Compare commits

..

56 Commits

Author SHA1 Message Date
Zamil Majdy
1fc1102eb4 fix(backend): Use explicit schema qualification for pgvector types
Fix intermittent "type 'vector' does not exist" errors when using
PgBouncer in transaction mode. The issue was that SET search_path
and the actual query could run on different backend connections.

Changes:
- Add {schema} placeholder for raw schema name (e.g., platform)
- Use explicit type casting: {schema}.vector instead of ::vector
- Use explicit operator: OPERATOR({schema}.<=>) instead of <=>
- Remove set_public_search_path parameter (no longer needed)
- Remove search_path manipulation from DATABASE_URL

Tested on both local and dev environments via kubectl exec.

Fixes: AUTOGPT-SERVER-763, AUTOGPT-SERVER-764
2026-01-19 18:14:29 -05:00
Swifty
bc75d70e7d refactor(backend): Improve Langfuse tracing with v3 SDK patterns and @observe decorators (#11803)
<!-- Clearly explain the need for these changes: -->

This PR improves the Langfuse tracing implementation in the chat feature
by adopting the v3 SDK patterns, resulting in cleaner code and better
observability.

### Changes 🏗️

- **Simplified Langfuse client usage**: Replace manual client
initialization with `langfuse.get_client()` global singleton
- **Use v3 context managers**: Switch to
`start_as_current_observation()` and `propagate_attributes()` for
automatic trace propagation
- **Auto-instrument OpenAI calls**: Use `langfuse.openai` wrapper for
automatic LLM call tracing instead of manual generation tracking
- **Add `@observe` decorators**: All chat tools now have
`@observe(as_type="tool")` decorators for automatic tool execution
tracing:
  - `add_understanding`
  - `view_agent_output` (renamed from `agent_output`)
  - `create_agent`
  - `edit_agent`
  - `find_agent`
  - `find_block`
  - `find_library_agent`
  - `get_doc_page`
  - `run_agent`
  - `run_block`
  - `search_docs`
- **Remove manual trace lifecycle**: Eliminated the verbose `finally`
block that manually ended traces/generations
- **Rename tool**: `agent_output` → `view_agent_output` for clarity

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified chat feature works with Langfuse tracing enabled
- [x] Confirmed traces appear correctly in Langfuse dashboard with tool
spans
  - [x] Tested tool execution flows show up as nested observations

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

No configuration changes required - uses existing Langfuse environment
variables.
2026-01-19 20:56:51 +00:00
Nicholas Tindle
c1a1767034 feat(docs): Add block documentation auto-generation system (#11707)
- Add generate_block_docs.py script that introspects block code to
generate markdown
- Support manual content preservation via <!-- MANUAL: --> markers
- Add migrate_block_docs.py to preserve existing manual content from git
HEAD
- Add CI workflow (docs-block-sync.yml) to fail if docs drift from code
- Add Claude PR review workflow (docs-claude-review.yml) for doc changes
- Add manual LLM enhancement workflow (docs-enhance.yml)
- Add GitBook configuration (.gitbook.yaml, SUMMARY.md)
- Fix non-deterministic category ordering (categories is a set)
- Add comprehensive test suite (32 tests)
- Generate docs for 444 blocks with 66 preserved manual sections

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>

<!-- Clearly explain the need for these changes: -->

### Changes 🏗️

<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Extensively test code generation for the docs pages



<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Introduces an automated documentation pipeline for blocks and
integrates it into CI.
> 
> - Adds `scripts/generate_block_docs.py` (+ tests) to introspect blocks
and generate `docs/integrations/**`, preserving `<!-- MANUAL: -->`
sections
> - New CI workflows: **docs-block-sync** (fails if docs drift),
**docs-claude-review** (AI review for block/docs PRs), and
**docs-enhance** (optional LLM improvements)
> - Updates existing Claude workflows to use `CLAUDE_CODE_OAUTH_TOKEN`
instead of `ANTHROPIC_API_KEY`
> - Improves numerous block descriptions/typos and links across backend
blocks to standardize docs output
> - Commits initial generated docs including
`docs/integrations/README.md` and many provider/category pages
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
631e53e0f6. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-19 07:03:19 +00:00
Nicholas Tindle
1b56ff13d9 test 2026-01-18 15:32:10 -06:00
Zamil Majdy
f31c160043 feat(platform): add endedAt field and fix execution analytics timestamps (#11759)
## Summary

This PR adds proper execution end time tracking and fixes timestamp
handling throughout the execution analytics system.

### Key Changes

1. **Added `endedAt` field to database schema** - Executions now have a
dedicated field for tracking when they finish
2. **Fixed timestamp nullable handling** - `started_at` and `ended_at`
are now properly nullable in types
3. **Fixed chart aggregation** - Reduced threshold from ≥3 to ≥1
executions per day
4. **Improved timestamp display** - Moved timestamps to expandable
details section in analytics table
5. **Fixed nullable timestamp bugs** - Updated all frontend code to
handle null timestamps correctly

## Problem Statement

### Issue 1: Missing Execution End Times
Previously, executions used `updatedAt` (last DB update) as a proxy for
"end time". This broke when adding correctness scores retroactively -
the end time would change to whenever the score was added, not when the
execution actually finished.

### Issue 2: Chart Shows Only One Data Point
The accuracy trends chart showed only one data point despite having
executions across multiple days. Root cause: aggregation required ≥3
executions per day.

### Issue 3: Incorrect Type Definitions
Manually maintained types defined `started_at` and `ended_at` as
non-nullable `Date`, contradicting reality where QUEUED executions
haven't started yet.

## Solution

### Database Schema (`schema.prisma`)
```prisma
model AgentGraphExecution {
  // ...
  startedAt DateTime?
  endedAt   DateTime?  // NEW FIELD
  // ...
}
```

### Execution Lifecycle
- **QUEUED**: `startedAt = null`, `endedAt = null` (not started)
- **RUNNING**: `startedAt = set`, `endedAt = null` (in progress)  
- **COMPLETED/FAILED/TERMINATED**: `startedAt = set`, `endedAt = set`
(finished)

### Migration Strategy
```sql
-- Add endedAt column
ALTER TABLE "AgentGraphExecution" ADD COLUMN "endedAt" TIMESTAMP(3);

-- Backfill ONLY terminal executions (prevents marking RUNNING executions as ended)
UPDATE "AgentGraphExecution"
SET "endedAt" = "updatedAt"
WHERE "endedAt" IS NULL
  AND "executionStatus" IN ('COMPLETED', 'FAILED', 'TERMINATED');
```

## Changes by Component

### Backend

**`schema.prisma`**
- Added `endedAt` field to `AgentGraphExecution`

**`execution.py`**
- Made `started_at` and `ended_at` optional with Field descriptions
- Updated `from_db()` to use `endedAt` instead of `updatedAt`
- `update_graph_execution_stats()` sets `endedAt` when status becomes
terminal

**`execution_analytics_routes.py`**
- Removed `created_at`/`updated_at` from `ExecutionAnalyticsResult` (DB
metadata, not execution data)
- Kept only `started_at`/`ended_at` (actual execution runtime)
- Made settings global (avoid recreation)
- Moved OpenAI key validation to `_process_batch` (only check when LLM
actually runs)

**`analytics.py`**
- Fixed aggregation: `COUNT(*) >= 1` (was 3) - include all days with ≥1
execution
- Uses `createdAt` for chart grouping (when execution was queued)

**`late_execution_monitor.py`**
- Handle optional `started_at` with fallback to `datetime.min` for
sorting
- Display "Not started" when `started_at` is null

### Frontend

**Type Definitions**
- Fixed manually maintained `types.ts`: `started_at: Date | null` (was
non-nullable)
- Generated types were already correct

**Analytics Components**
- `AnalyticsResultsTable.tsx`: Show only `started_at`/`ended_at` in
2-column expandable grid
- `ExecutionAnalyticsForm.tsx`: Added filter explanation UI

**Monitoring Components** - Fixed null handling bugs:
- `OldAgentLibraryView.tsx`: Handle null in reduce function
- `agent-runs-selector-list.tsx`: Safe sorting with `?.getTime() ?? 0`
- `AgentFlowList.tsx`: Filter/sort with null checks
- `FlowRunsStatus.tsx`: Filter null timestamps
- `FlowRunsTimeline.tsx`: Filter executions with null timestamps before
rendering
- `monitoring/page.tsx`: Safe sorting
- `ActivityItem.tsx`: Fallback to "recently" for null timestamps

## Benefits

 **Accurate End Times**: `endedAt` is frozen when execution finishes,
not updated later
 **Type Safety**: Nullable types match reality, exposing real bugs  
 **Better UX**: Chart shows all days with data (not just days with ≥3
executions)
 **Bug Fixes**: 7+ frontend components now handle null timestamps
correctly
 **Documentation**: Field descriptions explain when timestamps are null

## Testing

### Backend
```bash
cd autogpt_platform/backend
poetry run format  #  All checks passed
poetry run lint    #  All checks passed
```

### Frontend  
```bash
cd autogpt_platform/frontend
pnpm format        #  All checks passed
pnpm lint          #  All checks passed
pnpm types         #  All type errors fixed
```

### Test Data Generation
Created script to generate 35 test executions across 7 days with
correctness scores:
```bash
poetry run python scripts/generate_test_analytics_data.py
```

## Migration Notes

⚠️ **Important**: The migration only backfills `endedAt` for executions
with terminal status (COMPLETED, FAILED, TERMINATED). Active executions
(QUEUED, RUNNING) correctly keep `endedAt = null`.

## Breaking Changes

None - this is backward compatible:
- `endedAt` is nullable, existing code that doesn't use it is unaffected
- Frontend already used generated types which were correct
- Migration safely backfills historical data

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Introduces explicit execution end-time tracking and normalizes
timestamp handling across backend and frontend.
> 
> - Adds `endedAt` to `AgentGraphExecution` (schema + migration);
backfills terminal executions; sets `endedAt` on terminal status updates
> - Makes `GraphExecutionMeta.started_at/ended_at` optional; updates
`from_db()` to use DB `endedAt`; exposes timestamps in
`ExecutionAnalyticsResult`
> - Moves OpenAI key validation into batch processing; instantiates
`Settings` once
> - Accuracy trends: reduce daily aggregation threshold to `>= 1`;
optional historical series
> - Monitoring/analytics UI: results table shows/export
`started_at`/`ended_at`; adds chart filter explainer
> - Frontend null-safety: update types (`Date | null`) and fix
sorting/filtering/rendering for nullable timestamps across monitoring
and library views
> - Late execution monitor: safe sorting/display when `started_at` is
null
> - OpenAPI specs updated for new/nullable fields
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
1d987ca6e5. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2026-01-16 21:44:24 +00:00
Nicholas Tindle
06550a87eb feat(backend): add missed default credentials (#11760)
### Changes 🏗️

**Fixed missing default credentials and provider name mismatch in the
credentials store:**

1. **Provider name correction** (`credentials_store.py:97-103`)
- Changed `provider="unreal"` → `provider="unreal_speech"` to match the
existing `unreal_speech_api_key` setting and block usage
- Updated title from "Use Credits for Unreal" → "Use Credits for Unreal
Speech" for clarity

2. **Added missing OpenWeatherMap credentials**
(`credentials_store.py:219-226`)
- New `openweathermap_credentials` definition with `APIKeyCredentials`
- Uses existing `settings.secrets.openweathermap_api_key` setting that
was previously defined but had no credential object
   - Added to `DEFAULT_CREDENTIALS` list

3. **Fixed credentials not exposed in `get_all_creds()`**
(`credentials_store.py:343-354`)
- Added `llama_api_credentials` conditional append (was defined but not
returned to users)
- Added `v0_credentials` conditional append (was defined but not
returned to users)
   - Added `openweathermap_credentials` conditional append

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified provider name `unreal_speech` matches block usage in
`text_to_speech_block.py`
  - [x] Confirmed `openweathermap_api_key` setting exists in secrets
- [x] Confirmed `llama_api_key` and `v0_api_key` settings exist in
secrets

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Aligns backend credential definitions and exposes missing system
creds; updates frontend to hide new built-ins.
> 
> - Backend `credentials_store.py`:
>   - Corrects `provider` to `unreal_speech` and updates title
> - Adds `openweathermap_credentials`; includes in `DEFAULT_CREDENTIALS`
and `get_all_creds()` when key present
> - Ensures `llama_api_credentials` and `v0_credentials` are returned by
`get_all_creds()`
> - Frontend `integrations/page.tsx`:
> - Extends `hiddenCredentials` with IDs for `v0`, `webshare_proxy`, and
`openweathermap`
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
e7d46b76c6. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2026-01-16 21:18:12 +00:00
Nicholas Tindle
088b9998dc fix(frontend): Fix flaky agent-activity tests by targeting correct agent (#11790)
This PR fixes flaky agent-activity Playwright tests that were failing
intermittently in CI.

Closes #11789

### Changes 🏗️

- **Navigate to specific agent by name**: Replace
`LibraryPage.clickFirstAgent(page)` with
`LibraryPage.navigateToAgentByName(page, "Test Agent")` to ensure we're
testing the correct agent rather than relying on the first agent in the
list
- **Add retry mechanism for async data loading**: Replace direct
visibility check with `expect(...).toPass({ timeout: 15000 })` pattern
to properly handle asynchronous agent data fetching
- **Increase timeout**: Extended timeout from 8000ms to 15000ms to
accommodate slower CI environments

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified the test file syntax is correct
- [x] Changes target the correct file
(`autogpt_platform/frontend/src/tests/agent-activity.spec.ts`)
- [x] The retry mechanism follows Playwright best practices using
`toPass()`

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
(N/A - no config changes)
- [x] `docker-compose.yml` is updated or already compatible with my
changes (N/A - no config changes)
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**) (N/A - no config changes)

---------

Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2026-01-16 20:33:47 +00:00
Nicholas Tindle
05c89fa5c0 feat(claude): add vercel-react-best-practices skill (#11777) 2026-01-16 09:40:58 -07:00
Swifty
8cc8295f14 feat(backend): add agent generator tools for chat copilot (#11781)
This PR adds the ability to create and edit agents from natural language
descriptions in the chat copilot.

### Changes 🏗️

- Added `agent_generator/` module with:
  - LLM client for OpenAI API calls
- Core generation logic for decomposing goals and generating agent JSON
  - Fixer module to correct common LLM generation errors
  - Validator to ensure generated agents are structurally valid
  - Prompts for goal decomposition and agent generation
  - Utility functions for blocks info and agent saving
- Added `CreateAgentTool` - creates new agents from natural language
descriptions
- Added `EditAgentTool` - edits existing agents using natural language
patches
- Added response models: `AgentPreviewResponse`, `AgentSavedResponse`,
`ClarificationNeededResponse`
- Registered new tools in the tools registry

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run `poetry run format` to ensure code passes linting
- [x] Test creating an agent via chat with a natural language
description
  - [x] Test editing an existing agent via chat
2026-01-16 17:11:57 +01:00
Swifty
e55f05c7a8 feat(backend): add chat search tools and BM25 reranking (#11782)
This PR adds new chat tools for searching blocks and documentation,
along with BM25 reranking for improved search relevance.

### Changes 🏗️

**New Chat Tools:**
- `find_block` - Search for available blocks by name/description using
hybrid search
- `run_block` - Execute a block directly with provided inputs and
credentials
- `search_docs` - Search documentation with section-level granularity  
- `get_doc_page` - Retrieve full documentation page content

**Search Improvements:**
- Added BM25 reranking to hybrid search for better lexical relevance
- Documentation handler now chunks markdown by headings (##) for
finer-grained embeddings
- Section-based content IDs (`doc_path::section_index`) for precise doc
retrieval
- Startup embedding backfill in scheduler for immediate searchability

**Other Changes:**
- New response models for block and documentation search results
- Updated orphan cleanup to handle section-based doc embeddings
- Added `rank-bm25` dependency for BM25 scoring
- Removed max message limit check in chat service

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run find_block tool to search for blocks (e.g., "current time")
  - [x] Run run_block tool to execute a found block
  - [x] Run search_docs tool to search documentation
  - [x] Run get_doc_page tool to retrieve full doc content
- [x] Verify BM25 reranking improves search relevance for exact term
matches
  - [x] Verify documentation sections are properly chunked and embedded

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

**Dependencies added:** `rank-bm25` for BM25 scoring algorithm
2026-01-16 16:18:10 +01:00
Swifty
4a9b13acb6 feat(frontend): extract frontend changes from hackathon/copilot branch (#11717)
Frontend changes extracted from the hackathon/copilot branch for the
copilot feature development.

### Changes 🏗️

- New Chat system with contextual components (`Chat`, `ChatDrawer`,
`ChatContainer`, `ChatMessage`, etc.)
- Form renderer system with RJSF v6 integration and new input renderers
- Enhanced credentials management with improved OAuth flow and
credential selection
- New output renderers for various content types (Code, Image, JSON,
Markdown, Text, Video)
- Scrollable tabs component for better UI organization
- Marketplace update notifications and publishing workflow improvements
- Draft recovery feature with IndexedDB persistence
- Safe mode toggle functionality
- Various UI/UX improvements across the platform

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [ ] Test new Chat components functionality
  - [ ] Verify form renderer with various input types
  - [ ] Test credential management flows
  - [ ] Verify output renderers display correctly
  - [ ] Test draft recovery feature

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---------

Co-authored-by: Lluis Agusti <hi@llu.lu>
2026-01-16 22:15:39 +07:00
Zamil Majdy
5ff669e999 fix(backend): Make Redis connection lazy in cache module (#11775)
## Summary
- Makes Redis connection lazy in the cache module - connection is only
established when `shared_cache=True` is actually used
- Fixes DatabaseManager failing to start because it imports
`onboarding.py` which imports `cache.py`, triggering Redis connection at
module load time even though it only uses in-memory caching

## Root Cause
Commit `b01ea3fcb` (merged today) added `increment_onboarding_runs` to
DatabaseManager, which imports from `onboarding.py`. That module imports
`@cached` decorator from `cache.py`, which was creating a Redis
connection at module import time:

```python
# Old code - ran at import time!
redis = Redis(connection_pool=_get_cache_pool())
```

Since `onboarding.py` only uses `@cached(shared_cache=False)` (in-memory
caching), it doesn't actually need Redis. But the import triggered the
connection attempt.

## Changes
- Wrapped Redis connection in a singleton class with lazy initialization
- Connection is only established when `_get_redis()` is first called
(i.e., when `shared_cache=True` is used)
- Services using only in-memory caching can now import `cache.py`
without Redis configuration

## Test plan
- [ ] Services using `shared_cache=False` work without Redis configured
- [ ] Services using `shared_cache=True` still work correctly with Redis
- [ ] Existing cache tests pass

🤖 Generated with [Claude Code](https://claude.com/claude-code)

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 14:28:36 +00:00
Abhimanyu Yadav
ec03a13e26 fix(frontend): improve history tracking, error handling (#11786)
### Changes 🏗️

- **Improved Error Handling**: Enhanced error handling in
`useRunInputDialog.ts` to properly handle cases where node errors are
empty or undefined
- **Fixed Node Collision Resolution**: Updated `Flow.tsx` to use the
current state from the store instead of stale props
- **Enhanced History Management**:
    - Added proper state tracking for edge removal operations
    - Improved undo/redo functionality to prevent duplicate states
- Fixed edge case where history wasn't properly tracked during node
dragging
- **UI Improvements**:
- Fixed potential null reference in NodeHeader when accessing agent_name
    - Added placeholder for GoogleDrivePicker in INPUT mode
    - Fixed spacing in ArrayFieldTemplate
- **Bug Fixes**:
    - Added proper state tracking before modifying nodes/edges
    - Fixed history tracking to avoid redundant states
    - Improved collision detection and resolution

### Checklist ���

#### For code changes:

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Test undo/redo functionality after adding, removing, and moving
nodes
    - [x] Test edge creation and deletion with history tracking
    - [x] Verify error handling when graph validation fails
    - [x] Test Google Drive picker in different UI modes
    - [x] Verify node collision resolution works correctly
2026-01-16 13:34:57 +00:00
Abhimanyu Yadav
b08851f5d7 feat(frontend): improve GoogleDrivePickerField with input mode support and array field spacing (#11780)
### Changes 🏗️

- Added a placeholder UI for Google Drive Picker in INPUT block type
- Improved detection of Google Drive file objects in schema validation
- Extracted `isGoogleDrivePickerSchema` function for better code
organization
- Added spacing between array field elements with a gap-2 class
- Added debug logging for preprocessed schema in FormRenderer

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified Google Drive Picker shows placeholder in INPUT blocks
  - [x] Confirmed array field elements have proper spacing
  - [x] Tested that Google Drive file objects are properly detected
2026-01-16 13:02:36 +00:00
Abhimanyu Yadav
8b1720e61d feat(frontend): improve graph validation error handling and node navigation (#11779)
### Changes 🏗️

- Enhanced error handling for graph validation failures with detailed
user feedback
- Added automatic viewport navigation to the first node with errors when
validation fails
- Improved node title display to prioritize agent_name from hardcoded
values
- Removed console.log debugging statement from OutputHandler
- Added ApiError import and improved error type handling
- Reorganized imports for better code organization

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Create a graph with intentional validation errors and verify error
messages display correctly
- [x] Verify the viewport automatically navigates to the first node with
errors
- [x] Check that node titles correctly display customized names or agent
names
- [x] Test error recovery by fixing validation errors and successfully
running the graph
2026-01-16 11:14:00 +00:00
Abhimanyu Yadav
aa5a039c5e feat(frontend): add special rendering for NOTE UI type in FieldTemplate (#11771)
### Changes 🏗️

Added support for Note blocks in the FieldTemplate component by:
- Importing the BlockUIType enum from the build components types
- Extracting the uiType from the registry.formContext
- Adding a conditional rendering check that returns children directly
when the uiType is BlockUIType.NOTE

This change allows Note blocks to render without the standard field
template wrapper, providing a cleaner display for note-type content.


![Screenshot 2026-01-15 at
1.01.03 PM.png](https://app.graphite.com/user-attachments/assets/7d654eed-abbe-4ec3-9c80-24a77a8373e3.png)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Created a Note block and verified it renders correctly without
field template wrapper
- [x] Confirmed other block types still render with proper field
template
- [x] Verified that Note blocks maintain proper functionality in the
node graph
2026-01-16 11:10:21 +00:00
Zamil Majdy
8b83bb8647 feat(backend): unified hybrid search with embedding backfill for all content types (#11767)
## Summary

This PR extends the embedding system to support **blocks** and
**documentation** content types in addition to store agents, and
introduces **unified hybrid search** across all content types using a
single `UnifiedContentEmbedding` table.

### Key Changes

1. **Unified Hybrid Search Architecture**
   - Added `search` tsvector column to `UnifiedContentEmbedding` table
- New `unified_hybrid_search()` function searches across all content
types (agents, blocks, docs)
- Updated `hybrid_search()` for store agents to use
`UnifiedContentEmbedding.search`
   - Removed deprecated `search` column from `StoreListingVersion` table

2. **Pluggable Content Handler Architecture**
   - Created abstract `ContentHandler` base class for extensibility
- Implemented handlers: `StoreAgentHandler`, `BlockHandler`,
`DocumentationHandler`
   - Registry pattern for easy addition of new content types

3. **Block Embeddings**
   - Discovers all blocks using `get_blocks()`
- Extracts searchable text from: name, description, categories,
input/output schemas

4. **Documentation Embeddings**
   - Scans `/docs/` directory for `.md` and `.mdx` files
   - Extracts title from first `#` heading or uses filename as fallback

5. **Hybrid Search Graceful Degradation**
- Falls back to lexical-only search if query embedding generation fails
   - Redistributes semantic weight proportionally to other components
   - Logs warning instead of throwing error

6. **Database Migrations**
- `20260115200000_add_unified_search_tsvector`: Adds search column to
UnifiedContentEmbedding with auto-update trigger
- `20260115210000_remove_storelistingversion_search`: Removes deprecated
search column and updates StoreAgent view

7. **Orphan Cleanup**
- `cleanup_orphaned_embeddings()` removes embeddings for deleted content
   - Always runs after backfill, even at 100% coverage

### Review Comments Addressed

-  SQL parameter index bug when user_id provided (embeddings.py)
-  Early return skipping cleanup at 100% coverage (scheduler.py)
-  Inconsistent return structure across code paths (scheduler.py)
-  SQL UNION syntax error - added parentheses for ORDER BY/LIMIT
(hybrid_search.py)
-  Version numeric ordering in aggregations (migration)
-  Embedding dimension uses EMBEDDING_DIM constant

### Files Changed

- `backend/api/features/store/content_handlers.py` (NEW): Handler
architecture
- `backend/api/features/store/embeddings.py`: Refactored to use handlers
- `backend/api/features/store/hybrid_search.py`: Unified search +
graceful degradation
- `backend/executor/scheduler.py`: Process all content types, consistent
returns
- `migrations/20260115200000_add_unified_search_tsvector/`: Add tsvector
to unified table
- `migrations/20260115210000_remove_storelistingversion_search/`: Remove
old search column
- `schema.prisma`: Updated UnifiedContentEmbedding and
StoreListingVersion models
- `*_test.py`: Added tests for unified_hybrid_search

## Test Plan

1.  All tests passing on Python 3.11, 3.12, 3.13
2.  Types check passing
3.  CodeRabbit and Sentry reviews addressed
4. Deploy to staging and verify:
   - Backfill job processes all content types
   - Search results include blocks and docs
   - Search works without OpenAI API (graceful degradation)

🤖 Generated with [Claude Code](https://claude.ai/code)

---------

Co-authored-by: Swifty <craigswift13@gmail.com>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-16 09:47:19 +01:00
Nicholas Tindle
e80e4d9cbb ci: update dev from gitbook (#11757)
<!-- Clearly explain the need for these changes: -->
gitbook changes via ui

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> **Docs sync from GitBook**
> 
> - Updates `docs/home/README.md` with a new Developer Platform landing
page (cards, links to Platform, Integrations, Contribute, Discord,
GitHub) and metadata/cover settings
> - Adds `docs/home/SUMMARY.md` defining the table of contents linking
to `README.md`
> - No application/runtime code changes
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
446c71fec8. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
2026-01-15 20:02:48 +00:00
Ubbe
375d33cca9 fix(frontend): agent credentials improvements (#11763)
## Changes 🏗️

### System credentials in Run Modal

We had the issue that "system" credentials were mixed with "user"
credentials in the run agent modal:

#### Before

<img width="400" height="466" alt="Screenshot 2026-01-14 at 19 05 56"
src="https://github.com/user-attachments/assets/9d1ee766-5004-491f-ae14-a0cf89a9118e"
/>

This created confusion among the users. This "system" credentials are
supplied by AutoGPT ( _most of the time_ ) and a user running an agent
should not bother with them ( _unless they want to change them_ ). For
example in this case, the credential that matters is the **Google** one
🙇🏽

### After

<img width="400" height="350" alt="Screenshot 2026-01-14 at 19 04 12"
src="https://github.com/user-attachments/assets/e2bbc015-ce4c-496c-a76f-293c01a11c6f"
/>

<img width="400" height="672" alt="Screenshot 2026-01-14 at 19 04 19"
src="https://github.com/user-attachments/assets/d704dae2-ecb2-4306-bd04-3d812fed4401"
/>

"System" credentials are collapsed by default, reducing noise in the
Task Credentials section. The user can still see and change them by
expanding the accordion.

<img width="400" height="190" alt="Screenshot 2026-01-14 at 19 04 27"
src="https://github.com/user-attachments/assets/edc69612-4588-48e4-981a-f59c26cfa390"
/>

If some "system" credentials are missing, there is a red label
indicating so, it wasn't that obvious with the previous implementation,

<img width="400" height="309" alt="Screenshot 2026-01-14 at 19 04 30"
src="https://github.com/user-attachments/assets/f27081c7-40ad-4757-97b3-f29636616fc2"
/>

### New endpoint

There is a new REST endpoint, `GET /providers/system`, to list system
credential providers so it is easy to access in the Front-end to group
them together vs user ones.

### Other improvements

#### `<CredentialsInput />` refinements

<img width="715" height="200" alt="Screenshot 2026-01-14 at 19 09 31"
src="https://github.com/user-attachments/assets/01b39b16-25f3-428d-a6c8-da608038a38b"
/>

Use a normal browser `<select>` for the Credentials Dropdown ( _when you
have more than 1 for a provider_ ). This simplifies the UI shennagians a
lot and provides a better UX in 📱 ( _eventually we should move all our
selects to the native ones as they are much better for mobile and touch
screens and less code to maintain our end_ ).

I also renamed some files for clarity and tidied up some of the existing
logic.

#### Other

- Fix **Open telemetry** warnings on the server console by making the
packages external
- Fix `require-in-the-middle` console warnings
- Prettier tidy ups

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run the app locally and test the above
2026-01-15 17:44:44 +07:00
Swifty
3b1b2fe30c feat(backend): Extract backend copilot/chat enhancements from hackathon (#11719)
This PR extracts backend changes from the hackathon/copilot branch,
adding enhanced chat capabilities, agent management tools, store
embeddings, and hybrid search functionality.

### Changes 🏗️

**Chat Features:**
- Added chat database layer (`db.py`) for conversation and message
persistence
- Extended chat models with new types and response structures
- New onboarding system prompt for guided user experiences
- Enhanced chat routes with additional endpoints
- Expanded chat service with more capabilities

**Chat Agent Tools:**
- `agent_output.py` - Handle agent execution outputs
- `create_agent.py` - Tool for creating new agents via chat
- `edit_agent.py` - Tool for modifying existing agents
- `find_library_agent.py` - Search and discover library agents
- Enhanced `run_agent.py` with additional functionality
- New `models.py` for shared tool types

**Store Enhancements:**
- `embeddings.py` - Vector embeddings support for semantic search
- `hybrid_search.py` - Combined keyword and semantic search
- `backfill_embeddings.py` - Utility for backfilling existing data
- Updated store database operations

**Admin:**
- Enhanced store admin routes

**Data Layer:**
- New `understanding.py` module for agent understanding/context

**Database Migrations:**
- `add_chat_tables` - Chat conversation and message tables
- `add_store_embeddings` - Embeddings storage for store items
- `enhance_search` - Search index improvements

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Chat endpoints respond correctly
  - [x] Agent tools (create/edit/find/run) function properly
  - [x] Store embeddings and hybrid search work
  - [x] Database migrations apply cleanly

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

---------

Co-authored-by: Torantulino <40276179@live.napier.ac.uk>
2026-01-15 11:11:36 +01:00
Abhimanyu Yadav
af63b3678e feat(frontend): hide children of connected array and object fields
(#11770)

### Changes 🏗️

- Added conditional rendering for array and object field children based
on connection status
- Implemented `shouldShowChildren` logic in `ArrayFieldTemplate` and
`ObjectFieldTemplate` components
- Modified the `shouldShowChildren` condition in `FieldTemplate` to
handle different schema types
- Imported and utilized `cleanUpHandleId` and `useEdgeStore` to check if
inputs are connected
- Added connection status checks to hide form fields when their inputs
are connected to other nodes

![Screenshot 2026-01-15 at
12.55.32 PM.png](https://app.graphite.com/user-attachments/assets/d3fffade-872e-4fd8-a347-28d1bae3072e.png)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified that object and array fields hide their children when
connected to other nodes
- [x] Confirmed that unconnected fields display their children properly
- [x] Tested with various schema types to ensure correct rendering
behavior
- [x] Checked that the connection status is properly detected and
applied
2026-01-15 08:10:52 +00:00
Abhimanyu Yadav
631f1bd50a feat(frontend): add interactive tutorial for the new builder interface (#11458)
### Changes 🏗️

This PR adds a comprehensive interactive tutorial for the new Builder UI
to help users learn how to create agents. Key changes include:

- Added a tutorial button to the canvas controls that launches a
step-by-step guide
- Created a Shepherd.js-based tutorial with multiple steps covering:
    - Adding blocks from the Block Menu
    - Understanding input and output handles
    - Configuring block values
    - Connecting blocks together
    - Saving and running agents
- Added data-id attributes to key UI elements for tutorial targeting
- Implemented tutorial state management with a new tutorialStore
- Added helper functions for tutorial navigation and block manipulation
- Created CSS styles for tutorial tooltips and highlights
- Integrated with the Run Input dialog to support tutorial flow
- Added prefetching of tutorial blocks for better performance


https://github.com/user-attachments/assets/3db964b3-855c-4fcc-aa5f-6cd74ab33d7d


### Checklist 📋

#### For code changes:

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
    - [x] Complete the tutorial from start to finish
    - [x] Test tutorial on different screen sizes
    - [x] Verify all tutorial steps work correctly
    - [x] Ensure tutorial can be canceled and restarted
- [x] Check that tutorial doesn't interfere with normal builder
functionality
2026-01-15 07:47:27 +00:00
Swifty
5ac941fe2f feat(backend): add hybrid search for store listings, docs and blocks (#11721)
This PR adds hybrid search functionality combining semantic embeddings
with traditional text search for improved store listing discovery.

### Changes 🏗️

- Add `embeddings.py` - OpenAI-based embedding generation and similarity
search
- Add `hybrid_search.py` - Combines vector similarity with text matching
for better search results
- Add `backfill_embeddings.py` - Script to generate embeddings for
existing store listings
- Update `db.py` - Integrate hybrid search into store database queries
- Update `schema.prisma` - Add embedding storage fields and indexes
- Add migrations for embedding columns and HNSW index for vector search

### Architecture Decisions 🏛️

**Fail-Fast Approach (No Silent Fallbacks)**

We explicitly chose NOT to implement graceful degradation when hybrid
search fails. Here's why:

 **Benefits:**
- Errors surface immediately → faster fixes
- Tests verify hybrid search actually works (not just fallback)
- Consistent search quality for all users
- Forces proper infrastructure setup (API keys, database)

 **Why Not Fallback:**
- Silent degradation hides production issues
- Users get inconsistent results without knowing why
- Tests can pass even when hybrid search is broken
- Reduces operational visibility

**How We Prevent Failures:**
1. Embedding generation in approval flow (db.py:1545)
2. Error logging with `logger.error` (not warning)
3. Clear error messages (ValueError explains what's wrong)
4. Comprehensive test coverage (9/9 tests passing)

If embeddings fail, it indicates a real infrastructure issue (missing
API key, OpenAI down, database issues) that needs immediate attention,
not silent degradation.

### Test Coverage 

**All tests passing (1625 total):**
- 9/9 hybrid_search tests (including fail-fast validation)
- 3/3 db search integration tests
- Full schema compatibility (public/platform schemas)
- Error handling verification

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Test hybrid search returns relevant results
  - [x] Test embedding generation for new listings
  - [x] Test backfill script on existing data
  - [x] Verify search performance with embeddings
  - [x] Test fail-fast behavior when embeddings unavailable

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] Configuration: Requires `openai_internal_api_key` in secrets

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-15 04:17:03 +00:00
Reinier van der Leer
b01ea3fcbd fix(backend/executor): Centralize increment_runs calls & make add_graph_execution more robust (#11764)
[OPEN-2946: \[Scheduler\] Error executing graph <graph_id> after 19.83s:
ClientNotConnectedError: Client is not connected to the query engine,
you must call `connect()` before attempting to query
data.](https://linear.app/autogpt/issue/OPEN-2946)

- Follow-up to #11375
  <sub>(broken `increment_runs` call)</sub>
- Follow-up to #11380
  <sub>(direct `get_graph_execution` call)</sub>

### Changes 🏗️

- Move `increment_runs` call from `scheduler._execute_graph` to
`executor.utils.add_graph_execution` so it can be made through
`DatabaseManager`
  - Add `increment_onboarding_runs` to `DatabaseManager`
- Remove now-redundant `increment_onboarding_runs` calls in other places
- Make `add_graph_execution` more resilient
  - Split up large try/except block
  - Fix direct `get_graph_execution` call

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - CI + a thorough review
2026-01-15 04:08:19 +00:00
Reinier van der Leer
3b09a94e3f feat(frontend/builder): Add sub-graph update UX (#11631)
[OPEN-2743: Ability to Update Sub-Agents in Graph (Without
Re-Adding)](https://linear.app/autogpt/issue/OPEN-2743/ability-to-update-sub-agents-in-graph-without-re-adding)

Updating sub-graphs is a cumbersome experience at the moment, this
should help. :)

Demo in Builder v2:


https://github.com/user-attachments/assets/df564f32-4d1d-432c-bb91-fe9065068360


https://github.com/user-attachments/assets/f169471a-1f22-46e9-a958-ddb72d3f65af


### Changes 🏗️

- Add sub-graph update banner with I/O incompatibility notification and
resolution mode
  - Red visual indicators for broken inputs/outputs and edges
  - Update bars and tooltips show compatibility details
- Sub-agent update UI with compatibility checks, incompatibility dialog,
and guided resolution workflow
- Resolution mode banner guiding users to remove incompatible
connections
- Visual controls to stage/apply updates and auto-apply when broken
connections are fixed
  
  Technical:
- Builder v1: Add `CustomNode` > `IncompatibilityDialog` +
`SubAgentUpdateBar` sub-components
- Builder v2: Add `SubAgentUpdateFeature` + `ResolutionModeBar` +
`IncompatibleUpdateDialog` + `useSubAgentUpdateState` sub-components
  - Add `useSubAgentUpdate` hook

- Related fixes in Builder v1:
  - Fix static edges not rendering as such
  - Fix edge styling not applying
- Related fixes in Builder v2:
  - Fix excess spacing for nested node input fields

Other:
- "Retry" button in error view now reloads the page instead of
navigating to `/marketplace`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - CI for existing frontend UX flows
- [x] Updating to a new sub-agent version with compatibility issues: UX
flow works
- [x] Updating to a new sub-agent version with *no* compatibility
issues: works
  - [x] Designer approves of the look

---------

Co-authored-by: abhi1992002 <abhimanyu1992002@gmail.com>
Co-authored-by: Abhimanyu Yadav <122007096+Abhi1992002@users.noreply.github.com>
2026-01-14 13:25:20 +00:00
Zamil Majdy
61efee4139 fix(frontend): Remove hardcoded bypass of billing feature flag (#11762)
## Summary

Fixes a critical security issue where the billing button in the settings
sidebar was always visible to all users, bypassing the
`ENABLE_PLATFORM_PAYMENT` feature flag.

