Compare commits

..

54 Commits

Author SHA1 Message Date
Torantulino
9560aa8b41 feat(langfuse): integrate Langfuse for prompt management
- Added Langfuse configuration to settings and environment variables.
- Introduced Langfuse client for fetching prompts in chat service.
- Updated ChatConfig to include Langfuse prompt name.
- Enhanced service logic to retrieve prompts from Langfuse, improving prompt management capabilities.

This integration allows for rapid runtime prompt updates and eventual analytics of the performance of the Co-Pilot system.

This commit aims to trial this service as a potential option.
2026-01-11 21:05:05 +00:00
Swifty
5f0a39bbf0 fix(backend): set search_path for vector type visibility in hybrid search
- Add SET LOCAL search_path TO platform, public; to queries using vector types
- This ensures the vector type is found while keeping operators working
- Fixes hybrid search on databases using platform schema

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-09 18:45:29 +01:00
Swifty
9cfe70e554 fix: use unqualified vector type for operator compatibility 2026-01-09 17:58:39 +01:00
Swifty
e69f14353e make hybrid search work in platform schema 2026-01-09 16:27:43 +01:00
Swifty
1b96d990c5 fix credentials inport 2026-01-08 17:59:15 +01:00
Swifty
6db59a2665 fix hook issue 2026-01-08 17:34:37 +01:00
Swifty
1fd4ec079f Merge remote-tracking branch 'origin/dev' into hackathon/copilot 2026-01-07 09:24:01 +01:00
Zamil Majdy
fb87d6536f Merge branch 'dev' into hackathon/copilot 2026-01-07 03:34:01 +07:00
Swifty
7ee03fb0ec fixing ci issues 2026-01-05 21:02:49 +01:00
Swifty
9a83af2787 Merge origin/dev - fix NodeInputs.tsx conflict 2026-01-05 12:47:56 +01:00
Swifty
dc1099e205 fix: update imports to use new api/features paths
- Updated all chat tools imports from backend.server.v2 to backend.api.features
- Updated store imports (backfill_embeddings, db, hybrid_search)
- Fixed CredentialsInput import in setup-wizard page
2026-01-05 12:35:49 +01:00
Swifty
e68a9eb771 Merge origin/dev into hackathon/copilot
Resolved conflicts from api restructuring:
- backend/server/v2/* -> backend/api/features/*
- Updated imports to use new paths
- Kept chat/copilot functionality with new structure
- Accepted openapi.json from dev (regenerate after merge)
- Resolved useCredentialsInput naming conflict (singular)
- NavbarView.tsx merged into Navbar.tsx
2026-01-05 11:05:31 +01:00
Swifty
858a8a818b updated code generation and intial chat session logic 2025-12-16 22:45:17 +01:00
Lluis Agusti
9e1354bfee chore: changes 2025-12-16 19:15:58 +01:00
Lluis Agusti
ba003a5e18 chore: fix chat history 2025-12-16 19:11:21 +01:00
Lluis Agusti
7a57531063 Merge remote-tracking branch 'origin/hackathon/copilot' into hackathon/copilot 2025-12-16 19:04:57 +01:00
Lluis Agusti
639a1ab0ed chore: improvements 2025-12-16 19:04:39 +01:00
Swifty
9abad07bbc add backfill command 2025-12-16 18:55:20 +01:00
Swifty
eeeeb5fe5f update graph generator to match graph generation project 2025-12-16 18:55:11 +01:00
Swifty
a163457bc0 added embedded store search 2025-12-16 18:52:45 +01:00
Lluis Agusti
a4e38be3e3 chore: fixes 2025-12-16 18:49:49 +01:00
Lluis Agusti
d71c39d24f Merge remote-tracking branch 'origin/hackathon/copilot' into hackathon/copilot 2025-12-16 18:32:46 +01:00
Lluis Agusti
fa7f17334d chore: improvements 2025-12-16 18:30:17 +01:00
Lluis Agusti
87728ee085 chore: more changes 2025-12-16 18:24:27 +01:00
Swifty
9932b05bc7 added block indexing 2025-12-16 18:23:47 +01:00
Swifty
7835bdd39e add onboarding endpoints 2025-12-16 18:00:07 +01:00
Lluis Agusti
806e3b63d5 Merge remote-tracking branch 'origin/hackathon/copilot' into hackathon/copilot 2025-12-16 17:58:52 +01:00
Lluis Agusti
0cc9ec5546 chore: hook up existing output renderers to chat 2025-12-16 17:58:37 +01:00
Swifty
e5fc9e8573 Merge branch 'hackathon/copilot' of github.com:Significant-Gravitas/AutoGPT into hackathon/copilot 2025-12-16 17:26:25 +01:00
Swifty
d29ae4105f updated prompt 2025-12-16 17:26:19 +01:00
Lluis Agusti
2731fd91c8 Merge remote-tracking branch 'origin/hackathon/copilot' into hackathon/copilot 2025-12-16 17:19:20 +01:00
Lluis Agusti
25bc22cc01 chore: make sessions nicer 2025-12-16 17:18:55 +01:00
Swifty
a3be6d8170 added agent generator 2025-12-16 17:18:32 +01:00
Lluis Agusti
fd4f405008 chore: sessions drawer 2025-12-16 17:07:58 +01:00
Swifty
1b352c479f add credntials popup for run_block 2025-12-16 17:06:03 +01:00
Lluis Agusti
7d17e6c470 Merge remote-tracking branch 'origin/hackathon/copilot' into hackathon/copilot 2025-12-16 16:55:18 +01:00
Lluis Agusti
0b576d4d48 chore: more frontend nice ui changes 2025-12-16 16:54:48 +01:00
Swifty
d4f76f9835 cache understanding 2025-12-16 16:36:57 +01:00
Swifty
290fe5d278 added migrations 2025-12-16 16:35:12 +01:00
Swifty
1a0dd4770b fixes 2025-12-16 16:33:00 +01:00
Swifty
e1c0c9397d Merge branch 'hackathon/copilot' of github.com:Significant-Gravitas/AutoGPT into hackathon/copilot 2025-12-16 16:31:27 +01:00
Swifty
06ce6fa9a1 fixing db queries 2025-12-16 16:31:22 +01:00
Swifty
a8c68b585a added logging understanding can chat persistance 2025-12-16 16:30:29 +01:00
Lluis Agusti
22298c24fd chore: add page content and url to stream message 2025-12-16 16:21:59 +01:00
Lluis Agusti
5f45a33786 Merge remote-tracking branch 'origin/hackathon/copilot' into hackathon/copilot 2025-12-16 16:06:44 +01:00
Lluis Agusti
d9d6a66608 chore: refinements frontend 2025-12-16 16:06:26 +01:00
Swifty
3d8a967395 add agent output tool, find_library_agent tool and update run_agent to be able to run library agents directly 2025-12-16 15:52:26 +01:00
Lluis Agusti
17cef05b8b chore: wip 2025-12-16 15:51:10 +01:00
Swifty
917802aca8 Merge branch 'hackathon/copilot' of github.com:Significant-Gravitas/AutoGPT into hackathon/copilot 2025-12-16 15:23:59 +01:00
Swifty
e2b2d5f402 added a support faq to docs and updated search index 2025-12-16 15:23:53 +01:00
Lluis Agusti
d726db6488 Merge remote-tracking branch 'origin/hackathon/copilot' into hackathon/copilot 2025-12-16 15:08:52 +01:00
Lluis Agusti
253f2780c3 chore: move out of page into component 2025-12-16 15:08:36 +01:00
Swifty
cc2a366c6a added indexer and search example 2025-12-16 15:04:38 +01:00
Swifty
ad33659ef8 added search tool and pushed index 2025-12-16 15:04:22 +01:00
259 changed files with 14445 additions and 7028 deletions

View File

@@ -16,7 +16,6 @@
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
!autogpt_platform/backend/.env
!autogpt_platform/backend/gen_prisma_types_stub.py
# Platform - Market
!autogpt_platform/market/market/

View File

@@ -74,7 +74,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js

View File

@@ -90,7 +90,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js

View File

@@ -72,7 +72,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
@@ -108,16 +108,6 @@ jobs:
# run: pnpm playwright install --with-deps chromium
# Docker setup for development environment
- name: Free up disk space
run: |
# Remove large unused tools to free disk space for Docker builds
sudo rm -rf /usr/share/dotnet
sudo rm -rf /usr/local/lib/android
sudo rm -rf /opt/ghc
sudo rm -rf /opt/hostedtoolcache/CodeQL
sudo docker system prune -af
df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

View File

@@ -134,7 +134,7 @@ jobs:
run: poetry install
- name: Generate Prisma Client
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
- id: supabase
name: Start Supabase

View File

@@ -0,0 +1,9 @@
{
"permissions": {
"allow": [
"Bash(ls:*)",
"WebFetch(domain:langfuse.com)",
"Bash(poetry install:*)"
]
}
}

View File

@@ -1,4 +1,4 @@
.PHONY: start-core stop-core logs-core format lint migrate run-backend run-frontend load-store-agents
.PHONY: start-core stop-core logs-core format lint migrate run-backend stop-backend run-frontend load-store-agents backfill-store-embeddings
# Run just Supabase + Redis + RabbitMQ
start-core:
@@ -6,14 +6,12 @@ start-core:
# Stop core services
stop-core:
docker compose stop
docker compose stop deps
reset-db:
docker compose stop db
rm -rf db/docker/volumes/db/data
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
# View logs for core services
logs-core:
@@ -35,9 +33,15 @@ init-env:
migrate:
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
run-backend:
stop-backend:
@echo "Stopping backend processes..."
@cd backend && poetry run cli stop 2>/dev/null || true
@echo "Killing any processes using backend ports..."
@lsof -ti:8001,8002,8003,8004,8005,8006,8007 | xargs kill -9 2>/dev/null || true
@echo "Backend stopped"
run-backend: stop-backend
cd backend && poetry run app
run-frontend:
@@ -49,6 +53,9 @@ test-data:
load-store-agents:
cd backend && poetry run load-store-agents
backfill-store-embeddings:
cd backend && poetry run python -m backend.api.features.store.backfill_embeddings
help:
@echo "Usage: make <target>"
@echo "Targets:"
@@ -58,7 +65,9 @@ help:
@echo " logs-core - Tail the logs for core services"
@echo " format - Format & lint backend (Python) and frontend (TypeScript) code"
@echo " migrate - Run backend database migrations"
@echo " run-backend - Run the backend FastAPI server"
@echo " stop-backend - Stop any running backend processes"
@echo " run-backend - Run the backend FastAPI server (stops existing processes first)"
@echo " run-frontend - Run the frontend Next.js development server"
@echo " test-data - Run the test data creator"
@echo " load-store-agents - Load store agents from agents/ folder into test database"
@echo " backfill-store-embeddings - Generate embeddings for store agents that don't have them"

View File

@@ -58,6 +58,13 @@ V0_API_KEY=
OPEN_ROUTER_API_KEY=
NVIDIA_API_KEY=
# Langfuse Prompt Management
# Used for managing the CoPilot system prompt externally
# Get credentials from https://cloud.langfuse.com or your self-hosted instance
LANGFUSE_PUBLIC_KEY=
LANGFUSE_SECRET_KEY=
LANGFUSE_HOST=https://cloud.langfuse.com
# OAuth Credentials
# For the OAuth callback URL, use <your_frontend_url>/auth/integrations/oauth_callback,
# e.g. http://localhost:3000/auth/integrations/oauth_callback

View File

@@ -48,8 +48,7 @@ RUN poetry install --no-ansi --no-root
# Generate Prisma client
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
RUN poetry run prisma generate
FROM debian:13-slim AS server_dependencies

View File

@@ -9,6 +9,7 @@ import prisma.enums
import backend.api.features.store.cache as store_cache
import backend.api.features.store.db as store_db
import backend.api.features.store.embeddings as store_embeddings
import backend.api.features.store.model as store_model
import backend.util.json
@@ -150,3 +151,54 @@ async def admin_download_agent_file(
return fastapi.responses.FileResponse(
tmp_file.name, filename=file_name, media_type="application/json"
)
@router.get(
"/embeddings/stats",
summary="Get Embedding Statistics",
)
async def get_embedding_stats() -> dict[str, typing.Any]:
"""
Get statistics about embedding coverage for store listings.
Returns counts of total approved listings, listings with embeddings,
listings without embeddings, and coverage percentage.
"""
try:
stats = await store_embeddings.get_embedding_stats()
return stats
except Exception as e:
logger.exception("Error getting embedding stats: %s", e)
raise fastapi.HTTPException(
status_code=500,
detail="An error occurred while retrieving embedding stats",
)
@router.post(
"/embeddings/backfill",
summary="Backfill Missing Embeddings",
)
async def backfill_embeddings(
batch_size: int = 10,
) -> dict[str, typing.Any]:
"""
Trigger backfill of embeddings for approved listings that don't have them.
Args:
batch_size: Number of embeddings to generate in one call (default 10)
Returns:
Dict with processed count, success count, failure count, and message
"""
try:
result = await store_embeddings.backfill_missing_embeddings(
batch_size=batch_size
)
return result
except Exception as e:
logger.exception("Error backfilling embeddings: %s", e)
raise fastapi.HTTPException(
status_code=500,
detail="An error occurred while backfilling embeddings",
)

View File

@@ -45,6 +45,13 @@ class ChatConfig(BaseSettings):
default=3, description="Maximum number of agent schedules"
)
# Langfuse Prompt Management Configuration
# Note: Langfuse credentials are in Settings().secrets (settings.py)
langfuse_prompt_name: str = Field(
default="CoPilot Prompt",
description="Name of the prompt in Langfuse to fetch",
)
@field_validator("api_key", mode="before")
@classmethod
def get_api_key(cls, v):

View File

@@ -2,15 +2,11 @@
import logging
from datetime import UTC, datetime
from typing import Any, cast
from typing import Any
from prisma.models import ChatMessage as PrismaChatMessage
from prisma.models import ChatSession as PrismaChatSession
from prisma.types import (
ChatMessageCreateInput,
ChatSessionCreateInput,
ChatSessionUpdateInput,
)
from prisma.types import ChatSessionUpdateInput
from backend.util.json import SafeJson
@@ -34,13 +30,13 @@ async def create_chat_session(
user_id: str | None,
) -> PrismaChatSession:
"""Create a new chat session in the database."""
data = ChatSessionCreateInput(
id=session_id,
userId=user_id,
credentials=SafeJson({}),
successfulAgentRuns=SafeJson({}),
successfulAgentSchedules=SafeJson({}),
)
data = {
"id": session_id,
"userId": user_id,
"credentials": SafeJson({}),
"successfulAgentRuns": SafeJson({}),
"successfulAgentSchedules": SafeJson({}),
}
return await PrismaChatSession.prisma().create(
data=data,
include={"Messages": True},
@@ -94,16 +90,12 @@ async def add_chat_message(
function_call: dict[str, Any] | None = None,
) -> PrismaChatMessage:
"""Add a message to a chat session."""
# Build the input dict dynamically - only include optional fields when they
# have values, as Prisma TypedDict validation fails when optional fields
# are explicitly set to None
data: dict[str, Any] = {
"Session": {"connect": {"id": session_id}},
"role": role,
"sequence": sequence,
}
# Add optional string fields
if content is not None:
data["content"] = content
if name is not None:
@@ -112,8 +104,6 @@ async def add_chat_message(
data["toolCallId"] = tool_call_id
if refusal is not None:
data["refusal"] = refusal
# Add optional JSON fields only when they have values
if tool_calls is not None:
data["toolCalls"] = SafeJson(tool_calls)
if function_call is not None:
@@ -125,9 +115,7 @@ async def add_chat_message(
data={"updatedAt": datetime.now(UTC)},
)
return await PrismaChatMessage.prisma().create(
data=cast(ChatMessageCreateInput, data)
)
return await PrismaChatMessage.prisma().create(data=data)
async def add_chat_messages_batch(
@@ -141,16 +129,12 @@ async def add_chat_messages_batch(
created_messages = []
for i, msg in enumerate(messages):
# Build the input dict dynamically - only include optional JSON fields
# when they have values, as Prisma TypedDict validation fails when
# optional fields are explicitly set to None
data: dict[str, Any] = {
"Session": {"connect": {"id": session_id}},
"role": msg["role"],
"sequence": start_sequence + i,
}
# Add optional string fields
if msg.get("content") is not None:
data["content"] = msg["content"]
if msg.get("name") is not None:
@@ -159,16 +143,12 @@ async def add_chat_messages_batch(
data["toolCallId"] = msg["tool_call_id"]
if msg.get("refusal") is not None:
data["refusal"] = msg["refusal"]
# Add optional JSON fields only when they have values
if msg.get("tool_calls") is not None:
data["toolCalls"] = SafeJson(msg["tool_calls"])
if msg.get("function_call") is not None:
data["functionCall"] = SafeJson(msg["function_call"])
created = await PrismaChatMessage.prisma().create(
data=cast(ChatMessageCreateInput, data)
)
created = await PrismaChatMessage.prisma().create(data=data)
created_messages.append(created)
# Update session's updatedAt timestamp

View File

@@ -78,7 +78,7 @@ async def test_chatsession_db_storage():
# Create session with messages including assistant message
s = ChatSession.new(user_id=None)
s.messages = messages # Contains user, assistant, and tool messages
assert s.session_id is not None, "Session id is not set"
# Upsert to save to both cache and DB
s = await upsert_chat_session(s)

View File

@@ -4,6 +4,7 @@ from datetime import UTC, datetime
from typing import Any
import orjson
from langfuse import Langfuse
from openai import AsyncOpenAI
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam
@@ -12,12 +13,20 @@ from backend.data.understanding import (
get_business_understanding,
)
from backend.util.exceptions import NotFoundError
from backend.util.settings import Settings
from . import db as chat_db
from .config import ChatConfig
from .model import ChatMessage, ChatSession, Usage
from .model import create_chat_session as model_create_chat_session
from .model import get_chat_session, upsert_chat_session
from .model import (
ChatMessage,
ChatSession,
Usage,
get_chat_session,
upsert_chat_session,
)
from .model import (
create_chat_session as model_create_chat_session,
)
from .response_model import (
StreamBaseResponse,
StreamEnd,
@@ -34,8 +43,53 @@ from .tools import execute_tool, tools
logger = logging.getLogger(__name__)
config = ChatConfig()
settings = Settings()
client = AsyncOpenAI(api_key=config.api_key, base_url=config.base_url)
# Langfuse client (lazy initialization)
_langfuse_client: Langfuse | None = None
def _get_langfuse_client() -> Langfuse:
"""Get or create the Langfuse client for prompt management."""
global _langfuse_client
if _langfuse_client is None:
if not settings.secrets.langfuse_public_key or not settings.secrets.langfuse_secret_key:
raise ValueError(
"Langfuse credentials not configured. "
"Set LANGFUSE_PUBLIC_KEY and LANGFUSE_SECRET_KEY environment variables."
)
_langfuse_client = Langfuse(
public_key=settings.secrets.langfuse_public_key,
secret_key=settings.secrets.langfuse_secret_key,
host=settings.secrets.langfuse_host or "https://cloud.langfuse.com",
)
return _langfuse_client
def _get_langfuse_prompt() -> str:
"""Fetch the latest production prompt from Langfuse.
Returns:
The compiled prompt text from Langfuse.
Raises:
Exception: If Langfuse is unavailable or prompt fetch fails.
"""
try:
langfuse = _get_langfuse_client()
# cache_ttl_seconds=0 disables SDK caching to always get the latest prompt
prompt = langfuse.get_prompt(config.langfuse_prompt_name, cache_ttl_seconds=0)
compiled = prompt.compile()
logger.info(
f"Fetched prompt '{config.langfuse_prompt_name}' from Langfuse "
f"(version: {prompt.version})"
)
return compiled
except Exception as e:
logger.error(f"Failed to fetch prompt from Langfuse: {e}")
raise
async def _is_first_session(user_id: str) -> bool:
"""Check if this is the user's first chat session.
@@ -71,7 +125,12 @@ async def _build_system_prompt(
effective_prompt_type = "onboarding"
# Start with the base system prompt for the specified type
base_prompt = config.get_system_prompt_for_type(effective_prompt_type)
if effective_prompt_type == "default":
# Fetch from Langfuse for the default prompt
base_prompt = _get_langfuse_prompt()
else:
# Use local file for other prompt types (e.g., onboarding)
base_prompt = config.get_system_prompt_for_type(effective_prompt_type)
# If user is authenticated, try to fetch their business understanding
if user_id:

View File

@@ -7,26 +7,41 @@ from backend.api.features.chat.model import ChatSession
from .add_understanding import AddUnderstandingTool
from .agent_output import AgentOutputTool
from .base import BaseTool
from .create_agent import CreateAgentTool
from .edit_agent import EditAgentTool
from .find_agent import FindAgentTool
from .find_block import FindBlockTool
from .find_library_agent import FindLibraryAgentTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolExecutionResult
# Initialize tool instances
add_understanding_tool = AddUnderstandingTool()
create_agent_tool = CreateAgentTool()
edit_agent_tool = EditAgentTool()
find_agent_tool = FindAgentTool()
find_block_tool = FindBlockTool()
find_library_agent_tool = FindLibraryAgentTool()
run_agent_tool = RunAgentTool()
run_block_tool = RunBlockTool()
search_docs_tool = SearchDocsTool()
agent_output_tool = AgentOutputTool()
# Export tools as OpenAI format
tools: list[ChatCompletionToolParam] = [
add_understanding_tool.as_openai_tool(),
create_agent_tool.as_openai_tool(),
edit_agent_tool.as_openai_tool(),
find_agent_tool.as_openai_tool(),
find_block_tool.as_openai_tool(),
find_library_agent_tool.as_openai_tool(),
run_agent_tool.as_openai_tool(),
run_block_tool.as_openai_tool(),
search_docs_tool.as_openai_tool(),
agent_output_tool.as_openai_tool(),
]
@@ -41,9 +56,14 @@ async def execute_tool(
tool_map: dict[str, BaseTool] = {
"add_understanding": add_understanding_tool,
"create_agent": create_agent_tool,
"edit_agent": edit_agent_tool,
"find_agent": find_agent_tool,
"find_block": find_block_tool,
"find_library_agent": find_library_agent_tool,
"run_agent": run_agent_tool,
"run_block": run_block_tool,
"search_platform_docs": search_docs_tool,
"agent_output": agent_output_tool,
}
if tool_name not in tool_map:

View File

@@ -3,7 +3,6 @@ from datetime import UTC, datetime
from os import getenv
import pytest
from prisma.types import ProfileCreateInput
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
@@ -50,13 +49,13 @@ async def setup_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile",
links=[], # Required field - empty array for test profiles
)
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile",
"links": [], # Required field - empty array for test profiles
}
)
# 2. Create a test graph with agent input -> agent output
@@ -173,13 +172,13 @@ async def setup_llm_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile for LLM tests",
links=[], # Required field - empty array for test profiles
)
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile for LLM tests",
"links": [], # Required field - empty array for test profiles
}
)
# 2. Create test OpenAI credentials for the user
@@ -333,13 +332,13 @@ async def setup_firecrawl_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile for Firecrawl tests",
links=[], # Required field - empty array for test profiles
)
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile for Firecrawl tests",
"links": [], # Required field - empty array for test profiles
}
)
# NOTE: We deliberately do NOT create Firecrawl credentials for this user

View File

@@ -10,7 +10,11 @@ from backend.data.understanding import (
)
from .base import BaseTool
from .models import ErrorResponse, ToolResponseBase, UnderstandingUpdatedResponse
from .models import (
ErrorResponse,
ToolResponseBase,
UnderstandingUpdatedResponse,
)
logger = logging.getLogger(__name__)

View File

@@ -0,0 +1,29 @@
"""Agent generator package - Creates agents from natural language."""
from .core import (
apply_agent_patch,
decompose_goal,
generate_agent,
generate_agent_patch,
get_agent_as_json,
save_agent_to_library,
)
from .fixer import apply_all_fixes
from .utils import get_blocks_info
from .validator import validate_agent
__all__ = [
# Core functions
"decompose_goal",
"generate_agent",
"generate_agent_patch",
"apply_agent_patch",
"save_agent_to_library",
"get_agent_as_json",
# Fixer
"apply_all_fixes",
# Validator
"validate_agent",
# Utils
"get_blocks_info",
]

View File

@@ -0,0 +1,25 @@
"""OpenRouter client configuration for agent generation."""
import os
from openai import AsyncOpenAI
# Configuration - use OPEN_ROUTER_API_KEY for consistency with chat/config.py
OPENROUTER_API_KEY = os.getenv("OPEN_ROUTER_API_KEY") or os.getenv("OPENROUTER_API_KEY")
AGENT_GENERATOR_MODEL = os.getenv("AGENT_GENERATOR_MODEL", "anthropic/claude-opus-4.5")
# OpenRouter client (OpenAI-compatible API)
_client: AsyncOpenAI | None = None
def get_client() -> AsyncOpenAI:
"""Get or create the OpenRouter client."""
global _client
if _client is None:
if not OPENROUTER_API_KEY:
raise ValueError("OPENROUTER_API_KEY environment variable is required")
_client = AsyncOpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=OPENROUTER_API_KEY,
)
return _client

View File

@@ -0,0 +1,390 @@
"""Core agent generation functions."""
import copy
import json
import logging
import uuid
from typing import Any
from backend.api.features.library import db as library_db
from backend.data.graph import Graph, Link, Node, create_graph
from .client import AGENT_GENERATOR_MODEL, get_client
from .prompts import DECOMPOSITION_PROMPT, GENERATION_PROMPT, PATCH_PROMPT
from .utils import get_block_summaries, parse_json_from_llm
logger = logging.getLogger(__name__)
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
"""Break down a goal into steps or return clarifying questions.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
Returns:
Dict with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
"""
client = get_client()
prompt = DECOMPOSITION_PROMPT.format(block_summaries=get_block_summaries())
full_description = description
if context:
full_description = f"{description}\n\nAdditional context:\n{context}"
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": full_description},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for decomposition")
return None
result = parse_json_from_llm(content)
if result is None:
logger.error(f"Failed to parse decomposition response: {content[:200]}")
return None
return result
except Exception as e:
logger.error(f"Error decomposing goal: {e}")
return None
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
"""Generate agent JSON from instructions.
Args:
instructions: Structured instructions from decompose_goal
Returns:
Agent JSON dict or None on error
"""
client = get_client()
prompt = GENERATION_PROMPT.format(block_summaries=get_block_summaries())
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": json.dumps(instructions, indent=2)},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for agent generation")
return None
result = parse_json_from_llm(content)
if result is None:
logger.error(f"Failed to parse agent JSON: {content[:200]}")
return None
# Ensure required fields
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
result["version"] = 1
if "is_active" not in result:
result["is_active"] = True
return result
except Exception as e:
logger.error(f"Error generating agent: {e}")
return None
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
"""Convert agent JSON dict to Graph model.
Args:
agent_json: Agent JSON with nodes and links
Returns:
Graph ready for saving
"""
nodes = []
for n in agent_json.get("nodes", []):
node = Node(
id=n.get("id", str(uuid.uuid4())),
block_id=n["block_id"],
input_default=n.get("input_default", {}),
metadata=n.get("metadata", {}),
)
nodes.append(node)
links = []
for link_data in agent_json.get("links", []):
link = Link(
id=link_data.get("id", str(uuid.uuid4())),
source_id=link_data["source_id"],
sink_id=link_data["sink_id"],
source_name=link_data["source_name"],
sink_name=link_data["sink_name"],
is_static=link_data.get("is_static", False),
)
links.append(link)
return Graph(
id=agent_json.get("id", str(uuid.uuid4())),
version=agent_json.get("version", 1),
is_active=agent_json.get("is_active", True),
name=agent_json.get("name", "Generated Agent"),
description=agent_json.get("description", ""),
nodes=nodes,
links=links,
)
def _reassign_node_ids(graph: Graph) -> None:
"""Reassign all node and link IDs to new UUIDs.
This is needed when creating a new version to avoid unique constraint violations.
"""
# Create mapping from old node IDs to new UUIDs
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
# Reassign node IDs
for node in graph.nodes:
node.id = id_map[node.id]
# Update link references to use new node IDs
for link in graph.links:
link.id = str(uuid.uuid4()) # Also give links new IDs
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
"""Save agent to database and user's library.
Args:
agent_json: Agent JSON dict
user_id: User ID
is_update: Whether this is an update to an existing agent
Returns:
Tuple of (created Graph, LibraryAgent)
"""
from backend.data.graph import get_graph_all_versions
graph = json_to_graph(agent_json)
if is_update:
# For updates, keep the same graph ID but increment version
# and reassign node/link IDs to avoid conflicts
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
# Reassign node IDs (but keep graph ID the same)
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
# For new agents, always generate a fresh UUID to avoid collisions
graph.id = str(uuid.uuid4())
graph.version = 1
# Reassign all node IDs as well
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
# Save to database
created_graph = await create_graph(graph, user_id)
# Add to user's library (or update existing library agent)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
create_library_agents_for_sub_graphs=False,
)
return created_graph, library_agents[0]
async def get_agent_as_json(
graph_id: str, user_id: str | None
) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing.
Args:
graph_id: Graph ID or library agent ID
user_id: User ID
Returns:
Agent as JSON dict or None if not found
"""
from backend.data.graph import get_graph
# Try to get the graph (version=None gets the active version)
graph = await get_graph(graph_id, version=None, user_id=user_id)
if not graph:
return None
# Convert to JSON format
nodes = []
for node in graph.nodes:
nodes.append(
{
"id": node.id,
"block_id": node.block_id,
"input_default": node.input_default,
"metadata": node.metadata,
}
)
links = []
for node in graph.nodes:
for link in node.output_links:
links.append(
{
"id": link.id,
"source_id": link.source_id,
"sink_id": link.sink_id,
"source_name": link.source_name,
"sink_name": link.sink_name,
"is_static": link.is_static,
}
)
return {
"id": graph.id,
"name": graph.name,
"description": graph.description,
"version": graph.version,
"is_active": graph.is_active,
"nodes": nodes,
"links": links,
}
async def generate_agent_patch(
update_request: str, current_agent: dict[str, Any]
) -> dict[str, Any] | None:
"""Generate a patch to update an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
Returns:
Patch dict or clarifying questions, or None on error
"""
client = get_client()
prompt = PATCH_PROMPT.format(
current_agent=json.dumps(current_agent, indent=2),
block_summaries=get_block_summaries(),
)
try:
response = await client.chat.completions.create(
model=AGENT_GENERATOR_MODEL,
messages=[
{"role": "system", "content": prompt},
{"role": "user", "content": update_request},
],
temperature=0,
)
content = response.choices[0].message.content
if content is None:
logger.error("LLM returned empty content for patch generation")
return None
return parse_json_from_llm(content)
except Exception as e:
logger.error(f"Error generating patch: {e}")
return None
def apply_agent_patch(
current_agent: dict[str, Any], patch: dict[str, Any]
) -> dict[str, Any]:
"""Apply a patch to an existing agent.
Args:
current_agent: Current agent JSON
patch: Patch dict with operations
Returns:
Updated agent JSON
"""
agent = copy.deepcopy(current_agent)
patches = patch.get("patches", [])
for p in patches:
patch_type = p.get("type")
if patch_type == "modify":
node_id = p.get("node_id")
changes = p.get("changes", {})
for node in agent.get("nodes", []):
if node["id"] == node_id:
_deep_update(node, changes)
logger.debug(f"Modified node {node_id}")
break
elif patch_type == "add":
new_nodes = p.get("new_nodes", [])
new_links = p.get("new_links", [])
agent["nodes"] = agent.get("nodes", []) + new_nodes
agent["links"] = agent.get("links", []) + new_links
logger.debug(f"Added {len(new_nodes)} nodes, {len(new_links)} links")
elif patch_type == "remove":
node_ids_to_remove = set(p.get("node_ids", []))
link_ids_to_remove = set(p.get("link_ids", []))
# Remove nodes
agent["nodes"] = [
n for n in agent.get("nodes", []) if n["id"] not in node_ids_to_remove
]
# Remove links (both explicit and those referencing removed nodes)
agent["links"] = [
link
for link in agent.get("links", [])
if link["id"] not in link_ids_to_remove
and link["source_id"] not in node_ids_to_remove
and link["sink_id"] not in node_ids_to_remove
]
logger.debug(
f"Removed {len(node_ids_to_remove)} nodes, {len(link_ids_to_remove)} links"
)
return agent
def _deep_update(target: dict, source: dict) -> None:
"""Recursively update a dict with another dict."""
for key, value in source.items():
if key in target and isinstance(target[key], dict) and isinstance(value, dict):
_deep_update(target[key], value)
else:
target[key] = value

