Compare commits

..

8 Commits

Author SHA1 Message Date
Zamil Majdy
2fc2e3bbd8 fix(migration): only backfill endedAt for terminal executions
- Only set endedAt for COMPLETED, FAILED, TERMINATED statuses
- Leave endedAt as NULL for QUEUED, RUNNING, INCOMPLETE, REVIEW
- Add proper schema prefix "platform"
- Prevents incorrectly marking in-progress executions as ended
2026-01-13 12:34:19 -06:00
Zamil Majdy
3b6dc48033 update migration 2026-01-13 12:30:25 -06:00
Zamil Majdy
3cab0c1240 fix(frontend): make started_at and ended_at nullable in types
- Fixed manually maintained types.ts to match reality: started_at and ended_at are nullable
- Updated all usages to handle null values properly with defensive checks
- Fixed sorting/filtering code to handle null timestamps
- This exposes and fixes real bugs where code assumed timestamps always exist
- Executions in QUEUED status don't have started_at yet
- Executions in QUEUED/RUNNING don't have ended_at yet
2026-01-13 12:23:03 -06:00
Zamil Majdy
2416975c30 docs(backend): add descriptions for started_at and ended_at fields
- Document that started_at is null when execution hasn't started (QUEUED)
- Document that ended_at is null when execution hasn't finished (QUEUED, RUNNING, INCOMPLETE, REVIEW)
- These descriptions are now visible in OpenAPI spec
2026-01-13 11:37:44 -06:00
Zamil Majdy
bb8aab7bd4 feat(backend): add endedAt field to track execution completion time
- Added endedAt field to AgentGraphExecution schema
- Set endedAt when execution reaches terminal status (COMPLETED, FAILED, TERMINATED)
- Updated from_db() to use endedAt instead of updatedAt for ended_at
- Migration backfills endedAt with updatedAt for existing records
- This fixes the issue where updatedAt changed when adding correctness scores
- Chart grouping uses createdAt (when queued), endedAt tracks when execution actually finished
2026-01-13 11:13:42 -06:00
Zamil Majdy
a04b891e1c update openapi.json 2026-01-13 10:57:34 -06:00
Zamil Majdy
a304332bea refactor(platform): simplify execution timestamps and fix analytics
- Removed created_at/updated_at from GraphExecutionMeta as they're DB metadata, not execution runtime info
- Made started_at and ended_at optional (fulfilling TODO) since executions may not have started yet
- Fixed late_execution_monitor.py to handle optional started_at with proper fallback logic
- Updated frontend AnalyticsResultsTable to show only execution runtime timestamps (started_at/ended_at)
- Updated CSV export to exclude created_at/updated_at columns
- Moved OpenAI API key validation to _process_batch (only checked when LLM is actually needed)
- Made settings global in execution_analytics_routes.py to avoid recreation
- Removed debug logging from analytics.py and ExecutionAnalyticsForm.tsx
2026-01-13 10:52:47 -06:00
Zamil Majdy
01cfac9d5a fix(platform): add timestamps to execution analytics and fix chart aggregation
## Changes

### Backend
- Add created_at and updated_at fields to GraphExecutionMeta model
- Update from_db() to properly populate timestamp fields from Prisma
- Remove duck-typing (getattr) in execution_analytics_routes.py
- Fix aggregation threshold from 3→1 executions per day
- Add comprehensive logging with [ACCURACY TRENDS] prefix using logger.info()

### Frontend
- Move timestamp display from table columns to expandable details section
- Add 4-column grid showing Created/Updated/Started/Ended timestamps
- Update CSV export to include all 4 timestamps
- Add blue disclaimer box explaining chart filters match monitoring system
- Add console logging for debugging chart issues

## Fixes
- Timestamps now properly typed and accessible in execution results
- Chart aggregation more inclusive (≥1 execution vs ≥3)
- Table no longer cluttered with timestamp columns
- Chart behavior matches scheduled monitoring system

## Testing
- Backend logs show query details with [ACCURACY TRENDS] prefix
- Frontend console logs params and response data
- Disclaimer clarifies chart shows scored executions only from last 30 days
2026-01-13 10:17:32 -06:00
244 changed files with 2841 additions and 11143 deletions

View File

@@ -1,37 +0,0 @@
{
"worktreeCopyPatterns": [
".env*",
".vscode/**",
".auth/**",
".claude/**",
"autogpt_platform/.env*",
"autogpt_platform/backend/.env*",
"autogpt_platform/frontend/.env*",
"autogpt_platform/frontend/.auth/**",
"autogpt_platform/db/docker/.env*"
],
"worktreeCopyIgnores": [
"**/node_modules/**",
"**/dist/**",
"**/.git/**",
"**/Thumbs.db",
"**/.DS_Store",
"**/.next/**",
"**/__pycache__/**",
"**/.ruff_cache/**",
"**/.pytest_cache/**",
"**/*.pyc",
"**/playwright-report/**",
"**/logs/**",
"**/site/**"
],
"worktreePathTemplate": "$BASE_PATH.worktree",
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install",
"cd docs && pip install -r requirements.txt"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false
}

View File

@@ -16,7 +16,6 @@
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
!autogpt_platform/backend/.env
!autogpt_platform/backend/gen_prisma_types_stub.py
# Platform - Market
!autogpt_platform/market/market/

View File

@@ -74,7 +74,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js

View File

@@ -90,7 +90,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js

View File

@@ -72,7 +72,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
@@ -108,16 +108,6 @@ jobs:
# run: pnpm playwright install --with-deps chromium
# Docker setup for development environment
- name: Free up disk space
run: |
# Remove large unused tools to free disk space for Docker builds
sudo rm -rf /usr/share/dotnet
sudo rm -rf /usr/local/lib/android
sudo rm -rf /opt/ghc
sudo rm -rf /opt/hostedtoolcache/CodeQL
sudo docker system prune -af
df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

View File

@@ -134,7 +134,7 @@ jobs:
run: poetry install
- name: Generate Prisma Client
run: poetry run prisma generate && poetry run gen-prisma-stub
run: poetry run prisma generate
- id: supabase
name: Start Supabase
@@ -176,7 +176,7 @@ jobs:
}
- name: Run Database Migrations
run: poetry run prisma migrate deploy
run: poetry run prisma migrate dev --name updates
env:
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}

View File

@@ -12,7 +12,6 @@ reset-db:
rm -rf db/docker/volumes/db/data
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
# View logs for core services
logs-core:
@@ -34,7 +33,6 @@ init-env:
migrate:
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
run-backend:
cd backend && poetry run app

View File

@@ -48,8 +48,7 @@ RUN poetry install --no-ansi --no-root
# Generate Prisma client
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
RUN poetry run prisma generate
FROM debian:13-slim AS server_dependencies

View File

@@ -28,6 +28,7 @@ from backend.executor.manager import get_db_async_client
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
settings = Settings()
class ExecutionAnalyticsRequest(BaseModel):
@@ -63,6 +64,8 @@ class ExecutionAnalyticsResult(BaseModel):
score: Optional[float]
status: str # "success", "failed", "skipped"
error_message: Optional[str] = None
started_at: Optional[datetime] = None
ended_at: Optional[datetime] = None
class ExecutionAnalyticsResponse(BaseModel):
@@ -224,11 +227,6 @@ async def generate_execution_analytics(
)
try:
# Validate model configuration
settings = Settings()
if not settings.secrets.openai_internal_api_key:
raise HTTPException(status_code=500, detail="OpenAI API key not configured")
# Get database client
db_client = get_db_async_client()
@@ -320,6 +318,8 @@ async def generate_execution_analytics(
),
status="skipped",
error_message=None, # Not an error - just already processed
started_at=execution.started_at,
ended_at=execution.ended_at,
)
)
@@ -349,6 +349,9 @@ async def _process_batch(
) -> list[ExecutionAnalyticsResult]:
"""Process a batch of executions concurrently."""
if not settings.secrets.openai_internal_api_key:
raise HTTPException(status_code=500, detail="OpenAI API key not configured")
async def process_single_execution(execution) -> ExecutionAnalyticsResult:
try:
# Generate activity status and score using the specified model
@@ -387,6 +390,8 @@ async def _process_batch(
score=None,
status="skipped",
error_message="Activity generation returned None",
started_at=execution.started_at,
ended_at=execution.ended_at,
)
# Update the execution stats
@@ -416,6 +421,8 @@ async def _process_batch(
summary_text=activity_response["activity_status"],
score=activity_response["correctness_score"],
status="success",
started_at=execution.started_at,
ended_at=execution.ended_at,
)
except Exception as e:
@@ -429,6 +436,8 @@ async def _process_batch(
score=None,
status="failed",
error_message=str(e),
started_at=execution.started_at,
ended_at=execution.ended_at,
)
# Process all executions in the batch concurrently

View File

@@ -1,5 +1,4 @@
import uuid
from unittest.mock import AsyncMock, patch
import orjson
import pytest
@@ -18,17 +17,6 @@ setup_test_data = setup_test_data
setup_firecrawl_test_data = setup_firecrawl_test_data
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
@pytest.mark.asyncio(scope="session")
async def test_run_agent(setup_test_data):
"""Test that the run_agent tool successfully executes an approved agent"""

View File

@@ -489,7 +489,7 @@ async def update_agent_version_in_library(
agent_graph_version: int,
) -> library_model.LibraryAgent:
"""
Updates the agent version in the library for any agent owned by the user.
Updates the agent version in the library if useGraphIsActiveVersion is True.
Args:
user_id: Owner of the LibraryAgent.
@@ -498,31 +498,20 @@ async def update_agent_version_in_library(
Raises:
DatabaseError: If there's an error with the update.
NotFoundError: If no library agent is found for this user and agent.
"""
logger.debug(
f"Updating agent version in library for user #{user_id}, "
f"agent #{agent_graph_id} v{agent_graph_version}"
)
async with transaction() as tx:
library_agent = await prisma.models.LibraryAgent.prisma(tx).find_first_or_raise(
try:
library_agent = await prisma.models.LibraryAgent.prisma().find_first_or_raise(
where={
"userId": user_id,
"agentGraphId": agent_graph_id,
"useGraphIsActiveVersion": True,
},
)
# Delete any conflicting LibraryAgent for the target version
await prisma.models.LibraryAgent.prisma(tx).delete_many(
where={
"userId": user_id,
"agentGraphId": agent_graph_id,
"agentGraphVersion": agent_graph_version,
"id": {"not": library_agent.id},
}
)
lib = await prisma.models.LibraryAgent.prisma(tx).update(
lib = await prisma.models.LibraryAgent.prisma().update(
where={"id": library_agent.id},
data={
"AgentGraph": {
@@ -536,13 +525,13 @@ async def update_agent_version_in_library(
},
include={"AgentGraph": True},
)
if lib is None:
raise NotFoundError(f"Library agent {library_agent.id} not found")
if lib is None:
raise NotFoundError(
f"Failed to update library agent for {agent_graph_id} v{agent_graph_version}"
)
return library_model.LibraryAgent.from_db(lib)
return library_model.LibraryAgent.from_db(lib)
except prisma.errors.PrismaError as e:
logger.error(f"Database error updating agent version in library: {e}")
raise DatabaseError("Failed to update agent version in library") from e
async def update_library_agent(
@@ -836,7 +825,6 @@ async def add_store_agent_to_library(
}
},
"isCreatedByUser": False,
"useGraphIsActiveVersion": False,
"settings": SafeJson(
_initialize_graph_settings(graph_model).model_dump()
),

View File

@@ -48,7 +48,6 @@ class LibraryAgent(pydantic.BaseModel):
id: str
graph_id: str
graph_version: int
owner_user_id: str # ID of user who owns/created this agent graph
image_url: str | None
@@ -164,7 +163,6 @@ class LibraryAgent(pydantic.BaseModel):
id=agent.id,
graph_id=agent.agentGraphId,
graph_version=agent.agentGraphVersion,
owner_user_id=agent.userId,
image_url=agent.imageUrl,
creator_name=creator_name,
creator_image_url=creator_image_url,

View File

@@ -42,7 +42,6 @@ async def test_get_library_agents_success(
id="test-agent-1",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 1",
description="Test Description 1",
image_url=None,
@@ -65,7 +64,6 @@ async def test_get_library_agents_success(
id="test-agent-2",
graph_id="test-agent-2",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 2",
description="Test Description 2",
image_url=None,
@@ -140,7 +138,6 @@ async def test_get_favorite_library_agents_success(
id="test-agent-1",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Favorite Agent 1",
description="Test Favorite Description 1",
image_url=None,
@@ -208,7 +205,6 @@ def test_add_agent_to_library_success(
id="test-library-agent-id",
graph_id="test-agent-1",
graph_version=1,
owner_user_id=test_user_id,
name="Test Agent 1",
description="Test Description 1",
image_url=None,

View File

@@ -1,104 +0,0 @@
#!/usr/bin/env python3
"""
CLI script to backfill embeddings for store agents.
Usage:
poetry run python -m backend.api.features.store.backfill_embeddings [--batch-size N]
"""
import argparse
import asyncio
import logging
import sys
import prisma
from backend.api.features.store.embeddings import (
backfill_missing_embeddings,
get_embedding_stats,
)
logger = logging.getLogger(__name__)
async def main(batch_size: int = 100) -> int:
"""Run the backfill process - processes ALL missing embeddings in batches."""
client = prisma.Prisma()
await client.connect()
prisma.register(client)
try:
stats = await get_embedding_stats()
# Check for error from get_embedding_stats() first
if "error" in stats:
logger.error(f"Failed to get embedding stats: {stats['error']}")
return 1
logger.info(
f"Current coverage: {stats['with_embeddings']}/{stats['total_approved']} "
f"({stats['coverage_percent']}%)"
)
if stats["without_embeddings"] == 0:
logger.info("All agents have embeddings - nothing to backfill")
return 0
logger.info(
f"Backfilling {stats['without_embeddings']} missing embeddings "
f"(batch size: {batch_size})"
)
total_processed = 0
total_success = 0
total_failed = 0
while True:
result = await backfill_missing_embeddings(batch_size=batch_size)
if result["processed"] == 0:
break
total_processed += result["processed"]
total_success += result["success"]
total_failed += result["failed"]
logger.info(
f"Batch complete: {result['success']}/{result['processed']} succeeded"
)
await asyncio.sleep(1)
# Final stats
stats = await get_embedding_stats()
logger.info(
f"Backfill complete: {total_success}/{total_processed} succeeded, "
f"{total_failed} failed"
)
if "error" not in stats:
logger.info(f"Final coverage: {stats['coverage_percent']}%")
else:
logger.warning("Could not retrieve final coverage stats")
return 0 if total_failed == 0 else 1
finally:
await client.disconnect()
if __name__ == "__main__":
# Configure logging for CLI usage
logging.basicConfig(
level=logging.INFO,
format="%(levelname)s: %(message)s",
)
parser = argparse.ArgumentParser(description="Backfill embeddings for store agents")
parser.add_argument(
"--batch-size",
type=int,
default=100,
help="Number of embeddings to generate per batch (default: 100)",
)
args = parser.parse_args()
sys.exit(asyncio.run(main(batch_size=args.batch_size)))

View File

@@ -1,7 +1,8 @@
import asyncio
import logging
import typing
from datetime import datetime, timezone
from typing import Any, Literal
from typing import Literal
import fastapi
import prisma.enums
@@ -9,7 +10,7 @@ import prisma.errors
import prisma.models
import prisma.types
from backend.data.db import transaction
from backend.data.db import query_raw_with_schema, transaction
from backend.data.graph import (
GraphMeta,
GraphModel,
@@ -29,8 +30,6 @@ from backend.util.settings import Settings
from . import exceptions as store_exceptions
from . import model as store_model
from .embeddings import ensure_embedding
from .hybrid_search import hybrid_search
logger = logging.getLogger(__name__)
settings = Settings()
@@ -51,77 +50,128 @@ async def get_store_agents(
page_size: int = 20,
) -> store_model.StoreAgentsResponse:
"""
Get PUBLIC store agents from the StoreAgent view.
Search behavior:
- With search_query: Uses hybrid search (semantic + lexical)
- Fallback: If embeddings unavailable, gracefully degrades to lexical-only
- Rationale: User-facing endpoint prioritizes availability over accuracy
Note: Admin operations (approval) use fail-fast to prevent inconsistent state.
Get PUBLIC store agents from the StoreAgent view
"""
logger.debug(
f"Getting store agents. featured={featured}, creators={creators}, sorted_by={sorted_by}, search={search_query}, category={category}, page={page}"
)
search_used_hybrid = False
store_agents: list[store_model.StoreAgent] = []
agents: list[dict[str, Any]] = []
total = 0
total_pages = 0
try:
# If search_query is provided, use hybrid search (embeddings + tsvector)
# If search_query is provided, use full-text search
if search_query:
# Try hybrid search combining semantic and lexical signals
# Falls back to lexical-only if OpenAI unavailable (user-facing, high SLA)
try:
agents, total = await hybrid_search(
query=search_query,
featured=featured,
creators=creators,
category=category,
sorted_by="relevance", # Use hybrid scoring for relevance
page=page,
page_size=page_size,
)
search_used_hybrid = True
except Exception as e:
# Log error but fall back to lexical search for better UX
logger.error(
f"Hybrid search failed (likely OpenAI unavailable), "
f"falling back to lexical search: {e}"
)
# search_used_hybrid remains False, will use fallback path below
offset = (page - 1) * page_size
# Convert hybrid search results (dict format) if hybrid succeeded
if search_used_hybrid:
total_pages = (total + page_size - 1) // page_size
store_agents: list[store_model.StoreAgent] = []
for agent in agents:
try:
store_agent = store_model.StoreAgent(
slug=agent["slug"],
agent_name=agent["agent_name"],
agent_image=(
agent["agent_image"][0] if agent["agent_image"] else ""
),
creator=agent["creator_username"] or "Needs Profile",
creator_avatar=agent["creator_avatar"] or "",
sub_heading=agent["sub_heading"],
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
)
store_agents.append(store_agent)
except Exception as e:
logger.error(
f"Error parsing Store agent from hybrid search results: {e}"
)
continue
# Whitelist allowed order_by columns
ALLOWED_ORDER_BY = {
"rating": "rating DESC, rank DESC",
"runs": "runs DESC, rank DESC",
"name": "agent_name ASC, rank ASC",
"updated_at": "updated_at DESC, rank DESC",
}
if not search_used_hybrid:
# Fallback path - use basic search or no search
# Validate and get order clause
if sorted_by and sorted_by in ALLOWED_ORDER_BY:
order_by_clause = ALLOWED_ORDER_BY[sorted_by]
else:
order_by_clause = "updated_at DESC, rank DESC"
# Build WHERE conditions and parameters list
where_parts: list[str] = []
params: list[typing.Any] = [search_query] # $1 - search term
param_index = 2 # Start at $2 for next parameter
# Always filter for available agents
where_parts.append("is_available = true")
if featured:
where_parts.append("featured = true")
if creators and creators:
# Use ANY with array parameter
where_parts.append(f"creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
if category and category:
where_parts.append(f"${param_index} = ANY(categories)")
params.append(category)
param_index += 1
sql_where_clause: str = " AND ".join(where_parts) if where_parts else "1=1"
# Add pagination params
params.extend([page_size, offset])
limit_param = f"${param_index}"
offset_param = f"${param_index + 1}"
# Execute full-text search query with parameterized values
sql_query = f"""
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
ts_rank_cd(search, query) AS rank
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
WHERE {sql_where_clause}
AND search @@ query
ORDER BY {order_by_clause}
LIMIT {limit_param} OFFSET {offset_param}
"""
# Count query for pagination - only uses search term parameter
count_query = f"""
SELECT COUNT(*) as count
FROM {{schema_prefix}}"StoreAgent",
plainto_tsquery('english', $1) AS query
WHERE {sql_where_clause}
AND search @@ query
"""
# Execute both queries with parameters
agents = await query_raw_with_schema(sql_query, *params)
# For count, use params without pagination (last 2 params)
count_params = params[:-2]
count_result = await query_raw_with_schema(count_query, *count_params)
total = count_result[0]["count"] if count_result else 0
total_pages = (total + page_size - 1) // page_size
# Convert raw results to StoreAgent models
store_agents: list[store_model.StoreAgent] = []
for agent in agents:
try:
store_agent = store_model.StoreAgent(
slug=agent["slug"],
agent_name=agent["agent_name"],
agent_image=(
agent["agent_image"][0] if agent["agent_image"] else ""
),
creator=agent["creator_username"] or "Needs Profile",
creator_avatar=agent["creator_avatar"] or "",
sub_heading=agent["sub_heading"],
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
)
store_agents.append(store_agent)
except Exception as e:
logger.error(f"Error parsing Store agent from search results: {e}")
continue
else:
# Non-search query path (original logic)
where_clause: prisma.types.StoreAgentWhereInput = {"is_available": True}
if featured:
where_clause["featured"] = featured
@@ -130,14 +180,6 @@ async def get_store_agents(
if category:
where_clause["categories"] = {"has": category}
# Add basic text search if search_query provided but hybrid failed
if search_query:
where_clause["OR"] = [
{"agent_name": {"contains": search_query, "mode": "insensitive"}},
{"sub_heading": {"contains": search_query, "mode": "insensitive"}},
{"description": {"contains": search_query, "mode": "insensitive"}},
]
order_by = []
if sorted_by == "rating":
order_by.append({"rating": "desc"})
@@ -146,7 +188,7 @@ async def get_store_agents(
elif sorted_by == "name":
order_by.append({"agent_name": "asc"})
db_agents = await prisma.models.StoreAgent.prisma().find_many(
agents = await prisma.models.StoreAgent.prisma().find_many(
where=where_clause,
order=order_by,
skip=(page - 1) * page_size,
@@ -157,7 +199,7 @@ async def get_store_agents(
total_pages = (total + page_size - 1) // page_size
store_agents: list[store_model.StoreAgent] = []
for agent in db_agents:
for agent in agents:
try:
# Create the StoreAgent object safely
store_agent = store_model.StoreAgent(
@@ -572,7 +614,6 @@ async def get_store_submissions(
submission_models = []
for sub in submissions:
submission_model = store_model.StoreSubmission(
listing_id=sub.listing_id,
agent_id=sub.agent_id,
agent_version=sub.agent_version,
name=sub.name,
@@ -626,48 +667,35 @@ async def delete_store_submission(
submission_id: str,
) -> bool:
"""
Delete a store submission version as the submitting user.
Delete a store listing submission as the submitting user.
Args:
user_id: ID of the authenticated user
submission_id: StoreListingVersion ID to delete
submission_id: ID of the submission to be deleted
Returns:
bool: True if successfully deleted
bool: True if the submission was successfully deleted, False otherwise
"""
logger.debug(f"Deleting store submission {submission_id} for user {user_id}")
try:
# Find the submission version with ownership check
version = await prisma.models.StoreListingVersion.prisma().find_first(
where={"id": submission_id}, include={"StoreListing": True}
# Verify the submission belongs to this user
submission = await prisma.models.StoreListing.prisma().find_first(
where={"agentGraphId": submission_id, "owningUserId": user_id}
)
if (
not version
or not version.StoreListing
or version.StoreListing.owningUserId != user_id
):
raise store_exceptions.SubmissionNotFoundError("Submission not found")
# Prevent deletion of approved submissions
if version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
raise store_exceptions.InvalidOperationError(
"Cannot delete approved submissions"
if not submission:
logger.warning(f"Submission not found for user {user_id}: {submission_id}")
raise store_exceptions.SubmissionNotFoundError(
f"Submission not found for this user. User ID: {user_id}, Submission ID: {submission_id}"
)
# Delete the version
await prisma.models.StoreListingVersion.prisma().delete(
where={"id": version.id}
)
# Delete the submission
await prisma.models.StoreListing.prisma().delete(where={"id": submission.id})
# Clean up empty listing if this was the last version
remaining = await prisma.models.StoreListingVersion.prisma().count(
where={"storeListingId": version.storeListingId}
logger.debug(
f"Successfully deleted submission {submission_id} for user {user_id}"
)
if remaining == 0:
await prisma.models.StoreListing.prisma().delete(
where={"id": version.storeListingId}
)
return True
except Exception as e:
@@ -731,15 +759,9 @@ async def create_store_submission(
logger.warning(
f"Agent not found for user {user_id}: {agent_id} v{agent_version}"
)
# Provide more user-friendly error message when agent_id is empty
if not agent_id or agent_id.strip() == "":
raise store_exceptions.AgentNotFoundError(
"No agent selected. Please select an agent before submitting to the store."
)
else:
raise store_exceptions.AgentNotFoundError(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
raise store_exceptions.AgentNotFoundError(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
# Check if listing already exists for this agent
existing_listing = await prisma.models.StoreListing.prisma().find_first(
@@ -811,7 +833,6 @@ async def create_store_submission(
logger.debug(f"Created store listing for agent {agent_id}")
# Return submission details
return store_model.StoreSubmission(
listing_id=listing.id,
agent_id=agent_id,
agent_version=agent_version,
name=name,
@@ -923,56 +944,81 @@ async def edit_store_submission(
# Currently we are not allowing user to update the agent associated with a submission
# If we allow it in future, then we need a check here to verify the agent belongs to this user.
# Only allow editing of PENDING submissions
if current_version.submissionStatus != prisma.enums.SubmissionStatus.PENDING:
# Check if we can edit this submission
if current_version.submissionStatus == prisma.enums.SubmissionStatus.REJECTED:
raise store_exceptions.InvalidOperationError(
f"Cannot edit a {current_version.submissionStatus.value.lower()} submission. Only pending submissions can be edited."
"Cannot edit a rejected submission"
)
# For APPROVED submissions, we need to create a new version
if current_version.submissionStatus == prisma.enums.SubmissionStatus.APPROVED:
# Create a new version for the existing listing
return await create_store_version(
user_id=user_id,
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
store_listing_id=current_version.storeListingId,
name=name,
video_url=video_url,
agent_output_demo_url=agent_output_demo_url,
image_urls=image_urls,
description=description,
sub_heading=sub_heading,
categories=categories,
changes_summary=changes_summary,
recommended_schedule_cron=recommended_schedule_cron,
instructions=instructions,
)
# For PENDING submissions, we can update the existing version
# Update the existing version
updated_version = await prisma.models.StoreListingVersion.prisma().update(
where={"id": store_listing_version_id},
data=prisma.types.StoreListingVersionUpdateInput(
elif current_version.submissionStatus == prisma.enums.SubmissionStatus.PENDING:
# Update the existing version
updated_version = await prisma.models.StoreListingVersion.prisma().update(
where={"id": store_listing_version_id},
data=prisma.types.StoreListingVersionUpdateInput(
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
categories=categories,
subHeading=sub_heading,
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
instructions=instructions,
),
)
logger.debug(
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
)
if not updated_version:
raise DatabaseError("Failed to update store listing version")
return store_model.StoreSubmission(
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
sub_heading=sub_heading,
slug=current_version.StoreListing.slug,
description=description,
categories=categories,
subHeading=sub_heading,
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
instructions=instructions,
),
)
image_urls=image_urls,
date_submitted=updated_version.submittedAt or updated_version.createdAt,
status=updated_version.submissionStatus,
runs=0,
rating=0.0,
store_listing_version_id=updated_version.id,
changes_summary=changes_summary,
video_url=video_url,
categories=categories,
version=updated_version.version,
)
logger.debug(
f"Updated existing version {store_listing_version_id} for agent {current_version.agentGraphId}"
)
if not updated_version:
raise DatabaseError("Failed to update store listing version")
return store_model.StoreSubmission(
listing_id=current_version.StoreListing.id,
agent_id=current_version.agentGraphId,
agent_version=current_version.agentGraphVersion,
name=name,
sub_heading=sub_heading,
slug=current_version.StoreListing.slug,
description=description,
instructions=instructions,
image_urls=image_urls,
date_submitted=updated_version.submittedAt or updated_version.createdAt,
status=updated_version.submissionStatus,
runs=0,
rating=0.0,
store_listing_version_id=updated_version.id,
changes_summary=changes_summary,
video_url=video_url,
categories=categories,
version=updated_version.version,
)
else:
raise store_exceptions.InvalidOperationError(
f"Cannot edit submission with status: {current_version.submissionStatus}"
)
except (
store_exceptions.SubmissionNotFoundError,
@@ -1051,78 +1097,38 @@ async def create_store_version(
f"Agent not found for this user. User ID: {user_id}, Agent ID: {agent_id}, Version: {agent_version}"
)
# Check if there's already a PENDING submission for this agent (any version)
existing_pending_submission = (
await prisma.models.StoreListingVersion.prisma().find_first(
where=prisma.types.StoreListingVersionWhereInput(
storeListingId=store_listing_id,
agentGraphId=agent_id,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
isDeleted=False,
)
# Get the latest version number
latest_version = listing.Versions[0] if listing.Versions else None
next_version = (latest_version.version + 1) if latest_version else 1
# Create a new version for the existing listing
new_version = await prisma.models.StoreListingVersion.prisma().create(
data=prisma.types.StoreListingVersionCreateInput(
version=next_version,
agentGraphId=agent_id,
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
categories=categories,
subHeading=sub_heading,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
submittedAt=datetime.now(),
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
storeListingId=store_listing_id,
)
)
# Handle existing pending submission and create new one atomically
async with transaction() as tx:
# Get the latest version number first
latest_listing = await prisma.models.StoreListing.prisma(tx).find_first(
where=prisma.types.StoreListingWhereInput(
id=store_listing_id, owningUserId=user_id
),
include={"Versions": {"order_by": {"version": "desc"}, "take": 1}},
)
if not latest_listing:
raise store_exceptions.ListingNotFoundError(
f"Store listing not found. User ID: {user_id}, Listing ID: {store_listing_id}"
)
latest_version = (
latest_listing.Versions[0] if latest_listing.Versions else None
)
next_version = (latest_version.version + 1) if latest_version else 1
# If there's an existing pending submission, delete it atomically before creating new one
if existing_pending_submission:
logger.info(
f"Found existing PENDING submission for agent {agent_id} (was v{existing_pending_submission.agentGraphVersion}, now v{agent_version}), replacing existing submission instead of creating duplicate"
)
await prisma.models.StoreListingVersion.prisma(tx).delete(
where={"id": existing_pending_submission.id}
)
logger.debug(
f"Deleted existing pending submission {existing_pending_submission.id}"
)
# Create a new version for the existing listing
new_version = await prisma.models.StoreListingVersion.prisma(tx).create(
data=prisma.types.StoreListingVersionCreateInput(
version=next_version,
agentGraphId=agent_id,
agentGraphVersion=agent_version,
name=name,
videoUrl=video_url,
agentOutputDemoUrl=agent_output_demo_url,
imageUrls=image_urls,
description=description,
instructions=instructions,
categories=categories,
subHeading=sub_heading,
submissionStatus=prisma.enums.SubmissionStatus.PENDING,
submittedAt=datetime.now(),
changesSummary=changes_summary,
recommendedScheduleCron=recommended_schedule_cron,
storeListingId=store_listing_id,
)
)
logger.debug(
f"Created new version for listing {store_listing_id} of agent {agent_id}"
)
# Return submission details
return store_model.StoreSubmission(
listing_id=listing.id,
agent_id=agent_id,
agent_version=agent_version,
name=name,
@@ -1535,7 +1541,7 @@ async def review_store_submission(
)
# Update the AgentGraph with store listing data
await prisma.models.AgentGraph.prisma(tx).update(
await prisma.models.AgentGraph.prisma().update(
where={
"graphVersionId": {
"id": store_listing_version.agentGraphId,
@@ -1550,23 +1556,6 @@ async def review_store_submission(
},
)
# Generate embedding for approved listing (blocking - admin operation)
# Inside transaction: if embedding fails, entire transaction rolls back
embedding_success = await ensure_embedding(
version_id=store_listing_version_id,
name=store_listing_version.name,
description=store_listing_version.description,
sub_heading=store_listing_version.subHeading,
categories=store_listing_version.categories or [],
tx=tx,
)
if not embedding_success:
raise ValueError(
f"Failed to generate embedding for listing {store_listing_version_id}. "
"This is likely due to OpenAI API being unavailable. "
"Please try again later or contact support if the issue persists."
)
await prisma.models.StoreListing.prisma(tx).update(
where={"id": store_listing_version.StoreListing.id},
data={
@@ -1719,12 +1708,15 @@ async def review_store_submission(
# Convert to Pydantic model for consistency
return store_model.StoreSubmission(
listing_id=(submission.StoreListing.id if submission.StoreListing else ""),
agent_id=submission.agentGraphId,
agent_version=submission.agentGraphVersion,
name=submission.name,
sub_heading=submission.subHeading,
slug=(submission.StoreListing.slug if submission.StoreListing else ""),
slug=(
submission.StoreListing.slug
if hasattr(submission, "storeListing") and submission.StoreListing
else ""
),
description=submission.description,
instructions=submission.instructions,
image_urls=submission.imageUrls or [],
@@ -1826,7 +1818,9 @@ async def get_admin_listings_with_versions(
where = prisma.types.StoreListingWhereInput(**where_dict)
include = prisma.types.StoreListingInclude(
Versions=prisma.types.FindManyStoreListingVersionArgsFromStoreListing(
order_by={"version": "desc"}
order_by=prisma.types._StoreListingVersion_version_OrderByInput(
version="desc"
)
),
OwningUser=True,
)
@@ -1851,7 +1845,6 @@ async def get_admin_listings_with_versions(
# If we have versions, turn them into StoreSubmission models
for version in listing.Versions or []:
version_model = store_model.StoreSubmission(
listing_id=listing.id,
agent_id=version.agentGraphId,
agent_version=version.agentGraphVersion,
name=version.name,