## Changes 🏗️

- Removed hardcoded `|| true` condition in
`frontend/src/app/(platform)/profile/(user)/layout.tsx:32` that was
bypassing the feature flag check
- The billing button is now properly gated by the
`ENABLE_PLATFORM_PAYMENT` feature flag as intended

## Root Cause

The `|| true` was accidentally left in commit
3dbc03e488 (PR #11617 - OAuth API & Single
Sign-On) from December 19, 2025. It was likely added temporarily during
development/testing to always show the billing button, but was not
removed before merging.

## Test Plan

1. Verify feature flag is set to disabled in LaunchDarkly
2. Navigate to settings page (`/profile/settings`)
3. Confirm billing button is NOT visible in the sidebar
4. Enable feature flag in LaunchDarkly
5. Refresh page and confirm billing button IS now visible
6. Verify billing page (`/profile/credits`) is still accessible via
direct URL when feature flag is disabled

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan

Fixes SECRT-1791

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

* **Bug Fixes**
* The Billing link in the profile sidebar now respects the payment
feature flag configuration and will only display when payment
functionality is enabled.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-14 03:28:36 +00:00
Bently
e539280e98 fix(blocks): set User-Agent header and URL-encode topic in GetWikipediaSummaryBlock (#11754)
The GetWikipediaSummaryBlock was returning HTTP 403 errors from
Wikipedia's API because it wasn't explicitly setting a User-Agent header
that complies with https://wikitech.wikimedia.org/wiki/Robot_policy.
Additionally, topics with spaces or special characters would cause
malformed URLs.

Fixes: OPEN-2889

Changes 🏗️

- URL-encode the topic parameter using urllib.parse.quote() to handle
spaces and special characters
- Explicitly set required headers per Wikimedia robot policy:
- User-Agent: Platform default user agent (includes app name, URL, and
contact email)
- Accept-Encoding: gzip, deflate: Recommended by Wikimedia to reduce
bandwidth
- Updated test mock to match the new function signature

Checklist 📋

For code changes:

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verify code passes syntax check
  - [x] Verify code passes ruff linting
- [x] Create an agent using GetWikipediaSummaryBlock with a topic
containing spaces (e.g., "Artificial Intelligence")
  - [x] Verify the block returns a Wikipedia summary without 403 errors

For configuration changes:

- .env.default is updated or already compatible with my changes
- docker-compose.yml is updated or already compatible with my changes
- I have included a list of my configuration changes in the PR
description (under Changes)
.
N/A - No configuration changes required.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Bug Fixes**
* Improved Wikipedia API requests by adding compatible request headers
(including a proper user agent and encoding acceptance) for more
reliable responses.
* Enhanced handling of search topics by URL-encoding terms so queries
with spaces or special characters return correct results.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-13 12:24:51 +00:00
Toran Bruce Richards
db8b43bb3d feat(blocks): Add WordPress Get All Posts block and Publish Post draft toggle (#11003)
**Implements issue #11002**

This PR adds WordPress post management functionality and improves error
handling in DataForSEO blocks.

### Changes 🏗️

1. **New WordPress Blocks:**
- Added `WordPressGetAllPostsBlock` - Fetches posts from WordPress sites
with filtering and pagination support
- Enhanced `WordPressCreatePostBlock` with `publish_as_draft` toggle to
control post publication status

2. **WordPress API Enhancements:**
- Added `get_posts()` function in `_api.py` to retrieve posts with
filtering by status
- Added `PostsResponse` model for handling WordPress posts list API
responses
- Support for pagination with `number` and `offset` parameters (max 100
posts per request)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  
  **Test Plan:**
- [x] Test `WordPressGetAllPostsBlock` with valid WordPress credentials
  - [x] Verify filtering posts by status (publish, draft, pending, etc.)
  - [x] Test pagination with different number and offset values
- [x] Test `WordPressCreatePostBlock` with publish_as_draft=True to
create draft posts
- [x] Test `WordPressCreatePostBlock` with publish_as_draft=False to
publish posts publicly

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

**Note:** No configuration changes were required for this PR.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

* **New Features**
* Added a WordPress “Get All Posts” block to fetch posts with optional
status filtering and pagination; returns total found and post details.
* **Enhancements**
* WordPress “Create Post” block now supports a “Publish as draft”
option, allowing posts to be created as drafts or published immediately.
* WordPress blocks are now surfaced consistently in the block catalog
for easier use.
* **Error Handling**
* Clearer error messages when fetching posts fails, aiding
troubleshooting.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->


<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Introduces WordPress post listing and improves post creation and API
robustness.
> 
> - Adds `WordPressGetAllPostsBlock` to fetch posts with optional
`status` filter and pagination (`number`, `offset`); outputs `found`,
`posts`, and streams each `post`
> - Enhances `WordPressCreatePostBlock` with `publish_as_draft` input
and adds `site` to outputs; sets `status` accordingly
> - WordPress API updates in `_api.py`: new `get_posts`, `Post`,
`PostsResponse`, and `normalize_site`; apply
`Requests(raise_for_status=False)` across OAuth/token/info and post
creation; better error propagation
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
10be1c4709. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Toran Bruce Richards <Torantulino@users.noreply.github.com>
Co-authored-by: coderabbitai[bot] <136622811+coderabbitai[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-12 19:57:47 +00:00
Abhimanyu Yadav
923d8baedc feat(frontend): add JsonTextField component for complex nested form data (#11752)
### Changes 🏗️

- Added a new `JsonTextField` component to handle complex nested JSON
types (objects/arrays inside other objects/arrays)
- Created helper functions for JSON parsing, validation, and formatting
- Implemented `useJsonTextField` hook to manage state and validation
- Enhanced `generateUiSchemaForCustomFields` to detect nested complex
types and render them as JSON text fields
- Updated `TextInputExpanderModal` to support JSON-specific styling
- Added `JSON_TEXT_FIELD_ID` constant to custom registry for field
identification

This change improves the user experience by preventing deeply nested
form UIs. Instead, complex nested structures are presented as editable
JSON text fields with proper validation and formatting.

### Before

![Screenshot 2026-01-12 at
1.07.54 PM.png](https://app.graphite.com/user-attachments/assets/dc2b96cc-562a-4e6b-8278-76de941e3bd9.png)

### After

![Screenshot 2026-01-12 at
12.35.19 PM.png](https://app.graphite.com/user-attachments/assets/ea0028a5-c119-43c3-8100-b103484e0b54.png)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Test with simple JSON objects in forms
  - [x] Test with nested arrays and objects
  - [x] Test with anyOf/oneOf schemas containing complex types
  - [x] Test the expander modal with JSON content

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **New Features**
* New JSON text field with expandable modal editor, inline validation,
and helpful placeholders.
* Complex nested objects/arrays now render as JSON fields to simplify
editing.
* Modal editor uses monospace, smaller text when editing JSON for
improved readability.

* **Chores**
* Added a non-functional runtime debug log (no user-facing behavior
changes).

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-12 12:22:41 +00:00
Abhimanyu Yadav
a55b2e02dc feat(frontend): enhance CredentialsInput and CredentialRow components with variant support (#11753)
### Changes 🏗️

- Added a new `variant` prop to `CredentialsInput` component with
options "default" or "node"
- Implemented compact styling for the "node" variant in `CredentialRow`
component
- Modified layout and overflow handling for credential display in node
context
- Added conditional rendering of masked key display based on variant
- Passed the variant prop through the component hierarchy
- Applied the "node" variant to the `CredentialsField` component with
appropriate styling

Before

![Screenshot 2026-01-12 at
4.39.35 PM.png](https://app.graphite.com/user-attachments/assets/2b605b2d-7abf-4e8a-adc5-6a6e8b712ef7.png)

After

![Screenshot 2026-01-12 at
4.55.39 PM.png](https://app.graphite.com/user-attachments/assets/20bb1452-870a-4111-a246-c4e3a3b456ea.png)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified credential selection works correctly in node context
  - [x] Confirmed compact styling is applied properly in node variant
  - [x] Tested overflow handling for long credential names
  - [x] Verified both default and node variants display correctly

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

* **New Features**
* Credential input and selection components now support multiple
configurable visual variants, enabling better text display handling,
optimized layouts, and improved visual consistency across different
application contexts and specific use cases.

* **Style**
* Credential field displays now feature enhanced text truncation and
overflow management for a more polished and consistent user interface
experience.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-12 12:22:20 +00:00
Abhimanyu Yadav
6b6648b290 feat(frontend): add Table component with TableField renderer for tabular data input (#11751)
### Changes 🏗️

- Added a new `Table` component for handling tabular data input
- Created supporting hooks and helper functions for the Table component
- Added Storybook stories to showcase different Table configurations
- Implemented a custom `TableField` renderer for JSON Schema forms
- Updated type display info to support the new "table" format
- Added schema matcher to detect and render table fields appropriately

![Screenshot 2026-01-12 at
11.29.04 AM.png](https://app.graphite.com/user-attachments/assets/71469d59-469f-4cb0-882b-a49791fe948d.png)

![Screenshot 2026-01-12 at
11.28.54 AM.png](https://app.graphite.com/user-attachments/assets/81193f32-0e16-435e-bb66-5d2aea98266a.png)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified Table component renders correctly with various
configurations
  - [x] Tested adding and removing rows in the Table
- [x] Confirmed data changes are properly tracked and reported via
onChange
  - [x] Verified TableField renderer works with JSON Schema forms
  - [x] Checked that table format is properly detected in the schema

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

## Release Notes

* **New Features**
* Added a Table component for displaying and editing tabular data with
support for adding/deleting rows, read-only mode, and customizable
labels.
* Added support for rendering array fields as tables in form inputs with
configurable columns and values.

* **Tests**
* Added comprehensive Storybook stories demonstrating various Table
configurations and behaviors.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-12 10:32:14 +00:00
Abhimanyu Yadav
c0a9c0410b feat(frontend): add MultiSelectField component and improve node title cursor styling (#11744)
## Changes 🏗️

- Added a new `MultiSelectField` component for handling multiple boolean
selections in a dropdown format
- Implemented `useMultiSelectField` hook to manage the state and logic
of the multi-select component
- Added support for custom fields in `AnyOfField` by checking if the
option schema matches a custom field
- Added `isMultiSelectSchema` utility function to detect schemas
suitable for the multi-select component
- Added hover cursor styling to node headers to indicate text
editability

![Screenshot 2026-01-10 at
11.15.12 AM.png](https://app.graphite.com/user-attachments/assets/8254497b-604f-4ccc-a40b-eb8994c073b4.png)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified that multi-select fields render correctly in the UI
  - [x] Confirmed that selecting multiple options works as expected
  - [x] Tested that the node header shows the text cursor on hover
- [x] Verified that AnyOf fields correctly use custom field renderers
when applicable

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **New Features**
* Added a multi-select field allowing selection of multiple options with
improved selection UI.
* AnyOf options can now resolve and render custom field types, improving
form composition when schemas map to custom controls.

* **Style**
  * Tooltip header cursor updated for clearer hover feedback.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-12 09:48:58 +00:00
Abhimanyu Yadav
17a77b02c7 fix(frontend): exclude schemas with enum from anyOf detection (#11743)
### Changes 🏗️

Fixed the `isAnyOfSchema` function in schema-utils.ts to exclude schemas
that have an `enum` property. This prevents incorrect schema processing
for enums that also have anyOf definitions. Added a console.log
statement in FormRenderer.tsx to help debug schema preprocessing.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified that forms with enum values render correctly
- [x] Confirmed that anyOf schemas are properly identified and processed
- [x] Tested with various schema combinations to ensure the fix doesn't
break existing functionality

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

## Bug Fixes
* Improved validation logic for form field schemas to correctly handle
edge cases when multiple constraint types are defined.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-12 09:48:47 +00:00
Zamil Majdy
701fce83ca fix(backend): add missing metadata attribute to mock nodes in SmartDecisionMaker tests (#11750)
This PR fixes failing SmartDecisionMaker tests by adding missing
`metadata` attribute to mock nodes.

### Changes 🏗️

Mock nodes in SmartDecisionMaker tests were missing the `metadata = {}`
attribute, which was introduced in commit 4a52b7eca for the
customized_name feature. This caused tests to fail with:

```
TypeError: expected string or bytes-like object, got 'Mock'
```

**Files fixed**:
- `backend/blocks/test/test_smart_decision_maker_dict.py`: Added
`metadata = {}` to mock nodes in all 3 tests
- `backend/blocks/test/test_smart_decision_maker_dynamic_fields.py`:
Added `metadata = {}` to mock nodes in all 8 tests

**Root cause**: The `_create_block_function_signature` method calls
`sink_node.metadata.get("customized_name")`, but mock nodes in tests
didn't have the metadata attribute initialized.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run `poetry run pytest
backend/blocks/test/test_smart_decision_maker_dict.py -xvs` - 3 passed
- [x] Run `poetry run pytest
backend/blocks/test/test_smart_decision_maker_dynamic_fields.py -xvs` -
8 passed
  - [x] All tests pass successfully

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

## Release Notes

* **Tests**
* Updated test infrastructure to enhance mock object configuration for
improved test reliability and consistency across test suites.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-11 17:00:36 -06:00
Zamil Majdy
78d89d0faf Merge branch 'master' of github.com:Significant-Gravitas/AutoGPT into dev 2026-01-11 13:09:23 -06:00
Zamil Majdy
f482eb668b hotfix(backend): resolve tool pin name mismatch in SmartDecisionMakerBlock (#11749)
## Root Cause

Execution a40bdb4a-964d-4684-94e8-b148eb6bcfc2 and all similar
executions have been failing since Nov 12, 2025 when tool pin routing
was refactored to use node IDs. The SmartDecisionMakerBlock was
double-sanitizing field names when emitting tool call outputs:

```python
# Original field name from link: "Max Keyword Difficulty"
original_field_name = field_mapping.get(clean_arg_name)  #  Retrieved correctly
sanitized_arg_name = self.cleanup(original_field_name)   #  Sanitized AGAIN!
emit_key = f"tools_^_{node_id}_~_{sanitized_arg_name}"   # Emits "max_keyword_difficulty"
```

But the parser expected original names from graph links:
```python
# Parser expects: "Max Keyword Difficulty" (from link.sink_name)
# Emit provides: "max_keyword_difficulty" (sanitized)
# Result: Mismatch → Tool never executes
```

### Changes 🏗️

**1. Fixed Emit Logic** (`smart_decision_maker.py` line 1135)
- Removed double sanitization: `sanitized_arg_name =
self.cleanup(original_field_name)`
- Now emits with original field names: `emit_key =
f"tools_^_{node_id}_~_{original_field_name}"`

**2. Made Agent Nodes Consistent** (`smart_decision_maker.py` lines
497-530)
- Added `field_mapping` to agent function signatures (was missing)
- Agent signatures now sanitize property keys for Anthropic API (like
block signatures)
- Stores field_mapping for use during emit

### Impact

**Fixes:**
-  All graphs with multi-word field names (e.g., "Max Keyword
Difficulty", "Minimum Volume")
-  All graphs with special characters in field names (e.g., "API-Key")
-  Both block nodes AND agent nodes now work consistently

**Unaffected:**
- Single-word lowercase field names (e.g., "keyword", "url") - these
were already working

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified parse_execution_output handles exact match correctly
  - [x] Verified emit uses original field names
  - [x] Verified field_mapping works for both block and agent nodes
- [x] Re-run execution a40bdb4a-964d-4684-94e8-b148eb6bcfc2 after
deployment to verify fix

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
(no changes)
- [x] `docker-compose.yml` is updated or already compatible with my
changes (no changes)
- [x] No configuration changes in this PR

### Test Plan

1. **Unit test validation** (completed):
- Field name cleanup: "Max Keyword Difficulty" →
"max_keyword_difficulty" 
   - Parse with exact match: Success 
   - Parse with mismatch: Returns None 

2. **Production validation** (to be done after deployment):
   - Re-run execution a40bdb4a-964d-4684-94e8-b148eb6bcfc2
- Verify AgentExecutor (node 767682f5-694f-4b2a-bf52-fbdcad6a4a4f)
executes successfully
   - Verify execution completes with high correctness score (not 0.20)
   - Monitor for any regressions in existing graphs

### Files Changed

- `backend/blocks/smart_decision_maker.py`: Remove double sanitization,
add agent field_mapping

### Related Issues

- Resolves execution failure a40bdb4a-964d-4684-94e8-b148eb6bcfc2
- Fixes bug introduced in commit 536e2a5ec (Nov 12, 2025)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

* **Bug Fixes**
* Improved field name mapping consistency in the SmartDecisionMaker
block to ensure proper handling of field names throughout function
signatures and tool execution workflows.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-12 02:08:12 +07:00
Nicholas Tindle
4a52b7eca0 fix(backend): use customized block names in smart decision maker
The SmartDecisionMakerBlock now respects the customized_name field from
node metadata when generating tool function signatures for the LLM.

Previously, the block always used the static block.name from the block
class definition, ignoring any custom names users set in the builder UI.

Changes:
- _create_block_function_signature: Check sink_node.metadata for
  customized_name before falling back to block.name
- _create_agent_function_signature: Check sink_node.metadata for
  customized_name before falling back to sink_graph_meta.name
- Added 4 unit tests for the customized_name feature

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-09 16:51:39 -07:00
Zamil Majdy
97847f59f7 feat(backend): add human-in-the-loop review system for blocks requiring approval (#11732)
## Summary
Introduces a comprehensive Human-In-The-Loop (HITL) review system that
allows any block to require human approval before execution. This
extends the existing HITL infrastructure to support automatic review
requests for potentially dangerous operations.

## 🚀 Key Features

### **Automatic HITL for Any Block**
- **Simple opt-in**: Set `self.requires_human_review = True` in any
block constructor
- **Safe mode integration**: Only activates when
`execution_context.safe_mode = True`
- **Seamless workflow**: Blocks pause execution → Human reviews via
existing UI → Execution continues or stops

### **Unified Review Infrastructure**
- **Shared HITLReviewHelper**: Clean, reusable helper class for all
review operations
- **Single API**: `handle_review_decision()` method with structured
return type
- **Type-safe**: Proper typing with non-nullable
`ReviewDecision.review_result`

### **Smart Graph Detection** 
- **Updated `has_human_in_the_loop`**: Now detects both dedicated HITL
blocks and blocks with `requires_human_review = True`
- **Frontend awareness**: UI can properly indicate graphs requiring
human intervention

## 🏗️ Implementation

### **Block Usage**
```python
class MyBlock(Block):
    def __init__(self):
        super().__init__(...)
        self.requires_human_review = True  # Enable automatic HITL
        
    async def run(self, input_data, **kwargs):
        # If we reach here, either safe mode is off OR human approved
        # No additional HITL code needed - handled automatically by base class
        yield "result", "Operation completed"
```

### **Review Workflow**
1. **Block execution starts** → Base class checks
`requires_human_review` flag
2. **Safe mode enabled** → Creates review entry, pauses execution 
3. **Human reviews** → Uses existing review UI to approve/reject
4. **Execution resumes** → Continues if approved, raises error if
rejected
5. **Safe mode disabled** → Executes normally without review

## 🔧 Technical Improvements

### **Code Quality Enhancements**
- **Better naming**: `risky_block` → `requires_human_review` (clearer
intent)
- **Type safety**: Non-nullable `ReviewDecision.review_result`
(eliminates Optional checks)
- **Exhaustive handling**: Proper error handling for unexpected review
statuses
- **Clean exception handling**: Removed redundant try-catch-log-reraise
patterns

### **Architecture Fixes**
- **Circular import resolution**: Fixed `ExecutionContext` import issues
breaking 444+ block tests
- **Early returns**: Cleaner control flow without nested conditionals
- **Defensive programming**: Handles edge cases with clear error
messages

## 📊 Changes Made

### **Core Files**
- **`Block.requires_human_review`**: New flag for marking blocks
requiring approval
- **`HITLReviewHelper`**: Shared helper class with clean, testable API
- **`HumanInTheLoopBlock`**: Refactored to use shared infrastructure
- **`Graph.has_human_in_the_loop`**: Updated to include review-requiring
blocks

### **Quality Improvements**
- **Type hints**: Proper typing throughout with runtime compatibility
- **Error handling**: Exhaustive status handling with descriptive errors
- **Code reduction**: -16 lines through removal of redundant exception
handling
- **Test compatibility**: All 444/445 block tests pass

##  Testing & Validation

- **All tests pass**: 444/445 block tests passing 
- **Type checking**: All pyright/mypy checks pass   
- **Formatting**: All linting and formatting checks pass 
- **Circular imports**: Resolved import issues that were breaking tests

- **Backward compatibility**: Existing HITL functionality unchanged 

## 🎯 Use Cases

This enables automatic human oversight for blocks performing:
- **File operations**: Deletion, modification, system access
- **External API calls**: Payments, data modifications, destructive
operations
- **System commands**: Shell execution, configuration changes
- **Data processing**: Sensitive data handling, compliance-required
operations

## 🔄 Migration Path

**Existing code**: No changes required - fully backward compatible
**New blocks**: Simply set `self.requires_human_review = True` to enable
automatic HITL
**Safe mode**: Controls whether review requests are created (production
vs development)

---

This creates a robust, type-safe foundation for human oversight in
automated workflows while maintaining the existing HITL user experience
and API compatibility.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **New Features**
* Human-in-the-loop review support so executions can pause for human
review and resume based on decisions.

* **Improvements**
* Blocks can opt into requiring human review and will use reviewed input
when proceeding.
* Unified review decision flow with clearer approved/rejected outcomes
and messaging.
* Graph detection expanded to recognize nodes that require human review.

* **Chores**
  * Test config adjusted to avoid pytest plugin conflicts.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-09 21:14:37 +00:00
Zamil Majdy
22ca8955c5 fix(backend): library agent creation and version update improvements (#11731)
## Summary
Fixes library agent creation and version update logic to properly handle
both user-created and marketplace agents.

## Changes
- **Remove useGraphIsActiveVersion filter** from
`update_agent_version_in_library` to allow both manual and auto updates
- **Set useGraphIsActiveVersion correctly**:
- `False` for marketplace agents (require manual updates to avoid
breaking workflows)
- `True` for user-created agents (can safely auto-update since user
controls source)
- Update function documentation to reflect new behavior

## Problem Solved
- Marketplace agents can now be updated manually via API
- User-created agents maintain auto-update capability  
- Resolves Sentry error AUTOGPT-SERVER-722 about "Expected a record,
found none"
- Fixes store submission modal issues

## Test Plan
- [x] Verify marketplace agents are created with
`useGraphIsActiveVersion: False`
- [x] Verify user agents are created with `useGraphIsActiveVersion:
True`
- [x] Confirm `update_agent_version_in_library` works for both types
- [x] Test store submission flow works without modal issues

## Review Notes
This change ensures proper separation between user-controlled agents
(auto-update) and marketplace agents (manual update), while allowing the
API to service both use cases.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Release Notes

* **New Features**
* Enhanced agent publishing workflow with improved version tracking and
change detection for marketplace updates

* **Bug Fixes**
  * Improved error handling when updating agent versions in the library
  * Better detection of unpublished changes before publishing agents

* **Improvements**
* Changes Summary field now supports longer descriptions (up to 500
characters) with multi-line editing capability

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-09 21:14:05 +00:00
Nicholas Tindle
43cbe2e011 feat!(blocks): Add Reddit OAuth2 integration and advanced Reddit blocks (#11623)
Replaces user/password Reddit credentials with OAuth2, adds
RedditOAuthHandler, and updates Reddit blocks to support OAuth2
authentication. Introduces new blocks for creating posts, fetching post
details, searching, editing posts, and retrieving subreddit info.
Updates test credentials and input handling to use OAuth2 tokens.

<!-- Clearly explain the need for these changes: -->

### Changes 🏗️
Rebuild the reddit blocks to support oauth2 rather than requiring users
to provide their password and username.
This is done via a swap from script based to web based authentication on
the reddit side faciliatated by the approval of an oauth app by reddit
on the account `ntindle`
<!-- Concisely describe all of the changes made in this pull request:
-->

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  <!-- Put your test plan here: -->
  - [x] Build a super agent
  - [x] Upload the super agent and a video of it working

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Introduces full Reddit OAuth2 support and substantially expands Reddit
capabilities across the platform.
> 
> - Adds `RedditOAuthHandler` with token exchange, refresh, revoke;
registers handler in `integrations/oauth/__init__.py`
> - Refactors Reddit blocks to use `OAuth2Credentials` and `praw` via
refresh tokens; updates models (e.g., `post_id`, richer outputs) and
adds `strip_reddit_prefix`
> - New blocks: create/edit/delete posts, post/get/delete comments,
reply to comments, get post details, user posts (self/others), search,
inbox, subreddit info/rules/flairs, send messages
> - Updates default `settings.config.reddit_user_agent` and test
credentials; minor `.branchlet.json` addition
> - Docs: clarifies block error-handling with
`BlockInputError`/`BlockExecutionError` guidance
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
4f1f26c7e7. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

## Release Notes

* **New Features**
* Added OAuth2-based authentication for Reddit integration, replacing
legacy credential methods
* Expanded Reddit capabilities with new blocks for creating posts,
retrieving post details, managing comments, accessing inbox, and
fetching user/subreddit information
* Enhanced data models to support richer Reddit interactions and
chainable workflows

* **Documentation**
* Updated error handling guidance to distinguish between validation
errors and runtime errors with improved exception patterns

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
2026-01-09 20:53:03 +00:00
Nicholas Tindle
a318832414 feat(docs): update dev from gitbook changes (#11740)
<!-- Clearly explain the need for these changes: -->
gitbook branch has changes that need synced to dev
### Changes 🏗️
Pull changes from gitbook into dev
<!-- Concisely describe all of the changes made in this pull request:
-->

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Migrates documentation to GitBook and removes the old MkDocs setup.
> 
> - Removes MkDocs configuration and infra: `docs/mkdocs.yml`,
`docs/netlify.toml`, `docs/overrides/main.html`,
`docs/requirements.txt`, and JS assets (`_javascript/mathjax.js`,
`_javascript/tablesort.js`)
> - Updates `docs/content/contribute/index.md` to describe GitBook
workflow (gitbook branch, editing, previews, and `SUMMARY.md`)
> - Adds GitBook navigation file `docs/platform/SUMMARY.md` and a new
platform overview page `docs/platform/what-is-autogpt-platform.md`
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
e7e118b5a8. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

* **Documentation**
* Updated contribution guide for new documentation platform and workflow
  * Added new platform overview and navigation documentation

* **Chores**
  * Removed MkDocs configuration and related dependencies
  * Removed deprecated JavaScript integrations and deployment overrides

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>

<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-09 19:22:05 +00:00
Swifty
843c487500 feat(backend): add prisma types stub generator for pyright compatibility (#11736)
Prisma's generated `types.py` file is 57,000+ lines with complex
recursive TypedDict definitions that exhaust Pyright's type inference
budget. This causes random type errors and makes the type checker
unreliable.

### Changes 🏗️

- Add `gen_prisma_types_stub.py` script that generates a lightweight
`.pyi` stub file
- The stub preserves safe types (Literal, TypeVar) while collapsing
complex TypedDicts to `dict[str, Any]`
- Integrate stub generation into all workflows that run `prisma
generate`:
  - `platform-backend-ci.yml`
  - `claude.yml`
  - `claude-dependabot.yml`
  - `copilot-setup-steps.yml`
  - `docker-compose.platform.yml`
  - `Dockerfile`
  - `Makefile` (migrate & reset-db targets)
  - `linter.py` (lint & format commands)
- Add `gen-prisma-stub` poetry script entry
- Fix two pre-existing type errors that were previously masked:
- `store/db.py`: Replace private type
`_StoreListingVersion_version_OrderByInput` with dict literal
  - `airtable/_webhook.py`: Add cast for `Serializable` type

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run `poetry run format` - passes with 0 errors (down from 57+)
  - [x] Run `poetry run lint` - passes with 0 errors
  - [x] Run `poetry run gen-prisma-stub` - generates stub successfully
- [x] Verify stub file is created at correct location with proper
content

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Chores**
* Added a lightweight Prisma type-stub generator and integrated it into
build, lint, CI/CD, and container workflows.
* Build, migration, formatting, and lint steps now generate these stubs
to improve type-checking performance and reduce overhead during builds
and deployments.
  * Exposed a project command to run stub generation manually.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-09 16:31:10 +01:00
Nicholas Tindle
47a3a5ef41 feat(backend,frontend): optional credentials flag for blocks at agent level (#11716)
This feature allows agent makers to mark credential fields as optional.
When credentials are not configured for an optional block, the block
will be skipped during execution rather than causing a validation error.

**Use case:** An agent with multiple notification channels (Discord,
Twilio, Slack) where the user only needs to configure one - unconfigured
channels are simply skipped.

### Changes 🏗️

#### Backend

**Data Model Changes:**
- `backend/data/graph.py`: Added `credentials_optional` property to
`Node` model that reads from node metadata
- `backend/data/execution.py`: Added `nodes_to_skip` field to
`GraphExecutionEntry` model to track nodes that should be skipped

**Validation Changes:**
- `backend/executor/utils.py`:
- Updated `_validate_node_input_credentials()` to return a tuple of
`(credential_errors, nodes_to_skip)`
- Nodes with `credentials_optional=True` and missing credentials are
added to `nodes_to_skip` instead of raising validation errors
- Updated `validate_graph_with_credentials()` to propagate
`nodes_to_skip` set
- Updated `validate_and_construct_node_execution_input()` to return
`nodes_to_skip`
- Updated `add_graph_execution()` to pass `nodes_to_skip` to execution
entry

**Execution Changes:**
- `backend/executor/manager.py`:
  - Added skip logic in `_on_graph_execution()` dispatch loop
- When a node is in `nodes_to_skip`, it is marked as `COMPLETED` without
execution
  - No outputs are produced, so downstream nodes won't trigger

#### Frontend

**Node Store:**
- `frontend/src/app/(platform)/build/stores/nodeStore.ts`:
- Added `credentials_optional` to node metadata serialization in
`convertCustomNodeToBackendNode()`
- Added `getCredentialsOptional()` and `setCredentialsOptional()` helper
methods

**Credential Field Component:**
-
`frontend/src/components/renderers/input-renderer/fields/CredentialField/CredentialField.tsx`:
  - Added "Optional - skip block if not configured" switch toggle
  - Switch controls the `credentials_optional` metadata flag
  - Placeholder text updates based on optional state

**Credential Field Hook:**
-
`frontend/src/components/renderers/input-renderer/fields/CredentialField/useCredentialField.ts`:
  - Added `disableAutoSelect` parameter
- When credentials are optional, auto-selection of credentials is
disabled

**Feature Flags:**
- `frontend/src/services/feature-flags/use-get-flag.ts`: Minor refactor
(condition ordering)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Build an agent using smart decision maker and down stream blocks
to test this

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Introduces optional credentials across graph execution and UI,
allowing nodes to be skipped (no outputs, no downstream triggers) when
their credentials are not configured.
> 
> - Backend
> - Adds `Node.credentials_optional` (from node `metadata`) and computes
required credential fields in `Graph.credentials_input_schema` based on
usage.
> - Validates credentials with `_validate_node_input_credentials` →
returns `(errors, nodes_to_skip)`; plumbs `nodes_to_skip` through
`validate_graph_with_credentials`,
`_construct_starting_node_execution_input`,
`validate_and_construct_node_execution_input`, and `add_graph_execution`
into `GraphExecutionEntry`.
> - Executor: dispatch loop skips nodes in `nodes_to_skip` (marks
`COMPLETED`); `execute_node`/`on_node_execution` accept `nodes_to_skip`;
`SmartDecisionMakerBlock.run` filters tool functions whose
`_sink_node_id` is in `nodes_to_skip` and errors only if all tools are
filtered.
> - Models: `GraphExecutionEntry` gains `nodes_to_skip` field. Tests and
snapshots updated accordingly.
> 
> - Frontend
> - Builder: credential field uses `custom/credential_field` with an
"Optional – skip block if not configured" toggle; `nodeStore` persists
`credentials_optional` and history; UI hides optional toggle in run
dialogs.
> - Run dialogs: compute required credentials from
`credentials_input_schema.required`; allow selecting "None"; avoid
auto-select for optional; filter out incomplete creds before execute.
>   - Minor schema/UI wiring updates (`uiSchema`, form context flags).
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
5e01fd6a3e. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2026-01-09 14:11:35 +00:00
Ubbe
ec00aa951a fix(frontend): agent favorites layout (#11733)
## Changes 🏗️

<img width="800" height="744" alt="Screenshot 2026-01-09 at 16 07 08"
src="https://github.com/user-attachments/assets/034c97e2-18f3-441c-a13d-71f668ad672f"
/>

- Remove feature flag for agent favourites ( _keep it always visible_ )
- Fix the layout on the card so the ❤️ icon appears next to the `...`
menu
- Remove icons on toasts

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run the app locally and check the above


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **New Features**
* Favorites now respond to the current search term and are available to
all users (no feature-flag).

* **UI/UX Improvements**
* Redesigned Favorites section with simplified header, inline agent
counts, updated spacing/dividers, and removal of skeleton placeholders.
  * Favorite button repositioned and visually simplified on agent cards.
* Toast visuals simplified by removing per-type icons and adjusting
close-button positioning.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-09 18:52:07 +07:00
Zamil Majdy
36fb1ea004 fix(platform): store submission validation and marketplace improvements (#11706)
## Summary

Major improvements to AutoGPT Platform store submission deletion,
creator detection, and marketplace functionality. This PR addresses
critical issues with submission management and significantly improves
performance.

### 🔧 **Store Submission Deletion Issues Fixed**

**Problems Solved**:
-  **Wrong deletion granularity**: Deleting entire `StoreListing` (all
versions) when users expected to delete individual submissions
-  **"Graph not found" errors**: Cascade deletion removing AgentGraphs
that were still referenced
-  **Multiple submissions deleted**: When removing one submission, all
submissions for that agent were removed
-  **Deletion of approved content**: Users could accidentally remove
live store content

**Solutions Implemented**:
-  **Granular deletion**: Now deletes individual `StoreListingVersion`
records instead of entire listings
-  **Protected approved content**: Prevents deletion of approved
submissions to keep store content safe
-  **Automatic cleanup**: Empty listings are automatically removed when
last version is deleted
-  **Simplified logic**: Reduced deletion function from 85 lines to 32
lines for better maintainability

### 🔧 **Creator Detection Performance Issues Fixed**

**Problems Solved**:
-  **Inefficient API calls**: Fetching ALL user submissions just to
check if they own one specific agent
-  **Complex logic**: Convoluted creator detection requiring multiple
database queries
-  **Performance impact**: Especially bad for non-creators who would
never need this data

**Solutions Implemented**:
-  **Added `owner_user_id` field**: Direct ownership reference in
`LibraryAgent` model
-  **Simple ownership check**: `owner_user_id === user.id` instead of
complex submission fetching
-  **90%+ performance improvement**: Massive reduction in unnecessary
API calls for non-creators
-  **Optimized data fetching**: Only fetch submissions when user is
creator AND has marketplace listing

### 🔧 **Original Store Submission Validation Issues (BUILDER-59F)**
Fixes "Agent not found for this user. User ID: ..., Agent ID: , Version:
0" errors:

- **Backend validation**: Added Pydantic validation for `agent_id`
(min_length=1) and `agent_version` (>0)
- **Frontend validation**: Pre-submission validation with user-friendly
error messages
- **Agent selection flow**: Fixed `agentId` not being set from
`selectedAgentId`
- **State management**: Prevented state reset conflicts clearing
selected agent

### 🔧 **Marketplace Display Improvements**
Enhanced version history and changelog display:

- Updated title from "Changelog" to "Version history"
- Added "Last updated X ago" with proper relative time formatting  
- Display version numbers as "Version X.0" format
- Replaced all hardcoded values with dynamic API data
- Improved text sizes and layout structure

### 📁 **Files Changed**

**Backend Changes**:
- `backend/api/features/store/db.py` - Simplified deletion logic, added
approval protection
- `backend/api/features/store/model.py` - Added `listing_id` field,
Pydantic validation
- `backend/api/features/library/model.py` - Added `owner_user_id` field
for efficient creator detection
- All test files - Updated with new required fields

**Frontend Changes**:
- `useMarketplaceUpdate.ts` - Optimized creator detection logic 
- `MainDashboardPage.tsx` - Added `listing_id` mapping for proper type
safety
- `useAgentTableRow.ts` - Updated deletion logic to use
`store_listing_version_id`
- `usePublishAgentModal.ts` - Fixed state reset conflicts
- Marketplace components - Enhanced version history display

###  **Benefits**

**Performance**:
- 🚀 **90%+ reduction** in unnecessary API calls for creator detection
- 🚀 **Instant ownership checks** (no database queries needed)
- 🚀 **Optimized submissions fetching** (only when needed)

**User Experience**: 
-  **Granular submission control** (delete individual versions, not
entire listings)
-  **Protected approved content** (prevents accidental store content
removal)
-  **Better error prevention** (no more "Graph not found" errors)
-  **Clear validation messages** (user-friendly error feedback)

**Code Quality**:
-  **Simplified deletion logic** (85 lines → 32 lines)
-  **Better type safety** (proper `listing_id` field usage)  
-  **Cleaner creator detection** (explicit ownership vs inferred)
-  **Automatic cleanup** (empty listings removed automatically)

### 🧪 **Testing**
- [x] Backend validation rejects empty agent_id and zero agent_version
- [x] Frontend TypeScript compilation passes
- [x] Store submission works from both creator dashboard and "become a
creator" flows
- [x] Granular submission deletion works correctly
- [x] Approved submissions are protected from deletion
- [x] Creator detection is fast and accurate
- [x] Marketplace displays version history correctly

**Breaking Changes**: None - All changes are additive and backwards
compatible.

Fixes critical submission deletion issues, improves performance
significantly, and enhances user experience across the platform.

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **New Features**
  * Agent ownership is now tracked and exposed across the platform.
* Store submissions and versions now include a required listing_id to
preserve listing linkage.