View File

@@ -0,0 +1,606 @@
"""Agent fixer - Fixes common LLM generation errors."""
import logging
import re
import uuid
from typing import Any
from .utils import (
ADDTODICTIONARY_BLOCK_ID,
ADDTOLIST_BLOCK_ID,
CODE_EXECUTION_BLOCK_ID,
CONDITION_BLOCK_ID,
CREATEDICT_BLOCK_ID,
CREATELIST_BLOCK_ID,
DATA_SAMPLING_BLOCK_ID,
DOUBLE_CURLY_BRACES_BLOCK_IDS,
GET_CURRENT_DATE_BLOCK_ID,
STORE_VALUE_BLOCK_ID,
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
get_blocks_info,
is_valid_uuid,
)
logger = logging.getLogger(__name__)
def fix_agent_ids(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix invalid UUIDs in agent and link IDs."""
# Fix agent ID
if not is_valid_uuid(agent.get("id", "")):
agent["id"] = str(uuid.uuid4())
logger.debug(f"Fixed agent ID: {agent['id']}")
# Fix node IDs
id_mapping = {} # Old ID -> New ID
for node in agent.get("nodes", []):
if not is_valid_uuid(node.get("id", "")):
old_id = node.get("id", "")
new_id = str(uuid.uuid4())
id_mapping[old_id] = new_id
node["id"] = new_id
logger.debug(f"Fixed node ID: {old_id} -> {new_id}")
# Fix link IDs and update references
for link in agent.get("links", []):
if not is_valid_uuid(link.get("id", "")):
link["id"] = str(uuid.uuid4())
logger.debug(f"Fixed link ID: {link['id']}")
# Update source/sink IDs if they were remapped
if link.get("source_id") in id_mapping:
link["source_id"] = id_mapping[link["source_id"]]
if link.get("sink_id") in id_mapping:
link["sink_id"] = id_mapping[link["sink_id"]]
return agent
def fix_double_curly_braces(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix single curly braces to double in template blocks."""
for node in agent.get("nodes", []):
if node.get("block_id") not in DOUBLE_CURLY_BRACES_BLOCK_IDS:
continue
input_data = node.get("input_default", {})
for key in ("prompt", "format"):
if key in input_data and isinstance(input_data[key], str):
original = input_data[key]
# Fix simple variable references: {var} -> {{var}}
fixed = re.sub(
r"(?<!\{)\{([a-zA-Z_][a-zA-Z0-9_]*)\}(?!\})",
r"{{\1}}",
original,
)
if fixed != original:
input_data[key] = fixed
logger.debug(f"Fixed curly braces in {key}")
return agent
def fix_storevalue_before_condition(agent: dict[str, Any]) -> dict[str, Any]:
"""Add StoreValueBlock before ConditionBlock if needed for value2."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
# Find all ConditionBlock nodes
condition_node_ids = {
node["id"] for node in nodes if node.get("block_id") == CONDITION_BLOCK_ID
}
if not condition_node_ids:
return agent
new_nodes = []
new_links = []
processed_conditions = set()
for link in links:
sink_id = link.get("sink_id")
sink_name = link.get("sink_name")
# Check if this link goes to a ConditionBlock's value2
if sink_id in condition_node_ids and sink_name == "value2":
source_node = next(
(n for n in nodes if n["id"] == link.get("source_id")), None
)
# Skip if source is already a StoreValueBlock
if source_node and source_node.get("block_id") == STORE_VALUE_BLOCK_ID:
continue
# Skip if we already processed this condition
if sink_id in processed_conditions:
continue
processed_conditions.add(sink_id)
# Create StoreValueBlock
store_node_id = str(uuid.uuid4())
store_node = {
"id": store_node_id,
"block_id": STORE_VALUE_BLOCK_ID,
"input_default": {"data": None},
"metadata": {"position": {"x": 0, "y": -100}},
}
new_nodes.append(store_node)
# Create link: original source -> StoreValueBlock
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": link["source_id"],
"source_name": link["source_name"],
"sink_id": store_node_id,
"sink_name": "input",
"is_static": False,
}
)
# Update original link: StoreValueBlock -> ConditionBlock
link["source_id"] = store_node_id
link["source_name"] = "output"
logger.debug(f"Added StoreValueBlock before ConditionBlock {sink_id}")
if new_nodes:
agent["nodes"] = nodes + new_nodes
return agent
def fix_addtolist_blocks(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix AddToList blocks by adding prerequisite empty AddToList block.
When an AddToList block is found:
1. Checks if there's a CreateListBlock before it
2. Removes CreateListBlock if linked directly to AddToList
3. Adds an empty AddToList block before the original
4. Ensures the original has a self-referencing link
"""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
new_nodes = []
original_addtolist_ids = set()
nodes_to_remove = set()
links_to_remove = []
# First pass: identify CreateListBlock nodes to remove
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
if (
source_node
and sink_node
and source_node.get("block_id") == CREATELIST_BLOCK_ID
and sink_node.get("block_id") == ADDTOLIST_BLOCK_ID
):
nodes_to_remove.add(source_node.get("id"))
links_to_remove.append(link)
logger.debug(f"Removing CreateListBlock {source_node.get('id')}")
# Second pass: process AddToList blocks
filtered_nodes = []
for node in nodes:
if node.get("id") in nodes_to_remove:
continue
if node.get("block_id") == ADDTOLIST_BLOCK_ID:
original_addtolist_ids.add(node.get("id"))
node_id = node.get("id")
pos = node.get("metadata", {}).get("position", {"x": 0, "y": 0})
# Check if already has prerequisite
has_prereq = any(
link.get("sink_id") == node_id
and link.get("sink_name") == "list"
and link.get("source_name") == "updated_list"
for link in links
)
if not has_prereq:
# Remove links to "list" input (except self-reference)
for link in links:
if (
link.get("sink_id") == node_id
and link.get("sink_name") == "list"
and link.get("source_id") != node_id
and link not in links_to_remove
):
links_to_remove.append(link)
# Create prerequisite AddToList block
prereq_id = str(uuid.uuid4())
prereq_node = {
"id": prereq_id,
"block_id": ADDTOLIST_BLOCK_ID,
"input_default": {"list": [], "entry": None, "entries": []},
"metadata": {
"position": {"x": pos.get("x", 0) - 800, "y": pos.get("y", 0)}
},
}
new_nodes.append(prereq_node)
# Link prerequisite to original
links.append(
{
"id": str(uuid.uuid4()),
"source_id": prereq_id,
"source_name": "updated_list",
"sink_id": node_id,
"sink_name": "list",
"is_static": False,
}
)
logger.debug(f"Added prerequisite AddToList block for {node_id}")
filtered_nodes.append(node)
# Remove marked links
filtered_links = [link for link in links if link not in links_to_remove]
# Add self-referencing links for original AddToList blocks
for node in filtered_nodes + new_nodes:
if (
node.get("block_id") == ADDTOLIST_BLOCK_ID
and node.get("id") in original_addtolist_ids
):
node_id = node.get("id")
has_self_ref = any(
link["source_id"] == node_id
and link["sink_id"] == node_id
and link["source_name"] == "updated_list"
and link["sink_name"] == "list"
for link in filtered_links
)
if not has_self_ref:
filtered_links.append(
{
"id": str(uuid.uuid4()),
"source_id": node_id,
"source_name": "updated_list",
"sink_id": node_id,
"sink_name": "list",
"is_static": False,
}
)
logger.debug(f"Added self-reference for AddToList {node_id}")
agent["nodes"] = filtered_nodes + new_nodes
agent["links"] = filtered_links
return agent
def fix_addtodictionary_blocks(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix AddToDictionary blocks by removing empty CreateDictionary nodes."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
nodes_to_remove = set()
links_to_remove = []
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
sink_node = next((n for n in nodes if n.get("id") == link.get("sink_id")), None)
if (
source_node
and sink_node
and source_node.get("block_id") == CREATEDICT_BLOCK_ID
and sink_node.get("block_id") == ADDTODICTIONARY_BLOCK_ID
):
nodes_to_remove.add(source_node.get("id"))
links_to_remove.append(link)
logger.debug(f"Removing CreateDictionary {source_node.get('id')}")
agent["nodes"] = [n for n in nodes if n.get("id") not in nodes_to_remove]
agent["links"] = [link for link in links if link not in links_to_remove]
return agent
def fix_code_execution_output(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix CodeExecutionBlock output: change 'response' to 'stdout_logs'."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
for link in links:
source_node = next(
(n for n in nodes if n.get("id") == link.get("source_id")), None
)
if (
source_node
and source_node.get("block_id") == CODE_EXECUTION_BLOCK_ID
and link.get("source_name") == "response"
):
link["source_name"] = "stdout_logs"
logger.debug("Fixed CodeExecutionBlock output: response -> stdout_logs")
return agent
def fix_data_sampling_sample_size(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix DataSamplingBlock by setting sample_size to 1 as default."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
links_to_remove = []
for node in nodes:
if node.get("block_id") == DATA_SAMPLING_BLOCK_ID:
node_id = node.get("id")
input_default = node.get("input_default", {})
# Remove links to sample_size
for link in links:
if (
link.get("sink_id") == node_id
and link.get("sink_name") == "sample_size"
):
links_to_remove.append(link)
# Set default
input_default["sample_size"] = 1
node["input_default"] = input_default
logger.debug(f"Fixed DataSamplingBlock {node_id} sample_size to 1")
if links_to_remove:
agent["links"] = [link for link in links if link not in links_to_remove]
return agent
def fix_node_x_coordinates(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix node x-coordinates to ensure 800+ unit spacing between linked nodes."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
node_lookup = {n.get("id"): n for n in nodes}
for link in links:
source_id = link.get("source_id")
sink_id = link.get("sink_id")
source_node = node_lookup.get(source_id)
sink_node = node_lookup.get(sink_id)
if not source_node or not sink_node:
continue
source_pos = source_node.get("metadata", {}).get("position", {})
sink_pos = sink_node.get("metadata", {}).get("position", {})
source_x = source_pos.get("x", 0)
sink_x = sink_pos.get("x", 0)
if abs(sink_x - source_x) < 800:
new_x = source_x + 800
if "metadata" not in sink_node:
sink_node["metadata"] = {}
if "position" not in sink_node["metadata"]:
sink_node["metadata"]["position"] = {}
sink_node["metadata"]["position"]["x"] = new_x
logger.debug(f"Fixed node {sink_id} x: {sink_x} -> {new_x}")
return agent
def fix_getcurrentdate_offset(agent: dict[str, Any]) -> dict[str, Any]:
"""Fix GetCurrentDateBlock offset to ensure it's positive."""
for node in agent.get("nodes", []):
if node.get("block_id") == GET_CURRENT_DATE_BLOCK_ID:
input_default = node.get("input_default", {})
if "offset" in input_default:
offset = input_default["offset"]
if isinstance(offset, (int, float)) and offset < 0:
input_default["offset"] = abs(offset)
logger.debug(f"Fixed offset: {offset} -> {abs(offset)}")
return agent
def fix_ai_model_parameter(
agent: dict[str, Any],
blocks_info: list[dict[str, Any]],
default_model: str = "gpt-4o",
) -> dict[str, Any]:
"""Add default model parameter to AI blocks if missing."""
block_map = {b.get("id"): b for b in blocks_info}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
block = block_map.get(block_id)
if not block:
continue
# Check if block has AI category
categories = block.get("categories", [])
is_ai_block = any(
cat.get("category") == "AI" for cat in categories if isinstance(cat, dict)
)
if is_ai_block:
input_default = node.get("input_default", {})
if "model" not in input_default:
input_default["model"] = default_model
node["input_default"] = input_default
logger.debug(
f"Added model '{default_model}' to AI block {node.get('id')}"
)
return agent
def fix_link_static_properties(
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> dict[str, Any]:
"""Fix is_static property based on source block's staticOutput."""
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
for link in agent.get("links", []):
source_node = node_lookup.get(link.get("source_id"))
if not source_node:
continue
source_block = block_map.get(source_node.get("block_id"))
if not source_block:
continue
static_output = source_block.get("staticOutput", False)
if link.get("is_static") != static_output:
link["is_static"] = static_output
logger.debug(f"Fixed link {link.get('id')} is_static to {static_output}")
return agent
def fix_data_type_mismatch(
agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> dict[str, Any]:
"""Fix data type mismatches by inserting UniversalTypeConverterBlock."""
nodes = agent.get("nodes", [])
links = agent.get("links", [])
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in nodes}
def get_property_type(schema: dict, name: str) -> str | None:
if "_#_" in name:
parent, child = name.split("_#_", 1)
parent_schema = schema.get(parent, {})
if "properties" in parent_schema:
return parent_schema["properties"].get(child, {}).get("type")
return None
return schema.get(name, {}).get("type")
def are_types_compatible(src: str, sink: str) -> bool:
if {src, sink} <= {"integer", "number"}:
return True
return src == sink
type_mapping = {
"string": "string",
"text": "string",
"integer": "number",
"number": "number",
"float": "number",
"boolean": "boolean",
"bool": "boolean",
"array": "list",
"list": "list",
"object": "dictionary",
"dict": "dictionary",
"dictionary": "dictionary",
}
new_links = []
nodes_to_add = []
for link in links:
source_node = node_lookup.get(link.get("source_id"))
sink_node = node_lookup.get(link.get("sink_id"))
if not source_node or not sink_node:
new_links.append(link)
continue
source_block = block_map.get(source_node.get("block_id"))
sink_block = block_map.get(sink_node.get("block_id"))
if not source_block or not sink_block:
new_links.append(link)
continue
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
source_type = get_property_type(source_outputs, link.get("source_name", ""))
sink_type = get_property_type(sink_inputs, link.get("sink_name", ""))
if (
source_type
and sink_type
and not are_types_compatible(source_type, sink_type)
):
# Insert type converter
converter_id = str(uuid.uuid4())
target_type = type_mapping.get(sink_type, sink_type)
converter_node = {
"id": converter_id,
"block_id": UNIVERSAL_TYPE_CONVERTER_BLOCK_ID,
"input_default": {"type": target_type},
"metadata": {"position": {"x": 0, "y": 100}},
}
nodes_to_add.append(converter_node)
# source -> converter
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": link["source_id"],
"source_name": link["source_name"],
"sink_id": converter_id,
"sink_name": "value",
"is_static": False,
}
)
# converter -> sink
new_links.append(
{
"id": str(uuid.uuid4()),
"source_id": converter_id,
"source_name": "value",
"sink_id": link["sink_id"],
"sink_name": link["sink_name"],
"is_static": False,
}
)
logger.debug(f"Inserted type converter: {source_type} -> {target_type}")
else:
new_links.append(link)
if nodes_to_add:
agent["nodes"] = nodes + nodes_to_add
agent["links"] = new_links
return agent
def apply_all_fixes(
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> dict[str, Any]:
"""Apply all fixes to an agent JSON.
Args:
agent: Agent JSON dict
blocks_info: Optional list of block info dicts for advanced fixes
Returns:
Fixed agent JSON
"""
# Basic fixes (no block info needed)
agent = fix_agent_ids(agent)
agent = fix_double_curly_braces(agent)
agent = fix_storevalue_before_condition(agent)
agent = fix_addtolist_blocks(agent)
agent = fix_addtodictionary_blocks(agent)
agent = fix_code_execution_output(agent)
agent = fix_data_sampling_sample_size(agent)
agent = fix_node_x_coordinates(agent)
agent = fix_getcurrentdate_offset(agent)
# Advanced fixes (require block info)
if blocks_info is None:
blocks_info = get_blocks_info()
agent = fix_ai_model_parameter(agent, blocks_info)
agent = fix_link_static_properties(agent, blocks_info)
agent = fix_data_type_mismatch(agent, blocks_info)
return agent

View File

@@ -0,0 +1,225 @@
"""Prompt templates for agent generation."""
DECOMPOSITION_PROMPT = """
You are an expert AutoGPT Workflow Decomposer. Your task is to analyze a user's high-level goal and break it down into a clear, step-by-step plan using the available blocks.
Each step should represent a distinct, automatable action suitable for execution by an AI automation system.
---
FIRST: Analyze the user's goal and determine:
1) Design-time configuration (fixed settings that won't change per run)
2) Runtime inputs (values the agent's end-user will provide each time it runs)
For anything that can vary per run (email addresses, names, dates, search terms, etc.):
- DO NOT ask for the actual value
- Instead, define it as an Agent Input with a clear name, type, and description
Only ask clarifying questions about design-time config that affects how you build the workflow:
- Which external service to use (e.g., "Gmail vs Outlook", "Notion vs Google Docs")
- Required formats or structures (e.g., "CSV, JSON, or PDF output?")
- Business rules that must be hard-coded
IMPORTANT CLARIFICATIONS POLICY:
- Ask no more than five essential questions
- Do not ask for concrete values that can be provided at runtime as Agent Inputs
- Do not ask for API keys or credentials; the platform handles those directly
- If there is enough information to infer reasonable defaults, prefer to propose defaults
---
GUIDELINES:
1. List each step as a numbered item
2. Describe the action clearly and specify inputs/outputs
3. Ensure steps are in logical, sequential order
4. Mention block names naturally (e.g., "Use GetWeatherByLocationBlock to...")
5. Help the user reach their goal efficiently
---
RULES:
1. OUTPUT FORMAT: Only output either clarifying questions OR step-by-step instructions, not both
2. USE ONLY THE BLOCKS PROVIDED
3. ALL required_input fields must be provided
4. Data types of linked properties must match
5. Write expert-level prompts for AI-related blocks
---
CRITICAL BLOCK RESTRICTIONS:
1. AddToListBlock: Outputs updated list EVERY addition, not after all additions
2. SendEmailBlock: Draft the email for user review; set SMTP config based on email type
3. ConditionBlock: value2 is reference, value1 is contrast
4. CodeExecutionBlock: DO NOT USE - use AI blocks instead
5. ReadCsvBlock: Only use the 'rows' output, not 'row'
---
OUTPUT FORMAT:
If more information is needed:
```json
{{
"type": "clarifying_questions",
"questions": [
{{
"question": "Which email provider should be used? (Gmail, Outlook, custom SMTP)",
"keyword": "email_provider",
"example": "Gmail"
}}
]
}}
```
If ready to proceed:
```json
{{
"type": "instructions",
"steps": [
{{
"step_number": 1,
"block_name": "AgentShortTextInputBlock",
"description": "Get the URL of the content to analyze.",
"inputs": [{{"name": "name", "value": "URL"}}],
"outputs": [{{"name": "result", "description": "The URL entered by user"}}]
}}
]
}}
```
---
AVAILABLE BLOCKS:
{block_summaries}
"""
GENERATION_PROMPT = """
You are an expert AI workflow builder. Generate a valid agent JSON from the given instructions.
---
NODES:
Each node must include:
- `id`: Unique UUID v4 (e.g. `a8f5b1e2-c3d4-4e5f-8a9b-0c1d2e3f4a5b`)
- `block_id`: The block identifier (must match an Allowed Block)
- `input_default`: Dict of inputs (can be empty if no static inputs needed)
- `metadata`: Must contain:
- `position`: {{"x": number, "y": number}} - adjacent nodes should differ by 800+ in X
- `customized_name`: Clear name describing this block's purpose in the workflow
---
LINKS:
Each link connects a source node's output to a sink node's input:
- `id`: MUST be UUID v4 (NOT "link-1", "link-2", etc.)
- `source_id`: ID of the source node
- `source_name`: Output field name from the source block
- `sink_id`: ID of the sink node
- `sink_name`: Input field name on the sink block
- `is_static`: true only if source block has static_output: true
CRITICAL: All IDs must be valid UUID v4 format!
---
AGENT (GRAPH):
Wrap nodes and links in:
- `id`: UUID of the agent
- `name`: Short, generic name (avoid specific company names, URLs)
- `description`: Short, generic description
- `nodes`: List of all nodes
- `links`: List of all links
- `version`: 1
- `is_active`: true
---
TIPS:
- All required_input fields must be provided via input_default or a valid link
- Ensure consistent source_id and sink_id references
- Avoid dangling links
- Input/output pins must match block schemas
- Do not invent unknown block_ids
---
ALLOWED BLOCKS:
{block_summaries}
---
Generate the complete agent JSON. Output ONLY valid JSON, no explanation.
"""
PATCH_PROMPT = """
You are an expert at modifying AutoGPT agent workflows. Given the current agent and a modification request, generate a JSON patch to update the agent.
CURRENT AGENT:
{current_agent}
AVAILABLE BLOCKS:
{block_summaries}
---
PATCH FORMAT:
Return a JSON object with the following structure:
```json
{{
"type": "patch",
"intent": "Brief description of what the patch does",
"patches": [
{{
"type": "modify",
"node_id": "uuid-of-node-to-modify",
"changes": {{
"input_default": {{"field": "new_value"}},
"metadata": {{"customized_name": "New Name"}}
}}
}},
{{
"type": "add",
"new_nodes": [
{{
"id": "new-uuid",
"block_id": "block-uuid",
"input_default": {{}},
"metadata": {{"position": {{"x": 0, "y": 0}}, "customized_name": "Name"}}
}}
],
"new_links": [
{{
"id": "link-uuid",
"source_id": "source-node-id",
"source_name": "output_field",
"sink_id": "sink-node-id",
"sink_name": "input_field"
}}
]
}},
{{
"type": "remove",
"node_ids": ["uuid-of-node-to-remove"],
"link_ids": ["uuid-of-link-to-remove"]
}}
]
}}
```
If you need more information, return:
```json
{{
"type": "clarifying_questions",
"questions": [
{{
"question": "What specific change do you want?",
"keyword": "change_type",
"example": "Add error handling"
}}
]
}}
```
Generate the minimal patch needed. Output ONLY valid JSON.
"""

View File

@@ -0,0 +1,213 @@
"""Utilities for agent generation."""
import json
import re
from typing import Any
from backend.data.block import get_blocks
# UUID validation regex
UUID_REGEX = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$"
)
# Block IDs for various fixes
STORE_VALUE_BLOCK_ID = "1ff065e9-88e8-4358-9d82-8dc91f622ba9"
CONDITION_BLOCK_ID = "715696a0-e1da-45c8-b209-c2fa9c3b0be6"
ADDTOLIST_BLOCK_ID = "aeb08fc1-2fc1-4141-bc8e-f758f183a822"
ADDTODICTIONARY_BLOCK_ID = "31d1064e-7446-4693-a7d4-65e5ca1180d1"
CREATELIST_BLOCK_ID = "a912d5c7-6e00-4542-b2a9-8034136930e4"
CREATEDICT_BLOCK_ID = "b924ddf4-de4f-4b56-9a85-358930dcbc91"
CODE_EXECUTION_BLOCK_ID = "0b02b072-abe7-11ef-8372-fb5d162dd712"
DATA_SAMPLING_BLOCK_ID = "4a448883-71fa-49cf-91cf-70d793bd7d87"
UNIVERSAL_TYPE_CONVERTER_BLOCK_ID = "95d1b990-ce13-4d88-9737-ba5c2070c97b"
GET_CURRENT_DATE_BLOCK_ID = "b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1"
DOUBLE_CURLY_BRACES_BLOCK_IDS = [
"44f6c8ad-d75c-4ae1-8209-aad1c0326928", # FillTextTemplateBlock
"6ab085e2-20b3-4055-bc3e-08036e01eca6",
"90f8c45e-e983-4644-aa0b-b4ebe2f531bc",
"363ae599-353e-4804-937e-b2ee3cef3da4", # AgentOutputBlock
"3b191d9f-356f-482d-8238-ba04b6d18381",
"db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
"3a7c4b8d-6e2f-4a5d-b9c1-f8d23c5a9b0e",
"ed1ae7a0-b770-4089-b520-1f0005fad19a",
"a892b8d9-3e4e-4e9c-9c1e-75f8efcf1bfa",
"b29c1b50-5d0e-4d9f-8f9d-1b0e6fcbf0b1",
"716a67b3-6760-42e7-86dc-18645c6e00fc",
"530cf046-2ce0-4854-ae2c-659db17c7a46",
"ed55ac19-356e-4243-a6cb-bc599e9b716f",
"1f292d4a-41a4-4977-9684-7c8d560b9f91", # LLM blocks
"32a87eab-381e-4dd4-bdb8-4c47151be35a",
]
def is_valid_uuid(value: str) -> bool:
"""Check if a string is a valid UUID v4."""
return isinstance(value, str) and UUID_REGEX.match(value) is not None
def _compact_schema(schema: dict) -> dict[str, str]:
"""Extract compact type info from a JSON schema properties dict.
Returns a dict of {field_name: type_string} for essential info only.
"""
props = schema.get("properties", {})
result = {}
for name, prop in props.items():
# Skip internal/complex fields
if name.startswith("_"):
continue
# Get type string
type_str = prop.get("type", "any")
# Handle anyOf/oneOf (optional types)
if "anyOf" in prop:
types = [t.get("type", "?") for t in prop["anyOf"] if t.get("type")]
type_str = "|".join(types) if types else "any"
elif "allOf" in prop:
type_str = "object"
# Add array item type if present
if type_str == "array" and "items" in prop:
items = prop["items"]
if isinstance(items, dict):
item_type = items.get("type", "any")
type_str = f"array[{item_type}]"
result[name] = type_str
return result
def get_block_summaries(include_schemas: bool = True) -> str:
"""Generate compact block summaries for prompts.
Args:
include_schemas: Whether to include input/output type info
Returns:
Formatted string of block summaries (compact format)
"""
blocks = get_blocks()
summaries = []
for block_id, block_cls in blocks.items():
block = block_cls()
name = block.name
desc = getattr(block, "description", "") or ""
# Truncate description
if len(desc) > 150:
desc = desc[:147] + "..."
if not include_schemas:
summaries.append(f"- {name} (id: {block_id}): {desc}")
else:
# Compact format with type info only
inputs = {}
outputs = {}
required = []
if hasattr(block, "input_schema"):
try:
schema = block.input_schema.jsonschema()
inputs = _compact_schema(schema)
required = schema.get("required", [])
except Exception:
pass
if hasattr(block, "output_schema"):
try:
schema = block.output_schema.jsonschema()
outputs = _compact_schema(schema)
except Exception:
pass
# Build compact line format
# Format: NAME (id): desc | in: {field:type, ...} [required] | out: {field:type}
in_str = ", ".join(f"{k}:{v}" for k, v in inputs.items())
out_str = ", ".join(f"{k}:{v}" for k, v in outputs.items())
req_str = f" req=[{','.join(required)}]" if required else ""
static = " [static]" if getattr(block, "static_output", False) else ""
line = f"- {name} (id: {block_id}): {desc}"
if in_str:
line += f"\n in: {{{in_str}}}{req_str}"
if out_str:
line += f"\n out: {{{out_str}}}{static}"
summaries.append(line)
return "\n".join(summaries)
def get_blocks_info() -> list[dict[str, Any]]:
"""Get block information with schemas for validation and fixing."""
blocks = get_blocks()
blocks_info = []
for block_id, block_cls in blocks.items():
block = block_cls()
blocks_info.append(
{
"id": block_id,
"name": block.name,
"description": getattr(block, "description", ""),
"categories": getattr(block, "categories", []),
"staticOutput": getattr(block, "static_output", False),
"inputSchema": (
block.input_schema.jsonschema()
if hasattr(block, "input_schema")
else {}
),
"outputSchema": (
block.output_schema.jsonschema()
if hasattr(block, "output_schema")
else {}
),
}
)
return blocks_info
def parse_json_from_llm(text: str) -> dict[str, Any] | None:
"""Extract JSON from LLM response (handles markdown code blocks)."""
if not text:
return None
# Try fenced code block
match = re.search(r"```(?:json)?\s*([\s\S]*?)```", text, re.IGNORECASE)
if match:
try:
return json.loads(match.group(1).strip())
except json.JSONDecodeError:
pass
# Try raw text
try:
return json.loads(text.strip())
except json.JSONDecodeError:
pass
# Try finding {...} span
start = text.find("{")
end = text.rfind("}")
if start != -1 and end > start:
try:
return json.loads(text[start : end + 1])
except json.JSONDecodeError:
pass
# Try finding [...] span
start = text.find("[")
end = text.rfind("]")
if start != -1 and end > start:
try:
return json.loads(text[start : end + 1])
except json.JSONDecodeError:
pass
return None

