Compare commits

...

28 Commits

Author SHA1 Message Date
Claude
f7bb8a1f93 fix(frontend): Prevent node drag when selecting text in object editor key input
Add nodrag class to the key name input wrapper in WrapIfAdditionalTemplate
to allow text selection without triggering node drag behavior. This matches
the pattern used by other input components like TextWidget.

https://claude.ai/code/session_012KzXYWLoXF8P8L5a5L19Pi
2026-02-03 14:54:22 +00:00
Otto
7dc53071e8 fix(backend): Add retry and error handling to block initialization (#11946)
## Summary
Adds retry logic and graceful error handling to `initialize_blocks()` to
prevent transient DB errors from crashing server startup.

## Problem
When a transient database error occurs during block initialization
(e.g., Prisma P1017 "Server has closed the connection"), the entire
server fails to start. This is overly aggressive since:
1. Blocks are already registered in memory
2. The DB sync is primarily for tracking/schema storage
3. One flaky connection shouldn't prevent the server from starting

**Triggered by:** [Sentry
AUTOGPT-SERVER-7PW](https://significant-gravitas.sentry.io/issues/7238733543/)

## Solution
- Add retry decorator (3 attempts with exponential backoff) for DB
operations
- On failure after retries, log a warning and continue to the next block
- Blocks remain available in memory even if DB sync fails
- Log summary of any failed blocks at the end

## Changes
- `autogpt_platform/backend/backend/data/block.py`: Wrap block DB sync
in retry logic with graceful fallback

## Testing
- Existing block initialization behavior unchanged on success
- On transient DB errors: retries up to 3 times, then continues with
warning
2026-02-03 12:43:30 +00:00
Zamil Majdy
4878665c66 Merge branch 'master' into dev 2026-02-03 16:01:23 +04:00
Zamil Majdy
678ddde751 refactor(backend): unify context compression into compress_context() (#11937)
## Background

This PR consolidates and unifies context window management for the
CoPilot backend.

### Problem
The CoPilot backend had **two separate implementations** of context
window management:

1. **`service.py` → `_manage_context_window()`** - Chat service
streaming/continuation
2. **`prompt.py` → `compress_prompt()`** - Sync LLM blocks

This duplication led to inconsistent behavior, maintenance burden, and
duplicate code.

---

## Solution: Unified `compress_context()`

A single async function that handles both use cases:

| Caller | Usage | Behavior |
|--------|-------|----------|
| **Chat service** | `compress_context(msgs, client=openai_client)` |
Summarization → Truncation |
| **LLM blocks** | `compress_context(msgs, client=None)` | Truncation
only (no API call) |

---

## Strategy Order

| Step | Description | Runs When |
|------|-------------|-----------|
| **1. LLM Summarization** | Summarize old messages into single context
message, keep recent 15 | Only if `client` provided |
| **2. Content Truncation** | Progressively truncate message content
(8192→4096→...→128 tokens) | If still over limit |
| **3. Middle-out Deletion** | Delete messages one at a time from center
outward | If still over limit |
| **4. First/Last Trim** | Truncate system prompt and last message
content | Last resort |

### Why This Order?

1. **Summarization first** (if available) - Preserves semantic meaning
of old messages
2. **Content truncation before deletion** - Keeps all conversation
turns, just shorter
3. **Middle-out deletion** - More granular than dropping all old
messages at once
4. **First/last trim** - Only touch system prompt as last resort

---

## Key Fixes

| Issue | Before | After |
|-------|--------|-------|
| **Socket leak** | `AsyncOpenAI` client never closed | `async with`
context manager |
| **Timeout ignored** | `timeout=30` passed to `create()` (invalid) |
`client.with_options(timeout=30)` |
| **OpenAI tool messages** | Not truncated | Properly truncated |
| **Tool pair integrity** | OpenAI format only | Both OpenAI + Anthropic
formats |

---

## Tool Format Support

`_ensure_tool_pairs_intact()` now supports both formats:

### OpenAI Format
```python
# Assistant with tool_calls
{"role": "assistant", "tool_calls": [{"id": "call_1", ...}]}
# Tool response
{"role": "tool", "tool_call_id": "call_1", "content": "result"}
```

### Anthropic Format
```python
# Assistant with tool_use
{"role": "assistant", "content": [{"type": "tool_use", "id": "toolu_1", ...}]}
# Tool result
{"role": "user", "content": [{"type": "tool_result", "tool_use_id": "toolu_1", ...}]}
```

---

## Files Changed

| File | Change |
|------|--------|
| `backend/util/prompt.py` | +450 lines: Add `CompressResult`,
`compress_context()`, helpers |
| `backend/api/features/chat/service.py` | -380 lines: Remove duplicate,
use thin wrapper |
| `backend/blocks/llm.py` | Migrate `llm_call()` to use
`compress_context(client=None)` |
| `backend/util/prompt_test.py` | +400 lines: Comprehensive tests
(OpenAI + Anthropic) |

### Removed
- `compress_prompt()` - Replaced by `compress_context(client=None)`
- `_manage_context_window()` - Replaced by
`compress_context(client=openai_client)`

---

## API

```python
async def compress_context(
    messages: list[dict],
    target_tokens: int = 120_000,
    *,
    model: str = "gpt-4o",
    client: AsyncOpenAI | None = None,  # None = truncation only
    keep_recent: int = 15,
    reserve: int = 2_048,
    start_cap: int = 8_192,
    floor_cap: int = 128,
) -> CompressResult:
    ...

@dataclass
class CompressResult:
    messages: list[dict]
    token_count: int
    was_compacted: bool
    error: str | None = None
    original_token_count: int = 0
    messages_summarized: int = 0
    messages_dropped: int = 0
```

---

## Tests Added

| Test Class | Coverage |
|------------|----------|
| `TestMsgTokens` | Token counting for regular messages, OpenAI tool
calls, Anthropic tool_use |
| `TestTruncateToolMessageContent` | OpenAI + Anthropic tool message
truncation |
| `TestEnsureToolPairsIntact` | OpenAI format (3 tests), Anthropic
format (3 tests), edge cases (3 tests) |
| `TestCompressContext` | No compression, truncation-only, tool pair
preservation, error handling |

---

## Checklist

- [x] Code follows project conventions
- [x] Linting passes (`poetry run format`)
- [x] Type checking passes (`pyright`)
- [x] Tests added for all new functions
- [x] Both OpenAI and Anthropic tool formats supported
- [x] Backward compatible behavior preserved
- [x] All review comments addressed
2026-02-03 10:36:10 +00:00
Otto
aef6f57cfd fix(scheduler): route db calls through DatabaseManager (#11941)
## Summary

Routes `increment_onboarding_runs` and `cleanup_expired_oauth_tokens`
through the DatabaseManager RPC client instead of calling Prisma
directly.

## Problem

The Scheduler service never connects its Prisma client. While
`add_graph_execution()` in `utils.py` has a fallback that routes through
DatabaseManager when Prisma isn't connected, subsequent calls in the
scheduler were hitting Prisma directly:

- `increment_onboarding_runs()` after successful graph execution
- `cleanup_expired_oauth_tokens()` in the scheduled job

These threw `ClientNotConnectedError`, caught by generic exception
handlers but spamming Sentry (~696K events since December per the
original analysis in #11926).

## Solution

Follow the same pattern as `utils.py`:
1. Add `cleanup_expired_oauth_tokens` to `DatabaseManager` and
`DatabaseManagerAsyncClient`
2. Update scheduler to use `get_database_manager_async_client()` for
both calls

## Changes

- **database.py**: Import and expose `cleanup_expired_oauth_tokens` in
both manager classes
- **scheduler.py**: Use `db.increment_onboarding_runs()` and
`db.cleanup_expired_oauth_tokens()` via the async client

## Impact

- Eliminates Sentry error spam from scheduler
- Onboarding run counters now actually increment for scheduled
executions
- OAuth token cleanup now actually runs

## Testing

Deploy to staging with scheduled graphs and verify:
1. No more `ClientNotConnectedError` in scheduler logs
2. `UserOnboarding.agentRuns` increments on scheduled runs
3. Expired OAuth tokens get cleaned up

Refs: #11926 (original fix that was closed)
2026-02-03 09:54:49 +00:00
Krzysztof Czerwinski
14cee1670a fix(backend): Prevent leaking Redis connections in ws_api (#11869)
Fixing
https://github.com/Significant-Gravitas/AutoGPT/pull/11297#discussion_r2496833421

### Changes 🏗️

1. event_bus.py - Added close method to AsyncRedisEventBus
- Added __init__ method to track the _pubsub instance attribute
- Added async def close() method that closes the PubSub connection
safely
- Modified listen_events() to store the pubsub reference in self._pubsub

2. ws_api.py - Added cleanup in event_broadcaster
- Wrapped the worker coroutines in try/finally block
- The finally block calls close() on both event buses to ensure cleanup
happens on any exit (including exceptions before retry)
2026-02-03 08:07:48 +00:00
Zamil Majdy
d81d1ce024 refactor(backend): extract context window management and fix LLM continuation (#11936)
## Summary

Fixes CoPilot becoming unresponsive after long-running tools complete,
and refactors context window management into a reusable function.

## Problem

After `create_agent` completes, `_generate_llm_continuation()` was
sending ALL messages to OpenRouter without any context compaction. When
conversations exceeded ~50 messages, OpenRouter rejected requests with
`provider_name: 'unknown'` (no provider would accept).

**Evidence:** Langfuse session
[44fbb803-092e-4ebd-b288-852959f4faf5](https://cloud.langfuse.com/project/cmk5qhf210003ad079sd8utjt/sessions/44fbb803-092e-4ebd-b288-852959f4faf5)
showed:
- Successful calls: 32-50 messages, known providers
- Failed calls: 52+ messages, `provider: unknown`, `completion: null`

## Changes

### Refactor: Extract reusable `_manage_context_window()`
- Counts tokens and checks against 120k threshold
- Summarizes old messages while keeping recent 15
- Ensures tool_call/tool_response pairs stay intact
- Progressive truncation if still over limit
- Returns `ContextWindowResult` dataclass with messages, token count,
compaction status, and errors
- Helper `_messages_to_dicts()` reduces code duplication

### Fix: Update `_generate_llm_continuation()`
- Now calls `_manage_context_window()` before making LLM calls
- Adds retry logic with exponential backoff (matching
`_stream_chat_chunks` behavior)

### Cleanup: Update `_stream_chat_chunks()`
- Replaced inline context management with call to
`_manage_context_window()`
- Eliminates code duplication between the two functions

## Testing

- Syntax check: 
- Ruff lint: 
- Import verification: 

## Checklist

- [x] My code follows the style guidelines of this project
- [x] I have performed a self-review of my own code
- [x] My changes generate no new warnings
- [x] I have checked that my changes do not break existing functionality

---------

Co-authored-by: Otto <otto@agpt.co>
2026-02-03 04:41:43 +00:00
Zamil Majdy
2dd341c369 refactor: enrich description with context before calling Agent Generator (#11932)
## Summary
Updates the Agent Generator client to enrich the description with
context before calling, instead of sending `user_instruction` as a
separate parameter.

## Context
Companion PR to Significant-Gravitas/AutoGPT-Agent-Generator#105 which
removes unused parameters from the decompose API.

## Changes
- Enrich `description` with `context` (e.g., clarifying question
answers) before sending
- Remove `user_instruction` from request payload

## How it works
Both input boxes and chat box work the same way - the frontend
constructs a formatted message with answers and sends it as a user
message. The backend then enriches the description with this context
before calling the external Agent Generator service.
2026-02-03 02:31:07 +00:00
Otto
f7350c797a fix(copilot): use messages_dict in fallback context compaction (#11922)
## Summary

Fixes a bug where the fallback path in context compaction passes
`recent_messages` (already sliced) instead of `messages_dict` (full
conversation) to `_ensure_tool_pairs_intact`.

This caused the function to fail to find assistant messages that exist
in the original conversation but were outside the sliced window,
resulting in orphan tool_results being sent to Anthropic and rejected
with:

```
messages.66.content.0: unexpected tool_use_id found in tool_result blocks: toolu_vrtx_019bi1PDvEn7o5ByAxcS3VdA
```

## Changes

- Pass `messages_dict` and `slice_start` (relative to full conversation)
instead of `recent_messages` and `reduced_slice_start` (relative to
already-sliced list)

## Testing

This is a targeted fix for the fallback path. The bug only manifests
when:
1. Token count > 120k (triggers compaction)
2. Initial compaction + summary still exceeds limit (triggers fallback)
3. A tool_result's corresponding assistant is in `messages_dict` but not
in `recent_messages`

## Related

- Fixes SECRT-1861
- Related: SECRT-1839 (original fix that missed this code path)
2026-02-02 13:01:05 +00:00
Guofang.Tang
1081590384 feat(backend): cover webhook ingress URL route (#11747)
### Changes 🏗️

- Add a unit test to verify webhook ingress URL generation matches the
FastAPI route.

  ### Checklist 📋

  #### For code changes:

  - [x] I have clearly listed my changes in the PR description
  - [x] I have made a test plan
  - [x] I have tested my changes according to the test plan:
- [x] poetry run pytest backend/integrations/webhooks/utils_test.py
--confcutdir=backend/integrations/webhooks

  #### For configuration changes:

  - [x] .env.default is updated or already compatible with my changes
- [x] docker-compose.yml is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under Changes)



<!-- This is an auto-generated comment: release notes by coderabbit.ai
-->
## Summary by CodeRabbit

* **Tests**
* Added a unit test that validates webhook ingress URL generation
matches the application's resolved route (scheme, host, and path) for
provider-specific webhook endpoints, improving confidence in routing
behavior and helping prevent regressions.

<sub>✏️ Tip: You can customize this high-level summary in your review
settings.</sub>
<!-- end of auto-generated comment: release notes by coderabbit.ai -->

---------

Co-authored-by: Reinier van der Leer <pwuts@agpt.co>
2026-02-01 20:29:15 +00:00
Otto
7e37de8e30 fix: Include graph schemas for marketplace agents in Agent Generator (#11920)
## Problem

When marketplace agents are included in the `library_agents` payload
sent to the Agent Generator service, they were missing required fields
(`graph_id`, `graph_version`, `input_schema`, `output_schema`). This
caused Pydantic validation to fail with HTTP 422 Unprocessable Entity.

**Root cause:** The `MarketplaceAgentSummary` TypedDict had a different
shape than `LibraryAgentInfo` expected by the Agent Generator:
- Agent Generator expects: `graph_id`, `graph_version`, `name`,
`description`, `input_schema`, `output_schema`
- MarketplaceAgentSummary had: `name`, `description`, `sub_heading`,
`creator`, `is_marketplace_agent`

## Solution

1. **Add `agent_graph_id` to `StoreAgent` model** - The field was
already in the database view but not exposed
2. **Include `agentGraphId` in hybrid search SQL query** - Carry the
field through the search CTEs
3. **Update `search_marketplace_agents_for_generation()`** - Now fetches
full graph schemas using `get_graph()` and returns `LibraryAgentSummary`
(same type as library agents)
4. **Update deduplication logic** - Use `graph_id` instead of name for
more accurate deduplication

## Changes

- `backend/api/features/store/model.py`: Add optional `agent_graph_id`
field to `StoreAgent`
- `backend/api/features/store/hybrid_search.py`: Include `agentGraphId`
in SQL query columns
- `backend/api/features/store/db.py`: Map `agentGraphId` when creating
`StoreAgent` objects
- `backend/api/features/chat/tools/agent_generator/core.py`: Update
`search_marketplace_agents_for_generation()` to fetch and include full
graph schemas

## Testing

- [ ] Agent creation on dev with marketplace agents in context
- [ ] Verify no 422 errors from Agent Generator
- [ ] Verify marketplace agents can be used as sub-agents

Fixes: SECRT-1817

---------

Co-authored-by: majdyz <majdyz@users.noreply.github.com>
Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
2026-01-31 19:17:36 +00:00
Otto
2abbb7fbc8 hotfix(backend): use discriminator for credential matching in run_block (#11908)
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-30 21:50:21 -06:00
Otto
7ee94d986c docs: add credentials prerequisites to create-basic-agent guide (#11913)
## Summary
Addresses #11785 - users were encountering `openai_api_key_credentials`
errors when following the create-basic-agent guide because it didn't
mention the need to configure API credentials before using AI blocks.

## Changes
Added a **Prerequisites** section to
`docs/platform/create-basic-agent.md` explaining:
- **Cloud users:** Go to Profile → Integrations to add API keys
- **Self-hosted (Docker):** Add keys to `autogpt_platform/backend/.env`
and restart services

Also added a note that the Calculator example doesn't need credentials,
making it a good first test.

## Related
- Issue: #11785
2026-01-31 03:05:31 +00:00
Nicholas Tindle
05b60db554 fix(backend/chat): Include input schema in discovery and validate unknown fields (#11916)
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-30 21:00:43 -06:00
Zamil Majdy
18a1661fa3 feat: add library agent fetching with two-phase search for sub-agent support (#11889)
## Context

When users ask the chat to create agents, they may want to compose
workflows that reuse their existing agents as sub-agents. For this to
work, the Agent Generator service needs to know what agents the user has
available.

**Challenge:** Users can have large libraries with many agents. Fetching
all of them would be slow and provide too much context to the LLM.

## Solution

This PR implements **search-based library agent fetching** with a
**two-phase search** strategy:

1. **Phase 1 (Initial Search):** When the user describes their goal, we
search for relevant library agents using the goal as the search query
2. **Phase 2 (Step-Based Enrichment):** After the goal is decomposed
into steps, we extract keywords from those steps and search for
additional relevant agents

This ensures we find agents that are relevant to both the high-level
goal AND the specific steps identified.

### Example Flow

```
User goal: "Create an agent that fetches weather and sends a summary email"

Phase 1: Search for "weather email summary" → finds "Weather Fetcher" agent
Phase 2: After decomposition identifies steps like "send email notification"
         → searches "send email notification" → finds "Gmail Sender" agent
```

### Changes

**Library Agent Fetching:**
- `get_library_agents_for_generation()` - Search-based fetching from
user's library
- `search_marketplace_agents_for_generation()` - Search public
marketplace
- `get_all_relevant_agents_for_generation()` - Combines both with
deduplication

**Two-Phase Search:**
- `extract_search_terms_from_steps()` - Extracts keywords from
decomposed steps
- `enrich_library_agents_from_steps()` - Searches for additional agents
based on steps
- Integrated into `create_agent.py` as "Step 1.5" after goal
decomposition

**Type Safety:**
- Added `TypedDict` definitions: `LibraryAgentSummary`,
`MarketplaceAgentSummary`, `DecompositionStep`, `DecompositionResult`

### Design Decisions

- **Search-based, not fetch-all:** Scalable for large libraries
- **Library agents prioritized:** They have full schemas; marketplace
agents have basic info only
- **Deduplication by name and graph_id:** Prevents duplicates across
searches
- **Graceful degradation:** Failures don't block agent generation
- **Limited to 3 search terms:** Avoids excessive API calls during
enrichment

## Related PR
- Agent Generator:
https://github.com/Significant-Gravitas/AutoGPT-Agent-Generator/pull/103

## Test plan
- [x] `test_library_agents.py` - 19 tests covering all new functions
- [x] `test_service.py` - 4 tests for library_agents passthrough
- [ ] Integration test: Create agent with library sub-agent composition
2026-01-31 00:18:21 +00:00
Otto
b72521daa9 fix(readme): update broken self-hosting docs link (#11911)
## Summary
The self-hosting guide link in README.md was broken.

**Old link:** `https://docs.agpt.co/platform/getting-started/`
- Redirects to `https://agpt.co/docs/platform/getting-started`
- Returns HTTP 400 

**New link:**
`https://agpt.co/docs/platform/getting-started/getting-started`
- Works correctly 

## Changes
- Updated the self-hosting guide URL in README.md

Fixes #OPEN-2973
2026-01-30 22:59:45 +00:00
Ubbe
cc4839bedb hotfix(frontend): fix home redirect (3) (#11904)
### Changes 🏗️

Further improvements to LaunchDarkly initialisation and homepage
redirect...

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run the app locally with the flag disabled/enabled, and the
redirects work

---------

Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Ubbe <0ubbe@users.noreply.github.com>
2026-01-30 20:40:46 +07:00
Otto
dbbff04616 hotfix(frontend): LD remount (#11903)
## Changes 🏗️

Removes the `key` prop from `LDProvider` that was causing full remounts
when user context changed.

### The Problem

The `key={context.key}` prop was forcing React to unmount and remount
the entire LDProvider when switching from anonymous → logged in user:

```
1. Page loads, user loading → key="anonymous" → LD mounts → flags available 
2. User finishes loading → key="user-123" → React sees key changed
3. LDProvider UNMOUNTS → flags become undefined 
4. New LDProvider MOUNTS → initializes again → flags available 
```

This caused the flag values to cycle: `undefined → value → undefined →
value`

### The Fix

Remove the `key` prop. The LDProvider handles context changes internally
via the `context` prop, which triggers `identify()` without remounting
the provider.

## Checklist 📋

- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [ ] I have tested my changes according to the test plan:
  - [ ] Flag values don't flicker on page load
  - [ ] Flag values update correctly when logging in/out
  - [ ] No redirect race conditions

Related: SECRT-1845
2026-01-30 19:08:26 +07:00
Reinier van der Leer
350ad3591b fix(backend/chat): Filter credentials for graph execution by scopes (#11881)
[SECRT-1842: run_agent tool does not correctly use credentials - agents
fail with insufficient auth
scopes](https://linear.app/autogpt/issue/SECRT-1842)

### Changes 🏗️

- Include scopes in credentials filter in
`backend.api.features.chat.tools.utils.match_user_credentials_to_graph`

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - CI must pass
- It's broken now and a simple change so we'll test in the dev
deployment
2026-01-30 11:01:51 +00:00
Ubbe
e6438b9a76 hotfix(frontend): use server redirect (#11900)
### Changes 🏗️

The page used a client-side redirect (`useEffect` + `router.replace`)
which only works after JavaScript loads and hydrates. On deployed sites,
if there's any delay or failure in JS execution, users see an
empty/black page because the component returns null.

**Fix:** Converted to a server-side redirect using redirect() from
next/navigation. This is a server component now, so:

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Tested locally but will see it fully working once deployed
2026-01-30 17:20:03 +07:00
Bently
de0ec3d388 chore(llm): remove deprecated Claude 3.7 Sonnet model with migration and defensive handling (#11841)
## Summary
Remove `claude-3-7-sonnet-20250219` from LLM model definitions ahead of
Anthropic's API retirement, with comprehensive migration and defensive
error handling.

## Background
Anthropic is retiring Claude 3.7 Sonnet (`claude-3-7-sonnet-20250219`)
on **February 19, 2026 at 9:00 AM PT**. This PR removes the model from
the platform and migrates existing users to prevent service
interruptions.

## Changes

### Code Changes
- Remove `CLAUDE_3_7_SONNET` enum member from `LlmModel` in `llm.py`
- Remove corresponding `ModelMetadata` entry
- Remove `CLAUDE_3_7_SONNET` from `StagehandRecommendedLlmModel` enum
- Remove `CLAUDE_3_7_SONNET` from block cost config
- Add `CLAUDE_4_5_SONNET` to `StagehandRecommendedLlmModel` enum
- Update Stagehand block defaults from `CLAUDE_3_7_SONNET` to
`CLAUDE_4_5_SONNET` (staying in Claude family)
- Add defensive error handling in `CredentialsFieldInfo.discriminate()`
for deprecated model values

### Database Migration
- Adds migration `20260126120000_migrate_claude_3_7_to_4_5_sonnet`
- Migrates `AgentNode.constantInput` model references
- Migrates `AgentNodeExecutionInputOutput.data` preset overrides

### Documentation
- Updated `docs/integrations/block-integrations/llm.md` to remove
deprecated model
- Updated `docs/integrations/block-integrations/stagehand/blocks.md` to
remove deprecated model and add Claude 4.5 Sonnet

## Notes
- Agent JSON files in `autogpt_platform/backend/agents/` still reference
this model in their provider mappings. These are auto-generated and
should be regenerated separately.

## Testing
- [ ] Verify LLM block still functions with remaining models
- [ ] Confirm no import errors in affected files
- [ ] Verify migration runs successfully
- [ ] Verify deprecated model gives helpful error message instead of
KeyError
2026-01-30 08:40:55 +00:00
Otto
e10ff8d37f fix(frontend): remove double flag check on homepage redirect (#11894)
## Changes 🏗️

Fixes the hard refresh redirect bug (SECRT-1845) by removing the double
feature flag check.

### Before (buggy)
```
/                    → checks flag → /copilot or /library
/copilot (layout)    → checks flag → /library if OFF
```

On hard refresh, two sequential LD checks created a race condition
window.

### After (fixed)
```
/                    → always redirects to /copilot
/copilot (layout)    → single flag check via FeatureFlagPage
```

Single check point = no double-check race condition.

## Root Cause

As identified by @0ubbe: the root page and copilot layout were both
checking the feature flag. On hard refresh with network latency, the
second check could fire before LaunchDarkly fully initialized, causing
users to be bounced to `/library`.

## Test Plan

- [ ] Hard refresh on `/` → should go to `/copilot` (flag ON)
- [ ] Hard refresh on `/copilot` → should stay on `/copilot` (flag ON)  
- [ ] With flag OFF → should redirect to `/library`
- [ ] Normal navigation still works

Fixes: SECRT-1845

cc @0ubbe
2026-01-30 08:32:50 +00:00
Otto
7cb1e588b0 fix(frontend): Refocus ChatInput after voice transcription completes (#11893)
## Summary
Refocuses the chat input textarea after voice transcription finishes,
allowing users to immediately use `spacebar+enter` to record and send
their prompt.

## Changes
- Added `inputId` parameter to `useVoiceRecording` hook
- After transcription completes, the input is automatically focused
- This improves the voice input UX flow

## Testing
1. Click mic button or press spacebar to record voice
2. Record a message and stop
3. After transcription completes, the input should be focused
4. User can now press Enter to send or spacebar to record again

---------

Co-authored-by: Lluis Agusti <hi@llu.lu>
2026-01-30 14:49:05 +07:00
Otto
582c6cad36 fix(e2e): Make E2E test data deterministic and fix flaky tests (#11890)
## Summary
Fixes flaky E2E marketplace and library tests that were causing PRs to
be removed from the merge queue.

## Root Cause
1. **Test data was probabilistic** - `e2e_test_data.py` used random
chances (40% approve, then 20-50% feature), which could result in 0
featured agents
2. **Library pagination threshold wrong** - Checked `>= 10`, but page
size is 20
3. **Fixed timeouts** - Used `waitForTimeout(2000)` /
`waitForTimeout(10000)` instead of proper waits

## Changes

### Backend (`e2e_test_data.py`)
- Add guaranteed minimums: 8 featured agents, 5 featured creators, 10
top agents
- First N submissions are deterministically approved and featured
- Increase agents per user from 15 → 25 (for pagination with
page_size=20)
- Fix library agent creation to use constants instead of hardcoded `10`

### Frontend Tests
- `library.spec.ts`: Fix pagination threshold to `PAGE_SIZE` (20)
- `library.page.ts`: Replace 2s timeout with `networkidle` +
`waitForFunction`
- `marketplace.page.ts`: Add `networkidle` wait, 30s waits in
`getFirst*` methods
- `marketplace.spec.ts`: Replace 10s timeout with `waitForFunction`
- `marketplace-creator.spec.ts`: Add `networkidle` + element waits

## Related
- Closes SECRT-1848, SECRT-1849
- Should unblock #11841 and other PRs in merge queue

---------

Co-authored-by: Ubbe <hi@ubbe.dev>
2026-01-30 05:12:35 +00:00
Ubbe
9538992eaf hotfix(frontend): flags copilot redirects (#11878)
## Changes 🏗️

- Refactor homepage redirect logic to always point to `/`
- the `/` route handles whether to redirect to `/copilot` or `/library`
based on flag
- Simplify `useGetFlag` checks
- Add `<FeatureFlagRedirect />` and `<FeatureFlagPage />` wrapper
components
- helpers to do 1 thing or the other, depending on chat enabled/disabled
- avoids boilerplate code, checking flagss and redirects mistakes
(especially around race conditions with LD init )

## Checklist 📋

### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Log in / out of AutoGPT with flag disabled/enabled
  - [x] Sign up to AutoGPT with flag disabled/enabled
  - [x] Redirects to homepage always work `/`
  - [x] Can't access Copilot with disabled flag
2026-01-29 18:13:28 +07:00
Nicholas Tindle
27b72062f2 Merge branch 'dev' 2026-01-28 15:17:57 -06:00
Zamil Majdy
9a79a8d257 Merge branch 'dev' of github.com:Significant-Gravitas/AutoGPT 2026-01-28 12:32:17 -06:00
Zamil Majdy
a9bf08748b Merge branch 'dev' of github.com:Significant-Gravitas/AutoGPT 2026-01-28 12:28:48 -06:00
88 changed files with 4249 additions and 1140 deletions

1
.gitignore vendored
View File

@@ -180,3 +180,4 @@ autogpt_platform/backend/settings.py
.claude/settings.local.json
CLAUDE.local.md
/autogpt_platform/backend/logs
.next

View File

@@ -54,7 +54,7 @@ Before proceeding with the installation, ensure your system meets the following
### Updated Setup Instructions:
We've moved to a fully maintained and regularly updated documentation site.
👉 [Follow the official self-hosting guide here](https://docs.agpt.co/platform/getting-started/)
👉 [Follow the official self-hosting guide here](https://agpt.co/docs/platform/getting-started/getting-started)
This tutorial assumes you have Docker, VSCode, git and npm installed.

