||||
ChatSession,
|
||||
Usage,
|
||||
cache_chat_session,
|
||||
get_chat_session,
|
||||
update_session_title,
|
||||
upsert_chat_session,
|
||||
)
|
||||
from .response_model import (
|
||||
StreamBaseResponse,
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamStart,
|
||||
StreamTextDelta,
|
||||
StreamTextEnd,
|
||||
StreamTextStart,
|
||||
StreamToolInputAvailable,
|
||||
StreamToolInputStart,
|
||||
StreamToolOutputAvailable,
|
||||
StreamUsage,
|
||||
)
|
||||
from .tools import execute_tool, tools
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
config = ChatConfig()
|
||||
settings = Settings()
|
||||
client = openai.AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
|
||||
|
||||
|
||||
langfuse = get_client()
|
||||
|
||||
|
||||
class LangfuseNotConfiguredError(Exception):
|
||||
"""Raised when Langfuse is required but not configured."""
|
||||
|
||||
pass
|
||||
|
||||
|
||||
def _is_langfuse_configured() -> bool:
|
||||
"""Check if Langfuse credentials are configured."""
|
||||
return bool(
|
||||
settings.secrets.langfuse_public_key and settings.secrets.langfuse_secret_key
|
||||
)
|
||||
|
||||
|
||||
async def _build_system_prompt(user_id: str | None) -> tuple[str, Any]:
|
||||
"""Build the full system prompt including business understanding if available.
|
||||
|
||||
Args:
|
||||
user_id: The user ID for fetching business understanding
|
||||
If "default" and this is the user's first session, will use "onboarding" instead.
|
||||
|
||||
Returns:
|
||||
Tuple of (compiled prompt string, Langfuse prompt object for tracing)
|
||||
"""
|
||||
|
||||
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
|
||||
prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0)
|
||||
|
||||
# If user is authenticated, try to fetch their business understanding
|
||||
understanding = None
|
||||
if user_id:
|
||||
try:
|
||||
understanding = await get_business_understanding(user_id)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch business understanding: {e}")
|
||||
understanding = None
|
||||
if understanding:
|
||||
context = format_understanding_for_prompt(understanding)
|
||||
else:
|
||||
context = "This is the first time you are meeting the user. Greet them and introduce them to the platform"
|
||||
|
||||
compiled = prompt.compile(users_information=context)
|
||||
return compiled, understanding
|
||||
|
||||
|
||||
async def _generate_session_title(message: str) -> str | None:
|
||||
"""Generate a concise title for a chat session based on the first message.
|
||||
|
||||
Args:
|
||||
message: The first user message in the session
|
||||
|
||||
Returns:
|
||||
A short title (3-6 words) or None if generation fails
|
||||
"""
|
||||
try:
|
||||
response = await client.chat.completions.create(
|
||||
model=config.title_model,
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": (
|
||||
"Generate a very short title (3-6 words) for a chat conversation "
|
||||
"based on the user's first message. The title should capture the "
|
||||
"main topic or intent. Return ONLY the title, no quotes or punctuation."
|
||||
),
|
||||
},
|
||||
{"role": "user", "content": message[:500]}, # Limit input length
|
||||
],
|
||||
max_tokens=20,
|
||||
)
|
||||
title = response.choices[0].message.content
|
||||
if title:
|
||||
# Clean up the title
|
||||
title = title.strip().strip("\"'")
|
||||
# Limit length
|
||||
if len(title) > 50:
|
||||
title = title[:47] + "..."
|
||||
return title
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to generate session title: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def assign_user_to_session(
|
||||
session_id: str,
|
||||
user_id: str,
|
||||
) -> ChatSession:
|
||||
"""
|
||||
Assign a user to a chat session.
|
||||
"""
|
||||
session = await get_chat_session(session_id, None)
|
||||
if not session:
|
||||
raise NotFoundError(f"Session {session_id} not found")
|
||||
session.user_id = user_id
|
||||
return await upsert_chat_session(session)
|
||||
|
||||
|
||||
async def stream_chat_completion(
|
||||
session_id: str,
|
||||
message: str | None = None,
|
||||
tool_call_response: str | None = None,
|
||||
is_user_message: bool = True,
|
||||
user_id: str | None = None,
|
||||
retry_count: int = 0,
|
||||
session: ChatSession | None = None,
|
||||
context: dict[str, str] | None = None, # {url: str, content: str}
|
||||
) -> AsyncGenerator[StreamBaseResponse, None]:
|
||||
"""Main entry point for streaming chat completions with database handling.
|
||||
|
||||
This function handles all database operations and delegates streaming
|
||||
to the internal _stream_chat_chunks function.
|
||||
|
||||
Args:
|
||||
session_id: Chat session ID
|
||||
user_message: User's input message
|
||||
user_id: User ID for authentication (None for anonymous)
|
||||
session: Optional pre-loaded session object (for recursive calls to avoid Redis refetch)
|
||||
|
||||
Yields:
|
||||
StreamBaseResponse objects formatted as SSE
|
||||
|
||||
Raises:
|
||||
NotFoundError: If session_id is invalid
|
||||
ValueError: If max_context_messages is exceeded
|
||||
|
||||
"""
|
||||
logger.info(
|
||||
f"Streaming chat completion for session {session_id} for message {message} and user id {user_id}. Message is user message: {is_user_message}"
|
||||
)
|
||||
|
||||
# Check if Langfuse is configured - required for chat functionality
|
||||
if not _is_langfuse_configured():
|
||||
logger.error("Chat request failed: Langfuse is not configured")
|
||||
yield StreamError(
|
||||
errorText="Chat service is not available. Langfuse must be configured "
|
||||
"with LANGFUSE_PUBLIC_KEY and LANGFUSE_SECRET_KEY environment variables."
|
||||
)
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
# Only fetch from Redis if session not provided (initial call)
|
||||
if session is None:
|
||||
session = await get_chat_session(session_id, user_id)
|
||||
logger.info(
|
||||
f"Fetched session from Redis: {session.session_id if session else 'None'}, "
|
||||
f"message_count={len(session.messages) if session else 0}"
|
||||
)
|
||||
else:
|
||||
logger.info(
|
||||
f"Using provided session object: {session.session_id}, "
|
||||
f"message_count={len(session.messages)}"
|
||||
)
|
||||
|
||||
if not session:
|
||||
raise NotFoundError(
|
||||
f"Session {session_id} not found. Please create a new session first."
|
||||
)
|
||||
|
||||
if message:
|
||||
# Build message content with context if provided
|
||||
message_content = message
|
||||
if context and context.get("url") and context.get("content"):
|
||||
context_text = f"Page URL: {context['url']}\n\nPage Content:\n{context['content']}\n\n---\n\nUser Message: {message}"
|
||||
message_content = context_text
|
||||
logger.info(
|
||||
f"Including page context: URL={context['url']}, content_length={len(context['content'])}"
|
||||
)
|
||||
|
||||
session.messages.append(
|
||||
ChatMessage(
|
||||
role="user" if is_user_message else "assistant", content=message_content
|
||||
)
|
||||
)
|
||||
logger.info(
|
||||
f"Appended message (role={'user' if is_user_message else 'assistant'}), "
|
||||
f"new message_count={len(session.messages)}"
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Upserting session: {session.session_id} with user id {session.user_id}, "
|
||||
f"message_count={len(session.messages)}"
|
||||
)
|
||||
session = await upsert_chat_session(session)
|
||||
assert session, "Session not found"
|
||||
|
||||
# Generate title for new sessions on first user message (non-blocking)
|
||||
# Check: is_user_message, no title yet, and this is the first user message
|
||||
if is_user_message and message and not session.title:
|
||||
user_messages = [m for m in session.messages if m.role == "user"]
|
||||
if len(user_messages) == 1:
|
||||
# First user message - generate title in background
|
||||
import asyncio
|
||||
|
||||
# Capture only the values we need (not the session object) to avoid
|
||||
# stale data issues when the main flow modifies the session
|
||||
captured_session_id = session_id
|
||||
captured_message = message
|
||||
|
||||
async def _update_title():
|
||||
try:
|
||||
title = await _generate_session_title(captured_message)
|
||||
if title:
|
||||
# Use dedicated title update function that doesn't
|
||||
# touch messages, avoiding race conditions
|
||||
await update_session_title(captured_session_id, title)
|
||||
logger.info(
|
||||
f"Generated title for session {captured_session_id}: {title}"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to update session title: {e}")
|
||||
|
||||
# Fire and forget - don't block the chat response
|
||||
asyncio.create_task(_update_title())
|
||||
|
||||
# Build system prompt with business understanding
|
||||
system_prompt, understanding = await _build_system_prompt(user_id)
|
||||
|
||||
# Create Langfuse trace for this LLM call (each call gets its own trace, grouped by session_id)
|
||||
# Using v3 SDK: start_observation creates a root span, update_trace sets trace-level attributes
|
||||
input = message
|
||||
if not message and tool_call_response:
|
||||
input = tool_call_response
|
||||
|
||||
langfuse = get_client()
|
||||
with langfuse.start_as_current_observation(
|
||||
as_type="span",
|
||||
name="user-copilot-request",
|
||||
input=input,
|
||||
) as span:
|
||||
with propagate_attributes(
|
||||
session_id=session_id,
|
||||
user_id=user_id,
|
||||
tags=["copilot"],
|
||||
metadata={
|
||||
"users_information": format_understanding_for_prompt(understanding)[
|
||||
:200
|
||||
] # langfuse only accepts upto to 200 chars
|
||||
},
|
||||
):
|
||||
|
||||
# Initialize variables that will be used in finally block (must be defined before try)
|
||||
assistant_response = ChatMessage(
|
||||
role="assistant",
|
||||
content="",
|
||||
)
|
||||
accumulated_tool_calls: list[dict[str, Any]] = []
|
||||
has_saved_assistant_message = False
|
||||
has_appended_streaming_message = False
|
||||
last_cache_time = 0.0
|
||||
last_cache_content_len = 0
|
||||
|
||||
# Wrap main logic in try/finally to ensure Langfuse observations are always ended
|
||||
has_yielded_end = False
|
||||
has_yielded_error = False
|
||||
has_done_tool_call = False
|
||||
has_received_text = False
|
||||
text_streaming_ended = False
|
||||
tool_response_messages: list[ChatMessage] = []
|
||||
should_retry = False
|
||||
|
||||
# Generate unique IDs for AI SDK protocol
|
||||
import uuid as uuid_module
|
||||
|
||||
message_id = str(uuid_module.uuid4())
|
||||
text_block_id = str(uuid_module.uuid4())
|
||||
|
||||
# Yield message start
|
||||
yield StreamStart(messageId=message_id)
|
||||
|
||||
try:
|
||||
async for chunk in _stream_chat_chunks(
|
||||
session=session,
|
||||
tools=tools,
|
||||
system_prompt=system_prompt,
|
||||
text_block_id=text_block_id,
|
||||
):
|
||||
|
||||
if isinstance(chunk, StreamTextStart):
|
||||
# Emit text-start before first text delta
|
||||
if not has_received_text:
|
||||
yield chunk
|
||||
elif isinstance(chunk, StreamTextDelta):
|
||||
delta = chunk.delta or ""
|
||||
assert assistant_response.content is not None
|
||||
assistant_response.content += delta
|
||||
has_received_text = True
|
||||
if not has_appended_streaming_message:
|
||||
session.messages.append(assistant_response)
|
||||
has_appended_streaming_message = True
|
||||
current_time = time.monotonic()
|
||||
content_len = len(assistant_response.content)
|
||||
if (
|
||||
current_time - last_cache_time >= 1.0
|
||||
and content_len > last_cache_content_len
|
||||
):
|
||||
try:
|
||||
await cache_chat_session(session)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to cache partial session {session.session_id}: {e}"
|
||||
)
|
||||
last_cache_time = current_time
|
||||
last_cache_content_len = content_len
|
||||
yield chunk
|
||||
elif isinstance(chunk, StreamTextEnd):
|
||||
# Emit text-end after text completes
|
||||
if has_received_text and not text_streaming_ended:
|
||||
text_streaming_ended = True
|
||||
if assistant_response.content:
|
||||
logger.warn(
|
||||
f"StreamTextEnd: Attempting to set output {assistant_response.content}"
|
||||
)
|
||||
span.update_trace(output=assistant_response.content)
|
||||
span.update(output=assistant_response.content)
|
||||
yield chunk
|
||||
elif isinstance(chunk, StreamToolInputStart):
|
||||
# Emit text-end before first tool call, but only if we've received text
|
||||
if has_received_text and not text_streaming_ended:
|
||||
yield StreamTextEnd(id=text_block_id)
|
||||
text_streaming_ended = True
|
||||
yield chunk
|
||||
elif isinstance(chunk, StreamToolInputAvailable):
|
||||
# Accumulate tool calls in OpenAI format
|
||||
accumulated_tool_calls.append(
|
||||
{
|
||||
"id": chunk.toolCallId,
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": chunk.toolName,
|
||||
"arguments": orjson.dumps(chunk.input).decode(
|
||||
"utf-8"
|
||||
),
|
||||
},
|
||||
}
|
||||
)
|
||||
elif isinstance(chunk, StreamToolOutputAvailable):
|
||||
result_content = (
|
||||
chunk.output
|
||||
if isinstance(chunk.output, str)
|
||||
else orjson.dumps(chunk.output).decode("utf-8")
|
||||
)
|
||||
tool_response_messages.append(
|
||||
ChatMessage(
|
||||
role="tool",
|
||||
content=result_content,
|
||||
tool_call_id=chunk.toolCallId,
|
||||
)
|
||||
)
|
||||
has_done_tool_call = True
|
||||
# Track if any tool execution failed
|
||||
if not chunk.success:
|
||||
logger.warning(
|
||||
f"Tool {chunk.toolName} (ID: {chunk.toolCallId}) execution failed"
|
||||
)
|
||||
yield chunk
|
||||
elif isinstance(chunk, StreamFinish):
|
||||
if not has_done_tool_call:
|
||||
# Emit text-end before finish if we received text but haven't closed it
|
||||
if has_received_text and not text_streaming_ended:
|
||||
yield StreamTextEnd(id=text_block_id)
|
||||
text_streaming_ended = True
|
||||
|
||||
# Save assistant message before yielding finish to ensure it's persisted
|
||||
# even if client disconnects immediately after receiving StreamFinish
|
||||
if not has_saved_assistant_message:
|
||||
messages_to_save_early: list[ChatMessage] = []
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = (
|
||||
accumulated_tool_calls
|
||||
)
|
||||
if not has_appended_streaming_message and (
|
||||
assistant_response.content
|
||||
or assistant_response.tool_calls
|
||||
):
|
||||
messages_to_save_early.append(assistant_response)
|
||||
messages_to_save_early.extend(tool_response_messages)
|
||||
|
||||
if messages_to_save_early:
|
||||
session.messages.extend(messages_to_save_early)
|
||||
logger.info(
|
||||
f"Saving assistant message before StreamFinish: "
|
||||
f"content_len={len(assistant_response.content or '')}, "
|
||||
f"tool_calls={len(assistant_response.tool_calls or [])}, "
|
||||
f"tool_responses={len(tool_response_messages)}"
|
||||
)
|
||||
if (
|
||||
messages_to_save_early
|
||||
or has_appended_streaming_message
|
||||
):
|
||||
await upsert_chat_session(session)
|
||||
has_saved_assistant_message = True
|
||||
|
||||
has_yielded_end = True
|
||||
yield chunk
|
||||
elif isinstance(chunk, StreamError):
|
||||
has_yielded_error = True
|
||||
yield chunk
|
||||
elif isinstance(chunk, StreamUsage):
|
||||
session.usage.append(
|
||||
Usage(
|
||||
prompt_tokens=chunk.promptTokens,
|
||||
completion_tokens=chunk.completionTokens,
|
||||
total_tokens=chunk.totalTokens,
|
||||
)
|
||||
)
|
||||
else:
|
||||
logger.error(
|
||||
f"Unknown chunk type: {type(chunk)}", exc_info=True
|
||||
)
|
||||
if assistant_response.content:
|
||||
langfuse.update_current_trace(output=assistant_response.content)
|
||||
langfuse.update_current_span(output=assistant_response.content)
|
||||
elif tool_response_messages:
|
||||
langfuse.update_current_trace(output=str(tool_response_messages))
|
||||
langfuse.update_current_span(output=str(tool_response_messages))
|
||||
|
||||
except CancelledError:
|
||||
if not has_saved_assistant_message:
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
if assistant_response.content:
|
||||
assistant_response.content = (
|
||||
f"{assistant_response.content}\n\n[interrupted]"
|
||||
)
|
||||
else:
|
||||
assistant_response.content = "[interrupted]"
|
||||
if not has_appended_streaming_message:
|
||||
session.messages.append(assistant_response)
|
||||
if tool_response_messages:
|
||||
session.messages.extend(tool_response_messages)
|
||||
try:
|
||||
await upsert_chat_session(session)
|
||||
except Exception as e:
|
||||
logger.warning(
|
||||
f"Failed to save interrupted session {session.session_id}: {e}"
|
||||
)
|
||||
raise
|
||||
except Exception as e:
|
||||
logger.error(f"Error during stream: {e!s}", exc_info=True)
|
||||
|
||||
# Check if this is a retryable error (JSON parsing, incomplete tool calls, etc.)
|
||||
is_retryable = isinstance(
|
||||
e, (orjson.JSONDecodeError, KeyError, TypeError)
|
||||
)
|
||||
|
||||
if is_retryable and retry_count < config.max_retries:
|
||||
logger.info(
|
||||
f"Retryable error encountered. Attempt {retry_count + 1}/{config.max_retries}"
|
||||
)
|
||||
should_retry = True
|
||||
else:
|
||||
# Non-retryable error or max retries exceeded
|
||||
# Save any partial progress before reporting error
|
||||
messages_to_save: list[ChatMessage] = []
|
||||
|
||||
# Add assistant message if it has content or tool calls
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
if not has_appended_streaming_message and (
|
||||
assistant_response.content or assistant_response.tool_calls
|
||||
):
|
||||
messages_to_save.append(assistant_response)
|
||||
|
||||
# Add tool response messages after assistant message
|
||||
messages_to_save.extend(tool_response_messages)
|
||||
|
||||
if not has_saved_assistant_message:
|
||||
if messages_to_save:
|
||||
session.messages.extend(messages_to_save)
|
||||
if messages_to_save or has_appended_streaming_message:
|
||||
await upsert_chat_session(session)
|
||||
|
||||
if not has_yielded_error:
|
||||
error_message = str(e)
|
||||
if not is_retryable:
|
||||
error_message = f"Non-retryable error: {error_message}"
|
||||
elif retry_count >= config.max_retries:
|
||||
error_message = f"Max retries ({config.max_retries}) exceeded: {error_message}"
|
||||
|
||||
error_response = StreamError(errorText=error_message)
|
||||
yield error_response
|
||||
if not has_yielded_end:
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
# Handle retry outside of exception handler to avoid nesting
|
||||
if should_retry and retry_count < config.max_retries:
|
||||
logger.info(
|
||||
f"Retrying stream_chat_completion for session {session_id}, attempt {retry_count + 1}"
|
||||
)
|
||||
async for chunk in stream_chat_completion(
|
||||
session_id=session.session_id,
|
||||
user_id=user_id,
|
||||
retry_count=retry_count + 1,
|
||||
session=session,
|
||||
context=context,
|
||||
):
|
||||
yield chunk
|
||||
return # Exit after retry to avoid double-saving in finally block
|
||||
|
||||
# Normal completion path - save session and handle tool call continuation
|
||||
# Only save if we haven't already saved when StreamFinish was received
|
||||
if not has_saved_assistant_message:
|
||||
logger.info(
|
||||
f"Normal completion path: session={session.session_id}, "
|
||||
f"current message_count={len(session.messages)}"
|
||||
)
|
||||
|
||||
# Build the messages list in the correct order
|
||||
messages_to_save: list[ChatMessage] = []
|
||||
|
||||
# Add assistant message with tool_calls if any
|
||||
if accumulated_tool_calls:
|
||||
assistant_response.tool_calls = accumulated_tool_calls
|
||||
logger.info(
|
||||
f"Added {len(accumulated_tool_calls)} tool calls to assistant message"
|
||||
)
|
||||
if not has_appended_streaming_message and (
|
||||
assistant_response.content or assistant_response.tool_calls
|
||||
):
|
||||
messages_to_save.append(assistant_response)
|
||||
logger.info(
|
||||
f"Saving assistant message with content_len={len(assistant_response.content or '')}, tool_calls={len(assistant_response.tool_calls or [])}"
|
||||
)
|
||||
|
||||
# Add tool response messages after assistant message
|
||||
messages_to_save.extend(tool_response_messages)
|
||||
logger.info(
|
||||
f"Saving {len(tool_response_messages)} tool response messages, "
|
||||
f"total_to_save={len(messages_to_save)}"
|
||||
)
|
||||
|
||||
if messages_to_save:
|
||||
session.messages.extend(messages_to_save)
|
||||
logger.info(
|
||||
f"Extended session messages, new message_count={len(session.messages)}"
|
||||
)
|
||||
if messages_to_save or has_appended_streaming_message:
|
||||
await upsert_chat_session(session)
|
||||
else:
|
||||
logger.info(
|
||||
"Assistant message already saved when StreamFinish was received, "
|
||||
"skipping duplicate save"
|
||||
)
|
||||
|
||||
# If we did a tool call, stream the chat completion again to get the next response
|
||||
if has_done_tool_call:
|
||||
logger.info(
|
||||
"Tool call executed, streaming chat completion again to get assistant response"
|
||||
)
|
||||
async for chunk in stream_chat_completion(
|
||||
session_id=session.session_id,
|
||||
user_id=user_id,
|
||||
session=session, # Pass session object to avoid Redis refetch
|
||||
context=context,
|
||||
tool_call_response=str(tool_response_messages),
|
||||
):
|
||||
yield chunk
|
||||
|
||||
|
||||
# Retry configuration for OpenAI API calls
|
||||
MAX_RETRIES = 3
|
||||
BASE_DELAY_SECONDS = 1.0
|
||||
MAX_DELAY_SECONDS = 30.0
|
||||
|
||||
|
||||
def _is_retryable_error(error: Exception) -> bool:
|
||||
"""Determine if an error is retryable."""
|
||||
if isinstance(error, RateLimitError):
|
||||
return True
|
||||
if isinstance(error, APIConnectionError):
|
||||
return True
|
||||
if isinstance(error, APIStatusError):
|
||||
# APIStatusError has a response with status_code
|
||||
# Retry on 5xx status codes (server errors)
|
||||
if error.response.status_code >= 500:
|
||||
return True
|
||||
if isinstance(error, APIError):
|
||||
# Retry on overloaded errors or 500 errors (may not have status code)
|
||||
error_message = str(error).lower()
|
||||
if "overloaded" in error_message or "internal server error" in error_message:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def _is_region_blocked_error(error: Exception) -> bool:
|
||||
if isinstance(error, PermissionDeniedError):
|
||||
return "not available in your region" in str(error).lower()
|
||||
return "not available in your region" in str(error).lower()
|
||||
|
||||
|
||||
async def _stream_chat_chunks(
|
||||
session: ChatSession,
|
||||
tools: list[ChatCompletionToolParam],
|
||||
system_prompt: str | None = None,
|
||||
text_block_id: str | None = None,
|
||||
) -> AsyncGenerator[StreamBaseResponse, None]:
|
||||
"""
|
||||
Pure streaming function for OpenAI chat completions with tool calling.
|
||||
|
||||
This function is database-agnostic and focuses only on streaming logic.
|
||||
Implements exponential backoff retry for transient API errors.
|
||||
|
||||
Args:
|
||||
session: Chat session with conversation history
|
||||
tools: Available tools for the model
|
||||
system_prompt: System prompt to prepend to messages
|
||||
|
||||
Yields:
|
||||
SSE formatted JSON response objects
|
||||
|
||||
"""
|
||||
model = config.model
|
||||
|
||||
logger.info("Starting pure chat stream")
|
||||
|
||||
# Build messages with system prompt prepended
|
||||
messages = session.to_openai_messages()
|
||||
if system_prompt:
|
||||
from openai.types.chat import ChatCompletionSystemMessageParam
|
||||
|
||||
system_message = ChatCompletionSystemMessageParam(
|
||||
role="system",
|
||||
content=system_prompt,
|
||||
)
|
||||
messages = [system_message] + messages
|
||||
|
||||
# Loop to handle tool calls and continue conversation
|
||||
while True:
|
||||
retry_count = 0
|
||||
last_error: Exception | None = None
|
||||
|
||||
while retry_count <= MAX_RETRIES:
|
||||
try:
|
||||
logger.info(
|
||||
f"Creating OpenAI chat completion stream..."
|
||||
f"{f' (retry {retry_count}/{MAX_RETRIES})' if retry_count > 0 else ''}"
|
||||
)
|
||||
|
||||
# Create the stream with proper types
|
||||
stream = await client.chat.completions.create(
|
||||
model=model,
|
||||
messages=messages,
|
||||
tools=tools,
|
||||
tool_choice="auto",
|
||||
stream=True,
|
||||
stream_options={"include_usage": True},
|
||||
)
|
||||
|
||||
# Variables to accumulate tool calls
|
||||
tool_calls: list[dict[str, Any]] = []
|
||||
active_tool_call_idx: int | None = None
|
||||
finish_reason: str | None = None
|
||||
# Track which tool call indices have had their start event emitted
|
||||
emitted_start_for_idx: set[int] = set()
|
||||
|
||||
# Track if we've started the text block
|
||||
text_started = False
|
||||
|
||||
# Process the stream
|
||||
chunk: ChatCompletionChunk
|
||||
async for chunk in stream:
|
||||
if chunk.usage:
|
||||
yield StreamUsage(
|
||||
promptTokens=chunk.usage.prompt_tokens,
|
||||
completionTokens=chunk.usage.completion_tokens,
|
||||
totalTokens=chunk.usage.total_tokens,
|
||||
)
|
||||
|
||||
if chunk.choices:
|
||||
choice = chunk.choices[0]
|
||||
delta = choice.delta
|
||||
|
||||
# Capture finish reason
|
||||
if choice.finish_reason:
|
||||
finish_reason = choice.finish_reason
|
||||
logger.info(f"Finish reason: {finish_reason}")
|
||||
|
||||
# Handle content streaming
|
||||
if delta.content:
|
||||
# Emit text-start on first text content
|
||||
if not text_started and text_block_id:
|
||||
yield StreamTextStart(id=text_block_id)
|
||||
text_started = True
|
||||
# Stream the text delta
|
||||
text_response = StreamTextDelta(
|
||||
id=text_block_id or "",
|
||||
delta=delta.content,
|
||||
)
|
||||
yield text_response
|
||||
|
||||
# Handle tool calls
|
||||
if delta.tool_calls:
|
||||
for tc_chunk in delta.tool_calls:
|
||||
idx = tc_chunk.index
|
||||
|
||||
# Update active tool call index if needed
|
||||
if (
|
||||
active_tool_call_idx is None
|
||||
or active_tool_call_idx != idx
|
||||
):
|
||||
active_tool_call_idx = idx
|
||||
|
||||
# Ensure we have a tool call object at this index
|
||||
while len(tool_calls) <= idx:
|
||||
tool_calls.append(
|
||||
{
|
||||
"id": "",
|
||||
"type": "function",
|
||||
"function": {
|
||||
"name": "",
|
||||
"arguments": "",
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
# Accumulate the tool call data
|
||||
if tc_chunk.id:
|
||||
tool_calls[idx]["id"] = tc_chunk.id
|
||||
if tc_chunk.function:
|
||||
if tc_chunk.function.name:
|
||||
tool_calls[idx]["function"][
|
||||
"name"
|
||||
] = tc_chunk.function.name
|
||||
if tc_chunk.function.arguments:
|
||||
tool_calls[idx]["function"][
|
||||
"arguments"
|
||||
] += tc_chunk.function.arguments
|
||||
|
||||
# Emit StreamToolInputStart only after we have the tool call ID
|
||||
if (
|
||||
idx not in emitted_start_for_idx
|
||||
and tool_calls[idx]["id"]
|
||||
and tool_calls[idx]["function"]["name"]
|
||||
):
|
||||
yield StreamToolInputStart(
|
||||
toolCallId=tool_calls[idx]["id"],
|
||||
toolName=tool_calls[idx]["function"]["name"],
|
||||
)
|
||||
emitted_start_for_idx.add(idx)
|
||||
logger.info(f"Stream complete. Finish reason: {finish_reason}")
|
||||
|
||||
# Yield all accumulated tool calls after the stream is complete
|
||||
# This ensures all tool call arguments have been fully received
|
||||
for idx, tool_call in enumerate(tool_calls):
|
||||
try:
|
||||
async for tc in _yield_tool_call(tool_calls, idx, session):
|
||||
yield tc
|
||||
except (orjson.JSONDecodeError, KeyError, TypeError) as e:
|
||||
logger.error(
|
||||
f"Failed to parse tool call {idx}: {e}",
|
||||
exc_info=True,
|
||||
extra={"tool_call": tool_call},
|
||||
)
|
||||
yield StreamError(
|
||||
errorText=f"Invalid tool call arguments for tool {tool_call.get('function', {}).get('name', 'unknown')}: {e}",
|
||||
)
|
||||
# Re-raise to trigger retry logic in the parent function
|
||||
raise
|
||||
|
||||
yield StreamFinish()
|
||||
return
|
||||
except Exception as e:
|
||||
last_error = e
|
||||
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
|
||||
retry_count += 1
|
||||
# Calculate delay with exponential backoff
|
||||
delay = min(
|
||||
BASE_DELAY_SECONDS * (2 ** (retry_count - 1)),
|
||||
MAX_DELAY_SECONDS,
|
||||
)
|
||||
logger.warning(
|
||||
f"Retryable error in stream: {e!s}. "
|
||||
f"Retrying in {delay:.1f}s (attempt {retry_count}/{MAX_RETRIES})"
|
||||
)
|
||||
await asyncio.sleep(delay)
|
||||
continue # Retry the stream
|
||||
else:
|
||||
# Non-retryable error or max retries exceeded
|
||||
logger.error(
|
||||
f"Error in stream (not retrying): {e!s}",
|
||||
exc_info=True,
|
||||
)
|
||||
error_code = None
|
||||
error_text = str(e)
|
||||
if _is_region_blocked_error(e):
|
||||
error_code = "MODEL_NOT_AVAILABLE_REGION"
|
||||
error_text = (
|
||||
"This model is not available in your region. "
|
||||
"Please connect via VPN and try again."
|
||||
)
|
||||
error_response = StreamError(
|
||||
errorText=error_text,
|
||||
code=error_code,
|
||||
)
|
||||
yield error_response
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
# If we exit the retry loop without returning, it means we exhausted retries
|
||||
if last_error:
|
||||
logger.error(
|
||||
f"Max retries ({MAX_RETRIES}) exceeded. Last error: {last_error!s}",
|
||||
exc_info=True,
|
||||
)
|
||||
yield StreamError(errorText=f"Max retries exceeded: {last_error!s}")
|
||||
yield StreamFinish()
|
||||
return
|
||||
|
||||
|
||||
async def _yield_tool_call(
|
||||
tool_calls: list[dict[str, Any]],
|
||||
yield_idx: int,
|
||||
session: ChatSession,
|
||||
) -> AsyncGenerator[StreamBaseResponse, None]:
|
||||
"""
|
||||
Yield a tool call and its execution result.
|
||||
|
||||
Raises:
|
||||
orjson.JSONDecodeError: If tool call arguments cannot be parsed as JSON
|
||||
KeyError: If expected tool call fields are missing
|
||||
TypeError: If tool call structure is invalid
|
||||
"""
|
||||
tool_name = tool_calls[yield_idx]["function"]["name"]
|
||||
tool_call_id = tool_calls[yield_idx]["id"]
|
||||
logger.info(f"Yielding tool call: {tool_calls[yield_idx]}")
|
||||
|
||||
# Parse tool call arguments - handle empty arguments gracefully
|
||||
raw_arguments = tool_calls[yield_idx]["function"]["arguments"]
|
||||
if raw_arguments:
|
||||
arguments = orjson.loads(raw_arguments)
|
||||
else:
|
||||
arguments = {}
|
||||
|
||||
yield StreamToolInputAvailable(
|
||||
toolCallId=tool_call_id,
|
||||
toolName=tool_name,
|
||||
input=arguments,
|
||||
)
|
||||
|
||||
tool_execution_response: StreamToolOutputAvailable = await execute_tool(
|
||||
tool_name=tool_name,
|
||||
parameters=arguments,
|
||||
tool_call_id=tool_call_id,
|
||||
user_id=session.user_id,
|
||||
session=session,
|
||||
)
|
||||
|
||||
yield tool_execution_response
|
||||
@@ -0,0 +1,82 @@
|
||||
import logging
|
||||
from os import getenv
|
||||
|
||||
import pytest
|
||||
|
||||
from . import service as chat_service
|
||||
from .model import create_chat_session, get_chat_session, upsert_chat_session
|
||||
from .response_model import (
|
||||
StreamError,
|
||||
StreamFinish,
|
||||
StreamTextDelta,
|
||||
StreamToolOutputAvailable,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_stream_chat_completion(setup_test_user, test_user_id):
|
||||
"""
|
||||
Test the stream_chat_completion function.
|
||||
"""
|
||||
api_key: str | None = getenv("OPEN_ROUTER_API_KEY")
|
||||
if not api_key:
|
||||
return pytest.skip("OPEN_ROUTER_API_KEY is not set, skipping test")
|
||||
|
||||
session = await create_chat_session(test_user_id)
|
||||
|
||||
has_errors = False
|
||||
has_ended = False
|
||||
assistant_message = ""
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session.session_id, "Hello, how are you?", user_id=session.user_id
|
||||
):
|
||||
logger.info(chunk)
|
||||
if isinstance(chunk, StreamError):
|
||||
has_errors = True
|
||||
if isinstance(chunk, StreamTextDelta):
|
||||
assistant_message += chunk.delta
|
||||
if isinstance(chunk, StreamFinish):
|
||||
has_ended = True
|
||||
|
||||
assert has_ended, "Chat completion did not end"
|
||||
assert not has_errors, "Error occurred while streaming chat completion"
|
||||
assert assistant_message, "Assistant message is empty"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_stream_chat_completion_with_tool_calls(setup_test_user, test_user_id):
|
||||
"""
|
||||
Test the stream_chat_completion function.
|
||||
"""
|
||||
api_key: str | None = getenv("OPEN_ROUTER_API_KEY")
|
||||
if not api_key:
|
||||
return pytest.skip("OPEN_ROUTER_API_KEY is not set, skipping test")
|
||||
|
||||
session = await create_chat_session(test_user_id)
|
||||
session = await upsert_chat_session(session)
|
||||
|
||||
has_errors = False
|
||||
has_ended = False
|
||||
had_tool_calls = False
|
||||
async for chunk in chat_service.stream_chat_completion(
|
||||
session.session_id,
|
||||
"Please find me an agent that can help me with my business. Use the query 'moneny printing agent'",
|
||||
user_id=session.user_id,
|
||||
):
|
||||
logger.info(chunk)
|
||||
if isinstance(chunk, StreamError):
|
||||
has_errors = True
|
||||
|
||||
if isinstance(chunk, StreamFinish):
|
||||
has_ended = True
|
||||
if isinstance(chunk, StreamToolOutputAvailable):
|
||||
had_tool_calls = True
|
||||
|
||||
assert has_ended, "Chat completion did not end"
|
||||
assert not has_errors, "Error occurred while streaming chat completion"
|
||||
assert had_tool_calls, "Tool calls did not occur"
|
||||
session = await get_chat_session(session.session_id)
|
||||
assert session, "Session not found"
|
||||
assert session.usage, "Usage is empty"
|
||||
@@ -0,0 +1,59 @@
|
||||
from typing import TYPE_CHECKING, Any
|
||||
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .add_understanding import AddUnderstandingTool
|
||||
from .agent_output import AgentOutputTool
|
||||
from .base import BaseTool
|
||||
from .create_agent import CreateAgentTool
|
||||
from .edit_agent import EditAgentTool
|
||||
from .find_agent import FindAgentTool
|
||||
from .find_block import FindBlockTool
|
||||
from .find_library_agent import FindLibraryAgentTool
|
||||
from .get_doc_page import GetDocPageTool
|
||||
from .run_agent import RunAgentTool
|
||||
from .run_block import RunBlockTool
|
||||
from .search_docs import SearchDocsTool
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from backend.api.features.chat.response_model import StreamToolOutputAvailable
|
||||
|
||||
# Single source of truth for all tools
|
||||
TOOL_REGISTRY: dict[str, BaseTool] = {
|
||||
"add_understanding": AddUnderstandingTool(),
|
||||
"create_agent": CreateAgentTool(),
|
||||
"edit_agent": EditAgentTool(),
|
||||
"find_agent": FindAgentTool(),
|
||||
"find_block": FindBlockTool(),
|
||||
"find_library_agent": FindLibraryAgentTool(),
|
||||
"run_agent": RunAgentTool(),
|
||||
"run_block": RunBlockTool(),
|
||||
"view_agent_output": AgentOutputTool(),
|
||||
"search_docs": SearchDocsTool(),
|
||||
"get_doc_page": GetDocPageTool(),
|
||||
}
|
||||
|
||||
# Export individual tool instances for backwards compatibility
|
||||
find_agent_tool = TOOL_REGISTRY["find_agent"]
|
||||
run_agent_tool = TOOL_REGISTRY["run_agent"]
|
||||
|
||||
# Generated from registry for OpenAI API
|
||||
tools: list[ChatCompletionToolParam] = [
|
||||
tool.as_openai_tool() for tool in TOOL_REGISTRY.values()
|
||||
]
|
||||
|
||||
|
||||
async def execute_tool(
|
||||
tool_name: str,
|
||||
parameters: dict[str, Any],
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
tool_call_id: str,
|
||||
) -> "StreamToolOutputAvailable":
|
||||
"""Execute a tool by name."""
