Compare commits

..

2 Commits

829 changed files with 21504 additions and 97528 deletions

View File

@@ -80,7 +80,7 @@ jobs:
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
node-version: "21"
- name: Enable corepack
run: corepack enable

View File

@@ -44,12 +44,6 @@ jobs:
with:
fetch-depth: 1
- name: Free Disk Space (Ubuntu)
uses: jlumbroso/free-disk-space@v1.3.1
with:
large-packages: false # slow
docker-images: false # limited benefit
# Backend Python/Poetry setup (mirrors platform-backend-ci.yml)
- name: Set up Python
uses: actions/setup-python@v5
@@ -96,7 +90,7 @@ jobs:
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
node-version: "21"
- name: Enable corepack
run: corepack enable

View File

@@ -78,7 +78,7 @@ jobs:
- name: Set up Node.js
uses: actions/setup-node@v4
with:
node-version: "22"
node-version: "21"
- name: Enable corepack
run: corepack enable
@@ -299,4 +299,4 @@ jobs:
echo "✅ AutoGPT Platform development environment setup complete!"
echo "🚀 Ready for development with Docker services running"
echo "📝 Backend server: poetry run serve (port 8000)"
echo "🌐 Frontend server: pnpm dev (port 3000)"
echo "🌐 Frontend server: pnpm dev (port 3000)"

View File

@@ -12,10 +12,6 @@ on:
- "autogpt_platform/frontend/**"
merge_group:
concurrency:
group: ${{ github.workflow }}-${{ github.event_name == 'merge_group' && format('merge-queue-{0}', github.ref) || format('{0}-{1}', github.ref, github.event.pull_request.number || github.sha) }}
cancel-in-progress: ${{ github.event_name == 'pull_request' }}
defaults:
run:
shell: bash

View File

@@ -12,10 +12,6 @@ on:
- "autogpt_platform/**"
merge_group:
concurrency:
group: ${{ github.workflow }}-${{ github.event_name == 'merge_group' && format('merge-queue-{0}', github.ref) || github.head_ref && format('pr-{0}', github.event.pull_request.number) || github.sha }}
cancel-in-progress: ${{ github.event_name == 'pull_request' }}
defaults:
run:
shell: bash

View File

@@ -11,7 +11,7 @@ jobs:
stale:
runs-on: ubuntu-latest
steps:
- uses: actions/stale@v10
- uses: actions/stale@v9
with:
# operations-per-run: 5000
stale-issue-message: >

View File

@@ -61,6 +61,6 @@ jobs:
pull-requests: write
runs-on: ubuntu-latest
steps:
- uses: actions/labeler@v6
- uses: actions/labeler@v5
with:
sync-labels: true

View File

@@ -1,4 +1,4 @@
.PHONY: start-core stop-core logs-core format lint migrate run-backend run-frontend load-store-agents
.PHONY: start-core stop-core logs-core format lint migrate run-backend run-frontend
# Run just Supabase + Redis + RabbitMQ
start-core:
@@ -42,10 +42,7 @@ run-frontend:
test-data:
cd backend && poetry run python test/test_data_creator.py
load-store-agents:
cd backend && poetry run load-store-agents
help:
@echo "Usage: make <target>"
@echo "Targets:"
@@ -57,5 +54,4 @@ help:
@echo " migrate - Run backend database migrations"
@echo " run-backend - Run the backend FastAPI server"
@echo " run-frontend - Run the frontend Next.js development server"
@echo " test-data - Run the test data creator"
@echo " load-store-agents - Load store agents from agents/ folder into test database"
@echo " test-data - Run the test data creator"

View File

@@ -57,9 +57,6 @@ class APIKeySmith:
def hash_key(self, raw_key: str) -> tuple[str, str]:
"""Migrate a legacy hash to secure hash format."""
if not raw_key.startswith(self.PREFIX):
raise ValueError("Key without 'agpt_' prefix would fail validation")
salt = self._generate_salt()
hash = self._hash_key_with_salt(raw_key, salt)
return hash, salt.hex()

View File

@@ -1,25 +1,29 @@
from fastapi import FastAPI
from fastapi.openapi.utils import get_openapi
from .jwt_utils import bearer_jwt_auth
def add_auth_responses_to_openapi(app: FastAPI) -> None:
"""
Patch a FastAPI instance's `openapi()` method to add 401 responses
Set up custom OpenAPI schema generation that adds 401 responses
to all authenticated endpoints.
This is needed when using HTTPBearer with auto_error=False to get proper
401 responses instead of 403, but FastAPI only automatically adds security
responses when auto_error=True.
"""
# Wrap current method to allow stacking OpenAPI schema modifiers like this
wrapped_openapi = app.openapi
def custom_openapi():
if app.openapi_schema:
return app.openapi_schema
openapi_schema = wrapped_openapi()
openapi_schema = get_openapi(
title=app.title,
version=app.version,
description=app.description,
routes=app.routes,
)
# Add 401 response to all endpoints that have security requirements
for path, methods in openapi_schema["paths"].items():

View File

@@ -134,6 +134,13 @@ POSTMARK_WEBHOOK_TOKEN=
# Error Tracking
SENTRY_DSN=
# Cloudflare Turnstile (CAPTCHA) Configuration
# Get these from the Cloudflare Turnstile dashboard: https://dash.cloudflare.com/?to=/:account/turnstile
# This is the backend secret key
TURNSTILE_SECRET_KEY=
# This is the verify URL
TURNSTILE_VERIFY_URL=https://challenges.cloudflare.com/turnstile/v0/siteverify
# Feature Flags
LAUNCH_DARKLY_SDK_KEY=

View File

@@ -108,7 +108,7 @@ import fastapi.testclient
import pytest
from pytest_snapshot.plugin import Snapshot
from backend.api.features.myroute import router
from backend.server.v2.myroute import router
app = fastapi.FastAPI()
app.include_router(router)
@@ -149,7 +149,7 @@ These provide the easiest way to set up authentication mocking in test modules:
import fastapi
import fastapi.testclient
import pytest
from backend.api.features.myroute import router
from backend.server.v2.myroute import router
app = fastapi.FastAPI()
app.include_router(router)

View File

@@ -1,242 +0,0 @@
listing_id,storeListingVersionId,slug,agent_name,agent_video,agent_image,featured,sub_heading,description,categories,useForOnboarding,is_available
6e60a900-9d7d-490e-9af2-a194827ed632,d85882b8-633f-44ce-a315-c20a8c123d19,flux-ai-image-generator,Flux AI Image Generator,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/ca154dd1-140e-454c-91bd-2d8a00de3f08.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/577d995d-bc38-40a9-a23f-1f30f5774bdb.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/415db1b7-115c-43ab-bd6c-4e9f7ef95be1.jpg""]",false,Transform ideas into breathtaking images,"Transform ideas into breathtaking images with this AI-powered Image Generator. Using cutting-edge Flux AI technology, the tool crafts highly detailed, photorealistic visuals from simple text prompts. Perfect for artists, marketers, and content creators, this generator produces unique images tailored to user specifications. From fantastical scenes to lifelike portraits, users can unleash creativity with professional-quality results in seconds. Easy to use and endlessly versatile, bring imagination to life with the AI Image Generator today!","[""creative""]",false,true
f11fc6e9-6166-4676-ac5d-f07127b270c1,c775f60d-b99f-418b-8fe0-53172258c3ce,youtube-transcription-scraper,YouTube Transcription Scraper,https://youtu.be/H8S3pU68lGE,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/65bce54b-0124-4b0d-9e3e-f9b89d0dc99e.jpg""]",false,Fetch the transcriptions from the most popular YouTube videos in your chosen topic,"Effortlessly gather transcriptions from multiple YouTube videos with this agent. It scrapes and compiles video transcripts into a clean, organized list, making it easy to extract insights, quotes, or content from various sources in one go. Ideal for researchers, content creators, and marketers looking to quickly analyze or repurpose video content.","[""writing""]",false,true
17908889-b599-4010-8e4f-bed19b8f3446,6e16e65a-ad34-4108-b4fd-4a23fced5ea2,business-ownerceo-finder,Decision Maker Lead Finder,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/1020d94e-b6a2-4fa7-bbdf-2c218b0de563.jpg""]",false,Contact CEOs today,"Find the key decision-makers you need, fast.
This agent identifies business owners or CEOs of local companies in any area you choose. Simply enter what kind of businesses youre looking for and where, and it will:
* Search the area and gather public information
* Return names, roles, and contact details when available
* Provide smart Google search suggestions if details arent found
Perfect for:
* B2B sales teams seeking verified leads
* Recruiters sourcing local talent
* Researchers looking to connect with business leaders
Save hours of manual searching and get straight to the people who matter most.","[""business""]",true,true
72beca1d-45ea-4403-a7ce-e2af168ee428,415b7352-0dc6-4214-9d87-0ad3751b711d,smart-meeting-brief,Smart Meeting Prep,https://youtu.be/9ydZR2hkxaY,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2f116ce1-63ae-4d39-a5cd-f514defc2b97.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/0a71a60a-2263-4f12-9836-9c76ab49f155.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/95327695-9184-403c-907a-a9d3bdafa6a5.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2bc77788-790b-47d4-8a61-ce97b695e9f5.png""]",true,Business meeting briefings delivered daily,"Never walk into a meeting unprepared again. Every day at 4 pm, the Smart Meeting Prep Agent scans your calendar for tomorrow's external meetings. It reviews your past email exchanges, researches each participant's background and role, and compiles the insights into a concise briefing, so you can close your workday ready for tomorrow's calls.
How It Works
1. At 4 pm, the agent scans your calendar and identifies external meetings scheduled for the next day.
2. It reviews recent email threads with each participant to surface key relationship history and communication context.
3. It conducts online research to gather publicly available information on roles, company backgrounds, and relevant professional data.
4. It produces a unified briefing for each participant, including past exchange highlights, profile notes, and strategic conversation points.","[""personal""]",true,true
9fa5697a-617b-4fae-aea0-7dbbed279976,b8ceb480-a7a2-4c90-8513-181a49f7071f,automated-support-ai,Automated Support Agent,https://youtu.be/nBMfu_5sgDA,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/ed56febc-2205-4179-9e7e-505d8500b66c.png""]",true,Automate up to 80 percent of inbound support emails,"Overview:
Support teams spend countless hours on basic tickets. This agent automates repetitive customer support tasks. It reads incoming requests, researches your knowledge base, and responds automatically when confident. When unsure, it escalates to a human for final resolution.
How it Works:
New support emails are routed to the agent.
The agent checks internal documentation for answers.
It measures confidence in the answer found and either replies directly or escalates to a human.
Business Value:
Automating the easy 80 percent of support tickets allows your team to focus on high-value, complex customer issues, improving efficiency and response times.","[""business""]",false,true
2bdac92b-a12c-4131-bb46-0e3b89f61413,31daf49d-31d3-476b-aa4c-099abc59b458,unspirational-poster-maker,Unspirational Poster Maker,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/6a490dac-27e5-405f-a4c4-8d1c55b85060.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/d343fbb5-478c-4e38-94df-4337293b61f1.jpg""]",false,Because adulting is hard,"This witty AI agent generates hilariously relatable ""motivational"" posters that tackle the everyday struggles of procrastination, overthinking, and workplace chaos with a blend of absurdity and sarcasm. From goldfish facing impossible tasks to cats in existential crises, The Unspirational Poster Maker designs tongue-in-cheek graphics and captions that mock productivity clichés and embrace our collective struggles to ""get it together."" Perfect for adding a touch of humour to the workday, these posters remind us that sometimes, all we can do is laugh at the chaos.","[""creative""]",false,true
9adf005e-2854-4cc7-98cf-f7103b92a7b7,a03b0d8c-4751-43d6-a54e-c3b7856ba4e3,ai-shortform-video-generator-create-viral-ready-content,AI Video Generator,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/8d2670b9-fea5-4966-a597-0a4511bffdc3.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/aabe8aec-0110-4ce7-a259-4f86fe8fe07d.png""]",false,Create Viral-Ready Shorts Content in Seconds,"OVERVIEW
Transform any trending headline or broad topic into a polished, vertical short-form video in a single run.
The agent automates research, scriptwriting, metadata creation, and Revid.ai rendering, returning one ready-to-publish MP4 plus its title, script and hashtags.
HOW IT WORKS
1. Input a topic or an exact news headline.
2. The agent fetches live search results and selects the most engaging related story.
3. Key facts are summarised into concise research notes.
4. Claude writes a 3035 second script with visual cues, a three-second hook, tension loops, and a call-to-action.
5. GPT-4o generates an eye-catching title and one or two discoverability hashtags.
6. The script is sent to a state-of-the-art AI video generator to render a single 9:16 MP4 (default: 720 p, 30 fps, voice “Brian”, style “movingImage”, music “Bladerunner 2049”).
All voice, style and resolution settings can be adjusted in the Builder before you press ""Run"".
7. Output delivered: Title, Script, Hashtags, Video URL.
KEY USE CASES
- Broad-topic explainers (e.g. “Artificial Intelligence” or “Climate Tech”).
- Real-time newsjacking with a specific breaking headline.
- Product-launch spotlights and quick event recaps while interest is high.
BUSINESS VALUE
- One-click speed: from idea to finished video in minutes.
- Consistent brand look: Revid presets keep voice, style and aspect ratio on spec.
- No-code workflow: marketers create social video without design or development queues.
- Cloud convenience: Auto-GPT Cloud users are pre-configured with all required keys.
Self-hosted users simply add OpenAI, Anthropic, Perplexity (OpenRouter/Jina) and Revid keys once.
IMPORTANT NOTES
- The agent outputs exactly one video per execution. Run it again for additional shorts.
- Video rendering time varies; AI-generated footage may take several minutes.","[""writing""]",false,true
864e48ef-fee5-42c1-b6a4-2ae139db9fc1,55d40473-0f31-4ada-9e40-d3a7139fcbd4,automated-blog-writer,Automated SEO Blog Writer,https://youtu.be/nKcDCbDVobs,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2dd5f95b-5b30-4bf8-a11b-bac776c5141a.jpg""]",true,"Automate research, writing, and publishing for high-ranking blog posts","Scale your blog with a fully automated content engine. The Automated SEO Blog Writer learns your brand voice, finds high-demand keywords, and creates SEO-optimized articles that attract organic traffic and boost visibility.
How it works:
1. Share your pitch, website, and values.
2. The agent studies your site and uncovers proven SEO opportunities.
3. It spends two hours researching and drafting each post.
4. You set the cadence—publishing runs on autopilot.
Business value: Consistently publish research-backed, optimized posts that build domain authority, rankings, and thought leadership while you focus on what matters most.
Use cases:
• Founders: Keep your blog active with no time drain.
• Agencies: Deliver scalable SEO content for clients.
• Strategists: Automate execution, focus on strategy.
• Marketers: Drive steady organic growth.
• Local businesses: Capture nearby search traffic.","[""writing""]",false,true
6046f42e-eb84-406f-bae0-8e052064a4fa,a548e507-09a7-4b30-909c-f63fcda10fff,lead-finder-local-businesses,Lead Finder,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/abd6605f-d5f8-426b-af36-052e8ba5044f.webp""]",false,Auto-Prospect Like a Pro,"Turbo-charge your local lead generation with the AutoGPT Marketplaces top Google Maps prospecting agent. “Lead Finder: Local Businesses” delivers verified, ready-to-contact prospects in any niche and city—so you can focus on closing, not searching.
**WHAT IT DOES**
• Searches Google Maps via the official API (no scraping)
• Prompts like “dentists in Chicago” or “coffee shops near me”
• Returns: Name, Website, Rating, Reviews, **Phone & Address**
• Exports instantly to your CRM, sheet, or outreach workflow
**WHY YOULL LOVE IT**
✓ Hyper-targeted leads in minutes
✓ Unlimited searches & locations
✓ Zero CAPTCHAs or IP blocks
✓ Works on AutoGPT Cloud or self-hosted (with your API key)
✓ Cut prospecting time by 90%
**PERFECT FOR**
— Marketers & PPC agencies
— SEO consultants & designers
— SaaS founders & sales teams
Stop scrolling directories—start filling your pipeline. Start now and let AI prospect while you profit.
→ Click *Add to Library* and own your market today.","[""business""]",true,true
f623c862-24e9-44fc-8ce8-d8282bb51ad2,eafa21d3-bf14-4f63-a97f-a5ee41df83b3,linkedin-post-generator,LinkedIn Post Generator,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/297f6a8e-81a8-43e2-b106-c7ad4a5662df.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/fceebdc1-aef6-4000-97fc-4ef587f56bda.png""]",false,Autocraft LinkedIn gold,"Create researchdriven, highimpact LinkedIn posts in minutes. This agent searches YouTube for the best videos on your chosen topic, pulls their transcripts, and distils the most valuable insights into a polished post ready for your company page or personal feed.
FEATURES
• Automated YouTube research discovers and analyses topranked videos so you dont have to
• AIcurated synthesis combines multiple transcripts into one authoritative narrative
• Full creative control adjust style, tone, objective, opinion, clarity, target word count and number of videos
• LinkedInoptimised output hook, 23 key points, CTA, strategic line breaks, 35 hashtags, no markdown
• Oneclick publish returns a readytopost text block (≤1 300 characters)
HOW IT WORKS
1. Enter a topic and your preferred writing parameters.
2. The agent builds a YouTube search, fetches the page, and extracts the top N video URLs.
3. It pulls each transcript, then feeds them—plus your settings—into Claude 3.5 Sonnet.
4. The model writes a concise, engaging post designed for maximum LinkedIn engagement.
USE CASES
• Thoughtleadership updates backed by fresh video research
• Rapid industry summaries after major events, webinars, or conferences
• Consistent LinkedIn content for busy founders, marketers, and creators
WHY YOULL LOVE IT
Save hours of manual research, avoid surfacelevel hottakes, and publish posts that showcase real expertise—without the heavy lift.","[""writing""]",true,true
7d4120ad-b6b3-4419-8bdb-7dd7d350ef32,e7bb29a1-23c7-4fee-aa3b-5426174b8c52,youtube-to-linkedin-post-converter,YouTube to LinkedIn Post Converter,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/f084b326-a708-4396-be51-7ba59ad2ef32.png""]",false,Transform Your YouTube Videos into Engaging LinkedIn Posts with AI,"WHAT IT DOES:
This agent converts YouTube video content into a LinkedIn post by analyzing the video's transcript. It provides you with a tailored post that reflects the core ideas, key takeaways, and tone of the original video, optimizing it for engagement on LinkedIn.
HOW IT WORKS:
- You provide the URL to the YouTube video (required)
- You can choose the structure for the LinkedIn post (e.g., Personal Achievement Story, Lesson Learned, Thought Leadership, etc.)
- You can also select the tone (e.g., Inspirational, Analytical, Conversational, etc.)
- The transcript of the video is analyzed by the GPT-4 model and the Claude 3.5 Sonnet model
- The models extract key insights, memorable quotes, and the main points from the video
- Youll receive a LinkedIn post, formatted according to your chosen structure and tone, optimized for professional engagement
INPUTS:
- Source YouTube Video Provide the URL to the YouTube video
- Structure Choose the post format (e.g., Personal Achievement Story, Thought Leadership, etc.)
- Content Specify the main message or idea of the post (e.g., Hot Take, Key Takeaways, etc.)
- Tone Select the tone for the post (e.g., Conversational, Inspirational, etc.)
OUTPUT:
- LinkedIn Post A well-crafted, AI-generated LinkedIn post with a professional tone, based on the video content and your specified preferences
Perfect for content creators, marketers, and professionals who want to repurpose YouTube videos for LinkedIn and boost their professional branding.","[""writing""]",false,true
c61d6a83-ea48-4df8-b447-3da2d9fe5814,00fdd42c-a14c-4d19-a567-65374ea0e87f,personalized-morning-coffee-newsletter,Personal Newsletter,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/f4b38e4c-8166-4caf-9411-96c9c4c82d4c.png""]",false,Start your day with personalized AI newsletters that deliver credibility and context for every interest or mood.,"This Personal Newsletter Agent provides a bespoke daily digest on your favorite topics and tone. Whether you prefer industry insights, lighthearted reads, or breaking news, this agent crafts your own unique newsletter to keep you informed and entertained.
How It Works
1. Enter your favorite topics, industries, or areas of interest.
2. Choose your tone—professional, casual, or humorous.
3. Set your preferred delivery cadence: daily or weekly.
4. The agent scans top sources and compiles 35 engaging stories, insights, and fun facts into a conversational newsletter.
Skip the morning scroll and enjoy a thoughtfully curated newsletter designed just for you. Stay ahead of trends, spark creative ideas, and enjoy an effortless, informed start to your day.
Use Cases
• Executives: Get a daily digest of market updates and leadership insights.
• Marketers: Receive curated creative trends and campaign inspiration.
• Entrepreneurs: Stay updated on your industry without information overload.","[""research""]",true,true
e2e49cfc-4a39-4d62-a6b3-c095f6d025ff,fc2c9976-0962-4625-a27b-d316573a9e7f,email-address-finder,Email Scout - Contact Finder Assistant,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/da8a690a-7a8b-4c1d-b6f8-e2f840c0205d.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/6a2ac25c-1609-4881-8140-e6da2421afb3.jpg"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/26179263-fe06-45bd-b6a0-0754660a0a46.jpg""]",false,Find contact details from name and location using AI search,"Finding someone's professional email address can be time-consuming and frustrating. Manual searching across multiple websites, social profiles, and business directories often leads to dead ends or outdated information.
Email Scout automates this process by intelligently searching across publicly available sources when you provide a person's name and location. Simply input basic information like ""Tim Cook, USA"" or ""Sarah Smith, London"" and let the AI assistant do the work of finding potential contact details.
Key Features:
- Quick search from just name and location
- Scans multiple public sources
- Automated AI-powered search process
- Easy to use with simple inputs
Perfect for recruiters, business development professionals, researchers, and anyone needing to establish professional contact.
Note: This tool searches only publicly available information. Search results depend on what contact information people have made public. Some searches may not yield results if the information isn't publicly accessible.","[""""]",false,true
81bcc372-0922-4a36-bc35-f7b1e51d6939,e437cc95-e671-489d-b915-76561fba8c7f,ai-youtube-to-blog-converter,YouTube Video to SEO Blog Writer,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/239e5a41-2515-4e1c-96ef-31d0d37ecbeb.webp"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/c7d96966-786f-4be6-ad7d-3a51c84efc0e.png"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/0275a74c-e2c2-4e29-a6e4-3a616c3c35dd.png""]",false,One link. One click. One powerful blog post.,"Effortlessly transform your YouTube videos into high-quality, SEO-optimized blog posts.
Your videos deserve a second life—in writing.
Make your content work twice as hard by repurposing it into engaging, searchable articles.
Perfect for content creators, marketers, and bloggers, this tool analyzes video content and generates well-structured blog posts tailored to your tone, audience, and word count. Just paste a YouTube URL and let the AI handle the rest.
FEATURES
• CONTENT ANALYSIS
Extracts key points from the video while preserving your message and intent.
• CUSTOMIZABLE OUTPUT
Select a tone that fits your audience: casual, professional, educational, or formal.
• SEO OPTIMIZATION
Automatically creates engaging titles and structured subheadings for better search visibility.
• USER-FRIENDLY
Repurpose your videos into written content to expand your reach and improve accessibility.
Whether you're looking to grow your blog, boost SEO, or simply get more out of your content, the AI YouTube-to-Blog Converter makes it effortless.
","[""writing""]",true,true
5c3510d2-fc8b-4053-8e19-67f53c86eb1a,f2cc74bb-f43f-4395-9c35-ecb30b5b4fc9,ai-webpage-copy-improver,AI Webpage Copy Improver,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/d562d26f-5891-4b09-8859-fbb205972313.jpg""]",false,Boost Your Website's Search Engine Performance,"Elevate your web content with this powerful AI Webpage Copy Improver. Designed for marketers, SEO specialists, and web developers, this tool analyses and enhances website copy for maximum impact. Using advanced language models, it optimizes text for better clarity, SEO performance, and increased conversion rates. The AI examines your existing content, identifies areas for improvement, and generates refined copy that maintains your brand voice while boosting engagement. From homepage headlines to product descriptions, transform your web presence with AI-driven insights. Improve readability, incorporate targeted keywords, and craft compelling calls-to-action - all with the click of a button. Take your digital marketing to the next level with the AI Webpage Copy Improver.","[""marketing""]",true,true
94d03bd3-7d44-4d47-b60c-edb2f89508d6,b6f6f0d3-49f4-4e3b-8155-ffe9141b32c0,domain-name-finder,Domain Name Finder,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/28545e09-b2b8-4916-b4c6-67f982510a78.jpeg""]",false,Instantly generate brand-ready domain names that are actually available,"Overview:
Finding a domain name that fits your brand shouldnt take hours of searching and failed checks. The Domain Name Finder Agent turns your pitch into hundreds of creative, brand-ready domain ideas—filtered by live availability so every result is actionable.
How It Works
1. Input your product pitch, company name, or core keywords.
2. The agent analyzes brand tone, audience, and industry context.
3. It generates a list of unique, memorable domains that match your criteria.
4. All names are pre-filtered for real-time availability, so you can register immediately.
Business Value
Save hours of guesswork and eliminate dead ends. Accelerate brand launches, startup naming, and campaign creation with ready-to-claim domains.
Key Use Cases
• Startup Founders: Quickly find brand-ready domains for MVP launches or rebrands.
• Marketers: Test name options across campaigns with instant availability data.
• Entrepreneurs: Validate ideas faster with instant domain options.","[""business""]",false,true
7a831906-daab-426f-9d66-bcf98d869426,516d813b-d1bc-470f-add7-c63a4b2c2bad,ai-function,AI Function,,"[""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/620e8117-2ee1-4384-89e6-c2ef4ec3d9c9.webp"",""https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/476259e2-5a79-4a7b-8e70-deeebfca70d7.png""]",false,Never Code Again,"AI FUNCTION MAGIC
Your AIpowered assistant for turning plainEnglish descriptions into working Python functions.
HOW IT WORKS
1. Describe what the function should do.
2. Specify the inputs it needs.
3. Receive the generated Python code.
FEATURES
- Effortless Function Generation: convert naturallanguage specs into complete functions.
- Customizable Inputs: define the parameters that matter to you.
- Versatile Use Cases: simulate data, automate tasks, prototype ideas.
- Seamless Integration: add the generated function directly to your codebase.
EXAMPLE
Request: “Create a function that generates 20 examples of fake people, each with a name, date of birth, job title, and age.”
Input parameter: number_of_people (default 20)
Result: a list of dictionaries such as
[
{ ""name"": ""Emma Martinez"", ""date_of_birth"": ""19921103"", ""job_title"": ""Data Analyst"", ""age"": 32 },
{ ""name"": ""Liam OConnor"", ""date_of_birth"": ""19850719"", ""job_title"": ""Marketing Manager"", ""age"": 39 },
…18 more entries…
]","[""development""]",false,true
1 listing_id storeListingVersionId slug agent_name agent_video agent_image featured sub_heading description categories useForOnboarding is_available
2 6e60a900-9d7d-490e-9af2-a194827ed632 d85882b8-633f-44ce-a315-c20a8c123d19 flux-ai-image-generator Flux AI Image Generator ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/ca154dd1-140e-454c-91bd-2d8a00de3f08.jpg","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/577d995d-bc38-40a9-a23f-1f30f5774bdb.jpg","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/415db1b7-115c-43ab-bd6c-4e9f7ef95be1.jpg"] false Transform ideas into breathtaking images Transform ideas into breathtaking images with this AI-powered Image Generator. Using cutting-edge Flux AI technology, the tool crafts highly detailed, photorealistic visuals from simple text prompts. Perfect for artists, marketers, and content creators, this generator produces unique images tailored to user specifications. From fantastical scenes to lifelike portraits, users can unleash creativity with professional-quality results in seconds. Easy to use and endlessly versatile, bring imagination to life with the AI Image Generator today! ["creative"] false true
3 f11fc6e9-6166-4676-ac5d-f07127b270c1 c775f60d-b99f-418b-8fe0-53172258c3ce youtube-transcription-scraper YouTube Transcription Scraper https://youtu.be/H8S3pU68lGE ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/65bce54b-0124-4b0d-9e3e-f9b89d0dc99e.jpg"] false Fetch the transcriptions from the most popular YouTube videos in your chosen topic Effortlessly gather transcriptions from multiple YouTube videos with this agent. It scrapes and compiles video transcripts into a clean, organized list, making it easy to extract insights, quotes, or content from various sources in one go. Ideal for researchers, content creators, and marketers looking to quickly analyze or repurpose video content. ["writing"] false true
4 17908889-b599-4010-8e4f-bed19b8f3446 6e16e65a-ad34-4108-b4fd-4a23fced5ea2 business-ownerceo-finder Decision Maker Lead Finder ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/1020d94e-b6a2-4fa7-bbdf-2c218b0de563.jpg"] false Contact CEOs today Find the key decision-makers you need, fast. This agent identifies business owners or CEOs of local companies in any area you choose. Simply enter what kind of businesses you’re looking for and where, and it will: * Search the area and gather public information * Return names, roles, and contact details when available * Provide smart Google search suggestions if details aren’t found Perfect for: * B2B sales teams seeking verified leads * Recruiters sourcing local talent * Researchers looking to connect with business leaders Save hours of manual searching and get straight to the people who matter most. ["business"] true true
5 72beca1d-45ea-4403-a7ce-e2af168ee428 415b7352-0dc6-4214-9d87-0ad3751b711d smart-meeting-brief Smart Meeting Prep https://youtu.be/9ydZR2hkxaY ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2f116ce1-63ae-4d39-a5cd-f514defc2b97.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/0a71a60a-2263-4f12-9836-9c76ab49f155.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/95327695-9184-403c-907a-a9d3bdafa6a5.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2bc77788-790b-47d4-8a61-ce97b695e9f5.png"] true Business meeting briefings delivered daily Never walk into a meeting unprepared again. Every day at 4 pm, the Smart Meeting Prep Agent scans your calendar for tomorrow's external meetings. It reviews your past email exchanges, researches each participant's background and role, and compiles the insights into a concise briefing, so you can close your workday ready for tomorrow's calls. How It Works 1. At 4 pm, the agent scans your calendar and identifies external meetings scheduled for the next day. 2. It reviews recent email threads with each participant to surface key relationship history and communication context. 3. It conducts online research to gather publicly available information on roles, company backgrounds, and relevant professional data. 4. It produces a unified briefing for each participant, including past exchange highlights, profile notes, and strategic conversation points. ["personal"] true true
6 9fa5697a-617b-4fae-aea0-7dbbed279976 b8ceb480-a7a2-4c90-8513-181a49f7071f automated-support-ai Automated Support Agent https://youtu.be/nBMfu_5sgDA ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/ed56febc-2205-4179-9e7e-505d8500b66c.png"] true Automate up to 80 percent of inbound support emails Overview: Support teams spend countless hours on basic tickets. This agent automates repetitive customer support tasks. It reads incoming requests, researches your knowledge base, and responds automatically when confident. When unsure, it escalates to a human for final resolution. How it Works: New support emails are routed to the agent. The agent checks internal documentation for answers. It measures confidence in the answer found and either replies directly or escalates to a human. Business Value: Automating the easy 80 percent of support tickets allows your team to focus on high-value, complex customer issues, improving efficiency and response times. ["business"] false true
7 2bdac92b-a12c-4131-bb46-0e3b89f61413 31daf49d-31d3-476b-aa4c-099abc59b458 unspirational-poster-maker Unspirational Poster Maker ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/6a490dac-27e5-405f-a4c4-8d1c55b85060.jpg","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/d343fbb5-478c-4e38-94df-4337293b61f1.jpg"] false Because adulting is hard This witty AI agent generates hilariously relatable "motivational" posters that tackle the everyday struggles of procrastination, overthinking, and workplace chaos with a blend of absurdity and sarcasm. From goldfish facing impossible tasks to cats in existential crises, The Unspirational Poster Maker designs tongue-in-cheek graphics and captions that mock productivity clichés and embrace our collective struggles to "get it together." Perfect for adding a touch of humour to the workday, these posters remind us that sometimes, all we can do is laugh at the chaos. ["creative"] false true
8 9adf005e-2854-4cc7-98cf-f7103b92a7b7 a03b0d8c-4751-43d6-a54e-c3b7856ba4e3 ai-shortform-video-generator-create-viral-ready-content AI Video Generator ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/8d2670b9-fea5-4966-a597-0a4511bffdc3.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/aabe8aec-0110-4ce7-a259-4f86fe8fe07d.png"] false Create Viral-Ready Shorts Content in Seconds OVERVIEW Transform any trending headline or broad topic into a polished, vertical short-form video in a single run. The agent automates research, scriptwriting, metadata creation, and Revid.ai rendering, returning one ready-to-publish MP4 plus its title, script and hashtags. HOW IT WORKS 1. Input a topic or an exact news headline. 2. The agent fetches live search results and selects the most engaging related story. 3. Key facts are summarised into concise research notes. 4. Claude writes a 30–35 second script with visual cues, a three-second hook, tension loops, and a call-to-action. 5. GPT-4o generates an eye-catching title and one or two discoverability hashtags. 6. The script is sent to a state-of-the-art AI video generator to render a single 9:16 MP4 (default: 720 p, 30 fps, voice “Brian”, style “movingImage”, music “Bladerunner 2049”). – All voice, style and resolution settings can be adjusted in the Builder before you press "Run". 7. Output delivered: Title, Script, Hashtags, Video URL. KEY USE CASES - Broad-topic explainers (e.g. “Artificial Intelligence” or “Climate Tech”). - Real-time newsjacking with a specific breaking headline. - Product-launch spotlights and quick event recaps while interest is high. BUSINESS VALUE - One-click speed: from idea to finished video in minutes. - Consistent brand look: Revid presets keep voice, style and aspect ratio on spec. - No-code workflow: marketers create social video without design or development queues. - Cloud convenience: Auto-GPT Cloud users are pre-configured with all required keys. Self-hosted users simply add OpenAI, Anthropic, Perplexity (OpenRouter/Jina) and Revid keys once. IMPORTANT NOTES - The agent outputs exactly one video per execution. Run it again for additional shorts. - Video rendering time varies; AI-generated footage may take several minutes. ["writing"] false true
9 864e48ef-fee5-42c1-b6a4-2ae139db9fc1 55d40473-0f31-4ada-9e40-d3a7139fcbd4 automated-blog-writer Automated SEO Blog Writer https://youtu.be/nKcDCbDVobs ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/2dd5f95b-5b30-4bf8-a11b-bac776c5141a.jpg"] true Automate research, writing, and publishing for high-ranking blog posts Scale your blog with a fully automated content engine. The Automated SEO Blog Writer learns your brand voice, finds high-demand keywords, and creates SEO-optimized articles that attract organic traffic and boost visibility. How it works: 1. Share your pitch, website, and values. 2. The agent studies your site and uncovers proven SEO opportunities. 3. It spends two hours researching and drafting each post. 4. You set the cadence—publishing runs on autopilot. Business value: Consistently publish research-backed, optimized posts that build domain authority, rankings, and thought leadership while you focus on what matters most. Use cases: • Founders: Keep your blog active with no time drain. • Agencies: Deliver scalable SEO content for clients. • Strategists: Automate execution, focus on strategy. • Marketers: Drive steady organic growth. • Local businesses: Capture nearby search traffic. ["writing"] false true
10 6046f42e-eb84-406f-bae0-8e052064a4fa a548e507-09a7-4b30-909c-f63fcda10fff lead-finder-local-businesses Lead Finder ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/abd6605f-d5f8-426b-af36-052e8ba5044f.webp"] false Auto-Prospect Like a Pro Turbo-charge your local lead generation with the AutoGPT Marketplace’s top Google Maps prospecting agent. “Lead Finder: Local Businesses” delivers verified, ready-to-contact prospects in any niche and city—so you can focus on closing, not searching. **WHAT IT DOES** • Searches Google Maps via the official API (no scraping) • Prompts like “dentists in Chicago” or “coffee shops near me” • Returns: Name, Website, Rating, Reviews, **Phone & Address** • Exports instantly to your CRM, sheet, or outreach workflow **WHY YOU’LL LOVE IT** ✓ Hyper-targeted leads in minutes ✓ Unlimited searches & locations ✓ Zero CAPTCHAs or IP blocks ✓ Works on AutoGPT Cloud or self-hosted (with your API key) ✓ Cut prospecting time by 90% **PERFECT FOR** — Marketers & PPC agencies — SEO consultants & designers — SaaS founders & sales teams Stop scrolling directories—start filling your pipeline. Start now and let AI prospect while you profit. → Click *Add to Library* and own your market today. ["business"] true true
11 f623c862-24e9-44fc-8ce8-d8282bb51ad2 eafa21d3-bf14-4f63-a97f-a5ee41df83b3 linkedin-post-generator LinkedIn Post Generator ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/297f6a8e-81a8-43e2-b106-c7ad4a5662df.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/fceebdc1-aef6-4000-97fc-4ef587f56bda.png"] false Auto‑craft LinkedIn gold Create research‑driven, high‑impact LinkedIn posts in minutes. This agent searches YouTube for the best videos on your chosen topic, pulls their transcripts, and distils the most valuable insights into a polished post ready for your company page or personal feed. FEATURES • Automated YouTube research – discovers and analyses top‑ranked videos so you don’t have to • AI‑curated synthesis – combines multiple transcripts into one authoritative narrative • Full creative control – adjust style, tone, objective, opinion, clarity, target word count and number of videos • LinkedIn‑optimised output – hook, 2‑3 key points, CTA, strategic line breaks, 3‑5 hashtags, no markdown • One‑click publish – returns a ready‑to‑post text block (≤1 300 characters) HOW IT WORKS 1. Enter a topic and your preferred writing parameters. 2. The agent builds a YouTube search, fetches the page, and extracts the top N video URLs. 3. It pulls each transcript, then feeds them—plus your settings—into Claude 3.5 Sonnet. 4. The model writes a concise, engaging post designed for maximum LinkedIn engagement. USE CASES • Thought‑leadership updates backed by fresh video research • Rapid industry summaries after major events, webinars, or conferences • Consistent LinkedIn content for busy founders, marketers, and creators WHY YOU’LL LOVE IT Save hours of manual research, avoid surface‑level hot‑takes, and publish posts that showcase real expertise—without the heavy lift. ["writing"] true true
12 7d4120ad-b6b3-4419-8bdb-7dd7d350ef32 e7bb29a1-23c7-4fee-aa3b-5426174b8c52 youtube-to-linkedin-post-converter YouTube to LinkedIn Post Converter ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/f084b326-a708-4396-be51-7ba59ad2ef32.png"] false Transform Your YouTube Videos into Engaging LinkedIn Posts with AI WHAT IT DOES: This agent converts YouTube video content into a LinkedIn post by analyzing the video's transcript. It provides you with a tailored post that reflects the core ideas, key takeaways, and tone of the original video, optimizing it for engagement on LinkedIn. HOW IT WORKS: - You provide the URL to the YouTube video (required) - You can choose the structure for the LinkedIn post (e.g., Personal Achievement Story, Lesson Learned, Thought Leadership, etc.) - You can also select the tone (e.g., Inspirational, Analytical, Conversational, etc.) - The transcript of the video is analyzed by the GPT-4 model and the Claude 3.5 Sonnet model - The models extract key insights, memorable quotes, and the main points from the video - You’ll receive a LinkedIn post, formatted according to your chosen structure and tone, optimized for professional engagement INPUTS: - Source YouTube Video – Provide the URL to the YouTube video - Structure – Choose the post format (e.g., Personal Achievement Story, Thought Leadership, etc.) - Content – Specify the main message or idea of the post (e.g., Hot Take, Key Takeaways, etc.) - Tone – Select the tone for the post (e.g., Conversational, Inspirational, etc.) OUTPUT: - LinkedIn Post – A well-crafted, AI-generated LinkedIn post with a professional tone, based on the video content and your specified preferences Perfect for content creators, marketers, and professionals who want to repurpose YouTube videos for LinkedIn and boost their professional branding. ["writing"] false true
13 c61d6a83-ea48-4df8-b447-3da2d9fe5814 00fdd42c-a14c-4d19-a567-65374ea0e87f personalized-morning-coffee-newsletter Personal Newsletter ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/f4b38e4c-8166-4caf-9411-96c9c4c82d4c.png"] false Start your day with personalized AI newsletters that deliver credibility and context for every interest or mood. This Personal Newsletter Agent provides a bespoke daily digest on your favorite topics and tone. Whether you prefer industry insights, lighthearted reads, or breaking news, this agent crafts your own unique newsletter to keep you informed and entertained. How It Works 1. Enter your favorite topics, industries, or areas of interest. 2. Choose your tone—professional, casual, or humorous. 3. Set your preferred delivery cadence: daily or weekly. 4. The agent scans top sources and compiles 3–5 engaging stories, insights, and fun facts into a conversational newsletter. Skip the morning scroll and enjoy a thoughtfully curated newsletter designed just for you. Stay ahead of trends, spark creative ideas, and enjoy an effortless, informed start to your day. Use Cases • Executives: Get a daily digest of market updates and leadership insights. • Marketers: Receive curated creative trends and campaign inspiration. • Entrepreneurs: Stay updated on your industry without information overload. ["research"] true true
14 e2e49cfc-4a39-4d62-a6b3-c095f6d025ff fc2c9976-0962-4625-a27b-d316573a9e7f email-address-finder Email Scout - Contact Finder Assistant ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/da8a690a-7a8b-4c1d-b6f8-e2f840c0205d.jpg","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/6a2ac25c-1609-4881-8140-e6da2421afb3.jpg","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/26179263-fe06-45bd-b6a0-0754660a0a46.jpg"] false Find contact details from name and location using AI search Finding someone's professional email address can be time-consuming and frustrating. Manual searching across multiple websites, social profiles, and business directories often leads to dead ends or outdated information. Email Scout automates this process by intelligently searching across publicly available sources when you provide a person's name and location. Simply input basic information like "Tim Cook, USA" or "Sarah Smith, London" and let the AI assistant do the work of finding potential contact details. Key Features: - Quick search from just name and location - Scans multiple public sources - Automated AI-powered search process - Easy to use with simple inputs Perfect for recruiters, business development professionals, researchers, and anyone needing to establish professional contact. Note: This tool searches only publicly available information. Search results depend on what contact information people have made public. Some searches may not yield results if the information isn't publicly accessible. [""] false true
15 81bcc372-0922-4a36-bc35-f7b1e51d6939 e437cc95-e671-489d-b915-76561fba8c7f ai-youtube-to-blog-converter YouTube Video to SEO Blog Writer ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/239e5a41-2515-4e1c-96ef-31d0d37ecbeb.webp","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/c7d96966-786f-4be6-ad7d-3a51c84efc0e.png","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/0275a74c-e2c2-4e29-a6e4-3a616c3c35dd.png"] false One link. One click. One powerful blog post. Effortlessly transform your YouTube videos into high-quality, SEO-optimized blog posts. Your videos deserve a second life—in writing. Make your content work twice as hard by repurposing it into engaging, searchable articles. Perfect for content creators, marketers, and bloggers, this tool analyzes video content and generates well-structured blog posts tailored to your tone, audience, and word count. Just paste a YouTube URL and let the AI handle the rest. FEATURES • CONTENT ANALYSIS Extracts key points from the video while preserving your message and intent. • CUSTOMIZABLE OUTPUT Select a tone that fits your audience: casual, professional, educational, or formal. • SEO OPTIMIZATION Automatically creates engaging titles and structured subheadings for better search visibility. • USER-FRIENDLY Repurpose your videos into written content to expand your reach and improve accessibility. Whether you're looking to grow your blog, boost SEO, or simply get more out of your content, the AI YouTube-to-Blog Converter makes it effortless. ["writing"] true true
16 5c3510d2-fc8b-4053-8e19-67f53c86eb1a f2cc74bb-f43f-4395-9c35-ecb30b5b4fc9 ai-webpage-copy-improver AI Webpage Copy Improver ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/d562d26f-5891-4b09-8859-fbb205972313.jpg"] false Boost Your Website's Search Engine Performance Elevate your web content with this powerful AI Webpage Copy Improver. Designed for marketers, SEO specialists, and web developers, this tool analyses and enhances website copy for maximum impact. Using advanced language models, it optimizes text for better clarity, SEO performance, and increased conversion rates. The AI examines your existing content, identifies areas for improvement, and generates refined copy that maintains your brand voice while boosting engagement. From homepage headlines to product descriptions, transform your web presence with AI-driven insights. Improve readability, incorporate targeted keywords, and craft compelling calls-to-action - all with the click of a button. Take your digital marketing to the next level with the AI Webpage Copy Improver. ["marketing"] true true
17 94d03bd3-7d44-4d47-b60c-edb2f89508d6 b6f6f0d3-49f4-4e3b-8155-ffe9141b32c0 domain-name-finder Domain Name Finder ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/28545e09-b2b8-4916-b4c6-67f982510a78.jpeg"] false Instantly generate brand-ready domain names that are actually available Overview: Finding a domain name that fits your brand shouldn’t take hours of searching and failed checks. The Domain Name Finder Agent turns your pitch into hundreds of creative, brand-ready domain ideas—filtered by live availability so every result is actionable. How It Works 1. Input your product pitch, company name, or core keywords. 2. The agent analyzes brand tone, audience, and industry context. 3. It generates a list of unique, memorable domains that match your criteria. 4. All names are pre-filtered for real-time availability, so you can register immediately. Business Value Save hours of guesswork and eliminate dead ends. Accelerate brand launches, startup naming, and campaign creation with ready-to-claim domains. Key Use Cases • Startup Founders: Quickly find brand-ready domains for MVP launches or rebrands. • Marketers: Test name options across campaigns with instant availability data. • Entrepreneurs: Validate ideas faster with instant domain options. ["business"] false true
18 7a831906-daab-426f-9d66-bcf98d869426 516d813b-d1bc-470f-add7-c63a4b2c2bad ai-function AI Function ["https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/620e8117-2ee1-4384-89e6-c2ef4ec3d9c9.webp","https://storage.googleapis.com/agpt-prod-website-artifacts/users/b3e41ea4-2f4c-4964-927c-fe682d857bad/images/476259e2-5a79-4a7b-8e70-deeebfca70d7.png"] false Never Code Again AI FUNCTION MAGIC Your AI‑powered assistant for turning plain‑English descriptions into working Python functions. HOW IT WORKS 1. Describe what the function should do. 2. Specify the inputs it needs. 3. Receive the generated Python code. FEATURES - Effortless Function Generation: convert natural‑language specs into complete functions. - Customizable Inputs: define the parameters that matter to you. - Versatile Use Cases: simulate data, automate tasks, prototype ideas. - Seamless Integration: add the generated function directly to your codebase. EXAMPLE Request: “Create a function that generates 20 examples of fake people, each with a name, date of birth, job title, and age.” Input parameter: number_of_people (default 20) Result: a list of dictionaries such as [ { "name": "Emma Martinez", "date_of_birth": "1992‑11‑03", "job_title": "Data Analyst", "age": 32 }, { "name": "Liam O’Connor", "date_of_birth": "1985‑07‑19", "job_title": "Marketing Manager", "age": 39 }, …18 more entries… ] ["development"] false true