View File

@@ -3,9 +3,13 @@ import logging
import time
from asyncio import CancelledError
from collections.abc import AsyncGenerator
from typing import Any
from typing import TYPE_CHECKING, Any, cast
import openai
if TYPE_CHECKING:
from backend.util.prompt import CompressResult
import orjson
from langfuse import get_client
from openai import (
@@ -15,7 +19,13 @@ from openai import (
PermissionDeniedError,
RateLimitError,
)
from openai.types.chat import ChatCompletionChunk, ChatCompletionToolParam
from openai.types.chat import (
ChatCompletionChunk,
ChatCompletionMessageParam,
ChatCompletionStreamOptionsParam,
ChatCompletionSystemMessageParam,
ChatCompletionToolParam,
)
from backend.data.redis_client import get_redis_async
from backend.data.understanding import (
@@ -794,207 +804,58 @@ def _is_region_blocked_error(error: Exception) -> bool:
return "not available in your region" in str(error).lower()
async def _summarize_messages(
async def _manage_context_window(
messages: list,
model: str,
api_key: str | None = None,
base_url: str | None = None,
timeout: float = 30.0,
) -> str:
"""Summarize a list of messages into concise context.
) -> "CompressResult":
"""
Manage context window using the unified compress_context function.
Uses the same model as the chat for higher quality summaries.
This is a thin wrapper that creates an OpenAI client for summarization
and delegates to the shared compression logic in prompt.py.
Args:
messages: List of message dicts to summarize
model: Model to use for summarization (same as chat model)
api_key: API key for OpenAI client
base_url: Base URL for OpenAI client
timeout: Request timeout in seconds (default: 30.0)
messages: List of messages in OpenAI format
model: Model name for token counting and summarization
api_key: API key for summarization calls
base_url: Base URL for summarization calls
Returns:
Summarized text
CompressResult with compacted messages and metadata
"""
# Format messages for summarization
conversation = []
for msg in messages:
role = msg.get("role", "")
content = msg.get("content", "")
# Include user, assistant, and tool messages (tool outputs are important context)
if content and role in ("user", "assistant", "tool"):
conversation.append(f"{role.upper()}: {content}")
conversation_text = "\n\n".join(conversation)
# Handle empty conversation
if not conversation_text:
return "No conversation history available."
# Truncate conversation to fit within summarization model's context
# gpt-4o-mini has 128k context, but we limit to ~25k tokens (~100k chars) for safety
MAX_CHARS = 100_000
if len(conversation_text) > MAX_CHARS:
conversation_text = conversation_text[:MAX_CHARS] + "\n\n[truncated]"
# Call LLM to summarize
import openai
summarization_client = openai.AsyncOpenAI(
api_key=api_key, base_url=base_url, timeout=timeout
)
from backend.util.prompt import compress_context
response = await summarization_client.chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": (
"Create a detailed summary of the conversation so far. "
"This summary will be used as context when continuing the conversation.\n\n"
"Before writing the summary, analyze each message chronologically to identify:\n"
"- User requests and their explicit goals\n"
"- Your approach and key decisions made\n"
"- Technical specifics (file names, tool outputs, function signatures)\n"
"- Errors encountered and resolutions applied\n\n"
"You MUST include ALL of the following sections:\n\n"
"## 1. Primary Request and Intent\n"
"The user's explicit goals and what they are trying to accomplish.\n\n"
"## 2. Key Technical Concepts\n"
"Technologies, frameworks, tools, and patterns being used or discussed.\n\n"
"## 3. Files and Resources Involved\n"
"Specific files examined or modified, with relevant snippets and identifiers.\n\n"
"## 4. Errors and Fixes\n"
"Problems encountered, error messages, and their resolutions. "
"Include any user feedback on fixes.\n\n"
"## 5. Problem Solving\n"
"Issues that have been resolved and how they were addressed.\n\n"
"## 6. All User Messages\n"
"A complete list of all user inputs (excluding tool outputs) to preserve their exact requests.\n\n"
"## 7. Pending Tasks\n"
"Work items the user explicitly requested that have not yet been completed.\n\n"
"## 8. Current Work\n"
"Precise description of what was being worked on most recently, including relevant context.\n\n"
"## 9. Next Steps\n"
"What should happen next, aligned with the user's most recent requests. "
"Include verbatim quotes of recent instructions if relevant."
),
},
{"role": "user", "content": f"Summarize:\n\n{conversation_text}"},
],
max_tokens=1500,
temperature=0.3,
)
# Convert messages to dict format
messages_dict = []
for msg in messages:
if isinstance(msg, dict):
msg_dict = {k: v for k, v in msg.items() if v is not None}
else:
msg_dict = dict(msg)
messages_dict.append(msg_dict)
summary = response.choices[0].message.content
return summary or "No summary available."
def _ensure_tool_pairs_intact(
recent_messages: list[dict],
all_messages: list[dict],
start_index: int,
) -> list[dict]:
"""
Ensure tool_call/tool_response pairs stay together after slicing.
When slicing messages for context compaction, a naive slice can separate
an assistant message containing tool_calls from its corresponding tool
response messages. This causes API validation errors (e.g., Anthropic's
"unexpected tool_use_id found in tool_result blocks").
This function checks for orphan tool responses in the slice and extends
backwards to include their corresponding assistant messages.
Args:
recent_messages: The sliced messages to validate
all_messages: The complete message list (for looking up missing assistants)
start_index: The index in all_messages where recent_messages begins
Returns:
A potentially extended list of messages with tool pairs intact
"""
if not recent_messages:
return recent_messages
# Collect all tool_call_ids from assistant messages in the slice
available_tool_call_ids: set[str] = set()
for msg in recent_messages:
if msg.get("role") == "assistant" and msg.get("tool_calls"):
for tc in msg["tool_calls"]:
tc_id = tc.get("id")
if tc_id:
available_tool_call_ids.add(tc_id)
# Find orphan tool responses (tool messages whose tool_call_id is missing)
orphan_tool_call_ids: set[str] = set()
for msg in recent_messages:
if msg.get("role") == "tool":
tc_id = msg.get("tool_call_id")
if tc_id and tc_id not in available_tool_call_ids:
orphan_tool_call_ids.add(tc_id)
if not orphan_tool_call_ids:
# No orphans, slice is valid
return recent_messages
# Find the assistant messages that contain the orphan tool_call_ids
# Search backwards from start_index in all_messages
messages_to_prepend: list[dict] = []
for i in range(start_index - 1, -1, -1):
msg = all_messages[i]
if msg.get("role") == "assistant" and msg.get("tool_calls"):
msg_tool_ids = {tc.get("id") for tc in msg["tool_calls"] if tc.get("id")}
if msg_tool_ids & orphan_tool_call_ids:
# This assistant message has tool_calls we need
# Also collect its contiguous tool responses that follow it
assistant_and_responses: list[dict] = [msg]
# Scan forward from this assistant to collect tool responses
for j in range(i + 1, start_index):
following_msg = all_messages[j]
if following_msg.get("role") == "tool":
tool_id = following_msg.get("tool_call_id")
if tool_id and tool_id in msg_tool_ids:
assistant_and_responses.append(following_msg)
else:
# Stop at first non-tool message
break
# Prepend the assistant and its tool responses (maintain order)
messages_to_prepend = assistant_and_responses + messages_to_prepend
# Mark these as found
orphan_tool_call_ids -= msg_tool_ids
# Also add this assistant's tool_call_ids to available set
available_tool_call_ids |= msg_tool_ids
if not orphan_tool_call_ids:
# Found all missing assistants
break
if orphan_tool_call_ids:
# Some tool_call_ids couldn't be resolved - remove those tool responses
# This shouldn't happen in normal operation but handles edge cases
logger.warning(
f"Could not find assistant messages for tool_call_ids: {orphan_tool_call_ids}. "
"Removing orphan tool responses."
)
recent_messages = [
msg
for msg in recent_messages
if not (
msg.get("role") == "tool"
and msg.get("tool_call_id") in orphan_tool_call_ids
# Only create client if api_key is provided (enables summarization)
# Use context manager to avoid socket leaks
if api_key:
async with openai.AsyncOpenAI(
api_key=api_key, base_url=base_url, timeout=30.0
) as client:
return await compress_context(
messages=messages_dict,
model=model,
client=client,
)
]
if messages_to_prepend:
logger.info(
f"Extended recent messages by {len(messages_to_prepend)} to preserve "
f"tool_call/tool_response pairs"
else:
# No API key - use truncation-only mode
return await compress_context(
messages=messages_dict,
model=model,
client=None,
)
return messages_to_prepend + recent_messages
return recent_messages
async def _stream_chat_chunks(
@@ -1022,11 +883,8 @@ async def _stream_chat_chunks(
logger.info("Starting pure chat stream")
# Build messages with system prompt prepended
messages = session.to_openai_messages()
if system_prompt:
from openai.types.chat import ChatCompletionSystemMessageParam
system_message = ChatCompletionSystemMessageParam(
role="system",
content=system_prompt,
@@ -1034,314 +892,38 @@ async def _stream_chat_chunks(
messages = [system_message] + messages
# Apply context window management
token_count = 0 # Initialize for exception handler
try:
from backend.util.prompt import estimate_token_count
context_result = await _manage_context_window(
messages=messages,
model=model,
api_key=config.api_key,
base_url=config.base_url,
)
# Convert to dict for token counting
# OpenAI message types are TypedDicts, so they're already dict-like
messages_dict = []
for msg in messages:
# TypedDict objects are already dicts, just filter None values
if isinstance(msg, dict):
msg_dict = {k: v for k, v in msg.items() if v is not None}
else:
# Fallback for unexpected types
msg_dict = dict(msg)
messages_dict.append(msg_dict)
# Estimate tokens using appropriate tokenizer
# Normalize model name for token counting (tiktoken only supports OpenAI models)
token_count_model = model
if "/" in model:
# Strip provider prefix (e.g., "anthropic/claude-opus-4.5" -> "claude-opus-4.5")
token_count_model = model.split("/")[-1]
# For Claude and other non-OpenAI models, approximate with gpt-4o tokenizer
# Most modern LLMs have similar tokenization (~1 token per 4 chars)
if "claude" in token_count_model.lower() or not any(
known in token_count_model.lower()
for known in ["gpt", "o1", "chatgpt", "text-"]
):
token_count_model = "gpt-4o"
# Attempt token counting with error handling
try:
token_count = estimate_token_count(messages_dict, model=token_count_model)
except Exception as token_error:
# If token counting fails, use gpt-4o as fallback approximation
logger.warning(
f"Token counting failed for model {token_count_model}: {token_error}. "
"Using gpt-4o approximation."
)
token_count = estimate_token_count(messages_dict, model="gpt-4o")
# If over threshold, summarize old messages
if token_count > 120_000:
KEEP_RECENT = 15
# Check if we have a system prompt at the start
has_system_prompt = (
len(messages) > 0 and messages[0].get("role") == "system"
)
# Always attempt mitigation when over limit, even with few messages
if messages:
# Split messages based on whether system prompt exists
# Calculate start index for the slice
slice_start = max(0, len(messages_dict) - KEEP_RECENT)
recent_messages = messages_dict[-KEEP_RECENT:]
# Ensure tool_call/tool_response pairs stay together
# This prevents API errors from orphan tool responses
recent_messages = _ensure_tool_pairs_intact(
recent_messages, messages_dict, slice_start
)
if has_system_prompt:
# Keep system prompt separate, summarize everything between system and recent
system_msg = messages[0]
old_messages_dict = messages_dict[1:-KEEP_RECENT]
else:
# No system prompt, summarize everything except recent
system_msg = None
old_messages_dict = messages_dict[:-KEEP_RECENT]
# Summarize any non-empty old messages (no minimum threshold)
# If we're over the token limit, we need to compress whatever we can
if old_messages_dict:
# Summarize old messages using the same model as chat
summary_text = await _summarize_messages(
old_messages_dict,
model=model,
api_key=config.api_key,
base_url=config.base_url,
)
# Build new message list
# Use assistant role (not system) to prevent privilege escalation
# of user-influenced content to instruction-level authority
from openai.types.chat import ChatCompletionAssistantMessageParam
summary_msg = ChatCompletionAssistantMessageParam(
role="assistant",
content=(
"[Previous conversation summary — for context only]: "
f"{summary_text}"
),
)
# Rebuild messages based on whether we have a system prompt
if has_system_prompt:
# system_prompt + summary + recent_messages
messages = [system_msg, summary_msg] + recent_messages
else:
# summary + recent_messages (no original system prompt)
messages = [summary_msg] + recent_messages
logger.info(
f"Context summarized: {token_count} tokens, "
f"summarized {len(old_messages_dict)} old messages, "
f"kept last {KEEP_RECENT} messages"
)
# Fallback: If still over limit after summarization, progressively drop recent messages
# This handles edge cases where recent messages are extremely large
new_messages_dict = []
for msg in messages:
if isinstance(msg, dict):
msg_dict = {k: v for k, v in msg.items() if v is not None}
else:
msg_dict = dict(msg)
new_messages_dict.append(msg_dict)
new_token_count = estimate_token_count(
new_messages_dict, model=token_count_model
)
if new_token_count > 120_000:
# Still over limit - progressively reduce KEEP_RECENT
logger.warning(
f"Still over limit after summarization: {new_token_count} tokens. "
"Reducing number of recent messages kept."
)
for keep_count in [12, 10, 8, 5, 3, 2, 1, 0]:
if keep_count == 0:
# Try with just system prompt + summary (no recent messages)
if has_system_prompt:
messages = [system_msg, summary_msg]
else:
messages = [summary_msg]
logger.info(
"Trying with 0 recent messages (system + summary only)"
)
else:
# Slice from ORIGINAL recent_messages to avoid duplicating summary
reduced_recent = (
recent_messages[-keep_count:]
if len(recent_messages) >= keep_count
else recent_messages
)
# Ensure tool pairs stay intact in the reduced slice
reduced_slice_start = max(
0, len(recent_messages) - keep_count
)
reduced_recent = _ensure_tool_pairs_intact(
reduced_recent, recent_messages, reduced_slice_start
)
if has_system_prompt:
messages = [
system_msg,
summary_msg,
] + reduced_recent
else:
messages = [summary_msg] + reduced_recent
new_messages_dict = []
for msg in messages:
if isinstance(msg, dict):
msg_dict = {
k: v for k, v in msg.items() if v is not None
}
else:
msg_dict = dict(msg)
new_messages_dict.append(msg_dict)
new_token_count = estimate_token_count(
new_messages_dict, model=token_count_model
)
if new_token_count <= 120_000:
logger.info(
f"Reduced to {keep_count} recent messages, "
f"now {new_token_count} tokens"
)
break
else:
logger.error(
f"Unable to reduce token count below threshold even with 0 messages. "
f"Final count: {new_token_count} tokens"
)
# ABSOLUTE LAST RESORT: Drop system prompt
# This should only happen if summary itself is massive
if has_system_prompt and len(messages) > 1:
messages = messages[1:] # Drop system prompt
logger.critical(
"CRITICAL: Dropped system prompt as absolute last resort. "
"Behavioral consistency may be affected."
)
# Yield error to user
yield StreamError(
errorText=(
"Warning: System prompt dropped due to size constraints. "
"Assistant behavior may be affected."
)
)
else:
# No old messages to summarize - all messages are "recent"
# Apply progressive truncation to reduce token count
logger.warning(
f"Token count {token_count} exceeds threshold but no old messages to summarize. "
f"Applying progressive truncation to recent messages."
)
# Create a base list excluding system prompt to avoid duplication
# This is the pool of messages we'll slice from in the loop
# Use messages_dict for type consistency with _ensure_tool_pairs_intact
base_msgs = (
messages_dict[1:] if has_system_prompt else messages_dict
)
# Try progressively smaller keep counts
new_token_count = token_count # Initialize with current count
for keep_count in [12, 10, 8, 5, 3, 2, 1, 0]:
if keep_count == 0:
# Try with just system prompt (no recent messages)
if has_system_prompt:
messages = [system_msg]
logger.info(
"Trying with 0 recent messages (system prompt only)"
)
else:
# No system prompt and no recent messages = empty messages list
# This is invalid, skip this iteration
continue
else:
if len(base_msgs) < keep_count:
continue # Skip if we don't have enough messages
# Slice from base_msgs to get recent messages (without system prompt)
recent_messages = base_msgs[-keep_count:]
# Ensure tool pairs stay intact in the reduced slice
reduced_slice_start = max(0, len(base_msgs) - keep_count)
recent_messages = _ensure_tool_pairs_intact(
recent_messages, base_msgs, reduced_slice_start
)
if has_system_prompt:
messages = [system_msg] + recent_messages
else:
messages = recent_messages
new_messages_dict = []
for msg in messages:
if msg is None:
continue # Skip None messages (type safety)
if isinstance(msg, dict):
msg_dict = {
k: v for k, v in msg.items() if v is not None
}
else:
msg_dict = dict(msg)
new_messages_dict.append(msg_dict)
new_token_count = estimate_token_count(
new_messages_dict, model=token_count_model
)
if new_token_count <= 120_000:
logger.info(
f"Reduced to {keep_count} recent messages, "
f"now {new_token_count} tokens"
)
break
else:
# Even with 0 messages still over limit
logger.error(
f"Unable to reduce token count below threshold even with 0 messages. "
f"Final count: {new_token_count} tokens. Messages may be extremely large."
)
# ABSOLUTE LAST RESORT: Drop system prompt
if has_system_prompt and len(messages) > 1:
messages = messages[1:] # Drop system prompt
logger.critical(
"CRITICAL: Dropped system prompt as absolute last resort. "
"Behavioral consistency may be affected."
)
# Yield error to user
yield StreamError(
errorText=(
"Warning: System prompt dropped due to size constraints. "
"Assistant behavior may be affected."
)
)
except Exception as e:
logger.error(f"Context summarization failed: {e}", exc_info=True)
# If we were over the token limit, yield error to user
# Don't silently continue with oversized messages that will fail
if token_count > 120_000:
if context_result.error:
if "System prompt dropped" in context_result.error:
# Warning only - continue with reduced context
yield StreamError(
errorText=(
f"Unable to manage context window (token limit exceeded: {token_count} tokens). "
"Context summarization failed. Please start a new conversation."
"Warning: System prompt dropped due to size constraints. "
"Assistant behavior may be affected."
)
)
else:
# Any other error - abort to prevent failed LLM calls
yield StreamError(
errorText=(
f"Context window management failed: {context_result.error}. "
"Please start a new conversation."
)
)
yield StreamFinish()
return
# Otherwise, continue with original messages (under limit)
messages = context_result.messages
if context_result.was_compacted:
logger.info(
f"Context compacted for streaming: {context_result.token_count} tokens"
)
# Loop to handle tool calls and continue conversation
while True:
@@ -1369,14 +951,6 @@ async def _stream_chat_chunks(
:128
] # OpenRouter limit
# Create the stream with proper types
from typing import cast
from openai.types.chat import (
ChatCompletionMessageParam,
ChatCompletionStreamOptionsParam,
)
stream = await client.chat.completions.create(
model=model,
messages=cast(list[ChatCompletionMessageParam], messages),
@@ -1834,6 +1408,11 @@ async def _execute_long_running_tool(
tool_call_id=tool_call_id,
result=error_response.model_dump_json(),
)
# Generate LLM continuation so user sees explanation even for errors
try:
await _generate_llm_continuation(session_id=session_id, user_id=user_id)
except Exception as llm_err:
logger.warning(f"Failed to generate LLM continuation for error: {llm_err}")
finally:
await _mark_operation_completed(tool_call_id)
@@ -1895,17 +1474,36 @@ async def _generate_llm_continuation(
# Build system prompt
system_prompt, _ = await _build_system_prompt(user_id)
# Build messages in OpenAI format
messages = session.to_openai_messages()
if system_prompt:
from openai.types.chat import ChatCompletionSystemMessageParam
system_message = ChatCompletionSystemMessageParam(
role="system",
content=system_prompt,
)
messages = [system_message] + messages
# Apply context window management to prevent oversized requests
context_result = await _manage_context_window(
messages=messages,
model=config.model,
api_key=config.api_key,
base_url=config.base_url,
)
if context_result.error and "System prompt dropped" not in context_result.error:
logger.error(
f"Context window management failed for session {session_id}: "
f"{context_result.error} (tokens={context_result.token_count})"
)
return
messages = context_result.messages
if context_result.was_compacted:
logger.info(
f"Context compacted for LLM continuation: "
f"{context_result.token_count} tokens"
)
# Build extra_body for tracing
extra_body: dict[str, Any] = {
"posthogProperties": {
@@ -1918,19 +1516,54 @@ async def _generate_llm_continuation(
if session_id:
extra_body["session_id"] = session_id[:128]
# Make non-streaming LLM call (no tools - just text response)
from typing import cast
retry_count = 0
last_error: Exception | None = None
response = None
from openai.types.chat import ChatCompletionMessageParam
while retry_count <= MAX_RETRIES:
try:
logger.info(
f"Generating LLM continuation for session {session_id}"
f"{f' (retry {retry_count}/{MAX_RETRIES})' if retry_count > 0 else ''}"
)
# No tools parameter = text-only response (no tool calls)
response = await client.chat.completions.create(
model=config.model,
messages=cast(list[ChatCompletionMessageParam], messages),
extra_body=extra_body,
)
response = await client.chat.completions.create(
model=config.model,
messages=cast(list[ChatCompletionMessageParam], messages),
extra_body=extra_body,
)
last_error = None # Clear any previous error on success
break # Success, exit retry loop
except Exception as e:
last_error = e
if _is_retryable_error(e) and retry_count < MAX_RETRIES:
retry_count += 1
delay = min(
BASE_DELAY_SECONDS * (2 ** (retry_count - 1)),
MAX_DELAY_SECONDS,
)
logger.warning(
f"Retryable error in LLM continuation: {e!s}. "
f"Retrying in {delay:.1f}s (attempt {retry_count}/{MAX_RETRIES})"
)
await asyncio.sleep(delay)
continue
else:
# Non-retryable error - log and exit gracefully
logger.error(
f"Non-retryable error in LLM continuation: {e!s}",
exc_info=True,
)
return
if response.choices and response.choices[0].message.content:
if last_error:
logger.error(
f"Max retries ({MAX_RETRIES}) exceeded for LLM continuation. "
f"Last error: {last_error!s}"
)
return
if response and response.choices and response.choices[0].message.content:
assistant_content = response.choices[0].message.content
# Reload session from DB to avoid race condition with user messages

View File

@@ -2,30 +2,54 @@
from .core import (
AgentGeneratorNotConfiguredError,
AgentJsonValidationError,
AgentSummary,
DecompositionResult,
DecompositionStep,
LibraryAgentSummary,
MarketplaceAgentSummary,
decompose_goal,
enrich_library_agents_from_steps,
extract_search_terms_from_steps,
extract_uuids_from_text,
generate_agent,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_library_agent_by_graph_id,
get_library_agent_by_id,
get_library_agents_for_generation,
json_to_graph,
save_agent_to_library,
search_marketplace_agents_for_generation,
)
from .errors import get_user_message_for_error
from .service import health_check as check_external_service_health
from .service import is_external_service_configured
__all__ = [
# Core functions
"AgentGeneratorNotConfiguredError",
"AgentJsonValidationError",
"AgentSummary",
"DecompositionResult",
"DecompositionStep",
"LibraryAgentSummary",
"MarketplaceAgentSummary",
"check_external_service_health",
"decompose_goal",
"enrich_library_agents_from_steps",
"extract_search_terms_from_steps",
"extract_uuids_from_text",
"generate_agent",
"generate_agent_patch",
"save_agent_to_library",
"get_agent_as_json",
"json_to_graph",
# Exceptions
"AgentGeneratorNotConfiguredError",
# Service
"is_external_service_configured",
"check_external_service_health",
# Error handling
"get_all_relevant_agents_for_generation",
"get_library_agent_by_graph_id",
"get_library_agent_by_id",
"get_library_agents_for_generation",
"get_user_message_for_error",
"is_external_service_configured",
"json_to_graph",
"save_agent_to_library",
"search_marketplace_agents_for_generation",
]