|
||||
tool = TOOL_REGISTRY.get(tool_name)
|
||||
if not tool:
|
||||
raise ValueError(f"Tool {tool_name} not found")
|
||||
return await tool.execute(user_id, session, tool_call_id, **parameters)
|
||||
@@ -6,11 +6,11 @@ import pytest
|
||||
from prisma.types import ProfileCreateInput
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.blocks.firecrawl.scrape import FirecrawlScrapeBlock
|
||||
from backend.blocks.io import AgentInputBlock, AgentOutputBlock
|
||||
from backend.blocks.llm import AITextGeneratorBlock
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.data.db import prisma
|
||||
from backend.data.graph import Graph, Link, Node, create_graph
|
||||
from backend.data.model import APIKeyCredentials
|
||||
@@ -3,9 +3,13 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.data.db_accessors import understanding_db
|
||||
from backend.data.understanding import BusinessUnderstandingInput
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.understanding import (
|
||||
BusinessUnderstandingInput,
|
||||
upsert_business_understanding,
|
||||
)
|
||||
|
||||
from .base import BaseTool
|
||||
from .models import ErrorResponse, ToolResponseBase, UnderstandingUpdatedResponse
|
||||
@@ -57,6 +61,7 @@ and automations for the user's specific needs."""
|
||||
"""Requires authentication to store user-specific data."""
|
||||
return True
|
||||
|
||||
@observe(as_type="tool", name="add_understanding")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -97,9 +102,7 @@ and automations for the user's specific needs."""
|
||||
]
|
||||
|
||||
# Upsert with merge
|
||||
understanding = await understanding_db().upsert_business_understanding(
|
||||
user_id, input_data
|
||||
)
|
||||
understanding = await upsert_business_understanding(user_id, input_data)
|
||||
|
||||
# Build current understanding summary (filter out empty values)
|
||||
current_understanding = {
|
||||
@@ -0,0 +1,29 @@
|
||||
"""Agent generator package - Creates agents from natural language."""
|
||||
|
||||
from .core import (
|
||||
apply_agent_patch,
|
||||
decompose_goal,
|
||||
generate_agent,
|
||||
generate_agent_patch,
|
||||
get_agent_as_json,
|
||||
save_agent_to_library,
|
||||
)
|
||||
from .fixer import apply_all_fixes
|
||||
from .utils import get_blocks_info
|
||||
from .validator import validate_agent
|
||||
|
||||
__all__ = [
|
||||
# Core functions
|
||||
"decompose_goal",
|
||||
"generate_agent",
|
||||
"generate_agent_patch",
|
||||
"apply_agent_patch",
|
||||
"save_agent_to_library",
|
||||
"get_agent_as_json",
|
||||
# Fixer
|
||||
"apply_all_fixes",
|
||||
# Validator
|
||||
"validate_agent",
|
||||
# Utils
|
||||
"get_blocks_info",
|
||||
]
|
||||
@@ -0,0 +1,25 @@
|
||||
"""OpenRouter client configuration for agent generation."""
|
||||
|
||||
import os
|
||||
|
||||
from openai import AsyncOpenAI
|
||||
|
||||
# Configuration - use OPEN_ROUTER_API_KEY for consistency with chat/config.py
|
||||
OPENROUTER_API_KEY = os.getenv("OPEN_ROUTER_API_KEY")
|
||||
AGENT_GENERATOR_MODEL = os.getenv("AGENT_GENERATOR_MODEL", "anthropic/claude-opus-4.5")
|
||||
|
||||
# OpenRouter client (OpenAI-compatible API)
|
||||
_client: AsyncOpenAI | None = None
|
||||
|
||||
|
||||
def get_client() -> AsyncOpenAI:
|
||||
"""Get or create the OpenRouter client."""
|
||||
global _client
|
||||
if _client is None:
|
||||
if not OPENROUTER_API_KEY:
|
||||
raise ValueError("OPENROUTER_API_KEY environment variable is required")
|
||||
_client = AsyncOpenAI(
|
||||
base_url="https://openrouter.ai/api/v1",
|
||||
api_key=OPENROUTER_API_KEY,
|
||||
)
|
||||
return _client
|
||||
@@ -0,0 +1,391 @@
|
||||
"""Core agent generation functions."""
|
||||
|
||||
import copy
|
||||
import json
|
||||
import logging
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.data.graph import Graph, Link, Node, create_graph
|
||||
|
||||
from .client import AGENT_GENERATOR_MODEL, get_client
|
||||
from .prompts import DECOMPOSITION_PROMPT, GENERATION_PROMPT, PATCH_PROMPT
|
||||
from .utils import get_block_summaries, parse_json_from_llm
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
|
||||
"""Break down a goal into steps or return clarifying questions.
|
||||
|
||||
Args:
|
||||
description: Natural language goal description
|
||||
context: Additional context (e.g., answers to previous questions)
|
||||
|
||||
Returns:
|
||||
Dict with either:
|
||||
- {"type": "clarifying_questions", "questions": [...]}
|
||||
- {"type": "instructions", "steps": [...]}
|
||||
Or None on error
|
||||
"""
|
||||
client = get_client()
|
||||
prompt = DECOMPOSITION_PROMPT.format(block_summaries=get_block_summaries())
|
||||
|
||||
full_description = description
|
||||
if context:
|
||||
full_description = f"{description}\n\nAdditional context:\n{context}"
|
||||
|
||||
try:
|
||||
response = await client.chat.completions.create(
|
||||
model=AGENT_GENERATOR_MODEL,
|
||||
messages=[
|
||||
{"role": "system", "content": prompt},
|
||||
{"role": "user", "content": full_description},
|
||||
],
|
||||
temperature=0,
|
||||
)
|
||||
|
||||
content = response.choices[0].message.content
|
||||
if content is None:
|
||||
logger.error("LLM returned empty content for decomposition")
|
||||
return None
|
||||
|
||||
result = parse_json_from_llm(content)
|
||||
|
||||
if result is None:
|
||||
logger.error(f"Failed to parse decomposition response: {content[:200]}")
|
||||
return None
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error decomposing goal: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
|
||||
"""Generate agent JSON from instructions.
|
||||
|
||||
Args:
|
||||
instructions: Structured instructions from decompose_goal
|
||||
|
||||
Returns:
|
||||
Agent JSON dict or None on error
|
||||
"""
|
||||
client = get_client()
|
||||
prompt = GENERATION_PROMPT.format(block_summaries=get_block_summaries())
|
||||
|
||||
try:
|
||||
response = await client.chat.completions.create(
|
||||
model=AGENT_GENERATOR_MODEL,
|
||||
messages=[
|
||||
{"role": "system", "content": prompt},
|
||||
{"role": "user", "content": json.dumps(instructions, indent=2)},
|
||||
],
|
||||
temperature=0,
|
||||
)
|
||||
|
||||
content = response.choices[0].message.content
|
||||
if content is None:
|
||||
logger.error("LLM returned empty content for agent generation")
|
||||
return None
|
||||
|
||||
result = parse_json_from_llm(content)
|
||||
|
||||
if result is None:
|
||||
logger.error(f"Failed to parse agent JSON: {content[:200]}")
|
||||
return None
|
||||
|
||||
# Ensure required fields
|
||||
if "id" not in result:
|
||||
result["id"] = str(uuid.uuid4())
|
||||
if "version" not in result:
|
||||
result["version"] = 1
|
||||
if "is_active" not in result:
|
||||
result["is_active"] = True
|
||||
|
||||
return result
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating agent: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
|
||||
"""Convert agent JSON dict to Graph model.
|
||||
|
||||
Args:
|
||||
agent_json: Agent JSON with nodes and links
|
||||
|
||||
Returns:
|
||||
Graph ready for saving
|
||||
"""
|
||||
nodes = []
|
||||
for n in agent_json.get("nodes", []):
|
||||
node = Node(
|
||||
id=n.get("id", str(uuid.uuid4())),
|
||||
block_id=n["block_id"],
|
||||
input_default=n.get("input_default", {}),
|
||||
metadata=n.get("metadata", {}),
|
||||
)
|
||||
nodes.append(node)
|
||||
|
||||
links = []
|
||||
for link_data in agent_json.get("links", []):
|
||||
link = Link(
|
||||
id=link_data.get("id", str(uuid.uuid4())),
|
||||
source_id=link_data["source_id"],
|
||||
sink_id=link_data["sink_id"],
|
||||
source_name=link_data["source_name"],
|
||||
sink_name=link_data["sink_name"],
|
||||
is_static=link_data.get("is_static", False),
|
||||
)
|
||||
links.append(link)
|
||||
|
||||
return Graph(
|
||||
id=agent_json.get("id", str(uuid.uuid4())),
|
||||
version=agent_json.get("version", 1),
|
||||
is_active=agent_json.get("is_active", True),
|
||||
name=agent_json.get("name", "Generated Agent"),
|
||||
description=agent_json.get("description", ""),
|
||||
nodes=nodes,
|
||||
links=links,
|
||||
)
|
||||
|
||||
|
||||
def _reassign_node_ids(graph: Graph) -> None:
|
||||
"""Reassign all node and link IDs to new UUIDs.
|
||||
|
||||
This is needed when creating a new version to avoid unique constraint violations.
|
||||
"""
|
||||
# Create mapping from old node IDs to new UUIDs
|
||||
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
|
||||
|
||||
# Reassign node IDs
|
||||
for node in graph.nodes:
|
||||
node.id = id_map[node.id]
|
||||
|
||||
# Update link references to use new node IDs
|
||||
for link in graph.links:
|
||||
link.id = str(uuid.uuid4()) # Also give links new IDs
|
||||
if link.source_id in id_map:
|
||||
link.source_id = id_map[link.source_id]
|
||||
if link.sink_id in id_map:
|
||||
link.sink_id = id_map[link.sink_id]
|
||||
|
||||
|
||||
async def save_agent_to_library(
|
||||
agent_json: dict[str, Any], user_id: str, is_update: bool = False
|
||||
) -> tuple[Graph, Any]:
|
||||
"""Save agent to database and user's library.
|
||||
|
||||
Args:
|
||||
agent_json: Agent JSON dict
|
||||
user_id: User ID
|
||||
is_update: Whether this is an update to an existing agent
|
||||
|
||||
Returns:
|
||||
Tuple of (created Graph, LibraryAgent)
|
||||
"""
|
||||
from backend.data.graph import get_graph_all_versions
|
||||
|
||||
graph = json_to_graph(agent_json)
|
||||
|
||||
if is_update:
|
||||
# For updates, keep the same graph ID but increment version
|
||||
# and reassign node/link IDs to avoid conflicts
|
||||
if graph.id:
|
||||
existing_versions = await get_graph_all_versions(graph.id, user_id)
|
||||
if existing_versions:
|
||||
latest_version = max(v.version for v in existing_versions)
|
||||
graph.version = latest_version + 1
|
||||
# Reassign node IDs (but keep graph ID the same)
|
||||
_reassign_node_ids(graph)
|
||||
logger.info(f"Updating agent {graph.id} to version {graph.version}")
|
||||
else:
|
||||
# For new agents, always generate a fresh UUID to avoid collisions
|
||||
graph.id = str(uuid.uuid4())
|
||||
graph.version = 1
|
||||
# Reassign all node IDs as well
|
||||
_reassign_node_ids(graph)
|
||||
logger.info(f"Creating new agent with ID {graph.id}")
|
||||
|
||||
# Save to database
|
||||
created_graph = await create_graph(graph, user_id)
|
||||
|
||||
# Add to user's library (or update existing library agent)
|
||||
library_agents = await library_db.create_library_agent(
|
||||
graph=created_graph,
|
||||
user_id=user_id,
|
||||
sensitive_action_safe_mode=True,
|
||||
create_library_agents_for_sub_graphs=False,
|
||||
)
|
||||
|
||||
return created_graph, library_agents[0]
|
||||
|
||||
|
||||
async def get_agent_as_json(
|
||||
graph_id: str, user_id: str | None
|
||||
) -> dict[str, Any] | None:
|
||||
"""Fetch an agent and convert to JSON format for editing.
|
||||
|
||||
Args:
|
||||
graph_id: Graph ID or library agent ID
|
||||
user_id: User ID
|
||||
|
||||
Returns:
|
||||
Agent as JSON dict or None if not found
|
||||
"""
|
||||
from backend.data.graph import get_graph
|
||||
|
||||
# Try to get the graph (version=None gets the active version)
|
||||
graph = await get_graph(graph_id, version=None, user_id=user_id)
|
||||
if not graph:
|
||||
return None
|
||||
|
||||
# Convert to JSON format
|
||||
nodes = []
|
||||
for node in graph.nodes:
|
||||
nodes.append(
|
||||
{
|
||||
"id": node.id,
|
||||
"block_id": node.block_id,
|
||||
"input_default": node.input_default,
|
||||
"metadata": node.metadata,
|
||||
}
|
||||
)
|
||||
|
||||
links = []
|
||||
for node in graph.nodes:
|
||||
for link in node.output_links:
|
||||
links.append(
|
||||
{
|
||||
"id": link.id,
|
||||
"source_id": link.source_id,
|
||||
"sink_id": link.sink_id,
|
||||
"source_name": link.source_name,
|
||||
"sink_name": link.sink_name,
|
||||
"is_static": link.is_static,
|
||||
}
|
||||
)
|
||||
|
||||
return {
|
||||
"id": graph.id,
|
||||
"name": graph.name,
|
||||
"description": graph.description,
|
||||
"version": graph.version,
|
||||
"is_active": graph.is_active,
|
||||
"nodes": nodes,
|
||||
"links": links,
|
||||
}
|
||||
|
||||
|
||||
async def generate_agent_patch(
|
||||
update_request: str, current_agent: dict[str, Any]
|
||||
) -> dict[str, Any] | None:
|
||||
"""Generate a patch to update an existing agent.
|
||||
|
||||
Args:
|
||||
update_request: Natural language description of changes
|
||||
current_agent: Current agent JSON
|
||||
|
||||
Returns:
|
||||
Patch dict or clarifying questions, or None on error
|
||||
"""
|
||||
client = get_client()
|
||||
prompt = PATCH_PROMPT.format(
|
||||
current_agent=json.dumps(current_agent, indent=2),
|
||||
block_summaries=get_block_summaries(),
|
||||
)
|
||||
|
||||
try:
|
||||
response = await client.chat.completions.create(
|
||||
model=AGENT_GENERATOR_MODEL,
|
||||
messages=[
|
||||
{"role": "system", "content": prompt},
|
||||
{"role": "user", "content": update_request},
|
||||
],
|
||||
temperature=0,
|
||||
)
|
||||
|
||||
content = response.choices[0].message.content
|
||||
if content is None:
|
||||
logger.error("LLM returned empty content for patch generation")
|
||||
return None
|
||||
|
||||
return parse_json_from_llm(content)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error generating patch: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def apply_agent_patch(
|
||||
current_agent: dict[str, Any], patch: dict[str, Any]
|
||||
) -> dict[str, Any]:
|
||||
"""Apply a patch to an existing agent.
|
||||
|
||||
Args:
|
||||
current_agent: Current agent JSON
|
||||
patch: Patch dict with operations
|
||||
|
||||
Returns:
|
||||
Updated agent JSON
|
||||
"""
|
||||
agent = copy.deepcopy(current_agent)
|
||||
patches = patch.get("patches", [])
|
||||
|
||||
for p in patches:
|
||||
patch_type = p.get("type")
|
||||
|
||||
if patch_type == "modify":
|
||||
node_id = p.get("node_id")
|
||||
changes = p.get("changes", {})
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
if node["id"] == node_id:
|
||||
_deep_update(node, changes)
|
||||
logger.debug(f"Modified node {node_id}")
|
||||
break
|
||||
|
||||
elif patch_type == "add":
|
||||
new_nodes = p.get("new_nodes", [])
|
||||
new_links = p.get("new_links", [])
|
||||
|
||||
agent["nodes"] = agent.get("nodes", []) + new_nodes
|
||||
agent["links"] = agent.get("links", []) + new_links
|
||||
logger.debug(f"Added {len(new_nodes)} nodes, {len(new_links)} links")
|
||||
|
||||
elif patch_type == "remove":
|
||||
node_ids_to_remove = set(p.get("node_ids", []))
|
||||
link_ids_to_remove = set(p.get("link_ids", []))
|
||||
|
||||
# Remove nodes
|
||||
agent["nodes"] = [
|
||||
n for n in agent.get("nodes", []) if n["id"] not in node_ids_to_remove
|
||||
]
|
||||
|
||||
# Remove links (both explicit and those referencing removed nodes)
|
||||
agent["links"] = [
|
||||
link
|
||||
for link in agent.get("links", [])
|
||||
if link["id"] not in link_ids_to_remove
|
||||
and link["source_id"] not in node_ids_to_remove
|
||||
and link["sink_id"] not in node_ids_to_remove
|
||||
]
|
||||
|
||||
logger.debug(
|
||||
f"Removed {len(node_ids_to_remove)} nodes, {len(link_ids_to_remove)} links"
|
||||
)
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def _deep_update(target: dict, source: dict) -> None:
|
||||
"""Recursively update a dict with another dict."""
|
||||
for key, value in source.items():
|
||||
if key in target and isinstance(target[key], dict) and isinstance(value, dict):
|
||||
_deep_update(target[key], value)
|
||||
else:
|
||||
target[key] = value
|
||||
@@ -0,0 +1,606 @@
|
||||
"""Agent fixer - Fixes common LLM generation errors."""
|
||||
|
||||
import logging
|
||||
import re
|
||||
import uuid
|
||||
from typing import Any
|
||||
|
||||
from .utils import (
|
||||
ADDTODICTIONARY_BLOCK_ID,
|
||||
ADDTOLIST_BLOCK_ID,
|
||||
CODE_EXECUTION_BLOCK_ID,
|
||||
CONDITION_BLOCK_ID,
|
||||
CREATEDICT_BLOCK_ID,
|
||||
CREATELIST_BLOCK_ID,
|
||||
DATA_SAMPLING_BLOCK_ID,
|
||||
DOUBLE_CURLY_BRACES_BLOCK_IDS,
|
||||
GET_CURRENT_DATE_BLOCK_ID,
|
||||
STORE_VALUE_BLOCK_ID,
|
||||
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
|
||||
get_blocks_info,
|
||||
is_valid_uuid,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def fix_agent_ids(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix invalid UUIDs in agent and link IDs."""
|
||||
# Fix agent ID
|
||||
if not is_valid_uuid(agent.get("id", "")):
|
||||
agent["id"] = str(uuid.uuid4())
|
||||
logger.debug(f"Fixed agent ID: {agent['id']}")
|
||||
|
||||
# Fix node IDs
|
||||
id_mapping = {} # Old ID -> New ID
|
||||
for node in agent.get("nodes", []):
|
||||
if not is_valid_uuid(node.get("id", "")):
|
||||
old_id = node.get("id", "")
|
||||
new_id = str(uuid.uuid4())
|
||||
id_mapping[old_id] = new_id
|
||||
node["id"] = new_id
|
||||
logger.debug(f"Fixed node ID: {old_id} -> {new_id}")
|
||||
|
||||
# Fix link IDs and update references
|
||||
for link in agent.get("links", []):
|
||||
if not is_valid_uuid(link.get("id", "")):
|
||||
link["id"] = str(uuid.uuid4())
|
||||
logger.debug(f"Fixed link ID: {link['id']}")
|
||||
|
||||
# Update source/sink IDs if they were remapped
|
||||
if link.get("source_id") in id_mapping:
|
||||
link["source_id"] = id_mapping[link["source_id"]]
|
||||
if link.get("sink_id") in id_mapping:
|
||||
link["sink_id"] = id_mapping[link["sink_id"]]
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_double_curly_braces(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix single curly braces to double in template blocks."""
|
||||
for node in agent.get("nodes", []):
|
||||
if node.get("block_id") not in DOUBLE_CURLY_BRACES_BLOCK_IDS:
|
||||
continue
|
||||
|
||||
input_data = node.get("input_default", {})
|
||||
for key in ("prompt", "format"):
|
||||
if key in input_data and isinstance(input_data[key], str):
|
||||
original = input_data[key]
|
||||
# Fix simple variable references: {var} -> {{var}}
|
||||
fixed = re.sub(
|
||||
r"(?<!\{)\{([a-zA-Z_][a-zA-Z0-9_]*)\}(?!\})",
|
||||
r"{{\1}}",
|
||||
original,
|
||||
)
|
||||
if fixed != original:
|
||||
input_data[key] = fixed
|
||||
logger.debug(f"Fixed curly braces in {key}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_storevalue_before_condition(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Add StoreValueBlock before ConditionBlock if needed for value2."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
|
||||
# Find all ConditionBlock nodes
|
||||
condition_node_ids = {
|
||||
node["id"] for node in nodes if node.get("block_id") == CONDITION_BLOCK_ID
|
||||
}
|
||||
|
||||
if not condition_node_ids:
|
||||
return agent
|
||||
|
||||
new_nodes = []
|
||||
new_links = []
|
||||
processed_conditions = set()
|
||||
|
||||
for link in links:
|
||||
sink_id = link.get("sink_id")
|
||||
sink_name = link.get("sink_name")
|
||||
|
||||
# Check if this link goes to a ConditionBlock's value2
|
||||
if sink_id in condition_node_ids and sink_name == "value2":
|
||||
source_node = next(
|
||||
(n for n in nodes if n["id"] == link.get("source_id")), None
|
||||
)
|
||||
|
||||
# Skip if source is already a StoreValueBlock
|
||||
if source_node and source_node.get("block_id") == STORE_VALUE_BLOCK_ID:
|
||||
continue
|
||||
|
||||
# Skip if we already processed this condition
|
||||
if sink_id in processed_conditions:
|
||||
continue
|
||||
|
||||
processed_conditions.add(sink_id)
|
||||
|
||||
# Create StoreValueBlock
|
||||
store_node_id = str(uuid.uuid4())
|
||||
store_node = {
|
||||
"id": store_node_id,
|
||||
"block_id": STORE_VALUE_BLOCK_ID,
|
||||
"input_default": {"data": None},
|
||||
"metadata": {"position": {"x": 0, "y": -100}},
|
||||
}
|
||||
new_nodes.append(store_node)
|
||||
|
||||
# Create link: original source -> StoreValueBlock
|
||||
new_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": link["source_id"],
|
||||
"source_name": link["source_name"],
|
||||
"sink_id": store_node_id,
|
||||
"sink_name": "input",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
|
||||
# Update original link: StoreValueBlock -> ConditionBlock
|
||||
link["source_id"] = store_node_id
|
||||
link["source_name"] = "output"
|
||||
|
||||
logger.debug(f"Added StoreValueBlock before ConditionBlock {sink_id}")
|
||||
|
||||
if new_nodes:
|
||||
agent["nodes"] = nodes + new_nodes
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_addtolist_blocks(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix AddToList blocks by adding prerequisite empty AddToList block.
|
||||
|
||||
When an AddToList block is found:
|
||||
1. Checks if there's a CreateListBlock before it
|
||||
2. Removes CreateListBlock if linked directly to AddToList
|
||||
3. Adds an empty AddToList block before the original
|
||||
4. Ensures the original has a self-referencing link
|
||||
"""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
new_nodes = []
|
||||
original_addtolist_ids = set()
|
||||
nodes_to_remove = set()
|
||||
links_to_remove = []
|
||||
|
||||
# First pass: identify CreateListBlock nodes to remove
|
||||
for link in links:
|
||||
source_node = next(
|
||||
(n for n in nodes if n.get("id") == link.get("source_id")), None
|
||||
)
|
||||
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
|
||||
|
||||
if (
|
||||
source_node
|
||||
and sink_node
|
||||
and source_node.get("block_id") == CREATELIST_BLOCK_ID
|
||||
and sink_node.get("block_id") == ADDTOLIST_BLOCK_ID
|
||||
):
|
||||
nodes_to_remove.add(source_node.get("id"))
|
||||
links_to_remove.append(link)
|
||||
logger.debug(f"Removing CreateListBlock {source_node.get('id')}")
|
||||
|
||||
# Second pass: process AddToList blocks
|
||||
filtered_nodes = []
|
||||
for node in nodes:
|
||||
if node.get("id") in nodes_to_remove:
|
||||
continue
|
||||
|
||||
if node.get("block_id") == ADDTOLIST_BLOCK_ID:
|
||||
original_addtolist_ids.add(node.get("id"))
|
||||
node_id = node.get("id")
|
||||
pos = node.get("metadata", {}).get("position", {"x": 0, "y": 0})
|
||||
|
||||
# Check if already has prerequisite
|
||||
has_prereq = any(
|
||||
link.get("sink_id") == node_id
|
||||
and link.get("sink_name") == "list"
|
||||
and link.get("source_name") == "updated_list"
|
||||
for link in links
|
||||
)
|
||||
|
||||
if not has_prereq:
|
||||
# Remove links to "list" input (except self-reference)
|
||||
for link in links:
|
||||
if (
|
||||
link.get("sink_id") == node_id
|
||||
and link.get("sink_name") == "list"
|
||||
and link.get("source_id") != node_id
|
||||
and link not in links_to_remove
|
||||
):
|
||||
links_to_remove.append(link)
|
||||
|
||||
# Create prerequisite AddToList block
|
||||
prereq_id = str(uuid.uuid4())
|
||||
prereq_node = {
|
||||
"id": prereq_id,
|
||||
"block_id": ADDTOLIST_BLOCK_ID,
|
||||
"input_default": {"list": [], "entry": None, "entries": []},
|
||||
"metadata": {
|
||||
"position": {"x": pos.get("x", 0) - 800, "y": pos.get("y", 0)}
|
||||
},
|
||||
}
|
||||
new_nodes.append(prereq_node)
|
||||
|
||||
# Link prerequisite to original
|
||||
links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": prereq_id,
|
||||
"source_name": "updated_list",
|
||||
"sink_id": node_id,
|
||||
"sink_name": "list",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
logger.debug(f"Added prerequisite AddToList block for {node_id}")
|
||||
|
||||
filtered_nodes.append(node)
|
||||
|
||||
# Remove marked links
|
||||
filtered_links = [link for link in links if link not in links_to_remove]
|
||||
|
||||
# Add self-referencing links for original AddToList blocks
|
||||
for node in filtered_nodes + new_nodes:
|
||||
if (
|
||||
node.get("block_id") == ADDTOLIST_BLOCK_ID
|
||||
and node.get("id") in original_addtolist_ids
|
||||
):
|
||||
node_id = node.get("id")
|
||||
has_self_ref = any(
|
||||
link["source_id"] == node_id
|
||||
and link["sink_id"] == node_id
|
||||
and link["source_name"] == "updated_list"
|
||||
and link["sink_name"] == "list"
|
||||
for link in filtered_links
|
||||
)
|
||||
if not has_self_ref:
|
||||
filtered_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": node_id,
|
||||
"source_name": "updated_list",
|
||||
"sink_id": node_id,
|
||||
"sink_name": "list",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
logger.debug(f"Added self-reference for AddToList {node_id}")
|
||||
|
||||
agent["nodes"] = filtered_nodes + new_nodes
|
||||
agent["links"] = filtered_links
|
||||
return agent
|
||||
|
||||
|
||||
def fix_addtodictionary_blocks(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix AddToDictionary blocks by removing empty CreateDictionary nodes."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
nodes_to_remove = set()
|
||||
links_to_remove = []
|
||||
|
||||
for link in links:
|
||||
source_node = next(
|
||||
(n for n in nodes if n.get("id") == link.get("source_id")), None
|
||||
)
|
||||
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
|
||||
|
||||
if (
|
||||
source_node
|
||||
and sink_node
|
||||
and source_node.get("block_id") == CREATEDICT_BLOCK_ID
|
||||
and sink_node.get("block_id") == ADDTODICTIONARY_BLOCK_ID
|
||||
):
|
||||
nodes_to_remove.add(source_node.get("id"))
|
||||
links_to_remove.append(link)
|
||||
logger.debug(f"Removing CreateDictionary {source_node.get('id')}")
|
||||
|
||||
agent["nodes"] = [n for n in nodes if n.get("id") not in nodes_to_remove]
|
||||
agent["links"] = [link for link in links if link not in links_to_remove]
|
||||
return agent
|
||||
|
||||
|
||||
def fix_code_execution_output(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix CodeExecutionBlock output: change 'response' to 'stdout_logs'."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
|
||||
for link in links:
|
||||
source_node = next(
|
||||
(n for n in nodes if n.get("id") == link.get("source_id")), None
|
||||
)
|
||||
if (
|
||||
source_node
|
||||
and source_node.get("block_id") == CODE_EXECUTION_BLOCK_ID
|
||||
and link.get("source_name") == "response"
|
||||
):
|
||||
link["source_name"] = "stdout_logs"
|
||||
logger.debug("Fixed CodeExecutionBlock output: response -> stdout_logs")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_data_sampling_sample_size(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix DataSamplingBlock by setting sample_size to 1 as default."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
links_to_remove = []
|
||||
|
||||
for node in nodes:
|
||||
if node.get("block_id") == DATA_SAMPLING_BLOCK_ID:
|
||||
node_id = node.get("id")
|
||||
input_default = node.get("input_default", {})
|
||||
|
||||
# Remove links to sample_size
|
||||
for link in links:
|
||||
if (
|
||||
link.get("sink_id") == node_id
|
||||
and link.get("sink_name") == "sample_size"
|
||||
):
|
||||
links_to_remove.append(link)
|
||||
|
||||
# Set default
|
||||
input_default["sample_size"] = 1
|
||||
node["input_default"] = input_default
|
||||
logger.debug(f"Fixed DataSamplingBlock {node_id} sample_size to 1")
|
||||
|
||||
if links_to_remove:
|
||||
agent["links"] = [link for link in links if link not in links_to_remove]
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_node_x_coordinates(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix node x-coordinates to ensure 800+ unit spacing between linked nodes."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
node_lookup = {n.get("id"): n for n in nodes}
|
||||
|
||||
for link in links:
|
||||
source_id = link.get("source_id")
|
||||
sink_id = link.get("sink_id")
|
||||
|
||||
source_node = node_lookup.get(source_id)
|
||||
sink_node = node_lookup.get(sink_id)
|
||||
|
||||
if not source_node or not sink_node:
|
||||
continue
|
||||
|
||||
source_pos = source_node.get("metadata", {}).get("position", {})
|
||||
sink_pos = sink_node.get("metadata", {}).get("position", {})
|
||||
|
||||
source_x = source_pos.get("x", 0)
|
||||
sink_x = sink_pos.get("x", 0)
|
||||
|
||||
if abs(sink_x - source_x) < 800:
|
||||
new_x = source_x + 800
|
||||
if "metadata" not in sink_node:
|
||||
sink_node["metadata"] = {}
|
||||
if "position" not in sink_node["metadata"]:
|
||||
sink_node["metadata"]["position"] = {}
|
||||
sink_node["metadata"]["position"]["x"] = new_x
|
||||
logger.debug(f"Fixed node {sink_id} x: {sink_x} -> {new_x}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_getcurrentdate_offset(agent: dict[str, Any]) -> dict[str, Any]:
|
||||
"""Fix GetCurrentDateBlock offset to ensure it's positive."""
|
||||
for node in agent.get("nodes", []):
|
||||
if node.get("block_id") == GET_CURRENT_DATE_BLOCK_ID:
|
||||
input_default = node.get("input_default", {})
|
||||
if "offset" in input_default:
|
||||
offset = input_default["offset"]
|
||||
if isinstance(offset, (int, float)) and offset < 0:
|
||||
input_default["offset"] = abs(offset)
|
||||
logger.debug(f"Fixed offset: {offset} -> {abs(offset)}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_ai_model_parameter(
|
||||
agent: dict[str, Any],
|
||||
blocks_info: list[dict[str, Any]],
|
||||
default_model: str = "gpt-4o",
|
||||
) -> dict[str, Any]:
|
||||
"""Add default model parameter to AI blocks if missing."""
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
block_id = node.get("block_id")
|
||||
block = block_map.get(block_id)
|
||||
|
||||
if not block:
|
||||
continue
|
||||
|
||||
# Check if block has AI category
|
||||
categories = block.get("categories", [])
|
||||
is_ai_block = any(
|
||||
cat.get("category") == "AI" for cat in categories if isinstance(cat, dict)
|
||||
)
|
||||
|
||||
if is_ai_block:
|
||||
input_default = node.get("input_default", {})
|
||||
if "model" not in input_default:
|
||||
input_default["model"] = default_model
|
||||
node["input_default"] = input_default
|
||||
logger.debug(
|
||||
f"Added model '{default_model}' to AI block {node.get('id')}"
|
||||
)
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_link_static_properties(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> dict[str, Any]:
|
||||
"""Fix is_static property based on source block's staticOutput."""
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
|
||||
|
||||
for link in agent.get("links", []):
|
||||
source_node = node_lookup.get(link.get("source_id"))
|
||||
if not source_node:
|
||||
continue
|
||||
|
||||
source_block = block_map.get(source_node.get("block_id"))
|
||||
if not source_block:
|
||||
continue
|
||||
|
||||
static_output = source_block.get("staticOutput", False)
|
||||
if link.get("is_static") != static_output:
|
||||
link["is_static"] = static_output
|
||||
logger.debug(f"Fixed link {link.get('id')} is_static to {static_output}")
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def fix_data_type_mismatch(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> dict[str, Any]:
|
||||
"""Fix data type mismatches by inserting UniversalTypeConverterBlock."""
|
||||
nodes = agent.get("nodes", [])
|
||||
links = agent.get("links", [])
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in nodes}
|
||||
|
||||
def get_property_type(schema: dict, name: str) -> str | None:
|
||||
if "_#_" in name:
|
||||
parent, child = name.split("_#_", 1)
|
||||
parent_schema = schema.get(parent, {})
|
||||
if "properties" in parent_schema:
|
||||
return parent_schema["properties"].get(child, {}).get("type")
|
||||
return None
|
||||
return schema.get(name, {}).get("type")
|
||||
|
||||
def are_types_compatible(src: str, sink: str) -> bool:
|
||||
if {src, sink} <= {"integer", "number"}:
|
||||
return True
|
||||
return src == sink
|
||||
|
||||
type_mapping = {
|
||||
"string": "string",
|
||||
"text": "string",
|
||||
"integer": "number",
|
||||
"number": "number",
|
||||
"float": "number",
|
||||
"boolean": "boolean",
|
||||
"bool": "boolean",
|
||||
"array": "list",
|
||||
"list": "list",
|
||||
"object": "dictionary",
|
||||
"dict": "dictionary",
|
||||
"dictionary": "dictionary",
|
||||
}
|
||||
|
||||
new_links = []
|
||||
nodes_to_add = []
|
||||
|
||||
for link in links:
|
||||
source_node = node_lookup.get(link.get("source_id"))
|
||||
sink_node = node_lookup.get(link.get("sink_id"))
|
||||
|
||||
if not source_node or not sink_node:
|
||||
new_links.append(link)
|
||||
continue
|
||||
|
||||
source_block = block_map.get(source_node.get("block_id"))
|
||||
sink_block = block_map.get(sink_node.get("block_id"))
|
||||
|
||||
if not source_block or not sink_block:
|
||||
new_links.append(link)
|
||||
continue
|
||||
|
||||
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
|
||||
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
|
||||
|
||||
source_type = get_property_type(source_outputs, link.get("source_name", ""))
|
||||
sink_type = get_property_type(sink_inputs, link.get("sink_name", ""))
|
||||
|
||||
if (
|
||||
source_type
|
||||
and sink_type
|
||||
and not are_types_compatible(source_type, sink_type)
|
||||
):
|
||||
# Insert type converter
|
||||
converter_id = str(uuid.uuid4())
|
||||
target_type = type_mapping.get(sink_type, sink_type)
|
||||
|
||||
converter_node = {
|
||||
"id": converter_id,
|
||||
"block_id": UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
|
||||
"input_default": {"type": target_type},
|
||||
"metadata": {"position": {"x": 0, "y": 100}},
|
||||
}
|
||||
nodes_to_add.append(converter_node)
|
||||
|
||||
# source -> converter
|
||||
new_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": link["source_id"],
|
||||
"source_name": link["source_name"],
|
||||
"sink_id": converter_id,
|
||||
"sink_name": "value",
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
|
||||
# converter -> sink
|
||||
new_links.append(
|
||||
{
|
||||
"id": str(uuid.uuid4()),
|
||||
"source_id": converter_id,
|
||||
"source_name": "value",
|
||||
"sink_id": link["sink_id"],
|
||||
"sink_name": link["sink_name"],
|
||||
"is_static": False,
|
||||
}
|
||||
)
|
||||
|
||||
logger.debug(f"Inserted type converter: {source_type} -> {target_type}")
|
||||
else:
|
||||
new_links.append(link)
|
||||
|
||||
if nodes_to_add:
|
||||
agent["nodes"] = nodes + nodes_to_add
|
||||
agent["links"] = new_links
|
||||
|
||||
return agent
|
||||
|
||||
|
||||
def apply_all_fixes(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
|
||||
) -> dict[str, Any]:
|
||||
"""Apply all fixes to an agent JSON.
|
||||
|
||||
Args:
|
||||
agent: Agent JSON dict
|
||||
blocks_info: Optional list of block info dicts for advanced fixes
|
||||
|
||||
Returns:
|
||||
Fixed agent JSON
|
||||
"""
|
||||
# Basic fixes (no block info needed)
|
||||
agent = fix_agent_ids(agent)
|
||||
agent = fix_double_curly_braces(agent)
|
||||
agent = fix_storevalue_before_condition(agent)
|
||||
agent = fix_addtolist_blocks(agent)
|
||||
agent = fix_addtodictionary_blocks(agent)
|
||||
agent = fix_code_execution_output(agent)
|
||||
agent = fix_data_sampling_sample_size(agent)
|
||||
agent = fix_node_x_coordinates(agent)
|
||||
agent = fix_getcurrentdate_offset(agent)
|
||||
|
||||
# Advanced fixes (require block info)
|
||||
if blocks_info is None:
|
||||
blocks_info = get_blocks_info()
|
||||
|
||||
agent = fix_ai_model_parameter(agent, blocks_info)
|
||||
agent = fix_link_static_properties(agent, blocks_info)
|
||||
agent = fix_data_type_mismatch(agent, blocks_info)
|
||||
|
||||
return agent
|
||||
@@ -0,0 +1,225 @@
|
||||
"""Prompt templates for agent generation."""
|
||||
|
||||
DECOMPOSITION_PROMPT = """
|
||||
You are an expert AutoGPT Workflow Decomposer. Your task is to analyze a user's high-level goal and break it down into a clear, step-by-step plan using the available blocks.
|
||||
|
||||
Each step should represent a distinct, automatable action suitable for execution by an AI automation system.
|
||||
|
||||
---
|
||||
|
||||
FIRST: Analyze the user's goal and determine:
|
||||
1) Design-time configuration (fixed settings that won't change per run)
|
||||
2) Runtime inputs (values the agent's end-user will provide each time it runs)
|
||||
|
||||
For anything that can vary per run (email addresses, names, dates, search terms, etc.):
|
||||
- DO NOT ask for the actual value
|
||||
- Instead, define it as an Agent Input with a clear name, type, and description
|
||||
|
||||
Only ask clarifying questions about design-time config that affects how you build the workflow:
|
||||
- Which external service to use (e.g., "Gmail vs Outlook", "Notion vs Google Docs")
|
||||
- Required formats or structures (e.g., "CSV, JSON, or PDF output?")
