Compare commits

..

9 Commits

Author SHA1 Message Date
Zamil Majdy
12690ad0a9 fix(backend): Use explicit {schema}.vector for pgvector types
The unqualified ::vector type fails in ORDER BY context with PgBouncer.
Use explicit schema qualification ({schema}.vector) which resolves to
platform.vector where the pgvector extension is installed.

Changes:
- Add {schema} placeholder to db.py for raw schema name
- Use {schema}.vector instead of unqualified ::vector in embeddings.py
- Use {{schema}}.vector instead of unqualified ::vector in hybrid_search.py

Tested on dev: explicit platform.vector works in all contexts.

Fixes: AUTOGPT-SERVER-76B
2026-01-21 10:19:08 -05:00
Zamil Majdy
b714c0c221 fix(backend): handle null values in GraphSettings validation (#11812)
## Summary
- Fixes AUTOGPT-SERVER-76H - Error parsing LibraryAgent from database
due to null values in GraphSettings fields
- When parsing LibraryAgent settings from the database, null values for
`human_in_the_loop_safe_mode` and `sensitive_action_safe_mode` were
causing Pydantic validation errors
- Adds `BeforeValidator` annotations to coerce null values to their
defaults (True and False respectively)

## Test plan
- [x] Verified with unit tests that GraphSettings can now handle
None/null values
- [x] Backend tests pass
- [x] Manually tested with all scenarios (None, empty dict, explicit
values)
2026-01-21 08:40:38 -05:00
Krzysztof Czerwinski
ebabc4287e feat(platform): New LLM Picker UI (#11726)
Add new LLM Picker for the new Builder.

### Changes 🏗️

- Enrich `LlmModelMeta` (in `llm.py`) with human readable model, creator
and provider names and price tier (note: this is temporary measure and
all LlmModelMeta will be removed completely once LLM Registry is ready)
- Add provider icons
- Add custom input field `LlmModelField` and its components&helpers

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] LLM model picker works correctly in the new Builder
  - [x] Legacy LLM model picker works in the old Builder
2026-01-21 10:52:55 +00:00
Zamil Majdy
8b25e62959 feat(backend,frontend): add explicit safe mode toggles for HITL and sensitive actions (#11756)
## Summary

This PR introduces two explicit safe mode toggles for controlling agent
execution behavior, providing clearer and more granular control over
when agents should pause for human review.

### Key Changes

**New Safe Mode Settings:**
- **`human_in_the_loop_safe_mode`** (bool, default `true`) - Controls
whether human-in-the-loop (HITL) blocks pause for review
- **`sensitive_action_safe_mode`** (bool, default `false`) - Controls
whether sensitive action blocks pause for review

**New Computed Properties on LibraryAgent:**
- `has_human_in_the_loop` - Indicates if agent contains HITL blocks
- `has_sensitive_action` - Indicates if agent contains sensitive action
blocks

**Block Changes:**
- Renamed `requires_human_review` to `is_sensitive_action` on blocks for
clarity
- Blocks marked as `is_sensitive_action=True` pause only when
`sensitive_action_safe_mode=True`
- HITL blocks pause when `human_in_the_loop_safe_mode=True`

**Frontend Changes:**
- Two separate toggles in Agent Settings based on block types present
- Toggle visibility based on `has_human_in_the_loop` and
`has_sensitive_action` computed properties
- Settings cog hidden if neither toggle applies
- Proper state management for both toggles with defaults

**AI-Generated Agent Behavior:**
- AI-generated agents set `sensitive_action_safe_mode=True` by default
- This ensures sensitive actions are reviewed for AI-generated content

## Changes

**Backend:**
- `backend/data/graph.py` - Updated `GraphSettings` with two boolean
toggles (non-optional with defaults), added `has_sensitive_action`
computed property
- `backend/data/block.py` - Renamed `requires_human_review` to
`is_sensitive_action`, updated review logic
- `backend/data/execution.py` - Updated `ExecutionContext` with both
safe mode fields
- `backend/api/features/library/model.py` - Added
`has_human_in_the_loop` and `has_sensitive_action` to `LibraryAgent`
- `backend/api/features/library/db.py` - Updated to use
`sensitive_action_safe_mode` parameter
- `backend/executor/utils.py` - Simplified execution context creation

**Frontend:**
- `useAgentSafeMode.ts` - Rewritten to support two independent toggles
- `AgentSettingsModal.tsx` - Shows two separate toggles
- `SelectedSettingsView.tsx` - Shows two separate toggles
- Regenerated API types with new schema

## Test Plan

- [x] All backend tests pass (Python 3.11, 3.12, 3.13)
- [x] All frontend tests pass
- [x] Backend format and lint pass
- [x] Frontend format and lint pass
- [x] Pre-commit hooks pass

---------

Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2026-01-21 00:56:02 +00:00
Zamil Majdy
35a13e3df5 fix(backend): Use explicit schema qualification for pgvector types (#11805)
## Summary
- Fix intermittent "type 'vector' does not exist" errors when using
PgBouncer in transaction mode
- The issue was that `SET search_path` and the actual query could run on
different backend connections
- Use explicit schema qualification (`{schema}.vector`,
`OPERATOR({schema}.<=>)`) instead of relying on search_path

## Test plan
- [x] Tested vector type cast on local: `'[1,2,3]'::platform.vector`
works
- [x] Tested OPERATOR syntax on local: `OPERATOR(platform.<=>)` works
- [x] Tested on dev via kubectl exec: both work correctly
- [ ] Deploy to dev and verify backfill_missing_embeddings endpoint no
longer errors

## Related Issues
Fixes: AUTOGPT-SERVER-763, AUTOGPT-SERVER-764

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 22:18:16 +00:00
Mewael Tsegay Desta
2169b433c9 feat(backend/blocks): add ConcatenateListsBlock (#11567)
# feat(backend/blocks): add ConcatenateListsBlock

## Description

This PR implements a new block `ConcatenateListsBlock` that concatenates
multiple lists into a single list. This addresses the "good first issue"
for implementing a list concatenation block in the platform/blocks area.

The block takes a list of lists as input and combines all elements in
order into a single concatenated list. This is useful for workflows that
need to merge data from multiple sources or combine results from
different operations.

### Changes 🏗️

- **Added `ConcatenateListsBlock` class** in
`autogpt_platform/backend/backend/blocks/data_manipulation.py`
- Input: `lists: List[List[Any]]` - accepts a list of lists to
concatenate
- Output: `concatenated_list: List[Any]` - returns a single concatenated
list
- Error output: `error: str` - provides clear error messages for invalid
input types
  - Block ID: `3cf9298b-5817-4141-9d80-7c2cc5199c8e`
- Category: `BlockCategory.BASIC` (consistent with other list
manipulation blocks)
  
- **Added comprehensive test suite** in
`autogpt_platform/backend/test/blocks/test_concatenate_lists.py`
  - Tests using built-in `test_input`/`test_output` validation
- Manual test cases covering edge cases (empty lists, single list, empty
input)
  - Error handling tests for invalid input types
  - Category consistency verification
  - All tests passing

- **Implementation details:**
  - Uses `extend()` method for efficient list concatenation
  - Preserves element order from all input lists
- **Runtime type validation**: Explicitly checks `isinstance(lst, list)`
before calling `extend()` to prevent:
- Strings being iterated character-by-character (e.g., `extend("abc")` →
`['a', 'b', 'c']`)
    - Non-iterable types causing `TypeError` (e.g., `extend(1)`)
  - Clear error messages indicating which index has invalid input
- Handles edge cases: empty lists, empty input, single list, None values
  - Follows existing block patterns and conventions

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Run `poetry run pytest test/blocks/test_concatenate_lists.py -v` -
all tests pass
  - [x] Verified block can be imported and instantiated
  - [x] Tested with built-in test cases (4 test scenarios)
  - [x] Tested manual edge cases (empty lists, single list, empty input)
  - [x] Tested error handling for invalid input types
  - [x] Verified category is `BASIC` for consistency
  - [x] Verified no linting errors
- [x] Confirmed block follows same patterns as other blocks in
`data_manipulation.py`

#### Code Quality:
- [x] Code follows existing patterns and conventions
- [x] Type hints are properly used
- [x] Documentation strings are clear and descriptive
- [x] Runtime type validation implemented
- [x] Error handling with clear error messages
- [x] No linting errors
- [x] Prisma client generated successfully

### Testing

**Test Results:**
```
test/blocks/test_concatenate_lists.py::test_concatenate_lists_block_builtin_tests PASSED
test/blocks/test_concatenate_lists.py::test_concatenate_lists_manual PASSED

============================== 2 passed in 8.35s ==============================
```

**Test Coverage:**
- Basic concatenation: `[[1, 2, 3], [4, 5, 6]]` → `[1, 2, 3, 4, 5, 6]`
- Mixed types: `[["a", "b"], ["c"], ["d", "e", "f"]]` → `["a", "b", "c",
"d", "e", "f"]`
- Empty list handling: `[[1, 2], []]` → `[1, 2]`
- Empty input: `[]` → `[]`
- Single list: `[[1, 2, 3]]` → `[1, 2, 3]`
- Error handling: Invalid input types (strings, non-lists) produce clear
error messages
- Category verification: Confirmed `BlockCategory.BASIC` for consistency

### Review Feedback Addressed

- **Category Consistency**: Changed from `BlockCategory.DATA` to
`BlockCategory.BASIC` to match other list manipulation blocks
(`AddToListBlock`, `FindInListBlock`, etc.)
- **Type Robustness**: Added explicit runtime validation with
`isinstance(lst, list)` check before calling `extend()` to prevent:
  - Strings being iterated character-by-character
  - Non-iterable types causing `TypeError`
- **Error Handling**: Added `error` output field with clear, descriptive
error messages indicating which index has invalid input
- **Test Coverage**: Added test case for error handling with invalid
input types

### Related Issues

- Addresses: "Implement block to concatenate lists" (good first issue,
platform/blocks, hacktoberfest)

### Notes

- This is a straightforward data manipulation block that doesn't require
external dependencies
- The block will be automatically discovered by the block loading system
- No database or configuration changes required
- Compatible with existing workflow system
- All review feedback has been addressed and incorporated


<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Adds a new list utility and updates docs.
> 
> - **New block**: `ConcatenateListsBlock` in
`backend/blocks/data_manipulation.py`
> - Input `lists: List[List[Any]]`; outputs `concatenated_list` or
`error`
> - Skips `None` entries; emits error for non-list items; preserves
order
> - **Docs**: Adds "Concatenate Lists" section to
`docs/integrations/basic.md` and links it in
`docs/integrations/README.md`
> - **Contributor guide**: New `docs/CLAUDE.md` with manual doc section
guidelines
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
4f56dd86c2. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Zamil Majdy <zamil.majdy@agpt.co>
Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
2026-01-20 18:04:12 +00:00
Nicholas Tindle
fa0b7029dd fix(platform): make chat credentials type selection deterministic (#11795)
## Background

When using chat to run blocks/agents that support multiple credential
types (e.g., GitHub blocks support both `api_key` and `oauth2`), users
reported that the credentials setup UI would randomly show either "Add
API key" or "Connect account (OAuth)" - seemingly at random between
requests or server restarts.

## Root Cause

The bug was in how the backend selected which credential type to return
when building the missing credentials response:

```python
cred_type = next(iter(field_info.supported_types), "api_key")
```

The problem is that `supported_types` is a **frozenset**. When you call
`iter()` on a frozenset and take `next()`, the iteration order is
**non-deterministic** due to Python's hash randomization. This means:
- `frozenset({'api_key', 'oauth2'})` could iterate as either
`['api_key', 'oauth2']` or `['oauth2', 'api_key']`
- The order varies between Python process restarts and sometimes between
requests
- This caused the UI to randomly show different credential options

### Changes 🏗️

**Backend (`utils.py`, `run_block.py`, `run_agent.py`):**
- Added `_serialize_missing_credential()` helper that uses `sorted()`
for deterministic ordering
- Added `build_missing_credentials_from_graph()` and
`build_missing_credentials_from_field_info()` utilities
- Now returns both `type` (first sorted type, for backwards compat) and
`types` (full array with ALL supported types)

**Frontend (`helpers.ts`, `ChatCredentialsSetup.tsx`,
`useChatMessage.ts`):**
- Updated to read the `types` array from backend response
- Changed `credentialType` (single) to `credentialTypes` (array)
throughout the chat credentials flow
- Passes all supported types to `CredentialsInput` via
`credentials_types` schema field

### Result

Now `useCredentials.ts` correctly sets both `supportsApiKey=true` AND
`supportsOAuth2=true` when both are supported, ensuring:
1. **Deterministic behavior** - no more random type selection
2. **All saved credentials shown** - credentials of any supported type
appear in the selection list

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified GitHub block shows consistent credential options across
page reloads
- [x] Verified both OAuth and API key credentials appear in selection
when user has both saved
- [x] Verified backend returns `types: ["api_key", "oauth2"]` array
(checked via Python REPL)

<!-- CURSOR_SUMMARY -->
---

> [!NOTE]
> Ensures deterministic credential type selection and surfaces all
supported types end-to-end.
> 
> - Backend: add `_serialize_missing_credential`,
`build_missing_credentials_from_graph/field_info`;
`run_agent`/`run_block` now return missing credentials with stable
ordering and both `type` (first) and `types` (all).
> - Frontend: chat helpers and UI (`helpers.ts`,
`ChatCredentialsSetup.tsx`, `useChatMessage.ts`) now read `types`,
switch from single `credentialType` to `credentialTypes`, and pass all
supported `credentials_types` in schemas.
> 
> <sup>Written by [Cursor
Bugbot](https://cursor.com/dashboard?tab=bugbot) for commit
7d80f4f0e0. This will update automatically
on new commits. Configure
[here](https://cursor.com/dashboard?tab=bugbot).</sup>
<!-- /CURSOR_SUMMARY -->

---------

Co-authored-by: Claude Opus 4.5 <noreply@anthropic.com>
Co-authored-by: claude[bot] <41898282+claude[bot]@users.noreply.github.com>
Co-authored-by: Nicholas Tindle <ntindle@users.noreply.github.com>
2026-01-20 16:19:57 +00:00
Abhimanyu Yadav
c20ca47bb0 feat(frontend): enhance RunGraph and RunInputDialog components with loading states and improved UI (#11808)
### Changes 🏗️

- Enhanced UI for the Run Graph button with improved loading states and
animations
- Added color-coded edges in the flow editor based on output data types
- Improved the layout of the Run Input Dialog with a two-column grid
design
- Refined the styling of flow editor controls with consistent icon sizes
and colors
- Updated tutorial icons with better color and size customization
- Fixed credential field display to show provider name with "credential"
suffix
- Optimized draft saving by excluding node position changes to prevent
excessive saves when dragging nodes

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] Verified that the Run Graph button shows proper loading states
  - [x] Confirmed that edges display correct colors based on data types
- [x] Tested the Run Input Dialog layout with various input
configurations
  - [x] Checked that flow editor controls display consistently
  - [x] Verified that tutorial icons render properly
  - [x] Confirmed credential fields show proper provider names
- [x] Tested that dragging nodes doesn't trigger unnecessary draft saves
2026-01-20 15:50:23 +00:00
Abhimanyu Yadav
7756e2d12d refactor(frontend): refactor credentials input with unified CredentialsGroupedView component (#11801)
### Changes 🏗️

- Refactored the credentials input handling in the RunInputDialog to use
the shared CredentialsGroupedView component
- Moved CredentialsGroupedView from agent library to a shared component
location for reuse
- Fixed source name handling in edge creation to properly handle tool
source names
- Improved node output UI by replacing custom expand/collapse with
Accordion component
- Fixed timing of hardcoded values synchronization with handle IDs to
ensure proper loading
- Enabled NEW_FLOW_EDITOR and BUILDER_VIEW_SWITCH feature flags by
default

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
- [x] Verified credentials input works in both agent run dialog and
builder run dialog
  - [x] Confirmed node output accordion works correctly
- [x] Tested flow editor with tools to ensure source name handling works
properly
  - [x] Verified hardcoded values sync correctly with handle IDs

#### For configuration changes:

- [x] `.env.default` is updated or already compatible with my changes
- [x] `docker-compose.yml` is updated or already compatible with my
changes
- [x] I have included a list of my configuration changes in the PR
description (under **Changes**)
2026-01-20 12:20:25 +00:00
2312 changed files with 820487 additions and 34007 deletions

View File

@@ -6,15 +6,11 @@ on:
paths:
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/direct_benchmark/**'
- 'classic/forge/**'
pull_request:
branches: [ master, dev, release-* ]
paths:
- '.github/workflows/classic-autogpt-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/direct_benchmark/**'
- 'classic/forge/**'
concurrency:
group: ${{ format('classic-autogpt-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -23,22 +19,47 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic
working-directory: classic/original_autogpt
jobs:
test:
permissions:
contents: read
timeout-minutes: 30
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
steps:
- name: Start MinIO service
# Quite slow on macOS (2~4 minutes to set up Docker)
# - name: Set up Docker (macOS)
# if: runner.os == 'macOS'
# uses: crazy-max/ghaction-setup-docker@v3
- name: Start MinIO service (Linux)
if: runner.os == 'Linux'
working-directory: '.'
run: |
docker pull minio/minio:edge-cicd
docker run -d -p 9000:9000 minio/minio:edge-cicd
- name: Start MinIO service (macOS)
if: runner.os == 'macOS'
working-directory: ${{ runner.temp }}
run: |
brew install minio/stable/minio
mkdir data
minio server ./data &
# No MinIO on Windows:
# - Windows doesn't support running Linux Docker containers
# - It doesn't seem possible to start background processes on Windows. They are
# killed after the step returns.
# See: https://github.com/actions/runner/issues/598#issuecomment-2011890429
- name: Checkout repository
uses: actions/checkout@v4
with:
@@ -50,23 +71,41 @@ jobs:
git config --global user.name "Auto-GPT-Bot"
git config --global user.email "github-bot@agpt.co"
- name: Set up Python 3.12
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: "3.12"
python-version: ${{ matrix.python-version }}
- id: get_date
name: Get date
run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_OUTPUT
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/original_autogpt/poetry.lock') }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
run: |
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Python dependencies
run: poetry install
@@ -77,12 +116,12 @@ jobs:
--cov=autogpt --cov-branch --cov-report term-missing --cov-report xml \
--numprocesses=logical --durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
original_autogpt/tests/unit original_autogpt/tests/integration
tests/unit tests/integration
env:
CI: true
PLAIN_OUTPUT: True
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
S3_ENDPOINT_URL: http://127.0.0.1:9000
S3_ENDPOINT_URL: ${{ runner.os != 'Windows' && 'http://127.0.0.1:9000' || '' }}
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
@@ -96,11 +135,11 @@ jobs:
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: autogpt-agent
flags: autogpt-agent,${{ runner.os }}
- name: Upload logs to artifact
if: always()
uses: actions/upload-artifact@v4
with:
name: test-logs
path: classic/logs/
path: classic/original_autogpt/logs/

View File

@@ -11,6 +11,9 @@ on:
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
pull_request:
branches: [ master, dev, release-* ]
@@ -19,6 +22,9 @@ on:
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- 'classic/run'
- 'classic/cli.py'
- 'classic/setup.py'
- '!**/*.md'
defaults:
@@ -29,9 +35,13 @@ defaults:
jobs:
serve-agent-protocol:
runs-on: ubuntu-latest
strategy:
matrix:
agent-name: [ original_autogpt ]
fail-fast: false
timeout-minutes: 20
env:
min-python-version: '3.12'
min-python-version: '3.10'
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -45,22 +55,22 @@ jobs:
python-version: ${{ env.min-python-version }}
- name: Install Poetry
working-directory: ./classic/${{ matrix.agent-name }}/
run: |
curl -sSL https://install.python-poetry.org | python -
- name: Install dependencies
run: poetry install
- name: Run smoke tests with direct-benchmark
- name: Run regression tests
run: |
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--tests ReadFile,WriteFile \
--json
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
poetry run agbenchmark --mock --test=BasicRetrieval --test=Battleship --test=WebArenaTask_0
poetry run agbenchmark --test=WriteFile
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
AGENT_NAME: ${{ matrix.agent-name }}
REQUESTS_CA_BUNDLE: /etc/ssl/certs/ca-certificates.crt
NONINTERACTIVE_MODE: "true"
CI: true
HELICONE_CACHE_ENABLED: false
HELICONE_PROPERTY_AGENT: ${{ matrix.agent-name }}
REPORTS_FOLDER: ${{ format('../../reports/{0}', matrix.agent-name) }}
TELEMETRY_ENVIRONMENT: autogpt-ci
TELEMETRY_OPT_IN: ${{ github.ref_name == 'master' }}