View File

@@ -1,11 +1,22 @@
"""Core agent generation functions."""
import logging
import re
import uuid
from typing import Any
from typing import Any, NotRequired, TypedDict
from backend.api.features.library import db as library_db
from backend.data.graph import Graph, Link, Node, create_graph
from backend.api.features.store import db as store_db
from backend.data.graph import (
Graph,
Link,
Node,
create_graph,
get_graph,
get_graph_all_versions,
get_store_listed_graphs,
)
from backend.util.exceptions import DatabaseError, NotFoundError
from .service import (
decompose_goal_external,
@@ -16,6 +27,74 @@ from .service import (
logger = logging.getLogger(__name__)
AGENT_EXECUTOR_BLOCK_ID = "e189baac-8c20-45a1-94a7-55177ea42565"
class ExecutionSummary(TypedDict):
"""Summary of a single execution for quality assessment."""
status: str
correctness_score: NotRequired[float]
activity_summary: NotRequired[str]
class LibraryAgentSummary(TypedDict):
"""Summary of a library agent for sub-agent composition.
Includes recent executions to help the LLM decide whether to use this agent.
Each execution shows status, correctness_score (0-1), and activity_summary.
"""
graph_id: str
graph_version: int
name: str
description: str
input_schema: dict[str, Any]
output_schema: dict[str, Any]
recent_executions: NotRequired[list[ExecutionSummary]]
class MarketplaceAgentSummary(TypedDict):
"""Summary of a marketplace agent for sub-agent composition."""
name: str
description: str
sub_heading: str
creator: str
is_marketplace_agent: bool
class DecompositionStep(TypedDict, total=False):
"""A single step in decomposed instructions."""
description: str
action: str
block_name: str
tool: str
name: str
class DecompositionResult(TypedDict, total=False):
"""Result from decompose_goal - can be instructions, questions, or error."""
type: str
steps: list[DecompositionStep]
questions: list[dict[str, Any]]
error: str
error_type: str
AgentSummary = LibraryAgentSummary | MarketplaceAgentSummary | dict[str, Any]
def _to_dict_list(
agents: list[AgentSummary] | list[dict[str, Any]] | None,
) -> list[dict[str, Any]] | None:
"""Convert typed agent summaries to plain dicts for external service calls."""
if agents is None:
return None
return [dict(a) for a in agents]
class AgentGeneratorNotConfiguredError(Exception):
"""Raised when the external Agent Generator service is not configured."""
@@ -36,15 +115,422 @@ def _check_service_configured() -> None:
)
async def decompose_goal(description: str, context: str = "") -> dict[str, Any] | None:
_UUID_PATTERN = re.compile(
r"[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}",
re.IGNORECASE,
)
def extract_uuids_from_text(text: str) -> list[str]:
"""Extract all UUID v4 strings from text.
Args:
text: Text that may contain UUIDs (e.g., user's goal description)
Returns:
List of unique UUIDs found in the text (lowercase)
"""
matches = _UUID_PATTERN.findall(text)
return list({m.lower() for m in matches})
async def get_library_agent_by_id(
user_id: str, agent_id: str
) -> LibraryAgentSummary | None:
"""Fetch a specific library agent by its ID (library agent ID or graph_id).
This function tries multiple lookup strategies:
1. First tries to find by graph_id (AgentGraph primary key)
2. If not found, tries to find by library agent ID (LibraryAgent primary key)
This handles both cases:
- User provides graph_id (e.g., from AgentExecutorBlock)
- User provides library agent ID (e.g., from library URL)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
LibraryAgentSummary if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except DatabaseError:
raise
except Exception as e:
logger.debug(f"Could not fetch library agent by graph_id {agent_id}: {e}")
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
get_library_agent_by_graph_id = get_library_agent_by_id
async def get_library_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
max_results: int = 15,
) -> list[LibraryAgentSummary]:
"""Fetch user's library agents formatted for Agent Generator.
Uses search-based fetching to return relevant agents instead of all agents.
This is more scalable for users with large libraries.
Includes recent_executions list to help the LLM assess agent quality:
- Each execution has status, correctness_score (0-1), and activity_summary
- This gives the LLM concrete examples of recent performance
Args:
user_id: The user ID
search_query: Optional search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
max_results: Maximum number of agents to return (default 15)
Returns:
List of LibraryAgentSummary with schemas and recent executions for sub-agent composition
"""
try:
response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query,
page=1,
page_size=max_results,
include_executions=True,
)
results: list[LibraryAgentSummary] = []
for agent in response.agents:
if exclude_graph_id is not None and agent.graph_id == exclude_graph_id:
continue
summary = LibraryAgentSummary(
graph_id=agent.graph_id,
graph_version=agent.graph_version,
name=agent.name,
description=agent.description,
input_schema=agent.input_schema,
output_schema=agent.output_schema,
)
if agent.recent_executions:
exec_summaries: list[ExecutionSummary] = []
for ex in agent.recent_executions:
exec_sum = ExecutionSummary(status=ex.status)
if ex.correctness_score is not None:
exec_sum["correctness_score"] = ex.correctness_score
if ex.activity_summary:
exec_sum["activity_summary"] = ex.activity_summary
exec_summaries.append(exec_sum)
summary["recent_executions"] = exec_summaries
results.append(summary)
return results
except DatabaseError:
raise
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
return []
async def search_marketplace_agents_for_generation(
search_query: str,
max_results: int = 10,
) -> list[LibraryAgentSummary]:
"""Search marketplace agents formatted for Agent Generator.
Fetches marketplace agents and their full schemas so they can be used
as sub-agents in generated workflows.
Args:
search_query: Search term to find relevant public agents
max_results: Maximum number of agents to return (default 10)
Returns:
List of LibraryAgentSummary with full input/output schemas
"""
try:
response = await store_db.get_store_agents(
search_query=search_query,
page=1,
page_size=max_results,
)
agents_with_graphs = [
agent for agent in response.agents if agent.agent_graph_id
]
if not agents_with_graphs:
return []
graph_ids = [agent.agent_graph_id for agent in agents_with_graphs]
graphs = await get_store_listed_graphs(*graph_ids)
results: list[LibraryAgentSummary] = []
for agent in agents_with_graphs:
graph_id = agent.agent_graph_id
if graph_id and graph_id in graphs:
graph = graphs[graph_id]
results.append(
LibraryAgentSummary(
graph_id=graph.id,
graph_version=graph.version,
name=agent.agent_name,
description=agent.description,
input_schema=graph.input_schema,
output_schema=graph.output_schema,
)
)
return results
except Exception as e:
logger.warning(f"Failed to search marketplace agents: {e}")
return []
async def get_all_relevant_agents_for_generation(
user_id: str,
search_query: str | None = None,
exclude_graph_id: str | None = None,
include_library: bool = True,
include_marketplace: bool = True,
max_library_results: int = 15,
max_marketplace_results: int = 10,
) -> list[AgentSummary]:
"""Fetch relevant agents from library and/or marketplace.
Searches both user's library and marketplace by default.
Explicitly mentioned UUIDs in the search query are always looked up.
Args:
user_id: The user ID
search_query: Search term to find relevant agents (user's goal/description)
exclude_graph_id: Optional graph ID to exclude (prevents circular references)
include_library: Whether to search user's library (default True)
include_marketplace: Whether to also search marketplace (default True)
max_library_results: Max library agents to return (default 15)
max_marketplace_results: Max marketplace agents to return (default 10)
Returns:
List of AgentSummary with full schemas (both library and marketplace agents)
"""
agents: list[AgentSummary] = []
seen_graph_ids: set[str] = set()
if search_query:
mentioned_uuids = extract_uuids_from_text(search_query)
for graph_id in mentioned_uuids:
if graph_id == exclude_graph_id:
continue
agent = await get_library_agent_by_graph_id(user_id, graph_id)
agent_graph_id = agent.get("graph_id") if agent else None
if agent and agent_graph_id and agent_graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(agent_graph_id)
logger.debug(
f"Found explicitly mentioned agent: {agent.get('name') or 'Unknown'}"
)
if include_library:
library_agents = await get_library_agents_for_generation(
user_id=user_id,
search_query=search_query,
exclude_graph_id=exclude_graph_id,
max_results=max_library_results,
)
for agent in library_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
if include_marketplace and search_query:
marketplace_agents = await search_marketplace_agents_for_generation(
search_query=search_query,
max_results=max_marketplace_results,
)
for agent in marketplace_agents:
graph_id = agent.get("graph_id")
if graph_id and graph_id not in seen_graph_ids:
agents.append(agent)
seen_graph_ids.add(graph_id)
return agents
def extract_search_terms_from_steps(
decomposition_result: DecompositionResult | dict[str, Any],
) -> list[str]:
"""Extract search terms from decomposed instruction steps.
Analyzes the decomposition result to extract relevant keywords
for additional library agent searches.
Args:
decomposition_result: Result from decompose_goal containing steps
Returns:
List of unique search terms extracted from steps
"""
search_terms: list[str] = []
if decomposition_result.get("type") != "instructions":
return search_terms
steps = decomposition_result.get("steps", [])
if not steps:
return search_terms
step_keys: list[str] = ["description", "action", "block_name", "tool", "name"]
for step in steps:
for key in step_keys:
value = step.get(key) # type: ignore[union-attr]
if isinstance(value, str) and len(value) > 3:
search_terms.append(value)
seen: set[str] = set()
unique_terms: list[str] = []
for term in search_terms:
term_lower = term.lower()
if term_lower not in seen:
seen.add(term_lower)
unique_terms.append(term)
return unique_terms
async def enrich_library_agents_from_steps(
user_id: str,
decomposition_result: DecompositionResult | dict[str, Any],
existing_agents: list[AgentSummary] | list[dict[str, Any]],
exclude_graph_id: str | None = None,
include_marketplace: bool = True,
max_additional_results: int = 10,
) -> list[AgentSummary] | list[dict[str, Any]]:
"""Enrich library agents list with additional searches based on decomposed steps.
This implements two-phase search: after decomposition, we search for additional
relevant agents based on the specific steps identified.
Args:
user_id: The user ID
decomposition_result: Result from decompose_goal containing steps
existing_agents: Already fetched library agents from initial search
exclude_graph_id: Optional graph ID to exclude
include_marketplace: Whether to also search marketplace
max_additional_results: Max additional agents per search term (default 10)
Returns:
Combined list of library agents (existing + newly discovered)
"""
search_terms = extract_search_terms_from_steps(decomposition_result)
if not search_terms:
return existing_agents
existing_ids: set[str] = set()
existing_names: set[str] = set()
for agent in existing_agents:
agent_name = agent.get("name")
if agent_name and isinstance(agent_name, str):
existing_names.add(agent_name.lower())
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
all_agents: list[AgentSummary] | list[dict[str, Any]] = list(existing_agents)
for term in search_terms[:3]:
try:
additional_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=term,
exclude_graph_id=exclude_graph_id,
include_marketplace=include_marketplace,
max_library_results=max_additional_results,
max_marketplace_results=5,
)
for agent in additional_agents:
agent_name = agent.get("name")
if not agent_name or not isinstance(agent_name, str):
continue
agent_name_lower = agent_name.lower()
if agent_name_lower in existing_names:
continue
graph_id = agent.get("graph_id") # type: ignore[call-overload]
if graph_id and graph_id in existing_ids:
continue
all_agents.append(agent)
existing_names.add(agent_name_lower)
if graph_id and isinstance(graph_id, str):
existing_ids.add(graph_id)
except DatabaseError:
logger.error(f"Database error searching for agents with term '{term}'")
raise
except Exception as e:
logger.warning(
f"Failed to search for additional agents with term '{term}': {e}"
)
logger.debug(
f"Enriched library agents: {len(existing_agents)} initial + "
f"{len(all_agents) - len(existing_agents)} additional = {len(all_agents)} total"
)
return all_agents
async def decompose_goal(
description: str,
context: str = "",
library_agents: list[AgentSummary] | None = None,
) -> DecompositionResult | None:
"""Break down a goal into steps or return clarifying questions.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
Dict with either:
DecompositionResult with either:
- {"type": "clarifying_questions", "questions": [...]}
- {"type": "instructions", "steps": [...]}
Or None on error
@@ -54,14 +540,21 @@ async def decompose_goal(description: str, context: str = "") -> dict[str, Any]
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for decompose_goal")
return await decompose_goal_external(description, context)
result = await decompose_goal_external(
description, context, _to_dict_list(library_agents)
)
return result # type: ignore[return-value]
async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
async def generate_agent(
instructions: DecompositionResult | dict[str, Any],
library_agents: list[AgentSummary] | list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
"""Generate agent JSON from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
Returns:
Agent JSON dict, error dict {"type": "error", ...}, or None on error
@@ -71,12 +564,12 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent")
result = await generate_agent_external(instructions)
result = await generate_agent_external(
dict(instructions), _to_dict_list(library_agents)
)
if result:
# Check if it's an error response - pass through as-is
if isinstance(result, dict) and result.get("type") == "error":
return result
# Ensure required fields for successful agent generation
if "id" not in result:
result["id"] = str(uuid.uuid4())
if "version" not in result:
@@ -86,6 +579,12 @@ async def generate_agent(instructions: dict[str, Any]) -> dict[str, Any] | None:
return result
class AgentJsonValidationError(Exception):
"""Raised when agent JSON is invalid or missing required fields."""
pass
def json_to_graph(agent_json: dict[str, Any]) -> Graph:
"""Convert agent JSON dict to Graph model.
@@ -94,25 +593,55 @@ def json_to_graph(agent_json: dict[str, Any]) -> Graph:
Returns:
Graph ready for saving
Raises:
AgentJsonValidationError: If required fields are missing from nodes or links
"""
nodes = []
for n in agent_json.get("nodes", []):
for idx, n in enumerate(agent_json.get("nodes", [])):
block_id = n.get("block_id")
if not block_id:
node_id = n.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Node '{node_id}' is missing required field 'block_id'"
)
node = Node(
id=n.get("id", str(uuid.uuid4())),
block_id=n["block_id"],
block_id=block_id,
input_default=n.get("input_default", {}),
metadata=n.get("metadata", {}),
)
nodes.append(node)
links = []
for link_data in agent_json.get("links", []):
for idx, link_data in enumerate(agent_json.get("links", [])):
source_id = link_data.get("source_id")
sink_id = link_data.get("sink_id")
source_name = link_data.get("source_name")
sink_name = link_data.get("sink_name")
missing_fields = []
if not source_id:
missing_fields.append("source_id")
if not sink_id:
missing_fields.append("sink_id")
if not source_name:
missing_fields.append("source_name")
if not sink_name:
missing_fields.append("sink_name")
if missing_fields:
link_id = link_data.get("id", f"index_{idx}")
raise AgentJsonValidationError(
f"Link '{link_id}' is missing required fields: {', '.join(missing_fields)}"
)
link = Link(
id=link_data.get("id", str(uuid.uuid4())),
source_id=link_data["source_id"],
sink_id=link_data["sink_id"],
source_name=link_data["source_name"],
sink_name=link_data["sink_name"],
source_id=source_id,
sink_id=sink_id,
source_name=source_name,
sink_name=sink_name,
is_static=link_data.get("is_static", False),
)
links.append(link)
@@ -133,22 +662,40 @@ def _reassign_node_ids(graph: Graph) -> None:
This is needed when creating a new version to avoid unique constraint violations.
"""
# Create mapping from old node IDs to new UUIDs
id_map = {node.id: str(uuid.uuid4()) for node in graph.nodes}
# Reassign node IDs
for node in graph.nodes:
node.id = id_map[node.id]
# Update link references to use new node IDs
for link in graph.links:
link.id = str(uuid.uuid4()) # Also give links new IDs
link.id = str(uuid.uuid4())
if link.source_id in id_map:
link.source_id = id_map[link.source_id]
if link.sink_id in id_map:
link.sink_id = id_map[link.sink_id]
def _populate_agent_executor_user_ids(agent_json: dict[str, Any], user_id: str) -> None:
"""Populate user_id in AgentExecutorBlock nodes.
The external agent generator creates AgentExecutorBlock nodes with empty user_id.
This function fills in the actual user_id so sub-agents run with correct permissions.
Args:
agent_json: Agent JSON dict (modified in place)
user_id: User ID to set
"""
for node in agent_json.get("nodes", []):
if node.get("block_id") == AGENT_EXECUTOR_BLOCK_ID:
input_default = node.get("input_default") or {}
if not input_default.get("user_id"):
input_default["user_id"] = user_id
node["input_default"] = input_default
logger.debug(
f"Set user_id for AgentExecutorBlock node {node.get('id')}"
)
async def save_agent_to_library(
agent_json: dict[str, Any], user_id: str, is_update: bool = False
) -> tuple[Graph, Any]:
@@ -162,33 +709,27 @@ async def save_agent_to_library(
Returns:
Tuple of (created Graph, LibraryAgent)
"""
from backend.data.graph import get_graph_all_versions
# Populate user_id in AgentExecutorBlock nodes before conversion
_populate_agent_executor_user_ids(agent_json, user_id)
graph = json_to_graph(agent_json)
if is_update:
# For updates, keep the same graph ID but increment version
# and reassign node/link IDs to avoid conflicts
if graph.id:
existing_versions = await get_graph_all_versions(graph.id, user_id)
if existing_versions:
latest_version = max(v.version for v in existing_versions)
graph.version = latest_version + 1
# Reassign node IDs (but keep graph ID the same)
_reassign_node_ids(graph)
logger.info(f"Updating agent {graph.id} to version {graph.version}")
else:
# For new agents, always generate a fresh UUID to avoid collisions
graph.id = str(uuid.uuid4())
graph.version = 1
# Reassign all node IDs as well
_reassign_node_ids(graph)
logger.info(f"Creating new agent with ID {graph.id}")
# Save to database
created_graph = await create_graph(graph, user_id)
# Add to user's library (or update existing library agent)
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
@@ -200,25 +741,31 @@ async def save_agent_to_library(
async def get_agent_as_json(
graph_id: str, user_id: str | None
agent_id: str, user_id: str | None
) -> dict[str, Any] | None:
"""Fetch an agent and convert to JSON format for editing.
Args:
graph_id: Graph ID or library agent ID
agent_id: Graph ID or library agent ID
user_id: User ID
Returns:
Agent as JSON dict or None if not found
"""
from backend.data.graph import get_graph
graph = await get_graph(agent_id, version=None, user_id=user_id)
if not graph and user_id:
try:
library_agent = await library_db.get_library_agent(agent_id, user_id)
graph = await get_graph(
library_agent.graph_id, version=None, user_id=user_id
)
except NotFoundError:
pass
# Try to get the graph (version=None gets the active version)
graph = await get_graph(graph_id, version=None, user_id=user_id)
if not graph:
return None
# Convert to JSON format
nodes = []
for node in graph.nodes:
nodes.append(
@@ -256,7 +803,9 @@ async def get_agent_as_json(
async def generate_agent_patch(
update_request: str, current_agent: dict[str, Any]
update_request: str,
current_agent: dict[str, Any],
library_agents: list[AgentSummary] | None = None,
) -> dict[str, Any] | None:
"""Update an existing agent using natural language.
@@ -268,6 +817,7 @@ async def generate_agent_patch(
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
Returns:
Updated agent JSON, clarifying questions dict {"type": "clarifying_questions", ...},
@@ -278,4 +828,6 @@ async def generate_agent_patch(
"""
_check_service_configured()
logger.info("Calling external Agent Generator service for generate_agent_patch")
return await generate_agent_patch_external(update_request, current_agent)
return await generate_agent_patch_external(
update_request, current_agent, _to_dict_list(library_agents)
)

View File

@@ -1,11 +1,43 @@
"""Error handling utilities for agent generator."""
import re
def _sanitize_error_details(details: str) -> str:
"""Sanitize error details to remove sensitive information.
Strips common patterns that could expose internal system info:
- File paths (Unix and Windows)
- Database connection strings
- URLs with credentials
- Stack trace internals
Args:
details: Raw error details string
Returns:
Sanitized error details safe for user display
"""
sanitized = re.sub(
r"/[a-zA-Z0-9_./\-]+\.(py|js|ts|json|yaml|yml)", "[path]", details
)
sanitized = re.sub(r"[A-Z]:\\[a-zA-Z0-9_\\.\\-]+", "[path]", sanitized)
sanitized = re.sub(
r"(postgres|mysql|mongodb|redis)://[^\s]+", "[database_url]", sanitized
)
sanitized = re.sub(r"https?://[^:]+:[^@]+@[^\s]+", "[url]", sanitized)
sanitized = re.sub(r", line \d+", "", sanitized)
sanitized = re.sub(r'File "[^"]+",?', "", sanitized)
return sanitized.strip()
def get_user_message_for_error(
error_type: str,
operation: str = "process the request",
llm_parse_message: str | None = None,
validation_message: str | None = None,
error_details: str | None = None,
) -> str:
"""Get a user-friendly error message based on error type.
@@ -19,25 +51,45 @@ def get_user_message_for_error(
message (e.g., "analyze the goal", "generate the agent")
llm_parse_message: Custom message for llm_parse_error type
validation_message: Custom message for validation_error type
error_details: Optional additional details about the error
Returns:
User-friendly error message suitable for display to the user
"""
base_message = ""
if error_type == "llm_parse_error":
return (
base_message = (
llm_parse_message
or "The AI had trouble processing this request. Please try again."
)
elif error_type == "validation_error":
return (
base_message = (
validation_message
or "The request failed validation. Please try rephrasing."
or "The generated agent failed validation. "
"This usually happens when the agent structure doesn't match "
"what the platform expects. Please try simplifying your goal "
"or breaking it into smaller parts."
)
elif error_type == "patch_error":
return "Failed to apply the changes. Please try a different approach."
base_message = (
"Failed to apply the changes. The modification couldn't be "
"validated. Please try a different approach or simplify the change."
)
elif error_type in ("timeout", "llm_timeout"):
return "The request took too long. Please try again."
base_message = (
"The request took too long to process. This can happen with "
"complex agents. Please try again or simplify your goal."
)
elif error_type in ("rate_limit", "llm_rate_limit"):
return "The service is currently busy. Please try again in a moment."
base_message = "The service is currently busy. Please try again in a moment."
else:
return f"Failed to {operation}. Please try again."
base_message = f"Failed to {operation}. Please try again."
if error_details:
details = _sanitize_error_details(error_details)
if len(details) > 200:
details = details[:200] + "..."
base_message += f"\n\nTechnical details: {details}"
return base_message

View File

@@ -117,13 +117,16 @@ def _get_client() -> httpx.AsyncClient:
async def decompose_goal_external(
description: str, context: str = ""
description: str,
context: str = "",
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
"""Call the external service to decompose a goal.
Args:
description: Natural language goal description
context: Additional context (e.g., answers to previous questions)
library_agents: User's library agents available for sub-agent composition
Returns:
Dict with either:
@@ -136,11 +139,12 @@ async def decompose_goal_external(
"""
client = _get_client()
# Build the request payload
payload: dict[str, Any] = {"description": description}
if context:
# The external service uses user_instruction for additional context
payload["user_instruction"] = context
description = f"{description}\n\nAdditional context from user:\n{context}"
payload: dict[str, Any] = {"description": description}
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post("/api/decompose-description", json=payload)
@@ -207,21 +211,25 @@ async def decompose_goal_external(
async def generate_agent_external(
instructions: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
"""Call the external service to generate an agent from instructions.
Args:
instructions: Structured instructions from decompose_goal
library_agents: User's library agents available for sub-agent composition
Returns:
Agent JSON dict on success, or error dict {"type": "error", ...} on error
"""
client = _get_client()
payload: dict[str, Any] = {"instructions": instructions}
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post(
"/api/generate-agent", json={"instructions": instructions}
)
response = await client.post("/api/generate-agent", json=payload)
response.raise_for_status()
data = response.json()
@@ -229,8 +237,7 @@ async def generate_agent_external(
error_msg = data.get("error", "Unknown error from Agent Generator")
error_type = data.get("error_type", "unknown")
logger.error(
f"Agent Generator generation failed: {error_msg} "
f"(type: {error_type})"
f"Agent Generator generation failed: {error_msg} (type: {error_type})"
)
return _create_error_response(error_msg, error_type)
@@ -251,27 +258,31 @@ async def generate_agent_external(
async def generate_agent_patch_external(
update_request: str, current_agent: dict[str, Any]
update_request: str,
current_agent: dict[str, Any],
library_agents: list[dict[str, Any]] | None = None,
) -> dict[str, Any] | None:
"""Call the external service to generate a patch for an existing agent.
Args:
update_request: Natural language description of changes
current_agent: Current agent JSON
library_agents: User's library agents available for sub-agent composition
Returns:
Updated agent JSON, clarifying questions dict, or error dict on error
"""
client = _get_client()
payload: dict[str, Any] = {
"update_request": update_request,
"current_agent_json": current_agent,
}
if library_agents:
payload["library_agents"] = library_agents
try:
response = await client.post(
"/api/update-agent",
json={
"update_request": update_request,
"current_agent_json": current_agent,
},
)
response = await client.post("/api/update-agent", json=payload)
response.raise_for_status()
data = response.json()

View File

@@ -1,6 +1,7 @@
"""Shared agent search functionality for find_agent and find_library_agent tools."""
import logging
import re
from typing import Literal
from backend.api.features.library import db as library_db
@@ -19,6 +20,85 @@ logger = logging.getLogger(__name__)
SearchSource = Literal["marketplace", "library"]
_UUID_PATTERN = re.compile(
r"^[a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12}$",
re.IGNORECASE,
)
def _is_uuid(text: str) -> bool:
"""Check if text is a valid UUID v4."""
return bool(_UUID_PATTERN.match(text.strip()))
async def _get_library_agent_by_id(user_id: str, agent_id: str) -> AgentInfo | None:
"""Fetch a library agent by ID (library agent ID or graph_id).
Tries multiple lookup strategies:
1. First by graph_id (AgentGraph primary key)
2. Then by library agent ID (LibraryAgent primary key)
Args:
user_id: The user ID
agent_id: The ID to look up (can be graph_id or library agent ID)
Returns:
AgentInfo if found, None otherwise
"""
try:
agent = await library_db.get_library_agent_by_graph_id(user_id, agent_id)
if agent:
logger.debug(f"Found library agent by graph_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by graph_id {agent_id}: {e}",
exc_info=True,
)
try:
agent = await library_db.get_library_agent(agent_id, user_id)
if agent:
logger.debug(f"Found library agent by library_id: {agent.name}")
return AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
except NotFoundError:
logger.debug(f"Library agent not found by library_id: {agent_id}")
except DatabaseError:
raise
except Exception as e:
logger.warning(
f"Could not fetch library agent by library_id {agent_id}: {e}",
exc_info=True,
)
return None
async def search_agents(
query: str,
@@ -69,29 +149,37 @@ async def search_agents(
is_featured=False,
)
)
else: # library
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
else:
if _is_uuid(query):
logger.info(f"Query looks like UUID, trying direct lookup: {query}")
agent = await _get_library_agent_by_id(user_id, query) # type: ignore[arg-type]
if agent:
agents.append(agent)
logger.info(f"Found agent by direct ID lookup: {agent.name}")
if not agents:
logger.info(f"Searching user library for: {query}")
results = await library_db.list_library_agents(
user_id=user_id, # type: ignore[arg-type]
search_term=query,
page_size=10,
)
for agent in results.agents:
agents.append(
AgentInfo(
id=agent.id,
name=agent.name,
description=agent.description or "",
source="library",
in_library=True,
creator=agent.creator_name,
status=agent.status.value,
can_access_graph=agent.can_access_graph,
has_external_trigger=agent.has_external_trigger,
new_output=agent.new_output,
graph_id=agent.graph_id,
)
)
logger.info(f"Found {len(agents)} agents in {source}")
except NotFoundError:
pass

View File

@@ -8,7 +8,9 @@ from backend.api.features.chat.model import ChatSession
from .agent_generator import (
AgentGeneratorNotConfiguredError,
decompose_goal,
enrich_library_agents_from_steps,
generate_agent,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
@@ -103,9 +105,24 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Step 1: Decompose goal into steps
library_agents = None
if user_id:
try:
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=description,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
try:
decomposition_result = await decompose_goal(description, context)
decomposition_result = await decompose_goal(
description, context, library_agents
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -124,7 +141,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check if the result is an error from the external service
if decomposition_result.get("type") == "error":
error_msg = decomposition_result.get("error", "Unknown error")
error_type = decomposition_result.get("error_type", "unknown")
@@ -144,7 +160,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check if LLM returned clarifying questions
if decomposition_result.get("type") == "clarifying_questions":
questions = decomposition_result.get("questions", [])
return ClarificationNeededResponse(
@@ -163,7 +178,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check for unachievable/vague goals
if decomposition_result.get("type") == "unachievable_goal":
suggested = decomposition_result.get("suggested_goal", "")
reason = decomposition_result.get("reason", "")
@@ -190,9 +204,22 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Step 2: Generate agent JSON (external service handles fixing and validation)
if user_id and library_agents is not None:
try:
library_agents = await enrich_library_agents_from_steps(
user_id=user_id,
decomposition_result=decomposition_result,
existing_agents=library_agents,
include_marketplace=True,
)
logger.debug(
f"After enrichment: {len(library_agents)} total agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to enrich library agents from steps: {e}")
try:
agent_json = await generate_agent(decomposition_result)
agent_json = await generate_agent(decomposition_result, library_agents)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -211,7 +238,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Check if the result is an error from the external service
if isinstance(agent_json, dict) and agent_json.get("type") == "error":
error_msg = agent_json.get("error", "Unknown error")
error_type = agent_json.get("error_type", "unknown")
@@ -219,7 +245,12 @@ class CreateAgentTool(BaseTool):
error_type,
operation="generate the agent",
llm_parse_message="The AI had trouble generating the agent. Please try again or simplify your goal.",
validation_message="The generated agent failed validation. Please try rephrasing your goal.",
validation_message=(
"I wasn't able to create a valid agent for this request. "
"The generated workflow had some structural issues. "
"Please try simplifying your goal or breaking it into smaller steps."
),
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
@@ -237,7 +268,6 @@ class CreateAgentTool(BaseTool):
node_count = len(agent_json.get("nodes", []))
link_count = len(agent_json.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -252,7 +282,6 @@ class CreateAgentTool(BaseTool):
session_id=session_id,
)
# Save to library
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -270,7 +299,7 @@ class CreateAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -9,6 +9,7 @@ from .agent_generator import (
AgentGeneratorNotConfiguredError,
generate_agent_patch,
get_agent_as_json,
get_all_relevant_agents_for_generation,
get_user_message_for_error,
save_agent_to_library,
)
@@ -117,7 +118,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Step 1: Fetch current agent
current_agent = await get_agent_as_json(agent_id, user_id)
if current_agent is None:
@@ -127,14 +127,30 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Build the update request with context
library_agents = None
if user_id:
try:
graph_id = current_agent.get("id")
library_agents = await get_all_relevant_agents_for_generation(
user_id=user_id,
search_query=changes,
exclude_graph_id=graph_id,
include_marketplace=True,
)
logger.debug(
f"Found {len(library_agents)} relevant agents for sub-agent composition"
)
except Exception as e:
logger.warning(f"Failed to fetch library agents: {e}")
update_request = changes
if context:
update_request = f"{changes}\n\nAdditional context:\n{context}"
# Step 2: Generate updated agent (external service handles fixing and validation)
try:
result = await generate_agent_patch(update_request, current_agent)
result = await generate_agent_patch(
update_request, current_agent, library_agents
)
except AgentGeneratorNotConfiguredError:
return ErrorResponse(
message=(
@@ -153,7 +169,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Check if the result is an error from the external service
if isinstance(result, dict) and result.get("type") == "error":
error_msg = result.get("error", "Unknown error")
error_type = result.get("error_type", "unknown")
@@ -162,6 +177,7 @@ class EditAgentTool(BaseTool):
operation="generate the changes",
llm_parse_message="The AI had trouble generating the changes. Please try again or simplify your request.",
validation_message="The generated changes failed validation. Please try rephrasing your request.",
error_details=error_msg,
)
return ErrorResponse(
message=user_message,
@@ -175,7 +191,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Check if LLM returned clarifying questions
if result.get("type") == "clarifying_questions":
questions = result.get("questions", [])
return ClarificationNeededResponse(
@@ -194,7 +209,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Result is the updated agent JSON
updated_agent = result
agent_name = updated_agent.get("name", "Updated Agent")
@@ -202,7 +216,6 @@ class EditAgentTool(BaseTool):
node_count = len(updated_agent.get("nodes", []))
link_count = len(updated_agent.get("links", []))
# Step 3: Preview or save
if not save:
return AgentPreviewResponse(
message=(
@@ -218,7 +231,6 @@ class EditAgentTool(BaseTool):
session_id=session_id,
)
# Save to library (creates a new version)
if not user_id:
return ErrorResponse(
message="You must be logged in to save agents.",
@@ -236,7 +248,7 @@ class EditAgentTool(BaseTool):
agent_id=created_graph.id,
agent_name=created_graph.name,
library_agent_id=library_agent.id,
library_agent_link=f"/library/{library_agent.id}",
library_agent_link=f"/library/agents/{library_agent.id}",
agent_page_link=f"/build?flowID={created_graph.id}",
session_id=session_id,
)

View File

@@ -38,6 +38,8 @@ class ResponseType(str, Enum):
OPERATION_STARTED = "operation_started"
OPERATION_PENDING = "operation_pending"
OPERATION_IN_PROGRESS = "operation_in_progress"
# Input validation
INPUT_VALIDATION_ERROR = "input_validation_error"
# Base response model
@@ -68,6 +70,10 @@ class AgentInfo(BaseModel):
has_external_trigger: bool | None = None
new_output: bool | None = None
graph_id: str | None = None
inputs: dict[str, Any] | None = Field(
default=None,
description="Input schema for the agent, including field names, types, and defaults",
)
class AgentsFoundResponse(ToolResponseBase):
@@ -194,6 +200,20 @@ class ErrorResponse(ToolResponseBase):
details: dict[str, Any] | None = None
class InputValidationErrorResponse(ToolResponseBase):
"""Response when run_agent receives unknown input fields."""
type: ResponseType = ResponseType.INPUT_VALIDATION_ERROR
unrecognized_fields: list[str] = Field(
description="List of input field names that were not recognized"
)
inputs: dict[str, Any] = Field(
description="The agent's valid input schema for reference"
)
graph_id: str | None = None
graph_version: int | None = None
# Agent output models
class ExecutionOutputInfo(BaseModel):
"""Summary of a single execution's outputs."""