|
||||
- Business rules that must be hard-coded
|
||||
|
||||
IMPORTANT CLARIFICATIONS POLICY:
|
||||
- Ask no more than five essential questions
|
||||
- Do not ask for concrete values that can be provided at runtime as Agent Inputs
|
||||
- Do not ask for API keys or credentials; the platform handles those directly
|
||||
- If there is enough information to infer reasonable defaults, prefer to propose defaults
|
||||
|
||||
---
|
||||
|
||||
GUIDELINES:
|
||||
1. List each step as a numbered item
|
||||
2. Describe the action clearly and specify inputs/outputs
|
||||
3. Ensure steps are in logical, sequential order
|
||||
4. Mention block names naturally (e.g., "Use GetWeatherByLocationBlock to...")
|
||||
5. Help the user reach their goal efficiently
|
||||
|
||||
---
|
||||
|
||||
RULES:
|
||||
1. OUTPUT FORMAT: Only output either clarifying questions OR step-by-step instructions, not both
|
||||
2. USE ONLY THE BLOCKS PROVIDED
|
||||
3. ALL required_input fields must be provided
|
||||
4. Data types of linked properties must match
|
||||
5. Write expert-level prompts for AI-related blocks
|
||||
|
||||
---
|
||||
|
||||
CRITICAL BLOCK RESTRICTIONS:
|
||||
1. AddToListBlock: Outputs updated list EVERY addition, not after all additions
|
||||
2. SendEmailBlock: Draft the email for user review; set SMTP config based on email type
|
||||
3. ConditionBlock: value2 is reference, value1 is contrast
|
||||
4. CodeExecutionBlock: DO NOT USE - use AI blocks instead
|
||||
5. ReadCsvBlock: Only use the 'rows' output, not 'row'
|
||||
|
||||
---
|
||||
|
||||
OUTPUT FORMAT:
|
||||
|
||||
If more information is needed:
|
||||
```json
|
||||
{{
|
||||
"type": "clarifying_questions",
|
||||
"questions": [
|
||||
{{
|
||||
"question": "Which email provider should be used? (Gmail, Outlook, custom SMTP)",
|
||||
"keyword": "email_provider",
|
||||
"example": "Gmail"
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
If ready to proceed:
|
||||
```json
|
||||
{{
|
||||
"type": "instructions",
|
||||
"steps": [
|
||||
{{
|
||||
"step_number": 1,
|
||||
"block_name": "AgentShortTextInputBlock",
|
||||
"description": "Get the URL of the content to analyze.",
|
||||
"inputs": [{{"name": "name", "value": "URL"}}],
|
||||
"outputs": [{{"name": "result", "description": "The URL entered by user"}}]
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
AVAILABLE BLOCKS:
|
||||
{block_summaries}
|
||||
"""
|
||||
|
||||
GENERATION_PROMPT = """
|
||||
You are an expert AI workflow builder. Generate a valid agent JSON from the given instructions.
|
||||
|
||||
---
|
||||
|
||||
NODES:
|
||||
Each node must include:
|
||||
- `id`: Unique UUID v4 (e.g. `a8f5b1e2-c3d4-4e5f-8a9b-0c1d2e3f4a5b`)
|
||||
- `block_id`: The block identifier (must match an Allowed Block)
|
||||
- `input_default`: Dict of inputs (can be empty if no static inputs needed)
|
||||
- `metadata`: Must contain:
|
||||
- `position`: {{"x": number, "y": number}} - adjacent nodes should differ by 800+ in X
|
||||
- `customized_name`: Clear name describing this block's purpose in the workflow
|
||||
|
||||
---
|
||||
|
||||
LINKS:
|
||||
Each link connects a source node's output to a sink node's input:
|
||||
- `id`: MUST be UUID v4 (NOT "link-1", "link-2", etc.)
|
||||
- `source_id`: ID of the source node
|
||||
- `source_name`: Output field name from the source block
|
||||
- `sink_id`: ID of the sink node
|
||||
- `sink_name`: Input field name on the sink block
|
||||
- `is_static`: true only if source block has static_output: true
|
||||
|
||||
CRITICAL: All IDs must be valid UUID v4 format!
|
||||
|
||||
---
|
||||
|
||||
AGENT (GRAPH):
|
||||
Wrap nodes and links in:
|
||||
- `id`: UUID of the agent
|
||||
- `name`: Short, generic name (avoid specific company names, URLs)
|
||||
- `description`: Short, generic description
|
||||
- `nodes`: List of all nodes
|
||||
- `links`: List of all links
|
||||
- `version`: 1
|
||||
- `is_active`: true
|
||||
|
||||
---
|
||||
|
||||
TIPS:
|
||||
- All required_input fields must be provided via input_default or a valid link
|
||||
- Ensure consistent source_id and sink_id references
|
||||
- Avoid dangling links
|
||||
- Input/output pins must match block schemas
|
||||
- Do not invent unknown block_ids
|
||||
|
||||
---
|
||||
|
||||
ALLOWED BLOCKS:
|
||||
{block_summaries}
|
||||
|
||||
---
|
||||
|
||||
Generate the complete agent JSON. Output ONLY valid JSON, no explanation.
|
||||
"""
|
||||
|
||||
PATCH_PROMPT = """
|
||||
You are an expert at modifying AutoGPT agent workflows. Given the current agent and a modification request, generate a JSON patch to update the agent.
|
||||
|
||||
CURRENT AGENT:
|
||||
{current_agent}
|
||||
|
||||
AVAILABLE BLOCKS:
|
||||
{block_summaries}
|
||||
|
||||
---
|
||||
|
||||
PATCH FORMAT:
|
||||
Return a JSON object with the following structure:
|
||||
|
||||
```json
|
||||
{{
|
||||
"type": "patch",
|
||||
"intent": "Brief description of what the patch does",
|
||||
"patches": [
|
||||
{{
|
||||
"type": "modify",
|
||||
"node_id": "uuid-of-node-to-modify",
|
||||
"changes": {{
|
||||
"input_default": {{"field": "new_value"}},
|
||||
"metadata": {{"customized_name": "New Name"}}
|
||||
}}
|
||||
}},
|
||||
{{
|
||||
"type": "add",
|
||||
"new_nodes": [
|
||||
{{
|
||||
"id": "new-uuid",
|
||||
"block_id": "block-uuid",
|
||||
"input_default": {{}},
|
||||
"metadata": {{"position": {{"x": 0, "y": 0}}, "customized_name": "Name"}}
|
||||
}}
|
||||
],
|
||||
"new_links": [
|
||||
{{
|
||||
"id": "link-uuid",
|
||||
"source_id": "source-node-id",
|
||||
"source_name": "output_field",
|
||||
"sink_id": "sink-node-id",
|
||||
"sink_name": "input_field"
|
||||
}}
|
||||
]
|
||||
}},
|
||||
{{
|
||||
"type": "remove",
|
||||
"node_ids": ["uuid-of-node-to-remove"],
|
||||
"link_ids": ["uuid-of-link-to-remove"]
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
If you need more information, return:
|
||||
```json
|
||||
{{
|
||||
"type": "clarifying_questions",
|
||||
"questions": [
|
||||
{{
|
||||
"question": "What specific change do you want?",
|
||||
"keyword": "change_type",
|
||||
"example": "Add error handling"
|
||||
}}
|
||||
]
|
||||
}}
|
||||
```
|
||||
|
||||
Generate the minimal patch needed. Output ONLY valid JSON.
|
||||
"""
|
||||
@@ -0,0 +1,213 @@
|
||||
"""Utilities for agent generation."""
|
||||
|
||||
import json
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from backend.data.block import get_blocks
|
||||
|
||||
# UUID validation regex
|
||||
UUID_REGEX = re.compile(
|
||||
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$"
|
||||
)
|
||||
|
||||
# Block IDs for various fixes
|
||||
STORE_VALUE_BLOCK_ID = "1ff065e9-88e8-4358-9d82-8dc91f622ba9"
|
||||
CONDITION_BLOCK_ID = "715696a0-e1da-45c8-b209-c2fa9c3b0be6"
|
||||
ADDTOLIST_BLOCK_ID = "aeb08fc1-2fc1-4141-bc8e-f758f183a822"
|
||||
ADDTODICTIONARY_BLOCK_ID = "31d1064e-7446-4693-a7d4-65e5ca1180d1"
|
||||
CREATELIST_BLOCK_ID = "a912d5c7-6e00-4542-b2a9-8034136930e4"
|
||||
CREATEDICT_BLOCK_ID = "b924ddf4-de4f-4b56-9a85-358930dcbc91"
|
||||
CODE_EXECUTION_BLOCK_ID = "0b02b072-abe7-11ef-8372-fb5d162dd712"
|
||||
DATA_SAMPLING_BLOCK_ID = "4a448883-71fa-49cf-91cf-70d793bd7d87"
|
||||
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID = "95d1b990-ce13-4d88-9737-ba5c2070c97b"
|
||||
GET_CURRENT_DATE_BLOCK_ID = "b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1"
|
||||
|
||||
DOUBLE_CURLY_BRACES_BLOCK_IDS = [
|
||||
"44f6c8ad-d75c-4ae1-8209-aad1c0326928", # FillTextTemplateBlock
|
||||
"6ab085e2-20b3-4055-bc3e-08036e01eca6",
|
||||
"90f8c45e-e983-4644-aa0b-b4ebe2f531bc",
|
||||
"363ae599-353e-4804-937e-b2ee3cef3da4", # AgentOutputBlock
|
||||
"3b191d9f-356f-482d-8238-ba04b6d18381",
|
||||
"db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
|
||||
"3a7c4b8d-6e2f-4a5d-b9c1-f8d23c5a9b0e",
|
||||
"ed1ae7a0-b770-4089-b520-1f0005fad19a",
|
||||
"a892b8d9-3e4e-4e9c-9c1e-75f8efcf1bfa",
|
||||
"b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1",
|
||||
"716a67b3-6760-42e7-86dc-18645c6e00fc",
|
||||
"530cf046-2ce0-4854-ae2c-659db17c7a46",
|
||||
"ed55ac19-356e-4243-a6cb-bc599e9b716f",
|
||||
"1f292d4a-41a4-4977-9684-7c8d560b9f91", # LLM blocks
|
||||
"32a87eab-381e-4dd4-bdb8-4c47151be35a",
|
||||
]
|
||||
|
||||
|
||||
def is_valid_uuid(value: str) -> bool:
|
||||
"""Check if a string is a valid UUID v4."""
|
||||
return isinstance(value, str) and UUID_REGEX.match(value) is not None
|
||||
|
||||
|
||||
def _compact_schema(schema: dict) -> dict[str, str]:
|
||||
"""Extract compact type info from a JSON schema properties dict.
|
||||
|
||||
Returns a dict of {field_name: type_string} for essential info only.
|
||||
"""
|
||||
props = schema.get("properties", {})
|
||||
result = {}
|
||||
|
||||
for name, prop in props.items():
|
||||
# Skip internal/complex fields
|
||||
if name.startswith("_"):
|
||||
continue
|
||||
|
||||
# Get type string
|
||||
type_str = prop.get("type", "any")
|
||||
|
||||
# Handle anyOf/oneOf (optional types)
|
||||
if "anyOf" in prop:
|
||||
types = [t.get("type", "?") for t in prop["anyOf"] if t.get("type")]
|
||||
type_str = "|".join(types) if types else "any"
|
||||
elif "allOf" in prop:
|
||||
type_str = "object"
|
||||
|
||||
# Add array item type if present
|
||||
if type_str == "array" and "items" in prop:
|
||||
items = prop["items"]
|
||||
if isinstance(items, dict):
|
||||
item_type = items.get("type", "any")
|
||||
type_str = f"array[{item_type}]"
|
||||
|
||||
result[name] = type_str
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def get_block_summaries(include_schemas: bool = True) -> str:
|
||||
"""Generate compact block summaries for prompts.
|
||||
|
||||
Args:
|
||||
include_schemas: Whether to include input/output type info
|
||||
|
||||
Returns:
|
||||
Formatted string of block summaries (compact format)
|
||||
"""
|
||||
blocks = get_blocks()
|
||||
summaries = []
|
||||
|
||||
for block_id, block_cls in blocks.items():
|
||||
block = block_cls()
|
||||
name = block.name
|
||||
desc = getattr(block, "description", "") or ""
|
||||
|
||||
# Truncate description
|
||||
if len(desc) > 150:
|
||||
desc = desc[:147] + "..."
|
||||
|
||||
if not include_schemas:
|
||||
summaries.append(f"- {name} (id: {block_id}): {desc}")
|
||||
else:
|
||||
# Compact format with type info only
|
||||
inputs = {}
|
||||
outputs = {}
|
||||
required = []
|
||||
|
||||
if hasattr(block, "input_schema"):
|
||||
try:
|
||||
schema = block.input_schema.jsonschema()
|
||||
inputs = _compact_schema(schema)
|
||||
required = schema.get("required", [])
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if hasattr(block, "output_schema"):
|
||||
try:
|
||||
schema = block.output_schema.jsonschema()
|
||||
outputs = _compact_schema(schema)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Build compact line format
|
||||
# Format: NAME (id): desc | in: {field:type, ...} [required] | out: {field:type}
|
||||
in_str = ", ".join(f"{k}:{v}" for k, v in inputs.items())
|
||||
out_str = ", ".join(f"{k}:{v}" for k, v in outputs.items())
|
||||
req_str = f" req=[{','.join(required)}]" if required else ""
|
||||
|
||||
static = " [static]" if getattr(block, "static_output", False) else ""
|
||||
|
||||
line = f"- {name} (id: {block_id}): {desc}"
|
||||
if in_str:
|
||||
line += f"\n in: {{{in_str}}}{req_str}"
|
||||
if out_str:
|
||||
line += f"\n out: {{{out_str}}}{static}"
|
||||
|
||||
summaries.append(line)
|
||||
|
||||
return "\n".join(summaries)
|
||||
|
||||
|
||||
def get_blocks_info() -> list[dict[str, Any]]:
|
||||
"""Get block information with schemas for validation and fixing."""
|
||||
blocks = get_blocks()
|
||||
blocks_info = []
|
||||
for block_id, block_cls in blocks.items():
|
||||
block = block_cls()
|
||||
blocks_info.append(
|
||||
{
|
||||
"id": block_id,
|
||||
"name": block.name,
|
||||
"description": getattr(block, "description", ""),
|
||||
"categories": getattr(block, "categories", []),
|
||||
"staticOutput": getattr(block, "static_output", False),
|
||||
"inputSchema": (
|
||||
block.input_schema.jsonschema()
|
||||
if hasattr(block, "input_schema")
|
||||
else {}
|
||||
),
|
||||
"outputSchema": (
|
||||
block.output_schema.jsonschema()
|
||||
if hasattr(block, "output_schema")
|
||||
else {}
|
||||
),
|
||||
}
|
||||
)
|
||||
return blocks_info
|
||||
|
||||
|
||||
def parse_json_from_llm(text: str) -> dict[str, Any] | None:
|
||||
"""Extract JSON from LLM response (handles markdown code blocks)."""
|
||||
if not text:
|
||||
return None
|
||||
|
||||
# Try fenced code block
|
||||
match = re.search(r"```(?:json)?\s*([\s\S]*?)```", text, re.IGNORECASE)
|
||||
if match:
|
||||
try:
|
||||
return json.loads(match.group(1).strip())
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try raw text
|
||||
try:
|
||||
return json.loads(text.strip())
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try finding {...} span
|
||||
start = text.find("{")
|
||||
end = text.rfind("}")
|
||||
if start != -1 and end > start:
|
||||
try:
|
||||
return json.loads(text[start : end + 1])
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
# Try finding [...] span
|
||||
start = text.find("[")
|
||||
end = text.rfind("]")
|
||||
if start != -1 and end > start:
|
||||
try:
|
||||
return json.loads(text[start : end + 1])
|
||||
except json.JSONDecodeError:
|
||||
pass
|
||||
|
||||
return None
|
||||
@@ -0,0 +1,279 @@
|
||||
"""Agent validator - Validates agent structure and connections."""
|
||||
|
||||
import logging
|
||||
import re
|
||||
from typing import Any
|
||||
|
||||
from .utils import get_blocks_info
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class AgentValidator:
|
||||
"""Validator for AutoGPT agents with detailed error reporting."""
|
||||
|
||||
def __init__(self):
|
||||
self.errors: list[str] = []
|
||||
|
||||
def add_error(self, error: str) -> None:
|
||||
"""Add an error message."""
|
||||
self.errors.append(error)
|
||||
|
||||
def validate_block_existence(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate all block IDs exist in the blocks library."""
|
||||
valid = True
|
||||
valid_block_ids = {b.get("id") for b in blocks_info if b.get("id")}
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
block_id = node.get("block_id")
|
||||
node_id = node.get("id")
|
||||
|
||||
if not block_id:
|
||||
self.add_error(f"Node '{node_id}' is missing 'block_id' field.")
|
||||
valid = False
|
||||
continue
|
||||
|
||||
if block_id not in valid_block_ids:
|
||||
self.add_error(
|
||||
f"Node '{node_id}' references block_id '{block_id}' which does not exist."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_link_node_references(self, agent: dict[str, Any]) -> bool:
|
||||
"""Validate all node IDs referenced in links exist."""
|
||||
valid = True
|
||||
valid_node_ids = {n.get("id") for n in agent.get("nodes", []) if n.get("id")}
|
||||
|
||||
for link in agent.get("links", []):
|
||||
link_id = link.get("id", "Unknown")
|
||||
source_id = link.get("source_id")
|
||||
sink_id = link.get("sink_id")
|
||||
|
||||
if not source_id:
|
||||
self.add_error(f"Link '{link_id}' is missing 'source_id'.")
|
||||
valid = False
|
||||
elif source_id not in valid_node_ids:
|
||||
self.add_error(
|
||||
f"Link '{link_id}' references non-existent source_id '{source_id}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
if not sink_id:
|
||||
self.add_error(f"Link '{link_id}' is missing 'sink_id'.")
|
||||
valid = False
|
||||
elif sink_id not in valid_node_ids:
|
||||
self.add_error(
|
||||
f"Link '{link_id}' references non-existent sink_id '{sink_id}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_required_inputs(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate required inputs are provided."""
|
||||
valid = True
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
block_id = node.get("block_id")
|
||||
block = block_map.get(block_id)
|
||||
|
||||
if not block:
|
||||
continue
|
||||
|
||||
required_inputs = block.get("inputSchema", {}).get("required", [])
|
||||
input_defaults = node.get("input_default", {})
|
||||
node_id = node.get("id")
|
||||
|
||||
# Get linked inputs
|
||||
linked_inputs = {
|
||||
link["sink_name"]
|
||||
for link in agent.get("links", [])
|
||||
if link.get("sink_id") == node_id
|
||||
}
|
||||
|
||||
for req_input in required_inputs:
|
||||
if (
|
||||
req_input not in input_defaults
|
||||
and req_input not in linked_inputs
|
||||
and req_input != "credentials"
|
||||
):
|
||||
block_name = block.get("name", "Unknown Block")
|
||||
self.add_error(
|
||||
f"Node '{node_id}' ({block_name}) is missing required input '{req_input}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_data_type_compatibility(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate linked data types are compatible."""
|
||||
valid = True
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
|
||||
|
||||
def get_type(schema: dict, name: str) -> str | None:
|
||||
if "_#_" in name:
|
||||
parent, child = name.split("_#_", 1)
|
||||
parent_schema = schema.get(parent, {})
|
||||
if "properties" in parent_schema:
|
||||
return parent_schema["properties"].get(child, {}).get("type")
|
||||
return None
|
||||
return schema.get(name, {}).get("type")
|
||||
|
||||
def are_compatible(src: str, sink: str) -> bool:
|
||||
if {src, sink} <= {"integer", "number"}:
|
||||
return True
|
||||
return src == sink
|
||||
|
||||
for link in agent.get("links", []):
|
||||
source_node = node_lookup.get(link.get("source_id"))
|
||||
sink_node = node_lookup.get(link.get("sink_id"))
|
||||
|
||||
if not source_node or not sink_node:
|
||||
continue
|
||||
|
||||
source_block = block_map.get(source_node.get("block_id"))
|
||||
sink_block = block_map.get(sink_node.get("block_id"))
|
||||
|
||||
if not source_block or not sink_block:
|
||||
continue
|
||||
|
||||
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
|
||||
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
|
||||
|
||||
source_type = get_type(source_outputs, link.get("source_name", ""))
|
||||
sink_type = get_type(sink_inputs, link.get("sink_name", ""))
|
||||
|
||||
if source_type and sink_type and not are_compatible(source_type, sink_type):
|
||||
self.add_error(
|
||||
f"Type mismatch: {source_block.get('name')} output '{link['source_name']}' "
|
||||
f"({source_type}) -> {sink_block.get('name')} input '{link['sink_name']}' ({sink_type})."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_nested_sink_links(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
|
||||
) -> bool:
|
||||
"""Validate nested sink links (with _#_ notation)."""
|
||||
valid = True
|
||||
block_map = {b.get("id"): b for b in blocks_info}
|
||||
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
|
||||
|
||||
for link in agent.get("links", []):
|
||||
sink_name = link.get("sink_name", "")
|
||||
|
||||
if "_#_" in sink_name:
|
||||
parent, child = sink_name.split("_#_", 1)
|
||||
|
||||
sink_node = node_lookup.get(link.get("sink_id"))
|
||||
if not sink_node:
|
||||
continue
|
||||
|
||||
block = block_map.get(sink_node.get("block_id"))
|
||||
if not block:
|
||||
continue
|
||||
|
||||
input_props = block.get("inputSchema", {}).get("properties", {})
|
||||
parent_schema = input_props.get(parent)
|
||||
|
||||
if not parent_schema:
|
||||
self.add_error(
|
||||
f"Invalid nested link '{sink_name}': parent '{parent}' not found."
|
||||
)
|
||||
valid = False
|
||||
continue
|
||||
|
||||
if not parent_schema.get("additionalProperties"):
|
||||
if not (
|
||||
isinstance(parent_schema, dict)
|
||||
and "properties" in parent_schema
|
||||
and child in parent_schema.get("properties", {})
|
||||
):
|
||||
self.add_error(
|
||||
f"Invalid nested link '{sink_name}': child '{child}' not found in '{parent}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate_prompt_spaces(self, agent: dict[str, Any]) -> bool:
|
||||
"""Validate prompts don't have spaces in template variables."""
|
||||
valid = True
|
||||
|
||||
for node in agent.get("nodes", []):
|
||||
input_default = node.get("input_default", {})
|
||||
prompt = input_default.get("prompt", "")
|
||||
|
||||
if not isinstance(prompt, str):
|
||||
continue
|
||||
|
||||
# Find {{...}} with spaces
|
||||
matches = re.finditer(r"\{\{([^}]+)\}\}", prompt)
|
||||
for match in matches:
|
||||
content = match.group(1)
|
||||
if " " in content:
|
||||
self.add_error(
|
||||
f"Node '{node.get('id')}' has spaces in template variable: "
|
||||
f"'{{{{{content}}}}}' should be '{{{{{content.replace(' ', '_')}}}}}'."
|
||||
)
|
||||
valid = False
|
||||
|
||||
return valid
|
||||
|
||||
def validate(
|
||||
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
|
||||
) -> tuple[bool, str | None]:
|
||||
"""Run all validations.
|
||||
|
||||
Returns:
|
||||
Tuple of (is_valid, error_message)
|
||||
"""
|
||||
self.errors = []
|
||||
|
||||
if blocks_info is None:
|
||||
blocks_info = get_blocks_info()
|
||||
|
||||
checks = [
|
||||
self.validate_block_existence(agent, blocks_info),
|
||||
self.validate_link_node_references(agent),
|
||||
self.validate_required_inputs(agent, blocks_info),
|
||||
self.validate_data_type_compatibility(agent, blocks_info),
|
||||
self.validate_nested_sink_links(agent, blocks_info),
|
||||
self.validate_prompt_spaces(agent),
|
||||
]
|
||||
|
||||
all_passed = all(checks)
|
||||
|
||||
if all_passed:
|
||||
logger.info("Agent validation successful")
|
||||
return True, None
|
||||
|
||||
error_message = "Agent validation failed:\n"
|
||||
for i, error in enumerate(self.errors, 1):
|
||||
error_message += f"{i}. {error}\n"
|
||||
|
||||
logger.warning(f"Agent validation failed with {len(self.errors)} errors")
|
||||
return False, error_message
|
||||
|
||||
|
||||
def validate_agent(
|
||||
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
|
||||
) -> tuple[bool, str | None]:
|
||||
"""Convenience function to validate an agent.
|
||||
|
||||
Returns:
|
||||
Tuple of (is_valid, error_message)
|
||||
"""
|
||||
validator = AgentValidator()
|
||||
return validator.validate(agent, blocks_info)
|
||||
@@ -5,11 +5,13 @@ import re
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
from pydantic import BaseModel, field_validator
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.api.features.library.model import LibraryAgent
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.data.db_accessors import execution_db, library_db
|
||||
from backend.data import execution as execution_db
|
||||
from backend.data.execution import ExecutionStatus, GraphExecution, GraphExecutionMeta
|
||||
|
||||
from .base import BaseTool
|
||||
@@ -164,12 +166,10 @@ class AgentOutputTool(BaseTool):
|
||||
Resolve agent from provided identifiers.
|
||||
Returns (library_agent, error_message).
|
||||
"""
|
||||
lib_db = library_db()
|
||||
|
||||
# Priority 1: Exact library agent ID
|
||||
if library_agent_id:
|
||||
try:
|
||||
agent = await lib_db.get_library_agent(library_agent_id, user_id)
|
||||
agent = await library_db.get_library_agent(library_agent_id, user_id)
|
||||
return agent, None
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to get library agent by ID: {e}")
|
||||
@@ -183,7 +183,7 @@ class AgentOutputTool(BaseTool):
|
||||
return None, f"Agent '{store_slug}' not found in marketplace"
|
||||
|
||||
# Find in user's library by graph_id
|
||||
agent = await lib_db.get_library_agent_by_graph_id(user_id, graph.id)
|
||||
agent = await library_db.get_library_agent_by_graph_id(user_id, graph.id)
|
||||
if not agent:
|
||||
return (
|
||||
None,
|
||||
@@ -195,7 +195,7 @@ class AgentOutputTool(BaseTool):
|
||||
# Priority 3: Fuzzy name search in library
|
||||
if agent_name:
|
||||
try:
|
||||
response = await lib_db.list_library_agents(
|
||||
response = await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=agent_name,
|
||||
page_size=5,
|
||||
@@ -229,11 +229,9 @@ class AgentOutputTool(BaseTool):
|
||||
Fetch execution(s) based on filters.
|
||||
Returns (single_execution, available_executions_meta, error_message).
|
||||
"""
|
||||
exec_db = execution_db()
|
||||
|
||||
# If specific execution_id provided, fetch it directly
|
||||
if execution_id:
|
||||
execution = await exec_db.get_graph_execution(
|
||||
execution = await execution_db.get_graph_execution(
|
||||
user_id=user_id,
|
||||
execution_id=execution_id,
|
||||
include_node_executions=False,
|
||||
@@ -243,7 +241,7 @@ class AgentOutputTool(BaseTool):
|
||||
return execution, [], None
|
||||
|
||||
# Get completed executions with time filters
|
||||
executions = await exec_db.get_graph_executions(
|
||||
executions = await execution_db.get_graph_executions(
|
||||
graph_id=graph_id,
|
||||
user_id=user_id,
|
||||
statuses=[ExecutionStatus.COMPLETED],
|
||||
@@ -257,7 +255,7 @@ class AgentOutputTool(BaseTool):
|
||||
|
||||
# If only one execution, fetch full details
|
||||
if len(executions) == 1:
|
||||
full_execution = await exec_db.get_graph_execution(
|
||||
full_execution = await execution_db.get_graph_execution(
|
||||
user_id=user_id,
|
||||
execution_id=executions[0].id,
|
||||
include_node_executions=False,
|
||||
@@ -265,7 +263,7 @@ class AgentOutputTool(BaseTool):
|
||||
return full_execution, [], None
|
||||
|
||||
# Multiple executions - return latest with full details, plus list of available
|
||||
full_execution = await exec_db.get_graph_execution(
|
||||
full_execution = await execution_db.get_graph_execution(
|
||||
user_id=user_id,
|
||||
execution_id=executions[0].id,
|
||||
include_node_executions=False,
|
||||
@@ -331,6 +329,7 @@ class AgentOutputTool(BaseTool):
|
||||
total_executions=len(available_executions) if available_executions else 1,
|
||||
)
|
||||
|
||||
@observe(as_type="tool", name="view_agent_output")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -383,7 +382,7 @@ class AgentOutputTool(BaseTool):
|
||||
and not input_data.store_slug
|
||||
):
|
||||
# Fetch execution directly to get graph_id
|
||||
execution = await execution_db().get_graph_execution(
|
||||
execution = await execution_db.get_graph_execution(
|
||||
user_id=user_id,
|
||||
execution_id=input_data.execution_id,
|
||||
include_node_executions=False,
|
||||
@@ -395,7 +394,7 @@ class AgentOutputTool(BaseTool):
|
||||
)
|
||||
|
||||
# Find library agent by graph_id
|
||||
agent = await library_db().get_library_agent_by_graph_id(
|
||||
agent = await library_db.get_library_agent_by_graph_id(
|
||||
user_id, execution.graph_id
|
||||
)
|
||||
if not agent:
|
||||
@@ -0,0 +1,151 @@
|
||||
"""Shared agent search functionality for find_agent and find_library_agent tools."""
|
||||
|
||||
import logging
|
||||
from typing import Literal
|
||||
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
|
||||
from .models import (
|
||||
AgentInfo,
|
||||
AgentsFoundResponse,
|
||||
ErrorResponse,
|
||||
NoResultsResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
SearchSource = Literal["marketplace", "library"]
|
||||
|
||||
|
||||
async def search_agents(
|
||||
query: str,
|
||||
source: SearchSource,
|
||||
session_id: str | None,
|
||||
user_id: str | None = None,
|
||||
) -> ToolResponseBase:
|
||||
"""
|
||||
Search for agents in marketplace or user library.
|
||||
|
||||
Args:
|
||||
query: Search query string
|
||||
source: "marketplace" or "library"
|
||||
session_id: Chat session ID
|
||||
user_id: User ID (required for library search)
|
||||
|
||||
Returns:
|
||||
AgentsFoundResponse, NoResultsResponse, or ErrorResponse
|
||||
"""
|
||||
if not query:
|
||||
return ErrorResponse(
|
||||
message="Please provide a search query", session_id=session_id
|
||||
)
|
||||
|
||||
if source == "library" and not user_id:
|
||||
return ErrorResponse(
|
||||
message="User authentication required to search library",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
agents: list[AgentInfo] = []
|
||||
try:
|
||||
if source == "marketplace":
|
||||
logger.info(f"Searching marketplace for: {query}")
|
||||
results = await store_db.get_store_agents(search_query=query, page_size=5)
|
||||
for agent in results.agents:
|
||||
agents.append(
|
||||
AgentInfo(
|
||||
id=f"{agent.creator}/{agent.slug}",
|
||||
name=agent.agent_name,
|
||||
description=agent.description or "",
|
||||
source="marketplace",
|
||||
in_library=False,
|
||||
creator=agent.creator,
|
||||
category="general",
|
||||
rating=agent.rating,
|
||||
runs=agent.runs,
|
||||
is_featured=False,
|
||||
)
|
||||
)
|
||||
else: # library
|
||||
logger.info(f"Searching user library for: {query}")
|
||||
results = await library_db.list_library_agents(
|
||||
user_id=user_id, # type: ignore[arg-type]
|
||||
search_term=query,
|
||||
page_size=10,
|
||||
)
|
||||
for agent in results.agents:
|
||||
agents.append(
|
||||
AgentInfo(
|
||||
id=agent.id,
|
||||
name=agent.name,
|
||||
description=agent.description or "",
|
||||
source="library",
|
||||
in_library=True,
|
||||
creator=agent.creator_name,
|
||||
status=agent.status.value,
|
||||
can_access_graph=agent.can_access_graph,
|
||||
has_external_trigger=agent.has_external_trigger,
|
||||
new_output=agent.new_output,
|
||||
graph_id=agent.graph_id,
|
||||
)
|
||||
)
|
||||
logger.info(f"Found {len(agents)} agents in {source}")
|
||||
except NotFoundError:
|
||||
pass
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Error searching {source}: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to search {source}. Please try again.",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not agents:
|
||||
suggestions = (
|
||||
[
|
||||
"Try more general terms",
|
||||
"Browse categories in the marketplace",
|
||||
"Check spelling",
|
||||
]
|
||||
if source == "marketplace"
|
||||
else [
|
||||
"Try different keywords",
|
||||
"Use find_agent to search the marketplace",
|
||||
"Check your library at /library",
|
||||
]
|
||||
)
|
||||
no_results_msg = (
|
||||
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
|
||||
if source == "marketplace"
|
||||
else f"No agents matching '{query}' found in your library."
|
||||
)
|
||||
return NoResultsResponse(
|
||||
message=no_results_msg, session_id=session_id, suggestions=suggestions
|
||||
)
|
||||
|
||||
title = f"Found {len(agents)} agent{'s' if len(agents) != 1 else ''} "
|
||||
title += (
|
||||
f"for '{query}'"
|
||||
if source == "marketplace"
|
||||
else f"in your library for '{query}'"
|
||||
)
|
||||
|
||||
message = (
|
||||
"Now you have found some options for the user to choose from. "
|
||||
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
|
||||
"Please ask the user if they would like to use any of these agents."
|
||||
if source == "marketplace"
|
||||
else "Found agents in the user's library. You can provide a link to view an agent at: "
|
||||
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
|
||||
)
|
||||
|
||||
return AgentsFoundResponse(
|
||||
message=message,
|
||||
title=title,
|
||||
agents=agents,
|
||||
count=len(agents),
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -5,8 +5,8 @@ from typing import Any
|
||||
|
||||
from openai.types.chat import ChatCompletionToolParam
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.copilot.response_model import StreamToolOutputAvailable
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.response_model import StreamToolOutputAvailable
|
||||
|
||||
from .models import ErrorResponse, NeedLoginResponse, ToolResponseBase
|
||||
|
||||
@@ -36,16 +36,6 @@ class BaseTool:
|
||||
"""Whether this tool requires authentication."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
"""Whether this tool is long-running and should execute in background.
|
||||
|
||||
Long-running tools (like agent generation) are executed via background
|
||||
tasks to survive SSE disconnections. The result is persisted to chat
|
||||
history and visible when the user refreshes.
|
||||
"""
|
||||
return False
|
||||
|
||||
def as_openai_tool(self) -> ChatCompletionToolParam:
|
||||
"""Convert to OpenAI tool format."""
|
||||
return ChatCompletionToolParam(
|
||||
@@ -3,22 +3,22 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
apply_all_fixes,
|
||||
decompose_goal,
|
||||
enrich_library_agents_from_steps,
|
||||
generate_agent,
|
||||
get_all_relevant_agents_for_generation,
|
||||
get_user_message_for_error,
|
||||
get_blocks_info,
|
||||
save_agent_to_library,
|
||||
validate_agent,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
AsyncProcessingResponse,
|
||||
ClarificationNeededResponse,
|
||||
ClarifyingQuestion,
|
||||
ErrorResponse,
|
||||
@@ -27,6 +27,9 @@ from .models import (
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Maximum retries for agent generation with validation feedback
|
||||
MAX_GENERATION_RETRIES = 2
|
||||
|
||||
|
||||
class CreateAgentTool(BaseTool):
|
||||
"""Tool for creating agents from natural language descriptions."""
|
||||
@@ -46,10 +49,6 @@ class CreateAgentTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
@@ -81,6 +80,7 @@ class CreateAgentTool(BaseTool):
|
||||
"required": ["description"],
|
||||
}
|
||||
|
||||
@observe(as_type="tool", name="create_agent")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -91,18 +91,15 @@ class CreateAgentTool(BaseTool):
|
||||
|
||||
Flow:
|
||||
1. Decompose the description into steps (may return clarifying questions)
|
||||
2. Generate agent JSON (external service handles fixing and validation)
|
||||
3. Preview or save based on the save parameter
|
||||
2. Generate agent JSON from the steps
|
||||
3. Apply fixes to correct common LLM errors
|
||||
4. Preview or save based on the save parameter
|
||||
"""
|
||||
description = kwargs.get("description", "").strip()
|
||||
context = kwargs.get("context", "")
|
||||
save = kwargs.get("save", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
# Extract async processing params (passed by long-running tool handler)
|
||||
operation_id = kwargs.get("_operation_id")
|
||||
task_id = kwargs.get("_task_id")
|
||||
|
||||
if not description:
|
||||
return ErrorResponse(
|
||||
message="Please provide a description of what the agent should do.",
|
||||
@@ -110,61 +107,25 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
library_agents = None
|
||||
if user_id:
|
||||
try:
|
||||
library_agents = await get_all_relevant_agents_for_generation(
|
||||
user_id=user_id,
|
||||
search_query=description,
|
||||
include_marketplace=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"Found {len(library_agents)} relevant agents for sub-agent composition"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch library agents: {e}")
|
||||
|
||||
# Step 1: Decompose goal into steps
|
||||
try:
|
||||
decomposition_result = await decompose_goal(
|
||||
description, context, library_agents
|
||||
)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
decomposition_result = await decompose_goal(description, context)
|
||||
except ValueError as e:
|
||||
# Handle missing API key or configuration errors
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Agent generation is not available. "
|
||||
"The Agent Generator service is not configured."