View File

@@ -1,21 +1,17 @@
name: Classic - Direct Benchmark CI
name: Classic - AGBenchmark CI
on:
push:
branches: [ master, dev, ci-test* ]
paths:
- 'classic/direct_benchmark/**'
- 'classic/benchmark/agbenchmark/challenges/**'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
- .github/workflows/classic-benchmark-ci.yml
pull_request:
branches: [ master, dev, release-* ]
paths:
- 'classic/direct_benchmark/**'
- 'classic/benchmark/agbenchmark/challenges/**'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/benchmark/**'
- '!classic/benchmark/reports/**'
- .github/workflows/classic-benchmark-ci.yml
concurrency:
@@ -27,16 +23,23 @@ defaults:
shell: bash
env:
min-python-version: '3.12'
min-python-version: '3.10'
jobs:
benchmark-tests:
runs-on: ubuntu-latest
test:
permissions:
contents: read
timeout-minutes: 30
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
defaults:
run:
shell: bash
working-directory: classic
working-directory: classic/benchmark
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -44,84 +47,71 @@ jobs:
fetch-depth: 0
submodules: true
- name: Set up Python ${{ env.min-python-version }}
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ env.min-python-version }}
python-version: ${{ matrix.python-version }}
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/benchmark/poetry.lock') }}
- name: Install Poetry
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
run: |
curl -sSL https://install.python-poetry.org | python3 -
- name: Install dependencies
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Python dependencies
run: poetry install
- name: Run basic benchmark tests
- name: Run pytest with coverage
run: |
echo "Testing ReadFile challenge with one_shot strategy..."
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--tests ReadFile \
--json
echo "Testing WriteFile challenge..."
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--tests WriteFile \
--json
poetry run pytest -vv \
--cov=agbenchmark --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
tests
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
- name: Test category filtering
run: |
echo "Testing coding category..."
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--categories coding \
--tests ReadFile,WriteFile \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
- name: Upload test results to Codecov
if: ${{ !cancelled() }} # Run even if tests fail
uses: codecov/test-results-action@v1
with:
token: ${{ secrets.CODECOV_TOKEN }}
- name: Test multiple strategies
run: |
echo "Testing multiple strategies..."
poetry run direct-benchmark run \
--strategies one_shot,plan_execute \
--models claude \
--tests ReadFile \
--parallel 2 \
--json
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
- name: Upload coverage reports to Codecov
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: agbenchmark,${{ runner.os }}
# Run regression tests on maintain challenges
regression-tests:
self-test-with-agent:
runs-on: ubuntu-latest
timeout-minutes: 45
if: github.ref == 'refs/heads/master' || github.ref == 'refs/heads/dev'
defaults:
run:
shell: bash
working-directory: classic
strategy:
matrix:
agent-name: [forge]
fail-fast: false
timeout-minutes: 20
steps:
- name: Checkout repository
uses: actions/checkout@v4
@@ -136,22 +126,51 @@ jobs:
- name: Install Poetry
run: |
curl -sSL https://install.python-poetry.org | python3 -
- name: Install dependencies
run: poetry install
curl -sSL https://install.python-poetry.org | python -
- name: Run regression tests
working-directory: classic
run: |
echo "Running regression tests (previously beaten challenges)..."
poetry run direct-benchmark run \
--strategies one_shot \
--models claude \
--maintain \
--parallel 4 \
--json
./run agent start ${{ matrix.agent-name }}
cd ${{ matrix.agent-name }}
set +e # Ignore non-zero exit codes and continue execution
echo "Running the following command: poetry run agbenchmark --maintain --mock"
poetry run agbenchmark --maintain --mock
EXIT_CODE=$?
set -e # Stop ignoring non-zero exit codes
# Check if the exit code was 5, and if so, exit with 0 instead
if [ $EXIT_CODE -eq 5 ]; then
echo "regression_tests.json is empty."
fi
echo "Running the following command: poetry run agbenchmark --mock"
poetry run agbenchmark --mock
echo "Running the following command: poetry run agbenchmark --mock --category=data"
poetry run agbenchmark --mock --category=data
echo "Running the following command: poetry run agbenchmark --mock --category=coding"
poetry run agbenchmark --mock --category=coding
# echo "Running the following command: poetry run agbenchmark --test=WriteFile"
# poetry run agbenchmark --test=WriteFile
cd ../benchmark
poetry install
echo "Adding the BUILD_SKILL_TREE environment variable. This will attempt to add new elements in the skill tree. If new elements are added, the CI fails because they should have been pushed"
export BUILD_SKILL_TREE=true
# poetry run agbenchmark --mock
# CHANGED=$(git diff --name-only | grep -E '(agbenchmark/challenges)|(../classic/frontend/assets)') || echo "No diffs"
# if [ ! -z "$CHANGED" ]; then
# echo "There are unstaged changes please run agbenchmark and commit those changes since they are needed."
# echo "$CHANGED"
# exit 1
# else
# echo "No unstaged changes."
# fi
env:
CI: true
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
NONINTERACTIVE_MODE: "true"
TELEMETRY_ENVIRONMENT: autogpt-benchmark-ci
TELEMETRY_OPT_IN: ${{ github.ref_name == 'master' }}

View File

@@ -6,11 +6,13 @@ on:
paths:
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
branches: [ master, dev, release-* ]
paths:
- '.github/workflows/classic-forge-ci.yml'
- 'classic/forge/**'
- '!classic/forge/tests/vcr_cassettes'
concurrency:
group: ${{ format('forge-ci-{0}', github.head_ref && format('{0}-{1}', github.event_name, github.event.pull_request.number) || github.sha) }}
@@ -19,38 +21,115 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic
working-directory: classic/forge
jobs:
test:
permissions:
contents: read
timeout-minutes: 30
runs-on: ubuntu-latest
strategy:
fail-fast: false
matrix:
python-version: ["3.10"]
platform-os: [ubuntu, macos, macos-arm64, windows]
runs-on: ${{ matrix.platform-os != 'macos-arm64' && format('{0}-latest', matrix.platform-os) || 'macos-14' }}
steps:
- name: Start MinIO service
# Quite slow on macOS (2~4 minutes to set up Docker)
# - name: Set up Docker (macOS)
# if: runner.os == 'macOS'
# uses: crazy-max/ghaction-setup-docker@v3
- name: Start MinIO service (Linux)
if: runner.os == 'Linux'
working-directory: '.'
run: |
docker pull minio/minio:edge-cicd
docker run -d -p 9000:9000 minio/minio:edge-cicd
- name: Start MinIO service (macOS)
if: runner.os == 'macOS'
working-directory: ${{ runner.temp }}
run: |
brew install minio/stable/minio
mkdir data
minio server ./data &
# No MinIO on Windows:
# - Windows doesn't support running Linux Docker containers
# - It doesn't seem possible to start background processes on Windows. They are
# killed after the step returns.
# See: https://github.com/actions/runner/issues/598#issuecomment-2011890429
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: true
- name: Set up Python 3.12
- name: Checkout cassettes
if: ${{ startsWith(github.event_name, 'pull_request') }}
env:
PR_BASE: ${{ github.event.pull_request.base.ref }}
PR_BRANCH: ${{ github.event.pull_request.head.ref }}
PR_AUTHOR: ${{ github.event.pull_request.user.login }}
run: |
cassette_branch="${PR_AUTHOR}-${PR_BRANCH}"
cassette_base_branch="${PR_BASE}"
cd tests/vcr_cassettes
if ! git ls-remote --exit-code --heads origin $cassette_base_branch ; then
cassette_base_branch="master"
fi
if git ls-remote --exit-code --heads origin $cassette_branch ; then
git fetch origin $cassette_branch
git fetch origin $cassette_base_branch
git checkout $cassette_branch
# Pick non-conflicting cassette updates from the base branch
git merge --no-commit --strategy-option=ours origin/$cassette_base_branch
echo "Using cassettes from mirror branch '$cassette_branch'," \
"synced to upstream branch '$cassette_base_branch'."
else
git checkout -b $cassette_branch
echo "Branch '$cassette_branch' does not exist in cassette submodule." \
"Using cassettes from '$cassette_base_branch'."
fi
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: "3.12"
python-version: ${{ matrix.python-version }}
- name: Set up Python dependency cache
# On Windows, unpacking cached dependencies takes longer than just installing them
if: runner.os != 'Windows'
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: poetry-${{ runner.os }}-${{ hashFiles('classic/poetry.lock') }}
path: ${{ runner.os == 'macOS' && '~/Library/Caches/pypoetry' || '~/.cache/pypoetry' }}
key: poetry-${{ runner.os }}-${{ hashFiles('classic/forge/poetry.lock') }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
- name: Install Poetry (Unix)
if: runner.os != 'Windows'
run: |
curl -sSL https://install.python-poetry.org | python3 -
if [ "${{ runner.os }}" = "macOS" ]; then
PATH="$HOME/.local/bin:$PATH"
echo "$HOME/.local/bin" >> $GITHUB_PATH
fi
- name: Install Poetry (Windows)
if: runner.os == 'Windows'
shell: pwsh
run: |
(Invoke-WebRequest -Uri https://install.python-poetry.org -UseBasicParsing).Content | python -
$env:PATH += ";$env:APPDATA\Python\Scripts"
echo "$env:APPDATA\Python\Scripts" >> $env:GITHUB_PATH
- name: Install Python dependencies
run: poetry install
@@ -61,15 +140,12 @@ jobs:
--cov=forge --cov-branch --cov-report term-missing --cov-report xml \
--durations=10 \
--junitxml=junit.xml -o junit_family=legacy \
forge/forge forge/tests
forge
env:
CI: true
PLAIN_OUTPUT: True
# API keys - tests that need these will skip if not available
# Secrets are not available to fork PRs (GitHub security feature)
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
ANTHROPIC_API_KEY: ${{ secrets.ANTHROPIC_API_KEY }}
S3_ENDPOINT_URL: http://127.0.0.1:9000
S3_ENDPOINT_URL: ${{ runner.os != 'Windows' && 'http://127.0.0.1:9000' || '' }}
AWS_ACCESS_KEY_ID: minioadmin
AWS_SECRET_ACCESS_KEY: minioadmin
@@ -83,11 +159,85 @@ jobs:
uses: codecov/codecov-action@v5
with:
token: ${{ secrets.CODECOV_TOKEN }}
flags: forge
flags: forge,${{ runner.os }}
- id: setup_git_auth
name: Set up git token authentication
# Cassettes may be pushed even when tests fail
if: success() || failure()
run: |
config_key="http.${{ github.server_url }}/.extraheader"
if [ "${{ runner.os }}" = 'macOS' ]; then
base64_pat=$(echo -n "pat:${{ secrets.PAT_REVIEW }}" | base64)
else
base64_pat=$(echo -n "pat:${{ secrets.PAT_REVIEW }}" | base64 -w0)
fi
git config "$config_key" \
"Authorization: Basic $base64_pat"
cd tests/vcr_cassettes
git config "$config_key" \
"Authorization: Basic $base64_pat"
echo "config_key=$config_key" >> $GITHUB_OUTPUT
- id: push_cassettes
name: Push updated cassettes
# For pull requests, push updated cassettes even when tests fail
if: github.event_name == 'push' || (! github.event.pull_request.head.repo.fork && (success() || failure()))
env:
PR_BRANCH: ${{ github.event.pull_request.head.ref }}
PR_AUTHOR: ${{ github.event.pull_request.user.login }}
run: |
if [ "${{ startsWith(github.event_name, 'pull_request') }}" = "true" ]; then
is_pull_request=true
cassette_branch="${PR_AUTHOR}-${PR_BRANCH}"
else
cassette_branch="${{ github.ref_name }}"
fi
cd tests/vcr_cassettes
# Commit & push changes to cassettes if any
if ! git diff --quiet; then
git add .
git commit -m "Auto-update cassettes"
git push origin HEAD:$cassette_branch
if [ ! $is_pull_request ]; then
cd ../..
git add tests/vcr_cassettes
git commit -m "Update cassette submodule"
git push origin HEAD:$cassette_branch
fi
echo "updated=true" >> $GITHUB_OUTPUT
else
echo "updated=false" >> $GITHUB_OUTPUT
echo "No cassette changes to commit"
fi
- name: Post Set up git token auth
if: steps.setup_git_auth.outcome == 'success'
run: |
git config --unset-all '${{ steps.setup_git_auth.outputs.config_key }}'
git submodule foreach git config --unset-all '${{ steps.setup_git_auth.outputs.config_key }}'
- name: Apply "behaviour change" label and comment on PR
if: ${{ startsWith(github.event_name, 'pull_request') }}
run: |
PR_NUMBER="${{ github.event.pull_request.number }}"
TOKEN="${{ secrets.PAT_REVIEW }}"
REPO="${{ github.repository }}"
if [[ "${{ steps.push_cassettes.outputs.updated }}" == "true" ]]; then
echo "Adding label and comment..."
echo $TOKEN | gh auth login --with-token
gh issue edit $PR_NUMBER --add-label "behaviour change"
gh issue comment $PR_NUMBER --body "You changed AutoGPT's behaviour on ${{ runner.os }}. The cassettes have been updated and will be merged to the submodule when this Pull Request gets merged."
fi
- name: Upload logs to artifact
if: always()
uses: actions/upload-artifact@v4
with:
name: test-logs
path: classic/logs/
path: classic/forge/logs/

View File

@@ -0,0 +1,60 @@
name: Classic - Frontend CI/CD
on:
push:
branches:
- master
- dev
- 'ci-test*' # This will match any branch that starts with "ci-test"
paths:
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
pull_request:
paths:
- 'classic/frontend/**'
- '.github/workflows/classic-frontend-ci.yml'
jobs:
build:
permissions:
contents: write
pull-requests: write
runs-on: ubuntu-latest
env:
BUILD_BRANCH: ${{ format('classic-frontend-build/{0}', github.ref_name) }}
steps:
- name: Checkout Repo
uses: actions/checkout@v4
- name: Setup Flutter
uses: subosito/flutter-action@v2
with:
flutter-version: '3.13.2'
- name: Build Flutter to Web
run: |
cd classic/frontend
flutter build web --base-href /app/
# - name: Commit and Push to ${{ env.BUILD_BRANCH }}
# if: github.event_name == 'push'
# run: |
# git config --local user.email "action@github.com"
# git config --local user.name "GitHub Action"
# git add classic/frontend/build/web
# git checkout -B ${{ env.BUILD_BRANCH }}
# git commit -m "Update frontend build to ${GITHUB_SHA:0:7}" -a
# git push -f origin ${{ env.BUILD_BRANCH }}
- name: Create PR ${{ env.BUILD_BRANCH }} -> ${{ github.ref_name }}
if: github.event_name == 'push'
uses: peter-evans/create-pull-request@v7
with:
add-paths: classic/frontend/build/web
base: ${{ github.ref_name }}
branch: ${{ env.BUILD_BRANCH }}
delete-branch: true
title: "Update frontend build in `${{ github.ref_name }}`"
body: "This PR updates the frontend build based on commit ${{ github.sha }}."
commit-message: "Update frontend build based on commit ${{ github.sha }}"

View File

@@ -7,9 +7,7 @@ on:
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/direct_benchmark/**'
- 'classic/pyproject.toml'
- 'classic/poetry.lock'
- 'classic/benchmark/**'
- '**.py'
- '!classic/forge/tests/vcr_cassettes'
pull_request:
@@ -18,9 +16,7 @@ on:
- '.github/workflows/classic-python-checks-ci.yml'
- 'classic/original_autogpt/**'
- 'classic/forge/**'
- 'classic/direct_benchmark/**'
- 'classic/pyproject.toml'
- 'classic/poetry.lock'
- 'classic/benchmark/**'
- '**.py'
- '!classic/forge/tests/vcr_cassettes'
@@ -31,13 +27,44 @@ concurrency:
defaults:
run:
shell: bash
working-directory: classic
jobs:
get-changed-parts:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
- id: changes-in
name: Determine affected subprojects
uses: dorny/paths-filter@v3
with:
filters: |
original_autogpt:
- classic/original_autogpt/autogpt/**
- classic/original_autogpt/tests/**
- classic/original_autogpt/poetry.lock
forge:
- classic/forge/forge/**
- classic/forge/tests/**
- classic/forge/poetry.lock
benchmark:
- classic/benchmark/agbenchmark/**
- classic/benchmark/tests/**
- classic/benchmark/poetry.lock
outputs:
changed-parts: ${{ steps.changes-in.outputs.changes }}
lint:
needs: get-changed-parts
runs-on: ubuntu-latest
env:
min-python-version: "3.12"
min-python-version: "3.10"
strategy:
matrix:
sub-package: ${{ fromJson(needs.get-changed-parts.outputs.changed-parts) }}
fail-fast: false
steps:
- name: Checkout repository
@@ -54,31 +81,42 @@ jobs:
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: ${{ runner.os }}-poetry-${{ hashFiles('classic/poetry.lock') }}
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
# Install dependencies
- name: Install Python dependencies
run: poetry install
run: poetry -C classic/${{ matrix.sub-package }} install
# Lint
- name: Lint (isort)
run: poetry run isort --check .
working-directory: classic/${{ matrix.sub-package }}
- name: Lint (Black)
if: success() || failure()
run: poetry run black --check .
working-directory: classic/${{ matrix.sub-package }}
- name: Lint (Flake8)
if: success() || failure()
run: poetry run flake8 .
working-directory: classic/${{ matrix.sub-package }}
types:
needs: get-changed-parts
runs-on: ubuntu-latest
env:
min-python-version: "3.12"
min-python-version: "3.10"
strategy:
matrix:
sub-package: ${{ fromJson(needs.get-changed-parts.outputs.changed-parts) }}
fail-fast: false
steps:
- name: Checkout repository
@@ -95,16 +133,19 @@ jobs:
uses: actions/cache@v4
with:
path: ~/.cache/pypoetry
key: ${{ runner.os }}-poetry-${{ hashFiles('classic/poetry.lock') }}
key: ${{ runner.os }}-poetry-${{ hashFiles(format('{0}/poetry.lock', matrix.sub-package)) }}
- name: Install Poetry
run: curl -sSL https://install.python-poetry.org | python3 -
# Install dependencies
- name: Install Python dependencies
run: poetry install
run: poetry -C classic/${{ matrix.sub-package }} install
# Typecheck
- name: Typecheck
if: success() || failure()
run: poetry run pyright
working-directory: classic/${{ matrix.sub-package }}

10
.gitignore vendored
View File

@@ -3,7 +3,6 @@
classic/original_autogpt/keys.py
classic/original_autogpt/*.json
auto_gpt_workspace/*
.autogpt/
*.mpeg
.env
# Root .env files
@@ -160,10 +159,6 @@ CURRENT_BULLETIN.md
# AgBenchmark
classic/benchmark/agbenchmark/reports/
classic/reports/
classic/direct_benchmark/reports/
classic/.benchmark_workspaces/
classic/direct_benchmark/.benchmark_workspaces/
# Nodejs
package-lock.json
@@ -182,8 +177,5 @@ autogpt_platform/backend/settings.py
*.ign.*
.test-contents
**/.claude/settings.local.json
.claude/settings.local.json
/autogpt_platform/backend/logs
# Test database
test.db

3
.gitmodules vendored Normal file
View File

@@ -0,0 +1,3 @@
[submodule "classic/forge/tests/vcr_cassettes"]
path = classic/forge/tests/vcr_cassettes
url = https://github.com/Significant-Gravitas/Auto-GPT-test-cassettes

View File

@@ -43,10 +43,29 @@ repos:
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic
alias: poetry-install-classic
entry: poetry -C classic install
files: ^classic/poetry\.lock$
name: Check & Install dependencies - Classic - AutoGPT
alias: poetry-install-classic-autogpt
entry: poetry -C classic/original_autogpt install
# include forge source (since it's a path dependency)
files: ^classic/(original_autogpt|forge)/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Forge
alias: poetry-install-classic-forge
entry: poetry -C classic/forge install
files: ^classic/forge/poetry\.lock$
types: [file]
language: system
pass_filenames: false
- id: poetry-install
name: Check & Install dependencies - Classic - Benchmark
alias: poetry-install-classic-benchmark
entry: poetry -C classic/benchmark install
files: ^classic/benchmark/poetry\.lock$
types: [file]
language: system
pass_filenames: false
@@ -97,10 +116,26 @@ repos:
language: system
- id: isort
name: Lint (isort) - Classic
alias: isort-classic
entry: bash -c 'cd classic && poetry run isort $(echo "$@" | sed "s|classic/||g")' --
files: ^classic/(original_autogpt|forge|direct_benchmark)/
name: Lint (isort) - Classic - AutoGPT
alias: isort-classic-autogpt
entry: poetry -P classic/original_autogpt run isort -p autogpt
files: ^classic/original_autogpt/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Forge
alias: isort-classic-forge
entry: poetry -P classic/forge run isort -p forge
files: ^classic/forge/
types: [file, python]
language: system
- id: isort
name: Lint (isort) - Classic - Benchmark
alias: isort-classic-benchmark
entry: poetry -P classic/benchmark run isort -p agbenchmark
files: ^classic/benchmark/
types: [file, python]
language: system
@@ -114,13 +149,26 @@ repos:
- repo: https://github.com/PyCQA/flake8
rev: 7.0.0
# Use consolidated flake8 config at classic/.flake8
# To have flake8 load the config of the individual subprojects, we have to call
# them separately.
hooks:
- id: flake8
name: Lint (Flake8) - Classic
alias: flake8-classic
files: ^classic/(original_autogpt|forge|direct_benchmark)/
args: [--config=classic/.flake8]
name: Lint (Flake8) - Classic - AutoGPT
alias: flake8-classic-autogpt
files: ^classic/original_autogpt/(autogpt|scripts|tests)/
args: [--config=classic/original_autogpt/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Forge
alias: flake8-classic-forge
files: ^classic/forge/(forge|tests)/
args: [--config=classic/forge/.flake8]
- id: flake8
name: Lint (Flake8) - Classic - Benchmark
alias: flake8-classic-benchmark
files: ^classic/benchmark/(agbenchmark|tests)/((?!reports).)*[/.]
args: [--config=classic/benchmark/.flake8]
- repo: local
hooks:
@@ -156,10 +204,29 @@ repos:
pass_filenames: false
- id: pyright
name: Typecheck - Classic
alias: pyright-classic
entry: poetry -C classic run pyright
files: ^classic/(original_autogpt|forge|direct_benchmark)/.*\.py$|^classic/poetry\.lock$
name: Typecheck - Classic - AutoGPT
alias: pyright-classic-autogpt
entry: poetry -C classic/original_autogpt run pyright
# include forge source (since it's a path dependency) but exclude *_test.py files:
files: ^(classic/original_autogpt/((autogpt|scripts|tests)/|poetry\.lock$)|classic/forge/(forge/.*(?<!_test)\.py|poetry\.lock)$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Forge
alias: pyright-classic-forge
entry: poetry -C classic/forge run pyright
files: ^classic/forge/(forge/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false
- id: pyright
name: Typecheck - Classic - Benchmark
alias: pyright-classic-benchmark
entry: poetry -C classic/benchmark run pyright
files: ^classic/benchmark/(agbenchmark/|tests/|poetry\.lock$)
types: [file]
language: system
pass_filenames: false

View File

@@ -218,6 +218,7 @@ async def save_agent_to_library(
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)

View File

@@ -33,7 +33,7 @@ from .models import (
UserReadiness,
)
from .utils import (
check_user_has_required_credentials,
build_missing_credentials_from_graph,
extract_credentials_from_schema,
fetch_graph_from_store_slug,
get_or_create_library_agent,
@@ -237,15 +237,13 @@ class RunAgentTool(BaseTool):
# Return credentials needed response with input data info
# The UI handles credential setup automatically, so the message
# focuses on asking about input data
credentials = extract_credentials_from_schema(
graph.credentials_input_schema
requirements_creds_dict = build_missing_credentials_from_graph(
graph, None
)
missing_creds_check = await check_user_has_required_credentials(
user_id, credentials
missing_credentials_dict = build_missing_credentials_from_graph(
graph, graph_credentials
)
missing_credentials_dict = {
c.id: c.model_dump() for c in missing_creds_check
}
requirements_creds_list = list(requirements_creds_dict.values())
return SetupRequirementsResponse(
message=self._build_inputs_message(graph, MSG_WHAT_VALUES_TO_USE),
@@ -259,7 +257,7 @@ class RunAgentTool(BaseTool):
ready_to_run=False,
),
requirements={
"credentials": [c.model_dump() for c in credentials],
"credentials": requirements_creds_list,
"inputs": self._get_inputs_list(graph.input_schema),
"execution_modes": self._get_execution_modes(graph),
},