View File

@@ -30,6 +30,7 @@ from .models import (
ErrorResponse,
ExecutionOptions,
ExecutionStartedResponse,
InputValidationErrorResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
@@ -273,6 +274,22 @@ class RunAgentTool(BaseTool):
input_properties = graph.input_schema.get("properties", {})
required_fields = set(graph.input_schema.get("required", []))
provided_inputs = set(params.inputs.keys())
valid_fields = set(input_properties.keys())
# Check for unknown input fields
unrecognized_fields = provided_inputs - valid_fields
if unrecognized_fields:
return InputValidationErrorResponse(
message=(
f"Unknown input field(s) provided: {', '.join(sorted(unrecognized_fields))}. "
f"Agent was not executed. Please use the correct field names from the schema."
),
session_id=session_id,
unrecognized_fields=sorted(unrecognized_fields),
inputs=graph.input_schema,
graph_id=graph.id,
graph_version=graph.version,
)
# If agent has inputs but none were provided AND use_defaults is not set,
# always show what's available first so user can decide

View File

@@ -402,3 +402,42 @@ async def test_run_agent_schedule_without_name(setup_test_data):
# Should return error about missing schedule_name
assert result_data.get("type") == "error"
assert "schedule_name" in result_data["message"].lower()
@pytest.mark.asyncio(loop_scope="session")
async def test_run_agent_rejects_unknown_input_fields(setup_test_data):
"""Test that run_agent returns input_validation_error for unknown input fields."""
user = setup_test_data["user"]
store_submission = setup_test_data["store_submission"]
tool = RunAgentTool()
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
session = make_session(user_id=user.id)
# Execute with unknown input field names
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug=agent_marketplace_id,
inputs={
"unknown_field": "some value",
"another_unknown": "another value",
},
session=session,
)
assert response is not None
assert hasattr(response, "output")
assert isinstance(response.output, str)
result_data = orjson.loads(response.output)
# Should return input_validation_error type with unrecognized fields
assert result_data.get("type") == "input_validation_error"
assert "unrecognized_fields" in result_data
assert set(result_data["unrecognized_fields"]) == {
"another_unknown",
"unknown_field",
}
assert "inputs" in result_data # Contains the valid schema
assert "Agent was not executed" in result_data["message"]

View File

@@ -5,6 +5,8 @@ import uuid
from collections import defaultdict
from typing import Any
from pydantic_core import PydanticUndefined
from backend.api.features.chat.model import ChatSession
from backend.data.block import get_block
from backend.data.execution import ExecutionContext
@@ -75,15 +77,22 @@ class RunBlockTool(BaseTool):
self,
user_id: str,
block: Any,
input_data: dict[str, Any] | None = None,
) -> tuple[dict[str, CredentialsMetaInput], list[CredentialsMetaInput]]:
"""
Check if user has required credentials for a block.
Args:
user_id: User ID
block: Block to check credentials for
input_data: Input data for the block (used to determine provider via discriminator)
Returns:
tuple[matched_credentials, missing_credentials]
"""
matched_credentials: dict[str, CredentialsMetaInput] = {}
missing_credentials: list[CredentialsMetaInput] = []
input_data = input_data or {}
# Get credential field info from block's input schema
credentials_fields_info = block.input_schema.get_credentials_fields_info()
@@ -96,14 +105,33 @@ class RunBlockTool(BaseTool):
available_creds = await creds_manager.store.get_all_creds(user_id)
for field_name, field_info in credentials_fields_info.items():
# field_info.provider is a frozenset of acceptable providers
# field_info.supported_types is a frozenset of acceptable types
effective_field_info = field_info
if field_info.discriminator and field_info.discriminator_mapping:
# Get discriminator from input, falling back to schema default
discriminator_value = input_data.get(field_info.discriminator)
if discriminator_value is None:
field = block.input_schema.model_fields.get(
field_info.discriminator
)
if field and field.default is not PydanticUndefined:
discriminator_value = field.default
if (
discriminator_value
and discriminator_value in field_info.discriminator_mapping
):
effective_field_info = field_info.discriminate(discriminator_value)
logger.debug(
f"Discriminated provider for {field_name}: "
f"{discriminator_value} -> {effective_field_info.provider}"
)
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in field_info.provider
and cred.type in field_info.supported_types
if cred.provider in effective_field_info.provider
and cred.type in effective_field_info.supported_types
),
None,
)
@@ -117,8 +145,8 @@ class RunBlockTool(BaseTool):
)
else:
# Create a placeholder for the missing credential
provider = next(iter(field_info.provider), "unknown")
cred_type = next(iter(field_info.supported_types), "api_key")
provider = next(iter(effective_field_info.provider), "unknown")
cred_type = next(iter(effective_field_info.supported_types), "api_key")
missing_credentials.append(
CredentialsMetaInput(
id=field_name,
@@ -186,10 +214,9 @@ class RunBlockTool(BaseTool):
logger.info(f"Executing block {block.name} ({block_id}) for user {user_id}")
# Check credentials
creds_manager = IntegrationCredentialsManager()
matched_credentials, missing_credentials = await self._check_block_credentials(
user_id, block
user_id, block, input_data
)
if missing_credentials:

View File

@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.data.model import Credentials, CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -266,13 +266,14 @@ async def match_user_credentials_to_graph(
credential_requirements,
_node_fields,
) in aggregated_creds.items():
# Find first matching credential by provider and type
# Find first matching credential by provider, type, and scopes
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in credential_requirements.provider
and cred.type in credential_requirements.supported_types
and _credential_has_required_scopes(cred, credential_requirements)
),
None,
)
@@ -296,10 +297,17 @@ async def match_user_credentials_to_graph(
f"{credential_field_name} (validation failed: {e})"
)
else:
# Build a helpful error message including scope requirements
error_parts = [
f"provider in {list(credential_requirements.provider)}",
f"type in {list(credential_requirements.supported_types)}",
]
if credential_requirements.required_scopes:
error_parts.append(
f"scopes including {list(credential_requirements.required_scopes)}"
)
missing_creds.append(
f"{credential_field_name} "
f"(requires provider in {list(credential_requirements.provider)}, "
f"type in {list(credential_requirements.supported_types)})"
f"{credential_field_name} (requires {', '.join(error_parts)})"
)
logger.info(
@@ -309,6 +317,28 @@ async def match_user_credentials_to_graph(
return graph_credentials_inputs, missing_creds
def _credential_has_required_scopes(
credential: Credentials,
requirements: CredentialsFieldInfo,
) -> bool:
"""
Check if a credential has all the scopes required by the block.
For OAuth2 credentials, verifies that the credential's scopes are a superset
of the required scopes. For other credential types, returns True (no scope check).
"""
# Only OAuth2 credentials have scopes to check
if credential.type != "oauth2":
return True
# If no scopes are required, any credential matches
if not requirements.required_scopes:
return True
# Check that credential scopes are a superset of required scopes
return set(credential.scopes).issuperset(requirements.required_scopes)
async def check_user_has_required_credentials(
user_id: str,
required_credentials: list[CredentialsMetaInput],

View File

@@ -39,6 +39,7 @@ async def list_library_agents(
sort_by: library_model.LibraryAgentSort = library_model.LibraryAgentSort.UPDATED_AT,
page: int = 1,
page_size: int = 50,
include_executions: bool = False,
) -> library_model.LibraryAgentResponse:
"""
Retrieves a paginated list of LibraryAgent records for a given user.
@@ -49,6 +50,9 @@ async def list_library_agents(
sort_by: Sorting field (createdAt, updatedAt, isFavorite, isCreatedByUser).
page: Current page (1-indexed).
page_size: Number of items per page.
include_executions: Whether to include execution data for status calculation.
Defaults to False for performance (UI fetches status separately).
Set to True when accurate status/metrics are needed (e.g., agent generator).
Returns:
A LibraryAgentResponse containing the list of agents and pagination details.
@@ -76,7 +80,6 @@ async def list_library_agents(
"isArchived": False,
}
# Build search filter if applicable
if search_term:
where_clause["OR"] = [
{
@@ -93,7 +96,6 @@ async def list_library_agents(
},
]
# Determine sorting
order_by: prisma.types.LibraryAgentOrderByInput | None = None
if sort_by == library_model.LibraryAgentSort.CREATED_AT:
@@ -105,7 +107,7 @@ async def list_library_agents(
library_agents = await prisma.models.LibraryAgent.prisma().find_many(
where=where_clause,
include=library_agent_include(
user_id, include_nodes=False, include_executions=False
user_id, include_nodes=False, include_executions=include_executions
),
order=order_by,
skip=(page - 1) * page_size,

View File

@@ -9,6 +9,7 @@ import pydantic
from backend.data.block import BlockInput
from backend.data.graph import GraphModel, GraphSettings, GraphTriggerInfo
from backend.data.model import CredentialsMetaInput, is_credentials_field_name
from backend.util.json import loads as json_loads
from backend.util.models import Pagination
if TYPE_CHECKING:
@@ -16,10 +17,10 @@ if TYPE_CHECKING:
class LibraryAgentStatus(str, Enum):
COMPLETED = "COMPLETED" # All runs completed
HEALTHY = "HEALTHY" # Agent is running (not all runs have completed)
WAITING = "WAITING" # Agent is queued or waiting to start
ERROR = "ERROR" # Agent is in an error state
COMPLETED = "COMPLETED"
HEALTHY = "HEALTHY"
WAITING = "WAITING"
ERROR = "ERROR"
class MarketplaceListingCreator(pydantic.BaseModel):
@@ -39,6 +40,30 @@ class MarketplaceListing(pydantic.BaseModel):
creator: MarketplaceListingCreator
class RecentExecution(pydantic.BaseModel):
"""Summary of a recent execution for quality assessment.
Used by the LLM to understand the agent's recent performance with specific examples
rather than just aggregate statistics.
"""
status: str
correctness_score: float | None = None
activity_summary: str | None = None
def _parse_settings(settings: dict | str | None) -> GraphSettings:
"""Parse settings from database, handling both dict and string formats."""
if settings is None:
return GraphSettings()
try:
if isinstance(settings, str):
settings = json_loads(settings)
return GraphSettings.model_validate(settings)
except Exception:
return GraphSettings()
class LibraryAgent(pydantic.BaseModel):
"""
Represents an agent in the library, including metadata for display and
@@ -48,7 +73,7 @@ class LibraryAgent(pydantic.BaseModel):
id: str
graph_id: str
graph_version: int
owner_user_id: str # ID of user who owns/created this agent graph
owner_user_id: str
image_url: str | None
@@ -64,7 +89,7 @@ class LibraryAgent(pydantic.BaseModel):
description: str
instructions: str | None = None
input_schema: dict[str, Any] # Should be BlockIOObjectSubSchema in frontend
input_schema: dict[str, Any]
output_schema: dict[str, Any]
credentials_input_schema: dict[str, Any] | None = pydantic.Field(
description="Input schema for credentials required by the agent",
@@ -81,25 +106,19 @@ class LibraryAgent(pydantic.BaseModel):
)
trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs)
new_output: bool
# Whether the user can access the underlying graph
execution_count: int = 0
success_rate: float | None = None
avg_correctness_score: float | None = None
recent_executions: list[RecentExecution] = pydantic.Field(
default_factory=list,
description="List of recent executions with status, score, and summary",
)
can_access_graph: bool
# Indicates if this agent is the latest version
is_latest_version: bool
# Whether the agent is marked as favorite by the user
is_favorite: bool
# Recommended schedule cron (from marketplace agents)
recommended_schedule_cron: str | None = None
# User-specific settings for this library agent
settings: GraphSettings = pydantic.Field(default_factory=GraphSettings)
# Marketplace listing information if the agent has been published
marketplace_listing: Optional["MarketplaceListing"] = None
@staticmethod
@@ -123,7 +142,6 @@ class LibraryAgent(pydantic.BaseModel):
agent_updated_at = agent.AgentGraph.updatedAt
lib_agent_updated_at = agent.updatedAt
# Compute updated_at as the latest between library agent and graph
updated_at = (
max(agent_updated_at, lib_agent_updated_at)
if agent_updated_at
@@ -136,7 +154,6 @@ class LibraryAgent(pydantic.BaseModel):
creator_name = agent.Creator.name or "Unknown"
creator_image_url = agent.Creator.avatarUrl or ""
# Logic to calculate status and new_output
week_ago = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(
days=7
)
@@ -145,13 +162,55 @@ class LibraryAgent(pydantic.BaseModel):
status = status_result.status
new_output = status_result.new_output
# Check if user can access the graph
can_access_graph = agent.AgentGraph.userId == agent.userId
execution_count = len(executions)
success_rate: float | None = None
avg_correctness_score: float | None = None
if execution_count > 0:
success_count = sum(
1
for e in executions
if e.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED
)
success_rate = (success_count / execution_count) * 100
# Hard-coded to True until a method to check is implemented
correctness_scores = []
for e in executions:
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
correctness_scores.append(float(score))
if correctness_scores:
avg_correctness_score = sum(correctness_scores) / len(
correctness_scores
)
recent_executions: list[RecentExecution] = []
for e in executions:
exec_score: float | None = None
exec_summary: str | None = None
if e.stats and isinstance(e.stats, dict):
score = e.stats.get("correctness_score")
if score is not None and isinstance(score, (int, float)):
exec_score = float(score)
summary = e.stats.get("activity_status")
if summary is not None and isinstance(summary, str):
exec_summary = summary
exec_status = (
e.executionStatus.value
if hasattr(e.executionStatus, "value")
else str(e.executionStatus)
)
recent_executions.append(
RecentExecution(
status=exec_status,
correctness_score=exec_score,
activity_summary=exec_summary,
)
)
can_access_graph = agent.AgentGraph.userId == agent.userId
is_latest_version = True
# Build marketplace_listing if available
marketplace_listing_data = None
if store_listing and store_listing.ActiveVersion and profile:
creator_data = MarketplaceListingCreator(
@@ -190,11 +249,15 @@ class LibraryAgent(pydantic.BaseModel):
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
new_output=new_output,
execution_count=execution_count,
success_rate=success_rate,
avg_correctness_score=avg_correctness_score,
recent_executions=recent_executions,
can_access_graph=can_access_graph,
is_latest_version=is_latest_version,
is_favorite=agent.isFavorite,
recommended_schedule_cron=agent.AgentGraph.recommendedScheduleCron,
settings=GraphSettings.model_validate(agent.settings),
settings=_parse_settings(agent.settings),
marketplace_listing=marketplace_listing_data,
)
@@ -220,18 +283,15 @@ def _calculate_agent_status(
if not executions:
return AgentStatusResult(status=LibraryAgentStatus.COMPLETED, new_output=False)
# Track how many times each execution status appears
status_counts = {status: 0 for status in prisma.enums.AgentExecutionStatus}
new_output = False
for execution in executions:
# Check if there's a completed run more recent than `recent_threshold`
if execution.createdAt >= recent_threshold:
if execution.executionStatus == prisma.enums.AgentExecutionStatus.COMPLETED:
new_output = True
status_counts[execution.executionStatus] += 1
# Determine the final status based on counts
if status_counts[prisma.enums.AgentExecutionStatus.FAILED] > 0:
return AgentStatusResult(status=LibraryAgentStatus.ERROR, new_output=new_output)
elif status_counts[prisma.enums.AgentExecutionStatus.QUEUED] > 0:

View File

@@ -112,6 +112,7 @@ async def get_store_agents(
description=agent["description"],
runs=agent["runs"],
rating=agent["rating"],
agent_graph_id=agent.get("agentGraphId", ""),
)
store_agents.append(store_agent)
except Exception as e:
@@ -170,6 +171,7 @@ async def get_store_agents(
description=agent.description,
runs=agent.runs,
rating=agent.rating,
agent_graph_id=agent.agentGraphId,
)
# Add to the list only if creation was successful
store_agents.append(store_agent)

View File

@@ -600,6 +600,7 @@ async def hybrid_search(
sa.featured,
sa.is_available,
sa.updated_at,
sa."agentGraphId",
-- Searchable text for BM25 reranking
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
-- Semantic score
@@ -659,6 +660,7 @@ async def hybrid_search(
featured,
is_available,
updated_at,
"agentGraphId",
searchable_text,
semantic_score,
lexical_score,

View File

@@ -38,6 +38,7 @@ class StoreAgent(pydantic.BaseModel):
description: str
runs: int
rating: float
agent_graph_id: str
class StoreAgentsResponse(pydantic.BaseModel):

View File

@@ -26,11 +26,13 @@ def test_store_agent():
description="Test description",
runs=50,
rating=4.5,
agent_graph_id="test-graph-id",
)
assert agent.slug == "test-agent"
assert agent.agent_name == "Test Agent"
assert agent.runs == 50
assert agent.rating == 4.5
assert agent.agent_graph_id == "test-graph-id"
def test_store_agents_response():
@@ -46,6 +48,7 @@ def test_store_agents_response():
description="Test description",
runs=50,
rating=4.5,
agent_graph_id="test-graph-id",
)
],
pagination=store_model.Pagination(

View File

@@ -82,6 +82,7 @@ def test_get_agents_featured(
description="Featured agent description",
runs=100,
rating=4.5,
agent_graph_id="test-graph-1",
)
],
pagination=store_model.Pagination(
@@ -127,6 +128,7 @@ def test_get_agents_by_creator(
description="Creator agent description",
runs=50,
rating=4.0,
agent_graph_id="test-graph-2",
)
],
pagination=store_model.Pagination(
@@ -172,6 +174,7 @@ def test_get_agents_sorted(
description="Top agent description",
runs=1000,
rating=5.0,
agent_graph_id="test-graph-3",
)
],
pagination=store_model.Pagination(
@@ -217,6 +220,7 @@ def test_get_agents_search(
description="Specific search term description",
runs=75,
rating=4.2,
agent_graph_id="test-graph-search",
)
],
pagination=store_model.Pagination(
@@ -262,6 +266,7 @@ def test_get_agents_category(
description="Category agent description",
runs=60,
rating=4.1,
agent_graph_id="test-graph-category",
)
],
pagination=store_model.Pagination(
@@ -306,6 +311,7 @@ def test_get_agents_pagination(
description=f"Agent {i} description",
runs=i * 10,
rating=4.0,
agent_graph_id="test-graph-2",
)
for i in range(5)
],

View File

@@ -33,6 +33,7 @@ class TestCacheDeletion:
description="Test description",
runs=100,
rating=4.5,
agent_graph_id="test-graph-id",
)
],
pagination=Pagination(

View File

@@ -66,18 +66,24 @@ async def event_broadcaster(manager: ConnectionManager):
execution_bus = AsyncRedisExecutionEventBus()
notification_bus = AsyncRedisNotificationEventBus()
async def execution_worker():
async for event in execution_bus.listen("*"):
await manager.send_execution_update(event)
try:
async def notification_worker():
async for notification in notification_bus.listen("*"):
await manager.send_notification(
user_id=notification.user_id,
payload=notification.payload,
)
async def execution_worker():
async for event in execution_bus.listen("*"):
await manager.send_execution_update(event)
await asyncio.gather(execution_worker(), notification_worker())
async def notification_worker():
async for notification in notification_bus.listen("*"):
await manager.send_notification(
user_id=notification.user_id,
payload=notification.payload,
)
await asyncio.gather(execution_worker(), notification_worker())
finally:
# Ensure PubSub connections are closed on any exit to prevent leaks
await execution_bus.close()
await notification_bus.close()
async def authenticate_websocket(websocket: WebSocket) -> str:

View File

@@ -32,7 +32,7 @@ from backend.data.model import (
from backend.integrations.providers import ProviderName
from backend.util import json
from backend.util.logging import TruncatedLogger
from backend.util.prompt import compress_prompt, estimate_token_count
from backend.util.prompt import compress_context, estimate_token_count
from backend.util.text import TextFormatter
logger = TruncatedLogger(logging.getLogger(__name__), "[LLM-Block]")
@@ -115,7 +115,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_3_HAIKU = "claude-3-haiku-20240307"
# AI/ML API models
AIML_API_QWEN2_5_72B = "Qwen/Qwen2.5-72B-Instruct-Turbo"
@@ -280,9 +279,6 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307
@@ -638,11 +634,18 @@ async def llm_call(
context_window = llm_model.context_window
if compress_prompt_to_fit:
prompt = compress_prompt(
result = await compress_context(
messages=prompt,
target_tokens=llm_model.context_window // 2,
lossy_ok=True,
client=None, # Truncation-only, no LLM summarization
reserve=0, # Caller handles response token budget separately
)
if result.error:
logger.warning(
f"Prompt compression did not meet target: {result.error}. "
f"Proceeding with {result.token_count} tokens."
)
prompt = result.messages
# Calculate available tokens based on context window and input length
estimated_input_tokens = estimate_token_count(prompt)

View File

@@ -83,7 +83,7 @@ class StagehandRecommendedLlmModel(str, Enum):
GPT41_MINI = "gpt-4.1-mini-2025-04-14"
# Anthropic
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
@property
def provider_name(self) -> str:
@@ -137,7 +137,7 @@ class StagehandObserveBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
@@ -230,7 +230,7 @@ class StagehandActBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()
@@ -330,7 +330,7 @@ class StagehandExtractBlock(Block):
model: StagehandRecommendedLlmModel = SchemaField(
title="LLM Model",
description="LLM to use for Stagehand (provider is inferred)",
default=StagehandRecommendedLlmModel.CLAUDE_3_7_SONNET,
default=StagehandRecommendedLlmModel.CLAUDE_4_5_SONNET,
advanced=False,
)
model_credentials: AICredentials = AICredentialsField()

View File

@@ -873,14 +873,13 @@ def is_block_auth_configured(
async def initialize_blocks() -> None:
# First, sync all provider costs to blocks
# Imported here to avoid circular import
from backend.sdk.cost_integration import sync_all_provider_costs
from backend.util.retry import func_retry
sync_all_provider_costs()
for cls in get_blocks().values():
block = cls()
@func_retry
async def sync_block_to_db(block: Block) -> None:
existing_block = await AgentBlock.prisma().find_first(
where={"OR": [{"id": block.id}, {"name": block.name}]}
)
@@ -893,7 +892,7 @@ async def initialize_blocks() -> None:
outputSchema=json.dumps(block.output_schema.jsonschema()),
)
)
continue
return
input_schema = json.dumps(block.input_schema.jsonschema())
output_schema = json.dumps(block.output_schema.jsonschema())
@@ -913,6 +912,25 @@ async def initialize_blocks() -> None:
},
)
failed_blocks: list[str] = []
for cls in get_blocks().values():
block = cls()
try:
await sync_block_to_db(block)
except Exception as e:
logger.warning(
f"Failed to sync block {block.name} to database: {e}. "
"Block is still available in memory.",
exc_info=True,
)
failed_blocks.append(block.name)
if failed_blocks:
logger.error(
f"Failed to sync {len(failed_blocks)} block(s) to database: "
f"{', '.join(failed_blocks)}. These blocks are still available in memory."
)
# Note on the return type annotation: https://github.com/microsoft/pyright/issues/10281
def get_block(block_id: str) -> AnyBlockSchema | None:

View File

@@ -81,7 +81,6 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.CLAUDE_4_5_HAIKU: 4,
LlmModel.CLAUDE_4_5_OPUS: 14,
LlmModel.CLAUDE_4_5_SONNET: 9,
LlmModel.CLAUDE_3_7_SONNET: 5,
LlmModel.CLAUDE_3_HAIKU: 1,
LlmModel.AIML_API_QWEN2_5_72B: 1,
LlmModel.AIML_API_LLAMA3_1_70B: 1,

View File

@@ -133,10 +133,23 @@ class RedisEventBus(BaseRedisEventBus[M], ABC):
class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
def __init__(self):
self._pubsub: AsyncPubSub | None = None
@property
async def connection(self) -> redis.AsyncRedis:
return await redis.get_redis_async()
async def close(self) -> None:
"""Close the PubSub connection if it exists."""
if self._pubsub is not None:
try:
await self._pubsub.close()
except Exception:
logger.warning("Failed to close PubSub connection", exc_info=True)
finally:
self._pubsub = None
async def publish_event(self, event: M, channel_key: str):
"""
Publish an event to Redis. Gracefully handles connection failures
@@ -157,6 +170,7 @@ class AsyncRedisEventBus(BaseRedisEventBus[M], ABC):
await self.connection, channel_key
)
assert isinstance(pubsub, AsyncPubSub)
self._pubsub = pubsub
if "*" in channel_key:
await pubsub.psubscribe(full_channel_name)

View File

@@ -1028,6 +1028,39 @@ async def get_graph(
return GraphModel.from_db(graph, for_export)
async def get_store_listed_graphs(*graph_ids: str) -> dict[str, GraphModel]:
"""Batch-fetch multiple store-listed graphs by their IDs.
Only returns graphs that have approved store listings (publicly available).
Does not require permission checks since store-listed graphs are public.
Args:
*graph_ids: Variable number of graph IDs to fetch
Returns:
Dict mapping graph_id to GraphModel for graphs with approved store listings
"""
if not graph_ids:
return {}
store_listings = await StoreListingVersion.prisma().find_many(
where={
"agentGraphId": {"in": list(graph_ids)},
"submissionStatus": SubmissionStatus.APPROVED,
"isDeleted": False,
},
include={"AgentGraph": {"include": AGENT_GRAPH_INCLUDE}},
distinct=["agentGraphId"],
order={"agentGraphVersion": "desc"},
)
return {
listing.agentGraphId: GraphModel.from_db(listing.AgentGraph)
for listing in store_listings
if listing.AgentGraph
}
async def get_graph_as_admin(
graph_id: str,
version: int | None = None,

View File

@@ -666,10 +666,16 @@ class CredentialsFieldInfo(BaseModel, Generic[CP, CT]):
if not (self.discriminator and self.discriminator_mapping):
return self
try:
provider = self.discriminator_mapping[discriminator_value]
except KeyError:
raise ValueError(
f"Model '{discriminator_value}' is not supported. "
"It may have been deprecated. Please update your agent configuration."
)
return CredentialsFieldInfo(
credentials_provider=frozenset(
[self.discriminator_mapping[discriminator_value]]
),
credentials_provider=frozenset([provider]),
credentials_types=self.supported_types,
credentials_scopes=self.required_scopes,
discriminator=self.discriminator,

View File

@@ -17,6 +17,7 @@ from backend.data.analytics import (
get_accuracy_trends_and_alerts,
get_marketplace_graphs_for_monitoring,
)
from backend.data.auth.oauth import cleanup_expired_oauth_tokens
from backend.data.credit import UsageTransactionMetadata, get_user_credit_model
from backend.data.execution import (
create_graph_execution,
@@ -219,6 +220,9 @@ class DatabaseManager(AppService):
# Onboarding
increment_onboarding_runs = _(increment_onboarding_runs)
# OAuth
cleanup_expired_oauth_tokens = _(cleanup_expired_oauth_tokens)
# Store
get_store_agents = _(get_store_agents)
get_store_agent_details = _(get_store_agent_details)
@@ -349,6 +353,9 @@ class DatabaseManagerAsyncClient(AppServiceClient):
# Onboarding
increment_onboarding_runs = d.increment_onboarding_runs
# OAuth
cleanup_expired_oauth_tokens = d.cleanup_expired_oauth_tokens
# Store
get_store_agents = d.get_store_agents
get_store_agent_details = d.get_store_agent_details

View File

@@ -24,11 +24,9 @@ from dotenv import load_dotenv
from pydantic import BaseModel, Field, ValidationError
from sqlalchemy import MetaData, create_engine
from backend.data.auth.oauth import cleanup_expired_oauth_tokens
from backend.data.block import BlockInput
from backend.data.execution import GraphExecutionWithNodes
from backend.data.model import CredentialsMetaInput
from backend.data.onboarding import increment_onboarding_runs
from backend.executor import utils as execution_utils
from backend.monitoring import (
NotificationJobArgs,
@@ -38,7 +36,11 @@ from backend.monitoring import (
report_execution_accuracy_alerts,
report_late_executions,
)
from backend.util.clients import get_database_manager_client, get_scheduler_client
from backend.util.clients import (
get_database_manager_async_client,
get_database_manager_client,
get_scheduler_client,
)
from backend.util.cloud_storage import cleanup_expired_files_async
from backend.util.exceptions import (
GraphNotFoundError,
@@ -148,6 +150,7 @@ def execute_graph(**kwargs):
async def _execute_graph(**kwargs):
args = GraphExecutionJobArgs(**kwargs)
start_time = asyncio.get_event_loop().time()
db = get_database_manager_async_client()
try:
logger.info(f"Executing recurring job for graph #{args.graph_id}")
graph_exec: GraphExecutionWithNodes = await execution_utils.add_graph_execution(
@@ -157,7 +160,7 @@ async def _execute_graph(**kwargs):
inputs=args.input_data,
graph_credentials_inputs=args.input_credentials,
)
await increment_onboarding_runs(args.user_id)
await db.increment_onboarding_runs(args.user_id)
elapsed = asyncio.get_event_loop().time() - start_time
logger.info(
f"Graph execution started with ID {graph_exec.id} for graph {args.graph_id} "
@@ -246,8 +249,13 @@ def cleanup_expired_files():
def cleanup_oauth_tokens():
"""Clean up expired OAuth tokens from the database."""
# Wait for completion
run_async(cleanup_expired_oauth_tokens())
async def _cleanup():
db = get_database_manager_async_client()
return await db.cleanup_expired_oauth_tokens()
run_async(_cleanup())
def execution_accuracy_alerts():

View File

@@ -0,0 +1,39 @@
from urllib.parse import urlparse
import fastapi
from fastapi.routing import APIRoute
from backend.api.features.integrations.router import router as integrations_router
from backend.integrations.providers import ProviderName
from backend.integrations.webhooks import utils as webhooks_utils
def test_webhook_ingress_url_matches_route(monkeypatch) -> None:
app = fastapi.FastAPI()
app.include_router(integrations_router, prefix="/api/integrations")
provider = ProviderName.GITHUB
webhook_id = "webhook_123"
base_url = "https://example.com"
monkeypatch.setattr(webhooks_utils.app_config, "platform_base_url", base_url)
route = next(
route
for route in integrations_router.routes
if isinstance(route, APIRoute)
and route.path == "/{provider}/webhooks/{webhook_id}/ingress"
and "POST" in route.methods
)
expected_path = f"/api/integrations{route.path}".format(
provider=provider.value,
webhook_id=webhook_id,
)
actual_url = urlparse(webhooks_utils.webhook_ingress_url(provider, webhook_id))
expected_base = urlparse(base_url)
assert (actual_url.scheme, actual_url.netloc) == (
expected_base.scheme,
expected_base.netloc,
)
assert actual_url.path == expected_path