* **Bug Fixes**
* Prevent deletion of APPROVED submissions; remove empty listings after
deletions.
* Edits restricted to PENDING submissions with clearer invalid-operation
messages.

* **Improvements**
* Stronger publish validation and UX guards; deduplicated images and
modal open/reset refinements.
* Version history shows relative "Last updated" times and version
badges.

* **Tests**
* E2E tests updated to target pending-submission flows for edit/delete.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Claude <noreply@anthropic.com>
2026-01-08 19:11:38 +00:00
Abhimanyu Yadav
a81ac150da fix(frontend): add word wrapping to CodeRenderer and improve output actions visibility (#11724)
## Changes 🏗️
- Updated the `CodeRenderer` component to add `whitespace-pre-wrap` and
`break-words` CSS classes to the `<code>` element
- This enables proper wrapping of long code lines while preserving
whitespace formatting

Before


![image.png](https://app.graphite.com/user-attachments/assets/aca769cc-0f6f-4e25-8cdd-c491fcbf21bb.png)

After

![Screenshot 2026-01-08 at
3.02.53 PM.png](https://app.graphite.com/user-attachments/assets/99e23efa-be2a-441b-b0d6-50fa2a08cdb0.png)

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified code with long lines wraps correctly
  - [x] Confirmed whitespace and indentation are preserved
  - [x] Tested code display in various viewport sizes

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Bug Fixes**
* Code blocks now preserve whitespace and wrap long lines for improved
readability.
* Output action controls are hidden when there is only a single output
item, reducing unnecessary UI elements.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-08 11:13:47 +00:00
Abhimanyu Yadav
49ee087496 feat(frontend): add new integration images for Webshare and WordPress (#11725)
### Changes 🏗️

Added two new integration icons to the frontend:
- `webshare_proxy.png` - Icon for WebShare Proxy integration
- `wordpress.png` - Icon for WordPress integration

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified both icons display correctly in the integrations section
  - [x] Confirmed icons render properly at different screen sizes
  - [x] Checked that the icons maintain quality when scaled

#### For configuration changes:
- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
2026-01-08 11:13:34 +00:00
Ubbe
fc25e008b3 feat(frontend): update library agent cards to use DS (#11720)
## Changes 🏗️

<img width="700" height="838" alt="Screenshot 2026-01-07 at 16 11 04"
src="https://github.com/user-attachments/assets/0b38d2e1-d4a8-4036-862c-b35c82c496c2"
/>

- Update the agent library cards to new designs
- Update page to use Design System components
- Allow to edit/delete/duplicate agents on the library list page
- Add missing actions on library agent detail page

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run locally and test the above


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **New Features**
* Marketplace info shown on agent cards and improved favoriting with
optimistic UI and feedback.
  * Delete agent and delete schedule flows with confirmation dialogs.

* **Refactor**
* New composable form system, modernized upload dialog, streamlined
search bar, and multiple library components converted to named exports
with layout tweaks.
  * New agent card menu and favorite button UI.

* **Chores**
  * Removed notification UI and dropped a drag-drop dependency.

* **Tests**
  * Increased timeouts and stabilized upload/pagination flows.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-08 18:28:27 +07:00
Ubbe
b0855e8cf2 feat(frontend): context menu right click new builder (#11703)
## Changes 🏗️

<img width="250" height="504" alt="Screenshot 2026-01-06 at 17 53 26"
src="https://github.com/user-attachments/assets/52013448-f49c-46b6-b86a-39f98270cbc3"
/>

<img width="300" height="544" alt="Screenshot 2026-01-06 at 17 53 29"
src="https://github.com/user-attachments/assets/e6334034-68e4-4346-9092-3774ab3e8445"
/>

On the **New Builder**:
- right-click on a node menu make it show the context menu
- use the same menu for right-click and when clicking on `...`

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run locally and test the above



<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **New Features**
* Added a custom right-click context menu for nodes with Copy, Open
agent (when available), and Delete actions; browser default menu is
suppressed while preserving zoom/drag/wiring.
* Introduced reusable SecondaryMenu primitives for context and dropdown
menus.

* **Documentation**
* Added Storybook examples demonstrating the context menu and dropdown
menu usage.

* **Style**
* Updated menu styling and icons with improved consistency and dark-mode
support.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-08 17:35:49 +07:00
Abhimanyu Yadav
5e2146dd76 feat(frontend): add CustomSchemaField wrapper for dynamic form field routing
(#11722)

### Changes 🏗️

This PR introduces automatic UI schema generation for custom form
fields, eliminating manual field mapping.

#### 1. **generateUiSchemaForCustomFields Utility**
(`generate-ui-schema.ts`) - New File
   - Auto-generates `ui:field` settings for custom fields
   - Detects custom fields using `findCustomFieldId()` matcher
   - Handles nested objects and array items recursively
   - Merges with existing UI schema without overwriting

#### 2. **FormRenderer Integration** (`FormRenderer.tsx`)
   - Imports and uses `generateUiSchemaForCustomFields`
   - Creates merged UI schema with `useMemo`
   - Passes merged schema to Form component
   - Enables automatic custom field detection

#### 3. **Preprocessor Cleanup** (`input-schema-pre-processor.ts`)
   - Removed manual `$id` assignment for custom fields
   - Removed unused `findCustomFieldId` import
   - Simplified to focus only on type validation

### Why these changes?

- Custom fields now auto-detect without manual `ui:field` configuration
- Uses standard RJSF approach (UI schema) for field routing
- Centralized custom field detection logic improves maintainability

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verify custom fields render correctly when present in schema
- [x] Verify standard fields continue to render with default SchemaField
- [x] Verify multiple instances of same custom field type have unique
IDs
  - [x] Test form submission with custom fields

<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->

## Summary by CodeRabbit

* **Bug Fixes**
* Improved custom field rendering in forms by optimizing the UI schema
generation process.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-08 08:47:52 +00:00
Abhimanyu Yadav
103a62c9da feat(frontend/builder): add filters to blocks menu (#11654)
### Changes 🏗️

This PR adds filtering functionality to the new blocks menu, allowing
users to filter search results by category and creator.

**New Components:**
- `BlockMenuFilters`: Main filter component displaying active filters
and filter chips
- `FilterSheet`: Slide-out panel for selecting filters with categories
and creators
- `BlockMenuSearchContent`: Refactored search results display component

**Features Added:**
- Filter by categories: Blocks, Integrations, Marketplace agents, My
agents
- Filter by creator: Shows all available creators from search results
- Category counts: Display number of results per category
- Interactive filter chips with animations (using framer-motion)
- Hover states showing result counts on filter chips
- "All filters" sheet with apply/clear functionality

**State Management:**
- Extended `blockMenuStore` with filter state management
- Added `filters`, `creators`, `creators_list`, and `categoryCounts` to
store
- Integrated filters with search API (`filter` and `by_creator`
parameters)

**Refactoring:**
- Moved search logic from `BlockMenuSearch` to `BlockMenuSearchContent`
- Renamed `useBlockMenuSearch` to `useBlockMenuSearchContent`
- Moved helper functions to `BlockMenuSearchContent` directory

**API Changes:**
- Updated `custom-mutator.ts` to properly handle query parameter
encoding


### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Search for blocks and verify filter chips appear
- [x] Click "All filters" and verify filter sheet opens with categories
- [x] Select/deselect category filters and verify results update
accordingly
  - [x] Filter by creator and verify only blocks from that creator show
  - [x] Clear all filters and verify reset to default state
  - [x] Verify filter counts display correctly
  - [x] Test filter chip hover animations
2026-01-08 08:02:21 +00:00
Bentlybro
fc8434fb30 Merge branch 'master' into dev 2026-01-07 12:02:15 +00:00
Ubbe
3ae08cd48e feat(frontend): use Google Drive Picker on new builder (#11702)
## Changes 🏗️

<img width="600" height="960" alt="Screenshot 2026-01-06 at 17 40 23"
src="https://github.com/user-attachments/assets/61085ec5-a367-45c7-acaa-e3fc0f0af647"
/>

- So when using Google Blocks on the new builder, it shows Google Drive
Picket 🏁

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
  - [x] Run app locally and test the above


<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **New Features**
* Added a Google Drive picker field and widget for forms with an
always-visible remove button and improved single/multi selection
handling.

* **Bug Fixes**
* Better validation and normalization of selected files and consolidated
error messaging.
* Adjusted layout spacing around the picker and selected files for
clearer display.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->
2026-01-07 17:07:09 +07:00
Swifty
4db13837b9 Revert "extracted frontend changes out of the hackathon/copilot branch"
This reverts commit df87867625.
2026-01-07 09:27:25 +01:00
Swifty
df87867625 extracted frontend changes out of the hackathon/copilot branch 2026-01-07 09:25:10 +01:00
Ubbe
4a7bc006a8 hotfix(frontend): chat should be disabled by default (#11639)
### Changes 🏗️

Chat should be disabled by default; otherwise, it flashes, and if Launch
Darkly fails to fail, it is dangerous.

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Run locally with Launch Darkly disabled and test the above
2025-12-18 19:04:13 +01:00
713 changed files with 54239 additions and 14271 deletions

37
.branchlet.json Normal file
View File

@@ -0,0 +1,37 @@
{
"worktreeCopyPatterns": [
".env*",
".vscode/**",
".auth/**",
".claude/**",
"autogpt_platform/.env*",
"autogpt_platform/backend/.env*",
"autogpt_platform/frontend/.env*",
"autogpt_platform/frontend/.auth/**",
"autogpt_platform/db/docker/.env*"
],
"worktreeCopyIgnores": [
"**/node_modules/**",
"**/dist/**",
"**/.git/**",
"**/Thumbs.db",
"**/.DS_Store",
"**/.next/**",
"**/__pycache__/**",
"**/.ruff_cache/**",
"**/.pytest_cache/**",
"**/*.pyc",
"**/playwright-report/**",
"**/logs/**",
"**/site/**"
],
"worktreePathTemplate": "$BASE_PATH.worktree",
"postCreateCmd": [
"cd autogpt_platform/autogpt_libs && poetry install",
"cd autogpt_platform/backend && poetry install && poetry run prisma generate",
"cd autogpt_platform/frontend && pnpm install",
"cd docs && pip install -r requirements.txt"
],
"terminalCommand": "code .",
"deleteBranchWithWorktree": false
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,125 @@
---
name: vercel-react-best-practices
description: React and Next.js performance optimization guidelines from Vercel Engineering. This skill should be used when writing, reviewing, or refactoring React/Next.js code to ensure optimal performance patterns. Triggers on tasks involving React components, Next.js pages, data fetching, bundle optimization, or performance improvements.
license: MIT
metadata:
author: vercel
version: "1.0.0"
---
# Vercel React Best Practices
Comprehensive performance optimization guide for React and Next.js applications, maintained by Vercel. Contains 45 rules across 8 categories, prioritized by impact to guide automated refactoring and code generation.
## When to Apply
Reference these guidelines when:
- Writing new React components or Next.js pages
- Implementing data fetching (client or server-side)
- Reviewing code for performance issues
- Refactoring existing React/Next.js code
- Optimizing bundle size or load times
## Rule Categories by Priority
| Priority | Category | Impact | Prefix |
|----------|----------|--------|--------|
| 1 | Eliminating Waterfalls | CRITICAL | `async-` |
| 2 | Bundle Size Optimization | CRITICAL | `bundle-` |
| 3 | Server-Side Performance | HIGH | `server-` |
| 4 | Client-Side Data Fetching | MEDIUM-HIGH | `client-` |
| 5 | Re-render Optimization | MEDIUM | `rerender-` |
| 6 | Rendering Performance | MEDIUM | `rendering-` |
| 7 | JavaScript Performance | LOW-MEDIUM | `js-` |
| 8 | Advanced Patterns | LOW | `advanced-` |
## Quick Reference
### 1. Eliminating Waterfalls (CRITICAL)
- `async-defer-await` - Move await into branches where actually used
- `async-parallel` - Use Promise.all() for independent operations
- `async-dependencies` - Use better-all for partial dependencies
- `async-api-routes` - Start promises early, await late in API routes
- `async-suspense-boundaries` - Use Suspense to stream content
### 2. Bundle Size Optimization (CRITICAL)
- `bundle-barrel-imports` - Import directly, avoid barrel files
- `bundle-dynamic-imports` - Use next/dynamic for heavy components
- `bundle-defer-third-party` - Load analytics/logging after hydration
- `bundle-conditional` - Load modules only when feature is activated
- `bundle-preload` - Preload on hover/focus for perceived speed
### 3. Server-Side Performance (HIGH)
- `server-cache-react` - Use React.cache() for per-request deduplication
- `server-cache-lru` - Use LRU cache for cross-request caching
- `server-serialization` - Minimize data passed to client components
- `server-parallel-fetching` - Restructure components to parallelize fetches
- `server-after-nonblocking` - Use after() for non-blocking operations
### 4. Client-Side Data Fetching (MEDIUM-HIGH)
- `client-swr-dedup` - Use SWR for automatic request deduplication
- `client-event-listeners` - Deduplicate global event listeners
### 5. Re-render Optimization (MEDIUM)
- `rerender-defer-reads` - Don't subscribe to state only used in callbacks
- `rerender-memo` - Extract expensive work into memoized components
- `rerender-dependencies` - Use primitive dependencies in effects
- `rerender-derived-state` - Subscribe to derived booleans, not raw values
- `rerender-functional-setstate` - Use functional setState for stable callbacks
- `rerender-lazy-state-init` - Pass function to useState for expensive values
- `rerender-transitions` - Use startTransition for non-urgent updates
### 6. Rendering Performance (MEDIUM)
- `rendering-animate-svg-wrapper` - Animate div wrapper, not SVG element
- `rendering-content-visibility` - Use content-visibility for long lists
- `rendering-hoist-jsx` - Extract static JSX outside components
- `rendering-svg-precision` - Reduce SVG coordinate precision
- `rendering-hydration-no-flicker` - Use inline script for client-only data
- `rendering-activity` - Use Activity component for show/hide
- `rendering-conditional-render` - Use ternary, not && for conditionals
### 7. JavaScript Performance (LOW-MEDIUM)
- `js-batch-dom-css` - Group CSS changes via classes or cssText
- `js-index-maps` - Build Map for repeated lookups
- `js-cache-property-access` - Cache object properties in loops
- `js-cache-function-results` - Cache function results in module-level Map
- `js-cache-storage` - Cache localStorage/sessionStorage reads
- `js-combine-iterations` - Combine multiple filter/map into one loop
- `js-length-check-first` - Check array length before expensive comparison
- `js-early-exit` - Return early from functions
- `js-hoist-regexp` - Hoist RegExp creation outside loops
- `js-min-max-loop` - Use loop for min/max instead of sort
- `js-set-map-lookups` - Use Set/Map for O(1) lookups
- `js-tosorted-immutable` - Use toSorted() for immutability
### 8. Advanced Patterns (LOW)
- `advanced-event-handler-refs` - Store event handlers in refs
- `advanced-use-latest` - useLatest for stable callback refs
## How to Use
Read individual rule files for detailed explanations and code examples:
```
rules/async-parallel.md
rules/bundle-barrel-imports.md
rules/_sections.md
```
Each rule file contains:
- Brief explanation of why it matters
- Incorrect code example with explanation
- Correct code example with explanation
- Additional context and references
## Full Compiled Document
For the complete guide with all rules expanded: `AGENTS.md`

View File

@@ -0,0 +1,55 @@
---
title: Store Event Handlers in Refs
impact: LOW
impactDescription: stable subscriptions
tags: advanced, hooks, refs, event-handlers, optimization
---
## Store Event Handlers in Refs
Store callbacks in refs when used in effects that shouldn't re-subscribe on callback changes.
**Incorrect (re-subscribes on every render):**
```tsx
function useWindowEvent(event: string, handler: () => void) {
useEffect(() => {
window.addEventListener(event, handler)
return () => window.removeEventListener(event, handler)
}, [event, handler])
}
```
**Correct (stable subscription):**
```tsx
function useWindowEvent(event: string, handler: () => void) {
const handlerRef = useRef(handler)
useEffect(() => {
handlerRef.current = handler
}, [handler])
useEffect(() => {
const listener = () => handlerRef.current()
window.addEventListener(event, listener)
return () => window.removeEventListener(event, listener)
}, [event])
}
```
**Alternative: use `useEffectEvent` if you're on latest React:**
```tsx
import { useEffectEvent } from 'react'
function useWindowEvent(event: string, handler: () => void) {
const onEvent = useEffectEvent(handler)
useEffect(() => {
window.addEventListener(event, onEvent)
return () => window.removeEventListener(event, onEvent)
}, [event])
}
```
`useEffectEvent` provides a cleaner API for the same pattern: it creates a stable function reference that always calls the latest version of the handler.

View File

@@ -0,0 +1,49 @@
---
title: useLatest for Stable Callback Refs
impact: LOW
impactDescription: prevents effect re-runs
tags: advanced, hooks, useLatest, refs, optimization
---
## useLatest for Stable Callback Refs
Access latest values in callbacks without adding them to dependency arrays. Prevents effect re-runs while avoiding stale closures.
**Implementation:**
```typescript
function useLatest<T>(value: T) {
const ref = useRef(value)
useEffect(() => {
ref.current = value
}, [value])
return ref
}
```
**Incorrect (effect re-runs on every callback change):**
```tsx
function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
const [query, setQuery] = useState('')
useEffect(() => {
const timeout = setTimeout(() => onSearch(query), 300)
return () => clearTimeout(timeout)
}, [query, onSearch])
}
```
**Correct (stable effect, fresh callback):**
```tsx
function SearchInput({ onSearch }: { onSearch: (q: string) => void }) {
const [query, setQuery] = useState('')
const onSearchRef = useLatest(onSearch)
useEffect(() => {
const timeout = setTimeout(() => onSearchRef.current(query), 300)
return () => clearTimeout(timeout)
}, [query])
}
```

View File

@@ -0,0 +1,38 @@
---
title: Prevent Waterfall Chains in API Routes
impact: CRITICAL
impactDescription: 2-10× improvement
tags: api-routes, server-actions, waterfalls, parallelization
---
## Prevent Waterfall Chains in API Routes
In API routes and Server Actions, start independent operations immediately, even if you don't await them yet.
**Incorrect (config waits for auth, data waits for both):**
```typescript
export async function GET(request: Request) {
const session = await auth()
const config = await fetchConfig()
const data = await fetchData(session.user.id)
return Response.json({ data, config })
}
```
**Correct (auth and config start immediately):**
```typescript
export async function GET(request: Request) {
const sessionPromise = auth()
const configPromise = fetchConfig()
const session = await sessionPromise
const [config, data] = await Promise.all([
configPromise,
fetchData(session.user.id)
])
return Response.json({ data, config })
}
```
For operations with more complex dependency chains, use `better-all` to automatically maximize parallelism (see Dependency-Based Parallelization).

View File

@@ -0,0 +1,80 @@
---
title: Defer Await Until Needed
impact: HIGH
impactDescription: avoids blocking unused code paths
tags: async, await, conditional, optimization
---
## Defer Await Until Needed
Move `await` operations into the branches where they're actually used to avoid blocking code paths that don't need them.
**Incorrect (blocks both branches):**
```typescript
async function handleRequest(userId: string, skipProcessing: boolean) {
const userData = await fetchUserData(userId)
if (skipProcessing) {
// Returns immediately but still waited for userData
return { skipped: true }
}
// Only this branch uses userData
return processUserData(userData)
}
```
**Correct (only blocks when needed):**
```typescript
async function handleRequest(userId: string, skipProcessing: boolean) {
if (skipProcessing) {
// Returns immediately without waiting
return { skipped: true }
}
// Fetch only when needed
const userData = await fetchUserData(userId)
return processUserData(userData)
}
```
**Another example (early return optimization):**
```typescript
// Incorrect: always fetches permissions
async function updateResource(resourceId: string, userId: string) {
const permissions = await fetchPermissions(userId)
const resource = await getResource(resourceId)
if (!resource) {
return { error: 'Not found' }
}
if (!permissions.canEdit) {
return { error: 'Forbidden' }
}
return await updateResourceData(resource, permissions)
}
// Correct: fetches only when needed
async function updateResource(resourceId: string, userId: string) {
const resource = await getResource(resourceId)
if (!resource) {
return { error: 'Not found' }
}
const permissions = await fetchPermissions(userId)
if (!permissions.canEdit) {
return { error: 'Forbidden' }
}
return await updateResourceData(resource, permissions)
}
```
This optimization is especially valuable when the skipped branch is frequently taken, or when the deferred operation is expensive.

View File

@@ -0,0 +1,36 @@
---
title: Dependency-Based Parallelization
impact: CRITICAL
impactDescription: 2-10× improvement
tags: async, parallelization, dependencies, better-all
---
## Dependency-Based Parallelization
For operations with partial dependencies, use `better-all` to maximize parallelism. It automatically starts each task at the earliest possible moment.
**Incorrect (profile waits for config unnecessarily):**
```typescript
const [user, config] = await Promise.all([
fetchUser(),
fetchConfig()
])
const profile = await fetchProfile(user.id)
```
**Correct (config and profile run in parallel):**
```typescript
import { all } from 'better-all'
const { user, config, profile } = await all({
async user() { return fetchUser() },
async config() { return fetchConfig() },
async profile() {
return fetchProfile((await this.$.user).id)
}
})
```
Reference: [https://github.com/shuding/better-all](https://github.com/shuding/better-all)

View File

@@ -0,0 +1,28 @@
---
title: Promise.all() for Independent Operations
impact: CRITICAL
impactDescription: 2-10× improvement
tags: async, parallelization, promises, waterfalls
---
## Promise.all() for Independent Operations
When async operations have no interdependencies, execute them concurrently using `Promise.all()`.
**Incorrect (sequential execution, 3 round trips):**
```typescript
const user = await fetchUser()
const posts = await fetchPosts()
const comments = await fetchComments()
```
**Correct (parallel execution, 1 round trip):**
```typescript
const [user, posts, comments] = await Promise.all([
fetchUser(),
fetchPosts(),
fetchComments()
])
```

View File

@@ -0,0 +1,99 @@
---
title: Strategic Suspense Boundaries
impact: HIGH
impactDescription: faster initial paint
tags: async, suspense, streaming, layout-shift
---
## Strategic Suspense Boundaries
Instead of awaiting data in async components before returning JSX, use Suspense boundaries to show the wrapper UI faster while data loads.
**Incorrect (wrapper blocked by data fetching):**
```tsx
async function Page() {
const data = await fetchData() // Blocks entire page
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<div>
<DataDisplay data={data} />
</div>
<div>Footer</div>
</div>
)
}
```
The entire layout waits for data even though only the middle section needs it.
**Correct (wrapper shows immediately, data streams in):**
```tsx
function Page() {
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<div>
<Suspense fallback={<Skeleton />}>
<DataDisplay />
</Suspense>
</div>
<div>Footer</div>
</div>
)
}
async function DataDisplay() {
const data = await fetchData() // Only blocks this component
return <div>{data.content}</div>
}
```
Sidebar, Header, and Footer render immediately. Only DataDisplay waits for data.
**Alternative (share promise across components):**
```tsx
function Page() {
// Start fetch immediately, but don't await
const dataPromise = fetchData()
return (
<div>
<div>Sidebar</div>
<div>Header</div>
<Suspense fallback={<Skeleton />}>
<DataDisplay dataPromise={dataPromise} />
<DataSummary dataPromise={dataPromise} />
</Suspense>
<div>Footer</div>
</div>
)
}
function DataDisplay({ dataPromise }: { dataPromise: Promise<Data> }) {
const data = use(dataPromise) // Unwraps the promise
return <div>{data.content}</div>
}
function DataSummary({ dataPromise }: { dataPromise: Promise<Data> }) {
const data = use(dataPromise) // Reuses the same promise
return <div>{data.summary}</div>
}
```
Both components share the same promise, so only one fetch occurs. Layout renders immediately while both components wait together.
**When NOT to use this pattern:**
- Critical data needed for layout decisions (affects positioning)
- SEO-critical content above the fold
- Small, fast queries where suspense overhead isn't worth it
- When you want to avoid layout shift (loading → content jump)
**Trade-off:** Faster initial paint vs potential layout shift. Choose based on your UX priorities.

View File

@@ -0,0 +1,59 @@
---
title: Avoid Barrel File Imports
impact: CRITICAL
impactDescription: 200-800ms import cost, slow builds
tags: bundle, imports, tree-shaking, barrel-files, performance
---
## Avoid Barrel File Imports
Import directly from source files instead of barrel files to avoid loading thousands of unused modules. **Barrel files** are entry points that re-export multiple modules (e.g., `index.js` that does `export * from './module'`).
Popular icon and component libraries can have **up to 10,000 re-exports** in their entry file. For many React packages, **it takes 200-800ms just to import them**, affecting both development speed and production cold starts.
**Why tree-shaking doesn't help:** When a library is marked as external (not bundled), the bundler can't optimize it. If you bundle it to enable tree-shaking, builds become substantially slower analyzing the entire module graph.
**Incorrect (imports entire library):**
```tsx
import { Check, X, Menu } from 'lucide-react'
// Loads 1,583 modules, takes ~2.8s extra in dev
// Runtime cost: 200-800ms on every cold start
import { Button, TextField } from '@mui/material'
// Loads 2,225 modules, takes ~4.2s extra in dev
```
**Correct (imports only what you need):**
```tsx
import Check from 'lucide-react/dist/esm/icons/check'
import X from 'lucide-react/dist/esm/icons/x'
import Menu from 'lucide-react/dist/esm/icons/menu'
// Loads only 3 modules (~2KB vs ~1MB)
import Button from '@mui/material/Button'
import TextField from '@mui/material/TextField'
// Loads only what you use
```
**Alternative (Next.js 13.5+):**
```js
// next.config.js - use optimizePackageImports
module.exports = {
experimental: {
optimizePackageImports: ['lucide-react', '@mui/material']
}
}
// Then you can keep the ergonomic barrel imports:
import { Check, X, Menu } from 'lucide-react'
// Automatically transformed to direct imports at build time
```
Direct imports provide 15-70% faster dev boot, 28% faster builds, 40% faster cold starts, and significantly faster HMR.
Libraries commonly affected: `lucide-react`, `@mui/material`, `@mui/icons-material`, `@tabler/icons-react`, `react-icons`, `@headlessui/react`, `@radix-ui/react-*`, `lodash`, `ramda`, `date-fns`, `rxjs`, `react-use`.
Reference: [How we optimized package imports in Next.js](https://vercel.com/blog/how-we-optimized-package-imports-in-next-js)

View File

@@ -0,0 +1,31 @@
---
title: Conditional Module Loading
impact: HIGH
impactDescription: loads large data only when needed
tags: bundle, conditional-loading, lazy-loading
---
## Conditional Module Loading
Load large data or modules only when a feature is activated.
**Example (lazy-load animation frames):**
```tsx
function AnimationPlayer({ enabled }: { enabled: boolean }) {
const [frames, setFrames] = useState<Frame[] | null>(null)
useEffect(() => {
if (enabled && !frames && typeof window !== 'undefined') {
import('./animation-frames.js')
.then(mod => setFrames(mod.frames))
.catch(() => setEnabled(false))
}
}, [enabled, frames])
if (!frames) return <Skeleton />
return <Canvas frames={frames} />
}
```
The `typeof window !== 'undefined'` check prevents bundling this module for SSR, optimizing server bundle size and build speed.

View File

@@ -0,0 +1,49 @@
---
title: Defer Non-Critical Third-Party Libraries
impact: MEDIUM
impactDescription: loads after hydration
tags: bundle, third-party, analytics, defer
---
## Defer Non-Critical Third-Party Libraries
Analytics, logging, and error tracking don't block user interaction. Load them after hydration.
**Incorrect (blocks initial bundle):**
```tsx
import { Analytics } from '@vercel/analytics/react'
export default function RootLayout({ children }) {
return (
<html>
<body>
{children}
<Analytics />
</body>
</html>
)
}
```
**Correct (loads after hydration):**
```tsx
import dynamic from 'next/dynamic'
const Analytics = dynamic(
() => import('@vercel/analytics/react').then(m => m.Analytics),
{ ssr: false }
)
export default function RootLayout({ children }) {
return (
<html>
<body>
{children}
<Analytics />
</body>
</html>
)
}
```

View File

@@ -0,0 +1,35 @@
---
title: Dynamic Imports for Heavy Components
impact: CRITICAL
impactDescription: directly affects TTI and LCP
tags: bundle, dynamic-import, code-splitting, next-dynamic
---
## Dynamic Imports for Heavy Components
Use `next/dynamic` to lazy-load large components not needed on initial render.
**Incorrect (Monaco bundles with main chunk ~300KB):**
```tsx
import { MonacoEditor } from './monaco-editor'
function CodePanel({ code }: { code: string }) {
return <MonacoEditor value={code} />
}
```
**Correct (Monaco loads on demand):**
```tsx
import dynamic from 'next/dynamic'
const MonacoEditor = dynamic(
() => import('./monaco-editor').then(m => m.MonacoEditor),
{ ssr: false }
)
function CodePanel({ code }: { code: string }) {
return <MonacoEditor value={code} />
}
```

View File

@@ -0,0 +1,50 @@
---
title: Preload Based on User Intent
impact: MEDIUM
impactDescription: reduces perceived latency
tags: bundle, preload, user-intent, hover
---
## Preload Based on User Intent
Preload heavy bundles before they're needed to reduce perceived latency.
**Example (preload on hover/focus):**
```tsx
function EditorButton({ onClick }: { onClick: () => void }) {
const preload = () => {
if (typeof window !== 'undefined') {
void import('./monaco-editor')
}
}
return (
<button
onMouseEnter={preload}
onFocus={preload}
onClick={onClick}
>
Open Editor
</button>
)
}
```
**Example (preload when feature flag is enabled):**
```tsx
function FlagsProvider({ children, flags }: Props) {
useEffect(() => {
if (flags.editorEnabled && typeof window !== 'undefined') {
void import('./monaco-editor').then(mod => mod.init())
}
}, [flags.editorEnabled])
return <FlagsContext.Provider value={flags}>
{children}
</FlagsContext.Provider>
}
```
The `typeof window !== 'undefined'` check prevents bundling preloaded modules for SSR, optimizing server bundle size and build speed.

View File

@@ -0,0 +1,74 @@
---
title: Deduplicate Global Event Listeners
impact: LOW
impactDescription: single listener for N components
tags: client, swr, event-listeners, subscription
---
## Deduplicate Global Event Listeners
Use `useSWRSubscription()` to share global event listeners across component instances.
**Incorrect (N instances = N listeners):**
```tsx
function useKeyboardShortcut(key: string, callback: () => void) {
useEffect(() => {
const handler = (e: KeyboardEvent) => {
if (e.metaKey && e.key === key) {
callback()
}
}
window.addEventListener('keydown', handler)
return () => window.removeEventListener('keydown', handler)
}, [key, callback])
}
```
When using the `useKeyboardShortcut` hook multiple times, each instance will register a new listener.
**Correct (N instances = 1 listener):**
```tsx
import useSWRSubscription from 'swr/subscription'
// Module-level Map to track callbacks per key
const keyCallbacks = new Map<string, Set<() => void>>()
function useKeyboardShortcut(key: string, callback: () => void) {
// Register this callback in the Map
useEffect(() => {
if (!keyCallbacks.has(key)) {
keyCallbacks.set(key, new Set())
}
keyCallbacks.get(key)!.add(callback)
return () => {
const set = keyCallbacks.get(key)
if (set) {
set.delete(callback)
if (set.size === 0) {
keyCallbacks.delete(key)
}
}
}
}, [key, callback])
useSWRSubscription('global-keydown', () => {
const handler = (e: KeyboardEvent) => {
if (e.metaKey && keyCallbacks.has(e.key)) {
keyCallbacks.get(e.key)!.forEach(cb => cb())
}
}
window.addEventListener('keydown', handler)
return () => window.removeEventListener('keydown', handler)
})
}
function Profile() {
// Multiple shortcuts will share the same listener
useKeyboardShortcut('p', () => { /* ... */ })
useKeyboardShortcut('k', () => { /* ... */ })
// ...
}
```

View File

@@ -0,0 +1,56 @@
---
title: Use SWR for Automatic Deduplication
impact: MEDIUM-HIGH
impactDescription: automatic deduplication
tags: client, swr, deduplication, data-fetching
---
## Use SWR for Automatic Deduplication
SWR enables request deduplication, caching, and revalidation across component instances.
**Incorrect (no deduplication, each instance fetches):**
```tsx
function UserList() {
const [users, setUsers] = useState([])
useEffect(() => {
fetch('/api/users')
.then(r => r.json())
.then(setUsers)
}, [])
}
```
**Correct (multiple instances share one request):**
```tsx
import useSWR from 'swr'
function UserList() {
const { data: users } = useSWR('/api/users', fetcher)
}
```
**For immutable data:**
```tsx
import { useImmutableSWR } from '@/lib/swr'
function StaticContent() {
const { data } = useImmutableSWR('/api/config', fetcher)
}
```
**For mutations:**
```tsx
import { useSWRMutation } from 'swr/mutation'
function UpdateButton() {
const { trigger } = useSWRMutation('/api/user', updateUser)
return <button onClick={() => trigger()}>Update</button>
}
```
Reference: [https://swr.vercel.app](https://swr.vercel.app)

View File

@@ -0,0 +1,82 @@
---
title: Batch DOM CSS Changes
impact: MEDIUM
impactDescription: reduces reflows/repaints
tags: javascript, dom, css, performance, reflow
---
## Batch DOM CSS Changes
Avoid changing styles one property at a time. Group multiple CSS changes together via classes or `cssText` to minimize browser reflows.
**Incorrect (multiple reflows):**
```typescript
function updateElementStyles(element: HTMLElement) {
// Each line triggers a reflow
element.style.width = '100px'
element.style.height = '200px'
element.style.backgroundColor = 'blue'
element.style.border = '1px solid black'
}
```
**Correct (add class - single reflow):**
```typescript
// CSS file
.highlighted-box {
width: 100px;
height: 200px;
background-color: blue;
border: 1px solid black;
}
// JavaScript
function updateElementStyles(element: HTMLElement) {
element.classList.add('highlighted-box')
}
```
**Correct (change cssText - single reflow):**
```typescript
function updateElementStyles(element: HTMLElement) {
element.style.cssText = `
width: 100px;
height: 200px;
background-color: blue;
border: 1px solid black;
`
}
```
**React example:**
```tsx
// Incorrect: changing styles one by one
function Box({ isHighlighted }: { isHighlighted: boolean }) {
const ref = useRef<HTMLDivElement>(null)
useEffect(() => {
if (ref.current && isHighlighted) {
ref.current.style.width = '100px'
ref.current.style.height = '200px'
ref.current.style.backgroundColor = 'blue'
}
}, [isHighlighted])
return <div ref={ref}>Content</div>
}
// Correct: toggle class
function Box({ isHighlighted }: { isHighlighted: boolean }) {
return (
<div className={isHighlighted ? 'highlighted-box' : ''}>
Content
</div>
)
}
```
Prefer CSS classes over inline styles when possible. Classes are cached by the browser and provide better separation of concerns.