View File

@@ -22,6 +22,7 @@ from .models import (
ToolResponseBase,
UserReadiness,
)
from .utils import build_missing_credentials_from_field_info
logger = logging.getLogger(__name__)
@@ -189,7 +190,11 @@ class RunBlockTool(BaseTool):
if missing_credentials:
# Return setup requirements response with missing credentials
missing_creds_dict = {c.id: c.model_dump() for c in missing_credentials}
credentials_fields_info = block.input_schema.get_credentials_fields_info()
missing_creds_dict = build_missing_credentials_from_field_info(
credentials_fields_info, set(matched_credentials.keys())
)
missing_creds_list = list(missing_creds_dict.values())
return SetupRequirementsResponse(
message=(
@@ -206,7 +211,7 @@ class RunBlockTool(BaseTool):
ready_to_run=False,
),
requirements={
"credentials": [c.model_dump() for c in missing_credentials],
"credentials": missing_creds_list,
"inputs": self._get_inputs_list(block),
"execution_modes": ["immediate"],
},

View File

@@ -8,7 +8,7 @@ from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
from backend.data.model import CredentialsFieldInfo, CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
@@ -89,6 +89,59 @@ def extract_credentials_from_schema(
return credentials
def _serialize_missing_credential(
field_key: str, field_info: CredentialsFieldInfo
) -> dict[str, Any]:
"""
Convert credential field info into a serializable dict that preserves all supported
credential types (e.g., api_key + oauth2) so the UI can offer multiple options.
"""
supported_types = sorted(field_info.supported_types)
provider = next(iter(field_info.provider), "unknown")
scopes = sorted(field_info.required_scopes or [])
return {
"id": field_key,
"title": field_key.replace("_", " ").title(),
"provider": provider,
"provider_name": provider.replace("_", " ").title(),
"type": supported_types[0] if supported_types else "api_key",
"types": supported_types,
"scopes": scopes,
}
def build_missing_credentials_from_graph(
graph: GraphModel, matched_credentials: dict[str, CredentialsMetaInput] | None
) -> dict[str, Any]:
"""
Build a missing_credentials mapping from a graph's aggregated credentials inputs,
preserving all supported credential types for each field.
"""
matched_keys = set(matched_credentials.keys()) if matched_credentials else set()
aggregated_fields = graph.aggregate_credentials_inputs()
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, (field_info, _node_fields) in aggregated_fields.items()
if field_key not in matched_keys
}
def build_missing_credentials_from_field_info(
credential_fields: dict[str, CredentialsFieldInfo],
matched_keys: set[str],
) -> dict[str, Any]:
"""
Build missing_credentials mapping from a simple credentials field info dictionary.
"""
return {
field_key: _serialize_missing_credential(field_key, field_info)
for field_key, field_info in credential_fields.items()
if field_key not in matched_keys
}
def extract_credentials_as_dict(
credentials_input_schema: dict[str, Any] | None,
) -> dict[str, CredentialsMetaInput]:

View File

@@ -401,27 +401,11 @@ async def add_generated_agent_image(
)
def _initialize_graph_settings(graph: graph_db.GraphModel) -> GraphSettings:
"""
Initialize GraphSettings based on graph content.
Args:
graph: The graph to analyze
Returns:
GraphSettings with appropriate human_in_the_loop_safe_mode value
"""
if graph.has_human_in_the_loop:
# Graph has HITL blocks - set safe mode to True by default
return GraphSettings(human_in_the_loop_safe_mode=True)
else:
# Graph has no HITL blocks - keep None
return GraphSettings(human_in_the_loop_safe_mode=None)
async def create_library_agent(
graph: graph_db.GraphModel,
user_id: str,
hitl_safe_mode: bool = True,
sensitive_action_safe_mode: bool = False,
create_library_agents_for_sub_graphs: bool = True,
) -> list[library_model.LibraryAgent]:
"""
@@ -430,6 +414,8 @@ async def create_library_agent(
Args:
agent: The agent/Graph to add to the library.
user_id: The user to whom the agent will be added.
hitl_safe_mode: Whether HITL blocks require manual review (default True).
sensitive_action_safe_mode: Whether sensitive action blocks require review.
create_library_agents_for_sub_graphs: If True, creates LibraryAgent records for sub-graphs as well.
Returns:
@@ -465,7 +451,11 @@ async def create_library_agent(
}
},
settings=SafeJson(
_initialize_graph_settings(graph_entry).model_dump()
GraphSettings.from_graph(
graph_entry,
hitl_safe_mode=hitl_safe_mode,
sensitive_action_safe_mode=sensitive_action_safe_mode,
).model_dump()
),
),
include=library_agent_include(
@@ -627,33 +617,6 @@ async def update_library_agent(
raise DatabaseError("Failed to update library agent") from e
async def update_library_agent_settings(
user_id: str,
agent_id: str,
settings: GraphSettings,
) -> library_model.LibraryAgent:
"""
Updates the settings for a specific LibraryAgent.
Args:
user_id: The owner of the LibraryAgent.
agent_id: The ID of the LibraryAgent to update.
settings: New GraphSettings to apply.
Returns:
The updated LibraryAgent.
Raises:
NotFoundError: If the specified LibraryAgent does not exist.
DatabaseError: If there's an error in the update operation.
"""
return await update_library_agent(
library_agent_id=agent_id,
user_id=user_id,
settings=settings,
)
async def delete_library_agent(
library_agent_id: str, user_id: str, soft_delete: bool = True
) -> None:
@@ -838,7 +801,7 @@ async def add_store_agent_to_library(
"isCreatedByUser": False,
"useGraphIsActiveVersion": False,
"settings": SafeJson(
_initialize_graph_settings(graph_model).model_dump()
GraphSettings.from_graph(graph_model).model_dump()
),
},
include=library_agent_include(
@@ -1228,8 +1191,15 @@ async def fork_library_agent(
)
new_graph = await on_graph_activate(new_graph, user_id=user_id)
# Create a library agent for the new graph
return (await create_library_agent(new_graph, user_id))[0]
# Create a library agent for the new graph, preserving safe mode settings
return (
await create_library_agent(
new_graph,
user_id,
hitl_safe_mode=original_agent.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=original_agent.settings.sensitive_action_safe_mode,
)
)[0]
except prisma.errors.PrismaError as e:
logger.error(f"Database error cloning library agent: {e}")
raise DatabaseError("Failed to fork library agent") from e

View File

@@ -73,6 +73,12 @@ class LibraryAgent(pydantic.BaseModel):
has_external_trigger: bool = pydantic.Field(
description="Whether the agent has an external trigger (e.g. webhook) node"
)
has_human_in_the_loop: bool = pydantic.Field(
description="Whether the agent has human-in-the-loop blocks"
)
has_sensitive_action: bool = pydantic.Field(
description="Whether the agent has sensitive action blocks"
)
trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs)
@@ -180,6 +186,8 @@ class LibraryAgent(pydantic.BaseModel):
graph.credentials_input_schema if sub_graphs is not None else None
),
has_external_trigger=graph.has_external_trigger,
has_human_in_the_loop=graph.has_human_in_the_loop,
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
new_output=new_output,
can_access_graph=can_access_graph,

View File

@@ -52,6 +52,8 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -75,6 +77,8 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -150,6 +154,8 @@ async def test_get_favorite_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -218,6 +224,8 @@ def test_add_agent_to_library_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
new_output=False,
can_access_graph=True,

View File

@@ -159,10 +159,10 @@ async def store_content_embedding(
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::vector, $5, $6::jsonb, NOW(), NOW())
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::{schema}.vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::vector,
"embedding" = $4::{schema}.vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
@@ -177,7 +177,6 @@ async def store_content_embedding(
searchable_text,
metadata_json,
client=client,
set_public_search_path=True,
)
logger.info(f"Stored embedding for {content_type}:{content_id}")
@@ -236,7 +235,6 @@ async def get_content_embedding(
content_type,
content_id,
user_id,
set_public_search_path=True,
)
if result and len(result) > 0:
@@ -871,31 +869,44 @@ async def semantic_search(
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params) + 1
content_type_placeholders = ", ".join(
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
for i in range(len(content_types))
)
params.extend([ct.value for ct in content_types])
sql = f"""
# Build min_similarity param index before appending
min_similarity_idx = len(params) + 1
params.append(min_similarity)
sql = (
"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
1 - (embedding <=> '{embedding_str}'::vector) as similarity
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
WHERE "contentType" IN ({content_type_placeholders})
{user_filter}
AND 1 - (embedding <=> '{embedding_str}'::vector) >= ${len(params) + 1}
1 - (embedding <=> '"""
+ embedding_str
+ """'::{schema}.vector) as similarity
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders
+ """)
"""
+ user_filter
+ """
AND 1 - (embedding <=> '"""
+ embedding_str
+ """'::{schema}.vector) >= $"""
+ str(min_similarity_idx)
+ """
ORDER BY similarity DESC
LIMIT $1
"""
params.append(min_similarity)
)
try:
results = await query_raw_with_schema(
sql, *params, set_public_search_path=True
)
results = await query_raw_with_schema(sql, *params)
return [
{
"content_id": row["content_id"],
@@ -922,31 +933,41 @@ async def semantic_search(
# Add content type parameters and build placeholders dynamically
content_type_start_idx = len(params_lexical) + 1
content_type_placeholders_lexical = ", ".join(
f'${content_type_start_idx + i}::{{{{schema_prefix}}}}"ContentType"'
"$" + str(content_type_start_idx + i) + '::{schema_prefix}"ContentType"'
for i in range(len(content_types))
)
params_lexical.extend([ct.value for ct in content_types])
sql_lexical = f"""
# Build query param index before appending
query_param_idx = len(params_lexical) + 1
params_lexical.append(f"%{query}%")
# Use regular string (not f-string) for template to preserve {schema_prefix} placeholders
sql_lexical = (
"""
SELECT
"contentId" as content_id,
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
0.0 as similarity
FROM {{{{schema_prefix}}}}"UnifiedContentEmbedding"
WHERE "contentType" IN ({content_type_placeholders_lexical})
{user_filter}
AND "searchableText" ILIKE ${len(params_lexical) + 1}
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders_lexical
+ """)
"""
+ user_filter
+ """
AND "searchableText" ILIKE $"""
+ str(query_param_idx)
+ """
ORDER BY "updatedAt" DESC
LIMIT $1
"""
params_lexical.append(f"%{query}%")
)
try:
results = await query_raw_with_schema(
sql_lexical, *params_lexical, set_public_search_path=True
)
results = await query_raw_with_schema(sql_lexical, *params_lexical)
return [
{
"content_id": row["content_id"],

View File

@@ -155,18 +155,14 @@ async def test_store_embedding_success(mocker):
)
assert result is True
# execute_raw is called twice: once for SET search_path, once for INSERT
assert mock_client.execute_raw.call_count == 2
# execute_raw is called once for INSERT (no separate SET search_path needed)
assert mock_client.execute_raw.call_count == 1
# First call: SET search_path
first_call_args = mock_client.execute_raw.call_args_list[0][0]
assert "SET search_path" in first_call_args[0]
# Second call: INSERT query with the actual data
second_call_args = mock_client.execute_raw.call_args_list[1][0]
assert "test-version-id" in second_call_args
assert "[0.1,0.2,0.3]" in second_call_args
assert None in second_call_args # userId should be None for store agents
# Verify the INSERT query with the actual data
call_args = mock_client.execute_raw.call_args_list[0][0]
assert "test-version-id" in call_args
assert "[0.1,0.2,0.3]" in call_args
assert None in call_args # userId should be None for store agents
@pytest.mark.asyncio(loop_scope="session")

View File

@@ -12,7 +12,7 @@ from dataclasses import dataclass
from typing import Any, Literal
from prisma.enums import ContentType
from rank_bm25 import BM25Okapi
from rank_bm25 import BM25Okapi # type: ignore[import-untyped]
from backend.api.features.store.embeddings import (
EMBEDDING_DIM,
@@ -295,7 +295,7 @@ async def unified_hybrid_search(
FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
WHERE uce."contentType" = ANY({content_types_param}::{{schema_prefix}}"ContentType"[])
{user_filter}
ORDER BY uce.embedding <=> {embedding_param}::vector
ORDER BY uce.embedding <=> {embedding_param}::{{schema}}.vector
LIMIT 200
)
),
@@ -307,7 +307,7 @@ async def unified_hybrid_search(
uce.metadata,
uce."updatedAt" as updated_at,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
COALESCE(1 - (uce.embedding <=> {embedding_param}::{{schema}}.vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd
COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match from metadata
@@ -363,9 +363,7 @@ async def unified_hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
results = await query_raw_with_schema(sql_query, *params)
total = results[0]["total_count"] if results else 0
# Apply BM25 reranking
@@ -585,7 +583,7 @@ async def hybrid_search(
WHERE uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
AND uce."userId" IS NULL
AND {where_clause}
ORDER BY uce.embedding <=> {embedding_param}::vector
ORDER BY uce.embedding <=> {embedding_param}::{{schema}}.vector
LIMIT 200
) uce
),
@@ -607,7 +605,7 @@ async def hybrid_search(
-- Searchable text for BM25 reranking
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
-- Semantic score
COALESCE(1 - (uce.embedding <=> {embedding_param}::vector), 0) as semantic_score,
COALESCE(1 - (uce.embedding <=> {embedding_param}::{{schema}}.vector), 0) as semantic_score,
-- Lexical score (raw, will normalize)
COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match
@@ -688,9 +686,7 @@ async def hybrid_search(
LIMIT {limit_param} OFFSET {offset_param}
"""
results = await query_raw_with_schema(
sql_query, *params, set_public_search_path=True
)
results = await query_raw_with_schema(sql_query, *params)
total = results[0]["total_count"] if results else 0

View File

@@ -761,10 +761,8 @@ async def create_new_graph(
graph.reassign_ids(user_id=user_id, reassign_graph_id=True)
graph.validate_graph(for_run=False)
# The return value of the create graph & library function is intentionally not used here,
# as the graph already valid and no sub-graphs are returned back.
await graph_db.create_graph(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id)
activated_graph = await on_graph_activate(graph, user_id=user_id)
if create_graph.source == "builder":
@@ -888,21 +886,19 @@ async def set_graph_active_version(
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
# Keep the library agent up to date with the new active version
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
# If the graph has HITL node, initialize the setting if it's not already set.
if (
agent_graph.has_human_in_the_loop
and library.settings.human_in_the_loop_safe_mode is None
):
await library_db.update_library_agent_settings(
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id,
agent_id=library.id,
settings=library.settings.model_copy(
update={"human_in_the_loop_safe_mode": True}
),
settings=updated_settings,
)
return library
@@ -919,21 +915,18 @@ async def update_graph_settings(
user_id: Annotated[str, Security(get_user_id)],
) -> GraphSettings:
"""Update graph settings for the user's library agent."""
# Get the library agent for this graph
library_agent = await library_db.get_library_agent_by_graph_id(
graph_id=graph_id, user_id=user_id
)
if not library_agent:
raise HTTPException(404, f"Graph #{graph_id} not found in user's library")
# Update the library agent settings
updated_agent = await library_db.update_library_agent_settings(
updated_agent = await library_db.update_library_agent(
library_agent_id=library_agent.id,
user_id=user_id,
agent_id=library_agent.id,
settings=settings,
)
# Return the updated settings
return GraphSettings.model_validate(updated_agent.settings)

View File

@@ -680,3 +680,58 @@ class ListIsEmptyBlock(Block):
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
yield "is_empty", len(input_data.list) == 0
class ConcatenateListsBlock(Block):
class Input(BlockSchemaInput):
lists: List[List[Any]] = SchemaField(
description="A list of lists to concatenate together. All lists will be combined in order into a single list.",
placeholder="e.g., [[1, 2], [3, 4], [5, 6]]",
)
class Output(BlockSchemaOutput):
concatenated_list: List[Any] = SchemaField(
description="The concatenated list containing all elements from all input lists in order."
)
error: str = SchemaField(
description="Error message if concatenation failed due to invalid input types."
)
def __init__(self):
super().__init__(
id="3cf9298b-5817-4141-9d80-7c2cc5199c8e",
description="Concatenates multiple lists into a single list. All elements from all input lists are combined in order.",
categories={BlockCategory.BASIC},
input_schema=ConcatenateListsBlock.Input,
output_schema=ConcatenateListsBlock.Output,
test_input=[
{"lists": [[1, 2, 3], [4, 5, 6]]},
{"lists": [["a", "b"], ["c"], ["d", "e", "f"]]},
{"lists": [[1, 2], []]},
{"lists": []},
],
test_output=[
("concatenated_list", [1, 2, 3, 4, 5, 6]),
("concatenated_list", ["a", "b", "c", "d", "e", "f"]),
("concatenated_list", [1, 2]),
("concatenated_list", []),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
concatenated = []
for idx, lst in enumerate(input_data.lists):
if lst is None:
# Skip None values to avoid errors
continue
if not isinstance(lst, list):
# Type validation: each item must be a list
# Strings are iterable and would cause extend() to iterate character-by-character
# Non-iterable types would raise TypeError
yield "error", (
f"Invalid input at index {idx}: expected a list, got {type(lst).__name__}. "
f"All items in 'lists' must be lists (e.g., [[1, 2], [3, 4]])."
)
return
concatenated.extend(lst)
yield "concatenated_list", concatenated

View File

@@ -84,7 +84,7 @@ class HITLReviewHelper:
Exception: If review creation or status update fails
"""
# Skip review if safe mode is disabled - return auto-approved result
if not execution_context.safe_mode:
if not execution_context.human_in_the_loop_safe_mode:
logger.info(
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
)

View File

@@ -104,7 +104,7 @@ class HumanInTheLoopBlock(Block):
execution_context: ExecutionContext,
**_kwargs,
) -> BlockOutput:
if not execution_context.safe_mode:
if not execution_context.human_in_the_loop_safe_mode:
logger.info(
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
)

View File

@@ -79,6 +79,10 @@ class ModelMetadata(NamedTuple):
provider: str
context_window: int
max_output_tokens: int | None
display_name: str
provider_name: str
creator_name: str
price_tier: Literal[1, 2, 3]
class LlmModelMeta(EnumMeta):
@@ -171,6 +175,26 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
V0_1_5_LG = "v0-1.5-lg"
V0_1_0_MD = "v0-1.0-md"
@classmethod
def __get_pydantic_json_schema__(cls, schema, handler):
json_schema = handler(schema)
llm_model_metadata = {}
for model in cls:
model_name = model.value
metadata = model.metadata
llm_model_metadata[model_name] = {
"creator": metadata.creator_name,
"creator_name": metadata.creator_name,
"title": metadata.display_name,
"provider": metadata.provider,
"provider_name": metadata.provider_name,
"name": model_name,
"price_tier": metadata.price_tier,
}
json_schema["llm_model"] = True
json_schema["llm_model_metadata"] = llm_model_metadata
return json_schema
@property
def metadata(self) -> ModelMetadata:
return MODEL_METADATA[self]
@@ -190,119 +214,291 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
MODEL_METADATA = {
# https://platform.openai.com/docs/models
LlmModel.O3: ModelMetadata("openai", 200000, 100000),
LlmModel.O3_MINI: ModelMetadata("openai", 200000, 100000), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
LlmModel.O3_MINI: ModelMetadata(
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata(
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata(
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_CHAT: ModelMetadata("openai", 400000, 16384),
LlmModel.GPT41: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT41_MINI: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT5_2: ModelMetadata(
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
),
LlmModel.GPT5_1: ModelMetadata(
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
),
LlmModel.GPT5: ModelMetadata(
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_MINI: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_NANO: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_CHAT: ModelMetadata(
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
),
LlmModel.GPT41: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
),
LlmModel.GPT41_MINI: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT4O_MINI: ModelMetadata(
"openai", 128000, 16384
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
), # gpt-4o-mini-2024-07-18
LlmModel.GPT4O: ModelMetadata("openai", 128000, 16384), # gpt-4o-2024-08-06
LlmModel.GPT4O: ModelMetadata(
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, 4096), # gpt-3.5-turbo-0125
LlmModel.GPT3_5_TURBO: ModelMetadata(
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
"anthropic", 200000, 32000
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 32000
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307
# https://docs.aimlapi.com/api-overview/model-database/text-models
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata("aiml_api", 32000, 8000),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata("aiml_api", 128000, 40000),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata("aiml_api", 128000, None),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata("aiml_api", 131000, 2000),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata("aiml_api", 128000, None),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata("groq", 128000, 32768),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 128000, 8192),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata("open_router", 1050000, 8192),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata("open_router", 1048576, 8192),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
"aiml_api",
128000,
40000,
"Llama 3.1 Nemotron 70B Instruct",
"AI/ML",
"Nvidia",
1,
),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata(
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
),
LlmModel.LLAMA3_1_8B: ModelMetadata(
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
"open_router",
1050000,
8192,
"Gemini 2.5 Pro Preview 03.25",
"OpenRouter",
"Google",
2,
),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router",
1048576,
65535,
"Gemini 2.5 Flash Lite Preview 06.17",
"OpenRouter",
"Google",
1,
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
"open_router",
1048576,
8192,
"Gemini 2.0 Flash Lite 001",
"OpenRouter",
"Google",
1,
),
LlmModel.MISTRAL_NEMO: ModelMetadata(
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
),
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
),
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata("open_router", 1048576, 8192),
LlmModel.MISTRAL_NEMO: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata("open_router", 163840, 163840),
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 8000),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata("open_router", 200000, 8000),
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
"open_router",
128000,
16000,
"Sonar Deep Research",
"OpenRouter",
"Perplexity",
3,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router", 131000, 4096
"open_router",
131000,
4096,
"Hermes 3 Llama 3.1 405B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
"open_router", 12288, 12288
"open_router",
12288,
12288,
"Hermes 3 Llama 3.1 70B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
),
LlmModel.GROK_4: ModelMetadata(
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
),
LlmModel.GROK_4_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_4_1_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
),
LlmModel.KIMI_K2: ModelMetadata(
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
"open_router",
262144,
262144,
"Qwen 3 235B A22B Thinking 2507",
"OpenRouter",
"Qwen",
1,
),
LlmModel.QWEN3_CODER: ModelMetadata(
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata("open_router", 131072, 131072),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata("open_router", 131072, 32768),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata("open_router", 128000, 5120),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata("open_router", 65536, 4096),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata("open_router", 4096, 4096),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata("open_router", 131072, 131072),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata("open_router", 1048576, 1000000),
LlmModel.GROK_4: ModelMetadata("open_router", 256000, 256000),
LlmModel.GROK_4_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_4_1_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_CODE_FAST_1: ModelMetadata("open_router", 256000, 10000),
LlmModel.KIMI_K2: ModelMetadata("open_router", 131000, 131000),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata("open_router", 262144, 262144),
LlmModel.QWEN3_CODER: ModelMetadata("open_router", 262144, 262144),
# Llama API models
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Scout 17B 16E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Maverick 17B 128E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
),
# v0 by Vercel models
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
}
DEFAULT_LLM_MODEL = LlmModel.GPT5_2