View File

@@ -0,0 +1,279 @@
"""Agent validator - Validates agent structure and connections."""
import logging
import re
from typing import Any
from .utils import get_blocks_info
logger = logging.getLogger(__name__)
class AgentValidator:
"""Validator for AutoGPT agents with detailed error reporting."""
def __init__(self):
self.errors: list[str] = []
def add_error(self, error: str) -> None:
"""Add an error message."""
self.errors.append(error)
def validate_block_existence(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate all block IDs exist in the blocks library."""
valid = True
valid_block_ids = {b.get("id") for b in blocks_info if b.get("id")}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
node_id = node.get("id")
if not block_id:
self.add_error(f"Node '{node_id}' is missing 'block_id' field.")
valid = False
continue
if block_id not in valid_block_ids:
self.add_error(
f"Node '{node_id}' references block_id '{block_id}' which does not exist."
)
valid = False
return valid
def validate_link_node_references(self, agent: dict[str, Any]) -> bool:
"""Validate all node IDs referenced in links exist."""
valid = True
valid_node_ids = {n.get("id") for n in agent.get("nodes", []) if n.get("id")}
for link in agent.get("links", []):
link_id = link.get("id", "Unknown")
source_id = link.get("source_id")
sink_id = link.get("sink_id")
if not source_id:
self.add_error(f"Link '{link_id}' is missing 'source_id'.")
valid = False
elif source_id not in valid_node_ids:
self.add_error(
f"Link '{link_id}' references non-existent source_id '{source_id}'."
)
valid = False
if not sink_id:
self.add_error(f"Link '{link_id}' is missing 'sink_id'.")
valid = False
elif sink_id not in valid_node_ids:
self.add_error(
f"Link '{link_id}' references non-existent sink_id '{sink_id}'."
)
valid = False
return valid
def validate_required_inputs(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate required inputs are provided."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
for node in agent.get("nodes", []):
block_id = node.get("block_id")
block = block_map.get(block_id)
if not block:
continue
required_inputs = block.get("inputSchema", {}).get("required", [])
input_defaults = node.get("input_default", {})
node_id = node.get("id")
# Get linked inputs
linked_inputs = {
link["sink_name"]
for link in agent.get("links", [])
if link.get("sink_id") == node_id
}
for req_input in required_inputs:
if (
req_input not in input_defaults
and req_input not in linked_inputs
and req_input != "credentials"
):
block_name = block.get("name", "Unknown Block")
self.add_error(
f"Node '{node_id}' ({block_name}) is missing required input '{req_input}'."
)
valid = False
return valid
def validate_data_type_compatibility(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate linked data types are compatible."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
def get_type(schema: dict, name: str) -> str | None:
if "_#_" in name:
parent, child = name.split("_#_", 1)
parent_schema = schema.get(parent, {})
if "properties" in parent_schema:
return parent_schema["properties"].get(child, {}).get("type")
return None
return schema.get(name, {}).get("type")
def are_compatible(src: str, sink: str) -> bool:
if {src, sink} <= {"integer", "number"}:
return True
return src == sink
for link in agent.get("links", []):
source_node = node_lookup.get(link.get("source_id"))
sink_node = node_lookup.get(link.get("sink_id"))
if not source_node or not sink_node:
continue
source_block = block_map.get(source_node.get("block_id"))
sink_block = block_map.get(sink_node.get("block_id"))
if not source_block or not sink_block:
continue
source_outputs = source_block.get("outputSchema", {}).get("properties", {})
sink_inputs = sink_block.get("inputSchema", {}).get("properties", {})
source_type = get_type(source_outputs, link.get("source_name", ""))
sink_type = get_type(sink_inputs, link.get("sink_name", ""))
if source_type and sink_type and not are_compatible(source_type, sink_type):
self.add_error(
f"Type mismatch: {source_block.get('name')} output '{link['source_name']}' "
f"({source_type}) -> {sink_block.get('name')} input '{link['sink_name']}' ({sink_type})."
)
valid = False
return valid
def validate_nested_sink_links(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]]
) -> bool:
"""Validate nested sink links (with _#_ notation)."""
valid = True
block_map = {b.get("id"): b for b in blocks_info}
node_lookup = {n.get("id"): n for n in agent.get("nodes", [])}
for link in agent.get("links", []):
sink_name = link.get("sink_name", "")
if "_#_" in sink_name:
parent, child = sink_name.split("_#_", 1)
sink_node = node_lookup.get(link.get("sink_id"))
if not sink_node:
continue
block = block_map.get(sink_node.get("block_id"))
if not block:
continue
input_props = block.get("inputSchema", {}).get("properties", {})
parent_schema = input_props.get(parent)
if not parent_schema:
self.add_error(
f"Invalid nested link '{sink_name}': parent '{parent}' not found."
)
valid = False
continue
if not parent_schema.get("additionalProperties"):
if not (
isinstance(parent_schema, dict)
and "properties" in parent_schema
and child in parent_schema.get("properties", {})
):
self.add_error(
f"Invalid nested link '{sink_name}': child '{child}' not found in '{parent}'."
)
valid = False
return valid
def validate_prompt_spaces(self, agent: dict[str, Any]) -> bool:
"""Validate prompts don't have spaces in template variables."""
valid = True
for node in agent.get("nodes", []):
input_default = node.get("input_default", {})
prompt = input_default.get("prompt", "")
if not isinstance(prompt, str):
continue
# Find {{...}} with spaces
matches = re.finditer(r"\{\{([^}]+)\}\}", prompt)
for match in matches:
content = match.group(1)
if " " in content:
self.add_error(
f"Node '{node.get('id')}' has spaces in template variable: "
f"'{{{{{content}}}}}' should be '{{{{{content.replace(' ', '_')}}}}}'."
)
valid = False
return valid
def validate(
self, agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> tuple[bool, str | None]:
"""Run all validations.
Returns:
Tuple of (is_valid, error_message)
"""
self.errors = []
if blocks_info is None:
blocks_info = get_blocks_info()
checks = [
self.validate_block_existence(agent, blocks_info),
self.validate_link_node_references(agent),
self.validate_required_inputs(agent, blocks_info),
self.validate_data_type_compatibility(agent, blocks_info),
self.validate_nested_sink_links(agent, blocks_info),
self.validate_prompt_spaces(agent),
]
all_passed = all(checks)
if all_passed:
logger.info("Agent validation successful")
return True, None
error_message = "Agent validation failed:\n"
for i, error in enumerate(self.errors, 1):
error_message += f"{i}. {error}\n"
logger.warning(f"Agent validation failed with {len(self.errors)} errors")
return False, error_message
def validate_agent(
agent: dict[str, Any], blocks_info: list[dict[str, Any]] | None = None
) -> tuple[bool, str | None]:
"""Convenience function to validate an agent.
Returns:
Tuple of (is_valid, error_message)
"""
validator = AgentValidator()
return validator.validate(agent, blocks_info)

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,279 @@
"""CreateAgentTool - Creates agents from natural language descriptions."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
apply_all_fixes,
decompose_goal,
generate_agent,
get_blocks_info,
save_agent_to_library,
validate_agent,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
# Maximum retries for agent generation with validation feedback
MAX_GENERATION_RETRIES = 2
class CreateAgentTool(BaseTool):
"""Tool for creating agents from natural language descriptions."""
@property
def name(self) -> str:
return "create_agent"
@property
def description(self) -> str:
return (
"Create a new agent workflow from a natural language description. "
"First generates a preview, then saves to library if save=true."
)
@property
def requires_auth(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"description": {
"type": "string",
"description": (
"Natural language description of what the agent should do. "
"Be specific about inputs, outputs, and the workflow steps."
),
},
"context": {
"type": "string",
"description": (
"Additional context or answers to previous clarifying questions. "
"Include any preferences or constraints mentioned by the user."
),
},
"save": {
"type": "boolean",
"description": (
"Whether to save the agent to the user's library. "
"Default is true. Set to false for preview only."
),
"default": True,
},
},
"required": ["description"],
}
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute the create_agent tool.
Flow:
1. Decompose the description into steps (may return clarifying questions)
2. Generate agent JSON from the steps
3. Apply fixes to correct common LLM errors
4. Preview or save based on the save parameter
"""
description = kwargs.get("description", "").strip()
context = kwargs.get("context", "")
save = kwargs.get("save", True)
session_id = session.session_id if session else None
if not description:
return ErrorResponse(
message="Please provide a description of what the agent should do.",
error="Missing description parameter",
session_id=session_id,
)
# Step 1: Decompose goal into steps
try:
decomposition_result = await decompose_goal(description, context)
except ValueError as e:
# Handle missing API key or configuration errors
return ErrorResponse(
message=f"Agent generation is not configured: {str(e)}",
error="configuration_error",
session_id=session_id,
)
if decomposition_result is None:
return ErrorResponse(
message="Failed to analyze the goal. Please try rephrasing.",
error="Decomposition failed",
session_id=session_id,
)
# Check if LLM returned clarifying questions
if decomposition_result.get("type") == "clarifying_questions":
questions = decomposition_result.get("questions", [])
return ClarificationNeededResponse(
message=(
"I need some more information to create this agent. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
],
session_id=session_id,
)
# Check for unachievable/vague goals
if decomposition_result.get("type") == "unachievable_goal":
suggested = decomposition_result.get("suggested_goal", "")
reason = decomposition_result.get("reason", "")
return ErrorResponse(
message=(
f"This goal cannot be accomplished with the available blocks. "
f"{reason} "
f"Suggestion: {suggested}"
),
error="unachievable_goal",
details={"suggested_goal": suggested, "reason": reason},
session_id=session_id,
)
if decomposition_result.get("type") == "vague_goal":
suggested = decomposition_result.get("suggested_goal", "")
return ErrorResponse(
message=(
f"The goal is too vague to create a specific workflow. "
f"Suggestion: {suggested}"
),
error="vague_goal",
details={"suggested_goal": suggested},
session_id=session_id,
)
# Step 2: Generate agent JSON with retry on validation failure
blocks_info = get_blocks_info()
agent_json = None
validation_errors = None
for attempt in range(MAX_GENERATION_RETRIES + 1):
# Generate agent (include validation errors from previous attempt)
if attempt == 0:
agent_json = await generate_agent(decomposition_result)
else:
# Retry with validation error feedback
logger.info(
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
)
retry_instructions = {
**decomposition_result,
"previous_errors": validation_errors,
"retry_instructions": (
"The previous generation had validation errors. "
"Please fix these issues in the new generation:\n"
f"{validation_errors}"
),
}
agent_json = await generate_agent(retry_instructions)
if agent_json is None:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message="Failed to generate the agent. Please try again.",
error="Generation failed",
session_id=session_id,
)
continue
# Step 3: Apply fixes to correct common errors
agent_json = apply_all_fixes(agent_json, blocks_info)
# Step 4: Validate the agent
is_valid, validation_errors = validate_agent(agent_json, blocks_info)
if is_valid:
logger.info(f"Agent generated successfully on attempt {attempt + 1}")
break
logger.warning(
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
)
if attempt == MAX_GENERATION_RETRIES:
# Return error with validation details
return ErrorResponse(
message=(
f"Generated agent has validation errors after {MAX_GENERATION_RETRIES + 1} attempts. "
f"Please try rephrasing your request or simplify the workflow."
),
error="validation_failed",
details={"validation_errors": validation_errors},
session_id=session_id,
)
agent_name = agent_json.get("name", "Generated Agent")
agent_description = agent_json.get("description", "")
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
# Step 4: Preview or save
if not save:
return AgentPreviewResponse(
message=(
f"I've generated an agent called '{agent_name}' with {node_count} blocks. "
f"Review it and call create_agent with save=true to save it to your library."
),
agent_json=agent_json,
agent_name=agent_name,
description=agent_description,
node_count=node_count,
link_count=link_count,
session_id=session_id,
)
# Save to library
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
error="auth_required",
session_id=session_id,
)
try:
created_graph, library_agent = await save_agent_to_library(
agent_json, user_id
)
return AgentSavedResponse(
message=f"Agent '{created_graph.name}' has been saved to your library!",
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)
except Exception as e:
return ErrorResponse(
message=f"Failed to save the agent: {str(e)}",
error="save_failed",
details={"exception": str(e)},
session_id=session_id,
)

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,294 @@
"""EditAgentTool - Edits existing agents using natural language."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
apply_agent_patch,
apply_all_fixes,
generate_agent_patch,
get_agent_as_json,
get_blocks_info,
save_agent_to_library,
validate_agent,
)
from .base import BaseTool
from .models import (
AgentPreviewResponse,
AgentSavedResponse,
ClarificationNeededResponse,
ClarifyingQuestion,
ErrorResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
# Maximum retries for patch generation with validation feedback
MAX_GENERATION_RETRIES = 2
class EditAgentTool(BaseTool):
"""Tool for editing existing agents using natural language."""
@property
def name(self) -> str:
return "edit_agent"
@property
def description(self) -> str:
return (
"Edit an existing agent from the user's library using natural language. "
"Generates a patch to update the agent while preserving unchanged parts."
)
@property
def requires_auth(self) -> bool:
return True
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"agent_id": {
"type": "string",
"description": (
"The ID of the agent to edit. "
"Can be a graph ID or library agent ID."
),
},
"changes": {
"type": "string",
"description": (
"Natural language description of what changes to make. "
"Be specific about what to add, remove, or modify."
),
},
"context": {
"type": "string",
"description": (
"Additional context or answers to previous clarifying questions."
),
},
"save": {
"type": "boolean",
"description": (
"Whether to save the changes. "
"Default is true. Set to false for preview only."
),
"default": True,
},
},
"required": ["agent_id", "changes"],
}
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute the edit_agent tool.
Flow:
1. Fetch the current agent
2. Generate a patch based on the requested changes
3. Apply the patch to create an updated agent
4. Preview or save based on the save parameter
"""
agent_id = kwargs.get("agent_id", "").strip()
changes = kwargs.get("changes", "").strip()
context = kwargs.get("context", "")
save = kwargs.get("save", True)
session_id = session.session_id if session else None
if not agent_id:
return ErrorResponse(
message="Please provide the agent ID to edit.",
error="Missing agent_id parameter",
session_id=session_id,
)
if not changes:
return ErrorResponse(
message="Please describe what changes you want to make.",
error="Missing changes parameter",
session_id=session_id,
)
# Step 1: Fetch current agent
current_agent = await get_agent_as_json(agent_id, user_id)
if current_agent is None:
return ErrorResponse(
message=f"Could not find agent with ID '{agent_id}' in your library.",
error="agent_not_found",
session_id=session_id,
)
# Build the update request with context
update_request = changes
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
# Step 2: Generate patch with retry on validation failure
blocks_info = get_blocks_info()
updated_agent = None
validation_errors = None
intent = "Applied requested changes"
for attempt in range(MAX_GENERATION_RETRIES + 1):
# Generate patch (include validation errors from previous attempt)
try:
if attempt == 0:
patch_result = await generate_agent_patch(
update_request, current_agent
)
else:
# Retry with validation error feedback
logger.info(
f"Retry {attempt}/{MAX_GENERATION_RETRIES} with validation feedback"
)
retry_request = (
f"{update_request}\n\n"
f"IMPORTANT: The previous edit had validation errors. "
f"Please fix these issues:\n{validation_errors}"
)
patch_result = await generate_agent_patch(
retry_request, current_agent
)
except ValueError as e:
# Handle missing API key or configuration errors
return ErrorResponse(
message=f"Agent generation is not configured: {str(e)}",
error="configuration_error",
session_id=session_id,
)
if patch_result is None:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message="Failed to generate changes. Please try rephrasing.",
error="Patch generation failed",
session_id=session_id,
)
continue
# Check if LLM returned clarifying questions
if patch_result.get("type") == "clarifying_questions":
questions = patch_result.get("questions", [])
return ClarificationNeededResponse(
message=(
"I need some more information about the changes. "
"Please answer the following questions:"
),
questions=[
ClarifyingQuestion(
question=q.get("question", ""),
keyword=q.get("keyword", ""),
example=q.get("example"),
)
for q in questions
],
session_id=session_id,
)
# Step 3: Apply patch and fixes
try:
updated_agent = apply_agent_patch(current_agent, patch_result)
updated_agent = apply_all_fixes(updated_agent, blocks_info)
except Exception as e:
if attempt == MAX_GENERATION_RETRIES:
return ErrorResponse(
message=f"Failed to apply changes: {str(e)}",
error="patch_apply_failed",
details={"exception": str(e)},
session_id=session_id,
)
validation_errors = str(e)
continue
# Step 4: Validate the updated agent
is_valid, validation_errors = validate_agent(updated_agent, blocks_info)
if is_valid:
logger.info(f"Agent edited successfully on attempt {attempt + 1}")
intent = patch_result.get("intent", "Applied requested changes")
break
logger.warning(
f"Validation failed on attempt {attempt + 1}: {validation_errors}"
)
if attempt == MAX_GENERATION_RETRIES:
# Return error with validation details
return ErrorResponse(
message=(
f"Updated agent has validation errors after "
f"{MAX_GENERATION_RETRIES + 1} attempts. "
f"Please try rephrasing your request or simplify the changes."
),
error="validation_failed",
details={"validation_errors": validation_errors},
session_id=session_id,
)
# At this point, updated_agent is guaranteed to be set (we return on all failure paths)
assert updated_agent is not None
agent_name = updated_agent.get("name", "Updated Agent")
agent_description = updated_agent.get("description", "")
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
# Step 5: Preview or save
if not save:
return AgentPreviewResponse(
message=(
f"I've updated the agent. Changes: {intent}. "
f"The agent now has {node_count} blocks. "
f"Review it and call edit_agent with save=true to save the changes."
),
agent_json=updated_agent,
agent_name=agent_name,
description=agent_description,
node_count=node_count,
link_count=link_count,
session_id=session_id,
)
# Save to library (creates a new version)
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
error="auth_required",
session_id=session_id,
)
try:
created_graph, library_agent = await save_agent_to_library(
updated_agent, user_id, is_update=True
)
return AgentSavedResponse(
message=(
f"Updated agent '{created_graph.name}' has been saved to your library! "
f"Changes: {intent}"
),
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)
except Exception as e:
return ErrorResponse(
message=f"Failed to save the updated agent: {str(e)}",
error="save_failed",
details={"exception": str(e)},
session_id=session_id,
)

View File

@@ -0,0 +1,253 @@
"""Tool for searching available blocks using hybrid search."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.blocks import load_all_blocks
from .base import BaseTool
from .models import (
BlockInfoSummary,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
from .search_blocks import get_block_search_index
logger = logging.getLogger(__name__)
class FindBlockTool(BaseTool):
"""Tool for searching available blocks."""
@property
def name(self) -> str:
return "find_block"
@property
def description(self) -> str:
return (
"Search for available blocks by name or description. "
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"Use this to find blocks that can be executed directly."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": (
"Search query to find blocks by name or description. "
"Use keywords like 'email', 'http', 'text', 'ai', etc."
),
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return True
def _matches_query(self, block, query: str) -> tuple[int, bool]:
"""
Check if a block matches the query and return a priority score.
Returns (priority, matches) where:
- priority 0: exact name match
- priority 1: name contains query
- priority 2: description contains query
- priority 3: category contains query
"""
query_lower = query.lower()
name_lower = block.name.lower()
desc_lower = block.description.lower()
# Exact name match
if query_lower == name_lower:
return 0, True
# Name contains query
if query_lower in name_lower:
return 1, True
# Description contains query
if query_lower in desc_lower:
return 2, True
# Category contains query
for category in block.categories:
if query_lower in category.name.lower():
return 3, True
return 4, False
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search for blocks matching the query.
Args:
user_id: User ID (required)
session: Chat session
query: Search query
Returns:
BlockListResponse: List of matching blocks
NoResultsResponse: No blocks found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
if not query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
)
try:
# Try hybrid search first
search_results = self._hybrid_search(query)
if search_results is not None:
# Hybrid search succeeded
if not search_results:
return NoResultsResponse(
message=f"No blocks found matching '{query}'",
session_id=session_id,
suggestions=[
"Try more general terms",
"Search by category: ai, text, social, search, etc.",
"Check block names like 'SendEmail', 'HttpRequest', etc.",
],
)
# Get full block info for each result
all_blocks = load_all_blocks()
blocks = []
for result in search_results:
block_cls = all_blocks.get(result.block_id)
if block_cls:
block = block_cls()
blocks.append(
BlockInfoSummary(
id=block.id,
name=block.name,
description=block.description,
categories=[cat.name for cat in block.categories],
input_schema=block.input_schema.jsonschema(),
output_schema=block.output_schema.jsonschema(),
)
)
return BlockListResponse(
message=(
f"Found {len(blocks)} block{'s' if len(blocks) != 1 else ''} "
f"matching '{query}'. Use run_block to execute a block with "
"the required inputs."
),
blocks=blocks,
count=len(blocks),
query=query,
session_id=session_id,
)
# Fallback to simple search if hybrid search failed
return self._simple_search(query, session_id)
except Exception as e:
logger.error(f"Error searching blocks: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search blocks. Please try again.",
error=str(e),
session_id=session_id,
)
def _hybrid_search(self, query: str) -> list | None:
"""
Perform hybrid search using embeddings and BM25.
Returns:
List of BlockSearchResult if successful, None if index not available
"""
try:
index = get_block_search_index()
if not index.load():
logger.info(
"Block search index not available, falling back to simple search"
)
return None
results = index.search(query, top_k=10)
logger.info(f"Hybrid search found {len(results)} blocks for: {query}")
return results
except Exception as e:
logger.warning(f"Hybrid search failed, falling back to simple: {e}")
return None
def _simple_search(self, query: str, session_id: str) -> ToolResponseBase:
"""Fallback simple search using substring matching."""
all_blocks = load_all_blocks()
logger.info(f"Simple searching {len(all_blocks)} blocks for: {query}")
# Find matching blocks with priority scores
matches: list[tuple[int, Any]] = []
for block_id, block_cls in all_blocks.items():
block = block_cls()
priority, is_match = self._matches_query(block, query)
if is_match:
matches.append((priority, block))
# Sort by priority (lower is better)
matches.sort(key=lambda x: x[0])
# Take top 10 results
top_matches = [block for _, block in matches[:10]]
if not top_matches:
return NoResultsResponse(
message=f"No blocks found matching '{query}'",
session_id=session_id,
suggestions=[
"Try more general terms",
"Search by category: ai, text, social, search, etc.",
"Check block names like 'SendEmail', 'HttpRequest', etc.",
],
)
# Build response
blocks = []
for block in top_matches:
blocks.append(
BlockInfoSummary(
id=block.id,
name=block.name,
description=block.description,
categories=[cat.name for cat in block.categories],
input_schema=block.input_schema.jsonschema(),
output_schema=block.output_schema.jsonschema(),
)
)
return BlockListResponse(
message=(
f"Found {len(blocks)} block{'s' if len(blocks) != 1 else ''} "
f"matching '{query}'. Use run_block to execute a block with "
"the required inputs."
),
blocks=blocks,
count=len(blocks),
query=query,
session_id=session_id,
)