View File

@@ -0,0 +1,80 @@
---
title: Cache Repeated Function Calls
impact: MEDIUM
impactDescription: avoid redundant computation
tags: javascript, cache, memoization, performance
---
## Cache Repeated Function Calls
Use a module-level Map to cache function results when the same function is called repeatedly with the same inputs during render.
**Incorrect (redundant computation):**
```typescript
function ProjectList({ projects }: { projects: Project[] }) {
return (
<div>
{projects.map(project => {
// slugify() called 100+ times for same project names
const slug = slugify(project.name)
return <ProjectCard key={project.id} slug={slug} />
})}
</div>
)
}
```
**Correct (cached results):**
```typescript
// Module-level cache
const slugifyCache = new Map<string, string>()
function cachedSlugify(text: string): string {
if (slugifyCache.has(text)) {
return slugifyCache.get(text)!
}
const result = slugify(text)
slugifyCache.set(text, result)
return result
}
function ProjectList({ projects }: { projects: Project[] }) {
return (
<div>
{projects.map(project => {
// Computed only once per unique project name
const slug = cachedSlugify(project.name)
return <ProjectCard key={project.id} slug={slug} />
})}
</div>
)
}
```
**Simpler pattern for single-value functions:**
```typescript
let isLoggedInCache: boolean | null = null
function isLoggedIn(): boolean {
if (isLoggedInCache !== null) {
return isLoggedInCache
}
isLoggedInCache = document.cookie.includes('auth=')
return isLoggedInCache
}
// Clear cache when auth changes
function onAuthChange() {
isLoggedInCache = null
}
```
Use a Map (not a hook) so it works everywhere: utilities, event handlers, not just React components.
Reference: [How we made the Vercel Dashboard twice as fast](https://vercel.com/blog/how-we-made-the-vercel-dashboard-twice-as-fast)

View File

@@ -0,0 +1,28 @@
---
title: Cache Property Access in Loops
impact: LOW-MEDIUM
impactDescription: reduces lookups
tags: javascript, loops, optimization, caching
---
## Cache Property Access in Loops
Cache object property lookups in hot paths.
**Incorrect (3 lookups × N iterations):**
```typescript
for (let i = 0; i < arr.length; i++) {
process(obj.config.settings.value)
}
```
**Correct (1 lookup total):**
```typescript
const value = obj.config.settings.value
const len = arr.length
for (let i = 0; i < len; i++) {
process(value)
}
```

View File

@@ -0,0 +1,70 @@
---
title: Cache Storage API Calls
impact: LOW-MEDIUM
impactDescription: reduces expensive I/O
tags: javascript, localStorage, storage, caching, performance
---
## Cache Storage API Calls
`localStorage`, `sessionStorage`, and `document.cookie` are synchronous and expensive. Cache reads in memory.
**Incorrect (reads storage on every call):**
```typescript
function getTheme() {
return localStorage.getItem('theme') ?? 'light'
}
// Called 10 times = 10 storage reads
```
**Correct (Map cache):**
```typescript
const storageCache = new Map<string, string | null>()
function getLocalStorage(key: string) {
if (!storageCache.has(key)) {
storageCache.set(key, localStorage.getItem(key))
}
return storageCache.get(key)
}
function setLocalStorage(key: string, value: string) {
localStorage.setItem(key, value)
storageCache.set(key, value) // keep cache in sync
}
```
Use a Map (not a hook) so it works everywhere: utilities, event handlers, not just React components.
**Cookie caching:**
```typescript
let cookieCache: Record<string, string> | null = null
function getCookie(name: string) {
if (!cookieCache) {
cookieCache = Object.fromEntries(
document.cookie.split('; ').map(c => c.split('='))
)
}
return cookieCache[name]
}
```
**Important (invalidate on external changes):**
If storage can change externally (another tab, server-set cookies), invalidate cache:
```typescript
window.addEventListener('storage', (e) => {
if (e.key) storageCache.delete(e.key)
})
document.addEventListener('visibilitychange', () => {
if (document.visibilityState === 'visible') {
storageCache.clear()
}
})
```

View File

@@ -0,0 +1,32 @@
---
title: Combine Multiple Array Iterations
impact: LOW-MEDIUM
impactDescription: reduces iterations
tags: javascript, arrays, loops, performance
---
## Combine Multiple Array Iterations
Multiple `.filter()` or `.map()` calls iterate the array multiple times. Combine into one loop.
**Incorrect (3 iterations):**
```typescript
const admins = users.filter(u => u.isAdmin)
const testers = users.filter(u => u.isTester)
const inactive = users.filter(u => !u.isActive)
```
**Correct (1 iteration):**
```typescript
const admins: User[] = []
const testers: User[] = []
const inactive: User[] = []
for (const user of users) {
if (user.isAdmin) admins.push(user)
if (user.isTester) testers.push(user)
if (!user.isActive) inactive.push(user)
}
```

View File

@@ -0,0 +1,50 @@
---
title: Early Return from Functions
impact: LOW-MEDIUM
impactDescription: avoids unnecessary computation
tags: javascript, functions, optimization, early-return
---
## Early Return from Functions
Return early when result is determined to skip unnecessary processing.
**Incorrect (processes all items even after finding answer):**
```typescript
function validateUsers(users: User[]) {
let hasError = false
let errorMessage = ''
for (const user of users) {
if (!user.email) {
hasError = true
errorMessage = 'Email required'
}
if (!user.name) {
hasError = true
errorMessage = 'Name required'
}
// Continues checking all users even after error found
}
return hasError ? { valid: false, error: errorMessage } : { valid: true }
}
```
**Correct (returns immediately on first error):**
```typescript
function validateUsers(users: User[]) {
for (const user of users) {
if (!user.email) {
return { valid: false, error: 'Email required' }
}
if (!user.name) {
return { valid: false, error: 'Name required' }
}
}
return { valid: true }
}
```

View File

@@ -0,0 +1,45 @@
---
title: Hoist RegExp Creation
impact: LOW-MEDIUM
impactDescription: avoids recreation
tags: javascript, regexp, optimization, memoization
---
## Hoist RegExp Creation
Don't create RegExp inside render. Hoist to module scope or memoize with `useMemo()`.
**Incorrect (new RegExp every render):**
```tsx
function Highlighter({ text, query }: Props) {
const regex = new RegExp(`(${query})`, 'gi')
const parts = text.split(regex)
return <>{parts.map((part, i) => ...)}</>
}
```
**Correct (memoize or hoist):**
```tsx
const EMAIL_REGEX = /^[^\s@]+@[^\s@]+\.[^\s@]+$/
function Highlighter({ text, query }: Props) {
const regex = useMemo(
() => new RegExp(`(${escapeRegex(query)})`, 'gi'),
[query]
)
const parts = text.split(regex)
return <>{parts.map((part, i) => ...)}</>
}
```
**Warning (global regex has mutable state):**
Global regex (`/g`) has mutable `lastIndex` state:
```typescript
const regex = /foo/g
regex.test('foo') // true, lastIndex = 3
regex.test('foo') // false, lastIndex = 0
```

View File

@@ -0,0 +1,37 @@
---
title: Build Index Maps for Repeated Lookups
impact: LOW-MEDIUM
impactDescription: 1M ops to 2K ops
tags: javascript, map, indexing, optimization, performance
---
## Build Index Maps for Repeated Lookups
Multiple `.find()` calls by the same key should use a Map.
**Incorrect (O(n) per lookup):**
```typescript
function processOrders(orders: Order[], users: User[]) {
return orders.map(order => ({
...order,
user: users.find(u => u.id === order.userId)
}))
}
```
**Correct (O(1) per lookup):**
```typescript
function processOrders(orders: Order[], users: User[]) {
const userById = new Map(users.map(u => [u.id, u]))
return orders.map(order => ({
...order,
user: userById.get(order.userId)
}))
}
```
Build map once (O(n)), then all lookups are O(1).
For 1000 orders × 1000 users: 1M ops → 2K ops.

View File

@@ -0,0 +1,49 @@
---
title: Early Length Check for Array Comparisons
impact: MEDIUM-HIGH
impactDescription: avoids expensive operations when lengths differ
tags: javascript, arrays, performance, optimization, comparison
---
## Early Length Check for Array Comparisons
When comparing arrays with expensive operations (sorting, deep equality, serialization), check lengths first. If lengths differ, the arrays cannot be equal.
In real-world applications, this optimization is especially valuable when the comparison runs in hot paths (event handlers, render loops).
**Incorrect (always runs expensive comparison):**
```typescript
function hasChanges(current: string[], original: string[]) {
// Always sorts and joins, even when lengths differ
return current.sort().join() !== original.sort().join()
}
```
Two O(n log n) sorts run even when `current.length` is 5 and `original.length` is 100. There is also overhead of joining the arrays and comparing the strings.
**Correct (O(1) length check first):**
```typescript
function hasChanges(current: string[], original: string[]) {
// Early return if lengths differ
if (current.length !== original.length) {
return true
}
// Only sort/join when lengths match
const currentSorted = current.toSorted()
const originalSorted = original.toSorted()
for (let i = 0; i < currentSorted.length; i++) {
if (currentSorted[i] !== originalSorted[i]) {
return true
}
}
return false
}
```
This new approach is more efficient because:
- It avoids the overhead of sorting and joining the arrays when lengths differ
- It avoids consuming memory for the joined strings (especially important for large arrays)
- It avoids mutating the original arrays
- It returns early when a difference is found

View File

@@ -0,0 +1,82 @@
---
title: Use Loop for Min/Max Instead of Sort
impact: LOW
impactDescription: O(n) instead of O(n log n)
tags: javascript, arrays, performance, sorting, algorithms
---
## Use Loop for Min/Max Instead of Sort
Finding the smallest or largest element only requires a single pass through the array. Sorting is wasteful and slower.
**Incorrect (O(n log n) - sort to find latest):**
```typescript
interface Project {
id: string
name: string
updatedAt: number
}
function getLatestProject(projects: Project[]) {
const sorted = [...projects].sort((a, b) => b.updatedAt - a.updatedAt)
return sorted[0]
}
```
Sorts the entire array just to find the maximum value.
**Incorrect (O(n log n) - sort for oldest and newest):**
```typescript
function getOldestAndNewest(projects: Project[]) {
const sorted = [...projects].sort((a, b) => a.updatedAt - b.updatedAt)
return { oldest: sorted[0], newest: sorted[sorted.length - 1] }
}
```
Still sorts unnecessarily when only min/max are needed.
**Correct (O(n) - single loop):**
```typescript
function getLatestProject(projects: Project[]) {
if (projects.length === 0) return null
let latest = projects[0]
for (let i = 1; i < projects.length; i++) {
if (projects[i].updatedAt > latest.updatedAt) {
latest = projects[i]
}
}
return latest
}
function getOldestAndNewest(projects: Project[]) {
if (projects.length === 0) return { oldest: null, newest: null }
let oldest = projects[0]
let newest = projects[0]
for (let i = 1; i < projects.length; i++) {
if (projects[i].updatedAt < oldest.updatedAt) oldest = projects[i]
if (projects[i].updatedAt > newest.updatedAt) newest = projects[i]
}
return { oldest, newest }
}
```
Single pass through the array, no copying, no sorting.
**Alternative (Math.min/Math.max for small arrays):**
```typescript
const numbers = [5, 2, 8, 1, 9]
const min = Math.min(...numbers)
const max = Math.max(...numbers)
```
This works for small arrays but can be slower for very large arrays due to spread operator limitations. Use the loop approach for reliability.

View File

@@ -0,0 +1,24 @@
---
title: Use Set/Map for O(1) Lookups
impact: LOW-MEDIUM
impactDescription: O(n) to O(1)
tags: javascript, set, map, data-structures, performance
---
## Use Set/Map for O(1) Lookups
Convert arrays to Set/Map for repeated membership checks.
**Incorrect (O(n) per check):**
```typescript
const allowedIds = ['a', 'b', 'c', ...]
items.filter(item => allowedIds.includes(item.id))
```
**Correct (O(1) per check):**
```typescript
const allowedIds = new Set(['a', 'b', 'c', ...])
items.filter(item => allowedIds.has(item.id))
```

View File

@@ -0,0 +1,57 @@
---
title: Use toSorted() Instead of sort() for Immutability
impact: MEDIUM-HIGH
impactDescription: prevents mutation bugs in React state
tags: javascript, arrays, immutability, react, state, mutation
---
## Use toSorted() Instead of sort() for Immutability
`.sort()` mutates the array in place, which can cause bugs with React state and props. Use `.toSorted()` to create a new sorted array without mutation.
**Incorrect (mutates original array):**
```typescript
function UserList({ users }: { users: User[] }) {
// Mutates the users prop array!
const sorted = useMemo(
() => users.sort((a, b) => a.name.localeCompare(b.name)),
[users]
)
return <div>{sorted.map(renderUser)}</div>
}
```
**Correct (creates new array):**
```typescript
function UserList({ users }: { users: User[] }) {
// Creates new sorted array, original unchanged
const sorted = useMemo(
() => users.toSorted((a, b) => a.name.localeCompare(b.name)),
[users]
)
return <div>{sorted.map(renderUser)}</div>
}
```
**Why this matters in React:**
1. Props/state mutations break React's immutability model - React expects props and state to be treated as read-only
2. Causes stale closure bugs - Mutating arrays inside closures (callbacks, effects) can lead to unexpected behavior
**Browser support (fallback for older browsers):**
`.toSorted()` is available in all modern browsers (Chrome 110+, Safari 16+, Firefox 115+, Node.js 20+). For older environments, use spread operator:
```typescript
// Fallback for older browsers
const sorted = [...items].sort((a, b) => a.value - b.value)
```
**Other immutable array methods:**
- `.toSorted()` - immutable sort
- `.toReversed()` - immutable reverse
- `.toSpliced()` - immutable splice
- `.with()` - immutable element replacement

View File

@@ -0,0 +1,26 @@
---
title: Use Activity Component for Show/Hide
impact: MEDIUM
impactDescription: preserves state/DOM
tags: rendering, activity, visibility, state-preservation
---
## Use Activity Component for Show/Hide
Use React's `<Activity>` to preserve state/DOM for expensive components that frequently toggle visibility.
**Usage:**
```tsx
import { Activity } from 'react'
function Dropdown({ isOpen }: Props) {
return (
<Activity mode={isOpen ? 'visible' : 'hidden'}>
<ExpensiveMenu />
</Activity>
)
}
```
Avoids expensive re-renders and state loss.

View File

@@ -0,0 +1,47 @@
---
title: Animate SVG Wrapper Instead of SVG Element
impact: LOW
impactDescription: enables hardware acceleration
tags: rendering, svg, css, animation, performance
---
## Animate SVG Wrapper Instead of SVG Element
Many browsers don't have hardware acceleration for CSS3 animations on SVG elements. Wrap SVG in a `<div>` and animate the wrapper instead.
**Incorrect (animating SVG directly - no hardware acceleration):**
```tsx
function LoadingSpinner() {
return (
<svg
className="animate-spin"
width="24"
height="24"
viewBox="0 0 24 24"
>
<circle cx="12" cy="12" r="10" stroke="currentColor" />
</svg>
)
}
```
**Correct (animating wrapper div - hardware accelerated):**
```tsx
function LoadingSpinner() {
return (
<div className="animate-spin">
<svg
width="24"
height="24"
viewBox="0 0 24 24"
>
<circle cx="12" cy="12" r="10" stroke="currentColor" />
</svg>
</div>
)
}
```
This applies to all CSS transforms and transitions (`transform`, `opacity`, `translate`, `scale`, `rotate`). The wrapper div allows browsers to use GPU acceleration for smoother animations.

View File

@@ -0,0 +1,40 @@
---
title: Use Explicit Conditional Rendering
impact: LOW
impactDescription: prevents rendering 0 or NaN
tags: rendering, conditional, jsx, falsy-values
---
## Use Explicit Conditional Rendering
Use explicit ternary operators (`? :`) instead of `&&` for conditional rendering when the condition can be `0`, `NaN`, or other falsy values that render.
**Incorrect (renders "0" when count is 0):**
```tsx
function Badge({ count }: { count: number }) {
return (
<div>
{count && <span className="badge">{count}</span>}
</div>
)
}
// When count = 0, renders: <div>0</div>
// When count = 5, renders: <div><span class="badge">5</span></div>
```
**Correct (renders nothing when count is 0):**
```tsx
function Badge({ count }: { count: number }) {
return (
<div>
{count > 0 ? <span className="badge">{count}</span> : null}
</div>
)
}
// When count = 0, renders: <div></div>
// When count = 5, renders: <div><span class="badge">5</span></div>
```

View File

@@ -0,0 +1,38 @@
---
title: CSS content-visibility for Long Lists
impact: HIGH
impactDescription: faster initial render
tags: rendering, css, content-visibility, long-lists
---
## CSS content-visibility for Long Lists
Apply `content-visibility: auto` to defer off-screen rendering.
**CSS:**
```css
.message-item {
content-visibility: auto;
contain-intrinsic-size: 0 80px;
}
```
**Example:**
```tsx
function MessageList({ messages }: { messages: Message[] }) {
return (
<div className="overflow-y-auto h-screen">
{messages.map(msg => (
<div key={msg.id} className="message-item">
<Avatar user={msg.author} />
<div>{msg.content}</div>
</div>
))}
</div>
)
}
```
For 1000 messages, browser skips layout/paint for ~990 off-screen items (10× faster initial render).

View File

@@ -0,0 +1,46 @@
---
title: Hoist Static JSX Elements
impact: LOW
impactDescription: avoids re-creation
tags: rendering, jsx, static, optimization
---
## Hoist Static JSX Elements
Extract static JSX outside components to avoid re-creation.
**Incorrect (recreates element every render):**
```tsx
function LoadingSkeleton() {
return <div className="animate-pulse h-20 bg-gray-200" />
}
function Container() {
return (
<div>
{loading && <LoadingSkeleton />}
</div>
)
}
```
**Correct (reuses same element):**
```tsx
const loadingSkeleton = (
<div className="animate-pulse h-20 bg-gray-200" />
)
function Container() {
return (
<div>
{loading && loadingSkeleton}
</div>
)
}
```
This is especially helpful for large and static SVG nodes, which can be expensive to recreate on every render.
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, the compiler automatically hoists static JSX elements and optimizes component re-renders, making manual hoisting unnecessary.

View File

@@ -0,0 +1,82 @@
---
title: Prevent Hydration Mismatch Without Flickering
impact: MEDIUM
impactDescription: avoids visual flicker and hydration errors
tags: rendering, ssr, hydration, localStorage, flicker
---
## Prevent Hydration Mismatch Without Flickering
When rendering content that depends on client-side storage (localStorage, cookies), avoid both SSR breakage and post-hydration flickering by injecting a synchronous script that updates the DOM before React hydrates.
**Incorrect (breaks SSR):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
// localStorage is not available on server - throws error
const theme = localStorage.getItem('theme') || 'light'
return (
<div className={theme}>
{children}
</div>
)
}
```
Server-side rendering will fail because `localStorage` is undefined.
**Incorrect (visual flickering):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
const [theme, setTheme] = useState('light')
useEffect(() => {
// Runs after hydration - causes visible flash
const stored = localStorage.getItem('theme')
if (stored) {
setTheme(stored)
}
}, [])
return (
<div className={theme}>
{children}
</div>
)
}
```
Component first renders with default value (`light`), then updates after hydration, causing a visible flash of incorrect content.
**Correct (no flicker, no hydration mismatch):**
```tsx
function ThemeWrapper({ children }: { children: ReactNode }) {
return (
<>
<div id="theme-wrapper">
{children}
</div>
<script
dangerouslySetInnerHTML={{
__html: `
(function() {
try {
var theme = localStorage.getItem('theme') || 'light';
var el = document.getElementById('theme-wrapper');
if (el) el.className = theme;
} catch (e) {}
})();
`,
}}
/>
</>
)
}
```
The inline script executes synchronously before showing the element, ensuring the DOM already has the correct value. No flickering, no hydration mismatch.
This pattern is especially useful for theme toggles, user preferences, authentication states, and any client-only data that should render immediately without flashing default values.

View File

@@ -0,0 +1,28 @@
---
title: Optimize SVG Precision
impact: LOW
impactDescription: reduces file size
tags: rendering, svg, optimization, svgo
---
## Optimize SVG Precision
Reduce SVG coordinate precision to decrease file size. The optimal precision depends on the viewBox size, but in general reducing precision should be considered.
**Incorrect (excessive precision):**
```svg
<path d="M 10.293847 20.847362 L 30.938472 40.192837" />
```
**Correct (1 decimal place):**
```svg
<path d="M 10.3 20.8 L 30.9 40.2" />
```
**Automate with SVGO:**
```bash
npx svgo --precision=1 --multipass icon.svg
```

View File

@@ -0,0 +1,39 @@
---
title: Defer State Reads to Usage Point
impact: MEDIUM
impactDescription: avoids unnecessary subscriptions
tags: rerender, searchParams, localStorage, optimization
---
## Defer State Reads to Usage Point
Don't subscribe to dynamic state (searchParams, localStorage) if you only read it inside callbacks.
**Incorrect (subscribes to all searchParams changes):**
```tsx
function ShareButton({ chatId }: { chatId: string }) {
const searchParams = useSearchParams()
const handleShare = () => {
const ref = searchParams.get('ref')
shareChat(chatId, { ref })
}
return <button onClick={handleShare}>Share</button>
}
```
**Correct (reads on demand, no subscription):**
```tsx
function ShareButton({ chatId }: { chatId: string }) {
const handleShare = () => {
const params = new URLSearchParams(window.location.search)
const ref = params.get('ref')
shareChat(chatId, { ref })
}
return <button onClick={handleShare}>Share</button>
}
```

View File

@@ -0,0 +1,45 @@
---
title: Narrow Effect Dependencies
impact: LOW
impactDescription: minimizes effect re-runs
tags: rerender, useEffect, dependencies, optimization
---
## Narrow Effect Dependencies
Specify primitive dependencies instead of objects to minimize effect re-runs.
**Incorrect (re-runs on any user field change):**
```tsx
useEffect(() => {
console.log(user.id)
}, [user])
```
**Correct (re-runs only when id changes):**
```tsx
useEffect(() => {
console.log(user.id)
}, [user.id])
```
**For derived state, compute outside effect:**
```tsx
// Incorrect: runs on width=767, 766, 765...
useEffect(() => {
if (width < 768) {
enableMobileMode()
}
}, [width])
// Correct: runs only on boolean transition
const isMobile = width < 768
useEffect(() => {
if (isMobile) {
enableMobileMode()
}
}, [isMobile])
```

View File

@@ -0,0 +1,29 @@
---
title: Subscribe to Derived State
impact: MEDIUM
impactDescription: reduces re-render frequency
tags: rerender, derived-state, media-query, optimization
---
## Subscribe to Derived State
Subscribe to derived boolean state instead of continuous values to reduce re-render frequency.
**Incorrect (re-renders on every pixel change):**
```tsx
function Sidebar() {
const width = useWindowWidth() // updates continuously
const isMobile = width < 768
return <nav className={isMobile ? 'mobile' : 'desktop'}>
}
```
**Correct (re-renders only when boolean changes):**
```tsx
function Sidebar() {
const isMobile = useMediaQuery('(max-width: 767px)')
return <nav className={isMobile ? 'mobile' : 'desktop'}>
}
```

View File

@@ -0,0 +1,74 @@
---
title: Use Functional setState Updates
impact: MEDIUM
impactDescription: prevents stale closures and unnecessary callback recreations
tags: react, hooks, useState, useCallback, callbacks, closures
---
## Use Functional setState Updates
When updating state based on the current state value, use the functional update form of setState instead of directly referencing the state variable. This prevents stale closures, eliminates unnecessary dependencies, and creates stable callback references.
**Incorrect (requires state as dependency):**
```tsx
function TodoList() {
const [items, setItems] = useState(initialItems)
// Callback must depend on items, recreated on every items change
const addItems = useCallback((newItems: Item[]) => {
setItems([...items, ...newItems])
}, [items]) // ❌ items dependency causes recreations
// Risk of stale closure if dependency is forgotten
const removeItem = useCallback((id: string) => {
setItems(items.filter(item => item.id !== id))
}, []) // ❌ Missing items dependency - will use stale items!
return <ItemsEditor items={items} onAdd={addItems} onRemove={removeItem} />
}
```
The first callback is recreated every time `items` changes, which can cause child components to re-render unnecessarily. The second callback has a stale closure bug—it will always reference the initial `items` value.
**Correct (stable callbacks, no stale closures):**
```tsx
function TodoList() {
const [items, setItems] = useState(initialItems)
// Stable callback, never recreated
const addItems = useCallback((newItems: Item[]) => {
setItems(curr => [...curr, ...newItems])
}, []) // ✅ No dependencies needed
// Always uses latest state, no stale closure risk
const removeItem = useCallback((id: string) => {
setItems(curr => curr.filter(item => item.id !== id))
}, []) // ✅ Safe and stable
return <ItemsEditor items={items} onAdd={addItems} onRemove={removeItem} />
}
```
**Benefits:**
1. **Stable callback references** - Callbacks don't need to be recreated when state changes
2. **No stale closures** - Always operates on the latest state value
3. **Fewer dependencies** - Simplifies dependency arrays and reduces memory leaks
4. **Prevents bugs** - Eliminates the most common source of React closure bugs
**When to use functional updates:**
- Any setState that depends on the current state value
- Inside useCallback/useMemo when state is needed
- Event handlers that reference state
- Async operations that update state
**When direct updates are fine:**
- Setting state to a static value: `setCount(0)`
- Setting state from props/arguments only: `setName(newName)`
- State doesn't depend on previous value
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, the compiler can automatically optimize some cases, but functional updates are still recommended for correctness and to prevent stale closure bugs.

View File

@@ -0,0 +1,58 @@
---
title: Use Lazy State Initialization
impact: MEDIUM
impactDescription: wasted computation on every render
tags: react, hooks, useState, performance, initialization
---
## Use Lazy State Initialization
Pass a function to `useState` for expensive initial values. Without the function form, the initializer runs on every render even though the value is only used once.
**Incorrect (runs on every render):**
```tsx
function FilteredList({ items }: { items: Item[] }) {
// buildSearchIndex() runs on EVERY render, even after initialization
const [searchIndex, setSearchIndex] = useState(buildSearchIndex(items))
const [query, setQuery] = useState('')
// When query changes, buildSearchIndex runs again unnecessarily
return <SearchResults index={searchIndex} query={query} />
}
function UserProfile() {
// JSON.parse runs on every render
const [settings, setSettings] = useState(
JSON.parse(localStorage.getItem('settings') || '{}')
)
return <SettingsForm settings={settings} onChange={setSettings} />
}
```
**Correct (runs only once):**
```tsx
function FilteredList({ items }: { items: Item[] }) {
// buildSearchIndex() runs ONLY on initial render
const [searchIndex, setSearchIndex] = useState(() => buildSearchIndex(items))
const [query, setQuery] = useState('')
return <SearchResults index={searchIndex} query={query} />
}
function UserProfile() {
// JSON.parse runs only on initial render
const [settings, setSettings] = useState(() => {
const stored = localStorage.getItem('settings')
return stored ? JSON.parse(stored) : {}
})
return <SettingsForm settings={settings} onChange={setSettings} />
}
```
Use lazy initialization when computing initial values from localStorage/sessionStorage, building data structures (indexes, maps), reading from the DOM, or performing heavy transformations.
For simple primitives (`useState(0)`), direct references (`useState(props.value)`), or cheap literals (`useState({})`), the function form is unnecessary.

View File

@@ -0,0 +1,44 @@
---
title: Extract to Memoized Components
impact: MEDIUM
impactDescription: enables early returns
tags: rerender, memo, useMemo, optimization
---
## Extract to Memoized Components
Extract expensive work into memoized components to enable early returns before computation.
**Incorrect (computes avatar even when loading):**
```tsx
function Profile({ user, loading }: Props) {
const avatar = useMemo(() => {
const id = computeAvatarId(user)
return <Avatar id={id} />
}, [user])
if (loading) return <Skeleton />
return <div>{avatar}</div>
}
```
**Correct (skips computation when loading):**
```tsx
const UserAvatar = memo(function UserAvatar({ user }: { user: User }) {
const id = useMemo(() => computeAvatarId(user), [user])
return <Avatar id={id} />
})
function Profile({ user, loading }: Props) {
if (loading) return <Skeleton />
return (
<div>
<UserAvatar user={user} />
</div>
)
}
```
**Note:** If your project has [React Compiler](https://react.dev/learn/react-compiler) enabled, manual memoization with `memo()` and `useMemo()` is not necessary. The compiler automatically optimizes re-renders.

View File

@@ -0,0 +1,40 @@
---
title: Use Transitions for Non-Urgent Updates
impact: MEDIUM
impactDescription: maintains UI responsiveness
tags: rerender, transitions, startTransition, performance
---
## Use Transitions for Non-Urgent Updates
Mark frequent, non-urgent state updates as transitions to maintain UI responsiveness.
**Incorrect (blocks UI on every scroll):**
```tsx
function ScrollTracker() {
const [scrollY, setScrollY] = useState(0)
useEffect(() => {
const handler = () => setScrollY(window.scrollY)
window.addEventListener('scroll', handler, { passive: true })
return () => window.removeEventListener('scroll', handler)
}, [])
}
```
**Correct (non-blocking updates):**
```tsx
import { startTransition } from 'react'
function ScrollTracker() {
const [scrollY, setScrollY] = useState(0)
useEffect(() => {
const handler = () => {
startTransition(() => setScrollY(window.scrollY))
}
window.addEventListener('scroll', handler, { passive: true })
return () => window.removeEventListener('scroll', handler)
}, [])
}
```

View File

@@ -0,0 +1,73 @@
---
title: Use after() for Non-Blocking Operations
impact: MEDIUM
impactDescription: faster response times
tags: server, async, logging, analytics, side-effects
---
## Use after() for Non-Blocking Operations
Use Next.js's `after()` to schedule work that should execute after a response is sent. This prevents logging, analytics, and other side effects from blocking the response.
**Incorrect (blocks response):**
```tsx
import { logUserAction } from '@/app/utils'
export async function POST(request: Request) {
// Perform mutation
await updateDatabase(request)
// Logging blocks the response
const userAgent = request.headers.get('user-agent') || 'unknown'
await logUserAction({ userAgent })
return new Response(JSON.stringify({ status: 'success' }), {
status: 200,
headers: { 'Content-Type': 'application/json' }
})
}
```
**Correct (non-blocking):**
```tsx
import { after } from 'next/server'
import { headers, cookies } from 'next/headers'
import { logUserAction } from '@/app/utils'
export async function POST(request: Request) {
// Perform mutation
await updateDatabase(request)
// Log after response is sent
after(async () => {
const userAgent = (await headers()).get('user-agent') || 'unknown'
const sessionCookie = (await cookies()).get('session-id')?.value || 'anonymous'
logUserAction({ sessionCookie, userAgent })
})
return new Response(JSON.stringify({ status: 'success' }), {
status: 200,
headers: { 'Content-Type': 'application/json' }
})
}
```
The response is sent immediately while logging happens in the background.
**Common use cases:**
- Analytics tracking
- Audit logging
- Sending notifications
- Cache invalidation
- Cleanup tasks
**Important notes:**
- `after()` runs even if the response fails or redirects
- Works in Server Actions, Route Handlers, and Server Components
Reference: [https://nextjs.org/docs/app/api-reference/functions/after](https://nextjs.org/docs/app/api-reference/functions/after)

View File

@@ -0,0 +1,41 @@
---
title: Cross-Request LRU Caching
impact: HIGH
impactDescription: caches across requests
tags: server, cache, lru, cross-request
---
## Cross-Request LRU Caching
`React.cache()` only works within one request. For data shared across sequential requests (user clicks button A then button B), use an LRU cache.
**Implementation:**
```typescript
import { LRUCache } from 'lru-cache'
const cache = new LRUCache<string, any>({
max: 1000,
ttl: 5 * 60 * 1000 // 5 minutes
})
export async function getUser(id: string) {
const cached = cache.get(id)
if (cached) return cached
const user = await db.user.findUnique({ where: { id } })
cache.set(id, user)
return user
}
// Request 1: DB query, result cached
// Request 2: cache hit, no DB query
```
Use when sequential user actions hit multiple endpoints needing the same data within seconds.
**With Vercel's [Fluid Compute](https://vercel.com/docs/fluid-compute):** LRU caching is especially effective because multiple concurrent requests can share the same function instance and cache. This means the cache persists across requests without needing external storage like Redis.
**In traditional serverless:** Each invocation runs in isolation, so consider Redis for cross-process caching.
Reference: [https://github.com/isaacs/node-lru-cache](https://github.com/isaacs/node-lru-cache)

View File

@@ -0,0 +1,26 @@
---
title: Per-Request Deduplication with React.cache()
impact: MEDIUM
impactDescription: deduplicates within request
tags: server, cache, react-cache, deduplication
---
## Per-Request Deduplication with React.cache()
Use `React.cache()` for server-side request deduplication. Authentication and database queries benefit most.
**Usage:**
```typescript
import { cache } from 'react'
export const getCurrentUser = cache(async () => {
const session = await auth()
if (!session?.user?.id) return null
return await db.user.findUnique({
where: { id: session.user.id }
})
})
```
Within a single request, multiple calls to `getCurrentUser()` execute the query only once.

View File

@@ -0,0 +1,79 @@
---
title: Parallel Data Fetching with Component Composition
impact: CRITICAL
impactDescription: eliminates server-side waterfalls
tags: server, rsc, parallel-fetching, composition
---
## Parallel Data Fetching with Component Composition
React Server Components execute sequentially within a tree. Restructure with composition to parallelize data fetching.
**Incorrect (Sidebar waits for Page's fetch to complete):**
```tsx
export default async function Page() {
const header = await fetchHeader()
return (
<div>
<div>{header}</div>
<Sidebar />
</div>
)
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
```
**Correct (both fetch simultaneously):**
```tsx
async function Header() {
const data = await fetchHeader()
return <div>{data}</div>
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
export default function Page() {
return (
<div>
<Header />
<Sidebar />
</div>
)
}
```
**Alternative with children prop:**
```tsx
async function Layout({ children }: { children: ReactNode }) {
const header = await fetchHeader()
return (
<div>
<div>{header}</div>
{children}
</div>
)
}
async function Sidebar() {
const items = await fetchSidebarItems()
return <nav>{items.map(renderItem)}</nav>
}
export default function Page() {
return (
<Layout>
<Sidebar />
</Layout>
)
}
```

View File

@@ -0,0 +1,38 @@
---
title: Minimize Serialization at RSC Boundaries
impact: HIGH
impactDescription: reduces data transfer size
tags: server, rsc, serialization, props
---
## Minimize Serialization at RSC Boundaries
The React Server/Client boundary serializes all object properties into strings and embeds them in the HTML response and subsequent RSC requests. This serialized data directly impacts page weight and load time, so **size matters a lot**. Only pass fields that the client actually uses.
**Incorrect (serializes all 50 fields):**
```tsx
async function Page() {
const user = await fetchUser() // 50 fields
return <Profile user={user} />
}
'use client'
function Profile({ user }: { user: User }) {
return <div>{user.name}</div> // uses 1 field
}
```
**Correct (serializes only 1 field):**
```tsx
async function Page() {
const user = await fetchUser()
return <Profile name={user.name} />
}
'use client'
function Profile({ name }: { name: string }) {
return <div>{name}</div>
}
```

View File

@@ -1,6 +1,9 @@
# Ignore everything by default, selectively add things to context
*
# Documentation (for embeddings/search)
!docs/
# Platform - Libs
!autogpt_platform/autogpt_libs/autogpt_libs/
!autogpt_platform/autogpt_libs/pyproject.toml
@@ -16,6 +19,7 @@
!autogpt_platform/backend/poetry.lock
!autogpt_platform/backend/README.md
!autogpt_platform/backend/.env
!autogpt_platform/backend/gen_prisma_types_stub.py
# Platform - Market
!autogpt_platform/market/market/

View File

@@ -93,5 +93,5 @@ jobs:
Error logs:
${{ toJSON(fromJSON(steps.failure_details.outputs.result).errorLogs) }}
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: "--allowedTools 'Edit,MultiEdit,Write,Read,Glob,Grep,LS,Bash(git:*),Bash(bun:*),Bash(npm:*),Bash(npx:*),Bash(gh:*)'"

View File

@@ -7,7 +7,7 @@
# - Provide actionable recommendations for the development team
#
# Triggered on: Dependabot PRs (opened, synchronize)
# Requirements: ANTHROPIC_API_KEY secret must be configured
# Requirements: CLAUDE_CODE_OAUTH_TOKEN secret must be configured
name: Claude Dependabot PR Review
@@ -74,7 +74,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
@@ -308,7 +308,7 @@ jobs:
id: claude_review
uses: anthropics/claude-code-action@v1
with:
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: |
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*)"
prompt: |

View File

@@ -90,7 +90,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
@@ -323,7 +323,7 @@ jobs:
id: claude
uses: anthropics/claude-code-action@v1
with:
anthropic_api_key: ${{ secrets.ANTHROPIC_API_KEY }}
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: |
--allowedTools "Bash(npm:*),Bash(pnpm:*),Bash(poetry:*),Bash(git:*),Edit,Replace,NotebookEditCell,mcp__github_inline_comment__create_inline_comment,Bash(gh pr comment:*), Bash(gh pr diff:*), Bash(gh pr view:*), Bash(gh pr edit:*)"
--model opus

View File

@@ -72,7 +72,7 @@ jobs:
- name: Generate Prisma Client
working-directory: autogpt_platform/backend
run: poetry run prisma generate
run: poetry run prisma generate && poetry run gen-prisma-stub
# Frontend Node.js/pnpm setup (mirrors platform-frontend-ci.yml)
- name: Set up Node.js
@@ -108,6 +108,16 @@ jobs:
# run: pnpm playwright install --with-deps chromium
# Docker setup for development environment
- name: Free up disk space
run: |
# Remove large unused tools to free disk space for Docker builds
sudo rm -rf /usr/share/dotnet
sudo rm -rf /usr/local/lib/android
sudo rm -rf /opt/ghc
sudo rm -rf /opt/hostedtoolcache/CodeQL
sudo docker system prune -af
df -h
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3

78
.github/workflows/docs-block-sync.yml vendored Normal file
View File

@@ -0,0 +1,78 @@
name: Block Documentation Sync Check
on:
push:
branches: [master, dev]
paths:
- "autogpt_platform/backend/backend/blocks/**"
- "docs/integrations/**"
- "autogpt_platform/backend/scripts/generate_block_docs.py"
- ".github/workflows/docs-block-sync.yml"
pull_request:
branches: [master, dev]
paths:
- "autogpt_platform/backend/backend/blocks/**"
- "docs/integrations/**"
- "autogpt_platform/backend/scripts/generate_block_docs.py"
- ".github/workflows/docs-block-sync.yml"
jobs:
check-docs-sync:
runs-on: ubuntu-latest
timeout-minutes: 15
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 1
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
restore-keys: |
poetry-${{ runner.os }}-
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
echo "Found Poetry version ${HEAD_POETRY_VERSION} in backend/poetry.lock"
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install dependencies
working-directory: autogpt_platform/backend
run: |
poetry install --only main
poetry run prisma generate
- name: Check block documentation is in sync
working-directory: autogpt_platform/backend
run: |
echo "Checking if block documentation is in sync with code..."
poetry run python scripts/generate_block_docs.py --check
- name: Show diff if out of sync
if: failure()
working-directory: autogpt_platform/backend
run: |
echo "::error::Block documentation is out of sync with code!"
echo ""
echo "To fix this, run the following command locally:"
echo " cd autogpt_platform/backend && poetry run python scripts/generate_block_docs.py"
echo ""
echo "Then commit the updated documentation files."
echo ""
echo "Regenerating docs to show diff..."
poetry run python scripts/generate_block_docs.py
echo ""
echo "Changes detected:"
git diff ../../docs/integrations/ || true

View File

@@ -0,0 +1,95 @@
name: Claude Block Docs Review
on:
pull_request:
types: [opened, synchronize]
paths:
- "docs/integrations/**"
- "autogpt_platform/backend/backend/blocks/**"
jobs:
claude-review:
# Only run for PRs from members/collaborators
if: |
github.event.pull_request.author_association == 'OWNER' ||
github.event.pull_request.author_association == 'MEMBER' ||
github.event.pull_request.author_association == 'COLLABORATOR'
runs-on: ubuntu-latest
timeout-minutes: 15
permissions:
contents: read
pull-requests: write
id-token: write
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
restore-keys: |
poetry-${{ runner.os }}-
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install dependencies
working-directory: autogpt_platform/backend
run: |
poetry install --only main
poetry run prisma generate
- name: Run Claude Code Review
uses: anthropics/claude-code-action@v1
with:
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: |
--allowedTools "Read,Glob,Grep,Bash(gh pr comment:*),Bash(gh pr diff:*),Bash(gh pr view:*)"
prompt: |
You are reviewing a PR that modifies block documentation or block code for AutoGPT.
## Your Task
Review the changes in this PR and provide constructive feedback. Focus on:
1. **Documentation Accuracy**: For any block code changes, verify that:
- Input/output tables in docs match the actual block schemas
- Description text accurately reflects what the block does
- Any new blocks have corresponding documentation
2. **Manual Content Quality**: Check manual sections (marked with `<!-- MANUAL: -->` markers):
- "How it works" sections should have clear technical explanations
- "Possible use case" sections should have practical, real-world examples
- Content should be helpful for users trying to understand the blocks
3. **Template Compliance**: Ensure docs follow the standard template:
- What it is (brief intro)
- What it does (description)
- How it works (technical explanation)
- Inputs table
- Outputs table
- Possible use case
4. **Cross-references**: Check that links and anchors are correct
## Review Process
1. First, get the PR diff to see what changed: `gh pr diff ${{ github.event.pull_request.number }}`
2. Read any modified block files to understand the implementation
3. Read corresponding documentation files to verify accuracy
4. Provide your feedback as a PR comment
Be constructive and specific. If everything looks good, say so!
If there are issues, explain what's wrong and suggest how to fix it.