View File

@@ -1,10 +1,19 @@
from __future__ import annotations
import logging
from copy import deepcopy
from typing import Any
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any
from tiktoken import encoding_for_model
from backend.util import json
if TYPE_CHECKING:
from openai import AsyncOpenAI
logger = logging.getLogger(__name__)
# ---------------------------------------------------------------------------#
# CONSTANTS #
# ---------------------------------------------------------------------------#
@@ -100,9 +109,17 @@ def _is_objective_message(msg: dict) -> bool:
def _truncate_tool_message_content(msg: dict, enc, max_tokens: int) -> None:
"""
Carefully truncate tool message content while preserving tool structure.
Only truncates tool_result content, leaves tool_use intact.
Handles both Anthropic-style (list content) and OpenAI-style (string content) tool messages.
"""
content = msg.get("content")
# OpenAI-style tool message: role="tool" with string content
if msg.get("role") == "tool" and isinstance(content, str):
if _tok_len(content, enc) > max_tokens:
msg["content"] = _truncate_middle_tokens(content, enc, max_tokens)
return
# Anthropic-style: list content with tool_result items
if not isinstance(content, list):
return
@@ -140,141 +157,6 @@ def _truncate_middle_tokens(text: str, enc, max_tok: int) -> str:
# ---------------------------------------------------------------------------#
def compress_prompt(
messages: list[dict],
target_tokens: int,
*,
model: str = "gpt-4o",
reserve: int = 2_048,
start_cap: int = 8_192,
floor_cap: int = 128,
lossy_ok: bool = True,
) -> list[dict]:
"""
Shrink *messages* so that::
token_count(prompt) + reserve ≤ target_tokens
Strategy
--------
1. **Token-aware truncation** progressively halve a per-message cap
(`start_cap`, `start_cap/2`, … `floor_cap`) and apply it to the
*content* of every message except the first and last. Tool shells
are included: we keep the envelope but shorten huge payloads.
2. **Middle-out deletion** if still over the limit, delete whole
messages working outward from the centre, **skipping** any message
that contains ``tool_calls`` or has ``role == "tool"``.
3. **Last-chance trim** if still too big, truncate the *first* and
*last* message bodies down to `floor_cap` tokens.
4. If the prompt is *still* too large:
• raise ``ValueError`` when ``lossy_ok == False`` (default)
• return the partially-trimmed prompt when ``lossy_ok == True``
Parameters
----------
messages Complete chat history (will be deep-copied).
model Model name; passed to tiktoken to pick the right
tokenizer (gpt-4o → 'o200k_base', others fallback).
target_tokens Hard ceiling for prompt size **excluding** the model's
forthcoming answer.
reserve How many tokens you want to leave available for that
answer (`max_tokens` in your subsequent completion call).
start_cap Initial per-message truncation ceiling (tokens).
floor_cap Lowest cap we'll accept before moving to deletions.
lossy_ok If *True* return best-effort prompt instead of raising
after all trim passes have been exhausted.
Returns
-------
list[dict] A *new* messages list that abides by the rules above.
"""
enc = encoding_for_model(model) # best-match tokenizer
msgs = deepcopy(messages) # never mutate caller
def total_tokens() -> int:
"""Current size of *msgs* in tokens."""
return sum(_msg_tokens(m, enc) for m in msgs)
original_token_count = total_tokens()
if original_token_count + reserve <= target_tokens:
return msgs
# ---- STEP 0 : normalise content --------------------------------------
# Convert non-string payloads to strings so token counting is coherent.
for i, m in enumerate(msgs):
if not isinstance(m.get("content"), str) and m.get("content") is not None:
if _is_tool_message(m):
continue
# Keep first and last messages intact (unless they're tool messages)
if i == 0 or i == len(msgs) - 1:
continue
# Reasonable 20k-char ceiling prevents pathological blobs
content_str = json.dumps(m["content"], separators=(",", ":"))
if len(content_str) > 20_000:
content_str = _truncate_middle_tokens(content_str, enc, 20_000)
m["content"] = content_str
# ---- STEP 1 : token-aware truncation ---------------------------------
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for m in msgs[1:-1]: # keep first & last intact
if _is_tool_message(m):
# For tool messages, only truncate tool result content, preserve structure
_truncate_tool_message_content(m, enc, cap)
continue
if _is_objective_message(m):
# Never truncate objective messages - they contain the core task
continue
content = m.get("content") or ""
if _tok_len(content, enc) > cap:
m["content"] = _truncate_middle_tokens(content, enc, cap)
cap //= 2 # tighten the screw
# ---- STEP 2 : middle-out deletion -----------------------------------
while total_tokens() + reserve > target_tokens and len(msgs) > 2:
# Identify all deletable messages (not first/last, not tool messages, not objective messages)
deletable_indices = []
for i in range(1, len(msgs) - 1): # Skip first and last
if not _is_tool_message(msgs[i]) and not _is_objective_message(msgs[i]):
deletable_indices.append(i)
if not deletable_indices:
break # nothing more we can drop
# Delete from center outward - find the index closest to center
centre = len(msgs) // 2
to_delete = min(deletable_indices, key=lambda i: abs(i - centre))
del msgs[to_delete]
# ---- STEP 3 : final safety-net trim on first & last ------------------
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for idx in (0, -1): # first and last
if _is_tool_message(msgs[idx]):
# For tool messages at first/last position, truncate tool result content only
_truncate_tool_message_content(msgs[idx], enc, cap)
continue
text = msgs[idx].get("content") or ""
if _tok_len(text, enc) > cap:
msgs[idx]["content"] = _truncate_middle_tokens(text, enc, cap)
cap //= 2 # tighten the screw
# ---- STEP 4 : success or fail-gracefully -----------------------------
if total_tokens() + reserve > target_tokens and not lossy_ok:
raise ValueError(
"compress_prompt: prompt still exceeds budget "
f"({total_tokens() + reserve} > {target_tokens})."
)
return msgs
def estimate_token_count(
messages: list[dict],
*,
@@ -293,7 +175,8 @@ def estimate_token_count(
-------
int Token count.
"""
enc = encoding_for_model(model) # best-match tokenizer
token_model = _normalize_model_for_tokenizer(model)
enc = encoding_for_model(token_model)
return sum(_msg_tokens(m, enc) for m in messages)
@@ -315,6 +198,543 @@ def estimate_token_count_str(
-------
int Token count.
"""
enc = encoding_for_model(model) # best-match tokenizer
token_model = _normalize_model_for_tokenizer(model)
enc = encoding_for_model(token_model)
text = json.dumps(text) if not isinstance(text, str) else text
return _tok_len(text, enc)
# ---------------------------------------------------------------------------#
# UNIFIED CONTEXT COMPRESSION #
# ---------------------------------------------------------------------------#
# Default thresholds
DEFAULT_TOKEN_THRESHOLD = 120_000
DEFAULT_KEEP_RECENT = 15
@dataclass
class CompressResult:
"""Result of context compression."""
messages: list[dict]
token_count: int
was_compacted: bool
error: str | None = None
original_token_count: int = 0
messages_summarized: int = 0
messages_dropped: int = 0
def _normalize_model_for_tokenizer(model: str) -> str:
"""Normalize model name for tiktoken tokenizer selection."""
if "/" in model:
model = model.split("/")[-1]
if "claude" in model.lower() or not any(
known in model.lower() for known in ["gpt", "o1", "chatgpt", "text-"]
):
return "gpt-4o"
return model
def _extract_tool_call_ids_from_message(msg: dict) -> set[str]:
"""
Extract tool_call IDs from an assistant message.
Supports both formats:
- OpenAI: {"role": "assistant", "tool_calls": [{"id": "..."}]}
- Anthropic: {"role": "assistant", "content": [{"type": "tool_use", "id": "..."}]}
Returns:
Set of tool_call IDs found in the message.
"""
ids: set[str] = set()
if msg.get("role") != "assistant":
return ids
# OpenAI format: tool_calls array
if msg.get("tool_calls"):
for tc in msg["tool_calls"]:
tc_id = tc.get("id")
if tc_id:
ids.add(tc_id)
# Anthropic format: content list with tool_use blocks
content = msg.get("content")
if isinstance(content, list):
for block in content:
if isinstance(block, dict) and block.get("type") == "tool_use":
tc_id = block.get("id")
if tc_id:
ids.add(tc_id)
return ids
def _extract_tool_response_ids_from_message(msg: dict) -> set[str]:
"""
Extract tool_call IDs that this message is responding to.
Supports both formats:
- OpenAI: {"role": "tool", "tool_call_id": "..."}
- Anthropic: {"role": "user", "content": [{"type": "tool_result", "tool_use_id": "..."}]}
Returns:
Set of tool_call IDs this message responds to.
"""
ids: set[str] = set()
# OpenAI format: role=tool with tool_call_id
if msg.get("role") == "tool":
tc_id = msg.get("tool_call_id")
if tc_id:
ids.add(tc_id)
# Anthropic format: content list with tool_result blocks
content = msg.get("content")
if isinstance(content, list):
for block in content:
if isinstance(block, dict) and block.get("type") == "tool_result":
tc_id = block.get("tool_use_id")
if tc_id:
ids.add(tc_id)
return ids
def _is_tool_response_message(msg: dict) -> bool:
"""Check if message is a tool response (OpenAI or Anthropic format)."""
# OpenAI format
if msg.get("role") == "tool":
return True
# Anthropic format
content = msg.get("content")
if isinstance(content, list):
for block in content:
if isinstance(block, dict) and block.get("type") == "tool_result":
return True
return False
def _remove_orphan_tool_responses(
messages: list[dict], orphan_ids: set[str]
) -> list[dict]:
"""
Remove tool response messages/blocks that reference orphan tool_call IDs.
Supports both OpenAI and Anthropic formats.
For Anthropic messages with mixed valid/orphan tool_result blocks,
filters out only the orphan blocks instead of dropping the entire message.
"""
result = []
for msg in messages:
# OpenAI format: role=tool - drop entire message if orphan
if msg.get("role") == "tool":
tc_id = msg.get("tool_call_id")
if tc_id and tc_id in orphan_ids:
continue
result.append(msg)
continue
# Anthropic format: content list may have mixed tool_result blocks
content = msg.get("content")
if isinstance(content, list):
has_tool_results = any(
isinstance(b, dict) and b.get("type") == "tool_result" for b in content
)
if has_tool_results:
# Filter out orphan tool_result blocks, keep valid ones
filtered_content = [
block
for block in content
if not (
isinstance(block, dict)
and block.get("type") == "tool_result"
and block.get("tool_use_id") in orphan_ids
)
]
# Only keep message if it has remaining content
if filtered_content:
msg = msg.copy()
msg["content"] = filtered_content
result.append(msg)
continue
result.append(msg)
return result
def _ensure_tool_pairs_intact(
recent_messages: list[dict],
all_messages: list[dict],
start_index: int,
) -> list[dict]:
"""
Ensure tool_call/tool_response pairs stay together after slicing.
When slicing messages for context compaction, a naive slice can separate
an assistant message containing tool_calls from its corresponding tool
response messages. This causes API validation errors (e.g., Anthropic's
"unexpected tool_use_id found in tool_result blocks").
This function checks for orphan tool responses in the slice and extends
backwards to include their corresponding assistant messages.
Supports both formats:
- OpenAI: tool_calls array + role="tool" responses
- Anthropic: tool_use blocks + tool_result blocks
Args:
recent_messages: The sliced messages to validate
all_messages: The complete message list (for looking up missing assistants)
start_index: The index in all_messages where recent_messages begins
Returns:
A potentially extended list of messages with tool pairs intact
"""
if not recent_messages:
return recent_messages
# Collect all tool_call_ids from assistant messages in the slice
available_tool_call_ids: set[str] = set()
for msg in recent_messages:
available_tool_call_ids |= _extract_tool_call_ids_from_message(msg)
# Find orphan tool responses (responses whose tool_call_id is missing)
orphan_tool_call_ids: set[str] = set()
for msg in recent_messages:
response_ids = _extract_tool_response_ids_from_message(msg)
for tc_id in response_ids:
if tc_id not in available_tool_call_ids:
orphan_tool_call_ids.add(tc_id)
if not orphan_tool_call_ids:
# No orphans, slice is valid
return recent_messages
# Find the assistant messages that contain the orphan tool_call_ids
# Search backwards from start_index in all_messages
messages_to_prepend: list[dict] = []
for i in range(start_index - 1, -1, -1):
msg = all_messages[i]
msg_tool_ids = _extract_tool_call_ids_from_message(msg)
if msg_tool_ids & orphan_tool_call_ids:
# This assistant message has tool_calls we need
# Also collect its contiguous tool responses that follow it
assistant_and_responses: list[dict] = [msg]
# Scan forward from this assistant to collect tool responses
for j in range(i + 1, start_index):
following_msg = all_messages[j]
following_response_ids = _extract_tool_response_ids_from_message(
following_msg
)
if following_response_ids and following_response_ids & msg_tool_ids:
assistant_and_responses.append(following_msg)
elif not _is_tool_response_message(following_msg):
# Stop at first non-tool-response message
break
# Prepend the assistant and its tool responses (maintain order)
messages_to_prepend = assistant_and_responses + messages_to_prepend
# Mark these as found
orphan_tool_call_ids -= msg_tool_ids
# Also add this assistant's tool_call_ids to available set
available_tool_call_ids |= msg_tool_ids
if not orphan_tool_call_ids:
# Found all missing assistants
break
if orphan_tool_call_ids:
# Some tool_call_ids couldn't be resolved - remove those tool responses
# This shouldn't happen in normal operation but handles edge cases
logger.warning(
f"Could not find assistant messages for tool_call_ids: {orphan_tool_call_ids}. "
"Removing orphan tool responses."
)
recent_messages = _remove_orphan_tool_responses(
recent_messages, orphan_tool_call_ids
)
if messages_to_prepend:
logger.info(
f"Extended recent messages by {len(messages_to_prepend)} to preserve "
f"tool_call/tool_response pairs"
)
return messages_to_prepend + recent_messages
return recent_messages
async def _summarize_messages_llm(
messages: list[dict],
client: AsyncOpenAI,
model: str,
timeout: float = 30.0,
) -> str:
"""Summarize messages using an LLM."""
conversation = []
for msg in messages:
role = msg.get("role", "")
content = msg.get("content", "")
if content and role in ("user", "assistant", "tool"):
conversation.append(f"{role.upper()}: {content}")
conversation_text = "\n\n".join(conversation)
if not conversation_text:
return "No conversation history available."
# Limit to ~100k chars for safety
MAX_CHARS = 100_000
if len(conversation_text) > MAX_CHARS:
conversation_text = conversation_text[:MAX_CHARS] + "\n\n[truncated]"
response = await client.with_options(timeout=timeout).chat.completions.create(
model=model,
messages=[
{
"role": "system",
"content": (
"Create a detailed summary of the conversation so far. "
"This summary will be used as context when continuing the conversation.\n\n"
"Before writing the summary, analyze each message chronologically to identify:\n"
"- User requests and their explicit goals\n"
"- Your approach and key decisions made\n"
"- Technical specifics (file names, tool outputs, function signatures)\n"
"- Errors encountered and resolutions applied\n\n"
"You MUST include ALL of the following sections:\n\n"
"## 1. Primary Request and Intent\n"
"The user's explicit goals and what they are trying to accomplish.\n\n"
"## 2. Key Technical Concepts\n"
"Technologies, frameworks, tools, and patterns being used or discussed.\n\n"
"## 3. Files and Resources Involved\n"
"Specific files examined or modified, with relevant snippets and identifiers.\n\n"
"## 4. Errors and Fixes\n"
"Problems encountered, error messages, and their resolutions. "
"Include any user feedback on fixes.\n\n"
"## 5. Problem Solving\n"
"Issues that have been resolved and how they were addressed.\n\n"
"## 6. All User Messages\n"
"A complete list of all user inputs (excluding tool outputs) to preserve their exact requests.\n\n"
"## 7. Pending Tasks\n"
"Work items the user explicitly requested that have not yet been completed.\n\n"
"## 8. Current Work\n"
"Precise description of what was being worked on most recently, including relevant context.\n\n"
"## 9. Next Steps\n"
"What should happen next, aligned with the user's most recent requests. "
"Include verbatim quotes of recent instructions if relevant."
),
},
{"role": "user", "content": f"Summarize:\n\n{conversation_text}"},
],
max_tokens=1500,
temperature=0.3,
)
return response.choices[0].message.content or "No summary available."
async def compress_context(
messages: list[dict],
target_tokens: int = DEFAULT_TOKEN_THRESHOLD,
*,
model: str = "gpt-4o",
client: AsyncOpenAI | None = None,
keep_recent: int = DEFAULT_KEEP_RECENT,
reserve: int = 2_048,
start_cap: int = 8_192,
floor_cap: int = 128,
) -> CompressResult:
"""
Unified context compression that combines summarization and truncation strategies.
Strategy (in order):
1. **LLM summarization** If client provided, summarize old messages into a
single context message while keeping recent messages intact. This is the
primary strategy for chat service.
2. **Content truncation** Progressively halve a per-message cap and truncate
bloated message content (tool outputs, large pastes). Preserves all messages
but shortens their content. Primary strategy when client=None (LLM blocks).
3. **Middle-out deletion** Delete whole messages one at a time from the center
outward, skipping tool messages and objective messages.
4. **First/last trim** Truncate first and last message content as last resort.
Parameters
----------
messages Complete chat history (will be deep-copied).
target_tokens Hard ceiling for prompt size.
model Model name for tokenization and summarization.
client AsyncOpenAI client. If provided, enables LLM summarization
as the first strategy. If None, skips to truncation strategies.
keep_recent Number of recent messages to preserve during summarization.
reserve Tokens to reserve for model response.
start_cap Initial per-message truncation ceiling (tokens).
floor_cap Lowest cap before moving to deletions.
Returns
-------
CompressResult with compressed messages and metadata.
"""
# Guard clause for empty messages
if not messages:
return CompressResult(
messages=[],
token_count=0,
was_compacted=False,
original_token_count=0,
)
token_model = _normalize_model_for_tokenizer(model)
enc = encoding_for_model(token_model)
msgs = deepcopy(messages)
def total_tokens() -> int:
return sum(_msg_tokens(m, enc) for m in msgs)
original_count = total_tokens()
# Already under limit
if original_count + reserve <= target_tokens:
return CompressResult(
messages=msgs,
token_count=original_count,
was_compacted=False,
original_token_count=original_count,
)
messages_summarized = 0
messages_dropped = 0
# ---- STEP 1: LLM summarization (if client provided) -------------------
# This is the primary compression strategy for chat service.
# Summarize old messages while keeping recent ones intact.
if client is not None:
has_system = len(msgs) > 0 and msgs[0].get("role") == "system"
system_msg = msgs[0] if has_system else None
# Calculate old vs recent messages
if has_system:
if len(msgs) > keep_recent + 1:
old_msgs = msgs[1:-keep_recent]
recent_msgs = msgs[-keep_recent:]
else:
old_msgs = []
recent_msgs = msgs[1:] if len(msgs) > 1 else []
else:
if len(msgs) > keep_recent:
old_msgs = msgs[:-keep_recent]
recent_msgs = msgs[-keep_recent:]
else:
old_msgs = []
recent_msgs = msgs
# Ensure tool pairs stay intact
slice_start = max(0, len(msgs) - keep_recent)
recent_msgs = _ensure_tool_pairs_intact(recent_msgs, msgs, slice_start)
if old_msgs:
try:
summary_text = await _summarize_messages_llm(old_msgs, client, model)
summary_msg = {
"role": "assistant",
"content": f"[Previous conversation summary — for context only]: {summary_text}",
}
messages_summarized = len(old_msgs)
if has_system:
msgs = [system_msg, summary_msg] + recent_msgs
else:
msgs = [summary_msg] + recent_msgs
logger.info(
f"Context summarized: {original_count} -> {total_tokens()} tokens, "
f"summarized {messages_summarized} messages"
)
except Exception as e:
logger.warning(f"Summarization failed, continuing with truncation: {e}")
# Fall through to content truncation
# ---- STEP 2: Normalize content ----------------------------------------
# Convert non-string payloads to strings so token counting is coherent.
# Always run this before truncation to ensure consistent token counting.
for i, m in enumerate(msgs):
if not isinstance(m.get("content"), str) and m.get("content") is not None:
if _is_tool_message(m):
continue
if i == 0 or i == len(msgs) - 1:
continue
content_str = json.dumps(m["content"], separators=(",", ":"))
if len(content_str) > 20_000:
content_str = _truncate_middle_tokens(content_str, enc, 20_000)
m["content"] = content_str
# ---- STEP 3: Token-aware content truncation ---------------------------
# Progressively halve per-message cap and truncate bloated content.
# This preserves all messages but shortens their content.
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for m in msgs[1:-1]:
if _is_tool_message(m):
_truncate_tool_message_content(m, enc, cap)
continue
if _is_objective_message(m):
continue
content = m.get("content") or ""
if _tok_len(content, enc) > cap:
m["content"] = _truncate_middle_tokens(content, enc, cap)
cap //= 2
# ---- STEP 4: Middle-out deletion --------------------------------------
# Delete messages one at a time from the center outward.
# This is more granular than dropping all old messages at once.
while total_tokens() + reserve > target_tokens and len(msgs) > 2:
deletable: list[int] = []
for i in range(1, len(msgs) - 1):
msg = msgs[i]
if (
msg is not None
and not _is_tool_message(msg)
and not _is_objective_message(msg)
):
deletable.append(i)
if not deletable:
break
centre = len(msgs) // 2
to_delete = min(deletable, key=lambda i: abs(i - centre))
del msgs[to_delete]
messages_dropped += 1
# ---- STEP 5: Final trim on first/last ---------------------------------
cap = start_cap
while total_tokens() + reserve > target_tokens and cap >= floor_cap:
for idx in (0, -1):
msg = msgs[idx]
if msg is None:
continue
if _is_tool_message(msg):
_truncate_tool_message_content(msg, enc, cap)
continue
text = msg.get("content") or ""
if _tok_len(text, enc) > cap:
msg["content"] = _truncate_middle_tokens(text, enc, cap)
cap //= 2
# Filter out any None values that may have been introduced
final_msgs: list[dict] = [m for m in msgs if m is not None]
final_count = sum(_msg_tokens(m, enc) for m in final_msgs)
error = None
if final_count + reserve > target_tokens:
error = f"Could not compress below target ({final_count + reserve} > {target_tokens})"
logger.warning(error)
return CompressResult(
messages=final_msgs,
token_count=final_count,
was_compacted=True,
error=error,
original_token_count=original_count,
messages_summarized=messages_summarized,
messages_dropped=messages_dropped,
)

View File

@@ -1,10 +1,21 @@
"""Tests for prompt utility functions, especially tool call token counting."""
from unittest.mock import AsyncMock, MagicMock
import pytest
from tiktoken import encoding_for_model
from backend.util import json
from backend.util.prompt import _msg_tokens, estimate_token_count
from backend.util.prompt import (
CompressResult,
_ensure_tool_pairs_intact,
_msg_tokens,
_normalize_model_for_tokenizer,
_truncate_middle_tokens,
_truncate_tool_message_content,
compress_context,
estimate_token_count,
)
class TestMsgTokens:
@@ -276,3 +287,690 @@ class TestEstimateTokenCount:
assert total_tokens == expected_total
assert total_tokens > 20 # Should be substantial
class TestNormalizeModelForTokenizer:
"""Test model name normalization for tiktoken."""
def test_openai_models_unchanged(self):
"""Test that OpenAI models are returned as-is."""
assert _normalize_model_for_tokenizer("gpt-4o") == "gpt-4o"
assert _normalize_model_for_tokenizer("gpt-4") == "gpt-4"
assert _normalize_model_for_tokenizer("gpt-3.5-turbo") == "gpt-3.5-turbo"
def test_claude_models_normalized(self):
"""Test that Claude models are normalized to gpt-4o."""
assert _normalize_model_for_tokenizer("claude-3-opus") == "gpt-4o"
assert _normalize_model_for_tokenizer("claude-3-sonnet") == "gpt-4o"
assert _normalize_model_for_tokenizer("anthropic/claude-3-haiku") == "gpt-4o"
def test_openrouter_paths_extracted(self):
"""Test that OpenRouter model paths are handled."""
assert _normalize_model_for_tokenizer("openai/gpt-4o") == "gpt-4o"
assert _normalize_model_for_tokenizer("anthropic/claude-3-opus") == "gpt-4o"
def test_unknown_models_default_to_gpt4o(self):
"""Test that unknown models default to gpt-4o."""
assert _normalize_model_for_tokenizer("some-random-model") == "gpt-4o"
assert _normalize_model_for_tokenizer("llama-3-70b") == "gpt-4o"
class TestTruncateToolMessageContent:
"""Test tool message content truncation."""
@pytest.fixture
def enc(self):
return encoding_for_model("gpt-4o")
def test_truncate_openai_tool_message(self, enc):
"""Test truncation of OpenAI-style tool message with string content."""
long_content = "x" * 10000
msg = {"role": "tool", "tool_call_id": "call_123", "content": long_content}
_truncate_tool_message_content(msg, enc, max_tokens=100)
# Content should be truncated
assert len(msg["content"]) < len(long_content)
assert "" in msg["content"] # Has ellipsis marker
def test_truncate_anthropic_tool_result(self, enc):
"""Test truncation of Anthropic-style tool_result."""
long_content = "y" * 10000
msg = {
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_123",
"content": long_content,
}
],
}
_truncate_tool_message_content(msg, enc, max_tokens=100)
# Content should be truncated
result_content = msg["content"][0]["content"]
assert len(result_content) < len(long_content)
assert "" in result_content
def test_preserve_tool_use_blocks(self, enc):
"""Test that tool_use blocks are not truncated."""
msg = {
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_123",
"name": "some_function",
"input": {"key": "value" * 1000}, # Large input
}
],
}
original = json.dumps(msg["content"][0]["input"])
_truncate_tool_message_content(msg, enc, max_tokens=10)
# tool_use should be unchanged
assert json.dumps(msg["content"][0]["input"]) == original
def test_no_truncation_when_under_limit(self, enc):
"""Test that short content is not modified."""
msg = {"role": "tool", "tool_call_id": "call_123", "content": "Short content"}
original = msg["content"]
_truncate_tool_message_content(msg, enc, max_tokens=1000)
assert msg["content"] == original
class TestTruncateMiddleTokens:
"""Test middle truncation of text."""
@pytest.fixture
def enc(self):
return encoding_for_model("gpt-4o")
def test_truncates_long_text(self, enc):
"""Test that long text is truncated with ellipsis in middle."""
long_text = "word " * 1000
result = _truncate_middle_tokens(long_text, enc, max_tok=50)
assert len(enc.encode(result)) <= 52 # Allow some slack for ellipsis
assert "" in result
assert result.startswith("word") # Head preserved
assert result.endswith("word ") # Tail preserved
def test_preserves_short_text(self, enc):
"""Test that short text is not modified."""
short_text = "Hello world"
result = _truncate_middle_tokens(short_text, enc, max_tok=100)
assert result == short_text
class TestEnsureToolPairsIntact:
"""Test tool call/response pair preservation for both OpenAI and Anthropic formats."""
# ---- OpenAI Format Tests ----
def test_openai_adds_missing_tool_call(self):
"""Test that orphaned OpenAI tool_response gets its tool_call prepended."""
all_msgs = [
{"role": "system", "content": "You are helpful."},
{
"role": "assistant",
"tool_calls": [
{"id": "call_1", "type": "function", "function": {"name": "f1"}}
],
},
{"role": "tool", "tool_call_id": "call_1", "content": "result"},
{"role": "user", "content": "Thanks!"},
]
# Recent messages start at index 2 (the tool response)
recent = [all_msgs[2], all_msgs[3]]
start_index = 2
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the tool_call message
assert len(result) == 3
assert result[0]["role"] == "assistant"
assert "tool_calls" in result[0]
def test_openai_keeps_complete_pairs(self):
"""Test that complete OpenAI pairs are unchanged."""
all_msgs = [
{"role": "system", "content": "System"},
{
"role": "assistant",
"tool_calls": [
{"id": "call_1", "type": "function", "function": {"name": "f1"}}
],
},
{"role": "tool", "tool_call_id": "call_1", "content": "result"},
]
recent = all_msgs[1:] # Include both tool_call and response
start_index = 1
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
assert len(result) == 2 # No messages added
def test_openai_multiple_tool_calls(self):
"""Test multiple OpenAI tool calls in one assistant message."""
all_msgs = [
{"role": "system", "content": "System"},
{
"role": "assistant",
"tool_calls": [
{"id": "call_1", "type": "function", "function": {"name": "f1"}},
{"id": "call_2", "type": "function", "function": {"name": "f2"}},
],
},
{"role": "tool", "tool_call_id": "call_1", "content": "result1"},
{"role": "tool", "tool_call_id": "call_2", "content": "result2"},
{"role": "user", "content": "Thanks!"},
]
# Recent messages start at index 2 (first tool response)
recent = [all_msgs[2], all_msgs[3], all_msgs[4]]
start_index = 2
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the assistant message with both tool_calls
assert len(result) == 4
assert result[0]["role"] == "assistant"
assert len(result[0]["tool_calls"]) == 2
# ---- Anthropic Format Tests ----
def test_anthropic_adds_missing_tool_use(self):
"""Test that orphaned Anthropic tool_result gets its tool_use prepended."""
all_msgs = [
{"role": "system", "content": "You are helpful."},
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_123",
"name": "get_weather",
"input": {"location": "SF"},
}
],
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_123",
"content": "22°C and sunny",
}
],
},
{"role": "user", "content": "Thanks!"},
]
# Recent messages start at index 2 (the tool_result)
recent = [all_msgs[2], all_msgs[3]]
start_index = 2
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the tool_use message
assert len(result) == 3
assert result[0]["role"] == "assistant"
assert result[0]["content"][0]["type"] == "tool_use"
def test_anthropic_keeps_complete_pairs(self):
"""Test that complete Anthropic pairs are unchanged."""
all_msgs = [
{"role": "system", "content": "System"},
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_456",
"name": "calculator",
"input": {"expr": "2+2"},
}
],
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_456",
"content": "4",
}
],
},
]
recent = all_msgs[1:] # Include both tool_use and result
start_index = 1
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
assert len(result) == 2 # No messages added
def test_anthropic_multiple_tool_uses(self):
"""Test multiple Anthropic tool_use blocks in one message."""
all_msgs = [
{"role": "system", "content": "System"},
{
"role": "assistant",
"content": [
{"type": "text", "text": "Let me check both..."},
{
"type": "tool_use",
"id": "toolu_1",
"name": "get_weather",
"input": {"city": "NYC"},
},
{
"type": "tool_use",
"id": "toolu_2",
"name": "get_weather",
"input": {"city": "LA"},
},
],
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_1",
"content": "Cold",
},
{
"type": "tool_result",
"tool_use_id": "toolu_2",
"content": "Warm",
},
],
},
{"role": "user", "content": "Thanks!"},
]
# Recent messages start at index 2 (tool_result)
recent = [all_msgs[2], all_msgs[3]]
start_index = 2
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the assistant message with both tool_uses
assert len(result) == 3
assert result[0]["role"] == "assistant"
tool_use_count = sum(
1 for b in result[0]["content"] if b.get("type") == "tool_use"
)
assert tool_use_count == 2
# ---- Mixed/Edge Case Tests ----
def test_anthropic_with_type_message_field(self):
"""Test Anthropic format with 'type': 'message' field (smart_decision_maker style)."""
all_msgs = [
{"role": "system", "content": "You are helpful."},
{
"role": "assistant",
"content": [
{
"type": "tool_use",
"id": "toolu_abc",
"name": "search",
"input": {"q": "test"},
}
],
},
{
"role": "user",
"type": "message", # Extra field from smart_decision_maker
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_abc",
"content": "Found results",
}
],
},
{"role": "user", "content": "Thanks!"},
]
# Recent messages start at index 2 (the tool_result with 'type': 'message')
recent = [all_msgs[2], all_msgs[3]]
start_index = 2
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the tool_use message
assert len(result) == 3
assert result[0]["role"] == "assistant"
assert result[0]["content"][0]["type"] == "tool_use"
def test_handles_no_tool_messages(self):
"""Test messages without tool calls."""
all_msgs = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi there!"},
]
recent = all_msgs
start_index = 0
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
assert result == all_msgs
def test_handles_empty_messages(self):
"""Test empty message list."""
result = _ensure_tool_pairs_intact([], [], 0)
assert result == []
def test_mixed_text_and_tool_content(self):
"""Test Anthropic message with mixed text and tool_use content."""
all_msgs = [
{
"role": "assistant",
"content": [
{"type": "text", "text": "I'll help you with that."},
{
"type": "tool_use",
"id": "toolu_mixed",
"name": "search",
"input": {"q": "test"},
},
],
},
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_mixed",
"content": "Found results",
}
],
},
{"role": "assistant", "content": "Here are the results..."},
]
# Start from tool_result
recent = [all_msgs[1], all_msgs[2]]
start_index = 1
result = _ensure_tool_pairs_intact(recent, all_msgs, start_index)
# Should prepend the assistant message with tool_use
assert len(result) == 3
assert result[0]["content"][0]["type"] == "text"
assert result[0]["content"][1]["type"] == "tool_use"
class TestCompressContext:
"""Test the async compress_context function."""
@pytest.mark.asyncio
async def test_no_compression_needed(self):
"""Test messages under limit return without compression."""
messages = [
{"role": "system", "content": "You are helpful."},
{"role": "user", "content": "Hello!"},
]
result = await compress_context(messages, target_tokens=100000)
assert isinstance(result, CompressResult)
assert result.was_compacted is False
assert len(result.messages) == 2
assert result.error is None
@pytest.mark.asyncio
async def test_truncation_without_client(self):
"""Test that truncation works without LLM client."""
long_content = "x" * 50000
messages = [
{"role": "system", "content": "System"},
{"role": "user", "content": long_content},
{"role": "assistant", "content": "Response"},
]
result = await compress_context(
messages, target_tokens=1000, client=None, reserve=100
)
assert result.was_compacted is True
# Should have truncated without summarization
assert result.messages_summarized == 0
@pytest.mark.asyncio
async def test_with_mocked_llm_client(self):
"""Test summarization with mocked LLM client."""
# Create many messages to trigger summarization
messages = [{"role": "system", "content": "System prompt"}]
for i in range(30):
messages.append({"role": "user", "content": f"User message {i} " * 100})
messages.append(
{"role": "assistant", "content": f"Assistant response {i} " * 100}
)
# Mock the AsyncOpenAI client
mock_client = AsyncMock()
mock_response = MagicMock()
mock_response.choices = [MagicMock()]
mock_response.choices[0].message.content = "Summary of conversation"
mock_client.with_options.return_value.chat.completions.create = AsyncMock(
return_value=mock_response
)
result = await compress_context(
messages,
target_tokens=5000,
client=mock_client,
keep_recent=5,
reserve=500,
)
assert result.was_compacted is True
# Should have attempted summarization
assert mock_client.with_options.called or result.messages_summarized > 0
@pytest.mark.asyncio
async def test_preserves_tool_pairs(self):
"""Test that tool call/response pairs stay together."""
messages = [
{"role": "system", "content": "System"},
{"role": "user", "content": "Do something"},
{
"role": "assistant",
"tool_calls": [
{"id": "call_1", "type": "function", "function": {"name": "func"}}
],
},
{"role": "tool", "tool_call_id": "call_1", "content": "Result " * 1000},
{"role": "assistant", "content": "Done!"},
]
result = await compress_context(
messages, target_tokens=500, client=None, reserve=50
)
# Check that if tool response exists, its call exists too
tool_call_ids = set()
tool_response_ids = set()
for msg in result.messages:
if "tool_calls" in msg:
for tc in msg["tool_calls"]:
tool_call_ids.add(tc["id"])
if msg.get("role") == "tool":
tool_response_ids.add(msg.get("tool_call_id"))
# All tool responses should have their calls
assert tool_response_ids <= tool_call_ids
@pytest.mark.asyncio
async def test_returns_error_when_cannot_compress(self):
"""Test that error is returned when compression fails."""
# Single huge message that can't be compressed enough
messages = [
{"role": "user", "content": "x" * 100000},
]
result = await compress_context(
messages, target_tokens=100, client=None, reserve=50
)
# Should have an error since we can't get below 100 tokens
assert result.error is not None
assert result.was_compacted is True
@pytest.mark.asyncio
async def test_empty_messages(self):
"""Test that empty messages list returns early without error."""
result = await compress_context([], target_tokens=1000)
assert result.messages == []
assert result.token_count == 0
assert result.was_compacted is False
assert result.error is None
class TestRemoveOrphanToolResponses:
"""Test _remove_orphan_tool_responses helper function."""
def test_removes_openai_orphan(self):
"""Test removal of orphan OpenAI tool response."""
from backend.util.prompt import _remove_orphan_tool_responses
messages = [
{"role": "tool", "tool_call_id": "call_orphan", "content": "result"},
{"role": "user", "content": "Hello"},
]
orphan_ids = {"call_orphan"}
result = _remove_orphan_tool_responses(messages, orphan_ids)
assert len(result) == 1
assert result[0]["role"] == "user"
def test_keeps_valid_openai_tool(self):
"""Test that valid OpenAI tool responses are kept."""
from backend.util.prompt import _remove_orphan_tool_responses
messages = [
{"role": "tool", "tool_call_id": "call_valid", "content": "result"},
]
orphan_ids = {"call_other"}
result = _remove_orphan_tool_responses(messages, orphan_ids)
assert len(result) == 1
assert result[0]["tool_call_id"] == "call_valid"
def test_filters_anthropic_mixed_blocks(self):
"""Test filtering individual orphan blocks from Anthropic message with mixed valid/orphan."""
from backend.util.prompt import _remove_orphan_tool_responses
messages = [
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_valid",
"content": "valid result",
},
{
"type": "tool_result",
"tool_use_id": "toolu_orphan",
"content": "orphan result",
},
],
},
]
orphan_ids = {"toolu_orphan"}
result = _remove_orphan_tool_responses(messages, orphan_ids)
assert len(result) == 1
# Should only have the valid tool_result, orphan filtered out
assert len(result[0]["content"]) == 1
assert result[0]["content"][0]["tool_use_id"] == "toolu_valid"
def test_removes_anthropic_all_orphan(self):
"""Test removal of Anthropic message when all tool_results are orphans."""
from backend.util.prompt import _remove_orphan_tool_responses
messages = [
{
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": "toolu_orphan1",
"content": "result1",
},
{
"type": "tool_result",
"tool_use_id": "toolu_orphan2",
"content": "result2",
},
],
},
]
orphan_ids = {"toolu_orphan1", "toolu_orphan2"}
result = _remove_orphan_tool_responses(messages, orphan_ids)
# Message should be completely removed since no content left
assert len(result) == 0
def test_preserves_non_tool_messages(self):
"""Test that non-tool messages are preserved."""
from backend.util.prompt import _remove_orphan_tool_responses
messages = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi there!"},
]
orphan_ids = {"some_id"}
result = _remove_orphan_tool_responses(messages, orphan_ids)
assert result == messages
class TestCompressResultDataclass:
"""Test CompressResult dataclass."""
def test_default_values(self):
"""Test default values are set correctly."""
result = CompressResult(
messages=[{"role": "user", "content": "test"}],
token_count=10,
was_compacted=False,
)
assert result.error is None
assert result.original_token_count == 0 # Defaults to 0, not None
assert result.messages_summarized == 0
assert result.messages_dropped == 0
def test_all_fields(self):
"""Test all fields can be set."""
result = CompressResult(
messages=[{"role": "user", "content": "test"}],
token_count=100,
was_compacted=True,
error="Some error",
original_token_count=500,
messages_summarized=10,
messages_dropped=5,
)
assert result.token_count == 100
assert result.was_compacted is True
assert result.error == "Some error"
assert result.original_token_count == 500
assert result.messages_summarized == 10
assert result.messages_dropped == 5