View File

@@ -1,533 +0,0 @@
"""
Unified Content Embeddings Service
Handles generation and storage of OpenAI embeddings for all content types
(store listings, blocks, documentation, library agents) to enable semantic/hybrid search.
"""
import asyncio
import logging
import time
from typing import Any
import prisma
from prisma.enums import ContentType
from backend.data.db import execute_raw_with_schema, query_raw_with_schema
from backend.util.clients import get_openai_client
from backend.util.json import dumps
logger = logging.getLogger(__name__)
# OpenAI embedding model configuration
EMBEDDING_MODEL = "text-embedding-3-small"
def build_searchable_text(
name: str,
description: str,
sub_heading: str,
categories: list[str],
) -> str:
"""
Build searchable text from listing version fields.
Combines relevant fields into a single string for embedding.
"""
parts = []
# Name is important - include it
if name:
parts.append(name)
# Sub-heading provides context
if sub_heading:
parts.append(sub_heading)
# Description is the main content
if description:
parts.append(description)
# Categories help with semantic matching
if categories:
parts.append(" ".join(categories))
return " ".join(parts)
async def generate_embedding(text: str) -> list[float] | None:
"""
Generate embedding for text using OpenAI API.
Returns None if embedding generation fails.
Fail-fast: no retries to maintain consistency with approval flow.
"""
try:
client = get_openai_client()
if not client:
logger.error("openai_internal_api_key not set, cannot generate embedding")
return None
# Truncate text to avoid token limits (~32k chars for safety)
truncated_text = text[:32000]
start_time = time.time()
response = await client.embeddings.create(
model=EMBEDDING_MODEL,
input=truncated_text,
)
latency_ms = (time.time() - start_time) * 1000
embedding = response.data[0].embedding
logger.info(
f"Generated embedding: {len(embedding)} dims, "
f"{len(truncated_text)} chars, {latency_ms:.0f}ms"
)
return embedding
except Exception as e:
logger.error(f"Failed to generate embedding: {e}")
return None
async def store_embedding(
version_id: str,
embedding: list[float],
tx: prisma.Prisma | None = None,
) -> bool:
"""
Store embedding in the database.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
DEPRECATED: Use ensure_embedding() instead (includes searchable_text).
"""
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text="", # Empty for backward compat; ensure_embedding() populates this
metadata=None,
user_id=None, # Store agents are public
tx=tx,
)
async def store_content_embedding(
content_type: ContentType,
content_id: str,
embedding: list[float],
searchable_text: str,
metadata: dict | None = None,
user_id: str | None = None,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Store embedding in the unified content embeddings table.
New function for unified content embedding storage.
Uses raw SQL since Prisma doesn't natively support pgvector.
"""
try:
client = tx if tx else prisma.get_client()
# Convert embedding to PostgreSQL vector format
embedding_str = embedding_to_vector_string(embedding)
metadata_json = dumps(metadata or {})
# Upsert the embedding
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
""",
content_type,
content_id,
user_id,
embedding_str,
searchable_text,
metadata_json,
client=client,
)
logger.info(f"Stored embedding for {content_type}:{content_id}")
return True
except Exception as e:
logger.error(f"Failed to store embedding for {content_type}:{content_id}: {e}")
return False
async def get_embedding(version_id: str) -> dict[str, Any] | None:
"""
Retrieve embedding record for a listing version.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
Returns dict with storeListingVersionId, embedding, timestamps or None if not found.
"""
result = await get_content_embedding(
ContentType.STORE_AGENT, version_id, user_id=None
)
if result:
# Transform to old format for backward compatibility
return {
"storeListingVersionId": result["contentId"],
"embedding": result["embedding"],
"createdAt": result["createdAt"],
"updatedAt": result["updatedAt"],
}
return None
async def get_content_embedding(
content_type: ContentType, content_id: str, user_id: str | None = None
) -> dict[str, Any] | None:
"""
Retrieve embedding record for any content type.
New function for unified content embedding retrieval.
Returns dict with contentType, contentId, embedding, timestamps or None if not found.
"""
try:
result = await query_raw_with_schema(
"""
SELECT
"contentType",
"contentId",
"userId",
"embedding"::text as "embedding",
"searchableText",
"metadata",
"createdAt",
"updatedAt"
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2 AND ("userId" = $3 OR ($3 IS NULL AND "userId" IS NULL))
""",
content_type,
content_id,
user_id,
)
if result and len(result) > 0:
return result[0]
return None
except Exception as e:
logger.error(f"Failed to get embedding for {content_type}:{content_id}: {e}")
return None
async def ensure_embedding(
version_id: str,
name: str,
description: str,
sub_heading: str,
categories: list[str],
force: bool = False,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Ensure an embedding exists for the listing version.
Creates embedding if missing. Use force=True to regenerate.
Backward-compatible wrapper for store listings.
Args:
version_id: The StoreListingVersion ID
name: Agent name
description: Agent description
sub_heading: Agent sub-heading
categories: Agent categories
force: Force regeneration even if embedding exists
tx: Optional transaction client
Returns:
True if embedding exists/was created, False on failure
"""
try:
# Check if embedding already exists
if not force:
existing = await get_embedding(version_id)
if existing and existing.get("embedding"):
logger.debug(f"Embedding for version {version_id} already exists")
return True
# Build searchable text for embedding
searchable_text = build_searchable_text(
name, description, sub_heading, categories
)
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(f"Could not generate embedding for version {version_id}")
return False
# Store the embedding with metadata using new function
metadata = {
"name": name,
"subHeading": sub_heading,
"categories": categories,
}
return await store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id=version_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata,
user_id=None, # Store agents are public
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for version {version_id}: {e}")
return False
async def delete_embedding(version_id: str) -> bool:
"""
Delete embedding for a listing version.
BACKWARD COMPATIBILITY: Maintained for existing store listing usage.
Note: This is usually handled automatically by CASCADE delete,
but provided for manual cleanup if needed.
"""
return await delete_content_embedding(ContentType.STORE_AGENT, version_id)
async def delete_content_embedding(content_type: ContentType, content_id: str) -> bool:
"""
Delete embedding for any content type.
New function for unified content embedding deletion.
Note: This is usually handled automatically by CASCADE delete,
but provided for manual cleanup if needed.
"""
try:
client = prisma.get_client()
await execute_raw_with_schema(
"""
DELETE FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" = $1::{schema_prefix}"ContentType" AND "contentId" = $2
""",
content_type,
content_id,
client=client,
)
logger.info(f"Deleted embedding for {content_type}:{content_id}")
return True
except Exception as e:
logger.error(f"Failed to delete embedding for {content_type}:{content_id}: {e}")
return False
async def get_embedding_stats() -> dict[str, Any]:
"""
Get statistics about embedding coverage.
Returns counts of:
- Total approved listing versions
- Versions with embeddings
- Versions without embeddings
"""
try:
# Count approved versions
approved_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion"
WHERE "submissionStatus" = 'APPROVED'
AND "isDeleted" = false
"""
)
total_approved = approved_result[0]["count"] if approved_result else 0
# Count versions with embeddings
embedded_result = await query_raw_with_schema(
"""
SELECT COUNT(*) as count
FROM {schema_prefix}"StoreListingVersion" slv
JOIN {schema_prefix}"UnifiedContentEmbedding" uce ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
"""
)
with_embeddings = embedded_result[0]["count"] if embedded_result else 0
return {
"total_approved": total_approved,
"with_embeddings": with_embeddings,
"without_embeddings": total_approved - with_embeddings,
"coverage_percent": (
round(with_embeddings / total_approved * 100, 1)
if total_approved > 0
else 0
),
}
except Exception as e:
logger.error(f"Failed to get embedding stats: {e}")
return {
"total_approved": 0,
"with_embeddings": 0,
"without_embeddings": 0,
"coverage_percent": 0,
"error": str(e),
}
async def backfill_missing_embeddings(batch_size: int = 10) -> dict[str, Any]:
"""
Generate embeddings for approved listings that don't have them.
Args:
batch_size: Number of embeddings to generate in one call
Returns:
Dict with success/failure counts
"""
try:
# Find approved versions without embeddings
missing = await query_raw_with_schema(
"""
SELECT
slv.id,
slv.name,
slv.description,
slv."subHeading",
slv.categories
FROM {schema_prefix}"StoreListingVersion" slv
LEFT JOIN {schema_prefix}"UnifiedContentEmbedding" uce
ON slv.id = uce."contentId" AND uce."contentType" = 'STORE_AGENT'
WHERE slv."submissionStatus" = 'APPROVED'
AND slv."isDeleted" = false
AND uce."contentId" IS NULL
LIMIT $1
""",
batch_size,
)
if not missing:
return {
"processed": 0,
"success": 0,
"failed": 0,
"message": "No missing embeddings",
}
# Process embeddings concurrently for better performance
embedding_tasks = [
ensure_embedding(
version_id=row["id"],
name=row["name"],
description=row["description"],
sub_heading=row["subHeading"],
categories=row["categories"] or [],
)
for row in missing
]
results = await asyncio.gather(*embedding_tasks, return_exceptions=True)
success = sum(1 for result in results if result is True)
failed = len(results) - success
return {
"processed": len(missing),
"success": success,
"failed": failed,
"message": f"Backfilled {success} embeddings, {failed} failed",
}
except Exception as e:
logger.error(f"Failed to backfill embeddings: {e}")
return {
"processed": 0,
"success": 0,
"failed": 0,
"error": str(e),
}
async def embed_query(query: str) -> list[float] | None:
"""
Generate embedding for a search query.
Same as generate_embedding but with clearer intent.
"""
return await generate_embedding(query)
def embedding_to_vector_string(embedding: list[float]) -> str:
"""Convert embedding list to PostgreSQL vector string format."""
return "[" + ",".join(str(x) for x in embedding) + "]"
async def ensure_content_embedding(
content_type: ContentType,
content_id: str,
searchable_text: str,
metadata: dict | None = None,
user_id: str | None = None,
force: bool = False,
tx: prisma.Prisma | None = None,
) -> bool:
"""
Ensure an embedding exists for any content type.
Generic function for creating embeddings for store agents, blocks, docs, etc.
Args:
content_type: ContentType enum value (STORE_AGENT, BLOCK, etc.)
content_id: Unique identifier for the content
searchable_text: Combined text for embedding generation
metadata: Optional metadata to store with embedding
force: Force regeneration even if embedding exists
tx: Optional transaction client
Returns:
True if embedding exists/was created, False on failure
"""
try:
# Check if embedding already exists
if not force:
existing = await get_content_embedding(content_type, content_id, user_id)
if existing and existing.get("embedding"):
logger.debug(
f"Embedding for {content_type}:{content_id} already exists"
)
return True
# Generate new embedding
embedding = await generate_embedding(searchable_text)
if embedding is None:
logger.warning(
f"Could not generate embedding for {content_type}:{content_id}"
)
return False
# Store the embedding
return await store_content_embedding(
content_type=content_type,
content_id=content_id,
embedding=embedding,
searchable_text=searchable_text,
metadata=metadata or {},
user_id=user_id,
tx=tx,
)
except Exception as e:
logger.error(f"Failed to ensure embedding for {content_type}:{content_id}: {e}")
return False

View File

@@ -1,329 +0,0 @@
"""
Integration tests for embeddings with schema handling.
These tests verify that embeddings operations work correctly across different database schemas.
"""
from unittest.mock import AsyncMock, patch
import pytest
from prisma.enums import ContentType
from backend.api.features.store import embeddings
# Schema prefix tests removed - functionality moved to db.raw_with_schema() helper
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_store_content_embedding_with_schema():
"""Test storing embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_get_client.return_value = mock_client
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * 1536,
searchable_text="test text",
metadata={"test": "data"},
user_id=None,
)
# Verify the query was called
assert mock_client.execute_raw.called
# Get the SQL query that was executed
call_args = mock_client.execute_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_get_content_embedding_with_schema():
"""Test retrieving embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_client.query_raw.return_value = [
{
"contentType": "STORE_AGENT",
"contentId": "test-id",
"userId": None,
"embedding": "[0.1, 0.2]",
"searchableText": "test",
"metadata": {},
"createdAt": "2024-01-01",
"updatedAt": "2024-01-01",
}
]
mock_get_client.return_value = mock_client
result = await embeddings.get_content_embedding(
ContentType.STORE_AGENT,
"test-id",
user_id=None,
)
# Verify the query was called
assert mock_client.query_raw.called
# Get the SQL query that was executed
call_args = mock_client.query_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is not None
assert result["contentId"] == "test-id"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_delete_content_embedding_with_schema():
"""Test deleting embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_get_client.return_value = mock_client
result = await embeddings.delete_content_embedding(
ContentType.STORE_AGENT,
"test-id",
)
# Verify the query was called
assert mock_client.execute_raw.called
# Get the SQL query that was executed
call_args = mock_client.execute_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix is in the query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify result
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_get_embedding_stats_with_schema():
"""Test embedding statistics with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
# Mock both query results
mock_client.query_raw.side_effect = [
[{"count": 100}], # total_approved
[{"count": 80}], # with_embeddings
]
mock_get_client.return_value = mock_client
result = await embeddings.get_embedding_stats()
# Verify both queries were called
assert mock_client.query_raw.call_count == 2
# Get both SQL queries
first_call = mock_client.query_raw.call_args_list[0]
second_call = mock_client.query_raw.call_args_list[1]
first_sql = first_call[0][0]
second_sql = second_call[0][0]
# Verify schema prefix in both queries
assert '"platform"."StoreListingVersion"' in first_sql
assert '"platform"."StoreListingVersion"' in second_sql
assert '"platform"."UnifiedContentEmbedding"' in second_sql
# Verify results
assert result["total_approved"] == 100
assert result["with_embeddings"] == 80
assert result["without_embeddings"] == 20
assert result["coverage_percent"] == 80.0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backfill_missing_embeddings_with_schema():
"""Test backfilling embeddings with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
# Mock missing embeddings query
mock_client.query_raw.return_value = [
{
"id": "version-1",
"name": "Test Agent",
"description": "Test description",
"subHeading": "Test heading",
"categories": ["test"],
}
]
mock_get_client.return_value = mock_client
with patch(
"backend.api.features.store.embeddings.ensure_embedding"
) as mock_ensure:
mock_ensure.return_value = True
result = await embeddings.backfill_missing_embeddings(batch_size=10)
# Verify the query was called
assert mock_client.query_raw.called
# Get the SQL query
call_args = mock_client.query_raw.call_args
sql_query = call_args[0][0]
# Verify schema prefix in query
assert '"platform"."StoreListingVersion"' in sql_query
assert '"platform"."UnifiedContentEmbedding"' in sql_query
# Verify ensure_embedding was called
assert mock_ensure.called
# Verify results
assert result["processed"] == 1
assert result["success"] == 1
assert result["failed"] == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_ensure_content_embedding_with_schema():
"""Test ensuring embeddings exist with proper schema handling."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch(
"backend.api.features.store.embeddings.get_content_embedding"
) as mock_get:
# Simulate no existing embedding
mock_get.return_value = None
with patch(
"backend.api.features.store.embeddings.generate_embedding"
) as mock_generate:
mock_generate.return_value = [0.1] * 1536
with patch(
"backend.api.features.store.embeddings.store_content_embedding"
) as mock_store:
mock_store.return_value = True
result = await embeddings.ensure_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
searchable_text="test text",
metadata={"test": "data"},
user_id=None,
force=False,
)
# Verify the flow
assert mock_get.called
assert mock_generate.called
assert mock_store.called
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backward_compatibility_store_embedding():
"""Test backward compatibility wrapper for store_embedding."""
with patch(
"backend.api.features.store.embeddings.store_content_embedding"
) as mock_store:
mock_store.return_value = True
result = await embeddings.store_embedding(
version_id="test-version-id",
embedding=[0.1] * 1536,
tx=None,
)
# Verify it calls the new function with correct parameters
assert mock_store.called
call_args = mock_store.call_args
assert call_args[1]["content_type"] == ContentType.STORE_AGENT
assert call_args[1]["content_id"] == "test-version-id"
assert call_args[1]["user_id"] is None
assert result is True
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_backward_compatibility_get_embedding():
"""Test backward compatibility wrapper for get_embedding."""
with patch(
"backend.api.features.store.embeddings.get_content_embedding"
) as mock_get:
mock_get.return_value = {
"contentType": "STORE_AGENT",
"contentId": "test-version-id",
"embedding": "[0.1, 0.2]",
"createdAt": "2024-01-01",
"updatedAt": "2024-01-01",
}
result = await embeddings.get_embedding("test-version-id")
# Verify it calls the new function
assert mock_get.called
# Verify it transforms to old format
assert result is not None
assert result["storeListingVersionId"] == "test-version-id"
assert "embedding" in result
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_schema_handling_error_cases():
"""Test error handling in schema-aware operations."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch("prisma.get_client") as mock_get_client:
mock_client = AsyncMock()
mock_client.execute_raw.side_effect = Exception("Database error")
mock_get_client.return_value = mock_client
result = await embeddings.store_content_embedding(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1] * 1536,
searchable_text="test",
metadata=None,
user_id=None,
)
# Should return False on error, not raise
assert result is False
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

View File

@@ -1,348 +0,0 @@
from unittest.mock import MagicMock, patch
import prisma
import pytest
from prisma import Prisma
from prisma.enums import ContentType
from backend.api.features.store import embeddings
@pytest.fixture(autouse=True)
async def setup_prisma():
"""Setup Prisma client for tests."""
try:
Prisma()
except prisma.errors.ClientAlreadyRegisteredError:
pass
yield
@pytest.mark.asyncio(loop_scope="session")
async def test_build_searchable_text():
"""Test searchable text building from listing fields."""
result = embeddings.build_searchable_text(
name="AI Assistant",
description="A helpful AI assistant for productivity",
sub_heading="Boost your productivity",
categories=["AI", "Productivity"],
)
expected = "AI Assistant Boost your productivity A helpful AI assistant for productivity AI Productivity"
assert result == expected
@pytest.mark.asyncio(loop_scope="session")
async def test_build_searchable_text_empty_fields():
"""Test searchable text building with empty fields."""
result = embeddings.build_searchable_text(
name="", description="Test description", sub_heading="", categories=[]
)
assert result == "Test description"
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.util.clients.get_openai_client")
async def test_generate_embedding_success(mock_get_client):
"""Test successful embedding generation."""
# Mock OpenAI response
mock_client = MagicMock()
mock_response = MagicMock()
mock_response.data = [MagicMock()]
mock_response.data[0].embedding = [0.1, 0.2, 0.3] * 512 # 1536 dimensions
mock_client.embeddings.create.return_value = mock_response
mock_get_client.return_value = mock_client
result = await embeddings.generate_embedding("test text")
assert result is not None
assert len(result) == 1536
assert result[0] == 0.1
mock_client.embeddings.create.assert_called_once_with(
model="text-embedding-3-small", input="test text"
)
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.util.clients.get_openai_client")
async def test_generate_embedding_no_api_key(mock_get_client):
"""Test embedding generation without API key."""
mock_get_client.return_value = None
result = await embeddings.generate_embedding("test text")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.util.clients.get_openai_client")
async def test_generate_embedding_api_error(mock_get_client):
"""Test embedding generation with API error."""
mock_client = MagicMock()
mock_client.embeddings.create.side_effect = Exception("API Error")
mock_get_client.return_value = mock_client
result = await embeddings.generate_embedding("test text")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.util.clients.get_openai_client")
async def test_generate_embedding_text_truncation(mock_get_client):
"""Test that long text is properly truncated."""
mock_client = MagicMock()
mock_response = MagicMock()
mock_response.data = [MagicMock()]
mock_response.data[0].embedding = [0.1] * 1536
mock_client.embeddings.create.return_value = mock_response
mock_get_client.return_value = mock_client
# Create text longer than 32k chars
long_text = "a" * 35000
await embeddings.generate_embedding(long_text)
# Verify truncated text was sent to API
call_args = mock_client.embeddings.create.call_args
assert len(call_args.kwargs["input"]) == 32000
@pytest.mark.asyncio(loop_scope="session")
async def test_store_embedding_success(mocker):
"""Test successful embedding storage."""
mock_client = mocker.AsyncMock()
mock_client.execute_raw = mocker.AsyncMock()
embedding = [0.1, 0.2, 0.3]
result = await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
assert result is True
mock_client.execute_raw.assert_called_once()
call_args = mock_client.execute_raw.call_args[0]
assert "test-version-id" in call_args
assert "[0.1,0.2,0.3]" in call_args
assert None in call_args # userId should be None for store agents
@pytest.mark.asyncio(loop_scope="session")
async def test_store_embedding_database_error(mocker):
"""Test embedding storage with database error."""
mock_client = mocker.AsyncMock()
mock_client.execute_raw.side_effect = Exception("Database error")
embedding = [0.1, 0.2, 0.3]
result = await embeddings.store_embedding(
version_id="test-version-id", embedding=embedding, tx=mock_client
)
assert result is False
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_success(mocker):
"""Test successful embedding retrieval."""
mock_client = mocker.AsyncMock()
mock_result = [
{
"contentType": "STORE_AGENT",
"contentId": "test-version-id",
"embedding": "[0.1,0.2,0.3]",
"searchableText": "Test text",
"metadata": {},
"createdAt": "2024-01-01T00:00:00Z",
"updatedAt": "2024-01-01T00:00:00Z",
}
]
mock_client.query_raw.return_value = mock_result
with patch("prisma.get_client", return_value=mock_client):
result = await embeddings.get_embedding("test-version-id")
assert result is not None
assert result["storeListingVersionId"] == "test-version-id"
assert result["embedding"] == "[0.1,0.2,0.3]"
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_not_found(mocker):
"""Test embedding retrieval when not found."""
mock_client = mocker.AsyncMock()
mock_client.query_raw.return_value = []
with patch("prisma.get_client", return_value=mock_client):
result = await embeddings.get_embedding("test-version-id")
assert result is None
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.store_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_already_exists(mock_get, mock_store, mock_generate):
"""Test ensure_embedding when embedding already exists."""
mock_get.return_value = {"embedding": "[0.1,0.2,0.3]"}
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is True
mock_generate.assert_not_called()
mock_store.assert_not_called()
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.store_content_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_create_new(mock_get, mock_store, mock_generate):
"""Test ensure_embedding creating new embedding."""
mock_get.return_value = None
mock_generate.return_value = [0.1, 0.2, 0.3]
mock_store.return_value = True
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is True
mock_generate.assert_called_once_with("Test Test heading Test description test")
mock_store.assert_called_once_with(
content_type=ContentType.STORE_AGENT,
content_id="test-id",
embedding=[0.1, 0.2, 0.3],
searchable_text="Test Test heading Test description test",
metadata={"name": "Test", "subHeading": "Test heading", "categories": ["test"]},
user_id=None,
tx=None,
)
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.generate_embedding")
@patch("backend.api.features.store.embeddings.get_embedding")
async def test_ensure_embedding_generation_fails(mock_get, mock_generate):
"""Test ensure_embedding when generation fails."""
mock_get.return_value = None
mock_generate.return_value = None
result = await embeddings.ensure_embedding(
version_id="test-id",
name="Test",
description="Test description",
sub_heading="Test heading",
categories=["test"],
)
assert result is False
@pytest.mark.asyncio(loop_scope="session")
async def test_get_embedding_stats(mocker):
"""Test embedding statistics retrieval."""
mock_client = mocker.AsyncMock()
# Mock approved count query
mock_approved_result = [{"count": 100}]
# Mock embedded count query
mock_embedded_result = [{"count": 75}]
mock_client.query_raw.side_effect = [mock_approved_result, mock_embedded_result]
with patch("prisma.get_client", return_value=mock_client):
result = await embeddings.get_embedding_stats()
assert result["total_approved"] == 100
assert result["with_embeddings"] == 75
assert result["without_embeddings"] == 25
assert result["coverage_percent"] == 75.0
@pytest.mark.asyncio(loop_scope="session")
@patch("backend.api.features.store.embeddings.ensure_embedding")
async def test_backfill_missing_embeddings_success(mock_ensure, mocker):
"""Test backfill with successful embedding generation."""
mock_client = mocker.AsyncMock()
# Mock missing embeddings query
mock_missing = [
{
"id": "version-1",
"name": "Agent 1",
"description": "Description 1",
"subHeading": "Heading 1",
"categories": ["AI"],
},
{
"id": "version-2",
"name": "Agent 2",
"description": "Description 2",
"subHeading": "Heading 2",
"categories": ["Productivity"],
},
]
mock_client.query_raw.return_value = mock_missing
# Mock ensure_embedding to succeed for first, fail for second
mock_ensure.side_effect = [True, False]
with patch("prisma.get_client", return_value=mock_client):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 2
assert result["success"] == 1
assert result["failed"] == 1
assert mock_ensure.call_count == 2
@pytest.mark.asyncio(loop_scope="session")
async def test_backfill_missing_embeddings_no_missing(mocker):
"""Test backfill when no embeddings are missing."""
mock_client = mocker.AsyncMock()
mock_client.query_raw.return_value = []
with patch("prisma.get_client", return_value=mock_client):
result = await embeddings.backfill_missing_embeddings(batch_size=5)
assert result["processed"] == 0
assert result["success"] == 0
assert result["failed"] == 0
assert result["message"] == "No missing embeddings"
@pytest.mark.asyncio(loop_scope="session")
async def test_embedding_to_vector_string():
"""Test embedding to PostgreSQL vector string conversion."""
embedding = [0.1, 0.2, 0.3, -0.4]
result = embeddings.embedding_to_vector_string(embedding)
assert result == "[0.1,0.2,0.3,-0.4]"
@pytest.mark.asyncio(loop_scope="session")
async def test_embed_query():
"""Test embed_query function (alias for generate_embedding)."""
with patch(
"backend.api.features.store.embeddings.generate_embedding"
) as mock_generate:
mock_generate.return_value = [0.1, 0.2, 0.3]
result = await embeddings.embed_query("test query")
assert result == [0.1, 0.2, 0.3]
mock_generate.assert_called_once_with("test query")