View File

@@ -242,7 +242,7 @@ async def test_smart_decision_maker_tracks_llm_stats():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -343,7 +343,7 @@ async def test_smart_decision_maker_parameter_validation():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -409,7 +409,7 @@ async def test_smart_decision_maker_parameter_validation():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -471,7 +471,7 @@ async def test_smart_decision_maker_parameter_validation():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -535,7 +535,7 @@ async def test_smart_decision_maker_parameter_validation():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -658,7 +658,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -730,7 +730,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -786,7 +786,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -905,7 +905,7 @@ async def test_smart_decision_maker_agent_mode():
# Create a mock execution context
mock_execution_context = ExecutionContext(
safe_mode=False,
human_in_the_loop_safe_mode=False,
)
# Create a mock execution processor for agent mode tests
@@ -1027,7 +1027,7 @@ async def test_smart_decision_maker_traditional_mode_default():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests

View File

@@ -386,7 +386,7 @@ async def test_output_yielding_with_dynamic_fields():
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_processor = MagicMock()
async for output_name, output_value in block.run(
@@ -609,7 +609,9 @@ async def test_validation_errors_dont_pollute_conversation():
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(
human_in_the_loop_safe_mode=False
)
# Create a proper mock execution processor for agent mode
from collections import defaultdict

View File

@@ -474,7 +474,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
self.block_type = block_type
self.webhook_config = webhook_config
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
self.requires_human_review: bool = False
self.is_sensitive_action: bool = False
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
@@ -637,8 +637,9 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
- should_pause: True if execution should be paused for review
- input_data_to_use: The input data to use (may be modified by reviewer)
"""
# Skip review if not required or safe mode is disabled
if not self.requires_human_review or not execution_context.safe_mode:
if not (
self.is_sensitive_action and execution_context.sensitive_action_safe_mode
):
return False, input_data
from backend.blocks.helpers.review import HITLReviewHelper

View File

@@ -99,10 +99,15 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.OPENAI_GPT_OSS_20B: 1,
LlmModel.GEMINI_2_5_PRO: 4,
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.MISTRAL_NEMO: 1,
LlmModel.COHERE_COMMAND_R_08_2024: 1,
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
LlmModel.DEEPSEEK_CHAT: 2,
LlmModel.DEEPSEEK_R1_0528: 1,
LlmModel.PERPLEXITY_SONAR: 1,
LlmModel.PERPLEXITY_SONAR_PRO: 5,
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
@@ -126,11 +131,6 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.KIMI_K2: 1,
LlmModel.QWEN3_235B_A22B_THINKING: 1,
LlmModel.QWEN3_CODER: 9,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.DEEPSEEK_R1_0528: 1,
# v0 by Vercel models
LlmModel.V0_1_5_MD: 1,
LlmModel.V0_1_5_LG: 2,

View File

@@ -38,20 +38,6 @@ POOL_TIMEOUT = os.getenv("DB_POOL_TIMEOUT")
if POOL_TIMEOUT:
DATABASE_URL = add_param(DATABASE_URL, "pool_timeout", POOL_TIMEOUT)
# Add public schema to search_path for pgvector type access
# The vector extension is in public schema, but search_path is determined by schema parameter
# Extract the schema from DATABASE_URL or default to 'public' (matching get_database_schema())
parsed_url = urlparse(DATABASE_URL)
url_params = dict(parse_qsl(parsed_url.query))
db_schema = url_params.get("schema", "public")
# Build search_path, avoiding duplicates if db_schema is already 'public'
search_path_schemas = list(
dict.fromkeys([db_schema, "public"])
) # Preserves order, removes duplicates
search_path = ",".join(search_path_schemas)
# This allows using ::vector without schema qualification
DATABASE_URL = add_param(DATABASE_URL, "options", f"-c search_path={search_path}")
HTTP_TIMEOUT = int(POOL_TIMEOUT) if POOL_TIMEOUT else None
prisma = Prisma(
@@ -127,38 +113,40 @@ async def _raw_with_schema(
*args,
execute: bool = False,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> list[dict] | int:
"""Internal: Execute raw SQL with proper schema handling.
Use query_raw_with_schema() or execute_raw_with_schema() instead.
Supports placeholders:
- {schema_prefix}: Table/type prefix (e.g., "platform".)
- {schema}: Raw schema name (e.g., platform) for pgvector types
Args:
query_template: SQL query with {schema_prefix} placeholder
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
*args: Query parameters
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
client: Optional Prisma client for transactions (only used when execute=True).
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
- list[dict] if execute=False (query results)
- int if execute=True (number of affected rows)
Example:
await execute_raw_with_schema(
'INSERT INTO {schema_prefix}"Embedding" (vec) VALUES ($1::{schema}.vector)',
embedding_data
)
"""
schema = get_database_schema()
schema_prefix = f'"{schema}".' if schema != "public" else ""
formatted_query = query_template.format(schema_prefix=schema_prefix)
formatted_query = query_template.format(schema_prefix=schema_prefix, schema=schema)
import prisma as prisma_module
db_client = client if client else prisma_module.get_client()
# Set search_path to include public schema if requested
# Prisma doesn't support the 'options' connection parameter, so we set it per-session
# This is idempotent and safe to call multiple times
if set_public_search_path:
await db_client.execute_raw(f"SET search_path = {schema}, public") # type: ignore
if execute:
result = await db_client.execute_raw(formatted_query, *args) # type: ignore
else:
@@ -167,16 +155,12 @@ async def _raw_with_schema(
return result
async def query_raw_with_schema(
query_template: str, *args, set_public_search_path: bool = False
) -> list[dict]:
async def query_raw_with_schema(query_template: str, *args) -> list[dict]:
"""Execute raw SQL SELECT query with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
*args: Query parameters
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
List of result rows as dictionaries
@@ -187,23 +171,20 @@ async def query_raw_with_schema(
user_id
)
"""
return await _raw_with_schema(query_template, *args, execute=False, set_public_search_path=set_public_search_path) # type: ignore
return await _raw_with_schema(query_template, *args, execute=False) # type: ignore
async def execute_raw_with_schema(
query_template: str,
*args,
client: Prisma | None = None,
set_public_search_path: bool = False,
) -> int:
"""Execute raw SQL command (INSERT/UPDATE/DELETE) with proper schema handling.
Args:
query_template: SQL query with {schema_prefix} placeholder
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
*args: Query parameters
client: Optional Prisma client for transactions
set_public_search_path: If True, sets search_path to include public schema.
Needed for pgvector types and other public schema objects.
Returns:
Number of affected rows
@@ -215,7 +196,7 @@ async def execute_raw_with_schema(
client=tx # Optional transaction client
)
"""
return await _raw_with_schema(query_template, *args, execute=True, client=client, set_public_search_path=set_public_search_path) # type: ignore
return await _raw_with_schema(query_template, *args, execute=True, client=client) # type: ignore
class BaseDbModel(BaseModel):

View File

@@ -81,7 +81,8 @@ class ExecutionContext(BaseModel):
This includes information needed by blocks, sub-graphs, and execution management.
"""
safe_mode: bool = True
human_in_the_loop_safe_mode: bool = True
sensitive_action_safe_mode: bool = False
user_timezone: str = "UTC"
root_execution_id: Optional[str] = None
parent_execution_id: Optional[str] = None

View File

@@ -3,7 +3,7 @@ import logging
import uuid
from collections import defaultdict
from datetime import datetime, timezone
from typing import TYPE_CHECKING, Any, Literal, Optional, cast
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, cast
from prisma.enums import SubmissionStatus
from prisma.models import (
@@ -20,7 +20,7 @@ from prisma.types import (
AgentNodeLinkCreateInput,
StoreListingVersionWhereInput,
)
from pydantic import BaseModel, Field, create_model
from pydantic import BaseModel, BeforeValidator, Field, create_model
from pydantic.fields import computed_field
from backend.blocks.agent import AgentExecutorBlock
@@ -62,7 +62,29 @@ logger = logging.getLogger(__name__)
class GraphSettings(BaseModel):
human_in_the_loop_safe_mode: bool | None = None
# Use Annotated with BeforeValidator to coerce None to default values.
# This handles cases where the database has null values for these fields.
human_in_the_loop_safe_mode: Annotated[
bool, BeforeValidator(lambda v: v if v is not None else True)
] = True
sensitive_action_safe_mode: Annotated[
bool, BeforeValidator(lambda v: v if v is not None else False)
] = False
@classmethod
def from_graph(
cls,
graph: "GraphModel",
hitl_safe_mode: bool | None = None,
sensitive_action_safe_mode: bool = False,
) -> "GraphSettings":
# Default to True if not explicitly set
if hitl_safe_mode is None:
hitl_safe_mode = True
return cls(
human_in_the_loop_safe_mode=hitl_safe_mode,
sensitive_action_safe_mode=sensitive_action_safe_mode,
)
class Link(BaseDbModel):
@@ -244,10 +266,14 @@ class BaseGraph(BaseDbModel):
return any(
node.block_id
for node in self.nodes
if (
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
or node.block.requires_human_review
)
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
)
@computed_field
@property
def has_sensitive_action(self) -> bool:
return any(
node.block_id for node in self.nodes if node.block.is_sensitive_action
)
@property

View File

@@ -309,7 +309,7 @@ def ensure_embeddings_coverage():
# Process in batches until no more missing embeddings
while True:
result = db_client.backfill_missing_embeddings(batch_size=10)
result = db_client.backfill_missing_embeddings(batch_size=100)
total_processed += result["processed"]
total_success += result["success"]

View File

@@ -873,11 +873,8 @@ async def add_graph_execution(
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
execution_context = ExecutionContext(
safe_mode=(
settings.human_in_the_loop_safe_mode
if settings.human_in_the_loop_safe_mode is not None
else True
),
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
user_timezone=(
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
),

View File

@@ -386,6 +386,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_settings.sensitive_action_safe_mode = False
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
@@ -651,6 +652,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_settings.sensitive_action_safe_mode = False
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)

View File

@@ -11,6 +11,7 @@
"forked_from_version": null,
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"id": "graph-123",
"input_schema": {
"properties": {},

View File

@@ -11,6 +11,7 @@
"forked_from_version": null,
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"id": "graph-123",
"input_schema": {
"properties": {},

View File

@@ -27,6 +27,8 @@
"properties": {}
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"can_access_graph": true,
@@ -34,7 +36,8 @@
"is_favorite": false,
"recommended_schedule_cron": null,
"settings": {
"human_in_the_loop_safe_mode": null
"human_in_the_loop_safe_mode": true,
"sensitive_action_safe_mode": false
},
"marketplace_listing": null
},
@@ -65,6 +68,8 @@
"properties": {}
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"can_access_graph": false,
@@ -72,7 +77,8 @@
"is_favorite": false,
"recommended_schedule_cron": null,
"settings": {
"human_in_the_loop_safe_mode": null
"human_in_the_loop_safe_mode": true,
"sensitive_action_safe_mode": false
},
"marketplace_listing": null
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 374 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 663 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 KiB

View File

@@ -5,10 +5,11 @@ import {
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
import { PlayIcon, StopIcon } from "@phosphor-icons/react";
import { CircleNotchIcon, PlayIcon, StopIcon } from "@phosphor-icons/react";
import { useShallow } from "zustand/react/shallow";
import { RunInputDialog } from "../RunInputDialog/RunInputDialog";
import { useRunGraph } from "./useRunGraph";
import { cn } from "@/lib/utils";
export const RunGraph = ({ flowID }: { flowID: string | null }) => {
const {
@@ -24,6 +25,31 @@ export const RunGraph = ({ flowID }: { flowID: string | null }) => {
useShallow((state) => state.isGraphRunning),
);
const isLoading = isExecutingGraph || isTerminatingGraph || isSaving;
// Determine which icon to show with proper animation
const renderIcon = () => {
const iconClass = cn(
"size-4 transition-transform duration-200 ease-out",
!isLoading && "group-hover:scale-110",
);
if (isLoading) {
return (
<CircleNotchIcon
className={cn(iconClass, "animate-spin")}
weight="bold"
/>
);
}
if (isGraphRunning) {
return <StopIcon className={iconClass} weight="fill" />;
}
return <PlayIcon className={iconClass} weight="fill" />;
};
return (
<>
<Tooltip>
@@ -33,18 +59,18 @@ export const RunGraph = ({ flowID }: { flowID: string | null }) => {
variant={isGraphRunning ? "destructive" : "primary"}
data-id={isGraphRunning ? "stop-graph-button" : "run-graph-button"}
onClick={isGraphRunning ? handleStopGraph : handleRunGraph}
disabled={!flowID || isExecutingGraph || isTerminatingGraph}
loading={isExecutingGraph || isTerminatingGraph || isSaving}
disabled={!flowID || isLoading}
className="group"
>
{!isGraphRunning ? (
<PlayIcon className="size-4" />
) : (
<StopIcon className="size-4" />
)}
{renderIcon()}
</Button>
</TooltipTrigger>
<TooltipContent>
{isGraphRunning ? "Stop agent" : "Run agent"}
{isLoading
? "Processing..."
: isGraphRunning
? "Stop agent"
: "Run agent"}
</TooltipContent>
</Tooltip>
<RunInputDialog

View File

@@ -10,6 +10,7 @@ import { useRunInputDialog } from "./useRunInputDialog";
import { CronSchedulerDialog } from "../CronSchedulerDialog/CronSchedulerDialog";
import { useTutorialStore } from "@/app/(platform)/build/stores/tutorialStore";
import { useEffect } from "react";
import { CredentialsGroupedView } from "@/components/contextual/CredentialsInput/components/CredentialsGroupedView/CredentialsGroupedView";
export const RunInputDialog = ({
isOpen,
@@ -23,19 +24,17 @@ export const RunInputDialog = ({
const hasInputs = useGraphStore((state) => state.hasInputs);
const hasCredentials = useGraphStore((state) => state.hasCredentials);
const inputSchema = useGraphStore((state) => state.inputSchema);
const credentialsSchema = useGraphStore(
(state) => state.credentialsInputSchema,
);
const {
credentialsUiSchema,
credentialFields,
requiredCredentials,
handleManualRun,
handleInputChange,
openCronSchedulerDialog,
setOpenCronSchedulerDialog,
inputValues,
credentialValues,
handleCredentialChange,
handleCredentialFieldChange,
isExecutingGraph,
} = useRunInputDialog({ setIsOpen });
@@ -62,67 +61,67 @@ export const RunInputDialog = ({
isOpen,
set: setIsOpen,
}}
styling={{ maxWidth: "600px", minWidth: "600px" }}
styling={{ maxWidth: "700px", minWidth: "700px" }}
>
<Dialog.Content>
<div className="space-y-6 p-1" data-id="run-input-dialog-content">
{/* Credentials Section */}
{hasCredentials() && (
<div data-id="run-input-credentials-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Credentials
</Text>
<div
className="grid grid-cols-[1fr_auto] gap-10 p-1"
data-id="run-input-dialog-content"
>
<div className="space-y-6">
{/* Credentials Section */}
{hasCredentials() && credentialFields.length > 0 && (
<div data-id="run-input-credentials-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Credentials
</Text>
</div>
<div className="px-2" data-id="run-input-credentials-form">
<CredentialsGroupedView
credentialFields={credentialFields}
requiredCredentials={requiredCredentials}
inputCredentials={credentialValues}
inputValues={inputValues}
onCredentialChange={handleCredentialFieldChange}
/>
</div>
</div>
<div className="px-2" data-id="run-input-credentials-form">
<FormRenderer
jsonSchema={credentialsSchema as RJSFSchema}
handleChange={(v) => handleCredentialChange(v.formData)}
uiSchema={credentialsUiSchema}
initialValues={{}}
formContext={{
showHandles: false,
size: "large",
showOptionalToggle: false,
}}
/>
</div>
</div>
)}
)}
{/* Inputs Section */}
{hasInputs() && (
<div data-id="run-input-inputs-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Inputs
</Text>
{/* Inputs Section */}
{hasInputs() && (
<div data-id="run-input-inputs-section">
<div className="mb-4">
<Text variant="h4" className="text-gray-900">
Inputs
</Text>
</div>
<div data-id="run-input-inputs-form">
<FormRenderer
jsonSchema={inputSchema as RJSFSchema}
handleChange={(v) => handleInputChange(v.formData)}
uiSchema={uiSchema}
initialValues={{}}
formContext={{
showHandles: false,
size: "large",
}}
/>
</div>
</div>
<div data-id="run-input-inputs-form">
<FormRenderer
jsonSchema={inputSchema as RJSFSchema}
handleChange={(v) => handleInputChange(v.formData)}
uiSchema={uiSchema}
initialValues={{}}
formContext={{
showHandles: false,
size: "large",
}}
/>
</div>
</div>
)}
)}
</div>
{/* Action Button */}
<div
className="flex justify-end pt-2"
className="flex flex-col items-end justify-start"
data-id="run-input-actions-section"
>
{purpose === "run" && (
<Button
variant="primary"
size="large"
className="group h-fit min-w-0 gap-2"
className="group h-fit min-w-0 gap-2 px-10"
onClick={handleManualRun}
loading={isExecutingGraph}
data-id="run-input-manual-run-button"
@@ -137,7 +136,7 @@ export const RunInputDialog = ({
<Button
variant="primary"
size="large"
className="group h-fit min-w-0 gap-2"
className="group h-fit min-w-0 gap-2 px-10"
onClick={() => setOpenCronSchedulerDialog(true)}
data-id="run-input-schedule-button"
>

View File

@@ -7,12 +7,11 @@ import {
GraphExecutionMeta,
} from "@/lib/autogpt-server-api";
import { parseAsInteger, parseAsString, useQueryStates } from "nuqs";
import { useMemo, useState } from "react";
import { uiSchema } from "../../../FlowEditor/nodes/uiSchema";
import { isCredentialFieldSchema } from "@/components/renderers/InputRenderer/custom/CredentialField/helpers";
import { useCallback, useMemo, useState } from "react";
import { useNodeStore } from "@/app/(platform)/build/stores/nodeStore";
import { useToast } from "@/components/molecules/Toast/use-toast";
import { useReactFlow } from "@xyflow/react";
import type { CredentialField } from "@/components/contextual/CredentialsInput/components/CredentialsGroupedView/helpers";
export const useRunInputDialog = ({
setIsOpen,
@@ -120,27 +119,32 @@ export const useRunInputDialog = ({
},
});
// We are rendering the credentials field differently compared to other fields.
// In the node, we have the field name as "credential" - so our library catches it and renders it differently.
// But here we have a different name, something like `Firecrawl credentials`, so here we are telling the library that this field is a credential field type.
// Convert credentials schema to credential fields array for CredentialsGroupedView
const credentialFields: CredentialField[] = useMemo(() => {
if (!credentialsSchema?.properties) return [];
return Object.entries(credentialsSchema.properties);
}, [credentialsSchema]);
const credentialsUiSchema = useMemo(() => {
const dynamicUiSchema: any = { ...uiSchema };
// Get required credentials as a Set
const requiredCredentials = useMemo(() => {
return new Set<string>(credentialsSchema?.required || []);
}, [credentialsSchema]);
if (credentialsSchema?.properties) {
Object.keys(credentialsSchema.properties).forEach((fieldName) => {
const fieldSchema = credentialsSchema.properties[fieldName];
if (isCredentialFieldSchema(fieldSchema)) {
dynamicUiSchema[fieldName] = {
...dynamicUiSchema[fieldName],
"ui:field": "custom/credential_field",
};
// Handler for individual credential changes
const handleCredentialFieldChange = useCallback(
(key: string, value?: CredentialsMetaInput) => {
setCredentialValues((prev) => {
if (value) {
return { ...prev, [key]: value };
} else {
const next = { ...prev };
delete next[key];
return next;
}
});
}
return dynamicUiSchema;
}, [credentialsSchema]);
},
[],
);
const handleManualRun = async () => {
// Filter out incomplete credentials (those without a valid id)
@@ -173,12 +177,14 @@ export const useRunInputDialog = ({
};
return {
credentialsUiSchema,
credentialFields,
requiredCredentials,
inputValues,
credentialValues,
isExecutingGraph,
handleInputChange,
handleCredentialChange,
handleCredentialFieldChange,
handleManualRun,
openCronSchedulerDialog,
setOpenCronSchedulerDialog,

View File

@@ -18,69 +18,118 @@ interface Props {
fullWidth?: boolean;
}
interface SafeModeButtonProps {
isEnabled: boolean;
label: string;
tooltipEnabled: string;
tooltipDisabled: string;
onToggle: () => void;
isPending: boolean;
fullWidth?: boolean;
}
function SafeModeButton({
isEnabled,
label,
tooltipEnabled,
tooltipDisabled,
onToggle,
isPending,
fullWidth = false,
}: SafeModeButtonProps) {
return (
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<Button
variant={isEnabled ? "primary" : "outline"}
size="small"
onClick={onToggle}
disabled={isPending}
className={cn("justify-start", fullWidth ? "w-full" : "")}
>
{isEnabled ? (
<>
<ShieldCheckIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-200">
{label}: ON
</Text>
</>
) : (
<>
<ShieldIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-600">
{label}: OFF
</Text>
</>
)}
</Button>
</TooltipTrigger>
<TooltipContent>
<div className="text-center">
<div className="font-medium">
{label}: {isEnabled ? "ON" : "OFF"}
</div>
<div className="mt-1 text-xs text-muted-foreground">
{isEnabled ? tooltipEnabled : tooltipDisabled}
</div>
</div>
</TooltipContent>
</Tooltip>
);
}
export function FloatingSafeModeToggle({
graph,
className,
fullWidth = false,
}: Props) {
const {
currentSafeMode,
currentHITLSafeMode,
showHITLToggle,
isHITLStateUndetermined,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
isStateUndetermined,
handleToggle,
} = useAgentSafeMode(graph);
if (!shouldShowToggle || isStateUndetermined || isPending) {
if (!shouldShowToggle || isPending) {
return null;
}
const showHITL = showHITLToggle && !isHITLStateUndetermined;
const showSensitive = showSensitiveActionToggle;
if (!showHITL && !showSensitive) {
return null;
}
return (
<div className={cn("fixed z-50", className)}>
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<Button
variant={currentSafeMode! ? "primary" : "outline"}
key={graph.id}
size="small"
title={
currentSafeMode!
? "Safe Mode: ON. Human in the loop blocks require manual review"
: "Safe Mode: OFF. Human in the loop blocks proceed automatically"
}
onClick={handleToggle}
className={cn(fullWidth ? "w-full" : "")}
>
{currentSafeMode! ? (
<>
<ShieldCheckIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-200">
Safe Mode: ON
</Text>
</>
) : (
<>
<ShieldIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-600">
Safe Mode: OFF
</Text>
</>
)}
</Button>
</TooltipTrigger>
<TooltipContent>
<div className="text-center">
<div className="font-medium">
Safe Mode: {currentSafeMode! ? "ON" : "OFF"}
</div>
<div className="mt-1 text-xs text-muted-foreground">
{currentSafeMode!
? "Human in the loop blocks require manual review"
: "Human in the loop blocks proceed automatically"}
</div>
</div>
</TooltipContent>
</Tooltip>
<div className={cn("fixed z-50 flex flex-col gap-2", className)}>
{showHITL && (
<SafeModeButton
isEnabled={currentHITLSafeMode}
label="Human in the loop block approval"
tooltipEnabled="The agent will pause at human-in-the-loop blocks and wait for your approval"
tooltipDisabled="Human in the loop blocks will proceed automatically"
onToggle={handleHITLToggle}
isPending={isPending}
fullWidth={fullWidth}
/>
)}
{showSensitive && (
<SafeModeButton
isEnabled={currentSensitiveActionSafeMode}
label="Sensitive actions blocks approval"
tooltipEnabled="The agent will pause at sensitive action blocks and wait for your approval"
tooltipDisabled="Sensitive action blocks will proceed automatically"
onToggle={handleSensitiveActionToggle}
isPending={isPending}
fullWidth={fullWidth}
/>
)}
</div>
);
}