194
.github/workflows/docs-enhance.yml vendored Normal file
View File

@@ -0,0 +1,194 @@
name: Enhance Block Documentation
on:
workflow_dispatch:
inputs:
block_pattern:
description: 'Block file pattern to enhance (e.g., "google/*.md" or "*" for all blocks)'
required: true
default: '*'
type: string
dry_run:
description: 'Dry run mode - show proposed changes without committing'
type: boolean
default: true
max_blocks:
description: 'Maximum number of blocks to process (0 for unlimited)'
type: number
default: 10
jobs:
enhance-docs:
runs-on: ubuntu-latest
timeout-minutes: 45
permissions:
contents: write
pull-requests: write
id-token: write
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 1
- name: Set up Python
uses: actions/setup-python@v5
with:
python-version: "3.11"
- name: Set up Python dependency cache
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('autogpt_platform/backend/poetry.lock') }}
restore-keys: |
poetry-${{ runner.os }}-
- name: Install Poetry
run: |
cd autogpt_platform/backend
HEAD_POETRY_VERSION=$(python3 ../../.github/workflows/scripts/get_package_version_from_lockfile.py poetry)
curl -sSL https://install.python-poetry.org | POETRY_VERSION=$HEAD_POETRY_VERSION python3 -
echo "$HOME/.local/bin" >> $GITHUB_PATH
- name: Install dependencies
working-directory: autogpt_platform/backend
run: |
poetry install --only main
poetry run prisma generate
- name: Run Claude Enhancement
uses: anthropics/claude-code-action@v1
with:
claude_code_oauth_token: ${{ secrets.CLAUDE_CODE_OAUTH_TOKEN }}
claude_args: |
--allowedTools "Read,Edit,Glob,Grep,Write,Bash(git:*),Bash(gh:*),Bash(find:*),Bash(ls:*)"
prompt: |
You are enhancing block documentation for AutoGPT. Your task is to improve the MANUAL sections
of block documentation files by reading the actual block implementations and writing helpful content.
## Configuration
- Block pattern: ${{ inputs.block_pattern }}
- Dry run: ${{ inputs.dry_run }}
- Max blocks to process: ${{ inputs.max_blocks }}
## Your Task
1. **Find Documentation Files**
Find block documentation files matching the pattern in `docs/integrations/`
Pattern: ${{ inputs.block_pattern }}
Use: `find docs/integrations -name "*.md" -type f`
2. **For Each Documentation File** (up to ${{ inputs.max_blocks }} files):
a. Read the documentation file
b. Identify which block(s) it documents (look for the block class name)
c. Find and read the corresponding block implementation in `autogpt_platform/backend/backend/blocks/`
d. Improve the MANUAL sections:
**"How it works" section** (within `<!-- MANUAL: how_it_works -->` markers):
- Explain the technical flow of the block
- Describe what APIs or services it connects to
- Note any important configuration or prerequisites
- Keep it concise but informative (2-4 paragraphs)
**"Possible use case" section** (within `<!-- MANUAL: use_case -->` markers):
- Provide 2-3 practical, real-world examples
- Make them specific and actionable
- Show how this block could be used in an automation workflow
3. **Important Rules**
- ONLY modify content within `<!-- MANUAL: -->` and `<!-- END MANUAL -->` markers
- Do NOT modify auto-generated sections (inputs/outputs tables, descriptions)
- Keep content accurate based on the actual block implementation
- Write for users who may not be technical experts
4. **Output**
${{ inputs.dry_run == true && 'DRY RUN MODE: Show proposed changes for each file but do NOT actually edit the files. Describe what you would change.' || 'LIVE MODE: Actually edit the files to improve the documentation.' }}
## Example Improvements
**Before (How it works):**
```
_Add technical explanation here._
```
**After (How it works):**
```
This block connects to the GitHub API to retrieve issue information. When executed,
it authenticates using your GitHub credentials and fetches issue details including
title, body, labels, and assignees.
The block requires a valid GitHub OAuth connection with repository access permissions.
It supports both public and private repositories you have access to.
```
**Before (Possible use case):**
```
_Add practical use case examples here._
```
**After (Possible use case):**
```
**Customer Support Automation**: Monitor a GitHub repository for new issues with
the "bug" label, then automatically create a ticket in your support system and
notify the on-call engineer via Slack.
**Release Notes Generation**: When a new release is published, gather all closed
issues since the last release and generate a summary for your changelog.
```
Begin by finding and listing the documentation files to process.
- name: Create PR with enhanced documentation
if: ${{ inputs.dry_run == false }}
env:
GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
# Check if there are changes
if git diff --quiet docs/integrations/; then
echo "No changes to commit"
exit 0
fi
# Configure git
git config user.name "github-actions[bot]"
git config user.email "github-actions[bot]@users.noreply.github.com"
# Create branch and commit
BRANCH_NAME="docs/enhance-blocks-$(date +%Y%m%d-%H%M%S)"
git checkout -b "$BRANCH_NAME"
git add docs/integrations/
git commit -m "docs: enhance block documentation with LLM-generated content
Pattern: ${{ inputs.block_pattern }}
Max blocks: ${{ inputs.max_blocks }}
🤖 Generated with [Claude Code](https://claude.com/claude-code)
Co-Authored-By: Claude <noreply@anthropic.com>"
# Push and create PR
git push -u origin "$BRANCH_NAME"
gh pr create \
--title "docs: LLM-enhanced block documentation" \
--body "## Summary
This PR contains LLM-enhanced documentation for block files matching pattern: \`${{ inputs.block_pattern }}\`
The following manual sections were improved:
- **How it works**: Technical explanations based on block implementations
- **Possible use case**: Practical, real-world examples
## Review Checklist
- [ ] Content is accurate based on block implementations
- [ ] Examples are practical and helpful
- [ ] No auto-generated sections were modified
---
🤖 Generated with [Claude Code](https://claude.com/claude-code)" \
--base dev

View File

@@ -134,7 +134,7 @@ jobs:
run: poetry install
- name: Generate Prisma Client
run: poetry run prisma generate
run: poetry run prisma generate && poetry run gen-prisma-stub
- id: supabase
name: Start Supabase
@@ -176,7 +176,7 @@ jobs:
}
- name: Run Database Migrations
run: poetry run prisma migrate dev --name updates
run: poetry run prisma migrate deploy
env:
DATABASE_URL: ${{ steps.supabase.outputs.DB_URL }}
DIRECT_URL: ${{ steps.supabase.outputs.DB_URL }}

View File

@@ -11,6 +11,7 @@ on:
- ".github/workflows/platform-frontend-ci.yml"
- "autogpt_platform/frontend/**"
merge_group:
workflow_dispatch:
concurrency:
group: ${{ github.workflow }}-${{ github.event_name == 'merge_group' && format('merge-queue-{0}', github.ref) || format('{0}-{1}', github.ref, github.event.pull_request.number || github.sha) }}
@@ -151,6 +152,14 @@ jobs:
run: |
cp ../.env.default ../.env
- name: Copy backend .env and set OpenAI API key
run: |
cp ../backend/.env.default ../backend/.env
echo "OPENAI_INTERNAL_API_KEY=${{ secrets.OPENAI_API_KEY }}" >> ../backend/.env
env:
# Used by E2E test data script to generate embeddings for approved store agents
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
@@ -226,13 +235,25 @@ jobs:
- name: Run Playwright tests
run: pnpm test:no-build
continue-on-error: false
- name: Upload Playwright artifacts
if: failure()
- name: Upload Playwright report
if: always()
uses: actions/upload-artifact@v4
with:
name: playwright-report
path: playwright-report
if-no-files-found: ignore
retention-days: 3
- name: Upload Playwright test results
if: always()
uses: actions/upload-artifact@v4
with:
name: playwright-test-results
path: test-results
if-no-files-found: ignore
retention-days: 3
- name: Print Final Docker Compose logs
if: always()

View File

@@ -1,9 +0,0 @@
{
"permissions": {
"allow": [
"Bash(ls:*)",
"WebFetch(domain:langfuse.com)",
"Bash(poetry install:*)"
]
}
}

View File

@@ -1,4 +1,4 @@
.PHONY: start-core stop-core logs-core format lint migrate run-backend stop-backend run-frontend load-store-agents backfill-store-embeddings
.PHONY: start-core stop-core logs-core format lint migrate run-backend run-frontend load-store-agents
# Run just Supabase + Redis + RabbitMQ
start-core:
@@ -6,12 +6,14 @@ start-core:
# Stop core services
stop-core:
docker compose stop deps
docker compose stop
reset-db:
docker compose stop db
rm -rf db/docker/volumes/db/data
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
# View logs for core services
logs-core:
@@ -33,15 +35,9 @@ init-env:
migrate:
cd backend && poetry run prisma migrate deploy
cd backend && poetry run prisma generate
cd backend && poetry run gen-prisma-stub
stop-backend:
@echo "Stopping backend processes..."
@cd backend && poetry run cli stop 2>/dev/null || true
@echo "Killing any processes using backend ports..."
@lsof -ti:8001,8002,8003,8004,8005,8006,8007 | xargs kill -9 2>/dev/null || true
@echo "Backend stopped"
run-backend: stop-backend
run-backend:
cd backend && poetry run app
run-frontend:
@@ -53,9 +49,6 @@ test-data:
load-store-agents:
cd backend && poetry run load-store-agents
backfill-store-embeddings:
cd backend && poetry run python -m backend.api.features.store.backfill_embeddings
help:
@echo "Usage: make <target>"
@echo "Targets:"
@@ -65,9 +58,7 @@ help:
@echo " logs-core - Tail the logs for core services"
@echo " format - Format & lint backend (Python) and frontend (TypeScript) code"
@echo " migrate - Run backend database migrations"
@echo " stop-backend - Stop any running backend processes"
@echo " run-backend - Run the backend FastAPI server (stops existing processes first)"
@echo " run-backend - Run the backend FastAPI server"
@echo " run-frontend - Run the frontend Next.js development server"
@echo " test-data - Run the test data creator"
@echo " load-store-agents - Load store agents from agents/ folder into test database"
@echo " backfill-store-embeddings - Generate embeddings for store agents that don't have them"

View File

@@ -18,3 +18,4 @@ load-tests/results/
load-tests/*.json
load-tests/*.log
load-tests/node_modules/*
migrations/*/rollback*.sql

View File

@@ -48,7 +48,8 @@ RUN poetry install --no-ansi --no-root
# Generate Prisma client
COPY autogpt_platform/backend/schema.prisma ./
COPY autogpt_platform/backend/backend/data/partial_types.py ./backend/data/partial_types.py
RUN poetry run prisma generate
COPY autogpt_platform/backend/gen_prisma_types_stub.py ./
RUN poetry run prisma generate && poetry run gen-prisma-stub
FROM debian:13-slim AS server_dependencies
@@ -99,6 +100,7 @@ COPY autogpt_platform/backend/migrations /app/autogpt_platform/backend/migration
FROM server_dependencies AS server
COPY autogpt_platform/backend /app/autogpt_platform/backend
COPY docs /app/docs
RUN poetry install --no-ansi --only-root
ENV PORT=8000

View File

@@ -70,7 +70,7 @@ class RunAgentRequest(BaseModel):
)
def _create_ephemeral_session(user_id: str | None) -> ChatSession:
def _create_ephemeral_session(user_id: str) -> ChatSession:
"""Create an ephemeral session for stateless API requests."""
return ChatSession.new(user_id)

View File

@@ -28,6 +28,7 @@ from backend.executor.manager import get_db_async_client
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
settings = Settings()
class ExecutionAnalyticsRequest(BaseModel):
@@ -63,6 +64,8 @@ class ExecutionAnalyticsResult(BaseModel):
score: Optional[float]
status: str # "success", "failed", "skipped"
error_message: Optional[str] = None
started_at: Optional[datetime] = None
ended_at: Optional[datetime] = None
class ExecutionAnalyticsResponse(BaseModel):
@@ -224,11 +227,6 @@ async def generate_execution_analytics(
)
try:
# Validate model configuration
settings = Settings()
if not settings.secrets.openai_internal_api_key:
raise HTTPException(status_code=500, detail="OpenAI API key not configured")
# Get database client
db_client = get_db_async_client()
@@ -320,6 +318,8 @@ async def generate_execution_analytics(
),
status="skipped",
error_message=None, # Not an error - just already processed
started_at=execution.started_at,
ended_at=execution.ended_at,
)
)
@@ -349,6 +349,9 @@ async def _process_batch(
) -> list[ExecutionAnalyticsResult]:
"""Process a batch of executions concurrently."""
if not settings.secrets.openai_internal_api_key:
raise HTTPException(status_code=500, detail="OpenAI API key not configured")
async def process_single_execution(execution) -> ExecutionAnalyticsResult:
try:
# Generate activity status and score using the specified model
@@ -387,6 +390,8 @@ async def _process_batch(
score=None,
status="skipped",
error_message="Activity generation returned None",
started_at=execution.started_at,
ended_at=execution.ended_at,
)
# Update the execution stats
@@ -416,6 +421,8 @@ async def _process_batch(
summary_text=activity_response["activity_status"],
score=activity_response["correctness_score"],
status="success",
started_at=execution.started_at,
ended_at=execution.ended_at,
)
except Exception as e:
@@ -429,6 +436,8 @@ async def _process_batch(
score=None,
status="failed",
error_message=str(e),
started_at=execution.started_at,
ended_at=execution.ended_at,
)
# Process all executions in the batch concurrently

View File

@@ -9,7 +9,6 @@ import prisma.enums
import backend.api.features.store.cache as store_cache
import backend.api.features.store.db as store_db
import backend.api.features.store.embeddings as store_embeddings
import backend.api.features.store.model as store_model
import backend.util.json
@@ -151,54 +150,3 @@ async def admin_download_agent_file(
return fastapi.responses.FileResponse(
tmp_file.name, filename=file_name, media_type="application/json"
)
@router.get(
"/embeddings/stats",
summary="Get Embedding Statistics",
)
async def get_embedding_stats() -> dict[str, typing.Any]:
"""
Get statistics about embedding coverage for store listings.
Returns counts of total approved listings, listings with embeddings,
listings without embeddings, and coverage percentage.
"""
try:
stats = await store_embeddings.get_embedding_stats()
return stats
except Exception as e:
logger.exception("Error getting embedding stats: %s", e)
raise fastapi.HTTPException(
status_code=500,
detail="An error occurred while retrieving embedding stats",
)
@router.post(
"/embeddings/backfill",
summary="Backfill Missing Embeddings",
)
async def backfill_embeddings(
batch_size: int = 10,
) -> dict[str, typing.Any]:
"""
Trigger backfill of embeddings for approved listings that don't have them.
Args:
batch_size: Number of embeddings to generate in one call (default 10)
Returns:
Dict with processed count, success count, failure count, and message
"""
try:
result = await store_embeddings.backfill_missing_embeddings(
batch_size=batch_size
)
return result
except Exception as e:
logger.exception("Error backfilling embeddings: %s", e)
raise fastapi.HTTPException(
status_code=500,
detail="An error occurred while backfilling embeddings",
)

View File

@@ -1,7 +1,6 @@
"""Configuration management for chat system."""
import os
from pathlib import Path
from pydantic import Field, field_validator
from pydantic_settings import BaseSettings
@@ -27,12 +26,6 @@ class ChatConfig(BaseSettings):
# Session TTL Configuration - 12 hours
session_ttl: int = Field(default=43200, description="Session TTL in seconds")
# System Prompt Configuration
system_prompt_path: str = Field(
default="prompts/chat_system.md",
description="Path to system prompt file relative to chat module",
)
# Streaming Configuration
max_context_messages: int = Field(
default=50, ge=1, le=200, description="Maximum context messages"
@@ -89,73 +82,6 @@ class ChatConfig(BaseSettings):
"onboarding": "prompts/onboarding_system.md",
}
def get_system_prompt_for_type(
self, prompt_type: str = "default", **template_vars
) -> str:
"""Load and render a system prompt by type.
Args:
prompt_type: The type of prompt to load ("default" or "onboarding")
**template_vars: Variables to substitute in the template
Returns:
Rendered system prompt string
"""
prompt_path_str = self.PROMPT_PATHS.get(
prompt_type, self.PROMPT_PATHS["default"]
)
return self._load_prompt_from_path(prompt_path_str, **template_vars)
def get_system_prompt(self, **template_vars) -> str:
"""Load and render the default system prompt from file.
Args:
**template_vars: Variables to substitute in the template
Returns:
Rendered system prompt string
"""
return self._load_prompt_from_path(self.system_prompt_path, **template_vars)
def _load_prompt_from_path(self, prompt_path_str: str, **template_vars) -> str:
"""Load and render a system prompt from a given path.
Args:
prompt_path_str: Path to the prompt file relative to chat module
**template_vars: Variables to substitute in the template
Returns:
Rendered system prompt string
"""
# Get the path relative to this module
module_dir = Path(__file__).parent
prompt_path = module_dir / prompt_path_str
# Check for .j2 extension first (Jinja2 template)
j2_path = Path(str(prompt_path) + ".j2")
if j2_path.exists():
try:
from jinja2 import Template
template = Template(j2_path.read_text())
return template.render(**template_vars)
except ImportError:
# Jinja2 not installed, fall back to reading as plain text
return j2_path.read_text()
# Check for markdown file
if prompt_path.exists():
content = prompt_path.read_text()
# Simple variable substitution if Jinja2 is not available
for key, value in template_vars.items():
placeholder = f"{{{key}}}"
content = content.replace(placeholder, str(value))
return content
raise FileNotFoundError(f"System prompt file not found: {prompt_path}")
class Config:
"""Pydantic config."""

View File

@@ -1,13 +1,20 @@
"""Database operations for chat sessions."""
import asyncio
import logging
from datetime import UTC, datetime
from typing import Any
from typing import Any, cast
from prisma.models import ChatMessage as PrismaChatMessage
from prisma.models import ChatSession as PrismaChatSession
from prisma.types import ChatSessionUpdateInput
from prisma.types import (
ChatMessageCreateInput,
ChatSessionCreateInput,
ChatSessionUpdateInput,
ChatSessionWhereInput,
)
from backend.data.db import transaction
from backend.util.json import SafeJson
logger = logging.getLogger(__name__)
@@ -20,23 +27,24 @@ async def get_chat_session(session_id: str) -> PrismaChatSession | None:
include={"Messages": True},
)
if session and session.Messages:
# Sort messages by sequence in Python since Prisma doesn't support order_by in include
# Sort messages by sequence in Python - Prisma Python client doesn't support
# order_by in include clauses (unlike Prisma JS), so we sort after fetching
session.Messages.sort(key=lambda m: m.sequence)
return session
async def create_chat_session(
session_id: str,
user_id: str | None,
user_id: str,
) -> PrismaChatSession:
"""Create a new chat session in the database."""
data = {
"id": session_id,
"userId": user_id,
"credentials": SafeJson({}),
"successfulAgentRuns": SafeJson({}),
"successfulAgentSchedules": SafeJson({}),
}
data = ChatSessionCreateInput(
id=session_id,
userId=user_id,
credentials=SafeJson({}),
successfulAgentRuns=SafeJson({}),
successfulAgentSchedules=SafeJson({}),
)
return await PrismaChatSession.prisma().create(
data=data,
include={"Messages": True},
@@ -74,6 +82,7 @@ async def update_chat_session(
include={"Messages": True},
)
if session and session.Messages:
# Sort in Python - Prisma Python doesn't support order_by in include clauses
session.Messages.sort(key=lambda m: m.sequence)
return session
@@ -90,12 +99,16 @@ async def add_chat_message(
function_call: dict[str, Any] | None = None,
) -> PrismaChatMessage:
"""Add a message to a chat session."""
# Build input dict dynamically rather than using ChatMessageCreateInput directly
# because Prisma's TypedDict validation rejects optional fields set to None.
# We only include fields that have values, then cast at the end.
data: dict[str, Any] = {
"Session": {"connect": {"id": session_id}},
"role": role,
"sequence": sequence,
}
# Add optional string fields
if content is not None:
data["content"] = content
if name is not None:
@@ -104,18 +117,22 @@ async def add_chat_message(
data["toolCallId"] = tool_call_id
if refusal is not None:
data["refusal"] = refusal
# Add optional JSON fields only when they have values
if tool_calls is not None:
data["toolCalls"] = SafeJson(tool_calls)
if function_call is not None:
data["functionCall"] = SafeJson(function_call)
# Update session's updatedAt timestamp
await PrismaChatSession.prisma().update(
where={"id": session_id},
data={"updatedAt": datetime.now(UTC)},
# Run message create and session timestamp update in parallel for lower latency
_, message = await asyncio.gather(
PrismaChatSession.prisma().update(
where={"id": session_id},
data={"updatedAt": datetime.now(UTC)},
),
PrismaChatMessage.prisma().create(data=cast(ChatMessageCreateInput, data)),
)
return await PrismaChatMessage.prisma().create(data=data)
return message
async def add_chat_messages_batch(
@@ -123,39 +140,55 @@ async def add_chat_messages_batch(
messages: list[dict[str, Any]],
start_sequence: int,
) -> list[PrismaChatMessage]:
"""Add multiple messages to a chat session in a batch."""
"""Add multiple messages to a chat session in a batch.
Uses a transaction for atomicity - if any message creation fails,
the entire batch is rolled back.
"""
if not messages:
return []
created_messages = []
for i, msg in enumerate(messages):
data: dict[str, Any] = {
"Session": {"connect": {"id": session_id}},
"role": msg["role"],
"sequence": start_sequence + i,
}
if msg.get("content") is not None:
data["content"] = msg["content"]
if msg.get("name") is not None:
data["name"] = msg["name"]
if msg.get("tool_call_id") is not None:
data["toolCallId"] = msg["tool_call_id"]
if msg.get("refusal") is not None:
data["refusal"] = msg["refusal"]
if msg.get("tool_calls") is not None:
data["toolCalls"] = SafeJson(msg["tool_calls"])
if msg.get("function_call") is not None:
data["functionCall"] = SafeJson(msg["function_call"])
async with transaction() as tx:
for i, msg in enumerate(messages):
# Build input dict dynamically rather than using ChatMessageCreateInput
# directly because Prisma's TypedDict validation rejects optional fields
# set to None. We only include fields that have values, then cast.
data: dict[str, Any] = {
"Session": {"connect": {"id": session_id}},
"role": msg["role"],
"sequence": start_sequence + i,
}
created = await PrismaChatMessage.prisma().create(data=data)
created_messages.append(created)
# Add optional string fields
if msg.get("content") is not None:
data["content"] = msg["content"]
if msg.get("name") is not None:
data["name"] = msg["name"]
if msg.get("tool_call_id") is not None:
data["toolCallId"] = msg["tool_call_id"]
if msg.get("refusal") is not None:
data["refusal"] = msg["refusal"]
# Update session's updatedAt timestamp
await PrismaChatSession.prisma().update(
where={"id": session_id},
data={"updatedAt": datetime.now(UTC)},
)
# Add optional JSON fields only when they have values
if msg.get("tool_calls") is not None:
data["toolCalls"] = SafeJson(msg["tool_calls"])
if msg.get("function_call") is not None:
data["functionCall"] = SafeJson(msg["function_call"])
created = await PrismaChatMessage.prisma(tx).create(
data=cast(ChatMessageCreateInput, data)
)
created_messages.append(created)
# Update session's updatedAt timestamp within the same transaction.
# Note: Token usage (total_prompt_tokens, total_completion_tokens) is updated
# separately via update_chat_session() after streaming completes.
await PrismaChatSession.prisma(tx).update(
where={"id": session_id},
data={"updatedAt": datetime.now(UTC)},
)
return created_messages
@@ -179,10 +212,31 @@ async def get_user_session_count(user_id: str) -> int:
return await PrismaChatSession.prisma().count(where={"userId": user_id})
async def delete_chat_session(session_id: str) -> bool:
"""Delete a chat session and all its messages."""
async def delete_chat_session(session_id: str, user_id: str | None = None) -> bool:
"""Delete a chat session and all its messages.
Args:
session_id: The session ID to delete.
user_id: If provided, validates that the session belongs to this user
before deletion. This prevents unauthorized deletion of other
users' sessions.
Returns:
True if deleted successfully, False otherwise.
"""
try:
await PrismaChatSession.prisma().delete(where={"id": session_id})
# Build typed where clause with optional user_id validation
where_clause: ChatSessionWhereInput = {"id": session_id}
if user_id is not None:
where_clause["userId"] = user_id
result = await PrismaChatSession.prisma().delete_many(where=where_clause)
if result == 0:
logger.warning(
f"No session deleted for {session_id} "
f"(user_id validation: {user_id is not None})"
)
return False
return True
except Exception as e:
logger.error(f"Failed to delete chat session {session_id}: {e}")

View File

@@ -1,6 +1,9 @@
import asyncio
import logging
import uuid
from datetime import UTC, datetime
from typing import Any
from weakref import WeakValueDictionary
from openai.types.chat import (
ChatCompletionAssistantMessageParam,
@@ -22,7 +25,7 @@ from pydantic import BaseModel
from backend.data.redis_client import get_redis_async
from backend.util import json
from backend.util.exceptions import RedisError
from backend.util.exceptions import DatabaseError, RedisError
from . import db as chat_db
from .config import ChatConfig
@@ -31,6 +34,48 @@ logger = logging.getLogger(__name__)
config = ChatConfig()
def _parse_json_field(value: str | dict | list | None, default: Any = None) -> Any:
"""Parse a JSON field that may be stored as string or already parsed."""
if value is None:
return default
if isinstance(value, str):
return json.loads(value)
return value
# Redis cache key prefix for chat sessions
CHAT_SESSION_CACHE_PREFIX = "chat:session:"
def _get_session_cache_key(session_id: str) -> str:
"""Get the Redis cache key for a chat session."""
return f"{CHAT_SESSION_CACHE_PREFIX}{session_id}"
# Session-level locks to prevent race conditions during concurrent upserts.
# Uses WeakValueDictionary to automatically garbage collect locks when no longer referenced,
# preventing unbounded memory growth while maintaining lock semantics for active sessions.
# Invalidation: Locks are auto-removed by GC when no coroutine holds a reference (after
# async with lock: completes). Explicit cleanup also occurs in delete_chat_session().
_session_locks: WeakValueDictionary[str, asyncio.Lock] = WeakValueDictionary()
_session_locks_mutex = asyncio.Lock()
async def _get_session_lock(session_id: str) -> asyncio.Lock:
"""Get or create a lock for a specific session to prevent concurrent upserts.
Uses WeakValueDictionary for automatic cleanup: locks are garbage collected
when no coroutine holds a reference to them, preventing memory leaks from
unbounded growth of session locks.
"""
async with _session_locks_mutex:
lock = _session_locks.get(session_id)
if lock is None:
lock = asyncio.Lock()
_session_locks[session_id] = lock
return lock
class ChatMessage(BaseModel):
role: str
content: str | None = None
@@ -49,7 +94,7 @@ class Usage(BaseModel):
class ChatSession(BaseModel):
session_id: str
user_id: str | None
user_id: str
title: str | None = None
messages: list[ChatMessage]
usage: list[Usage]
@@ -60,7 +105,7 @@ class ChatSession(BaseModel):
successful_agent_schedules: dict[str, int] = {}
@staticmethod
def new(user_id: str | None) -> "ChatSession":
def new(user_id: str) -> "ChatSession":
return ChatSession(
session_id=str(uuid.uuid4()),
user_id=user_id,
@@ -73,7 +118,7 @@ class ChatSession(BaseModel):
)
@staticmethod
def from_prisma(
def from_db(
prisma_session: PrismaChatSession,
prisma_messages: list[PrismaChatMessage] | None = None,
) -> "ChatSession":
@@ -81,22 +126,6 @@ class ChatSession(BaseModel):
messages = []
if prisma_messages:
for msg in prisma_messages:
tool_calls = None
if msg.toolCalls:
tool_calls = (
json.loads(msg.toolCalls)
if isinstance(msg.toolCalls, str)
else msg.toolCalls
)
function_call = None
if msg.functionCall:
function_call = (
json.loads(msg.functionCall)
if isinstance(msg.functionCall, str)
else msg.functionCall
)
messages.append(
ChatMessage(
role=msg.role,
@@ -104,26 +133,18 @@ class ChatSession(BaseModel):
name=msg.name,
tool_call_id=msg.toolCallId,
refusal=msg.refusal,
tool_calls=tool_calls,
function_call=function_call,
tool_calls=_parse_json_field(msg.toolCalls),
function_call=_parse_json_field(msg.functionCall),
)
)
# Parse JSON fields from Prisma
credentials = (
json.loads(prisma_session.credentials)
if isinstance(prisma_session.credentials, str)
else prisma_session.credentials or {}
credentials = _parse_json_field(prisma_session.credentials, default={})
successful_agent_runs = _parse_json_field(
prisma_session.successfulAgentRuns, default={}
)
successful_agent_runs = (
json.loads(prisma_session.successfulAgentRuns)
if isinstance(prisma_session.successfulAgentRuns, str)
else prisma_session.successfulAgentRuns or {}
)
successful_agent_schedules = (
json.loads(prisma_session.successfulAgentSchedules)
if isinstance(prisma_session.successfulAgentSchedules, str)
else prisma_session.successfulAgentSchedules or {}
successful_agent_schedules = _parse_json_field(
prisma_session.successfulAgentSchedules, default={}
)
# Calculate usage from token counts
@@ -242,7 +263,7 @@ class ChatSession(BaseModel):
async def _get_session_from_cache(session_id: str) -> ChatSession | None:
"""Get a chat session from Redis cache."""
redis_key = f"chat:session:{session_id}"
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
raw_session: bytes | None = await async_redis.get(redis_key)
@@ -264,7 +285,7 @@ async def _get_session_from_cache(session_id: str) -> ChatSession | None:
async def _cache_session(session: ChatSession) -> None:
"""Cache a chat session in Redis."""
redis_key = f"chat:session:{session.session_id}"
redis_key = _get_session_cache_key(session.session_id)
async_redis = await get_redis_async()
await async_redis.setex(redis_key, config.session_ttl, session.model_dump_json())
@@ -283,7 +304,7 @@ async def _get_session_from_db(session_id: str) -> ChatSession | None:
f"roles={[m.role for m in messages] if messages else []}"
)
return ChatSession.from_prisma(prisma_session, messages)
return ChatSession.from_db(prisma_session, messages)
async def _save_session_to_db(
@@ -345,19 +366,24 @@ async def _save_session_to_db(
async def get_chat_session(
session_id: str,
user_id: str | None,
user_id: str | None = None,
) -> ChatSession | None:
"""Get a chat session by ID.
Checks Redis cache first, falls back to database if not found.
Caches database results back to Redis.
Args:
session_id: The session ID to fetch.
user_id: If provided, validates that the session belongs to this user.
If None, ownership is not validated (admin/system access).
"""
# Try cache first
try:
session = await _get_session_from_cache(session_id)
if session:
# Verify user ownership
if session.user_id is not None and session.user_id != user_id:
# Verify user ownership if user_id was provided for validation
if user_id is not None and session.user_id != user_id:
logger.warning(
f"Session {session_id} user id mismatch: {session.user_id} != {user_id}"
)
@@ -376,8 +402,8 @@ async def get_chat_session(
logger.warning(f"Session {session_id} not found in cache or database")
return None
# Verify user ownership
if session.user_id is not None and session.user_id != user_id:
# Verify user ownership if user_id was provided for validation
if user_id is not None and session.user_id != user_id:
logger.warning(
f"Session {session_id} user id mismatch: {session.user_id} != {user_id}"
)
@@ -396,49 +422,88 @@ async def get_chat_session(
async def upsert_chat_session(
session: ChatSession,
) -> ChatSession:
"""Update a chat session in both cache and database."""
# Get existing message count from DB for incremental saves
existing_message_count = await chat_db.get_chat_session_message_count(
session.session_id
)
"""Update a chat session in both cache and database.
# Save to database
try:
await _save_session_to_db(session, existing_message_count)
except Exception as e:
logger.error(f"Failed to save session {session.session_id} to database: {e}")
# Continue to cache even if DB fails
Uses session-level locking to prevent race conditions when concurrent
operations (e.g., background title update and main stream handler)
attempt to upsert the same session simultaneously.
# Save to cache
try:
await _cache_session(session)
except Exception as e:
raise RedisError(
f"Failed to persist chat session {session.session_id} to Redis: {e}"
) from e
Raises:
DatabaseError: If the database write fails. The cache is still updated
as a best-effort optimization, but the error is propagated to ensure
callers are aware of the persistence failure.
RedisError: If the cache write fails (after successful DB write).
"""
# Acquire session-specific lock to prevent concurrent upserts
lock = await _get_session_lock(session.session_id)
return session
async with lock:
# Get existing message count from DB for incremental saves
existing_message_count = await chat_db.get_chat_session_message_count(
session.session_id
)
db_error: Exception | None = None
# Save to database (primary storage)
try:
await _save_session_to_db(session, existing_message_count)
except Exception as e:
logger.error(
f"Failed to save session {session.session_id} to database: {e}"
)
db_error = e
# Save to cache (best-effort, even if DB failed)
try:
await _cache_session(session)
except Exception as e:
# If DB succeeded but cache failed, raise cache error
if db_error is None:
raise RedisError(
f"Failed to persist chat session {session.session_id} to Redis: {e}"
) from e
# If both failed, log cache error but raise DB error (more critical)
logger.warning(
f"Cache write also failed for session {session.session_id}: {e}"
)
# Propagate DB error after attempting cache (prevents data loss)
if db_error is not None:
raise DatabaseError(
f"Failed to persist chat session {session.session_id} to database"
) from db_error
return session
async def create_chat_session(user_id: str | None) -> ChatSession:
"""Create a new chat session and persist it."""
async def create_chat_session(user_id: str) -> ChatSession:
"""Create a new chat session and persist it.
Raises:
DatabaseError: If the database write fails. We fail fast to ensure
callers never receive a non-persisted session that only exists
in cache (which would be lost when the cache expires).
"""
session = ChatSession.new(user_id)
# Create in database first
# Create in database first - fail fast if this fails
try:
await chat_db.create_chat_session(
session_id=session.session_id,
user_id=user_id,
)
except Exception as e:
logger.error(f"Failed to create session in database: {e}")
# Continue even if DB fails - cache will still work
logger.error(f"Failed to create session {session.session_id} in database: {e}")
raise DatabaseError(
f"Failed to create chat session {session.session_id} in database"
) from e
# Cache the session
# Cache the session (best-effort optimization, DB is source of truth)
try:
await _cache_session(session)
except Exception as e:
logger.warning(f"Failed to cache new session: {e}")
logger.warning(f"Failed to cache new session {session.session_id}: {e}")
return session
@@ -447,27 +512,86 @@ async def get_user_sessions(
user_id: str,
limit: int = 50,
offset: int = 0,
) -> list[ChatSession]:
"""Get all chat sessions for a user from the database."""
) -> tuple[list[ChatSession], int]:
"""Get chat sessions for a user from the database with total count.
Returns:
A tuple of (sessions, total_count) where total_count is the overall
number of sessions for the user (not just the current page).
"""
prisma_sessions = await chat_db.get_user_chat_sessions(user_id, limit, offset)
total_count = await chat_db.get_user_session_count(user_id)
sessions = []
for prisma_session in prisma_sessions:
# Convert without messages for listing (lighter weight)
sessions.append(ChatSession.from_prisma(prisma_session, None))
sessions.append(ChatSession.from_db(prisma_session, None))
return sessions
return sessions, total_count
async def delete_chat_session(session_id: str) -> bool:
"""Delete a chat session from both cache and database."""
# Delete from cache
async def delete_chat_session(session_id: str, user_id: str | None = None) -> bool:
"""Delete a chat session from both cache and database.
Args:
session_id: The session ID to delete.
user_id: If provided, validates that the session belongs to this user
before deletion. This prevents unauthorized deletion.
Returns:
True if deleted successfully, False otherwise.
"""
# Delete from database first (with optional user_id validation)
# This confirms ownership before invalidating cache
deleted = await chat_db.delete_chat_session(session_id, user_id)
if not deleted:
return False
# Only invalidate cache and clean up lock after DB confirms deletion
try:
redis_key = f"chat:session:{session_id}"
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
logger.warning(f"Failed to delete session {session_id} from cache: {e}")
# Delete from database
return await chat_db.delete_chat_session(session_id)
# Clean up session lock (belt-and-suspenders with WeakValueDictionary)
async with _session_locks_mutex:
_session_locks.pop(session_id, None)
return True
async def update_session_title(session_id: str, title: str) -> bool:
"""Update only the title of a chat session.
This is a lightweight operation that doesn't touch messages, avoiding
race conditions with concurrent message updates. Use this for background
title generation instead of upsert_chat_session.
Args:
session_id: The session ID to update.
title: The new title to set.
Returns:
True if updated successfully, False otherwise.
"""
try:
result = await chat_db.update_chat_session(session_id=session_id, title=title)
if result is None:
logger.warning(f"Session {session_id} not found for title update")
return False
# Invalidate cache so next fetch gets updated title
try:
redis_key = _get_session_cache_key(session_id)
async_redis = await get_redis_async()
await async_redis.delete(redis_key)
except Exception as e:
logger.warning(f"Failed to invalidate cache for session {session_id}: {e}")
return True
except Exception as e:
logger.error(f"Failed to update title for session {session_id}: {e}")
return False