View File

@@ -1,590 +0,0 @@
{
"id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"version": 29,
"is_active": false,
"name": "Unspirational Poster Maker",
"description": "This witty AI agent generates hilariously relatable \"motivational\" posters that tackle the everyday struggles of procrastination, overthinking, and workplace chaos with a blend of absurdity and sarcasm. From goldfish facing impossible tasks to cats in existential crises, The Unspirational Poster Maker designs tongue-in-cheek graphics and captions that mock productivity clich\u00e9s and embrace our collective struggles to \"get it together.\" Perfect for adding a touch of humour to the workday, these posters remind us that sometimes, all we can do is laugh at the chaos.",
"instructions": null,
"recommended_schedule_cron": null,
"nodes": [
{
"id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "Generated Image",
"description": "The resulting generated image ready for you to review and post."
},
"metadata": {
"position": {
"x": 2329.937006807125,
"y": 80.49068076698347
}
},
"input_links": [
{
"id": "c6c511e8-e6a4-4969-9bc8-f67d60c1e229",
"source_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "20845dda-91de-4508-8077-0504b1a5ae03",
"source_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "6524c611-774b-45e9-899d-9a6aa80c549c",
"source_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "714a0821-e5ba-4af7-9432-50491adda7b1",
"source_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
"input_default": {
"name": "Theme",
"value": "Cooking"
},
"metadata": {
"position": {
"x": -1219.5966324967521,
"y": 80.50339731789956
}
},
"input_links": [],
"output_links": [
{
"id": "8c2bd1f7-b17b-4835-81b6-bb336097aa7a",
"source_id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
"sink_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"source_name": "result",
"sink_name": "prompt_values_#_THEME",
"is_static": true
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
"input_default": {
"upscale": "No Upscale"
},
"metadata": {
"position": {
"x": 1132.373897280427,
"y": 88.44610377514573
}
},
"input_links": [
{
"id": "54588c74-e090-4e49-89e4-844b9952a585",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"output_links": [
{
"id": "20845dda-91de-4508-8077-0504b1a5ae03",
"source_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
"input_default": {
"upscale": "No Upscale"
},
"metadata": {
"position": {
"x": 590.7543882245375,
"y": 85.69546832466654
}
},
"input_links": [
{
"id": "66646786-3006-4417-a6b7-0158f2603d1d",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"output_links": [
{
"id": "6524c611-774b-45e9-899d-9a6aa80c549c",
"source_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
"input_default": {
"upscale": "No Upscale"
},
"metadata": {
"position": {
"x": 60.48904654237981,
"y": 86.06183359510214
}
},
"input_links": [
{
"id": "201d3e03-bc06-4cee-846d-4c3c804d8857",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"output_links": [
{
"id": "714a0821-e5ba-4af7-9432-50491adda7b1",
"source_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"block_id": "6ab085e2-20b3-4055-bc3e-08036e01eca6",
"input_default": {
"prompt": "A cat sprawled dramatically across an important-looking document during a work-from-home meeting, making direct eye contact with the camera while knocking over a coffee mug in slow motion. Text Overlay: \"Chaos is a career path. Be the obstacle everyone has to work around.\"",
"upscale": "No Upscale"
},
"metadata": {
"position": {
"x": 1668.3572666956795,
"y": 89.69665262457966
}
},
"input_links": [
{
"id": "509b7587-1940-4a06-808d-edde9a74f400",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"output_links": [
{
"id": "c6c511e8-e6a4-4969-9bc8-f67d60c1e229",
"source_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "gpt-4o",
"prompt": "<example_output>\nA photo of a sloth lounging on a desk, with its head resting on a keyboard. The keyboard is on top of a laptop with a blank spreadsheet open. A to-do list is placed beside the laptop, with the top item written as \"Do literally anything\". There is a text overlay that says \"If you can't outwork them, outnap them.\".\n</example_output>\n\nCreate a relatable satirical, snarky, user-deprecating motivational style image based on the theme: \"{{THEME}}\".\n\nOutput only the image description and caption, without any additional commentary or formatting.",
"prompt_values": {}
},
"metadata": {
"position": {
"x": -561.1139207164056,
"y": 78.60434452403524
}
},
"input_links": [
{
"id": "8c2bd1f7-b17b-4835-81b6-bb336097aa7a",
"source_id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
"sink_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"source_name": "result",
"sink_name": "prompt_values_#_THEME",
"is_static": true
}
],
"output_links": [
{
"id": "54588c74-e090-4e49-89e4-844b9952a585",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "201d3e03-bc06-4cee-846d-4c3c804d8857",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "509b7587-1940-4a06-808d-edde9a74f400",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "66646786-3006-4417-a6b7-0158f2603d1d",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"graph_id": "7b2e2095-782a-4f8d-adda-e62b661bccf5",
"graph_version": 29,
"webhook_id": null,
"webhook": null
}
],
"links": [
{
"id": "66646786-3006-4417-a6b7-0158f2603d1d",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "c6c511e8-e6a4-4969-9bc8-f67d60c1e229",
"source_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "6524c611-774b-45e9-899d-9a6aa80c549c",
"source_id": "e7cdc1a2-4427-4a8a-a31b-63c8e74842f8",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "20845dda-91de-4508-8077-0504b1a5ae03",
"source_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "8c2bd1f7-b17b-4835-81b6-bb336097aa7a",
"source_id": "7e026d19-f9a6-412f-8082-610f9ba0c410",
"sink_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"source_name": "result",
"sink_name": "prompt_values_#_THEME",
"is_static": true
},
{
"id": "201d3e03-bc06-4cee-846d-4c3c804d8857",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "714a0821-e5ba-4af7-9432-50491adda7b1",
"source_id": "576c5677-9050-4d1c-aad4-36b820c04fef",
"sink_id": "5ac3727a-1ea7-436b-a902-ef1bfd883a30",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "54588c74-e090-4e49-89e4-844b9952a585",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "28bda769-b88b-44c9-be5c-52c2667f137e",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
},
{
"id": "509b7587-1940-4a06-808d-edde9a74f400",
"source_id": "7543b9b0-0409-4cf8-bc4e-e0336273e2c4",
"sink_id": "86665e90-ffbf-48fb-ad3f-e5d31fd50c51",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"forked_from_id": null,
"forked_from_version": null,
"sub_graphs": [],
"user_id": "",
"created_at": "2024-12-20T19:58:34.390Z",
"input_schema": {
"type": "object",
"properties": {
"Theme": {
"advanced": false,
"secret": false,
"title": "Theme",
"default": "Cooking"
}
},
"required": []
},
"output_schema": {
"type": "object",
"properties": {
"Generated Image": {
"advanced": false,
"secret": false,
"title": "Generated Image",
"description": "The resulting generated image ready for you to review and post."
}
},
"required": [
"Generated Image"
]
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"trigger_setup_info": null,
"credentials_input_schema": {
"properties": {
"ideogram_api_key_credentials": {
"credentials_provider": [
"ideogram"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "ideogram",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.IDEOGRAM: 'ideogram'>], Literal['api_key']]",
"type": "object",
"discriminator_values": []
},
"openai_api_key_credentials": {
"credentials_provider": [
"openai"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "openai",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
"type": "object",
"discriminator": "model",
"discriminator_mapping": {
"Llama-3.3-70B-Instruct": "llama_api",
"Llama-3.3-8B-Instruct": "llama_api",
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
"amazon/nova-lite-v1": "open_router",
"amazon/nova-micro-v1": "open_router",
"amazon/nova-pro-v1": "open_router",
"claude-3-7-sonnet-20250219": "anthropic",
"claude-3-haiku-20240307": "anthropic",
"claude-haiku-4-5-20251001": "anthropic",
"claude-opus-4-1-20250805": "anthropic",
"claude-opus-4-20250514": "anthropic",
"claude-opus-4-5-20251101": "anthropic",
"claude-sonnet-4-20250514": "anthropic",
"claude-sonnet-4-5-20250929": "anthropic",
"cohere/command-r-08-2024": "open_router",
"cohere/command-r-plus-08-2024": "open_router",
"deepseek/deepseek-chat": "open_router",
"deepseek/deepseek-r1-0528": "open_router",
"dolphin-mistral:latest": "ollama",
"google/gemini-2.0-flash-001": "open_router",
"google/gemini-2.0-flash-lite-001": "open_router",
"google/gemini-2.5-flash": "open_router",
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
"google/gemini-2.5-pro-preview-03-25": "open_router",
"google/gemini-3-pro-preview": "open_router",
"gpt-3.5-turbo": "openai",
"gpt-4-turbo": "openai",
"gpt-4.1-2025-04-14": "openai",
"gpt-4.1-mini-2025-04-14": "openai",
"gpt-4o": "openai",
"gpt-4o-mini": "openai",
"gpt-5-2025-08-07": "openai",
"gpt-5-chat-latest": "openai",
"gpt-5-mini-2025-08-07": "openai",
"gpt-5-nano-2025-08-07": "openai",
"gpt-5.1-2025-11-13": "openai",
"gryphe/mythomax-l2-13b": "open_router",
"llama-3.1-8b-instant": "groq",
"llama-3.3-70b-versatile": "groq",
"llama3": "ollama",
"llama3.1:405b": "ollama",
"llama3.2": "ollama",
"llama3.3": "ollama",
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
"meta-llama/llama-4-maverick": "open_router",
"meta-llama/llama-4-scout": "open_router",
"microsoft/wizardlm-2-8x22b": "open_router",
"mistralai/mistral-nemo": "open_router",
"moonshotai/kimi-k2": "open_router",
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
"o1": "openai",
"o1-mini": "openai",
"o3-2025-04-16": "openai",
"o3-mini": "openai",
"openai/gpt-oss-120b": "open_router",
"openai/gpt-oss-20b": "open_router",
"perplexity/sonar": "open_router",
"perplexity/sonar-deep-research": "open_router",
"perplexity/sonar-pro": "open_router",
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
"qwen/qwen3-coder": "open_router",
"v0-1.0-md": "v0",
"v0-1.5-lg": "v0",
"v0-1.5-md": "v0",
"x-ai/grok-4": "open_router",
"x-ai/grok-4-fast": "open_router",
"x-ai/grok-4.1-fast": "open_router",
"x-ai/grok-code-fast-1": "open_router"
},
"discriminator_values": [
"gpt-4o"
]
}
},
"required": [
"ideogram_api_key_credentials",
"openai_api_key_credentials"
],
"title": "UnspirationalPosterMakerCredentialsInputSchema",
"type": "object"
}
}

View File

@@ -1,447 +0,0 @@
{
"id": "622849a7-5848-4838-894d-01f8f07e3fad",
"version": 18,
"is_active": true,
"name": "AI Function",
"description": "## AI-Powered Function Magic: Never code again!\nProvide a description of a python function and your inputs and AI will provide the results.",
"instructions": null,
"recommended_schedule_cron": null,
"nodes": [
{
"id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "return",
"title": null,
"value": null,
"format": "",
"secret": false,
"advanced": false,
"description": "The value returned by the function"
},
"metadata": {
"position": {
"x": 1598.8622921127233,
"y": 291.59140862204725
}
},
"input_links": [
{
"id": "caecc1de-fdbc-4fd9-9570-074057bb15f9",
"source_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"sink_id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
"source_name": "response",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
"graph_version": 18,
"webhook_id": null,
"webhook": null
},
{
"id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "o3-mini",
"retry": 3,
"prompt": "{{ARGS}}",
"sys_prompt": "You are now the following python function:\n\n```\n# {{DESCRIPTION}}\n{{FUNCTION}}\n```\n\nThe user will provide your input arguments.\nOnly respond with your `return` value.\nDo not include any commentary or additional text in your response. \nDo not include ``` backticks or any other decorators.",
"ollama_host": "localhost:11434",
"prompt_values": {}
},
"metadata": {
"position": {
"x": 995,
"y": 290.50000000000006
}
},
"input_links": [
{
"id": "dc7cb15f-76cc-4533-b96c-dd9e3f7f75ed",
"source_id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_FUNCTION",
"is_static": true
},
{
"id": "093bdca5-9f44-42f9-8e1c-276dd2971675",
"source_id": "844530de-2354-46d8-b748-67306b7bbca1",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_ARGS",
"is_static": true
},
{
"id": "6c63d8ee-b63d-4ff6-bae0-7db8f99bb7af",
"source_id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_DESCRIPTION",
"is_static": true
}
],
"output_links": [
{
"id": "caecc1de-fdbc-4fd9-9570-074057bb15f9",
"source_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"sink_id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
"source_name": "response",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
"graph_version": 18,
"webhook_id": null,
"webhook": null
},
{
"id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
"block_id": "7fcd3bcb-8e1b-4e69-903d-32d3d4a92158",
"input_default": {
"name": "Function Definition",
"title": null,
"value": "def fake_people(n: int) -> list[dict]:",
"secret": false,
"advanced": false,
"description": "The function definition (text). This is what you would type on the first line of the function when programming.\n\ne.g \"def fake_people(n: int) -> list[dict]:\"",
"placeholder_values": []
},
"metadata": {
"position": {
"x": -672.6908629664215,
"y": 302.42044359789116
}
},
"input_links": [],
"output_links": [
{
"id": "dc7cb15f-76cc-4533-b96c-dd9e3f7f75ed",
"source_id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_FUNCTION",
"is_static": true
}
],
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
"graph_version": 18,
"webhook_id": null,
"webhook": null
},
{
"id": "844530de-2354-46d8-b748-67306b7bbca1",
"block_id": "7fcd3bcb-8e1b-4e69-903d-32d3d4a92158",
"input_default": {
"name": "Arguments",
"title": null,
"value": "20",
"secret": false,
"advanced": false,
"description": "The function's inputs\n\ne.g \"20\"",
"placeholder_values": []
},
"metadata": {
"position": {
"x": -158.1623599617334,
"y": 295.410856928333
}
},
"input_links": [],
"output_links": [
{
"id": "093bdca5-9f44-42f9-8e1c-276dd2971675",
"source_id": "844530de-2354-46d8-b748-67306b7bbca1",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_ARGS",
"is_static": true
}
],
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
"graph_version": 18,
"webhook_id": null,
"webhook": null
},
{
"id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
"block_id": "90a56ffb-7024-4b2b-ab50-e26c5e5ab8ba",
"input_default": {
"name": "Description",
"title": null,
"value": "Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age.",
"secret": false,
"advanced": false,
"description": "Describe what the function does.\n\ne.g \"Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age.\"",
"placeholder_values": []
},
"metadata": {
"position": {
"x": 374.4548658057796,
"y": 290.3779121974126
}
},
"input_links": [],
"output_links": [
{
"id": "6c63d8ee-b63d-4ff6-bae0-7db8f99bb7af",
"source_id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_DESCRIPTION",
"is_static": true
}
],
"graph_id": "622849a7-5848-4838-894d-01f8f07e3fad",
"graph_version": 18,
"webhook_id": null,
"webhook": null
}
],
"links": [
{
"id": "caecc1de-fdbc-4fd9-9570-074057bb15f9",
"source_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"sink_id": "26ff2973-3f9a-451d-b902-d45e5da0a7fe",
"source_name": "response",
"sink_name": "value",
"is_static": false
},
{
"id": "6c63d8ee-b63d-4ff6-bae0-7db8f99bb7af",
"source_id": "0fd6ef54-c1cd-478d-b764-17e40f882b99",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_DESCRIPTION",
"is_static": true
},
{
"id": "093bdca5-9f44-42f9-8e1c-276dd2971675",
"source_id": "844530de-2354-46d8-b748-67306b7bbca1",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_ARGS",
"is_static": true
},
{
"id": "dc7cb15f-76cc-4533-b96c-dd9e3f7f75ed",
"source_id": "4eab3a55-20f2-4c1d-804c-7377ba8202d2",
"sink_id": "c5d16ee4-de9e-4d93-bf32-ac2d15760d5b",
"source_name": "result",
"sink_name": "prompt_values_#_FUNCTION",
"is_static": true
}
],
"forked_from_id": null,
"forked_from_version": null,
"sub_graphs": [],
"user_id": "",
"created_at": "2025-04-19T17:10:48.857Z",
"input_schema": {
"type": "object",
"properties": {
"Function Definition": {
"advanced": false,
"anyOf": [
{
"format": "short-text",
"type": "string"
},
{
"type": "null"
}
],
"secret": false,
"title": "Function Definition",
"description": "The function definition (text). This is what you would type on the first line of the function when programming.\n\ne.g \"def fake_people(n: int) -> list[dict]:\"",
"default": "def fake_people(n: int) -> list[dict]:"
},
"Arguments": {
"advanced": false,
"anyOf": [
{
"format": "short-text",
"type": "string"
},
{
"type": "null"
}
],
"secret": false,
"title": "Arguments",
"description": "The function's inputs\n\ne.g \"20\"",
"default": "20"
},
"Description": {
"advanced": false,
"anyOf": [
{
"format": "long-text",
"type": "string"
},
{
"type": "null"
}
],
"secret": false,
"title": "Description",
"description": "Describe what the function does.\n\ne.g \"Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age.\"",
"default": "Generates n examples of fake data representing people, each with a name, DoB, Job title, and an age."
}
},
"required": []
},
"output_schema": {
"type": "object",
"properties": {
"return": {
"advanced": false,
"secret": false,
"title": "return",
"description": "The value returned by the function"
}
},
"required": [
"return"
]
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"trigger_setup_info": null,
"credentials_input_schema": {
"properties": {
"openai_api_key_credentials": {
"credentials_provider": [
"openai"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "openai",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
"type": "object",
"discriminator": "model",
"discriminator_mapping": {
"Llama-3.3-70B-Instruct": "llama_api",
"Llama-3.3-8B-Instruct": "llama_api",
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
"amazon/nova-lite-v1": "open_router",
"amazon/nova-micro-v1": "open_router",
"amazon/nova-pro-v1": "open_router",
"claude-3-7-sonnet-20250219": "anthropic",
"claude-3-haiku-20240307": "anthropic",
"claude-haiku-4-5-20251001": "anthropic",
"claude-opus-4-1-20250805": "anthropic",
"claude-opus-4-20250514": "anthropic",
"claude-opus-4-5-20251101": "anthropic",
"claude-sonnet-4-20250514": "anthropic",
"claude-sonnet-4-5-20250929": "anthropic",
"cohere/command-r-08-2024": "open_router",
"cohere/command-r-plus-08-2024": "open_router",
"deepseek/deepseek-chat": "open_router",
"deepseek/deepseek-r1-0528": "open_router",
"dolphin-mistral:latest": "ollama",
"google/gemini-2.0-flash-001": "open_router",
"google/gemini-2.0-flash-lite-001": "open_router",
"google/gemini-2.5-flash": "open_router",
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
"google/gemini-2.5-pro-preview-03-25": "open_router",
"google/gemini-3-pro-preview": "open_router",
"gpt-3.5-turbo": "openai",
"gpt-4-turbo": "openai",
"gpt-4.1-2025-04-14": "openai",
"gpt-4.1-mini-2025-04-14": "openai",
"gpt-4o": "openai",
"gpt-4o-mini": "openai",
"gpt-5-2025-08-07": "openai",
"gpt-5-chat-latest": "openai",
"gpt-5-mini-2025-08-07": "openai",
"gpt-5-nano-2025-08-07": "openai",
"gpt-5.1-2025-11-13": "openai",
"gryphe/mythomax-l2-13b": "open_router",
"llama-3.1-8b-instant": "groq",
"llama-3.3-70b-versatile": "groq",
"llama3": "ollama",
"llama3.1:405b": "ollama",
"llama3.2": "ollama",
"llama3.3": "ollama",
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
"meta-llama/llama-4-maverick": "open_router",
"meta-llama/llama-4-scout": "open_router",
"microsoft/wizardlm-2-8x22b": "open_router",
"mistralai/mistral-nemo": "open_router",
"moonshotai/kimi-k2": "open_router",
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
"o1": "openai",
"o1-mini": "openai",
"o3-2025-04-16": "openai",
"o3-mini": "openai",
"openai/gpt-oss-120b": "open_router",
"openai/gpt-oss-20b": "open_router",
"perplexity/sonar": "open_router",
"perplexity/sonar-deep-research": "open_router",
"perplexity/sonar-pro": "open_router",
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
"qwen/qwen3-coder": "open_router",
"v0-1.0-md": "v0",
"v0-1.5-lg": "v0",
"v0-1.5-md": "v0",
"x-ai/grok-4": "open_router",
"x-ai/grok-4-fast": "open_router",
"x-ai/grok-4.1-fast": "open_router",
"x-ai/grok-code-fast-1": "open_router"
},
"discriminator_values": [
"o3-mini"
]
}
},
"required": [
"openai_api_key_credentials"
],
"title": "AIFunctionCredentialsInputSchema",
"type": "object"
}
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -1,403 +0,0 @@
{
"id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"version": 12,
"is_active": true,
"name": "Flux AI Image Generator",
"description": "Transform ideas into breathtaking images with this AI-powered Image Generator. Using cutting-edge Flux AI technology, the tool crafts highly detailed, photorealistic visuals from simple text prompts. Perfect for artists, marketers, and content creators, this generator produces unique images tailored to user specifications. From fantastical scenes to lifelike portraits, users can unleash creativity with professional-quality results in seconds. Easy to use and endlessly versatile, bring imagination to life with the AI Image Generator today!",
"instructions": null,
"recommended_schedule_cron": null,
"nodes": [
{
"id": "7482c59d-725f-4686-82b9-0dfdc4e92316",
"block_id": "cc10ff7b-7753-4ff2-9af6-9399b1a7eddc",
"input_default": {
"text": "Press the \"Advanced\" toggle and input your replicate API key.\n\nYou can get one here:\nhttps://replicate.com/account/api-tokens\n"
},
"metadata": {
"position": {
"x": 872.8268131538296,
"y": 614.9436919065381
}
},
"input_links": [],
"output_links": [],
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "Generated Image"
},
"metadata": {
"position": {
"x": 1453.6844137728922,
"y": 963.2466395125115
}
},
"input_links": [
{
"id": "06665d23-2f3d-4445-8f22-573446fcff5b",
"source_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"sink_id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
"input_default": {
"name": "Image Subject",
"value": "Otto the friendly, purple \"Chief Automation Octopus\" helping people automate their tedious tasks.",
"description": "The subject of the image"
},
"metadata": {
"position": {
"x": -314.43009631839783,
"y": 962.935949165938
}
},
"input_links": [],
"output_links": [
{
"id": "1077c61a-a32a-4ed7-becf-11bcf835b914",
"source_id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
"sink_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"source_name": "result",
"sink_name": "prompt_values_#_TOPIC",
"is_static": true
}
],
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"block_id": "90f8c45e-e983-4644-aa0b-b4ebe2f531bc",
"input_default": {
"prompt": "dog",
"output_format": "png",
"replicate_model_name": "Flux Pro 1.1"
},
"metadata": {
"position": {
"x": 873.0119949791526,
"y": 966.1604399052493
}
},
"input_links": [
{
"id": "a17ec505-9377-4700-8fe0-124ca81d43a9",
"source_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"sink_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"output_links": [
{
"id": "06665d23-2f3d-4445-8f22-573446fcff5b",
"source_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"sink_id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
"source_name": "result",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "gpt-4o-mini",
"prompt": "Generate an incredibly detailed, photorealistic image prompt about {{TOPIC}}, describing the camera it's taken with and prompting the diffusion model to use all the best quality techniques.\n\nOutput only the prompt with no additional commentary.",
"prompt_values": {}
},
"metadata": {
"position": {
"x": 277.3057034159709,
"y": 962.8382498113764
}
},
"input_links": [
{
"id": "1077c61a-a32a-4ed7-becf-11bcf835b914",
"source_id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
"sink_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"source_name": "result",
"sink_name": "prompt_values_#_TOPIC",
"is_static": true
}
],
"output_links": [
{
"id": "a17ec505-9377-4700-8fe0-124ca81d43a9",
"source_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"sink_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"graph_id": "ed2091cf-5b27-45a9-b3ea-42396f95b256",
"graph_version": 12,
"webhook_id": null,
"webhook": null
}
],
"links": [
{
"id": "1077c61a-a32a-4ed7-becf-11bcf835b914",
"source_id": "6f24c45f-1548-4eda-9784-da06ce0abef8",
"sink_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"source_name": "result",
"sink_name": "prompt_values_#_TOPIC",
"is_static": true
},
{
"id": "06665d23-2f3d-4445-8f22-573446fcff5b",
"source_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"sink_id": "0d1dec1a-e4ee-4349-9673-449a01bbf14e",
"source_name": "result",
"sink_name": "value",
"is_static": false
},
{
"id": "a17ec505-9377-4700-8fe0-124ca81d43a9",
"source_id": "0d1bca9a-d9b8-4bfd-a19c-fe50b54f4b12",
"sink_id": "50bc23e9-f2b7-4959-8710-99679ed9eeea",
"source_name": "response",
"sink_name": "prompt",
"is_static": false
}
],
"forked_from_id": null,
"forked_from_version": null,
"sub_graphs": [],
"user_id": "",
"created_at": "2024-12-20T18:46:11.492Z",
"input_schema": {
"type": "object",
"properties": {
"Image Subject": {
"advanced": false,
"secret": false,
"title": "Image Subject",
"description": "The subject of the image",
"default": "Otto the friendly, purple \"Chief Automation Octopus\" helping people automate their tedious tasks."
}
},
"required": []
},
"output_schema": {
"type": "object",
"properties": {
"Generated Image": {
"advanced": false,
"secret": false,
"title": "Generated Image"
}
},
"required": [
"Generated Image"
]
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"trigger_setup_info": null,
"credentials_input_schema": {
"properties": {
"replicate_api_key_credentials": {
"credentials_provider": [
"replicate"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "replicate",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.REPLICATE: 'replicate'>], Literal['api_key']]",
"type": "object",
"discriminator_values": []
},
"openai_api_key_credentials": {
"credentials_provider": [
"openai"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "openai",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
"type": "object",
"discriminator": "model",
"discriminator_mapping": {
"Llama-3.3-70B-Instruct": "llama_api",
"Llama-3.3-8B-Instruct": "llama_api",
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
"amazon/nova-lite-v1": "open_router",
"amazon/nova-micro-v1": "open_router",
"amazon/nova-pro-v1": "open_router",
"claude-3-7-sonnet-20250219": "anthropic",
"claude-3-haiku-20240307": "anthropic",
"claude-haiku-4-5-20251001": "anthropic",
"claude-opus-4-1-20250805": "anthropic",
"claude-opus-4-20250514": "anthropic",
"claude-opus-4-5-20251101": "anthropic",
"claude-sonnet-4-20250514": "anthropic",
"claude-sonnet-4-5-20250929": "anthropic",
"cohere/command-r-08-2024": "open_router",
"cohere/command-r-plus-08-2024": "open_router",
"deepseek/deepseek-chat": "open_router",
"deepseek/deepseek-r1-0528": "open_router",
"dolphin-mistral:latest": "ollama",
"google/gemini-2.0-flash-001": "open_router",
"google/gemini-2.0-flash-lite-001": "open_router",
"google/gemini-2.5-flash": "open_router",
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
"google/gemini-2.5-pro-preview-03-25": "open_router",
"google/gemini-3-pro-preview": "open_router",
"gpt-3.5-turbo": "openai",
"gpt-4-turbo": "openai",
"gpt-4.1-2025-04-14": "openai",
"gpt-4.1-mini-2025-04-14": "openai",
"gpt-4o": "openai",
"gpt-4o-mini": "openai",
"gpt-5-2025-08-07": "openai",
"gpt-5-chat-latest": "openai",
"gpt-5-mini-2025-08-07": "openai",
"gpt-5-nano-2025-08-07": "openai",
"gpt-5.1-2025-11-13": "openai",
"gryphe/mythomax-l2-13b": "open_router",
"llama-3.1-8b-instant": "groq",
"llama-3.3-70b-versatile": "groq",
"llama3": "ollama",
"llama3.1:405b": "ollama",
"llama3.2": "ollama",
"llama3.3": "ollama",
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
"meta-llama/llama-4-maverick": "open_router",
"meta-llama/llama-4-scout": "open_router",
"microsoft/wizardlm-2-8x22b": "open_router",
"mistralai/mistral-nemo": "open_router",
"moonshotai/kimi-k2": "open_router",
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
"o1": "openai",
"o1-mini": "openai",
"o3-2025-04-16": "openai",
"o3-mini": "openai",
"openai/gpt-oss-120b": "open_router",
"openai/gpt-oss-20b": "open_router",
"perplexity/sonar": "open_router",
"perplexity/sonar-deep-research": "open_router",
"perplexity/sonar-pro": "open_router",
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
"qwen/qwen3-coder": "open_router",
"v0-1.0-md": "v0",
"v0-1.5-lg": "v0",
"v0-1.5-md": "v0",
"x-ai/grok-4": "open_router",
"x-ai/grok-4-fast": "open_router",
"x-ai/grok-4.1-fast": "open_router",
"x-ai/grok-code-fast-1": "open_router"
},
"discriminator_values": [
"gpt-4o-mini"
]
}
},
"required": [
"replicate_api_key_credentials",
"openai_api_key_credentials"
],
"title": "FluxAIImageGeneratorCredentialsInputSchema",
"type": "object"
}
}

View File

@@ -1,505 +0,0 @@
{
"id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"version": 12,
"is_active": true,
"name": "AI Webpage Copy Improver",
"description": "Elevate your web content with this powerful AI Webpage Copy Improver. Designed for marketers, SEO specialists, and web developers, this tool analyses and enhances website copy for maximum impact. Using advanced language models, it optimizes text for better clarity, SEO performance, and increased conversion rates. The AI examines your existing content, identifies areas for improvement, and generates refined copy that maintains your brand voice while boosting engagement. From homepage headlines to product descriptions, transform your web presence with AI-driven insights. Improve readability, incorporate targeted keywords, and craft compelling calls-to-action - all with the click of a button. Take your digital marketing to the next level with the AI Webpage Copy Improver.",
"instructions": null,
"recommended_schedule_cron": null,
"nodes": [
{
"id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "Improved Webpage Copy"
},
"metadata": {
"position": {
"x": 1039.5884372540172,
"y": -0.8359099621230968
}
},
"input_links": [
{
"id": "d4334477-3616-454f-a430-614ca27f5b36",
"source_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"sink_id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
"source_name": "response",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "Original Page Analysis",
"description": "Analysis of the webpage as it currently stands."
},
"metadata": {
"position": {
"x": 1037.7724103954706,
"y": -606.5934325506903
}
},
"input_links": [
{
"id": "f979ab78-0903-4f19-a7c2-a419d5d81aef",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
"source_name": "response",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
"input_default": {
"name": "Homepage URL",
"value": "https://agpt.co",
"description": "Enter the URL of the homepage you want to improve"
},
"metadata": {
"position": {
"x": -1195.1455674454749,
"y": 0
}
},
"input_links": [],
"output_links": [
{
"id": "cbb12335-fefd-4560-9fff-98675130fbad",
"source_id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
"sink_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"source_name": "result",
"sink_name": "url",
"is_static": true
}
],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"block_id": "436c3984-57fd-4b85-8e9a-459b356883bd",
"input_default": {
"raw_content": false
},
"metadata": {
"position": {
"x": -631.7330786555249,
"y": 1.9638396496230826
}
},
"input_links": [
{
"id": "cbb12335-fefd-4560-9fff-98675130fbad",
"source_id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
"sink_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"source_name": "result",
"sink_name": "url",
"is_static": true
}
],
"output_links": [
{
"id": "adfa6113-77b3-4e32-b136-3e694b87553e",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
},
{
"id": "5d5656fd-4208-4296-bc70-e39cc31caada",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
}
],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "gpt-4o",
"prompt": "Current Webpage Content:\n```\n{{CONTENT}}\n```\n\nBased on the following analysis of the webpage content:\n\n```\n{{ANALYSIS}}\n```\n\nRewrite and improve the content to address the identified issues. Focus on:\n1. Enhancing clarity and readability\n2. Optimizing for SEO (suggest and incorporate relevant keywords)\n3. Improving calls-to-action for better conversion rates\n4. Refining the structure and organization\n5. Maintaining brand consistency while improving the overall tone\n\nProvide the improved content in HTML format inside a code-block with \"```\" backticks, preserving the original structure where appropriate. Also, include a brief summary of the changes made and their potential impact.",
"prompt_values": {}
},
"metadata": {
"position": {
"x": 488.37278423303917,
"y": 0
}
},
"input_links": [
{
"id": "adfa6113-77b3-4e32-b136-3e694b87553e",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
},
{
"id": "6bcca45d-c9d5-439e-ac43-e4a1264d8f57",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "response",
"sink_name": "prompt_values_#_ANALYSIS",
"is_static": false
}
],
"output_links": [
{
"id": "d4334477-3616-454f-a430-614ca27f5b36",
"source_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"sink_id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
"source_name": "response",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
},
{
"id": "08612ce2-625b-4c17-accd-3acace7b6477",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "gpt-4o",
"prompt": "Analyze the following webpage content and provide a detailed report on its current state, including strengths and weaknesses in terms of clarity, SEO optimization, and potential for conversion:\n\n{{CONTENT}}\n\nInclude observations on:\n1. Overall readability and clarity\n2. Use of keywords and SEO-friendly language\n3. Effectiveness of calls-to-action\n4. Structure and organization of content\n5. Tone and brand consistency",
"prompt_values": {}
},
"metadata": {
"position": {
"x": -72.66206703605442,
"y": -0.58403945075381
}
},
"input_links": [
{
"id": "5d5656fd-4208-4296-bc70-e39cc31caada",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
}
],
"output_links": [
{
"id": "f979ab78-0903-4f19-a7c2-a419d5d81aef",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
"source_name": "response",
"sink_name": "value",
"is_static": false
},
{
"id": "6bcca45d-c9d5-439e-ac43-e4a1264d8f57",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "response",
"sink_name": "prompt_values_#_ANALYSIS",
"is_static": false
}
],
"graph_id": "0d440799-44ba-4d6c-85b3-b3739f1e1287",
"graph_version": 12,
"webhook_id": null,
"webhook": null
}
],
"links": [
{
"id": "adfa6113-77b3-4e32-b136-3e694b87553e",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
},
{
"id": "d4334477-3616-454f-a430-614ca27f5b36",
"source_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"sink_id": "130ec496-f75d-4fe2-9cd6-8c00d08ea4a7",
"source_name": "response",
"sink_name": "value",
"is_static": false
},
{
"id": "5d5656fd-4208-4296-bc70-e39cc31caada",
"source_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"sink_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"source_name": "content",
"sink_name": "prompt_values_#_CONTENT",
"is_static": false
},
{
"id": "f979ab78-0903-4f19-a7c2-a419d5d81aef",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "cefccd07-fe70-4feb-bf76-46b20aaa5d35",
"source_name": "response",
"sink_name": "value",
"is_static": false
},
{
"id": "6bcca45d-c9d5-439e-ac43-e4a1264d8f57",
"source_id": "08612ce2-625b-4c17-accd-3acace7b6477",
"sink_id": "c9924577-70d8-4ccb-9106-6f796df09ef9",
"source_name": "response",
"sink_name": "prompt_values_#_ANALYSIS",
"is_static": false
},
{
"id": "cbb12335-fefd-4560-9fff-98675130fbad",
"source_id": "375f8bc3-afd9-4025-ad8e-9aeb329af7ce",
"sink_id": "b40595c6-dba3-4779-a129-cd4f01fff103",
"source_name": "result",
"sink_name": "url",
"is_static": true
}
],
"forked_from_id": null,
"forked_from_version": null,
"sub_graphs": [],
"user_id": "",
"created_at": "2024-12-20T19:47:22.036Z",
"input_schema": {
"type": "object",
"properties": {
"Homepage URL": {
"advanced": false,
"secret": false,
"title": "Homepage URL",
"description": "Enter the URL of the homepage you want to improve",
"default": "https://agpt.co"
}
},
"required": []
},
"output_schema": {
"type": "object",
"properties": {
"Improved Webpage Copy": {
"advanced": false,
"secret": false,
"title": "Improved Webpage Copy"
},
"Original Page Analysis": {
"advanced": false,
"secret": false,
"title": "Original Page Analysis",
"description": "Analysis of the webpage as it currently stands."
}
},
"required": [
"Improved Webpage Copy",
"Original Page Analysis"
]
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"trigger_setup_info": null,
"credentials_input_schema": {
"properties": {
"jina_api_key_credentials": {
"credentials_provider": [
"jina"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "jina",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.JINA: 'jina'>], Literal['api_key']]",
"type": "object",
"discriminator_values": []
},
"openai_api_key_credentials": {
"credentials_provider": [
"openai"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "openai",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.OPENAI: 'openai'>], Literal['api_key']]",
"type": "object",
"discriminator": "model",
"discriminator_mapping": {
"Llama-3.3-70B-Instruct": "llama_api",
"Llama-3.3-8B-Instruct": "llama_api",
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
"amazon/nova-lite-v1": "open_router",
"amazon/nova-micro-v1": "open_router",
"amazon/nova-pro-v1": "open_router",
"claude-3-7-sonnet-20250219": "anthropic",
"claude-3-haiku-20240307": "anthropic",
"claude-haiku-4-5-20251001": "anthropic",
"claude-opus-4-1-20250805": "anthropic",
"claude-opus-4-20250514": "anthropic",
"claude-opus-4-5-20251101": "anthropic",
"claude-sonnet-4-20250514": "anthropic",
"claude-sonnet-4-5-20250929": "anthropic",
"cohere/command-r-08-2024": "open_router",
"cohere/command-r-plus-08-2024": "open_router",
"deepseek/deepseek-chat": "open_router",
"deepseek/deepseek-r1-0528": "open_router",
"dolphin-mistral:latest": "ollama",
"google/gemini-2.0-flash-001": "open_router",
"google/gemini-2.0-flash-lite-001": "open_router",
"google/gemini-2.5-flash": "open_router",
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
"google/gemini-2.5-pro-preview-03-25": "open_router",
"google/gemini-3-pro-preview": "open_router",
"gpt-3.5-turbo": "openai",
"gpt-4-turbo": "openai",
"gpt-4.1-2025-04-14": "openai",
"gpt-4.1-mini-2025-04-14": "openai",
"gpt-4o": "openai",
"gpt-4o-mini": "openai",
"gpt-5-2025-08-07": "openai",
"gpt-5-chat-latest": "openai",
"gpt-5-mini-2025-08-07": "openai",
"gpt-5-nano-2025-08-07": "openai",
"gpt-5.1-2025-11-13": "openai",
"gryphe/mythomax-l2-13b": "open_router",
"llama-3.1-8b-instant": "groq",
"llama-3.3-70b-versatile": "groq",
"llama3": "ollama",
"llama3.1:405b": "ollama",
"llama3.2": "ollama",
"llama3.3": "ollama",
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
"meta-llama/llama-4-maverick": "open_router",
"meta-llama/llama-4-scout": "open_router",
"microsoft/wizardlm-2-8x22b": "open_router",
"mistralai/mistral-nemo": "open_router",
"moonshotai/kimi-k2": "open_router",
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
"o1": "openai",
"o1-mini": "openai",
"o3-2025-04-16": "openai",
"o3-mini": "openai",
"openai/gpt-oss-120b": "open_router",
"openai/gpt-oss-20b": "open_router",
"perplexity/sonar": "open_router",
"perplexity/sonar-deep-research": "open_router",
"perplexity/sonar-pro": "open_router",
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
"qwen/qwen3-coder": "open_router",
"v0-1.0-md": "v0",
"v0-1.5-lg": "v0",
"v0-1.5-md": "v0",
"x-ai/grok-4": "open_router",
"x-ai/grok-4-fast": "open_router",
"x-ai/grok-4.1-fast": "open_router",
"x-ai/grok-code-fast-1": "open_router"
},
"discriminator_values": [
"gpt-4o"
]
}
},
"required": [
"jina_api_key_credentials",
"openai_api_key_credentials"
],
"title": "AIWebpageCopyImproverCredentialsInputSchema",
"type": "object"
}
}