View File

@@ -53,14 +53,14 @@ export const CustomControls = memo(
const controls = [
{
id: "zoom-in-button",
icon: <PlusIcon className="size-4" />,
icon: <PlusIcon className="size-3.5 text-zinc-600" />,
label: "Zoom In",
onClick: () => zoomIn(),
className: "h-10 w-10 border-none",
},
{
id: "zoom-out-button",
icon: <MinusIcon className="size-4" />,
icon: <MinusIcon className="size-3.5 text-zinc-600" />,
label: "Zoom Out",
onClick: () => zoomOut(),
className: "h-10 w-10 border-none",
@@ -68,9 +68,9 @@ export const CustomControls = memo(
{
id: "tutorial-button",
icon: isTutorialLoading ? (
<CircleNotchIcon className="size-4 animate-spin" />
<CircleNotchIcon className="size-3.5 animate-spin text-zinc-600" />
) : (
<ChalkboardIcon className="size-4" />
<ChalkboardIcon className="size-3.5 text-zinc-600" />
),
label: isTutorialLoading ? "Loading Tutorial..." : "Start Tutorial",
onClick: handleTutorialClick,
@@ -79,7 +79,7 @@ export const CustomControls = memo(
},
{
id: "fit-view-button",
icon: <FrameCornersIcon className="size-4" />,
icon: <FrameCornersIcon className="size-3.5 text-zinc-600" />,
label: "Fit View",
onClick: () => fitView({ padding: 0.2, duration: 800, maxZoom: 1 }),
className: "h-10 w-10 border-none",
@@ -87,9 +87,9 @@ export const CustomControls = memo(
{
id: "lock-button",
icon: !isLocked ? (
<LockOpenIcon className="size-4" />
<LockOpenIcon className="size-3.5 text-zinc-600" />
) : (
<LockIcon className="size-4" />
<LockIcon className="size-3.5 text-zinc-600" />
),
label: "Toggle Lock",
onClick: () => setIsLocked(!isLocked),

View File

@@ -139,14 +139,6 @@ export const useFlow = () => {
useNodeStore.getState().setNodes([]);
useNodeStore.getState().clearResolutionState();
addNodes(customNodes);
// Sync hardcoded values with handle IDs.
// If a keyvalue field has a key without a value, the backend omits it from hardcoded values.
// But if a handleId exists for that key, it causes inconsistency.
// This ensures hardcoded values stay in sync with handle IDs.
customNodes.forEach((node) => {
useNodeStore.getState().syncHardcodedValuesWithHandleIds(node.id);
});
}
}, [customNodes, addNodes]);
@@ -158,6 +150,14 @@ export const useFlow = () => {
}
}, [graph?.links, addLinks]);
useEffect(() => {
if (customNodes.length > 0 && graph?.links) {
customNodes.forEach((node) => {
useNodeStore.getState().syncHardcodedValuesWithHandleIds(node.id);
});
}
}, [customNodes, graph?.links]);
// update node execution status in nodes
useEffect(() => {
if (

View File

@@ -19,6 +19,8 @@ export type CustomEdgeData = {
beadUp?: number;
beadDown?: number;
beadData?: Map<string, NodeExecutionResult["status"]>;
edgeColorClass?: string;
edgeHexColor?: string;
};
export type CustomEdge = XYEdge<CustomEdgeData, "custom">;
@@ -36,7 +38,6 @@ const CustomEdge = ({
selected,
}: EdgeProps<CustomEdge>) => {
const removeConnection = useEdgeStore((state) => state.removeEdge);
// Subscribe to the brokenEdgeIDs map and check if this edge is broken across any node
const isBroken = useNodeStore((state) => state.isEdgeBroken(id));
const [isHovered, setIsHovered] = useState(false);
@@ -52,6 +53,7 @@ const CustomEdge = ({
const isStatic = data?.isStatic ?? false;
const beadUp = data?.beadUp ?? 0;
const beadDown = data?.beadDown ?? 0;
const edgeColorClass = data?.edgeColorClass;
const handleRemoveEdge = () => {
removeConnection(id);
@@ -70,7 +72,9 @@ const CustomEdge = ({
? "!stroke-red-500 !stroke-[2px] [stroke-dasharray:4]"
: selected
? "stroke-zinc-800"
: "stroke-zinc-500/50 hover:stroke-zinc-500",
: edgeColorClass
? cn(edgeColorClass, "opacity-70 hover:opacity-100")
: "stroke-zinc-500/50 hover:stroke-zinc-500",
)}
/>
<JSBeads

View File

@@ -8,6 +8,7 @@ import { useCallback } from "react";
import { useNodeStore } from "../../../stores/nodeStore";
import { useHistoryStore } from "../../../stores/historyStore";
import { CustomEdge } from "./CustomEdge";
import { getEdgeColorFromOutputType } from "../nodes/helpers";
export const useCustomEdge = () => {
const edges = useEdgeStore((s) => s.edges);
@@ -34,8 +35,13 @@ export const useCustomEdge = () => {
if (exists) return;
const nodes = useNodeStore.getState().nodes;
const isStatic = nodes.find((n) => n.id === conn.source)?.data
?.staticOutput;
const sourceNode = nodes.find((n) => n.id === conn.source);
const isStatic = sourceNode?.data?.staticOutput;
const { colorClass, hexColor } = getEdgeColorFromOutputType(
sourceNode?.data?.outputSchema,
conn.sourceHandle,
);
addEdge({
source: conn.source,
@@ -44,6 +50,8 @@ export const useCustomEdge = () => {
targetHandle: conn.targetHandle,
data: {
isStatic,
edgeColorClass: colorClass,
edgeHexColor: hexColor,
},
});
},

View File

@@ -1,22 +1,21 @@
import { Button } from "@/components/atoms/Button/Button";
import { Text } from "@/components/atoms/Text/Text";
import {
Accordion,
AccordionContent,
AccordionItem,
AccordionTrigger,
} from "@/components/molecules/Accordion/Accordion";
import { beautifyString, cn } from "@/lib/utils";
import { CaretDownIcon, CopyIcon, CheckIcon } from "@phosphor-icons/react";
import { CopyIcon, CheckIcon } from "@phosphor-icons/react";
import { NodeDataViewer } from "./components/NodeDataViewer/NodeDataViewer";
import { ContentRenderer } from "./components/ContentRenderer";
import { useNodeOutput } from "./useNodeOutput";
import { ViewMoreData } from "./components/ViewMoreData";
export const NodeDataRenderer = ({ nodeId }: { nodeId: string }) => {
const {
outputData,
isExpanded,
setIsExpanded,
copiedKey,
handleCopy,
executionResultId,
inputData,
} = useNodeOutput(nodeId);
const { outputData, copiedKey, handleCopy, executionResultId, inputData } =
useNodeOutput(nodeId);
if (Object.keys(outputData).length === 0) {
return null;
@@ -25,122 +24,117 @@ export const NodeDataRenderer = ({ nodeId }: { nodeId: string }) => {
return (
<div
data-tutorial-id={`node-output`}
className="flex flex-col gap-3 rounded-b-xl border-t border-zinc-200 px-4 py-4"
className="rounded-b-xl border-t border-zinc-200 px-4 py-2"
>
<div className="flex items-center justify-between">
<Text variant="body-medium" className="!font-semibold text-slate-700">
Node Output
</Text>
<Button
variant="ghost"
size="small"
onClick={() => setIsExpanded(!isExpanded)}
className="h-fit min-w-0 p-1 text-slate-600 hover:text-slate-900"
>
<CaretDownIcon
size={16}
weight="bold"
className={`transition-transform ${isExpanded ? "rotate-180" : ""}`}
/>
</Button>
</div>
<Accordion type="single" collapsible defaultValue="node-output">
<AccordionItem value="node-output" className="border-none">
<AccordionTrigger className="py-2 hover:no-underline">
<Text
variant="body-medium"
className="!font-semibold text-slate-700"
>
Node Output
</Text>
</AccordionTrigger>
<AccordionContent className="pt-2">
<div className="flex max-w-[350px] flex-col gap-4">
<div className="space-y-2">
<Text variant="small-medium">Input</Text>
{isExpanded && (
<>
<div className="flex max-w-[350px] flex-col gap-4">
<div className="space-y-2">
<Text variant="small-medium">Input</Text>
<ContentRenderer value={inputData} shortContent={false} />
<ContentRenderer value={inputData} shortContent={false} />
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={inputData}
pinName="Input"
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy("input", inputData)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === "input" &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === "input" ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={inputData}
pinName="Input"
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy("input", inputData)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === "input" &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === "input" ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
</div>
</div>
</div>
{Object.entries(outputData)
.slice(0, 2)
.map(([key, value]) => (
<div key={key} className="flex flex-col gap-2">
<div className="flex items-center gap-2">
<Text
variant="small-medium"
className="!font-semibold text-slate-600"
>
Pin:
</Text>
<Text variant="small" className="text-slate-700">
{beautifyString(key)}
</Text>
</div>
<div className="w-full space-y-2">
<Text
variant="small"
className="!font-semibold text-slate-600"
>
Data:
</Text>
<div className="relative space-y-2">
{value.map((item, index) => (
<div key={index}>
<ContentRenderer value={item} shortContent={true} />
{Object.entries(outputData)
.slice(0, 2)
.map(([key, value]) => (
<div key={key} className="flex flex-col gap-2">
<div className="flex items-center gap-2">
<Text
variant="small-medium"
className="!font-semibold text-slate-600"
>
Pin:
</Text>
<Text variant="small" className="text-slate-700">
{beautifyString(key)}
</Text>
</div>
<div className="w-full space-y-2">
<Text
variant="small"
className="!font-semibold text-slate-600"
>
Data:
</Text>
<div className="relative space-y-2">
{value.map((item, index) => (
<div key={index}>
<ContentRenderer value={item} shortContent={true} />
</div>
))}
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={value}
pinName={key}
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy(key, value)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === key &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === key ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
</div>
))}
<div className="mt-1 flex justify-end gap-1">
<NodeDataViewer
data={value}
pinName={key}
execId={executionResultId}
/>
<Button
variant="secondary"
size="small"
onClick={() => handleCopy(key, value)}
className={cn(
"h-fit min-w-0 gap-1.5 border border-zinc-200 p-2 text-black hover:text-slate-900",
copiedKey === key &&
"border-green-400 bg-green-100 hover:border-green-400 hover:bg-green-200",
)}
>
{copiedKey === key ? (
<CheckIcon size={12} className="text-green-600" />
) : (
<CopyIcon size={12} />
)}
</Button>
</div>
</div>
</div>
</div>
))}
</div>
))}
</div>
{Object.keys(outputData).length > 2 && (
<ViewMoreData outputData={outputData} execId={executionResultId} />
)}
</>
)}
{Object.keys(outputData).length > 2 && (
<ViewMoreData
outputData={outputData}
execId={executionResultId}
/>
)}
</AccordionContent>
</AccordionItem>
</Accordion>
</div>
);
};

View File

@@ -4,7 +4,6 @@ import { useShallow } from "zustand/react/shallow";
import { useState } from "react";
export const useNodeOutput = (nodeId: string) => {
const [isExpanded, setIsExpanded] = useState(true);
const [copiedKey, setCopiedKey] = useState<string | null>(null);
const { toast } = useToast();
@@ -37,13 +36,10 @@ export const useNodeOutput = (nodeId: string) => {
}
};
return {
outputData: outputData,
inputData: inputData,
isExpanded: isExpanded,
setIsExpanded: setIsExpanded,
copiedKey: copiedKey,
setCopiedKey: setCopiedKey,
handleCopy: handleCopy,
outputData,
inputData,
copiedKey,
handleCopy,
executionResultId: nodeExecutionResult?.node_exec_id,
};
};

View File

@@ -187,3 +187,38 @@ export const getTypeDisplayInfo = (schema: any) => {
hexColor,
};
};
export function getEdgeColorFromOutputType(
outputSchema: RJSFSchema | undefined,
sourceHandle: string,
): { colorClass: string; hexColor: string } {
const defaultColor = {
colorClass: "stroke-zinc-500/50",
hexColor: "#6b7280",
};
if (!outputSchema?.properties) return defaultColor;
const properties = outputSchema.properties as Record<string, unknown>;
const handleParts = sourceHandle.split("_#_");
let currentSchema: Record<string, unknown> = properties;
for (let i = 0; i < handleParts.length; i++) {
const part = handleParts[i];
const fieldSchema = currentSchema[part] as Record<string, unknown>;
if (!fieldSchema) return defaultColor;
if (i === handleParts.length - 1) {
const { hexColor, colorClass } = getTypeDisplayInfo(fieldSchema);
return { colorClass: colorClass.replace("!text-", "stroke-"), hexColor };
}
if (fieldSchema.properties) {
currentSchema = fieldSchema.properties as Record<string, unknown>;
} else {
return defaultColor;
}
}
return defaultColor;
}

View File

@@ -1,7 +1,32 @@
// These are SVG Phosphor icons
type IconOptions = {
size?: number;
color?: string;
};
const DEFAULT_SIZE = 16;
const DEFAULT_COLOR = "#52525b"; // zinc-600
const iconPaths = {
ClickIcon: `M88,24V16a8,8,0,0,1,16,0v8a8,8,0,0,1-16,0ZM16,104h8a8,8,0,0,0,0-16H16a8,8,0,0,0,0,16ZM124.42,39.16a8,8,0,0,0,10.74-3.58l8-16a8,8,0,0,0-14.31-7.16l-8,16A8,8,0,0,0,124.42,39.16Zm-96,81.69-16,8a8,8,0,0,0,7.16,14.31l16-8a8,8,0,1,0-7.16-14.31ZM219.31,184a16,16,0,0,1,0,22.63l-12.68,12.68a16,16,0,0,1-22.63,0L132.7,168,115,214.09c0,.1-.08.21-.13.32a15.83,15.83,0,0,1-14.6,9.59l-.79,0a15.83,15.83,0,0,1-14.41-11L32.8,52.92A16,16,0,0,1,52.92,32.8L213,85.07a16,16,0,0,1,1.41,29.8l-.32.13L168,132.69ZM208,195.31,156.69,144h0a16,16,0,0,1,4.93-26l.32-.14,45.95-17.64L48,48l52.2,159.86,17.65-46c0-.11.08-.22.13-.33a16,16,0,0,1,11.69-9.34,16.72,16.72,0,0,1,3-.28,16,16,0,0,1,11.3,4.69L195.31,208Z`,
Keyboard: `M224,48H32A16,16,0,0,0,16,64V192a16,16,0,0,0,16,16H224a16,16,0,0,0,16-16V64A16,16,0,0,0,224,48Zm0,144H32V64H224V192Zm-16-64a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,128Zm0-32a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,96ZM72,160a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16h8A8,8,0,0,1,72,160Zm96,0a8,8,0,0,1-8,8H96a8,8,0,0,1,0-16h64A8,8,0,0,1,168,160Zm40,0a8,8,0,0,1-8,8h-8a8,8,0,0,1,0-16h8A8,8,0,0,1,208,160Z`,
Drag: `M188,80a27.79,27.79,0,0,0-13.36,3.4,28,28,0,0,0-46.64-11A28,28,0,0,0,80,92v20H68a28,28,0,0,0-28,28v12a88,88,0,0,0,176,0V108A28,28,0,0,0,188,80Zm12,72a72,72,0,0,1-144,0V140a12,12,0,0,1,12-12H80v24a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V108a12,12,0,0,1,24,0Z`,
};
function createIcon(path: string, options: IconOptions = {}): string {
const size = options.size ?? DEFAULT_SIZE;
const color = options.color ?? DEFAULT_COLOR;
return `<svg xmlns="http://www.w3.org/2000/svg" width="${size}" height="${size}" fill="${color}" viewBox="0 0 256 256"><path d="${path}"></path></svg>`;
}
export const ICONS = {
ClickIcon: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M88,24V16a8,8,0,0,1,16,0v8a8,8,0,0,1-16,0ZM16,104h8a8,8,0,0,0,0-16H16a8,8,0,0,0,0,16ZM124.42,39.16a8,8,0,0,0,10.74-3.58l8-16a8,8,0,0,0-14.31-7.16l-8,16A8,8,0,0,0,124.42,39.16Zm-96,81.69-16,8a8,8,0,0,0,7.16,14.31l16-8a8,8,0,1,0-7.16-14.31ZM219.31,184a16,16,0,0,1,0,22.63l-12.68,12.68a16,16,0,0,1-22.63,0L132.7,168,115,214.09c0,.1-.08.21-.13.32a15.83,15.83,0,0,1-14.6,9.59l-.79,0a15.83,15.83,0,0,1-14.41-11L32.8,52.92A16,16,0,0,1,52.92,32.8L213,85.07a16,16,0,0,1,1.41,29.8l-.32.13L168,132.69ZM208,195.31,156.69,144h0a16,16,0,0,1,4.93-26l.32-.14,45.95-17.64L48,48l52.2,159.86,17.65-46c0-.11.08-.22.13-.33a16,16,0,0,1,11.69-9.34,16.72,16.72,0,0,1,3-.28,16,16,0,0,1,11.3,4.69L195.31,208Z"></path></svg>`,
Keyboard: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M224,48H32A16,16,0,0,0,16,64V192a16,16,0,0,0,16,16H224a16,16,0,0,0,16-16V64A16,16,0,0,0,224,48Zm0,144H32V64H224V192Zm-16-64a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,128Zm0-32a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16H200A8,8,0,0,1,208,96ZM72,160a8,8,0,0,1-8,8H56a8,8,0,0,1,0-16h8A8,8,0,0,1,72,160Zm96,0a8,8,0,0,1-8,8H96a8,8,0,0,1,0-16h64A8,8,0,0,1,168,160Zm40,0a8,8,0,0,1-8,8h-8a8,8,0,0,1,0-16h8A8,8,0,0,1,208,160Z"></path></svg>`,
Drag: `<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="#000000" viewBox="0 0 256 256"><path d="M188,80a27.79,27.79,0,0,0-13.36,3.4,28,28,0,0,0-46.64-11A28,28,0,0,0,80,92v20H68a28,28,0,0,0-28,28v12a88,88,0,0,0,176,0V108A28,28,0,0,0,188,80Zm12,72a72,72,0,0,1-144,0V140a12,12,0,0,1,12-12H80v24a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V92a12,12,0,0,1,24,0v28a8,8,0,0,0,16,0V108a12,12,0,0,1,24,0Z"></path></svg>`,
ClickIcon: createIcon(iconPaths.ClickIcon),
Keyboard: createIcon(iconPaths.Keyboard),
Drag: createIcon(iconPaths.Drag),
};
export function getIcon(
name: keyof typeof iconPaths,
options?: IconOptions,
): string {
return createIcon(iconPaths[name], options);
}

View File

@@ -11,6 +11,7 @@ import {
} from "./helpers";
import { useNodeStore } from "../../../stores/nodeStore";
import { useEdgeStore } from "../../../stores/edgeStore";
import { useTutorialStore } from "../../../stores/tutorialStore";
let isTutorialLoading = false;
let tutorialLoadingCallback: ((loading: boolean) => void) | null = null;
@@ -60,12 +61,14 @@ export const startTutorial = async () => {
handleTutorialComplete();
removeTutorialStyles();
clearPrefetchedBlocks();
useTutorialStore.getState().setIsTutorialRunning(false);
});
tour.on("cancel", () => {
handleTutorialCancel(tour);
removeTutorialStyles();
clearPrefetchedBlocks();
useTutorialStore.getState().setIsTutorialRunning(false);
});
for (const step of tour.steps) {

View File

@@ -61,12 +61,18 @@ export const convertNodesPlusBlockInfoIntoCustomNodes = (
return customNode;
};
const isToolSourceName = (sourceName: string): boolean =>
sourceName.startsWith("tools_^_");
const cleanupSourceName = (sourceName: string): string =>
isToolSourceName(sourceName) ? "tools" : sourceName;
export const linkToCustomEdge = (link: Link): CustomEdge => ({
id: link.id ?? "",
type: "custom" as const,
source: link.source_id,
target: link.sink_id,
sourceHandle: link.source_name,
sourceHandle: cleanupSourceName(link.source_name),
targetHandle: link.sink_name,
data: {
isStatic: link.is_static,

View File

@@ -267,23 +267,34 @@ export function extractCredentialsNeeded(
| undefined;
if (missingCreds && Object.keys(missingCreds).length > 0) {
const agentName = (setupInfo?.agent_name as string) || "this block";
const credentials = Object.values(missingCreds).map((credInfo) => ({
provider: (credInfo.provider as string) || "unknown",
providerName:
(credInfo.provider_name as string) ||
(credInfo.provider as string) ||
"Unknown Provider",
credentialType:
const credentials = Object.values(missingCreds).map((credInfo) => {
// Normalize to array at boundary - prefer 'types' array, fall back to single 'type'
const typesArray = credInfo.types as
| Array<"api_key" | "oauth2" | "user_password" | "host_scoped">
| undefined;
const singleType =
(credInfo.type as
| "api_key"
| "oauth2"
| "user_password"
| "host_scoped") || "api_key",
title:
(credInfo.title as string) ||
`${(credInfo.provider_name as string) || (credInfo.provider as string)} credentials`,
scopes: credInfo.scopes as string[] | undefined,
}));
| "host_scoped"
| undefined) || "api_key";
const credentialTypes =
typesArray && typesArray.length > 0 ? typesArray : [singleType];
return {
provider: (credInfo.provider as string) || "unknown",
providerName:
(credInfo.provider_name as string) ||
(credInfo.provider as string) ||
"Unknown Provider",
credentialTypes,
title:
(credInfo.title as string) ||
`${(credInfo.provider_name as string) || (credInfo.provider as string)} credentials`,
scopes: credInfo.scopes as string[] | undefined,
};
});
return {
type: "credentials_needed",
toolName,
@@ -358,11 +369,14 @@ export function extractInputsNeeded(
credentials.forEach((cred) => {
const id = cred.id as string;
if (id) {
const credentialTypes = Array.isArray(cred.types)
? cred.types
: [(cred.type as string) || "api_key"];
credentialsSchema[id] = {
type: "object",
properties: {},
credentials_provider: [cred.provider as string],
credentials_types: [(cred.type as string) || "api_key"],
credentials_types: credentialTypes,
credentials_scopes: cred.scopes as string[] | undefined,
};
}