View File

@@ -1,388 +0,0 @@
"""
Hybrid Search for Store Agents
Combines semantic (embedding) search with lexical (tsvector) search
for improved relevance in marketplace agent discovery.
"""
import logging
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Literal
from backend.api.features.store.embeddings import (
embed_query,
embedding_to_vector_string,
)
from backend.data.db import query_raw_with_schema
logger = logging.getLogger(__name__)
@dataclass
class HybridSearchWeights:
"""Weights for combining search signals."""
semantic: float = 0.30 # Embedding cosine similarity
lexical: float = 0.30 # tsvector ts_rank_cd score
category: float = 0.20 # Category match boost
recency: float = 0.10 # Newer agents ranked higher
popularity: float = 0.10 # Agent usage/runs (PageRank-like)
def __post_init__(self):
"""Validate weights are non-negative and sum to approximately 1.0."""
total = (
self.semantic
+ self.lexical
+ self.category
+ self.recency
+ self.popularity
)
if any(
w < 0
for w in [
self.semantic,
self.lexical,
self.category,
self.recency,
self.popularity,
]
):
raise ValueError("All weights must be non-negative")
if not (0.99 <= total <= 1.01):
raise ValueError(f"Weights must sum to ~1.0, got {total:.3f}")
DEFAULT_WEIGHTS = HybridSearchWeights()
# Minimum relevance score threshold - agents below this are filtered out
# With weights (0.30 semantic + 0.30 lexical + 0.20 category + 0.10 recency + 0.10 popularity):
# - 0.20 means at least ~60% semantic match OR strong lexical match required
# - Ensures only genuinely relevant results are returned
# - Recency/popularity alone (0.10 each) won't pass the threshold
DEFAULT_MIN_SCORE = 0.20
@dataclass
class HybridSearchResult:
"""A single search result with score breakdown."""
slug: str
agent_name: str
agent_image: str
creator_username: str
creator_avatar: str
sub_heading: str
description: str
runs: int
rating: float
categories: list[str]
featured: bool
is_available: bool
updated_at: datetime
# Score breakdown (for debugging/tuning)
combined_score: float
semantic_score: float = 0.0
lexical_score: float = 0.0
category_score: float = 0.0
recency_score: float = 0.0
popularity_score: float = 0.0
async def hybrid_search(
query: str,
featured: bool = False,
creators: list[str] | None = None,
category: str | None = None,
sorted_by: (
Literal["relevance", "rating", "runs", "name", "updated_at"] | None
) = None,
page: int = 1,
page_size: int = 20,
weights: HybridSearchWeights | None = None,
min_score: float | None = None,
) -> tuple[list[dict[str, Any]], int]:
"""
Perform hybrid search combining semantic and lexical signals.
Args:
query: Search query string
featured: Filter for featured agents only
creators: Filter by creator usernames
category: Filter by category
sorted_by: Sort order (relevance uses hybrid scoring)
page: Page number (1-indexed)
page_size: Results per page
weights: Custom weights for search signals
min_score: Minimum relevance score threshold (0-1). Results below
this score are filtered out. Defaults to DEFAULT_MIN_SCORE.
Returns:
Tuple of (results list, total count). Returns empty list if no
results meet the minimum relevance threshold.
"""
# Validate inputs
query = query.strip()
if not query:
return [], 0 # Empty query returns no results
if page < 1:
page = 1
if page_size < 1:
page_size = 1
if page_size > 100: # Cap at reasonable limit to prevent performance issues
page_size = 100
if weights is None:
weights = DEFAULT_WEIGHTS
if min_score is None:
min_score = DEFAULT_MIN_SCORE
offset = (page - 1) * page_size
# Generate query embedding
query_embedding = await embed_query(query)
# Build WHERE clause conditions
where_parts: list[str] = ["sa.is_available = true"]
params: list[Any] = []
param_index = 1
# Add search query for lexical matching
params.append(query)
query_param = f"${param_index}"
param_index += 1
# Add lowercased query for category matching
params.append(query.lower())
query_lower_param = f"${param_index}"
param_index += 1
if featured:
where_parts.append("sa.featured = true")
if creators:
where_parts.append(f"sa.creator_username = ANY(${param_index})")
params.append(creators)
param_index += 1
if category:
where_parts.append(f"${param_index} = ANY(sa.categories)")
params.append(category)
param_index += 1
# Safe: where_parts only contains hardcoded strings with $N parameter placeholders
# No user input is concatenated directly into the SQL string
where_clause = " AND ".join(where_parts)
# Embedding is required for hybrid search - fail fast if unavailable
if query_embedding is None:
# Log detailed error server-side
logger.error(
"Failed to generate query embedding. "
"Check that openai_internal_api_key is configured and OpenAI API is accessible."
)
# Raise generic error to client
raise ValueError("Search service temporarily unavailable")
# Add embedding parameter
embedding_str = embedding_to_vector_string(query_embedding)
params.append(embedding_str)
embedding_param = f"${param_index}"
param_index += 1
# Add weight parameters for SQL calculation
params.append(weights.semantic)
weight_semantic_param = f"${param_index}"
param_index += 1
params.append(weights.lexical)
weight_lexical_param = f"${param_index}"
param_index += 1
params.append(weights.category)
weight_category_param = f"${param_index}"
param_index += 1
params.append(weights.recency)
weight_recency_param = f"${param_index}"
param_index += 1
params.append(weights.popularity)
weight_popularity_param = f"${param_index}"
param_index += 1
# Add min_score parameter
params.append(min_score)
min_score_param = f"${param_index}"
param_index += 1
# Optimized hybrid search query:
# 1. Direct join to UnifiedContentEmbedding via contentId=storeListingVersionId (no redundant JOINs)
# 2. UNION approach (deduplicates agents matching both branches)
# 3. COUNT(*) OVER() to get total count in single query
# 4. Optimized category matching with EXISTS + unnest
# 5. Pre-calculated max values for lexical and popularity normalization
# 6. Simplified recency calculation with linear decay
# 7. Logarithmic popularity scaling to prevent viral agents from dominating
sql_query = f"""
WITH candidates AS (
-- Lexical matches (uses GIN index on search column)
SELECT sa."storeListingVersionId"
FROM {{schema_prefix}}"StoreAgent" sa
WHERE {where_clause}
AND sa.search @@ plainto_tsquery('english', {query_param})
UNION
-- Semantic matches (uses HNSW index on embedding with KNN)
SELECT sa."storeListingVersionId"
FROM {{schema_prefix}}"StoreAgent" sa
INNER JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'
WHERE {where_clause}
ORDER BY uce.embedding <=> {embedding_param}::vector
LIMIT 200
),
search_scores AS (
SELECT
sa.slug,
sa.agent_name,
sa.agent_image,
sa.creator_username,
sa.creator_avatar,
sa.sub_heading,
sa.description,
sa.runs,
sa.rating,
sa.categories,
sa.featured,
sa.is_available,
sa.updated_at,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd (will be normalized later)
COALESCE(ts_rank_cd(sa.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match: optimized with unnest for better performance
CASE
WHEN EXISTS (
SELECT 1 FROM unnest(sa.categories) cat
WHERE LOWER(cat) LIKE '%' || {query_lower_param} || '%'
)
THEN 1.0
ELSE 0.0
END as category_score,
-- Recency score: linear decay over 90 days (simpler than exponential)
GREATEST(0, 1 - EXTRACT(EPOCH FROM (NOW() - sa.updated_at)) / (90 * 24 * 3600)) as recency_score,
-- Popularity raw: agent runs count (will be normalized with log scaling)
sa.runs as popularity_raw
FROM candidates c
INNER JOIN {{schema_prefix}}"StoreAgent" sa
ON c."storeListingVersionId" = sa."storeListingVersionId"
LEFT JOIN {{schema_prefix}}"UnifiedContentEmbedding" uce
ON sa."storeListingVersionId" = uce."contentId" AND uce."contentType" = 'STORE_AGENT'
),
max_lexical AS (
SELECT MAX(lexical_raw) as max_val FROM search_scores
),
max_popularity AS (
SELECT MAX(popularity_raw) as max_val FROM search_scores
),
normalized AS (
SELECT
ss.*,
-- Normalize lexical score by pre-calculated max
CASE
WHEN ml.max_val > 0
THEN ss.lexical_raw / ml.max_val
ELSE 0
END as lexical_score,
-- Normalize popularity with logarithmic scaling to prevent viral agents from dominating
-- LOG(1 + runs) / LOG(1 + max_runs) ensures score is 0-1 range
CASE
WHEN mp.max_val > 0 AND ss.popularity_raw > 0
THEN LN(1 + ss.popularity_raw) / LN(1 + mp.max_val)
ELSE 0
END as popularity_score
FROM search_scores ss
CROSS JOIN max_lexical ml
CROSS JOIN max_popularity mp
),
scored AS (
SELECT
slug,
agent_name,
agent_image,
creator_username,
creator_avatar,
sub_heading,
description,
runs,
rating,
categories,
featured,
is_available,
updated_at,
semantic_score,
lexical_score,
category_score,
recency_score,
popularity_score,
(
{weight_semantic_param} * semantic_score +
{weight_lexical_param} * lexical_score +
{weight_category_param} * category_score +
{weight_recency_param} * recency_score +
{weight_popularity_param} * popularity_score
) as combined_score
FROM normalized
),
filtered AS (
SELECT
*,
COUNT(*) OVER () as total_count
FROM scored
WHERE combined_score >= {min_score_param}
)
SELECT * FROM filtered
ORDER BY combined_score DESC
LIMIT ${param_index} OFFSET ${param_index + 1}
"""
# Add pagination params
params.extend([page_size, offset])
# Execute search query - includes total_count via window function
results = await query_raw_with_schema(sql_query, *params)
# Extract total count from first result (all rows have same count)
total = results[0]["total_count"] if results else 0
# Remove total_count from results before returning
for result in results:
result.pop("total_count", None)
# Log without sensitive query content
logger.info(f"Hybrid search: {len(results)} results, {total} total")
return results, total
async def hybrid_search_simple(
query: str,
page: int = 1,
page_size: int = 20,
) -> tuple[list[dict[str, Any]], int]:
"""
Simplified hybrid search for common use cases.
Uses default weights and no filters.
"""
return await hybrid_search(
query=query,
page=page,
page_size=page_size,
)

View File

@@ -1,334 +0,0 @@
"""
Integration tests for hybrid search with schema handling.
These tests verify that hybrid search works correctly across different database schemas.
"""
from unittest.mock import patch
import pytest
from backend.api.features.store.hybrid_search import HybridSearchWeights, hybrid_search
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_schema_handling():
"""Test that hybrid search correctly handles database schema prefixes."""
# Test with a mock query to ensure schema handling works
query = "test agent"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Mock the query result
mock_query.return_value = [
{
"slug": "test/agent",
"agent_name": "Test Agent",
"agent_image": "test.png",
"creator_username": "test",
"creator_avatar": "avatar.png",
"sub_heading": "Test sub-heading",
"description": "Test description",
"runs": 10,
"rating": 4.5,
"categories": ["test"],
"featured": False,
"is_available": True,
"updated_at": "2024-01-01T00:00:00Z",
"combined_score": 0.8,
"semantic_score": 0.7,
"lexical_score": 0.6,
"category_score": 0.5,
"recency_score": 0.4,
"total_count": 1,
}
]
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536 # Mock embedding
results, total = await hybrid_search(
query=query,
page=1,
page_size=20,
)
# Verify the query was called
assert mock_query.called
# Verify the SQL template uses schema_prefix placeholder
call_args = mock_query.call_args
sql_template = call_args[0][0]
assert "{schema_prefix}" in sql_template
# Verify results
assert len(results) == 1
assert total == 1
assert results[0]["slug"] == "test/agent"
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_public_schema():
"""Test hybrid search when using public schema (no prefix needed)."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "public"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify the mock was set up correctly
assert mock_schema.return_value == "public"
# Results should work even with empty results
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_custom_schema():
"""Test hybrid search when using custom schema (e.g., 'platform')."""
with patch("backend.data.db.get_database_schema") as mock_schema:
mock_schema.return_value = "platform"
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify the mock was set up correctly
assert mock_schema.return_value == "platform"
assert results == []
assert total == 0
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_without_embeddings():
"""Test hybrid search fails fast when embeddings are unavailable."""
# Patch where the function is used, not where it's defined
with patch("backend.api.features.store.hybrid_search.embed_query") as mock_embed:
# Simulate embedding failure
mock_embed.return_value = None
# Should raise ValueError with helpful message
with pytest.raises(ValueError) as exc_info:
await hybrid_search(
query="test",
page=1,
page_size=20,
)
# Verify error message is generic (doesn't leak implementation details)
assert "Search service temporarily unavailable" in str(exc_info.value)
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_with_filters():
"""Test hybrid search with various filters."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test with featured filter
results, total = await hybrid_search(
query="test",
featured=True,
creators=["user1", "user2"],
category="productivity",
page=1,
page_size=10,
)
# Verify filters were applied in the query
call_args = mock_query.call_args
params = call_args[0][1:] # Skip SQL template
# Should have query, query_lower, creators array, category
assert len(params) >= 4
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_weights():
"""Test hybrid search with custom weights."""
custom_weights = HybridSearchWeights(
semantic=0.5,
lexical=0.3,
category=0.1,
recency=0.1,
popularity=0.0,
)
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
results, total = await hybrid_search(
query="test",
weights=custom_weights,
page=1,
page_size=20,
)
# Verify custom weights were used in the query
call_args = mock_query.call_args
sql_template = call_args[0][0]
params = call_args[0][1:] # Get all parameters passed
# Check that SQL uses parameterized weights (not f-string interpolation)
assert "$" in sql_template # Verify parameterization is used
# Check that custom weights are in the params
assert 0.5 in params # semantic weight
assert 0.3 in params # lexical weight
assert 0.1 in params # category and recency weights
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_min_score_filtering():
"""Test hybrid search minimum score threshold."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Return results with varying scores
mock_query.return_value = [
{
"slug": "high-score/agent",
"agent_name": "High Score Agent",
"combined_score": 0.8,
"total_count": 1,
# ... other fields
}
]
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test with custom min_score
results, total = await hybrid_search(
query="test",
min_score=0.5, # High threshold
page=1,
page_size=20,
)
# Verify min_score was applied in query
call_args = mock_query.call_args
sql_template = call_args[0][0]
params = call_args[0][1:] # Get all parameters
# Check that SQL uses parameterized min_score
assert "combined_score >=" in sql_template
assert "$" in sql_template # Verify parameterization
# Check that custom min_score is in the params
assert 0.5 in params
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_pagination():
"""Test hybrid search pagination."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
mock_query.return_value = []
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Test page 2 with page_size 10
results, total = await hybrid_search(
query="test",
page=2,
page_size=10,
)
# Verify pagination parameters
call_args = mock_query.call_args
params = call_args[0]
# Last two params should be LIMIT and OFFSET
limit = params[-2]
offset = params[-1]
assert limit == 10 # page_size
assert offset == 10 # (page - 1) * page_size = (2 - 1) * 10
@pytest.mark.asyncio(loop_scope="session")
@pytest.mark.integration
async def test_hybrid_search_error_handling():
"""Test hybrid search error handling."""
with patch(
"backend.api.features.store.hybrid_search.query_raw_with_schema"
) as mock_query:
# Simulate database error
mock_query.side_effect = Exception("Database connection error")
with patch(
"backend.api.features.store.hybrid_search.embed_query"
) as mock_embed:
mock_embed.return_value = [0.1] * 1536
# Should raise exception
with pytest.raises(Exception) as exc_info:
await hybrid_search(
query="test",
page=1,
page_size=20,
)
assert "Database connection error" in str(exc_info.value)
if __name__ == "__main__":
pytest.main([__file__, "-v", "-s"])

View File

@@ -110,7 +110,6 @@ class Profile(pydantic.BaseModel):
class StoreSubmission(pydantic.BaseModel):
listing_id: str
agent_id: str
agent_version: int
name: str
@@ -165,12 +164,8 @@ class StoreListingsWithVersionsResponse(pydantic.BaseModel):
class StoreSubmissionRequest(pydantic.BaseModel):
agent_id: str = pydantic.Field(
..., min_length=1, description="Agent ID cannot be empty"
)
agent_version: int = pydantic.Field(
..., gt=0, description="Agent version must be greater than 0"
)
agent_id: str
agent_version: int
slug: str
name: str
sub_heading: str

View File

@@ -138,7 +138,6 @@ def test_creator_details():
def test_store_submission():
submission = store_model.StoreSubmission(
listing_id="listing123",
agent_id="agent123",
agent_version=1,
sub_heading="Test subheading",
@@ -160,7 +159,6 @@ def test_store_submissions_response():
response = store_model.StoreSubmissionsResponse(
submissions=[
store_model.StoreSubmission(
listing_id="listing123",
agent_id="agent123",
agent_version=1,
sub_heading="Test subheading",

View File

@@ -521,7 +521,6 @@ def test_get_submissions_success(
mocked_value = store_model.StoreSubmissionsResponse(
submissions=[
store_model.StoreSubmission(
listing_id="test-listing-id",
name="Test Agent",
description="Test agent description",
image_urls=["test.jpg"],

View File

@@ -6,9 +6,6 @@ import hashlib
import hmac
import logging
from enum import Enum
from typing import cast
from prisma.types import Serializable
from backend.sdk import (
BaseWebhooksManager,
@@ -87,9 +84,7 @@ class AirtableWebhookManager(BaseWebhooksManager):
# update webhook config
await update_webhook(
webhook.id,
config=cast(
dict[str, Serializable], {"base_id": base_id, "cursor": response.cursor}
),
config={"base_id": base_id, "cursor": response.cursor},
)
event_type = "notification"

View File

@@ -1,184 +0,0 @@
"""
Shared helpers for Human-In-The-Loop (HITL) review functionality.
Used by both the dedicated HumanInTheLoopBlock and blocks that require human review.
"""
import logging
from typing import Any, Optional
from prisma.enums import ReviewStatus
from pydantic import BaseModel
from backend.data.execution import ExecutionContext, ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
logger = logging.getLogger(__name__)
class ReviewDecision(BaseModel):
"""Result of a review decision."""
should_proceed: bool
message: str
review_result: ReviewResult
class HITLReviewHelper:
"""Helper class for Human-In-The-Loop review operations."""
@staticmethod
async def get_or_create_human_review(**kwargs) -> Optional[ReviewResult]:
"""Create or retrieve a human review from the database."""
return await get_database_manager_async_client().get_or_create_human_review(
**kwargs
)
@staticmethod
async def update_node_execution_status(**kwargs) -> None:
"""Update the execution status of a node."""
await async_update_node_execution_status(
db_client=get_database_manager_async_client(), **kwargs
)
@staticmethod
async def update_review_processed_status(
node_exec_id: str, processed: bool
) -> None:
"""Update the processed status of a review."""
return await get_database_manager_async_client().update_review_processed_status(
node_exec_id, processed
)
@staticmethod
async def _handle_review_request(
input_data: Any,
user_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewResult]:
"""
Handle a review request for a block that requires human review.
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
Returns:
ReviewResult if review is complete, None if waiting for human input
Raises:
Exception: If review creation or status update fails
"""
# Skip review if safe mode is disabled - return auto-approved result
if not execution_context.safe_mode:
logger.info(
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
)
return ReviewResult(
data=input_data,
status=ReviewStatus.APPROVED,
message="Auto-approved (safe mode disabled)",
processed=True,
node_exec_id=node_exec_id,
)
result = await HITLReviewHelper.get_or_create_human_review(
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
input_data=input_data,
message=f"Review required for {block_name} execution",
editable=editable,
)
if result is None:
logger.info(
f"Block {block_name} pausing execution for node {node_exec_id} - awaiting human review"
)
await HITLReviewHelper.update_node_execution_status(
exec_id=node_exec_id,
status=ExecutionStatus.REVIEW,
)
return None # Signal that execution should pause
# Mark review as processed if not already done
if not result.processed:
await HITLReviewHelper.update_review_processed_status(
node_exec_id=node_exec_id, processed=True
)
return result
@staticmethod
async def handle_review_decision(
input_data: Any,
user_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
block_name: str = "Block",
editable: bool = False,
) -> Optional[ReviewDecision]:
"""
Handle a review request and return the decision in a single call.
Args:
input_data: The input data to be reviewed
user_id: ID of the user requesting the review
node_exec_id: ID of the node execution
graph_exec_id: ID of the graph execution
graph_id: ID of the graph
graph_version: Version of the graph
execution_context: Current execution context
block_name: Name of the block requesting review
editable: Whether the reviewer can edit the data
Returns:
ReviewDecision if review is complete (approved/rejected),
None if execution should pause (awaiting review)
"""
review_result = await HITLReviewHelper._handle_review_request(
input_data=input_data,
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=block_name,
editable=editable,
)
if review_result is None:
# Still awaiting review - return None to pause execution
return None
# Review is complete, determine outcome
should_proceed = review_result.status == ReviewStatus.APPROVED
message = review_result.message or (
"Execution approved by reviewer"
if should_proceed
else "Execution rejected by reviewer"
)
return ReviewDecision(
should_proceed=should_proceed, message=message, review_result=review_result
)

View File

@@ -3,7 +3,6 @@ from typing import Any
from prisma.enums import ReviewStatus
from backend.blocks.helpers.review import HITLReviewHelper
from backend.data.block import (
Block,
BlockCategory,
@@ -12,9 +11,11 @@ from backend.data.block import (
BlockSchemaOutput,
BlockType,
)
from backend.data.execution import ExecutionContext
from backend.data.execution import ExecutionContext, ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.data.model import SchemaField
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
logger = logging.getLogger(__name__)
@@ -71,26 +72,32 @@ class HumanInTheLoopBlock(Block):
("approved_data", {"name": "John Doe", "age": 30}),
],
test_mock={
"handle_review_decision": lambda **kwargs: type(
"ReviewDecision",
(),
{
"should_proceed": True,
"message": "Test approval message",
"review_result": ReviewResult(
data={"name": "John Doe", "age": 30},
status=ReviewStatus.APPROVED,
message="",
processed=False,
node_exec_id="test-node-exec-id",
),
},
)(),
"get_or_create_human_review": lambda *_args, **_kwargs: ReviewResult(
data={"name": "John Doe", "age": 30},
status=ReviewStatus.APPROVED,
message="",
processed=False,
node_exec_id="test-node-exec-id",
),
"update_node_execution_status": lambda *_args, **_kwargs: None,
"update_review_processed_status": lambda *_args, **_kwargs: None,
},
)
async def handle_review_decision(self, **kwargs):
return await HITLReviewHelper.handle_review_decision(**kwargs)
async def get_or_create_human_review(self, **kwargs):
return await get_database_manager_async_client().get_or_create_human_review(
**kwargs
)
async def update_node_execution_status(self, **kwargs):
return await async_update_node_execution_status(
db_client=get_database_manager_async_client(), **kwargs
)
async def update_review_processed_status(self, node_exec_id: str, processed: bool):
return await get_database_manager_async_client().update_review_processed_status(
node_exec_id, processed
)
async def run(
self,
@@ -102,7 +109,7 @@ class HumanInTheLoopBlock(Block):
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
**_kwargs,
**kwargs,
) -> BlockOutput:
if not execution_context.safe_mode:
logger.info(
@@ -112,28 +119,48 @@ class HumanInTheLoopBlock(Block):
yield "review_message", "Auto-approved (safe mode disabled)"
return
decision = await self.handle_review_decision(
input_data=input_data.data,
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=input_data.editable,
)
try:
result = await self.get_or_create_human_review(
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
input_data=input_data.data,
message=input_data.name,
editable=input_data.editable,
)
except Exception as e:
logger.error(f"Error in HITL block for node {node_exec_id}: {str(e)}")
raise
if decision is None:
return
if result is None:
logger.info(
f"HITL block pausing execution for node {node_exec_id} - awaiting human review"
)
try:
await self.update_node_execution_status(
exec_id=node_exec_id,
status=ExecutionStatus.REVIEW,
)
return
except Exception as e:
logger.error(
f"Failed to update node status for HITL block {node_exec_id}: {str(e)}"
)
raise
status = decision.review_result.status
if status == ReviewStatus.APPROVED:
yield "approved_data", decision.review_result.data
elif status == ReviewStatus.REJECTED:
yield "rejected_data", decision.review_result.data
else:
raise RuntimeError(f"Unexpected review status: {status}")
if not result.processed:
await self.update_review_processed_status(
node_exec_id=node_exec_id, processed=True
)
if decision.message:
yield "review_message", decision.message
if result.status == ReviewStatus.APPROVED:
yield "approved_data", result.data
if result.message:
yield "review_message", result.message
elif result.status == ReviewStatus.REJECTED:
yield "rejected_data", result.data
if result.message:
yield "review_message", result.message

File diff suppressed because it is too large Load Diff

View File

@@ -18,7 +18,6 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.request import DEFAULT_USER_AGENT
class GetWikipediaSummaryBlock(Block, GetRequest):
@@ -40,27 +39,17 @@ class GetWikipediaSummaryBlock(Block, GetRequest):
output_schema=GetWikipediaSummaryBlock.Output,
test_input={"topic": "Artificial Intelligence"},
test_output=("summary", "summary content"),
test_mock={
"get_request": lambda url, headers, json: {"extract": "summary content"}
},
test_mock={"get_request": lambda url, json: {"extract": "summary content"}},
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
topic = input_data.topic
# URL-encode the topic to handle spaces and special characters
encoded_topic = quote(topic, safe="")
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{encoded_topic}"
# Set headers per Wikimedia robot policy (https://w.wiki/4wJS)
# - User-Agent: Required, must identify the bot
# - Accept-Encoding: gzip recommended to reduce bandwidth
headers = {
"User-Agent": DEFAULT_USER_AGENT,
"Accept-Encoding": "gzip, deflate",
}
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{topic}"
# Note: User-Agent is now automatically set by the request library
# to comply with Wikimedia's robot policy (https://w.wiki/4wJS)
try:
response = await self.get_request(url, headers=headers, json=True)
response = await self.get_request(url, json=True)
if "extract" not in response:
raise ValueError(f"Unable to parse Wikipedia response: {response}")
yield "summary", response["extract"]

View File

@@ -391,12 +391,8 @@ class SmartDecisionMakerBlock(Block):
"""
block = sink_node.block
# Use custom name from node metadata if set, otherwise fall back to block.name
custom_name = sink_node.metadata.get("customized_name")
tool_name = custom_name if custom_name else block.name
tool_function: dict[str, Any] = {
"name": SmartDecisionMakerBlock.cleanup(tool_name),
"name": SmartDecisionMakerBlock.cleanup(block.name),
"description": block.description,
}
sink_block_input_schema = block.input_schema
@@ -493,12 +489,8 @@ class SmartDecisionMakerBlock(Block):
f"Sink graph metadata not found: {graph_id} {graph_version}"
)
# Use custom name from node metadata if set, otherwise fall back to graph name
custom_name = sink_node.metadata.get("customized_name")
tool_name = custom_name if custom_name else sink_graph_meta.name
tool_function: dict[str, Any] = {
"name": SmartDecisionMakerBlock.cleanup(tool_name),
"name": SmartDecisionMakerBlock.cleanup(sink_graph_meta.name),
"description": sink_graph_meta.description,
}
@@ -989,28 +981,10 @@ class SmartDecisionMakerBlock(Block):
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
nodes_to_skip: set[str] | None = None,
**kwargs,
) -> BlockOutput:
tool_functions = await self._create_tool_node_signatures(node_id)
original_tool_count = len(tool_functions)
# Filter out tools for nodes that should be skipped (e.g., missing optional credentials)
if nodes_to_skip:
tool_functions = [
tf
for tf in tool_functions
if tf.get("function", {}).get("_sink_node_id") not in nodes_to_skip
]
# Only raise error if we had tools but they were all filtered out
if original_tool_count > 0 and not tool_functions:
raise ValueError(
"No available tools to execute - all downstream nodes are unavailable "
"(possibly due to missing optional credentials)"
)
yield "tool_functions", json.dumps(tool_functions)
conversation_history = input_data.conversation_history or []