|
||||
),
|
||||
error="service_not_configured",
|
||||
message=f"Agent generation is not configured: {str(e)}",
|
||||
error="configuration_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if decomposition_result is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to analyze the goal. The agent generation service may be unavailable. Please try again.",
|
||||
error="decomposition_failed",
|
||||
details={"description": description[:100]},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if decomposition_result.get("type") == "error":
|
||||
error_msg = decomposition_result.get("error", "Unknown error")
|
||||
error_type = decomposition_result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="analyze the goal",
|
||||
llm_parse_message="The AI had trouble understanding this request. Please try rephrasing your goal.",
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"decomposition_failed:{error_type}",
|
||||
details={
|
||||
"description": description[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
message="Failed to analyze the goal. Please try rephrasing.",
|
||||
error="Decomposition failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if LLM returned clarifying questions
|
||||
if decomposition_result.get("type") == "clarifying_questions":
|
||||
questions = decomposition_result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
@@ -183,6 +144,7 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check for unachievable/vague goals
|
||||
if decomposition_result.get("type") == "unachievable_goal":
|
||||
suggested = decomposition_result.get("suggested_goal", "")
|
||||
reason = decomposition_result.get("reason", "")
|
||||
@@ -209,88 +171,72 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if user_id and library_agents is not None:
|
||||
try:
|
||||
library_agents = await enrich_library_agents_from_steps(
|
||||
user_id=user_id,
|
||||
decomposition_result=decomposition_result,
|
||||
existing_agents=library_agents,
|
||||
include_marketplace=True,
|
||||
# Step 2: Generate agent JSON with retry on validation failure
|
||||
blocks_info = get_blocks_info()
|
||||
agent_json = None
|
||||
validation_errors = None
|
||||
|
||||
for attempt in range(MAX_GENERATION_RETRIES + 1):
|
||||
# Generate agent (include validation errors from previous attempt)
|
||||
if attempt == 0:
|
||||
agent_json = await generate_agent(decomposition_result)
|
||||
else:
|
||||
# Retry with validation error feedback
|
||||
logger.info(
|
||||
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
|
||||
)
|
||||
logger.debug(
|
||||
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
|
||||
retry_instructions = {
|
||||
**decomposition_result,
|
||||
"previous_errors": validation_errors,
|
||||
"retry_instructions": (
|
||||
"The previous generation had validation errors. "
|
||||
"Please fix these issues in the new generation:\n"
|
||||
f"{validation_errors}"
|
||||
),
|
||||
}
|
||||
agent_json = await generate_agent(retry_instructions)
|
||||
|
||||
if agent_json is None:
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate the agent. Please try again.",
|
||||
error="Generation failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
continue
|
||||
|
||||
# Step 3: Apply fixes to correct common errors
|
||||
agent_json = apply_all_fixes(agent_json, blocks_info)
|
||||
|
||||
# Step 4: Validate the agent
|
||||
is_valid, validation_errors = validate_agent(agent_json, blocks_info)
|
||||
|
||||
if is_valid:
|
||||
logger.info(f"Agent generated successfully on attempt {attempt + 1}")
|
||||
break
|
||||
|
||||
logger.warning(
|
||||
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
|
||||
)
|
||||
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
# Return error with validation details
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Generated agent has validation errors after {MAX_GENERATION_RETRIES + 1} attempts. "
|
||||
f"Please try rephrasing your request or simplify the workflow."
|
||||
),
|
||||
error="validation_failed",
|
||||
details={"validation_errors": validation_errors},
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to enrich library agents from steps: {e}")
|
||||
|
||||
try:
|
||||
agent_json = await generate_agent(
|
||||
decomposition_result,
|
||||
library_agents,
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Agent generation is not available. "
|
||||
"The Agent Generator service is not configured."
|
||||
),
|
||||
error="service_not_configured",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if agent_json is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate the agent. The agent generation service may be unavailable. Please try again.",
|
||||
error="generation_failed",
|
||||
details={"description": description[:100]},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
|
||||
error_msg = agent_json.get("error", "Unknown error")
|
||||
error_type = agent_json.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="generate the agent",
|
||||
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
|
||||
validation_message=(
|
||||
"I wasn't able to create a valid agent for this request. "
|
||||
"The generated workflow had some structural issues. "
|
||||
"Please try simplifying your goal or breaking it into smaller steps."
|
||||
),
|
||||
error_details=error_msg,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"generation_failed:{error_type}",
|
||||
details={
|
||||
"description": description[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if Agent Generator accepted for async processing
|
||||
if agent_json.get("status") == "accepted":
|
||||
logger.info(
|
||||
f"Agent generation delegated to async processing "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return AsyncProcessingResponse(
|
||||
message="Agent generation started. You'll be notified when it's complete.",
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
agent_name = agent_json.get("name", "Generated Agent")
|
||||
agent_description = agent_json.get("description", "")
|
||||
node_count = len(agent_json.get("nodes", []))
|
||||
link_count = len(agent_json.get("links", []))
|
||||
|
||||
# Step 4: Preview or save
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
@@ -305,6 +251,7 @@ class CreateAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Save to library
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="You must be logged in to save agents.",
|
||||
@@ -322,7 +269,7 @@ class CreateAgentTool(BaseTool):
|
||||
agent_id=created_graph.id,
|
||||
agent_name=created_graph.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=f"/library/agents/{library_agent.id}",
|
||||
library_agent_link=f"/library/{library_agent.id}",
|
||||
agent_page_link=f"/build?flowID={created_graph.id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -3,21 +3,23 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_generator import (
|
||||
AgentGeneratorNotConfiguredError,
|
||||
apply_agent_patch,
|
||||
apply_all_fixes,
|
||||
generate_agent_patch,
|
||||
get_agent_as_json,
|
||||
get_all_relevant_agents_for_generation,
|
||||
get_user_message_for_error,
|
||||
get_blocks_info,
|
||||
save_agent_to_library,
|
||||
validate_agent,
|
||||
)
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
AgentPreviewResponse,
|
||||
AgentSavedResponse,
|
||||
AsyncProcessingResponse,
|
||||
ClarificationNeededResponse,
|
||||
ClarifyingQuestion,
|
||||
ErrorResponse,
|
||||
@@ -26,6 +28,9 @@ from .models import (
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Maximum retries for patch generation with validation feedback
|
||||
MAX_GENERATION_RETRIES = 2
|
||||
|
||||
|
||||
class EditAgentTool(BaseTool):
|
||||
"""Tool for editing existing agents using natural language."""
|
||||
@@ -38,17 +43,13 @@ class EditAgentTool(BaseTool):
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Edit an existing agent from the user's library using natural language. "
|
||||
"Generates updates to the agent while preserving unchanged parts."
|
||||
"Generates a patch to update the agent while preserving unchanged parts."
|
||||
)
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def is_long_running(self) -> bool:
|
||||
return True
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
@@ -86,6 +87,7 @@ class EditAgentTool(BaseTool):
|
||||
"required": ["agent_id", "changes"],
|
||||
}
|
||||
|
||||
@observe(as_type="tool", name="edit_agent")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -96,8 +98,9 @@ class EditAgentTool(BaseTool):
|
||||
|
||||
Flow:
|
||||
1. Fetch the current agent
|
||||
2. Generate updated agent (external service handles fixing and validation)
|
||||
3. Preview or save based on the save parameter
|
||||
2. Generate a patch based on the requested changes
|
||||
3. Apply the patch to create an updated agent
|
||||
4. Preview or save based on the save parameter
|
||||
"""
|
||||
agent_id = kwargs.get("agent_id", "").strip()
|
||||
changes = kwargs.get("changes", "").strip()
|
||||
@@ -105,10 +108,6 @@ class EditAgentTool(BaseTool):
|
||||
save = kwargs.get("save", True)
|
||||
session_id = session.session_id if session else None
|
||||
|
||||
# Extract async processing params (passed by long-running tool handler)
|
||||
operation_id = kwargs.get("_operation_id")
|
||||
task_id = kwargs.get("_task_id")
|
||||
|
||||
if not agent_id:
|
||||
return ErrorResponse(
|
||||
message="Please provide the agent ID to edit.",
|
||||
@@ -123,6 +122,7 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 1: Fetch current agent
|
||||
current_agent = await get_agent_as_json(agent_id, user_id)
|
||||
|
||||
if current_agent is None:
|
||||
@@ -132,117 +132,126 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
library_agents = None
|
||||
if user_id:
|
||||
try:
|
||||
graph_id = current_agent.get("id")
|
||||
library_agents = await get_all_relevant_agents_for_generation(
|
||||
user_id=user_id,
|
||||
search_query=changes,
|
||||
exclude_graph_id=graph_id,
|
||||
include_marketplace=True,
|
||||
)
|
||||
logger.debug(
|
||||
f"Found {len(library_agents)} relevant agents for sub-agent composition"
|
||||
)
|
||||
except Exception as e:
|
||||
logger.warning(f"Failed to fetch library agents: {e}")
|
||||
|
||||
# Build the update request with context
|
||||
update_request = changes
|
||||
if context:
|
||||
update_request = f"{changes}\n\nAdditional context:\n{context}"
|
||||
|
||||
try:
|
||||
result = await generate_agent_patch(
|
||||
update_request,
|
||||
current_agent,
|
||||
library_agents,
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
)
|
||||
except AgentGeneratorNotConfiguredError:
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
"Agent editing is not available. "
|
||||
"The Agent Generator service is not configured."
|
||||
),
|
||||
error="service_not_configured",
|
||||
session_id=session_id,
|
||||
)
|
||||
# Step 2: Generate patch with retry on validation failure
|
||||
blocks_info = get_blocks_info()
|
||||
updated_agent = None
|
||||
validation_errors = None
|
||||
intent = "Applied requested changes"
|
||||
|
||||
if result is None:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate changes. The agent generation service may be unavailable or timed out. Please try again.",
|
||||
error="update_generation_failed",
|
||||
details={"agent_id": agent_id, "changes": changes[:100]},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if Agent Generator accepted for async processing
|
||||
if result.get("status") == "accepted":
|
||||
logger.info(
|
||||
f"Agent edit delegated to async processing "
|
||||
f"(operation_id={operation_id}, task_id={task_id})"
|
||||
)
|
||||
return AsyncProcessingResponse(
|
||||
message="Agent edit started. You'll be notified when it's complete.",
|
||||
operation_id=operation_id,
|
||||
task_id=task_id,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Check if the result is an error from the external service
|
||||
if isinstance(result, dict) and result.get("type") == "error":
|
||||
error_msg = result.get("error", "Unknown error")
|
||||
error_type = result.get("error_type", "unknown")
|
||||
user_message = get_user_message_for_error(
|
||||
error_type,
|
||||
operation="generate the changes",
|
||||
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
|
||||
validation_message="The generated changes failed validation. Please try rephrasing your request.",
|
||||
error_details=error_msg,
|
||||
)
|
||||
return ErrorResponse(
|
||||
message=user_message,
|
||||
error=f"update_generation_failed:{error_type}",
|
||||
details={
|
||||
"agent_id": agent_id,
|
||||
"changes": changes[:100],
|
||||
"service_error": error_msg,
|
||||
"error_type": error_type,
|
||||
},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if result.get("type") == "clarifying_questions":
|
||||
questions = result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
message=(
|
||||
"I need some more information about the changes. "
|
||||
"Please answer the following questions:"
|
||||
),
|
||||
questions=[
|
||||
ClarifyingQuestion(
|
||||
question=q.get("question", ""),
|
||||
keyword=q.get("keyword", ""),
|
||||
example=q.get("example"),
|
||||
for attempt in range(MAX_GENERATION_RETRIES + 1):
|
||||
# Generate patch (include validation errors from previous attempt)
|
||||
try:
|
||||
if attempt == 0:
|
||||
patch_result = await generate_agent_patch(
|
||||
update_request, current_agent
|
||||
)
|
||||
for q in questions
|
||||
],
|
||||
session_id=session_id,
|
||||
else:
|
||||
# Retry with validation error feedback
|
||||
logger.info(
|
||||
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
|
||||
)
|
||||
retry_request = (
|
||||
f"{update_request}\n\n"
|
||||
f"IMPORTANT: The previous edit had validation errors. "
|
||||
f"Please fix these issues:\n{validation_errors}"
|
||||
)
|
||||
patch_result = await generate_agent_patch(
|
||||
retry_request, current_agent
|
||||
)
|
||||
except ValueError as e:
|
||||
# Handle missing API key or configuration errors
|
||||
return ErrorResponse(
|
||||
message=f"Agent generation is not configured: {str(e)}",
|
||||
error="configuration_error",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if patch_result is None:
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
return ErrorResponse(
|
||||
message="Failed to generate changes. Please try rephrasing.",
|
||||
error="Patch generation failed",
|
||||
session_id=session_id,
|
||||
)
|
||||
continue
|
||||
|
||||
# Check if LLM returned clarifying questions
|
||||
if patch_result.get("type") == "clarifying_questions":
|
||||
questions = patch_result.get("questions", [])
|
||||
return ClarificationNeededResponse(
|
||||
message=(
|
||||
"I need some more information about the changes. "
|
||||
"Please answer the following questions:"
|
||||
),
|
||||
questions=[
|
||||
ClarifyingQuestion(
|
||||
question=q.get("question", ""),
|
||||
keyword=q.get("keyword", ""),
|
||||
example=q.get("example"),
|
||||
)
|
||||
for q in questions
|
||||
],
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Step 3: Apply patch and fixes
|
||||
try:
|
||||
updated_agent = apply_agent_patch(current_agent, patch_result)
|
||||
updated_agent = apply_all_fixes(updated_agent, blocks_info)
|
||||
except Exception as e:
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
return ErrorResponse(
|
||||
message=f"Failed to apply changes: {str(e)}",
|
||||
error="patch_apply_failed",
|
||||
details={"exception": str(e)},
|
||||
session_id=session_id,
|
||||
)
|
||||
validation_errors = str(e)
|
||||
continue
|
||||
|
||||
# Step 4: Validate the updated agent
|
||||
is_valid, validation_errors = validate_agent(updated_agent, blocks_info)
|
||||
|
||||
if is_valid:
|
||||
logger.info(f"Agent edited successfully on attempt {attempt + 1}")
|
||||
intent = patch_result.get("intent", "Applied requested changes")
|
||||
break
|
||||
|
||||
logger.warning(
|
||||
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
|
||||
)
|
||||
|
||||
updated_agent = result
|
||||
if attempt == MAX_GENERATION_RETRIES:
|
||||
# Return error with validation details
|
||||
return ErrorResponse(
|
||||
message=(
|
||||
f"Updated agent has validation errors after "
|
||||
f"{MAX_GENERATION_RETRIES + 1} attempts. "
|
||||
f"Please try rephrasing your request or simplify the changes."
|
||||
),
|
||||
error="validation_failed",
|
||||
details={"validation_errors": validation_errors},
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# At this point, updated_agent is guaranteed to be set (we return on all failure paths)
|
||||
assert updated_agent is not None
|
||||
|
||||
agent_name = updated_agent.get("name", "Updated Agent")
|
||||
agent_description = updated_agent.get("description", "")
|
||||
node_count = len(updated_agent.get("nodes", []))
|
||||
link_count = len(updated_agent.get("links", []))
|
||||
|
||||
# Step 5: Preview or save
|
||||
if not save:
|
||||
return AgentPreviewResponse(
|
||||
message=(
|
||||
f"I've updated the agent. "
|
||||
f"I've updated the agent. Changes: {intent}. "
|
||||
f"The agent now has {node_count} blocks. "
|
||||
f"Review it and call edit_agent with save=true to save the changes."
|
||||
),
|
||||
@@ -254,6 +263,7 @@ class EditAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Save to library (creates a new version)
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="You must be logged in to save agents.",
|
||||
@@ -267,11 +277,14 @@ class EditAgentTool(BaseTool):
|
||||
)
|
||||
|
||||
return AgentSavedResponse(
|
||||
message=f"Updated agent '{created_graph.name}' has been saved to your library!",
|
||||
message=(
|
||||
f"Updated agent '{created_graph.name}' has been saved to your library! "
|
||||
f"Changes: {intent}"
|
||||
),
|
||||
agent_id=created_graph.id,
|
||||
agent_name=created_graph.name,
|
||||
library_agent_id=library_agent.id,
|
||||
library_agent_link=f"/library/agents/{library_agent.id}",
|
||||
library_agent_link=f"/library/{library_agent.id}",
|
||||
agent_page_link=f"/build?flowID={created_graph.id}",
|
||||
session_id=session_id,
|
||||
)
|
||||
@@ -2,7 +2,9 @@
|
||||
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_search import search_agents
|
||||
from .base import BaseTool
|
||||
@@ -35,6 +37,7 @@ class FindAgentTool(BaseTool):
|
||||
"required": ["query"],
|
||||
}
|
||||
|
||||
@observe(as_type="tool", name="find_agent")
|
||||
async def _execute(
|
||||
self, user_id: str | None, session: ChatSession, **kwargs
|
||||
) -> ToolResponseBase:
|
||||
@@ -1,45 +1,23 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.blocks import get_block
|
||||
from backend.blocks._base import BlockType
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.data.db_accessors import search
|
||||
|
||||
from .base import BaseTool, ToolResponseBase
|
||||
from .models import (
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
|
||||
from backend.api.features.chat.tools.models import (
|
||||
BlockInfoSummary,
|
||||
BlockInputFieldInfo,
|
||||
BlockListResponse,
|
||||
ErrorResponse,
|
||||
NoResultsResponse,
|
||||
)
|
||||
from backend.api.features.store.hybrid_search import unified_hybrid_search
|
||||
from backend.data.block import get_block
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
_TARGET_RESULTS = 10
|
||||
# Over-fetch to compensate for post-hoc filtering of graph-only blocks.
|
||||
# 40 is 2x current removed; speed of query 10 vs 40 is minimial
|
||||
_OVERFETCH_PAGE_SIZE = 40
|
||||
|
||||
# Block types that only work within graphs and cannot run standalone in CoPilot.
|
||||
COPILOT_EXCLUDED_BLOCK_TYPES = {
|
||||
BlockType.INPUT, # Graph interface definition - data enters via chat, not graph inputs
|
||||
BlockType.OUTPUT, # Graph interface definition - data exits via chat, not graph outputs
|
||||
BlockType.WEBHOOK, # Wait for external events - would hang forever in CoPilot
|
||||
BlockType.WEBHOOK_MANUAL, # Same as WEBHOOK
|
||||
BlockType.NOTE, # Visual annotation only - no runtime behavior
|
||||
BlockType.HUMAN_IN_THE_LOOP, # Pauses for human approval - CoPilot IS human-in-the-loop
|
||||
BlockType.AGENT, # AgentExecutorBlock requires execution_context - use run_agent tool
|
||||
}
|
||||
|
||||
# Specific block IDs excluded from CoPilot (STANDARD type but still require graph context)
|
||||
COPILOT_EXCLUDED_BLOCK_IDS = {
|
||||
# SmartDecisionMakerBlock - dynamically discovers downstream blocks via graph topology
|
||||
"3b191d9f-356f-482d-8238-ba04b6d18381",
|
||||
}
|
||||
|
||||
|
||||
class FindBlockTool(BaseTool):
|
||||
"""Tool for searching available blocks."""
|
||||
@@ -55,8 +33,7 @@ class FindBlockTool(BaseTool):
|
||||
"Blocks are reusable components that perform specific tasks like "
|
||||
"sending emails, making API calls, processing text, etc. "
|
||||
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
|
||||
"The response includes each block's id, name, and description. "
|
||||
"Call run_block with the block's id **with no inputs** to see detailed inputs/outputs and execute it."
|
||||
"The response includes each block's id, required_inputs, and input_schema."
|
||||
)
|
||||
|
||||
@property
|
||||
@@ -79,6 +56,7 @@ class FindBlockTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@observe(as_type="tool", name="find_block")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -108,11 +86,11 @@ class FindBlockTool(BaseTool):
|
||||
|
||||
try:
|
||||
# Search for blocks using hybrid search
|
||||
results, total = await search().unified_hybrid_search(
|
||||
results, total = await unified_hybrid_search(
|
||||
query=query,
|
||||
content_types=[ContentType.BLOCK],
|
||||
page=1,
|
||||
page_size=_OVERFETCH_PAGE_SIZE,
|
||||
page_size=10,
|
||||
)
|
||||
|
||||
if not results:
|
||||
@@ -125,44 +103,66 @@ class FindBlockTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Enrich results with block information
|
||||
# Enrich results with full block information
|
||||
blocks: list[BlockInfoSummary] = []
|
||||
for result in results:
|
||||
block_id = result["content_id"]
|
||||
block = get_block(block_id)
|
||||
|
||||
# Skip disabled blocks
|
||||
if not block or block.disabled:
|
||||
continue
|
||||
if block:
|
||||
# Get input/output schemas
|
||||
input_schema = {}
|
||||
output_schema = {}
|
||||
try:
|
||||
input_schema = block.input_schema.jsonschema()
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
output_schema = block.output_schema.jsonschema()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
# Skip blocks excluded from CoPilot (graph-only blocks)
|
||||
if (
|
||||
block.block_type in COPILOT_EXCLUDED_BLOCK_TYPES
|
||||
or block.id in COPILOT_EXCLUDED_BLOCK_IDS
|
||||
):
|
||||
continue
|
||||
# Get categories from block instance
|
||||
categories = []
|
||||
if hasattr(block, "categories") and block.categories:
|
||||
categories = [cat.value for cat in block.categories]
|
||||
|
||||
blocks.append(
|
||||
BlockInfoSummary(
|
||||
id=block_id,
|
||||
name=block.name,
|
||||
description=block.description or "",
|
||||
categories=[c.value for c in block.categories],
|
||||
# Extract required inputs for easier use
|
||||
required_inputs: list[BlockInputFieldInfo] = []
|
||||
if input_schema:
|
||||
properties = input_schema.get("properties", {})
|
||||
required_fields = set(input_schema.get("required", []))
|
||||
# Get credential field names to exclude from required inputs
|
||||
credentials_fields = set(
|
||||
block.input_schema.get_credentials_fields().keys()
|
||||
)
|
||||
|
||||
for field_name, field_schema in properties.items():
|
||||
# Skip credential fields - they're handled separately
|
||||
if field_name in credentials_fields:
|
||||
continue
|
||||
|
||||
required_inputs.append(
|
||||
BlockInputFieldInfo(
|
||||
name=field_name,
|
||||
type=field_schema.get("type", "string"),
|
||||
description=field_schema.get("description", ""),
|
||||
required=field_name in required_fields,
|
||||
default=field_schema.get("default"),
|
||||
)
|
||||
)
|
||||
|
||||
blocks.append(
|
||||
BlockInfoSummary(
|
||||
id=block_id,
|
||||
name=block.name,
|
||||
description=block.description or "",
|
||||
categories=categories,
|
||||
input_schema=input_schema,
|
||||
output_schema=output_schema,
|
||||
required_inputs=required_inputs,
|
||||
)
|
||||
)
|
||||
)
|
||||
|
||||
if len(blocks) >= _TARGET_RESULTS:
|
||||
break
|
||||
|
||||
if blocks and len(blocks) < _TARGET_RESULTS:
|
||||
logger.debug(
|
||||
"find_block returned %d/%d results for query '%s' "
|
||||
"(filtered %d excluded/disabled blocks)",
|
||||
len(blocks),
|
||||
_TARGET_RESULTS,
|
||||
query,
|
||||
len(results) - len(blocks),
|
||||
)
|
||||
|
||||
if not blocks:
|
||||
return NoResultsResponse(
|
||||
@@ -176,7 +176,8 @@ class FindBlockTool(BaseTool):
|
||||
return BlockListResponse(
|
||||
message=(
|
||||
f"Found {len(blocks)} block(s) matching '{query}'. "
|
||||
"To see a block's inputs/outputs and execute it, use run_block with the block's 'id' - providing no inputs."
|
||||
"To execute a block, use run_block with the block's 'id' field "
|
||||
"and provide 'input_data' matching the block's input_schema."
|
||||
),
|
||||
blocks=blocks,
|
||||
count=len(blocks),
|
||||
@@ -2,7 +2,9 @@
|
||||
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
|
||||
from .agent_search import search_agents
|
||||
from .base import BaseTool
|
||||
@@ -41,6 +43,7 @@ class FindLibraryAgentTool(BaseTool):
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
@observe(as_type="tool", name="find_library_agent")
|
||||
async def _execute(
|
||||
self, user_id: str | None, session: ChatSession, **kwargs
|
||||
) -> ToolResponseBase:
|
||||
@@ -4,10 +4,15 @@ import logging
|
||||
from pathlib import Path
|
||||
from typing import Any
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from langfuse import observe
|
||||
|
||||
from .base import BaseTool
|
||||
from .models import DocPageResponse, ErrorResponse, ToolResponseBase
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
DocPageResponse,
|
||||
ErrorResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -68,6 +73,7 @@ class GetDocPageTool(BaseTool):
|
||||
url_path = path.rsplit(".", 1)[0] if "." in path else path
|
||||
return f"{DOCS_BASE_URL}/{url_path}"
|
||||
|
||||
@observe(as_type="tool", name="get_doc_page")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -25,31 +25,9 @@ class ResponseType(str, Enum):
|
||||
AGENT_SAVED = "agent_saved"
|
||||
CLARIFICATION_NEEDED = "clarification_needed"
|
||||
BLOCK_LIST = "block_list"
|
||||
BLOCK_DETAILS = "block_details"
|
||||
BLOCK_OUTPUT = "block_output"
|
||||
DOC_SEARCH_RESULTS = "doc_search_results"
|
||||
DOC_PAGE = "doc_page"
|
||||
# Workspace response types
|
||||
WORKSPACE_FILE_LIST = "workspace_file_list"
|
||||
WORKSPACE_FILE_CONTENT = "workspace_file_content"
|
||||
WORKSPACE_FILE_METADATA = "workspace_file_metadata"
|
||||
WORKSPACE_FILE_WRITTEN = "workspace_file_written"
|
||||
WORKSPACE_FILE_DELETED = "workspace_file_deleted"
|
||||
# Long-running operation types
|
||||
OPERATION_STARTED = "operation_started"
|
||||
OPERATION_PENDING = "operation_pending"
|
||||
OPERATION_IN_PROGRESS = "operation_in_progress"
|
||||
# Input validation
|
||||
INPUT_VALIDATION_ERROR = "input_validation_error"
|
||||
# Web fetch
|
||||
WEB_FETCH = "web_fetch"
|
||||
# Code execution
|
||||
BASH_EXEC = "bash_exec"
|
||||
# Operation status check
|
||||
OPERATION_STATUS = "operation_status"
|
||||
# Feature request types
|
||||
FEATURE_REQUEST_SEARCH = "feature_request_search"
|
||||
FEATURE_REQUEST_CREATED = "feature_request_created"
|
||||
|
||||
|
||||
# Base response model
|
||||
@@ -80,10 +58,6 @@ class AgentInfo(BaseModel):
|
||||
has_external_trigger: bool | None = None
|
||||
new_output: bool | None = None
|
||||
graph_id: str | None = None
|
||||
inputs: dict[str, Any] | None = Field(
|
||||
default=None,
|
||||
description="Input schema for the agent, including field names, types, and defaults",
|
||||
)
|
||||
|
||||
|
||||
class AgentsFoundResponse(ToolResponseBase):
|
||||
@@ -210,20 +184,6 @@ class ErrorResponse(ToolResponseBase):
|
||||
details: dict[str, Any] | None = None
|
||||
|
||||
|
||||
class InputValidationErrorResponse(ToolResponseBase):
|
||||
"""Response when run_agent receives unknown input fields."""
|
||||
|
||||
type: ResponseType = ResponseType.INPUT_VALIDATION_ERROR
|
||||
unrecognized_fields: list[str] = Field(
|
||||
description="List of input field names that were not recognized"
|
||||
)
|
||||
inputs: dict[str, Any] = Field(
|
||||
description="The agent's valid input schema for reference"
|
||||
)
|
||||
graph_id: str | None = None
|
||||
graph_version: int | None = None
|
||||
|
||||
|
||||
# Agent output models
|
||||
class ExecutionOutputInfo(BaseModel):
|
||||
"""Summary of a single execution's outputs."""
|
||||
@@ -345,17 +305,11 @@ class BlockInfoSummary(BaseModel):
|
||||
name: str
|
||||
description: str
|
||||
categories: list[str]
|
||||
input_schema: dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Full JSON schema for block inputs",
|
||||
)
|
||||
output_schema: dict[str, Any] = Field(
|
||||
default_factory=dict,
|
||||
description="Full JSON schema for block outputs",
|
||||
)
|
||||
input_schema: dict[str, Any]
|
||||
output_schema: dict[str, Any]
|
||||
required_inputs: list[BlockInputFieldInfo] = Field(
|
||||
default_factory=list,
|
||||
description="List of input fields for this block",
|
||||
description="List of required input fields for this block",
|
||||
)
|
||||
|
||||
|
||||
@@ -368,29 +322,10 @@ class BlockListResponse(ToolResponseBase):
|
||||
query: str
|
||||
usage_hint: str = Field(
|
||||
default="To execute a block, call run_block with block_id set to the block's "
|
||||
"'id' field and input_data containing the fields listed in required_inputs."
|
||||
"'id' field and input_data containing the required fields from input_schema."
|
||||
)
|
||||
|
||||
|
||||
class BlockDetails(BaseModel):
|
||||
"""Detailed block information."""
|
||||
|
||||
id: str
|
||||
name: str
|
||||
description: str
|
||||
inputs: dict[str, Any] = {}
|
||||
outputs: dict[str, Any] = {}
|
||||
credentials: list[CredentialsMetaInput] = []
|
||||
|
||||
|
||||
class BlockDetailsResponse(ToolResponseBase):
|
||||
"""Response for block details (first run_block attempt)."""
|
||||
|
||||
type: ResponseType = ResponseType.BLOCK_DETAILS
|
||||
block: BlockDetails
|
||||
user_authenticated: bool = False
|
||||
|
||||
|
||||
class BlockOutputResponse(ToolResponseBase):
|
||||
"""Response for run_block tool."""
|
||||
|
||||
@@ -399,111 +334,3 @@ class BlockOutputResponse(ToolResponseBase):
|
||||
block_name: str
|
||||
outputs: dict[str, list[Any]]
|
||||
success: bool = True
|
||||
|
||||
|
||||
# Long-running operation models
|
||||
class OperationStartedResponse(ToolResponseBase):
|
||||
"""Response when a long-running operation has been started in the background.
|
||||
|
||||
This is returned immediately to the client while the operation continues
|
||||
to execute. The user can close the tab and check back later.
|
||||
|
||||
The task_id can be used to reconnect to the SSE stream via
|
||||
GET /chat/tasks/{task_id}/stream?last_idx=0
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_STARTED
|
||||
operation_id: str
|
||||
tool_name: str
|
||||
task_id: str | None = None # For SSE reconnection
|
||||
|
||||
|
||||
class OperationPendingResponse(ToolResponseBase):
|
||||
"""Response stored in chat history while a long-running operation is executing.
|
||||
|
||||
This is persisted to the database so users see a pending state when they
|
||||
refresh before the operation completes.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_PENDING
|
||||
operation_id: str
|
||||
tool_name: str
|
||||
|
||||
|
||||
class OperationInProgressResponse(ToolResponseBase):
|
||||
"""Response when an operation is already in progress.
|
||||
|
||||
Returned for idempotency when the same tool_call_id is requested again
|
||||
while the background task is still running.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_IN_PROGRESS
|
||||
tool_call_id: str
|
||||
|
||||
|
||||
class AsyncProcessingResponse(ToolResponseBase):
|
||||
"""Response when an operation has been delegated to async processing.
|
||||
|
||||
This is returned by tools when the external service accepts the request
|
||||
for async processing (HTTP 202 Accepted). The Redis Streams completion
|
||||
consumer will handle the result when the external service completes.
|
||||
|
||||
The status field is specifically "accepted" to allow the long-running tool
|
||||
handler to detect this response and skip LLM continuation.
|
||||
"""
|
||||
|
||||
type: ResponseType = ResponseType.OPERATION_STARTED
|
||||
status: str = "accepted" # Must be "accepted" for detection
|
||||
operation_id: str | None = None
|
||||
task_id: str | None = None
|
||||
|
||||
|
||||
class WebFetchResponse(ToolResponseBase):
|
||||
"""Response for web_fetch tool."""
|
||||
|
||||
type: ResponseType = ResponseType.WEB_FETCH
|
||||
url: str
|
||||
status_code: int
|
||||
content_type: str
|
||||
content: str
|
||||
truncated: bool = False
|
||||
|
||||
|
||||
class BashExecResponse(ToolResponseBase):
|
||||
"""Response for bash_exec tool."""
|
||||
|
||||
type: ResponseType = ResponseType.BASH_EXEC
|
||||
stdout: str
|
||||
stderr: str
|
||||
exit_code: int
|
||||
timed_out: bool = False
|
||||
|
||||
|
||||
# Feature request models
|
||||
class FeatureRequestInfo(BaseModel):
|
||||
"""Information about a feature request issue."""
|
||||
|
||||
id: str
|
||||
identifier: str
|
||||
title: str
|
||||
|
||||
|
||||
class FeatureRequestSearchResponse(ToolResponseBase):
|
||||
"""Response for search_feature_requests tool."""
|
||||
|
||||
type: ResponseType = ResponseType.FEATURE_REQUEST_SEARCH
|
||||
results: list[FeatureRequestInfo]
|
||||
count: int
|
||||
query: str
|
||||
|
||||
|
||||
class FeatureRequestCreatedResponse(ToolResponseBase):
|
||||
"""Response for create_feature_request tool."""
|
||||
|
||||
type: ResponseType = ResponseType.FEATURE_REQUEST_CREATED
|
||||
issue_id: str
|
||||
issue_identifier: str
|
||||
issue_title: str
|
||||
issue_url: str
|
||||
is_new_issue: bool # False if added to existing
|
||||
customer_name: str
|
||||
@@ -3,14 +3,15 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
from pydantic import BaseModel, Field, field_validator
|
||||
|
||||
from backend.copilot.config import ChatConfig
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.copilot.tracking import track_agent_run_success, track_agent_scheduled
|
||||
from backend.data.db_accessors import graph_db, library_db, user_db
|
||||
from backend.api.features.chat.config import ChatConfig
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.data.user import get_user_by_id
|
||||
from backend.executor import utils as execution_utils
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
@@ -20,14 +21,12 @@ from backend.util.timezone_utils import (
|
||||
)
|
||||
|
||||
from .base import BaseTool
|
||||
from .helpers import get_inputs_from_schema
|
||||
from .models import (
|
||||
AgentDetails,
|
||||
AgentDetailsResponse,
|
||||
ErrorResponse,
|
||||
ExecutionOptions,
|
||||
ExecutionStartedResponse,
|
||||
InputValidationErrorResponse,
|
||||
SetupInfo,
|
||||
SetupRequirementsResponse,
|
||||
ToolResponseBase,
|
||||
@@ -156,6 +155,7 @@ class RunAgentTool(BaseTool):
|
||||
"""All operations require authentication."""
|
||||
return True
|
||||
|
||||
@observe(as_type="tool", name="run_agent")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -196,7 +196,7 @@ class RunAgentTool(BaseTool):
|
||||
|
||||
# Priority: library_agent_id if provided
|
||||
if has_library_id:
|
||||
library_agent = await library_db().get_library_agent(
|
||||
library_agent = await library_db.get_library_agent(
|
||||
params.library_agent_id, user_id
|
||||
)
|
||||
if not library_agent:
|
||||
@@ -205,7 +205,9 @@ class RunAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
# Get the graph from the library agent
|
||||
graph = await graph_db().get_graph(
|
||||
from backend.data.graph import get_graph
|
||||
|
||||
graph = await get_graph(
|
||||
library_agent.graph_id,
|
||||
library_agent.graph_version,
|
||||
user_id=user_id,
|
||||
@@ -256,7 +258,7 @@ class RunAgentTool(BaseTool):
|
||||
),
|
||||
requirements={
|
||||
"credentials": requirements_creds_list,
|
||||
"inputs": get_inputs_from_schema(graph.input_schema),
|
||||
"inputs": self._get_inputs_list(graph.input_schema),
|
||||
"execution_modes": self._get_execution_modes(graph),
|
||||
},
|
||||
),
|
||||
@@ -269,22 +271,6 @@ class RunAgentTool(BaseTool):
|
||||
input_properties = graph.input_schema.get("properties", {})
|
||||
required_fields = set(graph.input_schema.get("required", []))
|
||||
provided_inputs = set(params.inputs.keys())
|
||||
valid_fields = set(input_properties.keys())
|
||||
|
||||
# Check for unknown input fields
|
||||
unrecognized_fields = provided_inputs - valid_fields
|
||||
if unrecognized_fields:
|
||||
return InputValidationErrorResponse(
|
||||
message=(
|
||||
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
|
||||
f"Agent was not executed. Please use the correct field names from the schema."
|
||||
),
|
||||
session_id=session_id,
|
||||
unrecognized_fields=sorted(unrecognized_fields),
|
||||
inputs=graph.input_schema,
|
||||
graph_id=graph.id,
|
||||
graph_version=graph.version,
|
||||
)
|
||||
|
||||
# If agent has inputs but none were provided AND use_defaults is not set,
|
||||
# always show what's available first so user can decide
|
||||
@@ -364,6 +350,22 @@ class RunAgentTool(BaseTool):
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
def _get_inputs_list(self, input_schema: dict[str, Any]) -> list[dict[str, Any]]:
|
||||
"""Extract inputs list from schema."""
|
||||
inputs_list = []
|
||||
if isinstance(input_schema, dict) and "properties" in input_schema:
|
||||
for field_name, field_schema in input_schema["properties"].items():
|
||||
inputs_list.append(
|
||||
{
|
||||
"name": field_name,
|
||||
"title": field_schema.get("title", field_name),
|
||||
"type": field_schema.get("type", "string"),
|
||||
"description": field_schema.get("description", ""),
|
||||
"required": field_name in input_schema.get("required", []),
|
||||
}
|
||||
)
|
||||
return inputs_list
|
||||
|
||||
def _get_execution_modes(self, graph: GraphModel) -> list[str]:
|
||||
"""Get available execution modes for the graph."""
|
||||
trigger_info = graph.trigger_setup_info
|
||||
@@ -377,7 +379,7 @@ class RunAgentTool(BaseTool):
|
||||
suffix: str,
|
||||
) -> str:
|
||||
"""Build a message describing available inputs for an agent."""