View File

@@ -1,615 +0,0 @@
{
"id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"version": 29,
"is_active": true,
"name": "Email Address Finder",
"description": "Input information of a business and find their email address",
"instructions": null,
"recommended_schedule_cron": null,
"nodes": [
{
"id": "04cad535-9f1a-4876-8b07-af5897d8c282",
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
"input_default": {
"name": "Address",
"value": "USA"
},
"metadata": {
"position": {
"x": 1047.9357219838776,
"y": 1067.9123910370954
}
},
"input_links": [],
"output_links": [
{
"id": "aac29f7b-3cd1-4c91-9a2a-72a8301c0957",
"source_id": "04cad535-9f1a-4876-8b07-af5897d8c282",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_ADDRESS",
"is_static": true
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"block_id": "3146e4fe-2cdd-4f29-bd12-0c9d5bb4deb0",
"input_default": {
"group": 1,
"pattern": "<email>(.*?)<\\/email>"
},
"metadata": {
"position": {
"x": 3381.2821481740634,
"y": 246.091098184158
}
},
"input_links": [
{
"id": "9f8188ce-1f3d-46fb-acda-b2a57c0e5da6",
"source_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"sink_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"source_name": "response",
"sink_name": "text",
"is_static": false
}
],
"output_links": [
{
"id": "b15b5143-27b7-486e-a166-4095e72e5235",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"source_name": "negative",
"sink_name": "values_#_Result",
"is_static": false
},
{
"id": "23591872-3c6b-4562-87d3-5b6ade698e48",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "positive",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"block_id": "363ae599-353e-4804-937e-b2ee3cef3da4",
"input_default": {
"name": "Email"
},
"metadata": {
"position": {
"x": 4525.4246310882,
"y": 246.36913665010354
}
},
"input_links": [
{
"id": "d87b07ea-dcec-4d38-a644-2c1d741ea3cb",
"source_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "output",
"sink_name": "value",
"is_static": false
},
{
"id": "23591872-3c6b-4562-87d3-5b6ade698e48",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "positive",
"sink_name": "value",
"is_static": false
}
],
"output_links": [],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"block_id": "87840993-2053-44b7-8da4-187ad4ee518c",
"input_default": {},
"metadata": {
"position": {
"x": 2182.7499999999995,
"y": 242.00001144409185
}
},
"input_links": [
{
"id": "2e411d3d-79ba-4958-9c1c-b76a45a2e649",
"source_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"sink_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"source_name": "output",
"sink_name": "query",
"is_static": false
}
],
"output_links": [
{
"id": "899cc7d8-a96b-4107-b3c6-4c78edcf0c6b",
"source_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "results",
"sink_name": "prompt_values_#_WEBSITE_CONTENT",
"is_static": false
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"block_id": "c0a8e994-ebf1-4a9c-a4d8-89d09c86741b",
"input_default": {
"name": "Business Name",
"value": "Tim Cook"
},
"metadata": {
"position": {
"x": 1049.9704155272595,
"y": 244.49931152418344
}
},
"input_links": [],
"output_links": [
{
"id": "946b522c-365f-4ee0-96f9-28863d9882ea",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_NAME",
"is_static": true
},
{
"id": "43e920a7-0bb4-4fae-9a22-91df95c7342a",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "result",
"sink_name": "prompt_values_#_BUSINESS_NAME",
"is_static": true
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"block_id": "db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
"input_default": {
"format": "Email Address of {{NAME}}, {{ADDRESS}}",
"values": {}
},
"metadata": {
"position": {
"x": 1625.25,
"y": 243.25001144409185
}
},
"input_links": [
{
"id": "946b522c-365f-4ee0-96f9-28863d9882ea",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_NAME",
"is_static": true
},
{
"id": "aac29f7b-3cd1-4c91-9a2a-72a8301c0957",
"source_id": "04cad535-9f1a-4876-8b07-af5897d8c282",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_ADDRESS",
"is_static": true
}
],
"output_links": [
{
"id": "2e411d3d-79ba-4958-9c1c-b76a45a2e649",
"source_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"sink_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"source_name": "output",
"sink_name": "query",
"is_static": false
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"block_id": "db7d8f02-2f44-4c55-ab7a-eae0941f0c30",
"input_default": {
"format": "Failed to find email. \nResult:\n{{RESULT}}",
"values": {}
},
"metadata": {
"position": {
"x": 3949.7493830805934,
"y": 705.209819698647
}
},
"input_links": [
{
"id": "b15b5143-27b7-486e-a166-4095e72e5235",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"source_name": "negative",
"sink_name": "values_#_Result",
"is_static": false
}
],
"output_links": [
{
"id": "d87b07ea-dcec-4d38-a644-2c1d741ea3cb",
"source_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "output",
"sink_name": "value",
"is_static": false
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
},
{
"id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"block_id": "1f292d4a-41a4-4977-9684-7c8d560b9f91",
"input_default": {
"model": "claude-sonnet-4-5-20250929",
"prompt": "<business_website>\n{{WEBSITE_CONTENT}}\n</business_website>\n\nExtract the Contact Email of {{BUSINESS_NAME}}.\n\nIf no email that can be used to contact {{BUSINESS_NAME}} is present, output `N/A`.\nDo not share any emails other than the email for this specific entity.\n\nIf multiple present pick the likely best one.\n\nRespond with the email (or N/A) inside <email></email> tags.\n\nExample Response:\n\n<thoughts_or_comments>\nThere were many emails present, but luckily one was for {{BUSINESS_NAME}} which I have included below.\n</thoughts_or_comments>\n<email>\nexample@email.com\n</email>",
"prompt_values": {}
},
"metadata": {
"position": {
"x": 2774.879259081777,
"y": 243.3102035752969
}
},
"input_links": [
{
"id": "43e920a7-0bb4-4fae-9a22-91df95c7342a",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "result",
"sink_name": "prompt_values_#_BUSINESS_NAME",
"is_static": true
},
{
"id": "899cc7d8-a96b-4107-b3c6-4c78edcf0c6b",
"source_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "results",
"sink_name": "prompt_values_#_WEBSITE_CONTENT",
"is_static": false
}
],
"output_links": [
{
"id": "9f8188ce-1f3d-46fb-acda-b2a57c0e5da6",
"source_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"sink_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"source_name": "response",
"sink_name": "text",
"is_static": false
}
],
"graph_id": "4c6b68cb-bb75-4044-b1cb-2cee3fd39b26",
"graph_version": 29,
"webhook_id": null,
"webhook": null
}
],
"links": [
{
"id": "9f8188ce-1f3d-46fb-acda-b2a57c0e5da6",
"source_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"sink_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"source_name": "response",
"sink_name": "text",
"is_static": false
},
{
"id": "b15b5143-27b7-486e-a166-4095e72e5235",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"source_name": "negative",
"sink_name": "values_#_Result",
"is_static": false
},
{
"id": "d87b07ea-dcec-4d38-a644-2c1d741ea3cb",
"source_id": "266b7255-11c4-4b88-99e2-85db31a2e865",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "output",
"sink_name": "value",
"is_static": false
},
{
"id": "946b522c-365f-4ee0-96f9-28863d9882ea",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_NAME",
"is_static": true
},
{
"id": "23591872-3c6b-4562-87d3-5b6ade698e48",
"source_id": "a6e7355e-5bf8-4b09-b11c-a5e140389981",
"sink_id": "310c8fab-2ae6-4158-bd48-01dbdc434130",
"source_name": "positive",
"sink_name": "value",
"is_static": false
},
{
"id": "43e920a7-0bb4-4fae-9a22-91df95c7342a",
"source_id": "9708a10a-8be0-4c44-abb3-bd0f7c594794",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "result",
"sink_name": "prompt_values_#_BUSINESS_NAME",
"is_static": true
},
{
"id": "2e411d3d-79ba-4958-9c1c-b76a45a2e649",
"source_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"sink_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"source_name": "output",
"sink_name": "query",
"is_static": false
},
{
"id": "aac29f7b-3cd1-4c91-9a2a-72a8301c0957",
"source_id": "04cad535-9f1a-4876-8b07-af5897d8c282",
"sink_id": "28b5ddcc-dc20-41cc-ad21-c54ff459f694",
"source_name": "result",
"sink_name": "values_#_ADDRESS",
"is_static": true
},
{
"id": "899cc7d8-a96b-4107-b3c6-4c78edcf0c6b",
"source_id": "4a41df99-ffe2-4c12-b528-632979c9c030",
"sink_id": "510937b3-0134-4e45-b2ba-05a447bbaf50",
"source_name": "results",
"sink_name": "prompt_values_#_WEBSITE_CONTENT",
"is_static": false
}
],
"forked_from_id": null,
"forked_from_version": null,
"sub_graphs": [],
"user_id": "",
"created_at": "2025-01-03T00:46:30.244Z",
"input_schema": {
"type": "object",
"properties": {
"Address": {
"advanced": false,
"secret": false,
"title": "Address",
"default": "USA"
},
"Business Name": {
"advanced": false,
"secret": false,
"title": "Business Name",
"default": "Tim Cook"
}
},
"required": []
},
"output_schema": {
"type": "object",
"properties": {
"Email": {
"advanced": false,
"secret": false,
"title": "Email"
}
},
"required": [
"Email"
]
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"trigger_setup_info": null,
"credentials_input_schema": {
"properties": {
"jina_api_key_credentials": {
"credentials_provider": [
"jina"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "jina",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.JINA: 'jina'>], Literal['api_key']]",
"type": "object",
"discriminator_values": []
},
"anthropic_api_key_credentials": {
"credentials_provider": [
"anthropic"
],
"credentials_types": [
"api_key"
],
"properties": {
"id": {
"title": "Id",
"type": "string"
},
"title": {
"anyOf": [
{
"type": "string"
},
{
"type": "null"
}
],
"default": null,
"title": "Title"
},
"provider": {
"const": "anthropic",
"title": "Provider",
"type": "string"
},
"type": {
"const": "api_key",
"title": "Type",
"type": "string"
}
},
"required": [
"id",
"provider",
"type"
],
"title": "CredentialsMetaInput[Literal[<ProviderName.ANTHROPIC: 'anthropic'>], Literal['api_key']]",
"type": "object",
"discriminator": "model",
"discriminator_mapping": {
"Llama-3.3-70B-Instruct": "llama_api",
"Llama-3.3-8B-Instruct": "llama_api",
"Llama-4-Maverick-17B-128E-Instruct-FP8": "llama_api",
"Llama-4-Scout-17B-16E-Instruct-FP8": "llama_api",
"Qwen/Qwen2.5-72B-Instruct-Turbo": "aiml_api",
"amazon/nova-lite-v1": "open_router",
"amazon/nova-micro-v1": "open_router",
"amazon/nova-pro-v1": "open_router",
"claude-3-7-sonnet-20250219": "anthropic",
"claude-3-haiku-20240307": "anthropic",
"claude-haiku-4-5-20251001": "anthropic",
"claude-opus-4-1-20250805": "anthropic",
"claude-opus-4-20250514": "anthropic",
"claude-opus-4-5-20251101": "anthropic",
"claude-sonnet-4-20250514": "anthropic",
"claude-sonnet-4-5-20250929": "anthropic",
"cohere/command-r-08-2024": "open_router",
"cohere/command-r-plus-08-2024": "open_router",
"deepseek/deepseek-chat": "open_router",
"deepseek/deepseek-r1-0528": "open_router",
"dolphin-mistral:latest": "ollama",
"google/gemini-2.0-flash-001": "open_router",
"google/gemini-2.0-flash-lite-001": "open_router",
"google/gemini-2.5-flash": "open_router",
"google/gemini-2.5-flash-lite-preview-06-17": "open_router",
"google/gemini-2.5-pro-preview-03-25": "open_router",
"google/gemini-3-pro-preview": "open_router",
"gpt-3.5-turbo": "openai",
"gpt-4-turbo": "openai",
"gpt-4.1-2025-04-14": "openai",
"gpt-4.1-mini-2025-04-14": "openai",
"gpt-4o": "openai",
"gpt-4o-mini": "openai",
"gpt-5-2025-08-07": "openai",
"gpt-5-chat-latest": "openai",
"gpt-5-mini-2025-08-07": "openai",
"gpt-5-nano-2025-08-07": "openai",
"gpt-5.1-2025-11-13": "openai",
"gryphe/mythomax-l2-13b": "open_router",
"llama-3.1-8b-instant": "groq",
"llama-3.3-70b-versatile": "groq",
"llama3": "ollama",
"llama3.1:405b": "ollama",
"llama3.2": "ollama",
"llama3.3": "ollama",
"meta-llama/Llama-3.2-3B-Instruct-Turbo": "aiml_api",
"meta-llama/Llama-3.3-70B-Instruct-Turbo": "aiml_api",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo": "aiml_api",
"meta-llama/llama-4-maverick": "open_router",
"meta-llama/llama-4-scout": "open_router",
"microsoft/wizardlm-2-8x22b": "open_router",
"mistralai/mistral-nemo": "open_router",
"moonshotai/kimi-k2": "open_router",
"nousresearch/hermes-3-llama-3.1-405b": "open_router",
"nousresearch/hermes-3-llama-3.1-70b": "open_router",
"nvidia/llama-3.1-nemotron-70b-instruct": "aiml_api",
"o1": "openai",
"o1-mini": "openai",
"o3-2025-04-16": "openai",
"o3-mini": "openai",
"openai/gpt-oss-120b": "open_router",
"openai/gpt-oss-20b": "open_router",
"perplexity/sonar": "open_router",
"perplexity/sonar-deep-research": "open_router",
"perplexity/sonar-pro": "open_router",
"qwen/qwen3-235b-a22b-thinking-2507": "open_router",
"qwen/qwen3-coder": "open_router",
"v0-1.0-md": "v0",
"v0-1.5-lg": "v0",
"v0-1.5-md": "v0",
"x-ai/grok-4": "open_router",
"x-ai/grok-4-fast": "open_router",
"x-ai/grok-4.1-fast": "open_router",
"x-ai/grok-code-fast-1": "open_router"
},
"discriminator_values": [
"claude-sonnet-4-5-20250929"
]
}
},
"required": [
"jina_api_key_credentials",
"anthropic_api_key_credentials"
],
"title": "EmailAddressFinderCredentialsInputSchema",
"type": "object"
}
}

View File

@@ -1,107 +0,0 @@
from fastapi import HTTPException, Security, status
from fastapi.security import APIKeyHeader, HTTPAuthorizationCredentials, HTTPBearer
from prisma.enums import APIKeyPermission
from backend.data.auth.api_key import APIKeyInfo, validate_api_key
from backend.data.auth.base import APIAuthorizationInfo
from backend.data.auth.oauth import (
InvalidClientError,
InvalidTokenError,
OAuthAccessTokenInfo,
validate_access_token,
)
api_key_header = APIKeyHeader(name="X-API-Key", auto_error=False)
bearer_auth = HTTPBearer(auto_error=False)
async def require_api_key(api_key: str | None = Security(api_key_header)) -> APIKeyInfo:
"""Middleware for API key authentication only"""
if api_key is None:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED, detail="Missing API key"
)
api_key_obj = await validate_api_key(api_key)
if not api_key_obj:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key"
)
return api_key_obj
async def require_access_token(
bearer: HTTPAuthorizationCredentials | None = Security(bearer_auth),
) -> OAuthAccessTokenInfo:
"""Middleware for OAuth access token authentication only"""
if bearer is None:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Missing Authorization header",
)
try:
token_info, _ = await validate_access_token(bearer.credentials)
except (InvalidClientError, InvalidTokenError) as e:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail=str(e))
return token_info
async def require_auth(
api_key: str | None = Security(api_key_header),
bearer: HTTPAuthorizationCredentials | None = Security(bearer_auth),
) -> APIAuthorizationInfo:
"""
Unified authentication middleware supporting both API keys and OAuth tokens.
Supports two authentication methods, which are checked in order:
1. X-API-Key header (existing API key authentication)
2. Authorization: Bearer <token> header (OAuth access token)
Returns:
APIAuthorizationInfo: base class of both APIKeyInfo and OAuthAccessTokenInfo.
"""
# Try API key first
if api_key is not None:
api_key_info = await validate_api_key(api_key)
if api_key_info:
return api_key_info
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API key"
)
# Try OAuth bearer token
if bearer is not None:
try:
token_info, _ = await validate_access_token(bearer.credentials)
return token_info
except (InvalidClientError, InvalidTokenError) as e:
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail=str(e))
# No credentials provided
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Missing authentication. Provide API key or access token.",
)
def require_permission(permission: APIKeyPermission):
"""
Dependency function for checking specific permissions
(works with API keys and OAuth tokens)
"""
async def check_permission(
auth: APIAuthorizationInfo = Security(require_auth),
) -> APIAuthorizationInfo:
if permission not in auth.scopes:
raise HTTPException(
status_code=status.HTTP_403_FORBIDDEN,
detail=f"Missing required permission: {permission.value}",
)
return auth
return check_permission

View File

@@ -1,655 +0,0 @@
"""
External API endpoints for integrations and credentials.
This module provides endpoints for external applications (like Autopilot) to:
- Initiate OAuth flows with custom callback URLs
- Complete OAuth flows by exchanging authorization codes
- Create API key, user/password, and host-scoped credentials
- List and manage user credentials
"""
import logging
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, Union
from urllib.parse import urlparse
from fastapi import APIRouter, Body, HTTPException, Path, Security, status
from prisma.enums import APIKeyPermission
from pydantic import BaseModel, Field, SecretStr
from backend.api.external.middleware import require_permission
from backend.api.features.integrations.models import get_all_provider_names
from backend.data.auth.base import APIAuthorizationInfo
from backend.data.model import (
APIKeyCredentials,
Credentials,
CredentialsType,
HostScopedCredentials,
OAuth2Credentials,
UserPasswordCredentials,
)
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.integrations.oauth import CREDENTIALS_BY_PROVIDER, HANDLERS_BY_NAME
from backend.integrations.providers import ProviderName
from backend.util.settings import Settings
if TYPE_CHECKING:
from backend.integrations.oauth import BaseOAuthHandler
logger = logging.getLogger(__name__)
settings = Settings()
creds_manager = IntegrationCredentialsManager()
integrations_router = APIRouter(prefix="/integrations", tags=["integrations"])
# ==================== Request/Response Models ==================== #
class OAuthInitiateRequest(BaseModel):
"""Request model for initiating an OAuth flow."""
callback_url: str = Field(
..., description="The external app's callback URL for OAuth redirect"
)
scopes: list[str] = Field(
default_factory=list, description="OAuth scopes to request"
)
state_metadata: dict[str, Any] = Field(
default_factory=dict,
description="Arbitrary metadata to echo back on completion",
)
class OAuthInitiateResponse(BaseModel):
"""Response model for OAuth initiation."""
login_url: str = Field(..., description="URL to redirect user for OAuth consent")
state_token: str = Field(..., description="State token for CSRF protection")
expires_at: int = Field(
..., description="Unix timestamp when the state token expires"
)
class OAuthCompleteRequest(BaseModel):
"""Request model for completing an OAuth flow."""
code: str = Field(..., description="Authorization code from OAuth provider")
state_token: str = Field(..., description="State token from initiate request")
class OAuthCompleteResponse(BaseModel):
"""Response model for OAuth completion."""
credentials_id: str = Field(..., description="ID of the stored credentials")
provider: str = Field(..., description="Provider name")
type: str = Field(..., description="Credential type (oauth2)")
title: Optional[str] = Field(None, description="Credential title")
scopes: list[str] = Field(default_factory=list, description="Granted scopes")
username: Optional[str] = Field(None, description="Username from provider")
state_metadata: dict[str, Any] = Field(
default_factory=dict, description="Echoed metadata from initiate request"
)
class CredentialSummary(BaseModel):
"""Summary of a credential without sensitive data."""
id: str
provider: str
type: CredentialsType
title: Optional[str] = None
scopes: Optional[list[str]] = None
username: Optional[str] = None
host: Optional[str] = None
class ProviderInfo(BaseModel):
"""Information about an integration provider."""
name: str
supports_oauth: bool = False
supports_api_key: bool = False
supports_user_password: bool = False
supports_host_scoped: bool = False
default_scopes: list[str] = Field(default_factory=list)
# ==================== Credential Creation Models ==================== #
class CreateAPIKeyCredentialRequest(BaseModel):
"""Request model for creating API key credentials."""
type: Literal["api_key"] = "api_key"
api_key: str = Field(..., description="The API key")
title: str = Field(..., description="A name for this credential")
expires_at: Optional[int] = Field(
None, description="Unix timestamp when the API key expires"
)
class CreateUserPasswordCredentialRequest(BaseModel):
"""Request model for creating username/password credentials."""
type: Literal["user_password"] = "user_password"
username: str = Field(..., description="Username")
password: str = Field(..., description="Password")
title: str = Field(..., description="A name for this credential")
class CreateHostScopedCredentialRequest(BaseModel):
"""Request model for creating host-scoped credentials."""
type: Literal["host_scoped"] = "host_scoped"
host: str = Field(..., description="Host/domain pattern to match")
headers: dict[str, str] = Field(..., description="Headers to include in requests")
title: str = Field(..., description="A name for this credential")
# Union type for credential creation
CreateCredentialRequest = Annotated[
CreateAPIKeyCredentialRequest
| CreateUserPasswordCredentialRequest
| CreateHostScopedCredentialRequest,
Field(discriminator="type"),
]
class CreateCredentialResponse(BaseModel):
"""Response model for credential creation."""
id: str
provider: str
type: CredentialsType
title: Optional[str] = None
# ==================== Helper Functions ==================== #
def validate_callback_url(callback_url: str) -> bool:
"""Validate that the callback URL is from an allowed origin."""
allowed_origins = settings.config.external_oauth_callback_origins
try:
parsed = urlparse(callback_url)
callback_origin = f"{parsed.scheme}://{parsed.netloc}"
for allowed in allowed_origins:
# Simple origin matching
if callback_origin == allowed:
return True
# Allow localhost with any port in development (proper hostname check)
if parsed.hostname == "localhost":
for allowed in allowed_origins:
allowed_parsed = urlparse(allowed)
if allowed_parsed.hostname == "localhost":
return True
return False
except Exception:
return False
def _get_oauth_handler_for_external(
provider_name: str, redirect_uri: str
) -> "BaseOAuthHandler":
"""Get an OAuth handler configured with an external redirect URI."""
# Ensure blocks are loaded so SDK providers are available
try:
from backend.blocks import load_all_blocks
load_all_blocks()
except Exception as e:
logger.warning(f"Failed to load blocks: {e}")
if provider_name not in HANDLERS_BY_NAME:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Provider '{provider_name}' does not support OAuth",
)
# Check if this provider has custom OAuth credentials
oauth_credentials = CREDENTIALS_BY_PROVIDER.get(provider_name)
if oauth_credentials and not oauth_credentials.use_secrets:
import os
client_id = (
os.getenv(oauth_credentials.client_id_env_var)
if oauth_credentials.client_id_env_var
else None
)
client_secret = (
os.getenv(oauth_credentials.client_secret_env_var)
if oauth_credentials.client_secret_env_var
else None
)
else:
client_id = getattr(settings.secrets, f"{provider_name}_client_id", None)
client_secret = getattr(
settings.secrets, f"{provider_name}_client_secret", None
)
if not (client_id and client_secret):
logger.error(f"Attempt to use unconfigured {provider_name} OAuth integration")
raise HTTPException(
status_code=status.HTTP_501_NOT_IMPLEMENTED,
detail={
"message": f"Integration with provider '{provider_name}' is not configured.",
"hint": "Set client ID and secret in the application's deployment environment",
},
)
handler_class = HANDLERS_BY_NAME[provider_name]
return handler_class(
client_id=client_id,
client_secret=client_secret,
redirect_uri=redirect_uri,
)
# ==================== Endpoints ==================== #
@integrations_router.get("/providers", response_model=list[ProviderInfo])
async def list_providers(
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.READ_INTEGRATIONS)
),
) -> list[ProviderInfo]:
"""
List all available integration providers.
Returns a list of all providers with their supported credential types.
Most providers support API key credentials, and some also support OAuth.
"""
# Ensure blocks are loaded
try:
from backend.blocks import load_all_blocks
load_all_blocks()
except Exception as e:
logger.warning(f"Failed to load blocks: {e}")
from backend.sdk.registry import AutoRegistry
providers = []
for name in get_all_provider_names():
supports_oauth = name in HANDLERS_BY_NAME
handler_class = HANDLERS_BY_NAME.get(name)
default_scopes = (
getattr(handler_class, "DEFAULT_SCOPES", []) if handler_class else []
)
# Check if provider has specific auth types from SDK registration
sdk_provider = AutoRegistry.get_provider(name)
if sdk_provider and sdk_provider.supported_auth_types:
supports_api_key = "api_key" in sdk_provider.supported_auth_types
supports_user_password = (
"user_password" in sdk_provider.supported_auth_types
)
supports_host_scoped = "host_scoped" in sdk_provider.supported_auth_types
else:
# Fallback for legacy providers
supports_api_key = True # All providers can accept API keys
supports_user_password = name in ("smtp",)
supports_host_scoped = name == "http"
providers.append(
ProviderInfo(
name=name,
supports_oauth=supports_oauth,
supports_api_key=supports_api_key,
supports_user_password=supports_user_password,
supports_host_scoped=supports_host_scoped,
default_scopes=default_scopes,
)
)
return providers
@integrations_router.post(
"/{provider}/oauth/initiate",
response_model=OAuthInitiateResponse,
summary="Initiate OAuth flow",
)
async def initiate_oauth(
provider: Annotated[str, Path(title="The OAuth provider")],
request: OAuthInitiateRequest,
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.MANAGE_INTEGRATIONS)
),
) -> OAuthInitiateResponse:
"""
Initiate an OAuth flow for an external application.
This endpoint allows external apps to start an OAuth flow with a custom
callback URL. The callback URL must be from an allowed origin configured
in the platform settings.
Returns a login URL to redirect the user to, along with a state token
for CSRF protection.
"""
# Validate callback URL
if not validate_callback_url(request.callback_url):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=(
f"Callback URL origin is not allowed. "
f"Allowed origins: {settings.config.external_oauth_callback_origins}",
),
)
# Validate provider
try:
provider_name = ProviderName(provider)
except ValueError:
# Check if it's a dynamically registered provider
if provider not in HANDLERS_BY_NAME:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Provider '{provider}' not found",
)
provider_name = provider
# Get OAuth handler with external callback URL
handler = _get_oauth_handler_for_external(
provider if isinstance(provider_name, str) else provider_name.value,
request.callback_url,
)
# Store state token with external flow metadata
# Note: initiated_by_api_key_id is only available for API key auth, not OAuth
api_key_id = getattr(auth, "id", None) if auth.type == "api_key" else None
state_token, code_challenge = await creds_manager.store.store_state_token(
user_id=auth.user_id,
provider=provider if isinstance(provider_name, str) else provider_name.value,
scopes=request.scopes,
callback_url=request.callback_url,
state_metadata=request.state_metadata,
initiated_by_api_key_id=api_key_id,
)
# Build login URL
login_url = handler.get_login_url(
request.scopes, state_token, code_challenge=code_challenge
)
# Calculate expiration (10 minutes from now)
from datetime import datetime, timedelta, timezone
expires_at = int((datetime.now(timezone.utc) + timedelta(minutes=10)).timestamp())
return OAuthInitiateResponse(
login_url=login_url,
state_token=state_token,
expires_at=expires_at,
)
@integrations_router.post(
"/{provider}/oauth/complete",
response_model=OAuthCompleteResponse,
summary="Complete OAuth flow",
)
async def complete_oauth(
provider: Annotated[str, Path(title="The OAuth provider")],
request: OAuthCompleteRequest,
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.MANAGE_INTEGRATIONS)
),
) -> OAuthCompleteResponse:
"""
Complete an OAuth flow by exchanging the authorization code for tokens.
This endpoint should be called after the user has authorized the application
and been redirected back to the external app's callback URL with an
authorization code.
"""
# Verify state token
valid_state = await creds_manager.store.verify_state_token(
auth.user_id, request.state_token, provider
)
if not valid_state:
logger.warning(f"Invalid or expired state token for provider {provider}")
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Invalid or expired state token",
)
# Verify this is an external flow (callback_url must be set)
if not valid_state.callback_url:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="State token was not created for external OAuth flow",
)
# Get OAuth handler with the original callback URL
handler = _get_oauth_handler_for_external(provider, valid_state.callback_url)
try:
scopes = valid_state.scopes
scopes = handler.handle_default_scopes(scopes)
credentials = await handler.exchange_code_for_tokens(
request.code, scopes, valid_state.code_verifier
)
# Handle Linear's space-separated scopes
if len(credentials.scopes) == 1 and " " in credentials.scopes[0]:
credentials.scopes = credentials.scopes[0].split(" ")
# Check scope mismatch
if not set(scopes).issubset(set(credentials.scopes)):
logger.warning(
f"Granted scopes {credentials.scopes} for provider {provider} "
f"do not include all requested scopes {scopes}"
)
except Exception as e:
logger.error(f"OAuth2 Code->Token exchange failed for provider {provider}: {e}")
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"OAuth2 callback failed to exchange code for tokens: {str(e)}",
)
# Store credentials
await creds_manager.create(auth.user_id, credentials)
logger.info(f"Successfully completed external OAuth for provider {provider}")
return OAuthCompleteResponse(
credentials_id=credentials.id,
provider=credentials.provider,
type=credentials.type,
title=credentials.title,
scopes=credentials.scopes,
username=credentials.username,
state_metadata=valid_state.state_metadata,
)
@integrations_router.get("/credentials", response_model=list[CredentialSummary])
async def list_credentials(
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.READ_INTEGRATIONS)
),
) -> list[CredentialSummary]:
"""
List all credentials for the authenticated user.
Returns metadata about each credential without exposing sensitive tokens.
"""
credentials = await creds_manager.store.get_all_creds(auth.user_id)
return [
CredentialSummary(
id=cred.id,
provider=cred.provider,
type=cred.type,
title=cred.title,
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
)
for cred in credentials
]
@integrations_router.get(
"/{provider}/credentials", response_model=list[CredentialSummary]
)
async def list_credentials_by_provider(
provider: Annotated[str, Path(title="The provider to list credentials for")],
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.READ_INTEGRATIONS)
),
) -> list[CredentialSummary]:
"""
List credentials for a specific provider.
"""
credentials = await creds_manager.store.get_creds_by_provider(
auth.user_id, provider
)
return [
CredentialSummary(
id=cred.id,
provider=cred.provider,
type=cred.type,
title=cred.title,
scopes=cred.scopes if isinstance(cred, OAuth2Credentials) else None,
username=cred.username if isinstance(cred, OAuth2Credentials) else None,
host=cred.host if isinstance(cred, HostScopedCredentials) else None,
)
for cred in credentials
]
@integrations_router.post(
"/{provider}/credentials",
response_model=CreateCredentialResponse,
status_code=status.HTTP_201_CREATED,
summary="Create credentials",
)
async def create_credential(
provider: Annotated[str, Path(title="The provider to create credentials for")],
request: Union[
CreateAPIKeyCredentialRequest,
CreateUserPasswordCredentialRequest,
CreateHostScopedCredentialRequest,
] = Body(..., discriminator="type"),
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.MANAGE_INTEGRATIONS)
),
) -> CreateCredentialResponse:
"""
Create non-OAuth credentials for a provider.
Supports creating:
- API key credentials (type: "api_key")
- Username/password credentials (type: "user_password")
- Host-scoped credentials (type: "host_scoped")
For OAuth credentials, use the OAuth initiate/complete flow instead.
"""
# Validate provider exists
all_providers = get_all_provider_names()
if provider not in all_providers:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Provider '{provider}' not found",
)
# Create the appropriate credential type
credentials: Credentials
if request.type == "api_key":
credentials = APIKeyCredentials(
provider=provider,
api_key=SecretStr(request.api_key),
title=request.title,
expires_at=request.expires_at,
)
elif request.type == "user_password":
credentials = UserPasswordCredentials(
provider=provider,
username=SecretStr(request.username),
password=SecretStr(request.password),
title=request.title,
)
elif request.type == "host_scoped":
# Convert string headers to SecretStr
secret_headers = {k: SecretStr(v) for k, v in request.headers.items()}
credentials = HostScopedCredentials(
provider=provider,
host=request.host,
headers=secret_headers,
title=request.title,
)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Unsupported credential type: {request.type}",
)
# Store credentials
try:
await creds_manager.create(auth.user_id, credentials)
except Exception as e:
logger.error(f"Failed to store credentials: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=f"Failed to store credentials: {str(e)}",
)
logger.info(f"Created {request.type} credentials for provider {provider}")
return CreateCredentialResponse(
id=credentials.id,
provider=provider,
type=credentials.type,
title=credentials.title,
)
class DeleteCredentialResponse(BaseModel):
"""Response model for deleting a credential."""
deleted: bool = Field(..., description="Whether the credential was deleted")
credentials_id: str = Field(..., description="ID of the deleted credential")
@integrations_router.delete(
"/{provider}/credentials/{cred_id}",
response_model=DeleteCredentialResponse,
)
async def delete_credential(
provider: Annotated[str, Path(title="The provider")],
cred_id: Annotated[str, Path(title="The credential ID to delete")],
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.DELETE_INTEGRATIONS)
),
) -> DeleteCredentialResponse:
"""
Delete a credential.
Note: This does not revoke the tokens with the provider. For full cleanup,
use the main API's delete endpoint which handles webhook cleanup and
token revocation.
"""
creds = await creds_manager.store.get_creds_by_id(auth.user_id, cred_id)
if not creds:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND, detail="Credentials not found"
)
if creds.provider != provider:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Credentials do not match the specified provider",
)
await creds_manager.delete(auth.user_id, cred_id)
return DeleteCredentialResponse(deleted=True, credentials_id=cred_id)

View File

@@ -1,328 +0,0 @@
import logging
import urllib.parse
from collections import defaultdict
from typing import Annotated, Any, Literal, Optional, Sequence
from fastapi import APIRouter, Body, HTTPException, Security
from prisma.enums import AgentExecutionStatus, APIKeyPermission
from pydantic import BaseModel, Field
from typing_extensions import TypedDict
import backend.api.features.store.cache as store_cache
import backend.api.features.store.model as store_model
import backend.data.block
from backend.api.external.middleware import require_permission
from backend.data import execution as execution_db
from backend.data import graph as graph_db
from backend.data import user as user_db
from backend.data.auth.base import APIAuthorizationInfo
from backend.data.block import BlockInput, CompletedBlockOutput
from backend.executor.utils import add_graph_execution
from backend.util.settings import Settings
from .integrations import integrations_router
from .tools import tools_router
settings = Settings()
logger = logging.getLogger(__name__)
v1_router = APIRouter()
v1_router.include_router(integrations_router)
v1_router.include_router(tools_router)
class UserInfoResponse(BaseModel):
id: str
name: Optional[str]
email: str
timezone: str = Field(
description="The user's last known timezone (e.g. 'Europe/Amsterdam'), "
"or 'not-set' if not set"
)
@v1_router.get(
path="/me",
tags=["user", "meta"],
)
async def get_user_info(
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.IDENTITY)
),
) -> UserInfoResponse:
user = await user_db.get_user_by_id(auth.user_id)
return UserInfoResponse(
id=user.id,
name=user.name,
email=user.email,
timezone=user.timezone,
)
@v1_router.get(
path="/blocks",
tags=["blocks"],
dependencies=[Security(require_permission(APIKeyPermission.READ_BLOCK))],
)
async def get_graph_blocks() -> Sequence[dict[Any, Any]]:
blocks = [block() for block in backend.data.block.get_blocks().values()]
return [b.to_dict() for b in blocks if not b.disabled]
@v1_router.post(
path="/blocks/{block_id}/execute",
tags=["blocks"],
dependencies=[Security(require_permission(APIKeyPermission.EXECUTE_BLOCK))],
)
async def execute_graph_block(
block_id: str,
data: BlockInput,
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.EXECUTE_BLOCK)
),
) -> CompletedBlockOutput:
obj = backend.data.block.get_block(block_id)
if not obj:
raise HTTPException(status_code=404, detail=f"Block #{block_id} not found.")
output = defaultdict(list)
async for name, data in obj.execute(data):
output[name].append(data)
return output
@v1_router.post(
path="/graphs/{graph_id}/execute/{graph_version}",
tags=["graphs"],
)
async def execute_graph(
graph_id: str,
graph_version: int,
node_input: Annotated[dict[str, Any], Body(..., embed=True, default_factory=dict)],
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.EXECUTE_GRAPH)
),
) -> dict[str, Any]:
try:
graph_exec = await add_graph_execution(
graph_id=graph_id,
user_id=auth.user_id,
inputs=node_input,
graph_version=graph_version,
)
return {"id": graph_exec.id}
except Exception as e:
msg = str(e).encode().decode("unicode_escape")
raise HTTPException(status_code=400, detail=msg)
class ExecutionNode(TypedDict):
node_id: str
input: Any
output: dict[str, Any]
class GraphExecutionResult(TypedDict):
execution_id: str
status: str
nodes: list[ExecutionNode]
output: Optional[list[dict[str, str]]]
@v1_router.get(
path="/graphs/{graph_id}/executions/{graph_exec_id}/results",
tags=["graphs"],
)
async def get_graph_execution_results(
graph_id: str,
graph_exec_id: str,
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.READ_GRAPH)
),
) -> GraphExecutionResult:
graph_exec = await execution_db.get_graph_execution(
user_id=auth.user_id,
execution_id=graph_exec_id,
include_node_executions=True,
)
if not graph_exec:
raise HTTPException(
status_code=404, detail=f"Graph execution #{graph_exec_id} not found."
)
if not await graph_db.get_graph(
graph_id=graph_exec.graph_id,
version=graph_exec.graph_version,
user_id=auth.user_id,
):
raise HTTPException(status_code=404, detail=f"Graph #{graph_id} not found.")
return GraphExecutionResult(
execution_id=graph_exec_id,
status=graph_exec.status.value,
nodes=[
ExecutionNode(
node_id=node_exec.node_id,
input=node_exec.input_data.get("value", node_exec.input_data),
output={k: v for k, v in node_exec.output_data.items()},
)
for node_exec in graph_exec.node_executions
],
output=(
[
{name: value}
for name, values in graph_exec.outputs.items()
for value in values
]
if graph_exec.status == AgentExecutionStatus.COMPLETED
else None
),
)
##############################################
############### Store Endpoints ##############
##############################################
@v1_router.get(
path="/store/agents",
tags=["store"],
dependencies=[Security(require_permission(APIKeyPermission.READ_STORE))],
response_model=store_model.StoreAgentsResponse,
)
async def get_store_agents(
featured: bool = False,
creator: str | None = None,
sorted_by: Literal["rating", "runs", "name", "updated_at"] | None = None,
search_query: str | None = None,
category: str | None = None,
page: int = 1,
page_size: int = 20,
) -> store_model.StoreAgentsResponse:
"""
Get a paginated list of agents from the store with optional filtering and sorting.
Args:
featured: Filter to only show featured agents
creator: Filter agents by creator username
sorted_by: Sort agents by "runs", "rating", "name", or "updated_at"
search_query: Search agents by name, subheading and description
category: Filter agents by category
page: Page number for pagination (default 1)
page_size: Number of agents per page (default 20)
Returns:
StoreAgentsResponse: Paginated list of agents matching the filters
"""
if page < 1:
raise HTTPException(status_code=422, detail="Page must be greater than 0")
if page_size < 1:
raise HTTPException(status_code=422, detail="Page size must be greater than 0")
agents = await store_cache._get_cached_store_agents(
featured=featured,
creator=creator,
sorted_by=sorted_by,
search_query=search_query,
category=category,
page=page,
page_size=page_size,
)
return agents
@v1_router.get(
path="/store/agents/{username}/{agent_name}",
tags=["store"],
dependencies=[Security(require_permission(APIKeyPermission.READ_STORE))],
response_model=store_model.StoreAgentDetails,
)
async def get_store_agent(
username: str,
agent_name: str,
) -> store_model.StoreAgentDetails:
"""
Get details of a specific store agent by username and agent name.
Args:
username: Creator's username
agent_name: Name/slug of the agent
Returns:
StoreAgentDetails: Detailed information about the agent
"""
username = urllib.parse.unquote(username).lower()
agent_name = urllib.parse.unquote(agent_name).lower()
agent = await store_cache._get_cached_agent_details(
username=username, agent_name=agent_name
)
return agent
@v1_router.get(
path="/store/creators",
tags=["store"],
dependencies=[Security(require_permission(APIKeyPermission.READ_STORE))],
response_model=store_model.CreatorsResponse,
)
async def get_store_creators(
featured: bool = False,
search_query: str | None = None,
sorted_by: Literal["agent_rating", "agent_runs", "num_agents"] | None = None,
page: int = 1,
page_size: int = 20,
) -> store_model.CreatorsResponse:
"""
Get a paginated list of store creators with optional filtering and sorting.
Args:
featured: Filter to only show featured creators
search_query: Search creators by profile description
sorted_by: Sort by "agent_rating", "agent_runs", or "num_agents"
page: Page number for pagination (default 1)
page_size: Number of creators per page (default 20)
Returns:
CreatorsResponse: Paginated list of creators matching the filters
"""
if page < 1:
raise HTTPException(status_code=422, detail="Page must be greater than 0")
if page_size < 1:
raise HTTPException(status_code=422, detail="Page size must be greater than 0")
creators = await store_cache._get_cached_store_creators(
featured=featured,
search_query=search_query,
sorted_by=sorted_by,
page=page,
page_size=page_size,
)
return creators
@v1_router.get(
path="/store/creators/{username}",
tags=["store"],
dependencies=[Security(require_permission(APIKeyPermission.READ_STORE))],
response_model=store_model.CreatorDetails,
)
async def get_store_creator(
username: str,
) -> store_model.CreatorDetails:
"""
Get details of a specific store creator by username.
Args:
username: Creator's username
Returns:
CreatorDetails: Detailed information about the creator
"""
username = urllib.parse.unquote(username).lower()
creator = await store_cache._get_cached_creator_details(username=username)
return creator

View File

@@ -1,152 +0,0 @@
"""External API routes for chat tools - stateless HTTP endpoints.
Note: These endpoints use ephemeral sessions that are not persisted to Redis.
As a result, session-based rate limiting (max_agent_runs, max_agent_schedules)
is not enforced for external API calls. Each request creates a fresh session
with zeroed counters. Rate limiting for external API consumers should be
handled separately (e.g., via API key quotas).
"""
import logging
from typing import Any
from fastapi import APIRouter, Security
from prisma.enums import APIKeyPermission
from pydantic import BaseModel, Field
from backend.api.external.middleware import require_permission
from backend.api.features.chat.model import ChatSession
from backend.api.features.chat.tools import find_agent_tool, run_agent_tool
from backend.api.features.chat.tools.models import ToolResponseBase
from backend.data.auth.base import APIAuthorizationInfo
logger = logging.getLogger(__name__)
tools_router = APIRouter(prefix="/tools", tags=["tools"])
# Note: We use Security() as a function parameter dependency (auth: APIAuthorizationInfo = Security(...))
# rather than in the decorator's dependencies= list. This avoids duplicate permission checks
# while still enforcing auth AND giving us access to auth for extracting user_id.
# Request models
class FindAgentRequest(BaseModel):
query: str = Field(..., description="Search query for finding agents")
class RunAgentRequest(BaseModel):
"""Request to run or schedule an agent.
The tool automatically handles the setup flow:
- First call returns available inputs so user can decide what values to use
- Returns missing credentials if user needs to configure them
- Executes when inputs are provided OR use_defaults=true
- Schedules execution if schedule_name and cron are provided
"""
username_agent_slug: str = Field(
...,
description="The marketplace agent slug (e.g., 'username/agent-name')",
)
inputs: dict[str, Any] = Field(
default_factory=dict,
description="Dictionary of input values for the agent",
)
use_defaults: bool = Field(
default=False,
description="Set to true to run with default values (user must confirm)",
)
schedule_name: str | None = Field(
None,
description="Name for scheduled execution (triggers scheduling mode)",
)
cron: str | None = Field(
None,
description="Cron expression (5 fields: minute hour day month weekday)",
)
timezone: str = Field(
default="UTC",
description="IANA timezone (e.g., 'America/New_York', 'UTC')",
)
def _create_ephemeral_session(user_id: str | None) -> ChatSession:
"""Create an ephemeral session for stateless API requests."""
return ChatSession.new(user_id)
@tools_router.post(
path="/find-agent",
)
async def find_agent(
request: FindAgentRequest,
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.USE_TOOLS)
),
) -> dict[str, Any]:
"""
Search for agents in the marketplace based on capabilities and user needs.
Args:
request: Search query for finding agents
Returns:
List of matching agents or no results response
"""
session = _create_ephemeral_session(auth.user_id)
result = await find_agent_tool._execute(
user_id=auth.user_id,
session=session,
query=request.query,
)
return _response_to_dict(result)
@tools_router.post(
path="/run-agent",
)
async def run_agent(
request: RunAgentRequest,
auth: APIAuthorizationInfo = Security(
require_permission(APIKeyPermission.USE_TOOLS)
),
) -> dict[str, Any]:
"""
Run or schedule an agent from the marketplace.
The endpoint automatically handles the setup flow:
- Returns missing inputs if required fields are not provided
- Returns missing credentials if user needs to configure them
- Executes immediately if all requirements are met
- Schedules execution if schedule_name and cron are provided
For scheduled execution:
- Cron format: "minute hour day month weekday"
- Examples: "0 9 * * 1-5" (9am weekdays), "0 0 * * *" (daily at midnight)
- Timezone: Use IANA timezone names like "America/New_York"
Args:
request: Agent slug, inputs, and optional schedule config
Returns:
- setup_requirements: If inputs or credentials are missing
- execution_started: If agent was run or scheduled successfully
- error: If something went wrong
"""
session = _create_ephemeral_session(auth.user_id)
result = await run_agent_tool._execute(
user_id=auth.user_id,
session=session,
username_agent_slug=request.username_agent_slug,
inputs=request.inputs,
use_defaults=request.use_defaults,
schedule_name=request.schedule_name or "",
cron=request.cron or "",
timezone=request.timezone,
)
return _response_to_dict(result)
def _response_to_dict(result: ToolResponseBase) -> dict[str, Any]:
"""Convert a tool response to a dictionary for JSON serialization."""
return result.model_dump()