View File

@@ -1057,153 +1057,3 @@ async def test_smart_decision_maker_traditional_mode_default():
) # Should yield individual tool parameters
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
assert "conversations" in outputs
@pytest.mark.asyncio
async def test_smart_decision_maker_uses_customized_name_for_blocks():
"""Test that SmartDecisionMakerBlock uses customized_name from node metadata for tool names."""
from unittest.mock import MagicMock
from backend.blocks.basic import StoreValueBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node with customized_name in metadata
mock_node = MagicMock(spec=Node)
mock_node.id = "test-node-id"
mock_node.block_id = StoreValueBlock().id
mock_node.metadata = {"customized_name": "My Custom Tool Name"}
mock_node.block = StoreValueBlock()
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "input"
# Call the function directly
result = await SmartDecisionMakerBlock._create_block_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the customized name (cleaned up)
assert result["type"] == "function"
assert result["function"]["name"] == "my_custom_tool_name" # Cleaned version
assert result["function"]["_sink_node_id"] == "test-node-id"
@pytest.mark.asyncio
async def test_smart_decision_maker_falls_back_to_block_name():
"""Test that SmartDecisionMakerBlock falls back to block.name when no customized_name."""
from unittest.mock import MagicMock
from backend.blocks.basic import StoreValueBlock
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node without customized_name
mock_node = MagicMock(spec=Node)
mock_node.id = "test-node-id"
mock_node.block_id = StoreValueBlock().id
mock_node.metadata = {} # No customized_name
mock_node.block = StoreValueBlock()
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "input"
# Call the function directly
result = await SmartDecisionMakerBlock._create_block_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the block's default name
assert result["type"] == "function"
assert result["function"]["name"] == "storevalueblock" # Default block name cleaned
assert result["function"]["_sink_node_id"] == "test-node-id"
@pytest.mark.asyncio
async def test_smart_decision_maker_uses_customized_name_for_agents():
"""Test that SmartDecisionMakerBlock uses customized_name from metadata for agent nodes."""
from unittest.mock import AsyncMock, MagicMock, patch
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node with customized_name in metadata
mock_node = MagicMock(spec=Node)
mock_node.id = "test-agent-node-id"
mock_node.metadata = {"customized_name": "My Custom Agent"}
mock_node.input_default = {
"graph_id": "test-graph-id",
"graph_version": 1,
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
}
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "test_input"
# Mock the database client
mock_graph_meta = MagicMock()
mock_graph_meta.name = "Original Agent Name"
mock_graph_meta.description = "Agent description"
mock_db_client = AsyncMock()
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
return_value=mock_db_client,
):
result = await SmartDecisionMakerBlock._create_agent_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the customized name (cleaned up)
assert result["type"] == "function"
assert result["function"]["name"] == "my_custom_agent" # Cleaned version
assert result["function"]["_sink_node_id"] == "test-agent-node-id"
@pytest.mark.asyncio
async def test_smart_decision_maker_agent_falls_back_to_graph_name():
"""Test that agent node falls back to graph name when no customized_name."""
from unittest.mock import AsyncMock, MagicMock, patch
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
from backend.data.graph import Link, Node
# Create a mock node without customized_name
mock_node = MagicMock(spec=Node)
mock_node.id = "test-agent-node-id"
mock_node.metadata = {} # No customized_name
mock_node.input_default = {
"graph_id": "test-graph-id",
"graph_version": 1,
"input_schema": {"properties": {"test_input": {"description": "Test input"}}},
}
# Create a mock link
mock_link = MagicMock(spec=Link)
mock_link.sink_name = "test_input"
# Mock the database client
mock_graph_meta = MagicMock()
mock_graph_meta.name = "Original Agent Name"
mock_graph_meta.description = "Agent description"
mock_db_client = AsyncMock()
mock_db_client.get_graph_metadata.return_value = mock_graph_meta
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
return_value=mock_db_client,
):
result = await SmartDecisionMakerBlock._create_agent_function_signature(
mock_node, [mock_link]
)
# Verify the tool name uses the graph's default name
assert result["type"] == "function"
assert result["function"]["name"] == "original_agent_name" # Graph name cleaned
assert result["function"]["_sink_node_id"] == "test-agent-node-id"

View File

@@ -15,7 +15,6 @@ async def test_smart_decision_maker_handles_dynamic_dict_fields():
mock_node.block = CreateDictionaryBlock()
mock_node.block_id = CreateDictionaryBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic dictionary fields
mock_links = [
@@ -78,7 +77,6 @@ async def test_smart_decision_maker_handles_dynamic_list_fields():
mock_node.block = AddToListBlock()
mock_node.block_id = AddToListBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic list fields
mock_links = [

View File

@@ -44,7 +44,6 @@ async def test_create_block_function_signature_with_dict_fields():
mock_node.block = CreateDictionaryBlock()
mock_node.block_id = CreateDictionaryBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic dictionary fields (source sanitized, sink original)
mock_links = [
@@ -107,7 +106,6 @@ async def test_create_block_function_signature_with_list_fields():
mock_node.block = AddToListBlock()
mock_node.block_id = AddToListBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic list fields
mock_links = [
@@ -161,7 +159,6 @@ async def test_create_block_function_signature_with_object_fields():
mock_node.block = MatchTextPatternBlock()
mock_node.block_id = MatchTextPatternBlock().id
mock_node.input_default = {}
mock_node.metadata = {}
# Create mock links with dynamic object fields
mock_links = [
@@ -211,13 +208,11 @@ async def test_create_tool_node_signatures():
mock_dict_node.block = CreateDictionaryBlock()
mock_dict_node.block_id = CreateDictionaryBlock().id
mock_dict_node.input_default = {}
mock_dict_node.metadata = {}
mock_list_node = Mock()
mock_list_node.block = AddToListBlock()
mock_list_node.block_id = AddToListBlock().id
mock_list_node.input_default = {}
mock_list_node.metadata = {}
# Mock links with dynamic fields
dict_link1 = Mock(
@@ -428,7 +423,6 @@ async def test_mixed_regular_and_dynamic_fields():
mock_node.block.name = "TestBlock"
mock_node.block.description = "A test block"
mock_node.block.input_schema = Mock()
mock_node.metadata = {}
# Mock the get_field_schema to return a proper schema for regular fields
def get_field_schema(field_name):

View File

@@ -1,3 +1,3 @@
from .blog import WordPressCreatePostBlock, WordPressGetAllPostsBlock
from .blog import WordPressCreatePostBlock
__all__ = ["WordPressCreatePostBlock", "WordPressGetAllPostsBlock"]
__all__ = ["WordPressCreatePostBlock"]

View File

@@ -161,7 +161,7 @@ async def oauth_exchange_code_for_tokens(
grant_type="authorization_code",
).model_dump(exclude_none=True)
response = await Requests(raise_for_status=False).post(
response = await Requests().post(
f"{WORDPRESS_BASE_URL}oauth2/token",
headers=headers,
data=data,
@@ -205,7 +205,7 @@ async def oauth_refresh_tokens(
grant_type="refresh_token",
).model_dump(exclude_none=True)
response = await Requests(raise_for_status=False).post(
response = await Requests().post(
f"{WORDPRESS_BASE_URL}oauth2/token",
headers=headers,
data=data,
@@ -252,7 +252,7 @@ async def validate_token(
"token": token,
}
response = await Requests(raise_for_status=False).get(
response = await Requests().get(
f"{WORDPRESS_BASE_URL}oauth2/token-info",
params=params,
)
@@ -296,7 +296,7 @@ async def make_api_request(
url = f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}"
request_method = getattr(Requests(raise_for_status=False), method.lower())
request_method = getattr(Requests(), method.lower())
response = await request_method(
url,
headers=headers,
@@ -476,7 +476,6 @@ async def create_post(
data["tags"] = ",".join(str(t) for t in data["tags"])
# Make the API request
site = normalize_site(site)
endpoint = f"/rest/v1.1/sites/{site}/posts/new"
headers = {
@@ -484,7 +483,7 @@ async def create_post(
"Content-Type": "application/x-www-form-urlencoded",
}
response = await Requests(raise_for_status=False).post(
response = await Requests().post(
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
headers=headers,
data=data,
@@ -500,132 +499,3 @@ async def create_post(
)
error_message = error_data.get("message", response.text)
raise ValueError(f"Failed to create post: {response.status} - {error_message}")
class Post(BaseModel):
"""Response model for individual posts in a posts list response.
This is a simplified version compared to PostResponse, as the list endpoint
returns less detailed information than the create/get single post endpoints.
"""
ID: int
site_ID: int
author: PostAuthor
date: datetime
modified: datetime
title: str
URL: str
short_URL: str
content: str | None = None
excerpt: str | None = None
slug: str
guid: str
status: str
sticky: bool
password: str | None = ""
parent: Union[Dict[str, Any], bool, None] = None
type: str
discussion: Dict[str, Union[str, bool, int]] | None = None
likes_enabled: bool | None = None
sharing_enabled: bool | None = None
like_count: int | None = None
i_like: bool | None = None
is_reblogged: bool | None = None
is_following: bool | None = None
global_ID: str | None = None
featured_image: str | None = None
post_thumbnail: Dict[str, Any] | None = None
format: str | None = None
geo: Union[Dict[str, Any], bool, None] = None
menu_order: int | None = None
page_template: str | None = None
publicize_URLs: List[str] | None = None
terms: Dict[str, Dict[str, Any]] | None = None
tags: Dict[str, Dict[str, Any]] | None = None
categories: Dict[str, Dict[str, Any]] | None = None
attachments: Dict[str, Dict[str, Any]] | None = None
attachment_count: int | None = None
metadata: List[Dict[str, Any]] | None = None
meta: Dict[str, Any] | None = None
capabilities: Dict[str, bool] | None = None
revisions: List[int] | None = None
other_URLs: Dict[str, Any] | None = None
class PostsResponse(BaseModel):
"""Response model for WordPress posts list."""
found: int
posts: List[Post]
meta: Dict[str, Any]
def normalize_site(site: str) -> str:
"""
Normalize a site identifier by stripping protocol and trailing slashes.
Args:
site: Site URL, domain, or ID (e.g., "https://myblog.wordpress.com/", "myblog.wordpress.com", "123456789")
Returns:
Normalized site identifier (domain or ID only)
"""
site = site.strip()
if site.startswith("https://"):
site = site[8:]
elif site.startswith("http://"):
site = site[7:]
return site.rstrip("/")
async def get_posts(
credentials: Credentials,
site: str,
status: PostStatus | None = None,
number: int = 100,
offset: int = 0,
) -> PostsResponse:
"""
Get posts from a WordPress site.
Args:
credentials: OAuth credentials
site: Site ID or domain (e.g., "myblog.wordpress.com" or "123456789")
status: Filter by post status using PostStatus enum, or None for all
number: Number of posts to retrieve (max 100)
offset: Number of posts to skip (for pagination)
Returns:
PostsResponse with the list of posts
"""
site = normalize_site(site)
endpoint = f"/rest/v1.1/sites/{site}/posts"
headers = {
"Authorization": credentials.auth_header(),
}
params: Dict[str, Any] = {
"number": max(1, min(number, 100)), # 1100 posts per request
"offset": offset,
}
if status:
params["status"] = status.value
response = await Requests(raise_for_status=False).get(
f"{WORDPRESS_BASE_URL.rstrip('/')}{endpoint}",
headers=headers,
params=params,
)
if response.ok:
return PostsResponse.model_validate(response.json())
error_data = (
response.json()
if response.headers.get("content-type", "").startswith("application/json")
else {}
)
error_message = error_data.get("message", response.text)
raise ValueError(f"Failed to get posts: {response.status} - {error_message}")

View File

@@ -9,15 +9,7 @@ from backend.sdk import (
SchemaField,
)
from ._api import (
CreatePostRequest,
Post,
PostResponse,
PostsResponse,
PostStatus,
create_post,
get_posts,
)
from ._api import CreatePostRequest, PostResponse, PostStatus, create_post
from ._config import wordpress
@@ -57,15 +49,8 @@ class WordPressCreatePostBlock(Block):
media_urls: list[str] = SchemaField(
description="URLs of images to sideload and attach to the post", default=[]
)
publish_as_draft: bool = SchemaField(
description="If True, publishes the post as a draft. If False, publishes it publicly.",
default=False,
)
class Output(BlockSchemaOutput):
site: str = SchemaField(
description="The site ID or domain (pass-through for chaining with other blocks)"
)
post_id: int = SchemaField(description="The ID of the created post")
post_url: str = SchemaField(description="The full URL of the created post")
short_url: str = SchemaField(description="The shortened wp.me URL")
@@ -93,9 +78,7 @@ class WordPressCreatePostBlock(Block):
tags=input_data.tags,
featured_image=input_data.featured_image,
media_urls=input_data.media_urls,
status=(
PostStatus.DRAFT if input_data.publish_as_draft else PostStatus.PUBLISH
),
status=PostStatus.PUBLISH,
)
post_response: PostResponse = await create_post(
@@ -104,69 +87,7 @@ class WordPressCreatePostBlock(Block):
post_data=post_request,
)
yield "site", input_data.site
yield "post_id", post_response.ID
yield "post_url", post_response.URL
yield "short_url", post_response.short_URL
yield "post_data", post_response.model_dump()
class WordPressGetAllPostsBlock(Block):
"""
Fetches all posts from a WordPress.com site or Jetpack-enabled site.
Supports filtering by status and pagination.
"""
class Input(BlockSchemaInput):
credentials: CredentialsMetaInput = wordpress.credentials_field()
site: str = SchemaField(
description="Site ID or domain (e.g., 'myblog.wordpress.com' or '123456789')"
)
status: PostStatus | None = SchemaField(
description="Filter by post status, or None for all",
default=None,
)
number: int = SchemaField(
description="Number of posts to retrieve (max 100 per request)", default=20
)
offset: int = SchemaField(
description="Number of posts to skip (for pagination)", default=0
)
class Output(BlockSchemaOutput):
site: str = SchemaField(
description="The site ID or domain (pass-through for chaining with other blocks)"
)
found: int = SchemaField(description="Total number of posts found")
posts: list[Post] = SchemaField(
description="List of post objects with their details"
)
post: Post = SchemaField(
description="Individual post object (yielded for each post)"
)
def __init__(self):
super().__init__(
id="97728fa7-7f6f-4789-ba0c-f2c114119536",
description="Fetch all posts from WordPress.com or Jetpack sites",
categories={BlockCategory.SOCIAL},
input_schema=self.Input,
output_schema=self.Output,
)
async def run(
self, input_data: Input, *, credentials: Credentials, **kwargs
) -> BlockOutput:
posts_response: PostsResponse = await get_posts(
credentials=credentials,
site=input_data.site,
status=input_data.status,
number=input_data.number,
offset=input_data.offset,
)
yield "site", input_data.site
yield "found", posts_response.found
yield "posts", posts_response.posts
for post in posts_response.posts:
yield "post", post

View File

@@ -104,7 +104,7 @@ async def get_accuracy_trends_and_alerts(
AND e."executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED')
{user_filter}
GROUP BY DATE(e."createdAt")
HAVING COUNT(*) >= 3 -- Need at least 3 executions per day
HAVING COUNT(*) >= 1 -- Include all days with at least 1 execution
),
trends AS (
SELECT

View File

@@ -50,8 +50,6 @@ from .model import (
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from backend.data.execution import ExecutionContext
from .graph import Link
app_config = Config()
@@ -474,7 +472,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
self.block_type = block_type
self.webhook_config = webhook_config
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
self.requires_human_review: bool = False
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
@@ -617,77 +614,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
block_id=self.id,
) from ex
async def is_block_exec_need_review(
self,
input_data: BlockInput,
*,
user_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: "ExecutionContext",
**kwargs,
) -> tuple[bool, BlockInput]:
"""
Check if this block execution needs human review and handle the review process.
Returns:
Tuple of (should_pause, input_data_to_use)
- should_pause: True if execution should be paused for review
- input_data_to_use: The input data to use (may be modified by reviewer)
"""
# Skip review if not required or safe mode is disabled
if not self.requires_human_review or not execution_context.safe_mode:
return False, input_data
from backend.blocks.helpers.review import HITLReviewHelper
# Handle the review request and get decision
decision = await HITLReviewHelper.handle_review_decision(
input_data=input_data,
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
block_name=self.name,
editable=True,
)
if decision is None:
# We're awaiting review - pause execution
return True, input_data
if not decision.should_proceed:
# Review was rejected, raise an error to stop execution
raise BlockExecutionError(
message=f"Block execution rejected by reviewer: {decision.message}",
block_name=self.name,
block_id=self.id,
)
# Review was approved - use the potentially modified data
# ReviewResult.data must be a dict for block inputs
reviewed_data = decision.review_result.data
if not isinstance(reviewed_data, dict):
raise BlockExecutionError(
message=f"Review data must be a dict for block input, got {type(reviewed_data).__name__}",
block_name=self.name,
block_id=self.id,
)
return False, reviewed_data
async def _execute(self, input_data: BlockInput, **kwargs) -> BlockOutput:
# Check for review requirement and get potentially modified input data
should_pause, input_data = await self.is_block_exec_need_review(
input_data, **kwargs
)
if should_pause:
return
# Validate the input data (original or reviewer-modified) once
if error := self.input_schema.validate_data(input_data):
raise BlockInputError(
message=f"Unable to execute block with invalid input data: {error}",
@@ -695,7 +622,6 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
block_id=self.id,
)
# Use the validated input data
async for output_name, output_data in self.run(
self.input_schema(**{k: v for k, v in input_data.items() if v is not None}),
**kwargs,

View File

@@ -108,84 +108,21 @@ def get_database_schema() -> str:
return query_params.get("schema", "public")
async def _raw_with_schema(
query_template: str,
*args,
execute: bool = False,
client: Prisma | None = None,
) -> list[dict] | int:
"""Internal: Execute raw SQL with proper schema handling.
Use query_raw_with_schema() or execute_raw_with_schema() instead.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
client: Optional Prisma client for transactions (only used when execute=True).
Returns:
- list[dict] if execute=False (query results)
- int if execute=True (number of affected rows)
"""
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
"""Execute raw SQL query with proper schema handling."""
schema = get_database_schema()
schema_prefix = f'"{schema}".' if schema != "public" else ""
formatted_query = query_template.format(schema_prefix=schema_prefix)
import prisma as prisma_module
db_client = client if client else prisma_module.get_client()
if execute:
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
else:
result = await db_client.query_raw(formatted_query, *args) # type: ignore
result = await prisma_module.get_client().query_raw(
formatted_query, *args # type: ignore
)
return result
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
"""Execute raw SQL SELECT query with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
Returns:
List of result rows as dictionaries
Example:
results = await query_raw_with_schema(
'SELECT * FROM {schema_prefix}"User" WHERE id = $1',
user_id
)
"""
return await _raw_with_schema(query_template, *args, execute=False) # type: ignore
async def execute_raw_with_schema(
query_template: str, *args, client: Prisma | None = None
) -> int:
"""Execute raw SQL command (INSERT/UPDATE/DELETE) with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
*args: Query parameters
client: Optional Prisma client for transactions
Returns:
Number of affected rows
Example:
await execute_raw_with_schema(
'INSERT INTO {schema_prefix}"User" (id, name) VALUES ($1, $2)',
user_id, name,
client=tx # Optional transaction client
)
"""
return await _raw_with_schema(query_template, *args, execute=True, client=client) # type: ignore
class BaseDbModel(BaseModel):
id: str = Field(default_factory=lambda: str(uuid4()))

View File

@@ -153,8 +153,14 @@ class GraphExecutionMeta(BaseDbModel):
nodes_input_masks: Optional[dict[str, BlockInput]]
preset_id: Optional[str]
status: ExecutionStatus
started_at: datetime
ended_at: datetime
started_at: Optional[datetime] = Field(
None,
description="When execution started running. Null if not yet started (QUEUED).",
)
ended_at: Optional[datetime] = Field(
None,
description="When execution finished. Null if not yet completed (QUEUED, RUNNING, INCOMPLETE, REVIEW).",
)
is_shared: bool = False
share_token: Optional[str] = None
@@ -229,10 +235,8 @@ class GraphExecutionMeta(BaseDbModel):
@staticmethod
def from_db(_graph_exec: AgentGraphExecution):
now = datetime.now(timezone.utc)
# TODO: make started_at and ended_at optional
start_time = _graph_exec.startedAt or _graph_exec.createdAt
end_time = _graph_exec.updatedAt or now
start_time = _graph_exec.startedAt
end_time = _graph_exec.endedAt
try:
stats = GraphExecutionStats.model_validate(_graph_exec.stats)
@@ -383,7 +387,6 @@ class GraphExecutionWithNodes(GraphExecution):
self,
execution_context: ExecutionContext,
compiled_nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
):
return GraphExecutionEntry(
user_id=self.user_id,
@@ -391,7 +394,6 @@ class GraphExecutionWithNodes(GraphExecution):
graph_version=self.graph_version or 0,
graph_exec_id=self.id,
nodes_input_masks=compiled_nodes_input_masks,
nodes_to_skip=nodes_to_skip or set(),
execution_context=execution_context,
)
@@ -902,6 +904,14 @@ async def update_graph_execution_stats(
if status:
update_data["executionStatus"] = status
# Set endedAt when execution reaches a terminal status
terminal_statuses = [
ExecutionStatus.COMPLETED,
ExecutionStatus.FAILED,
ExecutionStatus.TERMINATED,
]
if status in terminal_statuses:
update_data["endedAt"] = datetime.now(tz=timezone.utc)
where_clause: AgentGraphExecutionWhereInput = {"id": graph_exec_id}
@@ -1147,8 +1157,6 @@ class GraphExecutionEntry(BaseModel):
graph_id: str
graph_version: int
nodes_input_masks: Optional[NodesInputMasks] = None
nodes_to_skip: set[str] = Field(default_factory=set)
"""Node IDs that should be skipped due to optional credentials not being configured."""
execution_context: ExecutionContext = Field(default_factory=ExecutionContext)

View File

@@ -94,15 +94,6 @@ class Node(BaseDbModel):
input_links: list[Link] = []
output_links: list[Link] = []
@property
def credentials_optional(self) -> bool:
"""
Whether credentials are optional for this node.
When True and credentials are not configured, the node will be skipped
during execution rather than causing a validation error.
"""
return self.metadata.get("credentials_optional", False)
@property
def block(self) -> AnyBlockSchema | "_UnknownBlockBase":
"""Get the block for this node. Returns UnknownBlock if block is deleted/missing."""
@@ -244,10 +235,7 @@ class BaseGraph(BaseDbModel):
return any(
node.block_id
for node in self.nodes
if (
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
or node.block.requires_human_review
)
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
)
@property
@@ -338,35 +326,7 @@ class Graph(BaseGraph):
@computed_field
@property
def credentials_input_schema(self) -> dict[str, Any]:
schema = self._credentials_input_schema.jsonschema()
# Determine which credential fields are required based on credentials_optional metadata
graph_credentials_inputs = self.aggregate_credentials_inputs()
required_fields = []
# Build a map of node_id -> node for quick lookup
all_nodes = {node.id: node for node in self.nodes}
for sub_graph in self.sub_graphs:
for node in sub_graph.nodes:
all_nodes[node.id] = node
for field_key, (
_field_info,
node_field_pairs,
) in graph_credentials_inputs.items():
# A field is required if ANY node using it has credentials_optional=False
is_required = False
for node_id, _field_name in node_field_pairs:
node = all_nodes.get(node_id)
if node and not node.credentials_optional:
is_required = True
break
if is_required:
required_fields.append(field_key)
schema["required"] = required_fields
return schema
return self._credentials_input_schema.jsonschema()
@property
def _credentials_input_schema(self) -> type[BlockSchema]:

View File

@@ -1,6 +1,5 @@
import json
from typing import Any
from unittest.mock import AsyncMock, patch
from uuid import UUID
import fastapi.exceptions
@@ -19,17 +18,6 @@ from backend.usecases.sample import create_test_user
from backend.util.test import SpinTestServer
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
@pytest.mark.asyncio(loop_scope="session")
async def test_graph_creation(server: SpinTestServer, snapshot: Snapshot):
"""
@@ -408,58 +396,3 @@ async def test_access_store_listing_graph(server: SpinTestServer):
created_graph.id, created_graph.version, "3e53486c-cf57-477e-ba2a-cb02dc828e1b"
)
assert got_graph is not None
# ============================================================================
# Tests for Optional Credentials Feature
# ============================================================================
def test_node_credentials_optional_default():
"""Test that credentials_optional defaults to False when not set in metadata."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={},
)
assert node.credentials_optional is False
def test_node_credentials_optional_true():
"""Test that credentials_optional returns True when explicitly set."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={"credentials_optional": True},
)
assert node.credentials_optional is True
def test_node_credentials_optional_false():
"""Test that credentials_optional returns False when explicitly set to False."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={"credentials_optional": False},
)
assert node.credentials_optional is False
def test_node_credentials_optional_with_other_metadata():
"""Test that credentials_optional works correctly with other metadata present."""
node = Node(
id="test_node",
block_id=StoreValueBlock().id,
input_default={},
metadata={
"position": {"x": 100, "y": 200},
"customized_name": "My Custom Node",
"credentials_optional": True,
},
)
assert node.credentials_optional is True
assert node.metadata["position"] == {"x": 100, "y": 200}
assert node.metadata["customized_name"] == "My Custom Node"

View File

@@ -178,7 +178,6 @@ async def execute_node(
execution_processor: "ExecutionProcessor",
execution_stats: NodeExecutionStats | None = None,
nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
) -> BlockOutput:
"""
Execute a node in the graph. This will trigger a block execution on a node,
@@ -246,7 +245,6 @@ async def execute_node(
"user_id": user_id,
"execution_context": execution_context,
"execution_processor": execution_processor,
"nodes_to_skip": nodes_to_skip or set(),
}
# Last-minute fetch credentials + acquire a system-wide read-write lock to prevent
@@ -544,7 +542,6 @@ class ExecutionProcessor:
node_exec_progress: NodeExecutionProgress,
nodes_input_masks: Optional[NodesInputMasks],
graph_stats_pair: tuple[GraphExecutionStats, threading.Lock],
nodes_to_skip: Optional[set[str]] = None,
) -> NodeExecutionStats:
log_metadata = LogMetadata(
logger=_logger,
@@ -567,7 +564,6 @@ class ExecutionProcessor:
db_client=db_client,
log_metadata=log_metadata,
nodes_input_masks=nodes_input_masks,
nodes_to_skip=nodes_to_skip,
)
if isinstance(status, BaseException):
raise status
@@ -613,7 +609,6 @@ class ExecutionProcessor:
db_client: "DatabaseManagerAsyncClient",
log_metadata: LogMetadata,
nodes_input_masks: Optional[NodesInputMasks] = None,
nodes_to_skip: Optional[set[str]] = None,
) -> ExecutionStatus:
status = ExecutionStatus.RUNNING
@@ -650,7 +645,6 @@ class ExecutionProcessor:
execution_processor=self,
execution_stats=stats,
nodes_input_masks=nodes_input_masks,
nodes_to_skip=nodes_to_skip,
):
await persist_output(output_name, output_data)
@@ -962,21 +956,6 @@ class ExecutionProcessor:
queued_node_exec = execution_queue.get()
# Check if this node should be skipped due to optional credentials
if queued_node_exec.node_id in graph_exec.nodes_to_skip:
log_metadata.info(
f"Skipping node execution {queued_node_exec.node_exec_id} "
f"for node {queued_node_exec.node_id} - optional credentials not configured"
)
# Mark the node as completed without executing
# No outputs will be produced, so downstream nodes won't trigger
update_node_execution_status(
db_client=db_client,
exec_id=queued_node_exec.node_exec_id,
status=ExecutionStatus.COMPLETED,
)
continue
log_metadata.debug(
f"Dispatching node execution {queued_node_exec.node_exec_id} "
f"for node {queued_node_exec.node_id}",
@@ -1037,7 +1016,6 @@ class ExecutionProcessor:
execution_stats,
execution_stats_lock,
),
nodes_to_skip=graph_exec.nodes_to_skip,
),
self.node_execution_loop,
)

View File

@@ -1,5 +1,4 @@
import logging
from unittest.mock import AsyncMock, patch
import fastapi.responses
import pytest
@@ -20,17 +19,6 @@ from backend.util.test import SpinTestServer, wait_execution
logger = logging.getLogger(__name__)
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
async def create_graph(s: SpinTestServer, g: graph.Graph, u: User) -> graph.Graph:
logger.info(f"Creating graph for user {u.id}")
return await s.agent_server.test_create_graph(CreateGraph(graph=g), u.id)