View File

@@ -0,0 +1,483 @@
#!/usr/bin/env python3
"""
Block Indexer for Hybrid Search
Creates a hybrid search index from blocks:
- OpenAI embeddings (text-embedding-3-small)
- BM25 index for lexical search
- Name index for title matching boost
Supports incremental updates by tracking content hashes.
Usage:
python -m backend.server.v2.chat.tools.index_blocks [--force]
"""
import argparse
import base64
import hashlib
import json
import logging
import os
import re
import sys
from collections import defaultdict
from datetime import datetime, timezone
from pathlib import Path
from typing import Any
import numpy as np
logger = logging.getLogger(__name__)
# Check for OpenAI availability
try:
import openai # noqa: F401
HAS_OPENAI = True
except ImportError:
HAS_OPENAI = False
print("Warning: openai not installed. Run: pip install openai")
# Default embedding model (OpenAI)
DEFAULT_EMBEDDING_MODEL = "text-embedding-3-small"
DEFAULT_EMBEDDING_DIM = 1536
# Output path (relative to this file)
INDEX_PATH = Path(__file__).parent / "blocks_index.json"
# Stopwords for tokenization
STOPWORDS = {
"the",
"a",
"an",
"is",
"are",
"was",
"were",
"be",
"been",
"being",
"have",
"has",
"had",
"do",
"does",
"did",
"will",
"would",
"could",
"should",
"may",
"might",
"must",
"shall",
"can",
"need",
"dare",
"ought",
"used",
"to",
"of",
"in",
"for",
"on",
"with",
"at",
"by",
"from",
"as",
"into",
"through",
"during",
"before",
"after",
"above",
"below",
"between",
"under",
"again",
"further",
"then",
"once",
"and",
"but",
"or",
"nor",
"so",
"yet",
"both",
"either",
"neither",
"not",
"only",
"own",
"same",
"than",
"too",
"very",
"just",
"also",
"now",
"here",
"there",
"when",
"where",
"why",
"how",
"all",
"each",
"every",
"few",
"more",
"most",
"other",
"some",
"such",
"no",
"any",
"this",
"that",
"these",
"those",
"it",
"its",
"block", # Too common in block context
}
def tokenize(text: str) -> list[str]:
"""Simple tokenizer for BM25."""
text = text.lower()
# Remove code blocks if any
text = re.sub(r"```[\s\S]*?```", "", text)
text = re.sub(r"`[^`]+`", "", text)
# Extract words (including camelCase split)
# First, split camelCase
text = re.sub(r"([a-z])([A-Z])", r"\1 \2", text)
# Extract words
words = re.findall(r"\b[a-z][a-z0-9_-]*\b", text)
# Remove very short words and stopwords
return [w for w in words if len(w) > 2 and w not in STOPWORDS]
def build_searchable_text(block: Any) -> str:
"""Build searchable text from block attributes."""
parts = []
# Block name (split camelCase for better tokenization)
name = block.name
# Split camelCase: GetCurrentTimeBlock -> Get Current Time Block
name_split = re.sub(r"([a-z])([A-Z])", r"\1 \2", name)
parts.append(name_split)
# Description
if block.description:
parts.append(block.description)
# Categories
for category in block.categories:
parts.append(category.name)
# Input schema field names and descriptions
try:
input_schema = block.input_schema.jsonschema()
if "properties" in input_schema:
for field_name, field_info in input_schema["properties"].items():
parts.append(field_name)
if "description" in field_info:
parts.append(field_info["description"])
except Exception:
pass
# Output schema field names
try:
output_schema = block.output_schema.jsonschema()
if "properties" in output_schema:
for field_name in output_schema["properties"]:
parts.append(field_name)
except Exception:
pass
return " ".join(parts)
def compute_content_hash(text: str) -> str:
"""Compute MD5 hash of text for change detection."""
return hashlib.md5(text.encode()).hexdigest()
def load_existing_index(index_path: Path) -> dict[str, Any] | None:
"""Load existing index if present."""
if not index_path.exists():
return None
try:
with open(index_path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception as e:
logger.warning(f"Failed to load existing index: {e}")
return None
def create_embeddings(
texts: list[str],
model_name: str = DEFAULT_EMBEDDING_MODEL,
batch_size: int = 100,
) -> np.ndarray:
"""Create embeddings using OpenAI API."""
if not HAS_OPENAI:
raise RuntimeError("openai not installed. Run: pip install openai")
# Import here to satisfy type checker
from openai import OpenAI
# Check for API key
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise RuntimeError("OPENAI_API_KEY environment variable not set")
client = OpenAI(api_key=api_key)
embeddings = []
print(f"Creating embeddings for {len(texts)} texts using {model_name}...")
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
# Truncate texts to max token limit (8191 tokens for text-embedding-3-small)
# Roughly 4 chars per token, so ~32000 chars max
batch = [text[:32000] for text in batch]
response = client.embeddings.create(
model=model_name,
input=batch,
)
for embedding_data in response.data:
embeddings.append(embedding_data.embedding)
print(f" Processed {min(i + batch_size, len(texts))}/{len(texts)} texts")
return np.array(embeddings, dtype=np.float32)
def build_bm25_data(
blocks_data: list[dict[str, Any]],
) -> dict[str, Any]:
"""Build BM25 metadata from block data."""
# Tokenize all searchable texts
tokenized_docs = []
for block in blocks_data:
tokens = tokenize(block["searchable_text"])
tokenized_docs.append(tokens)
# Calculate document frequencies
doc_freq: dict[str, int] = {}
for tokens in tokenized_docs:
seen = set()
for token in tokens:
if token not in seen:
doc_freq[token] = doc_freq.get(token, 0) + 1
seen.add(token)
n_docs = len(tokenized_docs)
doc_lens = [len(d) for d in tokenized_docs]
avgdl = sum(doc_lens) / max(n_docs, 1)
return {
"n_docs": n_docs,
"avgdl": avgdl,
"df": doc_freq,
"doc_lens": doc_lens,
}
def build_name_index(
blocks_data: list[dict[str, Any]],
) -> dict[str, list[list[int | float]]]:
"""Build inverted index for name search boost."""
index: dict[str, list[list[int | float]]] = defaultdict(list)
for idx, block in enumerate(blocks_data):
# Tokenize block name
name_tokens = tokenize(block["name"])
seen = set()
for i, token in enumerate(name_tokens):
if token in seen:
continue
seen.add(token)
# Score: first token gets higher weight
score = 1.5 if i == 0 else 1.0
index[token].append([idx, score])
return dict(index)
def build_block_index(
force_rebuild: bool = False,
output_path: Path = INDEX_PATH,
) -> dict[str, Any]:
"""
Build the block search index.
Args:
force_rebuild: If True, rebuild all embeddings even if unchanged
output_path: Path to save the index
Returns:
The generated index dictionary
"""
# Import here to avoid circular imports
from backend.blocks import load_all_blocks
print("Loading all blocks...")
all_blocks = load_all_blocks()
print(f"Found {len(all_blocks)} blocks")
# Load existing index for incremental updates
existing_index = None if force_rebuild else load_existing_index(output_path)
existing_blocks: dict[str, dict[str, Any]] = {}
if existing_index:
print(
f"Loaded existing index with {len(existing_index.get('blocks', []))} blocks"
)
for block in existing_index.get("blocks", []):
existing_blocks[block["id"]] = block
# Process each block
blocks_data: list[dict[str, Any]] = []
blocks_needing_embedding: list[tuple[int, str]] = [] # (index, searchable_text)
for block_id, block_cls in all_blocks.items():
try:
block = block_cls()
# Skip disabled blocks
if block.disabled:
continue
searchable_text = build_searchable_text(block)
content_hash = compute_content_hash(searchable_text)
block_data = {
"id": block.id,
"name": block.name,
"description": block.description,
"categories": [cat.name for cat in block.categories],
"searchable_text": searchable_text,
"content_hash": content_hash,
"emb": None, # Will be filled later
}
# Check if we can reuse existing embedding
if (
block.id in existing_blocks
and existing_blocks[block.id].get("content_hash") == content_hash
and existing_blocks[block.id].get("emb")
):
# Reuse existing embedding
block_data["emb"] = existing_blocks[block.id]["emb"]
else:
# Need new embedding
blocks_needing_embedding.append((len(blocks_data), searchable_text))
blocks_data.append(block_data)
except Exception as e:
logger.warning(f"Failed to process block {block_id}: {e}")
continue
print(f"Processed {len(blocks_data)} blocks")
print(f"Blocks needing new embeddings: {len(blocks_needing_embedding)}")
# Create embeddings for new/changed blocks
if blocks_needing_embedding and HAS_OPENAI:
texts_to_embed = [text for _, text in blocks_needing_embedding]
try:
embeddings = create_embeddings(texts_to_embed)
# Assign embeddings to blocks
for i, (block_idx, _) in enumerate(blocks_needing_embedding):
emb = embeddings[i].astype(np.float32)
# Encode as base64
blocks_data[block_idx]["emb"] = base64.b64encode(emb.tobytes()).decode(
"ascii"
)
except Exception as e:
print(f"Warning: Failed to create embeddings: {e}")
elif blocks_needing_embedding:
print(
"Warning: Cannot create embeddings (openai not installed or OPENAI_API_KEY not set)"
)
# Build BM25 data
print("Building BM25 index...")
bm25_data = build_bm25_data(blocks_data)
# Build name index
print("Building name index...")
name_index = build_name_index(blocks_data)
# Build final index
index = {
"version": "1.0.0",
"embedding_model": DEFAULT_EMBEDDING_MODEL,
"embedding_dim": DEFAULT_EMBEDDING_DIM,
"generated_at": datetime.now(timezone.utc).isoformat(),
"blocks": blocks_data,
"bm25": bm25_data,
"name_index": name_index,
}
# Save index
print(f"Saving index to {output_path}...")
with open(output_path, "w", encoding="utf-8") as f:
json.dump(index, f, separators=(",", ":"))
size_kb = output_path.stat().st_size / 1024
print(f"Index saved ({size_kb:.1f} KB)")
# Print statistics
print("\nIndex Statistics:")
print(f" Blocks indexed: {len(blocks_data)}")
print(f" BM25 vocabulary size: {len(bm25_data['df'])}")
print(f" Name index terms: {len(name_index)}")
print(f" Embeddings: {'Yes' if any(b.get('emb') for b in blocks_data) else 'No'}")
return index
def main():
parser = argparse.ArgumentParser(description="Build hybrid search index for blocks")
parser.add_argument(
"--force",
action="store_true",
help="Force rebuild all embeddings even if unchanged",
)
parser.add_argument(
"--output",
type=Path,
default=INDEX_PATH,
help=f"Output index file path (default: {INDEX_PATH})",
)
args = parser.parse_args()
try:
build_block_index(
force_rebuild=args.force,
output_path=args.output,
)
except Exception as e:
print(f"Error building index: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,287 @@
"""Tool for executing blocks directly."""
import logging
from collections import defaultdict
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
from .base import BaseTool
from .models import (
BlockOutputResponse,
ErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
UserReadiness,
)
logger = logging.getLogger(__name__)
class RunBlockTool(BaseTool):
"""Tool for executing a block and returning its outputs."""
@property
def name(self) -> str:
return "run_block"
@property
def description(self) -> str:
return (
"Execute a specific block with the provided input data. "
"Use find_block to discover available blocks and their input schemas. "
"The block will run and return its outputs once complete."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"block_id": {
"type": "string",
"description": "The UUID of the block to execute",
},
"input_data": {
"type": "object",
"description": (
"Input values for the block. Must match the block's input schema. "
"Check the block's input_schema from find_block for required fields."
),
},
},
"required": ["block_id", "input_data"],
}
@property
def requires_auth(self) -> bool:
return True
async def _check_block_credentials(
self,
user_id: str,
block: Any,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Check if user has required credentials for a block.
Returns:
tuple[matched_credentials, missing_credentials]
"""
matched_credentials: dict[str, CredentialsMetaInput] = {}
missing_credentials: list[CredentialsMetaInput] = []
# Get credential field info from block's input schema
credentials_fields_info = block.input_schema.get_credentials_fields_info()
if not credentials_fields_info:
return matched_credentials, missing_credentials
# Get user's available credentials
creds_manager = IntegrationCredentialsManager()
available_creds = await creds_manager.store.get_all_creds(user_id)
for field_name, field_info in credentials_fields_info.items():
# field_info.provider is a frozenset of acceptable providers
# field_info.supported_types is a frozenset of acceptable types
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in field_info.provider
and cred.type in field_info.supported_types
),
None,
)
if matching_cred:
matched_credentials[field_name] = CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
else:
# Create a placeholder for the missing credential
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
missing_credentials.append(
CredentialsMetaInput(
id=field_name,
provider=provider, # type: ignore
type=cred_type, # type: ignore
title=field_name.replace("_", " ").title(),
)
)
return matched_credentials, missing_credentials
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute a block with the given input data.
Args:
user_id: User ID (required)
session: Chat session
block_id: Block UUID to execute
input_data: Input values for the block
Returns:
BlockOutputResponse: Block execution outputs
SetupRequirementsResponse: Missing credentials
ErrorResponse: Error message
"""
block_id = kwargs.get("block_id", "").strip()
input_data = kwargs.get("input_data", {})
session_id = session.session_id
if not block_id:
return ErrorResponse(
message="Please provide a block_id",
session_id=session_id,
)
if not isinstance(input_data, dict):
return ErrorResponse(
message="input_data must be an object",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="Authentication required",
session_id=session_id,
)
# Get the block
block = get_block(block_id)
if not block:
return ErrorResponse(
message=f"Block '{block_id}' not found",
session_id=session_id,
)
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
# Check credentials
creds_manager = IntegrationCredentialsManager()
matched_credentials, missing_credentials = await self._check_block_credentials(
user_id, block
)
if missing_credentials:
# Return setup requirements response with missing credentials
missing_creds_dict = {c.id: c.model_dump() for c in missing_credentials}
return SetupRequirementsResponse(
message=(
f"Block '{block.name}' requires credentials that are not configured. "
"Please set up the required credentials before running this block."
),
session_id=session_id,
setup_info=SetupInfo(
agent_id=block_id,
agent_name=block.name,
user_readiness=UserReadiness(
has_all_credentials=False,
missing_credentials=missing_creds_dict,
ready_to_run=False,
),
requirements={
"credentials": [c.model_dump() for c in missing_credentials],
"inputs": self._get_inputs_list(block),
"execution_modes": ["immediate"],
},
),
graph_id=None,
graph_version=None,
)
try:
# Fetch actual credentials and prepare kwargs for block execution
exec_kwargs: dict[str, Any] = {"user_id": user_id}
for field_name, cred_meta in matched_credentials.items():
# Inject metadata into input_data (for validation)
if field_name not in input_data:
input_data[field_name] = cred_meta.model_dump()
# Fetch actual credentials and pass as kwargs (for execution)
actual_credentials = await creds_manager.get(
user_id, cred_meta.id, lock=False
)
if actual_credentials:
exec_kwargs[field_name] = actual_credentials
else:
return ErrorResponse(
message=f"Failed to retrieve credentials for {field_name}",
session_id=session_id,
)
# Execute the block and collect outputs
outputs: dict[str, list[Any]] = defaultdict(list)
async for output_name, output_data in block.execute(
input_data,
**exec_kwargs,
):
outputs[output_name].append(output_data)
return BlockOutputResponse(
message=f"Block '{block.name}' executed successfully",
block_id=block_id,
block_name=block.name,
outputs=dict(outputs),
success=True,
session_id=session_id,
)
except BlockError as e:
logger.warning(f"Block execution failed: {e}")
return ErrorResponse(
message=f"Block execution failed: {e}",
error=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Unexpected error executing block: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to execute block: {str(e)}",
error=str(e),
session_id=session_id,
)
def _get_inputs_list(self, block: Any) -> list[dict[str, Any]]:
"""Extract non-credential inputs from block schema."""
inputs_list = []
schema = block.input_schema.jsonschema()
properties = schema.get("properties", {})
required_fields = set(schema.get("required", []))
# Get credential field names to exclude
credentials_fields = set(block.input_schema.get_credentials_fields().keys())
for field_name, field_schema in properties.items():
# Skip credential fields
if field_name in credentials_fields:
continue
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in required_fields,
}
)
return inputs_list

View File

@@ -0,0 +1,460 @@
"""
Block Hybrid Search
Combines multiple ranking signals for block search:
- Semantic search (OpenAI embeddings + cosine similarity)
- Lexical search (BM25)
- Name matching (boost for block name matches)
- Category matching (boost for category matches)
Based on the docs search implementation.
"""
import base64
import json
import logging
import math
import os
import re
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Optional
import numpy as np
logger = logging.getLogger(__name__)
# OpenAI embedding model
EMBEDDING_MODEL = "text-embedding-3-small"
# Path to the JSON index file
INDEX_PATH = Path(__file__).parent / "blocks_index.json"
# Stopwords for tokenization (same as index_blocks.py)
STOPWORDS = {
"the",
"a",
"an",
"is",
"are",
"was",
"were",
"be",
"been",
"being",
"have",
"has",
"had",
"do",
"does",
"did",
"will",
"would",
"could",
"should",
"may",
"might",
"must",
"shall",
"can",
"need",
"dare",
"ought",
"used",
"to",
"of",
"in",
"for",
"on",
"with",
"at",
"by",
"from",
"as",
"into",
"through",
"during",
"before",
"after",
"above",
"below",
"between",
"under",
"again",
"further",
"then",
"once",
"and",
"but",
"or",
"nor",
"so",
"yet",
"both",
"either",
"neither",
"not",
"only",
"own",
"same",
"than",
"too",
"very",
"just",
"also",
"now",
"here",
"there",
"when",
"where",
"why",
"how",
"all",
"each",
"every",
"few",
"more",
"most",
"other",
"some",
"such",
"no",
"any",
"this",
"that",
"these",
"those",
"it",
"its",
"block",
}
def tokenize(text: str) -> list[str]:
"""Simple tokenizer for search."""
text = text.lower()
# Remove code blocks if any
text = re.sub(r"```[\s\S]*?```", "", text)
text = re.sub(r"`[^`]+`", "", text)
# Split camelCase
text = re.sub(r"([a-z])([A-Z])", r"\1 \2", text)
# Extract words
words = re.findall(r"\b[a-z][a-z0-9_-]*\b", text)
# Remove very short words and stopwords
return [w for w in words if len(w) > 2 and w not in STOPWORDS]
@dataclass
class SearchWeights:
"""Configuration for hybrid search signal weights."""
semantic: float = 0.40 # Embedding similarity
bm25: float = 0.25 # Lexical matching
name_match: float = 0.25 # Block name matches
category_match: float = 0.10 # Category matches
@dataclass
class BlockSearchResult:
"""A single block search result."""
block_id: str
name: str
description: str
categories: list[str]
score: float
# Individual signal scores (for debugging)
semantic_score: float = 0.0
bm25_score: float = 0.0
name_score: float = 0.0
category_score: float = 0.0
class BlockSearchIndex:
"""Hybrid search index for blocks combining BM25 + embeddings."""
def __init__(self, index_path: Path = INDEX_PATH):
self.blocks: list[dict[str, Any]] = []
self.bm25_data: dict[str, Any] = {}
self.name_index: dict[str, list[list[int | float]]] = {}
self.embeddings: Optional[np.ndarray] = None
self.normalized_embeddings: Optional[np.ndarray] = None
self._loaded = False
self._index_path = index_path
self._embedding_model: Any = None
def load(self) -> bool:
"""Load the index from JSON file."""
if self._loaded:
return True
if not self._index_path.exists():
logger.warning(f"Block index not found at {self._index_path}")
return False
try:
with open(self._index_path, "r", encoding="utf-8") as f:
data = json.load(f)
self.blocks = data.get("blocks", [])
self.bm25_data = data.get("bm25", {})
self.name_index = data.get("name_index", {})
# Decode embeddings from base64
embeddings_list = []
for block in self.blocks:
if block.get("emb"):
emb_bytes = base64.b64decode(block["emb"])
emb = np.frombuffer(emb_bytes, dtype=np.float32)
embeddings_list.append(emb)
else:
# No embedding, use zeros
dim = data.get("embedding_dim", 384)
embeddings_list.append(np.zeros(dim, dtype=np.float32))
if embeddings_list:
self.embeddings = np.stack(embeddings_list)
# Precompute normalized embeddings for cosine similarity
norms = np.linalg.norm(self.embeddings, axis=1, keepdims=True)
self.normalized_embeddings = self.embeddings / (norms + 1e-10)
self._loaded = True
logger.info(f"Loaded block index with {len(self.blocks)} blocks")
return True
except Exception as e:
logger.error(f"Failed to load block index: {e}")
return False
def _get_openai_client(self) -> Any:
"""Get OpenAI client for query embedding."""
if self._embedding_model is None:
try:
from openai import OpenAI
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
logger.warning("OPENAI_API_KEY not set")
return None
self._embedding_model = OpenAI(api_key=api_key)
except ImportError:
logger.warning("openai not installed")
return None
return self._embedding_model
def _embed_query(self, query: str) -> Optional[np.ndarray]:
"""Embed the search query using OpenAI."""
client = self._get_openai_client()
if client is None:
return None
try:
response = client.embeddings.create(
model=EMBEDDING_MODEL,
input=query,
)
embedding = response.data[0].embedding
return np.array(embedding, dtype=np.float32)
except Exception as e:
logger.warning(f"Failed to embed query: {e}")
return None
def _compute_semantic_scores(self, query_embedding: np.ndarray) -> np.ndarray:
"""Compute cosine similarity between query and all blocks."""
if self.normalized_embeddings is None:
return np.zeros(len(self.blocks))
# Normalize query embedding
query_norm = query_embedding / (np.linalg.norm(query_embedding) + 1e-10)
# Cosine similarity via dot product
similarities = self.normalized_embeddings @ query_norm
# Scale to [0, 1] (cosine ranges from -1 to 1)
return (similarities + 1) / 2
def _compute_bm25_scores(self, query_tokens: list[str]) -> np.ndarray:
"""Compute BM25 scores for all blocks."""
scores = np.zeros(len(self.blocks))
if not self.bm25_data or not query_tokens:
return scores
# BM25 parameters
k1 = 1.5
b = 0.75
n_docs = self.bm25_data.get("n_docs", len(self.blocks))
avgdl = self.bm25_data.get("avgdl", 100)
df = self.bm25_data.get("df", {})
doc_lens = self.bm25_data.get("doc_lens", [100] * len(self.blocks))
for i, block in enumerate(self.blocks):
# Tokenize block's searchable text
block_tokens = tokenize(block.get("searchable_text", ""))
doc_len = doc_lens[i] if i < len(doc_lens) else len(block_tokens)
# Calculate BM25 score
score = 0.0
for token in query_tokens:
if token not in df:
continue
# Term frequency in this document
tf = block_tokens.count(token)
if tf == 0:
continue
# IDF
doc_freq = df.get(token, 0)
idf = math.log((n_docs - doc_freq + 0.5) / (doc_freq + 0.5) + 1)
# BM25 score component
numerator = tf * (k1 + 1)
denominator = tf + k1 * (1 - b + b * doc_len / avgdl)
score += idf * numerator / denominator
scores[i] = score
# Normalize to [0, 1]
max_score = scores.max()
if max_score > 0:
scores = scores / max_score
return scores
def _compute_name_scores(self, query_tokens: list[str]) -> np.ndarray:
"""Compute name match scores using the name index."""
scores = np.zeros(len(self.blocks))
if not self.name_index or not query_tokens:
return scores
for token in query_tokens:
if token in self.name_index:
for block_idx, weight in self.name_index[token]:
if block_idx < len(scores):
scores[int(block_idx)] += weight
# Also check for partial matches in block names
for i, block in enumerate(self.blocks):
name_lower = block.get("name", "").lower()
for token in query_tokens:
if token in name_lower:
scores[i] += 0.5
# Normalize to [0, 1]
max_score = scores.max()
if max_score > 0:
scores = scores / max_score
return scores
def _compute_category_scores(self, query_tokens: list[str]) -> np.ndarray:
"""Compute category match scores."""
scores = np.zeros(len(self.blocks))
if not query_tokens:
return scores
for i, block in enumerate(self.blocks):
categories = block.get("categories", [])
category_text = " ".join(categories).lower()
for token in query_tokens:
if token in category_text:
scores[i] += 1.0
# Normalize to [0, 1]
max_score = scores.max()
if max_score > 0:
scores = scores / max_score
return scores
def search(
self,
query: str,
top_k: int = 10,
weights: Optional[SearchWeights] = None,
) -> list[BlockSearchResult]:
"""
Perform hybrid search combining multiple signals.
Args:
query: Search query string
top_k: Number of results to return
weights: Optional custom weights for signals
Returns:
List of BlockSearchResult sorted by score
"""
if not self._loaded and not self.load():
return []
if weights is None:
weights = SearchWeights()
# Tokenize query
query_tokens = tokenize(query)
if not query_tokens:
# Fallback: try raw query words
query_tokens = query.lower().split()
# Compute semantic scores
semantic_scores = np.zeros(len(self.blocks))
if self.normalized_embeddings is not None:
query_embedding = self._embed_query(query)
if query_embedding is not None:
semantic_scores = self._compute_semantic_scores(query_embedding)
# Compute other scores
bm25_scores = self._compute_bm25_scores(query_tokens)
name_scores = self._compute_name_scores(query_tokens)
category_scores = self._compute_category_scores(query_tokens)
# Combine scores using weights
combined_scores = (
weights.semantic * semantic_scores
+ weights.bm25 * bm25_scores
+ weights.name_match * name_scores
+ weights.category_match * category_scores
)
# Get top-k indices
top_indices = np.argsort(combined_scores)[::-1][:top_k]
# Build results
results = []
for idx in top_indices:
if combined_scores[idx] <= 0:
continue
block = self.blocks[idx]
results.append(
BlockSearchResult(
block_id=block["id"],
name=block["name"],
description=block["description"],
categories=block.get("categories", []),
score=float(combined_scores[idx]),
semantic_score=float(semantic_scores[idx]),
bm25_score=float(bm25_scores[idx]),
name_score=float(name_scores[idx]),
category_score=float(category_scores[idx]),
)
)
return results
# Global index instance (lazy loaded)
_block_search_index: Optional[BlockSearchIndex] = None
def get_block_search_index() -> BlockSearchIndex:
"""Get or create the block search index singleton."""
global _block_search_index
if _block_search_index is None:
_block_search_index = BlockSearchIndex(INDEX_PATH)
return _block_search_index

View File

@@ -0,0 +1,386 @@
"""Tool for searching platform documentation."""
import json
import logging
import math
import re
from pathlib import Path
from typing import Any
from backend.api.features.chat.model import ChatSession
from .base import BaseTool
from .models import (
DocSearchResult,
DocSearchResultsResponse,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
# Documentation base URL
DOCS_BASE_URL = "https://docs.agpt.co/platform"
# Path to the JSON index file (relative to this file)
INDEX_PATH = Path(__file__).parent / "docs_index.json"
def tokenize(text: str) -> list[str]:
"""Simple tokenizer for BM25."""
text = text.lower()
# Remove code blocks
text = re.sub(r"```[\s\S]*?```", "", text)
text = re.sub(r"`[^`]+`", "", text)
# Extract words
words = re.findall(r"\b[a-z][a-z0-9_-]*\b", text)
# Remove very short words and stopwords
stopwords = {
"the",
"a",
"an",
"is",
"are",
"was",
"were",
"be",
"been",
"being",
"have",
"has",
"had",
"do",
"does",
"did",
"will",
"would",
"could",
"should",
"may",
"might",
"must",
"shall",
"can",
"need",
"dare",
"ought",
"used",
"to",
"of",
"in",
"for",
"on",
"with",
"at",
"by",
"from",
"as",
"into",
"through",
"during",
"before",
"after",
"above",
"below",
"between",
"under",
"again",
"further",
"then",
"once",
"and",
"but",
"or",
"nor",
"so",
"yet",
"both",
"either",
"neither",
"not",
"only",
"own",
"same",
"than",
"too",
"very",
"just",
"also",
"now",
"here",
"there",
"when",
"where",
"why",
"how",
"all",
"each",
"every",
"both",
"few",
"more",
"most",
"other",
"some",
"such",
"no",
"any",
"this",
"that",
"these",
"those",
"it",
"its",
}
return [w for w in words if len(w) > 2 and w not in stopwords]
class DocSearchIndex:
"""Lightweight documentation search index using BM25."""
def __init__(self, index_path: Path):
self.chunks: list[dict] = []
self.bm25_data: dict = {}
self._loaded = False
self._index_path = index_path
def load(self) -> bool:
"""Load the index from JSON file."""
if self._loaded:
return True
if not self._index_path.exists():
logger.warning(f"Documentation index not found at {self._index_path}")
return False
try:
with open(self._index_path, "r", encoding="utf-8") as f:
data = json.load(f)
self.chunks = data.get("chunks", [])
self.bm25_data = data.get("bm25", {})
self._loaded = True
logger.info(f"Loaded documentation index with {len(self.chunks)} chunks")
return True
except Exception as e:
logger.error(f"Failed to load documentation index: {e}")
return False
def search(self, query: str, top_k: int = 5) -> list[dict]:
"""Search the index using BM25."""
if not self._loaded and not self.load():
return []
query_tokens = tokenize(query)
if not query_tokens:
return []
# BM25 parameters
k1 = 1.5
b = 0.75
n_docs = self.bm25_data.get("n_docs", len(self.chunks))
avgdl = self.bm25_data.get("avgdl", 100)
df = self.bm25_data.get("df", {})
doc_lens = self.bm25_data.get("doc_lens", [100] * len(self.chunks))
scores = []
for i, chunk in enumerate(self.chunks):
# Tokenize chunk text
chunk_tokens = tokenize(chunk.get("text", ""))
doc_len = doc_lens[i] if i < len(doc_lens) else len(chunk_tokens)
# Calculate BM25 score
score = 0.0
for token in query_tokens:
if token not in df:
continue
# Term frequency in this document
tf = chunk_tokens.count(token)
if tf == 0:
continue
# IDF
doc_freq = df.get(token, 0)
idf = math.log((n_docs - doc_freq + 0.5) / (doc_freq + 0.5) + 1)
# BM25 score component
numerator = tf * (k1 + 1)
denominator = tf + k1 * (1 - b + b * doc_len / avgdl)
score += idf * numerator / denominator
# Boost for title/heading matches
title = chunk.get("title", "").lower()
heading = chunk.get("heading", "").lower()
for token in query_tokens:
if token in title:
score *= 1.5
if token in heading:
score *= 1.2
scores.append((i, score))
# Sort by score and return top_k
scores.sort(key=lambda x: x[1], reverse=True)
results = []
seen_sections = set()
for idx, score in scores:
if score <= 0:
continue
chunk = self.chunks[idx]
section_key = (chunk.get("doc", ""), chunk.get("heading", ""))
# Deduplicate by section
if section_key in seen_sections:
continue
seen_sections.add(section_key)
results.append(
{
"title": chunk.get("title", ""),
"path": chunk.get("doc", ""),
"heading": chunk.get("heading", ""),
"text": chunk.get("text", ""), # Full text for LLM comprehension
"score": score,
}
)
if len(results) >= top_k:
break
return results
# Global index instance (lazy loaded)
_search_index: DocSearchIndex | None = None
def get_search_index() -> DocSearchIndex:
"""Get or create the search index singleton."""
global _search_index
if _search_index is None:
_search_index = DocSearchIndex(INDEX_PATH)
return _search_index
class SearchDocsTool(BaseTool):
"""Tool for searching AutoGPT platform documentation."""
@property
def name(self) -> str:
return "search_platform_docs"
@property
def description(self) -> str:
return (
"Search the AutoGPT platform documentation and support Q&A for information about "
"how to use the platform, create agents, configure blocks, "
"set up integrations, troubleshoot issues, and more. Use this when users ask "
"support questions or want to learn how to do something with AutoGPT."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": (
"Search query describing what the user wants to learn about. "
"Use keywords like 'blocks', 'agents', 'credentials', 'API', etc."
),
},
},
"required": ["query"],
}
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search documentation for the query.
Args:
user_id: User ID (may be anonymous)
session: Chat session
query: Search query
Returns:
DocSearchResultsResponse: List of matching documentation sections
NoResultsResponse: No results found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
if not query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
)
try:
index = get_search_index()
results = index.search(query, top_k=5)
if not results:
return NoResultsResponse(
message=f"No documentation found for '{query}'. Try different keywords.",
session_id=session_id,
suggestions=[
"Try more general terms like 'blocks', 'agents', 'setup'",
"Check the documentation at docs.agpt.co",
],
)
# Convert to response format
doc_results = []
for r in results:
# Build documentation URL
path = r["path"]
if path.endswith(".md"):
path = path[:-3] # Remove .md extension
doc_url = f"{DOCS_BASE_URL}/{path}"
full_text = r["text"]
doc_results.append(
DocSearchResult(
title=r["title"],
path=r["path"],
section=r["heading"],
snippet=(
full_text[:300] + "..."
if len(full_text) > 300
else full_text
),
content=full_text, # Full text for LLM to read and understand
score=round(r["score"], 3),
doc_url=doc_url,
)
)
return DocSearchResultsResponse(
message=(
f"Found {len(doc_results)} relevant documentation sections. "
"Use these to help answer the user's question. "
"Include links to the documentation when helpful."
),
results=doc_results,
count=len(doc_results),
query=query,
session_id=session_id,
)
except Exception as e:
logger.error(f"Error searching documentation: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search documentation. Please try again.",
error=str(e),
session_id=session_id,
)

View File

@@ -48,7 +48,6 @@ class LibraryAgent(pydantic.BaseModel):
id: str
graph_id: str
graph_version: int
owner_user_id: str # ID of user who owns/created this agent graph
image_url: str | None
@@ -164,7 +163,6 @@ class LibraryAgent(pydantic.BaseModel):
id=agent.id,
graph_id=agent.agentGraphId,
graph_version=agent.agentGraphVersion,
owner_user_id=agent.userId,
image_url=agent.imageUrl,
creator_name=creator_name,
creator_image_url=creator_image_url,

View File

@@ -42,7 +42,6 @@ async def test_get_library_agents_success(
id="test-agent-1",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 1",
description="Test Description 1",
image_url=None,
@@ -65,7 +64,6 @@ async def test_get_library_agents_success(
id="test-agent-2",
graph_id="test-agent-2",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 2",
description="Test Description 2",
image_url=None,
@@ -140,7 +138,6 @@ async def test_get_favorite_library_agents_success(
id="test-agent-1",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Favorite Agent 1",
description="Test Favorite Description 1",
image_url=None,
@@ -208,7 +205,6 @@ def test_add_agent_to_library_success(
id="test-library-agent-id",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 1",
description="Test Description 1",
image_url=None,