View File

@@ -1,474 +0,0 @@
import asyncio
import logging
from datetime import datetime
from typing import Optional
from autogpt_libs.auth import get_user_id, requires_admin_user
from fastapi import APIRouter, HTTPException, Security
from pydantic import BaseModel, Field
from backend.blocks.llm import LlmModel
from backend.data.analytics import (
AccuracyTrendsResponse,
get_accuracy_trends_and_alerts,
)
from backend.data.execution import (
ExecutionStatus,
GraphExecutionMeta,
get_graph_executions,
update_graph_execution_stats,
)
from backend.data.model import GraphExecutionStats
from backend.executor.activity_status_generator import (
DEFAULT_SYSTEM_PROMPT,
DEFAULT_USER_PROMPT,
generate_activity_status_for_execution,
)
from backend.executor.manager import get_db_async_client
from backend.util.settings import Settings
logger = logging.getLogger(__name__)
class ExecutionAnalyticsRequest(BaseModel):
graph_id: str = Field(..., description="Graph ID to analyze")
graph_version: Optional[int] = Field(None, description="Optional graph version")
user_id: Optional[str] = Field(None, description="Optional user ID filter")
created_after: Optional[datetime] = Field(
None, description="Optional created date lower bound"
)
model_name: str = Field("gpt-4o-mini", description="Model to use for generation")
batch_size: int = Field(
10, description="Batch size for concurrent processing", le=25, ge=1
)
system_prompt: Optional[str] = Field(
None, description="Custom system prompt (default: built-in prompt)"
)
user_prompt: Optional[str] = Field(
None,
description="Custom user prompt with {{GRAPH_NAME}} and {{EXECUTION_DATA}} placeholders (default: built-in prompt)",
)
skip_existing: bool = Field(
True,
description="Whether to skip executions that already have activity status and correctness score",
)
class ExecutionAnalyticsResult(BaseModel):
agent_id: str
version_id: int
user_id: str
exec_id: str
summary_text: Optional[str]
score: Optional[float]
status: str # "success", "failed", "skipped"
error_message: Optional[str] = None
class ExecutionAnalyticsResponse(BaseModel):
total_executions: int
processed_executions: int
successful_analytics: int
failed_analytics: int
skipped_executions: int
results: list[ExecutionAnalyticsResult]
class ModelInfo(BaseModel):
value: str
label: str
provider: str
class ExecutionAnalyticsConfig(BaseModel):
available_models: list[ModelInfo]
default_system_prompt: str
default_user_prompt: str
recommended_model: str
class AccuracyTrendsRequest(BaseModel):
graph_id: str = Field(..., description="Graph ID to analyze", min_length=1)
user_id: Optional[str] = Field(None, description="Optional user ID filter")
days_back: int = Field(30, description="Number of days to look back", ge=7, le=90)
drop_threshold: float = Field(
10.0, description="Alert threshold percentage", ge=1.0, le=50.0
)
include_historical: bool = Field(
False, description="Include historical data for charts"
)
router = APIRouter(
prefix="/admin",
tags=["admin", "execution_analytics"],
dependencies=[Security(requires_admin_user)],
)
@router.get(
"/execution_analytics/config",
response_model=ExecutionAnalyticsConfig,
summary="Get Execution Analytics Configuration",
)
async def get_execution_analytics_config(
admin_user_id: str = Security(get_user_id),
):
"""
Get the configuration for execution analytics including:
- Available AI models with metadata
- Default system and user prompts
- Recommended model selection
"""
logger.info(f"Admin user {admin_user_id} requesting execution analytics config")
# Generate model list from LlmModel enum with provider information
available_models = []
# Function to generate friendly display names from model values
def generate_model_label(model: LlmModel) -> str:
"""Generate a user-friendly label from the model enum value."""
value = model.value
# For all models, convert underscores/hyphens to spaces and title case
# e.g., "gpt-4-turbo" -> "GPT 4 Turbo", "claude-3-haiku-20240307" -> "Claude 3 Haiku"
parts = value.replace("_", "-").split("-")
# Handle provider prefixes (e.g., "google/", "x-ai/")
if "/" in value:
_, model_name = value.split("/", 1)
parts = model_name.replace("_", "-").split("-")
# Capitalize and format parts
formatted_parts = []
for part in parts:
# Skip date-like patterns - check for various date formats:
# - Long dates like "20240307" (8 digits)
# - Year components like "2024", "2025" (4 digit years >= 2020)
# - Month/day components like "04", "16" when they appear to be dates
if part.isdigit():
if len(part) >= 8: # Long date format like "20240307"
continue
elif len(part) == 4 and int(part) >= 2020: # Year like "2024", "2025"
continue
elif len(part) <= 2 and int(part) <= 31: # Month/day like "04", "16"
# Skip if this looks like a date component (basic heuristic)
continue
# Keep version numbers as-is
if part.replace(".", "").isdigit():
formatted_parts.append(part)
# Capitalize normal words
else:
formatted_parts.append(
part.upper()
if part.upper() in ["GPT", "LLM", "API", "V0"]
else part.capitalize()
)
model_name = " ".join(formatted_parts)
# Format provider name for better display
provider_name = model.provider.replace("_", " ").title()
# Return with provider prefix for clarity
return f"{provider_name}: {model_name}"
# Include all LlmModel values (no more filtering by hardcoded list)
recommended_model = LlmModel.GPT4O_MINI.value
for model in LlmModel:
label = generate_model_label(model)
# Add "(Recommended)" suffix to the recommended model
if model.value == recommended_model:
label += " (Recommended)"
available_models.append(
ModelInfo(
value=model.value,
label=label,
provider=model.provider,
)
)
# Sort models by provider and name for better UX
available_models.sort(key=lambda x: (x.provider, x.label))
return ExecutionAnalyticsConfig(
available_models=available_models,
default_system_prompt=DEFAULT_SYSTEM_PROMPT,
default_user_prompt=DEFAULT_USER_PROMPT,
recommended_model=recommended_model,
)
@router.post(
"/execution_analytics",
response_model=ExecutionAnalyticsResponse,
summary="Generate Execution Analytics",
)
async def generate_execution_analytics(
request: ExecutionAnalyticsRequest,
admin_user_id: str = Security(get_user_id),
):
"""
Generate activity summaries and correctness scores for graph executions.
This endpoint:
1. Fetches all completed executions matching the criteria
2. Identifies executions missing activity_status or correctness_score
3. Generates missing data using AI in batches
4. Updates the database with new stats
5. Returns a detailed report of the analytics operation
"""
logger.info(
f"Admin user {admin_user_id} starting execution analytics generation for graph {request.graph_id}"
)
try:
# Validate model configuration
settings = Settings()
if not settings.secrets.openai_internal_api_key:
raise HTTPException(status_code=500, detail="OpenAI API key not configured")
# Get database client
db_client = get_db_async_client()
# Fetch executions to process
executions = await get_graph_executions(
graph_id=request.graph_id,
graph_version=request.graph_version,
user_id=request.user_id,
created_time_gte=request.created_after,
statuses=[
ExecutionStatus.COMPLETED,
ExecutionStatus.FAILED,
ExecutionStatus.TERMINATED,
], # Only process finished executions
)
logger.info(
f"Found {len(executions)} total executions for graph {request.graph_id}"
)
# Filter executions that need analytics generation
executions_to_process = []
for execution in executions:
# Skip if we should skip existing analytics and both activity_status and correctness_score exist
if (
request.skip_existing
and execution.stats
and execution.stats.activity_status
and execution.stats.correctness_score is not None
):
continue
# Add execution to processing list
executions_to_process.append(execution)
logger.info(
f"Found {len(executions_to_process)} executions needing analytics generation"
)
# Create results for ALL executions - processed and skipped
results = []
successful_count = 0
failed_count = 0
# Process executions that need analytics generation
if executions_to_process:
total_batches = len(
range(0, len(executions_to_process), request.batch_size)
)
for batch_idx, i in enumerate(
range(0, len(executions_to_process), request.batch_size)
):
batch = executions_to_process[i : i + request.batch_size]
logger.info(
f"Processing batch {batch_idx + 1}/{total_batches} with {len(batch)} executions"
)
batch_results = await _process_batch(batch, request, db_client)
for result in batch_results:
results.append(result)
if result.status == "success":
successful_count += 1
elif result.status == "failed":
failed_count += 1
# Small delay between batches to avoid overwhelming the LLM API
if batch_idx < total_batches - 1: # Don't delay after the last batch
await asyncio.sleep(2)
# Add ALL executions to results (both processed and skipped)
for execution in executions:
# Skip if already processed (added to results above)
if execution in executions_to_process:
continue
results.append(
ExecutionAnalyticsResult(
agent_id=execution.graph_id,
version_id=execution.graph_version,
user_id=execution.user_id,
exec_id=execution.id,
summary_text=(
execution.stats.activity_status if execution.stats else None
),
score=(
execution.stats.correctness_score if execution.stats else None
),
status="skipped",
error_message=None, # Not an error - just already processed
)
)
response = ExecutionAnalyticsResponse(
total_executions=len(executions),
processed_executions=len(executions_to_process),
successful_analytics=successful_count,
failed_analytics=failed_count,
skipped_executions=len(executions) - len(executions_to_process),
results=results,
)
logger.info(
f"Analytics generation completed: {successful_count} successful, {failed_count} failed, "
f"{response.skipped_executions} skipped"
)
return response
except Exception as e:
logger.exception(f"Error during execution analytics generation: {e}")
raise HTTPException(status_code=500, detail=str(e))
async def _process_batch(
executions, request: ExecutionAnalyticsRequest, db_client
) -> list[ExecutionAnalyticsResult]:
"""Process a batch of executions concurrently."""
async def process_single_execution(execution) -> ExecutionAnalyticsResult:
try:
# Generate activity status and score using the specified model
# Convert stats to GraphExecutionStats if needed
if execution.stats:
if isinstance(execution.stats, GraphExecutionMeta.Stats):
stats_for_generation = execution.stats.to_db()
else:
# Already GraphExecutionStats
stats_for_generation = execution.stats
else:
stats_for_generation = GraphExecutionStats()
activity_response = await generate_activity_status_for_execution(
graph_exec_id=execution.id,
graph_id=execution.graph_id,
graph_version=execution.graph_version,
execution_stats=stats_for_generation,
db_client=db_client,
user_id=execution.user_id,
execution_status=execution.status,
model_name=request.model_name,
skip_feature_flag=True, # Admin endpoint bypasses feature flags
system_prompt=request.system_prompt or DEFAULT_SYSTEM_PROMPT,
user_prompt=request.user_prompt or DEFAULT_USER_PROMPT,
skip_existing=request.skip_existing,
)
if not activity_response:
return ExecutionAnalyticsResult(
agent_id=execution.graph_id,
version_id=execution.graph_version,
user_id=execution.user_id,
exec_id=execution.id,
summary_text=None,
score=None,
status="skipped",
error_message="Activity generation returned None",
)
# Update the execution stats
# Convert GraphExecutionMeta.Stats to GraphExecutionStats for DB compatibility
if execution.stats:
if isinstance(execution.stats, GraphExecutionMeta.Stats):
updated_stats = execution.stats.to_db()
else:
# Already GraphExecutionStats
updated_stats = execution.stats
else:
updated_stats = GraphExecutionStats()
updated_stats.activity_status = activity_response["activity_status"]
updated_stats.correctness_score = activity_response["correctness_score"]
# Save to database with correct stats type
await update_graph_execution_stats(
graph_exec_id=execution.id, stats=updated_stats
)
return ExecutionAnalyticsResult(
agent_id=execution.graph_id,
version_id=execution.graph_version,
user_id=execution.user_id,
exec_id=execution.id,
summary_text=activity_response["activity_status"],
score=activity_response["correctness_score"],
status="success",
)
except Exception as e:
logger.exception(f"Error processing execution {execution.id}: {e}")
return ExecutionAnalyticsResult(
agent_id=execution.graph_id,
version_id=execution.graph_version,
user_id=execution.user_id,
exec_id=execution.id,
summary_text=None,
score=None,
status="failed",
error_message=str(e),
)
# Process all executions in the batch concurrently
return await asyncio.gather(
*[process_single_execution(execution) for execution in executions]
)
@router.get(
"/execution_accuracy_trends",
response_model=AccuracyTrendsResponse,
summary="Get Execution Accuracy Trends and Alerts",
)
async def get_execution_accuracy_trends(
graph_id: str,
user_id: Optional[str] = None,
days_back: int = 30,
drop_threshold: float = 10.0,
include_historical: bool = False,
admin_user_id: str = Security(get_user_id),
) -> AccuracyTrendsResponse:
"""
Get execution accuracy trends with moving averages and alert detection.
Simple single-query approach.
"""
logger.info(
f"Admin user {admin_user_id} requesting accuracy trends for graph {graph_id}"
)
try:
result = await get_accuracy_trends_and_alerts(
graph_id=graph_id,
days_back=days_back,
user_id=user_id,
drop_threshold=drop_threshold,
include_historical=include_historical,
)
return result
except Exception as e:
logger.exception(f"Error getting accuracy trends for graph {graph_id}: {e}")
raise HTTPException(status_code=500, detail=str(e))

View File

@@ -1,340 +0,0 @@
"""Tests for analytics API endpoints."""
import json
from unittest.mock import AsyncMock, Mock
import fastapi
import fastapi.testclient
import pytest
import pytest_mock
from pytest_snapshot.plugin import Snapshot
from .analytics import router as analytics_router
app = fastapi.FastAPI()
app.include_router(analytics_router)
client = fastapi.testclient.TestClient(app)
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_user):
"""Setup auth overrides for all tests in this module."""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_user["get_jwt_payload"]
yield
app.dependency_overrides.clear()
# =============================================================================
# /log_raw_metric endpoint tests
# =============================================================================
def test_log_raw_metric_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
test_user_id: str,
) -> None:
"""Test successful raw metric logging."""
mock_result = Mock(id="metric-123-uuid")
mock_log_metric = mocker.patch(
"backend.data.analytics.log_raw_metric",
new_callable=AsyncMock,
return_value=mock_result,
)
request_data = {
"metric_name": "page_load_time",
"metric_value": 2.5,
"data_string": "/dashboard",
}
response = client.post("/log_raw_metric", json=request_data)
assert response.status_code == 200, f"Unexpected response: {response.text}"
assert response.json() == "metric-123-uuid"
mock_log_metric.assert_called_once_with(
user_id=test_user_id,
metric_name="page_load_time",
metric_value=2.5,
data_string="/dashboard",
)
configured_snapshot.assert_match(
json.dumps({"metric_id": response.json()}, indent=2, sort_keys=True),
"analytics_log_metric_success",
)
@pytest.mark.parametrize(
"metric_value,metric_name,data_string,test_id",
[
(100, "api_calls_count", "external_api", "integer_value"),
(0, "error_count", "no_errors", "zero_value"),
(-5.2, "temperature_delta", "cooling", "negative_value"),
(1.23456789, "precision_test", "float_precision", "float_precision"),
(999999999, "large_number", "max_value", "large_number"),
(0.0000001, "tiny_number", "min_value", "tiny_number"),
],
)
def test_log_raw_metric_various_values(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
metric_value: float,
metric_name: str,
data_string: str,
test_id: str,
) -> None:
"""Test raw metric logging with various metric values."""
mock_result = Mock(id=f"metric-{test_id}-uuid")
mocker.patch(
"backend.data.analytics.log_raw_metric",
new_callable=AsyncMock,
return_value=mock_result,
)
request_data = {
"metric_name": metric_name,
"metric_value": metric_value,
"data_string": data_string,
}
response = client.post("/log_raw_metric", json=request_data)
assert response.status_code == 200, f"Failed for {test_id}: {response.text}"
configured_snapshot.assert_match(
json.dumps(
{"metric_id": response.json(), "test_case": test_id},
indent=2,
sort_keys=True,
),
f"analytics_metric_{test_id}",
)
@pytest.mark.parametrize(
"invalid_data,expected_error",
[
({}, "Field required"),
({"metric_name": "test"}, "Field required"),
(
{"metric_name": "test", "metric_value": "not_a_number", "data_string": "x"},
"Input should be a valid number",
),
(
{"metric_name": "", "metric_value": 1.0, "data_string": "test"},
"String should have at least 1 character",
),
(
{"metric_name": "test", "metric_value": 1.0, "data_string": ""},
"String should have at least 1 character",
),
],
ids=[
"empty_request",
"missing_metric_value_and_data_string",
"invalid_metric_value_type",
"empty_metric_name",
"empty_data_string",
],
)
def test_log_raw_metric_validation_errors(
invalid_data: dict,
expected_error: str,
) -> None:
"""Test validation errors for invalid metric requests."""
response = client.post("/log_raw_metric", json=invalid_data)
assert response.status_code == 422
error_detail = response.json()
assert "detail" in error_detail, f"Missing 'detail' in error: {error_detail}"
error_text = json.dumps(error_detail)
assert (
expected_error in error_text
), f"Expected '{expected_error}' in error response: {error_text}"
def test_log_raw_metric_service_error(
mocker: pytest_mock.MockFixture,
test_user_id: str,
) -> None:
"""Test error handling when analytics service fails."""
mocker.patch(
"backend.data.analytics.log_raw_metric",
new_callable=AsyncMock,
side_effect=Exception("Database connection failed"),
)
request_data = {
"metric_name": "test_metric",
"metric_value": 1.0,
"data_string": "test",
}
response = client.post("/log_raw_metric", json=request_data)
assert response.status_code == 500
error_detail = response.json()["detail"]
assert "Database connection failed" in error_detail["message"]
assert "hint" in error_detail
# =============================================================================
# /log_raw_analytics endpoint tests
# =============================================================================
def test_log_raw_analytics_success(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
test_user_id: str,
) -> None:
"""Test successful raw analytics logging."""
mock_result = Mock(id="analytics-789-uuid")
mock_log_analytics = mocker.patch(
"backend.data.analytics.log_raw_analytics",
new_callable=AsyncMock,
return_value=mock_result,
)
request_data = {
"type": "user_action",
"data": {
"action": "button_click",
"button_id": "submit_form",
"timestamp": "2023-01-01T00:00:00Z",
"metadata": {"form_type": "registration", "fields_filled": 5},
},
"data_index": "button_click_submit_form",
}
response = client.post("/log_raw_analytics", json=request_data)
assert response.status_code == 200, f"Unexpected response: {response.text}"
assert response.json() == "analytics-789-uuid"
mock_log_analytics.assert_called_once_with(
test_user_id,
"user_action",
request_data["data"],
"button_click_submit_form",
)
configured_snapshot.assert_match(
json.dumps({"analytics_id": response.json()}, indent=2, sort_keys=True),
"analytics_log_analytics_success",
)
def test_log_raw_analytics_complex_data(
mocker: pytest_mock.MockFixture,
configured_snapshot: Snapshot,
) -> None:
"""Test raw analytics logging with complex nested data structures."""
mock_result = Mock(id="analytics-complex-uuid")
mocker.patch(
"backend.data.analytics.log_raw_analytics",
new_callable=AsyncMock,
return_value=mock_result,
)
request_data = {
"type": "agent_execution",
"data": {
"agent_id": "agent_123",
"execution_id": "exec_456",
"status": "completed",
"duration_ms": 3500,
"nodes_executed": 15,
"blocks_used": [
{"block_id": "llm_block", "count": 3},
{"block_id": "http_block", "count": 5},
{"block_id": "code_block", "count": 2},
],
"errors": [],
"metadata": {
"trigger": "manual",
"user_tier": "premium",
"environment": "production",
},
},
"data_index": "agent_123_exec_456",
}
response = client.post("/log_raw_analytics", json=request_data)
assert response.status_code == 200
configured_snapshot.assert_match(
json.dumps(
{"analytics_id": response.json(), "logged_data": request_data["data"]},
indent=2,
sort_keys=True,
),
"analytics_log_analytics_complex_data",
)
@pytest.mark.parametrize(
"invalid_data,expected_error",
[
({}, "Field required"),
({"type": "test"}, "Field required"),
(
{"type": "test", "data": "not_a_dict", "data_index": "test"},
"Input should be a valid dictionary",
),
({"type": "test", "data": {"key": "value"}}, "Field required"),
],
ids=[
"empty_request",
"missing_data_and_data_index",
"invalid_data_type",
"missing_data_index",
],
)
def test_log_raw_analytics_validation_errors(
invalid_data: dict,
expected_error: str,
) -> None:
"""Test validation errors for invalid analytics requests."""
response = client.post("/log_raw_analytics", json=invalid_data)
assert response.status_code == 422
error_detail = response.json()
assert "detail" in error_detail, f"Missing 'detail' in error: {error_detail}"
error_text = json.dumps(error_detail)
assert (
expected_error in error_text
), f"Expected '{expected_error}' in error response: {error_text}"
def test_log_raw_analytics_service_error(
mocker: pytest_mock.MockFixture,
test_user_id: str,
) -> None:
"""Test error handling when analytics service fails."""
mocker.patch(
"backend.data.analytics.log_raw_analytics",
new_callable=AsyncMock,
side_effect=Exception("Analytics DB unreachable"),
)
request_data = {
"type": "test_event",
"data": {"key": "value"},
"data_index": "test_index",
}
response = client.post("/log_raw_analytics", json=request_data)
assert response.status_code == 500
error_detail = response.json()["detail"]
assert "Analytics DB unreachable" in error_detail["message"]
assert "hint" in error_detail

View File

@@ -1,689 +0,0 @@
import logging
from dataclasses import dataclass
from datetime import datetime, timedelta, timezone
from difflib import SequenceMatcher
from typing import Sequence
import prisma
import backend.api.features.library.db as library_db
import backend.api.features.library.model as library_model
import backend.api.features.store.db as store_db
import backend.api.features.store.model as store_model
import backend.data.block
from backend.blocks import load_all_blocks
from backend.blocks.llm import LlmModel
from backend.data.block import AnyBlockSchema, BlockCategory, BlockInfo, BlockSchema
from backend.data.db import query_raw_with_schema
from backend.integrations.providers import ProviderName
from backend.util.cache import cached
from backend.util.models import Pagination
from .model import (
BlockCategoryResponse,
BlockResponse,
BlockType,
CountResponse,
FilterType,
Provider,
ProviderResponse,
SearchEntry,
)
logger = logging.getLogger(__name__)
llm_models = [name.name.lower().replace("_", " ") for name in LlmModel]
MAX_LIBRARY_AGENT_RESULTS = 100
MAX_MARKETPLACE_AGENT_RESULTS = 100
MIN_SCORE_FOR_FILTERED_RESULTS = 10.0
SearchResultItem = BlockInfo | library_model.LibraryAgent | store_model.StoreAgent
@dataclass
class _ScoredItem:
item: SearchResultItem
filter_type: FilterType
score: float
sort_key: str
@dataclass
class _SearchCacheEntry:
items: list[SearchResultItem]
total_items: dict[FilterType, int]
def get_block_categories(category_blocks: int = 3) -> list[BlockCategoryResponse]:
categories: dict[BlockCategory, BlockCategoryResponse] = {}
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
# Skip disabled blocks
if block.disabled:
continue
# Skip blocks that don't have categories (all should have at least one)
if not block.categories:
continue
# Add block to the categories
for category in block.categories:
if category not in categories:
categories[category] = BlockCategoryResponse(
name=category.name.lower(),
total_blocks=0,
blocks=[],
)
categories[category].total_blocks += 1
# Append if the category has less than the specified number of blocks
if len(categories[category].blocks) < category_blocks:
categories[category].blocks.append(block.get_info())
# Sort categories by name
return sorted(categories.values(), key=lambda x: x.name)
def get_blocks(
*,
category: str | None = None,
type: BlockType | None = None,
provider: ProviderName | None = None,
page: int = 1,
page_size: int = 50,
) -> BlockResponse:
"""
Get blocks based on either category, type or provider.
Providing nothing fetches all block types.
"""
# Only one of category, type, or provider can be specified
if (category and type) or (category and provider) or (type and provider):
raise ValueError("Only one of category, type, or provider can be specified")
blocks: list[AnyBlockSchema] = []
skip = (page - 1) * page_size
take = page_size
total = 0
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
# Skip disabled blocks
if block.disabled:
continue
# Skip blocks that don't match the category
if category and category not in {c.name.lower() for c in block.categories}:
continue
# Skip blocks that don't match the type
if (
(type == "input" and block.block_type.value != "Input")
or (type == "output" and block.block_type.value != "Output")
or (type == "action" and block.block_type.value in ("Input", "Output"))
):
continue
# Skip blocks that don't match the provider
if provider:
credentials_info = block.input_schema.get_credentials_fields_info().values()
if not any(provider in info.provider for info in credentials_info):
continue
total += 1
if skip > 0:
skip -= 1
continue
if take > 0:
take -= 1
blocks.append(block)
return BlockResponse(
blocks=[b.get_info() for b in blocks],
pagination=Pagination(
total_items=total,
total_pages=(total + page_size - 1) // page_size,
current_page=page,
page_size=page_size,
),
)
def get_block_by_id(block_id: str) -> BlockInfo | None:
"""
Get a specific block by its ID.
"""
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
if block.id == block_id:
return block.get_info()
return None
async def update_search(user_id: str, search: SearchEntry) -> str:
"""
Upsert a search request for the user and return the search ID.
"""
if search.search_id:
# Update existing search
await prisma.models.BuilderSearchHistory.prisma().update(
where={
"id": search.search_id,
},
data={
"searchQuery": search.search_query or "",
"filter": search.filter or [], # type: ignore
"byCreator": search.by_creator or [],
},
)
return search.search_id
else:
# Create new search
new_search = await prisma.models.BuilderSearchHistory.prisma().create(
data={
"userId": user_id,
"searchQuery": search.search_query or "",
"filter": search.filter or [], # type: ignore
"byCreator": search.by_creator or [],
}
)
return new_search.id
async def get_recent_searches(user_id: str, limit: int = 5) -> list[SearchEntry]:
"""
Get the user's most recent search requests.
"""
searches = await prisma.models.BuilderSearchHistory.prisma().find_many(
where={
"userId": user_id,
},
order={
"updatedAt": "desc",
},
take=limit,
)
return [
SearchEntry(
search_query=s.searchQuery,
filter=s.filter, # type: ignore
by_creator=s.byCreator,
search_id=s.id,
)
for s in searches
]
async def get_sorted_search_results(
*,
user_id: str,
search_query: str | None,
filters: Sequence[FilterType],
by_creator: Sequence[str] | None = None,
) -> _SearchCacheEntry:
normalized_filters: tuple[FilterType, ...] = tuple(sorted(set(filters or [])))
normalized_creators: tuple[str, ...] = tuple(sorted(set(by_creator or [])))
return await _build_cached_search_results(
user_id=user_id,
search_query=search_query or "",
filters=normalized_filters,
by_creator=normalized_creators,
)
@cached(ttl_seconds=300, shared_cache=True)
async def _build_cached_search_results(
user_id: str,
search_query: str,
filters: tuple[FilterType, ...],
by_creator: tuple[str, ...],
) -> _SearchCacheEntry:
normalized_query = (search_query or "").strip().lower()
include_blocks = "blocks" in filters
include_integrations = "integrations" in filters
include_library_agents = "my_agents" in filters
include_marketplace_agents = "marketplace_agents" in filters
scored_items: list[_ScoredItem] = []
total_items: dict[FilterType, int] = {
"blocks": 0,
"integrations": 0,
"marketplace_agents": 0,
"my_agents": 0,
}
block_results, block_total, integration_total = _collect_block_results(
normalized_query=normalized_query,
include_blocks=include_blocks,
include_integrations=include_integrations,
)
scored_items.extend(block_results)
total_items["blocks"] = block_total
total_items["integrations"] = integration_total
if include_library_agents:
library_response = await library_db.list_library_agents(
user_id=user_id,
search_term=search_query or None,
page=1,
page_size=MAX_LIBRARY_AGENT_RESULTS,
)
total_items["my_agents"] = library_response.pagination.total_items
scored_items.extend(
_build_library_items(
agents=library_response.agents,
normalized_query=normalized_query,
)
)
if include_marketplace_agents:
marketplace_response = await store_db.get_store_agents(
creators=list(by_creator) or None,
search_query=search_query or None,
page=1,
page_size=MAX_MARKETPLACE_AGENT_RESULTS,
)
total_items["marketplace_agents"] = marketplace_response.pagination.total_items
scored_items.extend(
_build_marketplace_items(
agents=marketplace_response.agents,
normalized_query=normalized_query,
)
)
sorted_items = sorted(
scored_items,
key=lambda entry: (-entry.score, entry.sort_key, entry.filter_type),
)
return _SearchCacheEntry(
items=[entry.item for entry in sorted_items],
total_items=total_items,
)
def _collect_block_results(
*,
normalized_query: str,
include_blocks: bool,
include_integrations: bool,
) -> tuple[list[_ScoredItem], int, int]:
results: list[_ScoredItem] = []
block_count = 0
integration_count = 0
if not include_blocks and not include_integrations:
return results, block_count, integration_count
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
if block.disabled:
continue
block_info = block.get_info()
credentials = list(block.input_schema.get_credentials_fields().values())
is_integration = len(credentials) > 0
if is_integration and not include_integrations:
continue
if not is_integration and not include_blocks:
continue
score = _score_block(block, block_info, normalized_query)
if not _should_include_item(score, normalized_query):
continue
filter_type: FilterType = "integrations" if is_integration else "blocks"
if is_integration:
integration_count += 1
else:
block_count += 1
results.append(
_ScoredItem(
item=block_info,
filter_type=filter_type,
score=score,
sort_key=_get_item_name(block_info),
)
)
return results, block_count, integration_count
def _build_library_items(
*,
agents: list[library_model.LibraryAgent],
normalized_query: str,
) -> list[_ScoredItem]:
results: list[_ScoredItem] = []
for agent in agents:
score = _score_library_agent(agent, normalized_query)
if not _should_include_item(score, normalized_query):
continue
results.append(
_ScoredItem(
item=agent,
filter_type="my_agents",
score=score,
sort_key=_get_item_name(agent),
)
)
return results
def _build_marketplace_items(
*,
agents: list[store_model.StoreAgent],
normalized_query: str,
) -> list[_ScoredItem]:
results: list[_ScoredItem] = []
for agent in agents:
score = _score_store_agent(agent, normalized_query)
if not _should_include_item(score, normalized_query):
continue
results.append(
_ScoredItem(
item=agent,
filter_type="marketplace_agents",
score=score,
sort_key=_get_item_name(agent),
)
)
return results
def get_providers(
query: str = "",
page: int = 1,
page_size: int = 50,
) -> ProviderResponse:
providers = []
query = query.lower()
skip = (page - 1) * page_size
take = page_size
all_providers = _get_all_providers()
for provider in all_providers.values():
if (
query not in provider.name.value.lower()
and query not in provider.description.lower()
):
continue
if skip > 0:
skip -= 1
continue
if take > 0:
take -= 1
providers.append(provider)
total = len(all_providers)
return ProviderResponse(
providers=providers,
pagination=Pagination(
total_items=total,
total_pages=(total + page_size - 1) // page_size,
current_page=page,
page_size=page_size,
),
)
async def get_counts(user_id: str) -> CountResponse:
my_agents = await prisma.models.LibraryAgent.prisma().count(
where={
"userId": user_id,
"isDeleted": False,
"isArchived": False,
}
)
counts = await _get_static_counts()
return CountResponse(
my_agents=my_agents,
**counts,
)
@cached(ttl_seconds=3600)
async def _get_static_counts():
"""
Get counts of blocks, integrations, and marketplace agents.
This is cached to avoid unnecessary database queries and calculations.
"""
all_blocks = 0
input_blocks = 0
action_blocks = 0
output_blocks = 0
integrations = 0
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
if block.disabled:
continue
all_blocks += 1
if block.block_type.value == "Input":
input_blocks += 1
elif block.block_type.value == "Output":
output_blocks += 1
else:
action_blocks += 1
credentials = list(block.input_schema.get_credentials_fields().values())
if len(credentials) > 0:
integrations += 1
marketplace_agents = await prisma.models.StoreAgent.prisma().count()
return {
"all_blocks": all_blocks,
"input_blocks": input_blocks,
"action_blocks": action_blocks,
"output_blocks": output_blocks,
"integrations": integrations,
"marketplace_agents": marketplace_agents,
}
def _matches_llm_model(schema_cls: type[BlockSchema], query: str) -> bool:
for field in schema_cls.model_fields.values():
if field.annotation == LlmModel:
# Check if query matches any value in llm_models
if any(query in name for name in llm_models):
return True
return False
def _score_block(
block: AnyBlockSchema,
block_info: BlockInfo,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = block_info.name.lower()
description = block_info.description.lower()
score = _score_primary_fields(name, description, normalized_query)
category_text = " ".join(
category.get("category", "").lower() for category in block_info.categories
)
score += _score_additional_field(category_text, normalized_query, 12, 6)
credentials_info = block.input_schema.get_credentials_fields_info().values()
provider_names = [
provider.value.lower()
for info in credentials_info
for provider in info.provider
]
provider_text = " ".join(provider_names)
score += _score_additional_field(provider_text, normalized_query, 15, 6)
if _matches_llm_model(block.input_schema, normalized_query):
score += 20
return score
def _score_library_agent(
agent: library_model.LibraryAgent,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = agent.name.lower()
description = (agent.description or "").lower()
instructions = (agent.instructions or "").lower()
score = _score_primary_fields(name, description, normalized_query)
score += _score_additional_field(instructions, normalized_query, 15, 6)
score += _score_additional_field(
agent.creator_name.lower(), normalized_query, 10, 5
)
return score
def _score_store_agent(
agent: store_model.StoreAgent,
normalized_query: str,
) -> float:
if not normalized_query:
return 0.0
name = agent.agent_name.lower()
description = agent.description.lower()
sub_heading = agent.sub_heading.lower()
score = _score_primary_fields(name, description, normalized_query)
score += _score_additional_field(sub_heading, normalized_query, 12, 6)
score += _score_additional_field(agent.creator.lower(), normalized_query, 10, 5)
return score
def _score_primary_fields(name: str, description: str, query: str) -> float:
score = 0.0
if name == query:
score += 120
elif name.startswith(query):
score += 90
elif query in name:
score += 60
score += SequenceMatcher(None, name, query).ratio() * 50
if description:
if query in description:
score += 30
score += SequenceMatcher(None, description, query).ratio() * 25
return score
def _score_additional_field(
value: str,
query: str,
contains_weight: float,
similarity_weight: float,
) -> float:
if not value or not query:
return 0.0
score = 0.0
if query in value:
score += contains_weight
score += SequenceMatcher(None, value, query).ratio() * similarity_weight
return score
def _should_include_item(score: float, normalized_query: str) -> bool:
if not normalized_query:
return True
return score >= MIN_SCORE_FOR_FILTERED_RESULTS
def _get_item_name(item: SearchResultItem) -> str:
if isinstance(item, BlockInfo):
return item.name.lower()
if isinstance(item, library_model.LibraryAgent):
return item.name.lower()
return item.agent_name.lower()
@cached(ttl_seconds=3600)
def _get_all_providers() -> dict[ProviderName, Provider]:
providers: dict[ProviderName, Provider] = {}
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
if block.disabled:
continue
credentials_info = block.input_schema.get_credentials_fields_info().values()
for info in credentials_info:
for provider in info.provider: # provider is a ProviderName enum member
if provider in providers:
providers[provider].integration_count += 1
else:
providers[provider] = Provider(
name=provider, description="", integration_count=1
)
return providers
@cached(ttl_seconds=3600)
async def get_suggested_blocks(count: int = 5) -> list[BlockInfo]:
suggested_blocks = []
# Sum the number of executions for each block type
# Prisma cannot group by nested relations, so we do a raw query
# Calculate the cutoff timestamp
timestamp_threshold = datetime.now(timezone.utc) - timedelta(days=30)
results = await query_raw_with_schema(
"""
SELECT
agent_node."agentBlockId" AS block_id,
COUNT(execution.id) AS execution_count
FROM {schema_prefix}"AgentNodeExecution" execution
JOIN {schema_prefix}"AgentNode" agent_node ON execution."agentNodeId" = agent_node.id
WHERE execution."endedTime" >= $1::timestamp
GROUP BY agent_node."agentBlockId"
ORDER BY execution_count DESC;
""",
timestamp_threshold,
)
# Get the top blocks based on execution count
# But ignore Input and Output blocks
blocks: list[tuple[BlockInfo, int]] = []
for block_type in load_all_blocks().values():
block: AnyBlockSchema = block_type()
if block.disabled or block.block_type in (
backend.data.block.BlockType.INPUT,
backend.data.block.BlockType.OUTPUT,
backend.data.block.BlockType.AGENT,
):
continue
# Find the execution count for this block
execution_count = next(
(row["execution_count"] for row in results if row["block_id"] == block.id),
0,
)
blocks.append((block.get_info(), execution_count))
# Sort blocks by execution count
blocks.sort(key=lambda x: x[1], reverse=True)
suggested_blocks = [block[0] for block in blocks]
# Return the top blocks
return suggested_blocks[:count]

View File

@@ -1,104 +0,0 @@
You are Otto, an AI Co-Pilot and Forward Deployed Engineer for AutoGPT, an AI Business Automation tool. Your mission is to help users quickly find and set up AutoGPT agents to solve their business problems.
Here are the functions available to you:
<functions>
1. **find_agent** - Search for agents that solve the user's problem
2. **run_agent** - Run or schedule an agent (automatically handles setup)
</functions>
## HOW run_agent WORKS
The `run_agent` tool automatically handles the entire setup flow:
1. **First call** (no inputs) → Returns available inputs so user can decide what values to use
2. **Credentials check** → If missing, UI automatically prompts user to add them (you don't need to mention this)
3. **Execution** → Runs when you provide `inputs` OR set `use_defaults=true`
Parameters:
- `username_agent_slug` (required): Agent identifier like "creator/agent-name"
- `inputs`: Object with input values for the agent
- `use_defaults`: Set to `true` to run with default values (only after user confirms)
- `schedule_name` + `cron`: For scheduled execution
## WORKFLOW
1. **find_agent** - Search for agents that solve the user's problem
2. **run_agent** (first call, no inputs) - Get available inputs for the agent
3. **Ask user** what values they want to use OR if they want to use defaults
4. **run_agent** (second call) - Either with `inputs={...}` or `use_defaults=true`
## YOUR APPROACH
**Step 1: Understand the Problem**
- Ask maximum 1-2 targeted questions
- Focus on: What business problem are they solving?
- Move quickly to searching for solutions
**Step 2: Find Agents**
- Use `find_agent` immediately with relevant keywords
- Suggest the best option from search results
- Explain briefly how it solves their problem
**Step 3: Get Agent Inputs**
- Call `run_agent(username_agent_slug="creator/agent-name")` without inputs
- This returns the available inputs (required and optional)
- Present these to the user and ask what values they want
**Step 4: Run with User's Choice**
- If user provides values: `run_agent(username_agent_slug="...", inputs={...})`
- If user says "use defaults": `run_agent(username_agent_slug="...", use_defaults=true)`
- On success, share the agent link with the user
**For Scheduled Execution:**
- Add `schedule_name` and `cron` parameters
- Example: `run_agent(username_agent_slug="...", inputs={...}, schedule_name="Daily Report", cron="0 9 * * *")`
## FUNCTION CALL FORMAT
To call a function, use this exact format:
`<function_call>function_name(parameter="value")</function_call>`
Examples:
- `<function_call>find_agent(query="social media automation")</function_call>`
- `<function_call>run_agent(username_agent_slug="creator/agent-name")</function_call>` (get inputs)
- `<function_call>run_agent(username_agent_slug="creator/agent-name", inputs={"topic": "AI news"})</function_call>`
- `<function_call>run_agent(username_agent_slug="creator/agent-name", use_defaults=true)</function_call>`
## KEY RULES
**What You DON'T Do:**
- Don't help with login (frontend handles this)
- Don't mention or explain credentials to the user (frontend handles this automatically)
- Don't run agents without first showing available inputs to the user
- Don't use `use_defaults=true` without user explicitly confirming
- Don't write responses longer than 3 sentences
**What You DO:**
- Always call run_agent first without inputs to see what's available
- Ask user what values they want OR if they want to use defaults
- Keep all responses to maximum 3 sentences
- Include the agent link in your response after successful execution
**Error Handling:**
- Authentication needed → "Please sign in via the interface"
- Credentials missing → The UI handles this automatically. Focus on asking the user about input values instead.
## RESPONSE STRUCTURE
Before responding, wrap your analysis in <thinking> tags to systematically plan your approach:
- Extract the key business problem or request from the user's message
- Determine what function call (if any) you need to make next
- Plan your response to stay under the 3-sentence maximum
Example interaction:
```
User: "Run the AI news agent for me"
Otto: <function_call>run_agent(username_agent_slug="autogpt/ai-news")</function_call>
[Tool returns: Agent accepts inputs - Required: topic. Optional: num_articles (default: 5)]
Otto: The AI News agent needs a topic. What topic would you like news about, or should I use the defaults?
User: "Use defaults"
Otto: <function_call>run_agent(username_agent_slug="autogpt/ai-news", use_defaults=true)</function_call>
```
KEEP ANSWERS TO 3 SENTENCES

View File

@@ -1,501 +0,0 @@
"""Unified tool for agent operations with automatic state detection."""
import logging
from typing import Any
from pydantic import BaseModel, Field, field_validator
from backend.api.features.chat.config import ChatConfig
from backend.api.features.chat.model import ChatSession
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
from backend.data.user import get_user_by_id
from backend.executor import utils as execution_utils
from backend.util.clients import get_scheduler_client
from backend.util.exceptions import DatabaseError, NotFoundError
from backend.util.timezone_utils import (
convert_utc_time_to_user_timezone,
get_user_timezone_or_utc,
)
from .base import BaseTool
from .models import (
AgentDetails,
AgentDetailsResponse,
ErrorResponse,
ExecutionOptions,
ExecutionStartedResponse,
SetupInfo,
SetupRequirementsResponse,
ToolResponseBase,
UserReadiness,
)
from .utils import (
check_user_has_required_credentials,
extract_credentials_from_schema,
fetch_graph_from_store_slug,
get_or_create_library_agent,
match_user_credentials_to_graph,
)
logger = logging.getLogger(__name__)
config = ChatConfig()
# Constants for response messages
MSG_DO_NOT_RUN_AGAIN = "Do not run again unless explicitly requested."
MSG_DO_NOT_SCHEDULE_AGAIN = "Do not schedule again unless explicitly requested."
MSG_ASK_USER_FOR_VALUES = (
"Ask the user what values to use, or call again with use_defaults=true "
"to run with default values."
)
MSG_WHAT_VALUES_TO_USE = (
"What values would you like to use, or would you like to run with defaults?"
)
class RunAgentInput(BaseModel):
"""Input parameters for the run_agent tool."""
username_agent_slug: str = ""
inputs: dict[str, Any] = Field(default_factory=dict)
use_defaults: bool = False
schedule_name: str = ""
cron: str = ""
timezone: str = "UTC"
@field_validator(
"username_agent_slug", "schedule_name", "cron", "timezone", mode="before"
)
@classmethod
def strip_strings(cls, v: Any) -> Any:
"""Strip whitespace from string fields."""
return v.strip() if isinstance(v, str) else v
class RunAgentTool(BaseTool):
"""Unified tool for agent operations with automatic state detection.
The tool automatically determines what to do based on provided parameters:
1. Fetches agent details (always, silently)
2. Checks if required inputs are provided
3. Checks if user has required credentials
4. Runs immediately OR schedules (if cron is provided)
The response tells the caller what's missing or confirms execution.
"""
@property
def name(self) -> str:
return "run_agent"
@property
def description(self) -> str:
return """Run or schedule an agent from the marketplace.
The tool automatically handles the setup flow:
- Returns missing inputs if required fields are not provided
- Returns missing credentials if user needs to configure them
- Executes immediately if all requirements are met
- Schedules execution if cron expression is provided
For scheduled execution, provide: schedule_name, cron, and optionally timezone."""
@property
def parameters(self) -> dict[str, Any]:
return {
"type": "object",
"properties": {
"username_agent_slug": {
"type": "string",
"description": "Agent identifier in format 'username/agent-name'",
},
"inputs": {
"type": "object",
"description": "Input values for the agent",
"additionalProperties": True,
},
"use_defaults": {
"type": "boolean",
"description": "Set to true to run with default values (user must confirm)",
},
"schedule_name": {
"type": "string",
"description": "Name for scheduled execution (triggers scheduling mode)",
},
"cron": {
"type": "string",
"description": "Cron expression (5 fields: min hour day month weekday)",
},
"timezone": {
"type": "string",
"description": "IANA timezone for schedule (default: UTC)",
},
},
"required": ["username_agent_slug"],
}
@property
def requires_auth(self) -> bool:
"""All operations require authentication."""
return True
async def _execute(
self,
user_id: str | None,
session: ChatSession,
**kwargs,
) -> ToolResponseBase:
"""Execute the tool with automatic state detection."""
params = RunAgentInput(**kwargs)
session_id = session.session_id
# Validate agent slug format
if not params.username_agent_slug or "/" not in params.username_agent_slug:
return ErrorResponse(
message="Please provide an agent slug in format 'username/agent-name'",
session_id=session_id,
)
# Auth is required
if not user_id:
return ErrorResponse(
message="Authentication required. Please sign in to use this tool.",
session_id=session_id,
)
# Determine if this is a schedule request
is_schedule = bool(params.schedule_name or params.cron)
try:
# Step 1: Fetch agent details (always happens first)
username, agent_name = params.username_agent_slug.split("/", 1)
graph, store_agent = await fetch_graph_from_store_slug(username, agent_name)
if not graph:
return ErrorResponse(
message=f"Agent '{params.username_agent_slug}' not found in marketplace",
session_id=session_id,
)
# Step 2: Check credentials
graph_credentials, missing_creds = await match_user_credentials_to_graph(
user_id, graph
)
if missing_creds:
# Return credentials needed response with input data info
# The UI handles credential setup automatically, so the message
# focuses on asking about input data
credentials = extract_credentials_from_schema(
graph.credentials_input_schema
)
missing_creds_check = await check_user_has_required_credentials(
user_id, credentials
)
missing_credentials_dict = {
c.id: c.model_dump() for c in missing_creds_check
}
return SetupRequirementsResponse(
message=self._build_inputs_message(graph, MSG_WHAT_VALUES_TO_USE),
session_id=session_id,
setup_info=SetupInfo(
agent_id=graph.id,
agent_name=graph.name,
user_readiness=UserReadiness(
has_all_credentials=False,
missing_credentials=missing_credentials_dict,
ready_to_run=False,
),
requirements={
"credentials": [c.model_dump() for c in credentials],
"inputs": self._get_inputs_list(graph.input_schema),
"execution_modes": self._get_execution_modes(graph),
},
),
graph_id=graph.id,
graph_version=graph.version,
)
# Step 3: Check inputs
# Get all available input fields from schema
input_properties = graph.input_schema.get("properties", {})
required_fields = set(graph.input_schema.get("required", []))
provided_inputs = set(params.inputs.keys())
# If agent has inputs but none were provided AND use_defaults is not set,
# always show what's available first so user can decide
if input_properties and not provided_inputs and not params.use_defaults:
credentials = extract_credentials_from_schema(
graph.credentials_input_schema
)
return AgentDetailsResponse(
message=self._build_inputs_message(graph, MSG_ASK_USER_FOR_VALUES),
session_id=session_id,
agent=self._build_agent_details(graph, credentials),
user_authenticated=True,
graph_id=graph.id,
graph_version=graph.version,
)
# Check if required inputs are missing (and not using defaults)
missing_inputs = required_fields - provided_inputs
if missing_inputs and not params.use_defaults:
# Return agent details with missing inputs info
credentials = extract_credentials_from_schema(
graph.credentials_input_schema
)
return AgentDetailsResponse(
message=(
f"Agent '{graph.name}' is missing required inputs: "
f"{', '.join(missing_inputs)}. "
"Please provide these values to run the agent."
),
session_id=session_id,
agent=self._build_agent_details(graph, credentials),
user_authenticated=True,
graph_id=graph.id,
graph_version=graph.version,
)
# Step 4: Execute or Schedule
if is_schedule:
return await self._schedule_agent(
user_id=user_id,
session=session,
graph=graph,
graph_credentials=graph_credentials,
inputs=params.inputs,
schedule_name=params.schedule_name,
cron=params.cron,
timezone=params.timezone,
)
else:
return await self._run_agent(
user_id=user_id,
session=session,
graph=graph,
graph_credentials=graph_credentials,
inputs=params.inputs,
)
except NotFoundError as e:
return ErrorResponse(
message=f"Agent '{params.username_agent_slug}' not found",
error=str(e) if str(e) else "not_found",
session_id=session_id,
)
except DatabaseError as e:
logger.error(f"Database error: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to process request: {e!s}",
error=str(e),
session_id=session_id,
)
except Exception as e:
logger.error(f"Error processing agent request: {e}", exc_info=True)
return ErrorResponse(
message=f"Failed to process request: {e!s}",
error=str(e),
session_id=session_id,
)
def _get_inputs_list(self, input_schema: dict[str, Any]) -> list[dict[str, Any]]:
"""Extract inputs list from schema."""
inputs_list = []
if isinstance(input_schema, dict) and "properties" in input_schema:
for field_name, field_schema in input_schema["properties"].items():
inputs_list.append(
{
"name": field_name,
"title": field_schema.get("title", field_name),
"type": field_schema.get("type", "string"),
"description": field_schema.get("description", ""),
"required": field_name in input_schema.get("required", []),
}
)
return inputs_list
def _get_execution_modes(self, graph: GraphModel) -> list[str]:
"""Get available execution modes for the graph."""
trigger_info = graph.trigger_setup_info
if trigger_info is None:
return ["manual", "scheduled"]
return ["webhook"]
def _build_inputs_message(
self,
graph: GraphModel,
suffix: str,
) -> str:
"""Build a message describing available inputs for an agent."""
inputs_list = self._get_inputs_list(graph.input_schema)
required_names = [i["name"] for i in inputs_list if i["required"]]
optional_names = [i["name"] for i in inputs_list if not i["required"]]
message_parts = [f"Agent '{graph.name}' accepts the following inputs:"]
if required_names:
message_parts.append(f"Required: {', '.join(required_names)}.")
if optional_names:
message_parts.append(
f"Optional (have defaults): {', '.join(optional_names)}."
)
if not inputs_list:
message_parts = [f"Agent '{graph.name}' has no required inputs."]
message_parts.append(suffix)
return " ".join(message_parts)
def _build_agent_details(
self,
graph: GraphModel,
credentials: list[CredentialsMetaInput],
) -> AgentDetails:
"""Build AgentDetails from a graph."""
trigger_info = (
graph.trigger_setup_info.model_dump() if graph.trigger_setup_info else None
)
return AgentDetails(
id=graph.id,
name=graph.name,
description=graph.description,
inputs=graph.input_schema,
credentials=credentials,
execution_options=ExecutionOptions(
manual=trigger_info is None,
scheduled=trigger_info is None,
webhook=trigger_info is not None,
),
trigger_info=trigger_info,
)
async def _run_agent(
self,
user_id: str,
session: ChatSession,
graph: GraphModel,
graph_credentials: dict[str, CredentialsMetaInput],
inputs: dict[str, Any],
) -> ToolResponseBase:
"""Execute an agent immediately."""
session_id = session.session_id
# Check rate limits
if session.successful_agent_runs.get(graph.id, 0) >= config.max_agent_runs:
return ErrorResponse(
message="Maximum agent runs reached for this session. Please try again later.",
session_id=session_id,
)
# Get or create library agent
library_agent = await get_or_create_library_agent(graph, user_id)
# Execute
execution = await execution_utils.add_graph_execution(
graph_id=library_agent.graph_id,
user_id=user_id,
inputs=inputs,
graph_credentials_inputs=graph_credentials,
)
# Track successful run
session.successful_agent_runs[library_agent.graph_id] = (
session.successful_agent_runs.get(library_agent.graph_id, 0) + 1
)
library_agent_link = f"/library/agents/{library_agent.id}"
return ExecutionStartedResponse(
message=(
f"Agent '{library_agent.name}' execution started successfully. "
f"View at {library_agent_link}. "
f"{MSG_DO_NOT_RUN_AGAIN}"
),
session_id=session_id,
execution_id=execution.id,
graph_id=library_agent.graph_id,
graph_name=library_agent.name,
library_agent_id=library_agent.id,
library_agent_link=library_agent_link,
)
async def _schedule_agent(
self,
user_id: str,
session: ChatSession,
graph: GraphModel,
graph_credentials: dict[str, CredentialsMetaInput],
inputs: dict[str, Any],
schedule_name: str,
cron: str,
timezone: str,
) -> ToolResponseBase:
"""Set up scheduled execution for an agent."""
session_id = session.session_id
# Validate schedule params
if not schedule_name:
return ErrorResponse(
message="schedule_name is required for scheduled execution",
session_id=session_id,
)
if not cron:
return ErrorResponse(
message="cron expression is required for scheduled execution",
session_id=session_id,
)
# Check rate limits
if (
session.successful_agent_schedules.get(graph.id, 0)
>= config.max_agent_schedules
):
return ErrorResponse(
message="Maximum agent schedules reached for this session.",
session_id=session_id,
)
# Get or create library agent
library_agent = await get_or_create_library_agent(graph, user_id)
# Get user timezone
user = await get_user_by_id(user_id)
user_timezone = get_user_timezone_or_utc(user.timezone if user else timezone)
# Create schedule
result = await get_scheduler_client().add_execution_schedule(
user_id=user_id,
graph_id=library_agent.graph_id,
graph_version=library_agent.graph_version,
name=schedule_name,
cron=cron,
input_data=inputs,
input_credentials=graph_credentials,
user_timezone=user_timezone,
)
# Convert next_run_time to user timezone for display
if result.next_run_time:
result.next_run_time = convert_utc_time_to_user_timezone(
result.next_run_time, user_timezone
)
# Track successful schedule
session.successful_agent_schedules[library_agent.graph_id] = (
session.successful_agent_schedules.get(library_agent.graph_id, 0) + 1
)
library_agent_link = f"/library/agents/{library_agent.id}"
return ExecutionStartedResponse(
message=(
f"Agent '{library_agent.name}' scheduled successfully as '{schedule_name}'. "
f"View at {library_agent_link}. "
f"{MSG_DO_NOT_SCHEDULE_AGAIN}"
),
session_id=session_id,
execution_id=result.id,
graph_id=library_agent.graph_id,
graph_name=library_agent.name,
library_agent_id=library_agent.id,
library_agent_link=library_agent_link,
)