View File

@@ -23,10 +23,6 @@ from dotenv import load_dotenv
from pydantic import BaseModel, Field, ValidationError
from sqlalchemy import MetaData, create_engine
from backend.api.features.store.embeddings import (
backfill_missing_embeddings,
get_embedding_stats,
)
from backend.data.auth.oauth import cleanup_expired_oauth_tokens
from backend.data.block import BlockInput
from backend.data.execution import GraphExecutionWithNodes
@@ -258,72 +254,6 @@ def execution_accuracy_alerts():
return report_execution_accuracy_alerts()
def ensure_embeddings_coverage():
"""
Ensure approved store agents have embeddings for hybrid search.
Processes ALL missing embeddings in batches of 10 until 100% coverage.
Missing embeddings = agents invisible in hybrid search.
Schedule: Runs every 6 hours (balanced between coverage and API costs).
- Catches agents approved between scheduled runs
- Batch size 10: gradual processing to avoid rate limits
- Manual trigger available via execute_ensure_embeddings_coverage endpoint
"""
async def _ensure():
import asyncio
stats = await get_embedding_stats()
# Check for error from get_embedding_stats() first
if "error" in stats:
logger.error(
f"Failed to get embedding stats: {stats['error']} - skipping backfill"
)
return {"processed": 0, "success": 0, "failed": 0, "error": stats["error"]}
if stats["without_embeddings"] == 0:
logger.info("All approved agents have embeddings, skipping backfill")
return {"processed": 0, "success": 0, "failed": 0}
logger.info(
f"Found {stats['without_embeddings']} agents without embeddings "
f"({stats['coverage_percent']}% coverage) - processing all"
)
total_processed = 0
total_success = 0
total_failed = 0
# Process in batches until no more missing embeddings
while True:
result = await backfill_missing_embeddings(batch_size=10)
total_processed += result["processed"]
total_success += result["success"]
total_failed += result["failed"]
if result["processed"] == 0:
# No more missing embeddings
break
# Small delay between batches to avoid rate limits
await asyncio.sleep(1)
logger.info(
f"Embedding backfill completed: {total_success}/{total_processed} succeeded, "
f"{total_failed} failed"
)
return {
"processed": total_processed,
"success": total_success,
"failed": total_failed,
}
return run_async(_ensure())
# Monitoring functions are now imported from monitoring module
@@ -545,19 +475,6 @@ class Scheduler(AppService):
jobstore=Jobstores.EXECUTION.value,
)
# Embedding Coverage - Every 6 hours
# Ensures all approved agents have embeddings for hybrid search
# Critical: missing embeddings = agents invisible in search
self.scheduler.add_job(
ensure_embeddings_coverage,
id="ensure_embeddings_coverage",
trigger="interval",
hours=6,
replace_existing=True,
max_instances=1, # Prevent overlapping runs
jobstore=Jobstores.EXECUTION.value,
)
self.scheduler.add_listener(job_listener, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
self.scheduler.add_listener(job_missed_listener, EVENT_JOB_MISSED)
self.scheduler.add_listener(job_max_instances_listener, EVENT_JOB_MAX_INSTANCES)
@@ -715,11 +632,6 @@ class Scheduler(AppService):
"""Manually trigger execution accuracy alert checking."""
return execution_accuracy_alerts()
@expose
def execute_ensure_embeddings_coverage(self):
"""Manually trigger embedding backfill for approved store agents."""
return ensure_embeddings_coverage()
class SchedulerClient(AppServiceClient):
@classmethod

View File

@@ -239,19 +239,14 @@ async def _validate_node_input_credentials(
graph: GraphModel,
user_id: str,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[dict[str, dict[str, str]], set[str]]:
) -> dict[str, dict[str, str]]:
"""
Checks all credentials for all nodes of the graph and returns structured errors
and a set of nodes that should be skipped due to optional missing credentials.
Checks all credentials for all nodes of the graph and returns structured errors.
Returns:
tuple[
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node,
set[node_id]: Nodes that should be skipped (optional credentials not configured)
]
dict[node_id, dict[field_name, error_message]]: Credential validation errors per node
"""
credential_errors: dict[str, dict[str, str]] = defaultdict(dict)
nodes_to_skip: set[str] = set()
for node in graph.nodes:
block = node.block
@@ -261,46 +256,27 @@ async def _validate_node_input_credentials(
if not credentials_fields:
continue
# Track if any credential field is missing for this node
has_missing_credentials = False
for field_name, credentials_meta_type in credentials_fields.items():
try:
# Check nodes_input_masks first, then input_default
field_value = None
if (
nodes_input_masks
and (node_input_mask := nodes_input_masks.get(node.id))
and field_name in node_input_mask
):
field_value = node_input_mask[field_name]
credentials_meta = credentials_meta_type.model_validate(
node_input_mask[field_name]
)
elif field_name in node.input_default:
# For optional credentials, don't use input_default - treat as missing
# This prevents stale credential IDs from failing validation
if node.credentials_optional:
field_value = None
else:
field_value = node.input_default[field_name]
# Check if credentials are missing (None, empty, or not present)
if field_value is None or (
isinstance(field_value, dict) and not field_value.get("id")
):
has_missing_credentials = True
# If node has credentials_optional flag, mark for skipping instead of error
if node.credentials_optional:
continue # Don't add error, will be marked for skip after loop
else:
credential_errors[node.id][
field_name
] = "These credentials are required"
continue
credentials_meta = credentials_meta_type.model_validate(field_value)
credentials_meta = credentials_meta_type.model_validate(
node.input_default[field_name]
)
else:
# Missing credentials
credential_errors[node.id][
field_name
] = "These credentials are required"
continue
except ValidationError as e:
# Validation error means credentials were provided but invalid
# This should always be an error, even if optional
credential_errors[node.id][field_name] = f"Invalid credentials: {e}"
continue
@@ -311,7 +287,6 @@ async def _validate_node_input_credentials(
)
except Exception as e:
# Handle any errors fetching credentials
# If credentials were explicitly configured but unavailable, it's an error
credential_errors[node.id][
field_name
] = f"Credentials not available: {e}"
@@ -338,19 +313,7 @@ async def _validate_node_input_credentials(
] = "Invalid credentials: type/provider mismatch"
continue
# If node has optional credentials and any are missing, mark for skipping
# But only if there are no other errors for this node
if (
has_missing_credentials
and node.credentials_optional
and node.id not in credential_errors
):
nodes_to_skip.add(node.id)
logger.info(
f"Node #{node.id} will be skipped: optional credentials not configured"
)
return credential_errors, nodes_to_skip
return credential_errors
def make_node_credentials_input_map(
@@ -392,25 +355,21 @@ async def validate_graph_with_credentials(
graph: GraphModel,
user_id: str,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[Mapping[str, Mapping[str, str]], set[str]]:
) -> Mapping[str, Mapping[str, str]]:
"""
Validate graph including credentials and return structured errors per node,
along with a set of nodes that should be skipped due to optional missing credentials.
Validate graph including credentials and return structured errors per node.
Returns:
tuple[
dict[node_id, dict[field_name, error_message]]: Validation errors per node,
set[node_id]: Nodes that should be skipped (optional credentials not configured)
]
dict[node_id, dict[field_name, error_message]]: Validation errors per node
"""
# Get input validation errors
node_input_errors = GraphModel.validate_graph_get_errors(
graph, for_run=True, nodes_input_masks=nodes_input_masks
)
# Get credential input/availability/validation errors and nodes to skip
node_credential_input_errors, nodes_to_skip = (
await _validate_node_input_credentials(graph, user_id, nodes_input_masks)
# Get credential input/availability/validation errors
node_credential_input_errors = await _validate_node_input_credentials(
graph, user_id, nodes_input_masks
)
# Merge credential errors with structural errors
@@ -419,7 +378,7 @@ async def validate_graph_with_credentials(
node_input_errors[node_id] = {}
node_input_errors[node_id].update(field_errors)
return node_input_errors, nodes_to_skip
return node_input_errors
async def _construct_starting_node_execution_input(
@@ -427,7 +386,7 @@ async def _construct_starting_node_execution_input(
user_id: str,
graph_inputs: BlockInput,
nodes_input_masks: Optional[NodesInputMasks] = None,
) -> tuple[list[tuple[str, BlockInput]], set[str]]:
) -> list[tuple[str, BlockInput]]:
"""
Validates and prepares the input data for executing a graph.
This function checks the graph for starting nodes, validates the input data
@@ -441,14 +400,11 @@ async def _construct_starting_node_execution_input(
node_credentials_map: `dict[node_id, dict[input_name, CredentialsMetaInput]]`
Returns:
tuple[
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID
and the corresponding input data for that node.
set[str]: Node IDs that should be skipped (optional credentials not configured)
]
list[tuple[str, BlockInput]]: A list of tuples, each containing the node ID and
the corresponding input data for that node.
"""
# Use new validation function that includes credentials
validation_errors, nodes_to_skip = await validate_graph_with_credentials(
validation_errors = await validate_graph_with_credentials(
graph, user_id, nodes_input_masks
)
n_error_nodes = len(validation_errors)
@@ -489,7 +445,7 @@ async def _construct_starting_node_execution_input(
"No starting nodes found for the graph, make sure an AgentInput or blocks with no inbound links are present as starting nodes."
)
return nodes_input, nodes_to_skip
return nodes_input
async def validate_and_construct_node_execution_input(
@@ -500,7 +456,7 @@ async def validate_and_construct_node_execution_input(
graph_credentials_inputs: Optional[Mapping[str, CredentialsMetaInput]] = None,
nodes_input_masks: Optional[NodesInputMasks] = None,
is_sub_graph: bool = False,
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks, set[str]]:
) -> tuple[GraphModel, list[tuple[str, BlockInput]], NodesInputMasks]:
"""
Public wrapper that handles graph fetching, credential mapping, and validation+construction.
This centralizes the logic used by both scheduler validation and actual execution.
@@ -517,7 +473,6 @@ async def validate_and_construct_node_execution_input(
GraphModel: Full graph object for the given `graph_id`.
list[tuple[node_id, BlockInput]]: Starting node IDs with corresponding inputs.
dict[str, BlockInput]: Node input masks including all passed-in credentials.
set[str]: Node IDs that should be skipped (optional credentials not configured).
Raises:
NotFoundError: If the graph is not found.
@@ -559,16 +514,14 @@ async def validate_and_construct_node_execution_input(
nodes_input_masks or {},
)
starting_nodes_input, nodes_to_skip = (
await _construct_starting_node_execution_input(
graph=graph,
user_id=user_id,
graph_inputs=graph_inputs,
nodes_input_masks=nodes_input_masks,
)
starting_nodes_input = await _construct_starting_node_execution_input(
graph=graph,
user_id=user_id,
graph_inputs=graph_inputs,
nodes_input_masks=nodes_input_masks,
)
return graph, starting_nodes_input, nodes_input_masks, nodes_to_skip
return graph, starting_nodes_input, nodes_input_masks
def _merge_nodes_input_masks(
@@ -826,9 +779,6 @@ async def add_graph_execution(
# Use existing execution's compiled input masks
compiled_nodes_input_masks = graph_exec.nodes_input_masks or {}
# For resumed executions, nodes_to_skip was already determined at creation time
# TODO: Consider storing nodes_to_skip in DB if we need to preserve it across resumes
nodes_to_skip: set[str] = set()
logger.info(f"Resuming graph execution #{graph_exec.id} for graph #{graph_id}")
else:
@@ -837,7 +787,7 @@ async def add_graph_execution(
)
# Create new execution
graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip = (
graph, starting_nodes_input, compiled_nodes_input_masks = (
await validate_and_construct_node_execution_input(
graph_id=graph_id,
user_id=user_id,
@@ -886,7 +836,6 @@ async def add_graph_execution(
try:
graph_exec_entry = graph_exec.to_graph_execution_entry(
compiled_nodes_input_masks=compiled_nodes_input_masks,
nodes_to_skip=nodes_to_skip,
execution_context=execution_context,
)
logger.info(f"Publishing execution {graph_exec.id} to execution queue")

View File

@@ -367,13 +367,10 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
)
# Setup mock returns
# The function returns (graph, starting_nodes_input, compiled_nodes_input_masks, nodes_to_skip)
nodes_to_skip: set[str] = set()
mock_validate.return_value = (
mock_graph,
starting_nodes_input,
compiled_nodes_input_masks,
nodes_to_skip,
)
mock_prisma.is_connected.return_value = True
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
@@ -459,212 +456,3 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
# Both executions should succeed (though they create different objects)
assert result1 == mock_graph_exec
assert result2 == mock_graph_exec_2
# ============================================================================
# Tests for Optional Credentials Feature
# ============================================================================
@pytest.mark.asyncio
async def test_validate_node_input_credentials_returns_nodes_to_skip(
mocker: MockerFixture,
):
"""
Test that _validate_node_input_credentials returns nodes_to_skip set
for nodes with credentials_optional=True and missing credentials.
"""
from backend.executor.utils import _validate_node_input_credentials
# Create a mock node with credentials_optional=True
mock_node = mocker.MagicMock()
mock_node.id = "node-with-optional-creds"
mock_node.credentials_optional = True
mock_node.input_default = {} # No credentials configured
# Create a mock block with credentials field
mock_block = mocker.MagicMock()
mock_credentials_field_type = mocker.MagicMock()
mock_block.input_schema.get_credentials_fields.return_value = {
"credentials": mock_credentials_field_type
}
mock_node.block = mock_block
# Create mock graph
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
# Call the function
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Node should be in nodes_to_skip, not in errors
assert mock_node.id in nodes_to_skip
assert mock_node.id not in errors
@pytest.mark.asyncio
async def test_validate_node_input_credentials_required_missing_creds_error(
mocker: MockerFixture,
):
"""
Test that _validate_node_input_credentials returns errors
for nodes with credentials_optional=False and missing credentials.
"""
from backend.executor.utils import _validate_node_input_credentials
# Create a mock node with credentials_optional=False (required)
mock_node = mocker.MagicMock()
mock_node.id = "node-with-required-creds"
mock_node.credentials_optional = False
mock_node.input_default = {} # No credentials configured
# Create a mock block with credentials field
mock_block = mocker.MagicMock()
mock_credentials_field_type = mocker.MagicMock()
mock_block.input_schema.get_credentials_fields.return_value = {
"credentials": mock_credentials_field_type
}
mock_node.block = mock_block
# Create mock graph
mock_graph = mocker.MagicMock()
mock_graph.nodes = [mock_node]
# Call the function
errors, nodes_to_skip = await _validate_node_input_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Node should be in errors, not in nodes_to_skip
assert mock_node.id in errors
assert "credentials" in errors[mock_node.id]
assert "required" in errors[mock_node.id]["credentials"].lower()
assert mock_node.id not in nodes_to_skip
@pytest.mark.asyncio
async def test_validate_graph_with_credentials_returns_nodes_to_skip(
mocker: MockerFixture,
):
"""
Test that validate_graph_with_credentials returns nodes_to_skip set
from _validate_node_input_credentials.
"""
from backend.executor.utils import validate_graph_with_credentials
# Mock _validate_node_input_credentials to return specific values
mock_validate = mocker.patch(
"backend.executor.utils._validate_node_input_credentials"
)
expected_errors = {"node1": {"field": "error"}}
expected_nodes_to_skip = {"node2", "node3"}
mock_validate.return_value = (expected_errors, expected_nodes_to_skip)
# Mock GraphModel with validate_graph_get_errors method
mock_graph = mocker.MagicMock()
mock_graph.validate_graph_get_errors.return_value = {}
# Call the function
errors, nodes_to_skip = await validate_graph_with_credentials(
graph=mock_graph,
user_id="test-user-id",
nodes_input_masks=None,
)
# Verify nodes_to_skip is passed through
assert nodes_to_skip == expected_nodes_to_skip
assert "node1" in errors
@pytest.mark.asyncio
async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
"""
Test that add_graph_execution properly passes nodes_to_skip
to the graph execution entry.
"""
from backend.data.execution import GraphExecutionWithNodes
from backend.executor.utils import add_graph_execution
# Mock data
graph_id = "test-graph-id"
user_id = "test-user-id"
inputs = {"test_input": "test_value"}
graph_version = 1
# Mock the graph object
mock_graph = mocker.MagicMock()
mock_graph.version = graph_version
# Starting nodes and masks
starting_nodes_input = [("node1", {"input1": "value1"})]
compiled_nodes_input_masks = {}
nodes_to_skip = {"skipped-node-1", "skipped-node-2"}
# Mock the graph execution object
mock_graph_exec = mocker.MagicMock(spec=GraphExecutionWithNodes)
mock_graph_exec.id = "execution-id-123"
mock_graph_exec.node_executions = []
# Track what's passed to to_graph_execution_entry
captured_kwargs = {}
def capture_to_entry(**kwargs):
captured_kwargs.update(kwargs)
return mocker.MagicMock()
mock_graph_exec.to_graph_execution_entry.side_effect = capture_to_entry
# Setup mocks
mock_validate = mocker.patch(
"backend.executor.utils.validate_and_construct_node_execution_input"
)
mock_edb = mocker.patch("backend.executor.utils.execution_db")
mock_prisma = mocker.patch("backend.executor.utils.prisma")
mock_udb = mocker.patch("backend.executor.utils.user_db")
mock_gdb = mocker.patch("backend.executor.utils.graph_db")
mock_get_queue = mocker.patch("backend.executor.utils.get_async_execution_queue")
mock_get_event_bus = mocker.patch(
"backend.executor.utils.get_async_execution_event_bus"
)
# Setup returns - include nodes_to_skip in the tuple
mock_validate.return_value = (
mock_graph,
starting_nodes_input,
compiled_nodes_input_masks,
nodes_to_skip, # This should be passed through
)
mock_prisma.is_connected.return_value = True
mock_edb.create_graph_execution = mocker.AsyncMock(return_value=mock_graph_exec)
mock_edb.update_graph_execution_stats = mocker.AsyncMock(
return_value=mock_graph_exec
)
mock_edb.update_node_execution_status_batch = mocker.AsyncMock()
mock_user = mocker.MagicMock()
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
mock_get_queue.return_value = mocker.AsyncMock()
mock_get_event_bus.return_value = mocker.MagicMock(publish=mocker.AsyncMock())
# Call the function
await add_graph_execution(
graph_id=graph_id,
user_id=user_id,
inputs=inputs,
graph_version=graph_version,
)
# Verify nodes_to_skip was passed to to_graph_execution_entry
assert "nodes_to_skip" in captured_kwargs
assert captured_kwargs["nodes_to_skip"] == nodes_to_skip

View File

@@ -8,7 +8,6 @@ from .discord import DiscordOAuthHandler
from .github import GitHubOAuthHandler
from .google import GoogleOAuthHandler
from .notion import NotionOAuthHandler
from .reddit import RedditOAuthHandler
from .twitter import TwitterOAuthHandler
if TYPE_CHECKING:
@@ -21,7 +20,6 @@ _ORIGINAL_HANDLERS = [
GitHubOAuthHandler,
GoogleOAuthHandler,
NotionOAuthHandler,
RedditOAuthHandler,
TwitterOAuthHandler,
TodoistOAuthHandler,
]

View File

@@ -1,208 +0,0 @@
import time
import urllib.parse
from typing import ClassVar, Optional
from pydantic import SecretStr
from backend.data.model import OAuth2Credentials
from backend.integrations.oauth.base import BaseOAuthHandler
from backend.integrations.providers import ProviderName
from backend.util.request import Requests
from backend.util.settings import Settings
settings = Settings()
class RedditOAuthHandler(BaseOAuthHandler):
"""
Reddit OAuth 2.0 handler.
Based on the documentation at:
- https://github.com/reddit-archive/reddit/wiki/OAuth2
Notes:
- Reddit requires `duration=permanent` to get refresh tokens
- Access tokens expire after 1 hour (3600 seconds)
- Reddit requires HTTP Basic Auth for token requests
- Reddit requires a unique User-Agent header
"""
PROVIDER_NAME = ProviderName.REDDIT
DEFAULT_SCOPES: ClassVar[list[str]] = [
"identity", # Get username, verify auth
"read", # Access posts and comments
"submit", # Submit new posts and comments
"edit", # Edit own posts and comments
"history", # Access user's post history
"privatemessages", # Access inbox and send private messages
"flair", # Access and set flair on posts/subreddits
]
AUTHORIZE_URL = "https://www.reddit.com/api/v1/authorize"
TOKEN_URL = "https://www.reddit.com/api/v1/access_token"
USERNAME_URL = "https://oauth.reddit.com/api/v1/me"
REVOKE_URL = "https://www.reddit.com/api/v1/revoke_token"
def __init__(self, client_id: str, client_secret: str, redirect_uri: str):
self.client_id = client_id
self.client_secret = client_secret
self.redirect_uri = redirect_uri
def get_login_url(
self, scopes: list[str], state: str, code_challenge: Optional[str]
) -> str:
"""Generate Reddit OAuth 2.0 authorization URL"""
scopes = self.handle_default_scopes(scopes)
params = {
"response_type": "code",
"client_id": self.client_id,
"redirect_uri": self.redirect_uri,
"scope": " ".join(scopes),
"state": state,
"duration": "permanent", # Required for refresh tokens
}
return f"{self.AUTHORIZE_URL}?{urllib.parse.urlencode(params)}"
async def exchange_code_for_tokens(
self, code: str, scopes: list[str], code_verifier: Optional[str]
) -> OAuth2Credentials:
"""Exchange authorization code for access tokens"""
scopes = self.handle_default_scopes(scopes)
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"User-Agent": settings.config.reddit_user_agent,
}
data = {
"grant_type": "authorization_code",
"code": code,
"redirect_uri": self.redirect_uri,
}
# Reddit requires HTTP Basic Auth for token requests
auth = (self.client_id, self.client_secret)
response = await Requests().post(
self.TOKEN_URL, headers=headers, data=data, auth=auth
)
if not response.ok:
error_text = response.text()
raise ValueError(
f"Reddit token exchange failed: {response.status} - {error_text}"
)
tokens = response.json()
if "error" in tokens:
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
username = await self._get_username(tokens["access_token"])
return OAuth2Credentials(
provider=self.PROVIDER_NAME,
title=None,
username=username,
access_token=tokens["access_token"],
refresh_token=tokens.get("refresh_token"),
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
refresh_token_expires_at=None, # Reddit refresh tokens don't expire
scopes=scopes,
)
async def _get_username(self, access_token: str) -> str:
"""Get the username from the access token"""
headers = {
"Authorization": f"Bearer {access_token}",
"User-Agent": settings.config.reddit_user_agent,
}
response = await Requests().get(self.USERNAME_URL, headers=headers)
if not response.ok:
raise ValueError(f"Failed to get Reddit username: {response.status}")
data = response.json()
return data.get("name", "unknown")
async def _refresh_tokens(
self, credentials: OAuth2Credentials
) -> OAuth2Credentials:
"""Refresh access tokens using refresh token"""
if not credentials.refresh_token:
raise ValueError("No refresh token available")
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"User-Agent": settings.config.reddit_user_agent,
}
data = {
"grant_type": "refresh_token",
"refresh_token": credentials.refresh_token.get_secret_value(),
}
auth = (self.client_id, self.client_secret)
response = await Requests().post(
self.TOKEN_URL, headers=headers, data=data, auth=auth
)
if not response.ok:
error_text = response.text()
raise ValueError(
f"Reddit token refresh failed: {response.status} - {error_text}"
)
tokens = response.json()
if "error" in tokens:
raise ValueError(f"Reddit OAuth error: {tokens.get('error')}")
username = await self._get_username(tokens["access_token"])
# Reddit may or may not return a new refresh token
new_refresh_token = tokens.get("refresh_token")
if new_refresh_token:
refresh_token: SecretStr | None = SecretStr(new_refresh_token)
elif credentials.refresh_token:
# Keep the existing refresh token
refresh_token = credentials.refresh_token
else:
refresh_token = None
return OAuth2Credentials(
id=credentials.id,
provider=self.PROVIDER_NAME,
title=credentials.title,
username=username,
access_token=tokens["access_token"],
refresh_token=refresh_token,
access_token_expires_at=int(time.time()) + tokens.get("expires_in", 3600),
refresh_token_expires_at=None,
scopes=credentials.scopes,
)
async def revoke_tokens(self, credentials: OAuth2Credentials) -> bool:
"""Revoke the access token"""
headers = {
"Content-Type": "application/x-www-form-urlencoded",
"User-Agent": settings.config.reddit_user_agent,
}
data = {
"token": credentials.access_token.get_secret_value(),
"token_type_hint": "access_token",
}
auth = (self.client_id, self.client_secret)
response = await Requests().post(
self.REVOKE_URL, headers=headers, data=data, auth=auth
)
# Reddit returns 204 No Content on successful revocation
return response.ok

View File

@@ -60,8 +60,10 @@ class LateExecutionMonitor:
if not all_late_executions:
return "No late executions detected."
# Sort by created time (oldest first)
all_late_executions.sort(key=lambda x: x.started_at)
# Sort by started time (oldest first), with None values (unstarted) first
all_late_executions.sort(
key=lambda x: x.started_at or datetime.min.replace(tzinfo=timezone.utc)
)
num_total_late = len(all_late_executions)
num_queued = len(queued_late_executions)
@@ -74,7 +76,7 @@ class LateExecutionMonitor:
was_truncated = num_total_late > tuncate_size
late_execution_details = [
f"* `Execution ID: {exec.id}, Graph ID: {exec.graph_id}v{exec.graph_version}, User ID: {exec.user_id}, Status: {exec.status}, Created At: {exec.started_at.isoformat()}`"
f"* `Execution ID: {exec.id}, Graph ID: {exec.graph_id}v{exec.graph_version}, User ID: {exec.user_id}, Status: {exec.status}, Started At: {exec.started_at.isoformat() if exec.started_at else 'Not started'}`"
for exec in truncated_executions
]

View File

@@ -10,7 +10,6 @@ from backend.util.settings import Settings
settings = Settings()
if TYPE_CHECKING:
from openai import AsyncOpenAI
from supabase import AClient, Client
from backend.data.execution import (
@@ -140,24 +139,6 @@ async def get_async_supabase() -> "AClient":
)
# ============ OpenAI Client ============ #
@cached(ttl_seconds=3600)
def get_openai_client() -> "AsyncOpenAI | None":
"""
Get a process-cached async OpenAI client for embeddings.
Returns None if API key is not configured.
"""
from openai import AsyncOpenAI
api_key = settings.secrets.openai_internal_api_key
if not api_key:
return None
return AsyncOpenAI(api_key=api_key)
# ============ Notification Queue Helpers ============ #

View File

@@ -264,7 +264,7 @@ class Config(UpdateTrackingModel["Config"], BaseSettings):
)
reddit_user_agent: str = Field(
default="web:AutoGPT:v0.6.0 (by /u/autogpt)",
default="AutoGPT:1.0 (by /u/autogpt)",
description="The user agent for the Reddit API",
)