View File

@@ -43,9 +43,9 @@ async def test_chatsession_serialization_deserialization():
@pytest.mark.asyncio(loop_scope="session")
async def test_chatsession_redis_storage():
async def test_chatsession_redis_storage(setup_test_user, test_user_id):
s = ChatSession.new(user_id=None)
s = ChatSession.new(user_id=test_user_id)
s.messages = messages
s = await upsert_chat_session(s)
@@ -59,26 +59,28 @@ async def test_chatsession_redis_storage():
@pytest.mark.asyncio(loop_scope="session")
async def test_chatsession_redis_storage_user_id_mismatch():
async def test_chatsession_redis_storage_user_id_mismatch(
setup_test_user, test_user_id
):
s = ChatSession.new(user_id="abc123")
s = ChatSession.new(user_id=test_user_id)
s.messages = messages
s = await upsert_chat_session(s)
s2 = await get_chat_session(s.session_id, None)
s2 = await get_chat_session(s.session_id, "different_user_id")
assert s2 is None
@pytest.mark.asyncio(loop_scope="session")
async def test_chatsession_db_storage():
async def test_chatsession_db_storage(setup_test_user, test_user_id):
"""Test that messages are correctly saved to and loaded from DB (not cache)."""
from backend.data.redis_client import get_redis_async
# Create session with messages including assistant message
s = ChatSession.new(user_id=None)
s = ChatSession.new(user_id=test_user_id)
s.messages = messages # Contains user, assistant, and tool messages
assert s.session_id is not None, "Session id is not set"
# Upsert to save to both cache and DB
s = await upsert_chat_session(s)

View File

@@ -1,192 +0,0 @@
You are Otto, an AI Co-Pilot and Forward Deployed Engineer for AutoGPT, an AI Business Automation tool. Your mission is to help users quickly find, create, and set up AutoGPT agents to solve their business problems.
Here are the functions available to you:
<functions>
**Understanding & Discovery:**
1. **add_understanding** - Save information about the user's business context (use this as you learn about them)
2. **find_agent** - Search the marketplace for pre-built agents that solve the user's problem
3. **find_library_agent** - Search the user's personal library of saved agents
4. **find_block** - Search for individual blocks (building components for agents)
5. **search_platform_docs** - Search AutoGPT documentation for help
**Agent Creation & Editing:**
6. **create_agent** - Create a new custom agent from scratch based on user requirements
7. **edit_agent** - Modify an existing agent (add/remove blocks, change configuration)
**Execution & Output:**
8. **run_agent** - Run or schedule an agent (automatically handles setup)
9. **run_block** - Run a single block directly without creating an agent
10. **agent_output** - Get the output/results from a running or completed agent execution
</functions>
## ALWAYS GET THE USER'S NAME
**This is critical:** If you don't know the user's name, ask for it in your first response. Use a friendly, natural approach:
- "Hi! I'm Otto. What's your name?"
- "Hey there! Before we dive in, what should I call you?"
Once you have their name, immediately save it with `add_understanding(user_name="...")` and use it throughout the conversation.
## BUILDING USER UNDERSTANDING
**If no User Business Context is provided below**, gather information naturally during conversation - don't interrogate them.
**Key information to gather (in priority order):**
1. Their name (ALWAYS first if unknown)
2. Their job title and role
3. Their business/company and industry
4. Pain points and what they want to automate
5. Tools they currently use
**How to gather this information:**
- Ask naturally as part of helping them (e.g., "What's your role?" or "What industry are you in?")
- When they share information, immediately save it using `add_understanding`
- Don't ask all questions at once - spread them across the conversation
- Prioritize understanding their immediate problem first
**Example:**
```
User: "I need help automating my social media"
Otto: I can help with that! I'm Otto - what's your name?
User: "I'm Sarah"
Otto: [calls add_understanding with user_name="Sarah"]
Nice to meet you, Sarah! What's your role - are you a social media manager or business owner?
User: "I'm the marketing director at a fintech startup"
Otto: [calls add_understanding with job_title="Marketing Director", industry="fintech", business_size="startup"]
Great! Let me find social media automation agents for you.
[calls find_agent with query="social media automation marketing"]
```
## WHEN TO USE WHICH TOOL
**Finding existing agents:**
- `find_agent` - Search the marketplace for pre-built agents others have created
- `find_library_agent` - Search agents the user has already saved to their library
**Creating/editing agents:**
- `create_agent` - When user wants a custom agent that doesn't exist, or has specific requirements
- `edit_agent` - When user wants to modify an existing agent (change inputs, add blocks, etc.)
**Running agents:**
- `run_agent` - To execute an agent (handles credentials and inputs automatically)
- `agent_output` - To check the results of a running or completed agent execution
**Direct execution:**
- `run_block` - Run a single block directly without needing a full agent
## HOW run_agent WORKS
The `run_agent` tool automatically handles the entire setup flow:
1. **First call** (no inputs) → Returns available inputs so user can decide what values to use
2. **Credentials check** → If missing, UI automatically prompts user to add them (you don't need to mention this)
3. **Execution** → Runs when you provide `inputs` OR set `use_defaults=true`
Parameters:
- `username_agent_slug` (required): Agent identifier like "creator/agent-name"
- `inputs`: Object with input values for the agent
- `use_defaults`: Set to `true` to run with default values (only after user confirms)
- `schedule_name` + `cron`: For scheduled execution
## HOW create_agent WORKS
Use `create_agent` when the user wants to build a custom automation:
- Describe what the agent should do
- The tool will create the agent structure with appropriate blocks
- Returns the agent ID for further editing or running
## HOW agent_output WORKS
Use `agent_output` to get results from agent executions:
- Pass the execution_id from a run_agent response
- Returns the current status and any outputs produced
- Useful for checking if an agent has completed and what it produced
## WORKFLOW
1. **Get their name** - If unknown, ask for it first
2. **Understand context** - Ask 1-2 questions about their problem while helping
3. **Find or create** - Use find_agent for existing solutions, create_agent for custom needs
4. **Set up and run** - Use run_agent to execute, agent_output to get results
## YOUR APPROACH
**Step 1: Greet and Identify**
- If you don't know their name, ask for it
- Be friendly and conversational
**Step 2: Understand the Problem**
- Ask maximum 1-2 targeted questions
- Focus on: What business problem are they solving?
- If they want to create/edit an agent, understand what it should do
**Step 3: Find or Create**
- For existing solutions: Use `find_agent` with relevant keywords
- For custom needs: Use `create_agent` with their requirements
- For modifications: Use `edit_agent` on an existing agent
**Step 4: Execute**
- Call `run_agent` without inputs first to see what's available
- Ask user what values they want or if defaults are okay
- Call `run_agent` again with inputs or `use_defaults=true`
- Use `agent_output` to check results when needed
## USING add_understanding
Call `add_understanding` whenever you learn something about the user:
**User info:** `user_name`, `job_title`
**Business:** `business_name`, `industry`, `business_size` (1-10, 11-50, 51-200, 201-1000, 1000+), `user_role` (decision maker, implementer, end user)
**Processes:** `key_workflows` (array), `daily_activities` (array)
**Pain points:** `pain_points` (array), `bottlenecks` (array), `manual_tasks` (array), `automation_goals` (array)
**Tools:** `current_software` (array), `existing_automation` (array)
**Other:** `additional_notes`
Example: `add_understanding(user_name="Sarah", job_title="Marketing Director", industry="fintech")`
## KEY RULES
**What You DON'T Do:**
- Don't help with login (frontend handles this)
- Don't mention or explain credentials to the user (frontend handles this automatically)
- Don't run agents without first showing available inputs to the user
- Don't use `use_defaults=true` without user explicitly confirming
- Don't write responses longer than 3 sentences
- Don't interrogate users with many questions - gather info naturally
**What You DO:**
- ALWAYS ask for user's name if you don't have it
- Save user information with `add_understanding` as you learn it
- Use their name when addressing them
- Always call run_agent first without inputs to see what's available
- Ask user what values they want OR if they want to use defaults
- Keep all responses to maximum 3 sentences
- Include the agent link in your response after successful execution
**Error Handling:**
- Authentication needed → "Please sign in via the interface"
- Credentials missing → The UI handles this automatically. Focus on asking the user about input values instead.
## RESPONSE STRUCTURE
Before responding, wrap your analysis in <thinking> tags to systematically plan your approach:
- Check if you know the user's name - if not, ask for it
- Check if you have user context - if not, plan to gather some naturally
- Extract the key business problem or request from the user's message
- Determine what function call (if any) you need to make next
- Plan your response to stay under the 3-sentence maximum
Example interaction:
```
User: "Hi, I want to build an agent that monitors my competitors"
Otto: <thinking>I don't know this user's name. I should ask for it while acknowledging their request.</thinking>
Hi! I'm Otto and I'd love to help you build a competitor monitoring agent. What's your name?
User: "I'm Mike"
Otto: [calls add_understanding with user_name="Mike"]
<thinking>Now I know Mike wants competitor monitoring. I should search for existing agents first.</thinking>
Great to meet you, Mike! Let me search for competitor monitoring agents.
[calls find_agent with query="competitor monitoring analysis"]
```
KEEP ANSWERS TO 3 SENTENCES

View File

@@ -1,155 +0,0 @@
You are Otto, an AI Co-Pilot helping new users get started with AutoGPT, an AI Business Automation platform. Your mission is to welcome them, learn about their needs, and help them run their first successful agent.
Here are the functions available to you:
<functions>
**Understanding & Discovery:**
1. **add_understanding** - Save information about the user's business context (use this as you learn about them)
2. **find_agent** - Search the marketplace for pre-built agents that solve the user's problem
3. **find_library_agent** - Search the user's personal library of saved agents
4. **find_block** - Search for individual blocks (building components for agents)
5. **search_platform_docs** - Search AutoGPT documentation for help
**Agent Creation & Editing:**
6. **create_agent** - Create a new custom agent from scratch based on user requirements
7. **edit_agent** - Modify an existing agent (add/remove blocks, change configuration)
**Execution & Output:**
8. **run_agent** - Run or schedule an agent (automatically handles setup)
9. **run_block** - Run a single block directly without creating an agent
10. **agent_output** - Get the output/results from a running or completed agent execution
</functions>
## YOUR ONBOARDING MISSION
You are guiding a new user through their first experience with AutoGPT. Your goal is to:
1. Welcome them warmly and get their name
2. Learn about them and their business
3. Find or create an agent that solves a real problem for them
4. Get that agent running successfully
5. Celebrate their success and point them to next steps
## PHASE 1: WELCOME & INTRODUCTION
**Start every conversation by:**
- Giving a warm, friendly greeting
- Introducing yourself as Otto, their AI assistant
- Asking for their name immediately
**Example opening:**
```
Hi! I'm Otto, your AI assistant. Welcome to AutoGPT! I'm here to help you set up your first automation. What's your name?
```
Once you have their name, save it immediately with `add_understanding(user_name="...")` and use it throughout.
## PHASE 2: DISCOVERY
**After getting their name, learn about them:**
- What's their role/job title?
- What industry/business are they in?
- What's one thing they'd love to automate?
**Keep it conversational - don't interrogate. Example:**
```
Nice to meet you, Sarah! What do you do for work, and what's one task you wish you could automate?
```
Save everything you learn with `add_understanding`.
## PHASE 3: FIND OR CREATE AN AGENT
**Once you understand their need:**
- Search for existing agents with `find_agent`
- Present the best match and explain how it helps them
- If nothing fits, offer to create a custom agent with `create_agent`
**Be enthusiastic about the solution:**
```
I found a great agent for you! The "Social Media Scheduler" can automatically post to your accounts on a schedule. Want to try it?
```
## PHASE 4: SETUP & RUN
**Guide them through running the agent:**
1. Call `run_agent` without inputs first to see what's needed
2. Explain each input in simple terms
3. Ask what values they want to use
4. Run the agent with their inputs or defaults
**Don't mention credentials** - the UI handles that automatically.
## PHASE 5: CELEBRATE & HANDOFF
**After successful execution:**
- Congratulate them on their first automation!
- Tell them where to find this agent (their Library)
- Mention they can explore more agents in the Marketplace
- Offer to help with anything else
**Example:**
```
You did it! Your first agent is running. You can find it anytime in your Library. Ready to explore more automations?
```
## KEY RULES
**What You DON'T Do:**
- Don't help with login (frontend handles this)
- Don't mention credentials (UI handles automatically)
- Don't run agents without showing inputs first
- Don't use `use_defaults=true` without explicit confirmation
- Don't write responses longer than 3 sentences
- Don't overwhelm with too many questions at once
**What You DO:**
- ALWAYS get the user's name first
- Be warm, encouraging, and celebratory
- Save info with `add_understanding` as you learn it
- Use their name when addressing them
- Keep responses to maximum 3 sentences
- Make them feel successful at each step
## USING add_understanding
Save information as you learn it:
**User info:** `user_name`, `job_title`
**Business:** `business_name`, `industry`, `business_size`, `user_role`
**Pain points:** `pain_points`, `manual_tasks`, `automation_goals`
**Tools:** `current_software`
Example: `add_understanding(user_name="Sarah", job_title="Marketing Manager", automation_goals=["social media scheduling"])`
## HOW run_agent WORKS
1. **First call** (no inputs) → Shows available inputs
2. **Credentials** → UI handles automatically (don't mention)
3. **Execution** → Run with `inputs={...}` or `use_defaults=true`
## RESPONSE STRUCTURE
Before responding, plan your approach in <thinking> tags:
- What phase am I in? (Welcome/Discovery/Find/Setup/Celebrate)
- Do I know their name? If not, ask for it
- What's the next step to move them forward?
- Keep response under 3 sentences
**Example flow:**
```
User: "Hi"
Otto: <thinking>Phase 1 - I need to welcome them and get their name.</thinking>
Hi! I'm Otto, welcome to AutoGPT! I'm here to help you set up your first automation - what's your name?
User: "I'm Alex"
Otto: [calls add_understanding with user_name="Alex"]
<thinking>Got their name. Phase 2 - learn about them.</thinking>
Great to meet you, Alex! What do you do for work, and what's one task you'd love to automate?
User: "I run an e-commerce store and spend hours on customer support emails"
Otto: [calls add_understanding with industry="e-commerce", pain_points=["customer support emails"]]
<thinking>Phase 3 - search for agents.</thinking>
[calls find_agent with query="customer support email automation"]
```
KEEP ANSWERS TO 3 SENTENCES - Be warm, helpful, and focused on their success!

View File

@@ -1,3 +1,10 @@
"""
Response models for Vercel AI SDK UI Stream Protocol.
This module implements the AI SDK UI Stream Protocol (v1) for streaming chat responses.
See: https://ai-sdk.dev/docs/ai-sdk-ui/stream-protocol
"""
from enum import Enum
from typing import Any
@@ -5,97 +12,133 @@ from pydantic import BaseModel, Field
class ResponseType(str, Enum):
"""Types of streaming responses."""
"""Types of streaming responses following AI SDK protocol."""
TEXT_CHUNK = "text_chunk"
TEXT_ENDED = "text_ended"
TOOL_CALL = "tool_call"
TOOL_CALL_START = "tool_call_start"
TOOL_RESPONSE = "tool_response"
# Message lifecycle
START = "start"
FINISH = "finish"
# Text streaming
TEXT_START = "text-start"
TEXT_DELTA = "text-delta"
TEXT_END = "text-end"
# Tool interaction
TOOL_INPUT_START = "tool-input-start"
TOOL_INPUT_AVAILABLE = "tool-input-available"
TOOL_OUTPUT_AVAILABLE = "tool-output-available"
# Other
ERROR = "error"
USAGE = "usage"
STREAM_END = "stream_end"
class StreamBaseResponse(BaseModel):
"""Base response model for all streaming responses."""
type: ResponseType
timestamp: str | None = None
def to_sse(self) -> str:
"""Convert to SSE format."""
return f"data: {self.model_dump_json()}\n\n"
class StreamTextChunk(StreamBaseResponse):
"""Streaming text content from the assistant."""
type: ResponseType = ResponseType.TEXT_CHUNK
content: str = Field(..., description="Text content chunk")
# ========== Message Lifecycle ==========
class StreamToolCallStart(StreamBaseResponse):
class StreamStart(StreamBaseResponse):
"""Start of a new message."""
type: ResponseType = ResponseType.START
messageId: str = Field(..., description="Unique message ID")
class StreamFinish(StreamBaseResponse):
"""End of message/stream."""
type: ResponseType = ResponseType.FINISH
# ========== Text Streaming ==========
class StreamTextStart(StreamBaseResponse):
"""Start of a text block."""
type: ResponseType = ResponseType.TEXT_START
id: str = Field(..., description="Text block ID")
class StreamTextDelta(StreamBaseResponse):
"""Streaming text content delta."""
type: ResponseType = ResponseType.TEXT_DELTA
id: str = Field(..., description="Text block ID")
delta: str = Field(..., description="Text content delta")
class StreamTextEnd(StreamBaseResponse):
"""End of a text block."""
type: ResponseType = ResponseType.TEXT_END
id: str = Field(..., description="Text block ID")
# ========== Tool Interaction ==========
class StreamToolInputStart(StreamBaseResponse):
"""Tool call started notification."""
type: ResponseType = ResponseType.TOOL_CALL_START
tool_name: str = Field(..., description="Name of the tool that was executed")
tool_id: str = Field(..., description="Unique tool call ID")
type: ResponseType = ResponseType.TOOL_INPUT_START
toolCallId: str = Field(..., description="Unique tool call ID")
toolName: str = Field(..., description="Name of the tool being called")
class StreamToolCall(StreamBaseResponse):
"""Tool invocation notification."""
class StreamToolInputAvailable(StreamBaseResponse):
"""Tool input is ready for execution."""
type: ResponseType = ResponseType.TOOL_CALL
tool_id: str = Field(..., description="Unique tool call ID")
tool_name: str = Field(..., description="Name of the tool being called")
arguments: dict[str, Any] = Field(
default_factory=dict, description="Tool arguments"
type: ResponseType = ResponseType.TOOL_INPUT_AVAILABLE
toolCallId: str = Field(..., description="Unique tool call ID")
toolName: str = Field(..., description="Name of the tool being called")
input: dict[str, Any] = Field(
default_factory=dict, description="Tool input arguments"
)
class StreamToolExecutionResult(StreamBaseResponse):
class StreamToolOutputAvailable(StreamBaseResponse):
"""Tool execution result."""
type: ResponseType = ResponseType.TOOL_RESPONSE
tool_id: str = Field(..., description="Tool call ID this responds to")
tool_name: str = Field(..., description="Name of the tool that was executed")
result: str | dict[str, Any] = Field(..., description="Tool execution result")
type: ResponseType = ResponseType.TOOL_OUTPUT_AVAILABLE
toolCallId: str = Field(..., description="Tool call ID this responds to")
output: str | dict[str, Any] = Field(..., description="Tool execution output")
# Additional fields for internal use (not part of AI SDK spec but useful)
toolName: str | None = Field(
default=None, description="Name of the tool that was executed"
)
success: bool = Field(
default=True, description="Whether the tool execution succeeded"
)
# ========== Other ==========
class StreamUsage(StreamBaseResponse):
"""Token usage statistics."""
type: ResponseType = ResponseType.USAGE
prompt_tokens: int
completion_tokens: int
total_tokens: int
promptTokens: int = Field(..., description="Number of prompt tokens")
completionTokens: int = Field(..., description="Number of completion tokens")
totalTokens: int = Field(..., description="Total number of tokens")
class StreamError(StreamBaseResponse):
"""Error response."""
type: ResponseType = ResponseType.ERROR
message: str = Field(..., description="Error message")
errorText: str = Field(..., description="Error message text")
code: str | None = Field(default=None, description="Error code")
details: dict[str, Any] | None = Field(
default=None, description="Additional error details"
)
class StreamTextEnded(StreamBaseResponse):
"""Text streaming completed marker."""
type: ResponseType = ResponseType.TEXT_ENDED
class StreamEnd(StreamBaseResponse):
"""End of stream marker."""
type: ResponseType = ResponseType.STREAM_END
summary: dict[str, Any] | None = Field(
default=None, description="Stream summary statistics"
)

View File

@@ -13,12 +13,25 @@ from backend.util.exceptions import NotFoundError
from . import service as chat_service
from .config import ChatConfig
from .model import ChatSession, create_chat_session, get_chat_session, get_user_sessions
config = ChatConfig()
logger = logging.getLogger(__name__)
async def _validate_and_get_session(
session_id: str,
user_id: str | None,
) -> ChatSession:
"""Validate session exists and belongs to user."""
session = await get_chat_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found.")
return session
router = APIRouter(
tags=["chat"],
)
@@ -94,7 +107,7 @@ async def list_sessions(
Returns:
ListSessionsResponse: List of session summaries and total count.
"""
sessions = await chat_service.get_user_sessions(user_id, limit, offset)
sessions, total_count = await get_user_sessions(user_id, limit, offset)
return ListSessionsResponse(
sessions=[
@@ -102,11 +115,11 @@ async def list_sessions(
id=session.session_id,
created_at=session.started_at.isoformat(),
updated_at=session.updated_at.isoformat(),
title=None, # TODO: Add title support
title=session.title,
)
for session in sessions
],
total=len(sessions),
total=total_count,
)
@@ -114,15 +127,15 @@ async def list_sessions(
"/sessions",
)
async def create_session(
user_id: Annotated[str | None, Depends(auth.get_user_id)],
user_id: Annotated[str, Depends(auth.get_user_id)],
) -> CreateSessionResponse:
"""
Create a new chat session.
Initiates a new chat session for either an authenticated or anonymous user.
Initiates a new chat session for the authenticated user.
Args:
user_id: The optional authenticated user ID parsed from the JWT. If missing, creates an anonymous session.
user_id: The authenticated user ID parsed from the JWT (required).
Returns:
CreateSessionResponse: Details of the created session.
@@ -130,15 +143,15 @@ async def create_session(
"""
logger.info(
f"Creating session with user_id: "
f"...{user_id[-8:] if user_id and len(user_id) > 8 else '<redacted>'}"
f"...{user_id[-8:] if len(user_id) > 8 else '<redacted>'}"
)
session = await chat_service.create_chat_session(user_id)
session = await create_chat_session(user_id)
return CreateSessionResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
user_id=session.user_id or None,
user_id=session.user_id,
)
@@ -162,7 +175,7 @@ async def get_session(
SessionDetailResponse: Details for the requested session; raises NotFoundError if not found.
"""
session = await chat_service.get_session(session_id, user_id)
session = await get_chat_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found")
@@ -206,14 +219,7 @@ async def stream_chat_post(
StreamingResponse: SSE-formatted response chunks.
"""
# Validate session exists before starting the stream
# This prevents errors after the response has already started
session = await chat_service.get_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found. ")
if session.user_id is None and user_id is not None:
session = await chat_service.assign_user_to_session(session_id, user_id)
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
async for chunk in chat_service.stream_chat_completion(
@@ -225,6 +231,8 @@ async def stream_chat_post(
context=request.context,
):
yield chunk.to_sse()
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
@@ -233,6 +241,7 @@ async def stream_chat_post(
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -263,14 +272,7 @@ async def stream_chat_get(
StreamingResponse: SSE-formatted response chunks.
"""
# Validate session exists before starting the stream
# This prevents errors after the response has already started
session = await chat_service.get_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found. ")
if session.user_id is None and user_id is not None:
session = await chat_service.assign_user_to_session(session_id, user_id)
session = await _validate_and_get_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
async for chunk in chat_service.stream_chat_completion(
@@ -281,6 +283,8 @@ async def stream_chat_get(
session=session, # Pass pre-fetched session to avoid double-fetch
):
yield chunk.to_sse()
# AI SDK protocol termination
yield "data: [DONE]\n\n"
return StreamingResponse(
event_generator(),
@@ -289,6 +293,7 @@ async def stream_chat_get(
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no", # Disable nginx buffering
"x-vercel-ai-ui-message-stream": "v1", # AI SDK protocol header
},
)
@@ -319,133 +324,6 @@ async def session_assign_user(
return {"status": "ok"}
# ========== Onboarding Routes ==========
# These routes use a specialized onboarding system prompt
@router.post(
"/onboarding/sessions",
)
async def create_onboarding_session(
user_id: Annotated[str | None, Depends(auth.get_user_id)],
) -> CreateSessionResponse:
"""
Create a new onboarding chat session.
Initiates a new chat session specifically for user onboarding,
using a specialized prompt that guides users through their first
experience with AutoGPT.
Args:
user_id: The optional authenticated user ID parsed from the JWT.
Returns:
CreateSessionResponse: Details of the created onboarding session.
"""
logger.info(
f"Creating onboarding session with user_id: "
f"...{user_id[-8:] if user_id and len(user_id) > 8 else '<redacted>'}"
)
session = await chat_service.create_chat_session(user_id)
return CreateSessionResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
user_id=session.user_id or None,
)
@router.get(
"/onboarding/sessions/{session_id}",
)
async def get_onboarding_session(
session_id: str,
user_id: Annotated[str | None, Depends(auth.get_user_id)],
) -> SessionDetailResponse:
"""
Retrieve the details of an onboarding chat session.
Args:
session_id: The unique identifier for the onboarding session.
user_id: The optional authenticated user ID.
Returns:
SessionDetailResponse: Details for the requested session.
"""
session = await chat_service.get_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found")
messages = [message.model_dump() for message in session.messages]
logger.info(
f"Returning onboarding session {session_id}: "
f"message_count={len(messages)}, "
f"roles={[m.get('role') for m in messages]}"
)
return SessionDetailResponse(
id=session.session_id,
created_at=session.started_at.isoformat(),
updated_at=session.updated_at.isoformat(),
user_id=session.user_id or None,
messages=messages,
)
@router.post(
"/onboarding/sessions/{session_id}/stream",
)
async def stream_onboarding_chat(
session_id: str,
request: StreamChatRequest,
user_id: str | None = Depends(auth.get_user_id),
):
"""
Stream onboarding chat responses for a session.
Uses the specialized onboarding system prompt to guide new users
through their first experience with AutoGPT. Streams AI responses
in real time over Server-Sent Events (SSE).
Args:
session_id: The onboarding session identifier.
request: Request body containing message and optional context.
user_id: Optional authenticated user ID.
Returns:
StreamingResponse: SSE-formatted response chunks.
"""
session = await chat_service.get_session(session_id, user_id)
if not session:
raise NotFoundError(f"Session {session_id} not found.")
if session.user_id is None and user_id is not None:
session = await chat_service.assign_user_to_session(session_id, user_id)
async def event_generator() -> AsyncGenerator[str, None]:
async for chunk in chat_service.stream_chat_completion(
session_id,
request.message,
is_user_message=request.is_user_message,
user_id=user_id,
session=session,
context=request.context,
prompt_type="onboarding", # Use onboarding system prompt
):
yield chunk.to_sse()
return StreamingResponse(
event_generator(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"X-Accel-Buffering": "no",
},
)
# ========== Health Check ==========
@@ -454,16 +332,28 @@ async def health_check() -> dict:
"""
Health check endpoint for the chat service.
Performs a full cycle test of session creation, assignment, and retrieval. Should always return healthy
Performs a full cycle test of session creation and retrieval. Should always return healthy
if the service and data layer are operational.
Returns:
dict: A status dictionary indicating health, service name, and API version.
"""
session = await chat_service.create_chat_session(None)
await chat_service.assign_user_to_session(session.session_id, "test_user")
await chat_service.get_session(session.session_id, "test_user")
from backend.data.user import get_or_create_user
# Ensure health check user exists (required for FK constraint)
health_check_user_id = "health-check-user"
await get_or_create_user(
{
"sub": health_check_user_id,
"email": "health-check@system.local",
"user_metadata": {"name": "Health Check User"},
}
)
# Create and retrieve session to verify full data layer
session = await create_chat_session(health_check_user_id)
await get_chat_session(session.session_id, health_check_user_id)
return {
"status": "healthy",

File diff suppressed because it is too large Load Diff

View File

@@ -4,18 +4,19 @@ from os import getenv
import pytest
from . import service as chat_service
from .model import create_chat_session, get_chat_session, upsert_chat_session
from .response_model import (
StreamEnd,
StreamError,
StreamTextChunk,
StreamToolExecutionResult,
StreamFinish,
StreamTextDelta,
StreamToolOutputAvailable,
)
logger = logging.getLogger(__name__)
@pytest.mark.asyncio(loop_scope="session")
async def test_stream_chat_completion():
async def test_stream_chat_completion(setup_test_user, test_user_id):
"""
Test the stream_chat_completion function.
"""
@@ -23,7 +24,7 @@ async def test_stream_chat_completion():
if not api_key:
return pytest.skip("OPEN_ROUTER_API_KEY is not set, skipping test")
session = await chat_service.create_chat_session()
session = await create_chat_session(test_user_id)
has_errors = False
has_ended = False
@@ -34,9 +35,9 @@ async def test_stream_chat_completion():
logger.info(chunk)
if isinstance(chunk, StreamError):
has_errors = True
if isinstance(chunk, StreamTextChunk):
assistant_message += chunk.content
if isinstance(chunk, StreamEnd):
if isinstance(chunk, StreamTextDelta):
assistant_message += chunk.delta
if isinstance(chunk, StreamFinish):
has_ended = True
assert has_ended, "Chat completion did not end"
@@ -45,7 +46,7 @@ async def test_stream_chat_completion():
@pytest.mark.asyncio(loop_scope="session")
async def test_stream_chat_completion_with_tool_calls():
async def test_stream_chat_completion_with_tool_calls(setup_test_user, test_user_id):
"""
Test the stream_chat_completion function.
"""
@@ -53,8 +54,8 @@ async def test_stream_chat_completion_with_tool_calls():
if not api_key:
return pytest.skip("OPEN_ROUTER_API_KEY is not set, skipping test")
session = await chat_service.create_chat_session()
session = await chat_service.upsert_chat_session(session)
session = await create_chat_session(test_user_id)
session = await upsert_chat_session(session)
has_errors = False
has_ended = False
@@ -68,14 +69,14 @@ async def test_stream_chat_completion_with_tool_calls():
if isinstance(chunk, StreamError):
has_errors = True
if isinstance(chunk, StreamEnd):
if isinstance(chunk, StreamFinish):
has_ended = True
if isinstance(chunk, StreamToolExecutionResult):
if isinstance(chunk, StreamToolOutputAvailable):
had_tool_calls = True
assert has_ended, "Chat completion did not end"
assert not has_errors, "Error occurred while streaming chat completion"
assert had_tool_calls, "Tool calls did not occur"
session = await chat_service.get_session(session.session_id)
session = await get_chat_session(session.session_id)
assert session, "Session not found"
assert session.usage, "Usage is empty"

View File

@@ -12,37 +12,36 @@ from .edit_agent import EditAgentTool
from .find_agent import FindAgentTool
from .find_block import FindBlockTool
from .find_library_agent import FindLibraryAgentTool
from .get_doc_page import GetDocPageTool
from .run_agent import RunAgentTool
from .run_block import RunBlockTool
from .search_docs import SearchDocsTool
if TYPE_CHECKING:
from backend.api.features.chat.response_model import StreamToolExecutionResult
from backend.api.features.chat.response_model import StreamToolOutputAvailable
# Initialize tool instances
add_understanding_tool = AddUnderstandingTool()
create_agent_tool = CreateAgentTool()
edit_agent_tool = EditAgentTool()
find_agent_tool = FindAgentTool()
find_block_tool = FindBlockTool()
find_library_agent_tool = FindLibraryAgentTool()
run_agent_tool = RunAgentTool()
run_block_tool = RunBlockTool()
search_docs_tool = SearchDocsTool()
agent_output_tool = AgentOutputTool()
# Single source of truth for all tools
TOOL_REGISTRY: dict[str, BaseTool] = {
"add_understanding": AddUnderstandingTool(),
"create_agent": CreateAgentTool(),
"edit_agent": EditAgentTool(),
"find_agent": FindAgentTool(),
"find_block": FindBlockTool(),
"find_library_agent": FindLibraryAgentTool(),
"run_agent": RunAgentTool(),
"run_block": RunBlockTool(),
"view_agent_output": AgentOutputTool(),
"search_docs": SearchDocsTool(),
"get_doc_page": GetDocPageTool(),
}
# Export tools as OpenAI format
# Export individual tool instances for backwards compatibility
find_agent_tool = TOOL_REGISTRY["find_agent"]
run_agent_tool = TOOL_REGISTRY["run_agent"]
# Generated from registry for OpenAI API
tools: list[ChatCompletionToolParam] = [
add_understanding_tool.as_openai_tool(),
create_agent_tool.as_openai_tool(),
edit_agent_tool.as_openai_tool(),
find_agent_tool.as_openai_tool(),
find_block_tool.as_openai_tool(),
find_library_agent_tool.as_openai_tool(),
run_agent_tool.as_openai_tool(),
run_block_tool.as_openai_tool(),
search_docs_tool.as_openai_tool(),
agent_output_tool.as_openai_tool(),
tool.as_openai_tool() for tool in TOOL_REGISTRY.values()
]
@@ -52,22 +51,9 @@ async def execute_tool(
user_id: str | None,
session: ChatSession,
tool_call_id: str,
) -> "StreamToolExecutionResult":
tool_map: dict[str, BaseTool] = {
"add_understanding": add_understanding_tool,
"create_agent": create_agent_tool,
"edit_agent": edit_agent_tool,
"find_agent": find_agent_tool,
"find_block": find_block_tool,
"find_library_agent": find_library_agent_tool,
"run_agent": run_agent_tool,
"run_block": run_block_tool,
"search_platform_docs": search_docs_tool,
"agent_output": agent_output_tool,
}
if tool_name not in tool_map:
) -> "StreamToolOutputAvailable":
"""Execute a tool by name."""
tool = TOOL_REGISTRY.get(tool_name)
if not tool:
raise ValueError(f"Tool {tool_name} not found")
return await tool_map[tool_name].execute(
user_id, session, tool_call_id, **parameters
)
return await tool.execute(user_id, session, tool_call_id, **parameters)

View File

@@ -3,6 +3,7 @@ from datetime import UTC, datetime
from os import getenv
import pytest
from prisma.types import ProfileCreateInput
from pydantic import SecretStr
from backend.api.features.chat.model import ChatSession
@@ -17,7 +18,7 @@ from backend.data.user import get_or_create_user
from backend.integrations.credentials_store import IntegrationCredentialsStore
def make_session(user_id: str | None = None):
def make_session(user_id: str):
return ChatSession(
session_id=str(uuid.uuid4()),
user_id=user_id,
@@ -49,13 +50,13 @@ async def setup_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile",
"links": [], # Required field - empty array for test profiles
}
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile",
links=[], # Required field - empty array for test profiles
)
)
# 2. Create a test graph with agent input -> agent output
@@ -172,13 +173,13 @@ async def setup_llm_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile for LLM tests",
"links": [], # Required field - empty array for test profiles
}
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile for LLM tests",
links=[], # Required field - empty array for test profiles
)
)
# 2. Create test OpenAI credentials for the user
@@ -332,13 +333,13 @@ async def setup_firecrawl_test_data():
# 1b. Create a profile with username for the user (required for store agent lookup)
username = user.email.split("@")[0]
await prisma.profile.create(
data={
"userId": user.id,
"username": username,
"name": f"Test User {username}",
"description": "Test user profile for Firecrawl tests",
"links": [], # Required field - empty array for test profiles
}
data=ProfileCreateInput(
userId=user.id,
username=username,
name=f"Test User {username}",
description="Test user profile for Firecrawl tests",
links=[], # Required field - empty array for test profiles
)
)
# NOTE: We deliberately do NOT create Firecrawl credentials for this user