View File

@@ -1,391 +0,0 @@
import uuid
import orjson
import pytest
from ._test_data import (
make_session,
setup_firecrawl_test_data,
setup_llm_test_data,
setup_test_data,
)
from .run_agent import RunAgentTool
# This is so the formatter doesn't remove the fixture imports
setup_llm_test_data = setup_llm_test_data
setup_test_data = setup_test_data
setup_firecrawl_test_data = setup_firecrawl_test_data
@pytest.mark.asyncio(scope="session")
async def test_run_agent(setup_test_data):
"""Test that the run_agent tool successfully executes an approved agent"""
# Use test data from fixture
user = setup_test_data["user"]
graph = setup_test_data["graph"]
store_submission = setup_test_data["store_submission"]
# Create the tool instance
tool = RunAgentTool()
# Build the proper marketplace agent_id format: username/slug
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
# Build the session
session = make_session(user_id=user.id)
# Execute the tool
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug=agent_marketplace_id,
inputs={"test_input": "Hello World"},
session=session,
)
# Verify the response
assert response is not None
assert hasattr(response, "result")
# Parse the result JSON to verify the execution started
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert "execution_id" in result_data
assert "graph_id" in result_data
assert result_data["graph_id"] == graph.id
assert "graph_name" in result_data
assert result_data["graph_name"] == "Test Agent"
@pytest.mark.asyncio(scope="session")
async def test_run_agent_missing_inputs(setup_test_data):
"""Test that the run_agent tool returns error when inputs are missing"""
# Use test data from fixture
user = setup_test_data["user"]
store_submission = setup_test_data["store_submission"]
# Create the tool instance
tool = RunAgentTool()
# Build the proper marketplace agent_id format
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
# Build the session
session = make_session(user_id=user.id)
# Execute the tool without required inputs
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug=agent_marketplace_id,
inputs={}, # Missing required input
session=session,
)
# Verify that we get an error response
assert response is not None
assert hasattr(response, "result")
# The tool should return an ErrorResponse when setup info indicates not ready
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert "message" in result_data
@pytest.mark.asyncio(scope="session")
async def test_run_agent_invalid_agent_id(setup_test_data):
"""Test that the run_agent tool returns error for invalid agent ID"""
# Use test data from fixture
user = setup_test_data["user"]
# Create the tool instance
tool = RunAgentTool()
# Build the session
session = make_session(user_id=user.id)
# Execute the tool with invalid agent ID
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug="invalid/agent-id",
inputs={"test_input": "Hello World"},
session=session,
)
# Verify that we get an error response
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
assert "message" in result_data
# Should get an error about failed setup or not found
assert any(
phrase in result_data["message"].lower() for phrase in ["not found", "failed"]
)
@pytest.mark.asyncio(scope="session")
async def test_run_agent_with_llm_credentials(setup_llm_test_data):
"""Test that run_agent works with an agent requiring LLM credentials"""
# Use test data from fixture
user = setup_llm_test_data["user"]
graph = setup_llm_test_data["graph"]
store_submission = setup_llm_test_data["store_submission"]
# Create the tool instance
tool = RunAgentTool()
# Build the proper marketplace agent_id format
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
# Build the session
session = make_session(user_id=user.id)
# Execute the tool with a prompt for the LLM
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug=agent_marketplace_id,
inputs={"user_prompt": "What is 2+2?"},
session=session,
)
# Verify the response
assert response is not None
assert hasattr(response, "result")
# Parse the result JSON to verify the execution started
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
# Should successfully start execution since credentials are available
assert "execution_id" in result_data
assert "graph_id" in result_data
assert result_data["graph_id"] == graph.id
assert "graph_name" in result_data
assert result_data["graph_name"] == "LLM Test Agent"
@pytest.mark.asyncio(scope="session")
async def test_run_agent_shows_available_inputs_when_none_provided(setup_test_data):
"""Test that run_agent returns available inputs when called without inputs or use_defaults."""
user = setup_test_data["user"]
store_submission = setup_test_data["store_submission"]
tool = RunAgentTool()
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
session = make_session(user_id=user.id)
# Execute without inputs and without use_defaults
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug=agent_marketplace_id,
inputs={},
use_defaults=False,
session=session,
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
# Should return agent_details type showing available inputs
assert result_data.get("type") == "agent_details"
assert "agent" in result_data
assert "message" in result_data
# Message should mention inputs
assert "inputs" in result_data["message"].lower()
@pytest.mark.asyncio(scope="session")
async def test_run_agent_with_use_defaults(setup_test_data):
"""Test that run_agent executes successfully with use_defaults=True."""
user = setup_test_data["user"]
graph = setup_test_data["graph"]
store_submission = setup_test_data["store_submission"]
tool = RunAgentTool()
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
session = make_session(user_id=user.id)
# Execute with use_defaults=True (no explicit inputs)
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug=agent_marketplace_id,
inputs={},
use_defaults=True,
session=session,
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
# Should execute successfully
assert "execution_id" in result_data
assert result_data["graph_id"] == graph.id
@pytest.mark.asyncio(scope="session")
async def test_run_agent_missing_credentials(setup_firecrawl_test_data):
"""Test that run_agent returns setup_requirements when credentials are missing."""
user = setup_firecrawl_test_data["user"]
store_submission = setup_firecrawl_test_data["store_submission"]
tool = RunAgentTool()
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
session = make_session(user_id=user.id)
# Execute - user doesn't have firecrawl credentials
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug=agent_marketplace_id,
inputs={"url": "https://example.com"},
session=session,
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
# Should return setup_requirements type with missing credentials
assert result_data.get("type") == "setup_requirements"
assert "setup_info" in result_data
setup_info = result_data["setup_info"]
assert "user_readiness" in setup_info
assert setup_info["user_readiness"]["has_all_credentials"] is False
assert len(setup_info["user_readiness"]["missing_credentials"]) > 0
@pytest.mark.asyncio(scope="session")
async def test_run_agent_invalid_slug_format(setup_test_data):
"""Test that run_agent returns error for invalid slug format (no slash)."""
user = setup_test_data["user"]
tool = RunAgentTool()
session = make_session(user_id=user.id)
# Execute with invalid slug format
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug="no-slash-here",
inputs={},
session=session,
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
# Should return error
assert result_data.get("type") == "error"
assert "username/agent-name" in result_data["message"]
@pytest.mark.asyncio(scope="session")
async def test_run_agent_unauthenticated():
"""Test that run_agent returns need_login for unauthenticated users."""
tool = RunAgentTool()
session = make_session(user_id=None)
# Execute without user_id
response = await tool.execute(
user_id=None,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug="test/test-agent",
inputs={},
session=session,
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
# Base tool returns need_login type for unauthenticated users
assert result_data.get("type") == "need_login"
assert "sign in" in result_data["message"].lower()
@pytest.mark.asyncio(scope="session")
async def test_run_agent_schedule_without_cron(setup_test_data):
"""Test that run_agent returns error when scheduling without cron expression."""
user = setup_test_data["user"]
store_submission = setup_test_data["store_submission"]
tool = RunAgentTool()
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
session = make_session(user_id=user.id)
# Try to schedule without cron
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug=agent_marketplace_id,
inputs={"test_input": "test"},
schedule_name="My Schedule",
cron="", # Empty cron
session=session,
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
# Should return error about missing cron
assert result_data.get("type") == "error"
assert "cron" in result_data["message"].lower()
@pytest.mark.asyncio(scope="session")
async def test_run_agent_schedule_without_name(setup_test_data):
"""Test that run_agent returns error when scheduling without schedule_name."""
user = setup_test_data["user"]
store_submission = setup_test_data["store_submission"]
tool = RunAgentTool()
agent_marketplace_id = f"{user.email.split('@')[0]}/{store_submission.slug}"
session = make_session(user_id=user.id)
# Try to schedule without schedule_name
response = await tool.execute(
user_id=user.id,
session_id=str(uuid.uuid4()),
tool_call_id=str(uuid.uuid4()),
username_agent_slug=agent_marketplace_id,
inputs={"test_input": "test"},
schedule_name="", # Empty name
cron="0 9 * * *",
session=session,
)
assert response is not None
assert hasattr(response, "result")
assert isinstance(response.result, str)
result_data = orjson.loads(response.result)
# Should return error about missing schedule_name
assert result_data.get("type") == "error"
assert "schedule_name" in result_data["message"].lower()

View File

@@ -1,288 +0,0 @@
"""Shared utilities for chat tools."""
import logging
from typing import Any
from backend.api.features.library import db as library_db
from backend.api.features.library import model as library_model
from backend.api.features.store import db as store_db
from backend.data import graph as graph_db
from backend.data.graph import GraphModel
from backend.data.model import CredentialsMetaInput
from backend.integrations.creds_manager import IntegrationCredentialsManager
from backend.util.exceptions import NotFoundError
logger = logging.getLogger(__name__)
async def fetch_graph_from_store_slug(
username: str,
agent_name: str,
) -> tuple[GraphModel | None, Any | None]:
"""
Fetch graph from store by username/agent_name slug.
Args:
username: Creator's username
agent_name: Agent name/slug
Returns:
tuple[Graph | None, StoreAgentDetails | None]: The graph and store agent details,
or (None, None) if not found.
Raises:
DatabaseError: If there's a database error during lookup.
"""
try:
store_agent = await store_db.get_store_agent_details(username, agent_name)
except NotFoundError:
return None, None
# Get the graph from store listing version
graph_meta = await store_db.get_available_graph(
store_agent.store_listing_version_id
)
graph = await graph_db.get_graph(
graph_id=graph_meta.id,
version=graph_meta.version,
user_id=None, # Public access
include_subgraphs=True,
)
return graph, store_agent
def extract_credentials_from_schema(
credentials_input_schema: dict[str, Any] | None,
) -> list[CredentialsMetaInput]:
"""
Extract credential requirements from graph's credentials_input_schema.
This consolidates duplicated logic from get_agent_details.py and setup_agent.py.
Args:
credentials_input_schema: The credentials_input_schema from a Graph object
Returns:
List of CredentialsMetaInput with provider and type info
"""
credentials: list[CredentialsMetaInput] = []
if (
not isinstance(credentials_input_schema, dict)
or "properties" not in credentials_input_schema
):
return credentials
for cred_name, cred_schema in credentials_input_schema["properties"].items():
provider = _extract_provider_from_schema(cred_schema)
cred_type = _extract_credential_type_from_schema(cred_schema)
credentials.append(
CredentialsMetaInput(
id=cred_name,
title=cred_schema.get("title", cred_name),
provider=provider, # type: ignore
type=cred_type, # type: ignore
)
)
return credentials
def extract_credentials_as_dict(
credentials_input_schema: dict[str, Any] | None,
) -> dict[str, CredentialsMetaInput]:
"""
Extract credential requirements as a dict keyed by field name.
Args:
credentials_input_schema: The credentials_input_schema from a Graph object
Returns:
Dict mapping field name to CredentialsMetaInput
"""
credentials: dict[str, CredentialsMetaInput] = {}
if (
not isinstance(credentials_input_schema, dict)
or "properties" not in credentials_input_schema
):
return credentials
for cred_name, cred_schema in credentials_input_schema["properties"].items():
provider = _extract_provider_from_schema(cred_schema)
cred_type = _extract_credential_type_from_schema(cred_schema)
credentials[cred_name] = CredentialsMetaInput(
id=cred_name,
title=cred_schema.get("title", cred_name),
provider=provider, # type: ignore
type=cred_type, # type: ignore
)
return credentials
def _extract_provider_from_schema(cred_schema: dict[str, Any]) -> str:
"""Extract provider from credential schema."""
if "credentials_provider" in cred_schema and cred_schema["credentials_provider"]:
return cred_schema["credentials_provider"][0]
if "properties" in cred_schema and "provider" in cred_schema["properties"]:
return cred_schema["properties"]["provider"].get("const", "unknown")
return "unknown"
def _extract_credential_type_from_schema(cred_schema: dict[str, Any]) -> str:
"""Extract credential type from credential schema."""
if "credentials_types" in cred_schema and cred_schema["credentials_types"]:
return cred_schema["credentials_types"][0]
if "properties" in cred_schema and "type" in cred_schema["properties"]:
return cred_schema["properties"]["type"].get("const", "api_key")
return "api_key"
async def get_or_create_library_agent(
graph: GraphModel,
user_id: str,
) -> library_model.LibraryAgent:
"""
Get existing library agent or create new one.
This consolidates duplicated logic from run_agent.py and setup_agent.py.
Args:
graph: The Graph to add to library
user_id: The user's ID
Returns:
LibraryAgent instance
"""
existing = await library_db.get_library_agent_by_graph_id(
graph_id=graph.id, user_id=user_id
)
if existing:
return existing
library_agents = await library_db.create_library_agent(
graph=graph,
user_id=user_id,
create_library_agents_for_sub_graphs=False,
)
assert len(library_agents) == 1, "Expected 1 library agent to be created"
return library_agents[0]
async def match_user_credentials_to_graph(
user_id: str,
graph: GraphModel,
) -> tuple[dict[str, CredentialsMetaInput], list[str]]:
"""
Match user's available credentials against graph's required credentials.
Uses graph.aggregate_credentials_inputs() which handles credentials from
multiple nodes and uses frozensets for provider matching.
Args:
user_id: The user's ID
graph: The Graph with credential requirements
Returns:
tuple[matched_credentials dict, missing_credential_descriptions list]
"""
graph_credentials_inputs: dict[str, CredentialsMetaInput] = {}
missing_creds: list[str] = []
# Get aggregated credentials requirements from the graph
aggregated_creds = graph.aggregate_credentials_inputs()
logger.debug(
f"Matching credentials for graph {graph.id}: {len(aggregated_creds)} required"
)
if not aggregated_creds:
return graph_credentials_inputs, missing_creds
# Get all available credentials for the user
creds_manager = IntegrationCredentialsManager()
available_creds = await creds_manager.store.get_all_creds(user_id)
# For each required credential field, find a matching user credential
# field_info.provider is a frozenset because aggregate_credentials_inputs()
# combines requirements from multiple nodes. A credential matches if its
# provider is in the set of acceptable providers.
for credential_field_name, (
credential_requirements,
_node_fields,
) in aggregated_creds.items():
# Find first matching credential by provider and type
matching_cred = next(
(
cred
for cred in available_creds
if cred.provider in credential_requirements.provider
and cred.type in credential_requirements.supported_types
),
None,
)
if matching_cred:
try:
graph_credentials_inputs[credential_field_name] = CredentialsMetaInput(
id=matching_cred.id,
provider=matching_cred.provider, # type: ignore
type=matching_cred.type,
title=matching_cred.title,
)
except Exception as e:
logger.error(
f"Failed to create CredentialsMetaInput for field '{credential_field_name}': "
f"provider={matching_cred.provider}, type={matching_cred.type}, "
f"credential_id={matching_cred.id}",
exc_info=True,
)
missing_creds.append(
f"{credential_field_name} (validation failed: {e})"
)
else:
missing_creds.append(
f"{credential_field_name} "
f"(requires provider in {list(credential_requirements.provider)}, "
f"type in {list(credential_requirements.supported_types)})"
)
logger.info(
f"Credential matching complete: {len(graph_credentials_inputs)}/{len(aggregated_creds)} matched"
)
return graph_credentials_inputs, missing_creds
async def check_user_has_required_credentials(
user_id: str,
required_credentials: list[CredentialsMetaInput],
) -> list[CredentialsMetaInput]:
"""
Check which required credentials the user is missing.
Args:
user_id: The user's ID
required_credentials: List of required credentials
Returns:
List of missing credentials (empty if user has all)
"""
if not required_credentials:
return []
creds_manager = IntegrationCredentialsManager()
available_creds = await creds_manager.store.get_all_creds(user_id)
missing: list[CredentialsMetaInput] = []
for required in required_credentials:
has_matching = any(
cred.provider == required.provider and cred.type == required.type
for cred in available_creds
)
if not has_matching:
missing.append(required)
return missing

View File

@@ -1,204 +0,0 @@
import json
from datetime import datetime
from typing import TYPE_CHECKING, Any, Dict, List, Union
from prisma.enums import ReviewStatus
from pydantic import BaseModel, Field, field_validator, model_validator
if TYPE_CHECKING:
from prisma.models import PendingHumanReview
# SafeJson-compatible type alias for review data
SafeJsonData = Union[Dict[str, Any], List[Any], str, int, float, bool, None]
class PendingHumanReviewModel(BaseModel):
"""Response model for pending human review data.
Represents a human review request that is awaiting user action.
Contains all necessary information for a user to review and approve
or reject data from a Human-in-the-Loop block execution.
Attributes:
id: Unique identifier for the review record
user_id: ID of the user who must perform the review
node_exec_id: ID of the node execution that created this review
graph_exec_id: ID of the graph execution containing the node
graph_id: ID of the graph template being executed
graph_version: Version number of the graph template
payload: The actual data payload awaiting review
instructions: Instructions or message for the reviewer
editable: Whether the reviewer can edit the data
status: Current review status (WAITING, APPROVED, or REJECTED)
review_message: Optional message from the reviewer
created_at: Timestamp when review was created
updated_at: Timestamp when review was last modified
reviewed_at: Timestamp when review was completed (if applicable)
"""
node_exec_id: str = Field(description="Node execution ID (primary key)")
user_id: str = Field(description="User ID associated with the review")
graph_exec_id: str = Field(description="Graph execution ID")
graph_id: str = Field(description="Graph ID")
graph_version: int = Field(description="Graph version")
payload: SafeJsonData = Field(description="The actual data payload awaiting review")
instructions: str | None = Field(
description="Instructions or message for the reviewer", default=None
)
editable: bool = Field(description="Whether the reviewer can edit the data")
status: ReviewStatus = Field(description="Review status")
review_message: str | None = Field(
description="Optional message from the reviewer", default=None
)
was_edited: bool | None = Field(
description="Whether the data was modified during review", default=None
)
processed: bool = Field(
description="Whether the review result has been processed by the execution engine",
default=False,
)
created_at: datetime = Field(description="When the review was created")
updated_at: datetime | None = Field(
description="When the review was last updated", default=None
)
reviewed_at: datetime | None = Field(
description="When the review was completed", default=None
)
@classmethod
def from_db(cls, review: "PendingHumanReview") -> "PendingHumanReviewModel":
"""
Convert a database model to a response model.
Uses the new flat database structure with separate columns for
payload, instructions, and editable flag.
Handles invalid data gracefully by using safe defaults.
"""
return cls(
node_exec_id=review.nodeExecId,
user_id=review.userId,
graph_exec_id=review.graphExecId,
graph_id=review.graphId,
graph_version=review.graphVersion,
payload=review.payload,
instructions=review.instructions,
editable=review.editable,
status=review.status,
review_message=review.reviewMessage,
was_edited=review.wasEdited,
processed=review.processed,
created_at=review.createdAt,
updated_at=review.updatedAt,
reviewed_at=review.reviewedAt,
)
class ReviewItem(BaseModel):
"""Single review item for processing."""
node_exec_id: str = Field(description="Node execution ID to review")
approved: bool = Field(
description="Whether this review is approved (True) or rejected (False)"
)
message: str | None = Field(
None, description="Optional review message", max_length=2000
)
reviewed_data: SafeJsonData | None = Field(
None, description="Optional edited data (ignored if approved=False)"
)
@field_validator("reviewed_data")
@classmethod
def validate_reviewed_data(cls, v):
"""Validate that reviewed_data is safe and properly structured."""
if v is None:
return v
# Validate SafeJson compatibility
def validate_safejson_type(obj):
"""Ensure object only contains SafeJson compatible types."""
if obj is None:
return True
elif isinstance(obj, (str, int, float, bool)):
return True
elif isinstance(obj, dict):
return all(
isinstance(k, str) and validate_safejson_type(v)
for k, v in obj.items()
)
elif isinstance(obj, list):
return all(validate_safejson_type(item) for item in obj)
else:
return False
if not validate_safejson_type(v):
raise ValueError("reviewed_data contains non-SafeJson compatible types")
# Validate data size to prevent DoS attacks
try:
json_str = json.dumps(v)
if len(json_str) > 1000000: # 1MB limit
raise ValueError("reviewed_data is too large (max 1MB)")
except (TypeError, ValueError) as e:
raise ValueError(f"reviewed_data must be JSON serializable: {str(e)}")
# Ensure no dangerous nested structures (prevent infinite recursion)
def check_depth(obj, max_depth=10, current_depth=0):
"""Recursively check object nesting depth to prevent stack overflow attacks."""
if current_depth > max_depth:
raise ValueError("reviewed_data has excessive nesting depth")
if isinstance(obj, dict):
for value in obj.values():
check_depth(value, max_depth, current_depth + 1)
elif isinstance(obj, list):
for item in obj:
check_depth(item, max_depth, current_depth + 1)
check_depth(v)
return v
@field_validator("message")
@classmethod
def validate_message(cls, v):
"""Validate and sanitize review message."""
if v is not None and len(v.strip()) == 0:
return None
return v
class ReviewRequest(BaseModel):
"""Request model for processing ALL pending reviews for an execution.
This request must include ALL pending reviews for a graph execution.
Each review will be either approved (with optional data modifications)
or rejected (data ignored). The execution will resume only after ALL reviews are processed.
"""
reviews: List[ReviewItem] = Field(
description="All reviews with their approval status, data, and messages"
)
@model_validator(mode="after")
def validate_review_completeness(self):
"""Validate that we have at least one review to process and no duplicates."""
if not self.reviews:
raise ValueError("At least one review must be provided")
# Ensure no duplicate node_exec_ids
node_ids = [review.node_exec_id for review in self.reviews]
if len(node_ids) != len(set(node_ids)):
duplicates = [nid for nid in set(node_ids) if node_ids.count(nid) > 1]
raise ValueError(f"Duplicate review IDs found: {', '.join(duplicates)}")
return self
class ReviewResponse(BaseModel):
"""Response from review endpoint."""
approved_count: int = Field(description="Number of reviews successfully approved")
rejected_count: int = Field(description="Number of reviews successfully rejected")
failed_count: int = Field(description="Number of reviews that failed processing")
error: str | None = Field(None, description="Error message if operation failed")

View File

@@ -1,492 +0,0 @@
import datetime
import fastapi
import fastapi.testclient
import pytest
import pytest_mock
from prisma.enums import ReviewStatus
from pytest_snapshot.plugin import Snapshot
from backend.api.rest_api import handle_internal_http_error
from .model import PendingHumanReviewModel
from .routes import router
# Using a fixed timestamp for reproducible tests
FIXED_NOW = datetime.datetime(2023, 1, 1, 0, 0, 0, tzinfo=datetime.timezone.utc)
app = fastapi.FastAPI()
app.include_router(router, prefix="/api/review")
app.add_exception_handler(ValueError, handle_internal_http_error(400))
client = fastapi.testclient.TestClient(app)
@pytest.fixture(autouse=True)
def setup_app_auth(mock_jwt_user):
"""Setup auth overrides for all tests in this module"""
from autogpt_libs.auth.jwt_utils import get_jwt_payload
app.dependency_overrides[get_jwt_payload] = mock_jwt_user["get_jwt_payload"]
yield
app.dependency_overrides.clear()
@pytest.fixture
def sample_pending_review(test_user_id: str) -> PendingHumanReviewModel:
"""Create a sample pending review for testing"""
return PendingHumanReviewModel(
node_exec_id="test_node_123",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "test payload", "value": 42},
instructions="Please review this data",
editable=True,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=None,
processed=False,
created_at=FIXED_NOW,
updated_at=None,
reviewed_at=None,
)
def test_get_pending_reviews_empty(
mocker: pytest_mock.MockerFixture,
snapshot: Snapshot,
test_user_id: str,
) -> None:
"""Test getting pending reviews when none exist"""
mock_get_reviews = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_user"
)
mock_get_reviews.return_value = []
response = client.get("/api/review/pending")
assert response.status_code == 200
assert response.json() == []
mock_get_reviews.assert_called_once_with(test_user_id, 1, 25)
def test_get_pending_reviews_with_data(
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
snapshot: Snapshot,
test_user_id: str,
) -> None:
"""Test getting pending reviews with data"""
mock_get_reviews = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_user"
)
mock_get_reviews.return_value = [sample_pending_review]
response = client.get("/api/review/pending?page=2&page_size=10")
assert response.status_code == 200
data = response.json()
assert len(data) == 1
assert data[0]["node_exec_id"] == "test_node_123"
assert data[0]["status"] == "WAITING"
mock_get_reviews.assert_called_once_with(test_user_id, 2, 10)
def test_get_pending_reviews_for_execution_success(
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
snapshot: Snapshot,
test_user_id: str,
) -> None:
"""Test getting pending reviews for specific execution"""
mock_get_graph_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_get_graph_execution.return_value = {
"id": "test_graph_exec_456",
"user_id": test_user_id,
}
mock_get_reviews = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
mock_get_reviews.return_value = [sample_pending_review]
response = client.get("/api/review/execution/test_graph_exec_456")
assert response.status_code == 200
data = response.json()
assert len(data) == 1
assert data[0]["graph_exec_id"] == "test_graph_exec_456"
def test_get_pending_reviews_for_execution_not_available(
mocker: pytest_mock.MockerFixture,
) -> None:
"""Test access denied when user doesn't own the execution"""
mock_get_graph_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_graph_execution_meta"
)
mock_get_graph_execution.return_value = None
response = client.get("/api/review/execution/test_graph_exec_456")
assert response.status_code == 404
assert "not found" in response.json()["detail"]
def test_process_review_action_approve_success(
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test successful review approval"""
# Mock the route functions
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
mock_get_reviews_for_execution.return_value = [sample_pending_review]
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
# Create approved review for return
approved_review = PendingHumanReviewModel(
node_exec_id="test_node_123",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "modified payload", "value": 50},
instructions="Please review this data",
editable=True,
status=ReviewStatus.APPROVED,
review_message="Looks good",
was_edited=True,
processed=False,
created_at=FIXED_NOW,
updated_at=FIXED_NOW,
reviewed_at=FIXED_NOW,
)
mock_process_all_reviews.return_value = {"test_node_123": approved_review}
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
mock_has_pending.return_value = False
mocker.patch("backend.api.features.executions.review.routes.add_graph_execution")
request_data = {
"reviews": [
{
"node_exec_id": "test_node_123",
"approved": True,
"message": "Looks good",
"reviewed_data": {"data": "modified payload", "value": 50},
}
]
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 200
data = response.json()
assert data["approved_count"] == 1
assert data["rejected_count"] == 0
assert data["failed_count"] == 0
assert data["error"] is None
def test_process_review_action_reject_success(
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test successful review rejection"""
# Mock the route functions
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
mock_get_reviews_for_execution.return_value = [sample_pending_review]
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
rejected_review = PendingHumanReviewModel(
node_exec_id="test_node_123",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "test payload"},
instructions="Please review",
editable=True,
status=ReviewStatus.REJECTED,
review_message="Rejected by user",
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=None,
reviewed_at=FIXED_NOW,
)
mock_process_all_reviews.return_value = {"test_node_123": rejected_review}
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
mock_has_pending.return_value = False
request_data = {
"reviews": [
{
"node_exec_id": "test_node_123",
"approved": False,
"message": None,
}
]
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 200
data = response.json()
assert data["approved_count"] == 0
assert data["rejected_count"] == 1
assert data["failed_count"] == 0
assert data["error"] is None
def test_process_review_action_mixed_success(
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test mixed approve/reject operations"""
# Create a second review
second_review = PendingHumanReviewModel(
node_exec_id="test_node_456",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "second payload"},
instructions="Second review",
editable=False,
status=ReviewStatus.WAITING,
review_message=None,
was_edited=None,
processed=False,
created_at=FIXED_NOW,
updated_at=None,
reviewed_at=None,
)
# Mock the route functions
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
mock_get_reviews_for_execution.return_value = [sample_pending_review, second_review]
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
# Create approved version of first review
approved_review = PendingHumanReviewModel(
node_exec_id="test_node_123",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "modified"},
instructions="Please review",
editable=True,
status=ReviewStatus.APPROVED,
review_message="Approved",
was_edited=True,
processed=False,
created_at=FIXED_NOW,
updated_at=None,
reviewed_at=FIXED_NOW,
)
# Create rejected version of second review
rejected_review = PendingHumanReviewModel(
node_exec_id="test_node_456",
user_id=test_user_id,
graph_exec_id="test_graph_exec_456",
graph_id="test_graph_789",
graph_version=1,
payload={"data": "second payload"},
instructions="Second review",
editable=False,
status=ReviewStatus.REJECTED,
review_message="Rejected by user",
was_edited=False,
processed=False,
created_at=FIXED_NOW,
updated_at=None,
reviewed_at=FIXED_NOW,
)
mock_process_all_reviews.return_value = {
"test_node_123": approved_review,
"test_node_456": rejected_review,
}
mock_has_pending = mocker.patch(
"backend.api.features.executions.review.routes.has_pending_reviews_for_graph_exec"
)
mock_has_pending.return_value = False
request_data = {
"reviews": [
{
"node_exec_id": "test_node_123",
"approved": True,
"message": "Approved",
"reviewed_data": {"data": "modified"},
},
{
"node_exec_id": "test_node_456",
"approved": False,
"message": None,
},
]
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 200
data = response.json()
assert data["approved_count"] == 1
assert data["rejected_count"] == 1
assert data["failed_count"] == 0
assert data["error"] is None
def test_process_review_action_empty_request(
mocker: pytest_mock.MockerFixture,
test_user_id: str,
) -> None:
"""Test error when no reviews provided"""
request_data = {"reviews": []}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 422
response_data = response.json()
# Pydantic validation error format
assert isinstance(response_data["detail"], list)
assert len(response_data["detail"]) > 0
assert "At least one review must be provided" in response_data["detail"][0]["msg"]
def test_process_review_action_review_not_found(
mocker: pytest_mock.MockerFixture,
test_user_id: str,
) -> None:
"""Test error when review is not found"""
# Mock the functions that extract graph execution ID from the request
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
mock_get_reviews_for_execution.return_value = [] # No reviews found
# Mock process_all_reviews to simulate not finding reviews
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
# This should raise a ValueError with "Reviews not found" message based on the data/human_review.py logic
mock_process_all_reviews.side_effect = ValueError(
"Reviews not found or access denied for IDs: nonexistent_node"
)
request_data = {
"reviews": [
{
"node_exec_id": "nonexistent_node",
"approved": True,
"message": "Test",
}
]
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 400
assert "Reviews not found" in response.json()["detail"]
def test_process_review_action_partial_failure(
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test handling of partial failures in review processing"""
# Mock the route functions
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
mock_get_reviews_for_execution.return_value = [sample_pending_review]
# Mock partial failure in processing
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
mock_process_all_reviews.side_effect = ValueError("Some reviews failed validation")
request_data = {
"reviews": [
{
"node_exec_id": "test_node_123",
"approved": True,
"message": "Test",
}
]
}
response = client.post("/api/review/action", json=request_data)
assert response.status_code == 400
assert "Some reviews failed validation" in response.json()["detail"]
def test_process_review_action_invalid_node_exec_id(
mocker: pytest_mock.MockerFixture,
sample_pending_review: PendingHumanReviewModel,
test_user_id: str,
) -> None:
"""Test failure when trying to process review with invalid node execution ID"""
# Mock the route functions
mock_get_reviews_for_execution = mocker.patch(
"backend.api.features.executions.review.routes.get_pending_reviews_for_execution"
)
mock_get_reviews_for_execution.return_value = [sample_pending_review]
# Mock validation failure - this should return 400, not 500
mock_process_all_reviews = mocker.patch(
"backend.api.features.executions.review.routes.process_all_reviews_for_execution"
)
mock_process_all_reviews.side_effect = ValueError(
"Invalid node execution ID format"
)
request_data = {
"reviews": [
{
"node_exec_id": "invalid-node-format",
"approved": True,
"message": "Test",
}
]
}
response = client.post("/api/review/action", json=request_data)
# Should be a 400 Bad Request, not 500 Internal Server Error
assert response.status_code == 400
assert "Invalid node execution ID format" in response.json()["detail"]

View File

@@ -1,186 +0,0 @@
import logging
from typing import List
import autogpt_libs.auth as autogpt_auth_lib
from fastapi import APIRouter, HTTPException, Query, Security, status
from prisma.enums import ReviewStatus
from backend.data.execution import get_graph_execution_meta
from backend.data.human_review import (
get_pending_reviews_for_execution,
get_pending_reviews_for_user,
has_pending_reviews_for_graph_exec,
process_all_reviews_for_execution,
)
from backend.executor.utils import add_graph_execution
from .model import PendingHumanReviewModel, ReviewRequest, ReviewResponse
logger = logging.getLogger(__name__)
router = APIRouter(
tags=["v2", "executions", "review"],
dependencies=[Security(autogpt_auth_lib.requires_user)],
)
@router.get(
"/pending",
summary="Get Pending Reviews",
response_model=List[PendingHumanReviewModel],
responses={
200: {"description": "List of pending reviews"},
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_pending_reviews(
user_id: str = Security(autogpt_auth_lib.get_user_id),
page: int = Query(1, ge=1, description="Page number (1-indexed)"),
page_size: int = Query(25, ge=1, le=100, description="Number of reviews per page"),
) -> List[PendingHumanReviewModel]:
"""Get all pending reviews for the current user.
Retrieves all reviews with status "WAITING" that belong to the authenticated user.
Results are ordered by creation time (newest first).
Args:
user_id: Authenticated user ID from security dependency
Returns:
List of pending review objects with status converted to typed literals
Raises:
HTTPException: If authentication fails or database error occurs
Note:
Reviews with invalid status values are logged as warnings but excluded
from results rather than failing the entire request.
"""
return await get_pending_reviews_for_user(user_id, page, page_size)
@router.get(
"/execution/{graph_exec_id}",
summary="Get Pending Reviews for Execution",
response_model=List[PendingHumanReviewModel],
responses={
200: {"description": "List of pending reviews for the execution"},
404: {"description": "Graph execution not found"},
500: {"description": "Server error", "content": {"application/json": {}}},
},
)
async def list_pending_reviews_for_execution(
graph_exec_id: str,
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> List[PendingHumanReviewModel]:
"""Get all pending reviews for a specific graph execution.
Retrieves all reviews with status "WAITING" for the specified graph execution
that belong to the authenticated user. Results are ordered by creation time
(oldest first) to preserve review order within the execution.
Args:
graph_exec_id: ID of the graph execution to get reviews for
user_id: Authenticated user ID from security dependency
Returns:
List of pending review objects for the specified execution
Raises:
HTTPException:
- 404: If the graph execution doesn't exist or isn't owned by this user
- 500: If authentication fails or database error occurs
Note:
Only returns reviews owned by the authenticated user for security.
Reviews with invalid status are excluded with warning logs.
"""
# Verify user owns the graph execution before returning reviews
graph_exec = await get_graph_execution_meta(
user_id=user_id, execution_id=graph_exec_id
)
if not graph_exec:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail=f"Graph execution #{graph_exec_id} not found",
)
return await get_pending_reviews_for_execution(graph_exec_id, user_id)
@router.post("/action", response_model=ReviewResponse)
async def process_review_action(
request: ReviewRequest,
user_id: str = Security(autogpt_auth_lib.get_user_id),
) -> ReviewResponse:
"""Process reviews with approve or reject actions."""
# Collect all node exec IDs from the request
all_request_node_ids = {review.node_exec_id for review in request.reviews}
if not all_request_node_ids:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="At least one review must be provided",
)
# Build review decisions map
review_decisions = {}
for review in request.reviews:
review_status = (
ReviewStatus.APPROVED if review.approved else ReviewStatus.REJECTED
)
review_decisions[review.node_exec_id] = (
review_status,
review.reviewed_data,
review.message,
)
# Process all reviews
updated_reviews = await process_all_reviews_for_execution(
user_id=user_id,
review_decisions=review_decisions,
)
# Count results
approved_count = sum(
1
for review in updated_reviews.values()
if review.status == ReviewStatus.APPROVED
)
rejected_count = sum(
1
for review in updated_reviews.values()
if review.status == ReviewStatus.REJECTED
)
# Resume execution if we processed some reviews
if updated_reviews:
# Get graph execution ID from any processed review
first_review = next(iter(updated_reviews.values()))
graph_exec_id = first_review.graph_exec_id
# Check if any pending reviews remain for this execution
still_has_pending = await has_pending_reviews_for_graph_exec(graph_exec_id)
if not still_has_pending:
# Resume execution
try:
await add_graph_execution(
graph_id=first_review.graph_id,
user_id=user_id,
graph_exec_id=graph_exec_id,
)
logger.info(f"Resumed execution {graph_exec_id}")
except Exception as e:
logger.error(f"Failed to resume execution {graph_exec_id}: {str(e)}")
return ReviewResponse(
approved_count=approved_count,
rejected_count=rejected_count,
failed_count=0,
error=None,
)