View File

@@ -0,0 +1,72 @@
#!/usr/bin/env python3
"""
CLI script to backfill embeddings for store agents.
Usage:
poetry run python -m backend.server.v2.store.backfill_embeddings [--batch-size N]
"""
import argparse
import asyncio
import sys
import prisma
async def main(batch_size: int = 100) -> int:
"""Run the backfill process."""
# Initialize Prisma client
client = prisma.Prisma()
await client.connect()
prisma.register(client)
try:
from backend.api.features.store.embeddings import (
backfill_missing_embeddings,
get_embedding_stats,
)
# Get current stats
print("Current embedding stats:")
stats = await get_embedding_stats()
print(f" Total approved: {stats['total_approved']}")
print(f" With embeddings: {stats['with_embeddings']}")
print(f" Without embeddings: {stats['without_embeddings']}")
print(f" Coverage: {stats['coverage_percent']}%")
if stats["without_embeddings"] == 0:
print("\nAll agents already have embeddings. Nothing to do.")
return 0
# Run backfill
print(f"\nBackfilling up to {batch_size} embeddings...")
result = await backfill_missing_embeddings(batch_size=batch_size)
print(f" Processed: {result['processed']}")
print(f" Success: {result['success']}")
print(f" Failed: {result['failed']}")
# Get final stats
print("\nFinal embedding stats:")
stats = await get_embedding_stats()
print(f" Total approved: {stats['total_approved']}")
print(f" With embeddings: {stats['with_embeddings']}")
print(f" Without embeddings: {stats['without_embeddings']}")
print(f" Coverage: {stats['coverage_percent']}%")
return 0 if result["failed"] == 0 else 1
finally:
await client.disconnect()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Backfill embeddings for store agents")
parser.add_argument(
"--batch-size",
type=int,
default=100,
help="Number of embeddings to generate (default: 100)",
)
args = parser.parse_args()
sys.exit(asyncio.run(main(batch_size=args.batch_size)))

View File

@@ -1,6 +1,5 @@
import asyncio
import logging
import typing
from datetime import datetime, timezone
from typing import Literal
@@ -10,7 +9,7 @@ import prisma.errors
import prisma.models
import prisma.types
from backend.data.db import query_raw_with_schema, transaction
from backend.data.db import transaction
from backend.data.graph import (
GraphMeta,
GraphModel,
@@ -57,95 +56,21 @@ async def get_store_agents(
)
try:
# If search_query is provided, use full-text search
# If search_query is provided, use hybrid search (embeddings + tsvector)
if search_query:
offset = (page - 1) * page_size
from backend.api.features.store.hybrid_search import hybrid_search
# Whitelist allowed order_by columns
ALLOWED_ORDER_BY = {
"rating": "rating DESC, rank DESC",
"runs": "runs DESC, rank DESC",
"name": "agent_name ASC, rank ASC",
"updated_at": "updated_at DESC, rank DESC",
}
# Use hybrid search combining semantic and lexical signals
agents, total = await hybrid_search(
query=search_query,
featured=featured,
creators=creators,
category=category,
sorted_by="relevance", # Use hybrid scoring for relevance
page=page,
page_size=page_size,
)
# Validate and get order clause
if sorted_by and sorted_by in ALLOWED_ORDER_BY:
order_by_clause = ALLOWED_ORDER_BY[sorted_by]
else:
order_by_clause = "updated_at DESC, rank DESC"
# Build WHERE conditions and parameters list
where_parts: list[str] = []
params: list[typing.Any] = [search_query] # $1 - search term
param_index = 2 # Start at $2 for next parameter
# Always filter for available agents
where_parts.append("is_available = true")
if featured:
where_parts.append("featured = true")
if creators and creators:
# Use ANY with array parameter
where_parts.append(f"creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
if category and category:
where_parts.append(f"${param_index} = ANY(categories)")
params.append(category)
param_index += 1
sql_where_clause: str = " AND ".join(where_parts) if where_parts else "1=1"
# Add pagination params
params.extend([page_size, offset])
limit_param = f"${param_index}"
offset_param = f"${param_index + 1}"
# Execute full-text search query with parameterized values
sql_query = f"""
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
ts_rank_cd(search, query) AS rank
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
WHERE {sql_where_clause}
AND search @@ query
ORDER BY {order_by_clause}
LIMIT {limit_param} OFFSET {offset_param}
"""
# Count query for pagination - only uses search term parameter
count_query = f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
WHERE {sql_where_clause}
AND search @@ query
"""
# Execute both queries with parameters
agents = await query_raw_with_schema(sql_query, *params)
# For count, use params without pagination (last 2 params)
count_params = params[:-2]
count_result = await query_raw_with_schema(count_query, *count_params)
total = count_result[0]["count"] if count_result else 0
total_pages = (total + page_size - 1) // page_size
# Convert raw results to StoreAgent models
@@ -614,7 +539,6 @@ async def get_store_submissions(
submission_models = []
for sub in submissions:
submission_model = store_model.StoreSubmission(
listing_id=sub.listing_id,
agent_id=sub.agent_id,
agent_version=sub.agent_version,
name=sub.name,
@@ -668,48 +592,35 @@ async def delete_store_submission(
submission_id: str,
) -> bool:
"""
Delete a store submission version as the submitting user.
Delete a store listing submission as the submitting user.
Args:
user_id: ID of the authenticated user
submission_id: StoreListingVersion ID to delete
submission_id: ID of the submission to be deleted
Returns:
bool: True if successfully deleted
bool: True if the submission was successfully deleted, False otherwise
"""
logger.debug(f"Deleting store submission {submission_id} for user {user_id}")
try:
# Find the submission version with ownership check
version = await prisma.models.StoreListingVersion.prisma().find_first(
where={"id": submission_id}, include={"StoreListing": True}
# Verify the submission belongs to this user
submission = await prisma.models.StoreListing.prisma().find_first(
where={"agentGraphId": submission_id, "owningUserId": user_id}
)
if (
not version
or not version.StoreListing
or version.StoreListing.owningUserId != user_id
):
raise store_exceptions.SubmissionNotFoundError("Submission not found")
# Prevent deletion of approved submissions
if version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
raise store_exceptions.InvalidOperationError(
"Cannot delete approved submissions"
if not submission:
logger.warning(f"Submission not found for user {user_id}: {submission_id}")
raise store_exceptions.SubmissionNotFoundError(
f"Submission not found for this user. User ID: {user_id}, Submission ID: {submission_id}"
)
# Delete the version
await prisma.models.StoreListingVersion.prisma().delete(
where={"id": version.id}
)
# Delete the submission
await prisma.models.StoreListing.prisma().delete(where={"id": submission.id})
# Clean up empty listing if this was the last version
remaining = await prisma.models.StoreListingVersion.prisma().count(
where={"storeListingId": version.storeListingId}
logger.debug(
f"Successfully deleted submission {submission_id} for user {user_id}"
)
if remaining == 0:
await prisma.models.StoreListing.prisma().delete(
where={"id": version.storeListingId}
)
return True
except Exception as e:
@@ -773,15 +684,9 @@ async def create_store_submission(
logger.warning(
f"Agent not found for user {user_id}: {agent_id} v{agent_version}"
)
# Provide more user-friendly error message when agent_id is empty
if not agent_id or agent_id.strip() == "":
raise store_exceptions.AgentNotFoundError(
"No agent selected. Please select an agent before submitting to the store."
)
else:
raise store_exceptions.AgentNotFoundError(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
raise store_exceptions.AgentNotFoundError(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
# Check if listing already exists for this agent
existing_listing = await prisma.models.StoreListing.prisma().find_first(
@@ -853,7 +758,6 @@ async def create_store_submission(
logger.debug(f"Created store listing for agent {agent_id}")
# Return submission details
return store_model.StoreSubmission(
listing_id=listing.id,
agent_id=agent_id,
agent_version=agent_version,
name=name,
@@ -965,56 +869,81 @@ async def edit_store_submission(
# Currently we are not allowing user to update the agent associated with a submission
# If we allow it in future, then we need a check here to verify the agent belongs to this user.
# Only allow editing of PENDING submissions
if current_version.submissionStatus != prisma.enums.SubmissionStatus.PENDING:
# Check if we can edit this submission
if current_version.submissionStatus == prisma.enums.SubmissionStatus.REJECTED:
raise store_exceptions.InvalidOperationError(
f"Cannot edit a {current_version.submissionStatus.value.lower()} submission. Only pending submissions can be edited."
"Cannot edit a rejected submission"
)
# For APPROVED submissions, we need to create a new version
if current_version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
# Create a new version for the existing listing
return await create_store_version(
user_id=user_id,
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
store_listing_id=current_version.storeListingId,
name=name,
video_url=video_url,
agent_output_demo_url=agent_output_demo_url,
image_urls=image_urls,
description=description,
sub_heading=sub_heading,
categories=categories,
changes_summary=changes_summary,
recommended_schedule_cron=recommended_schedule_cron,
instructions=instructions,
)
# For PENDING submissions, we can update the existing version
# Update the existing version
updated_version = await prisma.models.StoreListingVersion.prisma().update(
where={"id": store_listing_version_id},
data=prisma.types.StoreListingVersionUpdateInput(
elif current_version.submissionStatus == prisma.enums.SubmissionStatus.PENDING:
# Update the existing version
updated_version = await prisma.models.StoreListingVersion.prisma().update(
where={"id": store_listing_version_id},
data=prisma.types.StoreListingVersionUpdateInput(
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
categories=categories,
subHeading=sub_heading,
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
instructions=instructions,
),
)
logger.debug(
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
)
if not updated_version:
raise DatabaseError("Failed to update store listing version")
return store_model.StoreSubmission(
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
sub_heading=sub_heading,
slug=current_version.StoreListing.slug,
description=description,
categories=categories,
subHeading=sub_heading,
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
instructions=instructions,
),
)
image_urls=image_urls,
date_submitted=updated_version.submittedAt or updated_version.createdAt,
status=updated_version.submissionStatus,
runs=0,
rating=0.0,
store_listing_version_id=updated_version.id,
changes_summary=changes_summary,
video_url=video_url,
categories=categories,
version=updated_version.version,
)
logger.debug(
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
)
if not updated_version:
raise DatabaseError("Failed to update store listing version")
return store_model.StoreSubmission(
listing_id=current_version.StoreListing.id,
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
name=name,
sub_heading=sub_heading,
slug=current_version.StoreListing.slug,
description=description,
instructions=instructions,
image_urls=image_urls,
date_submitted=updated_version.submittedAt or updated_version.createdAt,
status=updated_version.submissionStatus,
runs=0,
rating=0.0,
store_listing_version_id=updated_version.id,
changes_summary=changes_summary,
video_url=video_url,
categories=categories,
version=updated_version.version,
)
else:
raise store_exceptions.InvalidOperationError(
f"Cannot edit submission with status: {current_version.submissionStatus}"
)
except (
store_exceptions.SubmissionNotFoundError,
@@ -1093,78 +1022,38 @@ async def create_store_version(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
# Check if there's already a PENDING submission for this agent (any version)
existing_pending_submission = (
await prisma.models.StoreListingVersion.prisma().find_first(
where=prisma.types.StoreListingVersionWhereInput(
storeListingId=store_listing_id,
agentGraphId=agent_id,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
isDeleted=False,
)
# Get the latest version number
latest_version = listing.Versions[0] if listing.Versions else None
next_version = (latest_version.version + 1) if latest_version else 1
# Create a new version for the existing listing
new_version = await prisma.models.StoreListingVersion.prisma().create(
data=prisma.types.StoreListingVersionCreateInput(
version=next_version,
agentGraphId=agent_id,
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
categories=categories,
subHeading=sub_heading,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
submittedAt=datetime.now(),
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
storeListingId=store_listing_id,
)
)
# Handle existing pending submission and create new one atomically
async with transaction() as tx:
# Get the latest version number first
latest_listing = await prisma.models.StoreListing.prisma(tx).find_first(
where=prisma.types.StoreListingWhereInput(
id=store_listing_id, owningUserId=user_id
),
include={"Versions": {"order_by": {"version": "desc"}, "take": 1}},
)
if not latest_listing:
raise store_exceptions.ListingNotFoundError(
f"Store listing not found. User ID: {user_id}, Listing ID: {store_listing_id}"
)
latest_version = (
latest_listing.Versions[0] if latest_listing.Versions else None
)
next_version = (latest_version.version + 1) if latest_version else 1
# If there's an existing pending submission, delete it atomically before creating new one
if existing_pending_submission:
logger.info(
f"Found existing PENDING submission for agent {agent_id} (was v{existing_pending_submission.agentGraphVersion}, now v{agent_version}), replacing existing submission instead of creating duplicate"
)
await prisma.models.StoreListingVersion.prisma(tx).delete(
where={"id": existing_pending_submission.id}
)
logger.debug(
f"Deleted existing pending submission {existing_pending_submission.id}"
)
# Create a new version for the existing listing
new_version = await prisma.models.StoreListingVersion.prisma(tx).create(
data=prisma.types.StoreListingVersionCreateInput(
version=next_version,
agentGraphId=agent_id,
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
categories=categories,
subHeading=sub_heading,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
submittedAt=datetime.now(),
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
storeListingId=store_listing_id,
)
)
logger.debug(
f"Created new version for listing {store_listing_id} of agent {agent_id}"
)
# Return submission details
return store_model.StoreSubmission(
listing_id=listing.id,
agent_id=agent_id,
agent_version=agent_version,
name=name,
@@ -1600,6 +1489,24 @@ async def review_store_submission(
},
)
# Generate embedding for approved listing (non-blocking)
try:
from backend.api.features.store.embeddings import ensure_embedding
await ensure_embedding(
version_id=store_listing_version_id,
name=store_listing_version.name,
description=store_listing_version.description,
sub_heading=store_listing_version.subHeading,
categories=store_listing_version.categories or [],
)
except Exception as e:
# Don't fail approval if embedding generation fails
logger.warning(
f"Failed to generate embedding for approved listing "
f"{store_listing_version_id}: {e}"
)
# If rejecting an approved agent, update the StoreListing accordingly
if is_rejecting_approved:
# Check if there are other approved versions
@@ -1744,12 +1651,15 @@ async def review_store_submission(
# Convert to Pydantic model for consistency
return store_model.StoreSubmission(
listing_id=(submission.StoreListing.id if submission.StoreListing else ""),
agent_id=submission.agentGraphId,
agent_version=submission.agentGraphVersion,
name=submission.name,
sub_heading=submission.subHeading,
slug=(submission.StoreListing.slug if submission.StoreListing else ""),
slug=(
submission.StoreListing.slug
if hasattr(submission, "storeListing") and submission.StoreListing
else ""
),
description=submission.description,
instructions=submission.instructions,
image_urls=submission.imageUrls or [],
@@ -1851,7 +1761,9 @@ async def get_admin_listings_with_versions(
where = prisma.types.StoreListingWhereInput(**where_dict)
include = prisma.types.StoreListingInclude(
Versions=prisma.types.FindManyStoreListingVersionArgsFromStoreListing(
order_by={"version": "desc"}
order_by=prisma.types._StoreListingVersion_version_OrderByInput(
version="desc"
)
),
OwningUser=True,
)
@@ -1876,7 +1788,6 @@ async def get_admin_listings_with_versions(
# If we have versions, turn them into StoreSubmission models
for version in listing.Versions or []:
version_model = store_model.StoreSubmission(
listing_id=listing.id,
agent_id=version.agentGraphId,
agent_version=version.agentGraphVersion,
name=version.name,

View File

@@ -0,0 +1,408 @@
"""
Store Listing Embeddings Service
Handles generation and storage of OpenAI embeddings for store listings
to enable semantic/hybrid search.
"""
import hashlib
import logging
import os
from typing import Any
import prisma
logger = logging.getLogger(__name__)
# OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small"
EMBEDDING_DIM = 1536
def build_searchable_text(
name: str,
description: str,
sub_heading: str,
categories: list[str],
) -> str:
"""
Build searchable text from listing version fields.
Combines relevant fields into a single string for embedding.
"""
parts = []
# Name is important - include it
if name:
parts.append(name)
# Sub-heading provides context
if sub_heading:
parts.append(sub_heading)
# Description is the main content
if description:
parts.append(description)
# Categories help with semantic matching
if categories:
parts.append(" ".join(categories))
return " ".join(parts)
def compute_content_hash(text: str) -> str:
"""Compute MD5 hash of text for change detection."""
return hashlib.md5(text.encode()).hexdigest()
async def generate_embedding(text: str) -> list[float] | None:
"""
Generate embedding for text using OpenAI API.
Returns None if embedding generation fails.
"""
try:
from openai import OpenAI
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
logger.warning("OPENAI_API_KEY not set, cannot generate embedding")
return None
client = OpenAI(api_key=api_key)
# Truncate text to avoid token limits (~32k chars for safety)
truncated_text = text[:32000]
response = client.embeddings.create(
model=EMBEDDING_MODEL,
input=truncated_text,
)
embedding = response.data[0].embedding
logger.debug(f"Generated embedding with {len(embedding)} dimensions")
return embedding
except Exception as e:
logger.error(f"Failed to generate embedding: {e}")
return None
async def store_embedding(
version_id: str,
embedding: list[float],
searchable_text: str,
content_hash: str,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Store embedding in the database.
Uses raw SQL since Prisma doesn't natively support pgvector.
"""
try:
client = tx if tx else prisma.get_client()
# Convert embedding to PostgreSQL vector format
embedding_str = "[" + ",".join(str(x) for x in embedding) + "]"
# Upsert the embedding
# Set search_path to include public for vector type visibility
await client.execute_raw(
"""
SET LOCAL search_path TO platform, public;
INSERT INTO platform."StoreListingEmbedding" (
"id", "storeListingVersionId", "embedding",
"searchableText", "contentHash", "createdAt", "updatedAt"
)
VALUES (
gen_random_uuid(), $1, $2::vector,
$3, $4, NOW(), NOW()
)
ON CONFLICT ("storeListingVersionId")
DO UPDATE SET
"embedding" = $2::vector,
"searchableText" = $3,
"contentHash" = $4,
"updatedAt" = NOW()
""",
version_id,
embedding_str,
searchable_text,
content_hash,
)
logger.info(f"Stored embedding for version {version_id}")
return True
except Exception as e:
logger.error(f"Failed to store embedding for version {version_id}: {e}")
return False
async def get_embedding(version_id: str) -> dict[str, Any] | None:
"""
Retrieve embedding record for a listing version.
Returns dict with embedding, searchableText, contentHash or None if not found.
"""
try:
client = prisma.get_client()
result = await client.query_raw(
"""
SELECT
"id",
"storeListingVersionId",
"embedding"::text as "embedding",
"searchableText",
"contentHash",
"createdAt",
"updatedAt"
FROM platform."StoreListingEmbedding"
WHERE "storeListingVersionId" = $1
""",
version_id,
)
if result and len(result) > 0:
return result[0]
return None
except Exception as e:
logger.error(f"Failed to get embedding for version {version_id}: {e}")
return None
async def ensure_embedding(
version_id: str,
name: str,
description: str,
sub_heading: str,
categories: list[str],
force: bool = False,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Ensure an embedding exists for the listing version.
Creates embedding if missing or if content has changed.
Skips if content hash matches existing embedding.
Args:
version_id: The StoreListingVersion ID
name: Agent name
description: Agent description
sub_heading: Agent sub-heading
categories: Agent categories
force: Force regeneration even if hash matches
tx: Optional transaction client
Returns:
True if embedding exists/was created, False on failure
"""
try:
# Build searchable text and compute hash
searchable_text = build_searchable_text(
name, description, sub_heading, categories
)
content_hash = compute_content_hash(searchable_text)
# Check if embedding already exists with same hash
if not force:
existing = await get_embedding(version_id)
if existing and existing.get("contentHash") == content_hash:
logger.debug(
f"Embedding for version {version_id} is up to date (hash match)"
)
return True
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(f"Could not generate embedding for version {version_id}")
return False
# Store the embedding
return await store_embedding(
version_id=version_id,
embedding=embedding,
searchable_text=searchable_text,
content_hash=content_hash,
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
return False
async def delete_embedding(version_id: str) -> bool:
"""
Delete embedding for a listing version.
Note: This is usually handled automatically by CASCADE delete,
but provided for manual cleanup if needed.
"""
try:
client = prisma.get_client()
await client.execute_raw(
"""
DELETE FROM platform."StoreListingEmbedding"
WHERE "storeListingVersionId" = $1
""",
version_id,
)
logger.info(f"Deleted embedding for version {version_id}")
return True
except Exception as e:
logger.error(f"Failed to delete embedding for version {version_id}: {e}")
return False
async def get_embedding_stats() -> dict[str, Any]:
"""
Get statistics about embedding coverage.
Returns counts of:
- Total approved listing versions
- Versions with embeddings
- Versions without embeddings
"""
try:
client = prisma.get_client()
# Count approved versions
approved_result = await client.query_raw(
"""
SELECT COUNT(*) as count
FROM platform."StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
AND "isDeleted" = false
"""
)
total_approved = approved_result[0]["count"] if approved_result else 0
# Count versions with embeddings
embedded_result = await client.query_raw(
"""
SELECT COUNT(*) as count
FROM platform."StoreListingVersion" slv
JOIN platform."StoreListingEmbedding" sle ON slv.id = sle."storeListingVersionId"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total_approved": total_approved,
"with_embeddings": with_embeddings,
"without_embeddings": total_approved - with_embeddings,
"coverage_percent": (
round(with_embeddings / total_approved * 100, 1)
if total_approved > 0
else 0
),
}
except Exception as e:
logger.error(f"Failed to get embedding stats: {e}")
return {
"total_approved": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
"error": str(e),
}
async def backfill_missing_embeddings(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for approved listings that don't have them.
Args:
batch_size: Number of embeddings to generate in one call
Returns:
Dict with success/failure counts
"""
try:
client = prisma.get_client()
# Find approved versions without embeddings
missing = await client.query_raw(
"""
SELECT
slv.id,
slv.name,
slv.description,
slv."subHeading",
slv.categories
FROM platform."StoreListingVersion" slv
LEFT JOIN platform."StoreListingEmbedding" sle ON slv.id = sle."storeListingVersionId"
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND sle.id IS NULL
LIMIT $1
""",
batch_size,
)
if not missing:
return {
"processed": 0,
"success": 0,
"failed": 0,
"message": "No missing embeddings",
}
success = 0
failed = 0
for row in missing:
result = await ensure_embedding(
version_id=row["id"],
name=row["name"],
description=row["description"],
sub_heading=row["subHeading"],
categories=row["categories"] or [],
)
if result:
success += 1
else:
failed += 1
return {
"processed": len(missing),
"success": success,
"failed": failed,
"message": f"Backfilled {success} embeddings, {failed} failed",
}
except Exception as e:
logger.error(f"Failed to backfill embeddings: {e}")
return {
"processed": 0,
"success": 0,
"failed": 0,
"error": str(e),
}
async def embed_query(query: str) -> list[float] | None:
"""
Generate embedding for a search query.
Same as generate_embedding but with clearer intent.
"""
return await generate_embedding(query)
def embedding_to_vector_string(embedding: list[float]) -> str:
"""Convert embedding list to PostgreSQL vector string format."""
return "[" + ",".join(str(x) for x in embedding) + "]"

View File

@@ -0,0 +1,440 @@
"""
Hybrid Search for Store Agents
Combines semantic (embedding) search with lexical (tsvector) search
for improved relevance in marketplace agent discovery.
"""
import logging
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Literal
import prisma
from backend.api.features.store.embeddings import (
embed_query,
embedding_to_vector_string,
)
logger = logging.getLogger(__name__)
@dataclass
class HybridSearchWeights:
"""Weights for combining search signals."""
semantic: float = 0.35 # Embedding cosine similarity
lexical: float = 0.35 # tsvector ts_rank_cd score
category: float = 0.20 # Category match boost
recency: float = 0.10 # Newer agents ranked higher
DEFAULT_WEIGHTS = HybridSearchWeights()
# Minimum relevance score threshold - agents below this are filtered out
# With weights (0.35 semantic + 0.35 lexical + 0.20 category + 0.10 recency):
# - 0.20 means at least ~50% semantic match OR strong lexical match required
# - Ensures only genuinely relevant results are returned
# - Recency alone (0.10 max) won't pass the threshold
DEFAULT_MIN_SCORE = 0.20
@dataclass
class HybridSearchResult:
"""A single search result with score breakdown."""
slug: str
agent_name: str
agent_image: str
creator_username: str
creator_avatar: str
sub_heading: str
description: str
runs: int
rating: float
categories: list[str]
featured: bool
is_available: bool
updated_at: datetime
# Score breakdown (for debugging/tuning)
combined_score: float
semantic_score: float = 0.0
lexical_score: float = 0.0
category_score: float = 0.0
recency_score: float = 0.0
async def hybrid_search(
query: str,
featured: bool = False,
creators: list[str] | None = None,
category: str | None = None,
sorted_by: (
Literal["relevance", "rating", "runs", "name", "updated_at"] | None
) = None,
page: int = 1,
page_size: int = 20,
weights: HybridSearchWeights | None = None,
min_score: float | None = None,
) -> tuple[list[dict[str, Any]], int]:
"""
Perform hybrid search combining semantic and lexical signals.
Args:
query: Search query string
featured: Filter for featured agents only
creators: Filter by creator usernames
category: Filter by category
sorted_by: Sort order (relevance uses hybrid scoring)
page: Page number (1-indexed)
page_size: Results per page
weights: Custom weights for search signals
min_score: Minimum relevance score threshold (0-1). Results below
this score are filtered out. Defaults to DEFAULT_MIN_SCORE.
Returns:
Tuple of (results list, total count). Returns empty list if no
results meet the minimum relevance threshold.
"""
if weights is None:
weights = DEFAULT_WEIGHTS
if min_score is None:
min_score = DEFAULT_MIN_SCORE
offset = (page - 1) * page_size
client = prisma.get_client()
# Generate query embedding
query_embedding = await embed_query(query)
# Build WHERE clause conditions
where_parts: list[str] = ["sa.is_available = true"]
params: list[Any] = []
param_index = 1
# Add search query for lexical matching
params.append(query)
query_param = f"${param_index}"
param_index += 1
if featured:
where_parts.append("sa.featured = true")
if creators:
where_parts.append(f"sa.creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
if category:
where_parts.append(f"${param_index} = ANY(sa.categories)")
params.append(category)
param_index += 1
where_clause = " AND ".join(where_parts)
# Determine if we can use hybrid search (have query embedding)
use_hybrid = query_embedding is not None
if use_hybrid:
# Add embedding parameter
embedding_str = embedding_to_vector_string(query_embedding)
params.append(embedding_str)
embedding_param = f"${param_index}"
param_index += 1
# Build hybrid search query with weighted scoring
# The semantic score is (1 - cosine_distance), normalized to [0,1]
# The lexical score is ts_rank_cd, normalized by max value
# Set search_path to include public for vector type visibility
sql_query = f"""
SET LOCAL search_path TO platform, public;
WITH search_scores AS (
SELECT
sa.*,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (sle.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd normalized
COALESCE(ts_rank_cd(sa.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match: 1 if query term appears in categories, else 0
CASE
WHEN EXISTS (
SELECT 1 FROM unnest(sa.categories) cat
WHERE LOWER(cat) LIKE '%' || LOWER({query_param}) || '%'
) THEN 1.0
ELSE 0.0
END as category_score,
-- Recency score: exponential decay over 90 days
EXP(-EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score
FROM platform."StoreAgent" sa
LEFT JOIN platform."StoreListing" sl ON sa.slug = sl.slug
LEFT JOIN platform."StoreListingVersion" slv ON sl."activeVersionId" = slv.id
LEFT JOIN platform."StoreListingEmbedding" sle ON slv.id = sle."storeListingVersionId"
WHERE {where_clause}
AND (
sa.search @@ plainto_tsquery('english', {query_param})
OR sle.embedding IS NOT NULL
)
),
normalized AS (
SELECT
*,
-- Normalize lexical score by max in result set
CASE
WHEN MAX(lexical_raw) OVER () > 0
THEN lexical_raw / MAX(lexical_raw) OVER ()
ELSE 0
END as lexical_score
FROM search_scores
),
scored AS (
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
semantic_score,
lexical_score,
category_score,
recency_score,
(
{weights.semantic} * semantic_score +
{weights.lexical} * lexical_score +
{weights.category} * category_score +
{weights.recency} * recency_score
) as combined_score
FROM normalized
)
SELECT * FROM scored
WHERE combined_score >= {min_score}
ORDER BY combined_score DESC
LIMIT ${param_index} OFFSET ${param_index + 1}
"""
# Add pagination params
params.extend([page_size, offset])
# Count query - must also filter by min_score
count_query = f"""
SET LOCAL search_path TO platform, public;
WITH search_scores AS (
SELECT
sa.slug,
COALESCE(1 - (sle.embedding <=> {embedding_param}::vector), 0) as semantic_score,
COALESCE(ts_rank_cd(sa.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
CASE
WHEN EXISTS (
SELECT 1 FROM unnest(sa.categories) cat
WHERE LOWER(cat) LIKE '%' || LOWER({query_param}) || '%'
) THEN 1.0
ELSE 0.0
END as category_score,
EXP(-EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score
FROM platform."StoreAgent" sa
LEFT JOIN platform."StoreListing" sl ON sa.slug = sl.slug
LEFT JOIN platform."StoreListingVersion" slv ON sl."activeVersionId" = slv.id
LEFT JOIN platform."StoreListingEmbedding" sle ON slv.id = sle."storeListingVersionId"
WHERE {where_clause}
AND (
sa.search @@ plainto_tsquery('english', {query_param})
OR sle.embedding IS NOT NULL
)
),
normalized AS (
SELECT
slug,
semantic_score,
category_score,
recency_score,
CASE
WHEN MAX(lexical_raw) OVER () > 0
THEN lexical_raw / MAX(lexical_raw) OVER ()
ELSE 0
END as lexical_score
FROM search_scores
),
scored AS (
SELECT
slug,
(
{weights.semantic} * semantic_score +
{weights.lexical} * lexical_score +
{weights.category} * category_score +
{weights.recency} * recency_score
) as combined_score
FROM normalized
)
SELECT COUNT(*) as count FROM scored
WHERE combined_score >= {min_score}
"""
else:
# Fallback to lexical-only search (existing behavior)
# Note: For lexical-only, we still require tsvector match but don't
# apply min_score since ts_rank_cd isn't normalized to [0,1]
logger.warning("Falling back to lexical-only search (no query embedding)")
sql_query = f"""
WITH lexical_scores AS (
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
0.0 as semantic_score,
ts_rank_cd(search, plainto_tsquery('english', {query_param})) as lexical_raw,
CASE
WHEN EXISTS (
SELECT 1 FROM unnest(categories) cat
WHERE LOWER(cat) LIKE '%' || LOWER({query_param}) || '%'
) THEN 1.0
ELSE 0.0
END as category_score,
EXP(-EXTRACT(EPOCH FROM (NOW() - updated_at)) / (90 * 24 * 3600)) as recency_score
FROM platform."StoreAgent" sa
WHERE {where_clause}
AND search @@ plainto_tsquery('english', {query_param})
),
normalized AS (
SELECT
*,
CASE
WHEN MAX(lexical_raw) OVER () > 0
THEN lexical_raw / MAX(lexical_raw) OVER ()
ELSE 0
END as lexical_score
FROM lexical_scores
),
scored AS (
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
semantic_score,
lexical_score,
category_score,
recency_score,
(
{weights.lexical} * lexical_score +
{weights.category} * category_score +
{weights.recency} * recency_score
) as combined_score
FROM normalized
)
SELECT * FROM scored
WHERE combined_score >= {min_score}
ORDER BY combined_score DESC
LIMIT ${param_index} OFFSET ${param_index + 1}
"""
params.extend([page_size, offset])
count_query = f"""
WITH lexical_scores AS (
SELECT
slug,
ts_rank_cd(search, plainto_tsquery('english', {query_param})) as lexical_raw,
CASE
WHEN EXISTS (
SELECT 1 FROM unnest(categories) cat
WHERE LOWER(cat) LIKE '%' || LOWER({query_param}) || '%'
) THEN 1.0
ELSE 0.0
END as category_score,
EXP(-EXTRACT(EPOCH FROM (NOW() - updated_at)) / (90 * 24 * 3600)) as recency_score
FROM platform."StoreAgent" sa
WHERE {where_clause}
AND search @@ plainto_tsquery('english', {query_param})
),
normalized AS (
SELECT
slug,
category_score,
recency_score,
CASE
WHEN MAX(lexical_raw) OVER () > 0
THEN lexical_raw / MAX(lexical_raw) OVER ()
ELSE 0
END as lexical_score
FROM lexical_scores
),
scored AS (
SELECT
slug,
(
{weights.lexical} * lexical_score +
{weights.category} * category_score +
{weights.recency} * recency_score
) as combined_score
FROM normalized
)
SELECT COUNT(*) as count FROM scored
WHERE combined_score >= {min_score}
"""
try:
# Execute search query
# Dynamic SQL is safe here - all user inputs are parameterized ($1, $2, etc.)
results = await client.query_raw(sql_query, *params) # type: ignore[arg-type]
# Execute count query (without pagination params)
count_params = params[:-2] # Remove LIMIT and OFFSET params
count_result = await client.query_raw(count_query, *count_params) # type: ignore[arg-type]
total = count_result[0]["count"] if count_result else 0
logger.info(
f"Hybrid search for '{query}': {len(results)} results, {total} total "
f"(hybrid={use_hybrid})"
)
return results, total
except Exception as e:
logger.error(f"Hybrid search failed: {e}")
raise
async def hybrid_search_simple(
query: str,
page: int = 1,
page_size: int = 20,
) -> tuple[list[dict[str, Any]], int]:
"""
Simplified hybrid search for common use cases.
Uses default weights and no filters.
"""
return await hybrid_search(
query=query,
page=page,
page_size=page_size,
)