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.understanding import (
BusinessUnderstandingInput,
@@ -10,11 +12,7 @@ from backend.data.understanding import (
)
from .base import BaseTool
from .models import (
ErrorResponse,
ToolResponseBase,
UnderstandingUpdatedResponse,
)
from .models import ErrorResponse, ToolResponseBase, UnderstandingUpdatedResponse
logger = logging.getLogger(__name__)
@@ -38,86 +36,32 @@ and automations for the user's specific needs."""
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"user_name": {
"type": "string",
"description": "The user's name",
},
"job_title": {
"type": "string",
"description": "The user's job title (e.g., 'Marketing Manager', 'CEO', 'Software Engineer')",
},
"business_name": {
"type": "string",
"description": "Name of the user's business or organization",
},
"industry": {
"type": "string",
"description": "Industry or sector (e.g., 'e-commerce', 'healthcare', 'finance')",
},
"business_size": {
"type": "string",
"description": "Company size: '1-10', '11-50', '51-200', '201-1000', or '1000+'",
},
"user_role": {
"type": "string",
"description": "User's role in organization context (e.g., 'decision maker', 'implementer', 'end user')",
},
"key_workflows": {
"type": "array",
"items": {"type": "string"},
"description": "Key business workflows (e.g., 'lead qualification', 'content publishing')",
},
"daily_activities": {
"type": "array",
"items": {"type": "string"},
"description": "Regular daily activities the user performs",
},
"pain_points": {
"type": "array",
"items": {"type": "string"},
"description": "Current pain points or challenges",
},
"bottlenecks": {
"type": "array",
"items": {"type": "string"},
"description": "Process bottlenecks slowing things down",
},
"manual_tasks": {
"type": "array",
"items": {"type": "string"},
"description": "Manual or repetitive tasks that could be automated",
},
"automation_goals": {
"type": "array",
"items": {"type": "string"},
"description": "Desired automation outcomes or goals",
},
"current_software": {
"type": "array",
"items": {"type": "string"},
"description": "Software and tools currently in use",
},
"existing_automation": {
"type": "array",
"items": {"type": "string"},
"description": "Any existing automations or integrations",
},
"additional_notes": {
"type": "string",
"description": "Any other relevant context or notes",
},
},
"required": [],
}
# Auto-generate from Pydantic model schema
schema = BusinessUnderstandingInput.model_json_schema()
properties = {}
for field_name, field_schema in schema.get("properties", {}).items():
prop: dict[str, Any] = {"description": field_schema.get("description", "")}
# Handle anyOf for Optional types
if "anyOf" in field_schema:
for option in field_schema["anyOf"]:
if option.get("type") != "null":
prop["type"] = option.get("type", "string")
if "items" in option:
prop["items"] = option["items"]
break
else:
prop["type"] = field_schema.get("type", "string")
if "items" in field_schema:
prop["items"] = field_schema["items"]
properties[field_name] = prop
return {"type": "object", "properties": properties, "required": []}
@property
def requires_auth(self) -> bool:
"""Requires authentication to store user-specific data."""
return True
@observe(as_type="tool", name="add_understanding")
async def _execute(
self,
user_id: str | None,
@@ -146,54 +90,26 @@ and automations for the user's specific needs."""
session_id=session_id,
)
# Build input model
# Build input model from kwargs (only include fields defined in the model)
valid_fields = set(BusinessUnderstandingInput.model_fields.keys())
input_data = BusinessUnderstandingInput(
user_name=kwargs.get("user_name"),
job_title=kwargs.get("job_title"),
business_name=kwargs.get("business_name"),
industry=kwargs.get("industry"),
business_size=kwargs.get("business_size"),
user_role=kwargs.get("user_role"),
key_workflows=kwargs.get("key_workflows"),
daily_activities=kwargs.get("daily_activities"),
pain_points=kwargs.get("pain_points"),
bottlenecks=kwargs.get("bottlenecks"),
manual_tasks=kwargs.get("manual_tasks"),
automation_goals=kwargs.get("automation_goals"),
current_software=kwargs.get("current_software"),
existing_automation=kwargs.get("existing_automation"),
additional_notes=kwargs.get("additional_notes"),
**{k: v for k, v in kwargs.items() if k in valid_fields}
)
# Track which fields were updated
updated_fields = [k for k, v in kwargs.items() if v is not None]
updated_fields = [
k for k, v in kwargs.items() if k in valid_fields and v is not None
]
# Upsert with merge
understanding = await upsert_business_understanding(user_id, input_data)
# Build current understanding summary for the response
current_understanding = {
"user_name": understanding.user_name,
"job_title": understanding.job_title,
"business_name": understanding.business_name,
"industry": understanding.industry,
"business_size": understanding.business_size,
"user_role": understanding.user_role,
"key_workflows": understanding.key_workflows,
"daily_activities": understanding.daily_activities,
"pain_points": understanding.pain_points,
"bottlenecks": understanding.bottlenecks,
"manual_tasks": understanding.manual_tasks,
"automation_goals": understanding.automation_goals,
"current_software": understanding.current_software,
"existing_automation": understanding.existing_automation,
"additional_notes": understanding.additional_notes,
}
# Filter out empty values for cleaner response
# Build current understanding summary (filter out empty values)
current_understanding = {
k: v
for k, v in current_understanding.items()
for k, v in understanding.model_dump(
exclude={"id", "user_id", "created_at", "updated_at"}
).items()
if v is not None and v != [] and v != ""
}

View File

@@ -5,7 +5,7 @@ import os
from openai import AsyncOpenAI
# Configuration - use OPEN_ROUTER_API_KEY for consistency with chat/config.py
OPENROUTER_API_KEY = os.getenv("OPEN_ROUTER_API_KEY") or os.getenv("OPENROUTER_API_KEY")
OPENROUTER_API_KEY = os.getenv("OPEN_ROUTER_API_KEY")
AGENT_GENERATOR_MODEL = os.getenv("AGENT_GENERATOR_MODEL", "anthropic/claude-opus-4.5")
# OpenRouter client (OpenAI-compatible API)

View File

@@ -5,6 +5,7 @@ import re
from datetime import datetime, timedelta, timezone
from typing import Any
from langfuse import observe
from pydantic import BaseModel, field_validator
from backend.api.features.chat.model import ChatSession
@@ -55,56 +56,47 @@ def parse_time_expression(
"""
Parse time expression into datetime range (start, end).
Supports:
- "latest" or None -> returns (None, None) to get most recent
- "yesterday" -> 24h window for yesterday
- "today" -> Today from midnight
- "last week" / "last 7 days" -> 7 day window
- "last month" / "last 30 days" -> 30 day window
- ISO date "YYYY-MM-DD" -> 24h window for that date
Supports: "latest", "yesterday", "today", "last week", "last 7 days",
"last month", "last 30 days", ISO date "YYYY-MM-DD", ISO datetime.
"""
if not time_expr or time_expr.lower() == "latest":
return None, None
now = datetime.now(timezone.utc)
today_start = now.replace(hour=0, minute=0, second=0, microsecond=0)
expr = time_expr.lower().strip()
# Relative expressions
if expr == "yesterday":
end = now.replace(hour=0, minute=0, second=0, microsecond=0)
start = end - timedelta(days=1)
return start, end
if expr in ("last week", "last 7 days"):
return now - timedelta(days=7), now
if expr in ("last month", "last 30 days"):
return now - timedelta(days=30), now
if expr == "today":
start = now.replace(hour=0, minute=0, second=0, microsecond=0)
return start, now
# Relative time expressions lookup
relative_times: dict[str, tuple[datetime, datetime]] = {
"yesterday": (today_start - timedelta(days=1), today_start),
"today": (today_start, now),
"last week": (now - timedelta(days=7), now),
"last 7 days": (now - timedelta(days=7), now),
"last month": (now - timedelta(days=30), now),
"last 30 days": (now - timedelta(days=30), now),
}
if expr in relative_times:
return relative_times[expr]
# Try ISO date format (YYYY-MM-DD)
date_match = re.match(r"^(\d{4})-(\d{2})-(\d{2})$", expr)
if date_match:
year, month, day = map(int, date_match.groups())
start = datetime(year, month, day, 0, 0, 0, tzinfo=timezone.utc)
end = start + timedelta(days=1)
return start, end
try:
year, month, day = map(int, date_match.groups())
start = datetime(year, month, day, 0, 0, 0, tzinfo=timezone.utc)
return start, start + timedelta(days=1)
except ValueError:
# Invalid date components (e.g., month=13, day=32)
pass
# Try ISO datetime
try:
parsed = datetime.fromisoformat(expr.replace("Z", "+00:00"))
if parsed.tzinfo is None:
parsed = parsed.replace(tzinfo=timezone.utc)
# Return +/- 1 hour window around the specified time
return parsed - timedelta(hours=1), parsed + timedelta(hours=1)
except ValueError:
pass
# Fallback: treat as "latest"
return None, None
return None, None
class AgentOutputTool(BaseTool):
@@ -112,7 +104,7 @@ class AgentOutputTool(BaseTool):
@property
def name(self) -> str:
return "agent_output"
return "view_agent_output"
@property
def description(self) -> str:
@@ -337,6 +329,7 @@ class AgentOutputTool(BaseTool):
total_executions=len(available_executions) if available_executions else 1,
)
@observe(as_type="tool", name="view_agent_output")
async def _execute(
self,
user_id: str | None,

View File

@@ -0,0 +1,151 @@
"""Shared agent search functionality for find_agent and find_library_agent tools."""
import logging
from typing import Literal
from backend.api.features.library import db as library_db
from backend.api.features.store import db as store_db
from backend.util.exceptions import DatabaseError, NotFoundError
from .models import (
AgentInfo,
AgentsFoundResponse,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
SearchSource = Literal["marketplace", "library"]
async def search_agents(
query: str,
source: SearchSource,
session_id: str | None,
user_id: str | None = None,
) -> ToolResponseBase:
"""
Search for agents in marketplace or user library.
Args:
query: Search query string
source: "marketplace" or "library"
session_id: Chat session ID
user_id: User ID (required for library search)
Returns:
AgentsFoundResponse, NoResultsResponse, or ErrorResponse
"""
if not query:
return ErrorResponse(
message="Please provide a search query", session_id=session_id
)
if source == "library" and not user_id:
return ErrorResponse(
message="User authentication required to search library",
session_id=session_id,
)
agents: list[AgentInfo] = []
try:
if source == "marketplace":
logger.info(f"Searching marketplace for: {query}")
results = await store_db.get_store_agents(search_query=query, page_size=5)
for agent in results.agents:
agents.append(
AgentInfo(
id=f"{agent.creator}/{agent.slug}",
name=agent.agent_name,
description=agent.description or "",
source="marketplace",
in_library=False,
creator=agent.creator,
category="general",
rating=agent.rating,
runs=agent.runs,
is_featured=False,
)
)
else: # library
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
)
logger.info(f"Found {len(agents)} agents in {source}")
except NotFoundError:
pass
except DatabaseError as e:
logger.error(f"Error searching {source}: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to search {source}. Please try again.",
error=str(e),
session_id=session_id,
)
if not agents:
suggestions = (
[
"Try more general terms",
"Browse categories in the marketplace",
"Check spelling",
]
if source == "marketplace"
else [
"Try different keywords",
"Use find_agent to search the marketplace",
"Check your library at /library",
]
)
no_results_msg = (
f"No agents found matching '{query}'. Try different keywords or browse the marketplace."
if source == "marketplace"
else f"No agents matching '{query}' found in your library."
)
return NoResultsResponse(
message=no_results_msg, session_id=session_id, suggestions=suggestions
)
title = f"Found {len(agents)} agent{'s' if len(agents) != 1 else ''} "
title += (
f"for '{query}'"
if source == "marketplace"
else f"in your library for '{query}'"
)
message = (
"Now you have found some options for the user to choose from. "
"You can add a link to a recommended agent at: /marketplace/agent/agent_id "
"Please ask the user if they would like to use any of these agents."
if source == "marketplace"
else "Found agents in the user's library. You can provide a link to view an agent at: "
"/library/agents/{agent_id}. Use agent_output to get execution results, or run_agent to execute."
)
return AgentsFoundResponse(
message=message,
title=title,
agents=agents,
count=len(agents),
session_id=session_id,
)

View File

@@ -6,7 +6,7 @@ from typing import Any
from openai.types.chat import ChatCompletionToolParam
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.response_model import StreamToolExecutionResult
from backend.api.features.chat.response_model import StreamToolOutputAvailable
from .models import ErrorResponse, NeedLoginResponse, ToolResponseBase
@@ -53,7 +53,7 @@ class BaseTool:
session: ChatSession,
tool_call_id: str,
**kwargs,
) -> StreamToolExecutionResult:
) -> StreamToolOutputAvailable:
"""Execute the tool with authentication check.
Args:
@@ -69,10 +69,10 @@ class BaseTool:
logger.error(
f"Attempted tool call for {self.name} but user not authenticated"
)
return StreamToolExecutionResult(
tool_id=tool_call_id,
tool_name=self.name,
result=NeedLoginResponse(
return StreamToolOutputAvailable(
toolCallId=tool_call_id,
toolName=self.name,
output=NeedLoginResponse(
message=f"Please sign in to use {self.name}",
session_id=session.session_id,
).model_dump_json(),
@@ -81,17 +81,17 @@ class BaseTool:
try:
result = await self._execute(user_id, session, **kwargs)
return StreamToolExecutionResult(
tool_id=tool_call_id,
tool_name=self.name,
result=result.model_dump_json(),
return StreamToolOutputAvailable(
toolCallId=tool_call_id,
toolName=self.name,
output=result.model_dump_json(),
)
except Exception as e:
logger.error(f"Error in {self.name}: {e}", exc_info=True)
return StreamToolExecutionResult(
tool_id=tool_call_id,
tool_name=self.name,
result=ErrorResponse(
return StreamToolOutputAvailable(
toolCallId=tool_call_id,
toolName=self.name,
output=ErrorResponse(
message=f"An error occurred while executing {self.name}",
error=str(e),
session_id=session.session_id,

File diff suppressed because one or more lines are too long

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
@@ -78,6 +80,7 @@ class CreateAgentTool(BaseTool):
"required": ["description"],
}
@observe(as_type="tool", name="create_agent")
async def _execute(
self,
user_id: str | None,

File diff suppressed because one or more lines are too long

View File

@@ -3,6 +3,8 @@
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from .agent_generator import (
@@ -85,6 +87,7 @@ class EditAgentTool(BaseTool):
"required": ["agent_id", "changes"],
}
@observe(as_type="tool", name="edit_agent")
async def _execute(
self,
user_id: str | None,

View File

@@ -1,26 +1,18 @@
"""Tool for discovering agents from marketplace and user library."""
"""Tool for discovering agents from marketplace."""
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.api.features.store import db as store_db
from backend.util.exceptions import DatabaseError, NotFoundError
from .agent_search import search_agents
from .base import BaseTool
from .models import (
AgentCarouselResponse,
AgentInfo,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
from .models import ToolResponseBase
class FindAgentTool(BaseTool):
"""Tool for discovering agents based on user needs."""
"""Tool for discovering agents from the marketplace."""
@property
def name(self) -> str:
@@ -45,85 +37,13 @@ class FindAgentTool(BaseTool):
"required": ["query"],
}
@observe(as_type="tool", name="find_agent")
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:
"""Search for agents in the marketplace.
Args:
user_id: User ID (may be anonymous)
session_id: Chat session ID
query: Search query
Returns:
AgentCarouselResponse: List of agents found in the marketplace
NoResultsResponse: No agents found in the marketplace
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
if not query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
)
agents = []
try:
logger.info(f"Searching marketplace for: {query}")
store_results = await store_db.get_store_agents(
search_query=query,
page_size=5,
)
logger.info(f"Find agents tool found {len(store_results.agents)} agents")
for agent in store_results.agents:
agent_id = f"{agent.creator}/{agent.slug}"
logger.info(f"Building agent ID = {agent_id}")
agents.append(
AgentInfo(
id=agent_id,
name=agent.agent_name,
description=agent.description or "",
source="marketplace",
in_library=False,
creator=agent.creator,
category="general",
rating=agent.rating,
runs=agent.runs,
is_featured=False,
),
)
except NotFoundError:
pass
except DatabaseError as e:
logger.error(f"Error searching agents: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search for agents. Please try again.",
error=str(e),
session_id=session_id,
)
if not agents:
return NoResultsResponse(
message=f"No agents found matching '{query}'. Try different keywords or browse the marketplace. If you have 3 consecutive find_agent tool calls results and found no agents. Please stop trying and ask the user if there is anything else you can help with.",
session_id=session_id,
suggestions=[
"Try more general terms",
"Browse categories in the marketplace",
"Check spelling",
],
)
# Return formatted carousel
title = (
f"Found {len(agents)} agent{'s' if len(agents) != 1 else ''} for '{query}'"
)
return AgentCarouselResponse(
message="Now you have found some options for the user to choose from. You can add a link to a recommended agent at: /marketplace/agent/agent_id Please ask the user if they would like to use any of these agents. If they do, please call the get_agent_details tool for this agent.",
title=title,
agents=agents,
count=len(agents),
session_id=session_id,
return await search_agents(
query=kwargs.get("query", "").strip(),
source="marketplace",
session_id=session.session_id,
user_id=user_id,
)

View File

@@ -1,20 +1,20 @@
"""Tool for searching available blocks using hybrid search."""
import logging
from typing import Any
from backend.api.features.chat.model import ChatSession
from backend.blocks import load_all_blocks
from langfuse import observe
from prisma.enums import ContentType
from .base import BaseTool
from .models import (
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool, ToolResponseBase
from backend.api.features.chat.tools.models import (
BlockInfoSummary,
BlockInputFieldInfo,
BlockListResponse,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
from .search_blocks import get_block_search_index
from backend.api.features.store.hybrid_search import unified_hybrid_search
from backend.data.block import get_block
logger = logging.getLogger(__name__)
@@ -32,7 +32,8 @@ class FindBlockTool(BaseTool):
"Search for available blocks by name or description. "
"Blocks are reusable components that perform specific tasks like "
"sending emails, making API calls, processing text, etc. "
"Use this to find blocks that can be executed directly."
"IMPORTANT: Use this tool FIRST to get the block's 'id' before calling run_block. "
"The response includes each block's id, required_inputs, and input_schema."
)
@property
@@ -55,39 +56,7 @@ class FindBlockTool(BaseTool):
def requires_auth(self) -> bool:
return True
def _matches_query(self, block, query: str) -> tuple[int, bool]:
"""
Check if a block matches the query and return a priority score.
Returns (priority, matches) where:
- priority 0: exact name match
- priority 1: name contains query
- priority 2: description contains query
- priority 3: category contains query
"""
query_lower = query.lower()
name_lower = block.name.lower()
desc_lower = block.description.lower()
# Exact name match
if query_lower == name_lower:
return 0, True
# Name contains query
if query_lower in name_lower:
return 1, True
# Description contains query
if query_lower in desc_lower:
return 2, True
# Category contains query
for category in block.categories:
if query_lower in category.name.lower():
return 3, True
return 4, False
@observe(as_type="tool", name="find_block")
async def _execute(
self,
user_id: str | None,
@@ -116,138 +85,110 @@ class FindBlockTool(BaseTool):
)
try:
# Try hybrid search first
search_results = self._hybrid_search(query)
# Search for blocks using hybrid search
results, total = await unified_hybrid_search(
query=query,
content_types=[ContentType.BLOCK],
page=1,
page_size=10,
)
if search_results is not None:
# Hybrid search succeeded
if not search_results:
return NoResultsResponse(
message=f"No blocks found matching '{query}'",
session_id=session_id,
suggestions=[
"Try more general terms",
"Search by category: ai, text, social, search, etc.",
"Check block names like 'SendEmail', 'HttpRequest', etc.",
],
)
# Get full block info for each result
all_blocks = load_all_blocks()
blocks = []
for result in search_results:
block_cls = all_blocks.get(result.block_id)
if block_cls:
block = block_cls()
blocks.append(
BlockInfoSummary(
id=block.id,
name=block.name,
description=block.description,
categories=[cat.name for cat in block.categories],
input_schema=block.input_schema.jsonschema(),
output_schema=block.output_schema.jsonschema(),
)
)
return BlockListResponse(
message=(
f"Found {len(blocks)} block{'s' if len(blocks) != 1 else ''} "
f"matching '{query}'. Use run_block to execute a block with "
"the required inputs."
),
blocks=blocks,
count=len(blocks),
query=query,
if not results:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
"Check spelling of technical terms",
],
session_id=session_id,
)
# Fallback to simple search if hybrid search failed
return self._simple_search(query, session_id)
# Enrich results with full block information
blocks: list[BlockInfoSummary] = []
for result in results:
block_id = result["content_id"]
block = get_block(block_id)
if block:
# Get input/output schemas
input_schema = {}
output_schema = {}
try:
input_schema = block.input_schema.jsonschema()
except Exception:
pass
try:
output_schema = block.output_schema.jsonschema()
except Exception:
pass
# Get categories from block instance
categories = []
if hasattr(block, "categories") and block.categories:
categories = [cat.value for cat in block.categories]
# Extract required inputs for easier use
required_inputs: list[BlockInputFieldInfo] = []
if input_schema:
properties = input_schema.get("properties", {})
required_fields = set(input_schema.get("required", []))
# Get credential field names to exclude from required inputs
credentials_fields = set(
block.input_schema.get_credentials_fields().keys()
)
for field_name, field_schema in properties.items():
# Skip credential fields - they're handled separately
if field_name in credentials_fields:
continue
required_inputs.append(
BlockInputFieldInfo(
name=field_name,
type=field_schema.get("type", "string"),
description=field_schema.get("description", ""),
required=field_name in required_fields,
default=field_schema.get("default"),
)
)
blocks.append(
BlockInfoSummary(
id=block_id,
name=block.name,
description=block.description or "",
categories=categories,
input_schema=input_schema,
output_schema=output_schema,
required_inputs=required_inputs,
)
)
if not blocks:
return NoResultsResponse(
message=f"No blocks found for '{query}'",
suggestions=[
"Try broader keywords like 'email', 'http', 'text', 'ai'",
],
session_id=session_id,
)
return BlockListResponse(
message=(
f"Found {len(blocks)} block(s) matching '{query}'. "
"To execute a block, use run_block with the block's 'id' field "
"and provide 'input_data' matching the block's input_schema."
),
blocks=blocks,
count=len(blocks),
query=query,
session_id=session_id,
)
except Exception as e:
logger.error(f"Error searching blocks: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search blocks. Please try again.",
message="Failed to search blocks",
error=str(e),
session_id=session_id,
)
def _hybrid_search(self, query: str) -> list | None:
"""
Perform hybrid search using embeddings and BM25.
Returns:
List of BlockSearchResult if successful, None if index not available
"""
try:
index = get_block_search_index()
if not index.load():
logger.info(
"Block search index not available, falling back to simple search"
)
return None
results = index.search(query, top_k=10)
logger.info(f"Hybrid search found {len(results)} blocks for: {query}")
return results
except Exception as e:
logger.warning(f"Hybrid search failed, falling back to simple: {e}")
return None
def _simple_search(self, query: str, session_id: str) -> ToolResponseBase:
"""Fallback simple search using substring matching."""
all_blocks = load_all_blocks()
logger.info(f"Simple searching {len(all_blocks)} blocks for: {query}")
# Find matching blocks with priority scores
matches: list[tuple[int, Any]] = []
for block_id, block_cls in all_blocks.items():
block = block_cls()
priority, is_match = self._matches_query(block, query)
if is_match:
matches.append((priority, block))
# Sort by priority (lower is better)
matches.sort(key=lambda x: x[0])
# Take top 10 results
top_matches = [block for _, block in matches[:10]]
if not top_matches:
return NoResultsResponse(
message=f"No blocks found matching '{query}'",
session_id=session_id,
suggestions=[
"Try more general terms",
"Search by category: ai, text, social, search, etc.",
"Check block names like 'SendEmail', 'HttpRequest', etc.",
],
)
# Build response
blocks = []
for block in top_matches:
blocks.append(
BlockInfoSummary(
id=block.id,
name=block.name,
description=block.description,
categories=[cat.name for cat in block.categories],
input_schema=block.input_schema.jsonschema(),
output_schema=block.output_schema.jsonschema(),
)
)
return BlockListResponse(
message=(
f"Found {len(blocks)} block{'s' if len(blocks) != 1 else ''} "
f"matching '{query}'. Use run_block to execute a block with "
"the required inputs."
),
blocks=blocks,
count=len(blocks),
query=query,
session_id=session_id,
)

View File

@@ -1,22 +1,14 @@
"""Tool for searching agents in the user's library."""
import logging
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.api.features.library import db as library_db
from backend.util.exceptions import DatabaseError
from .agent_search import search_agents
from .base import BaseTool
from .models import (
AgentCarouselResponse,
AgentInfo,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
from .models import ToolResponseBase
class FindLibraryAgentTool(BaseTool):
@@ -41,10 +33,7 @@ class FindLibraryAgentTool(BaseTool):
"properties": {
"query": {
"type": "string",
"description": (
"Search query to find agents by name or description. "
"Use keywords for best results."
),
"description": "Search query to find agents by name or description.",
},
},
"required": ["query"],
@@ -54,104 +43,13 @@ class FindLibraryAgentTool(BaseTool):
def requires_auth(self) -> bool:
return True
@observe(as_type="tool", name="find_library_agent")
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
self, user_id: str | None, session: ChatSession, **kwargs
) -> ToolResponseBase:
"""Search for agents in the user's library.
Args:
user_id: User ID (required)
session: Chat session
query: Search query
Returns:
AgentCarouselResponse: List of agents found in the library
NoResultsResponse: No agents found
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
if not query:
return ErrorResponse(
message="Please provide a search query",
session_id=session_id,
)
if not user_id:
return ErrorResponse(
message="User authentication required to search library",
session_id=session_id,
)
agents = []
try:
logger.info(f"Searching user library for: {query}")
library_results = await library_db.list_library_agents(
user_id=user_id,
search_term=query,
page_size=10,
)
logger.info(
f"Find library agents tool found {len(library_results.agents)} agents"
)
for agent in library_results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
),
)
except DatabaseError as e:
logger.error(f"Error searching library agents: {e}", exc_info=True)
return ErrorResponse(
message="Failed to search library. Please try again.",
error=str(e),
session_id=session_id,
)
if not agents:
return NoResultsResponse(
message=(
f"No agents found matching '{query}' in your library. "
"Try different keywords or use find_agent to search the marketplace."
),
session_id=session_id,
suggestions=[
"Try more general terms",
"Use find_agent to search the marketplace",
"Check your library at /library",
],
)
title = (
f"Found {len(agents)} agent{'s' if len(agents) != 1 else ''} "
f"in your library for '{query}'"
)
return AgentCarouselResponse(
message=(
"Found agents in the user's library. You can provide a link to "
"view an agent at: /library/agents/{agent_id}. "
"Use agent_output to get execution results, or run_agent to execute."
),
title=title,
agents=agents,
count=len(agents),
session_id=session_id,
return await search_agents(
query=kwargs.get("query", "").strip(),
source="library",
session_id=session.session_id,
user_id=user_id,
)

View File

@@ -0,0 +1,151 @@
"""GetDocPageTool - Fetch full content of a documentation page."""
import logging
from pathlib import Path
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
DocPageResponse,
ErrorResponse,
ToolResponseBase,
)
logger = logging.getLogger(__name__)
# Base URL for documentation (can be configured)
DOCS_BASE_URL = "https://docs.agpt.co"
class GetDocPageTool(BaseTool):
"""Tool for fetching full content of a documentation page."""
@property
def name(self) -> str:
return "get_doc_page"
@property
def description(self) -> str:
return (
"Get the full content of a documentation page by its path. "
"Use this after search_docs to read the complete content of a relevant page."
)
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"path": {
"type": "string",
"description": (
"The path to the documentation file, as returned by search_docs. "
"Example: 'platform/block-sdk-guide.md'"
),
},
},
"required": ["path"],
}
@property
def requires_auth(self) -> bool:
return False # Documentation is public
def _get_docs_root(self) -> Path:
"""Get the documentation root directory."""
this_file = Path(__file__)
project_root = this_file.parent.parent.parent.parent.parent.parent.parent.parent
return project_root / "docs"
def _extract_title(self, content: str, fallback: str) -> str:
"""Extract title from markdown content."""
lines = content.split("\n")
for line in lines:
if line.startswith("# "):
return line[2:].strip()
return fallback
def _make_doc_url(self, path: str) -> str:
"""Create a URL for a documentation page."""
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="get_doc_page")
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Fetch full content of a documentation page.
Args:
user_id: User ID (not required for docs)
session: Chat session
path: Path to the documentation file
Returns:
DocPageResponse: Full document content
ErrorResponse: Error message
"""
path = kwargs.get("path", "").strip()
session_id = session.session_id if session else None
if not path:
return ErrorResponse(
message="Please provide a documentation path.",
error="Missing path parameter",
session_id=session_id,
)
# Sanitize path to prevent directory traversal
if ".." in path or path.startswith("/"):
return ErrorResponse(
message="Invalid documentation path.",
error="invalid_path",
session_id=session_id,
)
docs_root = self._get_docs_root()
full_path = docs_root / path
if not full_path.exists():
return ErrorResponse(
message=f"Documentation page not found: {path}",
error="not_found",
session_id=session_id,
)
# Ensure the path is within docs root
try:
full_path.resolve().relative_to(docs_root.resolve())
except ValueError:
return ErrorResponse(
message="Invalid documentation path.",
error="invalid_path",
session_id=session_id,
)
try:
content = full_path.read_text(encoding="utf-8")
title = self._extract_title(content, path)
return DocPageResponse(
message=f"Retrieved documentation page: {title}",
title=title,
path=path,
content=content,
doc_url=self._make_doc_url(path),
session_id=session_id,
)
except Exception as e:
logger.error(f"Failed to read documentation page {path}: {e}")
return ErrorResponse(
message=f"Failed to read documentation page: {str(e)}",
error="read_failed",
session_id=session_id,
)

View File

@@ -1,483 +0,0 @@
#!/usr/bin/env python3
"""
Block Indexer for Hybrid Search
Creates a hybrid search index from blocks:
- OpenAI embeddings (text-embedding-3-small)
- BM25 index for lexical search
- Name index for title matching boost
Supports incremental updates by tracking content hashes.
Usage:
python -m backend.server.v2.chat.tools.index_blocks [--force]
"""
import argparse
import base64
import hashlib
import json
import logging
import os
import re
import sys
from collections import defaultdict
from datetime import datetime, timezone
from pathlib import Path
from typing import Any
import numpy as np
logger = logging.getLogger(__name__)
# Check for OpenAI availability
try:
import openai # noqa: F401
HAS_OPENAI = True
except ImportError:
HAS_OPENAI = False
print("Warning: openai not installed. Run: pip install openai")
# Default embedding model (OpenAI)
DEFAULT_EMBEDDING_MODEL = "text-embedding-3-small"
DEFAULT_EMBEDDING_DIM = 1536
# Output path (relative to this file)
INDEX_PATH = Path(__file__).parent / "blocks_index.json"
# Stopwords for tokenization
STOPWORDS = {
"the",
"a",
"an",
"is",
"are",
"was",
"were",
"be",
"been",
"being",
"have",
"has",
"had",
"do",
"does",
"did",
"will",
"would",
"could",
"should",
"may",
"might",
"must",
"shall",
"can",
"need",
"dare",
"ought",
"used",
"to",
"of",
"in",
"for",
"on",
"with",
"at",
"by",
"from",
"as",
"into",
"through",
"during",
"before",
"after",
"above",
"below",
"between",
"under",
"again",
"further",
"then",
"once",
"and",
"but",
"or",
"nor",
"so",
"yet",
"both",
"either",
"neither",
"not",
"only",
"own",
"same",
"than",
"too",
"very",
"just",
"also",
"now",
"here",
"there",
"when",
"where",
"why",
"how",
"all",
"each",
"every",
"few",
"more",
"most",
"other",
"some",
"such",
"no",
"any",
"this",
"that",
"these",
"those",
"it",
"its",
"block", # Too common in block context
}
def tokenize(text: str) -> list[str]:
"""Simple tokenizer for BM25."""
text = text.lower()
# Remove code blocks if any
text = re.sub(r"```[\s\S]*?```", "", text)
text = re.sub(r"`[^`]+`", "", text)
# Extract words (including camelCase split)
# First, split camelCase
text = re.sub(r"([a-z])([A-Z])", r"\1 \2", text)
# Extract words
words = re.findall(r"\b[a-z][a-z0-9_-]*\b", text)
# Remove very short words and stopwords
return [w for w in words if len(w) > 2 and w not in STOPWORDS]
def build_searchable_text(block: Any) -> str:
"""Build searchable text from block attributes."""
parts = []
# Block name (split camelCase for better tokenization)
name = block.name
# Split camelCase: GetCurrentTimeBlock -> Get Current Time Block
name_split = re.sub(r"([a-z])([A-Z])", r"\1 \2", name)
parts.append(name_split)
# Description
if block.description:
parts.append(block.description)
# Categories
for category in block.categories:
parts.append(category.name)
# Input schema field names and descriptions
try:
input_schema = block.input_schema.jsonschema()
if "properties" in input_schema:
for field_name, field_info in input_schema["properties"].items():
parts.append(field_name)
if "description" in field_info:
parts.append(field_info["description"])
except Exception:
pass
# Output schema field names
try:
output_schema = block.output_schema.jsonschema()
if "properties" in output_schema:
for field_name in output_schema["properties"]:
parts.append(field_name)
except Exception:
pass
return " ".join(parts)
def compute_content_hash(text: str) -> str:
"""Compute MD5 hash of text for change detection."""
return hashlib.md5(text.encode()).hexdigest()
def load_existing_index(index_path: Path) -> dict[str, Any] | None:
"""Load existing index if present."""
if not index_path.exists():
return None
try:
with open(index_path, "r", encoding="utf-8") as f:
return json.load(f)
except Exception as e:
logger.warning(f"Failed to load existing index: {e}")
return None
def create_embeddings(
texts: list[str],
model_name: str = DEFAULT_EMBEDDING_MODEL,
batch_size: int = 100,
) -> np.ndarray:
"""Create embeddings using OpenAI API."""
if not HAS_OPENAI:
raise RuntimeError("openai not installed. Run: pip install openai")
# Import here to satisfy type checker
from openai import OpenAI
# Check for API key
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
raise RuntimeError("OPENAI_API_KEY environment variable not set")
client = OpenAI(api_key=api_key)
embeddings = []
print(f"Creating embeddings for {len(texts)} texts using {model_name}...")
for i in range(0, len(texts), batch_size):
batch = texts[i : i + batch_size]
# Truncate texts to max token limit (8191 tokens for text-embedding-3-small)
# Roughly 4 chars per token, so ~32000 chars max
batch = [text[:32000] for text in batch]
response = client.embeddings.create(
model=model_name,
input=batch,
)
for embedding_data in response.data:
embeddings.append(embedding_data.embedding)
print(f" Processed {min(i + batch_size, len(texts))}/{len(texts)} texts")
return np.array(embeddings, dtype=np.float32)
def build_bm25_data(
blocks_data: list[dict[str, Any]],
) -> dict[str, Any]:
"""Build BM25 metadata from block data."""
# Tokenize all searchable texts
tokenized_docs = []
for block in blocks_data:
tokens = tokenize(block["searchable_text"])
tokenized_docs.append(tokens)
# Calculate document frequencies
doc_freq: dict[str, int] = {}
for tokens in tokenized_docs:
seen = set()
for token in tokens:
if token not in seen:
doc_freq[token] = doc_freq.get(token, 0) + 1
seen.add(token)
n_docs = len(tokenized_docs)
doc_lens = [len(d) for d in tokenized_docs]
avgdl = sum(doc_lens) / max(n_docs, 1)
return {
"n_docs": n_docs,
"avgdl": avgdl,
"df": doc_freq,
"doc_lens": doc_lens,
}
def build_name_index(
blocks_data: list[dict[str, Any]],
) -> dict[str, list[list[int | float]]]:
"""Build inverted index for name search boost."""
index: dict[str, list[list[int | float]]] = defaultdict(list)
for idx, block in enumerate(blocks_data):
# Tokenize block name
name_tokens = tokenize(block["name"])
seen = set()
for i, token in enumerate(name_tokens):
if token in seen:
continue
seen.add(token)
# Score: first token gets higher weight
score = 1.5 if i == 0 else 1.0
index[token].append([idx, score])
return dict(index)
def build_block_index(
force_rebuild: bool = False,
output_path: Path = INDEX_PATH,
) -> dict[str, Any]:
"""
Build the block search index.
Args:
force_rebuild: If True, rebuild all embeddings even if unchanged
output_path: Path to save the index
Returns:
The generated index dictionary
"""
# Import here to avoid circular imports
from backend.blocks import load_all_blocks
print("Loading all blocks...")
all_blocks = load_all_blocks()
print(f"Found {len(all_blocks)} blocks")
# Load existing index for incremental updates
existing_index = None if force_rebuild else load_existing_index(output_path)
existing_blocks: dict[str, dict[str, Any]] = {}
if existing_index:
print(
f"Loaded existing index with {len(existing_index.get('blocks', []))} blocks"
)
for block in existing_index.get("blocks", []):
existing_blocks[block["id"]] = block
# Process each block
blocks_data: list[dict[str, Any]] = []
blocks_needing_embedding: list[tuple[int, str]] = [] # (index, searchable_text)
for block_id, block_cls in all_blocks.items():
try:
block = block_cls()
# Skip disabled blocks
if block.disabled:
continue
searchable_text = build_searchable_text(block)
content_hash = compute_content_hash(searchable_text)
block_data = {
"id": block.id,
"name": block.name,
"description": block.description,
"categories": [cat.name for cat in block.categories],
"searchable_text": searchable_text,
"content_hash": content_hash,
"emb": None, # Will be filled later
}
# Check if we can reuse existing embedding
if (
block.id in existing_blocks
and existing_blocks[block.id].get("content_hash") == content_hash
and existing_blocks[block.id].get("emb")
):
# Reuse existing embedding
block_data["emb"] = existing_blocks[block.id]["emb"]
else:
# Need new embedding
blocks_needing_embedding.append((len(blocks_data), searchable_text))
blocks_data.append(block_data)
except Exception as e:
logger.warning(f"Failed to process block {block_id}: {e}")
continue
print(f"Processed {len(blocks_data)} blocks")
print(f"Blocks needing new embeddings: {len(blocks_needing_embedding)}")
# Create embeddings for new/changed blocks
if blocks_needing_embedding and HAS_OPENAI:
texts_to_embed = [text for _, text in blocks_needing_embedding]
try:
embeddings = create_embeddings(texts_to_embed)
# Assign embeddings to blocks
for i, (block_idx, _) in enumerate(blocks_needing_embedding):
emb = embeddings[i].astype(np.float32)
# Encode as base64
blocks_data[block_idx]["emb"] = base64.b64encode(emb.tobytes()).decode(
"ascii"
)
except Exception as e:
print(f"Warning: Failed to create embeddings: {e}")
elif blocks_needing_embedding:
print(
"Warning: Cannot create embeddings (openai not installed or OPENAI_API_KEY not set)"
)
# Build BM25 data
print("Building BM25 index...")
bm25_data = build_bm25_data(blocks_data)
# Build name index
print("Building name index...")
name_index = build_name_index(blocks_data)
# Build final index
index = {
"version": "1.0.0",
"embedding_model": DEFAULT_EMBEDDING_MODEL,
"embedding_dim": DEFAULT_EMBEDDING_DIM,
"generated_at": datetime.now(timezone.utc).isoformat(),
"blocks": blocks_data,
"bm25": bm25_data,
"name_index": name_index,
}
# Save index
print(f"Saving index to {output_path}...")
with open(output_path, "w", encoding="utf-8") as f:
json.dump(index, f, separators=(",", ":"))
size_kb = output_path.stat().st_size / 1024
print(f"Index saved ({size_kb:.1f} KB)")
# Print statistics
print("\nIndex Statistics:")
print(f" Blocks indexed: {len(blocks_data)}")
print(f" BM25 vocabulary size: {len(bm25_data['df'])}")
print(f" Name index terms: {len(name_index)}")
print(f" Embeddings: {'Yes' if any(b.get('emb') for b in blocks_data) else 'No'}")
return index
def main():
parser = argparse.ArgumentParser(description="Build hybrid search index for blocks")
parser.add_argument(
"--force",
action="store_true",
help="Force rebuild all embeddings even if unchanged",
)
parser.add_argument(
"--output",
type=Path,
default=INDEX_PATH,
help=f"Output index file path (default: {INDEX_PATH})",
)
args = parser.parse_args()
try:
build_block_index(
force_rebuild=args.force,
output_path=args.output,
)
except Exception as e:
print(f"Error building index: {e}")
import traceback
traceback.print_exc()
sys.exit(1)
if __name__ == "__main__":
main()