|
||||
inputs_list = get_inputs_from_schema(graph.input_schema)
|
||||
inputs_list = self._get_inputs_list(graph.input_schema)
|
||||
required_names = [i["name"] for i in inputs_list if i["required"]]
|
||||
optional_names = [i["name"] for i in inputs_list if not i["required"]]
|
||||
|
||||
@@ -451,16 +453,6 @@ class RunAgentTool(BaseTool):
|
||||
session.successful_agent_runs.get(library_agent.graph_id, 0) + 1
|
||||
)
|
||||
|
||||
# Track in PostHog
|
||||
track_agent_run_success(
|
||||
user_id=user_id,
|
||||
session_id=session_id,
|
||||
graph_id=library_agent.graph_id,
|
||||
graph_name=library_agent.name,
|
||||
execution_id=execution.id,
|
||||
library_agent_id=library_agent.id,
|
||||
)
|
||||
|
||||
library_agent_link = f"/library/agents/{library_agent.id}"
|
||||
return ExecutionStartedResponse(
|
||||
message=(
|
||||
@@ -516,7 +508,7 @@ class RunAgentTool(BaseTool):
|
||||
library_agent = await get_or_create_library_agent(graph, user_id)
|
||||
|
||||
# Get user timezone
|
||||
user = await user_db().get_user_by_id(user_id)
|
||||
user = await get_user_by_id(user_id)
|
||||
user_timezone = get_user_timezone_or_utc(user.timezone if user else timezone)
|
||||
|
||||
# Create schedule
|
||||
@@ -542,18 +534,6 @@ class RunAgentTool(BaseTool):
|
||||
session.successful_agent_schedules.get(library_agent.graph_id, 0) + 1
|
||||
)
|
||||
|
||||
# Track in PostHog
|
||||
track_agent_scheduled(
|
||||
user_id=user_id,
|
||||
session_id=session_id,
|
||||
graph_id=library_agent.graph_id,
|
||||
graph_name=library_agent.name,
|
||||
schedule_id=result.id,
|
||||
schedule_name=schedule_name,
|
||||
cron=cron,
|
||||
library_agent_id=library_agent.id,
|
||||
)
|
||||
|
||||
library_agent_link = f"/library/agents/{library_agent.id}"
|
||||
return ExecutionStartedResponse(
|
||||
message=(
|
||||
@@ -29,7 +29,7 @@ def mock_embedding_functions():
|
||||
yield
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent(setup_test_data):
|
||||
"""Test that the run_agent tool successfully executes an approved agent"""
|
||||
# Use test data from fixture
|
||||
@@ -70,7 +70,7 @@ async def test_run_agent(setup_test_data):
|
||||
assert result_data["graph_name"] == "Test Agent"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_missing_inputs(setup_test_data):
|
||||
"""Test that the run_agent tool returns error when inputs are missing"""
|
||||
# Use test data from fixture
|
||||
@@ -106,7 +106,7 @@ async def test_run_agent_missing_inputs(setup_test_data):
|
||||
assert "message" in result_data
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_invalid_agent_id(setup_test_data):
|
||||
"""Test that the run_agent tool returns error for invalid agent ID"""
|
||||
# Use test data from fixture
|
||||
@@ -141,7 +141,7 @@ async def test_run_agent_invalid_agent_id(setup_test_data):
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_with_llm_credentials(setup_llm_test_data):
|
||||
"""Test that run_agent works with an agent requiring LLM credentials"""
|
||||
# Use test data from fixture
|
||||
@@ -185,7 +185,7 @@ async def test_run_agent_with_llm_credentials(setup_llm_test_data):
|
||||
assert result_data["graph_name"] == "LLM Test Agent"
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_data):
|
||||
"""Test that run_agent returns available inputs when called without inputs or use_defaults."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -219,7 +219,7 @@ async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_da
|
||||
assert "inputs" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_with_use_defaults(setup_test_data):
|
||||
"""Test that run_agent executes successfully with use_defaults=True."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -251,7 +251,7 @@ async def test_run_agent_with_use_defaults(setup_test_data):
|
||||
assert result_data["graph_id"] == graph.id
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
|
||||
"""Test that run_agent returns setup_requirements when credentials are missing."""
|
||||
user = setup_firecrawl_test_data["user"]
|
||||
@@ -285,7 +285,7 @@ async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
|
||||
assert len(setup_info["user_readiness"]["missing_credentials"]) > 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_invalid_slug_format(setup_test_data):
|
||||
"""Test that run_agent returns error for invalid slug format (no slash)."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -313,7 +313,7 @@ async def test_run_agent_invalid_slug_format(setup_test_data):
|
||||
assert "username/agent-name" in result_data["message"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_unauthenticated():
|
||||
"""Test that run_agent returns need_login for unauthenticated users."""
|
||||
tool = RunAgentTool()
|
||||
@@ -340,7 +340,7 @@ async def test_run_agent_unauthenticated():
|
||||
assert "sign in" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_schedule_without_cron(setup_test_data):
|
||||
"""Test that run_agent returns error when scheduling without cron expression."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -372,7 +372,7 @@ async def test_run_agent_schedule_without_cron(setup_test_data):
|
||||
assert "cron" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@pytest.mark.asyncio(scope="session")
|
||||
async def test_run_agent_schedule_without_name(setup_test_data):
|
||||
"""Test that run_agent returns error when scheduling without schedule_name."""
|
||||
user = setup_test_data["user"]
|
||||
@@ -402,42 +402,3 @@ async def test_run_agent_schedule_without_name(setup_test_data):
|
||||
# Should return error about missing schedule_name
|
||||
assert result_data.get("type") == "error"
|
||||
assert "schedule_name" in result_data["message"].lower()
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_run_agent_rejects_unknown_input_fields(setup_test_data):
|
||||
"""Test that run_agent returns input_validation_error for unknown input fields."""
|
||||
user = setup_test_data["user"]
|
||||
store_submission = setup_test_data["store_submission"]
|
||||
|
||||
tool = RunAgentTool()
|
||||
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
|
||||
session = make_session(user_id=user.id)
|
||||
|
||||
# Execute with unknown input field names
|
||||
response = await tool.execute(
|
||||
user_id=user.id,
|
||||
session_id=str(uuid.uuid4()),
|
||||
tool_call_id=str(uuid.uuid4()),
|
||||
username_agent_slug=agent_marketplace_id,
|
||||
inputs={
|
||||
"unknown_field": "some value",
|
||||
"another_unknown": "another value",
|
||||
},
|
||||
session=session,
|
||||
)
|
||||
|
||||
assert response is not None
|
||||
assert hasattr(response, "output")
|
||||
assert isinstance(response.output, str)
|
||||
result_data = orjson.loads(response.output)
|
||||
|
||||
# Should return input_validation_error type with unrecognized fields
|
||||
assert result_data.get("type") == "input_validation_error"
|
||||
assert "unrecognized_fields" in result_data
|
||||
assert set(result_data["unrecognized_fields"]) == {
|
||||
"another_unknown",
|
||||
"unknown_field",
|
||||
}
|
||||
assert "inputs" in result_data # Contains the valid schema
|
||||
assert "Agent was not executed" in result_data["message"]
|
||||
@@ -0,0 +1,305 @@
|
||||
"""Tool for executing blocks directly."""
|
||||
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.data.block import get_block
|
||||
from backend.data.execution import ExecutionContext
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.util.exceptions import BlockError
|
||||
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
BlockOutputResponse,
|
||||
ErrorResponse,
|
||||
SetupInfo,
|
||||
SetupRequirementsResponse,
|
||||
ToolResponseBase,
|
||||
UserReadiness,
|
||||
)
|
||||
from .utils import build_missing_credentials_from_field_info
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class RunBlockTool(BaseTool):
|
||||
"""Tool for executing a block and returning its outputs."""
|
||||
|
||||
@property
|
||||
def name(self) -> str:
|
||||
return "run_block"
|
||||
|
||||
@property
|
||||
def description(self) -> str:
|
||||
return (
|
||||
"Execute a specific block with the provided input data. "
|
||||
"IMPORTANT: You MUST call find_block first to get the block's 'id' - "
|
||||
"do NOT guess or make up block IDs. "
|
||||
"Use the 'id' from find_block results and provide input_data "
|
||||
"matching the block's required_inputs."
|
||||
)
|
||||
|
||||
@property
|
||||
def parameters(self) -> dict[str, Any]:
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"block_id": {
|
||||
"type": "string",
|
||||
"description": (
|
||||
"The block's 'id' field from find_block results. "
|
||||
"NEVER guess this - always get it from find_block first."
|
||||
),
|
||||
},
|
||||
"input_data": {
|
||||
"type": "object",
|
||||
"description": (
|
||||
"Input values for the block. Use the 'required_inputs' field "
|
||||
"from find_block to see what fields are needed."
|
||||
),
|
||||
},
|
||||
},
|
||||
"required": ["block_id", "input_data"],
|
||||
}
|
||||
|
||||
@property
|
||||
def requires_auth(self) -> bool:
|
||||
return True
|
||||
|
||||
async def _check_block_credentials(
|
||||
self,
|
||||
user_id: str,
|
||||
block: Any,
|
||||
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
|
||||
"""
|
||||
Check if user has required credentials for a block.
|
||||
|
||||
Returns:
|
||||
tuple[matched_credentials, missing_credentials]
|
||||
"""
|
||||
matched_credentials: dict[str, CredentialsMetaInput] = {}
|
||||
missing_credentials: list[CredentialsMetaInput] = []
|
||||
|
||||
# Get credential field info from block's input schema
|
||||
credentials_fields_info = block.input_schema.get_credentials_fields_info()
|
||||
|
||||
if not credentials_fields_info:
|
||||
return matched_credentials, missing_credentials
|
||||
|
||||
# Get user's available credentials
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
available_creds = await creds_manager.store.get_all_creds(user_id)
|
||||
|
||||
for field_name, field_info in credentials_fields_info.items():
|
||||
# field_info.provider is a frozenset of acceptable providers
|
||||
# field_info.supported_types is a frozenset of acceptable types
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
for cred in available_creds
|
||||
if cred.provider in field_info.provider
|
||||
and cred.type in field_info.supported_types
|
||||
),
|
||||
None,
|
||||
)
|
||||
|
||||
if matching_cred:
|
||||
matched_credentials[field_name] = CredentialsMetaInput(
|
||||
id=matching_cred.id,
|
||||
provider=matching_cred.provider, # type: ignore
|
||||
type=matching_cred.type,
|
||||
title=matching_cred.title,
|
||||
)
|
||||
else:
|
||||
# Create a placeholder for the missing credential
|
||||
provider = next(iter(field_info.provider), "unknown")
|
||||
cred_type = next(iter(field_info.supported_types), "api_key")
|
||||
missing_credentials.append(
|
||||
CredentialsMetaInput(
|
||||
id=field_name,
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type, # type: ignore
|
||||
title=field_name.replace("_", " ").title(),
|
||||
)
|
||||
)
|
||||
|
||||
return matched_credentials, missing_credentials
|
||||
|
||||
@observe(as_type="tool", name="run_block")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
session: ChatSession,
|
||||
**kwargs,
|
||||
) -> ToolResponseBase:
|
||||
"""Execute a block with the given input data.
|
||||
|
||||
Args:
|
||||
user_id: User ID (required)
|
||||
session: Chat session
|
||||
block_id: Block UUID to execute
|
||||
input_data: Input values for the block
|
||||
|
||||
Returns:
|
||||
BlockOutputResponse: Block execution outputs
|
||||
SetupRequirementsResponse: Missing credentials
|
||||
ErrorResponse: Error message
|
||||
"""
|
||||
block_id = kwargs.get("block_id", "").strip()
|
||||
input_data = kwargs.get("input_data", {})
|
||||
session_id = session.session_id
|
||||
|
||||
if not block_id:
|
||||
return ErrorResponse(
|
||||
message="Please provide a block_id",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not isinstance(input_data, dict):
|
||||
return ErrorResponse(
|
||||
message="input_data must be an object",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
if not user_id:
|
||||
return ErrorResponse(
|
||||
message="Authentication required",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Get the block
|
||||
block = get_block(block_id)
|
||||
if not block:
|
||||
return ErrorResponse(
|
||||
message=f"Block '{block_id}' not found",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
|
||||
|
||||
# Check credentials
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
matched_credentials, missing_credentials = await self._check_block_credentials(
|
||||
user_id, block
|
||||
)
|
||||
|
||||
if missing_credentials:
|
||||
# Return setup requirements response with missing credentials
|
||||
credentials_fields_info = block.input_schema.get_credentials_fields_info()
|
||||
missing_creds_dict = build_missing_credentials_from_field_info(
|
||||
credentials_fields_info, set(matched_credentials.keys())
|
||||
)
|
||||
missing_creds_list = list(missing_creds_dict.values())
|
||||
|
||||
return SetupRequirementsResponse(
|
||||
message=(
|
||||
f"Block '{block.name}' requires credentials that are not configured. "
|
||||
"Please set up the required credentials before running this block."
|
||||
),
|
||||
session_id=session_id,
|
||||
setup_info=SetupInfo(
|
||||
agent_id=block_id,
|
||||
agent_name=block.name,
|
||||
user_readiness=UserReadiness(
|
||||
has_all_credentials=False,
|
||||
missing_credentials=missing_creds_dict,
|
||||
ready_to_run=False,
|
||||
),
|
||||
requirements={
|
||||
"credentials": missing_creds_list,
|
||||
"inputs": self._get_inputs_list(block),
|
||||
"execution_modes": ["immediate"],
|
||||
},
|
||||
),
|
||||
graph_id=None,
|
||||
graph_version=None,
|
||||
)
|
||||
|
||||
try:
|
||||
# Fetch actual credentials and prepare kwargs for block execution
|
||||
# Create execution context with defaults (blocks may require it)
|
||||
exec_kwargs: dict[str, Any] = {
|
||||
"user_id": user_id,
|
||||
"execution_context": ExecutionContext(),
|
||||
}
|
||||
|
||||
for field_name, cred_meta in matched_credentials.items():
|
||||
# Inject metadata into input_data (for validation)
|
||||
if field_name not in input_data:
|
||||
input_data[field_name] = cred_meta.model_dump()
|
||||
|
||||
# Fetch actual credentials and pass as kwargs (for execution)
|
||||
actual_credentials = await creds_manager.get(
|
||||
user_id, cred_meta.id, lock=False
|
||||
)
|
||||
if actual_credentials:
|
||||
exec_kwargs[field_name] = actual_credentials
|
||||
else:
|
||||
return ErrorResponse(
|
||||
message=f"Failed to retrieve credentials for {field_name}",
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
# Execute the block and collect outputs
|
||||
outputs: dict[str, list[Any]] = defaultdict(list)
|
||||
async for output_name, output_data in block.execute(
|
||||
input_data,
|
||||
**exec_kwargs,
|
||||
):
|
||||
outputs[output_name].append(output_data)
|
||||
|
||||
return BlockOutputResponse(
|
||||
message=f"Block '{block.name}' executed successfully",
|
||||
block_id=block_id,
|
||||
block_name=block.name,
|
||||
outputs=dict(outputs),
|
||||
success=True,
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
except BlockError as e:
|
||||
logger.warning(f"Block execution failed: {e}")
|
||||
return ErrorResponse(
|
||||
message=f"Block execution failed: {e}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error executing block: {e}", exc_info=True)
|
||||
return ErrorResponse(
|
||||
message=f"Failed to execute block: {str(e)}",
|
||||
error=str(e),
|
||||
session_id=session_id,
|
||||
)
|
||||
|
||||
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
|
||||
"""Extract non-credential inputs from block schema."""
|
||||
inputs_list = []
|
||||
schema = block.input_schema.jsonschema()
|
||||
properties = schema.get("properties", {})
|
||||
required_fields = set(schema.get("required", []))
|
||||
|
||||
# Get credential field names to exclude
|
||||
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
|
||||
|
||||
for field_name, field_schema in properties.items():
|
||||
# Skip credential fields
|
||||
if field_name in credentials_fields:
|
||||
continue
|
||||
|
||||
inputs_list.append(
|
||||
{
|
||||
"name": field_name,
|
||||
"title": field_schema.get("title", field_name),
|
||||
"type": field_schema.get("type", "string"),
|
||||
"description": field_schema.get("description", ""),
|
||||
"required": field_name in required_fields,
|
||||
}
|
||||
)
|
||||
|
||||
return inputs_list
|
||||
@@ -3,19 +3,19 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from langfuse import observe
|
||||
from prisma.enums import ContentType
|
||||
|
||||
from backend.copilot.model import ChatSession
|
||||
from backend.data.db_accessors import search
|
||||
|
||||
from .base import BaseTool
|
||||
from .models import (
|
||||
from backend.api.features.chat.model import ChatSession
|
||||
from backend.api.features.chat.tools.base import BaseTool
|
||||
from backend.api.features.chat.tools.models import (
|
||||
DocSearchResult,
|
||||
DocSearchResultsResponse,
|
||||
ErrorResponse,
|
||||
NoResultsResponse,
|
||||
ToolResponseBase,
|
||||
)
|
||||
from backend.api.features.store.hybrid_search import unified_hybrid_search
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -88,6 +88,7 @@ class SearchDocsTool(BaseTool):
|
||||
url_path = path.rsplit(".", 1)[0] if "." in path else path
|
||||
return f"{DOCS_BASE_URL}/{url_path}"
|
||||
|
||||
@observe(as_type="tool", name="search_docs")
|
||||
async def _execute(
|
||||
self,
|
||||
user_id: str | None,
|
||||
@@ -118,7 +119,7 @@ class SearchDocsTool(BaseTool):
|
||||
|
||||
try:
|
||||
# Search using hybrid search for DOCUMENTATION content type only
|
||||
results, total = await search().unified_hybrid_search(
|
||||
results, total = await unified_hybrid_search(
|
||||
query=query,
|
||||
content_types=[ContentType.DOCUMENTATION],
|
||||
page=1,
|
||||
@@ -3,18 +3,13 @@
|
||||
import logging
|
||||
from typing import Any
|
||||
|
||||
from backend.api.features.library import db as library_db
|
||||
from backend.api.features.library import model as library_model
|
||||
from backend.data.db_accessors import library_db, store_db
|
||||
from backend.api.features.store import db as store_db
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data.graph import GraphModel
|
||||
from backend.data.model import (
|
||||
Credentials,
|
||||
CredentialsFieldInfo,
|
||||
CredentialsMetaInput,
|
||||
HostScopedCredentials,
|
||||
OAuth2Credentials,
|
||||
)
|
||||
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.exceptions import NotFoundError
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -38,15 +33,20 @@ async def fetch_graph_from_store_slug(
|
||||
Raises:
|
||||
DatabaseError: If there's a database error during lookup.
|
||||
"""
|
||||
sdb = store_db()
|
||||
try:
|
||||
store_agent = await sdb.get_store_agent_details(username, agent_name)
|
||||
store_agent = await store_db.get_store_agent_details(username, agent_name)
|
||||
except NotFoundError:
|
||||
return None, None
|
||||
|
||||
# Get the graph from store listing version
|
||||
graph = await sdb.get_available_graph(
|
||||
store_agent.store_listing_version_id, hide_nodes=False
|
||||
graph_meta = await store_db.get_available_graph(
|
||||
store_agent.store_listing_version_id
|
||||
)
|
||||
graph = await graph_db.get_graph(
|
||||
graph_id=graph_meta.id,
|
||||
version=graph_meta.version,
|
||||
user_id=None, # Public access
|
||||
include_subgraphs=True,
|
||||
)
|
||||
return graph, store_agent
|
||||
|
||||
@@ -123,7 +123,7 @@ def build_missing_credentials_from_graph(
|
||||
|
||||
return {
|
||||
field_key: _serialize_missing_credential(field_key, field_info)
|
||||
for field_key, (field_info, _, _) in aggregated_fields.items()
|
||||
for field_key, (field_info, _node_fields) in aggregated_fields.items()
|
||||
if field_key not in matched_keys
|
||||
}
|
||||
|
||||
@@ -210,13 +210,13 @@ async def get_or_create_library_agent(
|
||||
Returns:
|
||||
LibraryAgent instance
|
||||
"""
|
||||
existing = await library_db().get_library_agent_by_graph_id(
|
||||
existing = await library_db.get_library_agent_by_graph_id(
|
||||
graph_id=graph.id, user_id=user_id
|
||||
)
|
||||
if existing:
|
||||
return existing
|
||||
|
||||
library_agents = await library_db().create_library_agent(
|
||||
library_agents = await library_db.create_library_agent(
|
||||
graph=graph,
|
||||
user_id=user_id,
|
||||
create_library_agents_for_sub_graphs=False,
|
||||
@@ -225,99 +225,6 @@ async def get_or_create_library_agent(
|
||||
return library_agents[0]
|
||||
|
||||
|
||||
async def match_credentials_to_requirements(
|
||||
user_id: str,
|
||||
requirements: dict[str, CredentialsFieldInfo],
|
||||
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
|
||||
"""
|
||||
Match user's credentials against a dictionary of credential requirements.
|
||||
|
||||
This is the core matching logic shared by both graph and block credential matching.
|
||||
"""
|
||||
matched: dict[str, CredentialsMetaInput] = {}
|
||||
missing: list[CredentialsMetaInput] = []
|
||||
|
||||
if not requirements:
|
||||
return matched, missing
|
||||
|
||||
available_creds = await get_user_credentials(user_id)
|
||||
|
||||
for field_name, field_info in requirements.items():
|
||||
matching_cred = find_matching_credential(available_creds, field_info)
|
||||
|
||||
if matching_cred:
|
||||
try:
|
||||
matched[field_name] = create_credential_meta_from_match(matching_cred)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to create CredentialsMetaInput for field '{field_name}': "
|
||||
f"provider={matching_cred.provider}, type={matching_cred.type}, "
|
||||
f"credential_id={matching_cred.id}",
|
||||
exc_info=True,
|
||||
)
|
||||
provider = next(iter(field_info.provider), "unknown")
|
||||
cred_type = next(iter(field_info.supported_types), "api_key")
|
||||
missing.append(
|
||||
CredentialsMetaInput(
|
||||
id=field_name,
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type, # type: ignore
|
||||
title=f"{field_name} (validation failed: {e})",
|
||||
)
|
||||
)
|
||||
else:
|
||||
provider = next(iter(field_info.provider), "unknown")
|
||||
cred_type = next(iter(field_info.supported_types), "api_key")
|
||||
missing.append(
|
||||
CredentialsMetaInput(
|
||||
id=field_name,
|
||||
provider=provider, # type: ignore
|
||||
type=cred_type, # type: ignore
|
||||
title=field_name.replace("_", " ").title(),
|
||||
)
|
||||
)
|
||||
|
||||
return matched, missing
|
||||
|
||||
|
||||
async def get_user_credentials(user_id: str) -> list[Credentials]:
|
||||
"""Get all available credentials for a user."""
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
return await creds_manager.store.get_all_creds(user_id)
|
||||
|
||||
|
||||
def find_matching_credential(
|
||||
available_creds: list[Credentials],
|
||||
field_info: CredentialsFieldInfo,
|
||||
) -> Credentials | None:
|
||||
"""Find a credential that matches the required provider, type, scopes, and host."""
|
||||
for cred in available_creds:
|
||||
if cred.provider not in field_info.provider:
|
||||
continue
|
||||
if cred.type not in field_info.supported_types:
|
||||
continue
|
||||
if cred.type == "oauth2" and not _credential_has_required_scopes(
|
||||
cred, field_info
|
||||
):
|
||||
continue
|
||||
if cred.type == "host_scoped" and not _credential_is_for_host(cred, field_info):
|
||||
continue
|
||||
return cred
|
||||
return None
|
||||
|
||||
|
||||
def create_credential_meta_from_match(
|
||||
matching_cred: Credentials,
|
||||
) -> CredentialsMetaInput:
|
||||
"""Create a CredentialsMetaInput from a matched credential."""
|
||||
return CredentialsMetaInput(
|
||||
id=matching_cred.id,
|
||||
provider=matching_cred.provider, # type: ignore
|
||||
type=matching_cred.type,
|
||||
title=matching_cred.title,
|
||||
)
|
||||
|
||||
|
||||
async def match_user_credentials_to_graph(
|
||||
user_id: str,
|
||||
graph: GraphModel,
|
||||
@@ -357,28 +264,15 @@ async def match_user_credentials_to_graph(
|
||||
# provider is in the set of acceptable providers.
|
||||
for credential_field_name, (
|
||||
credential_requirements,
|
||||
_,
|
||||
_,
|
||||
_node_fields,
|
||||
) in aggregated_creds.items():
|
||||
# Find first matching credential by provider, type, scopes, and host/URL
|
||||
# Find first matching credential by provider and type
|
||||
matching_cred = next(
|
||||
(
|
||||
cred
|
||||
for cred in available_creds
|
||||
if cred.provider in credential_requirements.provider
|
||||
and cred.type in credential_requirements.supported_types
|
||||
and (
|
||||
cred.type != "oauth2"
|
||||
or _credential_has_required_scopes(cred, credential_requirements)
|
||||
)
|
||||
and (
|
||||
cred.type != "host_scoped"
|
||||
or _credential_is_for_host(cred, credential_requirements)
|
||||
)
|
||||
and (
|
||||
cred.provider != ProviderName.MCP
|
||||
or _credential_is_for_mcp_server(cred, credential_requirements)
|
||||
)
|
||||
),
|
||||
None,
|
||||
)
|
||||
@@ -402,17 +296,10 @@ async def match_user_credentials_to_graph(
|
||||
f"{credential_field_name} (validation failed: {e})"
|
||||
)
|
||||
else:
|
||||
# Build a helpful error message including scope requirements
|
||||
error_parts = [
|
||||
f"provider in {list(credential_requirements.provider)}",
|
||||
f"type in {list(credential_requirements.supported_types)}",
|
||||
]
|
||||
if credential_requirements.required_scopes:
|
||||
error_parts.append(
|
||||
f"scopes including {list(credential_requirements.required_scopes)}"
|
||||
)
|
||||
missing_creds.append(
|
||||
f"{credential_field_name} (requires {', '.join(error_parts)})"
|
||||
f"{credential_field_name} "
|
||||
f"(requires provider in {list(credential_requirements.provider)}, "
|
||||
f"type in {list(credential_requirements.supported_types)})"
|
||||
)
|
||||
|
||||
logger.info(
|
||||
@@ -422,49 +309,6 @@ async def match_user_credentials_to_graph(
|
||||
return graph_credentials_inputs, missing_creds
|
||||
|
||||
|
||||
def _credential_has_required_scopes(
|
||||
credential: OAuth2Credentials,
|
||||
requirements: CredentialsFieldInfo,
|
||||
) -> bool:
|
||||
"""Check if an OAuth2 credential has all the scopes required by the input."""
|
||||
# If no scopes are required, any credential matches
|
||||
if not requirements.required_scopes:
|
||||
return True
|
||||
return set(credential.scopes).issuperset(requirements.required_scopes)
|
||||
|
||||
|
||||
def _credential_is_for_host(
|
||||
credential: HostScopedCredentials,
|
||||
requirements: CredentialsFieldInfo,
|
||||
) -> bool:
|
||||
"""Check if a host-scoped credential matches the host required by the input."""
|
||||
# We need to know the host to match host-scoped credentials to.
|
||||
# Graph.aggregate_credentials_inputs() adds the node's set URL value (if any)
|
||||
# to discriminator_values. No discriminator_values -> no host to match against.
|
||||
if not requirements.discriminator_values:
|
||||
return True
|
||||
|
||||
# Check that credential host matches required host.
|
||||
# Host-scoped credential inputs are grouped by host, so any item from the set works.
|
||||
return credential.matches_url(list(requirements.discriminator_values)[0])
|
||||
|
||||
|
||||
def _credential_is_for_mcp_server(
|
||||
credential: Credentials,
|
||||
requirements: CredentialsFieldInfo,
|
||||
) -> bool:
|
||||
"""Check if an MCP OAuth credential matches the required server URL."""
|
||||
if not requirements.discriminator_values:
|
||||
return True
|
||||
|
||||
server_url = (
|
||||
credential.metadata.get("mcp_server_url")
|
||||
if isinstance(credential, OAuth2Credentials)
|
||||
else None
|
||||
)
|
||||
return server_url in requirements.discriminator_values if server_url else False
|
||||
|
||||
|
||||
async def check_user_has_required_credentials(
|
||||
user_id: str,
|
||||
required_credentials: list[CredentialsMetaInput],
|
||||
@@ -23,7 +23,6 @@ class PendingHumanReviewModel(BaseModel):
|
||||
id: Unique identifier for the review record
|
||||
user_id: ID of the user who must perform the review
|
||||
node_exec_id: ID of the node execution that created this review
|
||||
node_id: ID of the node definition (for grouping reviews from same node)
|
||||
graph_exec_id: ID of the graph execution containing the node
|
||||
graph_id: ID of the graph template being executed
|
||||
graph_version: Version number of the graph template
|
||||
@@ -38,10 +37,6 @@ class PendingHumanReviewModel(BaseModel):
|
||||
"""
|
||||
|
||||
node_exec_id: str = Field(description="Node execution ID (primary key)")
|
||||
node_id: str = Field(
|
||||
description="Node definition ID (for grouping)",
|
||||
default="", # Temporary default for test compatibility
|
||||
)
|
||||
user_id: str = Field(description="User ID associated with the review")
|
||||
graph_exec_id: str = Field(description="Graph execution ID")
|
||||
graph_id: str = Field(description="Graph ID")
|
||||
@@ -71,9 +66,7 @@ class PendingHumanReviewModel(BaseModel):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_db(
|
||||
cls, review: "PendingHumanReview", node_id: str
|
||||
) -> "PendingHumanReviewModel":
|
||||
def from_db(cls, review: "PendingHumanReview") -> "PendingHumanReviewModel":
|
||||
"""
|
||||
Convert a database model to a response model.
|
||||
|
||||
@@ -81,14 +74,9 @@ class PendingHumanReviewModel(BaseModel):
|
||||
payload, instructions, and editable flag.
|
||||
|
||||
Handles invalid data gracefully by using safe defaults.
|
||||
|
||||
Args:
|
||||
review: Database review object
|
||||
node_id: Node definition ID (fetched from NodeExecution)
|
||||
"""
|
||||
return cls(
|
||||
node_exec_id=review.nodeExecId,
|
||||
node_id=node_id,
|
||||
user_id=review.userId,
|
||||
graph_exec_id=review.graphExecId,
|
||||
graph_id=review.graphId,
|
||||
@@ -119,13 +107,6 @@ class ReviewItem(BaseModel):
|
||||
reviewed_data: SafeJsonData | None = Field(
|
||||
None, description="Optional edited data (ignored if approved=False)"
|
||||
)
|
||||
auto_approve_future: bool = Field(
|
||||
default=False,
|
||||
description=(
|
||||
"If true and this review is approved, future executions of this same "
|
||||
"block (node) will be automatically approved. This only affects approved reviews."
|
||||
),
|
||||
)
|
||||
|
||||
@field_validator("reviewed_data")
|
||||
@classmethod
|
||||
@@ -193,9 +174,6 @@ class ReviewRequest(BaseModel):
|
||||
This request must include ALL pending reviews for a graph execution.
|
||||
Each review will be either approved (with optional data modifications)
|
||||
or rejected (data ignored). The execution will resume only after ALL reviews are processed.
|
||||
|
||||
Each review item can individually specify whether to auto-approve future executions
|
||||
of the same block via the `auto_approve_future` field on ReviewItem.
|
||||
"""
|
||||
|
||||
reviews: List[ReviewItem] = Field(
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,27 +1,17 @@
|
||||
import asyncio
|
||||
import logging
|
||||
from typing import Any, List
|
||||
from typing import List
|
||||
|
||||
import autogpt_libs.auth as autogpt_auth_lib
|
||||
from fastapi import APIRouter, HTTPException, Query, Security, status
|
||||
from prisma.enums import ReviewStatus
|
||||
|
||||
from backend.data.execution import (
|
||||
ExecutionContext,
|
||||
ExecutionStatus,
|
||||
get_graph_execution_meta,
|
||||
)
|
||||
from backend.data.graph import get_graph_settings
|
||||
from backend.data.execution import get_graph_execution_meta
|
||||
from backend.data.human_review import (
|
||||
create_auto_approval_record,
|
||||
get_pending_reviews_for_execution,
|
||||
get_pending_reviews_for_user,
|
||||
get_reviews_by_node_exec_ids,
|
||||
has_pending_reviews_for_graph_exec,
|
||||
process_all_reviews_for_execution,
|
||||
)
|
||||
from backend.data.model import USER_TIMEZONE_NOT_SET
|
||||
from backend.data.user import get_user_by_id
|
||||
from backend.executor.utils import add_graph_execution
|
||||
|
||||
from .model import PendingHumanReviewModel, ReviewRequest, ReviewResponse
|
||||
@@ -137,70 +127,17 @@ async def process_review_action(
|
||||
detail="At least one review must be provided",
|
||||
)
|
||||
|
||||
# Batch fetch all requested reviews (regardless of status for idempotent handling)
|
||||
reviews_map = await get_reviews_by_node_exec_ids(
|
||||
list(all_request_node_ids), user_id
|
||||
)
|
||||
|
||||
# Validate all reviews were found (must exist, any status is OK for now)
|
||||
missing_ids = all_request_node_ids - set(reviews_map.keys())
|
||||
if missing_ids:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=f"Review(s) not found: {', '.join(missing_ids)}",
|
||||
)
|
||||
|
||||
# Validate all reviews belong to the same execution
|
||||
graph_exec_ids = {review.graph_exec_id for review in reviews_map.values()}
|
||||
if len(graph_exec_ids) > 1:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_409_CONFLICT,
|
||||
detail="All reviews in a single request must belong to the same execution.",
|
||||
)
|
||||
|
||||
graph_exec_id = next(iter(graph_exec_ids))
|
||||
|
||||
# Validate execution status before processing reviews
|
||||
graph_exec_meta = await get_graph_execution_meta(
|
||||
user_id=user_id, execution_id=graph_exec_id
|
||||
)
|
||||
|
||||
if not graph_exec_meta:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=f"Graph execution #{graph_exec_id} not found",
|
||||
)
|
||||
|
||||
# Only allow processing reviews if execution is paused for review
|
||||
# or incomplete (partial execution with some reviews already processed)
|
||||
if graph_exec_meta.status not in (
|
||||
ExecutionStatus.REVIEW,
|
||||
ExecutionStatus.INCOMPLETE,
|
||||
):
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_409_CONFLICT,
|
||||
detail=f"Cannot process reviews while execution status is {graph_exec_meta.status}. "
|
||||
f"Reviews can only be processed when execution is paused (REVIEW status). "
|
||||
f"Current status: {graph_exec_meta.status}",
|
||||
)
|
||||
|
||||
# Build review decisions map and track which reviews requested auto-approval
|
||||
# Auto-approved reviews use original data (no modifications allowed)
|
||||
# Build review decisions map
|
||||
review_decisions = {}
|
||||
auto_approve_requests = {} # Map node_exec_id -> auto_approve_future flag
|
||||
|
||||
for review in request.reviews:
|
||||
review_status = (
|
||||
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
|
||||
)
|
||||
# If this review requested auto-approval, don't allow data modifications
|
||||
reviewed_data = None if review.auto_approve_future else review.reviewed_data
|
||||
review_decisions[review.node_exec_id] = (
|
||||
review_status,
|
||||
reviewed_data,
|
||||
review.reviewed_data,
|
||||
review.message,
|
||||
)
|
||||
auto_approve_requests[review.node_exec_id] = review.auto_approve_future
|
||||
|
||||
# Process all reviews
|
||||
updated_reviews = await process_all_reviews_for_execution(
|
||||
@@ -208,87 +145,6 @@ async def process_review_action(
|
||||
review_decisions=review_decisions,
|
||||
)
|
||||
|
||||
# Create auto-approval records for approved reviews that requested it
|
||||
# Deduplicate by node_id to avoid race conditions when multiple reviews
|
||||
# for the same node are processed in parallel
|
||||
async def create_auto_approval_for_node(
|
||||
node_id: str, review_result
|
||||
) -> tuple[str, bool]:
|
||||
"""
|
||||
Create auto-approval record for a node.
|
||||
Returns (node_id, success) tuple for tracking failures.
|
||||
"""
|
||||
try:
|
||||
await create_auto_approval_record(
|
||||
user_id=user_id,
|
||||
graph_exec_id=review_result.graph_exec_id,
|
||||
graph_id=review_result.graph_id,
|
||||
graph_version=review_result.graph_version,
|
||||
node_id=node_id,
|
||||
payload=review_result.payload,
|
||||
)
|
||||
return (node_id, True)
|
||||
except Exception as e:
|
||||
logger.error(
|
||||
f"Failed to create auto-approval record for node {node_id}",
|
||||
exc_info=e,
|
||||
)
|
||||
return (node_id, False)
|
||||
|
||||
# Collect node_exec_ids that need auto-approval
|
||||
node_exec_ids_needing_auto_approval = [
|
||||
node_exec_id
|
||||
for node_exec_id, review_result in updated_reviews.items()
|
||||
if review_result.status == ReviewStatus.APPROVED
|
||||
and auto_approve_requests.get(node_exec_id, False)
|
||||
]
|
||||
|
||||
# Batch-fetch node executions to get node_ids
|
||||
nodes_needing_auto_approval: dict[str, Any] = {}
|
||||
if node_exec_ids_needing_auto_approval:
|
||||
from backend.data.execution import get_node_executions
|
||||
|
||||
node_execs = await get_node_executions(
|
||||
graph_exec_id=graph_exec_id, include_exec_data=False
|
||||
)
|
||||
node_exec_map = {node_exec.node_exec_id: node_exec for node_exec in node_execs}
|
||||
|
||||
for node_exec_id in node_exec_ids_needing_auto_approval:
|
||||
node_exec = node_exec_map.get(node_exec_id)
|
||||
if node_exec:
|
||||
review_result = updated_reviews[node_exec_id]
|
||||
# Use the first approved review for this node (deduplicate by node_id)
|
||||
if node_exec.node_id not in nodes_needing_auto_approval:
|
||||
nodes_needing_auto_approval[node_exec.node_id] = review_result
|
||||
else:
|
||||
logger.error(
|
||||
f"Failed to create auto-approval record for {node_exec_id}: "
|
||||
f"Node execution not found. This may indicate a race condition "
|
||||
f"or data inconsistency."