View File

@@ -1,833 +0,0 @@
"""
OAuth 2.0 Provider Endpoints
Implements OAuth 2.0 Authorization Code flow with PKCE support.
Flow:
1. User clicks "Login with AutoGPT" in 3rd party app
2. App redirects user to /auth/authorize with client_id, redirect_uri, scope, state
3. User sees consent screen (if not already logged in, redirects to login first)
4. User approves → backend creates authorization code
5. User redirected back to app with code
6. App exchanges code for access/refresh tokens at /api/oauth/token
7. App uses access token to call external API endpoints
"""
import io
import logging
import os
import uuid
from datetime import datetime
from typing import Literal, Optional
from urllib.parse import urlencode
from autogpt_libs.auth import get_user_id
from fastapi import APIRouter, Body, HTTPException, Security, UploadFile, status
from gcloud.aio import storage as async_storage
from PIL import Image
from prisma.enums import APIKeyPermission
from pydantic import BaseModel, Field
from backend.data.auth.oauth import (
InvalidClientError,
InvalidGrantError,
OAuthApplicationInfo,
TokenIntrospectionResult,
consume_authorization_code,
create_access_token,
create_authorization_code,
create_refresh_token,
get_oauth_application,
get_oauth_application_by_id,
introspect_token,
list_user_oauth_applications,
refresh_tokens,
revoke_access_token,
revoke_refresh_token,
update_oauth_application,
validate_client_credentials,
validate_redirect_uri,
validate_scopes,
)
from backend.util.settings import Settings
from backend.util.virus_scanner import scan_content_safe
settings = Settings()
logger = logging.getLogger(__name__)
router = APIRouter()
# ============================================================================
# Request/Response Models
# ============================================================================
class TokenResponse(BaseModel):
"""OAuth 2.0 token response"""
token_type: Literal["Bearer"] = "Bearer"
access_token: str
access_token_expires_at: datetime
refresh_token: str
refresh_token_expires_at: datetime
scopes: list[str]
class ErrorResponse(BaseModel):
"""OAuth 2.0 error response"""
error: str
error_description: Optional[str] = None
class OAuthApplicationPublicInfo(BaseModel):
"""Public information about an OAuth application (for consent screen)"""
name: str
description: Optional[str] = None
logo_url: Optional[str] = None
scopes: list[str]
# ============================================================================
# Application Info Endpoint
# ============================================================================
@router.get(
"/app/{client_id}",
responses={
404: {"description": "Application not found or disabled"},
},
)
async def get_oauth_app_info(
client_id: str, user_id: str = Security(get_user_id)
) -> OAuthApplicationPublicInfo:
"""
Get public information about an OAuth application.
This endpoint is used by the consent screen to display application details
to the user before they authorize access.
Returns:
- name: Application name
- description: Application description (if provided)
- scopes: List of scopes the application is allowed to request
"""
app = await get_oauth_application(client_id)
if not app or not app.is_active:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Application not found",
)
return OAuthApplicationPublicInfo(
name=app.name,
description=app.description,
logo_url=app.logo_url,
scopes=[s.value for s in app.scopes],
)
# ============================================================================
# Authorization Endpoint
# ============================================================================
class AuthorizeRequest(BaseModel):
"""OAuth 2.0 authorization request"""
client_id: str = Field(description="Client identifier")
redirect_uri: str = Field(description="Redirect URI")
scopes: list[str] = Field(description="List of scopes")
state: str = Field(description="Anti-CSRF token from client")
response_type: str = Field(
default="code", description="Must be 'code' for authorization code flow"
)
code_challenge: str = Field(description="PKCE code challenge (required)")
code_challenge_method: Literal["S256", "plain"] = Field(
default="S256", description="PKCE code challenge method (S256 recommended)"
)
class AuthorizeResponse(BaseModel):
"""OAuth 2.0 authorization response with redirect URL"""
redirect_url: str = Field(description="URL to redirect the user to")
@router.post("/authorize")
async def authorize(
request: AuthorizeRequest = Body(),
user_id: str = Security(get_user_id),
) -> AuthorizeResponse:
"""
OAuth 2.0 Authorization Endpoint
User must be logged in (authenticated with Supabase JWT).
This endpoint creates an authorization code and returns a redirect URL.
PKCE (Proof Key for Code Exchange) is REQUIRED for all authorization requests.
The frontend consent screen should call this endpoint after the user approves,
then redirect the user to the returned `redirect_url`.
Request Body:
- client_id: The OAuth application's client ID
- redirect_uri: Where to redirect after authorization (must match registered URI)
- scopes: List of permissions (e.g., "EXECUTE_GRAPH READ_GRAPH")
- state: Anti-CSRF token provided by client (will be returned in redirect)
- response_type: Must be "code" (for authorization code flow)
- code_challenge: PKCE code challenge (required)
- code_challenge_method: "S256" (recommended) or "plain"
Returns:
- redirect_url: The URL to redirect the user to (includes authorization code)
Error cases return a redirect_url with error parameters, or raise HTTPException
for critical errors (like invalid redirect_uri).
"""
try:
# Validate response_type
if request.response_type != "code":
return _error_redirect_url(
request.redirect_uri,
request.state,
"unsupported_response_type",
"Only 'code' response type is supported",
)
# Get application
app = await get_oauth_application(request.client_id)
if not app:
return _error_redirect_url(
request.redirect_uri,
request.state,
"invalid_client",
"Unknown client_id",
)
if not app.is_active:
return _error_redirect_url(
request.redirect_uri,
request.state,
"invalid_client",
"Application is not active",
)
# Validate redirect URI
if not validate_redirect_uri(app, request.redirect_uri):
# For invalid redirect_uri, we can't redirect safely
# Must return error instead
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=(
"Invalid redirect_uri. "
f"Must be one of: {', '.join(app.redirect_uris)}"
),
)
# Parse and validate scopes
try:
requested_scopes = [APIKeyPermission(s.strip()) for s in request.scopes]
except ValueError as e:
return _error_redirect_url(
request.redirect_uri,
request.state,
"invalid_scope",
f"Invalid scope: {e}",
)
if not requested_scopes:
return _error_redirect_url(
request.redirect_uri,
request.state,
"invalid_scope",
"At least one scope is required",
)
if not validate_scopes(app, requested_scopes):
return _error_redirect_url(
request.redirect_uri,
request.state,
"invalid_scope",
"Application is not authorized for all requested scopes. "
f"Allowed: {', '.join(s.value for s in app.scopes)}",
)
# Create authorization code
auth_code = await create_authorization_code(
application_id=app.id,
user_id=user_id,
scopes=requested_scopes,
redirect_uri=request.redirect_uri,
code_challenge=request.code_challenge,
code_challenge_method=request.code_challenge_method,
)
# Build redirect URL with authorization code
params = {
"code": auth_code.code,
"state": request.state,
}
redirect_url = f"{request.redirect_uri}?{urlencode(params)}"
logger.info(
f"Authorization code issued for user #{user_id} "
f"and app {app.name} (#{app.id})"
)
return AuthorizeResponse(redirect_url=redirect_url)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error in authorization endpoint: {e}", exc_info=True)
return _error_redirect_url(
request.redirect_uri,
request.state,
"server_error",
"An unexpected error occurred",
)
def _error_redirect_url(
redirect_uri: str,
state: str,
error: str,
error_description: Optional[str] = None,
) -> AuthorizeResponse:
"""Helper to build redirect URL with OAuth error parameters"""
params = {
"error": error,
"state": state,
}
if error_description:
params["error_description"] = error_description
redirect_url = f"{redirect_uri}?{urlencode(params)}"
return AuthorizeResponse(redirect_url=redirect_url)
# ============================================================================
# Token Endpoint
# ============================================================================
class TokenRequestByCode(BaseModel):
grant_type: Literal["authorization_code"]
code: str = Field(description="Authorization code")
redirect_uri: str = Field(
description="Redirect URI (must match authorization request)"
)
client_id: str
client_secret: str
code_verifier: str = Field(description="PKCE code verifier")
class TokenRequestByRefreshToken(BaseModel):
grant_type: Literal["refresh_token"]
refresh_token: str
client_id: str
client_secret: str
@router.post("/token")
async def token(
request: TokenRequestByCode | TokenRequestByRefreshToken = Body(),
) -> TokenResponse:
"""
OAuth 2.0 Token Endpoint
Exchanges authorization code or refresh token for access token.
Grant Types:
1. authorization_code: Exchange authorization code for tokens
- Required: grant_type, code, redirect_uri, client_id, client_secret
- Optional: code_verifier (required if PKCE was used)
2. refresh_token: Exchange refresh token for new access token
- Required: grant_type, refresh_token, client_id, client_secret
Returns:
- access_token: Bearer token for API access (1 hour TTL)
- token_type: "Bearer"
- expires_in: Seconds until access token expires
- refresh_token: Token for refreshing access (30 days TTL)
- scopes: List of scopes
"""
# Validate client credentials
try:
app = await validate_client_credentials(
request.client_id, request.client_secret
)
except InvalidClientError as e:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail=str(e),
)
# Handle authorization_code grant
if request.grant_type == "authorization_code":
# Consume authorization code
try:
user_id, scopes = await consume_authorization_code(
code=request.code,
application_id=app.id,
redirect_uri=request.redirect_uri,
code_verifier=request.code_verifier,
)
except InvalidGrantError as e:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=str(e),
)
# Create access and refresh tokens
access_token = await create_access_token(app.id, user_id, scopes)
refresh_token = await create_refresh_token(app.id, user_id, scopes)
logger.info(
f"Access token issued for user #{user_id} and app {app.name} (#{app.id})"
"via authorization code"
)
if not access_token.token or not refresh_token.token:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to generate tokens",
)
return TokenResponse(
token_type="Bearer",
access_token=access_token.token.get_secret_value(),
access_token_expires_at=access_token.expires_at,
refresh_token=refresh_token.token.get_secret_value(),
refresh_token_expires_at=refresh_token.expires_at,
scopes=list(s.value for s in scopes),
)
# Handle refresh_token grant
elif request.grant_type == "refresh_token":
# Refresh access token
try:
new_access_token, new_refresh_token = await refresh_tokens(
request.refresh_token, app.id
)
except InvalidGrantError as e:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=str(e),
)
logger.info(
f"Tokens refreshed for user #{new_access_token.user_id} "
f"by app {app.name} (#{app.id})"
)
if not new_access_token.token or not new_refresh_token.token:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to generate tokens",
)
return TokenResponse(
token_type="Bearer",
access_token=new_access_token.token.get_secret_value(),
access_token_expires_at=new_access_token.expires_at,
refresh_token=new_refresh_token.token.get_secret_value(),
refresh_token_expires_at=new_refresh_token.expires_at,
scopes=list(s.value for s in new_access_token.scopes),
)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Unsupported grant_type: {request.grant_type}. "
"Must be 'authorization_code' or 'refresh_token'",
)
# ============================================================================
# Token Introspection Endpoint
# ============================================================================
@router.post("/introspect")
async def introspect(
token: str = Body(description="Token to introspect"),
token_type_hint: Optional[Literal["access_token", "refresh_token"]] = Body(
None, description="Hint about token type ('access_token' or 'refresh_token')"
),
client_id: str = Body(description="Client identifier"),
client_secret: str = Body(description="Client secret"),
) -> TokenIntrospectionResult:
"""
OAuth 2.0 Token Introspection Endpoint (RFC 7662)
Allows clients to check if a token is valid and get its metadata.
Returns:
- active: Whether the token is currently active
- scopes: List of authorized scopes (if active)
- client_id: The client the token was issued to (if active)
- user_id: The user the token represents (if active)
- exp: Expiration timestamp (if active)
- token_type: "access_token" or "refresh_token" (if active)
"""
# Validate client credentials
try:
await validate_client_credentials(client_id, client_secret)
except InvalidClientError as e:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail=str(e),
)
# Introspect the token
return await introspect_token(token, token_type_hint)
# ============================================================================
# Token Revocation Endpoint
# ============================================================================
@router.post("/revoke")
async def revoke(
token: str = Body(description="Token to revoke"),
token_type_hint: Optional[Literal["access_token", "refresh_token"]] = Body(
None, description="Hint about token type ('access_token' or 'refresh_token')"
),
client_id: str = Body(description="Client identifier"),
client_secret: str = Body(description="Client secret"),
):
"""
OAuth 2.0 Token Revocation Endpoint (RFC 7009)
Allows clients to revoke an access or refresh token.
Note: Revoking a refresh token does NOT revoke associated access tokens.
Revoking an access token does NOT revoke the associated refresh token.
"""
# Validate client credentials
try:
app = await validate_client_credentials(client_id, client_secret)
except InvalidClientError as e:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail=str(e),
)
# Try to revoke as access token first
# Note: We pass app.id to ensure the token belongs to the authenticated app
if token_type_hint != "refresh_token":
revoked = await revoke_access_token(token, app.id)
if revoked:
logger.info(
f"Access token revoked for app {app.name} (#{app.id}); "
f"user #{revoked.user_id}"
)
return {"status": "ok"}
# Try to revoke as refresh token
revoked = await revoke_refresh_token(token, app.id)
if revoked:
logger.info(
f"Refresh token revoked for app {app.name} (#{app.id}); "
f"user #{revoked.user_id}"
)
return {"status": "ok"}
# Per RFC 7009, revocation endpoint returns 200 even if token not found
# or if token belongs to a different application.
# This prevents token scanning attacks.
logger.warning(f"Unsuccessful token revocation attempt by app {app.name} #{app.id}")
return {"status": "ok"}
# ============================================================================
# Application Management Endpoints (for app owners)
# ============================================================================
@router.get("/apps/mine")
async def list_my_oauth_apps(
user_id: str = Security(get_user_id),
) -> list[OAuthApplicationInfo]:
"""
List all OAuth applications owned by the current user.
Returns a list of OAuth applications with their details including:
- id, name, description, logo_url
- client_id (public identifier)
- redirect_uris, grant_types, scopes
- is_active status
- created_at, updated_at timestamps
Note: client_secret is never returned for security reasons.
"""
return await list_user_oauth_applications(user_id)
@router.patch("/apps/{app_id}/status")
async def update_app_status(
app_id: str,
user_id: str = Security(get_user_id),
is_active: bool = Body(description="Whether the app should be active", embed=True),
) -> OAuthApplicationInfo:
"""
Enable or disable an OAuth application.
Only the application owner can update the status.
When disabled, the application cannot be used for new authorizations
and existing access tokens will fail validation.
Returns the updated application info.
"""
updated_app = await update_oauth_application(
app_id=app_id,
owner_id=user_id,
is_active=is_active,
)
if not updated_app:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Application not found or you don't have permission to update it",
)
action = "enabled" if is_active else "disabled"
logger.info(f"OAuth app {updated_app.name} (#{app_id}) {action} by user #{user_id}")
return updated_app
class UpdateAppLogoRequest(BaseModel):
logo_url: str = Field(description="URL of the uploaded logo image")
@router.patch("/apps/{app_id}/logo")
async def update_app_logo(
app_id: str,
request: UpdateAppLogoRequest = Body(),
user_id: str = Security(get_user_id),
) -> OAuthApplicationInfo:
"""
Update the logo URL for an OAuth application.
Only the application owner can update the logo.
The logo should be uploaded first using the media upload endpoint,
then this endpoint is called with the resulting URL.
Logo requirements:
- Must be square (1:1 aspect ratio)
- Minimum 512x512 pixels
- Maximum 2048x2048 pixels
Returns the updated application info.
"""
if (
not (app := await get_oauth_application_by_id(app_id))
or app.owner_id != user_id
):
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="OAuth App not found",
)
# Delete the current app logo file (if any and it's in our cloud storage)
await _delete_app_current_logo_file(app)
updated_app = await update_oauth_application(
app_id=app_id,
owner_id=user_id,
logo_url=request.logo_url,
)
if not updated_app:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Application not found or you don't have permission to update it",
)
logger.info(
f"OAuth app {updated_app.name} (#{app_id}) logo updated by user #{user_id}"
)
return updated_app
# Logo upload constraints
LOGO_MIN_SIZE = 512
LOGO_MAX_SIZE = 2048
LOGO_ALLOWED_TYPES = {"image/jpeg", "image/png", "image/webp"}
LOGO_MAX_FILE_SIZE = 3 * 1024 * 1024 # 3MB
@router.post("/apps/{app_id}/logo/upload")
async def upload_app_logo(
app_id: str,
file: UploadFile,
user_id: str = Security(get_user_id),
) -> OAuthApplicationInfo:
"""
Upload a logo image for an OAuth application.
Requirements:
- Image must be square (1:1 aspect ratio)
- Minimum 512x512 pixels
- Maximum 2048x2048 pixels
- Allowed formats: JPEG, PNG, WebP
- Maximum file size: 3MB
The image is uploaded to cloud storage and the app's logoUrl is updated.
Returns the updated application info.
"""
# Verify ownership to reduce vulnerability to DoS(torage) or DoM(oney) attacks
if (
not (app := await get_oauth_application_by_id(app_id))
or app.owner_id != user_id
):
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="OAuth App not found",
)
# Check GCS configuration
if not settings.config.media_gcs_bucket_name:
raise HTTPException(
status_code=status.HTTP_503_SERVICE_UNAVAILABLE,
detail="Media storage is not configured",
)
# Validate content type
content_type = file.content_type
if content_type not in LOGO_ALLOWED_TYPES:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Invalid file type. Allowed: JPEG, PNG, WebP. Got: {content_type}",
)
# Read file content
try:
file_bytes = await file.read()
except Exception as e:
logger.error(f"Error reading logo file: {e}")
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Failed to read uploaded file",
)
# Check file size
if len(file_bytes) > LOGO_MAX_FILE_SIZE:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=(
"File too large. "
f"Maximum size is {LOGO_MAX_FILE_SIZE // 1024 // 1024}MB"
),
)
# Validate image dimensions
try:
image = Image.open(io.BytesIO(file_bytes))
width, height = image.size
if width != height:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Logo must be square. Got {width}x{height}",
)
if width < LOGO_MIN_SIZE:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Logo too small. Minimum {LOGO_MIN_SIZE}x{LOGO_MIN_SIZE}. "
f"Got {width}x{height}",
)
if width > LOGO_MAX_SIZE:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=f"Logo too large. Maximum {LOGO_MAX_SIZE}x{LOGO_MAX_SIZE}. "
f"Got {width}x{height}",
)
except HTTPException:
raise
except Exception as e:
logger.error(f"Error validating logo image: {e}")
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail="Invalid image file",
)
# Scan for viruses
filename = file.filename or "logo"
await scan_content_safe(file_bytes, filename=filename)
# Generate unique filename
file_ext = os.path.splitext(filename)[1].lower() or ".png"
unique_filename = f"{uuid.uuid4()}{file_ext}"
storage_path = f"oauth-apps/{app_id}/logo/{unique_filename}"
# Upload to GCS
try:
async with async_storage.Storage() as async_client:
bucket_name = settings.config.media_gcs_bucket_name
await async_client.upload(
bucket_name, storage_path, file_bytes, content_type=content_type
)
logo_url = f"https://storage.googleapis.com/{bucket_name}/{storage_path}"
except Exception as e:
logger.error(f"Error uploading logo to GCS: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail="Failed to upload logo",
)
# Delete the current app logo file (if any and it's in our cloud storage)
await _delete_app_current_logo_file(app)
# Update the app with the new logo URL
updated_app = await update_oauth_application(
app_id=app_id,
owner_id=user_id,
logo_url=logo_url,
)
if not updated_app:
raise HTTPException(
status_code=status.HTTP_404_NOT_FOUND,
detail="Application not found or you don't have permission to update it",
)
logger.info(
f"OAuth app {updated_app.name} (#{app_id}) logo uploaded by user #{user_id}"
)
return updated_app
async def _delete_app_current_logo_file(app: OAuthApplicationInfo):
"""
Delete the current logo file for the given app, if there is one in our cloud storage
"""
bucket_name = settings.config.media_gcs_bucket_name
storage_base_url = f"https://storage.googleapis.com/{bucket_name}/"
if app.logo_url and app.logo_url.startswith(storage_base_url):
# Parse blob path from URL: https://storage.googleapis.com/{bucket}/{path}
old_path = app.logo_url.replace(storage_base_url, "")
try:
async with async_storage.Storage() as async_client:
await async_client.delete(bucket_name, old_path)
logger.info(f"Deleted old logo for OAuth app #{app.id}: {old_path}")
except Exception as e:
# Log but don't fail - the new logo was uploaded successfully
logger.warning(
f"Failed to delete old logo for OAuth app #{app.id}: {e}", exc_info=e
)

File diff suppressed because it is too large Load Diff

View File

@@ -1,67 +0,0 @@
from __future__ import annotations
import re
from typing import List, Sequence, TypedDict
from backend.util.settings import AppEnvironment
class CorsParams(TypedDict):
allow_origins: List[str]
allow_origin_regex: str | None
def build_cors_params(origins: Sequence[str], app_env: AppEnvironment) -> CorsParams:
allow_origins: List[str] = []
regex_patterns: List[str] = []
if app_env == AppEnvironment.PRODUCTION:
for origin in origins:
if origin.startswith("regex:"):
pattern = origin[len("regex:") :]
pattern_lower = pattern.lower()
if "localhost" in pattern_lower or "127.0.0.1" in pattern_lower:
raise ValueError(
f"Production environment cannot allow localhost origins via regex: {pattern}"
)
try:
compiled = re.compile(pattern)
test_urls = [
"http://localhost:3000",
"http://127.0.0.1:3000",
"https://localhost:8000",
"https://127.0.0.1:8000",
]
for test_url in test_urls:
if compiled.search(test_url):
raise ValueError(
f"Production regex pattern matches localhost/127.0.0.1: {pattern}"
)
except re.error:
pass
continue
lowered = origin.lower()
if "localhost" in lowered or "127.0.0.1" in lowered:
raise ValueError(
"Production environment cannot allow localhost origins"
)
for origin in origins:
if origin.startswith("regex:"):
regex_patterns.append(origin[len("regex:") :])
else:
allow_origins.append(origin)
allow_origin_regex = None
if regex_patterns:
if len(regex_patterns) == 1:
allow_origin_regex = f"^(?:{regex_patterns[0]})$"
else:
combined_pattern = "|".join(f"(?:{pattern})" for pattern in regex_patterns)
allow_origin_regex = f"^(?:{combined_pattern})$"
return {
"allow_origins": allow_origins,
"allow_origin_regex": allow_origin_regex,
}

View File

@@ -1,62 +0,0 @@
import pytest
from backend.api.utils.cors import build_cors_params
from backend.util.settings import AppEnvironment
def test_build_cors_params_splits_regex_patterns() -> None:
origins = [
"https://app.example.com",
"regex:https://.*\\.example\\.com",
]
result = build_cors_params(origins, AppEnvironment.LOCAL)
assert result["allow_origins"] == ["https://app.example.com"]
assert result["allow_origin_regex"] == "^(?:https://.*\\.example\\.com)$"
def test_build_cors_params_combines_multiple_regex_patterns() -> None:
origins = [
"regex:https://alpha.example.com",
"regex:https://beta.example.com",
]
result = build_cors_params(origins, AppEnvironment.DEVELOPMENT)
assert result["allow_origins"] == []
assert result["allow_origin_regex"] == (
"^(?:(?:https://alpha.example.com)|(?:https://beta.example.com))$"
)
def test_build_cors_params_blocks_localhost_literal_in_production() -> None:
with pytest.raises(ValueError):
build_cors_params(["http://localhost:3000"], AppEnvironment.PRODUCTION)
def test_build_cors_params_blocks_localhost_regex_in_production() -> None:
with pytest.raises(ValueError):
build_cors_params(["regex:https://.*localhost.*"], AppEnvironment.PRODUCTION)
def test_build_cors_params_blocks_case_insensitive_localhost_regex() -> None:
with pytest.raises(ValueError, match="localhost origins via regex"):
build_cors_params(["regex:https://(?i)LOCALHOST.*"], AppEnvironment.PRODUCTION)
def test_build_cors_params_blocks_regex_matching_localhost_at_runtime() -> None:
with pytest.raises(ValueError, match="matches localhost"):
build_cors_params(["regex:https?://.*:3000"], AppEnvironment.PRODUCTION)
def test_build_cors_params_allows_vercel_preview_regex() -> None:
result = build_cors_params(
["regex:https://autogpt-git-[a-z0-9-]+\\.vercel\\.app"],
AppEnvironment.PRODUCTION,
)
assert result["allow_origins"] == []
assert result["allow_origin_regex"] == (
"^(?:https://autogpt-git-[a-z0-9-]+\\.vercel\\.app)$"
)

View File

@@ -1,41 +0,0 @@
from fastapi import FastAPI
def sort_openapi(app: FastAPI) -> None:
"""
Patch a FastAPI instance's `openapi()` method to sort the endpoints,
schemas, and responses.
"""
wrapped_openapi = app.openapi
def custom_openapi():
if app.openapi_schema:
return app.openapi_schema
openapi_schema = wrapped_openapi()
# Sort endpoints
openapi_schema["paths"] = dict(sorted(openapi_schema["paths"].items()))
# Sort endpoints -> methods
for p in openapi_schema["paths"].keys():
openapi_schema["paths"][p] = dict(
sorted(openapi_schema["paths"][p].items())
)
# Sort endpoints -> methods -> responses
for m in openapi_schema["paths"][p].keys():
openapi_schema["paths"][p][m]["responses"] = dict(
sorted(openapi_schema["paths"][p][m]["responses"].items())
)
# Sort schemas and responses as well
for k in openapi_schema["components"].keys():
openapi_schema["components"][k] = dict(
sorted(openapi_schema["components"][k].items())
)
app.openapi_schema = openapi_schema
return openapi_schema
app.openapi = custom_openapi

View File

@@ -36,10 +36,10 @@ def main(**kwargs):
Run all the processes required for the AutoGPT-server (REST and WebSocket APIs).
"""
from backend.api.rest_api import AgentServer
from backend.api.ws_api import WebsocketServer
from backend.executor import DatabaseManager, ExecutionManager, Scheduler
from backend.notifications import NotificationManager
from backend.server.rest_api import AgentServer
from backend.server.ws_api import WebsocketServer
run_processes(
DatabaseManager().set_log_level("warning"),

View File

@@ -11,7 +11,7 @@ from backend.data.block import (
BlockType,
get_block,
)
from backend.data.execution import ExecutionContext, ExecutionStatus, NodesInputMasks
from backend.data.execution import ExecutionStatus, NodesInputMasks
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util.json import validate_with_jsonschema
from backend.util.retry import func_retry
@@ -72,9 +72,9 @@ class AgentExecutorBlock(Block):
input_data: Input,
*,
graph_exec_id: str,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
from backend.executor import utils as execution_utils
graph_exec = await execution_utils.add_graph_execution(
@@ -83,9 +83,8 @@ class AgentExecutorBlock(Block):
user_id=input_data.user_id,
inputs=input_data.inputs,
nodes_input_masks=input_data.nodes_input_masks,
execution_context=execution_context.model_copy(
update={"parent_execution_id": graph_exec_id},
),
parent_graph_exec_id=graph_exec_id,
is_sub_graph=True, # AgentExecutorBlock executions are always sub-graphs
)
logger = execution_utils.LogMetadata(

View File

@@ -1,7 +1,6 @@
from typing import Any
from backend.blocks.llm import (
DEFAULT_LLM_MODEL,
TEST_CREDENTIALS,
TEST_CREDENTIALS_INPUT,
AIBlockBase,
@@ -50,7 +49,7 @@ class AIConditionBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for evaluating the condition.",
advanced=False,
)
@@ -82,7 +81,7 @@ class AIConditionBlock(AIBlockBase):
"condition": "the input is an email address",
"yes_value": "Valid email",
"no_value": "Not an email",
"model": DEFAULT_LLM_MODEL,
"model": LlmModel.GPT4O,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,

View File

@@ -1,4 +1,3 @@
import asyncio
from enum import Enum
from typing import Literal
@@ -20,26 +19,11 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.file import MediaFileType, store_media_file
from backend.util.file import MediaFileType
class GeminiImageModel(str, Enum):
NANO_BANANA = "google/nano-banana"
NANO_BANANA_PRO = "google/nano-banana-pro"
class AspectRatio(str, Enum):
MATCH_INPUT_IMAGE = "match_input_image"
ASPECT_1_1 = "1:1"
ASPECT_2_3 = "2:3"
ASPECT_3_2 = "3:2"
ASPECT_3_4 = "3:4"
ASPECT_4_3 = "4:3"
ASPECT_4_5 = "4:5"
ASPECT_5_4 = "5:4"
ASPECT_9_16 = "9:16"
ASPECT_16_9 = "16:9"
ASPECT_21_9 = "21:9"
class OutputFormat(str, Enum):
@@ -84,11 +68,6 @@ class AIImageCustomizerBlock(Block):
default=[],
title="Input Images",
)
aspect_ratio: AspectRatio = SchemaField(
description="Aspect ratio of the generated image",
default=AspectRatio.MATCH_INPUT_IMAGE,
title="Aspect Ratio",
)
output_format: OutputFormat = SchemaField(
description="Format of the output image",
default=OutputFormat.PNG,
@@ -112,7 +91,6 @@ class AIImageCustomizerBlock(Block):
"prompt": "Make the scene more vibrant and colorful",
"model": GeminiImageModel.NANO_BANANA,
"images": [],
"aspect_ratio": AspectRatio.MATCH_INPUT_IMAGE,
"output_format": OutputFormat.JPG,
"credentials": TEST_CREDENTIALS_INPUT,
},
@@ -137,25 +115,11 @@ class AIImageCustomizerBlock(Block):
**kwargs,
) -> BlockOutput:
try:
# Convert local file paths to Data URIs (base64) so Replicate can access them
processed_images = await asyncio.gather(
*(
store_media_file(
graph_exec_id=graph_exec_id,
file=img,
user_id=user_id,
return_content=True,
)
for img in input_data.images
)
)
result = await self.run_model(
api_key=credentials.api_key,
model_name=input_data.model.value,
prompt=input_data.prompt,
images=processed_images,
aspect_ratio=input_data.aspect_ratio.value,
images=input_data.images,
output_format=input_data.output_format.value,
)
yield "image_url", result
@@ -168,14 +132,12 @@ class AIImageCustomizerBlock(Block):
model_name: str,
prompt: str,
images: list[MediaFileType],
aspect_ratio: str,
output_format: str,
) -> MediaFileType:
client = ReplicateClient(api_token=api_key.get_secret_value())
input_params: dict = {
"prompt": prompt,
"aspect_ratio": aspect_ratio,
"output_format": output_format,
}

View File

@@ -60,14 +60,6 @@ SIZE_TO_RECRAFT_DIMENSIONS = {
ImageSize.TALL: "1024x1536",
}
SIZE_TO_NANO_BANANA_RATIO = {
ImageSize.SQUARE: "1:1",
ImageSize.LANDSCAPE: "4:3",
ImageSize.PORTRAIT: "3:4",
ImageSize.WIDE: "16:9",
ImageSize.TALL: "9:16",
}
class ImageStyle(str, Enum):
"""
@@ -106,7 +98,6 @@ class ImageGenModel(str, Enum):
FLUX_ULTRA = "Flux 1.1 Pro Ultra"
RECRAFT = "Recraft v3"
SD3_5 = "Stable Diffusion 3.5 Medium"
NANO_BANANA_PRO = "Nano Banana Pro"
class AIImageGeneratorBlock(Block):
@@ -270,20 +261,6 @@ class AIImageGeneratorBlock(Block):
)
return output
elif input_data.model == ImageGenModel.NANO_BANANA_PRO:
# Use Nano Banana Pro (Google Gemini 3 Pro Image)
input_params = {
"prompt": modified_prompt,
"aspect_ratio": SIZE_TO_NANO_BANANA_RATIO[input_data.size],
"resolution": "2K", # Default to 2K for good quality/cost balance
"output_format": "jpg",
"safety_filter_level": "block_only_high", # Most permissive
}
output = await self._run_client(
credentials, "google/nano-banana-pro", input_params
)
return output
except Exception as e:
raise RuntimeError(f"Failed to generate image: {str(e)}")

View File

@@ -20,7 +20,6 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.exceptions import BlockExecutionError
from backend.util.request import Requests
TEST_CREDENTIALS = APIKeyCredentials(
@@ -247,11 +246,7 @@ class AIShortformVideoCreatorBlock(Block):
await asyncio.sleep(10)
logger.error("Video creation timed out")
raise BlockExecutionError(
message="Video creation timed out",
block_name=self.name,
block_id=self.id,
)
raise TimeoutError("Video creation timed out")
def __init__(self):
super().__init__(
@@ -427,11 +422,7 @@ class AIAdMakerVideoCreatorBlock(Block):
await asyncio.sleep(10)
logger.error("Video creation timed out")
raise BlockExecutionError(
message="Video creation timed out",
block_name=self.name,
block_id=self.id,
)
raise TimeoutError("Video creation timed out")
def __init__(self):
super().__init__(
@@ -608,11 +599,7 @@ class AIScreenshotToVideoAdBlock(Block):
await asyncio.sleep(10)
logger.error("Video creation timed out")
raise BlockExecutionError(
message="Video creation timed out",
block_name=self.name,
block_id=self.id,
)
raise TimeoutError("Video creation timed out")
def __init__(self):
super().__init__(

View File

@@ -1371,7 +1371,7 @@ async def create_base(
if tables:
params["tables"] = tables
logger.debug(f"Creating Airtable base with params: {params}")
print(params)
response = await Requests().post(
"https://api.airtable.com/v0/meta/bases",

View File

@@ -106,10 +106,7 @@ class ConditionBlock(Block):
ComparisonOperator.LESS_THAN_OR_EQUAL: lambda a, b: a <= b,
}
try:
result = comparison_funcs[operator](value1, value2)
except Exception as e:
raise ValueError(f"Comparison failed: {e}") from e
result = comparison_funcs[operator](value1, value2)
yield "result", result

View File

@@ -1,224 +0,0 @@
from dataclasses import dataclass
from enum import Enum
from typing import Any, Literal
from openai import AsyncOpenAI
from openai.types.responses import Response as OpenAIResponse
from pydantic import SecretStr
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.model import (
APIKeyCredentials,
CredentialsField,
CredentialsMetaInput,
NodeExecutionStats,
SchemaField,
)
from backend.integrations.providers import ProviderName
@dataclass
class CodexCallResult:
"""Structured response returned by Codex invocations."""
response: str
reasoning: str
response_id: str
class CodexModel(str, Enum):
"""Codex-capable OpenAI models."""
GPT5_1_CODEX = "gpt-5.1-codex"
class CodexReasoningEffort(str, Enum):
"""Configuration for the Responses API reasoning effort."""
NONE = "none"
LOW = "low"
MEDIUM = "medium"
HIGH = "high"
CodexCredentials = CredentialsMetaInput[
Literal[ProviderName.OPENAI], Literal["api_key"]
]
TEST_CREDENTIALS = APIKeyCredentials(
id="e2fcb203-3f2d-4ad4-a344-8df3bc7db36b",
provider="openai",
api_key=SecretStr("mock-openai-api-key"),
title="Mock OpenAI API key",
expires_at=None,
)
TEST_CREDENTIALS_INPUT = {
"provider": TEST_CREDENTIALS.provider,
"id": TEST_CREDENTIALS.id,
"type": TEST_CREDENTIALS.type,
"title": TEST_CREDENTIALS.title,
}
def CodexCredentialsField() -> CodexCredentials:
return CredentialsField(
description="OpenAI API key with access to Codex models (Responses API).",
)
class CodeGenerationBlock(Block):
"""Block that talks to Codex models via the OpenAI Responses API."""
class Input(BlockSchemaInput):
prompt: str = SchemaField(
description="Primary coding request passed to the Codex model.",
placeholder="Generate a Python function that reverses a list.",
)
system_prompt: str = SchemaField(
title="System Prompt",
default=(
"You are Codex, an elite software engineer. "
"Favor concise, working code and highlight important caveats."
),
description="Optional instructions injected via the Responses API instructions field.",
advanced=True,
)
model: CodexModel = SchemaField(
title="Codex Model",
default=CodexModel.GPT5_1_CODEX,
description="Codex-optimized model served via the Responses API.",
advanced=False,
)
reasoning_effort: CodexReasoningEffort = SchemaField(
title="Reasoning Effort",
default=CodexReasoningEffort.MEDIUM,
description="Controls the Responses API reasoning budget. Select 'none' to skip reasoning configs.",
advanced=True,
)
max_output_tokens: int | None = SchemaField(
title="Max Output Tokens",
default=2048,
description="Upper bound for generated tokens (hard limit 128,000). Leave blank to let OpenAI decide.",
advanced=True,
)
credentials: CodexCredentials = CodexCredentialsField()
class Output(BlockSchemaOutput):
response: str = SchemaField(
description="Code-focused response returned by the Codex model."
)
reasoning: str = SchemaField(
description="Reasoning summary returned by the model, if available.",
default="",
)
response_id: str = SchemaField(
description="ID of the Responses API call for auditing/debugging.",
default="",
)
def __init__(self):
super().__init__(
id="86a2a099-30df-47b4-b7e4-34ae5f83e0d5",
description="Generate or refactor code using OpenAI's Codex (Responses API).",
categories={BlockCategory.AI, BlockCategory.DEVELOPER_TOOLS},
input_schema=CodeGenerationBlock.Input,
output_schema=CodeGenerationBlock.Output,
test_input=[
{
"prompt": "Write a TypeScript function that deduplicates an array.",
"credentials": TEST_CREDENTIALS_INPUT,
}
],
test_output=[
("response", str),
("reasoning", str),
("response_id", str),
],
test_mock={
"call_codex": lambda *_args, **_kwargs: CodexCallResult(
response="function dedupe<T>(items: T[]): T[] { return [...new Set(items)]; }",
reasoning="Used Set to remove duplicates in O(n).",
response_id="resp_test",
)
},
test_credentials=TEST_CREDENTIALS,
)
self.execution_stats = NodeExecutionStats()
async def call_codex(
self,
*,
credentials: APIKeyCredentials,
model: CodexModel,
prompt: str,
system_prompt: str,
max_output_tokens: int | None,
reasoning_effort: CodexReasoningEffort,
) -> CodexCallResult:
"""Invoke the OpenAI Responses API."""
client = AsyncOpenAI(api_key=credentials.api_key.get_secret_value())
request_payload: dict[str, Any] = {
"model": model.value,
"input": prompt,
}
if system_prompt:
request_payload["instructions"] = system_prompt
if max_output_tokens is not None:
request_payload["max_output_tokens"] = max_output_tokens
if reasoning_effort != CodexReasoningEffort.NONE:
request_payload["reasoning"] = {"effort": reasoning_effort.value}
response = await client.responses.create(**request_payload)
if not isinstance(response, OpenAIResponse):
raise TypeError(f"Expected OpenAIResponse, got {type(response).__name__}")
# Extract data directly from typed response
text_output = response.output_text or ""
reasoning_summary = (
str(response.reasoning.summary)
if response.reasoning and response.reasoning.summary
else ""
)
response_id = response.id or ""
# Update usage stats
self.execution_stats.input_token_count = (
response.usage.input_tokens if response.usage else 0
)
self.execution_stats.output_token_count = (
response.usage.output_tokens if response.usage else 0
)
self.execution_stats.llm_call_count += 1
return CodexCallResult(
response=text_output,
reasoning=reasoning_summary,
response_id=response_id,
)
async def run(
self,
input_data: Input,
*,
credentials: APIKeyCredentials,
**_kwargs,
) -> BlockOutput:
result = await self.call_codex(
credentials=credentials,
model=input_data.model,
prompt=input_data.prompt,
system_prompt=input_data.system_prompt,
max_output_tokens=input_data.max_output_tokens,
reasoning_effort=input_data.reasoning_effort,
)
yield "response", result.response
yield "reasoning", result.reasoning
yield "response_id", result.response_id

View File

@@ -182,10 +182,13 @@ class DataForSeoRelatedKeywordsBlock(Block):
if results and len(results) > 0:
# results is a list, get the first element
first_result = results[0] if isinstance(results, list) else results
# Handle missing key, null value, or valid list value
if isinstance(first_result, dict):
items = first_result.get("items") or []
else:
items = (
first_result.get("items", [])
if isinstance(first_result, dict)
else []
)
# Ensure items is never None
if items is None:
items = []
for item in items:
# Extract keyword_data from the item

View File

@@ -1,9 +1,8 @@
import base64
import io
import mimetypes
from enum import Enum
from pathlib import Path
from typing import Any, Literal, cast
from typing import Any
import discord
from pydantic import SecretStr
@@ -34,19 +33,6 @@ TEST_CREDENTIALS = TEST_BOT_CREDENTIALS
TEST_CREDENTIALS_INPUT = TEST_BOT_CREDENTIALS_INPUT
class ThreadArchiveDuration(str, Enum):
"""Discord thread auto-archive duration options"""
ONE_HOUR = "60"
ONE_DAY = "1440"
THREE_DAYS = "4320"
ONE_WEEK = "10080"
def to_minutes(self) -> int:
"""Convert the duration string to minutes for Discord API"""
return int(self.value)
class ReadDiscordMessagesBlock(Block):
class Input(BlockSchemaInput):
credentials: DiscordCredentials = DiscordCredentialsField()
@@ -1180,211 +1166,3 @@ class DiscordChannelInfoBlock(Block):
raise ValueError(f"Login error occurred: {login_err}")
except Exception as e:
raise ValueError(f"An error occurred: {e}")
class CreateDiscordThreadBlock(Block):
class Input(BlockSchemaInput):
credentials: DiscordCredentials = DiscordCredentialsField()
channel_name: str = SchemaField(
description="Channel ID or channel name to create the thread in"
)
server_name: str = SchemaField(
description="Server name (only needed if using channel name)",
advanced=True,
default="",
)
thread_name: str = SchemaField(description="The name of the thread to create")
is_private: bool = SchemaField(
description="Whether to create a private thread (requires Boost Level 2+) or public thread",
default=False,
)
auto_archive_duration: ThreadArchiveDuration = SchemaField(
description="Duration before the thread is automatically archived",
advanced=True,
default=ThreadArchiveDuration.ONE_WEEK,
)
message_content: str = SchemaField(
description="Optional initial message to send in the thread",
advanced=True,
default="",
)
class Output(BlockSchemaOutput):
status: str = SchemaField(description="Operation status")
thread_id: str = SchemaField(description="ID of the created thread")
thread_name: str = SchemaField(description="Name of the created thread")
def __init__(self):
super().__init__(
id="e8f3c9a2-7b5d-4f1e-9c6a-3d8e2b4f7a1c",
input_schema=CreateDiscordThreadBlock.Input,
output_schema=CreateDiscordThreadBlock.Output,
description="Creates a new thread in a Discord channel.",
categories={BlockCategory.SOCIAL},
test_input={
"channel_name": "general",
"thread_name": "Test Thread",
"is_private": False,
"auto_archive_duration": ThreadArchiveDuration.ONE_HOUR,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_output=[
("status", "Thread created successfully"),
("thread_id", "123456789012345678"),
("thread_name", "Test Thread"),
],
test_mock={
"create_thread": lambda *args, **kwargs: {
"status": "Thread created successfully",
"thread_id": "123456789012345678",
"thread_name": "Test Thread",
}
},
test_credentials=TEST_CREDENTIALS,
)
async def create_thread(
self,
token: str,
channel_name: str,
server_name: str | None,
thread_name: str,
is_private: bool,
auto_archive_duration: ThreadArchiveDuration,
message_content: str,
) -> dict:
intents = discord.Intents.default()
intents.guilds = True
intents.message_content = True # Required for sending messages in threads
client = discord.Client(intents=intents)
result = {}
@client.event
async def on_ready():
channel = None
# Try to parse as channel ID first
try:
channel_id = int(channel_name)
try:
channel = await client.fetch_channel(channel_id)
except discord.errors.NotFound:
result["status"] = f"Channel with ID {channel_id} not found"
await client.close()
return
except discord.errors.Forbidden:
result["status"] = (
f"Bot does not have permission to view channel {channel_id}"
)
await client.close()
return
except ValueError:
# Not an ID, treat as channel name
# Collect all matching channels to detect duplicates
matching_channels = []
for guild in client.guilds:
# Skip guilds if server_name is provided and doesn't match
if (
server_name
and server_name.strip()
and guild.name != server_name
):
continue
for ch in guild.text_channels:
if ch.name == channel_name:
matching_channels.append(ch)
if not matching_channels:
result["status"] = f"Channel not found: {channel_name}"
await client.close()
return
elif len(matching_channels) > 1:
result["status"] = (
f"Multiple channels named '{channel_name}' found. "
"Please specify server_name to disambiguate."
)
await client.close()
return
else:
channel = matching_channels[0]
if not channel:
result["status"] = "Failed to resolve channel"
await client.close()
return
# Type check - ensure it's a text channel that can create threads
if not hasattr(channel, "create_thread"):
result["status"] = (
f"Channel {channel_name} cannot create threads (not a text channel)"
)
await client.close()
return
# After the hasattr check, we know channel is a TextChannel
channel = cast(discord.TextChannel, channel)
try:
# Create the thread using discord.py 2.0+ API
thread_type = (
discord.ChannelType.private_thread
if is_private
else discord.ChannelType.public_thread
)
# Cast to the specific Literal type that discord.py expects
duration_minutes = cast(
Literal[60, 1440, 4320, 10080], auto_archive_duration.to_minutes()
)
# The 'type' parameter exists in discord.py 2.0+ but isn't in type stubs yet
# pyright: ignore[reportCallIssue]
thread = await channel.create_thread(
name=thread_name,
type=thread_type,
auto_archive_duration=duration_minutes,
)
# Send initial message if provided
if message_content:
await thread.send(message_content)
result["status"] = "Thread created successfully"
result["thread_id"] = str(thread.id)
result["thread_name"] = thread.name
except discord.errors.Forbidden as e:
result["status"] = (
f"Bot does not have permission to create threads in this channel. {str(e)}"
)
except Exception as e:
result["status"] = f"Error creating thread: {str(e)}"
finally:
await client.close()
await client.start(token)
return result
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
try:
result = await self.create_thread(
token=credentials.api_key.get_secret_value(),
channel_name=input_data.channel_name,
server_name=input_data.server_name or None,
thread_name=input_data.thread_name,
is_private=input_data.is_private,
auto_archive_duration=input_data.auto_archive_duration,
message_content=input_data.message_content,
)
yield "status", result.get("status", "Unknown error")
if "thread_id" in result:
yield "thread_id", result["thread_id"]
if "thread_name" in result:
yield "thread_name", result["thread_name"]
except discord.errors.LoginFailure as login_err:
raise ValueError(f"Login error occurred: {login_err}")

View File

@@ -1,6 +1,4 @@
import smtplib
import socket
import ssl
from email.mime.multipart import MIMEMultipart
from email.mime.text import MIMEText
from typing import Literal
@@ -50,7 +48,9 @@ def SMTPCredentialsField() -> SMTPCredentialsInput:
class SMTPConfig(BaseModel):
smtp_server: str = SchemaField(description="SMTP server address")
smtp_server: str = SchemaField(
default="smtp.example.com", description="SMTP server address"
)
smtp_port: int = SchemaField(default=25, description="SMTP port number")
model_config = ConfigDict(title="SMTP Config")
@@ -67,7 +67,10 @@ class SendEmailBlock(Block):
body: str = SchemaField(
description="Body of the email", placeholder="Enter the email body"
)
config: SMTPConfig = SchemaField(description="SMTP Config")
config: SMTPConfig = SchemaField(
description="SMTP Config",
default=SMTPConfig(),
)
credentials: SMTPCredentialsInput = SMTPCredentialsField()
class Output(BlockSchemaOutput):
@@ -117,7 +120,7 @@ class SendEmailBlock(Block):
msg["Subject"] = subject
msg.attach(MIMEText(body, "plain"))
with smtplib.SMTP(smtp_server, smtp_port, timeout=30) as server:
with smtplib.SMTP(smtp_server, smtp_port) as server:
server.starttls()
server.login(smtp_username, smtp_password)
server.sendmail(smtp_username, to_email, msg.as_string())
@@ -127,59 +130,10 @@ class SendEmailBlock(Block):
async def run(
self, input_data: Input, *, credentials: SMTPCredentials, **kwargs
) -> BlockOutput:
try:
status = self.send_email(
config=input_data.config,
to_email=input_data.to_email,
subject=input_data.subject,
body=input_data.body,
credentials=credentials,
)
yield "status", status
except socket.gaierror:
yield "error", (
f"Cannot connect to SMTP server '{input_data.config.smtp_server}'. "
"Please verify the server address is correct."
)
except socket.timeout:
yield "error", (
f"Connection timeout to '{input_data.config.smtp_server}' "
f"on port {input_data.config.smtp_port}. "
"The server may be down or unreachable."
)
except ConnectionRefusedError:
yield "error", (
f"Connection refused to '{input_data.config.smtp_server}' "
f"on port {input_data.config.smtp_port}. "
"Common SMTP ports are: 587 (TLS), 465 (SSL), 25 (plain). "
"Please verify the port is correct."
)
except smtplib.SMTPNotSupportedError:
yield "error", (
f"STARTTLS not supported by server '{input_data.config.smtp_server}'. "
"Try using port 465 for SSL or port 25 for unencrypted connection."
)
except ssl.SSLError as e:
yield "error", (
f"SSL/TLS error when connecting to '{input_data.config.smtp_server}': {str(e)}. "
"The server may require a different security protocol."
)
except smtplib.SMTPAuthenticationError:
yield "error", (
"Authentication failed. Please verify your username and password are correct."
)
except smtplib.SMTPRecipientsRefused:
yield "error", (
f"Recipient email address '{input_data.to_email}' was rejected by the server. "
"Please verify the email address is valid."
)
except smtplib.SMTPSenderRefused:
yield "error", (
"Sender email address defined in the credentials that where used"
"was rejected by the server. "
"Please verify your account is authorized to send emails."
)
except smtplib.SMTPDataError as e:
yield "error", f"Email data rejected by server: {str(e)}"
except Exception as e:
raise e
yield "status", self.send_email(
config=input_data.config,
to_email=input_data.to_email,
subject=input_data.subject,
body=input_data.body,
credentials=credentials,
)