View File

@@ -0,0 +1,22 @@
-- Migrate Claude 3.7 Sonnet to Claude 4.5 Sonnet
-- This updates all AgentNode blocks that use the deprecated Claude 3.7 Sonnet model
-- Anthropic is retiring claude-3-7-sonnet-20250219 on February 19, 2026
-- Update AgentNode constant inputs
UPDATE "AgentNode"
SET "constantInput" = JSONB_SET(
"constantInput"::jsonb,
'{model}',
'"claude-sonnet-4-5-20250929"'::jsonb
)
WHERE "constantInput"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';
-- Update AgentPreset input overrides (stored in AgentNodeExecutionInputOutput)
UPDATE "AgentNodeExecutionInputOutput"
SET "data" = JSONB_SET(
"data"::jsonb,
'{model}',
'"claude-sonnet-4-5-20250929"'::jsonb
)
WHERE "agentPresetId" IS NOT NULL
AND "data"::jsonb->>'model' = 'claude-3-7-sonnet-20250219';

View File

@@ -9,7 +9,8 @@
"sub_heading": "Creator agent subheading",
"description": "Creator agent description",
"runs": 50,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
}
],
"pagination": {

View File

@@ -9,7 +9,8 @@
"sub_heading": "Category agent subheading",
"description": "Category agent description",
"runs": 60,
"rating": 4.1
"rating": 4.1,
"agent_graph_id": "test-graph-category"
}
],
"pagination": {

View File

@@ -9,7 +9,8 @@
"sub_heading": "Agent 0 subheading",
"description": "Agent 0 description",
"runs": 0,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
},
{
"slug": "agent-1",
@@ -20,7 +21,8 @@
"sub_heading": "Agent 1 subheading",
"description": "Agent 1 description",
"runs": 10,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
},
{
"slug": "agent-2",
@@ -31,7 +33,8 @@
"sub_heading": "Agent 2 subheading",
"description": "Agent 2 description",
"runs": 20,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
},
{
"slug": "agent-3",
@@ -42,7 +45,8 @@
"sub_heading": "Agent 3 subheading",
"description": "Agent 3 description",
"runs": 30,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
},
{
"slug": "agent-4",
@@ -53,7 +57,8 @@
"sub_heading": "Agent 4 subheading",
"description": "Agent 4 description",
"runs": 40,
"rating": 4.0
"rating": 4.0,
"agent_graph_id": "test-graph-2"
}
],
"pagination": {

View File

@@ -9,7 +9,8 @@
"sub_heading": "Search agent subheading",
"description": "Specific search term description",
"runs": 75,
"rating": 4.2
"rating": 4.2,
"agent_graph_id": "test-graph-search"
}
],
"pagination": {

View File

@@ -9,7 +9,8 @@
"sub_heading": "Top agent subheading",
"description": "Top agent description",
"runs": 1000,
"rating": 5.0
"rating": 5.0,
"agent_graph_id": "test-graph-3"
}
],
"pagination": {

View File

@@ -9,7 +9,8 @@
"sub_heading": "Featured agent subheading",
"description": "Featured agent description",
"runs": 100,
"rating": 4.5
"rating": 4.5,
"agent_graph_id": "test-graph-1"
}
],
"pagination": {

View File

@@ -31,6 +31,10 @@
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"execution_count": 0,
"success_rate": null,
"avg_correctness_score": null,
"recent_executions": [],
"can_access_graph": true,
"is_latest_version": true,
"is_favorite": false,
@@ -72,6 +76,10 @@
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"execution_count": 0,
"success_rate": null,
"avg_correctness_score": null,
"recent_executions": [],
"can_access_graph": false,
"is_latest_version": true,
"is_favorite": false,

View File

@@ -57,7 +57,8 @@ class TestDecomposeGoal:
result = await core.decompose_goal("Build a chatbot")
mock_external.assert_called_once_with("Build a chatbot", "")
# library_agents defaults to None
mock_external.assert_called_once_with("Build a chatbot", "", None)
assert result == expected_result
@pytest.mark.asyncio
@@ -74,7 +75,8 @@ class TestDecomposeGoal:
await core.decompose_goal("Build a chatbot", "Use Python")
mock_external.assert_called_once_with("Build a chatbot", "Use Python")
# library_agents defaults to None
mock_external.assert_called_once_with("Build a chatbot", "Use Python", None)
@pytest.mark.asyncio
async def test_returns_none_on_service_failure(self):
@@ -109,7 +111,8 @@ class TestGenerateAgent:
instructions = {"type": "instructions", "steps": ["Step 1"]}
result = await core.generate_agent(instructions)
mock_external.assert_called_once_with(instructions)
# library_agents defaults to None
mock_external.assert_called_once_with(instructions, None)
# Result should have id, version, is_active added if not present
assert result is not None
assert result["name"] == "Test Agent"
@@ -174,7 +177,8 @@ class TestGenerateAgentPatch:
current_agent = {"nodes": [], "links": []}
result = await core.generate_agent_patch("Add a node", current_agent)
mock_external.assert_called_once_with("Add a node", current_agent)
# library_agents defaults to None
mock_external.assert_called_once_with("Add a node", current_agent, None)
assert result == expected_result
@pytest.mark.asyncio

View File

@@ -0,0 +1,857 @@
"""
Tests for library agent fetching functionality in agent generator.
This test suite verifies the search-based library agent fetching,
including the combination of library and marketplace agents.
"""
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.features.chat.tools.agent_generator import core
class TestGetLibraryAgentsForGeneration:
"""Test get_library_agents_for_generation function."""
@pytest.mark.asyncio
async def test_fetches_agents_with_search_term(self):
"""Test that search_term is passed to the library db."""
# Create a mock agent with proper attribute values
mock_agent = MagicMock()
mock_agent.graph_id = "agent-123"
mock_agent.graph_version = 1
mock_agent.name = "Email Agent"
mock_agent.description = "Sends emails"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
mock_agent.recent_executions = []
mock_response = MagicMock()
mock_response.agents = [mock_agent]
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
result = await core.get_library_agents_for_generation(
user_id="user-123",
search_query="send email",
)
mock_list.assert_called_once_with(
user_id="user-123",
search_term="send email",
page=1,
page_size=15,
include_executions=True,
)
# Verify result format
assert len(result) == 1
assert result[0]["graph_id"] == "agent-123"
assert result[0]["name"] == "Email Agent"
@pytest.mark.asyncio
async def test_excludes_specified_graph_id(self):
"""Test that agents with excluded graph_id are filtered out."""
mock_response = MagicMock()
mock_response.agents = [
MagicMock(
graph_id="agent-123",
graph_version=1,
name="Agent 1",
description="First agent",
input_schema={},
output_schema={},
recent_executions=[],
),
MagicMock(
graph_id="agent-456",
graph_version=1,
name="Agent 2",
description="Second agent",
input_schema={},
output_schema={},
recent_executions=[],
),
]
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
):
result = await core.get_library_agents_for_generation(
user_id="user-123",
exclude_graph_id="agent-123",
)
# Verify the excluded agent is not in results
assert len(result) == 1
assert result[0]["graph_id"] == "agent-456"
@pytest.mark.asyncio
async def test_respects_max_results(self):
"""Test that max_results parameter limits the page_size."""
mock_response = MagicMock()
mock_response.agents = []
with patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_list:
await core.get_library_agents_for_generation(
user_id="user-123",
max_results=5,
)
mock_list.assert_called_once_with(
user_id="user-123",
search_term=None,
page=1,
page_size=5,
include_executions=True,
)
class TestSearchMarketplaceAgentsForGeneration:
"""Test search_marketplace_agents_for_generation function."""
@pytest.mark.asyncio
async def test_searches_marketplace_with_query(self):
"""Test that marketplace is searched with the query."""
mock_response = MagicMock()
mock_response.agents = [
MagicMock(
agent_name="Public Agent",
description="A public agent",
sub_heading="Does something useful",
creator="creator-1",
agent_graph_id="graph-123",
)
]
mock_graph = MagicMock()
mock_graph.id = "graph-123"
mock_graph.version = 1
mock_graph.input_schema = {"type": "object"}
mock_graph.output_schema = {"type": "object"}
with (
patch(
"backend.api.features.store.db.get_store_agents",
new_callable=AsyncMock,
return_value=mock_response,
) as mock_search,
patch(
"backend.api.features.chat.tools.agent_generator.core.get_store_listed_graphs",
new_callable=AsyncMock,
return_value={"graph-123": mock_graph},
),
):
result = await core.search_marketplace_agents_for_generation(
search_query="automation",
max_results=10,
)
mock_search.assert_called_once_with(
search_query="automation",
page=1,
page_size=10,
)
assert len(result) == 1
assert result[0]["name"] == "Public Agent"
assert result[0]["graph_id"] == "graph-123"
@pytest.mark.asyncio
async def test_handles_marketplace_error_gracefully(self):
"""Test that marketplace errors don't crash the function."""
with patch(
"backend.api.features.store.db.get_store_agents",
new_callable=AsyncMock,
side_effect=Exception("Marketplace unavailable"),
):
result = await core.search_marketplace_agents_for_generation(
search_query="test"
)
# Should return empty list, not raise exception
assert result == []
class TestGetAllRelevantAgentsForGeneration:
"""Test get_all_relevant_agents_for_generation function."""
@pytest.mark.asyncio
async def test_combines_library_and_marketplace_agents(self):
"""Test that agents from both sources are combined."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
marketplace_agents = [
{
"graph_id": "market-456",
"graph_version": 1,
"name": "Market Agent",
"description": "From marketplace",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
return_value=marketplace_agents,
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test query",
include_marketplace=True,
)
# Library agents should come first
assert len(result) == 2
assert result[0]["name"] == "Library Agent"
assert result[1]["name"] == "Market Agent"
@pytest.mark.asyncio
async def test_deduplicates_by_graph_id(self):
"""Test that marketplace agents with same graph_id as library are excluded."""
library_agents = [
{
"graph_id": "shared-123",
"graph_version": 1,
"name": "Shared Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
marketplace_agents = [
{
"graph_id": "shared-123", # Same graph_id, should be deduplicated
"graph_version": 1,
"name": "Shared Agent",
"description": "From marketplace",
"input_schema": {},
"output_schema": {},
},
{
"graph_id": "unique-456",
"graph_version": 1,
"name": "Unique Agent",
"description": "Only in marketplace",
"input_schema": {},
"output_schema": {},
},
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
return_value=marketplace_agents,
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test",
include_marketplace=True,
)
# Shared Agent from marketplace should be excluded by graph_id
assert len(result) == 2
names = [a["name"] for a in result]
assert "Shared Agent" in names
assert "Unique Agent" in names
@pytest.mark.asyncio
async def test_skips_marketplace_when_disabled(self):
"""Test that marketplace is not searched when include_marketplace=False."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
) as mock_marketplace:
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="test",
include_marketplace=False,
)
# Marketplace should not be called
mock_marketplace.assert_not_called()
assert len(result) == 1
@pytest.mark.asyncio
async def test_skips_marketplace_when_no_search_query(self):
"""Test that marketplace is not searched without a search query."""
library_agents = [
{
"graph_id": "lib-123",
"graph_version": 1,
"name": "Library Agent",
"description": "From library",
"input_schema": {},
"output_schema": {},
}
]
with patch.object(
core,
"get_library_agents_for_generation",
new_callable=AsyncMock,
return_value=library_agents,
):
with patch.object(
core,
"search_marketplace_agents_for_generation",
new_callable=AsyncMock,
) as mock_marketplace:
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query=None, # No search query
include_marketplace=True,
)
# Marketplace should not be called without search query
mock_marketplace.assert_not_called()
assert len(result) == 1
class TestExtractSearchTermsFromSteps:
"""Test extract_search_terms_from_steps function."""
def test_extracts_terms_from_instructions_type(self):
"""Test extraction from valid instructions decomposition result."""
decomposition_result = {
"type": "instructions",
"steps": [
{
"description": "Send an email notification",
"block_name": "GmailSendBlock",
},
{"description": "Fetch weather data", "action": "Get weather API"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert "Send an email notification" in result
assert "GmailSendBlock" in result
assert "Fetch weather data" in result
assert "Get weather API" in result
def test_returns_empty_for_non_instructions_type(self):
"""Test that non-instructions types return empty list."""
decomposition_result = {
"type": "clarifying_questions",
"questions": [{"question": "What email?"}],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert result == []
def test_deduplicates_terms_case_insensitively(self):
"""Test that duplicate terms are removed (case-insensitive)."""
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "Send Email", "name": "send email"},
{"description": "Other task"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
# Should only have one "send email" variant
email_terms = [t for t in result if "email" in t.lower()]
assert len(email_terms) == 1
def test_filters_short_terms(self):
"""Test that terms with 3 or fewer characters are filtered out."""
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "ab", "action": "xyz"}, # Both too short
{"description": "Valid term here"},
],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert "ab" not in result
assert "xyz" not in result
assert "Valid term here" in result
def test_handles_empty_steps(self):
"""Test handling of empty steps list."""
decomposition_result = {
"type": "instructions",
"steps": [],
}
result = core.extract_search_terms_from_steps(decomposition_result)
assert result == []
class TestEnrichLibraryAgentsFromSteps:
"""Test enrich_library_agents_from_steps function."""
@pytest.mark.asyncio
async def test_enriches_with_additional_agents(self):
"""Test that additional agents are found based on steps."""
existing_agents = [
{
"graph_id": "existing-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
additional_agents = [
{
"graph_id": "new-456",
"graph_version": 1,
"name": "Email Agent",
"description": "For sending emails",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "Send email notification"},
],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should have both existing and new agents
assert len(result) == 2
names = [a["name"] for a in result]
assert "Existing Agent" in names
assert "Email Agent" in names
@pytest.mark.asyncio
async def test_deduplicates_by_graph_id(self):
"""Test that agents with same graph_id are not duplicated."""
existing_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
# Additional search returns same agent
additional_agents = [
{
"graph_id": "agent-123", # Same ID
"graph_version": 1,
"name": "Existing Agent Copy",
"description": "Same agent different name",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [{"description": "Some action"}],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should not duplicate
assert len(result) == 1
@pytest.mark.asyncio
async def test_deduplicates_by_name(self):
"""Test that agents with same name are not duplicated."""
existing_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Email Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
# Additional search returns agent with same name but different ID
additional_agents = [
{
"graph_id": "agent-456", # Different ID
"graph_version": 1,
"name": "Email Agent", # Same name
"description": "Different agent same name",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "instructions",
"steps": [{"description": "Send email"}],
}
with patch.object(
core,
"get_all_relevant_agents_for_generation",
new_callable=AsyncMock,
return_value=additional_agents,
):
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should not duplicate by name
assert len(result) == 1
assert result[0].get("graph_id") == "agent-123" # Original kept
@pytest.mark.asyncio
async def test_returns_existing_when_no_steps(self):
"""Test that existing agents are returned when no search terms extracted."""
existing_agents = [
{
"graph_id": "existing-123",
"graph_version": 1,
"name": "Existing Agent",
"description": "Already fetched",
"input_schema": {},
"output_schema": {},
}
]
decomposition_result = {
"type": "clarifying_questions", # Not instructions type
"questions": [],
}
result = await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should return existing unchanged
assert result == existing_agents
@pytest.mark.asyncio
async def test_limits_search_terms_to_three(self):
"""Test that only first 3 search terms are used."""
existing_agents = []
decomposition_result = {
"type": "instructions",
"steps": [
{"description": "First action"},
{"description": "Second action"},
{"description": "Third action"},
{"description": "Fourth action"},
{"description": "Fifth action"},
],
}
call_count = 0
async def mock_get_agents(*args, **kwargs):
nonlocal call_count
call_count += 1
return []
with patch.object(
core,
"get_all_relevant_agents_for_generation",
side_effect=mock_get_agents,
):
await core.enrich_library_agents_from_steps(
user_id="user-123",
decomposition_result=decomposition_result,
existing_agents=existing_agents,
)
# Should only make 3 calls (limited to first 3 terms)
assert call_count == 3
class TestExtractUuidsFromText:
"""Test extract_uuids_from_text function."""
def test_extracts_single_uuid(self):
"""Test extraction of a single UUID from text."""
text = "Use my agent 46631191-e8a8-486f-ad90-84f89738321d for this task"
result = core.extract_uuids_from_text(text)
assert len(result) == 1
assert "46631191-e8a8-486f-ad90-84f89738321d" in result
def test_extracts_multiple_uuids(self):
"""Test extraction of multiple UUIDs from text."""
text = (
"Combine agents 11111111-1111-4111-8111-111111111111 "
"and 22222222-2222-4222-9222-222222222222"
)
result = core.extract_uuids_from_text(text)
assert len(result) == 2
assert "11111111-1111-4111-8111-111111111111" in result
assert "22222222-2222-4222-9222-222222222222" in result
def test_deduplicates_uuids(self):
"""Test that duplicate UUIDs are deduplicated."""
text = (
"Use 46631191-e8a8-486f-ad90-84f89738321d twice: "
"46631191-e8a8-486f-ad90-84f89738321d"
)
result = core.extract_uuids_from_text(text)
assert len(result) == 1
def test_normalizes_to_lowercase(self):
"""Test that UUIDs are normalized to lowercase."""
text = "Use 46631191-E8A8-486F-AD90-84F89738321D"
result = core.extract_uuids_from_text(text)
assert result[0] == "46631191-e8a8-486f-ad90-84f89738321d"
def test_returns_empty_for_no_uuids(self):
"""Test that empty list is returned when no UUIDs found."""
text = "Create an email agent that sends notifications"
result = core.extract_uuids_from_text(text)
assert result == []
def test_ignores_invalid_uuids(self):
"""Test that invalid UUID-like strings are ignored."""
text = "Not a valid UUID: 12345678-1234-1234-1234-123456789abc"
result = core.extract_uuids_from_text(text)
# UUID v4 requires specific patterns (4 in third group, 8/9/a/b in fourth)
assert len(result) == 0
class TestGetLibraryAgentById:
"""Test get_library_agent_by_id function (and its alias get_library_agent_by_graph_id)."""
@pytest.mark.asyncio
async def test_returns_agent_when_found_by_graph_id(self):
"""Test that agent is returned when found by graph_id."""
mock_agent = MagicMock()
mock_agent.graph_id = "agent-123"
mock_agent.graph_version = 1
mock_agent.name = "Test Agent"
mock_agent.description = "Test description"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is not None
assert result["graph_id"] == "agent-123"
assert result["name"] == "Test Agent"
@pytest.mark.asyncio
async def test_falls_back_to_library_agent_id(self):
"""Test that lookup falls back to library agent ID when graph_id not found."""
mock_agent = MagicMock()
mock_agent.graph_id = "graph-456" # Different from the lookup ID
mock_agent.graph_version = 1
mock_agent.name = "Library Agent"
mock_agent.description = "Found by library ID"
mock_agent.input_schema = {"properties": {}}
mock_agent.output_schema = {"properties": {}}
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None, # Not found by graph_id
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
return_value=mock_agent, # Found by library ID
),
):
result = await core.get_library_agent_by_id("user-123", "library-id-123")
assert result is not None
assert result["graph_id"] == "graph-456"
assert result["name"] == "Library Agent"
@pytest.mark.asyncio
async def test_returns_none_when_not_found_by_either_method(self):
"""Test that None is returned when agent not found by either method."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=None,
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=core.NotFoundError("Not found"),
),
):
result = await core.get_library_agent_by_id("user-123", "nonexistent")
assert result is None
@pytest.mark.asyncio
async def test_returns_none_on_exception(self):
"""Test that None is returned when exception occurs in both lookups."""
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
patch.object(
core.library_db,
"get_library_agent",
new_callable=AsyncMock,
side_effect=Exception("Database error"),
),
):
result = await core.get_library_agent_by_id("user-123", "agent-123")
assert result is None
@pytest.mark.asyncio
async def test_alias_works(self):
"""Test that get_library_agent_by_graph_id is an alias for get_library_agent_by_id."""
assert core.get_library_agent_by_graph_id is core.get_library_agent_by_id
class TestGetAllRelevantAgentsWithUuids:
"""Test UUID extraction in get_all_relevant_agents_for_generation."""
@pytest.mark.asyncio
async def test_fetches_explicitly_mentioned_agents(self):
"""Test that agents mentioned by UUID are fetched directly."""
mock_agent = MagicMock()
mock_agent.graph_id = "46631191-e8a8-486f-ad90-84f89738321d"
mock_agent.graph_version = 1
mock_agent.name = "Mentioned Agent"
mock_agent.description = "Explicitly mentioned"
mock_agent.input_schema = {}
mock_agent.output_schema = {}
mock_response = MagicMock()
mock_response.agents = []
with (
patch.object(
core.library_db,
"get_library_agent_by_graph_id",
new_callable=AsyncMock,
return_value=mock_agent,
),
patch.object(
core.library_db,
"list_library_agents",
new_callable=AsyncMock,
return_value=mock_response,
),
):
result = await core.get_all_relevant_agents_for_generation(
user_id="user-123",
search_query="Use agent 46631191-e8a8-486f-ad90-84f89738321d",
include_marketplace=False,
)
assert len(result) == 1
assert result[0].get("graph_id") == "46631191-e8a8-486f-ad90-84f89738321d"
assert result[0].get("name") == "Mentioned Agent"
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -102,7 +102,7 @@ class TestDecomposeGoalExternal:
@pytest.mark.asyncio
async def test_decompose_goal_with_context(self):
"""Test decomposition with additional context."""
"""Test decomposition with additional context enriched into description."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
@@ -119,9 +119,12 @@ class TestDecomposeGoalExternal:
"Build a chatbot", context="Use Python"
)
expected_description = (
"Build a chatbot\n\nAdditional context from user:\nUse Python"
)
mock_client.post.assert_called_once_with(
"/api/decompose-description",
json={"description": "Build a chatbot", "user_instruction": "Use Python"},
json={"description": expected_description},
)
@pytest.mark.asyncio
@@ -433,5 +436,139 @@ class TestGetBlocksExternal:
assert result is None
class TestLibraryAgentsPassthrough:
"""Test that library_agents are passed correctly in all requests."""
def setup_method(self):
"""Reset client singleton before each test."""
service._settings = None
service._client = None
@pytest.mark.asyncio
async def test_decompose_goal_passes_library_agents(self):
"""Test that library_agents are included in decompose goal payload."""
library_agents = [
{
"graph_id": "agent-123",
"graph_version": 1,
"name": "Email Sender",
"description": "Sends emails",
"input_schema": {"properties": {"to": {"type": "string"}}},
"output_schema": {"properties": {"sent": {"type": "boolean"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.decompose_goal_external(
"Send an email",
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_generate_agent_passes_library_agents(self):
"""Test that library_agents are included in generate agent payload."""
library_agents = [
{
"graph_id": "agent-456",
"graph_version": 2,
"name": "Data Fetcher",
"description": "Fetches data from API",
"input_schema": {"properties": {"url": {"type": "string"}}},
"output_schema": {"properties": {"data": {"type": "object"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": {"name": "Test Agent", "nodes": []},
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.generate_agent_external(
{"steps": ["Step 1"]},
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_generate_agent_patch_passes_library_agents(self):
"""Test that library_agents are included in patch generation payload."""
library_agents = [
{
"graph_id": "agent-789",
"graph_version": 1,
"name": "Slack Notifier",
"description": "Sends Slack messages",
"input_schema": {"properties": {"message": {"type": "string"}}},
"output_schema": {"properties": {"success": {"type": "boolean"}}},
},
]
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"agent_json": {"name": "Updated Agent", "nodes": []},
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.generate_agent_patch_external(
"Add error handling",
{"name": "Original Agent", "nodes": []},
library_agents=library_agents,
)
# Verify library_agents was passed in the payload
call_args = mock_client.post.call_args
assert call_args[1]["json"]["library_agents"] == library_agents
@pytest.mark.asyncio
async def test_decompose_goal_without_library_agents(self):
"""Test that decompose goal works without library_agents."""
mock_response = MagicMock()
mock_response.json.return_value = {
"success": True,
"type": "instructions",
"steps": ["Step 1"],
}
mock_response.raise_for_status = MagicMock()
mock_client = AsyncMock()
mock_client.post.return_value = mock_response
with patch.object(service, "_get_client", return_value=mock_client):
await service.decompose_goal_external("Build a workflow")
# Verify library_agents was NOT passed when not provided
call_args = mock_client.post.call_args
assert "library_agents" not in call_args[1]["json"]
if __name__ == "__main__":
pytest.main([__file__, "-v"])