View File

@@ -9,7 +9,9 @@ import { useChatCredentialsSetup } from "./useChatCredentialsSetup";
export interface CredentialInfo {
provider: string;
providerName: string;
credentialType: "api_key" | "oauth2" | "user_password" | "host_scoped";
credentialTypes: Array<
"api_key" | "oauth2" | "user_password" | "host_scoped"
>;
title: string;
scopes?: string[];
}
@@ -30,7 +32,7 @@ function createSchemaFromCredentialInfo(
type: "object",
properties: {},
credentials_provider: [credential.provider],
credentials_types: [credential.credentialType],
credentials_types: credential.credentialTypes,
credentials_scopes: credential.scopes,
discriminator: undefined,
discriminator_mapping: undefined,

View File

@@ -41,7 +41,9 @@ export type ChatMessageData =
credentials: Array<{
provider: string;
providerName: string;
credentialType: "api_key" | "oauth2" | "user_password" | "host_scoped";
credentialTypes: Array<
"api_key" | "oauth2" | "user_password" | "host_scoped"
>;
title: string;
scopes?: string[];
}>;

View File

@@ -31,10 +31,18 @@ export function AgentSettingsModal({
}
}
const { currentSafeMode, isPending, hasHITLBlocks, handleToggle } =
useAgentSafeMode(agent);
const {
currentHITLSafeMode,
showHITLToggle,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
} = useAgentSafeMode(agent);
if (!hasHITLBlocks) return null;
if (!shouldShowToggle) return null;
return (
<Dialog
@@ -57,23 +65,48 @@ export function AgentSettingsModal({
)}
<Dialog.Content>
<div className="space-y-6">
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">Require human approval</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause and wait for your review before
continuing
</Text>
{showHITLToggle && (
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Human-in-the-loop approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at human-in-the-loop blocks and wait
for your review before continuing
</Text>
</div>
<Switch
checked={currentHITLSafeMode || false}
onCheckedChange={handleHITLToggle}
disabled={isPending}
className="mt-1"
/>
</div>
<Switch
checked={currentSafeMode || false}
onCheckedChange={handleToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
{showSensitiveActionToggle && (
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Sensitive action approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at sensitive action blocks and wait for
your review before continuing
</Text>
</div>
<Switch
checked={currentSensitiveActionSafeMode}
onCheckedChange={handleSensitiveActionToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
</div>
</Dialog.Content>
</Dialog>

View File

@@ -1,9 +1,9 @@
import { Input } from "@/components/atoms/Input/Input";
import { CredentialsGroupedView } from "@/components/contextual/CredentialsInput/components/CredentialsGroupedView/CredentialsGroupedView";
import { InformationTooltip } from "@/components/molecules/InformationTooltip/InformationTooltip";
import { useMemo } from "react";
import { RunAgentInputs } from "../../../RunAgentInputs/RunAgentInputs";
import { useRunAgentModalContext } from "../../context";
import { CredentialsGroupedView } from "../CredentialsGroupedView/CredentialsGroupedView";
import { ModalSection } from "../ModalSection/ModalSection";
import { WebhookTriggerBanner } from "../WebhookTriggerBanner/WebhookTriggerBanner";
@@ -19,6 +19,8 @@ export function ModalRunSection() {
setInputValue,
agentInputFields,
agentCredentialsInputFields,
inputCredentials,
setInputCredentialsValue,
} = useRunAgentModalContext();
const inputFields = Object.entries(agentInputFields || {});
@@ -102,6 +104,9 @@ export function ModalRunSection() {
<CredentialsGroupedView
credentialFields={credentialFields}
requiredCredentials={requiredCredentials}
inputCredentials={inputCredentials}
inputValues={inputValues}
onCredentialChange={setInputCredentialsValue}
/>
</ModalSection>
) : null}

View File

@@ -5,48 +5,112 @@ import { Graph } from "@/lib/autogpt-server-api/types";
import { cn } from "@/lib/utils";
import { ShieldCheckIcon, ShieldIcon } from "@phosphor-icons/react";
import { useAgentSafeMode } from "@/hooks/useAgentSafeMode";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
interface Props {
graph: GraphModel | LibraryAgent | Graph;
className?: string;
fullWidth?: boolean;
}
export function SafeModeToggle({ graph }: Props) {
interface SafeModeIconButtonProps {
isEnabled: boolean;
label: string;
tooltipEnabled: string;
tooltipDisabled: string;
onToggle: () => void;
isPending: boolean;
}
function SafeModeIconButton({
isEnabled,
label,
tooltipEnabled,
tooltipDisabled,
onToggle,
isPending,
}: SafeModeIconButtonProps) {
return (
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<Button
variant="icon"
size="icon"
aria-label={`${label}: ${isEnabled ? "ON" : "OFF"}. ${isEnabled ? tooltipEnabled : tooltipDisabled}`}
onClick={onToggle}
disabled={isPending}
className={cn(isPending ? "opacity-0" : "opacity-100")}
>
{isEnabled ? (
<ShieldCheckIcon weight="bold" size={16} />
) : (
<ShieldIcon weight="bold" size={16} />
)}
</Button>
</TooltipTrigger>
<TooltipContent>
<div className="text-center">
<div className="font-medium">
{label}: {isEnabled ? "ON" : "OFF"}
</div>
<div className="mt-1 text-xs text-muted-foreground">
{isEnabled ? tooltipEnabled : tooltipDisabled}
</div>
</div>
</TooltipContent>
</Tooltip>
);
}
export function SafeModeToggle({ graph, className }: Props) {
const {
currentSafeMode,
currentHITLSafeMode,
showHITLToggle,
isHITLStateUndetermined,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
isStateUndetermined,
handleToggle,
} = useAgentSafeMode(graph);
if (!shouldShowToggle || isStateUndetermined) {
if (!shouldShowToggle || isHITLStateUndetermined) {
return null;
}
const showHITL = showHITLToggle && !isHITLStateUndetermined;
const showSensitive = showSensitiveActionToggle;
if (!showHITL && !showSensitive) {
return null;
}
return (
<Button
variant="icon"
key={graph.id}
size="icon"
aria-label={
currentSafeMode!
? "Safe Mode: ON. Human in the loop blocks require manual review"
: "Safe Mode: OFF. Human in the loop blocks proceed automatically"
}
onClick={handleToggle}
className={cn(isPending ? "opacity-0" : "opacity-100")}
>
{currentSafeMode! ? (
<>
<ShieldCheckIcon weight="bold" size={16} />
</>
) : (
<>
<ShieldIcon weight="bold" size={16} />
</>
<div className={cn("flex gap-1", className)}>
{showHITL && (
<SafeModeIconButton
isEnabled={currentHITLSafeMode}
label="Human-in-the-loop"
tooltipEnabled="The agent will pause at human-in-the-loop blocks and wait for your approval"
tooltipDisabled="Human-in-the-loop blocks will proceed automatically"
onToggle={handleHITLToggle}
isPending={isPending}
/>
)}
</Button>
{showSensitive && (
<SafeModeIconButton
isEnabled={currentSensitiveActionSafeMode}
label="Sensitive actions"
tooltipEnabled="The agent will pause at sensitive action blocks and wait for your approval"
tooltipDisabled="Sensitive action blocks will proceed automatically"
onToggle={handleSensitiveActionToggle}
isPending={isPending}
/>
)}
</div>
);
}

View File

@@ -13,8 +13,16 @@ interface Props {
}
export function SelectedSettingsView({ agent, onClearSelectedRun }: Props) {
const { currentSafeMode, isPending, hasHITLBlocks, handleToggle } =
useAgentSafeMode(agent);
const {
currentHITLSafeMode,
showHITLToggle,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
} = useAgentSafeMode(agent);
return (
<SelectedViewLayout agent={agent}>
@@ -34,24 +42,51 @@ export function SelectedSettingsView({ agent, onClearSelectedRun }: Props) {
</div>
<div className={`${AGENT_LIBRARY_SECTION_PADDING_X} space-y-6`}>
{hasHITLBlocks ? (
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">Require human approval</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause and wait for your review before
continuing
</Text>
{shouldShowToggle ? (
<>
{showHITLToggle && (
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Human-in-the-loop approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at human-in-the-loop blocks and
wait for your review before continuing
</Text>
</div>
<Switch
checked={currentHITLSafeMode || false}
onCheckedChange={handleHITLToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
<Switch
checked={currentSafeMode || false}
onCheckedChange={handleToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
{showSensitiveActionToggle && (
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Sensitive action approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at sensitive action blocks and wait
for your review before continuing
</Text>
</div>
<Switch
checked={currentSensitiveActionSafeMode}
onCheckedChange={handleSensitiveActionToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
</>
) : (
<div className="rounded-xl border border-zinc-100 bg-white p-6">
<Text variant="body" className="text-muted-foreground">

View File

@@ -2,6 +2,7 @@
import { Button } from "@/components/atoms/Button/Button";
import { FileInput } from "@/components/atoms/FileInput/FileInput";
import { Input } from "@/components/atoms/Input/Input";
import { LoadingSpinner } from "@/components/atoms/LoadingSpinner/LoadingSpinner";
import { Dialog } from "@/components/molecules/Dialog/Dialog";
import {
Form,
@@ -120,7 +121,7 @@ export default function LibraryUploadAgentDialog() {
>
{isUploading ? (
<div className="flex items-center gap-2">
<div className="h-4 w-4 animate-spin rounded-full border-b-2 border-t-2 border-white"></div>
<LoadingSpinner size="small" className="text-white" />
<span>Uploading...</span>
</div>
) : (

View File

@@ -6383,6 +6383,11 @@
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -6399,6 +6404,7 @@
"output_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info"
],
"title": "BaseGraph"
@@ -7629,6 +7635,11 @@
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -7652,6 +7663,7 @@
"output_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info",
"credentials_input_schema"
],
@@ -7730,6 +7742,11 @@
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -7754,6 +7771,7 @@
"output_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info",
"credentials_input_schema"
],
@@ -7762,8 +7780,14 @@
"GraphSettings": {
"properties": {
"human_in_the_loop_safe_mode": {
"anyOf": [{ "type": "boolean" }, { "type": "null" }],
"title": "Human In The Loop Safe Mode"
"type": "boolean",
"title": "Human In The Loop Safe Mode",
"default": true
},
"sensitive_action_safe_mode": {
"type": "boolean",
"title": "Sensitive Action Safe Mode",
"default": false
}
},
"type": "object",
@@ -7921,6 +7945,16 @@
"title": "Has External Trigger",
"description": "Whether the agent has an external trigger (e.g. webhook) node"
},
"has_human_in_the_loop": {
"type": "boolean",
"title": "Has Human In The Loop",
"description": "Whether the agent has human-in-the-loop blocks"
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"description": "Whether the agent has sensitive action blocks"
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -7967,6 +8001,8 @@
"output_schema",
"credentials_input_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"new_output",
"can_access_graph",
"is_latest_version",

View File

@@ -5,30 +5,37 @@ import {
AccordionItem,
AccordionTrigger,
} from "@/components/molecules/Accordion/Accordion";
import {
CredentialsMetaInput,
CredentialsType,
} from "@/lib/autogpt-server-api/types";
import { CredentialsProvidersContext } from "@/providers/agent-credentials/credentials-provider";
import { SlidersHorizontal } from "@phosphor-icons/react";
import { SlidersHorizontalIcon } from "@phosphor-icons/react";
import { useContext, useEffect, useMemo, useRef } from "react";
import { useRunAgentModalContext } from "../../context";
import {
areSystemCredentialProvidersLoading,
CredentialField,
findSavedCredentialByProviderAndType,
hasMissingRequiredSystemCredentials,
splitCredentialFieldsBySystem,
} from "../helpers";
} from "./helpers";
type Props = {
credentialFields: CredentialField[];
requiredCredentials: Set<string>;
inputCredentials: Record<string, CredentialsMetaInput | undefined>;
inputValues: Record<string, any>;
onCredentialChange: (key: string, value?: CredentialsMetaInput) => void;
};
export function CredentialsGroupedView({
credentialFields,
requiredCredentials,
inputCredentials,
inputValues,
onCredentialChange,
}: Props) {
const allProviders = useContext(CredentialsProvidersContext);
const { inputCredentials, setInputCredentialsValue, inputValues } =
useRunAgentModalContext();
const { userCredentialFields, systemCredentialFields } = useMemo(
() =>
@@ -87,11 +94,11 @@ export function CredentialsGroupedView({
);
if (savedCredential) {
setInputCredentialsValue(key, {
onCredentialChange(key, {
id: savedCredential.id,
provider: savedCredential.provider,
type: savedCredential.type,
title: (savedCredential as { title?: string }).title,
type: savedCredential.type as CredentialsType,
title: savedCredential.title,
});
}
}
@@ -103,7 +110,7 @@ export function CredentialsGroupedView({
systemCredentialFields,
requiredCredentials,
inputCredentials,
setInputCredentialsValue,
onCredentialChange,
isLoadingProviders,
]);
@@ -123,7 +130,7 @@ export function CredentialsGroupedView({
}
selectedCredentials={selectedCred}
onSelectCredentials={(value) => {
setInputCredentialsValue(key, value);
onCredentialChange(key, value);
}}
siblingInputs={inputValues}
isOptional={!requiredCredentials.has(key)}
@@ -143,7 +150,8 @@ export function CredentialsGroupedView({
<AccordionItem value="system-credentials" className="border-none">
<AccordionTrigger className="py-2 text-sm text-muted-foreground hover:no-underline">
<div className="flex items-center gap-1">
<SlidersHorizontal size={16} weight="bold" /> System credentials
<SlidersHorizontalIcon size={16} weight="bold" /> System
credentials
{hasMissingSystemCredentials && (
<span className="text-destructive">(missing)</span>
)}
@@ -163,7 +171,7 @@ export function CredentialsGroupedView({
}
selectedCredentials={selectedCred}
onSelectCredentials={(value) => {
setInputCredentialsValue(key, value);
onCredentialChange(key, value);
}}
siblingInputs={inputValues}
isOptional={!requiredCredentials.has(key)}

View File

@@ -1,5 +1,5 @@
import { CredentialsProvidersContextType } from "@/providers/agent-credentials/credentials-provider";
import { getSystemCredentials } from "../../../../../../../../../../../components/contextual/CredentialsInput/helpers";
import { getSystemCredentials } from "../../helpers";
export type CredentialField = [string, any];

View File

@@ -0,0 +1,33 @@
"use client";
import * as PopoverPrimitive from "@radix-ui/react-popover";
import * as React from "react";
import { cn } from "@/lib/utils";
const Popover = PopoverPrimitive.Root;
const PopoverTrigger = PopoverPrimitive.Trigger;
const PopoverAnchor = PopoverPrimitive.Anchor;
const PopoverContent = React.forwardRef<
React.ElementRef<typeof PopoverPrimitive.Content>,
React.ComponentPropsWithoutRef<typeof PopoverPrimitive.Content>
>(({ className, align = "center", sideOffset = 4, ...props }, ref) => (
<PopoverPrimitive.Portal>
<PopoverPrimitive.Content
ref={ref}
align={align}
sideOffset={sideOffset}
className={cn(
"z-50 w-72 rounded-lg border border-zinc-200 bg-white p-4 text-zinc-900 shadow-md outline-none data-[state=open]:animate-in data-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed]:zoom-out-95 data-[state=open]:zoom-in-95 data-[side=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bottom-2",
className,
)}
{...props}
/>
</PopoverPrimitive.Portal>
));
PopoverContent.displayName = PopoverPrimitive.Content.displayName;
export { Popover, PopoverAnchor, PopoverContent, PopoverTrigger };

View File

@@ -35,12 +35,13 @@ export const CredentialFieldTitle = (props: {
uiOptions,
);
const credentialProvider = toDisplayName(
getCredentialProviderFromSchema(
useNodeStore.getState().getHardCodedValues(nodeId),
schema as BlockIOCredentialsSubSchema,
) ?? "",
const provider = getCredentialProviderFromSchema(
useNodeStore.getState().getHardCodedValues(nodeId),
schema as BlockIOCredentialsSubSchema,
);
const credentialProvider = provider
? `${toDisplayName(provider)} credential`
: "credential";
const updatedUiSchema = updateUiOption(uiSchema, {
showHandles: false,

View File

@@ -0,0 +1,92 @@
"use client";
import {
descriptionId,
FieldProps,
getTemplate,
RJSFSchema,
titleId,
} from "@rjsf/utils";
import { useMemo } from "react";
import { LlmModelPicker } from "./components/LlmModelPicker";
import { LlmModelMetadataMap } from "./types";
import { updateUiOption } from "../../helpers";
type LlmModelSchema = RJSFSchema & {
llm_model_metadata?: LlmModelMetadataMap;
};
export function LlmModelField(props: FieldProps) {
const { schema, formData, onChange, disabled, readonly, fieldPathId } = props;
const metadata = useMemo(() => {
return (schema as LlmModelSchema)?.llm_model_metadata ?? {};
}, [schema]);
const models = useMemo(() => {
return Object.values(metadata);
}, [metadata]);
const selectedName =
typeof formData === "string"
? formData
: typeof schema.default === "string"
? schema.default
: "";
const selectedModel = selectedName
? (metadata[selectedName] ??
models.find((model) => model.name === selectedName))
: undefined;
const recommendedName =
typeof schema.default === "string" ? schema.default : models[0]?.name;
const recommendedModel =
recommendedName && metadata[recommendedName]
? metadata[recommendedName]
: undefined;
if (models.length === 0) {
return null;
}
const TitleFieldTemplate = getTemplate("TitleFieldTemplate", props.registry);
const DescriptionFieldTemplate = getTemplate(
"DescriptionFieldTemplate",
props.registry,
);
const updatedUiSchema = updateUiOption(props.uiSchema, {
showHandles: false,
});
return (
<>
<div className="flex items-center gap-2">
<TitleFieldTemplate
id={titleId(fieldPathId)}
title={schema.title || ""}
required={true}
schema={schema}
uiSchema={updatedUiSchema}
registry={props.registry}
/>
<DescriptionFieldTemplate
id={descriptionId(fieldPathId)}
description={schema.description || ""}
schema={schema}
registry={props.registry}
/>
</div>
<LlmModelPicker
models={models}
selectedModel={selectedModel}
recommendedModel={recommendedModel}
onSelect={(value) => onChange(value, fieldPathId?.path)}
disabled={disabled || readonly}
/>
</>
);
}

View File

@@ -0,0 +1,66 @@
"use client";
import Image from "next/image";
import { Text } from "@/components/atoms/Text/Text";
const creatorIconMap: Record<string, string> = {
anthropic: "/integrations/anthropic-color.png",
openai: "/integrations/openai.png",
google: "/integrations/gemini.png",
nvidia: "/integrations/nvidia.png",
groq: "/integrations/groq.png",
ollama: "/integrations/ollama.png",
openrouter: "/integrations/open_router.png",
v0: "/integrations/v0.png",
xai: "/integrations/xai.webp",
meta: "/integrations/llama_api.png",
amazon: "/integrations/amazon.png",
cohere: "/integrations/cohere.png",
deepseek: "/integrations/deepseek.png",
gryphe: "/integrations/gryphe.png",
microsoft: "/integrations/microsoft.webp",
moonshotai: "/integrations/moonshot.png",
mistral: "/integrations/mistral.png",
mistralai: "/integrations/mistral.png",
nousresearch: "/integrations/nousresearch.avif",
perplexity: "/integrations/perplexity.webp",
qwen: "/integrations/qwen.png",
};
type Props = {
value: string;
size?: number;
};
export function LlmIcon({ value, size = 20 }: Props) {
const normalized = value.trim().toLowerCase().replace(/\s+/g, "");
const src = creatorIconMap[normalized];
if (src) {
return (
<div
className="flex items-center justify-center overflow-hidden rounded-xsmall"
style={{ width: size, height: size }}
>
<Image
src={src}
alt={value}
width={size}
height={size}
className="h-full w-full object-cover"
/>
</div>
);
}
const fallback = value?.trim().slice(0, 1).toUpperCase() || "?";
return (
<div
className="flex items-center justify-center rounded-xsmall bg-zinc-100"
style={{ width: size, height: size }}
>
<Text variant="small" className="text-zinc-500">
{fallback}
</Text>
</div>
);
}

View File

@@ -0,0 +1,24 @@
"use client";
import { ArrowLeftIcon } from "@phosphor-icons/react";
import { Text } from "@/components/atoms/Text/Text";
type Props = {
label: string;
onBack: () => void;
};
export function LlmMenuHeader({ label, onBack }: Props) {
return (
<button
type="button"
onClick={onBack}
className="flex w-full items-center gap-2 px-2 py-2 text-left hover:bg-zinc-100"
>
<ArrowLeftIcon className="h-4 w-4 text-zinc-800" weight="bold" />
<Text variant="body" className="text-zinc-900">
{label}
</Text>
</button>
);
}

View File

@@ -0,0 +1,61 @@
"use client";
import { CaretRightIcon, CheckIcon } from "@phosphor-icons/react";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
type Props = {
title: string;
subtitle?: string;
icon?: React.ReactNode;
showChevron?: boolean;
rightSlot?: React.ReactNode;
onClick: () => void;
isActive?: boolean;
};
export function LlmMenuItem({
title,
subtitle,
icon,
showChevron,
rightSlot,
onClick,
isActive,
}: Props) {
const hasIcon = Boolean(icon);
return (
<button
type="button"
onClick={onClick}
className={cn("w-full py-1 pl-2 pr-4 text-left hover:bg-zinc-100")}
>
<div className="flex items-center justify-between gap-3">
<div className="flex items-center gap-2">
{icon}
<Text variant="body" className="text-zinc-900">
{title}
</Text>
</div>
<div className="flex items-center gap-2">
{isActive && (
<CheckIcon className="h-4 w-4 text-emerald-600" weight="bold" />
)}
{rightSlot}
{showChevron && (
<CaretRightIcon className="h-4 w-4 text-zinc-900" weight="bold" />
)}
</div>
</div>
{subtitle && (
<Text
variant="small"
className={cn("mb-1 text-zinc-500", hasIcon && "pl-0")}
>
{subtitle}
</Text>
)}
</button>
);
}