View File

@@ -110,7 +110,6 @@ class Profile(pydantic.BaseModel):
class StoreSubmission(pydantic.BaseModel):
listing_id: str
agent_id: str
agent_version: int
name: str
@@ -165,12 +164,8 @@ class StoreListingsWithVersionsResponse(pydantic.BaseModel):
class StoreSubmissionRequest(pydantic.BaseModel):
agent_id: str = pydantic.Field(
..., min_length=1, description="Agent ID cannot be empty"
)
agent_version: int = pydantic.Field(
..., gt=0, description="Agent version must be greater than 0"
)
agent_id: str
agent_version: int
slug: str
name: str
sub_heading: str

View File

@@ -138,7 +138,6 @@ def test_creator_details():
def test_store_submission():
submission = store_model.StoreSubmission(
listing_id="listing123",
agent_id="agent123",
agent_version=1,
sub_heading="Test subheading",
@@ -160,7 +159,6 @@ def test_store_submissions_response():
response = store_model.StoreSubmissionsResponse(
submissions=[
store_model.StoreSubmission(
listing_id="listing123",
agent_id="agent123",
agent_version=1,
sub_heading="Test subheading",

View File

@@ -521,7 +521,6 @@ def test_get_submissions_success(
mocked_value = store_model.StoreSubmissionsResponse(
submissions=[
store_model.StoreSubmission(
listing_id="test-listing-id",
name="Test Agent",
description="Test agent description",
image_urls=["test.jpg"],

View File

@@ -6,9 +6,6 @@ import hashlib
import hmac
import logging
from enum import Enum
from typing import cast
from prisma.types import Serializable
from backend.sdk import (
BaseWebhooksManager,
@@ -87,9 +84,7 @@ class AirtableWebhookManager(BaseWebhooksManager):
# update webhook config
await update_webhook(
webhook.id,
config=cast(
dict[str, Serializable], {"base_id": base_id, "cursor": response.cursor}
),
config={"base_id": base_id, "cursor": response.cursor},
)
event_type = "notification"

View File

@@ -975,28 +975,10 @@ class SmartDecisionMakerBlock(Block):
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
nodes_to_skip: set[str] | None = None,
**kwargs,
) -> BlockOutput:
tool_functions = await self._create_tool_node_signatures(node_id)
original_tool_count = len(tool_functions)
# Filter out tools for nodes that should be skipped (e.g., missing optional credentials)
if nodes_to_skip:
tool_functions = [
tf
for tf in tool_functions
if tf.get("function", {}).get("_sink_node_id") not in nodes_to_skip
]
# Only raise error if we had tools but they were all filtered out
if original_tool_count > 0 and not tool_functions:
raise ValueError(
"No available tools to execute - all downstream nodes are unavailable "
"(possibly due to missing optional credentials)"
)
yield "tool_functions", json.dumps(tool_functions)
conversation_history = input_data.conversation_history or []

View File

@@ -383,7 +383,6 @@ class GraphExecutionWithNodes(GraphExecution):
self,
execution_context: ExecutionContext,
compiled_nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
):
return GraphExecutionEntry(
user_id=self.user_id,
@@ -391,7 +390,6 @@ class GraphExecutionWithNodes(GraphExecution):
graph_version=self.graph_version or 0,
graph_exec_id=self.id,
nodes_input_masks=compiled_nodes_input_masks,
nodes_to_skip=nodes_to_skip or set(),
execution_context=execution_context,
)
@@ -1147,8 +1145,6 @@ class GraphExecutionEntry(BaseModel):
graph_id: str
graph_version: int
nodes_input_masks: Optional[NodesInputMasks] = None
nodes_to_skip: set[str] = Field(default_factory=set)
"""Node IDs that should be skipped due to optional credentials not being configured."""
execution_context: ExecutionContext = Field(default_factory=ExecutionContext)

View File

@@ -94,15 +94,6 @@ class Node(BaseDbModel):
input_links: list[Link] = []
output_links: list[Link] = []
@property
def credentials_optional(self) -> bool:
"""
Whether credentials are optional for this node.
When True and credentials are not configured, the node will be skipped
during execution rather than causing a validation error.
"""
return self.metadata.get("credentials_optional", False)
@property
def block(self) -> AnyBlockSchema | "_UnknownBlockBase":
"""Get the block for this node. Returns UnknownBlock if block is deleted/missing."""
@@ -335,35 +326,7 @@ class Graph(BaseGraph):
@computed_field
@property
def credentials_input_schema(self) -> dict[str, Any]:
schema = self._credentials_input_schema.jsonschema()
# Determine which credential fields are required based on credentials_optional metadata
graph_credentials_inputs = self.aggregate_credentials_inputs()
required_fields = []
# Build a map of node_id -> node for quick lookup
all_nodes = {node.id: node for node in self.nodes}
for sub_graph in self.sub_graphs:
for node in sub_graph.nodes:
all_nodes[node.id] = node
for field_key, (
_field_info,
node_field_pairs,
) in graph_credentials_inputs.items():
# A field is required if ANY node using it has credentials_optional=False
is_required = False
for node_id, _field_name in node_field_pairs:
node = all_nodes.get(node_id)
if node and not node.credentials_optional:
is_required = True
break
if is_required:
required_fields.append(field_key)
schema["required"] = required_fields
return schema
return self._credentials_input_schema.jsonschema()
@property
def _credentials_input_schema(self) -> type[BlockSchema]:

View File

@@ -396,58 +396,3 @@ async def test_access_store_listing_graph(server: SpinTestServer):
created_graph.id, created_graph.version, "3e53486c-cf57-477e-ba2a-cb02dc828e1b"
)
assert got_graph is not None
# ============================================================================
# Tests for Optional Credentials Feature
# ============================================================================
def test_node_credentials_optional_default():
"""Test that credentials_optional defaults to False when not set in metadata."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={},
)
assert node.credentials_optional is False
def test_node_credentials_optional_true():
"""Test that credentials_optional returns True when explicitly set."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={"credentials_optional": True},
)
assert node.credentials_optional is True
def test_node_credentials_optional_false():
"""Test that credentials_optional returns False when explicitly set to False."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={"credentials_optional": False},
)
assert node.credentials_optional is False
def test_node_credentials_optional_with_other_metadata():
"""Test that credentials_optional works correctly with other metadata present."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={
"position": {"x": 100, "y": 200},
"customized_name": "My Custom Node",
"credentials_optional": True,
},
)
assert node.credentials_optional is True
assert node.metadata["position"] == {"x": 100, "y": 200}
assert node.metadata["customized_name"] == "My Custom Node"

View File

@@ -178,7 +178,6 @@ async def execute_node(
execution_processor: "ExecutionProcessor",
execution_stats: NodeExecutionStats | None = None,
nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
) -> BlockOutput:
"""
Execute a node in the graph. This will trigger a block execution on a node,
@@ -246,7 +245,6 @@ async def execute_node(
"user_id": user_id,
"execution_context": execution_context,
"execution_processor": execution_processor,
"nodes_to_skip": nodes_to_skip or set(),
}
# Last-minute fetch credentials + acquire a system-wide read-write lock to prevent
@@ -544,7 +542,6 @@ class ExecutionProcessor:
node_exec_progress: NodeExecutionProgress,
nodes_input_masks: Optional[NodesInputMasks],
graph_stats_pair: tuple[GraphExecutionStats, threading.Lock],
nodes_to_skip: Optional[set[str]] = None,
) -> NodeExecutionStats:
log_metadata = LogMetadata(
logger=_logger,
@@ -567,7 +564,6 @@ class ExecutionProcessor:
db_client=db_client,
log_metadata=log_metadata,
nodes_input_masks=nodes_input_masks,
nodes_to_skip=nodes_to_skip,
)
if isinstance(status, BaseException):
raise status
@@ -613,7 +609,6 @@ class ExecutionProcessor:
db_client: "DatabaseManagerAsyncClient",
log_metadata: LogMetadata,
nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
) -> ExecutionStatus:
status = ExecutionStatus.RUNNING
@@ -650,7 +645,6 @@ class ExecutionProcessor:
execution_processor=self,
execution_stats=stats,
nodes_input_masks=nodes_input_masks,
nodes_to_skip=nodes_to_skip,
):
await persist_output(output_name, output_data)
@@ -962,21 +956,6 @@ class ExecutionProcessor:
queued_node_exec = execution_queue.get()
# Check if this node should be skipped due to optional credentials
if queued_node_exec.node_id in graph_exec.nodes_to_skip:
log_metadata.info(
f"Skipping node execution {queued_node_exec.node_exec_id} "
f"for node {queued_node_exec.node_id} - optional credentials not configured"
)
# Mark the node as completed without executing
# No outputs will be produced, so downstream nodes won't trigger
update_node_execution_status(
db_client=db_client,
exec_id=queued_node_exec.node_exec_id,
status=ExecutionStatus.COMPLETED,
)
continue
log_metadata.debug(
f"Dispatching node execution {queued_node_exec.node_exec_id} "
f"for node {queued_node_exec.node_id}",
@@ -1037,7 +1016,6 @@ class ExecutionProcessor:
execution_stats,
execution_stats_lock,
),
nodes_to_skip=graph_exec.nodes_to_skip,
),
self.node_execution_loop,
)

View File

@@ -239,19 +239,14 @@ async def _validate_node_input_credentials(
graph: GraphModel,
user_id: str,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[dict[str, dict[str, str]], set[str]]:
) -> dict[str, dict[str, str]]:
"""
Checks all credentials for all nodes of the graph and returns structured errors
and a set of nodes that should be skipped due to optional missing credentials.
Checks all credentials for all nodes of the graph and returns structured errors.
Returns:
tuple[
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node,
set[node_id]: Nodes that should be skipped (optional credentials not configured)
]
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node
"""
credential_errors: dict[str, dict[str, str]] = defaultdict(dict)
nodes_to_skip: set[str] = set()
for node in graph.nodes:
block = node.block
@@ -261,46 +256,27 @@ async def _validate_node_input_credentials(
if not credentials_fields:
continue
# Track if any credential field is missing for this node
has_missing_credentials = False
for field_name, credentials_meta_type in credentials_fields.items():
try:
# Check nodes_input_masks first, then input_default
field_value = None
if (
nodes_input_masks
and (node_input_mask := nodes_input_masks.get(node.id))
and field_name in node_input_mask
):
field_value = node_input_mask[field_name]
credentials_meta = credentials_meta_type.model_validate(
node_input_mask[field_name]
)
elif field_name in node.input_default:
# For optional credentials, don't use input_default - treat as missing
# This prevents stale credential IDs from failing validation
if node.credentials_optional:
field_value = None
else:
field_value = node.input_default[field_name]
# Check if credentials are missing (None, empty, or not present)
if field_value is None or (
isinstance(field_value, dict) and not field_value.get("id")
):
has_missing_credentials = True
# If node has credentials_optional flag, mark for skipping instead of error
if node.credentials_optional:
continue # Don't add error, will be marked for skip after loop
else:
credential_errors[node.id][
field_name
] = "These credentials are required"
continue
credentials_meta = credentials_meta_type.model_validate(field_value)
credentials_meta = credentials_meta_type.model_validate(
node.input_default[field_name]
)
else:
# Missing credentials
credential_errors[node.id][
field_name
] = "These credentials are required"
continue
except ValidationError as e:
# Validation error means credentials were provided but invalid
# This should always be an error, even if optional
credential_errors[node.id][field_name] = f"Invalid credentials: {e}"
continue
@@ -311,7 +287,6 @@ async def _validate_node_input_credentials(
)
except Exception as e:
# Handle any errors fetching credentials
# If credentials were explicitly configured but unavailable, it's an error
credential_errors[node.id][
field_name
] = f"Credentials not available: {e}"
@@ -338,19 +313,7 @@ async def _validate_node_input_credentials(
] = "Invalid credentials: type/provider mismatch"
continue
# If node has optional credentials and any are missing, mark for skipping
# But only if there are no other errors for this node
if (
has_missing_credentials
and node.credentials_optional
and node.id not in credential_errors
):
nodes_to_skip.add(node.id)
logger.info(
f"Node #{node.id} will be skipped: optional credentials not configured"
)
return credential_errors, nodes_to_skip
return credential_errors
def make_node_credentials_input_map(
@@ -392,25 +355,21 @@ async def validate_graph_with_credentials(
graph: GraphModel,
user_id: str,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[Mapping[str, Mapping[str, str]], set[str]]:
) -> Mapping[str, Mapping[str, str]]:
"""
Validate graph including credentials and return structured errors per node,
along with a set of nodes that should be skipped due to optional missing credentials.
Validate graph including credentials and return structured errors per node.
Returns:
tuple[
dict[node_id, dict[field_name, error_message]]: Validation errors per node,
set[node_id]: Nodes that should be skipped (optional credentials not configured)
]
dict[node_id, dict[field_name, error_message]]: Validation errors per node
"""
# Get input validation errors
node_input_errors = GraphModel.validate_graph_get_errors(
graph, for_run=True, nodes_input_masks=nodes_input_masks
)
# Get credential input/availability/validation errors and nodes to skip
node_credential_input_errors, nodes_to_skip = (
await _validate_node_input_credentials(graph, user_id, nodes_input_masks)
# Get credential input/availability/validation errors
node_credential_input_errors = await _validate_node_input_credentials(
graph, user_id, nodes_input_masks
)
# Merge credential errors with structural errors
@@ -419,7 +378,7 @@ async def validate_graph_with_credentials(
node_input_errors[node_id] = {}
node_input_errors[node_id].update(field_errors)
return node_input_errors, nodes_to_skip
return node_input_errors
async def _construct_starting_node_execution_input(
@@ -427,7 +386,7 @@ async def _construct_starting_node_execution_input(
user_id: str,
graph_inputs: BlockInput,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[list[tuple[str, BlockInput]], set[str]]:
) -> list[tuple[str, BlockInput]]:
"""
Validates and prepares the input data for executing a graph.
This function checks the graph for starting nodes, validates the input data
@@ -441,14 +400,11 @@ async def _construct_starting_node_execution_input(
node_credentials_map: `dict[node_id, dict[input_name, CredentialsMetaInput]]`
Returns:
tuple[
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID
and the corresponding input data for that node.
set[str]: Node IDs that should be skipped (optional credentials not configured)
]
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID and
the corresponding input data for that node.
"""
# Use new validation function that includes credentials
validation_errors, nodes_to_skip = await validate_graph_with_credentials(
validation_errors = await validate_graph_with_credentials(
graph, user_id, nodes_input_masks
)
n_error_nodes = len(validation_errors)
@@ -489,7 +445,7 @@ async def _construct_starting_node_execution_input(
"No starting nodes found for the graph, make sure an AgentInput or blocks with no inbound links are present as starting nodes."
)
return nodes_input, nodes_to_skip
return nodes_input
async def validate_and_construct_node_execution_input(
@@ -500,7 +456,7 @@ async def validate_and_construct_node_execution_input(
graph_credentials_inputs: Optional[Mapping[str, CredentialsMetaInput]] = None,
nodes_input_masks: Optional[NodesInputMasks] = None,
is_sub_graph: bool = False,
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks, set[str]]:
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks]:
"""
Public wrapper that handles graph fetching, credential mapping, and validation+construction.
This centralizes the logic used by both scheduler validation and actual execution.
@@ -517,7 +473,6 @@ async def validate_and_construct_node_execution_input(
GraphModel: Full graph object for the given `graph_id`.
list[tuple[node_id, BlockInput]]: Starting node IDs with corresponding inputs.
dict[str, BlockInput]: Node input masks including all passed-in credentials.
set[str]: Node IDs that should be skipped (optional credentials not configured).
Raises:
NotFoundError: If the graph is not found.
@@ -559,16 +514,14 @@ async def validate_and_construct_node_execution_input(
nodes_input_masks or {},
)
starting_nodes_input, nodes_to_skip = (
await _construct_starting_node_execution_input(
graph=graph,
user_id=user_id,
graph_inputs=graph_inputs,
nodes_input_masks=nodes_input_masks,
)
starting_nodes_input = await _construct_starting_node_execution_input(
graph=graph,
user_id=user_id,
graph_inputs=graph_inputs,
nodes_input_masks=nodes_input_masks,
)
return graph, starting_nodes_input, nodes_input_masks, nodes_to_skip
return graph, starting_nodes_input, nodes_input_masks
def _merge_nodes_input_masks(
@@ -826,9 +779,6 @@ async def add_graph_execution(
# Use existing execution's compiled input masks
compiled_nodes_input_masks = graph_exec.nodes_input_masks or {}
# For resumed executions, nodes_to_skip was already determined at creation time
# TODO: Consider storing nodes_to_skip in DB if we need to preserve it across resumes
nodes_to_skip: set[str] = set()
logger.info(f"Resuming graph execution #{graph_exec.id} for graph #{graph_id}")
else:
@@ -837,7 +787,7 @@ async def add_graph_execution(
)
# Create new execution
graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip = (
graph, starting_nodes_input, compiled_nodes_input_masks = (
await validate_and_construct_node_execution_input(
graph_id=graph_id,
user_id=user_id,
@@ -886,7 +836,6 @@ async def add_graph_execution(
try:
graph_exec_entry = graph_exec.to_graph_execution_entry(
compiled_nodes_input_masks=compiled_nodes_input_masks,
nodes_to_skip=nodes_to_skip,
execution_context=execution_context,
)
logger.info(f"Publishing execution {graph_exec.id} to execution queue")

View File

@@ -367,13 +367,10 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
)
# Setup mock returns
# The function returns (graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip)
nodes_to_skip: set[str] = set()
mock_validate.return_value = (
mock_graph,
starting_nodes_input,
compiled_nodes_input_masks,
nodes_to_skip,
)
mock_prisma.is_connected.return_value = True
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
@@ -459,212 +456,3 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
# Both executions should succeed (though they create different objects)
assert result1 == mock_graph_exec
assert result2 == mock_graph_exec_2
# ============================================================================
# Tests for Optional Credentials Feature
# ============================================================================
@pytest.mark.asyncio
async def test_validate_node_input_credentials_returns_nodes_to_skip(
mocker: MockerFixture,
):
"""
Test that _validate_node_input_credentials returns nodes_to_skip set
for nodes with credentials_optional=True and missing credentials.
"""
from backend.executor.utils import _validate_node_input_credentials
# Create a mock node with credentials_optional=True
mock_node = mocker.MagicMock()
mock_node.id = "node-with-optional-creds"
mock_node.credentials_optional = True
mock_node.input_default = {} # No credentials configured
# Create a mock block with credentials field
mock_block = mocker.MagicMock()
mock_credentials_field_type = mocker.MagicMock()
mock_block.input_schema.get_credentials_fields.return_value = {
"credentials": mock_credentials_field_type
}
mock_node.block = mock_block
# Create mock graph
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
# Call the function
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Node should be in nodes_to_skip, not in errors
assert mock_node.id in nodes_to_skip
assert mock_node.id not in errors
@pytest.mark.asyncio
async def test_validate_node_input_credentials_required_missing_creds_error(
mocker: MockerFixture,
):
"""
Test that _validate_node_input_credentials returns errors
for nodes with credentials_optional=False and missing credentials.
"""
from backend.executor.utils import _validate_node_input_credentials
# Create a mock node with credentials_optional=False (required)
mock_node = mocker.MagicMock()
mock_node.id = "node-with-required-creds"
mock_node.credentials_optional = False
mock_node.input_default = {} # No credentials configured
# Create a mock block with credentials field
mock_block = mocker.MagicMock()
mock_credentials_field_type = mocker.MagicMock()
mock_block.input_schema.get_credentials_fields.return_value = {
"credentials": mock_credentials_field_type
}
mock_node.block = mock_block
# Create mock graph
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
# Call the function
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Node should be in errors, not in nodes_to_skip
assert mock_node.id in errors
assert "credentials" in errors[mock_node.id]
assert "required" in errors[mock_node.id]["credentials"].lower()
assert mock_node.id not in nodes_to_skip
@pytest.mark.asyncio
async def test_validate_graph_with_credentials_returns_nodes_to_skip(
mocker: MockerFixture,
):
"""
Test that validate_graph_with_credentials returns nodes_to_skip set
from _validate_node_input_credentials.
"""
from backend.executor.utils import validate_graph_with_credentials
# Mock _validate_node_input_credentials to return specific values
mock_validate = mocker.patch(
"backend.executor.utils._validate_node_input_credentials"
)
expected_errors = {"node1": {"field": "error"}}
expected_nodes_to_skip = {"node2", "node3"}
mock_validate.return_value = (expected_errors, expected_nodes_to_skip)
# Mock GraphModel with validate_graph_get_errors method
mock_graph = mocker.MagicMock()
mock_graph.validate_graph_get_errors.return_value = {}
# Call the function
errors, nodes_to_skip = await validate_graph_with_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Verify nodes_to_skip is passed through
assert nodes_to_skip == expected_nodes_to_skip
assert "node1" in errors
@pytest.mark.asyncio
async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
"""
Test that add_graph_execution properly passes nodes_to_skip
to the graph execution entry.
"""
from backend.data.execution import GraphExecutionWithNodes
from backend.executor.utils import add_graph_execution
# Mock data
graph_id = "test-graph-id"
user_id = "test-user-id"
inputs = {"test_input": "test_value"}
graph_version = 1
# Mock the graph object
mock_graph = mocker.MagicMock()
mock_graph.version = graph_version
# Starting nodes and masks
starting_nodes_input = [("node1", {"input1": "value1"})]
compiled_nodes_input_masks = {}
nodes_to_skip = {"skipped-node-1", "skipped-node-2"}
# Mock the graph execution object
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionWithNodes)
mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = []
# Track what's passed to to_graph_execution_entry
captured_kwargs = {}
def capture_to_entry(**kwargs):
captured_kwargs.update(kwargs)
return mocker.MagicMock()
mock_graph_exec.to_graph_execution_entry.side_effect = capture_to_entry
# Setup mocks
mock_validate = mocker.patch(
"backend.executor.utils.validate_and_construct_node_execution_input"
)
mock_edb = mocker.patch("backend.executor.utils.execution_db")
mock_prisma = mocker.patch("backend.executor.utils.prisma")
mock_udb = mocker.patch("backend.executor.utils.user_db")
mock_gdb = mocker.patch("backend.executor.utils.graph_db")
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
mock_get_event_bus = mocker.patch(
"backend.executor.utils.get_async_execution_event_bus"
)
# Setup returns - include nodes_to_skip in the tuple
mock_validate.return_value = (
mock_graph,
starting_nodes_input,
compiled_nodes_input_masks,
nodes_to_skip, # This should be passed through
)
mock_prisma.is_connected.return_value = True
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
mock_edb.update_graph_execution_stats = mocker.AsyncMock(
return_value=mock_graph_exec
)
mock_edb.update_node_execution_status_batch = mocker.AsyncMock()
mock_user = mocker.MagicMock()
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
mock_get_queue.return_value = mocker.AsyncMock()
mock_get_event_bus.return_value = mocker.MagicMock(publish=mocker.AsyncMock())
# Call the function
await add_graph_execution(
graph_id=graph_id,
user_id=user_id,
inputs=inputs,
graph_version=graph_version,
)
# Verify nodes_to_skip was passed to to_graph_execution_entry
assert "nodes_to_skip" in captured_kwargs
assert captured_kwargs["nodes_to_skip"] == nodes_to_skip

View File

@@ -658,6 +658,14 @@ class Secrets(UpdateTrackingModel["Secrets"], BaseSettings):
ayrshare_api_key: str = Field(default="", description="Ayrshare API Key")
ayrshare_jwt_key: str = Field(default="", description="Ayrshare private Key")
# Langfuse prompt management
langfuse_public_key: str = Field(default="", description="Langfuse public key")
langfuse_secret_key: str = Field(default="", description="Langfuse secret key")
langfuse_host: str = Field(
default="https://cloud.langfuse.com", description="Langfuse host URL"
)
# Add more secret fields as needed
model_config = SettingsConfigDict(
env_file=".env",