View File

@@ -43,19 +43,24 @@ faker = Faker()
# Constants for data generation limits (reduced for E2E tests)
NUM_USERS = 15
NUM_AGENT_BLOCKS = 30
MIN_GRAPHS_PER_USER = 15
MAX_GRAPHS_PER_USER = 15
MIN_GRAPHS_PER_USER = 25
MAX_GRAPHS_PER_USER = 25
MIN_NODES_PER_GRAPH = 3
MAX_NODES_PER_GRAPH = 6
MIN_PRESETS_PER_USER = 2
MAX_PRESETS_PER_USER = 3
MIN_AGENTS_PER_USER = 15
MAX_AGENTS_PER_USER = 15
MIN_AGENTS_PER_USER = 25
MAX_AGENTS_PER_USER = 25
MIN_EXECUTIONS_PER_GRAPH = 2
MAX_EXECUTIONS_PER_GRAPH = 8
MIN_REVIEWS_PER_VERSION = 2
MAX_REVIEWS_PER_VERSION = 5
# Guaranteed minimums for marketplace tests (deterministic)
GUARANTEED_FEATURED_AGENTS = 8
GUARANTEED_FEATURED_CREATORS = 5
GUARANTEED_TOP_AGENTS = 10
def get_image():
"""Generate a consistent image URL using picsum.photos service."""
@@ -385,7 +390,7 @@ class TestDataCreator:
library_agents = []
for user in self.users:
num_agents = 10 # Create exactly 10 agents per user
num_agents = random.randint(MIN_AGENTS_PER_USER, MAX_AGENTS_PER_USER)
# Get available graphs for this user
user_graphs = [
@@ -507,14 +512,17 @@ class TestDataCreator:
existing_profiles, min(num_creators, len(existing_profiles))
)
# Mark about 50% of creators as featured (more for testing)
num_featured = max(2, int(num_creators * 0.5))
# Guarantee at least GUARANTEED_FEATURED_CREATORS featured creators
num_featured = max(GUARANTEED_FEATURED_CREATORS, int(num_creators * 0.5))
num_featured = min(
num_featured, len(selected_profiles)
) # Don't exceed available profiles
featured_profile_ids = set(
random.sample([p.id for p in selected_profiles], num_featured)
)
print(
f"🎯 Creating {num_featured} featured creators (min: {GUARANTEED_FEATURED_CREATORS})"
)
for profile in selected_profiles:
try:
@@ -545,21 +553,25 @@ class TestDataCreator:
return profiles
async def create_test_store_submissions(self) -> List[Dict[str, Any]]:
"""Create test store submissions using the API function."""
"""Create test store submissions using the API function.
DETERMINISTIC: Guarantees minimum featured agents for E2E tests.
"""
print("Creating test store submissions...")
submissions = []
approved_submissions = []
featured_count = 0
submission_counter = 0
# Create a special test submission for test123@gmail.com
# Create a special test submission for test123@gmail.com (ALWAYS approved + featured)
test_user = next(
(user for user in self.users if user["email"] == "test123@gmail.com"), None
)
if test_user:
# Special test data for consistent testing
if test_user and self.agent_graphs:
test_submission_data = {
"user_id": test_user["id"],
"agent_id": self.agent_graphs[0]["id"], # Use first available graph
"agent_id": self.agent_graphs[0]["id"],
"agent_version": 1,
"slug": "test-agent-submission",
"name": "Test Agent Submission",
@@ -580,37 +592,24 @@ class TestDataCreator:
submissions.append(test_submission.model_dump())
print("✅ Created special test store submission for test123@gmail.com")
# Randomly approve, reject, or leave pending the test submission
# ALWAYS approve and feature the test submission
if test_submission.store_listing_version_id:
random_value = random.random()
if random_value < 0.4: # 40% chance to approve
approved_submission = await review_store_submission(
store_listing_version_id=test_submission.store_listing_version_id,
is_approved=True,
external_comments="Test submission approved",
internal_comments="Auto-approved test submission",
reviewer_id=test_user["id"],
)
approved_submissions.append(approved_submission.model_dump())
print("✅ Approved test store submission")
approved_submission = await review_store_submission(
store_listing_version_id=test_submission.store_listing_version_id,
is_approved=True,
external_comments="Test submission approved",
internal_comments="Auto-approved test submission",
reviewer_id=test_user["id"],
)
approved_submissions.append(approved_submission.model_dump())
print("✅ Approved test store submission")
# Mark approved submission as featured
await prisma.storelistingversion.update(
where={"id": test_submission.store_listing_version_id},
data={"isFeatured": True},
)
print("🌟 Marked test agent as FEATURED")
elif random_value < 0.7: # 30% chance to reject (40% to 70%)
await review_store_submission(
store_listing_version_id=test_submission.store_listing_version_id,
is_approved=False,
external_comments="Test submission rejected - needs improvements",
internal_comments="Auto-rejected test submission for E2E testing",
reviewer_id=test_user["id"],
)
print("❌ Rejected test store submission")
else: # 30% chance to leave pending (70% to 100%)
print("⏳ Left test submission pending for review")
await prisma.storelistingversion.update(
where={"id": test_submission.store_listing_version_id},
data={"isFeatured": True},
)
featured_count += 1
print("🌟 Marked test agent as FEATURED")
except Exception as e:
print(f"Error creating test store submission: {e}")
@@ -620,7 +619,6 @@ class TestDataCreator:
# Create regular submissions for all users
for user in self.users:
# Get available graphs for this specific user
user_graphs = [
g for g in self.agent_graphs if g.get("userId") == user["id"]
]
@@ -631,18 +629,17 @@ class TestDataCreator:
)
continue
# Create exactly 4 store submissions per user
for submission_index in range(4):
graph = random.choice(user_graphs)
submission_counter += 1
try:
print(
f"Creating store submission for user {user['id']} with graph {graph['id']} (owner: {graph.get('userId')})"
f"Creating store submission for user {user['id']} with graph {graph['id']}"
)
# Use the API function to create store submission with correct parameters
submission = await create_store_submission(
user_id=user["id"], # Must match graph's userId
user_id=user["id"],
agent_id=graph["id"],
agent_version=graph.get("version", 1),
slug=faker.slug(),
@@ -651,22 +648,24 @@ class TestDataCreator:
video_url=get_video_url() if random.random() < 0.3 else None,
image_urls=[get_image() for _ in range(3)],
description=faker.text(),
categories=[
get_category()
], # Single category from predefined list
categories=[get_category()],
changes_summary="Initial E2E test submission",
)
submissions.append(submission.model_dump())
print(f"✅ Created store submission: {submission.name}")
# Randomly approve, reject, or leave pending the submission
if submission.store_listing_version_id:
random_value = random.random()
if random_value < 0.4: # 40% chance to approve
try:
# Pick a random user as the reviewer (admin)
reviewer_id = random.choice(self.users)["id"]
# DETERMINISTIC: First N submissions are always approved
# First GUARANTEED_FEATURED_AGENTS of those are always featured
should_approve = (
submission_counter <= GUARANTEED_TOP_AGENTS
or random.random() < 0.4
)
should_feature = featured_count < GUARANTEED_FEATURED_AGENTS
if should_approve:
try:
reviewer_id = random.choice(self.users)["id"]
approved_submission = await review_store_submission(
store_listing_version_id=submission.store_listing_version_id,
is_approved=True,
@@ -681,16 +680,7 @@ class TestDataCreator:
f"✅ Approved store submission: {submission.name}"
)
# Mark some agents as featured during creation (30% chance)
# More likely for creators and first submissions
is_creator = user["id"] in [
p.get("userId") for p in self.profiles
]
feature_chance = (
0.5 if is_creator else 0.2
) # 50% for creators, 20% for others
if random.random() < feature_chance:
if should_feature:
try:
await prisma.storelistingversion.update(
where={
@@ -698,8 +688,25 @@ class TestDataCreator:
},
data={"isFeatured": True},
)
featured_count += 1
print(
f"🌟 Marked agent as FEATURED: {submission.name}"
f"🌟 Marked agent as FEATURED ({featured_count}/{GUARANTEED_FEATURED_AGENTS}): {submission.name}"
)
except Exception as e:
print(
f"Warning: Could not mark submission as featured: {e}"
)
elif random.random() < 0.2:
try:
await prisma.storelistingversion.update(
where={
"id": submission.store_listing_version_id
},
data={"isFeatured": True},
)
featured_count += 1
print(
f"🌟 Marked agent as FEATURED (bonus): {submission.name}"
)
except Exception as e:
print(
@@ -710,11 +717,9 @@ class TestDataCreator:
print(
f"Warning: Could not approve submission {submission.name}: {e}"
)
elif random_value < 0.7: # 30% chance to reject (40% to 70%)
elif random.random() < 0.5:
try:
# Pick a random user as the reviewer (admin)
reviewer_id = random.choice(self.users)["id"]
await review_store_submission(
store_listing_version_id=submission.store_listing_version_id,
is_approved=False,
@@ -729,7 +734,7 @@ class TestDataCreator:
print(
f"Warning: Could not reject submission {submission.name}: {e}"
)
else: # 30% chance to leave pending (70% to 100%)
else:
print(
f"⏳ Left submission pending for review: {submission.name}"
)
@@ -743,9 +748,13 @@ class TestDataCreator:
traceback.print_exc()
continue
print("\n📊 Store Submissions Summary:")
print(f" Created: {len(submissions)}")
print(f" Approved: {len(approved_submissions)}")
print(
f"Created {len(submissions)} store submissions, approved {len(approved_submissions)}"
f" Featured: {featured_count} (guaranteed min: {GUARANTEED_FEATURED_AGENTS})"
)
self.store_submissions = submissions
return submissions
@@ -825,12 +834,15 @@ class TestDataCreator:
print(f"✅ Agent blocks available: {len(self.agent_blocks)}")
print(f"✅ Agent graphs created: {len(self.agent_graphs)}")
print(f"✅ Library agents created: {len(self.library_agents)}")
print(f"✅ Creator profiles updated: {len(self.profiles)} (some featured)")
print(
f"✅ Store submissions created: {len(self.store_submissions)} (some marked as featured during creation)"
)
print(f"✅ Creator profiles updated: {len(self.profiles)}")
print(f"✅ Store submissions created: {len(self.store_submissions)}")
print(f"✅ API keys created: {len(self.api_keys)}")
print(f"✅ Presets created: {len(self.presets)}")
print("\n🎯 Deterministic Guarantees:")
print(f" • Featured agents: >= {GUARANTEED_FEATURED_AGENTS}")
print(f" • Featured creators: >= {GUARANTEED_FEATURED_CREATORS}")
print(f" • Top agents (approved): >= {GUARANTEED_TOP_AGENTS}")
print(f" • Library agents per user: >= {MIN_AGENTS_PER_USER}")
print("\n🚀 Your E2E test database is ready to use!")

View File

@@ -1,10 +1,9 @@
"use client";
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
import { getOnboardingStatus, resolveResponse } from "@/app/api/helpers";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { useRouter } from "next/navigation";
import { useEffect } from "react";
import { resolveResponse, getOnboardingStatus } from "@/app/api/helpers";
import { getV1OnboardingState } from "@/app/api/__generated__/endpoints/onboarding/onboarding";
import { getHomepageRoute } from "@/lib/constants";
export default function OnboardingPage() {
const router = useRouter();
@@ -13,12 +12,10 @@ export default function OnboardingPage() {
async function redirectToStep() {
try {
// Check if onboarding is enabled (also gets chat flag for redirect)
const { shouldShowOnboarding, isChatEnabled } =
await getOnboardingStatus();
const homepageRoute = getHomepageRoute(isChatEnabled);
const { shouldShowOnboarding } = await getOnboardingStatus();
if (!shouldShowOnboarding) {
router.replace(homepageRoute);
router.replace("/");
return;
}
@@ -26,7 +23,7 @@ export default function OnboardingPage() {
// Handle completed onboarding
if (onboarding.completedSteps.includes("GET_RESULTS")) {
router.replace(homepageRoute);
router.replace("/");
return;
}

View File

@@ -1,9 +1,8 @@
import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
import { getHomepageRoute } from "@/lib/constants";
import BackendAPI from "@/lib/autogpt-server-api";
import { NextResponse } from "next/server";
import { revalidatePath } from "next/cache";
import { getOnboardingStatus } from "@/app/api/helpers";
import BackendAPI from "@/lib/autogpt-server-api";
import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
import { revalidatePath } from "next/cache";
import { NextResponse } from "next/server";
// Handle the callback to complete the user session login
export async function GET(request: Request) {
@@ -27,13 +26,12 @@ export async function GET(request: Request) {
await api.createUser();
// Get onboarding status from backend (includes chat flag evaluated for this user)
const { shouldShowOnboarding, isChatEnabled } =
await getOnboardingStatus();
const { shouldShowOnboarding } = await getOnboardingStatus();
if (shouldShowOnboarding) {
next = "/onboarding";
revalidatePath("/onboarding", "layout");
} else {
next = getHomepageRoute(isChatEnabled);
next = "/";
revalidatePath(next, "layout");
}
} catch (createUserError) {

View File

@@ -857,7 +857,7 @@ export const CustomNode = React.memo(
})();
const hasAdvancedFields =
data.inputSchema &&
data.inputSchema?.properties &&
Object.entries(data.inputSchema.properties).some(([key, value]) => {
return (
value.advanced === true && !data.inputSchema.required?.includes(key)

View File

@@ -1,6 +1,13 @@
import type { ReactNode } from "react";
"use client";
import { FeatureFlagPage } from "@/services/feature-flags/FeatureFlagPage";
import { Flag } from "@/services/feature-flags/use-get-flag";
import { type ReactNode } from "react";
import { CopilotShell } from "./components/CopilotShell/CopilotShell";
export default function CopilotLayout({ children }: { children: ReactNode }) {
return <CopilotShell>{children}</CopilotShell>;
return (
<FeatureFlagPage flag={Flag.CHAT} whenDisabled="/library">
<CopilotShell>{children}</CopilotShell>
</FeatureFlagPage>
);
}

View File

@@ -14,14 +14,8 @@ export default function CopilotPage() {
const isInterruptModalOpen = useCopilotStore((s) => s.isInterruptModalOpen);
const confirmInterrupt = useCopilotStore((s) => s.confirmInterrupt);
const cancelInterrupt = useCopilotStore((s) => s.cancelInterrupt);
const {
greetingName,
quickActions,
isLoading,
hasSession,
initialPrompt,
isReady,
} = state;
const { greetingName, quickActions, isLoading, hasSession, initialPrompt } =
state;
const {
handleQuickAction,
startChatWithPrompt,
@@ -29,8 +23,6 @@ export default function CopilotPage() {
handleStreamingChange,
} = handlers;
if (!isReady) return null;
if (hasSession) {
return (
<div className="flex h-full flex-col">

View File

@@ -3,18 +3,11 @@ import {
postV2CreateSession,
} from "@/app/api/__generated__/endpoints/chat/chat";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { getHomepageRoute } from "@/lib/constants";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { useOnboarding } from "@/providers/onboarding/onboarding-provider";
import {
Flag,
type FlagValues,
useGetFlag,
} from "@/services/feature-flags/use-get-flag";
import { SessionKey, sessionStorage } from "@/services/storage/session-storage";
import * as Sentry from "@sentry/nextjs";
import { useQueryClient } from "@tanstack/react-query";
import { useFlags } from "launchdarkly-react-client-sdk";
import { useRouter } from "next/navigation";
import { useEffect } from "react";
import { useCopilotStore } from "./copilot-page-store";
@@ -33,22 +26,6 @@ export function useCopilotPage() {
const isCreating = useCopilotStore((s) => s.isCreatingSession);
const setIsCreating = useCopilotStore((s) => s.setIsCreatingSession);
// Complete VISIT_COPILOT onboarding step to grant $5 welcome bonus
useEffect(() => {
if (isLoggedIn) {
completeStep("VISIT_COPILOT");
}
}, [completeStep, isLoggedIn]);
const isChatEnabled = useGetFlag(Flag.CHAT);
const flags = useFlags<FlagValues>();
const homepageRoute = getHomepageRoute(isChatEnabled);
const envEnabled = process.env.NEXT_PUBLIC_LAUNCHDARKLY_ENABLED === "true";
const clientId = process.env.NEXT_PUBLIC_LAUNCHDARKLY_CLIENT_ID;
const isLaunchDarklyConfigured = envEnabled && Boolean(clientId);
const isFlagReady =
!isLaunchDarklyConfigured || flags[Flag.CHAT] !== undefined;
const greetingName = getGreetingName(user);
const quickActions = getQuickActions();
@@ -58,11 +35,8 @@ export function useCopilotPage() {
: undefined;
useEffect(() => {
if (!isFlagReady) return;
if (isChatEnabled === false) {
router.replace(homepageRoute);
}
}, [homepageRoute, isChatEnabled, isFlagReady, router]);
if (isLoggedIn) completeStep("VISIT_COPILOT");
}, [completeStep, isLoggedIn]);
async function startChatWithPrompt(prompt: string) {
if (!prompt?.trim()) return;
@@ -116,7 +90,6 @@ export function useCopilotPage() {
isLoading: isUserLoading,
hasSession,
initialPrompt,
isReady: isFlagReady && isChatEnabled !== false && isLoggedIn,
},
handlers: {
handleQuickAction,

View File

@@ -1,8 +1,6 @@
"use client";
import { ErrorCard } from "@/components/molecules/ErrorCard/ErrorCard";
import { getHomepageRoute } from "@/lib/constants";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { useSearchParams } from "next/navigation";
import { Suspense } from "react";
import { getErrorDetails } from "./helpers";
@@ -11,8 +9,6 @@ function ErrorPageContent() {
const searchParams = useSearchParams();
const errorMessage = searchParams.get("message");
const errorDetails = getErrorDetails(errorMessage);
const isChatEnabled = useGetFlag(Flag.CHAT);
const homepageRoute = getHomepageRoute(isChatEnabled);
function handleRetry() {
// Auth-related errors should redirect to login
@@ -30,7 +26,7 @@ function ErrorPageContent() {
}, 2000);
} else {
// For server/network errors, go to home
window.location.href = homepageRoute;
window.location.href = "/";
}
}

View File

@@ -1,6 +1,5 @@
"use server";
import { getHomepageRoute } from "@/lib/constants";
import BackendAPI from "@/lib/autogpt-server-api";
import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
import { loginFormSchema } from "@/types/auth";
@@ -38,10 +37,8 @@ export async function login(email: string, password: string) {
await api.createUser();
// Get onboarding status from backend (includes chat flag evaluated for this user)
const { shouldShowOnboarding, isChatEnabled } = await getOnboardingStatus();
const next = shouldShowOnboarding
? "/onboarding"
: getHomepageRoute(isChatEnabled);
const { shouldShowOnboarding } = await getOnboardingStatus();
const next = shouldShowOnboarding ? "/onboarding" : "/";
return {
success: true,

View File

@@ -1,8 +1,6 @@
import { useToast } from "@/components/molecules/Toast/use-toast";
import { getHomepageRoute } from "@/lib/constants";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { environment } from "@/services/environment";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { loginFormSchema, LoginProvider } from "@/types/auth";
import { zodResolver } from "@hookform/resolvers/zod";
import { useRouter, useSearchParams } from "next/navigation";
@@ -22,17 +20,15 @@ export function useLoginPage() {
const [isGoogleLoading, setIsGoogleLoading] = useState(false);
const [showNotAllowedModal, setShowNotAllowedModal] = useState(false);
const isCloudEnv = environment.isCloud();
const isChatEnabled = useGetFlag(Flag.CHAT);
const homepageRoute = getHomepageRoute(isChatEnabled);
// Get redirect destination from 'next' query parameter
const nextUrl = searchParams.get("next");
useEffect(() => {
if (isLoggedIn && !isLoggingIn) {
router.push(nextUrl || homepageRoute);
router.push(nextUrl || "/");
}
}, [homepageRoute, isLoggedIn, isLoggingIn, nextUrl, router]);
}, [isLoggedIn, isLoggingIn, nextUrl, router]);
const form = useForm<z.infer<typeof loginFormSchema>>({
resolver: zodResolver(loginFormSchema),
@@ -98,7 +94,7 @@ export function useLoginPage() {
}
// Prefer URL's next parameter, then use backend-determined route
router.replace(nextUrl || result.next || homepageRoute);
router.replace(nextUrl || result.next || "/");
} catch (error) {
toast({
title:

View File

@@ -1,6 +1,5 @@
"use server";
import { getHomepageRoute } from "@/lib/constants";
import { getServerSupabase } from "@/lib/supabase/server/getServerSupabase";
import { signupFormSchema } from "@/types/auth";
import * as Sentry from "@sentry/nextjs";
@@ -59,10 +58,8 @@ export async function signup(
}
// Get onboarding status from backend (includes chat flag evaluated for this user)
const { shouldShowOnboarding, isChatEnabled } = await getOnboardingStatus();
const next = shouldShowOnboarding
? "/onboarding"
: getHomepageRoute(isChatEnabled);
const { shouldShowOnboarding } = await getOnboardingStatus();
const next = shouldShowOnboarding ? "/onboarding" : "/";
return { success: true, next };
} catch (err) {

View File

@@ -1,8 +1,6 @@
import { useToast } from "@/components/molecules/Toast/use-toast";
import { getHomepageRoute } from "@/lib/constants";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { environment } from "@/services/environment";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { LoginProvider, signupFormSchema } from "@/types/auth";
import { zodResolver } from "@hookform/resolvers/zod";
import { useRouter, useSearchParams } from "next/navigation";
@@ -22,17 +20,15 @@ export function useSignupPage() {
const [isGoogleLoading, setIsGoogleLoading] = useState(false);
const [showNotAllowedModal, setShowNotAllowedModal] = useState(false);
const isCloudEnv = environment.isCloud();
const isChatEnabled = useGetFlag(Flag.CHAT);
const homepageRoute = getHomepageRoute(isChatEnabled);
// Get redirect destination from 'next' query parameter
const nextUrl = searchParams.get("next");
useEffect(() => {
if (isLoggedIn && !isSigningUp) {
router.push(nextUrl || homepageRoute);
router.push(nextUrl || "/");
}
}, [homepageRoute, isLoggedIn, isSigningUp, nextUrl, router]);
}, [isLoggedIn, isSigningUp, nextUrl, router]);
const form = useForm<z.infer<typeof signupFormSchema>>({
resolver: zodResolver(signupFormSchema),
@@ -133,7 +129,7 @@ export function useSignupPage() {
}
// Prefer the URL's next parameter, then result.next (for onboarding), then default
const redirectTo = nextUrl || result.next || homepageRoute;
const redirectTo = nextUrl || result.next || "/";
router.replace(redirectTo);
} catch (error) {
setIsLoading(false);

View File

@@ -181,6 +181,5 @@ export async function getOnboardingStatus() {
const isCompleted = onboarding.completedSteps.includes("CONGRATS");
return {
shouldShowOnboarding: status.is_onboarding_enabled && !isCompleted,
isChatEnabled: status.is_chat_enabled,
};
}

View File

@@ -7981,6 +7981,25 @@
]
},
"new_output": { "type": "boolean", "title": "New Output" },
"execution_count": {
"type": "integer",
"title": "Execution Count",
"default": 0
},
"success_rate": {
"anyOf": [{ "type": "number" }, { "type": "null" }],
"title": "Success Rate"
},
"avg_correctness_score": {
"anyOf": [{ "type": "number" }, { "type": "null" }],
"title": "Avg Correctness Score"
},
"recent_executions": {
"items": { "$ref": "#/components/schemas/RecentExecution" },
"type": "array",
"title": "Recent Executions",
"description": "List of recent executions with status, score, and summary"
},
"can_access_graph": {
"type": "boolean",
"title": "Can Access Graph"
@@ -9374,6 +9393,23 @@
"required": ["providers", "pagination"],
"title": "ProviderResponse"
},
"RecentExecution": {
"properties": {
"status": { "type": "string", "title": "Status" },
"correctness_score": {
"anyOf": [{ "type": "number" }, { "type": "null" }],
"title": "Correctness Score"
},
"activity_summary": {
"anyOf": [{ "type": "string" }, { "type": "null" }],
"title": "Activity Summary"
}
},
"type": "object",
"required": ["status"],
"title": "RecentExecution",
"description": "Summary of a recent execution for quality assessment.\n\nUsed by the LLM to understand the agent's recent performance with specific examples\nrather than just aggregate statistics."
},
"RefundRequest": {
"properties": {
"id": { "type": "string", "title": "Id" },
@@ -9797,7 +9833,8 @@
"sub_heading": { "type": "string", "title": "Sub Heading" },
"description": { "type": "string", "title": "Description" },
"runs": { "type": "integer", "title": "Runs" },
"rating": { "type": "number", "title": "Rating" }
"rating": { "type": "number", "title": "Rating" },
"agent_graph_id": { "type": "string", "title": "Agent Graph Id" }
},
"type": "object",
"required": [
@@ -9809,7 +9846,8 @@
"sub_heading",
"description",
"runs",
"rating"
"rating",
"agent_graph_id"
],
"title": "StoreAgent"
},

View File

@@ -1,27 +1,15 @@
"use client";
import { getHomepageRoute } from "@/lib/constants";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { useRouter } from "next/navigation";
import { useEffect } from "react";
export default function Page() {
const isChatEnabled = useGetFlag(Flag.CHAT);
const router = useRouter();
const homepageRoute = getHomepageRoute(isChatEnabled);
const envEnabled = process.env.NEXT_PUBLIC_LAUNCHDARKLY_ENABLED === "true";
const clientId = process.env.NEXT_PUBLIC_LAUNCHDARKLY_CLIENT_ID;
const isLaunchDarklyConfigured = envEnabled && Boolean(clientId);
const isFlagReady =
!isLaunchDarklyConfigured || typeof isChatEnabled === "boolean";
useEffect(
function redirectToHomepage() {
if (!isFlagReady) return;
router.replace(homepageRoute);
},
[homepageRoute, isFlagReady, router],
);
useEffect(() => {
router.replace("/copilot");
}, [router]);
return null;
return <LoadingSpinner size="large" cover />;
}

View File

@@ -57,6 +57,7 @@ export function ChatInput({
isStreaming,
value,
baseHandleKeyDown,
inputId,
});
return (

View File

@@ -15,6 +15,7 @@ interface Args {
isStreaming?: boolean;
value: string;
baseHandleKeyDown: (event: KeyboardEvent<HTMLTextAreaElement>) => void;
inputId?: string;
}
export function useVoiceRecording({
@@ -23,6 +24,7 @@ export function useVoiceRecording({
isStreaming = false,
value,
baseHandleKeyDown,
inputId,
}: Args) {
const [isRecording, setIsRecording] = useState(false);
const [isTranscribing, setIsTranscribing] = useState(false);
@@ -103,7 +105,7 @@ export function useVoiceRecording({
setIsTranscribing(false);
}
},
[handleTranscription],
[handleTranscription, inputId],
);
const stopRecording = useCallback(() => {
@@ -201,6 +203,15 @@ export function useVoiceRecording({
}
}, [error, toast]);
useEffect(() => {
if (!isTranscribing && inputId) {
const inputElement = document.getElementById(inputId);
if (inputElement) {
inputElement.focus();
}
}
}, [isTranscribing, inputId]);
const handleKeyDown = useCallback(
(event: KeyboardEvent<HTMLTextAreaElement>) => {
if (event.key === " " && !value.trim() && !isTranscribing) {

View File

@@ -156,11 +156,19 @@ export function ChatMessage({
}
if (isClarificationNeeded && message.type === "clarification_needed") {
const hasUserReplyAfter =
index >= 0 &&
messages
.slice(index + 1)
.some((m) => m.type === "message" && m.role === "user");
return (
<ClarificationQuestionsWidget
questions={message.questions}
message={message.message}
sessionId={message.sessionId}
onSubmitAnswers={handleClarificationAnswers}
isAnswered={hasUserReplyAfter}
className={className}
/>
);