|
||||
)
|
||||
|
||||
# Execute all auto-approval creations in parallel (deduplicated by node_id)
|
||||
auto_approval_results = await asyncio.gather(
|
||||
*[
|
||||
create_auto_approval_for_node(node_id, review_result)
|
||||
for node_id, review_result in nodes_needing_auto_approval.items()
|
||||
],
|
||||
return_exceptions=True,
|
||||
)
|
||||
|
||||
# Count auto-approval failures
|
||||
auto_approval_failed_count = 0
|
||||
for result in auto_approval_results:
|
||||
if isinstance(result, Exception):
|
||||
# Unexpected exception during auto-approval creation
|
||||
auto_approval_failed_count += 1
|
||||
logger.error(
|
||||
f"Unexpected exception during auto-approval creation: {result}"
|
||||
)
|
||||
elif isinstance(result, tuple) and len(result) == 2 and not result[1]:
|
||||
# Auto-approval creation failed (returned False)
|
||||
auto_approval_failed_count += 1
|
||||
|
||||
# Count results
|
||||
approved_count = sum(
|
||||
1
|
||||
@@ -301,53 +157,30 @@ async def process_review_action(
|
||||
if review.status == ReviewStatus.REJECTED
|
||||
)
|
||||
|
||||
# Resume execution only if ALL pending reviews for this execution have been processed
|
||||
# Resume execution if we processed some reviews
|
||||
if updated_reviews:
|
||||
# Get graph execution ID from any processed review
|
||||
first_review = next(iter(updated_reviews.values()))
|
||||
graph_exec_id = first_review.graph_exec_id
|
||||
|
||||
# Check if any pending reviews remain for this execution
|
||||
still_has_pending = await has_pending_reviews_for_graph_exec(graph_exec_id)
|
||||
|
||||
if not still_has_pending:
|
||||
# Get the graph_id from any processed review
|
||||
first_review = next(iter(updated_reviews.values()))
|
||||
|
||||
# Resume execution
|
||||
try:
|
||||
# Fetch user and settings to build complete execution context
|
||||
user = await get_user_by_id(user_id)
|
||||
settings = await get_graph_settings(
|
||||
user_id=user_id, graph_id=first_review.graph_id
|
||||
)
|
||||
|
||||
# Preserve user's timezone preference when resuming execution
|
||||
user_timezone = (
|
||||
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
|
||||
)
|
||||
|
||||
execution_context = ExecutionContext(
|
||||
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
|
||||
user_timezone=user_timezone,
|
||||
)
|
||||
|
||||
await add_graph_execution(
|
||||
graph_id=first_review.graph_id,
|
||||
user_id=user_id,
|
||||
graph_exec_id=graph_exec_id,
|
||||
execution_context=execution_context,
|
||||
)
|
||||
logger.info(f"Resumed execution {graph_exec_id}")
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to resume execution {graph_exec_id}: {str(e)}")
|
||||
|
||||
# Build error message if auto-approvals failed
|
||||
error_message = None
|
||||
if auto_approval_failed_count > 0:
|
||||
error_message = (
|
||||
f"{auto_approval_failed_count} auto-approval setting(s) could not be saved. "
|
||||
f"You may need to manually approve these reviews in future executions."
|
||||
)
|
||||
|
||||
return ReviewResponse(
|
||||
approved_count=approved_count,
|
||||
rejected_count=rejected_count,
|
||||
failed_count=auto_approval_failed_count,
|
||||
error=error_message,
|
||||
failed_count=0,
|
||||
error=None,
|
||||
)
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import asyncio
|
||||
import logging
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from typing import TYPE_CHECKING, Annotated, Any, List, Literal
|
||||
from typing import TYPE_CHECKING, Annotated, List, Literal
|
||||
|
||||
from autogpt_libs.auth import get_user_id
|
||||
from fastapi import (
|
||||
@@ -14,7 +14,7 @@ from fastapi import (
|
||||
Security,
|
||||
status,
|
||||
)
|
||||
from pydantic import BaseModel, Field, SecretStr, model_validator
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
from starlette.status import HTTP_500_INTERNAL_SERVER_ERROR, HTTP_502_BAD_GATEWAY
|
||||
|
||||
from backend.api.features.library.db import set_preset_webhook, update_preset
|
||||
@@ -39,11 +39,7 @@ from backend.data.onboarding import OnboardingStep, complete_onboarding_step
|
||||
from backend.data.user import get_user_integrations
|
||||
from backend.executor.utils import add_graph_execution
|
||||
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
|
||||
from backend.integrations.credentials_store import provider_matches
|
||||
from backend.integrations.creds_manager import (
|
||||
IntegrationCredentialsManager,
|
||||
create_mcp_oauth_handler,
|
||||
)
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.oauth import CREDENTIALS_BY_PROVIDER, HANDLERS_BY_NAME
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.integrations.webhooks import get_webhook_manager
|
||||
@@ -106,37 +102,9 @@ class CredentialsMetaResponse(BaseModel):
|
||||
scopes: list[str] | None
|
||||
username: str | None
|
||||
host: str | None = Field(
|
||||
default=None,
|
||||
description="Host pattern for host-scoped or MCP server URL for MCP credentials",
|
||||
default=None, description="Host pattern for host-scoped credentials"
|
||||
)
|
||||
|
||||
@model_validator(mode="before")
|
||||
@classmethod
|
||||
def _normalize_provider(cls, data: Any) -> Any:
|
||||
"""Fix ``ProviderName.X`` format from Python 3.13 ``str(Enum)`` bug."""
|
||||
if isinstance(data, dict):
|
||||
prov = data.get("provider", "")
|
||||
if isinstance(prov, str) and prov.startswith("ProviderName."):
|
||||
member = prov.removeprefix("ProviderName.")
|
||||
try:
|
||||
data = {**data, "provider": ProviderName[member].value}
|
||||
except KeyError:
|
||||
pass
|
||||
return data
|
||||
|
||||
@staticmethod
|
||||
def get_host(cred: Credentials) -> str | None:
|
||||
"""Extract host from credential: HostScoped host or MCP server URL."""
|
||||
if isinstance(cred, HostScopedCredentials):
|
||||
return cred.host
|
||||
if isinstance(cred, OAuth2Credentials) and cred.provider in (
|
||||
ProviderName.MCP,
|
||||
ProviderName.MCP.value,
|
||||
"ProviderName.MCP",
|
||||
):
|
||||
return (cred.metadata or {}).get("mcp_server_url")
|
||||
return None
|
||||
|
||||
|
||||
@router.post("/{provider}/callback", summary="Exchange OAuth code for tokens")
|
||||
async def callback(
|
||||
@@ -211,7 +179,9 @@ async def callback(
|
||||
title=credentials.title,
|
||||
scopes=credentials.scopes,
|
||||
username=credentials.username,
|
||||
host=(CredentialsMetaResponse.get_host(credentials)),
|
||||
host=(
|
||||
credentials.host if isinstance(credentials, HostScopedCredentials) else None
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@@ -229,7 +199,7 @@ async def list_credentials(
|
||||
title=cred.title,
|
||||
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
|
||||
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
|
||||
host=CredentialsMetaResponse.get_host(cred),
|
||||
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
|
||||
)
|
||||
for cred in credentials
|
||||
]
|
||||
@@ -252,7 +222,7 @@ async def list_credentials_by_provider(
|
||||
title=cred.title,
|
||||
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
|
||||
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
|
||||
host=CredentialsMetaResponse.get_host(cred),
|
||||
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
|
||||
)
|
||||
for cred in credentials
|
||||
]
|
||||
@@ -352,11 +322,7 @@ async def delete_credentials(
|
||||
|
||||
tokens_revoked = None
|
||||
if isinstance(creds, OAuth2Credentials):
|
||||
if provider_matches(provider.value, ProviderName.MCP.value):
|
||||
# MCP uses dynamic per-server OAuth — create handler from metadata
|
||||
handler = create_mcp_oauth_handler(creds)
|
||||
else:
|
||||
handler = _get_provider_oauth_handler(request, provider)
|
||||
handler = _get_provider_oauth_handler(request, provider)
|
||||
tokens_revoked = await handler.revoke_tokens(creds)
|
||||
|
||||
return CredentialsDeletionResponse(revoked=tokens_revoked)
|
||||
|
||||
@@ -12,18 +12,16 @@ import backend.api.features.store.image_gen as store_image_gen
|
||||
import backend.api.features.store.media as store_media
|
||||
import backend.data.graph as graph_db
|
||||
import backend.data.integrations as integrations_db
|
||||
from backend.data.block import BlockInput
|
||||
from backend.data.db import transaction
|
||||
from backend.data.execution import get_graph_execution
|
||||
from backend.data.graph import GraphSettings
|
||||
from backend.data.includes import AGENT_PRESET_INCLUDE, library_agent_include
|
||||
from backend.data.model import CredentialsMetaInput, GraphInput
|
||||
from backend.data.model import CredentialsMetaInput
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.webhooks.graph_lifecycle_hooks import (
|
||||
on_graph_activate,
|
||||
on_graph_deactivate,
|
||||
)
|
||||
from backend.integrations.webhooks.graph_lifecycle_hooks import on_graph_activate
|
||||
from backend.util.clients import get_scheduler_client
|
||||
from backend.util.exceptions import DatabaseError, InvalidInputError, NotFoundError
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
from backend.util.json import SafeJson
|
||||
from backend.util.models import Pagination
|
||||
from backend.util.settings import Config
|
||||
@@ -41,7 +39,6 @@ async def list_library_agents(
|
||||
sort_by: library_model.LibraryAgentSort = library_model.LibraryAgentSort.UPDATED_AT,
|
||||
page: int = 1,
|
||||
page_size: int = 50,
|
||||
include_executions: bool = False,
|
||||
) -> library_model.LibraryAgentResponse:
|
||||
"""
|
||||
Retrieves a paginated list of LibraryAgent records for a given user.
|
||||
@@ -52,9 +49,6 @@ async def list_library_agents(
|
||||
sort_by: Sorting field (createdAt, updatedAt, isFavorite, isCreatedByUser).
|
||||
page: Current page (1-indexed).
|
||||
page_size: Number of items per page.
|
||||
include_executions: Whether to include execution data for status calculation.
|
||||
Defaults to False for performance (UI fetches status separately).
|
||||
Set to True when accurate status/metrics are needed (e.g., agent generator).
|
||||
|
||||
Returns:
|
||||
A LibraryAgentResponse containing the list of agents and pagination details.
|
||||
@@ -70,11 +64,11 @@ async def list_library_agents(
|
||||
|
||||
if page < 1 or page_size < 1:
|
||||
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
|
||||
raise InvalidInputError("Invalid pagination input")
|
||||
raise DatabaseError("Invalid pagination input")
|
||||
|
||||
if search_term and len(search_term.strip()) > 100:
|
||||
logger.warning(f"Search term too long: {repr(search_term)}")
|
||||
raise InvalidInputError("Search term is too long")
|
||||
raise DatabaseError("Search term is too long")
|
||||
|
||||
where_clause: prisma.types.LibraryAgentWhereInput = {
|
||||
"userId": user_id,
|
||||
@@ -82,6 +76,7 @@ async def list_library_agents(
|
||||
"isArchived": False,
|
||||
}
|
||||
|
||||
# Build search filter if applicable
|
||||
if search_term:
|
||||
where_clause["OR"] = [
|
||||
{
|
||||
@@ -98,6 +93,7 @@ async def list_library_agents(
|
||||
},
|
||||
]
|
||||
|
||||
# Determine sorting
|
||||
order_by: prisma.types.LibraryAgentOrderByInput | None = None
|
||||
|
||||
if sort_by == library_model.LibraryAgentSort.CREATED_AT:
|
||||
@@ -109,7 +105,7 @@ async def list_library_agents(
|
||||
library_agents = await prisma.models.LibraryAgent.prisma().find_many(
|
||||
where=where_clause,
|
||||
include=library_agent_include(
|
||||
user_id, include_nodes=False, include_executions=include_executions
|
||||
user_id, include_nodes=False, include_executions=False
|
||||
),
|
||||
order=order_by,
|
||||
skip=(page - 1) * page_size,
|
||||
@@ -179,7 +175,7 @@ async def list_favorite_library_agents(
|
||||
|
||||
if page < 1 or page_size < 1:
|
||||
logger.warning(f"Invalid pagination: page={page}, page_size={page_size}")
|
||||
raise InvalidInputError("Invalid pagination input")
|
||||
raise DatabaseError("Invalid pagination input")
|
||||
|
||||
where_clause: prisma.types.LibraryAgentWhereInput = {
|
||||
"userId": user_id,
|
||||
@@ -373,7 +369,7 @@ async def get_library_agent_by_graph_id(
|
||||
|
||||
|
||||
async def add_generated_agent_image(
|
||||
graph: graph_db.GraphBaseMeta,
|
||||
graph: graph_db.BaseGraph,
|
||||
user_id: str,
|
||||
library_agent_id: str,
|
||||
) -> Optional[prisma.models.LibraryAgent]:
|
||||
@@ -539,92 +535,6 @@ async def update_agent_version_in_library(
|
||||
return library_model.LibraryAgent.from_db(lib)
|
||||
|
||||
|
||||
async def create_graph_in_library(
|
||||
graph: graph_db.Graph,
|
||||
user_id: str,
|
||||
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
|
||||
"""Create a new graph and add it to the user's library."""
|
||||
graph.version = 1
|
||||
graph_model = graph_db.make_graph_model(graph, user_id)
|
||||
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=True)
|
||||
|
||||
created_graph = await graph_db.create_graph(graph_model, user_id)
|
||||
|
||||
library_agents = await create_library_agent(
|
||||
graph=created_graph,
|
||||
user_id=user_id,
|
||||
sensitive_action_safe_mode=True,
|
||||
create_library_agents_for_sub_graphs=False,
|
||||
)
|
||||
|
||||
if created_graph.is_active:
|
||||
created_graph = await on_graph_activate(created_graph, user_id=user_id)
|
||||
|
||||
return created_graph, library_agents[0]
|
||||
|
||||
|
||||
async def update_graph_in_library(
|
||||
graph: graph_db.Graph,
|
||||
user_id: str,
|
||||
) -> tuple[graph_db.GraphModel, library_model.LibraryAgent]:
|
||||
"""Create a new version of an existing graph and update the library entry."""
|
||||
existing_versions = await graph_db.get_graph_all_versions(graph.id, user_id)
|
||||
current_active_version = (
|
||||
next((v for v in existing_versions if v.is_active), None)
|
||||
if existing_versions
|
||||
else None
|
||||
)
|
||||
graph.version = (
|
||||
max(v.version for v in existing_versions) + 1 if existing_versions else 1
|
||||
)
|
||||
|
||||
graph_model = graph_db.make_graph_model(graph, user_id)
|
||||
graph_model.reassign_ids(user_id=user_id, reassign_graph_id=False)
|
||||
|
||||
created_graph = await graph_db.create_graph(graph_model, user_id)
|
||||
|
||||
library_agent = await get_library_agent_by_graph_id(user_id, created_graph.id)
|
||||
if not library_agent:
|
||||
raise NotFoundError(f"Library agent not found for graph {created_graph.id}")
|
||||
|
||||
library_agent = await update_library_agent_version_and_settings(
|
||||
user_id, created_graph
|
||||
)
|
||||
|
||||
if created_graph.is_active:
|
||||
created_graph = await on_graph_activate(created_graph, user_id=user_id)
|
||||
await graph_db.set_graph_active_version(
|
||||
graph_id=created_graph.id,
|
||||
version=created_graph.version,
|
||||
user_id=user_id,
|
||||
)
|
||||
if current_active_version:
|
||||
await on_graph_deactivate(current_active_version, user_id=user_id)
|
||||
|
||||
return created_graph, library_agent
|
||||
|
||||
|
||||
async def update_library_agent_version_and_settings(
|
||||
user_id: str, agent_graph: graph_db.GraphModel
|
||||
) -> library_model.LibraryAgent:
|
||||
"""Update library agent to point to new graph version and sync settings."""
|
||||
library = await update_agent_version_in_library(
|
||||
user_id, agent_graph.id, agent_graph.version
|
||||
)
|
||||
updated_settings = GraphSettings.from_graph(
|
||||
graph=agent_graph,
|
||||
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
|
||||
)
|
||||
if updated_settings != library.settings:
|
||||
library = await update_library_agent(
|
||||
library_agent_id=library.id,
|
||||
user_id=user_id,
|
||||
settings=updated_settings,
|
||||
)
|
||||
return library
|
||||
|
||||
|
||||
async def update_library_agent(
|
||||
library_agent_id: str,
|
||||
user_id: str,
|
||||
@@ -673,13 +583,7 @@ async def update_library_agent(
|
||||
)
|
||||
update_fields["isDeleted"] = is_deleted
|
||||
if settings is not None:
|
||||
existing_agent = await get_library_agent(id=library_agent_id, user_id=user_id)
|
||||
current_settings_dict = (
|
||||
existing_agent.settings.model_dump() if existing_agent.settings else {}
|
||||
)
|
||||
new_settings = settings.model_dump(exclude_unset=True)
|
||||
merged_settings = {**current_settings_dict, **new_settings}
|
||||
update_fields["settings"] = SafeJson(merged_settings)
|
||||
update_fields["settings"] = SafeJson(settings.model_dump())
|
||||
|
||||
try:
|
||||
# If graph_version is provided, update to that specific version
|
||||
@@ -1129,7 +1033,7 @@ async def create_preset_from_graph_execution(
|
||||
async def update_preset(
|
||||
user_id: str,
|
||||
preset_id: str,
|
||||
inputs: Optional[GraphInput] = None,
|
||||
inputs: Optional[BlockInput] = None,
|
||||
credentials: Optional[dict[str, CredentialsMetaInput]] = None,
|
||||
name: Optional[str] = None,
|
||||
description: Optional[str] = None,
|
||||
|
||||
@@ -6,13 +6,9 @@ import prisma.enums
|
||||
import prisma.models
|
||||
import pydantic
|
||||
|
||||
from backend.data.block import BlockInput
|
||||
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
|
||||
from backend.data.model import (
|
||||
CredentialsMetaInput,
|
||||
GraphInput,
|
||||
is_credentials_field_name,
|
||||
)
|
||||
from backend.util.json import loads as json_loads
|
||||
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
|
||||
from backend.util.models import Pagination
|
||||
|
||||
if TYPE_CHECKING:
|
||||
@@ -20,10 +16,10 @@ if TYPE_CHECKING:
|
||||
|
||||
|
||||
class LibraryAgentStatus(str, Enum):
|
||||
COMPLETED = "COMPLETED"
|
||||
HEALTHY = "HEALTHY"
|
||||
WAITING = "WAITING"
|
||||
ERROR = "ERROR"
|
||||
COMPLETED = "COMPLETED" # All runs completed
|
||||
HEALTHY = "HEALTHY" # Agent is running (not all runs have completed)
|
||||
WAITING = "WAITING" # Agent is queued or waiting to start
|
||||
ERROR = "ERROR" # Agent is in an error state
|
||||
|
||||
|
||||
class MarketplaceListingCreator(pydantic.BaseModel):
|
||||
@@ -43,30 +39,6 @@ class MarketplaceListing(pydantic.BaseModel):
|
||||
creator: MarketplaceListingCreator
|
||||
|
||||
|
||||
class RecentExecution(pydantic.BaseModel):
|
||||
"""Summary of a recent execution for quality assessment.
|
||||
|
||||
Used by the LLM to understand the agent's recent performance with specific examples
|
||||
rather than just aggregate statistics.
|
||||
"""
|
||||
|
||||
status: str
|
||||
correctness_score: float | None = None
|
||||
activity_summary: str | None = None
|
||||
|
||||
|
||||
def _parse_settings(settings: dict | str | None) -> GraphSettings:
|
||||
"""Parse settings from database, handling both dict and string formats."""
|
||||
if settings is None:
|
||||
return GraphSettings()
|
||||
try:
|
||||
if isinstance(settings, str):
|
||||
settings = json_loads(settings)
|
||||
return GraphSettings.model_validate(settings)
|
||||
except Exception:
|
||||
return GraphSettings()
|
||||
|
||||
|
||||
class LibraryAgent(pydantic.BaseModel):
|
||||
"""
|
||||
Represents an agent in the library, including metadata for display and
|
||||
@@ -76,7 +48,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
id: str
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
owner_user_id: str
|
||||
owner_user_id: str # ID of user who owns/created this agent graph
|
||||
|
||||
image_url: str | None
|
||||
|
||||
@@ -92,7 +64,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
description: str
|
||||
instructions: str | None = None
|
||||
|
||||
input_schema: dict[str, Any]
|
||||
input_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend
|
||||
output_schema: dict[str, Any]
|
||||
credentials_input_schema: dict[str, Any] | None = pydantic.Field(
|
||||
description="Input schema for credentials required by the agent",
|
||||
@@ -109,19 +81,25 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
)
|
||||
trigger_setup_info: Optional[GraphTriggerInfo] = None
|
||||
|
||||
# Indicates whether there's a new output (based on recent runs)
|
||||
new_output: bool
|
||||
execution_count: int = 0
|
||||
success_rate: float | None = None
|
||||
avg_correctness_score: float | None = None
|
||||
recent_executions: list[RecentExecution] = pydantic.Field(
|
||||
default_factory=list,
|
||||
description="List of recent executions with status, score, and summary",
|
||||
)
|
||||
|
||||
# Whether the user can access the underlying graph
|
||||
can_access_graph: bool
|
||||
|
||||
# Indicates if this agent is the latest version
|
||||
is_latest_version: bool
|
||||
|
||||
# Whether the agent is marked as favorite by the user
|
||||
is_favorite: bool
|
||||
|
||||
# Recommended schedule cron (from marketplace agents)
|
||||
recommended_schedule_cron: str | None = None
|
||||
|
||||
# User-specific settings for this library agent
|
||||
settings: GraphSettings = pydantic.Field(default_factory=GraphSettings)
|
||||
|
||||
# Marketplace listing information if the agent has been published
|
||||
marketplace_listing: Optional["MarketplaceListing"] = None
|
||||
|
||||
@staticmethod
|
||||
@@ -145,6 +123,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
agent_updated_at = agent.AgentGraph.updatedAt
|
||||
lib_agent_updated_at = agent.updatedAt
|
||||
|
||||
# Compute updated_at as the latest between library agent and graph
|
||||
updated_at = (
|
||||
max(agent_updated_at, lib_agent_updated_at)
|
||||
if agent_updated_at
|
||||
@@ -157,6 +136,7 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
creator_name = agent.Creator.name or "Unknown"
|
||||
creator_image_url = agent.Creator.avatarUrl or ""
|
||||
|
||||
# Logic to calculate status and new_output
|
||||
week_ago = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(
|
||||
days=7
|
||||
)
|
||||
@@ -165,55 +145,13 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
status = status_result.status
|
||||
new_output = status_result.new_output
|
||||
|
||||
execution_count = len(executions)
|
||||
success_rate: float | None = None
|
||||
avg_correctness_score: float | None = None
|
||||
if execution_count > 0:
|
||||
success_count = sum(
|
||||
1
|
||||
for e in executions
|
||||
if e.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED
|
||||
)
|
||||
success_rate = (success_count / execution_count) * 100
|
||||
|
||||
correctness_scores = []
|
||||
for e in executions:
|
||||
if e.stats and isinstance(e.stats, dict):
|
||||
score = e.stats.get("correctness_score")
|
||||
if score is not None and isinstance(score, (int, float)):
|
||||
correctness_scores.append(float(score))
|
||||
if correctness_scores:
|
||||
avg_correctness_score = sum(correctness_scores) / len(
|
||||
correctness_scores
|
||||
)
|
||||
|
||||
recent_executions: list[RecentExecution] = []
|
||||
for e in executions:
|
||||
exec_score: float | None = None
|
||||
exec_summary: str | None = None
|
||||
if e.stats and isinstance(e.stats, dict):
|
||||
score = e.stats.get("correctness_score")
|
||||
if score is not None and isinstance(score, (int, float)):
|
||||
exec_score = float(score)
|
||||
summary = e.stats.get("activity_status")
|
||||
if summary is not None and isinstance(summary, str):
|
||||
exec_summary = summary
|
||||
exec_status = (
|
||||
e.executionStatus.value
|
||||
if hasattr(e.executionStatus, "value")
|
||||
else str(e.executionStatus)
|
||||
)
|
||||
recent_executions.append(
|
||||
RecentExecution(
|
||||
status=exec_status,
|
||||
correctness_score=exec_score,
|
||||
activity_summary=exec_summary,
|
||||
)
|
||||
)
|
||||
|
||||
# Check if user can access the graph
|
||||
can_access_graph = agent.AgentGraph.userId == agent.userId
|
||||
|
||||
# Hard-coded to True until a method to check is implemented
|
||||
is_latest_version = True
|
||||
|
||||
# Build marketplace_listing if available
|
||||
marketplace_listing_data = None
|
||||
if store_listing and store_listing.ActiveVersion and profile:
|
||||
creator_data = MarketplaceListingCreator(
|
||||
@@ -252,15 +190,11 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
has_sensitive_action=graph.has_sensitive_action,
|
||||
trigger_setup_info=graph.trigger_setup_info,
|
||||
new_output=new_output,
|
||||
execution_count=execution_count,
|
||||
success_rate=success_rate,
|
||||
avg_correctness_score=avg_correctness_score,
|
||||
recent_executions=recent_executions,
|
||||
can_access_graph=can_access_graph,
|
||||
is_latest_version=is_latest_version,
|
||||
is_favorite=agent.isFavorite,
|
||||
recommended_schedule_cron=agent.AgentGraph.recommendedScheduleCron,
|
||||
settings=_parse_settings(agent.settings),
|
||||
settings=GraphSettings.model_validate(agent.settings),
|
||||
marketplace_listing=marketplace_listing_data,
|
||||
)
|
||||
|
||||
@@ -286,15 +220,18 @@ def _calculate_agent_status(
|
||||
if not executions:
|
||||
return AgentStatusResult(status=LibraryAgentStatus.COMPLETED, new_output=False)
|
||||
|
||||
# Track how many times each execution status appears
|
||||
status_counts = {status: 0 for status in prisma.enums.AgentExecutionStatus}
|
||||
new_output = False
|
||||
|
||||
for execution in executions:
|
||||
# Check if there's a completed run more recent than `recent_threshold`
|
||||
if execution.createdAt >= recent_threshold:
|
||||
if execution.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED:
|
||||
new_output = True
|
||||
status_counts[execution.executionStatus] += 1
|
||||
|
||||
# Determine the final status based on counts
|
||||
if status_counts[prisma.enums.AgentExecutionStatus.FAILED] > 0:
|
||||
return AgentStatusResult(status=LibraryAgentStatus.ERROR, new_output=new_output)
|
||||
elif status_counts[prisma.enums.AgentExecutionStatus.QUEUED] > 0:
|
||||
@@ -326,7 +263,7 @@ class LibraryAgentPresetCreatable(pydantic.BaseModel):
|
||||
graph_id: str
|
||||
graph_version: int
|
||||
|
||||
inputs: GraphInput
|
||||
inputs: BlockInput
|
||||
credentials: dict[str, CredentialsMetaInput]
|
||||
|
||||
name: str
|
||||
@@ -355,7 +292,7 @@ class LibraryAgentPresetUpdatable(pydantic.BaseModel):
|
||||
Request model used when updating a preset for a library agent.
|
||||
"""
|
||||
|
||||
inputs: Optional[GraphInput] = None
|
||||
inputs: Optional[BlockInput] = None
|
||||
credentials: Optional[dict[str, CredentialsMetaInput]] = None
|
||||
|
||||
name: Optional[str] = None
|
||||
@@ -398,7 +335,7 @@ class LibraryAgentPreset(LibraryAgentPresetCreatable):
|
||||
"Webhook must be included in AgentPreset query when webhookId is set"
|
||||
)
|
||||
|
||||
input_data: GraphInput = {}
|
||||
input_data: BlockInput = {}
|
||||
input_credentials: dict[str, CredentialsMetaInput] = {}
|
||||
|
||||
for preset_input in preset.InputPresets:
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import logging
|
||||
from typing import Literal, Optional
|
||||
|
||||
import autogpt_libs.auth as autogpt_auth_lib
|
||||
@@ -5,11 +6,15 @@ from fastapi import APIRouter, Body, HTTPException, Query, Security, status
|
||||
from fastapi.responses import Response
|
||||
from prisma.enums import OnboardingStep
|
||||
|
||||
import backend.api.features.store.exceptions as store_exceptions
|
||||
from backend.data.onboarding import complete_onboarding_step
|
||||
from backend.util.exceptions import DatabaseError, NotFoundError
|
||||
|
||||
from .. import db as library_db
|
||||
from .. import model as library_model
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
router = APIRouter(
|
||||
prefix="/agents",
|
||||
tags=["library", "private"],
|
||||
@@ -21,6 +26,10 @@ router = APIRouter(
|
||||
"",
|
||||
summary="List Library Agents",
|
||||
response_model=library_model.LibraryAgentResponse,
|
||||
responses={
|
||||
200: {"description": "List of library agents"},
|
||||
500: {"description": "Server error", "content": {"application/json": {}}},
|
||||
},
|
||||
)
|
||||
async def list_library_agents(
|
||||
user_id: str = Security(autogpt_auth_lib.get_user_id),
|
||||
@@ -44,19 +53,43 @@ async def list_library_agents(
|
||||
) -> library_model.LibraryAgentResponse:
|
||||
"""
|
||||
Get all agents in the user's library (both created and saved).
|
||||
|
||||
Args:
|
||||
user_id: ID of the authenticated user.
|
||||
search_term: Optional search term to filter agents by name/description.
|
||||
filter_by: List of filters to apply (favorites, created by user).
|
||||
sort_by: List of sorting criteria (created date, updated date).
|
||||
page: Page number to retrieve.
|
||||
page_size: Number of agents per page.
|
||||
|
||||
Returns:
|
||||
A LibraryAgentResponse containing agents and pagination metadata.
|
||||
|
||||
Raises:
|
||||
HTTPException: If a server/database error occurs.
|
||||
"""
|
||||
return await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=search_term,
|
||||
sort_by=sort_by,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
try:
|
||||
return await library_db.list_library_agents(
|
||||
user_id=user_id,
|
||||
search_term=search_term,
|
||||
sort_by=sort_by,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not list library agents for user #{user_id}: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
|
||||
|
||||
@router.get(
|
||||
"/favorites",
|
||||
summary="List Favorite Library Agents",
|
||||
responses={
|
||||
500: {"description": "Server error", "content": {"application/json": {}}},
|
||||
},
|
||||
)
|
||||
async def list_favorite_library_agents(
|
||||
user_id: str = Security(autogpt_auth_lib.get_user_id),
|
||||
@@ -73,12 +106,30 @@ async def list_favorite_library_agents(
|
||||
) -> library_model.LibraryAgentResponse:
|
||||
"""
|
||||
Get all favorite agents in the user's library.
|
||||
|
||||
Args:
|
||||
user_id: ID of the authenticated user.
|
||||
page: Page number to retrieve.
|
||||
page_size: Number of agents per page.
|
||||
|
||||
Returns:
|
||||
A LibraryAgentResponse containing favorite agents and pagination metadata.
|
||||
|
||||
Raises:
|
||||
HTTPException: If a server/database error occurs.
|
||||
"""
|
||||
return await library_db.list_favorite_library_agents(
|
||||
user_id=user_id,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
try:
|
||||
return await library_db.list_favorite_library_agents(
|
||||
user_id=user_id,
|
||||
page=page,
|
||||
page_size=page_size,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not list favorite library agents for user #{user_id}: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
|
||||
|
||||
@router.get("/{library_agent_id}", summary="Get Library Agent")
|
||||
@@ -111,6 +162,10 @@ async def get_library_agent_by_graph_id(
|
||||
summary="Get Agent By Store ID",
|
||||
tags=["store", "library"],
|
||||
response_model=library_model.LibraryAgent | None,
|
||||
responses={
|
||||
200: {"description": "Library agent found"},
|
||||
404: {"description": "Agent not found"},
|
||||
},
|
||||
)
|
||||
async def get_library_agent_by_store_listing_version_id(
|
||||
store_listing_version_id: str,
|
||||
@@ -119,15 +174,32 @@ async def get_library_agent_by_store_listing_version_id(
|
||||
"""
|
||||
Get Library Agent from Store Listing Version ID.
|
||||
"""
|
||||
return await library_db.get_library_agent_by_store_version_id(
|
||||
store_listing_version_id, user_id
|
||||
)
|
||||
try:
|
||||
return await library_db.get_library_agent_by_store_version_id(
|
||||
store_listing_version_id, user_id
|
||||
)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
)
|
||||
except Exception as e:
|
||||
logger.error(f"Could not fetch library agent from store version ID: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail=str(e),
|
||||
) from e
|
||||
|
||||
|
||||
@router.post(
|
||||
"",
|
||||
summary="Add Marketplace Agent",
|
||||
status_code=status.HTTP_201_CREATED,
|
||||
responses={
|
||||
201: {"description": "Agent added successfully"},
|
||||
404: {"description": "Store listing version not found"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def add_marketplace_agent_to_library(
|
||||
store_listing_version_id: str = Body(embed=True),
|
||||
@@ -138,19 +210,59 @@ async def add_marketplace_agent_to_library(
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Add an agent from the marketplace to the user's library.
|
||||
|
||||
Args:
|
||||
store_listing_version_id: ID of the store listing version to add.
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Returns:
|
||||
library_model.LibraryAgent: Agent added to the library
|
||||
|
||||
Raises:
|
||||
HTTPException(404): If the listing version is not found.
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
agent = await library_db.add_store_agent_to_library(
|
||||
store_listing_version_id=store_listing_version_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
if source != "onboarding":
|
||||
await complete_onboarding_step(user_id, OnboardingStep.MARKETPLACE_ADD_AGENT)
|
||||
return agent
|
||||
try:
|
||||
agent = await library_db.add_store_agent_to_library(
|
||||
store_listing_version_id=store_listing_version_id,
|
||||
user_id=user_id,
|
||||
)
|
||||
if source != "onboarding":
|
||||
await complete_onboarding_step(
|
||||
user_id, OnboardingStep.MARKETPLACE_ADD_AGENT
|
||||
)
|
||||
return agent
|
||||
|
||||
except store_exceptions.AgentNotFoundError as e:
|
||||
logger.warning(
|
||||
f"Could not find store listing version {store_listing_version_id} "
|
||||
"to add to library"
|
||||
)
|
||||
raise HTTPException(status_code=status.HTTP_404_NOT_FOUND, detail=str(e))
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Database error while adding agent to library: {e}", e)
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Inspect DB logs for details."},
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error while adding agent to library: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={
|
||||
"message": str(e),
|
||||
"hint": "Check server logs for more information.",
|
||||
},
|
||||
) from e
|
||||
|
||||
|
||||
@router.patch(
|
||||
"/{library_agent_id}",
|
||||
summary="Update Library Agent",
|
||||
responses={
|
||||
200: {"description": "Agent updated successfully"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def update_library_agent(
|
||||
library_agent_id: str,
|
||||
@@ -159,21 +271,52 @@ async def update_library_agent(
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Update the library agent with the given fields.
|
||||
|
||||
Args:
|
||||
library_agent_id: ID of the library agent to update.
|
||||
payload: Fields to update (auto_update_version, is_favorite, etc.).