View File

@@ -1,227 +0,0 @@
#!/usr/bin/env python3
"""
Generate a lightweight stub for prisma/types.py that collapses all exported
symbols to Any. This prevents Pyright from spending time/budget on Prisma's
query DSL types while keeping runtime behavior unchanged.
Usage:
poetry run gen-prisma-stub
This script automatically finds the prisma package location and generates
the types.pyi stub file in the same directory as types.py.
"""
from __future__ import annotations
import ast
import importlib.util
import sys
from pathlib import Path
from typing import Iterable, Set
def _iter_assigned_names(target: ast.expr) -> Iterable[str]:
"""Extract names from assignment targets (handles tuple unpacking)."""
if isinstance(target, ast.Name):
yield target.id
elif isinstance(target, (ast.Tuple, ast.List)):
for elt in target.elts:
yield from _iter_assigned_names(elt)
def _is_private(name: str) -> bool:
"""Check if a name is private (starts with _ but not __)."""
return name.startswith("_") and not name.startswith("__")
def _is_safe_type_alias(node: ast.Assign) -> bool:
"""Check if an assignment is a safe type alias that shouldn't be stubbed.
Safe types are:
- Literal types (don't cause type budget issues)
- Simple type references (SortMode, SortOrder, etc.)
- TypeVar definitions
"""
if not node.value:
return False
# Check if it's a Subscript (like Literal[...], Union[...], TypeVar[...])
if isinstance(node.value, ast.Subscript):
# Get the base type name
if isinstance(node.value.value, ast.Name):
base_name = node.value.value.id
# Literal types are safe
if base_name == "Literal":
return True
# TypeVar is safe
if base_name == "TypeVar":
return True
elif isinstance(node.value.value, ast.Attribute):
# Handle typing_extensions.Literal etc.
if node.value.value.attr == "Literal":
return True
# Check if it's a simple Name reference (like SortMode = _types.SortMode)
if isinstance(node.value, ast.Attribute):
return True
# Check if it's a Call (like TypeVar(...))
if isinstance(node.value, ast.Call):
if isinstance(node.value.func, ast.Name):
if node.value.func.id == "TypeVar":
return True
return False
def collect_top_level_symbols(
tree: ast.Module, source_lines: list[str]
) -> tuple[Set[str], Set[str], list[str], Set[str]]:
"""Collect all top-level symbols from an AST module.
Returns:
Tuple of (class_names, function_names, safe_variable_sources, unsafe_variable_names)
safe_variable_sources contains the actual source code lines for safe variables
"""
classes: Set[str] = set()
functions: Set[str] = set()
safe_variable_sources: list[str] = []
unsafe_variables: Set[str] = set()
for node in tree.body:
if isinstance(node, ast.ClassDef):
if not _is_private(node.name):
classes.add(node.name)
elif isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef)):
if not _is_private(node.name):
functions.add(node.name)
elif isinstance(node, ast.Assign):
is_safe = _is_safe_type_alias(node)
names = []
for t in node.targets:
for n in _iter_assigned_names(t):
if not _is_private(n):
names.append(n)
if names:
if is_safe:
# Extract the source code for this assignment
start_line = node.lineno - 1 # 0-indexed
end_line = node.end_lineno if node.end_lineno else node.lineno
source = "\n".join(source_lines[start_line:end_line])
safe_variable_sources.append(source)
else:
unsafe_variables.update(names)
elif isinstance(node, ast.AnnAssign) and node.target:
# Annotated assignments are always stubbed
for n in _iter_assigned_names(node.target):
if not _is_private(n):
unsafe_variables.add(n)
return classes, functions, safe_variable_sources, unsafe_variables
def find_prisma_types_path() -> Path:
"""Find the prisma types.py file in the installed package."""
spec = importlib.util.find_spec("prisma")
if spec is None or spec.origin is None:
raise RuntimeError("Could not find prisma package. Is it installed?")
prisma_dir = Path(spec.origin).parent
types_path = prisma_dir / "types.py"
if not types_path.exists():
raise RuntimeError(f"prisma/types.py not found at {types_path}")
return types_path
def generate_stub(src_path: Path, stub_path: Path) -> int:
"""Generate the .pyi stub file from the source types.py."""
code = src_path.read_text(encoding="utf-8", errors="ignore")
source_lines = code.splitlines()
tree = ast.parse(code, filename=str(src_path))
classes, functions, safe_variable_sources, unsafe_variables = (
collect_top_level_symbols(tree, source_lines)
)
header = """\
# -*- coding: utf-8 -*-
# Auto-generated stub file - DO NOT EDIT
# Generated by gen_prisma_types_stub.py
#
# This stub intentionally collapses complex Prisma query DSL types to Any.
# Prisma's generated types can explode Pyright's type inference budgets
# on large schemas. We collapse them to Any so the rest of the codebase
# can remain strongly typed while keeping runtime behavior unchanged.
#
# Safe types (Literal, TypeVar, simple references) are preserved from the
# original types.py to maintain proper type checking where possible.
from __future__ import annotations
from typing import Any
from typing_extensions import Literal
# Re-export commonly used typing constructs that may be imported from this module
from typing import TYPE_CHECKING, TypeVar, Generic, Union, Optional, List, Dict
# Base type alias for stubbed Prisma types - allows any dict structure
_PrismaDict = dict[str, Any]
"""
lines = [header]
# Include safe variable definitions (Literal types, TypeVars, etc.)
lines.append("# Safe type definitions preserved from original types.py")
for source in safe_variable_sources:
lines.append(source)
lines.append("")
# Stub all classes and unsafe variables uniformly as dict[str, Any] aliases
# This allows:
# 1. Use in type annotations: x: SomeType
# 2. Constructor calls: SomeType(...)
# 3. Dict literal assignments: x: SomeType = {...}
lines.append(
"# Stubbed types (collapsed to dict[str, Any] to prevent type budget exhaustion)"
)
all_stubbed = sorted(classes | unsafe_variables)
for name in all_stubbed:
lines.append(f"{name} = _PrismaDict")
lines.append("")
# Stub functions
for name in sorted(functions):
lines.append(f"def {name}(*args: Any, **kwargs: Any) -> Any: ...")
lines.append("")
stub_path.write_text("\n".join(lines), encoding="utf-8")
return (
len(classes)
+ len(functions)
+ len(safe_variable_sources)
+ len(unsafe_variables)
)
def main() -> None:
"""Main entry point."""
try:
types_path = find_prisma_types_path()
stub_path = types_path.with_suffix(".pyi")
print(f"Found prisma types.py at: {types_path}")
print(f"Generating stub at: {stub_path}")
num_symbols = generate_stub(types_path, stub_path)
print(f"Generated {stub_path.name} with {num_symbols} Any-typed symbols")
except Exception as e:
print(f"Error: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -25,9 +25,6 @@ def run(*command: str) -> None:
def lint():
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
run("gen-prisma-stub")
lint_step_args: list[list[str]] = [
["ruff", "check", *TARGET_DIRS, "--exit-zero"],
["ruff", "format", "--diff", "--check", LIBS_DIR],
@@ -52,6 +49,4 @@ def format():
run("ruff", "format", LIBS_DIR)
run("isort", "--profile", "black", BACKEND_DIR)
run("black", BACKEND_DIR)
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
run("gen-prisma-stub")
run("pyright", *TARGET_DIRS)

View File

@@ -1,6 +1,3 @@
-- DropIndex
DROP INDEX "StoreListingVersion_storeListingId_version_key";
-- CreateTable
CREATE TABLE "UserBusinessUnderstanding" (
"id" TEXT NOT NULL,

View File

@@ -0,0 +1,41 @@
-- Migration: Add pgvector extension and StoreListingEmbedding table
-- This enables hybrid search combining semantic (embedding) and lexical (tsvector) search
-- Enable pgvector extension for vector similarity search
CREATE EXTENSION IF NOT EXISTS vector;
-- Create table to store embeddings for store listing versions
CREATE TABLE "StoreListingEmbedding" (
"id" TEXT NOT NULL DEFAULT gen_random_uuid(),
"storeListingVersionId" TEXT NOT NULL,
"embedding" vector(1536), -- OpenAI text-embedding-3-small produces 1536 dimensions
"searchableText" TEXT, -- The text that was embedded (for debugging/recomputation)
"contentHash" TEXT, -- MD5 hash of searchable text for change detection
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
CONSTRAINT "StoreListingEmbedding_pkey" PRIMARY KEY ("id")
);
-- Unique constraint: one embedding per listing version
CREATE UNIQUE INDEX "StoreListingEmbedding_storeListingVersionId_key"
ON "StoreListingEmbedding"("storeListingVersionId");
-- HNSW index for fast approximate nearest neighbor search
-- Using cosine distance (vector_cosine_ops) which is standard for text embeddings
CREATE INDEX "StoreListingEmbedding_embedding_idx"
ON "StoreListingEmbedding"
USING hnsw ("embedding" vector_cosine_ops);
-- Index on content hash for fast lookup during change detection
CREATE INDEX "StoreListingEmbedding_contentHash_idx"
ON "StoreListingEmbedding"("contentHash");
-- Foreign key to StoreListingVersion with CASCADE delete
-- When a listing version is deleted, its embedding is automatically removed
ALTER TABLE "StoreListingEmbedding"
ADD CONSTRAINT "StoreListingEmbedding_storeListingVersionId_fkey"
FOREIGN KEY ("storeListingVersionId")
REFERENCES "StoreListingVersion"("id")
ON DELETE CASCADE
ON UPDATE CASCADE;

View File

@@ -0,0 +1,5 @@
-- DropIndex
DROP INDEX "StoreListingEmbedding_embedding_idx";
-- AlterTable
ALTER TABLE "StoreListingEmbedding" ALTER COLUMN "id" DROP DEFAULT;

View File

@@ -33,6 +33,7 @@ html2text = "^2024.2.26"
jinja2 = "^3.1.6"
jsonref = "^1.1.0"
jsonschema = "^4.25.0"
langfuse = "^2.0.0"
launchdarkly-server-sdk = "^9.12.0"
mem0ai = "^0.1.115"
moviepy = "^2.1.2"
@@ -117,7 +118,6 @@ lint = "linter:lint"
test = "run_tests:test"
load-store-agents = "test.load_store_agents:run"
export-api-schema = "backend.cli.generate_openapi_json:main"
gen-prisma-stub = "gen_prisma_types_stub:main"
oauth-tool = "backend.cli.oauth_tool:cli"
[tool.isort]

View File

@@ -1,14 +1,15 @@
datasource db {
provider = "postgresql"
url = env("DATABASE_URL")
directUrl = env("DIRECT_URL")
provider = "postgresql"
url = env("DATABASE_URL")
directUrl = env("DIRECT_URL")
extensions = [pgvector(map: "vector", schema: "public")]
}
generator client {
provider = "prisma-client-py"
recursive_type_depth = -1
interface = "asyncio"
previewFeatures = ["views", "fullTextSearch"]
previewFeatures = ["views", "fullTextSearch", "postgresqlExtensions"]
partial_type_generator = "backend/data/partial_types.py"
}
@@ -990,6 +991,10 @@ model StoreListingVersion {
// Reviews for this specific version
Reviews StoreListingReview[]
// Embedding for semantic search (one-to-one)
Embedding StoreListingEmbedding?
@@unique([storeListingId, version])
@@index([storeListingId, submissionStatus, isAvailable])
@@index([submissionStatus])
@@index([reviewerId])
@@ -1014,6 +1019,24 @@ model StoreListingReview {
@@index([reviewByUserId])
}
// Stores vector embeddings for semantic search of store listings
// Uses pgvector extension for efficient similarity search
model StoreListingEmbedding {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @default(now()) @updatedAt
storeListingVersionId String @unique
StoreListingVersion StoreListingVersion @relation(fields: [storeListingVersionId], references: [id], onDelete: Cascade)
// pgvector embedding - stored as Unsupported type since Prisma doesn't natively support vector
embedding Unsupported("vector(1536)")?
searchableText String? // The text that was embedded (for debugging/recomputation)
contentHash String? // MD5 hash for change detection
@@index([contentHash])
}
enum SubmissionStatus {
DRAFT // Being prepared, not yet submitted
PENDING // Submitted, awaiting review

View File

@@ -2,7 +2,6 @@
"created_at": "2025-09-04T13:37:00",
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},

View File

@@ -2,7 +2,6 @@
{
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},

View File

@@ -4,7 +4,6 @@
"id": "test-agent-1",
"graph_id": "test-agent-1",
"graph_version": 1,
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
"image_url": null,
"creator_name": "Test Creator",
"creator_image_url": "",
@@ -42,7 +41,6 @@
"id": "test-agent-2",
"graph_id": "test-agent-2",
"graph_version": 1,
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
"image_url": null,
"creator_name": "Test Creator",
"creator_image_url": "",

View File

@@ -1,7 +1,6 @@
{
"submissions": [
{
"listing_id": "test-listing-id",
"agent_id": "test-agent-id",
"agent_version": 1,
"name": "Test Agent",

View File

@@ -37,7 +37,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: migrate
command: ["sh", "-c", "poetry run prisma generate && poetry run gen-prisma-stub && poetry run prisma migrate deploy"]
command: ["sh", "-c", "poetry run prisma generate && poetry run prisma migrate deploy"]
develop:
watch:
- path: ./

View File

@@ -54,7 +54,7 @@
"@radix-ui/react-tooltip": "1.2.8",
"@rjsf/core": "6.1.2",
"@rjsf/utils": "6.1.2",
"@rjsf/validator-ajv8": "6.1.2",
"@rjsf/validator-ajv8": "5.24.13",
"@sentry/nextjs": "10.27.0",
"@supabase/ssr": "0.7.0",
"@supabase/supabase-js": "2.78.0",
@@ -92,6 +92,7 @@
"react-currency-input-field": "4.0.3",
"react-day-picker": "9.11.1",
"react-dom": "18.3.1",
"react-drag-drop-files": "2.4.0",
"react-hook-form": "7.66.0",
"react-icons": "5.5.0",
"react-markdown": "9.0.3",

File diff suppressed because it is too large Load Diff

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@@ -1,6 +1,6 @@
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInputs";
import { CredentialsMetaInput } from "@/app/api/__generated__/models/credentialsMetaInput";
import { GraphMeta } from "@/app/api/__generated__/models/graphMeta";
import { CredentialsInput } from "@/components/contextual/CredentialsInputs/CredentialsInputs";
import { useState } from "react";
import { getSchemaDefaultCredentials } from "../../helpers";
import { areAllCredentialsSet, getCredentialFields } from "./helpers";

View File

@@ -1,12 +1,12 @@
"use client";
import { RunAgentInputs } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/RunAgentInputs/RunAgentInputs";
import {
Card,
CardContent,
CardHeader,
CardTitle,
} from "@/components/__legacy__/ui/card";
import { RunAgentInputs } from "@/components/contextual/RunAgentInputs/RunAgentInputs";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { CircleNotchIcon } from "@phosphor-icons/react/dist/ssr";
import { Play } from "lucide-react";

View File

@@ -0,0 +1,48 @@
"use client";
import { ChatDrawer } from "@/components/contextual/Chat/ChatDrawer";
import { usePathname } from "next/navigation";
import { Children, ReactNode } from "react";
interface PlatformLayoutContentProps {
children: ReactNode;
}
export function PlatformLayoutContent({
children,
}: PlatformLayoutContentProps) {
const pathname = usePathname();
const isAuthPage =
pathname?.includes("/login") || pathname?.includes("/signup");
// Extract Navbar, AdminImpersonationBanner, and page content from children
const childrenArray = Children.toArray(children);
const navbar = childrenArray[0];
const adminBanner = childrenArray[1];
const pageContent = childrenArray.slice(2);
// For login/signup pages, use a simpler layout that doesn't interfere with centering
if (isAuthPage) {
return (
<main className="flex min-h-screen w-full flex-col">
{navbar}
{adminBanner}
<section className="flex-1">{pageContent}</section>
{/* ChatDrawer must always be rendered to maintain consistent hook count */}
<ChatDrawer />
</main>
);
}
// For logged-in pages, use the drawer layout
return (
<main className="flex h-screen w-full flex-col overflow-hidden">
{navbar}
{adminBanner}
<section className="flex min-h-0 flex-1 overflow-auto">
{pageContent}
</section>
<ChatDrawer />
</main>
);
}

View File

@@ -8,7 +8,7 @@ import { AuthCard } from "@/components/auth/AuthCard";
import { Text } from "@/components/atoms/Text/Text";
import { Button } from "@/components/atoms/Button/Button";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInputs";
import { CredentialsInput } from "@/components/contextual/CredentialsInputs/CredentialsInputs";
import type {
BlockIOCredentialsSubSchema,
CredentialsMetaInput,

View File

@@ -1,11 +1,6 @@
import { BlockUIType } from "@/app/(platform)/build/components/types";
import { useGraphStore } from "@/app/(platform)/build/stores/graphStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import {
globalRegistry,
OutputActions,
OutputItem,
} from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { Label } from "@/components/__legacy__/ui/label";
import { ScrollArea } from "@/components/__legacy__/ui/scroll-area";
import {
@@ -23,6 +18,11 @@ import {
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import {
globalRegistry,
OutputActions,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { BookOpenIcon } from "@phosphor-icons/react";
import { useMemo } from "react";
import { useShallow } from "zustand/react/shallow";

View File

@@ -66,7 +66,6 @@ export const RunInputDialog = ({
formContext={{
showHandles: false,
size: "large",
showOptionalToggle: false,
}}
/>
</div>

View File

@@ -66,7 +66,7 @@ export const useRunInputDialog = ({
if (isCredentialFieldSchema(fieldSchema)) {
dynamicUiSchema[fieldName] = {
...dynamicUiSchema[fieldName],
"ui:field": "custom/credential_field",
"ui:field": "credentials",
};
}
});
@@ -76,18 +76,12 @@ export const useRunInputDialog = ({
}, [credentialsSchema]);
const handleManualRun = async () => {
// Filter out incomplete credentials (those without a valid id)
// RJSF auto-populates const values (provider, type) but not id field
const validCredentials = Object.fromEntries(
Object.entries(credentialValues).filter(([_, cred]) => cred && cred.id),
);
await executeGraph({
graphId: flowID ?? "",
graphVersion: flowVersion || null,
data: {
inputs: inputValues,
credentials_inputs: validCredentials,
credentials_inputs: credentialValues,
source: "builder",
},
});

View File

@@ -97,9 +97,6 @@ export const Flow = () => {
onConnect={onConnect}
onEdgesChange={onEdgesChange}
onNodeDragStop={onNodeDragStop}
onNodeContextMenu={(event) => {
event.preventDefault();
}}
maxZoom={2}
minZoom={0.1}
onDragOver={onDragOver}

View File

@@ -1,25 +1,24 @@
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
import { BlockCost } from "@/app/api/__generated__/models/blockCost";
import { BlockInfoCategoriesItem } from "@/app/api/__generated__/models/blockInfoCategoriesItem";
import { NodeExecutionResult } from "@/app/api/__generated__/models/nodeExecutionResult";
import { NodeModelMetadata } from "@/app/api/__generated__/models/nodeModelMetadata";
import { preprocessInputSchema } from "@/components/renderers/InputRenderer/utils/input-schema-pre-processor";
import { cn } from "@/lib/utils";
import { RJSFSchema } from "@rjsf/utils";
import { NodeProps, Node as XYNode } from "@xyflow/react";
import React from "react";
import { Node as XYNode, NodeProps } from "@xyflow/react";
import { RJSFSchema } from "@rjsf/utils";
import { BlockUIType } from "../../../types";
import { FormCreator } from "../FormCreator";
import { OutputHandler } from "../OutputHandler";
import { AyrshareConnectButton } from "./components/AyrshareConnectButton";
import { NodeAdvancedToggle } from "./components/NodeAdvancedToggle";
import { NodeContainer } from "./components/NodeContainer";
import { NodeExecutionBadge } from "./components/NodeExecutionBadge";
import { NodeHeader } from "./components/NodeHeader";
import { NodeDataRenderer } from "./components/NodeOutput/NodeOutput";
import { NodeRightClickMenu } from "./components/NodeRightClickMenu";
import { StickyNoteBlock } from "./components/StickyNoteBlock";
import { BlockInfoCategoriesItem } from "@/app/api/__generated__/models/blockInfoCategoriesItem";
import { BlockCost } from "@/app/api/__generated__/models/blockCost";
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
import { NodeExecutionResult } from "@/app/api/__generated__/models/nodeExecutionResult";
import { NodeContainer } from "./components/NodeContainer";
import { NodeHeader } from "./components/NodeHeader";
import { FormCreator } from "../FormCreator";
import { preprocessInputSchema } from "@/components/renderers/InputRenderer/utils/input-schema-pre-processor";
import { OutputHandler } from "../OutputHandler";
import { NodeAdvancedToggle } from "./components/NodeAdvancedToggle";
import { NodeDataRenderer } from "./components/NodeOutput/NodeOutput";
import { NodeExecutionBadge } from "./components/NodeExecutionBadge";
import { cn } from "@/lib/utils";
import { WebhookDisclaimer } from "./components/WebhookDisclaimer";
import { AyrshareConnectButton } from "./components/AyrshareConnectButton";
import { NodeModelMetadata } from "@/app/api/__generated__/models/nodeModelMetadata";
export type CustomNodeData = {
hardcodedValues: {
@@ -89,7 +88,7 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
// Currently all blockTypes design are similar - that's why i am using the same component for all of them
// If in future - if we need some drastic change in some blockTypes design - we can create separate components for them
const node = (
return (
<NodeContainer selected={selected} nodeId={nodeId} hasErrors={hasErrors}>
<div className="rounded-xlarge bg-white">
<NodeHeader data={data} nodeId={nodeId} />
@@ -118,15 +117,6 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
<NodeExecutionBadge nodeId={nodeId} />
</NodeContainer>
);
return (
<NodeRightClickMenu
nodeId={nodeId}
subGraphID={data.hardcodedValues?.graph_id}
>
{node}
</NodeRightClickMenu>
);
},
);

View File

@@ -1,31 +1,26 @@
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { Separator } from "@/components/__legacy__/ui/separator";
import {
DropdownMenu,
DropdownMenuContent,
DropdownMenuItem,
DropdownMenuTrigger,
} from "@/components/molecules/DropdownMenu/DropdownMenu";
import {
SecondaryDropdownMenuContent,
SecondaryDropdownMenuItem,
SecondaryDropdownMenuSeparator,
} from "@/components/molecules/SecondaryMenu/SecondaryMenu";
import {
ArrowSquareOutIcon,
CopyIcon,
DotsThreeOutlineVerticalIcon,
TrashIcon,
} from "@phosphor-icons/react";
import { DotsThreeOutlineVerticalIcon } from "@phosphor-icons/react";
import { Copy, Trash2, ExternalLink } from "lucide-react";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useReactFlow } from "@xyflow/react";
type Props = {
export const NodeContextMenu = ({
nodeId,
subGraphID,
}: {
nodeId: string;
subGraphID?: string;
};
export const NodeContextMenu = ({ nodeId, subGraphID }: Props) => {
}) => {
const { deleteElements } = useReactFlow();
function handleCopy() {
const handleCopy = () => {
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({
...node,
@@ -35,47 +30,47 @@ export const NodeContextMenu = ({ nodeId, subGraphID }: Props) => {
useCopyPasteStore.getState().copySelectedNodes();
useCopyPasteStore.getState().pasteNodes();
}
};
function handleDelete() {
const handleDelete = () => {
deleteElements({ nodes: [{ id: nodeId }] });
}
};
return (
<DropdownMenu>
<DropdownMenuTrigger className="py-2">
<DotsThreeOutlineVerticalIcon size={16} weight="fill" />
</DropdownMenuTrigger>
<SecondaryDropdownMenuContent side="right" align="start">
<SecondaryDropdownMenuItem onClick={handleCopy}>
<CopyIcon size={20} className="mr-2 dark:text-gray-100" />
<span className="dark:text-gray-100">Copy</span>
</SecondaryDropdownMenuItem>
<SecondaryDropdownMenuSeparator />
<DropdownMenuContent
side="right"
align="start"
className="rounded-xlarge"
>
<DropdownMenuItem onClick={handleCopy} className="hover:rounded-xlarge">
<Copy className="mr-2 h-4 w-4" />
Copy Node
</DropdownMenuItem>
{subGraphID && (
<>
<SecondaryDropdownMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
>
<ArrowSquareOutIcon
size={20}
className="mr-2 dark:text-gray-100"
/>
<span className="dark:text-gray-100">Open agent</span>
</SecondaryDropdownMenuItem>
<SecondaryDropdownMenuSeparator />
</>
<DropdownMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
className="hover:rounded-xlarge"
>
<ExternalLink className="mr-2 h-4 w-4" />
Open Agent
</DropdownMenuItem>
)}
<SecondaryDropdownMenuItem variant="destructive" onClick={handleDelete}>
<TrashIcon
size={20}
className="mr-2 text-red-500 dark:text-red-400"
/>
<span className="dark:text-red-400">Delete</span>
</SecondaryDropdownMenuItem>
</SecondaryDropdownMenuContent>
<Separator className="my-2" />
<DropdownMenuItem
onClick={handleDelete}
className="text-red-600 hover:rounded-xlarge"
>
<Trash2 className="mr-2 h-4 w-4" />
Delete
</DropdownMenuItem>
</DropdownMenuContent>
</DropdownMenu>
);
};

View File

@@ -1,24 +1,25 @@
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { Text } from "@/components/atoms/Text/Text";
import { beautifyString, cn } from "@/lib/utils";
import { NodeCost } from "./NodeCost";
import { NodeBadges } from "./NodeBadges";
import { NodeContextMenu } from "./NodeContextMenu";
import { CustomNodeData } from "../CustomNode";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useState } from "react";
import {
Tooltip,
TooltipContent,
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { beautifyString, cn } from "@/lib/utils";
import { useState } from "react";
import { CustomNodeData } from "../CustomNode";
import { NodeBadges } from "./NodeBadges";
import { NodeContextMenu } from "./NodeContextMenu";
import { NodeCost } from "./NodeCost";
type Props = {
export const NodeHeader = ({
data,
nodeId,
}: {
data: CustomNodeData;
nodeId: string;
};
export const NodeHeader = ({ data, nodeId }: Props) => {
}) => {
const updateNodeData = useNodeStore((state) => state.updateNodeData);
const title = (data.metadata?.customized_name as string) || data.title;
const [isEditingTitle, setIsEditingTitle] = useState(false);

View File

@@ -1,7 +1,7 @@
"use client";
import type { OutputMetadata } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { globalRegistry } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import { globalRegistry } from "@/components/contextual/OutputRenderers";
export const TextRenderer: React.FC<{
value: any;

View File

@@ -1,7 +1,3 @@
import {
OutputActions,
OutputItem,
} from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { ScrollArea } from "@/components/__legacy__/ui/scroll-area";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
@@ -11,6 +7,10 @@ import {
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import {
OutputActions,
OutputItem,
} from "@/components/contextual/OutputRenderers";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { beautifyString } from "@/lib/utils";
import {
@@ -151,7 +151,7 @@ export const NodeDataViewer: FC<NodeDataViewerProps> = ({
</div>
<div className="flex justify-end pt-4">
{outputItems.length > 1 && (
{outputItems.length > 0 && (
<OutputActions
items={outputItems.map((item) => ({
value: item.value,

View File

@@ -1,6 +1,6 @@
import type { OutputMetadata } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { globalRegistry } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import { downloadOutputs } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers/utils/download";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import { globalRegistry } from "@/components/contextual/OutputRenderers";
import { downloadOutputs } from "@/components/contextual/OutputRenderers/utils/download";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { beautifyString } from "@/lib/utils";
import React, { useMemo, useState } from "react";

View File

@@ -1,104 +0,0 @@
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import {
SecondaryMenuContent,
SecondaryMenuItem,
SecondaryMenuSeparator,
} from "@/components/molecules/SecondaryMenu/SecondaryMenu";
import { ArrowSquareOutIcon, CopyIcon, TrashIcon } from "@phosphor-icons/react";
import * as ContextMenu from "@radix-ui/react-context-menu";
import { useReactFlow } from "@xyflow/react";
import { useEffect, useRef } from "react";
import { CustomNode } from "../CustomNode";
type Props = {
nodeId: string;
subGraphID?: string;
children: React.ReactNode;
};
const DOUBLE_CLICK_TIMEOUT = 300;
export function NodeRightClickMenu({ nodeId, subGraphID, children }: Props) {
const { deleteElements } = useReactFlow<CustomNode>();
const lastRightClickTime = useRef<number>(0);
const containerRef = useRef<HTMLDivElement>(null);
function copyNode() {
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({
...node,
selected: node.id === nodeId,
})),
}));
useCopyPasteStore.getState().copySelectedNodes();
useCopyPasteStore.getState().pasteNodes();
}
function deleteNode() {
deleteElements({ nodes: [{ id: nodeId }] });
}
useEffect(() => {
const container = containerRef.current;
if (!container) return;
function handleContextMenu(e: MouseEvent) {
const now = Date.now();
const timeSinceLastClick = now - lastRightClickTime.current;
if (timeSinceLastClick < DOUBLE_CLICK_TIMEOUT) {
e.stopImmediatePropagation();
lastRightClickTime.current = 0;
return;
}
lastRightClickTime.current = now;
}
container.addEventListener("contextmenu", handleContextMenu, true);
return () => {
container.removeEventListener("contextmenu", handleContextMenu, true);
};
}, []);
return (
<ContextMenu.Root>
<ContextMenu.Trigger asChild>
<div ref={containerRef}>{children}</div>
</ContextMenu.Trigger>
<SecondaryMenuContent>
<SecondaryMenuItem onSelect={copyNode}>
<CopyIcon size={20} className="mr-2 dark:text-gray-100" />
<span className="dark:text-gray-100">Copy</span>
</SecondaryMenuItem>
<SecondaryMenuSeparator />
{subGraphID && (
<>
<SecondaryMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
>
<ArrowSquareOutIcon
size={20}
className="mr-2 dark:text-gray-100"
/>
<span className="dark:text-gray-100">Open agent</span>
</SecondaryMenuItem>
<SecondaryMenuSeparator />
</>
)}
<SecondaryMenuItem variant="destructive" onSelect={deleteNode}>
<TrashIcon
size={20}
className="mr-2 text-red-500 dark:text-red-400"
/>
<span className="dark:text-red-400">Delete</span>
</SecondaryMenuItem>
</SecondaryMenuContent>
</ContextMenu.Root>
);
}

View File

@@ -1,10 +1,10 @@
import { Alert, AlertDescription } from "@/components/molecules/Alert/Alert";
import { Text } from "@/components/atoms/Text/Text";
import Link from "next/link";
import { useGetV2GetLibraryAgentByGraphId } from "@/app/api/__generated__/endpoints/library/library";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { useQueryStates, parseAsString } from "nuqs";
import { isValidUUID } from "@/app/(platform)/chat/helpers";
import { Text } from "@/components/atoms/Text/Text";
import { isValidUUID } from "@/components/contextual/Chat/helpers";
import { Alert, AlertDescription } from "@/components/molecules/Alert/Alert";
import Link from "next/link";
import { parseAsString, useQueryStates } from "nuqs";
export const WebhookDisclaimer = ({ nodeId }: { nodeId: string }) => {
const [{ flowID }] = useQueryStates({