View File

@@ -15,7 +15,6 @@ from backend.sdk import (
SchemaField,
cost,
)
from backend.util.exceptions import BlockExecutionError
from ._config import firecrawl
@@ -60,18 +59,11 @@ class FirecrawlExtractBlock(Block):
) -> BlockOutput:
app = FirecrawlApp(api_key=credentials.api_key.get_secret_value())
try:
extract_result = app.extract(
urls=input_data.urls,
prompt=input_data.prompt,
schema=input_data.output_schema,
enable_web_search=input_data.enable_web_search,
)
except Exception as e:
raise BlockExecutionError(
message=f"Extract failed: {e}",
block_name=self.name,
block_id=self.id,
) from e
extract_result = app.extract(
urls=input_data.urls,
prompt=input_data.prompt,
schema=input_data.output_schema,
enable_web_search=input_data.enable_web_search,
)
yield "data", extract_result.data

View File

@@ -19,7 +19,6 @@ from backend.data.model import (
SchemaField,
)
from backend.integrations.providers import ProviderName
from backend.util.exceptions import ModerationError
from backend.util.file import MediaFileType, store_media_file
TEST_CREDENTIALS = APIKeyCredentials(
@@ -154,8 +153,6 @@ class AIImageEditorBlock(Block):
),
aspect_ratio=input_data.aspect_ratio.value,
seed=input_data.seed,
user_id=user_id,
graph_exec_id=graph_exec_id,
)
yield "output_image", result
@@ -167,8 +164,6 @@ class AIImageEditorBlock(Block):
input_image_b64: Optional[str],
aspect_ratio: str,
seed: Optional[int],
user_id: str,
graph_exec_id: str,
) -> MediaFileType:
client = ReplicateClient(api_token=api_key.get_secret_value())
input_params = {
@@ -178,21 +173,11 @@ class AIImageEditorBlock(Block):
**({"seed": seed} if seed is not None else {}),
}
try:
output: FileOutput | list[FileOutput] = await client.async_run( # type: ignore
model_name,
input=input_params,
wait=False,
)
except Exception as e:
if "flagged as sensitive" in str(e).lower():
raise ModerationError(
message="Content was flagged as sensitive by the model provider",
user_id=user_id,
graph_exec_id=graph_exec_id,
moderation_type="model_provider",
)
raise ValueError(f"Model execution failed: {e}") from e
output: FileOutput | list[FileOutput] = await client.async_run( # type: ignore
model_name,
input=input_params,
wait=False,
)
if isinstance(output, list) and output:
output = output[0]

View File

@@ -1,108 +0,0 @@
{
"action": "created",
"discussion": {
"repository_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"category": {
"id": 12345678,
"node_id": "DIC_kwDOJKSTjM4CXXXX",
"repository_id": 614765452,
"emoji": ":pray:",
"name": "Q&A",
"description": "Ask the community for help",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2023-03-16T09:21:07Z",
"slug": "q-a",
"is_answerable": true
},
"answer_html_url": null,
"answer_chosen_at": null,
"answer_chosen_by": null,
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/discussions/9999",
"id": 5000000001,
"node_id": "D_kwDOJKSTjM4AYYYY",
"number": 9999,
"title": "How do I configure custom blocks?",
"user": {
"login": "curious-user",
"id": 22222222,
"node_id": "MDQ6VXNlcjIyMjIyMjIy",
"avatar_url": "https://avatars.githubusercontent.com/u/22222222?v=4",
"url": "https://api.github.com/users/curious-user",
"html_url": "https://github.com/curious-user",
"type": "User",
"site_admin": false
},
"state": "open",
"state_reason": null,
"locked": false,
"comments": 0,
"created_at": "2024-12-01T17:00:00Z",
"updated_at": "2024-12-01T17:00:00Z",
"author_association": "NONE",
"active_lock_reason": null,
"body": "## Question\n\nI'm trying to create a custom block for my specific use case. I've read the documentation but I'm not sure how to:\n\n1. Define the input/output schema\n2. Handle authentication\n3. Test my block locally\n\nCan someone point me to examples or provide guidance?\n\n## Environment\n\n- AutoGPT Platform version: latest\n- Python: 3.11",
"reactions": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/discussions/9999/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
},
"timeline_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/discussions/9999/timeline"
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T17:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"has_discussions": true,
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "curious-user",
"id": 22222222,
"node_id": "MDQ6VXNlcjIyMjIyMjIy",
"avatar_url": "https://avatars.githubusercontent.com/u/22222222?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/curious-user",
"html_url": "https://github.com/curious-user",
"type": "User",
"site_admin": false
}
}

View File

@@ -1,112 +0,0 @@
{
"action": "opened",
"issue": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345",
"repository_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"labels_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/labels{/name}",
"comments_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/comments",
"events_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/events",
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/issues/12345",
"id": 2000000001,
"node_id": "I_kwDOJKSTjM5wXXXX",
"number": 12345,
"title": "Bug: Application crashes when processing large files",
"user": {
"login": "bug-reporter",
"id": 11111111,
"node_id": "MDQ6VXNlcjExMTExMTEx",
"avatar_url": "https://avatars.githubusercontent.com/u/11111111?v=4",
"url": "https://api.github.com/users/bug-reporter",
"html_url": "https://github.com/bug-reporter",
"type": "User",
"site_admin": false
},
"labels": [
{
"id": 5272676214,
"node_id": "LA_kwDOJKSTjM8AAAABOkandg",
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/labels/bug",
"name": "bug",
"color": "d73a4a",
"default": true,
"description": "Something isn't working"
}
],
"state": "open",
"locked": false,
"assignee": null,
"assignees": [],
"milestone": null,
"comments": 0,
"created_at": "2024-12-01T16:00:00Z",
"updated_at": "2024-12-01T16:00:00Z",
"closed_at": null,
"author_association": "NONE",
"active_lock_reason": null,
"body": "## Description\n\nWhen I try to process a file larger than 100MB, the application crashes with an out of memory error.\n\n## Steps to Reproduce\n\n1. Open the application\n2. Select a file larger than 100MB\n3. Click 'Process'\n4. Application crashes\n\n## Expected Behavior\n\nThe application should handle large files gracefully.\n\n## Environment\n\n- OS: Ubuntu 22.04\n- Python: 3.11\n- AutoGPT Version: 1.0.0",
"reactions": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/reactions",
"total_count": 0,
"+1": 0,
"-1": 0,
"laugh": 0,
"hooray": 0,
"confused": 0,
"heart": 0,
"rocket": 0,
"eyes": 0
},
"timeline_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/issues/12345/timeline",
"state_reason": null
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T16:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"forks_count": 45000,
"open_issues_count": 190,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "bug-reporter",
"id": 11111111,
"node_id": "MDQ6VXNlcjExMTExMTEx",
"avatar_url": "https://avatars.githubusercontent.com/u/11111111?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/bug-reporter",
"html_url": "https://github.com/bug-reporter",
"type": "User",
"site_admin": false
}
}

View File

@@ -1,97 +0,0 @@
{
"action": "published",
"release": {
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789",
"assets_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789/assets",
"upload_url": "https://uploads.github.com/repos/Significant-Gravitas/AutoGPT/releases/123456789/assets{?name,label}",
"html_url": "https://github.com/Significant-Gravitas/AutoGPT/releases/tag/v1.0.0",
"id": 123456789,
"author": {
"login": "ntindle",
"id": 12345678,
"node_id": "MDQ6VXNlcjEyMzQ1Njc4",
"avatar_url": "https://avatars.githubusercontent.com/u/12345678?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ntindle",
"html_url": "https://github.com/ntindle",
"type": "User",
"site_admin": false
},
"node_id": "RE_kwDOJKSTjM4HWwAA",
"tag_name": "v1.0.0",
"target_commitish": "master",
"name": "AutoGPT Platform v1.0.0",
"draft": false,
"prerelease": false,
"created_at": "2024-12-01T10:00:00Z",
"published_at": "2024-12-01T12:00:00Z",
"assets": [
{
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/releases/assets/987654321",
"id": 987654321,
"node_id": "RA_kwDOJKSTjM4HWwBB",
"name": "autogpt-v1.0.0.zip",
"label": "Release Package",
"content_type": "application/zip",
"state": "uploaded",
"size": 52428800,
"download_count": 0,
"created_at": "2024-12-01T11:30:00Z",
"updated_at": "2024-12-01T11:35:00Z",
"browser_download_url": "https://github.com/Significant-Gravitas/AutoGPT/releases/download/v1.0.0/autogpt-v1.0.0.zip"
}
],
"tarball_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/tarball/v1.0.0",
"zipball_url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT/zipball/v1.0.0",
"body": "## What's New\n\n- Feature 1: Amazing new capability\n- Feature 2: Performance improvements\n- Bug fixes and stability improvements\n\n## Breaking Changes\n\nNone\n\n## Contributors\n\nThanks to all our contributors!"
},
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T12:00:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170000,
"watchers_count": 170000,
"language": "Python",
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "ntindle",
"id": 12345678,
"node_id": "MDQ6VXNlcjEyMzQ1Njc4",
"avatar_url": "https://avatars.githubusercontent.com/u/12345678?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/ntindle",
"html_url": "https://github.com/ntindle",
"type": "User",
"site_admin": false
}
}

View File

@@ -1,53 +0,0 @@
{
"action": "created",
"starred_at": "2024-12-01T15:30:00Z",
"repository": {
"id": 614765452,
"node_id": "R_kgDOJKSTjA",
"name": "AutoGPT",
"full_name": "Significant-Gravitas/AutoGPT",
"private": false,
"owner": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"url": "https://api.github.com/users/Significant-Gravitas",
"html_url": "https://github.com/Significant-Gravitas",
"type": "Organization",
"site_admin": false
},
"html_url": "https://github.com/Significant-Gravitas/AutoGPT",
"description": "AutoGPT is the vision of accessible AI for everyone, to use and to build on.",
"fork": false,
"url": "https://api.github.com/repos/Significant-Gravitas/AutoGPT",
"created_at": "2023-03-16T09:21:07Z",
"updated_at": "2024-12-01T15:30:00Z",
"pushed_at": "2024-12-01T12:00:00Z",
"stargazers_count": 170001,
"watchers_count": 170001,
"language": "Python",
"forks_count": 45000,
"visibility": "public",
"default_branch": "master"
},
"organization": {
"login": "Significant-Gravitas",
"id": 130738209,
"node_id": "O_kgDOB8roIQ",
"url": "https://api.github.com/orgs/Significant-Gravitas",
"avatar_url": "https://avatars.githubusercontent.com/u/130738209?v=4",
"description": ""
},
"sender": {
"login": "awesome-contributor",
"id": 98765432,
"node_id": "MDQ6VXNlcjk4NzY1NDMy",
"avatar_url": "https://avatars.githubusercontent.com/u/98765432?v=4",
"gravatar_id": "",
"url": "https://api.github.com/users/awesome-contributor",
"html_url": "https://github.com/awesome-contributor",
"type": "User",
"site_admin": false
}
}

View File

@@ -159,391 +159,3 @@ class GithubPullRequestTriggerBlock(GitHubTriggerBase, Block):
# --8<-- [end:GithubTriggerExample]
class GithubStarTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub star events - useful for milestone celebrations."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "star.created.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#star
"""
created: bool = False
deleted: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The star events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The star event that triggered the webhook ('created' or 'deleted')"
)
starred_at: str = SchemaField(
description="ISO timestamp when the repo was starred (empty if deleted)"
)
stargazers_count: int = SchemaField(
description="Current number of stars on the repository"
)
repository_name: str = SchemaField(
description="Full name of the repository (owner/repo)"
)
repository_url: str = SchemaField(description="URL to the repository")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="551e0a35-100b-49b7-89b8-3031322239b6",
description="This block triggers on GitHub star events. "
"Useful for celebrating milestones (e.g., 1k, 10k stars) or tracking engagement.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubStarTriggerBlock.Input,
output_schema=GithubStarTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="star.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"created": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("starred_at", example_payload.get("starred_at", "")),
("stargazers_count", example_payload["repository"]["stargazers_count"]),
("repository_name", example_payload["repository"]["full_name"]),
("repository_url", example_payload["repository"]["html_url"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
yield "event", input_data.payload["action"]
yield "starred_at", input_data.payload.get("starred_at", "")
yield "stargazers_count", input_data.payload["repository"]["stargazers_count"]
yield "repository_name", input_data.payload["repository"]["full_name"]
yield "repository_url", input_data.payload["repository"]["html_url"]
class GithubReleaseTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub release events - ideal for announcing new versions."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "release.published.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#release
"""
published: bool = False
unpublished: bool = False
created: bool = False
edited: bool = False
deleted: bool = False
prereleased: bool = False
released: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The release events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The release event that triggered the webhook (e.g., 'published')"
)
release: dict = SchemaField(description="The full release object")
release_url: str = SchemaField(description="URL to the release page")
tag_name: str = SchemaField(description="The release tag name (e.g., 'v1.0.0')")
release_name: str = SchemaField(description="Human-readable release name")
body: str = SchemaField(description="Release notes/description")
prerelease: bool = SchemaField(description="Whether this is a prerelease")
draft: bool = SchemaField(description="Whether this is a draft release")
assets: list = SchemaField(description="List of release assets/files")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="2052dd1b-74e1-46ac-9c87-c7a0e057b60b",
description="This block triggers on GitHub release events. "
"Perfect for automating announcements to Discord, Twitter, or other platforms.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubReleaseTriggerBlock.Input,
output_schema=GithubReleaseTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="release.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"published": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("release", example_payload["release"]),
("release_url", example_payload["release"]["html_url"]),
("tag_name", example_payload["release"]["tag_name"]),
("release_name", example_payload["release"]["name"]),
("body", example_payload["release"]["body"]),
("prerelease", example_payload["release"]["prerelease"]),
("draft", example_payload["release"]["draft"]),
("assets", example_payload["release"]["assets"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
release = input_data.payload["release"]
yield "event", input_data.payload["action"]
yield "release", release
yield "release_url", release["html_url"]
yield "tag_name", release["tag_name"]
yield "release_name", release.get("name", "")
yield "body", release.get("body", "")
yield "prerelease", release["prerelease"]
yield "draft", release["draft"]
yield "assets", release["assets"]
class GithubIssuesTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub issues events - great for triage and notifications."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "issues.opened.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#issues
"""
opened: bool = False
edited: bool = False
deleted: bool = False
closed: bool = False
reopened: bool = False
assigned: bool = False
unassigned: bool = False
labeled: bool = False
unlabeled: bool = False
locked: bool = False
unlocked: bool = False
transferred: bool = False
milestoned: bool = False
demilestoned: bool = False
pinned: bool = False
unpinned: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The issue events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The issue event that triggered the webhook (e.g., 'opened')"
)
number: int = SchemaField(description="The issue number")
issue: dict = SchemaField(description="The full issue object")
issue_url: str = SchemaField(description="URL to the issue")
issue_title: str = SchemaField(description="The issue title")
issue_body: str = SchemaField(description="The issue body/description")
labels: list = SchemaField(description="List of labels on the issue")
assignees: list = SchemaField(description="List of assignees")
state: str = SchemaField(description="Issue state ('open' or 'closed')")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="b2605464-e486-4bf4-aad3-d8a213c8a48a",
description="This block triggers on GitHub issues events. "
"Useful for automated triage, notifications, and welcoming first-time contributors.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubIssuesTriggerBlock.Input,
output_schema=GithubIssuesTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="issues.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"opened": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("number", example_payload["issue"]["number"]),
("issue", example_payload["issue"]),
("issue_url", example_payload["issue"]["html_url"]),
("issue_title", example_payload["issue"]["title"]),
("issue_body", example_payload["issue"]["body"]),
("labels", example_payload["issue"]["labels"]),
("assignees", example_payload["issue"]["assignees"]),
("state", example_payload["issue"]["state"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
issue = input_data.payload["issue"]
yield "event", input_data.payload["action"]
yield "number", issue["number"]
yield "issue", issue
yield "issue_url", issue["html_url"]
yield "issue_title", issue["title"]
yield "issue_body", issue.get("body") or ""
yield "labels", issue["labels"]
yield "assignees", issue["assignees"]
yield "state", issue["state"]
class GithubDiscussionTriggerBlock(GitHubTriggerBase, Block):
"""Trigger block for GitHub discussion events - perfect for community Q&A sync."""
EXAMPLE_PAYLOAD_FILE = (
Path(__file__).parent / "example_payloads" / "discussion.created.json"
)
class Input(GitHubTriggerBase.Input):
class EventsFilter(BaseModel):
"""
https://docs.github.com/en/webhooks/webhook-events-and-payloads#discussion
"""
created: bool = False
edited: bool = False
deleted: bool = False
answered: bool = False
unanswered: bool = False
labeled: bool = False
unlabeled: bool = False
locked: bool = False
unlocked: bool = False
category_changed: bool = False
transferred: bool = False
pinned: bool = False
unpinned: bool = False
events: EventsFilter = SchemaField(
title="Events", description="The discussion events to subscribe to"
)
class Output(GitHubTriggerBase.Output):
event: str = SchemaField(
description="The discussion event that triggered the webhook"
)
number: int = SchemaField(description="The discussion number")
discussion: dict = SchemaField(description="The full discussion object")
discussion_url: str = SchemaField(description="URL to the discussion")
title: str = SchemaField(description="The discussion title")
body: str = SchemaField(description="The discussion body")
category: dict = SchemaField(description="The discussion category object")
category_name: str = SchemaField(description="Name of the category")
state: str = SchemaField(description="Discussion state")
def __init__(self):
from backend.integrations.webhooks.github import GithubWebhookType
example_payload = json.loads(
self.EXAMPLE_PAYLOAD_FILE.read_text(encoding="utf-8")
)
super().__init__(
id="87f847b3-d81a-424e-8e89-acadb5c9d52b",
description="This block triggers on GitHub Discussions events. "
"Great for syncing Q&A to Discord or auto-responding to common questions. "
"Note: Discussions must be enabled on the repository.",
categories={BlockCategory.DEVELOPER_TOOLS, BlockCategory.INPUT},
input_schema=GithubDiscussionTriggerBlock.Input,
output_schema=GithubDiscussionTriggerBlock.Output,
webhook_config=BlockWebhookConfig(
provider=ProviderName.GITHUB,
webhook_type=GithubWebhookType.REPO,
resource_format="{repo}",
event_filter_input="events",
event_format="discussion.{event}",
),
test_input={
"repo": "Significant-Gravitas/AutoGPT",
"events": {"created": True},
"credentials": TEST_CREDENTIALS_INPUT,
"payload": example_payload,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
("payload", example_payload),
("triggered_by_user", example_payload["sender"]),
("event", example_payload["action"]),
("number", example_payload["discussion"]["number"]),
("discussion", example_payload["discussion"]),
("discussion_url", example_payload["discussion"]["html_url"]),
("title", example_payload["discussion"]["title"]),
("body", example_payload["discussion"]["body"]),
("category", example_payload["discussion"]["category"]),
("category_name", example_payload["discussion"]["category"]["name"]),
("state", example_payload["discussion"]["state"]),
],
)
async def run(self, input_data: Input, **kwargs) -> BlockOutput: # type: ignore
async for name, value in super().run(input_data, **kwargs):
yield name, value
discussion = input_data.payload["discussion"]
yield "event", input_data.payload["action"]
yield "number", discussion["number"]
yield "discussion", discussion
yield "discussion_url", discussion["html_url"]
yield "title", discussion["title"]
yield "body", discussion.get("body") or ""
yield "category", discussion["category"]
yield "category_name", discussion["category"]["name"]
yield "state", discussion["state"]

View File

@@ -1,155 +0,0 @@
from typing import Any, Literal, Optional
from pydantic import BaseModel, ConfigDict, Field
from backend.data.model import SchemaField
AttachmentView = Literal[
"DOCS",
"DOCUMENTS",
"SPREADSHEETS",
"PRESENTATIONS",
"DOCS_IMAGES",
"FOLDERS",
]
ATTACHMENT_VIEWS: tuple[AttachmentView, ...] = (
"DOCS",
"DOCUMENTS",
"SPREADSHEETS",
"PRESENTATIONS",
"DOCS_IMAGES",
"FOLDERS",
)
class _GoogleDriveFileBase(BaseModel):
"""Internal base class for Google Drive file representation."""
model_config = ConfigDict(populate_by_name=True)
id: str = Field(description="Google Drive file/folder ID")
name: Optional[str] = Field(None, description="File/folder name")
mime_type: Optional[str] = Field(
None,
alias="mimeType",
description="MIME type (e.g., application/vnd.google-apps.document)",
)
url: Optional[str] = Field(None, description="URL to open the file")
icon_url: Optional[str] = Field(None, alias="iconUrl", description="Icon URL")
is_folder: Optional[bool] = Field(
None, alias="isFolder", description="Whether this is a folder"
)
class GoogleDriveFile(_GoogleDriveFileBase):
"""
Represents a Google Drive file/folder with optional credentials for chaining.
Used for both inputs and outputs in Google Drive blocks. The `_credentials_id`
field enables chaining between blocks - when one block outputs a file, the
next block can use the same credentials to access it.
When used with GoogleDriveFileField(), the frontend renders a combined
auth + file picker UI that automatically populates `_credentials_id`.
"""
# Hidden field for credential ID - populated by frontend, preserved in outputs
credentials_id: Optional[str] = Field(
None,
alias="_credentials_id",
description="Internal: credential ID for authentication",
)
def GoogleDriveFileField(
*,
title: str,
description: str | None = None,
credentials_kwarg: str = "credentials",
credentials_scopes: list[str] | None = None,
allowed_views: list[AttachmentView] | None = None,
allowed_mime_types: list[str] | None = None,
placeholder: str | None = None,
**kwargs: Any,
) -> Any:
"""
Creates a Google Drive file input field with auto-generated credentials.
This field type produces a single UI element that handles both:
1. Google OAuth authentication
2. File selection via Google Drive Picker
The system automatically generates a credentials field, and the credentials
are passed to the run() method using the specified kwarg name.
Args:
title: Field title shown in UI
description: Field description/help text
credentials_kwarg: Name of the kwarg that will receive GoogleCredentials
in the run() method (default: "credentials")
credentials_scopes: OAuth scopes required (default: drive.file)
allowed_views: List of view types to show in picker (default: ["DOCS"])
allowed_mime_types: Filter by MIME types
placeholder: Placeholder text for the button
**kwargs: Additional SchemaField arguments
Returns:
Field definition that produces GoogleDriveFile
Example:
>>> class MyBlock(Block):
... class Input(BlockSchemaInput):
... spreadsheet: GoogleDriveFile = GoogleDriveFileField(
... title="Select Spreadsheet",
... credentials_kwarg="creds",
... allowed_views=["SPREADSHEETS"],
... )
...
... async def run(
... self, input_data: Input, *, creds: GoogleCredentials, **kwargs
... ):
... # creds is automatically populated
... file = input_data.spreadsheet
"""
# Determine scopes - drive.file is sufficient for picker-selected files
scopes = credentials_scopes or ["https://www.googleapis.com/auth/drive.file"]
# Build picker configuration with auto_credentials embedded
picker_config = {
"multiselect": False,
"allow_folder_selection": False,
"allowed_views": list(allowed_views) if allowed_views else ["DOCS"],
"scopes": scopes,
# Auto-credentials config tells frontend to include _credentials_id in output
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": scopes,
"kwarg_name": credentials_kwarg,
},
}
if allowed_mime_types:
picker_config["allowed_mime_types"] = list(allowed_mime_types)
return SchemaField(
default=None,
title=title,
description=description,
placeholder=placeholder or "Select from Google Drive",
# Use google-drive-picker format so frontend renders existing component
format="google-drive-picker",
advanced=False,
json_schema_extra={
"google_drive_picker_config": picker_config,
# Also keep auto_credentials at top level for backend detection
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": scopes,
"kwarg_name": credentials_kwarg,
},
**kwargs,
},
)

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -184,13 +184,7 @@ class SendWebRequestBlock(Block):
)
# ─── Execute request ─────────────────────────────────────────
# Use raise_for_status=False so HTTP errors (4xx, 5xx) are returned
# as response objects instead of raising exceptions, allowing proper
# handling via client_error and server_error outputs
response = await Requests(
raise_for_status=False,
retry_max_attempts=1, # allow callers to handle HTTP errors immediately
).request(
response = await Requests().request(
input_data.method.value,
input_data.url,
headers=input_data.headers,

View File

@@ -1,166 +0,0 @@
import logging
from typing import Any
from prisma.enums import ReviewStatus
from backend.data.block import (
Block,
BlockCategory,
BlockOutput,
BlockSchemaInput,
BlockSchemaOutput,
BlockType,
)
from backend.data.execution import ExecutionContext, ExecutionStatus
from backend.data.human_review import ReviewResult
from backend.data.model import SchemaField
from backend.executor.manager import async_update_node_execution_status
from backend.util.clients import get_database_manager_async_client
logger = logging.getLogger(__name__)
class HumanInTheLoopBlock(Block):
"""
This block pauses execution and waits for human approval or modification of the data.
When executed, it creates a pending review entry and sets the node execution status
to REVIEW. The execution will remain paused until a human user either:
- Approves the data (with or without modifications)
- Rejects the data
This is useful for workflows that require human validation or intervention before
proceeding to the next steps.
"""
class Input(BlockSchemaInput):
data: Any = SchemaField(description="The data to be reviewed by a human user")
name: str = SchemaField(
description="A descriptive name for what this data represents",
)
editable: bool = SchemaField(
description="Whether the human reviewer can edit the data",
default=True,
advanced=True,
)
class Output(BlockSchemaOutput):
approved_data: Any = SchemaField(
description="The data when approved (may be modified by reviewer)"
)
rejected_data: Any = SchemaField(
description="The data when rejected (may be modified by reviewer)"
)
review_message: str = SchemaField(
description="Any message provided by the reviewer", default=""
)
def __init__(self):
super().__init__(
id="8b2a7b3c-6e9d-4a5f-8c1b-2e3f4a5b6c7d",
description="Pause execution and wait for human approval or modification of data",
categories={BlockCategory.BASIC},
input_schema=HumanInTheLoopBlock.Input,
output_schema=HumanInTheLoopBlock.Output,
block_type=BlockType.HUMAN_IN_THE_LOOP,
test_input={
"data": {"name": "John Doe", "age": 30},
"name": "User profile data",
"editable": True,
},
test_output=[
("approved_data", {"name": "John Doe", "age": 30}),
],
test_mock={
"get_or_create_human_review": lambda *_args, **_kwargs: ReviewResult(
data={"name": "John Doe", "age": 30},
status=ReviewStatus.APPROVED,
message="",
processed=False,
node_exec_id="test-node-exec-id",
),
"update_node_execution_status": lambda *_args, **_kwargs: None,
"update_review_processed_status": lambda *_args, **_kwargs: None,
},
)
async def get_or_create_human_review(self, **kwargs):
return await get_database_manager_async_client().get_or_create_human_review(
**kwargs
)
async def update_node_execution_status(self, **kwargs):
return await async_update_node_execution_status(
db_client=get_database_manager_async_client(), **kwargs
)
async def update_review_processed_status(self, node_exec_id: str, processed: bool):
return await get_database_manager_async_client().update_review_processed_status(
node_exec_id, processed
)
async def run(
self,
input_data: Input,
*,
user_id: str,
node_exec_id: str,
graph_exec_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
**kwargs,
) -> BlockOutput:
if not execution_context.safe_mode:
logger.info(
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
)
yield "approved_data", input_data.data
yield "review_message", "Auto-approved (safe mode disabled)"
return
try:
result = await self.get_or_create_human_review(
user_id=user_id,
node_exec_id=node_exec_id,
graph_exec_id=graph_exec_id,
graph_id=graph_id,
graph_version=graph_version,
input_data=input_data.data,
message=input_data.name,
editable=input_data.editable,
)
except Exception as e:
logger.error(f"Error in HITL block for node {node_exec_id}: {str(e)}")
raise
if result is None:
logger.info(
f"HITL block pausing execution for node {node_exec_id} - awaiting human review"
)
try:
await self.update_node_execution_status(
exec_id=node_exec_id,
status=ExecutionStatus.REVIEW,
)
return
except Exception as e:
logger.error(
f"Failed to update node status for HITL block {node_exec_id}: {str(e)}"
)
raise
if not result.processed:
await self.update_review_processed_status(
node_exec_id=node_exec_id, processed=True
)
if result.status == ReviewStatus.APPROVED:
yield "approved_data", result.data
if result.message:
yield "review_message", result.message
elif result.status == ReviewStatus.REJECTED:
yield "rejected_data", result.data
if result.message:
yield "review_message", result.message

View File

@@ -2,6 +2,7 @@ from enum import Enum
from typing import Any, Dict, Literal, Optional
from pydantic import SecretStr
from requests.exceptions import RequestException
from backend.data.block import (
Block,
@@ -331,8 +332,8 @@ class IdeogramModelBlock(Block):
try:
response = await Requests().post(url, headers=headers, json=data)
return response.json()["data"][0]["url"]
except Exception as e:
raise ValueError(f"Failed to fetch image with V3 endpoint: {e}") from e
except RequestException as e:
raise Exception(f"Failed to fetch image with V3 endpoint: {str(e)}")
async def _run_model_legacy(
self,
@@ -384,8 +385,8 @@ class IdeogramModelBlock(Block):
try:
response = await Requests().post(url, headers=headers, json=data)
return response.json()["data"][0]["url"]
except Exception as e:
raise ValueError(f"Failed to fetch image with legacy endpoint: {e}") from e
except RequestException as e:
raise Exception(f"Failed to fetch image with legacy endpoint: {str(e)}")
async def upscale_image(self, api_key: SecretStr, image_url: str):
url = "https://api.ideogram.ai/upscale"
@@ -412,5 +413,5 @@ class IdeogramModelBlock(Block):
return (response.json())["data"][0]["url"]
except Exception as e:
raise ValueError(f"Failed to upscale image: {e}") from e
except RequestException as e:
raise Exception(f"Failed to upscale image: {str(e)}")

View File

@@ -2,8 +2,6 @@ import copy
from datetime import date, time
from typing import Any, Optional
# Import for Google Drive file input block
from backend.blocks.google._drive import AttachmentView, GoogleDriveFile
from backend.data.block import (
Block,
BlockCategory,
@@ -648,119 +646,6 @@ class AgentTableInputBlock(AgentInputBlock):
yield "result", input_data.value if input_data.value is not None else []
class AgentGoogleDriveFileInputBlock(AgentInputBlock):
"""
This block allows users to select a file from Google Drive.
It provides a Google Drive file picker UI that handles both authentication
and file selection. The selected file information (ID, name, URL, etc.)
is output for use by other blocks like Google Sheets Read.
"""
class Input(AgentInputBlock.Input):
value: Optional[GoogleDriveFile] = SchemaField(
description="The selected Google Drive file.",
default=None,
advanced=False,
title="Selected File",
)
allowed_views: list[AttachmentView] = SchemaField(
description="Which views to show in the file picker (DOCS, SPREADSHEETS, PRESENTATIONS, etc.).",
default_factory=lambda: ["DOCS", "SPREADSHEETS", "PRESENTATIONS"],
advanced=False,
title="Allowed Views",
)
allow_folder_selection: bool = SchemaField(
description="Whether to allow selecting folders.",
default=False,
advanced=True,
title="Allow Folder Selection",
)
def generate_schema(self):
"""Generate schema for the value field with Google Drive picker format."""
schema = super().generate_schema()
# Default scopes for drive.file access
scopes = ["https://www.googleapis.com/auth/drive.file"]
# Build picker configuration
picker_config = {
"multiselect": False, # Single file selection only for now
"allow_folder_selection": self.allow_folder_selection,
"allowed_views": (
list(self.allowed_views) if self.allowed_views else ["DOCS"]
),
"scopes": scopes,
# Auto-credentials config tells frontend to include _credentials_id in output
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": scopes,
"kwarg_name": "credentials",
},
}
# Set format and config for frontend to render Google Drive picker
schema["format"] = "google-drive-picker"
schema["google_drive_picker_config"] = picker_config
# Also keep auto_credentials at top level for backend detection
schema["auto_credentials"] = {
"provider": "google",
"type": "oauth2",
"scopes": scopes,
"kwarg_name": "credentials",
}
if self.value is not None:
schema["default"] = self.value.model_dump()
return schema
class Output(AgentInputBlock.Output):
result: GoogleDriveFile = SchemaField(
description="The selected Google Drive file with ID, name, URL, and other metadata."
)
def __init__(self):
test_file = GoogleDriveFile.model_validate(
{
"id": "test-file-id",
"name": "Test Spreadsheet",
"mimeType": "application/vnd.google-apps.spreadsheet",
"url": "https://docs.google.com/spreadsheets/d/test-file-id",
}
)
super().__init__(
id="d3b32f15-6fd7-40e3-be52-e083f51b19a2",
description="Block for selecting a file from Google Drive.",
disabled=not config.enable_agent_input_subtype_blocks,
input_schema=AgentGoogleDriveFileInputBlock.Input,
output_schema=AgentGoogleDriveFileInputBlock.Output,
test_input=[
{
"name": "spreadsheet_input",
"description": "Select a spreadsheet from Google Drive",
"allowed_views": ["SPREADSHEETS"],
"value": {
"id": "test-file-id",
"name": "Test Spreadsheet",
"mimeType": "application/vnd.google-apps.spreadsheet",
"url": "https://docs.google.com/spreadsheets/d/test-file-id",
},
}
],
test_output=[("result", test_file)],
)
async def run(self, input_data: Input, *args, **kwargs) -> BlockOutput:
"""
Yields the selected Google Drive file.
"""
if input_data.value is not None:
yield "result", input_data.value
IO_BLOCK_IDs = [
AgentInputBlock().id,
AgentOutputBlock().id,
@@ -773,5 +658,4 @@ IO_BLOCK_IDs = [
AgentDropdownInputBlock().id,
AgentToggleInputBlock().id,
AgentTableInputBlock().id,
AgentGoogleDriveFileInputBlock().id,
]

View File

@@ -16,7 +16,6 @@ from backend.data.block import (
BlockSchemaOutput,
)
from backend.data.model import SchemaField
from backend.util.exceptions import BlockExecutionError
class SearchTheWebBlock(Block, GetRequest):
@@ -57,17 +56,7 @@ class SearchTheWebBlock(Block, GetRequest):
# Prepend the Jina Search URL to the encoded query
jina_search_url = f"https://s.jina.ai/{encoded_query}"
try:
results = await self.get_request(
jina_search_url, headers=headers, json=False
)
except Exception as e:
raise BlockExecutionError(
message=f"Search failed: {e}",
block_name=self.name,
block_id=self.id,
) from e
results = await self.get_request(jina_search_url, headers=headers, json=False)
# Output the search results
yield "results", results

View File

@@ -265,68 +265,3 @@ class LinearClient:
return [Issue(**issue) for issue in issues["searchIssues"]["nodes"]]
except LinearAPIException as e:
raise e
async def try_get_issues(
self, project: str, status: str, is_assigned: bool, include_comments: bool
) -> list[Issue]:
try:
query = """
query IssuesByProjectStatusAndAssignee(
$projectName: String!
$statusName: String!
$isAssigned: Boolean!
$includeComments: Boolean! = false
) {
issues(
filter: {
project: { name: { eq: $projectName } }
state: { name: { eq: $statusName } }
assignee: { null: $isAssigned }
}
) {
nodes {
id
title
identifier
description
createdAt
priority
assignee {
id
name
}
project {
id
name
}
state {
id
name
}
comments @include(if: $includeComments) {
nodes {
id
body
createdAt
user {
id
name
}
}
}
}
}
}
"""
variables: dict[str, Any] = {
"projectName": project,
"statusName": status,
"isAssigned": not is_assigned,
"includeComments": include_comments,
}
issues = await self.query(query, variables)
return [Issue(**issue) for issue in issues["issues"]["nodes"]]
except LinearAPIException as e:
raise e

View File

@@ -203,106 +203,3 @@ class LinearSearchIssuesBlock(Block):
yield "error", str(e)
except Exception as e:
yield "error", f"Unexpected error: {str(e)}"
class LinearGetProjectIssuesBlock(Block):
"""Block for getting issues from a Linear project filtered by status and assignee"""
class Input(BlockSchemaInput):
credentials: CredentialsMetaInput = linear.credentials_field(
description="Linear credentials with read permissions",
required_scopes={LinearScope.READ},
)
project: str = SchemaField(description="Name of the project to get issues from")
status: str = SchemaField(
description="Status/state name to filter issues by (e.g., 'In Progress', 'Done')"
)
is_assigned: bool = SchemaField(
description="Filter by assignee status - True to get assigned issues, False to get unassigned issues",
default=False,
)
include_comments: bool = SchemaField(
description="Whether to include comments in the response",
default=False,
)
class Output(BlockSchemaOutput):
issues: list[Issue] = SchemaField(
description="List of issues matching the criteria"
)
def __init__(self):
super().__init__(
id="c7d3f1e8-45a9-4b2c-9f81-3e6a8d7c5b1a",
description="Gets issues from a Linear project filtered by status and assignee",
input_schema=self.Input,
output_schema=self.Output,
categories={BlockCategory.PRODUCTIVITY, BlockCategory.ISSUE_TRACKING},
test_input={
"project": "Test Project",
"status": "In Progress",
"is_assigned": False,
"include_comments": False,
"credentials": TEST_CREDENTIALS_INPUT_OAUTH,
},
test_credentials=TEST_CREDENTIALS_OAUTH,
test_output=[
(
"issues",
[
Issue(
id="abc123",
identifier="TST-123",
title="Test issue",
description="Test description",
priority=1,
)
],
),
],
test_mock={
"get_project_issues": lambda *args, **kwargs: [
Issue(
id="abc123",
identifier="TST-123",
title="Test issue",
description="Test description",
priority=1,
)
]
},
)
@staticmethod
async def get_project_issues(
credentials: OAuth2Credentials | APIKeyCredentials,
project: str,
status: str,
is_assigned: bool,
include_comments: bool,
) -> list[Issue]:
client = LinearClient(credentials=credentials)
response: list[Issue] = await client.try_get_issues(
project=project,
status=status,
is_assigned=is_assigned,
include_comments=include_comments,
)
return response
async def run(
self,
input_data: Input,
*,
credentials: OAuth2Credentials | APIKeyCredentials,
**kwargs,
) -> BlockOutput:
"""Execute getting project issues"""
issues = await self.get_project_issues(
credentials=credentials,
project=input_data.project,
status=input_data.status,
is_assigned=input_data.is_assigned,
include_comments=input_data.include_comments,
)
yield "issues", issues

View File

@@ -1,16 +1,9 @@
from backend.sdk import BaseModel
class User(BaseModel):
id: str
name: str
class Comment(BaseModel):
id: str
body: str
createdAt: str | None = None
user: User | None = None
class CreateCommentInput(BaseModel):
@@ -27,26 +20,22 @@ class CreateCommentResponseWrapper(BaseModel):
commentCreate: CreateCommentResponse
class Project(BaseModel):
id: str
name: str
description: str | None = None
priority: int | None = None
progress: float | None = None
content: str | None = None
class Issue(BaseModel):
id: str
identifier: str
title: str
description: str | None
priority: int
project: Project | None = None
createdAt: str | None = None
comments: list[Comment] | None = None
assignee: User | None = None
class CreateIssueResponse(BaseModel):
issue: Issue
class Project(BaseModel):
id: str
name: str
description: str
priority: int
progress: float
content: str | None