View File

@@ -0,0 +1,235 @@
"use client";
import { useCallback, useEffect, useMemo, useState } from "react";
import { CaretDownIcon } from "@phosphor-icons/react";
import {
Popover,
PopoverContent,
PopoverTrigger,
} from "@/components/molecules/Popover/Popover";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import {
getCreatorDisplayName,
getModelDisplayName,
getProviderDisplayName,
groupByCreator,
groupByTitle,
} from "../helpers";
import { LlmModelMetadata } from "../types";
import { LlmIcon } from "./LlmIcon";
import { LlmMenuHeader } from "./LlmMenuHeader";
import { LlmMenuItem } from "./LlmMenuItem";
import { LlmPriceTier } from "./LlmPriceTier";
type MenuView = "creator" | "model" | "provider";
type Props = {
models: LlmModelMetadata[];
selectedModel?: LlmModelMetadata;
recommendedModel?: LlmModelMetadata;
onSelect: (value: string) => void;
disabled?: boolean;
};
export function LlmModelPicker({
models,
selectedModel,
recommendedModel,
onSelect,
disabled,
}: Props) {
const [open, setOpen] = useState(false);
const [view, setView] = useState<MenuView>("creator");
const [activeCreator, setActiveCreator] = useState<string | null>(null);
const [activeTitle, setActiveTitle] = useState<string | null>(null);
const modelsByCreator = useMemo(() => groupByCreator(models), [models]);
const creators = useMemo(() => {
return Array.from(modelsByCreator.keys()).sort((a, b) =>
a.localeCompare(b),
);
}, [modelsByCreator]);
const creatorIconValues = useMemo(() => {
const map = new Map<string, string>();
for (const [creator, entries] of modelsByCreator.entries()) {
map.set(creator, entries[0]?.creator ?? creator);
}
return map;
}, [modelsByCreator]);
useEffect(() => {
if (!open) {
return;
}
setView("creator");
setActiveCreator(
selectedModel
? getCreatorDisplayName(selectedModel)
: (creators[0] ?? null),
);
setActiveTitle(selectedModel ? getModelDisplayName(selectedModel) : null);
}, [open, selectedModel, creators]);
const currentCreator = activeCreator ?? creators[0] ?? null;
const currentModels = useMemo(() => {
return currentCreator ? (modelsByCreator.get(currentCreator) ?? []) : [];
}, [currentCreator, modelsByCreator]);
const currentCreatorIcon = useMemo(() => {
return currentModels[0]?.creator ?? currentCreator;
}, [currentModels, currentCreator]);
const modelsByTitle = useMemo(
() => groupByTitle(currentModels),
[currentModels],
);
const modelEntries = useMemo(() => {
return Array.from(modelsByTitle.entries())
.map(([title, entries]) => {
const providers = new Set(entries.map((entry) => entry.provider));
return {
title,
entries,
providerCount: providers.size,
};
})
.sort((a, b) => a.title.localeCompare(b.title));
}, [modelsByTitle]);
const providerEntries = useMemo(() => {
if (!activeTitle) {
return [];
}
return modelsByTitle.get(activeTitle) ?? [];
}, [activeTitle, modelsByTitle]);
const handleSelectModel = useCallback(
(modelName: string) => {
onSelect(modelName);
setOpen(false);
},
[onSelect],
);
const triggerModel = selectedModel ?? recommendedModel ?? models[0];
const triggerTitle = triggerModel
? getModelDisplayName(triggerModel)
: "Select model";
const triggerCreator = triggerModel?.creator ?? "";
return (
<Popover open={open} onOpenChange={setOpen}>
<PopoverTrigger asChild>
<button
type="button"
disabled={disabled}
className={cn(
"flex w-full min-w-[15rem] items-center rounded-lg border border-zinc-200 bg-white px-3 py-2 text-left",
"hover:border-zinc-300 focus:outline-none focus:ring-2 focus:ring-zinc-200",
disabled && "cursor-not-allowed opacity-60",
)}
>
<LlmIcon value={triggerCreator} />
<Text variant="body" className="ml-1 flex-1 text-zinc-900">
{triggerTitle}
</Text>
<CaretDownIcon className="h-3 w-3 text-zinc-900" weight="bold" />
</button>
</PopoverTrigger>
<PopoverContent
align="start"
sideOffset={4}
className="max-h-[45vh] w-[--radix-popover-trigger-width] min-w-[16rem] overflow-y-auto rounded-md border border-zinc-200 bg-white p-0 shadow-[0px_1px_4px_rgba(12,12,13,0.12)]"
>
{view === "creator" && (
<div className="flex flex-col">
{recommendedModel && (
<>
<LlmMenuItem
title={getModelDisplayName(recommendedModel)}
subtitle="Recommended"
icon={<LlmIcon value={recommendedModel.creator} />}
onClick={() => handleSelectModel(recommendedModel.name)}
/>
<div className="border-b border-zinc-200" />
</>
)}
{creators.map((creator) => (
<LlmMenuItem
key={creator}
title={creator}
icon={
<LlmIcon value={creatorIconValues.get(creator) ?? creator} />
}
showChevron={true}
isActive={
selectedModel
? getCreatorDisplayName(selectedModel) === creator
: false
}
onClick={() => {
setActiveCreator(creator);
setView("model");
}}
/>
))}
</div>
)}
{view === "model" && currentCreator && (
<div className="flex flex-col">
<LlmMenuHeader
label={currentCreator}
onBack={() => setView("creator")}
/>
<div className="border-b border-zinc-200" />
{modelEntries.map((entry) => (
<LlmMenuItem
key={entry.title}
title={entry.title}
icon={<LlmIcon value={currentCreatorIcon} />}
rightSlot={<LlmPriceTier tier={entry.entries[0]?.price_tier} />}
showChevron={entry.providerCount > 1}
isActive={
selectedModel
? getModelDisplayName(selectedModel) === entry.title
: false
}
onClick={() => {
if (entry.providerCount > 1) {
setActiveTitle(entry.title);
setView("provider");
return;
}
handleSelectModel(entry.entries[0].name);
}}
/>
))}
</div>
)}
{view === "provider" && activeTitle && (
<div className="flex flex-col">
<LlmMenuHeader
label={activeTitle}
onBack={() => setView("model")}
/>
<div className="border-b border-zinc-200" />
{providerEntries.map((entry) => (
<LlmMenuItem
key={`${entry.title}-${entry.provider}`}
title={getProviderDisplayName(entry)}
icon={<LlmIcon value={entry.provider} />}
isActive={selectedModel?.provider === entry.provider}
onClick={() => handleSelectModel(entry.name)}
/>
))}
</div>
)}
</PopoverContent>
</Popover>
);
}

View File

@@ -0,0 +1,25 @@
"use client";
import { CurrencyDollarSimpleIcon } from "@phosphor-icons/react";
type Props = {
tier?: number;
};
export function LlmPriceTier({ tier }: Props) {
if (!tier || tier <= 0) {
return null;
}
const clamped = Math.min(3, Math.max(1, tier));
return (
<div className="flex items-center text-zinc-900">
{Array.from({ length: clamped }).map((_, index) => (
<CurrencyDollarSimpleIcon
key={`price-${index}`}
className="-mr-0.5 h-3 w-3"
weight="bold"
/>
))}
</div>
);
}

View File

@@ -0,0 +1,35 @@
import { LlmModelMetadata } from "./types";
export function groupByCreator(models: LlmModelMetadata[]) {
const map = new Map<string, LlmModelMetadata[]>();
for (const model of models) {
const key = getCreatorDisplayName(model);
const existing = map.get(key) ?? [];
existing.push(model);
map.set(key, existing);
}
return map;
}
export function groupByTitle(models: LlmModelMetadata[]) {
const map = new Map<string, LlmModelMetadata[]>();
for (const model of models) {
const displayName = getModelDisplayName(model);
const existing = map.get(displayName) ?? [];
existing.push(model);
map.set(displayName, existing);
}
return map;
}
export function getCreatorDisplayName(model: LlmModelMetadata): string {
return model.creator_name || model.creator || "";
}
export function getModelDisplayName(model: LlmModelMetadata): string {
return model.title || model.name || "";
}
export function getProviderDisplayName(model: LlmModelMetadata): string {
return model.provider_name || model.provider || "";
}

View File

@@ -0,0 +1,11 @@
export type LlmModelMetadata = {
creator: string;
creator_name: string;
title: string;
provider: string;
provider_name: string;
name: string;
price_tier?: number;
};
export type LlmModelMetadataMap = Record<string, LlmModelMetadata>;

View File

@@ -8,6 +8,7 @@ import {
isMultiSelectSchema,
} from "../utils/schema-utils";
import { TableField } from "./TableField/TableField";
import { LlmModelField } from "./LlmModelField/LlmModelField";
export interface CustomFieldDefinition {
id: string;
@@ -57,6 +58,15 @@ export const CUSTOM_FIELDS: CustomFieldDefinition[] = [
},
component: TableField,
},
{
id: "custom/llm_model_field",
matcher: (schema: any) => {
return (
typeof schema === "object" && schema !== null && "llm_model" in schema
);
},
component: LlmModelField,
},
];
export function findCustomFieldId(schema: any): string | null {

View File

@@ -20,11 +20,15 @@ function hasHITLBlocks(graph: GraphModel | LibraryAgent | Graph): boolean {
if ("has_human_in_the_loop" in graph) {
return !!graph.has_human_in_the_loop;
}
return false;
}
if (isLibraryAgent(graph)) {
return graph.settings?.human_in_the_loop_safe_mode !== null;
function hasSensitiveActionBlocks(
graph: GraphModel | LibraryAgent | Graph,
): boolean {
if ("has_sensitive_action" in graph) {
return !!graph.has_sensitive_action;
}
return false;
}
@@ -40,7 +44,9 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
const graphId = getGraphId(graph);
const isAgent = isLibraryAgent(graph);
const shouldShowToggle = hasHITLBlocks(graph);
const showHITLToggle = hasHITLBlocks(graph);
const showSensitiveActionToggle = hasSensitiveActionBlocks(graph);
const shouldShowToggle = showHITLToggle || showSensitiveActionToggle;
const { mutateAsync: updateGraphSettings, isPending } =
usePatchV1UpdateGraphSettings();
@@ -56,27 +62,37 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
},
);
const [localSafeMode, setLocalSafeMode] = useState<boolean | null>(null);
const [localHITLSafeMode, setLocalHITLSafeMode] = useState<boolean>(true);
const [localSensitiveActionSafeMode, setLocalSensitiveActionSafeMode] =
useState<boolean>(false);
const [isLocalStateLoaded, setIsLocalStateLoaded] = useState<boolean>(false);
useEffect(() => {
if (!isAgent && libraryAgent) {
const backendValue = libraryAgent.settings?.human_in_the_loop_safe_mode;
if (backendValue !== undefined) {
setLocalSafeMode(backendValue);
}
setLocalHITLSafeMode(
libraryAgent.settings?.human_in_the_loop_safe_mode ?? true,
);
setLocalSensitiveActionSafeMode(
libraryAgent.settings?.sensitive_action_safe_mode ?? false,
);
setIsLocalStateLoaded(true);
}
}, [isAgent, libraryAgent]);
const currentSafeMode = isAgent
? graph.settings?.human_in_the_loop_safe_mode
: localSafeMode;
const currentHITLSafeMode = isAgent
? (graph.settings?.human_in_the_loop_safe_mode ?? true)
: localHITLSafeMode;
const isStateUndetermined = isAgent
? graph.settings?.human_in_the_loop_safe_mode == null
: isLoading || localSafeMode === null;
const currentSensitiveActionSafeMode = isAgent
? (graph.settings?.sensitive_action_safe_mode ?? false)
: localSensitiveActionSafeMode;
const handleToggle = useCallback(async () => {
const newSafeMode = !currentSafeMode;
const isHITLStateUndetermined = isAgent
? false
: isLoading || !isLocalStateLoaded;
const handleHITLToggle = useCallback(async () => {
const newSafeMode = !currentHITLSafeMode;
try {
await updateGraphSettings({
@@ -85,7 +101,7 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
});
if (!isAgent) {
setLocalSafeMode(newSafeMode);
setLocalHITLSafeMode(newSafeMode);
}
if (isAgent) {
@@ -101,37 +117,62 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
queryClient.invalidateQueries({ queryKey: ["v2", "executions"] });
toast({
title: `Safe mode ${newSafeMode ? "enabled" : "disabled"}`,
title: `HITL safe mode ${newSafeMode ? "enabled" : "disabled"}`,
description: newSafeMode
? "Human-in-the-loop blocks will require manual review"
: "Human-in-the-loop blocks will proceed automatically",
duration: 2000,
});
} catch (error) {
const isNotFoundError =
error instanceof Error &&
(error.message.includes("404") || error.message.includes("not found"));
if (!isAgent && isNotFoundError) {
toast({
title: "Safe mode not available",
description:
"To configure safe mode, please save this graph to your library first.",
variant: "destructive",
});
} else {
toast({
title: "Failed to update safe mode",
description:
error instanceof Error
? error.message
: "An unexpected error occurred.",
variant: "destructive",
});
}
handleToggleError(error, isAgent, toast);
}
}, [
currentSafeMode,
currentHITLSafeMode,
graphId,
isAgent,
graph.id,
updateGraphSettings,
queryClient,
toast,
]);
const handleSensitiveActionToggle = useCallback(async () => {
const newSafeMode = !currentSensitiveActionSafeMode;
try {
await updateGraphSettings({
graphId,
data: { sensitive_action_safe_mode: newSafeMode },
});
if (!isAgent) {
setLocalSensitiveActionSafeMode(newSafeMode);
}
if (isAgent) {
queryClient.invalidateQueries({
queryKey: getGetV2GetLibraryAgentQueryOptions(graph.id.toString())
.queryKey,
});
}
queryClient.invalidateQueries({
queryKey: ["v1", "graphs", graphId, "executions"],
});
queryClient.invalidateQueries({ queryKey: ["v2", "executions"] });
toast({
title: `Sensitive action safe mode ${newSafeMode ? "enabled" : "disabled"}`,
description: newSafeMode
? "Sensitive action blocks will require manual review"
: "Sensitive action blocks will proceed automatically",
duration: 2000,
});
} catch (error) {
handleToggleError(error, isAgent, toast);
}
}, [
currentSensitiveActionSafeMode,
graphId,
isAgent,
graph.id,
@@ -141,11 +182,53 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
]);
return {
currentSafeMode,
// HITL safe mode
currentHITLSafeMode,
showHITLToggle,
isHITLStateUndetermined,
handleHITLToggle,
// Sensitive action safe mode
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
// General
isPending,
shouldShowToggle,
isStateUndetermined,
handleToggle,
hasHITLBlocks: shouldShowToggle,
// Backwards compatibility
currentSafeMode: currentHITLSafeMode,
isStateUndetermined: isHITLStateUndetermined,
handleToggle: handleHITLToggle,
hasHITLBlocks: showHITLToggle,
};
}
function handleToggleError(
error: unknown,
isAgent: boolean,
toast: ReturnType<typeof useToast>["toast"],
) {
const isNotFoundError =
error instanceof Error &&
(error.message.includes("404") || error.message.includes("not found"));
if (!isAgent && isNotFoundError) {
toast({
title: "Safe mode not available",
description:
"To configure safe mode, please save this graph to your library first.",
variant: "destructive",
});
} else {
toast({
title: "Failed to update safe mode",
description:
error instanceof Error
? error.message
: "An unexpected error occurred.",
variant: "destructive",
});
}
}

View File

@@ -5,7 +5,7 @@ import isEqual from "lodash/isEqual";
export function cleanNode(node: CustomNode) {
return {
id: node.id,
position: node.position,
// Note: position is intentionally excluded to prevent draft saves when dragging nodes
data: {
hardcodedValues: node.data.hardcodedValues,
title: node.data.title,

View File

@@ -1,15 +1,12 @@
[flake8]
max-line-length = 88
extend-ignore = E203
exclude =
.tox,
__pycache__,
*.pyc,
.env,
venv*,
.venv,
reports,
dist,
data,
.benchmark_workspaces,
.autogpt,
.env
venv*/*,
.venv/*,
reports/*,
dist/*,
data/*,

View File

@@ -1,291 +0,0 @@
# CLAUDE.md
This file provides guidance to Claude Code (claude.ai/code) when working with code in this repository.
## Project Overview
AutoGPT Classic is an experimental, **unsupported** project demonstrating autonomous GPT-4 operation. Dependencies will not be updated, and the codebase contains known vulnerabilities. This is preserved for educational/historical purposes.
## Repository Structure
```
classic/
├── pyproject.toml # Single consolidated Poetry project
├── poetry.lock # Single lock file
├── forge/
│ └── forge/ # Core agent framework package
├── original_autogpt/
│ └── autogpt/ # AutoGPT agent package
├── direct_benchmark/
│ └── direct_benchmark/ # Benchmark harness package
└── benchmark/ # Challenge definitions (data, not code)
```
All packages are managed by a single `pyproject.toml` at the classic/ root.
## Common Commands
### Setup & Install
```bash
# Install everything from classic/ directory
cd classic
poetry install
```
### Running Agents
```bash
# Run forge agent
poetry run python -m forge
# Run original autogpt server
poetry run serve --debug
# Run autogpt CLI
poetry run autogpt
```
Agents run on `http://localhost:8000` by default.
### Benchmarking
```bash
# Run benchmarks
poetry run direct-benchmark run
# Run specific strategies and models
poetry run direct-benchmark run \
--strategies one_shot,rewoo \
--models claude \
--parallel 4
# Run a single test
poetry run direct-benchmark run --tests ReadFile
# List available commands
poetry run direct-benchmark --help
```
### Testing
```bash
poetry run pytest # All tests
poetry run pytest forge/tests/ # Forge tests only
poetry run pytest original_autogpt/tests/ # AutoGPT tests only
poetry run pytest -k test_name # Single test by name
poetry run pytest path/to/test.py # Specific test file
poetry run pytest --cov # With coverage
```
### Linting & Formatting
Run from the classic/ directory:
```bash
# Format everything (recommended to run together)
poetry run black . && poetry run isort .
# Check formatting (CI-style, no changes)
poetry run black --check . && poetry run isort --check-only .
# Lint
poetry run flake8 # Style linting
# Type check
poetry run pyright # Type checking (some errors are expected in infrastructure code)
```
Note: Always run linters over the entire directory, not specific files, for best results.
## Architecture
### Forge (Core Framework)
The `forge` package is the foundation that other components depend on:
- `forge/agent/` - Agent implementation and protocols
- `forge/llm/` - Multi-provider LLM integrations (OpenAI, Anthropic, Groq, LiteLLM)
- `forge/components/` - Reusable agent components
- `forge/file_storage/` - File system abstraction
- `forge/config/` - Configuration management
### Original AutoGPT
- `original_autogpt/autogpt/app/` - CLI application entry points
- `original_autogpt/autogpt/agents/` - Agent implementations
- `original_autogpt/autogpt/agent_factory/` - Agent creation logic
### Direct Benchmark
Benchmark harness for testing agent performance:
- `direct_benchmark/direct_benchmark/` - CLI and harness code
- `benchmark/agbenchmark/challenges/` - Test cases organized by category (code, retrieval, data, etc.)
- Reports generated in `direct_benchmark/reports/`
### Package Structure
All three packages are included in a single Poetry project. Imports are fully qualified:
- `from forge.agent.base import BaseAgent`
- `from autogpt.agents.agent import Agent`
- `from direct_benchmark.harness import BenchmarkHarness`
## Code Style
- Python 3.12 target
- Line length: 88 characters (Black default)
- Black for formatting, isort for imports (profile="black")
- Type hints with Pyright checking
## Testing Patterns
- Async support via pytest-asyncio
- Fixtures defined in `conftest.py` files provide: `tmp_project_root`, `storage`, `config`, `llm_provider`, `agent`
- Tests requiring API keys (OPENAI_API_KEY, ANTHROPIC_API_KEY) will skip if not set
## Environment Setup
Copy `.env.example` to `.env` in the relevant directory and add your API keys:
```bash
cp .env.example .env
# Edit .env with your OPENAI_API_KEY, etc.
```
## Workspaces
Agents operate within a **workspace** - a directory containing all agent data and files. The workspace root defaults to the current working directory.
### Workspace Structure
```
{workspace}/
├── .autogpt/
│ ├── autogpt.yaml # Workspace-level permissions
│ ├── ap_server.db # Agent Protocol database (server mode)
│ └── agents/
│ └── AutoGPT-{agent_id}/
│ ├── state.json # Agent profile, directives, action history
│ ├── permissions.yaml # Agent-specific permission overrides
│ └── workspace/ # Agent's sandboxed working directory
```
### Key Concepts
- **Multiple agents** can coexist in the same workspace (each gets its own subdirectory)
- **File access** is sandboxed to the agent's `workspace/` directory by default
- **State persistence** - agent state saves to `state.json` and survives across sessions
- **Storage backends** - supports local filesystem, S3, and GCS (via `FILE_STORAGE_BACKEND` env var)
### Specifying a Workspace
```bash
# Default: uses current directory
cd /path/to/my/project && poetry run autogpt
# Or specify explicitly via CLI (if supported)
poetry run autogpt --workspace /path/to/workspace
```
## Settings Location
Configuration uses a **layered system** with three levels (in order of precedence):
### 1. Environment Variables (Global)
Loaded from `.env` file in the working directory:
```bash
# Required
OPENAI_API_KEY=sk-...
# Optional LLM settings
SMART_LLM=gpt-4o # Model for complex reasoning
FAST_LLM=gpt-4o-mini # Model for simple tasks
EMBEDDING_MODEL=text-embedding-3-small
# Optional search providers (for web search component)
TAVILY_API_KEY=tvly-...
SERPER_API_KEY=...
GOOGLE_API_KEY=...
GOOGLE_CUSTOM_SEARCH_ENGINE_ID=...
# Optional infrastructure
LOG_LEVEL=DEBUG # DEBUG, INFO, WARNING, ERROR
DATABASE_STRING=sqlite:///agent.db # Agent Protocol database
PORT=8000 # Server port
FILE_STORAGE_BACKEND=local # local, s3, or gcs
```
### 2. Workspace Settings (`{workspace}/.autogpt/autogpt.yaml`)
Workspace-wide permissions that apply to **all agents** in this workspace:
```yaml
allow:
- read_file({workspace}/**)
- write_to_file({workspace}/**)
- list_folder({workspace}/**)
- web_search(*)
deny:
- read_file(**.env)
- read_file(**.env.*)
- read_file(**.key)
- read_file(**.pem)
- execute_shell(rm -rf:*)
- execute_shell(sudo:*)
```
Auto-generated with sensible defaults if missing.
### 3. Agent Settings (`{workspace}/.autogpt/agents/{id}/permissions.yaml`)
Agent-specific permission overrides:
```yaml
allow:
- execute_python(*)
- web_search(*)
deny:
- execute_shell(*)
```
## Permissions
The permission system uses **pattern matching** with a **first-match-wins** evaluation order.
### Permission Check Order
1. Agent deny list → **Block**
2. Workspace deny list → **Block**
3. Agent allow list → **Allow**
4. Workspace allow list → **Allow**
5. Session denied list → **Block** (commands denied during this session)
6. **Prompt user** → Interactive approval (if in interactive mode)
### Pattern Syntax
Format: `command_name(glob_pattern)`
| Pattern | Description |
|---------|-------------|
| `read_file({workspace}/**)` | Read any file in workspace (recursive) |
| `write_to_file({workspace}/*.txt)` | Write only .txt files in workspace root |
| `execute_shell(python:**)` | Execute Python commands only |
| `execute_shell(git:*)` | Execute any git command |
| `web_search(*)` | Allow all web searches |
Special tokens:
- `{workspace}` - Replaced with actual workspace path
- `**` - Matches any path including `/`
- `*` - Matches any characters except `/`
### Interactive Approval Scopes
When prompted for permission, users can choose:
| Scope | Effect |
|-------|--------|
| **Once** | Allow this one time only (not saved) |
| **Agent** | Always allow for this agent (saves to agent `permissions.yaml`) |
| **Workspace** | Always allow for all agents (saves to `autogpt.yaml`) |
| **Deny** | Deny this command (saves to appropriate deny list) |
### Default Security
Out of the box, the following are **denied by default**:
- Reading sensitive files (`.env`, `.key`, `.pem`)
- Destructive shell commands (`rm -rf`, `sudo`)
- Operations outside the workspace directory