View File

@@ -1,227 +0,0 @@
#!/usr/bin/env python3
"""
Generate a lightweight stub for prisma/types.py that collapses all exported
symbols to Any. This prevents Pyright from spending time/budget on Prisma's
query DSL types while keeping runtime behavior unchanged.
Usage:
poetry run gen-prisma-stub
This script automatically finds the prisma package location and generates
the types.pyi stub file in the same directory as types.py.
"""
from __future__ import annotations
import ast
import importlib.util
import sys
from pathlib import Path
from typing import Iterable, Set
def _iter_assigned_names(target: ast.expr) -> Iterable[str]:
"""Extract names from assignment targets (handles tuple unpacking)."""
if isinstance(target, ast.Name):
yield target.id
elif isinstance(target, (ast.Tuple, ast.List)):
for elt in target.elts:
yield from _iter_assigned_names(elt)
def _is_private(name: str) -> bool:
"""Check if a name is private (starts with _ but not __)."""
return name.startswith("_") and not name.startswith("__")
def _is_safe_type_alias(node: ast.Assign) -> bool:
"""Check if an assignment is a safe type alias that shouldn't be stubbed.
Safe types are:
- Literal types (don't cause type budget issues)
- Simple type references (SortMode, SortOrder, etc.)
- TypeVar definitions
"""
if not node.value:
return False
# Check if it's a Subscript (like Literal[...], Union[...], TypeVar[...])
if isinstance(node.value, ast.Subscript):
# Get the base type name
if isinstance(node.value.value, ast.Name):
base_name = node.value.value.id
# Literal types are safe
if base_name == "Literal":
return True
# TypeVar is safe
if base_name == "TypeVar":
return True
elif isinstance(node.value.value, ast.Attribute):
# Handle typing_extensions.Literal etc.
if node.value.value.attr == "Literal":
return True
# Check if it's a simple Name reference (like SortMode = _types.SortMode)
if isinstance(node.value, ast.Attribute):
return True
# Check if it's a Call (like TypeVar(...))
if isinstance(node.value, ast.Call):
if isinstance(node.value.func, ast.Name):
if node.value.func.id == "TypeVar":
return True
return False
def collect_top_level_symbols(
tree: ast.Module, source_lines: list[str]
) -> tuple[Set[str], Set[str], list[str], Set[str]]:
"""Collect all top-level symbols from an AST module.
Returns:
Tuple of (class_names, function_names, safe_variable_sources, unsafe_variable_names)
safe_variable_sources contains the actual source code lines for safe variables
"""
classes: Set[str] = set()
functions: Set[str] = set()
safe_variable_sources: list[str] = []
unsafe_variables: Set[str] = set()
for node in tree.body:
if isinstance(node, ast.ClassDef):
if not _is_private(node.name):
classes.add(node.name)
elif isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef)):
if not _is_private(node.name):
functions.add(node.name)
elif isinstance(node, ast.Assign):
is_safe = _is_safe_type_alias(node)
names = []
for t in node.targets:
for n in _iter_assigned_names(t):
if not _is_private(n):
names.append(n)
if names:
if is_safe:
# Extract the source code for this assignment
start_line = node.lineno - 1 # 0-indexed
end_line = node.end_lineno if node.end_lineno else node.lineno
source = "\n".join(source_lines[start_line:end_line])
safe_variable_sources.append(source)
else:
unsafe_variables.update(names)
elif isinstance(node, ast.AnnAssign) and node.target:
# Annotated assignments are always stubbed
for n in _iter_assigned_names(node.target):
if not _is_private(n):
unsafe_variables.add(n)
return classes, functions, safe_variable_sources, unsafe_variables
def find_prisma_types_path() -> Path:
"""Find the prisma types.py file in the installed package."""
spec = importlib.util.find_spec("prisma")
if spec is None or spec.origin is None:
raise RuntimeError("Could not find prisma package. Is it installed?")
prisma_dir = Path(spec.origin).parent
types_path = prisma_dir / "types.py"
if not types_path.exists():
raise RuntimeError(f"prisma/types.py not found at {types_path}")
return types_path
def generate_stub(src_path: Path, stub_path: Path) -> int:
"""Generate the .pyi stub file from the source types.py."""
code = src_path.read_text(encoding="utf-8", errors="ignore")
source_lines = code.splitlines()
tree = ast.parse(code, filename=str(src_path))
classes, functions, safe_variable_sources, unsafe_variables = (
collect_top_level_symbols(tree, source_lines)
)
header = """\
# -*- coding: utf-8 -*-
# Auto-generated stub file - DO NOT EDIT
# Generated by gen_prisma_types_stub.py
#
# This stub intentionally collapses complex Prisma query DSL types to Any.
# Prisma's generated types can explode Pyright's type inference budgets
# on large schemas. We collapse them to Any so the rest of the codebase
# can remain strongly typed while keeping runtime behavior unchanged.
#
# Safe types (Literal, TypeVar, simple references) are preserved from the
# original types.py to maintain proper type checking where possible.
from __future__ import annotations
from typing import Any
from typing_extensions import Literal
# Re-export commonly used typing constructs that may be imported from this module
from typing import TYPE_CHECKING, TypeVar, Generic, Union, Optional, List, Dict
# Base type alias for stubbed Prisma types - allows any dict structure
_PrismaDict = dict[str, Any]
"""
lines = [header]
# Include safe variable definitions (Literal types, TypeVars, etc.)
lines.append("# Safe type definitions preserved from original types.py")
for source in safe_variable_sources:
lines.append(source)
lines.append("")
# Stub all classes and unsafe variables uniformly as dict[str, Any] aliases
# This allows:
# 1. Use in type annotations: x: SomeType
# 2. Constructor calls: SomeType(...)
# 3. Dict literal assignments: x: SomeType = {...}
lines.append(
"# Stubbed types (collapsed to dict[str, Any] to prevent type budget exhaustion)"
)
all_stubbed = sorted(classes | unsafe_variables)
for name in all_stubbed:
lines.append(f"{name} = _PrismaDict")
lines.append("")
# Stub functions
for name in sorted(functions):
lines.append(f"def {name}(*args: Any, **kwargs: Any) -> Any: ...")
lines.append("")
stub_path.write_text("\n".join(lines), encoding="utf-8")
return (
len(classes)
+ len(functions)
+ len(safe_variable_sources)
+ len(unsafe_variables)
)
def main() -> None:
"""Main entry point."""
try:
types_path = find_prisma_types_path()
stub_path = types_path.with_suffix(".pyi")
print(f"Found prisma types.py at: {types_path}")
print(f"Generating stub at: {stub_path}")
num_symbols = generate_stub(types_path, stub_path)
print(f"Generated {stub_path.name} with {num_symbols} Any-typed symbols")
except Exception as e:
print(f"Error: {e}", file=sys.stderr)
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -25,9 +25,6 @@ def run(*command: str) -> None:
def lint():
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
run("gen-prisma-stub")
lint_step_args: list[list[str]] = [
["ruff", "check", *TARGET_DIRS, "--exit-zero"],
["ruff", "format", "--diff", "--check", LIBS_DIR],
@@ -52,6 +49,4 @@ def format():
run("ruff", "format", LIBS_DIR)
run("isort", "--profile", "black", BACKEND_DIR)
run("black", BACKEND_DIR)
# Generate Prisma types stub before running pyright to prevent type budget exhaustion
run("gen-prisma-stub")
run("pyright", *TARGET_DIRS)

View File

@@ -1,42 +0,0 @@
-- CreateExtension
-- Supabase: pgvector must be enabled via Dashboard → Database → Extensions first
-- This migration only verifies the extension exists and is accessible
-- The vector type is available across all schemas once enabled
CREATE EXTENSION IF NOT EXISTS vector;
-- CreateEnum
CREATE TYPE "ContentType" AS ENUM ('STORE_AGENT', 'BLOCK', 'INTEGRATION', 'DOCUMENTATION', 'LIBRARY_AGENT');
-- CreateTable
CREATE TABLE "UnifiedContentEmbedding" (
"id" TEXT NOT NULL,
"createdAt" TIMESTAMP(3) NOT NULL DEFAULT CURRENT_TIMESTAMP,
"updatedAt" TIMESTAMP(3) NOT NULL,
"contentType" "ContentType" NOT NULL,
"contentId" TEXT NOT NULL,
"userId" TEXT,
"embedding" vector(1536) NOT NULL,
"searchableText" TEXT NOT NULL,
"metadata" JSONB NOT NULL DEFAULT '{}',
CONSTRAINT "UnifiedContentEmbedding_pkey" PRIMARY KEY ("id")
);
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_contentType_idx" ON "UnifiedContentEmbedding"("contentType");
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_userId_idx" ON "UnifiedContentEmbedding"("userId");
-- CreateIndex
CREATE INDEX "UnifiedContentEmbedding_contentType_userId_idx" ON "UnifiedContentEmbedding"("contentType", "userId");
-- CreateIndex
-- NULLS NOT DISTINCT ensures only one public (NULL userId) embedding per contentType+contentId
-- Requires PostgreSQL 15+. Supabase uses PostgreSQL 15+.
CREATE UNIQUE INDEX "UnifiedContentEmbedding_contentType_contentId_userId_key" ON "UnifiedContentEmbedding"("contentType", "contentId", "userId") NULLS NOT DISTINCT;
-- CreateIndex
-- HNSW index for fast vector similarity search on embeddings
-- Uses cosine distance operator (<=>), which matches the query in hybrid_search.py
CREATE INDEX "UnifiedContentEmbedding_embedding_idx" ON "UnifiedContentEmbedding" USING hnsw ("embedding" vector_cosine_ops);

View File

@@ -1,71 +0,0 @@
-- Acknowledge Supabase-managed extensions to prevent drift warnings
-- These extensions are pre-installed by Supabase in specific schemas
-- This migration ensures they exist where available (Supabase) or skips gracefully (CI)
-- Create schemas (safe in both CI and Supabase)
CREATE SCHEMA IF NOT EXISTS "extensions";
-- Extensions that exist in both CI and Supabase
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pgcrypto" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgcrypto extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "uuid-ossp" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'uuid-ossp extension not available, skipping';
END $$;
-- Supabase-specific extensions (skip gracefully in CI)
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pg_stat_statements" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_stat_statements extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pg_net" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_net extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE EXTENSION IF NOT EXISTS "pgjwt" WITH SCHEMA "extensions";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgjwt extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "graphql";
CREATE EXTENSION IF NOT EXISTS "pg_graphql" WITH SCHEMA "graphql";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pg_graphql extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "pgsodium";
CREATE EXTENSION IF NOT EXISTS "pgsodium" WITH SCHEMA "pgsodium";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'pgsodium extension not available, skipping';
END $$;
DO $$
BEGIN
CREATE SCHEMA IF NOT EXISTS "vault";
CREATE EXTENSION IF NOT EXISTS "supabase_vault" WITH SCHEMA "vault";
EXCEPTION WHEN OTHERS THEN
RAISE NOTICE 'supabase_vault extension not available, skipping';
END $$;
-- Return to platform
CREATE SCHEMA IF NOT EXISTS "platform";

View File

@@ -0,0 +1,8 @@
-- AlterTable
ALTER TABLE "AgentGraphExecution" ADD COLUMN "endedAt" TIMESTAMP(3);
-- Set endedAt to updatedAt for existing records with terminal status only
UPDATE "AgentGraphExecution"
SET "endedAt" = "updatedAt"
WHERE "endedAt" IS NULL
AND "executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED');

View File

@@ -117,7 +117,6 @@ lint = "linter:lint"
test = "run_tests:test"
load-store-agents = "test.load_store_agents:run"
export-api-schema = "backend.cli.generate_openapi_json:main"
gen-prisma-stub = "gen_prisma_types_stub:main"
oauth-tool = "backend.cli.oauth_tool:cli"
[tool.isort]
@@ -135,9 +134,6 @@ ignore_patterns = []
[tool.pytest.ini_options]
asyncio_mode = "auto"
asyncio_default_fixture_loop_scope = "session"
# Disable syrupy plugin to avoid conflict with pytest-snapshot
# Both provide --snapshot-update argument causing ArgumentError
addopts = "-p no:syrupy"
filterwarnings = [
"ignore:'audioop' is deprecated:DeprecationWarning:discord.player",
"ignore:invalid escape sequence:DeprecationWarning:tweepy.api",

View File

@@ -1,15 +1,14 @@
datasource db {
provider = "postgresql"
url = env("DATABASE_URL")
directUrl = env("DIRECT_URL")
extensions = [pgvector(map: "vector")]
provider = "postgresql"
url = env("DATABASE_URL")
directUrl = env("DIRECT_URL")
}
generator client {
provider = "prisma-client-py"
recursive_type_depth = -1
interface = "asyncio"
previewFeatures = ["views", "fullTextSearch", "postgresqlExtensions"]
previewFeatures = ["views", "fullTextSearch"]
partial_type_generator = "backend/data/partial_types.py"
}
@@ -128,8 +127,8 @@ model BuilderSearchHistory {
updatedAt DateTime @default(now()) @updatedAt
searchQuery String
filter String[] @default([])
byCreator String[] @default([])
filter String[] @default([])
byCreator String[] @default([])
userId String
User User @relation(fields: [userId], references: [id], onDelete: Cascade)
@@ -384,6 +383,7 @@ model AgentGraphExecution {
createdAt DateTime @default(now())
updatedAt DateTime? @updatedAt
startedAt DateTime?
endedAt DateTime?
isDeleted Boolean @default(false)
@@ -722,25 +722,26 @@ view StoreAgent {
storeListingVersionId String
updated_at DateTime
slug String
agent_name String
agent_video String?
agent_output_demo String?
agent_image String[]
slug String
agent_name String
agent_video String?
agent_output_demo String?
agent_image String[]
featured Boolean @default(false)
creator_username String?
creator_avatar String?
sub_heading String
description String
categories String[]
runs Int
rating Float
versions String[]
agentGraphVersions String[]
agentGraphId String
is_available Boolean @default(true)
useForOnboarding Boolean @default(false)
featured Boolean @default(false)
creator_username String?
creator_avatar String?
sub_heading String
description String
categories String[]
search Unsupported("tsvector")? @default(dbgenerated("''::tsvector"))
runs Int
rating Float
versions String[]
agentGraphVersions String[]
agentGraphId String
is_available Boolean @default(true)
useForOnboarding Boolean @default(false)
// Materialized views used (refreshed every 15 minutes via pg_cron):
// - mv_agent_run_counts - Pre-aggregated agent execution counts by agentGraphId
@@ -856,14 +857,14 @@ model StoreListingVersion {
AgentGraph AgentGraph @relation(fields: [agentGraphId, agentGraphVersion], references: [id, version])
// Content fields
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
name String
subHeading String
videoUrl String?
agentOutputDemoUrl String?
imageUrls String[]
description String
instructions String?
categories String[]
isFeatured Boolean @default(false)
@@ -899,9 +900,6 @@ model StoreListingVersion {
// Reviews for this specific version
Reviews StoreListingReview[]
// Note: Embeddings now stored in UnifiedContentEmbedding table
// Use contentType=STORE_AGENT and contentId=storeListingVersionId
@@unique([storeListingId, version])
@@index([storeListingId, submissionStatus, isAvailable])
@@index([submissionStatus])
@@ -909,42 +907,6 @@ model StoreListingVersion {
@@index([agentGraphId, agentGraphVersion]) // Non-unique index for efficient lookups
}
// Content type enum for unified search across store agents, blocks, docs
// Note: BLOCK/INTEGRATION are file-based (Python classes), not DB records
// DOCUMENTATION are file-based (.md files), not DB records
// Only STORE_AGENT and LIBRARY_AGENT are stored in database
enum ContentType {
STORE_AGENT // Database: StoreListingVersion
BLOCK // File-based: Python classes in /backend/blocks/
INTEGRATION // File-based: Python classes (blocks with credentials)
DOCUMENTATION // File-based: .md/.mdx files
LIBRARY_AGENT // Database: User's personal agents
}
// Unified embeddings table for all searchable content types
// Supports both public content (userId=null) and user-specific content (userId=userID)
model UnifiedContentEmbedding {
id String @id @default(uuid())
createdAt DateTime @default(now())
updatedAt DateTime @updatedAt
// Content identification
contentType ContentType
contentId String // DB ID (storeListingVersionId) or file identifier (block.id, file_path)
userId String? // NULL for public content (store, blocks, docs), userId for private content (library agents)
// Search data
embedding Unsupported("vector(1536)") // pgvector embedding (extension in platform schema)
searchableText String // Combined text for search and fallback
metadata Json @default("{}") // Content-specific metadata
@@unique([contentType, contentId, userId], map: "UnifiedContentEmbedding_contentType_contentId_userId_key")
@@index([contentType])
@@index([userId])
@@index([contentType, userId])
@@index([embedding], map: "UnifiedContentEmbedding_embedding_idx")
}
model StoreListingReview {
id String @id @default(uuid())
createdAt DateTime @default(now())
@@ -1037,16 +999,16 @@ model OAuthApplication {
updatedAt DateTime @updatedAt
// Application metadata
name String
description String?
logoUrl String? // URL to app logo stored in GCS
clientId String @unique
clientSecret String // Hashed with Scrypt (same as API keys)
clientSecretSalt String // Salt for Scrypt hashing
name String
description String?
logoUrl String? // URL to app logo stored in GCS
clientId String @unique
clientSecret String // Hashed with Scrypt (same as API keys)
clientSecretSalt String // Salt for Scrypt hashing
// OAuth configuration
redirectUris String[] // Allowed callback URLs
grantTypes String[] @default(["authorization_code", "refresh_token"])
grantTypes String[] @default(["authorization_code", "refresh_token"])
scopes APIKeyPermission[] // Which permissions the app can request
// Application management

View File

@@ -2,7 +2,6 @@
"created_at": "2025-09-04T13:37:00",
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},

View File

@@ -2,7 +2,6 @@
{
"credentials_input_schema": {
"properties": {},
"required": [],
"title": "TestGraphCredentialsInputSchema",
"type": "object"
},

View File

@@ -4,7 +4,6 @@
"id": "test-agent-1",
"graph_id": "test-agent-1",
"graph_version": 1,
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
"image_url": null,
"creator_name": "Test Creator",
"creator_image_url": "",
@@ -42,7 +41,6 @@
"id": "test-agent-2",
"graph_id": "test-agent-2",
"graph_version": 1,
"owner_user_id": "3e53486c-cf57-477e-ba2a-cb02dc828e1a",
"image_url": null,
"creator_name": "Test Creator",
"creator_image_url": "",

View File

@@ -1,7 +1,6 @@
{
"submissions": [
{
"listing_id": "test-listing-id",
"agent_id": "test-agent-id",
"agent_version": 1,
"name": "Test Agent",

View File

@@ -37,7 +37,7 @@ services:
context: ../
dockerfile: autogpt_platform/backend/Dockerfile
target: migrate
command: ["sh", "-c", "poetry run prisma generate && poetry run gen-prisma-stub && poetry run prisma migrate deploy"]
command: ["sh", "-c", "poetry run prisma generate && poetry run prisma migrate deploy"]
develop:
watch:
- path: ./

View File

@@ -92,6 +92,7 @@
"react-currency-input-field": "4.0.3",
"react-day-picker": "9.11.1",
"react-dom": "18.3.1",
"react-drag-drop-files": "2.4.0",
"react-hook-form": "7.66.0",
"react-icons": "5.5.0",
"react-markdown": "9.0.3",

View File

@@ -200,6 +200,9 @@ importers:
react-dom:
specifier: 18.3.1
version: 18.3.1(react@18.3.1)
react-drag-drop-files:
specifier: 2.4.0
version: 2.4.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react-hook-form:
specifier: 7.66.0
version: 7.66.0(react@18.3.1)
@@ -1001,6 +1004,9 @@ packages:
'@emotion/memoize@0.8.1':
resolution: {integrity: sha512-W2P2c/VRW1/1tLox0mVUalvnWXxavmv/Oum2aPsRcoDJuob75FC3Y8FbpfLwUegRcxINtGUMPq0tFCvYNTBXNA==}
'@emotion/unitless@0.8.1':
resolution: {integrity: sha512-KOEGMu6dmJZtpadb476IsZBclKvILjopjUii3V+7MnXIQCYh8W3NgNcgwo21n9LXZX6EDIKvqfjYxXebDwxKmQ==}
'@epic-web/invariant@1.0.0':
resolution: {integrity: sha512-lrTPqgvfFQtR/eY/qkIzp98OGdNJu0m5ji3q/nJI8v3SXkRKEnWiOxMmbvcSoAIzv/cGiuvRy57k4suKQSAdwA==}
@@ -3116,6 +3122,9 @@ packages:
'@types/statuses@2.0.6':
resolution: {integrity: sha512-xMAgYwceFhRA2zY+XbEA7mxYbA093wdiW8Vu6gZPGWy9cmOyU9XesH1tNcEWsKFd5Vzrqx5T3D38PWx1FIIXkA==}
'@types/stylis@4.2.7':
resolution: {integrity: sha512-VgDNokpBoKF+wrdvhAAfS55OMQpL6QRglwTwNC3kIgBrzZxA4WsFj+2eLfEA/uMUDzBcEhYmjSbwQakn/i3ajA==}
'@types/tedious@4.0.14':
resolution: {integrity: sha512-KHPsfX/FoVbUGbyYvk1q9MMQHLPeRZhRJZdO45Q4YjvFkv4hMNghCWTvy7rdKessBsmtz4euWCWAB6/tVpI1Iw==}
@@ -3772,6 +3781,9 @@ packages:
resolution: {integrity: sha512-QOSvevhslijgYwRx6Rv7zKdMF8lbRmx+uQGx2+vDc+KI/eBnsy9kit5aj23AgGu3pa4t9AgwbnXWqS+iOY+2aA==}
engines: {node: '>= 6'}
camelize@1.0.1:
resolution: {integrity: sha512-dU+Tx2fsypxTgtLoE36npi3UqcjSSMNYfkqgmoEhtZrraP5VWq0K7FkWVTYa8eMPtnU/G2txVsfdCJTn9uzpuQ==}
caniuse-lite@1.0.30001762:
resolution: {integrity: sha512-PxZwGNvH7Ak8WX5iXzoK1KPZttBXNPuaOvI2ZYU7NrlM+d9Ov+TUvlLOBNGzVXAntMSMMlJPd+jY6ovrVjSmUw==}
@@ -3985,6 +3997,10 @@ packages:
resolution: {integrity: sha512-r4ESw/IlusD17lgQi1O20Fa3qNnsckR126TdUuBgAu7GBYSIPvdNyONd3Zrxh0xCwA4+6w/TDArBPsMvhur+KQ==}
engines: {node: '>= 0.10'}
css-color-keywords@1.0.0:
resolution: {integrity: sha512-FyyrDHZKEjXDpNJYvVsV960FiqQyXc/LlYmsxl2BcdMb2WPx0OGRVgTg55rPSyLSNMqP52R9r8geSp7apN3Ofg==}
engines: {node: '>=4'}
css-loader@6.11.0:
resolution: {integrity: sha512-CTJ+AEQJjq5NzLga5pE39qdiSV56F8ywCIsqNIRF0r7BDgWsN25aazToqAFg7ZrtA/U016xudB3ffgweORxX7g==}
engines: {node: '>= 12.13.0'}
@@ -4000,6 +4016,9 @@ packages:
css-select@4.3.0:
resolution: {integrity: sha512-wPpOYtnsVontu2mODhA19JrqWxNsfdatRKd64kmpRbQgh1KtItko5sTnEpPdpSaJszTOhEMlF/RPz28qj4HqhQ==}
css-to-react-native@3.2.0:
resolution: {integrity: sha512-e8RKaLXMOFii+02mOlqwjbD00KSEKqblnpO9e++1aXS1fPQOpS1YoqdVHBqPjHNoxeF2mimzVqawm2KCbEdtHQ==}
css-what@6.2.2:
resolution: {integrity: sha512-u/O3vwbptzhMs3L1fQE82ZSLHQQfto5gyZzwteVIEyeaY5Fc7R4dapF/BvRoSYFeqfBk4m0V1Vafq5Pjv25wvA==}
engines: {node: '>= 6'}
@@ -6112,6 +6131,10 @@ packages:
resolution: {integrity: sha512-PS08Iboia9mts/2ygV3eLpY5ghnUcfLV/EXTOW1E2qYxJKGGBUtNjN76FYHnMs36RmARn41bC0AZmn+rR0OVpQ==}
engines: {node: ^10 || ^12 || >=14}
postcss@8.4.49:
resolution: {integrity: sha512-OCVPnIObs4N29kxTjzLfUryOkvZEq+pf8jTF0lg8E7uETuWHA+v7j3c/xJmiqpX450191LlmZfUKkXxkTry7nA==}
engines: {node: ^10 || ^12 || >=14}
postcss@8.5.6:
resolution: {integrity: sha512-3Ybi1tAuwAP9s0r1UQ2J4n5Y0G05bJkpUIO0/bI9MhwmD70S5aTWbXGBwxHrelT+XM1k6dM0pk+SwNkpTRN7Pg==}
engines: {node: ^10 || ^12 || >=14}
@@ -6283,6 +6306,12 @@ packages:
peerDependencies:
react: ^18.3.1
react-drag-drop-files@2.4.0:
resolution: {integrity: sha512-MGPV3HVVnwXEXq3gQfLtSU3jz5j5jrabvGedokpiSEMoONrDHgYl/NpIOlfsqGQ4zBv1bzzv7qbKURZNOX32PA==}
peerDependencies:
react: ^18.0.0
react-dom: ^18.0.0
react-hook-form@7.66.0:
resolution: {integrity: sha512-xXBqsWGKrY46ZqaHDo+ZUYiMUgi8suYu5kdrS20EG8KiL7VRQitEbNjm+UcrDYrNi1YLyfpmAeGjCZYXLT9YBw==}
engines: {node: '>=18.0.0'}
@@ -6649,6 +6678,9 @@ packages:
engines: {node: '>= 0.10'}
hasBin: true
shallowequal@1.1.0:
resolution: {integrity: sha512-y0m1JoUZSlPAjXVtPPW70aZWfIL/dSP7AFkRnniLCrK/8MDKog3TySTBmckD+RObVxH0v4Tox67+F14PdED2oQ==}
sharp@0.34.5:
resolution: {integrity: sha512-Ou9I5Ft9WNcCbXrU9cMgPBcCK8LiwLqcbywW3t4oDV37n1pzpuNLsYiAV8eODnjbtQlSDwZ2cUEeQz4E54Hltg==}
engines: {node: ^18.17.0 || ^20.3.0 || >=21.0.0}
@@ -6862,6 +6894,13 @@ packages:
style-to-object@1.0.14:
resolution: {integrity: sha512-LIN7rULI0jBscWQYaSswptyderlarFkjQ+t79nzty8tcIAceVomEVlLzH5VP4Cmsv6MtKhs7qaAiwlcp+Mgaxw==}
styled-components@6.2.0:
resolution: {integrity: sha512-ryFCkETE++8jlrBmC+BoGPUN96ld1/Yp0s7t5bcXDobrs4XoXroY1tN+JbFi09hV6a5h3MzbcVi8/BGDP0eCgQ==}
engines: {node: '>= 16'}
peerDependencies:
react: '>= 16.8.0'
react-dom: '>= 16.8.0'
styled-jsx@5.1.6:
resolution: {integrity: sha512-qSVyDTeMotdvQYoHWLNGwRFJHC+i+ZvdBRYosOFgC+Wg1vx4frN2/RG/NA7SYqqvKNLf39P2LSRA2pu6n0XYZA==}
engines: {node: '>= 12.0.0'}
@@ -6888,6 +6927,9 @@ packages:
babel-plugin-macros:
optional: true
stylis@4.3.6:
resolution: {integrity: sha512-yQ3rwFWRfwNUY7H5vpU0wfdkNSnvnJinhF9830Swlaxl03zsOjCfmX0ugac+3LtK0lYSgwL/KXc8oYL3mG4YFQ==}
sucrase@3.35.1:
resolution: {integrity: sha512-DhuTmvZWux4H1UOnWMB3sk0sbaCVOoQZjv8u1rDoTV0HTdGem9hkAZtl4JZy8P2z4Bg0nT+YMeOFyVr4zcG5Tw==}
engines: {node: '>=16 || 14 >=14.17'}
@@ -7054,6 +7096,9 @@ packages:
tslib@1.14.1:
resolution: {integrity: sha512-Xni35NKzjgMrwevysHTCArtLDpPvye8zV/0E4EyYn43P7/7qvQwPh9BGkHewbMulVntbigmcT7rdX3BNo9wRJg==}
tslib@2.6.2:
resolution: {integrity: sha512-AEYxH93jGFPn/a2iVAwW87VuUIkR1FVUKB77NwMF7nBTDkDrrT/Hpt/IrCJ0QXhW27jTBDcf5ZY7w6RiqTMw2Q==}
tslib@2.8.1:
resolution: {integrity: sha512-oJFu94HQb+KVduSUQL7wnpmqnfmLsOA/nAh6b6EH0wCEoK0/mPeXU6c3wKDV83MkOuHPRHtSXKKU99IBazS/2w==}
@@ -8290,10 +8335,10 @@ snapshots:
'@emotion/is-prop-valid@1.2.2':
dependencies:
'@emotion/memoize': 0.8.1
optional: true
'@emotion/memoize@0.8.1':
optional: true
'@emotion/memoize@0.8.1': {}
'@emotion/unitless@0.8.1': {}
'@epic-web/invariant@1.0.0': {}
@@ -10689,6 +10734,8 @@ snapshots:
'@types/statuses@2.0.6': {}
'@types/stylis@4.2.7': {}
'@types/tedious@4.0.14':
dependencies:
'@types/node': 24.10.0
@@ -11385,6 +11432,8 @@ snapshots:
camelcase-css@2.0.1: {}
camelize@1.0.1: {}
caniuse-lite@1.0.30001762: {}
case-sensitive-paths-webpack-plugin@2.4.0: {}
@@ -11596,6 +11645,8 @@ snapshots:
randombytes: 2.1.0
randomfill: 1.0.4
css-color-keywords@1.0.0: {}
css-loader@6.11.0(webpack@5.104.1(esbuild@0.25.12)):
dependencies:
icss-utils: 5.1.0(postcss@8.5.6)
@@ -11617,6 +11668,12 @@ snapshots:
domutils: 2.8.0
nth-check: 2.1.1
css-to-react-native@3.2.0:
dependencies:
camelize: 1.0.1
css-color-keywords: 1.0.0
postcss-value-parser: 4.2.0
css-what@6.2.2: {}
css.escape@1.5.1: {}
@@ -12070,8 +12127,8 @@ snapshots:
'@typescript-eslint/parser': 8.52.0(eslint@8.57.1)(typescript@5.9.3)
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
eslint-plugin-jsx-a11y: 6.10.2(eslint@8.57.1)
eslint-plugin-react: 7.37.5(eslint@8.57.1)
eslint-plugin-react-hooks: 5.2.0(eslint@8.57.1)
@@ -12090,7 +12147,7 @@ snapshots:
transitivePeerDependencies:
- supports-color
eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1):
eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1):
dependencies:
'@nolyfill/is-core-module': 1.0.39
debug: 4.4.3
@@ -12101,22 +12158,22 @@ snapshots:
tinyglobby: 0.2.15
unrs-resolver: 1.11.1
optionalDependencies:
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-plugin-import: 2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
transitivePeerDependencies:
- supports-color
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
eslint-module-utils@2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1):
dependencies:
debug: 3.2.7
optionalDependencies:
'@typescript-eslint/parser': 8.52.0(eslint@8.57.1)(typescript@5.9.3)
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0)(eslint@8.57.1)
eslint-import-resolver-typescript: 3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1)
transitivePeerDependencies:
- supports-color
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1):
eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1):
dependencies:
'@rtsao/scc': 1.1.0
array-includes: 3.1.9
@@ -12127,7 +12184,7 @@ snapshots:
doctrine: 2.1.0
eslint: 8.57.1
eslint-import-resolver-node: 0.3.9
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1)(eslint@8.57.1)
eslint-module-utils: 2.12.1(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint-import-resolver-node@0.3.9)(eslint-import-resolver-typescript@3.10.1(eslint-plugin-import@2.32.0(@typescript-eslint/parser@8.52.0(eslint@8.57.1)(typescript@5.9.3))(eslint@8.57.1))(eslint@8.57.1))(eslint@8.57.1)
hasown: 2.0.2
is-core-module: 2.16.1
is-glob: 4.0.3
@@ -14202,6 +14259,12 @@ snapshots:
picocolors: 1.1.1
source-map-js: 1.2.1
postcss@8.4.49:
dependencies:
nanoid: 3.3.11
picocolors: 1.1.1
source-map-js: 1.2.1
postcss@8.5.6:
dependencies:
nanoid: 3.3.11
@@ -14323,6 +14386,13 @@ snapshots:
react: 18.3.1
scheduler: 0.23.2
react-drag-drop-files@2.4.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
dependencies:
prop-types: 15.8.1
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
styled-components: 6.2.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1)
react-hook-form@7.66.0(react@18.3.1):
dependencies:
react: 18.3.1
@@ -14816,6 +14886,8 @@ snapshots:
safe-buffer: 5.2.1
to-buffer: 1.2.2
shallowequal@1.1.0: {}
sharp@0.34.5:
dependencies:
'@img/colour': 1.0.0
@@ -15106,6 +15178,20 @@ snapshots:
dependencies:
inline-style-parser: 0.2.7
styled-components@6.2.0(react-dom@18.3.1(react@18.3.1))(react@18.3.1):
dependencies:
'@emotion/is-prop-valid': 1.2.2
'@emotion/unitless': 0.8.1
'@types/stylis': 4.2.7
css-to-react-native: 3.2.0
csstype: 3.2.3
postcss: 8.4.49
react: 18.3.1
react-dom: 18.3.1(react@18.3.1)
shallowequal: 1.1.0
stylis: 4.3.6
tslib: 2.6.2
styled-jsx@5.1.6(@babel/core@7.28.5)(react@18.3.1):
dependencies:
client-only: 0.0.1
@@ -15120,6 +15206,8 @@ snapshots:
optionalDependencies:
'@babel/core': 7.28.5
stylis@4.3.6: {}
sucrase@3.35.1:
dependencies:
'@jridgewell/gen-mapping': 0.3.13
@@ -15302,6 +15390,8 @@ snapshots:
tslib@1.14.1: {}
tslib@2.6.2: {}
tslib@2.8.1: {}
tty-browserify@0.0.1: {}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@@ -51,6 +51,8 @@ export function AnalyticsResultsTable({ results }: Props) {
"Execution ID",
"Status",
"Score",
"Started At",
"Ended At",
"Summary Text",
"Error Message",
];
@@ -62,6 +64,8 @@ export function AnalyticsResultsTable({ results }: Props) {
result.exec_id,
result.status,
result.score?.toString() || "",
result.started_at ? new Date(result.started_at).toLocaleString() : "",
result.ended_at ? new Date(result.ended_at).toLocaleString() : "",
`"${(result.summary_text || "").replace(/"/g, '""')}"`, // Escape quotes in summary
`"${(result.error_message || "").replace(/"/g, '""')}"`, // Escape quotes in error
]);
@@ -248,15 +252,13 @@ export function AnalyticsResultsTable({ results }: Props) {
)}
</td>
<td className="px-4 py-3">
{(result.summary_text || result.error_message) && (
<Button
variant="ghost"
size="small"
onClick={() => toggleRowExpansion(result.exec_id)}
>
<EyeIcon size={16} />
</Button>
)}
<Button
variant="ghost"
size="small"
onClick={() => toggleRowExpansion(result.exec_id)}
>
<EyeIcon size={16} />
</Button>
</td>
</tr>
@@ -264,6 +266,44 @@ export function AnalyticsResultsTable({ results }: Props) {
<tr>
<td colSpan={7} className="bg-gray-50 px-4 py-3">
<div className="space-y-3">
{/* Timestamps section */}
<div className="grid grid-cols-2 gap-4 border-b border-gray-200 pb-3">
<div>
<Text
variant="body"
className="text-xs font-medium text-gray-600"
>
Started At:
</Text>
<Text
variant="body"
className="text-sm text-gray-700"
>
{result.started_at
? new Date(
result.started_at,
).toLocaleString()
: "—"}
</Text>
</div>
<div>
<Text
variant="body"
className="text-xs font-medium text-gray-600"
>
Ended At:
</Text>
<Text
variant="body"
className="text-sm text-gray-700"
>
{result.ended_at
? new Date(result.ended_at).toLocaleString()
: "—"}
</Text>
</div>
</div>
{result.summary_text && (
<div>
<Text