View File

@@ -1,6 +1,6 @@
export const uiSchema = {
credentials: {
"ui:field": "custom/credential_field",
"ui:field": "credentials",
provider: { "ui:widget": "hidden" },
type: { "ui:widget": "hidden" },
id: { "ui:autofocus": true },

View File

@@ -1,57 +0,0 @@
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
import { FilterChip } from "../FilterChip";
import { categories } from "./constants";
import { FilterSheet } from "../FilterSheet/FilterSheet";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export const BlockMenuFilters = () => {
const {
filters,
addFilter,
removeFilter,
categoryCounts,
creators,
addCreator,
removeCreator,
} = useBlockMenuStore();
const handleFilterClick = (filter: GetV2BuilderSearchFilterAnyOfItem) => {
if (filters.includes(filter)) {
removeFilter(filter);
} else {
addFilter(filter);
}
};
const handleCreatorClick = (creator: string) => {
if (creators.includes(creator)) {
removeCreator(creator);
} else {
addCreator(creator);
}
};
return (
<div className="flex flex-wrap gap-2">
<FilterSheet categories={categories} />
{creators.length > 0 &&
creators.map((creator) => (
<FilterChip
key={creator}
name={"Created by " + creator.slice(0, 10) + "..."}
selected={creators.includes(creator)}
onClick={() => handleCreatorClick(creator)}
/>
))}
{categories.map((category) => (
<FilterChip
key={category.key}
name={category.name}
selected={filters.includes(category.key)}
onClick={() => handleFilterClick(category.key)}
number={categoryCounts[category.key] ?? 0}
/>
))}
</div>
);
};

View File

@@ -1,15 +0,0 @@
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
import { CategoryKey } from "./types";
export const categories: Array<{ key: CategoryKey; name: string }> = [
{ key: GetV2BuilderSearchFilterAnyOfItem.blocks, name: "Blocks" },
{
key: GetV2BuilderSearchFilterAnyOfItem.integrations,
name: "Integrations",
},
{
key: GetV2BuilderSearchFilterAnyOfItem.marketplace_agents,
name: "Marketplace agents",
},
{ key: GetV2BuilderSearchFilterAnyOfItem.my_agents, name: "My agents" },
];

View File

@@ -1,26 +0,0 @@
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export type DefaultStateType =
| "suggestion"
| "all_blocks"
| "input_blocks"
| "action_blocks"
| "output_blocks"
| "integrations"
| "marketplace_agents"
| "my_agents";
export type CategoryKey = GetV2BuilderSearchFilterAnyOfItem;
export interface Filters {
categories: {
blocks: boolean;
integrations: boolean;
marketplace_agents: boolean;
my_agents: boolean;
providers: boolean;
};
createdBy: string[];
}
export type CategoryCounts = Record<CategoryKey, number>;

View File

@@ -1,14 +1,111 @@
import { Text } from "@/components/atoms/Text/Text";
import { useBlockMenuSearch } from "./useBlockMenuSearch";
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
import { LoadingSpinner } from "@/components/__legacy__/ui/loading";
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
import { MarketplaceAgentBlock } from "../MarketplaceAgentBlock";
import { Block } from "../Block";
import { UGCAgentBlock } from "../UGCAgentBlock";
import { getSearchItemType } from "./helper";
import { useBlockMenuStore } from "../../../../stores/blockMenuStore";
import { blockMenuContainerStyle } from "../style";
import { BlockMenuFilters } from "../BlockMenuFilters/BlockMenuFilters";
import { BlockMenuSearchContent } from "../BlockMenuSearchContent/BlockMenuSearchContent";
import { cn } from "@/lib/utils";
import { NoSearchResult } from "../NoSearchResult";
export const BlockMenuSearch = () => {
const {
searchResults,
isFetchingNextPage,
fetchNextPage,
hasNextPage,
searchLoading,
handleAddLibraryAgent,
handleAddMarketplaceAgent,
addingLibraryAgentId,
addingMarketplaceAgentSlug,
} = useBlockMenuSearch();
const { searchQuery } = useBlockMenuStore();
if (searchLoading) {
return (
<div
className={cn(
blockMenuContainerStyle,
"flex items-center justify-center",
)}
>
<LoadingSpinner className="size-13" />
</div>
);
}
if (searchResults.length === 0) {
return <NoSearchResult />;
}
return (
<div className={blockMenuContainerStyle}>
<BlockMenuFilters />
<Text variant="body-medium">Search results</Text>
<BlockMenuSearchContent />
<InfiniteScroll
isFetchingNextPage={isFetchingNextPage}
fetchNextPage={fetchNextPage}
hasNextPage={hasNextPage}
loader={<LoadingSpinner className="size-13" />}
className="space-y-2.5"
>
{searchResults.map((item: SearchResponseItemsItem, index: number) => {
const { type, data } = getSearchItemType(item);
// backend give support to these 3 types only [right now] - we need to give support to integration and ai agent types in follow up PRs
switch (type) {
case "store_agent":
return (
<MarketplaceAgentBlock
key={index}
slug={data.slug}
highlightedText={searchQuery}
title={data.agent_name}
image_url={data.agent_image}
creator_name={data.creator}
number_of_runs={data.runs}
loading={addingMarketplaceAgentSlug === data.slug}
onClick={() =>
handleAddMarketplaceAgent({
creator_name: data.creator,
slug: data.slug,
})
}
/>
);
case "block":
return (
<Block
key={index}
title={data.name}
highlightedText={searchQuery}
description={data.description}
blockData={data}
/>
);
case "library_agent":
return (
<UGCAgentBlock
key={index}
title={data.name}
highlightedText={searchQuery}
image_url={data.image_url}
version={data.graph_version}
edited_time={data.updated_at}
isLoading={addingLibraryAgentId === data.id}
onClick={() => handleAddLibraryAgent(data)}
/>
);
default:
return null;
}
})}
</InfiniteScroll>
</div>
);
};

View File

@@ -23,19 +23,9 @@ import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { useToast } from "@/components/molecules/Toast/use-toast";
import * as Sentry from "@sentry/nextjs";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export const useBlockMenuSearchContent = () => {
const {
searchQuery,
searchId,
setSearchId,
filters,
setCreatorsList,
creators,
setCategoryCounts,
} = useBlockMenuStore();
export const useBlockMenuSearch = () => {
const { searchQuery, searchId, setSearchId } = useBlockMenuStore();
const { toast } = useToast();
const { addAgentToBuilder, addLibraryAgentToBuilder } =
useAddAgentToBuilder();
@@ -67,8 +57,6 @@ export const useBlockMenuSearchContent = () => {
page_size: 8,
search_query: searchQuery,
search_id: searchId,
filter: filters.length > 0 ? filters : undefined,
by_creator: creators.length > 0 ? creators : undefined,
},
{
query: { getNextPageParam: getPaginationNextPageNumber },
@@ -110,26 +98,6 @@ export const useBlockMenuSearchContent = () => {
}
}, [searchQueryData, searchId, setSearchId]);
// from all the results, we need to get all the unique creators
useEffect(() => {
if (!searchQueryData?.pages?.length) {
return;
}
const latestData = okData(searchQueryData.pages.at(-1));
setCategoryCounts(
(latestData?.total_items as Record<
GetV2BuilderSearchFilterAnyOfItem,
number
>) || {
blocks: 0,
integrations: 0,
marketplace_agents: 0,
my_agents: 0,
},
);
setCreatorsList(latestData?.items || []);
}, [searchQueryData]);
useEffect(() => {
if (searchId && !searchQuery) {
resetSearchSession();

View File

@@ -1,108 +0,0 @@
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
import { getSearchItemType } from "./helper";
import { MarketplaceAgentBlock } from "../MarketplaceAgentBlock";
import { Block } from "../Block";
import { UGCAgentBlock } from "../UGCAgentBlock";
import { useBlockMenuSearchContent } from "./useBlockMenuSearchContent";
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
import { cn } from "@/lib/utils";
import { blockMenuContainerStyle } from "../style";
import { NoSearchResult } from "../NoSearchResult";
export const BlockMenuSearchContent = () => {
const {
searchResults,
isFetchingNextPage,
fetchNextPage,
hasNextPage,
searchLoading,
handleAddLibraryAgent,
handleAddMarketplaceAgent,
addingLibraryAgentId,
addingMarketplaceAgentSlug,
} = useBlockMenuSearchContent();
const { searchQuery } = useBlockMenuStore();
if (searchLoading) {
return (
<div
className={cn(
blockMenuContainerStyle,
"flex items-center justify-center",
)}
>
<LoadingSpinner className="size-13" />
</div>
);
}
if (searchResults.length === 0) {
return <NoSearchResult />;
}
return (
<InfiniteScroll
isFetchingNextPage={isFetchingNextPage}
fetchNextPage={fetchNextPage}
hasNextPage={hasNextPage}
loader={<LoadingSpinner className="size-13" />}
className="space-y-2.5"
>
{searchResults.map((item: SearchResponseItemsItem, index: number) => {
const { type, data } = getSearchItemType(item);
// backend give support to these 3 types only [right now] - we need to give support to integration and ai agent types in follow up PRs
switch (type) {
case "store_agent":
return (
<MarketplaceAgentBlock
key={index}
slug={data.slug}
highlightedText={searchQuery}
title={data.agent_name}
image_url={data.agent_image}
creator_name={data.creator}
number_of_runs={data.runs}
loading={addingMarketplaceAgentSlug === data.slug}
onClick={() =>
handleAddMarketplaceAgent({
creator_name: data.creator,
slug: data.slug,
})
}
/>
);
case "block":
return (
<Block
key={index}
title={data.name}
highlightedText={searchQuery}
description={data.description}
blockData={data}
/>
);
case "library_agent":
return (
<UGCAgentBlock
key={index}
title={data.name}
highlightedText={searchQuery}
image_url={data.image_url}
version={data.graph_version}
edited_time={data.updated_at}
isLoading={addingLibraryAgentId === data.id}
onClick={() => handleAddLibraryAgent(data)}
/>
);
default:
return null;
}
})}
</InfiniteScroll>
);
};

View File

@@ -1,9 +1,7 @@
import { Button } from "@/components/__legacy__/ui/button";
import { cn } from "@/lib/utils";
import { XIcon } from "@phosphor-icons/react";
import { AnimatePresence, motion } from "framer-motion";
import React, { ButtonHTMLAttributes, useState } from "react";
import { X } from "lucide-react";
import React, { ButtonHTMLAttributes } from "react";
interface Props extends ButtonHTMLAttributes<HTMLButtonElement> {
selected?: boolean;
@@ -18,51 +16,39 @@ export const FilterChip: React.FC<Props> = ({
className,
...rest
}) => {
const [isHovered, setIsHovered] = useState(false);
return (
<AnimatePresence mode="wait">
<Button
onMouseEnter={() => setIsHovered(true)}
onMouseLeave={() => setIsHovered(false)}
<Button
className={cn(
"group w-fit space-x-1 rounded-[1.5rem] border border-zinc-300 bg-transparent px-[0.625rem] py-[0.375rem] shadow-none transition-transform duration-300 ease-in-out",
"hover:border-violet-500 hover:bg-transparent focus:ring-0 disabled:cursor-not-allowed",
selected && "border-0 bg-violet-700 hover:border",
className,
)}
{...rest}
>
<span
className={cn(
"group w-fit space-x-1 rounded-[1.5rem] border border-zinc-300 bg-transparent px-[0.625rem] py-[0.375rem] shadow-none",
"hover:border-violet-500 hover:bg-transparent focus:ring-0 disabled:cursor-not-allowed",
selected && "border-0 bg-violet-700 hover:border",
className,
"font-sans text-sm font-medium leading-[1.375rem] text-zinc-600 group-hover:text-zinc-600 group-disabled:text-zinc-400",
selected && "text-zinc-50",
)}
{...rest}
>
<span
className={cn(
"font-sans text-sm font-medium leading-[1.375rem] text-zinc-600 group-hover:text-zinc-600 group-disabled:text-zinc-400",
selected && "text-zinc-50",
{name}
</span>
{selected && (
<>
<span className="flex h-4 w-4 items-center justify-center rounded-full bg-zinc-50 transition-all duration-300 ease-in-out group-hover:hidden">
<X
className="h-3 w-3 rounded-full text-violet-700"
strokeWidth={2}
/>
</span>
{number !== undefined && (
<span className="hidden h-[1.375rem] items-center rounded-[1.25rem] bg-violet-700 p-[0.375rem] text-zinc-50 transition-all duration-300 ease-in-out animate-in fade-in zoom-in group-hover:flex">
{number > 100 ? "100+" : number}
</span>
)}
>
{name}
</span>
{selected && !isHovered && (
<motion.span
initial={{ opacity: 0.5, scale: 0.5, filter: "blur(20px)" }}
animate={{ opacity: 1, scale: 1, filter: "blur(0px)" }}
exit={{ opacity: 0.5, scale: 0.5, filter: "blur(20px)" }}
transition={{ duration: 0.3, type: "spring", bounce: 0.2 }}
className="flex h-4 w-4 items-center justify-center rounded-full bg-zinc-50"
>
<XIcon size={12} weight="bold" className="text-violet-700" />
</motion.span>
)}
{number !== undefined && isHovered && (
<motion.span
initial={{ opacity: 0.5, scale: 0.5, filter: "blur(10px)" }}
animate={{ opacity: 1, scale: 1, filter: "blur(0px)" }}
exit={{ opacity: 0.5, scale: 0.5, filter: "blur(10px)" }}
transition={{ duration: 0.3, type: "spring", bounce: 0.2 }}
className="flex h-[1.375rem] items-center rounded-[1.25rem] bg-violet-700 p-[0.375rem] text-zinc-50"
>
{number > 100 ? "100+" : number}
</motion.span>
)}
</Button>
</AnimatePresence>
</>
)}
</Button>
);
};

View File

@@ -1,156 +0,0 @@
import { FilterChip } from "../FilterChip";
import { cn } from "@/lib/utils";
import { CategoryKey } from "../BlockMenuFilters/types";
import { AnimatePresence, motion } from "framer-motion";
import { XIcon } from "@phosphor-icons/react";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { Separator } from "@/components/__legacy__/ui/separator";
import { Checkbox } from "@/components/__legacy__/ui/checkbox";
import { useFilterSheet } from "./useFilterSheet";
import { INITIAL_CREATORS_TO_SHOW } from "./constant";
export function FilterSheet({
categories,
}: {
categories: Array<{ key: CategoryKey; name: string }>;
}) {
const {
isOpen,
localCategories,
localCreators,
displayedCreatorsCount,
handleLocalCategoryChange,
handleToggleShowMoreCreators,
handleLocalCreatorChange,
handleClearFilters,
handleCloseButton,
handleApplyFilters,
hasLocalActiveFilters,
visibleCreators,
creators,
handleOpenFilters,
hasActiveFilters,
} = useFilterSheet();
return (
<div className="m-0 inline w-fit p-0">
<FilterChip
name={hasActiveFilters() ? "Edit filters" : "All filters"}
onClick={handleOpenFilters}
/>
<AnimatePresence>
{isOpen && (
<motion.div
className={cn(
"absolute bottom-2 left-2 top-2 z-20 w-3/4 max-w-[22.5rem] space-y-4 overflow-hidden rounded-[0.75rem] bg-white pb-4 shadow-[0_4px_12px_2px_rgba(0,0,0,0.1)]",
)}
initial={{ x: "-100%", filter: "blur(10px)" }}
animate={{ x: 0, filter: "blur(0px)" }}
exit={{ x: "-110%", filter: "blur(10px)" }}
transition={{ duration: 0.4, type: "spring", bounce: 0.2 }}
>
{/* Top section */}
<div className="flex items-center justify-between px-5 pt-4">
<Text variant="body">Filters</Text>
<Button
className="p-0"
variant="ghost"
size="icon"
onClick={handleCloseButton}
>
<XIcon size={20} />
</Button>
</div>
<Separator className="h-[1px] w-full text-zinc-300" />
{/* Category section */}
<div className="space-y-4 px-5">
<Text variant="large">Categories</Text>
<div className="space-y-2">
{categories.map((category) => (
<div
key={category.key}
className="flex items-center space-x-2"
>
<Checkbox
id={category.key}
checked={localCategories.includes(category.key)}
onCheckedChange={() =>
handleLocalCategoryChange(category.key)
}
className="border border-[#D4D4D4] shadow-none data-[state=checked]:border-none data-[state=checked]:bg-violet-700 data-[state=checked]:text-white"
/>
<label
htmlFor={category.key}
className="font-sans text-sm leading-[1.375rem] text-zinc-600"
>
{category.name}
</label>
</div>
))}
</div>
</div>
{/* Created by section */}
<div className="space-y-4 px-5">
<p className="font-sans text-base font-medium text-zinc-800">
Created by
</p>
<div className="space-y-2">
{visibleCreators.map((creator, i) => (
<div key={i} className="flex items-center space-x-2">
<Checkbox
id={`creator-${creator}`}
checked={localCreators.includes(creator)}
onCheckedChange={() => handleLocalCreatorChange(creator)}
className="border border-[#D4D4D4] shadow-none data-[state=checked]:border-none data-[state=checked]:bg-violet-700 data-[state=checked]:text-white"
/>
<label
htmlFor={`creator-${creator}`}
className="font-sans text-sm leading-[1.375rem] text-zinc-600"
>
{creator}
</label>
</div>
))}
</div>
{creators.length > INITIAL_CREATORS_TO_SHOW && (
<Button
variant={"link"}
className="m-0 p-0 font-sans text-sm font-medium leading-[1.375rem] text-zinc-800 underline hover:text-zinc-600"
onClick={handleToggleShowMoreCreators}
>
{displayedCreatorsCount < creators.length ? "More" : "Less"}
</Button>
)}
</div>
{/* Footer section */}
<div className="fixed bottom-0 flex w-full justify-between gap-3 border-t border-zinc-200 bg-white px-5 py-3">
<Button
size="small"
variant={"outline"}
onClick={handleClearFilters}
className="rounded-[8px] px-2 py-1.5"
>
Clear
</Button>
<Button
size="small"
onClick={handleApplyFilters}
disabled={!hasLocalActiveFilters()}
className="rounded-[8px] px-2 py-1.5"
>
Apply filters
</Button>
</div>
</motion.div>
)}
</AnimatePresence>
</div>
);
}

View File

@@ -1,100 +0,0 @@
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
import { useState } from "react";
import { INITIAL_CREATORS_TO_SHOW } from "./constant";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export const useFilterSheet = () => {
const { filters, creators_list, creators, setFilters, setCreators } =
useBlockMenuStore();
const [isOpen, setIsOpen] = useState(false);
const [localCategories, setLocalCategories] =
useState<GetV2BuilderSearchFilterAnyOfItem[]>(filters);
const [localCreators, setLocalCreators] = useState<string[]>(creators);
const [displayedCreatorsCount, setDisplayedCreatorsCount] = useState(
INITIAL_CREATORS_TO_SHOW,
);
const handleLocalCategoryChange = (
category: GetV2BuilderSearchFilterAnyOfItem,
) => {
setLocalCategories((prev) => {
if (prev.includes(category)) {
return prev.filter((c) => c !== category);
}
return [...prev, category];
});
};
const hasActiveFilters = () => {
return filters.length > 0 || creators.length > 0;
};
const handleToggleShowMoreCreators = () => {
if (displayedCreatorsCount < creators.length) {
setDisplayedCreatorsCount(creators.length);
} else {
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
}
};
const handleLocalCreatorChange = (creator: string) => {
setLocalCreators((prev) => {
if (prev.includes(creator)) {
return prev.filter((c) => c !== creator);
}
return [...prev, creator];
});
};
const handleClearFilters = () => {
setLocalCategories([]);
setLocalCreators([]);
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
};
const handleCloseButton = () => {
setIsOpen(false);
setLocalCategories(filters);
setLocalCreators(creators);
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
};
const handleApplyFilters = () => {
setFilters(localCategories);
setCreators(localCreators);
setIsOpen(false);
};
const handleOpenFilters = () => {
setIsOpen(true);
setLocalCategories(filters);
setLocalCreators(creators);
};
const hasLocalActiveFilters = () => {
return localCategories.length > 0 || localCreators.length > 0;
};
const visibleCreators = creators_list.slice(0, displayedCreatorsCount);
return {
creators,
isOpen,
setIsOpen,
localCategories,
localCreators,
displayedCreatorsCount,
setDisplayedCreatorsCount,
handleLocalCategoryChange,
handleToggleShowMoreCreators,
handleLocalCreatorChange,
handleClearFilters,
handleCloseButton,
handleOpenFilters,
handleApplyFilters,
hasLocalActiveFilters,
visibleCreators,
hasActiveFilters,
};
};

View File

@@ -1,9 +1,9 @@
import type { OutputMetadata } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
import type { OutputMetadata } from "@/components/contextual/OutputRenderers";
import {
globalRegistry,
OutputActions,
OutputItem,
} from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/selected-views/OutputRenderers";
} from "@/components/contextual/OutputRenderers";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { beautifyString } from "@/lib/utils";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";

View File

@@ -3,7 +3,6 @@ import {
CustomNodeData,
} from "@/app/(platform)/build/components/legacy-builder/CustomNode/CustomNode";
import { NodeTableInput } from "@/app/(platform)/build/components/legacy-builder/NodeTableInput";
import { CredentialsInput } from "@/app/(platform)/library/agents/[id]/components/NewAgentLibraryView/components/modals/CredentialsInputs/CredentialsInputs";
import { Button } from "@/components/__legacy__/ui/button";
import { Calendar } from "@/components/__legacy__/ui/calendar";
import { LocalValuedInput } from "@/components/__legacy__/ui/input";
@@ -28,6 +27,7 @@ import {
SelectValue,
} from "@/components/__legacy__/ui/select";
import { Switch } from "@/components/atoms/Switch/Switch";
import { CredentialsInput } from "@/components/contextual/CredentialsInputs/CredentialsInputs";
import { GoogleDrivePickerInput } from "@/components/contextual/GoogleDrivePicker/GoogleDrivePickerInput";
import {
BlockIOArraySubSchema,

View File

@@ -1,30 +1,12 @@
import { create } from "zustand";
import { DefaultStateType } from "../components/NewControlPanel/NewBlockMenu/types";
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
import { getSearchItemType } from "../components/NewControlPanel/NewBlockMenu/BlockMenuSearchContent/helper";
import { StoreAgent } from "@/app/api/__generated__/models/storeAgent";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
type BlockMenuStore = {
searchQuery: string;
searchId: string | undefined;
defaultState: DefaultStateType;
integration: string | undefined;
filters: GetV2BuilderSearchFilterAnyOfItem[];
creators: string[];
creators_list: string[];
categoryCounts: Record<GetV2BuilderSearchFilterAnyOfItem, number>;
setCategoryCounts: (
counts: Record<GetV2BuilderSearchFilterAnyOfItem, number>,
) => void;
setCreatorsList: (searchData: SearchResponseItemsItem[]) => void;
addCreator: (creator: string) => void;
setCreators: (creators: string[]) => void;
removeCreator: (creator: string) => void;
addFilter: (filter: GetV2BuilderSearchFilterAnyOfItem) => void;
setFilters: (filters: GetV2BuilderSearchFilterAnyOfItem[]) => void;
removeFilter: (filter: GetV2BuilderSearchFilterAnyOfItem) => void;
setSearchQuery: (query: string) => void;
setSearchId: (id: string | undefined) => void;
setDefaultState: (state: DefaultStateType) => void;
@@ -37,44 +19,11 @@ export const useBlockMenuStore = create<BlockMenuStore>((set) => ({
searchId: undefined,
defaultState: DefaultStateType.SUGGESTION,
integration: undefined,
filters: [],
creators: [], // creator filters that are applied to the search results
creators_list: [], // all creators that are available to filter by
categoryCounts: {
blocks: 0,
integrations: 0,
marketplace_agents: 0,
my_agents: 0,
},
setCategoryCounts: (counts) => set({ categoryCounts: counts }),
setCreatorsList: (searchData) => {
const marketplaceAgents = searchData.filter((item) => {
return getSearchItemType(item).type === "store_agent";
}) as StoreAgent[];
const newCreators = marketplaceAgents.map((agent) => agent.creator);
set((state) => ({
creators_list: Array.from(
new Set([...state.creators_list, ...newCreators]),
),
}));
},
setCreators: (creators) => set({ creators }),
setFilters: (filters) => set({ filters }),
setSearchQuery: (query) => set({ searchQuery: query }),
setSearchId: (id) => set({ searchId: id }),
setDefaultState: (state) => set({ defaultState: state }),
setIntegration: (integration) => set({ integration }),
addFilter: (filter) =>
set((state) => ({ filters: [...state.filters, filter] })),
removeFilter: (filter) =>
set((state) => ({ filters: state.filters.filter((f) => f !== filter) })),
addCreator: (creator) =>
set((state) => ({ creators: [...state.creators, creator] })),
removeCreator: (creator) =>
set((state) => ({ creators: state.creators.filter((c) => c !== creator) })),
reset: () =>
set({
searchQuery: "",

View File

@@ -68,9 +68,6 @@ type NodeStore = {
clearAllNodeErrors: () => void; // Add this
syncHardcodedValuesWithHandleIds: (nodeId: string) => void;
// Credentials optional helpers
setCredentialsOptional: (nodeId: string, optional: boolean) => void;
};
export const useNodeStore = create<NodeStore>((set, get) => ({
@@ -229,9 +226,6 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
...(node.data.metadata?.customized_name !== undefined && {
customized_name: node.data.metadata.customized_name,
}),
...(node.data.metadata?.credentials_optional !== undefined && {
credentials_optional: node.data.metadata.credentials_optional,
}),
},
};
},
@@ -348,30 +342,4 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
}));
}
},
setCredentialsOptional: (nodeId: string, optional: boolean) => {
set((state) => ({
nodes: state.nodes.map((n) =>
n.id === nodeId
? {
...n,
data: {
...n.data,
metadata: {
...n.data.metadata,
credentials_optional: optional,
},
},
}
: n,
),
}));
const newState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
useHistoryStore.getState().pushState(newState);
},
}));

View File

@@ -1,130 +0,0 @@
import { useState, useCallback, useRef, useMemo } from "react";
import { toast } from "sonner";
import { useChatStream } from "@/app/(platform)/chat/useChatStream";
import type { SessionDetailResponse } from "@/app/api/__generated__/models/sessionDetailResponse";
import type { ChatMessageData } from "@/app/(platform)/chat/components/ChatMessage/useChatMessage";
import {
parseToolResponse,
isValidMessage,
isToolCallArray,
createUserMessage,
filterAuthMessages,
} from "./helpers";
import { createStreamEventDispatcher } from "./createStreamEventDispatcher";
interface UseChatContainerArgs {
sessionId: string | null;
initialMessages: SessionDetailResponse["messages"];
onRefreshSession: () => Promise<void>;
}
export function useChatContainer({
sessionId,
initialMessages,
}: UseChatContainerArgs) {
const [messages, setMessages] = useState<ChatMessageData[]>([]);
const [streamingChunks, setStreamingChunks] = useState<string[]>([]);
const [hasTextChunks, setHasTextChunks] = useState(false);
const streamingChunksRef = useRef<string[]>([]);
const { error, sendMessage: sendStreamMessage } = useChatStream();
const isStreaming = hasTextChunks;
const allMessages = useMemo(() => {
const processedInitialMessages = initialMessages
.filter((msg: Record<string, unknown>) => {
if (!isValidMessage(msg)) {
console.warn("Invalid message structure from backend:", msg);
return false;
}
const content = String(msg.content || "").trim();
const toolCalls = msg.tool_calls;
return (
content.length > 0 ||
(toolCalls && Array.isArray(toolCalls) && toolCalls.length > 0)
);
})
.map((msg: Record<string, unknown>) => {
const content = String(msg.content || "");
const role = String(msg.role || "assistant").toLowerCase();
const toolCalls = msg.tool_calls;
if (
role === "assistant" &&
toolCalls &&
isToolCallArray(toolCalls) &&
toolCalls.length > 0
) {
return null;
}
if (role === "tool") {
const timestamp = msg.timestamp
? new Date(msg.timestamp as string)
: undefined;
const toolResponse = parseToolResponse(
content,
(msg.tool_call_id as string) || "",
"unknown",
timestamp,
);
if (!toolResponse) {
return null;
}
return toolResponse;
}
return {
type: "message",
role: role as "user" | "assistant" | "system",
content,
timestamp: msg.timestamp
? new Date(msg.timestamp as string)
: undefined,
};
})
.filter((msg): msg is ChatMessageData => msg !== null);
return [...processedInitialMessages, ...messages];
}, [initialMessages, messages]);
const sendMessage = useCallback(
async function sendMessage(content: string, isUserMessage: boolean = true) {
if (!sessionId) {
console.error("Cannot send message: no session ID");
return;
}
if (isUserMessage) {
const userMessage = createUserMessage(content);
setMessages((prev) => [...filterAuthMessages(prev), userMessage]);
} else {
setMessages((prev) => filterAuthMessages(prev));
}
setStreamingChunks([]);
streamingChunksRef.current = [];
setHasTextChunks(false);
const dispatcher = createStreamEventDispatcher({
setHasTextChunks,
setStreamingChunks,
streamingChunksRef,
setMessages,
sessionId,
});
try {
await sendStreamMessage(sessionId, content, dispatcher, isUserMessage);
} catch (err) {
console.error("Failed to send message:", err);
const errorMessage =
err instanceof Error ? err.message : "Failed to send message";
toast.error("Failed to send message", {
description: errorMessage,
});
}
},
[sessionId, sendStreamMessage],
);
return {
messages: allMessages,
streamingChunks,
isStreaming,
error,
sendMessage,
};
}

Some files were not shown because too many files have changed in this diff Show More