182
classic/CLI-USAGE.md Executable file
View File

@@ -0,0 +1,182 @@
## CLI Documentation
This document describes how to interact with the project's CLI (Command Line Interface). It includes the types of outputs you can expect from each command. Note that the `agents stop` command will terminate any process running on port 8000.
### 1. Entry Point for the CLI
Running the `./run` command without any parameters will display the help message, which provides a list of available commands and options. Additionally, you can append `--help` to any command to view help information specific to that command.
```sh
./run
```
**Output**:
```
Usage: cli.py [OPTIONS] COMMAND [ARGS]...
Options:
--help Show this message and exit.
Commands:
agent Commands to create, start and stop agents
benchmark Commands to start the benchmark and list tests and categories
setup Installs dependencies needed for your system.
```
If you need assistance with any command, simply add the `--help` parameter to the end of your command, like so:
```sh
./run COMMAND --help
```
This will display a detailed help message regarding that specific command, including a list of any additional options and arguments it accepts.
### 2. Setup Command
```sh
./run setup
```
**Output**:
```
Setup initiated
Installation has been completed.
```
This command initializes the setup of the project.
### 3. Agents Commands
**a. List All Agents**
```sh
./run agent list
```
**Output**:
```
Available agents: 🤖
🐙 forge
🐙 autogpt
```
Lists all the available agents.
**b. Create a New Agent**
```sh
./run agent create my_agent
```
**Output**:
```
🎉 New agent 'my_agent' created and switched to the new directory in agents folder.
```
Creates a new agent named 'my_agent'.
**c. Start an Agent**
```sh
./run agent start my_agent
```
**Output**:
```
... (ASCII Art representing the agent startup)
[Date and Time] [forge.sdk.db] [DEBUG] 🐛 Initializing AgentDB with database_string: sqlite:///agent.db
[Date and Time] [forge.sdk.agent] [INFO] 📝 Agent server starting on http://0.0.0.0:8000
```
Starts the 'my_agent' and displays startup ASCII art and logs.
**d. Stop an Agent**
```sh
./run agent stop
```
**Output**:
```
Agent stopped
```
Stops the running agent.
### 4. Benchmark Commands
**a. List Benchmark Categories**
```sh
./run benchmark categories list
```
**Output**:
```
Available categories: 📚
📖 code
📖 safety
📖 memory
... (and so on)
```
Lists all available benchmark categories.
**b. List Benchmark Tests**
```sh
./run benchmark tests list
```
**Output**:
```
Available tests: 📚
📖 interface
🔬 Search - TestSearch
🔬 Write File - TestWriteFile
... (and so on)
```
Lists all available benchmark tests.
**c. Show Details of a Benchmark Test**
```sh
./run benchmark tests details TestWriteFile
```
**Output**:
```
TestWriteFile
-------------
Category: interface
Task: Write the word 'Washington' to a .txt file
... (and other details)
```
Displays the details of the 'TestWriteFile' benchmark test.
**d. Start Benchmark for the Agent**
```sh
./run benchmark start my_agent
```
**Output**:
```
(more details about the testing process shown whilst the test are running)
============= 13 failed, 1 passed in 0.97s ============...
```
Displays the results of the benchmark tests on 'my_agent'.

View File

@@ -2,7 +2,7 @@
ARG BUILD_TYPE=dev
# Use an official Python base image from the Docker Hub
FROM python:3.12-slim AS autogpt-base
FROM python:3.10-slim AS autogpt-base
# Install browsers
RUN apt-get update && apt-get install -y \
@@ -34,6 +34,9 @@ COPY original_autogpt/pyproject.toml original_autogpt/poetry.lock ./
# Include forge so it can be used as a path dependency
COPY forge/ ../forge
# Include frontend
COPY frontend/ ../frontend
# Set the entrypoint
ENTRYPOINT ["poetry", "run", "autogpt"]
CMD []

173
classic/FORGE-QUICKSTART.md Normal file
View File

@@ -0,0 +1,173 @@
# Quickstart Guide
> For the complete getting started [tutorial series](https://aiedge.medium.com/autogpt-forge-e3de53cc58ec) <- click here
Welcome to the Quickstart Guide! This guide will walk you through setting up, building, and running your own AutoGPT agent. Whether you're a seasoned AI developer or just starting out, this guide will provide you with the steps to jumpstart your journey in AI development with AutoGPT.
## System Requirements
This project supports Linux (Debian-based), Mac, and Windows Subsystem for Linux (WSL). If you use a Windows system, you must install WSL. You can find the installation instructions for WSL [here](https://learn.microsoft.com/en-us/windows/wsl/).
## Getting Setup
1. **Fork the Repository**
To fork the repository, follow these steps:
- Navigate to the main page of the repository.
![Repository](../docs/content/imgs/quickstart/001_repo.png)
- In the top-right corner of the page, click Fork.
![Create Fork UI](../docs/content/imgs/quickstart/002_fork.png)
- On the next page, select your GitHub account to create the fork.
- Wait for the forking process to complete. You now have a copy of the repository in your GitHub account.
2. **Clone the Repository**
To clone the repository, you need to have Git installed on your system. If you don't have Git installed, download it from [here](https://git-scm.com/downloads). Once you have Git installed, follow these steps:
- Open your terminal.
- Navigate to the directory where you want to clone the repository.
- Run the git clone command for the fork you just created
![Clone the Repository](../docs/content/imgs/quickstart/003_clone.png)
- Then open your project in your ide
![Open the Project in your IDE](../docs/content/imgs/quickstart/004_ide.png)
4. **Setup the Project**
Next, we need to set up the required dependencies. We have a tool to help you perform all the tasks on the repo.
It can be accessed by running the `run` command by typing `./run` in the terminal.
The first command you need to use is `./run setup.` This will guide you through setting up your system.
Initially, you will get instructions for installing Flutter and Chrome and setting up your GitHub access token like the following image:
![Setup the Project](../docs/content/imgs/quickstart/005_setup.png)
### For Windows Users
If you're a Windows user and experience issues after installing WSL, follow the steps below to resolve them.
#### Update WSL
Run the following command in Powershell or Command Prompt:
1. Enable the optional WSL and Virtual Machine Platform components.
2. Download and install the latest Linux kernel.
3. Set WSL 2 as the default.
4. Download and install the Ubuntu Linux distribution (a reboot may be required).
```shell
wsl --install
```
For more detailed information and additional steps, refer to [Microsoft's WSL Setup Environment Documentation](https://learn.microsoft.com/en-us/windows/wsl/setup/environment).
#### Resolve FileNotFoundError or "No such file or directory" Errors
When you run `./run setup`, if you encounter errors like `No such file or directory` or `FileNotFoundError`, it might be because Windows-style line endings (CRLF - Carriage Return Line Feed) are not compatible with Unix/Linux style line endings (LF - Line Feed).
To resolve this, you can use the `dos2unix` utility to convert the line endings in your script from CRLF to LF. Heres how to install and run `dos2unix` on the script:
```shell
sudo apt update
sudo apt install dos2unix
dos2unix ./run
```
After executing the above commands, running `./run setup` should work successfully.
#### Store Project Files within the WSL File System
If you continue to experience issues, consider storing your project files within the WSL file system instead of the Windows file system. This method avoids path translations and permissions issues and provides a more consistent development environment.
You can keep running the command to get feedback on where you are up to with your setup.
When setup has been completed, the command will return an output like this:
![Setup Complete](../docs/content/imgs/quickstart/006_setup_complete.png)
## Creating Your Agent
After completing the setup, the next step is to create your agent template.
Execute the command `./run agent create YOUR_AGENT_NAME`, where `YOUR_AGENT_NAME` should be replaced with your chosen name.
Tips for naming your agent:
* Give it its own unique name, or name it after yourself
* Include an important aspect of your agent in the name, such as its purpose
Examples: `SwiftyosAssistant`, `PwutsPRAgent`, `MySuperAgent`
![Create an Agent](../docs/content/imgs/quickstart/007_create_agent.png)
## Running your Agent
Your agent can be started using the command: `./run agent start YOUR_AGENT_NAME`
This starts the agent on the URL: `http://localhost:8000/`
![Start the Agent](../docs/content/imgs/quickstart/009_start_agent.png)
The front end can be accessed from `http://localhost:8000/`; first, you must log in using either a Google account or your GitHub account.
![Login](../docs/content/imgs/quickstart/010_login.png)
Upon logging in, you will get a page that looks something like this: your task history down the left-hand side of the page, and the 'chat' window to send tasks to your agent.
![Login](../docs/content/imgs/quickstart/011_home.png)
When you have finished with your agent or just need to restart it, use Ctl-C to end the session. Then, you can re-run the start command.
If you are having issues and want to ensure the agent has been stopped, there is a `./run agent stop` command, which will kill the process using port 8000, which should be the agent.
## Benchmarking your Agent
The benchmarking system can also be accessed using the CLI too:
```bash
agpt % ./run benchmark
Usage: cli.py benchmark [OPTIONS] COMMAND [ARGS]...
Commands to start the benchmark and list tests and categories
Options:
--help Show this message and exit.
Commands:
categories Benchmark categories group command
start Starts the benchmark command
tests Benchmark tests group command
agpt % ./run benchmark categories
Usage: cli.py benchmark categories [OPTIONS] COMMAND [ARGS]...
Benchmark categories group command
Options:
--help Show this message and exit.
Commands:
list List benchmark categories command
agpt % ./run benchmark tests
Usage: cli.py benchmark tests [OPTIONS] COMMAND [ARGS]...
Benchmark tests group command
Options:
--help Show this message and exit.
Commands:
details Benchmark test details command
list List benchmark tests command
```
The benchmark has been split into different categories of skills you can test your agent on. You can see what categories are available with
```bash
./run benchmark categories list
# And what tests are available with
./run benchmark tests list
```
![Login](../docs/content/imgs/quickstart/012_tests.png)
Finally, you can run the benchmark with
```bash
./run benchmark start YOUR_AGENT_NAME
```
>

View File

@@ -4,7 +4,7 @@ AutoGPT Classic was an experimental project to demonstrate autonomous GPT-4 oper
## Project Status
**This project is unsupported, and dependencies will not be updated.** It was an experiment that has concluded its initial research phase. If you want to use AutoGPT, you should use the [AutoGPT Platform](/autogpt_platform).
⚠️ **This project is unsupported, and dependencies will not be updated. It was an experiment that has concluded its initial research phase. If you want to use AutoGPT, you should use the [AutoGPT Platform](/autogpt_platform)**
For those interested in autonomous AI agents, we recommend exploring more actively maintained alternatives or referring to this codebase for educational purposes only.
@@ -16,171 +16,37 @@ AutoGPT Classic was one of the first implementations of autonomous AI agents - A
- Learn from the results and adjust its approach
- Chain multiple actions together to achieve an objective
## Key Features
- 🔄 Autonomous task chaining
- 🛠 Tool and API integration capabilities
- 💾 Memory management for context retention
- 🔍 Web browsing and information gathering
- 📝 File operations and content creation
- 🔄 Self-prompting and task breakdown
## Structure
```
classic/
├── pyproject.toml # Single consolidated Poetry project
├── poetry.lock # Single lock file
├── forge/ # Core autonomous agent framework
├── original_autogpt/ # Original implementation
├── direct_benchmark/ # Benchmark harness
└── benchmark/ # Challenge definitions (data)
```
The project is organized into several key components:
- `/benchmark` - Performance testing tools
- `/forge` - Core autonomous agent framework
- `/frontend` - User interface components
- `/original_autogpt` - Original implementation
## Getting Started
### Prerequisites
- Python 3.12+
- [Poetry](https://python-poetry.org/docs/#installation)
### Installation
While this project is no longer actively maintained, you can still explore the codebase:
1. Clone the repository:
```bash
# Clone the repository
git clone https://github.com/Significant-Gravitas/AutoGPT.git
cd classic
# Install everything
poetry install
```
### Configuration
Configuration uses a layered system:
1. **Environment variables** (`.env` file)
2. **Workspace settings** (`.autogpt/autogpt.yaml`)
3. **Agent settings** (`.autogpt/agents/{id}/permissions.yaml`)
Copy the example environment file and add your API keys:
```bash
cp .env.example .env
```
Key environment variables:
```bash
# Required
OPENAI_API_KEY=sk-...
# Optional LLM settings
SMART_LLM=gpt-4o # Model for complex reasoning
FAST_LLM=gpt-4o-mini # Model for simple tasks
# Optional search providers
TAVILY_API_KEY=tvly-...
SERPER_API_KEY=...
# Optional infrastructure
LOG_LEVEL=DEBUG
PORT=8000
FILE_STORAGE_BACKEND=local # local, s3, or gcs
```
### Running
All commands run from the `classic/` directory:
```bash
# Run forge agent
poetry run python -m forge
# Run original autogpt server
poetry run serve --debug
# Run autogpt CLI
poetry run autogpt
```
Agents run on `http://localhost:8000` by default.
### Benchmarking
```bash
poetry run direct-benchmark run
```
### Testing
```bash
poetry run pytest # All tests
poetry run pytest forge/tests/ # Forge tests only
poetry run pytest original_autogpt/tests/ # AutoGPT tests only
```
## Workspaces
Agents operate within a **workspace** directory that contains all agent data and files:
```
{workspace}/
├── .autogpt/
│ ├── autogpt.yaml # Workspace-level permissions
│ ├── ap_server.db # Agent Protocol database (server mode)
│ └── agents/
│ └── AutoGPT-{agent_id}/
│ ├── state.json # Agent profile, directives, history
│ ├── permissions.yaml # Agent-specific permissions
│ └── workspace/ # Agent's sandboxed working directory
```
- The workspace defaults to the current working directory
- Multiple agents can coexist in the same workspace
- Agent file access is sandboxed to their `workspace/` subdirectory
- State persists across sessions via `state.json`
## Permissions
AutoGPT uses a **layered permission system** with pattern matching:
### Permission Files
| File | Scope | Location |
|------|-------|----------|
| `autogpt.yaml` | All agents in workspace | `.autogpt/autogpt.yaml` |
| `permissions.yaml` | Single agent | `.autogpt/agents/{id}/permissions.yaml` |
### Permission Format
```yaml
allow:
- read_file({workspace}/**) # Read any file in workspace
- write_to_file({workspace}/**) # Write any file in workspace
- web_search(*) # All web searches
deny:
- read_file(**.env) # Block .env files
- execute_shell(sudo:*) # Block sudo commands
```
### Check Order (First Match Wins)
1. Agent deny → Block
2. Workspace deny → Block
3. Agent allow → Allow
4. Workspace allow → Allow
5. Prompt user → Interactive approval
### Interactive Approval
When prompted, users can approve commands with different scopes:
- **Once** - Allow this one time only
- **Agent** - Always allow for this agent
- **Workspace** - Always allow for all agents
- **Deny** - Block this command
### Default Security
Denied by default:
- Sensitive files (`.env`, `.key`, `.pem`)
- Destructive commands (`rm -rf`, `sudo`)
- Operations outside the workspace
## Security Notice
This codebase has **known vulnerabilities** and issues with its dependencies. It will not be updated to new dependencies. Use for educational purposes only.
2. Review the documentation:
- For reference, see the [documentation](https://docs.agpt.co). You can browse at the same point in time as this commit so the docs don't change.
- Check `CLI-USAGE.md` for command-line interface details
- Refer to `TROUBLESHOOTING.md` for common issues
## License
@@ -189,3 +55,27 @@ This project segment is licensed under the MIT License - see the [LICENSE](LICEN
## Documentation
Please refer to the [documentation](https://docs.agpt.co) for more detailed information about the project's architecture and concepts.
You can browse at the same point in time as this commit so the docs don't change.
## Historical Impact
AutoGPT Classic played a significant role in advancing the field of autonomous AI agents:
- Demonstrated practical implementation of AI autonomy
- Inspired numerous derivative projects and research
- Contributed to the development of AI agent architectures
- Helped identify key challenges in AI autonomy
## Security Notice
If you're studying this codebase, please understand this has KNOWN vulnerabilities and issues with its dependencies. It will not be updated to new dependencies.
## Community & Support
While active development has concluded:
- The codebase remains available for study and reference
- Historical discussions can be found in project issues
- Related research and developments continue in the broader AI agent community
## Acknowledgments
Thanks to all contributors who participated in this experimental project and helped advance the field of autonomous AI agents.

View File

@@ -0,0 +1,4 @@
AGENT_NAME=mini-agi
REPORTS_FOLDER="reports/mini-agi"
OPENAI_API_KEY="sk-" # for LLM eval
BUILD_SKILL_TREE=false # set to true to build the skill tree.

12
classic/benchmark/.flake8 Normal file
View File

@@ -0,0 +1,12 @@
[flake8]
max-line-length = 88
# Ignore rules that conflict with Black code style
extend-ignore = E203, W503
exclude =
__pycache__/,
*.pyc,
.pytest_cache/,
venv*/,
.venv/,
reports/,
agbenchmark/reports/,

174
classic/benchmark/.gitignore vendored Normal file
View File

@@ -0,0 +1,174 @@
agbenchmark_config/workspace/
backend/backend_stdout.txt
reports/df*.pkl
reports/raw*
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
.idea/
.DS_Store
```
secrets.json
agbenchmark_config/challenges_already_beaten.json
agbenchmark_config/challenges/pri_*
agbenchmark_config/updates.json
agbenchmark_config/reports/*
agbenchmark_config/reports/success_rate.json
agbenchmark_config/reports/regression_tests.json

21
classic/benchmark/LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2024 AutoGPT
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -0,0 +1,25 @@
# Auto-GPT Benchmarks
Built for the purpose of benchmarking the performance of agents regardless of how they work.
Objectively know how well your agent is performing in categories like code, retrieval, memory, and safety.
Save time and money while doing it through smart dependencies. The best part? It's all automated.
## Scores:
<img width="733" alt="Screenshot 2023-07-25 at 10 35 01 AM" src="https://github.com/Significant-Gravitas/Auto-GPT-Benchmarks/assets/9652976/98963e0b-18b9-4b17-9a6a-4d3e4418af70">
## Ranking overall:
- 1- [Beebot](https://github.com/AutoPackAI/beebot)
- 2- [mini-agi](https://github.com/muellerberndt/mini-agi)
- 3- [Auto-GPT](https://github.com/Significant-Gravitas/AutoGPT)
## Detailed results:
<img width="733" alt="Screenshot 2023-07-25 at 10 42 15 AM" src="https://github.com/Significant-Gravitas/Auto-GPT-Benchmarks/assets/9652976/39be464c-c842-4437-b28a-07d878542a83">
[Click here to see the results and the raw data!](https://docs.google.com/spreadsheets/d/1WXm16P2AHNbKpkOI0LYBpcsGG0O7D8HYTG5Uj0PaJjA/edit#gid=203558751)!
More agents coming soon !

View File

@@ -0,0 +1,69 @@
## As a user
1. `pip install auto-gpt-benchmarks`
2. Add boilerplate code to run and kill agent
3. `agbenchmark`
- `--category challenge_category` to run tests in a specific category
- `--mock` to only run mock tests if they exists for each test
- `--noreg` to skip any tests that have passed in the past. When you run without this flag and a previous challenge that passed fails, it will now not be regression tests
4. We call boilerplate code for your agent
5. Show pass rate of tests, logs, and any other metrics
## Contributing
##### Diagrams: https://whimsical.com/agbenchmark-5n4hXBq1ZGzBwRsK4TVY7x
### To run the existing mocks
1. clone the repo `auto-gpt-benchmarks`
2. `pip install poetry`
3. `poetry shell`
4. `poetry install`
5. `cp .env_example .env`
6. `git submodule update --init --remote --recursive`
7. `uvicorn server:app --reload`
8. `agbenchmark --mock`
Keep config the same and watch the logs :)
### To run with mini-agi
1. Navigate to `auto-gpt-benchmarks/agent/mini-agi`
2. `pip install -r requirements.txt`
3. `cp .env_example .env`, set `PROMPT_USER=false` and add your `OPENAI_API_KEY=`. Sset `MODEL="gpt-3.5-turbo"` if you don't have access to `gpt-4` yet. Also make sure you have Python 3.10^ installed
4. set `AGENT_NAME=mini-agi` in `.env` file and where you want your `REPORTS_FOLDER` to be
5. Make sure to follow the commands above, and remove mock flag `agbenchmark`
- To add requirements `poetry add requirement`.
Feel free to create prs to merge with `main` at will (but also feel free to ask for review) - if you can't send msg in R&D chat for access.
If you push at any point and break things - it'll happen to everyone - fix it asap. Step 1 is to revert `master` to last working commit
Let people know what beautiful code you write does, document everything well
Share your progress :)
#### Dataset
Manually created, existing challenges within Auto-Gpt, https://osu-nlp-group.github.io/Mind2Web/
## How do I add new agents to agbenchmark ?
Example with smol developer.
1- Create a github branch with your agent following the same pattern as this example:
https://github.com/smol-ai/developer/pull/114/files
2- Create the submodule and the github workflow by following the same pattern as this example:
https://github.com/Significant-Gravitas/Auto-GPT-Benchmarks/pull/48/files
## How do I run agent in different environments?
**To just use as the benchmark for your agent**. `pip install` the package and run `agbenchmark`
**For internal Auto-GPT ci runs**, specify the `AGENT_NAME` you want you use and set the `HOME_ENV`.
Ex. `AGENT_NAME=mini-agi`
**To develop agent alongside benchmark**, you can specify the `AGENT_NAME` you want you use and add as a submodule to the repo

Some files were not shown because too many files have changed in this diff Show More