View File

@@ -541,7 +541,19 @@ export function ExecutionAnalyticsForm() {
{/* Accuracy Trends Display */}
{trendsData && (
<div className="space-y-4">
<h3 className="text-lg font-semibold">Execution Accuracy Trends</h3>
<div className="flex items-start justify-between">
<h3 className="text-lg font-semibold">Execution Accuracy Trends</h3>
<div className="rounded-md bg-blue-50 px-3 py-2 text-xs text-blue-700">
<p className="font-medium">
Chart Filters (matches monitoring system):
</p>
<ul className="mt-1 list-inside list-disc space-y-1">
<li>Only days with 1 execution with correctness score</li>
<li>Last 30 days</li>
<li>Averages calculated from scored executions only</li>
</ul>
</div>
</div>
{/* Alert Section */}
{trendsData.alert && (

View File

@@ -66,7 +66,6 @@ export const RunInputDialog = ({
formContext={{
showHandles: false,
size: "large",
showOptionalToggle: false,
}}
/>
</div>

View File

@@ -66,7 +66,7 @@ export const useRunInputDialog = ({
if (isCredentialFieldSchema(fieldSchema)) {
dynamicUiSchema[fieldName] = {
...dynamicUiSchema[fieldName],
"ui:field": "custom/credential_field",
"ui:field": "credentials",
};
}
});
@@ -76,18 +76,12 @@ export const useRunInputDialog = ({
}, [credentialsSchema]);
const handleManualRun = async () => {
// Filter out incomplete credentials (those without a valid id)
// RJSF auto-populates const values (provider, type) but not id field
const validCredentials = Object.fromEntries(
Object.entries(credentialValues).filter(([_, cred]) => cred && cred.id),
);
await executeGraph({
graphId: flowID ?? "",
graphVersion: flowVersion || null,
data: {
inputs: inputValues,
credentials_inputs: validCredentials,
credentials_inputs: credentialValues,
source: "builder",
},
});

View File

@@ -97,9 +97,6 @@ export const Flow = () => {
onConnect={onConnect}
onEdgesChange={onEdgesChange}
onNodeDragStop={onNodeDragStop}
onNodeContextMenu={(event) => {
event.preventDefault();
}}
maxZoom={2}
minZoom={0.1}
onDragOver={onDragOver}

View File

@@ -1,25 +1,24 @@
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
import { BlockCost } from "@/app/api/__generated__/models/blockCost";
import { BlockInfoCategoriesItem } from "@/app/api/__generated__/models/blockInfoCategoriesItem";
import { NodeExecutionResult } from "@/app/api/__generated__/models/nodeExecutionResult";
import { NodeModelMetadata } from "@/app/api/__generated__/models/nodeModelMetadata";
import { preprocessInputSchema } from "@/components/renderers/InputRenderer/utils/input-schema-pre-processor";
import { cn } from "@/lib/utils";
import { RJSFSchema } from "@rjsf/utils";
import { NodeProps, Node as XYNode } from "@xyflow/react";
import React from "react";
import { Node as XYNode, NodeProps } from "@xyflow/react";
import { RJSFSchema } from "@rjsf/utils";
import { BlockUIType } from "../../../types";
import { FormCreator } from "../FormCreator";
import { OutputHandler } from "../OutputHandler";
import { AyrshareConnectButton } from "./components/AyrshareConnectButton";
import { NodeAdvancedToggle } from "./components/NodeAdvancedToggle";
import { NodeContainer } from "./components/NodeContainer";
import { NodeExecutionBadge } from "./components/NodeExecutionBadge";
import { NodeHeader } from "./components/NodeHeader";
import { NodeDataRenderer } from "./components/NodeOutput/NodeOutput";
import { NodeRightClickMenu } from "./components/NodeRightClickMenu";
import { StickyNoteBlock } from "./components/StickyNoteBlock";
import { BlockInfoCategoriesItem } from "@/app/api/__generated__/models/blockInfoCategoriesItem";
import { BlockCost } from "@/app/api/__generated__/models/blockCost";
import { AgentExecutionStatus } from "@/app/api/__generated__/models/agentExecutionStatus";
import { NodeExecutionResult } from "@/app/api/__generated__/models/nodeExecutionResult";
import { NodeContainer } from "./components/NodeContainer";
import { NodeHeader } from "./components/NodeHeader";
import { FormCreator } from "../FormCreator";
import { preprocessInputSchema } from "@/components/renderers/InputRenderer/utils/input-schema-pre-processor";
import { OutputHandler } from "../OutputHandler";
import { NodeAdvancedToggle } from "./components/NodeAdvancedToggle";
import { NodeDataRenderer } from "./components/NodeOutput/NodeOutput";
import { NodeExecutionBadge } from "./components/NodeExecutionBadge";
import { cn } from "@/lib/utils";
import { WebhookDisclaimer } from "./components/WebhookDisclaimer";
import { AyrshareConnectButton } from "./components/AyrshareConnectButton";
import { NodeModelMetadata } from "@/app/api/__generated__/models/nodeModelMetadata";
export type CustomNodeData = {
hardcodedValues: {
@@ -89,7 +88,7 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
// Currently all blockTypes design are similar - that's why i am using the same component for all of them
// If in future - if we need some drastic change in some blockTypes design - we can create separate components for them
const node = (
return (
<NodeContainer selected={selected} nodeId={nodeId} hasErrors={hasErrors}>
<div className="rounded-xlarge bg-white">
<NodeHeader data={data} nodeId={nodeId} />
@@ -118,15 +117,6 @@ export const CustomNode: React.FC<NodeProps<CustomNode>> = React.memo(
<NodeExecutionBadge nodeId={nodeId} />
</NodeContainer>
);
return (
<NodeRightClickMenu
nodeId={nodeId}
subGraphID={data.hardcodedValues?.graph_id}
>
{node}
</NodeRightClickMenu>
);
},
);

View File

@@ -1,31 +1,26 @@
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { Separator } from "@/components/__legacy__/ui/separator";
import {
DropdownMenu,
DropdownMenuContent,
DropdownMenuItem,
DropdownMenuTrigger,
} from "@/components/molecules/DropdownMenu/DropdownMenu";
import {
SecondaryDropdownMenuContent,
SecondaryDropdownMenuItem,
SecondaryDropdownMenuSeparator,
} from "@/components/molecules/SecondaryMenu/SecondaryMenu";
import {
ArrowSquareOutIcon,
CopyIcon,
DotsThreeOutlineVerticalIcon,
TrashIcon,
} from "@phosphor-icons/react";
import { DotsThreeOutlineVerticalIcon } from "@phosphor-icons/react";
import { Copy, Trash2, ExternalLink } from "lucide-react";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useReactFlow } from "@xyflow/react";
type Props = {
export const NodeContextMenu = ({
nodeId,
subGraphID,
}: {
nodeId: string;
subGraphID?: string;
};
export const NodeContextMenu = ({ nodeId, subGraphID }: Props) => {
}) => {
const { deleteElements } = useReactFlow();
function handleCopy() {
const handleCopy = () => {
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({
...node,
@@ -35,47 +30,47 @@ export const NodeContextMenu = ({ nodeId, subGraphID }: Props) => {
useCopyPasteStore.getState().copySelectedNodes();
useCopyPasteStore.getState().pasteNodes();
}
};
function handleDelete() {
const handleDelete = () => {
deleteElements({ nodes: [{ id: nodeId }] });
}
};
return (
<DropdownMenu>
<DropdownMenuTrigger className="py-2">
<DotsThreeOutlineVerticalIcon size={16} weight="fill" />
</DropdownMenuTrigger>
<SecondaryDropdownMenuContent side="right" align="start">
<SecondaryDropdownMenuItem onClick={handleCopy}>
<CopyIcon size={20} className="mr-2 dark:text-gray-100" />
<span className="dark:text-gray-100">Copy</span>
</SecondaryDropdownMenuItem>
<SecondaryDropdownMenuSeparator />
<DropdownMenuContent
side="right"
align="start"
className="rounded-xlarge"
>
<DropdownMenuItem onClick={handleCopy} className="hover:rounded-xlarge">
<Copy className="mr-2 h-4 w-4" />
Copy Node
</DropdownMenuItem>
{subGraphID && (
<>
<SecondaryDropdownMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
>
<ArrowSquareOutIcon
size={20}
className="mr-2 dark:text-gray-100"
/>
<span className="dark:text-gray-100">Open agent</span>
</SecondaryDropdownMenuItem>
<SecondaryDropdownMenuSeparator />
</>
<DropdownMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
className="hover:rounded-xlarge"
>
<ExternalLink className="mr-2 h-4 w-4" />
Open Agent
</DropdownMenuItem>
)}
<SecondaryDropdownMenuItem variant="destructive" onClick={handleDelete}>
<TrashIcon
size={20}
className="mr-2 text-red-500 dark:text-red-400"
/>
<span className="dark:text-red-400">Delete</span>
</SecondaryDropdownMenuItem>
</SecondaryDropdownMenuContent>
<Separator className="my-2" />
<DropdownMenuItem
onClick={handleDelete}
className="text-red-600 hover:rounded-xlarge"
>
<Trash2 className="mr-2 h-4 w-4" />
Delete
</DropdownMenuItem>
</DropdownMenuContent>
</DropdownMenu>
);
};

View File

@@ -1,24 +1,25 @@
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { Text } from "@/components/atoms/Text/Text";
import { beautifyString, cn } from "@/lib/utils";
import { NodeCost } from "./NodeCost";
import { NodeBadges } from "./NodeBadges";
import { NodeContextMenu } from "./NodeContextMenu";
import { CustomNodeData } from "../CustomNode";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useState } from "react";
import {
Tooltip,
TooltipContent,
TooltipProvider,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { beautifyString, cn } from "@/lib/utils";
import { useState } from "react";
import { CustomNodeData } from "../CustomNode";
import { NodeBadges } from "./NodeBadges";
import { NodeContextMenu } from "./NodeContextMenu";
import { NodeCost } from "./NodeCost";
type Props = {
export const NodeHeader = ({
data,
nodeId,
}: {
data: CustomNodeData;
nodeId: string;
};
export const NodeHeader = ({ data, nodeId }: Props) => {
}) => {
const updateNodeData = useNodeStore((state) => state.updateNodeData);
const title = (data.metadata?.customized_name as string) || data.title;
const [isEditingTitle, setIsEditingTitle] = useState(false);
@@ -68,10 +69,7 @@ export const NodeHeader = ({ data, nodeId }: Props) => {
<Tooltip>
<TooltipTrigger asChild>
<div>
<Text
variant="large-semibold"
className="line-clamp-1 hover:cursor-text"
>
<Text variant="large-semibold" className="line-clamp-1">
{beautifyString(title).replace("Block", "").trim()}
</Text>
</div>

View File

@@ -151,7 +151,7 @@ export const NodeDataViewer: FC<NodeDataViewerProps> = ({
</div>
<div className="flex justify-end pt-4">
{outputItems.length > 1 && (
{outputItems.length > 0 && (
<OutputActions
items={outputItems.map((item) => ({
value: item.value,

View File

@@ -1,104 +0,0 @@
import { useCopyPasteStore } from "@/app/(platform)/build/stores/copyPasteStore";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import {
SecondaryMenuContent,
SecondaryMenuItem,
SecondaryMenuSeparator,
} from "@/components/molecules/SecondaryMenu/SecondaryMenu";
import { ArrowSquareOutIcon, CopyIcon, TrashIcon } from "@phosphor-icons/react";
import * as ContextMenu from "@radix-ui/react-context-menu";
import { useReactFlow } from "@xyflow/react";
import { useEffect, useRef } from "react";
import { CustomNode } from "../CustomNode";
type Props = {
nodeId: string;
subGraphID?: string;
children: React.ReactNode;
};
const DOUBLE_CLICK_TIMEOUT = 300;
export function NodeRightClickMenu({ nodeId, subGraphID, children }: Props) {
const { deleteElements } = useReactFlow<CustomNode>();
const lastRightClickTime = useRef<number>(0);
const containerRef = useRef<HTMLDivElement>(null);
function copyNode() {
useNodeStore.setState((state) => ({
nodes: state.nodes.map((node) => ({
...node,
selected: node.id === nodeId,
})),
}));
useCopyPasteStore.getState().copySelectedNodes();
useCopyPasteStore.getState().pasteNodes();
}
function deleteNode() {
deleteElements({ nodes: [{ id: nodeId }] });
}
useEffect(() => {
const container = containerRef.current;
if (!container) return;
function handleContextMenu(e: MouseEvent) {
const now = Date.now();
const timeSinceLastClick = now - lastRightClickTime.current;
if (timeSinceLastClick < DOUBLE_CLICK_TIMEOUT) {
e.stopImmediatePropagation();
lastRightClickTime.current = 0;
return;
}
lastRightClickTime.current = now;
}
container.addEventListener("contextmenu", handleContextMenu, true);
return () => {
container.removeEventListener("contextmenu", handleContextMenu, true);
};
}, []);
return (
<ContextMenu.Root>
<ContextMenu.Trigger asChild>
<div ref={containerRef}>{children}</div>
</ContextMenu.Trigger>
<SecondaryMenuContent>
<SecondaryMenuItem onSelect={copyNode}>
<CopyIcon size={20} className="mr-2 dark:text-gray-100" />
<span className="dark:text-gray-100">Copy</span>
</SecondaryMenuItem>
<SecondaryMenuSeparator />
{subGraphID && (
<>
<SecondaryMenuItem
onClick={() => window.open(`/build?flowID=${subGraphID}`)}
>
<ArrowSquareOutIcon
size={20}
className="mr-2 dark:text-gray-100"
/>
<span className="dark:text-gray-100">Open agent</span>
</SecondaryMenuItem>
<SecondaryMenuSeparator />
</>
)}
<SecondaryMenuItem variant="destructive" onSelect={deleteNode}>
<TrashIcon
size={20}
className="mr-2 text-red-500 dark:text-red-400"
/>
<span className="dark:text-red-400">Delete</span>
</SecondaryMenuItem>
</SecondaryMenuContent>
</ContextMenu.Root>
);
}

View File

@@ -89,18 +89,6 @@ export function extractOptions(
// get display type and color for schema types [need for type display next to field name]
export const getTypeDisplayInfo = (schema: any) => {
if (
schema?.type === "array" &&
"format" in schema &&
schema.format === "table"
) {
return {
displayType: "table",
colorClass: "!text-indigo-500",
hexColor: "#6366f1",
};
}
if (schema?.type === "string" && schema?.format) {
const formatMap: Record<
string,

View File

@@ -1,6 +1,6 @@
export const uiSchema = {
credentials: {
"ui:field": "custom/credential_field",
"ui:field": "credentials",
provider: { "ui:widget": "hidden" },
type: { "ui:widget": "hidden" },
id: { "ui:autofocus": true },

View File

@@ -1,57 +0,0 @@
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
import { FilterChip } from "../FilterChip";
import { categories } from "./constants";
import { FilterSheet } from "../FilterSheet/FilterSheet";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export const BlockMenuFilters = () => {
const {
filters,
addFilter,
removeFilter,
categoryCounts,
creators,
addCreator,
removeCreator,
} = useBlockMenuStore();
const handleFilterClick = (filter: GetV2BuilderSearchFilterAnyOfItem) => {
if (filters.includes(filter)) {
removeFilter(filter);
} else {
addFilter(filter);
}
};
const handleCreatorClick = (creator: string) => {
if (creators.includes(creator)) {
removeCreator(creator);
} else {
addCreator(creator);
}
};
return (
<div className="flex flex-wrap gap-2">
<FilterSheet categories={categories} />
{creators.length > 0 &&
creators.map((creator) => (
<FilterChip
key={creator}
name={"Created by " + creator.slice(0, 10) + "..."}
selected={creators.includes(creator)}
onClick={() => handleCreatorClick(creator)}
/>
))}
{categories.map((category) => (
<FilterChip
key={category.key}
name={category.name}
selected={filters.includes(category.key)}
onClick={() => handleFilterClick(category.key)}
number={categoryCounts[category.key] ?? 0}
/>
))}
</div>
);
};

View File

@@ -1,15 +0,0 @@
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
import { CategoryKey } from "./types";
export const categories: Array<{ key: CategoryKey; name: string }> = [
{ key: GetV2BuilderSearchFilterAnyOfItem.blocks, name: "Blocks" },
{
key: GetV2BuilderSearchFilterAnyOfItem.integrations,
name: "Integrations",
},
{
key: GetV2BuilderSearchFilterAnyOfItem.marketplace_agents,
name: "Marketplace agents",
},
{ key: GetV2BuilderSearchFilterAnyOfItem.my_agents, name: "My agents" },
];

View File

@@ -1,26 +0,0 @@
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export type DefaultStateType =
| "suggestion"
| "all_blocks"
| "input_blocks"
| "action_blocks"
| "output_blocks"
| "integrations"
| "marketplace_agents"
| "my_agents";
export type CategoryKey = GetV2BuilderSearchFilterAnyOfItem;
export interface Filters {
categories: {
blocks: boolean;
integrations: boolean;
marketplace_agents: boolean;
my_agents: boolean;
providers: boolean;
};
createdBy: string[];
}
export type CategoryCounts = Record<CategoryKey, number>;

View File

@@ -1,14 +1,111 @@
import { Text } from "@/components/atoms/Text/Text";
import { useBlockMenuSearch } from "./useBlockMenuSearch";
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
import { LoadingSpinner } from "@/components/__legacy__/ui/loading";
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
import { MarketplaceAgentBlock } from "../MarketplaceAgentBlock";
import { Block } from "../Block";
import { UGCAgentBlock } from "../UGCAgentBlock";
import { getSearchItemType } from "./helper";
import { useBlockMenuStore } from "../../../../stores/blockMenuStore";
import { blockMenuContainerStyle } from "../style";
import { BlockMenuFilters } from "../BlockMenuFilters/BlockMenuFilters";
import { BlockMenuSearchContent } from "../BlockMenuSearchContent/BlockMenuSearchContent";
import { cn } from "@/lib/utils";
import { NoSearchResult } from "../NoSearchResult";
export const BlockMenuSearch = () => {
const {
searchResults,
isFetchingNextPage,
fetchNextPage,
hasNextPage,
searchLoading,
handleAddLibraryAgent,
handleAddMarketplaceAgent,
addingLibraryAgentId,
addingMarketplaceAgentSlug,
} = useBlockMenuSearch();
const { searchQuery } = useBlockMenuStore();
if (searchLoading) {
return (
<div
className={cn(
blockMenuContainerStyle,
"flex items-center justify-center",
)}
>
<LoadingSpinner className="size-13" />
</div>
);
}
if (searchResults.length === 0) {
return <NoSearchResult />;
}
return (
<div className={blockMenuContainerStyle}>
<BlockMenuFilters />
<Text variant="body-medium">Search results</Text>
<BlockMenuSearchContent />
<InfiniteScroll
isFetchingNextPage={isFetchingNextPage}
fetchNextPage={fetchNextPage}
hasNextPage={hasNextPage}
loader={<LoadingSpinner className="size-13" />}
className="space-y-2.5"
>
{searchResults.map((item: SearchResponseItemsItem, index: number) => {
const { type, data } = getSearchItemType(item);
// backend give support to these 3 types only [right now] - we need to give support to integration and ai agent types in follow up PRs
switch (type) {
case "store_agent":
return (
<MarketplaceAgentBlock
key={index}
slug={data.slug}
highlightedText={searchQuery}
title={data.agent_name}
image_url={data.agent_image}
creator_name={data.creator}
number_of_runs={data.runs}
loading={addingMarketplaceAgentSlug === data.slug}
onClick={() =>
handleAddMarketplaceAgent({
creator_name: data.creator,
slug: data.slug,
})
}
/>
);
case "block":
return (
<Block
key={index}
title={data.name}
highlightedText={searchQuery}
description={data.description}
blockData={data}
/>
);
case "library_agent":
return (
<UGCAgentBlock
key={index}
title={data.name}
highlightedText={searchQuery}
image_url={data.image_url}
version={data.graph_version}
edited_time={data.updated_at}
isLoading={addingLibraryAgentId === data.id}
onClick={() => handleAddLibraryAgent(data)}
/>
);
default:
return null;
}
})}
</InfiniteScroll>
</div>
);
};

View File

@@ -23,19 +23,9 @@ import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { getQueryClient } from "@/lib/react-query/queryClient";
import { useToast } from "@/components/molecules/Toast/use-toast";
import * as Sentry from "@sentry/nextjs";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export const useBlockMenuSearchContent = () => {
const {
searchQuery,
searchId,
setSearchId,
filters,
setCreatorsList,
creators,
setCategoryCounts,
} = useBlockMenuStore();
export const useBlockMenuSearch = () => {
const { searchQuery, searchId, setSearchId } = useBlockMenuStore();
const { toast } = useToast();
const { addAgentToBuilder, addLibraryAgentToBuilder } =
useAddAgentToBuilder();
@@ -67,8 +57,6 @@ export const useBlockMenuSearchContent = () => {
page_size: 8,
search_query: searchQuery,
search_id: searchId,
filter: filters.length > 0 ? filters : undefined,
by_creator: creators.length > 0 ? creators : undefined,
},
{
query: { getNextPageParam: getPaginationNextPageNumber },
@@ -110,26 +98,6 @@ export const useBlockMenuSearchContent = () => {
}
}, [searchQueryData, searchId, setSearchId]);
// from all the results, we need to get all the unique creators
useEffect(() => {
if (!searchQueryData?.pages?.length) {
return;
}
const latestData = okData(searchQueryData.pages.at(-1));
setCategoryCounts(
(latestData?.total_items as Record<
GetV2BuilderSearchFilterAnyOfItem,
number
>) || {
blocks: 0,
integrations: 0,
marketplace_agents: 0,
my_agents: 0,
},
);
setCreatorsList(latestData?.items || []);
}, [searchQueryData]);
useEffect(() => {
if (searchId && !searchQuery) {
resetSearchSession();

View File

@@ -1,108 +0,0 @@
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { InfiniteScroll } from "@/components/contextual/InfiniteScroll/InfiniteScroll";
import { getSearchItemType } from "./helper";
import { MarketplaceAgentBlock } from "../MarketplaceAgentBlock";
import { Block } from "../Block";
import { UGCAgentBlock } from "../UGCAgentBlock";
import { useBlockMenuSearchContent } from "./useBlockMenuSearchContent";
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
import { cn } from "@/lib/utils";
import { blockMenuContainerStyle } from "../style";
import { NoSearchResult } from "../NoSearchResult";
export const BlockMenuSearchContent = () => {
const {
searchResults,
isFetchingNextPage,
fetchNextPage,
hasNextPage,
searchLoading,
handleAddLibraryAgent,
handleAddMarketplaceAgent,
addingLibraryAgentId,
addingMarketplaceAgentSlug,
} = useBlockMenuSearchContent();
const { searchQuery } = useBlockMenuStore();
if (searchLoading) {
return (
<div
className={cn(
blockMenuContainerStyle,
"flex items-center justify-center",
)}
>
<LoadingSpinner className="size-13" />
</div>
);
}
if (searchResults.length === 0) {
return <NoSearchResult />;
}
return (
<InfiniteScroll
isFetchingNextPage={isFetchingNextPage}
fetchNextPage={fetchNextPage}
hasNextPage={hasNextPage}
loader={<LoadingSpinner className="size-13" />}
className="space-y-2.5"
>
{searchResults.map((item: SearchResponseItemsItem, index: number) => {
const { type, data } = getSearchItemType(item);
// backend give support to these 3 types only [right now] - we need to give support to integration and ai agent types in follow up PRs
switch (type) {
case "store_agent":
return (
<MarketplaceAgentBlock
key={index}
slug={data.slug}
highlightedText={searchQuery}
title={data.agent_name}
image_url={data.agent_image}
creator_name={data.creator}
number_of_runs={data.runs}
loading={addingMarketplaceAgentSlug === data.slug}
onClick={() =>
handleAddMarketplaceAgent({
creator_name: data.creator,
slug: data.slug,
})
}
/>
);
case "block":
return (
<Block
key={index}
title={data.name}
highlightedText={searchQuery}
description={data.description}
blockData={data}
/>
);
case "library_agent":
return (
<UGCAgentBlock
key={index}
title={data.name}
highlightedText={searchQuery}
image_url={data.image_url}
version={data.graph_version}
edited_time={data.updated_at}
isLoading={addingLibraryAgentId === data.id}
onClick={() => handleAddLibraryAgent(data)}
/>
);
default:
return null;
}
})}
</InfiniteScroll>
);
};