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Raises:
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
return await library_db.update_library_agent(
|
||||
library_agent_id=library_agent_id,
|
||||
user_id=user_id,
|
||||
auto_update_version=payload.auto_update_version,
|
||||
graph_version=payload.graph_version,
|
||||
is_favorite=payload.is_favorite,
|
||||
is_archived=payload.is_archived,
|
||||
settings=payload.settings,
|
||||
)
|
||||
try:
|
||||
return await library_db.update_library_agent(
|
||||
library_agent_id=library_agent_id,
|
||||
user_id=user_id,
|
||||
auto_update_version=payload.auto_update_version,
|
||||
graph_version=payload.graph_version,
|
||||
is_favorite=payload.is_favorite,
|
||||
is_archived=payload.is_archived,
|
||||
settings=payload.settings,
|
||||
)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
) from e
|
||||
except DatabaseError as e:
|
||||
logger.error(f"Database error while updating library agent: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Verify DB connection."},
|
||||
) from e
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error while updating library agent: {e}")
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
|
||||
detail={"message": str(e), "hint": "Check server logs."},
|
||||
) from e
|
||||
|
||||
|
||||
@router.delete(
|
||||
"/{library_agent_id}",
|
||||
summary="Delete Library Agent",
|
||||
responses={
|
||||
204: {"description": "Agent deleted successfully"},
|
||||
404: {"description": "Agent not found"},
|
||||
500: {"description": "Server error"},
|
||||
},
|
||||
)
|
||||
async def delete_library_agent(
|
||||
library_agent_id: str,
|
||||
@@ -181,11 +324,28 @@ async def delete_library_agent(
|
||||
) -> Response:
|
||||
"""
|
||||
Soft-delete the specified library agent.
|
||||
|
||||
Args:
|
||||
library_agent_id: ID of the library agent to delete.
|
||||
user_id: ID of the authenticated user.
|
||||
|
||||
Returns:
|
||||
204 No Content if successful.
|
||||
|
||||
Raises:
|
||||
HTTPException(404): If the agent does not exist.
|
||||
HTTPException(500): If a server/database error occurs.
|
||||
"""
|
||||
await library_db.delete_library_agent(
|
||||
library_agent_id=library_agent_id, user_id=user_id
|
||||
)
|
||||
return Response(status_code=status.HTTP_204_NO_CONTENT)
|
||||
try:
|
||||
await library_db.delete_library_agent(
|
||||
library_agent_id=library_agent_id, user_id=user_id
|
||||
)
|
||||
return Response(status_code=status.HTTP_204_NO_CONTENT)
|
||||
except NotFoundError as e:
|
||||
raise HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=str(e),
|
||||
) from e
|
||||
|
||||
|
||||
@router.post("/{library_agent_id}/fork", summary="Fork Library Agent")
|
||||
|
||||
@@ -118,6 +118,21 @@ async def test_get_library_agents_success(
|
||||
)
|
||||
|
||||
|
||||
def test_get_library_agents_error(mocker: pytest_mock.MockFixture, test_user_id: str):
|
||||
mock_db_call = mocker.patch("backend.api.features.library.db.list_library_agents")
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.get("/agents?search_term=test")
|
||||
assert response.status_code == 500
|
||||
mock_db_call.assert_called_once_with(
|
||||
user_id=test_user_id,
|
||||
search_term="test",
|
||||
sort_by=library_model.LibraryAgentSort.UPDATED_AT,
|
||||
page=1,
|
||||
page_size=15,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_get_favorite_library_agents_success(
|
||||
mocker: pytest_mock.MockFixture,
|
||||
@@ -175,6 +190,23 @@ async def test_get_favorite_library_agents_success(
|
||||
)
|
||||
|
||||
|
||||
def test_get_favorite_library_agents_error(
|
||||
mocker: pytest_mock.MockFixture, test_user_id: str
|
||||
):
|
||||
mock_db_call = mocker.patch(
|
||||
"backend.api.features.library.db.list_favorite_library_agents"
|
||||
)
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.get("/agents/favorites")
|
||||
assert response.status_code == 500
|
||||
mock_db_call.assert_called_once_with(
|
||||
user_id=test_user_id,
|
||||
page=1,
|
||||
page_size=15,
|
||||
)
|
||||
|
||||
|
||||
def test_add_agent_to_library_success(
|
||||
mocker: pytest_mock.MockFixture, test_user_id: str
|
||||
):
|
||||
@@ -226,3 +258,19 @@ def test_add_agent_to_library_success(
|
||||
store_listing_version_id="test-version-id", user_id=test_user_id
|
||||
)
|
||||
mock_complete_onboarding.assert_awaited_once()
|
||||
|
||||
|
||||
def test_add_agent_to_library_error(mocker: pytest_mock.MockFixture, test_user_id: str):
|
||||
mock_db_call = mocker.patch(
|
||||
"backend.api.features.library.db.add_store_agent_to_library"
|
||||
)
|
||||
mock_db_call.side_effect = Exception("Test error")
|
||||
|
||||
response = client.post(
|
||||
"/agents", json={"store_listing_version_id": "test-version-id"}
|
||||
)
|
||||
assert response.status_code == 500
|
||||
assert "detail" in response.json() # Verify error response structure
|
||||
mock_db_call.assert_called_once_with(
|
||||
store_listing_version_id="test-version-id", user_id=test_user_id
|
||||
)
|
||||
|
||||
@@ -1,404 +0,0 @@
|
||||
"""
|
||||
MCP (Model Context Protocol) API routes.
|
||||
|
||||
Provides endpoints for MCP tool discovery and OAuth authentication so the
|
||||
frontend can list available tools on an MCP server before placing a block.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from typing import Annotated, Any
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import fastapi
|
||||
from autogpt_libs.auth import get_user_id
|
||||
from fastapi import Security
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from backend.api.features.integrations.router import CredentialsMetaResponse
|
||||
from backend.blocks.mcp.client import MCPClient, MCPClientError
|
||||
from backend.blocks.mcp.oauth import MCPOAuthHandler
|
||||
from backend.data.model import OAuth2Credentials
|
||||
from backend.integrations.creds_manager import IntegrationCredentialsManager
|
||||
from backend.integrations.providers import ProviderName
|
||||
from backend.util.request import HTTPClientError, Requests
|
||||
from backend.util.settings import Settings
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
settings = Settings()
|
||||
router = fastapi.APIRouter(tags=["mcp"])
|
||||
creds_manager = IntegrationCredentialsManager()
|
||||
|
||||
|
||||
# ====================== Tool Discovery ====================== #
|
||||
|
||||
|
||||
class DiscoverToolsRequest(BaseModel):
|
||||
"""Request to discover tools on an MCP server."""
|
||||
|
||||
server_url: str = Field(description="URL of the MCP server")
|
||||
auth_token: str | None = Field(
|
||||
default=None,
|
||||
description="Optional Bearer token for authenticated MCP servers",
|
||||
)
|
||||
|
||||
|
||||
class MCPToolResponse(BaseModel):
|
||||
"""A single MCP tool returned by discovery."""
|
||||
|
||||
name: str
|
||||
description: str
|
||||
input_schema: dict[str, Any]
|
||||
|
||||
|
||||
class DiscoverToolsResponse(BaseModel):
|
||||
"""Response containing the list of tools available on an MCP server."""
|
||||
|
||||
tools: list[MCPToolResponse]
|
||||
server_name: str | None = None
|
||||
protocol_version: str | None = None
|
||||
|
||||
|
||||
@router.post(
|
||||
"/discover-tools",
|
||||
summary="Discover available tools on an MCP server",
|
||||
response_model=DiscoverToolsResponse,
|
||||
)
|
||||
async def discover_tools(
|
||||
request: DiscoverToolsRequest,
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> DiscoverToolsResponse:
|
||||
"""
|
||||
Connect to an MCP server and return its available tools.
|
||||
|
||||
If the user has a stored MCP credential for this server URL, it will be
|
||||
used automatically — no need to pass an explicit auth token.
|
||||
"""
|
||||
auth_token = request.auth_token
|
||||
|
||||
# Auto-use stored MCP credential when no explicit token is provided.
|
||||
if not auth_token:
|
||||
mcp_creds = await creds_manager.store.get_creds_by_provider(
|
||||
user_id, ProviderName.MCP.value
|
||||
)
|
||||
# Find the freshest credential for this server URL
|
||||
best_cred: OAuth2Credentials | None = None
|
||||
for cred in mcp_creds:
|
||||
if (
|
||||
isinstance(cred, OAuth2Credentials)
|
||||
and (cred.metadata or {}).get("mcp_server_url") == request.server_url
|
||||
):
|
||||
if best_cred is None or (
|
||||
(cred.access_token_expires_at or 0)
|
||||
> (best_cred.access_token_expires_at or 0)
|
||||
):
|
||||
best_cred = cred
|
||||
if best_cred:
|
||||
# Refresh the token if expired before using it
|
||||
best_cred = await creds_manager.refresh_if_needed(user_id, best_cred)
|
||||
logger.info(
|
||||
f"Using MCP credential {best_cred.id} for {request.server_url}, "
|
||||
f"expires_at={best_cred.access_token_expires_at}"
|
||||
)
|
||||
auth_token = best_cred.access_token.get_secret_value()
|
||||
|
||||
client = MCPClient(request.server_url, auth_token=auth_token)
|
||||
|
||||
try:
|
||||
init_result = await client.initialize()
|
||||
tools = await client.list_tools()
|
||||
except HTTPClientError as e:
|
||||
if e.status_code in (401, 403):
|
||||
raise fastapi.HTTPException(
|
||||
status_code=401,
|
||||
detail="This MCP server requires authentication. "
|
||||
"Please provide a valid auth token.",
|
||||
)
|
||||
raise fastapi.HTTPException(status_code=502, detail=str(e))
|
||||
except MCPClientError as e:
|
||||
raise fastapi.HTTPException(status_code=502, detail=str(e))
|
||||
except Exception as e:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=502,
|
||||
detail=f"Failed to connect to MCP server: {e}",
|
||||
)
|
||||
|
||||
return DiscoverToolsResponse(
|
||||
tools=[
|
||||
MCPToolResponse(
|
||||
name=t.name,
|
||||
description=t.description,
|
||||
input_schema=t.input_schema,
|
||||
)
|
||||
for t in tools
|
||||
],
|
||||
server_name=(
|
||||
init_result.get("serverInfo", {}).get("name")
|
||||
or urlparse(request.server_url).hostname
|
||||
or "MCP"
|
||||
),
|
||||
protocol_version=init_result.get("protocolVersion"),
|
||||
)
|
||||
|
||||
|
||||
# ======================== OAuth Flow ======================== #
|
||||
|
||||
|
||||
class MCPOAuthLoginRequest(BaseModel):
|
||||
"""Request to start an OAuth flow for an MCP server."""
|
||||
|
||||
server_url: str = Field(description="URL of the MCP server that requires OAuth")
|
||||
|
||||
|
||||
class MCPOAuthLoginResponse(BaseModel):
|
||||
"""Response with the OAuth login URL for the user to authenticate."""
|
||||
|
||||
login_url: str
|
||||
state_token: str
|
||||
|
||||
|
||||
@router.post(
|
||||
"/oauth/login",
|
||||
summary="Initiate OAuth login for an MCP server",
|
||||
)
|
||||
async def mcp_oauth_login(
|
||||
request: MCPOAuthLoginRequest,
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> MCPOAuthLoginResponse:
|
||||
"""
|
||||
Discover OAuth metadata from the MCP server and return a login URL.
|
||||
|
||||
1. Discovers the protected-resource metadata (RFC 9728)
|
||||
2. Fetches the authorization server metadata (RFC 8414)
|
||||
3. Performs Dynamic Client Registration (RFC 7591) if available
|
||||
4. Returns the authorization URL for the frontend to open in a popup
|
||||
"""
|
||||
client = MCPClient(request.server_url)
|
||||
|
||||
# Step 1: Discover protected-resource metadata (RFC 9728)
|
||||
protected_resource = await client.discover_auth()
|
||||
|
||||
metadata: dict[str, Any] | None = None
|
||||
|
||||
if protected_resource and protected_resource.get("authorization_servers"):
|
||||
auth_server_url = protected_resource["authorization_servers"][0]
|
||||
resource_url = protected_resource.get("resource", request.server_url)
|
||||
|
||||
# Step 2a: Discover auth-server metadata (RFC 8414)
|
||||
metadata = await client.discover_auth_server_metadata(auth_server_url)
|
||||
else:
|
||||
# Fallback: Some MCP servers (e.g. Linear) are their own auth server
|
||||
# and serve OAuth metadata directly without protected-resource metadata.
|
||||
# Don't assume a resource_url — omitting it lets the auth server choose
|
||||
# the correct audience for the token (RFC 8707 resource is optional).
|
||||
resource_url = None
|
||||
metadata = await client.discover_auth_server_metadata(request.server_url)
|
||||
|
||||
if (
|
||||
not metadata
|
||||
or "authorization_endpoint" not in metadata
|
||||
or "token_endpoint" not in metadata
|
||||
):
|
||||
raise fastapi.HTTPException(
|
||||
status_code=400,
|
||||
detail="This MCP server does not advertise OAuth support. "
|
||||
"You may need to provide an auth token manually.",
|
||||
)
|
||||
|
||||
authorize_url = metadata["authorization_endpoint"]
|
||||
token_url = metadata["token_endpoint"]
|
||||
registration_endpoint = metadata.get("registration_endpoint")
|
||||
revoke_url = metadata.get("revocation_endpoint")
|
||||
|
||||
# Step 3: Dynamic Client Registration (RFC 7591) if available
|
||||
frontend_base_url = settings.config.frontend_base_url
|
||||
if not frontend_base_url:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Frontend base URL is not configured.",
|
||||
)
|
||||
redirect_uri = f"{frontend_base_url}/auth/integrations/mcp_callback"
|
||||
|
||||
client_id = ""
|
||||
client_secret = ""
|
||||
if registration_endpoint:
|
||||
reg_result = await _register_mcp_client(
|
||||
registration_endpoint, redirect_uri, request.server_url
|
||||
)
|
||||
if reg_result:
|
||||
client_id = reg_result.get("client_id", "")
|
||||
client_secret = reg_result.get("client_secret", "")
|
||||
|
||||
if not client_id:
|
||||
client_id = "autogpt-platform"
|
||||
|
||||
# Step 4: Store state token with OAuth metadata for the callback
|
||||
scopes = (protected_resource or {}).get("scopes_supported") or metadata.get(
|
||||
"scopes_supported", []
|
||||
)
|
||||
state_token, code_challenge = await creds_manager.store.store_state_token(
|
||||
user_id,
|
||||
ProviderName.MCP.value,
|
||||
scopes,
|
||||
state_metadata={
|
||||
"authorize_url": authorize_url,
|
||||
"token_url": token_url,
|
||||
"revoke_url": revoke_url,
|
||||
"resource_url": resource_url,
|
||||
"server_url": request.server_url,
|
||||
"client_id": client_id,
|
||||
"client_secret": client_secret,
|
||||
},
|
||||
)
|
||||
|
||||
# Step 5: Build and return the login URL
|
||||
handler = MCPOAuthHandler(
|
||||
client_id=client_id,
|
||||
client_secret=client_secret,
|
||||
redirect_uri=redirect_uri,
|
||||
authorize_url=authorize_url,
|
||||
token_url=token_url,
|
||||
resource_url=resource_url,
|
||||
)
|
||||
login_url = handler.get_login_url(
|
||||
scopes, state_token, code_challenge=code_challenge
|
||||
)
|
||||
|
||||
return MCPOAuthLoginResponse(login_url=login_url, state_token=state_token)
|
||||
|
||||
|
||||
class MCPOAuthCallbackRequest(BaseModel):
|
||||
"""Request to exchange an OAuth code for tokens."""
|
||||
|
||||
code: str = Field(description="Authorization code from OAuth callback")
|
||||
state_token: str = Field(description="State token for CSRF verification")
|
||||
|
||||
|
||||
class MCPOAuthCallbackResponse(BaseModel):
|
||||
"""Response after successfully storing OAuth credentials."""
|
||||
|
||||
credential_id: str
|
||||
|
||||
|
||||
@router.post(
|
||||
"/oauth/callback",
|
||||
summary="Exchange OAuth code for MCP tokens",
|
||||
)
|
||||
async def mcp_oauth_callback(
|
||||
request: MCPOAuthCallbackRequest,
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> CredentialsMetaResponse:
|
||||
"""
|
||||
Exchange the authorization code for tokens and store the credential.
|
||||
|
||||
The frontend calls this after receiving the OAuth code from the popup.
|
||||
On success, subsequent ``/discover-tools`` calls for the same server URL
|
||||
will automatically use the stored credential.
|
||||
"""
|
||||
valid_state = await creds_manager.store.verify_state_token(
|
||||
user_id, request.state_token, ProviderName.MCP.value
|
||||
)
|
||||
if not valid_state:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=400,
|
||||
detail="Invalid or expired state token.",
|
||||
)
|
||||
|
||||
meta = valid_state.state_metadata
|
||||
frontend_base_url = settings.config.frontend_base_url
|
||||
if not frontend_base_url:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=500,
|
||||
detail="Frontend base URL is not configured.",
|
||||
)
|
||||
redirect_uri = f"{frontend_base_url}/auth/integrations/mcp_callback"
|
||||
|
||||
handler = MCPOAuthHandler(
|
||||
client_id=meta["client_id"],
|
||||
client_secret=meta.get("client_secret", ""),
|
||||
redirect_uri=redirect_uri,
|
||||
authorize_url=meta["authorize_url"],
|
||||
token_url=meta["token_url"],
|
||||
revoke_url=meta.get("revoke_url"),
|
||||
resource_url=meta.get("resource_url"),
|
||||
)
|
||||
|
||||
try:
|
||||
credentials = await handler.exchange_code_for_tokens(
|
||||
request.code, valid_state.scopes, valid_state.code_verifier
|
||||
)
|
||||
except Exception as e:
|
||||
raise fastapi.HTTPException(
|
||||
status_code=400,
|
||||
detail=f"OAuth token exchange failed: {e}",
|
||||
)
|
||||
|
||||
# Enrich credential metadata for future lookup and token refresh
|
||||
if credentials.metadata is None:
|
||||
credentials.metadata = {}
|
||||
credentials.metadata["mcp_server_url"] = meta["server_url"]
|
||||
credentials.metadata["mcp_client_id"] = meta["client_id"]
|
||||
credentials.metadata["mcp_client_secret"] = meta.get("client_secret", "")
|
||||
credentials.metadata["mcp_token_url"] = meta["token_url"]
|
||||
credentials.metadata["mcp_resource_url"] = meta.get("resource_url", "")
|
||||
|
||||
hostname = urlparse(meta["server_url"]).hostname or meta["server_url"]
|
||||
credentials.title = f"MCP: {hostname}"
|
||||
|
||||
# Remove old MCP credentials for the same server to prevent stale token buildup.
|
||||
try:
|
||||
old_creds = await creds_manager.store.get_creds_by_provider(
|
||||
user_id, ProviderName.MCP.value
|
||||
)
|
||||
for old in old_creds:
|
||||
if (
|
||||
isinstance(old, OAuth2Credentials)
|
||||
and (old.metadata or {}).get("mcp_server_url") == meta["server_url"]
|
||||
):
|
||||
await creds_manager.store.delete_creds_by_id(user_id, old.id)
|
||||
logger.info(
|
||||
f"Removed old MCP credential {old.id} for {meta['server_url']}"
|
||||
)
|
||||
except Exception:
|
||||
logger.debug("Could not clean up old MCP credentials", exc_info=True)
|
||||
|
||||
await creds_manager.create(user_id, credentials)
|
||||
|
||||
return CredentialsMetaResponse(
|
||||
id=credentials.id,
|
||||
provider=credentials.provider,
|
||||
type=credentials.type,
|
||||
title=credentials.title,
|
||||
scopes=credentials.scopes,
|
||||
username=credentials.username,
|
||||
host=credentials.metadata.get("mcp_server_url"),
|
||||
)
|
||||
|
||||
|
||||
# ======================== Helpers ======================== #
|
||||
|
||||
|
||||
async def _register_mcp_client(
|
||||
registration_endpoint: str,
|
||||
redirect_uri: str,
|
||||
server_url: str,
|
||||
) -> dict[str, Any] | None:
|
||||
"""Attempt Dynamic Client Registration (RFC 7591) with an MCP auth server."""
|
||||
try:
|
||||
response = await Requests(raise_for_status=True).post(
|
||||
registration_endpoint,
|
||||
json={
|
||||
"client_name": "AutoGPT Platform",
|
||||
"redirect_uris": [redirect_uri],
|
||||
"grant_types": ["authorization_code"],
|
||||
"response_types": ["code"],
|
||||
"token_endpoint_auth_method": "client_secret_post",
|
||||
},
|
||||
)
|
||||
data = response.json()
|
||||
if isinstance(data, dict) and "client_id" in data:
|
||||
return data
|
||||
return None
|
||||
except Exception as e:
|
||||
logger.warning(f"Dynamic client registration failed for {server_url}: {e}")
|
||||
return None
|
||||
@@ -1,436 +0,0 @@
|
||||
"""Tests for MCP API routes.
|
||||
|
||||
Uses httpx.AsyncClient with ASGITransport instead of fastapi.testclient.TestClient
|
||||
to avoid creating blocking portals that can corrupt pytest-asyncio's session event loop.
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, patch
|
||||
|
||||
import fastapi
|
||||
import httpx
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from autogpt_libs.auth import get_user_id
|
||||
|
||||
from backend.api.features.mcp.routes import router
|
||||
from backend.blocks.mcp.client import MCPClientError, MCPTool
|
||||
from backend.util.request import HTTPClientError
|
||||
|
||||
app = fastapi.FastAPI()
|
||||
app.include_router(router)
|
||||
app.dependency_overrides[get_user_id] = lambda: "test-user-id"
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="module")
|
||||
async def client():
|
||||
transport = httpx.ASGITransport(app=app)
|
||||
async with httpx.AsyncClient(transport=transport, base_url="http://test") as c:
|
||||
yield c
|
||||
|
||||
|
||||
class TestDiscoverTools:
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_success(self, client):
|
||||
mock_tools = [
|
||||
MCPTool(
|
||||
name="get_weather",
|
||||
description="Get weather for a city",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {"city": {"type": "string"}},
|
||||
"required": ["city"],
|
||||
},
|
||||
),
|
||||
MCPTool(
|
||||
name="add_numbers",
|
||||
description="Add two numbers",
|
||||
input_schema={
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"a": {"type": "number"},
|
||||
"b": {"type": "number"},
|
||||
},
|
||||
},
|
||||
),
|
||||
]
|
||||
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
return_value={
|
||||
"protocolVersion": "2025-03-26",
|
||||
"serverInfo": {"name": "test-server"},
|
||||
}
|
||||
)
|
||||
instance.list_tools = AsyncMock(return_value=mock_tools)
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://mcp.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert len(data["tools"]) == 2
|
||||
assert data["tools"][0]["name"] == "get_weather"
|
||||
assert data["tools"][1]["name"] == "add_numbers"
|
||||
assert data["server_name"] == "test-server"
|
||||
assert data["protocol_version"] == "2025-03-26"
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_with_auth_token(self, client):
|
||||
with patch("backend.api.features.mcp.routes.MCPClient") as MockClient:
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
return_value={"serverInfo": {}, "protocolVersion": "2025-03-26"}
|
||||
)
|
||||
instance.list_tools = AsyncMock(return_value=[])
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={
|
||||
"server_url": "https://mcp.example.com/mcp",
|
||||
"auth_token": "my-secret-token",
|
||||
},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
MockClient.assert_called_once_with(
|
||||
"https://mcp.example.com/mcp",
|
||||
auth_token="my-secret-token",
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_auto_uses_stored_credential(self, client):
|
||||
"""When no explicit token is given, stored MCP credentials are used."""
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import OAuth2Credentials
|
||||
|
||||
stored_cred = OAuth2Credentials(
|
||||
provider="mcp",
|
||||
title="MCP: example.com",
|
||||
access_token=SecretStr("stored-token-123"),
|
||||
refresh_token=None,
|
||||
access_token_expires_at=None,
|
||||
refresh_token_expires_at=None,
|
||||
scopes=[],
|
||||
metadata={"mcp_server_url": "https://mcp.example.com/mcp"},
|
||||
)
|
||||
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[stored_cred])
|
||||
mock_cm.refresh_if_needed = AsyncMock(return_value=stored_cred)
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
return_value={"serverInfo": {}, "protocolVersion": "2025-03-26"}
|
||||
)
|
||||
instance.list_tools = AsyncMock(return_value=[])
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://mcp.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
MockClient.assert_called_once_with(
|
||||
"https://mcp.example.com/mcp",
|
||||
auth_token="stored-token-123",
|
||||
)
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_mcp_error(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
side_effect=MCPClientError("Connection refused")
|
||||
)
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://bad-server.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 502
|
||||
assert "Connection refused" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_generic_error(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(side_effect=Exception("Network timeout"))
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://timeout.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 502
|
||||
assert "Failed to connect" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_auth_required(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
side_effect=HTTPClientError("HTTP 401 Error: Unauthorized", 401)
|
||||
)
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://auth-server.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 401
|
||||
assert "requires authentication" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_forbidden(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
):
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
instance = MockClient.return_value
|
||||
instance.initialize = AsyncMock(
|
||||
side_effect=HTTPClientError("HTTP 403 Error: Forbidden", 403)
|
||||
)
|
||||
|
||||
response = await client.post(
|
||||
"/discover-tools",
|
||||
json={"server_url": "https://auth-server.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 401
|
||||
assert "requires authentication" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_discover_tools_missing_url(self, client):
|
||||
response = await client.post("/discover-tools", json={})
|
||||
assert response.status_code == 422
|
||||
|
||||
|
||||
class TestOAuthLogin:
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_login_success(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
patch("backend.api.features.mcp.routes.settings") as mock_settings,
|
||||
patch(
|
||||
"backend.api.features.mcp.routes._register_mcp_client"
|
||||
) as mock_register,
|
||||
):
|
||||
instance = MockClient.return_value
|
||||
instance.discover_auth = AsyncMock(
|
||||
return_value={
|
||||
"authorization_servers": ["https://auth.sentry.io"],
|
||||
"resource": "https://mcp.sentry.dev/mcp",
|
||||
"scopes_supported": ["openid"],
|
||||
}
|
||||
)
|
||||
instance.discover_auth_server_metadata = AsyncMock(
|
||||
return_value={
|
||||
"authorization_endpoint": "https://auth.sentry.io/authorize",
|
||||
"token_endpoint": "https://auth.sentry.io/token",
|
||||
"registration_endpoint": "https://auth.sentry.io/register",
|
||||
}
|
||||
)
|
||||
mock_register.return_value = {
|
||||
"client_id": "registered-client-id",
|
||||
"client_secret": "registered-secret",
|
||||
}
|
||||
mock_cm.store.store_state_token = AsyncMock(
|
||||
return_value=("state-token-123", "code-challenge-abc")
|
||||
)
|
||||
mock_settings.config.frontend_base_url = "http://localhost:3000"
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/login",
|
||||
json={"server_url": "https://mcp.sentry.dev/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert "login_url" in data
|
||||
assert data["state_token"] == "state-token-123"
|
||||
assert "auth.sentry.io/authorize" in data["login_url"]
|
||||
assert "registered-client-id" in data["login_url"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_login_no_oauth_support(self, client):
|
||||
with patch("backend.api.features.mcp.routes.MCPClient") as MockClient:
|
||||
instance = MockClient.return_value
|
||||
instance.discover_auth = AsyncMock(return_value=None)
|
||||
instance.discover_auth_server_metadata = AsyncMock(return_value=None)
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/login",
|
||||
json={"server_url": "https://simple-server.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "does not advertise OAuth" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_login_fallback_to_public_client(self, client):
|
||||
"""When DCR is unavailable, falls back to default public client ID."""
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.MCPClient") as MockClient,
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
patch("backend.api.features.mcp.routes.settings") as mock_settings,
|
||||
):
|
||||
instance = MockClient.return_value
|
||||
instance.discover_auth = AsyncMock(
|
||||
return_value={
|
||||
"authorization_servers": ["https://auth.example.com"],
|
||||
"resource": "https://mcp.example.com/mcp",
|
||||
}
|
||||
)
|
||||
instance.discover_auth_server_metadata = AsyncMock(
|
||||
return_value={
|
||||
"authorization_endpoint": "https://auth.example.com/authorize",
|
||||
"token_endpoint": "https://auth.example.com/token",
|
||||
# No registration_endpoint
|
||||
}
|
||||
)
|
||||
mock_cm.store.store_state_token = AsyncMock(
|
||||
return_value=("state-abc", "challenge-xyz")
|
||||
)
|
||||
mock_settings.config.frontend_base_url = "http://localhost:3000"
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/login",
|
||||
json={"server_url": "https://mcp.example.com/mcp"},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert "autogpt-platform" in data["login_url"]
|
||||
|
||||
|
||||
class TestOAuthCallback:
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_callback_success(self, client):
|
||||
from pydantic import SecretStr
|
||||
|
||||
from backend.data.model import OAuth2Credentials
|
||||
|
||||
mock_creds = OAuth2Credentials(
|
||||
provider="mcp",
|
||||
title=None,
|
||||
access_token=SecretStr("access-token-xyz"),
|
||||
refresh_token=None,
|
||||
access_token_expires_at=None,
|
||||
refresh_token_expires_at=None,
|
||||
scopes=[],
|
||||
metadata={
|
||||
"mcp_token_url": "https://auth.sentry.io/token",
|
||||
"mcp_resource_url": "https://mcp.sentry.dev/mcp",
|
||||
},
|
||||
)
|
||||
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
patch("backend.api.features.mcp.routes.settings") as mock_settings,
|
||||
patch("backend.api.features.mcp.routes.MCPOAuthHandler") as MockHandler,
|
||||
):
|
||||
mock_settings.config.frontend_base_url = "http://localhost:3000"
|
||||
|
||||
# Mock state verification
|
||||
mock_state = AsyncMock()
|
||||
mock_state.state_metadata = {
|
||||
"authorize_url": "https://auth.sentry.io/authorize",
|
||||
"token_url": "https://auth.sentry.io/token",
|
||||
"client_id": "test-client-id",
|
||||
"client_secret": "test-secret",
|
||||
"server_url": "https://mcp.sentry.dev/mcp",
|
||||
}
|
||||
mock_state.scopes = ["openid"]
|
||||
mock_state.code_verifier = "verifier-123"
|
||||
mock_cm.store.verify_state_token = AsyncMock(return_value=mock_state)
|
||||
mock_cm.create = AsyncMock()
|
||||
|
||||
handler_instance = MockHandler.return_value
|
||||
handler_instance.exchange_code_for_tokens = AsyncMock(
|
||||
return_value=mock_creds
|
||||
)
|
||||
|
||||
# Mock old credential cleanup
|
||||
mock_cm.store.get_creds_by_provider = AsyncMock(return_value=[])
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/callback",
|
||||
json={"code": "auth-code-abc", "state_token": "state-token-123"},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert "id" in data
|
||||
assert data["provider"] == "mcp"
|
||||
assert data["type"] == "oauth2"
|
||||
mock_cm.create.assert_called_once()
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_callback_invalid_state(self, client):
|
||||
with patch("backend.api.features.mcp.routes.creds_manager") as mock_cm:
|
||||
mock_cm.store.verify_state_token = AsyncMock(return_value=None)
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/callback",
|
||||
json={"code": "auth-code", "state_token": "bad-state"},
|
||||
)
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "Invalid or expired" in response.json()["detail"]
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
async def test_oauth_callback_token_exchange_fails(self, client):
|
||||
with (
|
||||
patch("backend.api.features.mcp.routes.creds_manager") as mock_cm,
|
||||
patch("backend.api.features.mcp.routes.settings") as mock_settings,
|
||||
patch("backend.api.features.mcp.routes.MCPOAuthHandler") as MockHandler,
|
||||
):
|
||||
mock_settings.config.frontend_base_url = "http://localhost:3000"
|
||||
mock_state = AsyncMock()
|
||||
mock_state.state_metadata = {
|
||||
"authorize_url": "https://auth.example.com/authorize",
|
||||
"token_url": "https://auth.example.com/token",
|
||||
"client_id": "cid",
|
||||
"server_url": "https://mcp.example.com/mcp",
|
||||
}
|
||||
mock_state.scopes = []
|
||||
mock_state.code_verifier = "v"
|
||||
mock_cm.store.verify_state_token = AsyncMock(return_value=mock_state)
|
||||
|
||||
handler_instance = MockHandler.return_value
|
||||
handler_instance.exchange_code_for_tokens = AsyncMock(
|
||||
side_effect=RuntimeError("Token exchange failed")
|
||||
)
|
||||
|
||||
response = await client.post(
|
||||
"/oauth/callback",
|
||||
json={"code": "bad-code", "state_token": "state"},
|
||||
)
|
||||
|
||||
assert response.status_code == 400
|
||||
assert "token exchange failed" in response.json()["detail"].lower()
|
||||
@@ -20,7 +20,6 @@ from typing import AsyncGenerator
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
import pytest_asyncio
|
||||
from autogpt_libs.api_key.keysmith import APIKeySmith
|
||||
from prisma.enums import APIKeyPermission
|
||||
from prisma.models import OAuthAccessToken as PrismaOAuthAccessToken
|
||||
@@ -39,13 +38,13 @@ keysmith = APIKeySmith()
|
||||
# ============================================================================
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
@pytest.fixture
|
||||
def test_user_id() -> str:
|
||||
"""Test user ID for OAuth tests."""
|
||||
return str(uuid.uuid4())
|
||||
|
||||
|
||||
@pytest_asyncio.fixture(scope="session", loop_scope="session")
|
||||
@pytest.fixture
|
||||
async def test_user(server, test_user_id: str):
|
||||
"""Create a test user in the database."""
|
||||
await PrismaUser.prisma().create(
|
||||
@@ -68,7 +67,7 @@ async def test_user(server, test_user_id: str):
|
||||
await PrismaUser.prisma().delete(where={"id": test_user_id})
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def test_oauth_app(test_user: str):
|
||||
"""Create a test OAuth application in the database."""
|
||||
app_id = str(uuid.uuid4())
|
||||
@@ -123,7 +122,7 @@ def pkce_credentials() -> tuple[str, str]:
|
||||
return generate_pkce()
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def client(server, test_user: str) -> AsyncGenerator[httpx.AsyncClient, None]:
|
||||
"""
|
||||
Create an async HTTP client that talks directly to the FastAPI app.
|
||||
@@ -288,7 +287,7 @@ async def test_authorize_invalid_client_returns_error(
|
||||
assert query_params["error"][0] == "invalid_client"
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def inactive_oauth_app(test_user: str):
|
||||
"""Create an inactive test OAuth application in the database."""
|
||||
app_id = str(uuid.uuid4())
|
||||
@@ -1005,7 +1004,7 @@ async def test_token_refresh_revoked(
|
||||
assert "revoked" in response.json()["detail"].lower()
|
||||
|
||||
|
||||
@pytest_asyncio.fixture
|
||||
@pytest.fixture
|
||||
async def other_oauth_app(test_user: str):
|
||||
"""Create a second OAuth application for cross-app tests."""
|
||||
app_id = str(uuid.uuid4())
|
||||
|
||||
@@ -5,8 +5,8 @@ from typing import Optional
|
||||
import aiohttp
|
||||
from fastapi import HTTPException
|
||||
|
||||
from backend.blocks import get_block
|
||||
from backend.data import graph as graph_db
|
||||
from backend.data.block import get_block
|
||||
from backend.util.settings import Settings
|
||||
|
||||
from .models import ApiResponse, ChatRequest, GraphData
|
||||
|
||||
@@ -152,7 +152,7 @@ class BlockHandler(ContentHandler):
|
||||
|
||||
async def get_missing_items(self, batch_size: int) -> list[ContentItem]:
|
||||
"""Fetch blocks without embeddings."""
|
||||
from backend.blocks import get_blocks
|
||||
from backend.data.block import get_blocks
|
||||
|
||||
# Get all available blocks
|
||||
all_blocks = get_blocks()
|
||||
@@ -188,10 +188,6 @@ class BlockHandler(ContentHandler):
|
||||
try:
|
||||
block_instance = block_cls()
|
||||
|
||||
# Skip disabled blocks - they shouldn't be indexed
|
||||
if block_instance.disabled:
|
||||
continue
|
||||
|
||||
# Build searchable text from block metadata
|
||||
parts = []
|
||||
if hasattr(block_instance, "name") and block_instance.name:
|
||||
@@ -249,22 +245,15 @@ class BlockHandler(ContentHandler):
|
||||
|
||||
async def get_stats(self) -> dict[str, int]:
|
||||
"""Get statistics about block embedding coverage."""
|
||||
from backend.blocks import get_blocks
|
||||
from backend.data.block import get_blocks
|
||||
|
||||
all_blocks = get_blocks()
|
||||
|
||||
# Filter out disabled blocks - they're not indexed
|
||||
enabled_block_ids = [
|
||||
block_id
|
||||
for block_id, block_cls in all_blocks.items()
|
||||
if not block_cls().disabled
|
||||
]
|
||||
total_blocks = len(enabled_block_ids)
|
||||
total_blocks = len(all_blocks)
|
||||
|
||||
if total_blocks == 0:
|
||||
return {"total": 0, "with_embeddings": 0, "without_embeddings": 0}
|
||||
|
||||
block_ids = enabled_block_ids
|
||||
block_ids = list(all_blocks.keys())
|
||||
placeholders = ",".join([f"${i+1}" for i in range(len(block_ids))])
|
||||
|
||||
embedded_result = await query_raw_with_schema(
|
||||
|
||||
@@ -81,7 +81,6 @@ async def test_block_handler_get_missing_items(mocker):
|
||||
mock_block_instance.name = "Calculator Block"
|
||||
mock_block_instance.description = "Performs calculations"
|
||||
mock_block_instance.categories = [MagicMock(value="MATH")]
|
||||
mock_block_instance.disabled = False
|
||||
mock_block_instance.input_schema.model_json_schema.return_value = {
|
||||
"properties": {"expression": {"description": "Math expression to evaluate"}}
|
||||
}
|
||||
@@ -93,7 +92,7 @@ async def test_block_handler_get_missing_items(mocker):
|
||||
mock_existing = []
|
||||
|
||||
with patch(
|
||||
"backend.blocks.get_blocks",
|
||||
"backend.data.block.get_blocks",
|
||||
return_value=mock_blocks,
|
||||
):
|
||||
with patch(
|
||||
@@ -117,25 +116,18 @@ async def test_block_handler_get_stats(mocker):
|
||||
"""Test BlockHandler returns correct stats."""
|
||||
handler = BlockHandler()
|
||||
|
||||
# Mock get_blocks - each block class returns an instance with disabled=False
|
||||
def make_mock_block_class():
|
||||
mock_class = MagicMock()
|
||||
mock_instance = MagicMock()
|
||||
mock_instance.disabled = False
|
||||
mock_class.return_value = mock_instance
|
||||
return mock_class
|
||||
|
||||
# Mock get_blocks
|
||||
mock_blocks = {
|
||||
"block-1": make_mock_block_class(),
|
||||
"block-2": make_mock_block_class(),
|
||||
"block-3": make_mock_block_class(),
|
||||
"block-1": MagicMock(),
|
||||
"block-2": MagicMock(),
|
||||
"block-3": MagicMock(),
|
||||
}
|
||||
|
||||
# Mock embedded count query (2 blocks have embeddings)
|
||||
mock_embedded = [{"count": 2}]
|
||||
|
||||
with patch(
|
||||
"backend.blocks.get_blocks",
|
||||
"backend.data.block.get_blocks",
|
||||
return_value=mock_blocks,
|
||||
):
|
||||
with patch(
|
||||
@@ -317,7 +309,6 @@ async def test_block_handler_handles_missing_attributes():
|
||||
mock_block_class = MagicMock()
|
||||
mock_block_instance = MagicMock()
|
||||
mock_block_instance.name = "Minimal Block"
|
||||
mock_block_instance.disabled = False
|
||||
# No description, categories, or schema
|
||||
del mock_block_instance.description
|
||||
del mock_block_instance.categories
|
||||
@@ -327,7 +318,7 @@ async def test_block_handler_handles_missing_attributes():
|
||||
mock_blocks = {"block-minimal": mock_block_class}
|
||||
|
||||
with patch(
|
||||
"backend.blocks.get_blocks",
|
||||
"backend.data.block.get_blocks",
|
||||
return_value=mock_blocks,
|
||||
):
|
||||
with patch(
|
||||
@@ -351,7 +342,6 @@ async def test_block_handler_skips_failed_blocks():
|
||||
good_instance.name = "Good Block"
|
||||
good_instance.description = "Works fine"
|
||||
good_instance.categories = []
|
||||
good_instance.disabled = False
|
||||
good_block.return_value = good_instance
|
||||
|
||||
bad_block = MagicMock()
|
||||
@@ -360,7 +350,7 @@ async def test_block_handler_skips_failed_blocks():
|
||||
mock_blocks = {"good-block": good_block, "bad-block": bad_block}
|
||||
|
||||
with patch(
|
||||
"backend.blocks.get_blocks",
|
||||
"backend.data.block.get_blocks",
|
||||
return_value=mock_blocks,
|
||||
):
|
||||
with patch(
|
||||
|
||||
@@ -1,7 +1,7 @@
|
||||
import asyncio
|
||||
import logging
|
||||
from datetime import datetime, timezone
|
||||
from typing import Any, Literal, overload
|
||||
from typing import Any, Literal
|
||||
|
||||
import fastapi
|
||||
import prisma.enums
|
||||
@@ -11,8 +11,8 @@ import prisma.types
|
||||
|
||||
from backend.data.db import transaction
|
||||
from backend.data.graph import (
|
||||
GraphMeta,
|
||||
GraphModel,
|
||||
GraphModelWithoutNodes,
|
||||
get_graph,
|
||||
get_graph_as_admin,
|
||||
get_sub_graphs,
|
||||
@@ -112,7 +112,6 @@ async def get_store_agents(
|
||||
description=agent["description"],
|
||||
runs=agent["runs"],
|
||||
rating=agent["rating"],
|
||||
agent_graph_id=agent.get("agentGraphId", ""),
|
||||
)
|
||||
store_agents.append(store_agent)
|
||||
except Exception as e:
|
||||
@@ -171,7 +170,6 @@ async def get_store_agents(
|
||||
description=agent.description,
|
||||
runs=agent.runs,
|
||||
rating=agent.rating,
|
||||
agent_graph_id=agent.agentGraphId,
|
||||
)
|
||||
# Add to the list only if creation was successful
|
||||
store_agents.append(store_agent)
|
||||
@@ -334,22 +332,7 @@ async def get_store_agent_details(
|
||||
raise DatabaseError("Failed to fetch agent details") from e
|
||||
|
||||
|
||||
@overload
|
||||
async def get_available_graph(
|
||||
store_listing_version_id: str, hide_nodes: Literal[False]
|
||||
) -> GraphModel: ...