View File

@@ -6,7 +6,7 @@ import { Input } from "@/components/atoms/Input/Input";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import { CheckCircleIcon, QuestionIcon } from "@phosphor-icons/react";
import { useState } from "react";
import { useState, useEffect, useRef } from "react";
export interface ClarifyingQuestion {
question: string;
@@ -17,39 +17,96 @@ export interface ClarifyingQuestion {
interface Props {
questions: ClarifyingQuestion[];
message: string;
sessionId?: string;
onSubmitAnswers: (answers: Record<string, string>) => void;
onCancel?: () => void;
isAnswered?: boolean;
className?: string;
}
function getStorageKey(sessionId?: string): string | null {
if (!sessionId) return null;
return `clarification_answers_${sessionId}`;
}
export function ClarificationQuestionsWidget({
questions,
message,
sessionId,
onSubmitAnswers,
onCancel,
isAnswered = false,
className,
}: Props) {
const [answers, setAnswers] = useState<Record<string, string>>({});
const [isSubmitted, setIsSubmitted] = useState(false);
const lastSessionIdRef = useRef<string | undefined>(undefined);
useEffect(() => {
const storageKey = getStorageKey(sessionId);
if (!storageKey) {
setAnswers({});
setIsSubmitted(false);
lastSessionIdRef.current = sessionId;
return;
}
try {
const saved = localStorage.getItem(storageKey);
if (saved) {
const parsed = JSON.parse(saved) as Record<string, string>;
setAnswers(parsed);
} else {
setAnswers({});
}
setIsSubmitted(false);
} catch {
setAnswers({});
setIsSubmitted(false);
}
lastSessionIdRef.current = sessionId;
}, [sessionId]);
useEffect(() => {
if (lastSessionIdRef.current !== sessionId) {
return;
}
const storageKey = getStorageKey(sessionId);
if (!storageKey) return;
const hasAnswers = Object.values(answers).some((v) => v.trim());
try {
if (hasAnswers) {
localStorage.setItem(storageKey, JSON.stringify(answers));
} else {
localStorage.removeItem(storageKey);
}
} catch {}
}, [answers, sessionId]);
function handleAnswerChange(keyword: string, value: string) {
setAnswers((prev) => ({ ...prev, [keyword]: value }));
}
function handleSubmit() {
// Check if all questions are answered
const allAnswered = questions.every((q) => answers[q.keyword]?.trim());
if (!allAnswered) {
return;
}
setIsSubmitted(true);
onSubmitAnswers(answers);
const storageKey = getStorageKey(sessionId);
try {
if (storageKey) {
localStorage.removeItem(storageKey);
}
} catch {}
}
const allAnswered = questions.every((q) => answers[q.keyword]?.trim());
// Show submitted state after answers are submitted
if (isSubmitted) {
if (isAnswered || isSubmitted) {
return (
<div
className={cn(

View File

@@ -30,9 +30,9 @@ export function getErrorMessage(result: unknown): string {
}
if (typeof result === "object" && result !== null) {
const response = result as Record<string, unknown>;
if (response.error) return stripInternalReasoning(String(response.error));
if (response.message)
return stripInternalReasoning(String(response.message));
if (response.error) return stripInternalReasoning(String(response.error));
}
return "An error occurred";
}
@@ -363,8 +363,8 @@ export function formatToolResponse(result: unknown, toolName: string): string {
case "error":
const errorMsg =
(response.error as string) || response.message || "An error occurred";
return `Error: ${errorMsg}`;
(response.message as string) || response.error || "An error occurred";
return stripInternalReasoning(String(errorMsg));
case "no_results":
const suggestions = (response.suggestions as string[]) || [];

View File

@@ -1,7 +1,6 @@
"use client";
import { IconLaptop } from "@/components/__legacy__/ui/icons";
import { getHomepageRoute } from "@/lib/constants";
import { cn } from "@/lib/utils";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import { ListChecksIcon } from "@phosphor-icons/react/dist/ssr";
@@ -24,11 +23,11 @@ interface Props {
export function NavbarLink({ name, href }: Props) {
const pathname = usePathname();
const isChatEnabled = useGetFlag(Flag.CHAT);
const homepageRoute = getHomepageRoute(isChatEnabled);
const expectedHomeRoute = isChatEnabled ? "/copilot" : "/library";
const isActive =
href === homepageRoute
? pathname === "/" || pathname.startsWith(homepageRoute)
href === expectedHomeRoute
? pathname === "/" || pathname.startsWith(expectedHomeRoute)
: pathname.includes(href);
return (

View File

@@ -80,7 +80,7 @@ export default function WrapIfAdditionalTemplate(
uiSchema={uiSchema}
/>
{!isHandleConnected && (
<div className="flex flex-1 items-center gap-2">
<div className="nodrag flex flex-1 items-center gap-2">
<Input
label={""}
hideLabel={true}

View File

@@ -66,7 +66,7 @@ export default function useAgentGraph(
>(null);
const [xyNodes, setXYNodes] = useState<CustomNode[]>([]);
const [xyEdges, setXYEdges] = useState<CustomEdge[]>([]);
const betaBlocks = useGetFlag(Flag.BETA_BLOCKS);
const betaBlocks = useGetFlag(Flag.BETA_BLOCKS) as string[];
// Filter blocks based on beta flags
const availableBlocks = useMemo(() => {

View File

@@ -11,10 +11,3 @@ export const API_KEY_HEADER_NAME = "X-API-Key";
// Layout
export const NAVBAR_HEIGHT_PX = 60;
// Routes
export function getHomepageRoute(isChatEnabled?: boolean | null): string {
if (isChatEnabled === true) return "/copilot";
if (isChatEnabled === false) return "/library";
return "/";
}

View File

@@ -1,4 +1,3 @@
import { getHomepageRoute } from "@/lib/constants";
import { environment } from "@/services/environment";
import { Key, storage } from "@/services/storage/local-storage";
import { type CookieOptions } from "@supabase/ssr";
@@ -71,7 +70,7 @@ export function getRedirectPath(
}
if (isAdminPage(path) && userRole !== "admin") {
return getHomepageRoute();
return "/";
}
return null;

View File

@@ -1,4 +1,3 @@
import { getHomepageRoute } from "@/lib/constants";
import { environment } from "@/services/environment";
import { createServerClient } from "@supabase/ssr";
import { NextResponse, type NextRequest } from "next/server";
@@ -67,7 +66,7 @@ export async function updateSession(request: NextRequest) {
// 2. Check if user is authenticated but lacks admin role when accessing admin pages
if (user && userRole !== "admin" && isAdminPage(pathname)) {
url.pathname = getHomepageRoute();
url.pathname = "/";
return NextResponse.redirect(url);
}

View File

@@ -23,9 +23,7 @@ import {
WebSocketNotification,
} from "@/lib/autogpt-server-api";
import { useBackendAPI } from "@/lib/autogpt-server-api/context";
import { getHomepageRoute } from "@/lib/constants";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import { Flag, useGetFlag } from "@/services/feature-flags/use-get-flag";
import Link from "next/link";
import { usePathname, useRouter } from "next/navigation";
import {
@@ -104,8 +102,6 @@ export default function OnboardingProvider({
const pathname = usePathname();
const router = useRouter();
const { isLoggedIn } = useSupabase();
const isChatEnabled = useGetFlag(Flag.CHAT);
const homepageRoute = getHomepageRoute(isChatEnabled);
useOnboardingTimezoneDetection();
@@ -150,7 +146,7 @@ export default function OnboardingProvider({
if (isOnOnboardingRoute) {
const enabled = await resolveResponse(getV1IsOnboardingEnabled());
if (!enabled) {
router.push(homepageRoute);
router.push("/");
return;
}
}
@@ -162,7 +158,7 @@ export default function OnboardingProvider({
isOnOnboardingRoute &&
shouldRedirectFromOnboarding(onboarding.completedSteps, pathname)
) {
router.push(homepageRoute);
router.push("/");
}
} catch (error) {
console.error("Failed to initialize onboarding:", error);
@@ -177,7 +173,7 @@ export default function OnboardingProvider({
}
initializeOnboarding();
}, [api, homepageRoute, isOnOnboardingRoute, router, isLoggedIn, pathname]);
}, [api, isOnOnboardingRoute, router, isLoggedIn, pathname]);
const handleOnboardingNotification = useCallback(
(notification: WebSocketNotification) => {

View File

@@ -83,6 +83,10 @@ function getPostHogCredentials() {
};
}
function getLaunchDarklyClientId() {
return process.env.NEXT_PUBLIC_LAUNCHDARKLY_CLIENT_ID;
}
function isProductionBuild() {
return process.env.NODE_ENV === "production";
}
@@ -120,7 +124,10 @@ function isVercelPreview() {
}
function areFeatureFlagsEnabled() {
return process.env.NEXT_PUBLIC_LAUNCHDARKLY_ENABLED === "enabled";
return (
process.env.NEXT_PUBLIC_LAUNCHDARKLY_ENABLED === "true" &&
Boolean(process.env.NEXT_PUBLIC_LAUNCHDARKLY_CLIENT_ID)
);
}
function isPostHogEnabled() {
@@ -143,6 +150,7 @@ export const environment = {
getSupabaseAnonKey,
getPreviewStealingDev,
getPostHogCredentials,
getLaunchDarklyClientId,
// Assertions
isServerSide,
isClientSide,

View File

@@ -0,0 +1,59 @@
"use client";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { useLDClient } from "launchdarkly-react-client-sdk";
import { useRouter } from "next/navigation";
import { ReactNode, useEffect, useState } from "react";
import { environment } from "../environment";
import { Flag, useGetFlag } from "./use-get-flag";
interface FeatureFlagRedirectProps {
flag: Flag;
whenDisabled: string;
children: ReactNode;
}
export function FeatureFlagPage({
flag,
whenDisabled,
children,
}: FeatureFlagRedirectProps) {
const [isLoading, setIsLoading] = useState(true);
const router = useRouter();
const flagValue = useGetFlag(flag);
const ldClient = useLDClient();
const ldEnabled = environment.areFeatureFlagsEnabled();
const ldReady = Boolean(ldClient);
const flagEnabled = Boolean(flagValue);
useEffect(() => {
const initialize = async () => {
if (!ldEnabled) {
router.replace(whenDisabled);
setIsLoading(false);
return;
}
// Wait for LaunchDarkly to initialize when enabled to prevent race conditions
if (ldEnabled && !ldReady) return;
try {
await ldClient?.waitForInitialization();
if (!flagEnabled) router.replace(whenDisabled);
} catch (error) {
console.error(error);
router.replace(whenDisabled);
} finally {
setIsLoading(false);
}
};
initialize();
}, [ldReady, flagEnabled]);
return isLoading || !flagEnabled ? (
<LoadingSpinner size="large" cover />
) : (
<>{children}</>
);
}

View File

@@ -0,0 +1,51 @@
"use client";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { useLDClient } from "launchdarkly-react-client-sdk";
import { useRouter } from "next/navigation";
import { useEffect } from "react";
import { environment } from "../environment";
import { Flag, useGetFlag } from "./use-get-flag";
interface FeatureFlagRedirectProps {
flag: Flag;
whenEnabled: string;
whenDisabled: string;
}
export function FeatureFlagRedirect({
flag,
whenEnabled,
whenDisabled,
}: FeatureFlagRedirectProps) {
const router = useRouter();
const flagValue = useGetFlag(flag);
const ldEnabled = environment.areFeatureFlagsEnabled();
const ldClient = useLDClient();
const ldReady = Boolean(ldClient);
const flagEnabled = Boolean(flagValue);
useEffect(() => {
const initialize = async () => {
if (!ldEnabled) {
router.replace(whenDisabled);
return;
}
// Wait for LaunchDarkly to initialize when enabled to prevent race conditions
if (ldEnabled && !ldReady) return;
try {
await ldClient?.waitForInitialization();
router.replace(flagEnabled ? whenEnabled : whenDisabled);
} catch (error) {
console.error(error);
router.replace(whenDisabled);
}
};
initialize();
}, [ldReady, flagEnabled]);
return <LoadingSpinner size="large" cover />;
}

View File

@@ -1,5 +1,6 @@
"use client";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { useSupabase } from "@/lib/supabase/hooks/useSupabase";
import * as Sentry from "@sentry/nextjs";
import { LDProvider } from "launchdarkly-react-client-sdk";
@@ -7,17 +8,17 @@ import type { ReactNode } from "react";
import { useMemo } from "react";
import { environment } from "../environment";
const clientId = process.env.NEXT_PUBLIC_LAUNCHDARKLY_CLIENT_ID;
const envEnabled = process.env.NEXT_PUBLIC_LAUNCHDARKLY_ENABLED === "true";
const LAUNCHDARKLY_INIT_TIMEOUT_MS = 5000;
export function LaunchDarklyProvider({ children }: { children: ReactNode }) {
const { user, isUserLoading } = useSupabase();
const isCloud = environment.isCloud();
const isLaunchDarklyConfigured = isCloud && envEnabled && clientId;
const envEnabled = environment.areFeatureFlagsEnabled();
const clientId = environment.getLaunchDarklyClientId();
const context = useMemo(() => {
if (isUserLoading || !user) {
if (isUserLoading) return;
if (!user) {
return {
kind: "user" as const,
key: "anonymous",
@@ -36,15 +37,17 @@ export function LaunchDarklyProvider({ children }: { children: ReactNode }) {
};
}, [user, isUserLoading]);
if (!isLaunchDarklyConfigured) {
if (!envEnabled) {
return <>{children}</>;
}
if (isUserLoading) {
return <LoadingSpinner size="large" cover />;
}
return (
<LDProvider
// Add this key prop. It will be 'anonymous' when logged out,
key={context.key}
clientSideID={clientId}
clientSideID={clientId ?? ""}
context={context}
timeout={LAUNCHDARKLY_INIT_TIMEOUT_MS}
reactOptions={{ useCamelCaseFlagKeys: false }}

View File

@@ -1,6 +1,7 @@
"use client";
import { DEFAULT_SEARCH_TERMS } from "@/app/(platform)/marketplace/components/HeroSection/helpers";
import { environment } from "@/services/environment";
import { useFlags } from "launchdarkly-react-client-sdk";
export enum Flag {
@@ -18,24 +19,9 @@ export enum Flag {
CHAT = "chat",
}
export type FlagValues = {
[Flag.BETA_BLOCKS]: string[];
[Flag.NEW_BLOCK_MENU]: boolean;
[Flag.NEW_AGENT_RUNS]: boolean;
[Flag.GRAPH_SEARCH]: boolean;
[Flag.ENABLE_ENHANCED_OUTPUT_HANDLING]: boolean;
[Flag.NEW_FLOW_EDITOR]: boolean;
[Flag.BUILDER_VIEW_SWITCH]: boolean;
[Flag.SHARE_EXECUTION_RESULTS]: boolean;
[Flag.AGENT_FAVORITING]: boolean;
[Flag.MARKETPLACE_SEARCH_TERMS]: string[];
[Flag.ENABLE_PLATFORM_PAYMENT]: boolean;
[Flag.CHAT]: boolean;
};
const isPwMockEnabled = process.env.NEXT_PUBLIC_PW_TEST === "true";
const mockFlags = {
const defaultFlags = {
[Flag.BETA_BLOCKS]: [],
[Flag.NEW_BLOCK_MENU]: false,
[Flag.NEW_AGENT_RUNS]: false,
@@ -50,17 +36,16 @@ const mockFlags = {
[Flag.CHAT]: false,
};
export function useGetFlag<T extends Flag>(flag: T): FlagValues[T] | null {
type FlagValues = typeof defaultFlags;
export function useGetFlag<T extends Flag>(flag: T): FlagValues[T] {
const currentFlags = useFlags<FlagValues>();
const flagValue = currentFlags[flag];
const areFlagsEnabled = environment.areFeatureFlagsEnabled();
const envEnabled = process.env.NEXT_PUBLIC_LAUNCHDARKLY_ENABLED === "true";
const clientId = process.env.NEXT_PUBLIC_LAUNCHDARKLY_CLIENT_ID;
const isLaunchDarklyConfigured = envEnabled && Boolean(clientId);
if (!isLaunchDarklyConfigured || isPwMockEnabled) {
return mockFlags[flag];
if (!areFlagsEnabled || isPwMockEnabled) {
return defaultFlags[flag];
}
return flagValue ?? mockFlags[flag];
return flagValue ?? defaultFlags[flag];
}

View File

@@ -59,12 +59,13 @@ test.describe("Library", () => {
});
test("pagination works correctly", async ({ page }, testInfo) => {
test.setTimeout(testInfo.timeout * 3); // Increase timeout for pagination operations
test.setTimeout(testInfo.timeout * 3);
await page.goto("/library");
const PAGE_SIZE = 20;
const paginationResult = await libraryPage.testPagination();
if (paginationResult.initialCount >= 10) {
if (paginationResult.initialCount >= PAGE_SIZE) {
expect(paginationResult.finalCount).toBeGreaterThanOrEqual(
paginationResult.initialCount,
);
@@ -133,7 +134,10 @@ test.describe("Library", () => {
test.expect(clearedSearchValue).toBe("");
});
test("pagination while searching works correctly", async ({ page }) => {
test("pagination while searching works correctly", async ({
page,
}, testInfo) => {
test.setTimeout(testInfo.timeout * 3);
await page.goto("/library");
const allAgents = await libraryPage.getAgents();
@@ -152,9 +156,10 @@ test.describe("Library", () => {
);
expect(matchingResults.length).toEqual(initialSearchResults.length);
const PAGE_SIZE = 20;
const searchPaginationResult = await libraryPage.testPagination();
if (searchPaginationResult.initialCount >= 10) {
if (searchPaginationResult.initialCount >= PAGE_SIZE) {
expect(searchPaginationResult.finalCount).toBeGreaterThanOrEqual(
searchPaginationResult.initialCount,
);

View File

@@ -69,9 +69,12 @@ test.describe("Marketplace Creator Page Basic Functionality", () => {
await marketplacePage.getFirstCreatorProfile(page);
await firstCreatorProfile.click();
await page.waitForURL("**/marketplace/creator/**");
await page.waitForLoadState("networkidle").catch(() => {});
const firstAgent = page
.locator('[data-testid="store-card"]:visible')
.first();
await firstAgent.waitFor({ state: "visible", timeout: 30000 });
await firstAgent.click();
await page.waitForURL("**/marketplace/agent/**");

View File

@@ -77,7 +77,6 @@ test.describe("Marketplace Basic Functionality", () => {
const firstFeaturedAgent =
await marketplacePage.getFirstFeaturedAgent(page);
await firstFeaturedAgent.waitFor({ state: "visible" });
await firstFeaturedAgent.click();
await page.waitForURL("**/marketplace/agent/**");
await matchesUrl(page, /\/marketplace\/agent\/.+/);
@@ -116,7 +115,15 @@ test.describe("Marketplace Basic Functionality", () => {
const searchTerm = page.getByText("DummyInput").first();
await isVisible(searchTerm);
await page.waitForTimeout(10000);
await page.waitForLoadState("networkidle").catch(() => {});
await page
.waitForFunction(
() =>
document.querySelectorAll('[data-testid="store-card"]').length > 0,
{ timeout: 15000 },
)
.catch(() => console.log("No search results appeared within timeout"));
const results = await marketplacePage.getSearchResultsCount(page);
expect(results).toBeGreaterThan(0);

View File

@@ -300,21 +300,27 @@ export class LibraryPage extends BasePage {
async scrollToLoadMore(): Promise<void> {
console.log(`scrolling to load more agents`);
// Get initial agent count
const initialCount = await this.getAgentCount();
console.log(`Initial agent count: ${initialCount}`);
const initialCount = await this.getAgentCountByListLength();
console.log(`Initial agent count (DOM cards): ${initialCount}`);
// Scroll down to trigger pagination
await this.scrollToBottom();
// Wait for potential new agents to load
await this.page.waitForTimeout(2000);
await this.page
.waitForLoadState("networkidle", { timeout: 10000 })
.catch(() => console.log("Network idle timeout, continuing..."));
// Check if more agents loaded
const newCount = await this.getAgentCount();
console.log(`New agent count after scroll: ${newCount}`);
await this.page
.waitForFunction(
(prevCount) =>
document.querySelectorAll('[data-testid="library-agent-card"]')
.length > prevCount,
initialCount,
{ timeout: 5000 },
)
.catch(() => {});
return;
const newCount = await this.getAgentCountByListLength();
console.log(`New agent count after scroll (DOM cards): ${newCount}`);
}
async testPagination(): Promise<{

View File

@@ -9,6 +9,7 @@ export class MarketplacePage extends BasePage {
async goto(page: Page) {
await page.goto("/marketplace");
await page.waitForLoadState("networkidle").catch(() => {});
}
async getMarketplaceTitle(page: Page) {
@@ -109,16 +110,24 @@ export class MarketplacePage extends BasePage {
async getFirstFeaturedAgent(page: Page) {
const { getId } = getSelectors(page);
return getId("featured-store-card").first();
const card = getId("featured-store-card").first();
await card.waitFor({ state: "visible", timeout: 30000 });
return card;
}
async getFirstTopAgent() {
return this.page.locator('[data-testid="store-card"]:visible').first();
const card = this.page
.locator('[data-testid="store-card"]:visible')
.first();
await card.waitFor({ state: "visible", timeout: 30000 });
return card;
}
async getFirstCreatorProfile(page: Page) {
const { getId } = getSelectors(page);
return getId("creator-card").first();
const card = getId("creator-card").first();
await card.waitFor({ state: "visible", timeout: 30000 });
return card;
}
async getSearchResultsCount(page: Page) {

View File

@@ -8,6 +8,7 @@
.buildlog/
.history
.svn/
.next/
migrate_working_dir/
# IntelliJ related

View File

@@ -65,7 +65,7 @@ The result routes data to yes_output or no_output, enabling intelligent branchin
| condition | A plaintext English description of the condition to evaluate | str | Yes |
| yes_value | (Optional) Value to output if the condition is true. If not provided, input_value will be used. | Yes Value | No |
| no_value | (Optional) Value to output if the condition is false. If not provided, input_value will be used. | No Value | No |
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for evaluating the condition. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
### Outputs
@@ -103,7 +103,7 @@ The block sends the entire conversation history to the chosen LLM, including sys
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | No |
| messages | List of messages in the conversation. | List[Any] | Yes |
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for the conversation. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
| ollama_host | Ollama host for local models | str | No |
@@ -257,7 +257,7 @@ The block formulates a prompt based on the given focus or source data, sends it
|-------|-------------|------|----------|
| focus | The focus of the list to generate. | str | No |
| source_data | The data to generate the list from. | str | No |
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for generating the list. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| max_retries | Maximum number of retries for generating a valid list. | int | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -424,7 +424,7 @@ The block sends the input prompt to a chosen LLM, along with any system prompts
| prompt | The prompt to send to the language model. | str | Yes |
| expected_format | Expected format of the response. If provided, the response will be validated against this format. The keys should be the expected fields in the response, and the values should be the description of the field. | Dict[str, str] | Yes |
| list_result | Whether the response should be a list of objects in the expected format. | bool | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| force_json_output | Whether to force the LLM to produce a JSON-only response. This can increase the block's reliability, but may also reduce the quality of the response because it prohibits the LLM from reasoning before providing its JSON response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |
@@ -464,7 +464,7 @@ The block sends the input prompt to a chosen LLM, processes the response, and re
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. You can use any of the {keys} from Prompt Values to fill in the prompt with values from the prompt values dictionary by putting them in curly braces. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| retry | Number of times to retry the LLM call if the response does not match the expected format. | int | No |
| prompt_values | Values used to fill in the prompt. The values can be used in the prompt by putting them in a double curly braces, e.g. {{variable_name}}. | Dict[str, str] | No |
@@ -501,7 +501,7 @@ The block splits the input text into smaller chunks, sends each chunk to an LLM
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| text | The text to summarize. | str | Yes |
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for summarizing the text. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| focus | The topic to focus on in the summary | str | No |
| style | The style of the summary to generate. | "concise" \| "detailed" \| "bullet points" \| "numbered list" | No |
| max_tokens | The maximum number of tokens to generate in the chat completion. | int | No |
@@ -763,7 +763,7 @@ Configure agent_mode_max_iterations to control loop behavior: 0 for single decis
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| prompt | The prompt to send to the language model. | str | Yes |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-7-sonnet-20250219" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| model | The language model to use for answering the prompt. | "o3-mini" \| "o3-2025-04-16" \| "o1" \| "o1-mini" \| "gpt-5.2-2025-12-11" \| "gpt-5.1-2025-11-13" \| "gpt-5-2025-08-07" \| "gpt-5-mini-2025-08-07" \| "gpt-5-nano-2025-08-07" \| "gpt-5-chat-latest" \| "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "gpt-4o-mini" \| "gpt-4o" \| "gpt-4-turbo" \| "gpt-3.5-turbo" \| "claude-opus-4-1-20250805" \| "claude-opus-4-20250514" \| "claude-sonnet-4-20250514" \| "claude-opus-4-5-20251101" \| "claude-sonnet-4-5-20250929" \| "claude-haiku-4-5-20251001" \| "claude-3-haiku-20240307" \| "Qwen/Qwen2.5-72B-Instruct-Turbo" \| "nvidia/llama-3.1-nemotron-70b-instruct" \| "meta-llama/Llama-3.3-70B-Instruct-Turbo" \| "meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo" \| "meta-llama/Llama-3.2-3B-Instruct-Turbo" \| "llama-3.3-70b-versatile" \| "llama-3.1-8b-instant" \| "llama3.3" \| "llama3.2" \| "llama3" \| "llama3.1:405b" \| "dolphin-mistral:latest" \| "openai/gpt-oss-120b" \| "openai/gpt-oss-20b" \| "google/gemini-2.5-pro-preview-03-25" \| "google/gemini-3-pro-preview" \| "google/gemini-2.5-flash" \| "google/gemini-2.0-flash-001" \| "google/gemini-2.5-flash-lite-preview-06-17" \| "google/gemini-2.0-flash-lite-001" \| "mistralai/mistral-nemo" \| "cohere/command-r-08-2024" \| "cohere/command-r-plus-08-2024" \| "deepseek/deepseek-chat" \| "deepseek/deepseek-r1-0528" \| "perplexity/sonar" \| "perplexity/sonar-pro" \| "perplexity/sonar-deep-research" \| "nousresearch/hermes-3-llama-3.1-405b" \| "nousresearch/hermes-3-llama-3.1-70b" \| "amazon/nova-lite-v1" \| "amazon/nova-micro-v1" \| "amazon/nova-pro-v1" \| "microsoft/wizardlm-2-8x22b" \| "gryphe/mythomax-l2-13b" \| "meta-llama/llama-4-scout" \| "meta-llama/llama-4-maverick" \| "x-ai/grok-4" \| "x-ai/grok-4-fast" \| "x-ai/grok-4.1-fast" \| "x-ai/grok-code-fast-1" \| "moonshotai/kimi-k2" \| "qwen/qwen3-235b-a22b-thinking-2507" \| "qwen/qwen3-coder" \| "Llama-4-Scout-17B-16E-Instruct-FP8" \| "Llama-4-Maverick-17B-128E-Instruct-FP8" \| "Llama-3.3-8B-Instruct" \| "Llama-3.3-70B-Instruct" \| "v0-1.5-md" \| "v0-1.5-lg" \| "v0-1.0-md" | No |
| multiple_tool_calls | Whether to allow multiple tool calls in a single response. | bool | No |
| sys_prompt | The system prompt to provide additional context to the model. | str | No |
| conversation_history | The conversation history to provide context for the prompt. | List[Dict[str, Any]] | No |

View File

@@ -20,7 +20,7 @@ Configure timeouts for DOM settlement and page loading. Variables can be passed
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
| url | URL to navigate to. | str | Yes |
| action | Action to perform. Suggested actions are: click, fill, type, press, scroll, select from dropdown. For multi-step actions, add an entry for each step. | List[str] | Yes |
| variables | Variables to use in the action. Variables contains data you want the action to use. | Dict[str, str] | No |
@@ -65,7 +65,7 @@ Supports searching within iframes and configurable timeouts for dynamic content
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
| url | URL to navigate to. | str | Yes |
| instruction | Natural language description of elements or actions to discover. | str | Yes |
| iframes | Whether to search within iframes. If True, Stagehand will search for actions within iframes. | bool | No |
@@ -106,7 +106,7 @@ Use this to explore a page's interactive elements before building automated work
| Input | Description | Type | Required |
|-------|-------------|------|----------|
| browserbase_project_id | Browserbase project ID (required if using Browserbase) | str | Yes |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-3-7-sonnet-20250219" | No |
| model | LLM to use for Stagehand (provider is inferred) | "gpt-4.1-2025-04-14" \| "gpt-4.1-mini-2025-04-14" \| "claude-sonnet-4-5-20250929" | No |
| url | URL to navigate to. | str | Yes |
| instruction | Natural language description of elements or actions to discover. | str | Yes |
| iframes | Whether to search within iframes. If True, Stagehand will search for actions within iframes. | bool | No |

View File

@@ -4,6 +4,28 @@
This guide walks through creating a simple question-answer AI agent using AutoGPT's visual builder. This is a basic example that can be expanded into more complex agents.
## **Prerequisites**
### **Cloud-Hosted AutoGPT**
If you're using the cloud-hosted version at [agpt.co](https://agpt.co), you're ready to go! AI blocks come with **built-in credits** — no API keys required to get started. If you'd prefer to use your own API keys, you can add them via **Profile → Integrations**.
### **Self-Hosted (Docker)**
If you're running AutoGPT locally with Docker, you'll need to add your own API keys to `autogpt_platform/backend/.env`:
```bash
# Create or edit backend/.env
OPENAI_API_KEY=sk-your-key-here
ANTHROPIC_API_KEY=sk-ant-your-key-here
# Add other provider keys as needed
```
After adding keys, restart the services:
```bash
docker compose down && docker compose up -d
```
**Note:** The Calculator example below doesn't require any API credentials — it's a good way to test your setup before adding AI blocks.
## **Example Agent: Q&A (with AI)**
A step-by-step guide to creating a simple Q&A agent using input and output blocks.