View File

@@ -12,23 +12,22 @@ from backend.data.model import CredentialsMetaInput
class ResponseType(str, Enum):
"""Types of tool responses."""
AGENT_CAROUSEL = "agent_carousel"
AGENTS_FOUND = "agents_found"
AGENT_DETAILS = "agent_details"
SETUP_REQUIREMENTS = "setup_requirements"
EXECUTION_STARTED = "execution_started"
NEED_LOGIN = "need_login"
ERROR = "error"
NO_RESULTS = "no_results"
SUCCESS = "success"
DOC_SEARCH_RESULTS = "doc_search_results"
AGENT_OUTPUT = "agent_output"
BLOCK_LIST = "block_list"
BLOCK_OUTPUT = "block_output"
UNDERSTANDING_UPDATED = "understanding_updated"
# Agent generation responses
AGENT_PREVIEW = "agent_preview"
AGENT_SAVED = "agent_saved"
CLARIFICATION_NEEDED = "clarification_needed"
BLOCK_LIST = "block_list"
BLOCK_OUTPUT = "block_output"
DOC_SEARCH_RESULTS = "doc_search_results"
DOC_PAGE = "doc_page"
# Base response model
@@ -61,14 +60,14 @@ class AgentInfo(BaseModel):
graph_id: str | None = None
class AgentCarouselResponse(ToolResponseBase):
class AgentsFoundResponse(ToolResponseBase):
"""Response for find_agent tool."""
type: ResponseType = ResponseType.AGENT_CAROUSEL
type: ResponseType = ResponseType.AGENTS_FOUND
title: str = "Available Agents"
agents: list[AgentInfo]
count: int
name: str = "agent_carousel"
name: str = "agents_found"
class NoResultsResponse(ToolResponseBase):
@@ -185,28 +184,6 @@ class ErrorResponse(ToolResponseBase):
details: dict[str, Any] | None = None
# Documentation search models
class DocSearchResult(BaseModel):
"""A single documentation search result."""
title: str
path: str
section: str
snippet: str # Short excerpt for UI display
content: str # Full text content for LLM to read and understand
score: float
doc_url: str | None = None
class DocSearchResultsResponse(ToolResponseBase):
"""Response for search_docs tool."""
type: ResponseType = ResponseType.DOC_SEARCH_RESULTS
results: list[DocSearchResult]
count: int
query: str
# Agent output models
class ExecutionOutputInfo(BaseModel):
"""Summary of a single execution's outputs."""
@@ -232,37 +209,6 @@ class AgentOutputResponse(ToolResponseBase):
total_executions: int = 0
# Block models
class BlockInfoSummary(BaseModel):
"""Summary of a block for search results."""
id: str
name: str
description: str
categories: list[str]
input_schema: dict[str, Any]
output_schema: dict[str, Any]
class BlockListResponse(ToolResponseBase):
"""Response for find_block tool."""
type: ResponseType = ResponseType.BLOCK_LIST
blocks: list[BlockInfoSummary]
count: int
query: str
class BlockOutputResponse(ToolResponseBase):
"""Response for run_block tool."""
type: ResponseType = ResponseType.BLOCK_OUTPUT
block_id: str
block_name: str
outputs: dict[str, list[Any]]
success: bool = True
# Business understanding models
class UnderstandingUpdatedResponse(ToolResponseBase):
"""Response for add_understanding tool."""
@@ -308,3 +254,83 @@ class ClarificationNeededResponse(ToolResponseBase):
type: ResponseType = ResponseType.CLARIFICATION_NEEDED
questions: list[ClarifyingQuestion] = Field(default_factory=list)
# Documentation search models
class DocSearchResult(BaseModel):
"""A single documentation search result."""
title: str
path: str
section: str
snippet: str # Short excerpt for UI display
score: float
doc_url: str | None = None
class DocSearchResultsResponse(ToolResponseBase):
"""Response for search_docs tool."""
type: ResponseType = ResponseType.DOC_SEARCH_RESULTS
results: list[DocSearchResult]
count: int
query: str
class DocPageResponse(ToolResponseBase):
"""Response for get_doc_page tool."""
type: ResponseType = ResponseType.DOC_PAGE
title: str
path: str
content: str # Full document content
doc_url: str | None = None
# Block models
class BlockInputFieldInfo(BaseModel):
"""Information about a block input field."""
name: str
type: str
description: str = ""
required: bool = False
default: Any | None = None
class BlockInfoSummary(BaseModel):
"""Summary of a block for search results."""
id: str
name: str
description: str
categories: list[str]
input_schema: dict[str, Any]
output_schema: dict[str, Any]
required_inputs: list[BlockInputFieldInfo] = Field(
default_factory=list,
description="List of required input fields for this block",
)
class BlockListResponse(ToolResponseBase):
"""Response for find_block tool."""
type: ResponseType = ResponseType.BLOCK_LIST
blocks: list[BlockInfoSummary]
count: int
query: str
usage_hint: str = Field(
default="To execute a block, call run_block with block_id set to the block's "
"'id' field and input_data containing the required fields from input_schema."
)
class BlockOutputResponse(ToolResponseBase):
"""Response for run_block tool."""
type: ResponseType = ResponseType.BLOCK_OUTPUT
block_id: str
block_name: str
outputs: dict[str, list[Any]]
success: bool = True

View File

@@ -3,6 +3,7 @@
import logging
from typing import Any
from langfuse import observe
from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig
@@ -154,6 +155,7 @@ class RunAgentTool(BaseTool):
"""All operations require authentication."""
return True
@observe(as_type="tool", name="run_agent")
async def _execute(
self,
user_id: str | None,

View File

@@ -1,4 +1,5 @@
import uuid
from unittest.mock import AsyncMock, patch
import orjson
import pytest
@@ -17,6 +18,17 @@ setup_test_data = setup_test_data
setup_firecrawl_test_data = setup_firecrawl_test_data
@pytest.fixture(scope="session", autouse=True)
def mock_embedding_functions():
"""Mock embedding functions for all tests to avoid database/API dependencies."""
with patch(
"backend.api.features.store.db.ensure_embedding",
new_callable=AsyncMock,
return_value=True,
):
yield
@pytest.mark.asyncio(scope="session")
async def test_run_agent(setup_test_data):
"""Test that the run_agent tool successfully executes an approved agent"""
@@ -46,11 +58,11 @@ async def test_run_agent(setup_test_data):
# Verify the response
assert response is not None
assert hasattr(response, "result")
assert hasattr(response, "output")
# Parse the result JSON to verify the execution started
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
assert "execution_id" in result_data
assert "graph_id" in result_data
assert result_data["graph_id"] == graph.id
@@ -86,11 +98,11 @@ async def test_run_agent_missing_inputs(setup_test_data):
# Verify that we get an error response
assert response is not None
assert hasattr(response, "result")
assert hasattr(response, "output")
# The tool should return an ErrorResponse when setup info indicates not ready
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
assert "message" in result_data
@@ -118,10 +130,10 @@ async def test_run_agent_invalid_agent_id(setup_test_data):
# Verify that we get an error response
assert response is not None
assert hasattr(response, "result")
assert hasattr(response, "output")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
assert "message" in result_data
# Should get an error about failed setup or not found
assert any(
@@ -158,12 +170,12 @@ async def test_run_agent_with_llm_credentials(setup_llm_test_data):
# Verify the response
assert response is not None
assert hasattr(response, "result")
assert hasattr(response, "output")
# Parse the result JSON to verify the execution started
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should successfully start execution since credentials are available
assert "execution_id" in result_data
@@ -195,9 +207,9 @@ async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_da
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return agent_details type showing available inputs
assert result_data.get("type") == "agent_details"
@@ -230,9 +242,9 @@ async def test_run_agent_with_use_defaults(setup_test_data):
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should execute successfully
assert "execution_id" in result_data
@@ -260,9 +272,9 @@ async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return setup_requirements type with missing credentials
assert result_data.get("type") == "setup_requirements"
@@ -292,9 +304,9 @@ async def test_run_agent_invalid_slug_format(setup_test_data):
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return error
assert result_data.get("type") == "error"
@@ -305,9 +317,10 @@ async def test_run_agent_invalid_slug_format(setup_test_data):
async def test_run_agent_unauthenticated():
"""Test that run_agent returns need_login for unauthenticated users."""
tool = RunAgentTool()
session = make_session(user_id=None)
# Session has a user_id (session owner), but we test tool execution without user_id
session = make_session(user_id="test-session-owner")
# Execute without user_id
# Execute without user_id to test unauthenticated behavior
response = await tool.execute(
user_id=None,
session_id=str(uuid.uuid4()),
@@ -318,9 +331,9 @@ async def test_run_agent_unauthenticated():
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Base tool returns need_login type for unauthenticated users
assert result_data.get("type") == "need_login"
@@ -350,9 +363,9 @@ async def test_run_agent_schedule_without_cron(setup_test_data):
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return error about missing cron
assert result_data.get("type") == "error"
@@ -382,9 +395,9 @@ async def test_run_agent_schedule_without_name(setup_test_data):
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return error about missing schedule_name
assert result_data.get("type") == "error"

View File

@@ -4,8 +4,11 @@ import logging
from collections import defaultdict
from typing import Any
from langfuse import observe
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import BlockError
@@ -34,8 +37,10 @@ class RunBlockTool(BaseTool):
def description(self) -> str:
return (
"Execute a specific block with the provided input data. "
"Use find_block to discover available blocks and their input schemas. "
"The block will run and return its outputs once complete."
"IMPORTANT: You MUST call find_block first to get the block's 'id' - "
"do NOT guess or make up block IDs. "
"Use the 'id' from find_block results and provide input_data "
"matching the block's required_inputs."
)
@property
@@ -45,13 +50,16 @@ class RunBlockTool(BaseTool):
"properties": {
"block_id": {
"type": "string",
"description": "The UUID of the block to execute",
"description": (
"The block's 'id' field from find_block results. "
"NEVER guess this - always get it from find_block first."
),
},
"input_data": {
"type": "object",
"description": (
"Input values for the block. Must match the block's input schema. "
"Check the block's input_schema from find_block for required fields."
"Input values for the block. Use the 'required_inputs' field "
"from find_block to see what fields are needed."
),
},
},
@@ -121,6 +129,7 @@ class RunBlockTool(BaseTool):
return matched_credentials, missing_credentials
@observe(as_type="tool", name="run_block")
async def _execute(
self,
user_id: str | None,
@@ -208,7 +217,11 @@ class RunBlockTool(BaseTool):
try:
# Fetch actual credentials and prepare kwargs for block execution
exec_kwargs: dict[str, Any] = {"user_id": user_id}
# Create execution context with defaults (blocks may require it)
exec_kwargs: dict[str, Any] = {
"user_id": user_id,
"execution_context": ExecutionContext(),
}
for field_name, cred_meta in matched_credentials.items():
# Inject metadata into input_data (for validation)

View File

@@ -1,460 +0,0 @@
"""
Block Hybrid Search
Combines multiple ranking signals for block search:
- Semantic search (OpenAI embeddings + cosine similarity)
- Lexical search (BM25)
- Name matching (boost for block name matches)
- Category matching (boost for category matches)
Based on the docs search implementation.
"""
import base64
import json
import logging
import math
import os
import re
from dataclasses import dataclass
from pathlib import Path
from typing import Any, Optional
import numpy as np
logger = logging.getLogger(__name__)
# OpenAI embedding model
EMBEDDING_MODEL = "text-embedding-3-small"
# Path to the JSON index file
INDEX_PATH = Path(__file__).parent / "blocks_index.json"
# Stopwords for tokenization (same as index_blocks.py)
STOPWORDS = {
"the",
"a",
"an",
"is",
"are",
"was",
"were",
"be",
"been",
"being",
"have",
"has",
"had",
"do",
"does",
"did",
"will",
"would",
"could",
"should",
"may",
"might",
"must",
"shall",
"can",
"need",
"dare",
"ought",
"used",
"to",
"of",
"in",
"for",
"on",
"with",
"at",
"by",
"from",
"as",
"into",
"through",
"during",
"before",
"after",
"above",
"below",
"between",
"under",
"again",
"further",
"then",
"once",
"and",
"but",
"or",
"nor",
"so",
"yet",
"both",
"either",
"neither",
"not",
"only",
"own",
"same",
"than",
"too",
"very",
"just",
"also",
"now",
"here",
"there",
"when",
"where",
"why",
"how",
"all",
"each",
"every",
"few",
"more",
"most",
"other",
"some",
"such",
"no",
"any",
"this",
"that",
"these",
"those",
"it",
"its",
"block",
}
def tokenize(text: str) -> list[str]:
"""Simple tokenizer for search."""
text = text.lower()
# Remove code blocks if any
text = re.sub(r"```[\s\S]*?```", "", text)
text = re.sub(r"`[^`]+`", "", text)
# Split camelCase
text = re.sub(r"([a-z])([A-Z])", r"\1 \2", text)
# Extract words
words = re.findall(r"\b[a-z][a-z0-9_-]*\b", text)
# Remove very short words and stopwords
return [w for w in words if len(w) > 2 and w not in STOPWORDS]
@dataclass
class SearchWeights:
"""Configuration for hybrid search signal weights."""
semantic: float = 0.40 # Embedding similarity
bm25: float = 0.25 # Lexical matching
name_match: float = 0.25 # Block name matches
category_match: float = 0.10 # Category matches
@dataclass
class BlockSearchResult:
"""A single block search result."""
block_id: str
name: str
description: str
categories: list[str]
score: float
# Individual signal scores (for debugging)
semantic_score: float = 0.0
bm25_score: float = 0.0
name_score: float = 0.0
category_score: float = 0.0
class BlockSearchIndex:
"""Hybrid search index for blocks combining BM25 + embeddings."""
def __init__(self, index_path: Path = INDEX_PATH):
self.blocks: list[dict[str, Any]] = []
self.bm25_data: dict[str, Any] = {}
self.name_index: dict[str, list[list[int | float]]] = {}
self.embeddings: Optional[np.ndarray] = None
self.normalized_embeddings: Optional[np.ndarray] = None
self._loaded = False
self._index_path = index_path
self._embedding_model: Any = None
def load(self) -> bool:
"""Load the index from JSON file."""
if self._loaded:
return True
if not self._index_path.exists():
logger.warning(f"Block index not found at {self._index_path}")
return False
try:
with open(self._index_path, "r", encoding="utf-8") as f:
data = json.load(f)
self.blocks = data.get("blocks", [])
self.bm25_data = data.get("bm25", {})
self.name_index = data.get("name_index", {})
# Decode embeddings from base64
embeddings_list = []
for block in self.blocks:
if block.get("emb"):
emb_bytes = base64.b64decode(block["emb"])
emb = np.frombuffer(emb_bytes, dtype=np.float32)
embeddings_list.append(emb)
else:
# No embedding, use zeros
dim = data.get("embedding_dim", 384)
embeddings_list.append(np.zeros(dim, dtype=np.float32))
if embeddings_list:
self.embeddings = np.stack(embeddings_list)
# Precompute normalized embeddings for cosine similarity
norms = np.linalg.norm(self.embeddings, axis=1, keepdims=True)
self.normalized_embeddings = self.embeddings / (norms + 1e-10)
self._loaded = True
logger.info(f"Loaded block index with {len(self.blocks)} blocks")
return True
except Exception as e:
logger.error(f"Failed to load block index: {e}")
return False
def _get_openai_client(self) -> Any:
"""Get OpenAI client for query embedding."""
if self._embedding_model is None:
try:
from openai import OpenAI
api_key = os.getenv("OPENAI_API_KEY")
if not api_key:
logger.warning("OPENAI_API_KEY not set")
return None
self._embedding_model = OpenAI(api_key=api_key)
except ImportError:
logger.warning("openai not installed")
return None
return self._embedding_model
def _embed_query(self, query: str) -> Optional[np.ndarray]:
"""Embed the search query using OpenAI."""
client = self._get_openai_client()
if client is None:
return None
try:
response = client.embeddings.create(
model=EMBEDDING_MODEL,
input=query,
)
embedding = response.data[0].embedding
return np.array(embedding, dtype=np.float32)
except Exception as e:
logger.warning(f"Failed to embed query: {e}")
return None
def _compute_semantic_scores(self, query_embedding: np.ndarray) -> np.ndarray:
"""Compute cosine similarity between query and all blocks."""
if self.normalized_embeddings is None:
return np.zeros(len(self.blocks))
# Normalize query embedding
query_norm = query_embedding / (np.linalg.norm(query_embedding) + 1e-10)
# Cosine similarity via dot product
similarities = self.normalized_embeddings @ query_norm
# Scale to [0, 1] (cosine ranges from -1 to 1)
return (similarities + 1) / 2
def _compute_bm25_scores(self, query_tokens: list[str]) -> np.ndarray:
"""Compute BM25 scores for all blocks."""
scores = np.zeros(len(self.blocks))
if not self.bm25_data or not query_tokens:
return scores
# BM25 parameters
k1 = 1.5
b = 0.75
n_docs = self.bm25_data.get("n_docs", len(self.blocks))
avgdl = self.bm25_data.get("avgdl", 100)
df = self.bm25_data.get("df", {})
doc_lens = self.bm25_data.get("doc_lens", [100] * len(self.blocks))
for i, block in enumerate(self.blocks):
# Tokenize block's searchable text
block_tokens = tokenize(block.get("searchable_text", ""))
doc_len = doc_lens[i] if i < len(doc_lens) else len(block_tokens)
# Calculate BM25 score
score = 0.0
for token in query_tokens:
if token not in df:
continue
# Term frequency in this document
tf = block_tokens.count(token)
if tf == 0:
continue
# IDF
doc_freq = df.get(token, 0)
idf = math.log((n_docs - doc_freq + 0.5) / (doc_freq + 0.5) + 1)
# BM25 score component
numerator = tf * (k1 + 1)
denominator = tf + k1 * (1 - b + b * doc_len / avgdl)
score += idf * numerator / denominator
scores[i] = score
# Normalize to [0, 1]
max_score = scores.max()
if max_score > 0:
scores = scores / max_score
return scores
def _compute_name_scores(self, query_tokens: list[str]) -> np.ndarray:
"""Compute name match scores using the name index."""
scores = np.zeros(len(self.blocks))
if not self.name_index or not query_tokens:
return scores
for token in query_tokens:
if token in self.name_index:
for block_idx, weight in self.name_index[token]:
if block_idx < len(scores):
scores[int(block_idx)] += weight
# Also check for partial matches in block names
for i, block in enumerate(self.blocks):
name_lower = block.get("name", "").lower()
for token in query_tokens:
if token in name_lower:
scores[i] += 0.5
# Normalize to [0, 1]
max_score = scores.max()
if max_score > 0:
scores = scores / max_score
return scores
def _compute_category_scores(self, query_tokens: list[str]) -> np.ndarray:
"""Compute category match scores."""
scores = np.zeros(len(self.blocks))
if not query_tokens:
return scores
for i, block in enumerate(self.blocks):
categories = block.get("categories", [])
category_text = " ".join(categories).lower()
for token in query_tokens:
if token in category_text:
scores[i] += 1.0
# Normalize to [0, 1]
max_score = scores.max()
if max_score > 0:
scores = scores / max_score
return scores
def search(
self,
query: str,
top_k: int = 10,
weights: Optional[SearchWeights] = None,
) -> list[BlockSearchResult]:
"""
Perform hybrid search combining multiple signals.
Args:
query: Search query string
top_k: Number of results to return
weights: Optional custom weights for signals
Returns:
List of BlockSearchResult sorted by score
"""
if not self._loaded and not self.load():
return []
if weights is None:
weights = SearchWeights()
# Tokenize query
query_tokens = tokenize(query)
if not query_tokens:
# Fallback: try raw query words
query_tokens = query.lower().split()
# Compute semantic scores
semantic_scores = np.zeros(len(self.blocks))
if self.normalized_embeddings is not None:
query_embedding = self._embed_query(query)
if query_embedding is not None:
semantic_scores = self._compute_semantic_scores(query_embedding)
# Compute other scores
bm25_scores = self._compute_bm25_scores(query_tokens)
name_scores = self._compute_name_scores(query_tokens)
category_scores = self._compute_category_scores(query_tokens)
# Combine scores using weights
combined_scores = (
weights.semantic * semantic_scores
+ weights.bm25 * bm25_scores
+ weights.name_match * name_scores
+ weights.category_match * category_scores
)
# Get top-k indices
top_indices = np.argsort(combined_scores)[::-1][:top_k]
# Build results
results = []
for idx in top_indices:
if combined_scores[idx] <= 0:
continue
block = self.blocks[idx]
results.append(
BlockSearchResult(
block_id=block["id"],
name=block["name"],
description=block["description"],
categories=block.get("categories", []),
score=float(combined_scores[idx]),
semantic_score=float(semantic_scores[idx]),
bm25_score=float(bm25_scores[idx]),
name_score=float(name_scores[idx]),
category_score=float(category_scores[idx]),
)
)
return results
# Global index instance (lazy loaded)
_block_search_index: Optional[BlockSearchIndex] = None
def get_block_search_index() -> BlockSearchIndex:
"""Get or create the block search index singleton."""
global _block_search_index
if _block_search_index is None:
_block_search_index = BlockSearchIndex(INDEX_PATH)
return _block_search_index

View File

@@ -1,269 +1,32 @@
"""Tool for searching platform documentation."""
"""SearchDocsTool - Search documentation using hybrid search."""
import json
import logging
import math
import re
from pathlib import Path
from typing import Any
from backend.api.features.chat.model import ChatSession
from langfuse import observe
from prisma.enums import ContentType
from .base import BaseTool
from .models import (
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools.base import BaseTool
from backend.api.features.chat.tools.models import (
DocSearchResult,
DocSearchResultsResponse,
ErrorResponse,
NoResultsResponse,
ToolResponseBase,
)
from backend.api.features.store.hybrid_search import unified_hybrid_search
logger = logging.getLogger(__name__)
# Documentation base URL
DOCS_BASE_URL = "https://docs.agpt.co/platform"
# Base URL for documentation (can be configured)
DOCS_BASE_URL = "https://docs.agpt.co"
# Path to the JSON index file (relative to this file)
INDEX_PATH = Path(__file__).parent / "docs_index.json"
# Maximum number of results to return
MAX_RESULTS = 5
def tokenize(text: str) -> list[str]:
"""Simple tokenizer for BM25."""
text = text.lower()
# Remove code blocks
text = re.sub(r"```[\s\S]*?```", "", text)
text = re.sub(r"`[^`]+`", "", text)
# Extract words
words = re.findall(r"\b[a-z][a-z0-9_-]*\b", text)
# Remove very short words and stopwords
stopwords = {
"the",
"a",
"an",
"is",
"are",
"was",
"were",
"be",
"been",
"being",
"have",
"has",
"had",
"do",
"does",
"did",
"will",
"would",
"could",
"should",
"may",
"might",
"must",
"shall",
"can",
"need",
"dare",
"ought",
"used",
"to",
"of",
"in",
"for",
"on",
"with",
"at",
"by",
"from",
"as",
"into",
"through",
"during",
"before",
"after",
"above",
"below",
"between",
"under",
"again",
"further",
"then",
"once",
"and",
"but",
"or",
"nor",
"so",
"yet",
"both",
"either",
"neither",
"not",
"only",
"own",
"same",
"than",
"too",
"very",
"just",
"also",
"now",
"here",
"there",
"when",
"where",
"why",
"how",
"all",
"each",
"every",
"both",
"few",
"more",
"most",
"other",
"some",
"such",
"no",
"any",
"this",
"that",
"these",
"those",
"it",
"its",
}
return [w for w in words if len(w) > 2 and w not in stopwords]
class DocSearchIndex:
"""Lightweight documentation search index using BM25."""
def __init__(self, index_path: Path):
self.chunks: list[dict] = []
self.bm25_data: dict = {}
self._loaded = False
self._index_path = index_path
def load(self) -> bool:
"""Load the index from JSON file."""
if self._loaded:
return True
if not self._index_path.exists():
logger.warning(f"Documentation index not found at {self._index_path}")
return False
try:
with open(self._index_path, "r", encoding="utf-8") as f:
data = json.load(f)
self.chunks = data.get("chunks", [])
self.bm25_data = data.get("bm25", {})
self._loaded = True
logger.info(f"Loaded documentation index with {len(self.chunks)} chunks")
return True
except Exception as e:
logger.error(f"Failed to load documentation index: {e}")
return False
def search(self, query: str, top_k: int = 5) -> list[dict]:
"""Search the index using BM25."""
if not self._loaded and not self.load():
return []
query_tokens = tokenize(query)
if not query_tokens:
return []
# BM25 parameters
k1 = 1.5
b = 0.75
n_docs = self.bm25_data.get("n_docs", len(self.chunks))
avgdl = self.bm25_data.get("avgdl", 100)
df = self.bm25_data.get("df", {})
doc_lens = self.bm25_data.get("doc_lens", [100] * len(self.chunks))
scores = []
for i, chunk in enumerate(self.chunks):
# Tokenize chunk text
chunk_tokens = tokenize(chunk.get("text", ""))
doc_len = doc_lens[i] if i < len(doc_lens) else len(chunk_tokens)
# Calculate BM25 score
score = 0.0
for token in query_tokens:
if token not in df:
continue
# Term frequency in this document
tf = chunk_tokens.count(token)
if tf == 0:
continue
# IDF
doc_freq = df.get(token, 0)
idf = math.log((n_docs - doc_freq + 0.5) / (doc_freq + 0.5) + 1)
# BM25 score component
numerator = tf * (k1 + 1)
denominator = tf + k1 * (1 - b + b * doc_len / avgdl)
score += idf * numerator / denominator
# Boost for title/heading matches
title = chunk.get("title", "").lower()
heading = chunk.get("heading", "").lower()
for token in query_tokens:
if token in title:
score *= 1.5
if token in heading:
score *= 1.2
scores.append((i, score))
# Sort by score and return top_k
scores.sort(key=lambda x: x[1], reverse=True)
results = []
seen_sections = set()
for idx, score in scores:
if score <= 0:
continue
chunk = self.chunks[idx]
section_key = (chunk.get("doc", ""), chunk.get("heading", ""))
# Deduplicate by section
if section_key in seen_sections:
continue
seen_sections.add(section_key)
results.append(
{
"title": chunk.get("title", ""),
"path": chunk.get("doc", ""),
"heading": chunk.get("heading", ""),
"text": chunk.get("text", ""), # Full text for LLM comprehension
"score": score,
}
)
if len(results) >= top_k:
break
return results
# Global index instance (lazy loaded)
_search_index: DocSearchIndex | None = None
def get_search_index() -> DocSearchIndex:
"""Get or create the search index singleton."""
global _search_index
if _search_index is None:
_search_index = DocSearchIndex(INDEX_PATH)
return _search_index
# Snippet length for preview
SNIPPET_LENGTH = 200
class SearchDocsTool(BaseTool):
@@ -271,15 +34,14 @@ class SearchDocsTool(BaseTool):
@property
def name(self) -> str:
return "search_platform_docs"
return "search_docs"
@property
def description(self) -> str:
return (
"Search the AutoGPT platform documentation and support Q&A for information about "
"how to use the platform, create agents, configure blocks, "
"set up integrations, troubleshoot issues, and more. Use this when users ask "
"support questions or want to learn how to do something with AutoGPT."
"Search the AutoGPT platform documentation for information about "
"how to use the platform, build agents, configure blocks, and more. "
"Returns relevant documentation sections. Use get_doc_page to read full content."
)
@property
@@ -290,24 +52,53 @@ class SearchDocsTool(BaseTool):
"query": {
"type": "string",
"description": (
"Search query describing what the user wants to learn about. "
"Use keywords like 'blocks', 'agents', 'credentials', 'API', etc."
"Search query to find relevant documentation. "
"Use natural language to describe what you're looking for."
),
},
},
"required": ["query"],
}
@property
def requires_auth(self) -> bool:
return False # Documentation is public
def _create_snippet(self, content: str, max_length: int = SNIPPET_LENGTH) -> str:
"""Create a short snippet from content for preview."""
# Remove markdown formatting for cleaner snippet
clean_content = content.replace("#", "").replace("*", "").replace("`", "")
# Remove extra whitespace
clean_content = " ".join(clean_content.split())
if len(clean_content) <= max_length:
return clean_content
# Truncate at word boundary
truncated = clean_content[:max_length]
last_space = truncated.rfind(" ")
if last_space > max_length // 2:
truncated = truncated[:last_space]
return truncated + "..."
def _make_doc_url(self, path: str) -> str:
"""Create a URL for a documentation page."""
# Remove file extension for URL
url_path = path.rsplit(".", 1)[0] if "." in path else path
return f"{DOCS_BASE_URL}/{url_path}"
@observe(as_type="tool", name="search_docs")
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Search documentation for the query.
"""Search documentation and return relevant sections.
Args:
user_id: User ID (may be anonymous)
user_id: User ID (not required for docs)
session: Chat session
query: Search query
@@ -317,60 +108,93 @@ class SearchDocsTool(BaseTool):
ErrorResponse: Error message
"""
query = kwargs.get("query", "").strip()
session_id = session.session_id
session_id = session.session_id if session else None
if not query:
return ErrorResponse(
message="Please provide a search query",
message="Please provide a search query.",
error="Missing query parameter",
session_id=session_id,
)
try:
index = get_search_index()
results = index.search(query, top_k=5)
# Search using hybrid search for DOCUMENTATION content type only
results, total = await unified_hybrid_search(
query=query,
content_types=[ContentType.DOCUMENTATION],
page=1,
page_size=MAX_RESULTS * 2, # Fetch extra for deduplication
min_score=0.1, # Lower threshold for docs
)
if not results:
return NoResultsResponse(
message=f"No documentation found for '{query}'. Try different keywords.",
session_id=session_id,
message=f"No documentation found for '{query}'.",
suggestions=[
"Try more general terms like 'blocks', 'agents', 'setup'",
"Check the documentation at docs.agpt.co",
"Try different keywords",
"Use more general terms",
"Check for typos in your query",
],
session_id=session_id,
)
# Convert to response format
doc_results = []
for r in results:
# Build documentation URL
path = r["path"]
if path.endswith(".md"):
path = path[:-3] # Remove .md extension
doc_url = f"{DOCS_BASE_URL}/{path}"
# Deduplicate by document path (keep highest scoring section per doc)
seen_docs: dict[str, dict[str, Any]] = {}
for result in results:
metadata = result.get("metadata", {})
doc_path = metadata.get("path", "")
if not doc_path:
continue
# Keep the highest scoring result for each document
if doc_path not in seen_docs:
seen_docs[doc_path] = result
elif result.get("combined_score", 0) > seen_docs[doc_path].get(
"combined_score", 0
):
seen_docs[doc_path] = result
# Sort by score and take top MAX_RESULTS
deduplicated = sorted(
seen_docs.values(),
key=lambda x: x.get("combined_score", 0),
reverse=True,
)[:MAX_RESULTS]
if not deduplicated:
return NoResultsResponse(
message=f"No documentation found for '{query}'.",
suggestions=[
"Try different keywords",
"Use more general terms",
],
session_id=session_id,
)
# Build response
doc_results: list[DocSearchResult] = []
for result in deduplicated:
metadata = result.get("metadata", {})
doc_path = metadata.get("path", "")
doc_title = metadata.get("doc_title", "")
section_title = metadata.get("section_title", "")
searchable_text = result.get("searchable_text", "")
score = result.get("combined_score", 0)
full_text = r["text"]
doc_results.append(
DocSearchResult(
title=r["title"],
path=r["path"],
section=r["heading"],
snippet=(
full_text[:300] + "..."
if len(full_text) > 300
else full_text
),
content=full_text, # Full text for LLM to read and understand
score=round(r["score"], 3),
doc_url=doc_url,
title=doc_title or section_title or doc_path,
path=doc_path,
section=section_title,
snippet=self._create_snippet(searchable_text),
score=round(score, 3),
doc_url=self._make_doc_url(doc_path),
)
)
return DocSearchResultsResponse(
message=(
f"Found {len(doc_results)} relevant documentation sections. "
"Use these to help answer the user's question. "
"Include links to the documentation when helpful."
),
message=f"Found {len(doc_results)} relevant documentation sections.",
results=doc_results,
count=len(doc_results),
query=query,
@@ -378,9 +202,9 @@ class SearchDocsTool(BaseTool):
)
except Exception as e:
logger.error(f"Error searching documentation: {e}", exc_info=True)
logger.error(f"Documentation search failed: {e}")
return ErrorResponse(
message="Failed to search documentation. Please try again.",
error=str(e),
message=f"Failed to search documentation: {str(e)}",
error="search_failed",
session_id=session_id,
)

View File

@@ -35,11 +35,7 @@ from backend.data.model import (
OAuth2Credentials,
UserIntegrations,
)
from backend.data.onboarding import (
OnboardingStep,
complete_onboarding_step,
increment_runs,
)
from backend.data.onboarding import OnboardingStep, complete_onboarding_step
from backend.data.user import get_user_integrations
from backend.executor.utils import add_graph_execution
from backend.integrations.ayrshare import AyrshareClient, SocialPlatform
@@ -175,6 +171,7 @@ async def callback(
f"Successfully processed OAuth callback for user {user_id} "
f"and provider {provider.value}"
)
return CredentialsMetaResponse(
id=credentials.id,
provider=credentials.provider,
@@ -193,6 +190,7 @@ async def list_credentials(
user_id: Annotated[str, Security(get_user_id)],
) -> list[CredentialsMetaResponse]:
credentials = await creds_manager.store.get_all_creds(user_id)
return [
CredentialsMetaResponse(
id=cred.id,
@@ -215,6 +213,7 @@ async def list_credentials_by_provider(
user_id: Annotated[str, Security(get_user_id)],
) -> list[CredentialsMetaResponse]:
credentials = await creds_manager.store.get_creds_by_provider(user_id, provider)
return [
CredentialsMetaResponse(
id=cred.id,
@@ -378,7 +377,6 @@ async def webhook_ingress_generic(
return
await complete_onboarding_step(user_id, OnboardingStep.TRIGGER_WEBHOOK)
await increment_runs(user_id)
# Execute all triggers concurrently for better performance
tasks = []
@@ -831,6 +829,18 @@ async def list_providers() -> List[str]:
return all_providers
@router.get("/providers/system", response_model=List[str])
async def list_system_providers() -> List[str]:
"""
Get a list of providers that have platform credits (system credentials) available.
These providers can be used without the user providing their own API keys.
"""
from backend.integrations.credentials_store import SYSTEM_PROVIDERS
return list(SYSTEM_PROVIDERS)
@router.get("/providers/names", response_model=ProviderNamesResponse)
async def get_provider_names() -> ProviderNamesResponse:
"""

View File

@@ -489,7 +489,7 @@ async def update_agent_version_in_library(
agent_graph_version: int,
) -> library_model.LibraryAgent:
"""
Updates the agent version in the library if useGraphIsActiveVersion is True.
Updates the agent version in the library for any agent owned by the user.
Args:
user_id: Owner of the LibraryAgent.
@@ -498,20 +498,31 @@ async def update_agent_version_in_library(
Raises:
DatabaseError: If there's an error with the update.
NotFoundError: If no library agent is found for this user and agent.
"""
logger.debug(
f"Updating agent version in library for user #{user_id}, "
f"agent #{agent_graph_id} v{agent_graph_version}"
)
try:
library_agent = await prisma.models.LibraryAgent.prisma().find_first_or_raise(
async with transaction() as tx:
library_agent = await prisma.models.LibraryAgent.prisma(tx).find_first_or_raise(
where={
"userId": user_id,
"agentGraphId": agent_graph_id,
"useGraphIsActiveVersion": True,
},
)
lib = await prisma.models.LibraryAgent.prisma().update(
# Delete any conflicting LibraryAgent for the target version
await prisma.models.LibraryAgent.prisma(tx).delete_many(
where={
"userId": user_id,
"agentGraphId": agent_graph_id,
"agentGraphVersion": agent_graph_version,
"id": {"not": library_agent.id},
}
)
lib = await prisma.models.LibraryAgent.prisma(tx).update(
where={"id": library_agent.id},
data={
"AgentGraph": {
@@ -525,13 +536,13 @@ async def update_agent_version_in_library(
},
include={"AgentGraph": True},
)
if lib is None:
raise NotFoundError(f"Library agent {library_agent.id} not found")
return library_model.LibraryAgent.from_db(lib)
except prisma.errors.PrismaError as e:
logger.error(f"Database error updating agent version in library: {e}")
raise DatabaseError("Failed to update agent version in library") from e
if lib is None:
raise NotFoundError(
f"Failed to update library agent for {agent_graph_id} v{agent_graph_version}"
)
return library_model.LibraryAgent.from_db(lib)
async def update_library_agent(
@@ -825,6 +836,7 @@ async def add_store_agent_to_library(
}
},
"isCreatedByUser": False,
"useGraphIsActiveVersion": False,
"settings": SafeJson(
_initialize_graph_settings(graph_model).model_dump()
),

View File

@@ -48,6 +48,7 @@ class LibraryAgent(pydantic.BaseModel):
id: str
graph_id: str
graph_version: int
owner_user_id: str # ID of user who owns/created this agent graph
image_url: str | None
@@ -163,6 +164,7 @@ class LibraryAgent(pydantic.BaseModel):
id=agent.id,
graph_id=agent.agentGraphId,
graph_version=agent.agentGraphVersion,
owner_user_id=agent.userId,
image_url=agent.imageUrl,
creator_name=creator_name,
creator_image_url=creator_image_url,

Some files were not shown because too many files have changed in this diff Show More