|
||||
|
||||
|
||||
@overload
|
||||
async def get_available_graph(
|
||||
store_listing_version_id: str, hide_nodes: Literal[True] = True
|
||||
) -> GraphModelWithoutNodes: ...
|
||||
|
||||
|
||||
async def get_available_graph(
|
||||
store_listing_version_id: str,
|
||||
hide_nodes: bool = True,
|
||||
) -> GraphModelWithoutNodes | GraphModel:
|
||||
async def get_available_graph(store_listing_version_id: str) -> GraphMeta:
|
||||
try:
|
||||
# Get avaialble, non-deleted store listing version
|
||||
store_listing_version = (
|
||||
@@ -359,7 +342,7 @@ async def get_available_graph(
|
||||
"isAvailable": True,
|
||||
"isDeleted": False,
|
||||
},
|
||||
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
|
||||
include={"AgentGraph": {"include": {"Nodes": True}}},
|
||||
)
|
||||
)
|
||||
|
||||
@@ -369,9 +352,7 @@ async def get_available_graph(
|
||||
detail=f"Store listing version {store_listing_version_id} not found",
|
||||
)
|
||||
|
||||
return (GraphModelWithoutNodes if hide_nodes else GraphModel).from_db(
|
||||
store_listing_version.AgentGraph
|
||||
)
|
||||
return GraphModel.from_db(store_listing_version.AgentGraph).meta()
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting agent: {e}")
|
||||
@@ -1571,7 +1552,7 @@ async def review_store_submission(
|
||||
|
||||
# Generate embedding for approved listing (blocking - admin operation)
|
||||
# Inside transaction: if embedding fails, entire transaction rolls back
|
||||
await ensure_embedding(
|
||||
embedding_success = await ensure_embedding(
|
||||
version_id=store_listing_version_id,
|
||||
name=store_listing_version.name,
|
||||
description=store_listing_version.description,
|
||||
@@ -1579,6 +1560,12 @@ async def review_store_submission(
|
||||
categories=store_listing_version.categories or [],
|
||||
tx=tx,
|
||||
)
|
||||
if not embedding_success:
|
||||
raise ValueError(
|
||||
f"Failed to generate embedding for listing {store_listing_version_id}. "
|
||||
"This is likely due to OpenAI API being unavailable. "
|
||||
"Please try again later or contact support if the issue persists."
|
||||
)
|
||||
|
||||
await prisma.models.StoreListing.prisma(tx).update(
|
||||
where={"id": store_listing_version.StoreListing.id},
|
||||
|
||||
@@ -21,6 +21,7 @@ from backend.util.json import dumps
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
# OpenAI embedding model configuration
|
||||
EMBEDDING_MODEL = "text-embedding-3-small"
|
||||
# Embedding dimension for the model above
|
||||
@@ -62,42 +63,49 @@ def build_searchable_text(
|
||||
return " ".join(parts)
|
||||
|
||||
|
||||
async def generate_embedding(text: str) -> list[float]:
|
||||
async def generate_embedding(text: str) -> list[float] | None:
|
||||
"""
|
||||
Generate embedding for text using OpenAI API.
|
||||
|
||||
Raises exceptions on failure - caller should handle.
|
||||
Returns None if embedding generation fails.
|
||||
Fail-fast: no retries to maintain consistency with approval flow.
|
||||
"""
|
||||
client = get_openai_client()
|
||||
if not client:
|
||||
raise RuntimeError("openai_internal_api_key not set, cannot generate embedding")
|
||||
try:
|
||||
client = get_openai_client()
|
||||
if not client:
|
||||
logger.error("openai_internal_api_key not set, cannot generate embedding")
|
||||
return None
|
||||
|
||||
# Truncate text to token limit using tiktoken
|
||||
# Character-based truncation is insufficient because token ratios vary by content type
|
||||
enc = encoding_for_model(EMBEDDING_MODEL)
|
||||
tokens = enc.encode(text)
|
||||
if len(tokens) > EMBEDDING_MAX_TOKENS:
|
||||
tokens = tokens[:EMBEDDING_MAX_TOKENS]
|
||||
truncated_text = enc.decode(tokens)
|
||||
logger.info(
|
||||
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
|
||||
# Truncate text to token limit using tiktoken
|
||||
# Character-based truncation is insufficient because token ratios vary by content type
|
||||
enc = encoding_for_model(EMBEDDING_MODEL)
|
||||
tokens = enc.encode(text)
|
||||
if len(tokens) > EMBEDDING_MAX_TOKENS:
|
||||
tokens = tokens[:EMBEDDING_MAX_TOKENS]
|
||||
truncated_text = enc.decode(tokens)
|
||||
logger.info(
|
||||
f"Truncated text from {len(enc.encode(text))} to {len(tokens)} tokens"
|
||||
)
|
||||
else:
|
||||
truncated_text = text
|
||||
|
||||
start_time = time.time()
|
||||
response = await client.embeddings.create(
|
||||
model=EMBEDDING_MODEL,
|
||||
input=truncated_text,
|
||||
)
|
||||
else:
|
||||
truncated_text = text
|
||||
latency_ms = (time.time() - start_time) * 1000
|
||||
|
||||
start_time = time.time()
|
||||
response = await client.embeddings.create(
|
||||
model=EMBEDDING_MODEL,
|
||||
input=truncated_text,
|
||||
)
|
||||
latency_ms = (time.time() - start_time) * 1000
|
||||
embedding = response.data[0].embedding
|
||||
logger.info(
|
||||
f"Generated embedding: {len(embedding)} dims, "
|
||||
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
|
||||
)
|
||||
return embedding
|
||||
|
||||
embedding = response.data[0].embedding
|
||||
logger.info(
|
||||
f"Generated embedding: {len(embedding)} dims, "
|
||||
f"{len(tokens)} tokens, {latency_ms:.0f}ms"
|
||||
)
|
||||
return embedding
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to generate embedding: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def store_embedding(
|
||||
@@ -136,45 +144,48 @@ async def store_content_embedding(
|
||||
|
||||
New function for unified content embedding storage.
|
||||
Uses raw SQL since Prisma doesn't natively support pgvector.
|
||||
|
||||
Raises exceptions on failure - caller should handle.
|
||||
"""
|
||||
client = tx if tx else prisma.get_client()
|
||||
try:
|
||||
client = tx if tx else prisma.get_client()
|
||||
|
||||
# Convert embedding to PostgreSQL vector format
|
||||
embedding_str = embedding_to_vector_string(embedding)
|
||||
metadata_json = dumps(metadata or {})
|
||||
# Convert embedding to PostgreSQL vector format
|
||||
embedding_str = embedding_to_vector_string(embedding)
|
||||
metadata_json = dumps(metadata or {})
|
||||
|
||||
# Upsert the embedding
|
||||
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
|
||||
# Use unqualified ::vector - pgvector is in search_path on all environments
|
||||
await execute_raw_with_schema(
|
||||
"""
|
||||
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
|
||||
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
|
||||
# Upsert the embedding
|
||||
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
|
||||
# Use unqualified ::vector - pgvector is in search_path on all environments
|
||||
await execute_raw_with_schema(
|
||||
"""
|
||||
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
|
||||
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
|
||||
)
|
||||
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
|
||||
ON CONFLICT ("contentType", "contentId", "userId")
|
||||
DO UPDATE SET
|
||||
"embedding" = $4::vector,
|
||||
"searchableText" = $5,
|
||||
"metadata" = $6::jsonb,
|
||||
"updatedAt" = NOW()
|
||||
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
|
||||
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
|
||||
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
embedding_str,
|
||||
searchable_text,
|
||||
metadata_json,
|
||||
client=client,
|
||||
)
|
||||
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
|
||||
ON CONFLICT ("contentType", "contentId", "userId")
|
||||
DO UPDATE SET
|
||||
"embedding" = $4::vector,
|
||||
"searchableText" = $5,
|
||||
"metadata" = $6::jsonb,
|
||||
"updatedAt" = NOW()
|
||||
WHERE {schema_prefix}"UnifiedContentEmbedding"."contentType" = $1::{schema_prefix}"ContentType"
|
||||
AND {schema_prefix}"UnifiedContentEmbedding"."contentId" = $2
|
||||
AND ({schema_prefix}"UnifiedContentEmbedding"."userId" = $3 OR ($3 IS NULL AND {schema_prefix}"UnifiedContentEmbedding"."userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
embedding_str,
|
||||
searchable_text,
|
||||
metadata_json,
|
||||
client=client,
|
||||
)
|
||||
|
||||
logger.info(f"Stored embedding for {content_type}:{content_id}")
|
||||
return True
|
||||
logger.info(f"Stored embedding for {content_type}:{content_id}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to store embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def get_embedding(version_id: str) -> dict[str, Any] | None:
|
||||
@@ -206,31 +217,34 @@ async def get_content_embedding(
|
||||
|
||||
New function for unified content embedding retrieval.
|
||||
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
|
||||
|
||||
Raises exceptions on failure - caller should handle.
|
||||
"""
|
||||
result = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT
|
||||
"contentType",
|
||||
"contentId",
|
||||
"userId",
|
||||
"embedding"::text as "embedding",
|
||||
"searchableText",
|
||||
"metadata",
|
||||
"createdAt",
|
||||
"updatedAt"
|
||||
FROM {schema_prefix}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
)
|
||||
try:
|
||||
result = await query_raw_with_schema(
|
||||
"""
|
||||
SELECT
|
||||
"contentType",
|
||||
"contentId",
|
||||
"userId",
|
||||
"embedding"::text as "embedding",
|
||||
"searchableText",
|
||||
"metadata",
|
||||
"createdAt",
|
||||
"updatedAt"
|
||||
FROM {schema_prefix}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
|
||||
""",
|
||||
content_type,
|
||||
content_id,
|
||||
user_id,
|
||||
)
|
||||
|
||||
if result and len(result) > 0:
|
||||
return result[0]
|
||||
return None
|
||||
if result and len(result) > 0:
|
||||
return result[0]
|
||||
return None
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to get embedding for {content_type}:{content_id}: {e}")
|
||||
return None
|
||||
|
||||
|
||||
async def ensure_embedding(
|
||||
@@ -258,38 +272,46 @@ async def ensure_embedding(
|
||||
tx: Optional transaction client
|
||||
|
||||
Returns:
|
||||
True if embedding exists/was created
|
||||
|
||||
Raises exceptions on failure - caller should handle.
|
||||
True if embedding exists/was created, False on failure
|
||||
"""
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_embedding(version_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(f"Embedding for version {version_id} already exists")
|
||||
return True
|
||||
try:
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_embedding(version_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(f"Embedding for version {version_id} already exists")
|
||||
return True
|
||||
|
||||
# Build searchable text for embedding
|
||||
searchable_text = build_searchable_text(name, description, sub_heading, categories)
|
||||
# Build searchable text for embedding
|
||||
searchable_text = build_searchable_text(
|
||||
name, description, sub_heading, categories
|
||||
)
|
||||
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
if embedding is None:
|
||||
logger.warning(f"Could not generate embedding for version {version_id}")
|
||||
return False
|
||||
|
||||
# Store the embedding with metadata using new function
|
||||
metadata = {
|
||||
"name": name,
|
||||
"subHeading": sub_heading,
|
||||
"categories": categories,
|
||||
}
|
||||
return await store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id=version_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata,
|
||||
user_id=None, # Store agents are public
|
||||
tx=tx,
|
||||
)
|
||||
# Store the embedding with metadata using new function
|
||||
metadata = {
|
||||
"name": name,
|
||||
"subHeading": sub_heading,
|
||||
"categories": categories,
|
||||
}
|
||||
return await store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id=version_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata,
|
||||
user_id=None, # Store agents are public
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def delete_embedding(version_id: str) -> bool:
|
||||
@@ -454,7 +476,6 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
total_processed = 0
|
||||
total_success = 0
|
||||
total_failed = 0
|
||||
all_errors: dict[str, int] = {} # Aggregate errors across all content types
|
||||
|
||||
# Process content types in explicit order
|
||||
processing_order = [
|
||||
@@ -500,13 +521,6 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
success = sum(1 for result in results if result is True)
|
||||
failed = len(results) - success
|
||||
|
||||
# Aggregate errors across all content types
|
||||
if failed > 0:
|
||||
for result in results:
|
||||
if isinstance(result, Exception):
|
||||
error_key = f"{type(result).__name__}: {str(result)}"
|
||||
all_errors[error_key] = all_errors.get(error_key, 0) + 1
|
||||
|
||||
results_by_type[content_type.value] = {
|
||||
"processed": len(missing_items),
|
||||
"success": success,
|
||||
@@ -532,13 +546,6 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
"error": str(e),
|
||||
}
|
||||
|
||||
# Log aggregated errors once at the end
|
||||
if all_errors:
|
||||
error_details = ", ".join(
|
||||
f"{error} ({count}x)" for error, count in all_errors.items()
|
||||
)
|
||||
logger.error(f"Embedding backfill errors: {error_details}")
|
||||
|
||||
return {
|
||||
"by_type": results_by_type,
|
||||
"totals": {
|
||||
@@ -550,12 +557,11 @@ async def backfill_all_content_types(batch_size: int = 10) -> dict[str, Any]:
|
||||
}
|
||||
|
||||
|
||||
async def embed_query(query: str) -> list[float]:
|
||||
async def embed_query(query: str) -> list[float] | None:
|
||||
"""
|
||||
Generate embedding for a search query.
|
||||
|
||||
Same as generate_embedding but with clearer intent.
|
||||
Raises exceptions on failure - caller should handle.
|
||||
"""
|
||||
return await generate_embedding(query)
|
||||
|
||||
@@ -588,30 +594,40 @@ async def ensure_content_embedding(
|
||||
tx: Optional transaction client
|
||||
|
||||
Returns:
|
||||
True if embedding exists/was created
|
||||
|
||||
Raises exceptions on failure - caller should handle.
|
||||
True if embedding exists/was created, False on failure
|
||||
"""
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_content_embedding(content_type, content_id, user_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(f"Embedding for {content_type}:{content_id} already exists")
|
||||
return True
|
||||
try:
|
||||
# Check if embedding already exists
|
||||
if not force:
|
||||
existing = await get_content_embedding(content_type, content_id, user_id)
|
||||
if existing and existing.get("embedding"):
|
||||
logger.debug(
|
||||
f"Embedding for {content_type}:{content_id} already exists"
|
||||
)
|
||||
return True
|
||||
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
# Generate new embedding
|
||||
embedding = await generate_embedding(searchable_text)
|
||||
if embedding is None:
|
||||
logger.warning(
|
||||
f"Could not generate embedding for {content_type}:{content_id}"
|
||||
)
|
||||
return False
|
||||
|
||||
# Store the embedding
|
||||
return await store_content_embedding(
|
||||
content_type=content_type,
|
||||
content_id=content_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata or {},
|
||||
user_id=user_id,
|
||||
tx=tx,
|
||||
)
|
||||
# Store the embedding
|
||||
return await store_content_embedding(
|
||||
content_type=content_type,
|
||||
content_id=content_id,
|
||||
embedding=embedding,
|
||||
searchable_text=searchable_text,
|
||||
metadata=metadata or {},
|
||||
user_id=user_id,
|
||||
tx=tx,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
|
||||
return False
|
||||
|
||||
|
||||
async def cleanup_orphaned_embeddings() -> dict[str, Any]:
|
||||
@@ -662,7 +678,7 @@ async def cleanup_orphaned_embeddings() -> dict[str, Any]:
|
||||
)
|
||||
current_ids = {row["id"] for row in valid_agents}
|
||||
elif content_type == ContentType.BLOCK:
|
||||
from backend.blocks import get_blocks
|
||||
from backend.data.block import get_blocks
|
||||
|
||||
current_ids = set(get_blocks().keys())
|
||||
elif content_type == ContentType.DOCUMENTATION:
|
||||
@@ -838,8 +854,9 @@ async def semantic_search(
|
||||
limit = 100
|
||||
|
||||
# Generate query embedding
|
||||
try:
|
||||
query_embedding = await embed_query(query)
|
||||
query_embedding = await embed_query(query)
|
||||
|
||||
if query_embedding is not None:
|
||||
# Semantic search with embeddings
|
||||
embedding_str = embedding_to_vector_string(query_embedding)
|
||||
|
||||
@@ -890,21 +907,24 @@ async def semantic_search(
|
||||
"""
|
||||
)
|
||||
|
||||
results = await query_raw_with_schema(sql, *params)
|
||||
return [
|
||||
{
|
||||
"content_id": row["content_id"],
|
||||
"content_type": row["content_type"],
|
||||
"searchable_text": row["searchable_text"],
|
||||
"metadata": row["metadata"],
|
||||
"similarity": float(row["similarity"]),
|
||||
}
|
||||
for row in results
|
||||
]
|
||||
except Exception as e:
|
||||
logger.warning(f"Semantic search failed, falling back to lexical search: {e}")
|
||||
try:
|
||||
results = await query_raw_with_schema(sql, *params)
|
||||
return [
|
||||
{
|
||||
"content_id": row["content_id"],
|
||||
"content_type": row["content_type"],
|
||||
"searchable_text": row["searchable_text"],
|
||||
"metadata": row["metadata"],
|
||||
"similarity": float(row["similarity"]),
|
||||
}
|
||||
for row in results
|
||||
]
|
||||
except Exception as e:
|
||||
logger.error(f"Semantic search failed: {e}")
|
||||
# Fall through to lexical search below
|
||||
|
||||
# Fallback to lexical search if embeddings unavailable
|
||||
logger.warning("Falling back to lexical search (embeddings unavailable)")
|
||||
|
||||
params_lexical: list[Any] = [limit]
|
||||
user_filter = ""
|
||||
|
||||
@@ -454,9 +454,6 @@ async def test_unified_hybrid_search_pagination(
|
||||
cleanup_embeddings: list,
|
||||
):
|
||||
"""Test unified search pagination works correctly."""
|
||||
# Use a unique search term to avoid matching other test data
|
||||
unique_term = f"xyzpagtest{uuid.uuid4().hex[:8]}"
|
||||
|
||||
# Create multiple items
|
||||
content_ids = []
|
||||
for i in range(5):
|
||||
@@ -468,14 +465,14 @@ async def test_unified_hybrid_search_pagination(
|
||||
content_type=ContentType.BLOCK,
|
||||
content_id=content_id,
|
||||
embedding=mock_embedding,
|
||||
searchable_text=f"{unique_term} item number {i}",
|
||||
searchable_text=f"pagination test item number {i}",
|
||||
metadata={"index": i},
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Get first page
|
||||
page1_results, total1 = await unified_hybrid_search(
|
||||
query=unique_term,
|
||||
query="pagination test",
|
||||
content_types=[ContentType.BLOCK],
|
||||
page=1,
|
||||
page_size=2,
|
||||
@@ -483,7 +480,7 @@ async def test_unified_hybrid_search_pagination(
|
||||
|
||||
# Get second page
|
||||
page2_results, total2 = await unified_hybrid_search(
|
||||
query=unique_term,
|
||||
query="pagination test",
|
||||
content_types=[ContentType.BLOCK],
|
||||
page=2,
|
||||
page_size=2,
|
||||
|
||||
@@ -298,16 +298,17 @@ async def test_schema_handling_error_cases():
|
||||
mock_client.execute_raw.side_effect = Exception("Database error")
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
# Should raise exception on error
|
||||
with pytest.raises(Exception, match="Database error"):
|
||||
await embeddings.store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
embedding=[0.1] * EMBEDDING_DIM,
|
||||
searchable_text="test",
|
||||
metadata=None,
|
||||
user_id=None,
|
||||
)
|
||||
result = await embeddings.store_content_embedding(
|
||||
content_type=ContentType.STORE_AGENT,
|
||||
content_id="test-id",
|
||||
embedding=[0.1] * EMBEDDING_DIM,
|
||||
searchable_text="test",
|
||||
metadata=None,
|
||||
user_id=None,
|
||||
)
|
||||
|
||||
# Should return False on error, not raise
|
||||
assert result is False
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
@@ -80,8 +80,9 @@ async def test_generate_embedding_no_api_key():
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = None
|
||||
|
||||
with pytest.raises(RuntimeError, match="openai_internal_api_key not set"):
|
||||
await embeddings.generate_embedding("test text")
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@@ -96,8 +97,9 @@ async def test_generate_embedding_api_error():
|
||||
) as mock_get_client:
|
||||
mock_get_client.return_value = mock_client
|
||||
|
||||
with pytest.raises(Exception, match="API Error"):
|
||||
await embeddings.generate_embedding("test text")
|
||||
result = await embeddings.generate_embedding("test text")
|
||||
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@@ -171,10 +173,11 @@ async def test_store_embedding_database_error(mocker):
|
||||
|
||||
embedding = [0.1, 0.2, 0.3]
|
||||
|
||||
with pytest.raises(Exception, match="Database error"):
|
||||
await embeddings.store_embedding(
|
||||
version_id="test-version-id", embedding=embedding, tx=mock_client
|
||||
)
|
||||
result = await embeddings.store_embedding(
|
||||
version_id="test-version-id", embedding=embedding, tx=mock_client
|
||||
)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
@@ -274,16 +277,17 @@ async def test_ensure_embedding_create_new(mock_get, mock_store, mock_generate):
|
||||
async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
|
||||
"""Test ensure_embedding when generation fails."""
|
||||
mock_get.return_value = None
|
||||
mock_generate.side_effect = Exception("Generation failed")
|
||||
mock_generate.return_value = None
|
||||
|
||||
with pytest.raises(Exception, match="Generation failed"):
|
||||
await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
result = await embeddings.ensure_embedding(
|
||||
version_id="test-id",
|
||||
name="Test",
|
||||
description="Test description",
|
||||
sub_heading="Test heading",
|
||||
categories=["test"],
|
||||
)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio(loop_scope="session")
|
||||
|
||||
@@ -8,7 +8,6 @@ Includes BM25 reranking for improved lexical relevance.
|
||||
|
||||
import logging
|
||||
import re
|
||||
import time
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Literal
|
||||
|
||||
@@ -187,12 +186,13 @@ async def unified_hybrid_search(
|
||||
|
||||
offset = (page - 1) * page_size
|
||||
|
||||
# Generate query embedding with graceful degradation
|
||||
try:
|
||||
query_embedding = await embed_query(query)
|
||||
except Exception as e:
|
||||
# Generate query embedding
|
||||
query_embedding = await embed_query(query)
|
||||
|
||||
# Graceful degradation if embedding unavailable
|
||||
if query_embedding is None or not query_embedding:
|
||||
logger.warning(
|
||||
f"Failed to generate query embedding - falling back to lexical-only search: {e}. "
|
||||
"Failed to generate query embedding - falling back to lexical-only search. "
|
||||
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
|
||||
)
|
||||
query_embedding = [0.0] * EMBEDDING_DIM
|
||||
@@ -363,11 +363,7 @@ async def unified_hybrid_search(
|
||||
LIMIT {limit_param} OFFSET {offset_param}
|
||||
"""
|
||||
|
||||
try:
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
except Exception as e:
|
||||
await _log_vector_error_diagnostics(e)
|
||||
raise
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
|
||||
total = results[0]["total_count"] if results else 0
|
||||
# Apply BM25 reranking
|
||||
@@ -468,12 +464,13 @@ async def hybrid_search(
|
||||
|
||||
offset = (page - 1) * page_size
|
||||
|
||||
# Generate query embedding with graceful degradation
|
||||
try:
|
||||
query_embedding = await embed_query(query)
|
||||
except Exception as e:
|
||||
# Generate query embedding
|
||||
query_embedding = await embed_query(query)
|
||||
|
||||
# Graceful degradation
|
||||
if query_embedding is None or not query_embedding:
|
||||
logger.warning(
|
||||
f"Failed to generate query embedding - falling back to lexical-only search: {e}"
|
||||
"Failed to generate query embedding - falling back to lexical-only search."
|
||||
)
|
||||
query_embedding = [0.0] * EMBEDDING_DIM
|
||||
total_non_semantic = (
|
||||
@@ -605,7 +602,6 @@ async def hybrid_search(
|
||||
sa.featured,
|
||||
sa.is_available,
|
||||
sa.updated_at,
|
||||
sa."agentGraphId",
|
||||
-- Searchable text for BM25 reranking
|
||||
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
|
||||
-- Semantic score
|
||||
@@ -665,7 +661,6 @@ async def hybrid_search(
|
||||
featured,
|
||||
is_available,
|
||||
updated_at,
|
||||
"agentGraphId",
|
||||
searchable_text,
|
||||
semantic_score,
|
||||
lexical_score,
|
||||
@@ -691,11 +686,7 @@ async def hybrid_search(
|
||||
LIMIT {limit_param} OFFSET {offset_param}
|
||||
"""
|
||||
|
||||
try:
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
except Exception as e:
|
||||
await _log_vector_error_diagnostics(e)
|
||||
raise
|
||||
results = await query_raw_with_schema(sql_query, *params)
|
||||
|
||||
total = results[0]["total_count"] if results else 0
|
||||
|
||||
@@ -727,87 +718,6 @@ async def hybrid_search_simple(
|
||||
return await hybrid_search(query=query, page=page, page_size=page_size)
|
||||
|
||||
|
||||
# ============================================================================
|
||||
# Diagnostics
|
||||
# ============================================================================
|
||||
|
||||
# Rate limit: only log vector error diagnostics once per this interval
|
||||
_VECTOR_DIAG_INTERVAL_SECONDS = 60
|
||||
_last_vector_diag_time: float = 0
|
||||
|
||||
|
||||
async def _log_vector_error_diagnostics(error: Exception) -> None:
|
||||
"""Log diagnostic info when 'type vector does not exist' error occurs.
|
||||
|
||||
Note: Diagnostic queries use query_raw_with_schema which may run on a different
|
||||
pooled connection than the one that failed. Session-level search_path can differ,
|
||||
so these diagnostics show cluster-wide state, not necessarily the failed session.
|
||||
|
||||
Includes rate limiting to avoid log spam - only logs once per minute.
|
||||
Caller should re-raise the error after calling this function.
|
||||
"""
|
||||
global _last_vector_diag_time
|
||||
|
||||
# Check if this is the vector type error
|
||||
error_str = str(error).lower()
|
||||
if not (
|
||||
"type" in error_str and "vector" in error_str and "does not exist" in error_str
|
||||
):
|
||||
return
|
||||
|
||||
# Rate limit: only log once per interval
|
||||
now = time.time()
|
||||
if now - _last_vector_diag_time < _VECTOR_DIAG_INTERVAL_SECONDS:
|
||||
return
|
||||
_last_vector_diag_time = now
|
||||
|
||||
try:
|
||||
diagnostics: dict[str, object] = {}
|
||||
|
||||
try:
|
||||
search_path_result = await query_raw_with_schema("SHOW search_path")
|
||||
diagnostics["search_path"] = search_path_result
|
||||
except Exception as e:
|
||||
diagnostics["search_path"] = f"Error: {e}"
|
||||
|
||||
try:
|
||||
schema_result = await query_raw_with_schema("SELECT current_schema()")
|
||||
diagnostics["current_schema"] = schema_result
|
||||
except Exception as e:
|
||||
diagnostics["current_schema"] = f"Error: {e}"
|
||||
|
||||
try:
|
||||
user_result = await query_raw_with_schema(
|
||||
"SELECT current_user, session_user, current_database()"
|
||||
)
|
||||
diagnostics["user_info"] = user_result
|
||||
except Exception as e:
|
||||
diagnostics["user_info"] = f"Error: {e}"
|
||||
|
||||
try:
|
||||
# Check pgvector extension installation (cluster-wide, stable info)
|
||||
ext_result = await query_raw_with_schema(
|
||||
"SELECT extname, extversion, nspname as schema "
|
||||
"FROM pg_extension e "
|
||||
"JOIN pg_namespace n ON e.extnamespace = n.oid "
|
||||
"WHERE extname = 'vector'"
|
||||
)
|
||||
diagnostics["pgvector_extension"] = ext_result
|
||||
except Exception as e:
|
||||
diagnostics["pgvector_extension"] = f"Error: {e}"
|
||||
|
||||
logger.error(
|
||||
f"Vector type error diagnostics:\n"
|
||||
f" Error: {error}\n"
|
||||
f" search_path: {diagnostics.get('search_path')}\n"
|
||||
f" current_schema: {diagnostics.get('current_schema')}\n"
|
||||
f" user_info: {diagnostics.get('user_info')}\n"
|
||||
f" pgvector_extension: {diagnostics.get('pgvector_extension')}"
|
||||
)
|
||||
except Exception as diag_error:
|
||||
logger.error(f"Failed to collect vector error diagnostics: {diag_error}")
|
||||
|
||||
|
||||
# Backward compatibility alias - HybridSearchWeights maps to StoreAgentSearchWeights
|
||||
# for existing code that expects the popularity parameter
|
||||
HybridSearchWeights = StoreAgentSearchWeights
|
||||
|
||||
@@ -172,8 +172,8 @@ async def test_hybrid_search_without_embeddings():
|
||||
with patch(
|
||||
"backend.api.features.store.hybrid_search.query_raw_with_schema"
|
||||
) as mock_query:
|
||||
# Simulate embedding failure by raising exception
|
||||
mock_embed.side_effect = Exception("Embedding generation failed")
|
||||
# Simulate embedding failure
|
||||
mock_embed.return_value = None
|
||||
mock_query.return_value = mock_results
|
||||
|
||||
# Should NOT raise - graceful degradation
|
||||
@@ -613,9 +613,7 @@ async def test_unified_hybrid_search_graceful_degradation():
|
||||
"backend.api.features.store.hybrid_search.embed_query"
|
||||
) as mock_embed:
|
||||
mock_query.return_value = mock_results
|
||||
mock_embed.side_effect = Exception(
|
||||
"Embedding generation failed"
|
||||
) # Embedding failure
|
||||
mock_embed.return_value = None # Embedding failure
|
||||
|
||||
# Should NOT raise - graceful degradation
|
||||
results, total = await unified_hybrid_search(
|
||||
|
||||
@@ -7,7 +7,16 @@ from replicate.client import Client as ReplicateClient
|
||||
from replicate.exceptions import ReplicateError
|
||||
from replicate.helpers import FileOutput
|
||||
|
||||
from backend.data.graph import GraphBaseMeta
|
||||
from backend.blocks.ideogram import (
|
||||
AspectRatio,
|
||||
ColorPalettePreset,
|
||||
IdeogramModelBlock,
|
||||
IdeogramModelName,
|
||||
MagicPromptOption,
|
||||
StyleType,
|
||||
UpscaleOption,
|
||||
)
|
||||
from backend.data.graph import BaseGraph
|
||||
from backend.data.model import CredentialsMetaInput, ProviderName
|
||||
from backend.integrations.credentials_store import ideogram_credentials
|
||||
from backend.util.request import Requests
|
||||
@@ -25,14 +34,14 @@ class ImageStyle(str, Enum):
|
||||
DIGITAL_ART = "digital art"
|
||||
|
||||
|
||||
async def generate_agent_image(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
|
||||
async def generate_agent_image(agent: BaseGraph | AgentGraph) -> io.BytesIO:
|
||||
if settings.config.use_agent_image_generation_v2:
|
||||
return await generate_agent_image_v2(graph=agent)
|
||||
else:
|
||||
return await generate_agent_image_v1(agent=agent)
|
||||
|
||||
|
||||
async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.BytesIO:
|
||||
async def generate_agent_image_v2(graph: BaseGraph | AgentGraph) -> io.BytesIO:
|
||||
"""
|
||||
Generate an image for an agent using Ideogram model.
|
||||
Returns:
|
||||
@@ -41,31 +50,18 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
|
||||
if not ideogram_credentials.api_key:
|
||||
raise ValueError("Missing Ideogram API key")
|
||||
|
||||
from backend.blocks.ideogram import (
|
||||
AspectRatio,
|
||||
ColorPalettePreset,
|
||||
IdeogramModelBlock,
|
||||
IdeogramModelName,
|
||||
MagicPromptOption,
|
||||
StyleType,
|
||||
UpscaleOption,
|
||||
)
|
||||
|
||||
name = graph.name
|
||||
description = f"{name} ({graph.description})" if graph.description else name
|
||||
|
||||
prompt = (
|
||||
"Create a visually striking retro-futuristic vector pop art illustration "
|
||||
f'prominently featuring "{name}" in bold typography. The image clearly and '
|
||||
f"literally depicts a {description}, along with recognizable objects directly "
|
||||
f"associated with the primary function of a {name}. "
|
||||
f"Ensure the imagery is concrete, intuitive, and immediately understandable, "
|
||||
f"clearly conveying the purpose of a {name}. "
|
||||
"Maintain vibrant, limited-palette colors, sharp vector lines, "
|
||||
"geometric shapes, flat illustration techniques, and solid colors "
|
||||
"without gradients or shading. Preserve a retro-futuristic aesthetic "
|
||||
"influenced by mid-century futurism and 1960s psychedelia, "
|
||||
"prioritizing clear visual storytelling and thematic clarity above all else."
|
||||
f"Create a visually striking retro-futuristic vector pop art illustration prominently featuring "
|
||||
f'"{name}" in bold typography. The image clearly and literally depicts a {description}, '
|
||||
f"along with recognizable objects directly associated with the primary function of a {name}. "
|
||||
f"Ensure the imagery is concrete, intuitive, and immediately understandable, clearly conveying the "
|
||||
f"purpose of a {name}. Maintain vibrant, limited-palette colors, sharp vector lines, geometric "
|
||||
f"shapes, flat illustration techniques, and solid colors without gradients or shading. Preserve a "
|
||||
f"retro-futuristic aesthetic influenced by mid-century futurism and 1960s psychedelia, "
|
||||
f"prioritizing clear visual storytelling and thematic clarity above all else."
|
||||
)
|
||||
|
||||
custom_colors = [
|
||||
@@ -103,12 +99,12 @@ async def generate_agent_image_v2(graph: GraphBaseMeta | AgentGraph) -> io.Bytes
|
||||
return io.BytesIO(response.content)
|
||||
|
||||
|
||||
async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.BytesIO:
|
||||
async def generate_agent_image_v1(agent: BaseGraph | AgentGraph) -> io.BytesIO:
|
||||
"""
|
||||
Generate an image for an agent using Flux model via Replicate API.
|
||||
|
||||
Args:
|
||||
agent (GraphBaseMeta | AgentGraph): The agent to generate an image for
|
||||
agent (Graph): The agent to generate an image for
|
||||
|
||||
Returns:
|
||||
io.BytesIO: The generated image as bytes
|
||||
@@ -118,13 +114,7 @@ async def generate_agent_image_v1(agent: GraphBaseMeta | AgentGraph) -> io.Bytes
|
||||
raise ValueError("Missing Replicate API key in settings")
|
||||
|
||||
# Construct prompt from agent details
|
||||
prompt = (
|
||||
"Create a visually engaging app store thumbnail for the AI agent "
|
||||
"that highlights what it does in a clear and captivating way:\n"
|
||||
f"- **Name**: {agent.name}\n"
|
||||
f"- **Description**: {agent.description}\n"
|
||||
f"Focus on showcasing its core functionality with an appealing design."
|
||||
)
|
||||
prompt = f"Create a visually engaging app store thumbnail for the AI agent that highlights what it does in a clear and captivating way:\n- **Name**: {agent.name}\n- **Description**: {agent.description}\nFocus on showcasing its core functionality with an appealing design."
|
||||
|
||||
# Set up Replicate client
|
||||
client = ReplicateClient(api_token=settings.secrets.replicate_api_key)
|
||||
|
||||
@@ -38,7 +38,6 @@ class StoreAgent(pydantic.BaseModel):
|
||||
description: str
|
||||
runs: int
|
||||
rating: float
|
||||
agent_graph_id: str
|
||||
|
||||
|
||||
class StoreAgentsResponse(pydantic.BaseModel):
|
||||
|
||||
@@ -26,13 +26,11 @@ def test_store_agent():
|
||||
description="Test description",
|
||||
runs=50,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-id",
|
||||
)
|
||||
assert agent.slug == "test-agent"
|
||||
assert agent.agent_name == "Test Agent"
|
||||
assert agent.runs == 50
|
||||
assert agent.rating == 4.5
|
||||
assert agent.agent_graph_id == "test-graph-id"
|
||||
|
||||
|
||||
def test_store_agents_response():
|
||||
@@ -48,7 +46,6 @@ def test_store_agents_response():
|
||||
description="Test description",
|
||||
runs=50,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-id",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
|
||||
@@ -278,7 +278,7 @@ async def get_agent(
|
||||
)
|
||||
async def get_graph_meta_by_store_listing_version_id(
|
||||
store_listing_version_id: str,
|
||||
) -> backend.data.graph.GraphModelWithoutNodes:
|
||||
) -> backend.data.graph.GraphMeta:
|
||||
"""
|
||||
Get Agent Graph from Store Listing Version ID.
|
||||
"""
|
||||
|
||||
@@ -82,7 +82,6 @@ def test_get_agents_featured(
|
||||
description="Featured agent description",
|
||||
runs=100,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-1",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -128,7 +127,6 @@ def test_get_agents_by_creator(
|
||||
description="Creator agent description",
|
||||
runs=50,
|
||||
rating=4.0,
|
||||
agent_graph_id="test-graph-2",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -174,7 +172,6 @@ def test_get_agents_sorted(
|
||||
description="Top agent description",
|
||||
runs=1000,
|
||||
rating=5.0,
|
||||
agent_graph_id="test-graph-3",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -220,7 +217,6 @@ def test_get_agents_search(
|
||||
description="Specific search term description",
|
||||
runs=75,
|
||||
rating=4.2,
|
||||
agent_graph_id="test-graph-search",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -266,7 +262,6 @@ def test_get_agents_category(
|
||||
description="Category agent description",
|
||||
runs=60,
|
||||
rating=4.1,
|
||||
agent_graph_id="test-graph-category",
|
||||
)
|
||||
],
|
||||
pagination=store_model.Pagination(
|
||||
@@ -311,7 +306,6 @@ def test_get_agents_pagination(
|
||||
description=f"Agent {i} description",
|
||||
runs=i * 10,
|
||||
rating=4.0,
|
||||
agent_graph_id="test-graph-2",
|
||||
)
|
||||
for i in range(5)
|
||||
],
|
||||
|
||||
@@ -33,7 +33,6 @@ class TestCacheDeletion:
|
||||
description="Test description",
|
||||
runs=100,
|
||||
rating=4.5,
|
||||
agent_graph_id="test-graph-id",
|
||||
)
|
||||
],
|
||||
pagination=Pagination(
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user