View File

@@ -1,9 +1,7 @@
import { Button } from "@/components/__legacy__/ui/button";
import { cn } from "@/lib/utils";
import { XIcon } from "@phosphor-icons/react";
import { AnimatePresence, motion } from "framer-motion";
import React, { ButtonHTMLAttributes, useState } from "react";
import { X } from "lucide-react";
import React, { ButtonHTMLAttributes } from "react";
interface Props extends ButtonHTMLAttributes<HTMLButtonElement> {
selected?: boolean;
@@ -18,51 +16,39 @@ export const FilterChip: React.FC<Props> = ({
className,
...rest
}) => {
const [isHovered, setIsHovered] = useState(false);
return (
<AnimatePresence mode="wait">
<Button
onMouseEnter={() => setIsHovered(true)}
onMouseLeave={() => setIsHovered(false)}
<Button
className={cn(
"group w-fit space-x-1 rounded-[1.5rem] border border-zinc-300 bg-transparent px-[0.625rem] py-[0.375rem] shadow-none transition-transform duration-300 ease-in-out",
"hover:border-violet-500 hover:bg-transparent focus:ring-0 disabled:cursor-not-allowed",
selected && "border-0 bg-violet-700 hover:border",
className,
)}
{...rest}
>
<span
className={cn(
"group w-fit space-x-1 rounded-[1.5rem] border border-zinc-300 bg-transparent px-[0.625rem] py-[0.375rem] shadow-none",
"hover:border-violet-500 hover:bg-transparent focus:ring-0 disabled:cursor-not-allowed",
selected && "border-0 bg-violet-700 hover:border",
className,
"font-sans text-sm font-medium leading-[1.375rem] text-zinc-600 group-hover:text-zinc-600 group-disabled:text-zinc-400",
selected && "text-zinc-50",
)}
{...rest}
>
<span
className={cn(
"font-sans text-sm font-medium leading-[1.375rem] text-zinc-600 group-hover:text-zinc-600 group-disabled:text-zinc-400",
selected && "text-zinc-50",
{name}
</span>
{selected && (
<>
<span className="flex h-4 w-4 items-center justify-center rounded-full bg-zinc-50 transition-all duration-300 ease-in-out group-hover:hidden">
<X
className="h-3 w-3 rounded-full text-violet-700"
strokeWidth={2}
/>
</span>
{number !== undefined && (
<span className="hidden h-[1.375rem] items-center rounded-[1.25rem] bg-violet-700 p-[0.375rem] text-zinc-50 transition-all duration-300 ease-in-out animate-in fade-in zoom-in group-hover:flex">
{number > 100 ? "100+" : number}
</span>
)}
>
{name}
</span>
{selected && !isHovered && (
<motion.span
initial={{ opacity: 0.5, scale: 0.5, filter: "blur(20px)" }}
animate={{ opacity: 1, scale: 1, filter: "blur(0px)" }}
exit={{ opacity: 0.5, scale: 0.5, filter: "blur(20px)" }}
transition={{ duration: 0.3, type: "spring", bounce: 0.2 }}
className="flex h-4 w-4 items-center justify-center rounded-full bg-zinc-50"
>
<XIcon size={12} weight="bold" className="text-violet-700" />
</motion.span>
)}
{number !== undefined && isHovered && (
<motion.span
initial={{ opacity: 0.5, scale: 0.5, filter: "blur(10px)" }}
animate={{ opacity: 1, scale: 1, filter: "blur(0px)" }}
exit={{ opacity: 0.5, scale: 0.5, filter: "blur(10px)" }}
transition={{ duration: 0.3, type: "spring", bounce: 0.2 }}
className="flex h-[1.375rem] items-center rounded-[1.25rem] bg-violet-700 p-[0.375rem] text-zinc-50"
>
{number > 100 ? "100+" : number}
</motion.span>
)}
</Button>
</AnimatePresence>
</>
)}
</Button>
);
};

View File

@@ -1,156 +0,0 @@
import { FilterChip } from "../FilterChip";
import { cn } from "@/lib/utils";
import { CategoryKey } from "../BlockMenuFilters/types";
import { AnimatePresence, motion } from "framer-motion";
import { XIcon } from "@phosphor-icons/react";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { Separator } from "@/components/__legacy__/ui/separator";
import { Checkbox } from "@/components/__legacy__/ui/checkbox";
import { useFilterSheet } from "./useFilterSheet";
import { INITIAL_CREATORS_TO_SHOW } from "./constant";
export function FilterSheet({
categories,
}: {
categories: Array<{ key: CategoryKey; name: string }>;
}) {
const {
isOpen,
localCategories,
localCreators,
displayedCreatorsCount,
handleLocalCategoryChange,
handleToggleShowMoreCreators,
handleLocalCreatorChange,
handleClearFilters,
handleCloseButton,
handleApplyFilters,
hasLocalActiveFilters,
visibleCreators,
creators,
handleOpenFilters,
hasActiveFilters,
} = useFilterSheet();
return (
<div className="m-0 inline w-fit p-0">
<FilterChip
name={hasActiveFilters() ? "Edit filters" : "All filters"}
onClick={handleOpenFilters}
/>
<AnimatePresence>
{isOpen && (
<motion.div
className={cn(
"absolute bottom-2 left-2 top-2 z-20 w-3/4 max-w-[22.5rem] space-y-4 overflow-hidden rounded-[0.75rem] bg-white pb-4 shadow-[0_4px_12px_2px_rgba(0,0,0,0.1)]",
)}
initial={{ x: "-100%", filter: "blur(10px)" }}
animate={{ x: 0, filter: "blur(0px)" }}
exit={{ x: "-110%", filter: "blur(10px)" }}
transition={{ duration: 0.4, type: "spring", bounce: 0.2 }}
>
{/* Top section */}
<div className="flex items-center justify-between px-5 pt-4">
<Text variant="body">Filters</Text>
<Button
className="p-0"
variant="ghost"
size="icon"
onClick={handleCloseButton}
>
<XIcon size={20} />
</Button>
</div>
<Separator className="h-[1px] w-full text-zinc-300" />
{/* Category section */}
<div className="space-y-4 px-5">
<Text variant="large">Categories</Text>
<div className="space-y-2">
{categories.map((category) => (
<div
key={category.key}
className="flex items-center space-x-2"
>
<Checkbox
id={category.key}
checked={localCategories.includes(category.key)}
onCheckedChange={() =>
handleLocalCategoryChange(category.key)
}
className="border border-[#D4D4D4] shadow-none data-[state=checked]:border-none data-[state=checked]:bg-violet-700 data-[state=checked]:text-white"
/>
<label
htmlFor={category.key}
className="font-sans text-sm leading-[1.375rem] text-zinc-600"
>
{category.name}
</label>
</div>
))}
</div>
</div>
{/* Created by section */}
<div className="space-y-4 px-5">
<p className="font-sans text-base font-medium text-zinc-800">
Created by
</p>
<div className="space-y-2">
{visibleCreators.map((creator, i) => (
<div key={i} className="flex items-center space-x-2">
<Checkbox
id={`creator-${creator}`}
checked={localCreators.includes(creator)}
onCheckedChange={() => handleLocalCreatorChange(creator)}
className="border border-[#D4D4D4] shadow-none data-[state=checked]:border-none data-[state=checked]:bg-violet-700 data-[state=checked]:text-white"
/>
<label
htmlFor={`creator-${creator}`}
className="font-sans text-sm leading-[1.375rem] text-zinc-600"
>
{creator}
</label>
</div>
))}
</div>
{creators.length > INITIAL_CREATORS_TO_SHOW && (
<Button
variant={"link"}
className="m-0 p-0 font-sans text-sm font-medium leading-[1.375rem] text-zinc-800 underline hover:text-zinc-600"
onClick={handleToggleShowMoreCreators}
>
{displayedCreatorsCount < creators.length ? "More" : "Less"}
</Button>
)}
</div>
{/* Footer section */}
<div className="fixed bottom-0 flex w-full justify-between gap-3 border-t border-zinc-200 bg-white px-5 py-3">
<Button
size="small"
variant={"outline"}
onClick={handleClearFilters}
className="rounded-[8px] px-2 py-1.5"
>
Clear
</Button>
<Button
size="small"
onClick={handleApplyFilters}
disabled={!hasLocalActiveFilters()}
className="rounded-[8px] px-2 py-1.5"
>
Apply filters
</Button>
</div>
</motion.div>
)}
</AnimatePresence>
</div>
);
}

View File

@@ -1,100 +0,0 @@
import { useBlockMenuStore } from "@/app/(platform)/build/stores/blockMenuStore";
import { useState } from "react";
import { INITIAL_CREATORS_TO_SHOW } from "./constant";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
export const useFilterSheet = () => {
const { filters, creators_list, creators, setFilters, setCreators } =
useBlockMenuStore();
const [isOpen, setIsOpen] = useState(false);
const [localCategories, setLocalCategories] =
useState<GetV2BuilderSearchFilterAnyOfItem[]>(filters);
const [localCreators, setLocalCreators] = useState<string[]>(creators);
const [displayedCreatorsCount, setDisplayedCreatorsCount] = useState(
INITIAL_CREATORS_TO_SHOW,
);
const handleLocalCategoryChange = (
category: GetV2BuilderSearchFilterAnyOfItem,
) => {
setLocalCategories((prev) => {
if (prev.includes(category)) {
return prev.filter((c) => c !== category);
}
return [...prev, category];
});
};
const hasActiveFilters = () => {
return filters.length > 0 || creators.length > 0;
};
const handleToggleShowMoreCreators = () => {
if (displayedCreatorsCount < creators.length) {
setDisplayedCreatorsCount(creators.length);
} else {
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
}
};
const handleLocalCreatorChange = (creator: string) => {
setLocalCreators((prev) => {
if (prev.includes(creator)) {
return prev.filter((c) => c !== creator);
}
return [...prev, creator];
});
};
const handleClearFilters = () => {
setLocalCategories([]);
setLocalCreators([]);
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
};
const handleCloseButton = () => {
setIsOpen(false);
setLocalCategories(filters);
setLocalCreators(creators);
setDisplayedCreatorsCount(INITIAL_CREATORS_TO_SHOW);
};
const handleApplyFilters = () => {
setFilters(localCategories);
setCreators(localCreators);
setIsOpen(false);
};
const handleOpenFilters = () => {
setIsOpen(true);
setLocalCategories(filters);
setLocalCreators(creators);
};
const hasLocalActiveFilters = () => {
return localCategories.length > 0 || localCreators.length > 0;
};
const visibleCreators = creators_list.slice(0, displayedCreatorsCount);
return {
creators,
isOpen,
setIsOpen,
localCategories,
localCreators,
displayedCreatorsCount,
setDisplayedCreatorsCount,
handleLocalCategoryChange,
handleToggleShowMoreCreators,
handleLocalCreatorChange,
handleClearFilters,
handleCloseButton,
handleOpenFilters,
handleApplyFilters,
hasLocalActiveFilters,
visibleCreators,
hasActiveFilters,
};
};

View File

@@ -1,30 +1,12 @@
import { create } from "zustand";
import { DefaultStateType } from "../components/NewControlPanel/NewBlockMenu/types";
import { SearchResponseItemsItem } from "@/app/api/__generated__/models/searchResponseItemsItem";
import { getSearchItemType } from "../components/NewControlPanel/NewBlockMenu/BlockMenuSearchContent/helper";
import { StoreAgent } from "@/app/api/__generated__/models/storeAgent";
import { GetV2BuilderSearchFilterAnyOfItem } from "@/app/api/__generated__/models/getV2BuilderSearchFilterAnyOfItem";
type BlockMenuStore = {
searchQuery: string;
searchId: string | undefined;
defaultState: DefaultStateType;
integration: string | undefined;
filters: GetV2BuilderSearchFilterAnyOfItem[];
creators: string[];
creators_list: string[];
categoryCounts: Record<GetV2BuilderSearchFilterAnyOfItem, number>;
setCategoryCounts: (
counts: Record<GetV2BuilderSearchFilterAnyOfItem, number>,
) => void;
setCreatorsList: (searchData: SearchResponseItemsItem[]) => void;
addCreator: (creator: string) => void;
setCreators: (creators: string[]) => void;
removeCreator: (creator: string) => void;
addFilter: (filter: GetV2BuilderSearchFilterAnyOfItem) => void;
setFilters: (filters: GetV2BuilderSearchFilterAnyOfItem[]) => void;
removeFilter: (filter: GetV2BuilderSearchFilterAnyOfItem) => void;
setSearchQuery: (query: string) => void;
setSearchId: (id: string | undefined) => void;
setDefaultState: (state: DefaultStateType) => void;
@@ -37,44 +19,11 @@ export const useBlockMenuStore = create<BlockMenuStore>((set) => ({
searchId: undefined,
defaultState: DefaultStateType.SUGGESTION,
integration: undefined,
filters: [],
creators: [], // creator filters that are applied to the search results
creators_list: [], // all creators that are available to filter by
categoryCounts: {
blocks: 0,
integrations: 0,
marketplace_agents: 0,
my_agents: 0,
},
setCategoryCounts: (counts) => set({ categoryCounts: counts }),
setCreatorsList: (searchData) => {
const marketplaceAgents = searchData.filter((item) => {
return getSearchItemType(item).type === "store_agent";
}) as StoreAgent[];
const newCreators = marketplaceAgents.map((agent) => agent.creator);
set((state) => ({
creators_list: Array.from(
new Set([...state.creators_list, ...newCreators]),
),
}));
},
setCreators: (creators) => set({ creators }),
setFilters: (filters) => set({ filters }),
setSearchQuery: (query) => set({ searchQuery: query }),
setSearchId: (id) => set({ searchId: id }),
setDefaultState: (state) => set({ defaultState: state }),
setIntegration: (integration) => set({ integration }),
addFilter: (filter) =>
set((state) => ({ filters: [...state.filters, filter] })),
removeFilter: (filter) =>
set((state) => ({ filters: state.filters.filter((f) => f !== filter) })),
addCreator: (creator) =>
set((state) => ({ creators: [...state.creators, creator] })),
removeCreator: (creator) =>
set((state) => ({ creators: state.creators.filter((c) => c !== creator) })),
reset: () =>
set({
searchQuery: "",

View File

@@ -68,9 +68,6 @@ type NodeStore = {
clearAllNodeErrors: () => void; // Add this
syncHardcodedValuesWithHandleIds: (nodeId: string) => void;
// Credentials optional helpers
setCredentialsOptional: (nodeId: string, optional: boolean) => void;
};
export const useNodeStore = create<NodeStore>((set, get) => ({
@@ -229,9 +226,6 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
...(node.data.metadata?.customized_name !== undefined && {
customized_name: node.data.metadata.customized_name,
}),
...(node.data.metadata?.credentials_optional !== undefined && {
credentials_optional: node.data.metadata.credentials_optional,
}),
},
};
},
@@ -348,30 +342,4 @@ export const useNodeStore = create<NodeStore>((set, get) => ({
}));
}
},
setCredentialsOptional: (nodeId: string, optional: boolean) => {
set((state) => ({
nodes: state.nodes.map((n) =>
n.id === nodeId
? {
...n,
data: {
...n.data,
metadata: {
...n.data.metadata,
credentials_optional: optional,
},
},
}
: n,
),
}));
const newState = {
nodes: get().nodes,
edges: useEdgeStore.getState().edges,
};
useHistoryStore.getState().pushState(newState);
},
}));

View File

@@ -34,9 +34,7 @@ type Props = {
onSelectCredentials: (newValue?: CredentialsMetaInput) => void;
onLoaded?: (loaded: boolean) => void;
readOnly?: boolean;
isOptional?: boolean;
showTitle?: boolean;
variant?: "default" | "node";
};
export function CredentialsInput({
@@ -47,9 +45,7 @@ export function CredentialsInput({
siblingInputs,
onLoaded,
readOnly = false,
isOptional = false,
showTitle = true,
variant = "default",
}: Props) {
const hookData = useCredentialsInput({
schema,
@@ -58,7 +54,6 @@ export function CredentialsInput({
siblingInputs,
onLoaded,
readOnly,
isOptional,
});
if (!isLoaded(hookData)) {
@@ -99,14 +94,7 @@ export function CredentialsInput({
<div className={cn("mb-6", className)}>
{showTitle && (
<div className="mb-2 flex items-center gap-2">
<Text variant="large-medium">
{displayName} credentials
{isOptional && (
<span className="ml-1 text-sm font-normal text-gray-500">
(optional)
</span>
)}
</Text>
<Text variant="large-medium">{displayName} credentials</Text>
{schema.description && (
<InformationTooltip description={schema.description} />
)}
@@ -115,17 +103,14 @@ export function CredentialsInput({
{hasCredentialsToShow ? (
<>
{(credentialsToShow.length > 1 || isOptional) && !readOnly ? (
{credentialsToShow.length > 1 && !readOnly ? (
<CredentialsSelect
credentials={credentialsToShow}
provider={provider}
displayName={displayName}
selectedCredentials={selectedCredential}
onSelectCredential={handleCredentialSelect}
onClearCredential={() => onSelectCredential(undefined)}
readOnly={readOnly}
allowNone={isOptional}
variant={variant}
/>
) : (
<div className="mb-4 space-y-2">

View File

@@ -30,8 +30,6 @@ type CredentialRowProps = {
readOnly?: boolean;
showCaret?: boolean;
asSelectTrigger?: boolean;
/** When "node", applies compact styling for node context */
variant?: "default" | "node";
};
export function CredentialRow({
@@ -43,22 +41,14 @@ export function CredentialRow({
readOnly = false,
showCaret = false,
asSelectTrigger = false,
variant = "default",
}: CredentialRowProps) {
const ProviderIcon = providerIcons[provider] || fallbackIcon;
const isNodeVariant = variant === "node";
return (
<div
className={cn(
"flex items-center gap-3 rounded-medium border border-zinc-200 bg-white p-3 transition-colors",
asSelectTrigger && isNodeVariant
? "min-w-0 flex-1 overflow-hidden border-0 bg-transparent"
: asSelectTrigger
? "border-0 bg-transparent"
: readOnly
? "w-fit"
: "",
asSelectTrigger ? "border-0 bg-transparent" : readOnly ? "w-fit" : "",
)}
onClick={readOnly || showCaret || asSelectTrigger ? undefined : onSelect}
style={
@@ -71,31 +61,19 @@ export function CredentialRow({
<ProviderIcon className="h-3 w-3 text-white" />
</div>
<IconKey className="h-5 w-5 shrink-0 text-zinc-800" />
<div
className={cn(
"flex min-w-0 flex-1 flex-nowrap items-center gap-4",
isNodeVariant && "overflow-hidden",
)}
>
<div className="flex min-w-0 flex-1 flex-nowrap items-center gap-4">
<Text
variant="body"
className={cn(
"tracking-tight",
isNodeVariant
? "truncate"
: "line-clamp-1 flex-[0_0_50%] text-ellipsis",
)}
className="line-clamp-1 flex-[0_0_50%] text-ellipsis tracking-tight"
>
{getCredentialDisplayName(credential, displayName)}
</Text>
{!(asSelectTrigger && isNodeVariant) && (
<Text
variant="large"
className="relative top-1 hidden overflow-hidden whitespace-nowrap font-mono tracking-tight md:block"
>
{"*".repeat(MASKED_KEY_LENGTH)}
</Text>
)}
<Text
variant="large"
className="lex-[0_0_40%] relative top-1 hidden overflow-hidden whitespace-nowrap font-mono tracking-tight md:block"
>
{"*".repeat(MASKED_KEY_LENGTH)}
</Text>
</div>
{showCaret && !asSelectTrigger && (
<CaretDown className="h-4 w-4 shrink-0 text-gray-400" />

View File

@@ -7,7 +7,6 @@ import {
} from "@/components/__legacy__/ui/select";
import { Text } from "@/components/atoms/Text/Text";
import { CredentialsMetaInput } from "@/lib/autogpt-server-api/types";
import { cn } from "@/lib/utils";
import { useEffect } from "react";
import { getCredentialDisplayName } from "../../helpers";
import { CredentialRow } from "../CredentialRow/CredentialRow";
@@ -24,11 +23,7 @@ interface Props {
displayName: string;
selectedCredentials?: CredentialsMetaInput;
onSelectCredential: (credentialId: string) => void;
onClearCredential?: () => void;
readOnly?: boolean;
allowNone?: boolean;
/** When "node", applies compact styling for node context */
variant?: "default" | "node";
}
export function CredentialsSelect({
@@ -37,38 +32,22 @@ export function CredentialsSelect({
displayName,
selectedCredentials,
onSelectCredential,
onClearCredential,
readOnly = false,
allowNone = true,
variant = "default",
}: Props) {
// Auto-select first credential if none is selected (only if allowNone is false)
// Auto-select first credential if none is selected
useEffect(() => {
if (!allowNone && !selectedCredentials && credentials.length > 0) {
if (!selectedCredentials && credentials.length > 0) {
onSelectCredential(credentials[0].id);
}
}, [allowNone, selectedCredentials, credentials, onSelectCredential]);
const handleValueChange = (value: string) => {
if (value === "__none__") {
onClearCredential?.();
} else {
onSelectCredential(value);
}
};
}, [selectedCredentials, credentials, onSelectCredential]);
return (
<div className="mb-4 w-full">
<Select
value={selectedCredentials?.id || (allowNone ? "__none__" : "")}
onValueChange={handleValueChange}
value={selectedCredentials?.id || ""}
onValueChange={(value) => onSelectCredential(value)}
>
<SelectTrigger
className={cn(
"h-auto min-h-12 w-full rounded-medium border-zinc-200 p-0 pr-4 shadow-none",
variant === "node" && "overflow-hidden",
)}
>
<SelectTrigger className="h-auto min-h-12 w-full rounded-medium border-zinc-200 p-0 pr-4 shadow-none">
{selectedCredentials ? (
<SelectValue key={selectedCredentials.id} asChild>
<CredentialRow
@@ -84,7 +63,6 @@ export function CredentialsSelect({
onDelete={() => {}}
readOnly={readOnly}
asSelectTrigger={true}
variant={variant}
/>
</SelectValue>
) : (
@@ -92,15 +70,6 @@ export function CredentialsSelect({
)}
</SelectTrigger>
<SelectContent>
{allowNone && (
<SelectItem key="__none__" value="__none__">
<div className="flex items-center gap-2">
<Text variant="body" className="tracking-tight text-gray-500">
None (skip this credential)
</Text>
</div>
</SelectItem>
)}
{credentials.map((credential) => (
<SelectItem key={credential.id} value={credential.id}>
<div className="flex items-center gap-2">

View File

@@ -22,7 +22,6 @@ type Params = {
siblingInputs?: Record<string, any>;
onLoaded?: (loaded: boolean) => void;
readOnly?: boolean;
isOptional?: boolean;
};
export function useCredentialsInput({
@@ -32,7 +31,6 @@ export function useCredentialsInput({
siblingInputs,
onLoaded,
readOnly = false,
isOptional = false,
}: Params) {
const [isAPICredentialsModalOpen, setAPICredentialsModalOpen] =
useState(false);
@@ -101,20 +99,13 @@ export function useCredentialsInput({
: null;
}, [credentials]);
// Auto-select the one available credential (only if not optional)
// Auto-select the one available credential
useEffect(() => {
if (readOnly) return;
if (isOptional) return; // Don't auto-select when credential is optional
if (singleCredential && !selectedCredential) {
onSelectCredential(singleCredential);
}
}, [
singleCredential,
selectedCredential,
onSelectCredential,
readOnly,
isOptional,
]);
}, [singleCredential, selectedCredential, onSelectCredential, readOnly]);
if (
!credentials ||

View File

@@ -8,7 +8,6 @@ import { WebhookTriggerBanner } from "../WebhookTriggerBanner/WebhookTriggerBann
export function ModalRunSection() {
const {
agent,
defaultRunType,
presetName,
setPresetName,
@@ -25,11 +24,6 @@ export function ModalRunSection() {
const inputFields = Object.entries(agentInputFields || {});
const credentialFields = Object.entries(agentCredentialsInputFields || {});
// Get the list of required credentials from the schema
const requiredCredentials = new Set(
(agent.credentials_input_schema?.required as string[]) || [],
);
return (
<div className="flex flex-col gap-4">
{defaultRunType === "automatic-trigger" ||
@@ -105,12 +99,14 @@ export function ModalRunSection() {
schema={
{ ...inputSubSchema, discriminator: undefined } as any
}
selectedCredentials={inputCredentials?.[key]}
selectedCredentials={
(inputCredentials && inputCredentials[key]) ??
inputSubSchema.default
}
onSelectCredentials={(value) =>
setInputCredentialsValue(key, value)
}
siblingInputs={inputValues}
isOptional={!requiredCredentials.has(key)}
/>
),
)}

View File

@@ -163,21 +163,15 @@ export function useAgentRunModal(
}, [agentInputSchema.required, inputValues]);
const [allCredentialsAreSet, missingCredentials] = useMemo(() => {
// Only check required credentials from schema, not all properties
// Credentials marked as optional in node metadata won't be in the required array
const requiredCredentials = new Set(
(agent.credentials_input_schema?.required as string[]) || [],
const availableCredentials = new Set(Object.keys(inputCredentials));
const allCredentials = new Set(
Object.keys(agentCredentialsInputFields || {}) ?? [],
);
const missing = [...allCredentials].filter(
(key) => !availableCredentials.has(key),
);
// Check if required credentials have valid id (not just key existence)
// A credential is valid only if it has an id field set
const missing = [...requiredCredentials].filter((key) => {
const cred = inputCredentials[key];
return !cred || !cred.id;
});
return [missing.length === 0, missing];
}, [agent.credentials_input_schema, inputCredentials]);
}, [agentCredentialsInputFields, inputCredentials]);
const credentialsRequired = useMemo(
() => Object.keys(agentCredentialsInputFields || {}).length > 0,
@@ -245,18 +239,12 @@ export function useAgentRunModal(
});
} else {
// Manual execution
// Filter out incomplete credentials (optional ones not selected)
// Only send credentials that have a valid id field
const validCredentials = Object.fromEntries(
Object.entries(inputCredentials).filter(([_, cred]) => cred && cred.id),
);
executeGraphMutation.mutate({
graphId: agent.graph_id,
graphVersion: agent.graph_version,
data: {
inputs: inputValues,
credentials_inputs: validCredentials,
credentials_inputs: inputCredentials,
source: "library",
},
});

View File

@@ -1,25 +1,17 @@
"use client";
import { getV1GetGraphVersion } from "@/app/api/__generated__/endpoints/graphs/graphs";
import {
getGetV2ListLibraryAgentsQueryKey,
useDeleteV2DeleteLibraryAgent,
} from "@/app/api/__generated__/endpoints/library/library";
import { GraphExecutionJobInfo } from "@/app/api/__generated__/models/graphExecutionJobInfo";
import { GraphExecutionMeta } from "@/app/api/__generated__/models/graphExecutionMeta";
import { LibraryAgent } from "@/app/api/__generated__/models/libraryAgent";
import { LibraryAgentPreset } from "@/app/api/__generated__/models/libraryAgentPreset";
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import { ShowMoreText } from "@/components/molecules/ShowMoreText/ShowMoreText";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { exportAsJSONFile } from "@/lib/utils";
import { formatDate } from "@/lib/utils/time";
import { useQueryClient } from "@tanstack/react-query";
import Link from "next/link";
import { useRouter } from "next/navigation";
import { useState } from "react";
import { RunAgentModal } from "../modals/RunAgentModal/RunAgentModal";
import { RunDetailCard } from "../selected-views/RunDetailCard/RunDetailCard";
import { EmptyTasksIllustration } from "./EmptyTasksIllustration";
@@ -38,41 +30,6 @@ export function EmptyTasks({
onScheduleCreated,
}: Props) {
const { toast } = useToast();
const queryClient = useQueryClient();
const router = useRouter();
const [showDeleteDialog, setShowDeleteDialog] = useState(false);
const [isDeletingAgent, setIsDeletingAgent] = useState(false);
const { mutateAsync: deleteAgent } = useDeleteV2DeleteLibraryAgent();
async function handleDeleteAgent() {
if (!agent.id) return;
setIsDeletingAgent(true);
try {
await deleteAgent({ libraryAgentId: agent.id });
await queryClient.refetchQueries({
queryKey: getGetV2ListLibraryAgentsQueryKey(),
});
toast({ title: "Agent deleted" });
setShowDeleteDialog(false);
router.push("/library");
} catch (error: unknown) {
toast({
title: "Failed to delete agent",
description:
error instanceof Error
? error.message
: "An unexpected error occurred.",
variant: "destructive",
});
} finally {
setIsDeletingAgent(false);
}
}
async function handleExport() {
try {
@@ -190,50 +147,9 @@ export function EmptyTasks({
<Button variant="secondary" size="small" onClick={handleExport}>
Export agent to file
</Button>
<Button
variant="secondary"
size="small"
onClick={() => setShowDeleteDialog(true)}
>
Delete agent
</Button>
</div>
</div>
</div>
<Dialog
controlled={{
isOpen: showDeleteDialog,
set: setShowDeleteDialog,
}}
styling={{ maxWidth: "32rem" }}
title="Delete agent"
>
<Dialog.Content>
<div>
<Text variant="large">
Are you sure you want to delete this agent? This action cannot be
undone.
</Text>
<Dialog.Footer>
<Button
variant="secondary"
disabled={isDeletingAgent}
onClick={() => setShowDeleteDialog(false)}
>
Cancel
</Button>
<Button
variant="destructive"
onClick={handleDeleteAgent}
loading={isDeletingAgent}
>
Delete Agent
</Button>
</Dialog.Footer>
</div>
</Dialog.Content>
</Dialog>
</div>
);
}

View File

@@ -83,9 +83,7 @@ function renderCode(
</div>
)}
<pre className="overflow-x-auto rounded-md bg-muted p-3">
<code className="whitespace-pre-wrap break-words font-mono text-sm">
{codeValue}
</code>
<code className="font-mono text-sm">{codeValue}</code>
</pre>
</div>
);

Some files were not shown because too many files have changed in this diff Show More