View File

@@ -1,5 +1,6 @@
# This file contains a lot of prompt block strings that would trigger "line too long"
# flake8: noqa: E501
import ast
import logging
import re
import secrets
@@ -92,8 +93,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
O1 = "o1"
O1_MINI = "o1-mini"
# GPT-5 models
GPT5_2 = "gpt-5.2-2025-12-11"
GPT5_1 = "gpt-5.1-2025-11-13"
GPT5 = "gpt-5-2025-08-07"
GPT5_MINI = "gpt-5-mini-2025-08-07"
GPT5_NANO = "gpt-5-nano-2025-08-07"
@@ -108,7 +107,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
CLAUDE_4_1_OPUS = "claude-opus-4-1-20250805"
CLAUDE_4_OPUS = "claude-opus-4-20250514"
CLAUDE_4_SONNET = "claude-sonnet-4-20250514"
CLAUDE_4_5_OPUS = "claude-opus-4-5-20251101"
CLAUDE_4_5_SONNET = "claude-sonnet-4-5-20250929"
CLAUDE_4_5_HAIKU = "claude-haiku-4-5-20251001"
CLAUDE_3_7_SONNET = "claude-3-7-sonnet-20250219"
@@ -132,7 +130,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
OPENAI_GPT_OSS_120B = "openai/gpt-oss-120b"
OPENAI_GPT_OSS_20B = "openai/gpt-oss-20b"
GEMINI_2_5_PRO = "google/gemini-2.5-pro-preview-03-25"
GEMINI_3_PRO_PREVIEW = "google/gemini-3-pro-preview"
GEMINI_2_5_FLASH = "google/gemini-2.5-flash"
GEMINI_2_0_FLASH = "google/gemini-2.0-flash-001"
GEMINI_2_5_FLASH_LITE_PREVIEW = "google/gemini-2.5-flash-lite-preview-06-17"
@@ -155,9 +152,6 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
META_LLAMA_4_SCOUT = "meta-llama/llama-4-scout"
META_LLAMA_4_MAVERICK = "meta-llama/llama-4-maverick"
GROK_4 = "x-ai/grok-4"
GROK_4_FAST = "x-ai/grok-4-fast"
GROK_4_1_FAST = "x-ai/grok-4.1-fast"
GROK_CODE_FAST_1 = "x-ai/grok-code-fast-1"
KIMI_K2 = "moonshotai/kimi-k2"
QWEN3_235B_A22B_THINKING = "qwen/qwen3-235b-a22b-thinking-2507"
QWEN3_CODER = "qwen/qwen3-coder"
@@ -195,8 +189,6 @@ MODEL_METADATA = {
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
@@ -221,9 +213,6 @@ MODEL_METADATA = {
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000
), # claude-opus-4-5-20251101
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000
), # claude-sonnet-4-5-20250929
@@ -253,7 +242,6 @@ MODEL_METADATA = {
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata("open_router", 1050000, 8192),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata("open_router", 1048576, 8192),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
@@ -265,12 +253,12 @@ MODEL_METADATA = {
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata("open_router", 163840, 163840),
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 8000),
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 127000),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata("open_router", 200000, 8000),
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
"open_router",
128000,
16000,
128000,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router", 131000, 4096
@@ -288,9 +276,6 @@ MODEL_METADATA = {
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata("open_router", 131072, 131072),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata("open_router", 1048576, 1000000),
LlmModel.GROK_4: ModelMetadata("open_router", 256000, 256000),
LlmModel.GROK_4_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_4_1_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_CODE_FAST_1: ModelMetadata("open_router", 256000, 10000),
LlmModel.KIMI_K2: ModelMetadata("open_router", 131000, 131000),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata("open_router", 262144, 262144),
LlmModel.QWEN3_CODER: ModelMetadata("open_router", 262144, 262144),
@@ -305,8 +290,6 @@ MODEL_METADATA = {
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
}
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
for model in LlmModel:
if model not in MODEL_METADATA:
raise ValueError(f"Missing MODEL_METADATA metadata for model: {model}")
@@ -794,7 +777,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for answering the prompt.",
advanced=False,
)
@@ -815,7 +798,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
default="",
description="The system prompt to provide additional context to the model.",
)
conversation_history: list[dict] | None = SchemaField(
conversation_history: list[dict] = SchemaField(
default_factory=list,
description="The conversation history to provide context for the prompt.",
)
@@ -859,7 +842,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
input_schema=AIStructuredResponseGeneratorBlock.Input,
output_schema=AIStructuredResponseGeneratorBlock.Output,
test_input={
"model": DEFAULT_LLM_MODEL,
"model": LlmModel.GPT4O,
"credentials": TEST_CREDENTIALS_INPUT,
"expected_format": {
"key1": "value1",
@@ -922,7 +905,7 @@ class AIStructuredResponseGeneratorBlock(AIBlockBase):
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
logger.debug(f"Calling LLM with input data: {input_data}")
prompt = [json.to_dict(p) for p in input_data.conversation_history or [] if p]
prompt = [json.to_dict(p) for p in input_data.conversation_history]
values = input_data.prompt_values
if values:
@@ -1225,7 +1208,7 @@ class AITextGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for answering the prompt.",
advanced=False,
)
@@ -1321,7 +1304,7 @@ class AITextSummarizerBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for summarizing the text.",
)
focus: str = SchemaField(
@@ -1538,7 +1521,7 @@ class AIConversationBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for the conversation.",
)
credentials: AICredentials = AICredentialsField()
@@ -1576,7 +1559,7 @@ class AIConversationBlock(AIBlockBase):
},
{"role": "user", "content": "Where was it played?"},
],
"model": DEFAULT_LLM_MODEL,
"model": LlmModel.GPT4O,
"credentials": TEST_CREDENTIALS_INPUT,
},
test_credentials=TEST_CREDENTIALS,
@@ -1639,7 +1622,7 @@ class AIListGeneratorBlock(AIBlockBase):
)
model: LlmModel = SchemaField(
title="LLM Model",
default=DEFAULT_LLM_MODEL,
default=LlmModel.GPT4O,
description="The language model to use for generating the list.",
advanced=True,
)
@@ -1650,17 +1633,6 @@ class AIListGeneratorBlock(AIBlockBase):
ge=1,
le=5,
)
force_json_output: bool = SchemaField(
title="Restrict LLM to pure JSON output",
default=False,
description=(
"Whether to force the LLM to produce a JSON-only response. "
"This can increase the block's reliability, "
"but may also reduce the quality of the response "
"because it prohibits the LLM from reasoning "
"before providing its JSON response."
),
)
max_tokens: int | None = SchemaField(
advanced=True,
default=None,
@@ -1673,7 +1645,7 @@ class AIListGeneratorBlock(AIBlockBase):
)
class Output(BlockSchemaOutput):
generated_list: list[str] = SchemaField(description="The generated list.")
generated_list: List[str] = SchemaField(description="The generated list.")
list_item: str = SchemaField(
description="Each individual item in the list.",
)
@@ -1682,7 +1654,7 @@ class AIListGeneratorBlock(AIBlockBase):
def __init__(self):
super().__init__(
id="9c0b0450-d199-458b-a731-072189dd6593",
description="Generate a list of values based on the given prompt using a Large Language Model (LLM).",
description="Generate a Python list based on the given prompt using a Large Language Model (LLM).",
categories={BlockCategory.AI, BlockCategory.TEXT},
input_schema=AIListGeneratorBlock.Input,
output_schema=AIListGeneratorBlock.Output,
@@ -1696,10 +1668,9 @@ class AIListGeneratorBlock(AIBlockBase):
"drawing explorers to uncover its mysteries. Each planet showcases the limitless possibilities of "
"fictional worlds."
),
"model": DEFAULT_LLM_MODEL,
"model": LlmModel.GPT4O,
"credentials": TEST_CREDENTIALS_INPUT,
"max_retries": 3,
"force_json_output": False,
},
test_credentials=TEST_CREDENTIALS,
test_output=[
@@ -1716,13 +1687,7 @@ class AIListGeneratorBlock(AIBlockBase):
],
test_mock={
"llm_call": lambda input_data, credentials: {
"list": [
"Zylora Prime",
"Kharon-9",
"Vortexia",
"Oceara",
"Draknos",
]
"response": "['Zylora Prime', 'Kharon-9', 'Vortexia', 'Oceara', 'Draknos']"
},
},
)
@@ -1731,7 +1696,7 @@ class AIListGeneratorBlock(AIBlockBase):
self,
input_data: AIStructuredResponseGeneratorBlock.Input,
credentials: APIKeyCredentials,
) -> dict[str, Any]:
) -> dict[str, str]:
llm_block = AIStructuredResponseGeneratorBlock()
response = await llm_block.run_once(
input_data, "response", credentials=credentials
@@ -1739,23 +1704,72 @@ class AIListGeneratorBlock(AIBlockBase):
self.merge_llm_stats(llm_block)
return response
@staticmethod
def string_to_list(string):
"""
Converts a string representation of a list into an actual Python list object.
"""
logger.debug(f"Converting string to list. Input string: {string}")
try:
# Use ast.literal_eval to safely evaluate the string
python_list = ast.literal_eval(string)
if isinstance(python_list, list):
logger.debug(f"Successfully converted string to list: {python_list}")
return python_list
else:
logger.error(f"The provided string '{string}' is not a valid list")
raise ValueError(f"The provided string '{string}' is not a valid list.")
except (SyntaxError, ValueError) as e:
logger.error(f"Failed to convert string to list: {e}")
raise ValueError("Invalid list format. Could not convert to list.")
async def run(
self, input_data: Input, *, credentials: APIKeyCredentials, **kwargs
) -> BlockOutput:
logger.debug(f"Starting AIListGeneratorBlock.run with input data: {input_data}")
# Create a proper expected format for the structured response generator
expected_format = {
"list": "A JSON array containing the generated string values"
}
if input_data.force_json_output:
# Add reasoning field for better performance
expected_format = {
"reasoning": "... (optional)",
**expected_format,
}
# Check for API key
api_key_check = credentials.api_key.get_secret_value()
if not api_key_check:
raise ValueError("No LLM API key provided.")
# Build the prompt
# Prepare the system prompt
sys_prompt = """You are a Python list generator. Your task is to generate a Python list based on the user's prompt.
|Respond ONLY with a valid python list.
|The list can contain strings, numbers, or nested lists as appropriate.
|Do not include any explanations or additional text.
|Valid Example string formats:
|Example 1:
|```
|['1', '2', '3', '4']
|```
|Example 2:
|```
|[['1', '2'], ['3', '4'], ['5', '6']]
|```
|Example 3:
|```
|['1', ['2', '3'], ['4', ['5', '6']]]
|```
|Example 4:
|```
|['a', 'b', 'c']
|```
|Example 5:
|```
|['1', '2.5', 'string', 'True', ['False', 'None']]
|```
|Do not include any explanations or additional text, just respond with the list in the format specified above.
|Do not include code fences or any other formatting, just the raw list.
"""
# If a focus is provided, add it to the prompt
if input_data.focus:
prompt = f"Generate a list with the following focus:\n<focus>\n\n{input_data.focus}</focus>"
else:
@@ -1763,7 +1777,7 @@ class AIListGeneratorBlock(AIBlockBase):
if input_data.source_data:
prompt = "Extract the main focus of the source data to a list.\ni.e if the source data is a news website, the focus would be the news stories rather than the social links in the footer."
else:
# No focus or source data provided, generate a random list
# No focus or source data provided, generat a random list
prompt = "Generate a random list."
# If the source data is provided, add it to the prompt
@@ -1773,56 +1787,63 @@ class AIListGeneratorBlock(AIBlockBase):
else:
prompt += "\n\nInvent the data to generate the list from."
# Use the structured response generator to handle all the complexity
response_obj = await self.llm_call(
AIStructuredResponseGeneratorBlock.Input(
sys_prompt=self.SYSTEM_PROMPT,
prompt=prompt,
credentials=input_data.credentials,
model=input_data.model,
expected_format=expected_format,
force_json_output=input_data.force_json_output,
retry=input_data.max_retries,
max_tokens=input_data.max_tokens,
ollama_host=input_data.ollama_host,
),
credentials=credentials,
)
logger.debug(f"Response object: {response_obj}")
for attempt in range(input_data.max_retries):
try:
logger.debug("Calling LLM")
llm_response = await self.llm_call(
AIStructuredResponseGeneratorBlock.Input(
sys_prompt=sys_prompt,
prompt=prompt,
credentials=input_data.credentials,
model=input_data.model,
expected_format={}, # Do not use structured response
ollama_host=input_data.ollama_host,
),
credentials=credentials,
)
# Extract the list from the response object
if isinstance(response_obj, dict) and "list" in response_obj:
parsed_list = response_obj["list"]
else:
# Fallback - treat the whole response as the list
parsed_list = response_obj
logger.debug(f"LLM response: {llm_response}")
# Validate that we got a list
if not isinstance(parsed_list, list):
raise ValueError(
f"Expected a list, but got {type(parsed_list).__name__}: {parsed_list}"
)
# Extract Response string
response_string = llm_response["response"]
logger.debug(f"Response string: {response_string}")
logger.debug(f"Parsed list: {parsed_list}")
# Convert the string to a Python list
logger.debug("Converting string to Python list")
parsed_list = self.string_to_list(response_string)
logger.debug(f"Parsed list: {parsed_list}")
# Yield the results
yield "generated_list", parsed_list
yield "prompt", self.prompt
# If we reach here, we have a valid Python list
logger.debug("Successfully generated a valid Python list")
yield "generated_list", parsed_list
yield "prompt", self.prompt
# Yield each item in the list
for item in parsed_list:
yield "list_item", item
# Yield each item in the list
for item in parsed_list:
yield "list_item", item
return
SYSTEM_PROMPT = trim_prompt(
"""
|You are a JSON array generator. Your task is to generate a JSON array of string values based on the user's prompt.
|
|The 'list' field should contain a JSON array with the generated string values.
|The array can contain ONLY strings.
|
|Valid JSON array formats include:
|• ["string1", "string2", "string3"]
|
|Ensure you provide a proper JSON array with only string values in the 'list' field.
"""
)
except Exception as e:
logger.error(f"Error in attempt {attempt + 1}: {str(e)}")
if attempt == input_data.max_retries - 1:
logger.error(
f"Failed to generate a valid Python list after {input_data.max_retries} attempts"
)
raise RuntimeError(
f"Failed to generate a valid Python list after {input_data.max_retries} attempts. Last error: {str(e)}"
)
else:
# Add a retry prompt
logger.debug("Preparing retry prompt")
prompt = f"""
The previous attempt failed due to `{e}`
Generate a valid Python list based on the original prompt.
Remember to respond ONLY with a valid Python list as per the format specified earlier.
Original prompt:
```{prompt}```
Respond only with the list in the format specified with no commentary or apologies.
"""
logger.debug(f"Retry prompt: {prompt}")
logger.debug("AIListGeneratorBlock.run completed")

View File

@@ -1,4 +1,3 @@
import logging
from datetime import datetime, timezone
from typing import Iterator, Literal
@@ -65,7 +64,6 @@ class RedditComment(BaseModel):
settings = Settings()
logger = logging.getLogger(__name__)
def get_praw(creds: RedditCredentials) -> praw.Reddit:
@@ -79,7 +77,7 @@ def get_praw(creds: RedditCredentials) -> praw.Reddit:
me = client.user.me()
if not me:
raise ValueError("Invalid Reddit credentials.")
logger.info(f"Logged in as Reddit user: {me.name}")
print(f"Logged in as Reddit user: {me.name}")
return client

View File

@@ -18,7 +18,6 @@ from backend.data.block import (
BlockSchemaOutput,
)
from backend.data.model import APIKeyCredentials, CredentialsField, SchemaField
from backend.util.exceptions import BlockExecutionError, BlockInputError
logger = logging.getLogger(__name__)
@@ -112,27 +111,9 @@ class ReplicateModelBlock(Block):
yield "status", "succeeded"
yield "model_name", input_data.model_name
except Exception as e:
error_msg = str(e)
logger.error(f"Error running Replicate model: {error_msg}")
# Input validation errors (422, 400) → BlockInputError
if (
"422" in error_msg
or "Input validation failed" in error_msg
or "400" in error_msg
):
raise BlockInputError(
message=f"Invalid model inputs: {error_msg}",
block_name=self.name,
block_id=self.id,
) from e
# Everything else → BlockExecutionError
else:
raise BlockExecutionError(
message=f"Replicate model error: {error_msg}",
block_name=self.name,
block_id=self.id,
) from e
error_msg = f"Unexpected error running Replicate model: {str(e)}"
logger.error(error_msg)
raise RuntimeError(error_msg)
async def run_model(self, model_ref: str, model_inputs: dict, api_key: SecretStr):
"""

View File

@@ -45,16 +45,10 @@ class GetWikipediaSummaryBlock(Block, GetRequest):
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
topic = input_data.topic
url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{topic}"
# Note: User-Agent is now automatically set by the request library
# to comply with Wikimedia's robot policy (https://w.wiki/4wJS)
try:
response = await self.get_request(url, json=True)
if "extract" not in response:
raise ValueError(f"Unable to parse Wikipedia response: {response}")
yield "summary", response["extract"]
except Exception as e:
raise ValueError(f"Failed to fetch Wikipedia summary: {e}") from e
response = await self.get_request(url, json=True)
if "extract" not in response:
raise RuntimeError(f"Unable to parse Wikipedia response: {response}")
yield "summary", response["extract"]
TEST_CREDENTIALS = APIKeyCredentials(

View File

@@ -1,11 +1,8 @@
import logging
import re
from collections import Counter
from concurrent.futures import Future
from typing import TYPE_CHECKING, Any
from pydantic import BaseModel
import backend.blocks.llm as llm
from backend.blocks.agent import AgentExecutorBlock
from backend.data.block import (
@@ -21,43 +18,17 @@ from backend.data.dynamic_fields import (
extract_base_field_name,
get_dynamic_field_description,
is_dynamic_field,
is_tool_pin,
)
from backend.data.execution import ExecutionContext
from backend.data.model import NodeExecutionStats, SchemaField
from backend.util import json
from backend.util.clients import get_database_manager_async_client
from backend.util.prompt import MAIN_OBJECTIVE_PREFIX
if TYPE_CHECKING:
from backend.data.graph import Link, Node
from backend.executor.manager import ExecutionProcessor
logger = logging.getLogger(__name__)
class ToolInfo(BaseModel):
"""Processed tool call information."""
tool_call: Any # The original tool call object from LLM response
tool_name: str # The function name
tool_def: dict[str, Any] # The tool definition from tool_functions
input_data: dict[str, Any] # Processed input data ready for tool execution
field_mapping: dict[str, str] # Field name mapping for the tool
class ExecutionParams(BaseModel):
"""Tool execution parameters."""
user_id: str
graph_id: str
node_id: str
graph_version: int
graph_exec_id: str
node_exec_id: str
execution_context: "ExecutionContext"
def _get_tool_requests(entry: dict[str, Any]) -> list[str]:
"""
Return a list of tool_call_ids if the entry is a tool request.
@@ -133,50 +104,6 @@ def _create_tool_response(call_id: str, output: Any) -> dict[str, Any]:
return {"role": "tool", "tool_call_id": call_id, "content": content}
def _combine_tool_responses(tool_outputs: list[dict[str, Any]]) -> list[dict[str, Any]]:
"""
Combine multiple Anthropic tool responses into a single user message.
For non-Anthropic formats, returns the original list unchanged.
"""
if len(tool_outputs) <= 1:
return tool_outputs
# Anthropic responses have role="user", type="message", and content is a list with tool_result items
anthropic_responses = [
output
for output in tool_outputs
if (
output.get("role") == "user"
and output.get("type") == "message"
and isinstance(output.get("content"), list)
and any(
item.get("type") == "tool_result"
for item in output.get("content", [])
if isinstance(item, dict)
)
)
]
if len(anthropic_responses) > 1:
combined_content = [
item for response in anthropic_responses for item in response["content"]
]
combined_response = {
"role": "user",
"type": "message",
"content": combined_content,
}
non_anthropic_responses = [
output for output in tool_outputs if output not in anthropic_responses
]
return [combined_response] + non_anthropic_responses
return tool_outputs
def _convert_raw_response_to_dict(raw_response: Any) -> dict[str, Any]:
"""
Safely convert raw_response to dictionary format for conversation history.
@@ -193,16 +120,13 @@ def _convert_raw_response_to_dict(raw_response: Any) -> dict[str, Any]:
return json.to_dict(raw_response)
def get_pending_tool_calls(conversation_history: list[Any] | None) -> dict[str, int]:
def get_pending_tool_calls(conversation_history: list[Any]) -> dict[str, int]:
"""
All the tool calls entry in the conversation history requires a response.
This function returns the pending tool calls that has not generated an output yet.
Return: dict[str, int] - A dictionary of pending tool call IDs with their count.
"""
if not conversation_history:
return {}
pending_calls = Counter()
for history in conversation_history:
for call_id in _get_tool_requests(history):
@@ -226,7 +150,7 @@ class SmartDecisionMakerBlock(Block):
)
model: llm.LlmModel = SchemaField(
title="LLM Model",
default=llm.DEFAULT_LLM_MODEL,
default=llm.LlmModel.GPT4O,
description="The language model to use for answering the prompt.",
advanced=False,
)
@@ -248,7 +172,7 @@ class SmartDecisionMakerBlock(Block):
"Function parameters that has no default value and not optional typed has to be provided. ",
description="The system prompt to provide additional context to the model.",
)
conversation_history: list[dict] | None = SchemaField(
conversation_history: list[dict] = SchemaField(
default_factory=list,
description="The conversation history to provide context for the prompt.",
)
@@ -276,17 +200,6 @@ class SmartDecisionMakerBlock(Block):
default="localhost:11434",
description="Ollama host for local models",
)
agent_mode_max_iterations: int = SchemaField(
title="Agent Mode Max Iterations",
description="Maximum iterations for agent mode. 0 = traditional mode (single LLM call, yield tool calls for external execution), -1 = infinite agent mode (loop until finished), 1+ = agent mode with max iterations limit.",
advanced=True,
default=0,
)
conversation_compaction: bool = SchemaField(
default=True,
title="Context window auto-compaction",
description="Automatically compact the context window once it hits the limit",
)
@classmethod
def get_missing_links(cls, data: BlockInput, links: list["Link"]) -> set[str]:
@@ -454,9 +367,8 @@ class SmartDecisionMakerBlock(Block):
"required": sorted(required_fields),
}
# Store field mapping and node info for later use in output processing
# Store field mapping for later use in output processing
tool_function["_field_mapping"] = field_mapping
tool_function["_sink_node_id"] = sink_node.id
return {"type": "function", "function": tool_function}
@@ -495,14 +407,8 @@ class SmartDecisionMakerBlock(Block):
}
properties = {}
field_mapping = {}
for link in links:
field_name = link.sink_name
clean_field_name = SmartDecisionMakerBlock.cleanup(field_name)
field_mapping[clean_field_name] = field_name
sink_block_input_schema = sink_node.input_default["input_schema"]
sink_block_properties = sink_block_input_schema.get("properties", {}).get(
link.sink_name, {}
@@ -512,7 +418,7 @@ class SmartDecisionMakerBlock(Block):
if "description" in sink_block_properties
else f"The {link.sink_name} of the tool"
)
properties[clean_field_name] = {
properties[link.sink_name] = {
"type": "string",
"description": description,
"default": json.dumps(sink_block_properties.get("default", None)),
@@ -525,13 +431,10 @@ class SmartDecisionMakerBlock(Block):
"strict": True,
}
tool_function["_field_mapping"] = field_mapping
tool_function["_sink_node_id"] = sink_node.id
return {"type": "function", "function": tool_function}
@staticmethod
async def _create_tool_node_signatures(
async def _create_function_signature(
node_id: str,
) -> list[dict[str, Any]]:
"""
@@ -547,7 +450,7 @@ class SmartDecisionMakerBlock(Block):
tools = [
(link, node)
for link, node in await db_client.get_connected_output_nodes(node_id)
if is_tool_pin(link.source_name) and link.source_id == node_id
if link.source_name.startswith("tools_^_") and link.source_id == node_id
]
if not tools:
raise ValueError("There is no next node to execute.")
@@ -595,7 +498,6 @@ class SmartDecisionMakerBlock(Block):
Returns the response if successful, raises ValueError if validation fails.
"""
resp = await llm.llm_call(
compress_prompt_to_fit=input_data.conversation_compaction,
credentials=credentials,
llm_model=input_data.model,
prompt=current_prompt,
@@ -636,14 +538,8 @@ class SmartDecisionMakerBlock(Block):
),
None,
)
if tool_def is None:
if len(tool_functions) == 1:
tool_def = tool_functions[0]
else:
validation_errors_list.append(
f"Tool call for '{tool_name}' does not match any known "
"tool definition."
)
if tool_def is None and len(tool_functions) == 1:
tool_def = tool_functions[0]
# Get parameters schema from tool definition
if (
@@ -683,291 +579,6 @@ class SmartDecisionMakerBlock(Block):
return resp
def _process_tool_calls(
self, response, tool_functions: list[dict[str, Any]]
) -> list[ToolInfo]:
"""Process tool calls and extract tool definitions, arguments, and input data.
Returns a list of tool info dicts with:
- tool_call: The original tool call object
- tool_name: The function name
- tool_def: The tool definition from tool_functions
- input_data: Processed input data dict (includes None values)
- field_mapping: Field name mapping for the tool
"""
if not response.tool_calls:
return []
processed_tools = []
for tool_call in response.tool_calls:
tool_name = tool_call.function.name
tool_args = json.loads(tool_call.function.arguments)
tool_def = next(
(
tool
for tool in tool_functions
if tool["function"]["name"] == tool_name
),
None,
)
if not tool_def:
if len(tool_functions) == 1:
tool_def = tool_functions[0]
else:
continue
# Build input data for the tool
input_data = {}
field_mapping = tool_def["function"].get("_field_mapping", {})
if "function" in tool_def and "parameters" in tool_def["function"]:
expected_args = tool_def["function"]["parameters"].get("properties", {})
for clean_arg_name in expected_args:
original_field_name = field_mapping.get(
clean_arg_name, clean_arg_name
)
arg_value = tool_args.get(clean_arg_name)
# Include all expected parameters, even if None (for backward compatibility with tests)
input_data[original_field_name] = arg_value
processed_tools.append(
ToolInfo(
tool_call=tool_call,
tool_name=tool_name,
tool_def=tool_def,
input_data=input_data,
field_mapping=field_mapping,
)
)
return processed_tools
def _update_conversation(
self, prompt: list[dict], response, tool_outputs: list | None = None
):
"""Update conversation history with response and tool outputs."""
# Don't add separate reasoning message with tool calls (breaks Anthropic's tool_use->tool_result pairing)
assistant_message = _convert_raw_response_to_dict(response.raw_response)
has_tool_calls = isinstance(assistant_message.get("content"), list) and any(
item.get("type") == "tool_use"
for item in assistant_message.get("content", [])
)
if response.reasoning and not has_tool_calls:
prompt.append(
{"role": "assistant", "content": f"[Reasoning]: {response.reasoning}"}
)
prompt.append(assistant_message)
if tool_outputs:
prompt.extend(tool_outputs)
async def _execute_single_tool_with_manager(
self,
tool_info: ToolInfo,
execution_params: ExecutionParams,
execution_processor: "ExecutionProcessor",
) -> dict:
"""Execute a single tool using the execution manager for proper integration."""
# Lazy imports to avoid circular dependencies
from backend.data.execution import NodeExecutionEntry
tool_call = tool_info.tool_call
tool_def = tool_info.tool_def
raw_input_data = tool_info.input_data
# Get sink node and field mapping
sink_node_id = tool_def["function"]["_sink_node_id"]
# Use proper database operations for tool execution
db_client = get_database_manager_async_client()
# Get target node
target_node = await db_client.get_node(sink_node_id)
if not target_node:
raise ValueError(f"Target node {sink_node_id} not found")
# Create proper node execution using upsert_execution_input
node_exec_result = None
final_input_data = None
# Add all inputs to the execution
if not raw_input_data:
raise ValueError(f"Tool call has no input data: {tool_call}")
for input_name, input_value in raw_input_data.items():
node_exec_result, final_input_data = await db_client.upsert_execution_input(
node_id=sink_node_id,
graph_exec_id=execution_params.graph_exec_id,
input_name=input_name,
input_data=input_value,
)
assert node_exec_result is not None, "node_exec_result should not be None"
# Create NodeExecutionEntry for execution manager
node_exec_entry = NodeExecutionEntry(
user_id=execution_params.user_id,
graph_exec_id=execution_params.graph_exec_id,
graph_id=execution_params.graph_id,
graph_version=execution_params.graph_version,
node_exec_id=node_exec_result.node_exec_id,
node_id=sink_node_id,
block_id=target_node.block_id,
inputs=final_input_data or {},
execution_context=execution_params.execution_context,
)
# Use the execution manager to execute the tool node
try:
# Get NodeExecutionProgress from the execution manager's running nodes
node_exec_progress = execution_processor.running_node_execution[
sink_node_id
]
# Use the execution manager's own graph stats
graph_stats_pair = (
execution_processor.execution_stats,
execution_processor.execution_stats_lock,
)
# Create a completed future for the task tracking system
node_exec_future = Future()
node_exec_progress.add_task(
node_exec_id=node_exec_result.node_exec_id,
task=node_exec_future,
)
# Execute the node directly since we're in the SmartDecisionMaker context
node_exec_future.set_result(
await execution_processor.on_node_execution(
node_exec=node_exec_entry,
node_exec_progress=node_exec_progress,
nodes_input_masks=None,
graph_stats_pair=graph_stats_pair,
)
)
# Get outputs from database after execution completes using database manager client
node_outputs = await db_client.get_execution_outputs_by_node_exec_id(
node_exec_result.node_exec_id
)
# Create tool response
tool_response_content = (
json.dumps(node_outputs)
if node_outputs
else "Tool executed successfully"
)
return _create_tool_response(tool_call.id, tool_response_content)
except Exception as e:
logger.error(f"Tool execution with manager failed: {e}")
# Return error response
return _create_tool_response(
tool_call.id, f"Tool execution failed: {str(e)}"
)
async def _execute_tools_agent_mode(
self,
input_data,
credentials,
tool_functions: list[dict[str, Any]],
prompt: list[dict],
graph_exec_id: str,
node_id: str,
node_exec_id: str,
user_id: str,
graph_id: str,
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
):
"""Execute tools in agent mode with a loop until finished."""
max_iterations = input_data.agent_mode_max_iterations
iteration = 0
# Execution parameters for tool execution
execution_params = ExecutionParams(
user_id=user_id,
graph_id=graph_id,
node_id=node_id,
graph_version=graph_version,
graph_exec_id=graph_exec_id,
node_exec_id=node_exec_id,
execution_context=execution_context,
)
current_prompt = list(prompt)
while max_iterations < 0 or iteration < max_iterations:
iteration += 1
logger.debug(f"Agent mode iteration {iteration}")
# Prepare prompt for this iteration
iteration_prompt = list(current_prompt)
# On the last iteration, add a special system message to encourage completion
if max_iterations > 0 and iteration == max_iterations:
last_iteration_message = {
"role": "system",
"content": f"{MAIN_OBJECTIVE_PREFIX}This is your last iteration ({iteration}/{max_iterations}). "
"Try to complete the task with the information you have. If you cannot fully complete it, "
"provide a summary of what you've accomplished and what remains to be done. "
"Prefer finishing with a clear response rather than making additional tool calls.",
}
iteration_prompt.append(last_iteration_message)
# Get LLM response
try:
response = await self._attempt_llm_call_with_validation(
credentials, input_data, iteration_prompt, tool_functions
)
except Exception as e:
yield "error", f"LLM call failed in agent mode iteration {iteration}: {str(e)}"
return
# Process tool calls
processed_tools = self._process_tool_calls(response, tool_functions)
# If no tool calls, we're done
if not processed_tools:
yield "finished", response.response
self._update_conversation(current_prompt, response)
yield "conversations", current_prompt
return
# Execute tools and collect responses
tool_outputs = []
for tool_info in processed_tools:
try:
tool_response = await self._execute_single_tool_with_manager(
tool_info, execution_params, execution_processor
)
tool_outputs.append(tool_response)
except Exception as e:
logger.error(f"Tool execution failed: {e}")
# Create error response for the tool
error_response = _create_tool_response(
tool_info.tool_call.id, f"Error: {str(e)}"
)
tool_outputs.append(error_response)
tool_outputs = _combine_tool_responses(tool_outputs)
self._update_conversation(current_prompt, response, tool_outputs)
# Yield intermediate conversation state
yield "conversations", current_prompt
# If we reach max iterations, yield the current state
if max_iterations < 0:
yield "finished", f"Agent mode completed after {iteration} iterations"
else:
yield "finished", f"Agent mode completed after {max_iterations} iterations (limit reached)"
yield "conversations", current_prompt
async def run(
self,
input_data: Input,
@@ -978,19 +589,15 @@ class SmartDecisionMakerBlock(Block):
graph_exec_id: str,
node_exec_id: str,
user_id: str,
graph_version: int,
execution_context: ExecutionContext,
execution_processor: "ExecutionProcessor",
**kwargs,
) -> BlockOutput:
tool_functions = await self._create_tool_node_signatures(node_id)
tool_functions = await self._create_function_signature(node_id)
yield "tool_functions", json.dumps(tool_functions)
conversation_history = input_data.conversation_history or []
prompt = [json.to_dict(p) for p in conversation_history if p]
input_data.conversation_history = input_data.conversation_history or []
prompt = [json.to_dict(p) for p in input_data.conversation_history if p]
pending_tool_calls = get_pending_tool_calls(conversation_history)
pending_tool_calls = get_pending_tool_calls(input_data.conversation_history)
if pending_tool_calls and input_data.last_tool_output is None:
raise ValueError(f"Tool call requires an output for {pending_tool_calls}")
@@ -1027,52 +634,24 @@ class SmartDecisionMakerBlock(Block):
input_data.prompt = llm.fmt.format_string(input_data.prompt, values)
input_data.sys_prompt = llm.fmt.format_string(input_data.sys_prompt, values)
prefix = "[Main Objective Prompt]: "
if input_data.sys_prompt and not any(
p["role"] == "system" and p["content"].startswith(MAIN_OBJECTIVE_PREFIX)
for p in prompt
p["role"] == "system" and p["content"].startswith(prefix) for p in prompt
):
prompt.append(
{
"role": "system",
"content": MAIN_OBJECTIVE_PREFIX + input_data.sys_prompt,
}
)
prompt.append({"role": "system", "content": prefix + input_data.sys_prompt})
if input_data.prompt and not any(
p["role"] == "user" and p["content"].startswith(MAIN_OBJECTIVE_PREFIX)
for p in prompt
p["role"] == "user" and p["content"].startswith(prefix) for p in prompt
):
prompt.append(
{"role": "user", "content": MAIN_OBJECTIVE_PREFIX + input_data.prompt}
)
prompt.append({"role": "user", "content": prefix + input_data.prompt})
# Execute tools based on the selected mode
if input_data.agent_mode_max_iterations != 0:
# In agent mode, execute tools directly in a loop until finished
async for result in self._execute_tools_agent_mode(
input_data=input_data,
credentials=credentials,
tool_functions=tool_functions,
prompt=prompt,
graph_exec_id=graph_exec_id,
node_id=node_id,
node_exec_id=node_exec_id,
user_id=user_id,
graph_id=graph_id,
graph_version=graph_version,
execution_context=execution_context,
execution_processor=execution_processor,
):
yield result
return
# One-off mode: single LLM call and yield tool calls for external execution
current_prompt = list(prompt)
max_attempts = max(1, int(input_data.retry))
response = None
last_error = None
for _ in range(max_attempts):
for attempt in range(max_attempts):
try:
response = await self._attempt_llm_call_with_validation(
credentials, input_data, current_prompt, tool_functions
@@ -1082,9 +661,9 @@ class SmartDecisionMakerBlock(Block):
except ValueError as e:
last_error = e
error_feedback = (
"Your tool call had errors. Please fix the following issues and try again:\n"
"Your tool call had parameter errors. Please fix the following issues and try again:\n"
+ f"- {str(e)}\n"
+ "\nPlease make sure to use the exact tool and parameter names as specified in the function schema."
+ "\nPlease make sure to use the exact parameter names as specified in the function schema."
)
current_prompt = list(current_prompt) + [
{"role": "user", "content": error_feedback}
@@ -1111,23 +690,21 @@ class SmartDecisionMakerBlock(Block):
),
None,
)
if not tool_def:
# NOTE: This matches the logic in _attempt_llm_call_with_validation and
# relies on its validation for the assumption that this is valid to use.
if len(tool_functions) == 1:
tool_def = tool_functions[0]
else:
# This should not happen due to prior validation
continue
if "function" in tool_def and "parameters" in tool_def["function"]:
if (
tool_def
and "function" in tool_def
and "parameters" in tool_def["function"]
):
expected_args = tool_def["function"]["parameters"].get("properties", {})
else:
expected_args = {arg: {} for arg in tool_args.keys()}
# Get the sink node ID and field mapping from tool definition
field_mapping = tool_def["function"].get("_field_mapping", {})
sink_node_id = tool_def["function"]["_sink_node_id"]
# Get field mapping from tool definition
field_mapping = (
tool_def.get("function", {}).get("_field_mapping", {})
if tool_def
else {}
)
for clean_arg_name in expected_args:
# arg_name is now always the cleaned field name (for Anthropic API compliance)
@@ -1135,9 +712,9 @@ class SmartDecisionMakerBlock(Block):
original_field_name = field_mapping.get(clean_arg_name, clean_arg_name)
arg_value = tool_args.get(clean_arg_name)
# Use original_field_name directly (not sanitized) to match link sink_name
# The field_mapping already translates from LLM's cleaned names to original names
emit_key = f"tools_^_{sink_node_id}_~_{original_field_name}"
sanitized_tool_name = self.cleanup(tool_name)
sanitized_arg_name = self.cleanup(original_field_name)
emit_key = f"tools_^_{sanitized_tool_name}_~_{sanitized_arg_name}"
logger.debug(
"[SmartDecisionMakerBlock|geid:%s|neid:%s] emit %s",

View File

@@ -1,27 +1,17 @@
from typing import Any, Type
from typing import Type
import pytest
from backend.data.block import Block, BlockSchemaInput, get_blocks
from backend.data.model import SchemaField
from backend.data.block import Block, get_blocks
from backend.util.test import execute_block_test
SKIP_BLOCK_TESTS = {
"HumanInTheLoopBlock",
}
@pytest.mark.parametrize("block", get_blocks().values(), ids=lambda b: b().name)
@pytest.mark.parametrize("block", get_blocks().values(), ids=lambda b: b.name)
async def test_available_blocks(block: Type[Block]):
block_instance = block()
if block_instance.__class__.__name__ in SKIP_BLOCK_TESTS:
pytest.skip(
f"Skipping {block_instance.__class__.__name__} - requires external service"
)
await execute_block_test(block_instance)
await execute_block_test(block())
@pytest.mark.parametrize("block", get_blocks().values(), ids=lambda b: b().name)
@pytest.mark.parametrize("block", get_blocks().values(), ids=lambda b: b.name)
async def test_block_ids_valid(block: Type[Block]):
# add the tests here to check they are uuid4
import uuid
@@ -133,148 +123,3 @@ async def test_block_ids_valid(block: Type[Block]):
), f"Block {block.name} ID is UUID version {parsed_uuid.version}, expected version 4"
except ValueError:
pytest.fail(f"Block {block.name} has invalid UUID format: {block_instance.id}")
class TestAutoCredentialsFieldsValidation:
"""Tests for auto_credentials field validation in BlockSchema."""
def test_duplicate_auto_credentials_kwarg_name_raises_error(self):
"""Test that duplicate kwarg_name in auto_credentials raises ValueError."""
class DuplicateKwargSchema(BlockSchemaInput):
"""Schema with duplicate auto_credentials kwarg_name."""
# Both fields explicitly use the same kwarg_name "credentials"
file1: dict[str, Any] | None = SchemaField(
description="First file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
"kwarg_name": "credentials",
}
},
)
file2: dict[str, Any] | None = SchemaField(
description="Second file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
"kwarg_name": "credentials", # Duplicate kwarg_name!
}
},
)
with pytest.raises(ValueError) as exc_info:
DuplicateKwargSchema.get_auto_credentials_fields()
error_message = str(exc_info.value)
assert "Duplicate auto_credentials kwarg_name 'credentials'" in error_message
assert "file1" in error_message
assert "file2" in error_message
def test_unique_auto_credentials_kwarg_names_succeed(self):
"""Test that unique kwarg_name values work correctly."""
class UniqueKwargSchema(BlockSchemaInput):
"""Schema with unique auto_credentials kwarg_name values."""
file1: dict[str, Any] | None = SchemaField(
description="First file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
"kwarg_name": "file1_credentials",
}
},
)
file2: dict[str, Any] | None = SchemaField(
description="Second file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
"kwarg_name": "file2_credentials", # Different kwarg_name
}
},
)
# Should not raise
result = UniqueKwargSchema.get_auto_credentials_fields()
assert "file1_credentials" in result
assert "file2_credentials" in result
assert result["file1_credentials"]["field_name"] == "file1"
assert result["file2_credentials"]["field_name"] == "file2"
def test_default_kwarg_name_is_credentials(self):
"""Test that missing kwarg_name defaults to 'credentials'."""
class DefaultKwargSchema(BlockSchemaInput):
"""Schema with auto_credentials missing kwarg_name."""
file: dict[str, Any] | None = SchemaField(
description="File input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
# No kwarg_name specified - should default to "credentials"
}
},
)
result = DefaultKwargSchema.get_auto_credentials_fields()
assert "credentials" in result
assert result["credentials"]["field_name"] == "file"
def test_duplicate_default_kwarg_name_raises_error(self):
"""Test that two fields with default kwarg_name raises ValueError."""
class DefaultDuplicateSchema(BlockSchemaInput):
"""Schema where both fields omit kwarg_name, defaulting to 'credentials'."""
file1: dict[str, Any] | None = SchemaField(
description="First file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
# No kwarg_name - defaults to "credentials"
}
},
)
file2: dict[str, Any] | None = SchemaField(
description="Second file input",
default=None,
json_schema_extra={
"auto_credentials": {
"provider": "google",
"type": "oauth2",
"scopes": ["https://www.googleapis.com/auth/drive.file"],
# No kwarg_name - also defaults to "credentials"
}
},
)
with pytest.raises(ValueError) as exc_info:
DefaultDuplicateSchema.get_auto_credentials_fields()
assert "Duplicate auto_credentials kwarg_name 'credentials'" in str(
exc_info.value
)

View File

@@ -196,15 +196,6 @@ class TestXMLParserBlockSecurity:
async for _ in block.run(XMLParserBlock.Input(input_xml=large_xml)):
pass
async def test_rejects_text_outside_root(self):
"""Ensure parser surfaces readable errors for invalid root text."""
block = XMLParserBlock()
invalid_xml = "<root><child>value</child></root> trailing"
with pytest.raises(ValueError, match="text outside the root element"):
async for _ in block.run(XMLParserBlock.Input(input_xml=invalid_xml)):
pass
class TestStoreMediaFileSecurity:
"""Test file storage security limits."""

View File

@@ -28,7 +28,7 @@ class TestLLMStatsTracking:
response = await llm.llm_call(
credentials=llm.TEST_CREDENTIALS,
llm_model=llm.DEFAULT_LLM_MODEL,
llm_model=llm.LlmModel.GPT4O,
prompt=[{"role": "user", "content": "Hello"}],
max_tokens=100,
)
@@ -65,7 +65,7 @@ class TestLLMStatsTracking:
input_data = llm.AIStructuredResponseGeneratorBlock.Input(
prompt="Test prompt",
expected_format={"key1": "desc1", "key2": "desc2"},
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore # type: ignore
)
@@ -109,7 +109,7 @@ class TestLLMStatsTracking:
# Run the block
input_data = llm.AITextGeneratorBlock.Input(
prompt="Generate text",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
)
@@ -170,7 +170,7 @@ class TestLLMStatsTracking:
input_data = llm.AIStructuredResponseGeneratorBlock.Input(
prompt="Test prompt",
expected_format={"key1": "desc1", "key2": "desc2"},
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2,
)
@@ -228,7 +228,7 @@ class TestLLMStatsTracking:
input_data = llm.AITextSummarizerBlock.Input(
text=long_text,
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
max_tokens=100, # Small chunks
chunk_overlap=10,
@@ -299,7 +299,7 @@ class TestLLMStatsTracking:
# Test with very short text (should only need 1 chunk + 1 final summary)
input_data = llm.AITextSummarizerBlock.Input(
text="This is a short text.",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
max_tokens=1000, # Large enough to avoid chunking
)
@@ -346,7 +346,7 @@ class TestLLMStatsTracking:
{"role": "assistant", "content": "Hi there!"},
{"role": "user", "content": "How are you?"},
],
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
)
@@ -365,29 +365,44 @@ class TestLLMStatsTracking:
assert outputs["response"] == "AI response to conversation"
@pytest.mark.asyncio
async def test_ai_list_generator_basic_functionality(self):
"""Test that AIListGeneratorBlock correctly works with structured responses."""
async def test_ai_list_generator_with_retries(self):
"""Test that AIListGeneratorBlock correctly tracks stats with retries."""
import backend.blocks.llm as llm
block = llm.AIListGeneratorBlock()
# Mock the llm_call to return a structured response
# Counter to track calls
call_count = 0
async def mock_llm_call(input_data, credentials):
# Update stats to simulate LLM call
block.execution_stats = NodeExecutionStats(
input_token_count=50,
output_token_count=30,
llm_call_count=1,
)
# Return a structured response with the expected format
return {"list": ["item1", "item2", "item3"]}
nonlocal call_count
call_count += 1
# Update stats
if hasattr(block, "execution_stats") and block.execution_stats:
block.execution_stats.input_token_count += 40
block.execution_stats.output_token_count += 20
block.execution_stats.llm_call_count += 1
else:
block.execution_stats = NodeExecutionStats(
input_token_count=40,
output_token_count=20,
llm_call_count=1,
)
if call_count == 1:
# First call returns invalid format
return {"response": "not a valid list"}
else:
# Second call returns valid list
return {"response": "['item1', 'item2', 'item3']"}
block.llm_call = mock_llm_call # type: ignore
# Run the block
input_data = llm.AIListGeneratorBlock.Input(
focus="test items",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
max_retries=3,
)
@@ -398,20 +413,14 @@ class TestLLMStatsTracking:
):
outputs[output_name] = output_data
# Check stats
assert block.execution_stats.input_token_count == 50
assert block.execution_stats.output_token_count == 30
assert block.execution_stats.llm_call_count == 1
# Check stats - should have 2 calls
assert call_count == 2
assert block.execution_stats.input_token_count == 80 # 40 * 2
assert block.execution_stats.output_token_count == 40 # 20 * 2
assert block.execution_stats.llm_call_count == 2
# Check output
assert outputs["generated_list"] == ["item1", "item2", "item3"]
# Check that individual items were yielded
# Note: outputs dict will only contain the last value for each key
# So we need to check that the list_item output exists
assert "list_item" in outputs
# The list_item output should be the last item in the list
assert outputs["list_item"] == "item3"
assert "prompt" in outputs
@pytest.mark.asyncio
async def test_merge_llm_stats(self):
@@ -469,7 +478,7 @@ class TestLLMStatsTracking:
input_data = llm.AIStructuredResponseGeneratorBlock.Input(
prompt="Test",
expected_format={"result": "desc"},
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
)
@@ -513,7 +522,7 @@ class TestAITextSummarizerValidation:
# Create input data
input_data = llm.AITextSummarizerBlock.Input(
text="Some text to summarize",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
style=llm.SummaryStyle.BULLET_POINTS,
)
@@ -558,7 +567,7 @@ class TestAITextSummarizerValidation:
# Create input data
input_data = llm.AITextSummarizerBlock.Input(
text="Some text to summarize",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
style=llm.SummaryStyle.BULLET_POINTS,
max_tokens=1000,
@@ -593,7 +602,7 @@ class TestAITextSummarizerValidation:
# Create input data
input_data = llm.AITextSummarizerBlock.Input(
text="Some text to summarize",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
)
@@ -623,7 +632,7 @@ class TestAITextSummarizerValidation:
# Create input data
input_data = llm.AITextSummarizerBlock.Input(
text="Some text to summarize",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
max_tokens=1000,
)
@@ -654,7 +663,7 @@ class TestAITextSummarizerValidation:
# Create input data
input_data = llm.AITextSummarizerBlock.Input(
text="Some text to summarize",
model=llm.DEFAULT_LLM_MODEL,
model=llm.LlmModel.GPT4O,
credentials=llm.TEST_CREDENTIALS_INPUT, # type: ignore
)

View File

@@ -1,14 +1,10 @@
import logging
import threading
from collections import defaultdict
from unittest.mock import AsyncMock, MagicMock, patch
import pytest
from backend.api.model import CreateGraph
from backend.api.rest_api import AgentServer
from backend.data.execution import ExecutionContext
from backend.data.model import ProviderName, User
from backend.server.model import CreateGraph
from backend.server.rest_api import AgentServer
from backend.usecases.sample import create_test_graph, create_test_user
from backend.util.test import SpinTestServer, wait_execution
@@ -21,10 +17,10 @@ async def create_graph(s: SpinTestServer, g, u: User):
async def create_credentials(s: SpinTestServer, u: User):
import backend.blocks.llm as llm_module
import backend.blocks.llm as llm
provider = ProviderName.OPENAI
credentials = llm_module.TEST_CREDENTIALS
credentials = llm.TEST_CREDENTIALS
return await s.agent_server.test_create_credentials(u.id, provider, credentials)
@@ -169,7 +165,7 @@ async def test_smart_decision_maker_function_signature(server: SpinTestServer):
)
test_graph = await create_graph(server, test_graph, test_user)
tool_functions = await SmartDecisionMakerBlock._create_tool_node_signatures(
tool_functions = await SmartDecisionMakerBlock._create_function_signature(
test_graph.nodes[0].id
)
assert tool_functions is not None, "Tool functions should not be None"
@@ -200,6 +196,8 @@ async def test_smart_decision_maker_function_signature(server: SpinTestServer):
@pytest.mark.asyncio
async def test_smart_decision_maker_tracks_llm_stats():
"""Test that SmartDecisionMakerBlock correctly tracks LLM usage stats."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -217,7 +215,8 @@ async def test_smart_decision_maker_tracks_llm_stats():
"content": "I need to think about this.",
}
# Mock the _create_tool_node_signatures method to avoid database calls
# Mock the _create_function_signature method to avoid database calls
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
@@ -225,7 +224,7 @@ async def test_smart_decision_maker_tracks_llm_stats():
return_value=mock_response,
), patch.object(
SmartDecisionMakerBlock,
"_create_tool_node_signatures",
"_create_function_signature",
new_callable=AsyncMock,
return_value=[],
):
@@ -233,21 +232,12 @@ async def test_smart_decision_maker_tracks_llm_stats():
# Create test input
input_data = SmartDecisionMakerBlock.Input(
prompt="Should I continue with this task?",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Execute the block
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -256,9 +246,6 @@ async def test_smart_decision_maker_tracks_llm_stats():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -276,6 +263,8 @@ async def test_smart_decision_maker_tracks_llm_stats():
@pytest.mark.asyncio
async def test_smart_decision_maker_parameter_validation():
"""Test that SmartDecisionMakerBlock correctly validates tool call parameters."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -304,7 +293,6 @@ async def test_smart_decision_maker_parameter_validation():
},
"required": ["query", "max_keyword_difficulty"],
},
"_sink_node_id": "test-sink-node-id",
},
}
]
@@ -322,33 +310,26 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_with_typo.reasoning = None
mock_response_with_typo.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_with_typo,
) as mock_llm_call, patch.object(
SmartDecisionMakerBlock,
"_create_tool_node_signatures",
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2, # Set retry to 2 for testing
agent_mode_max_iterations=0,
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
# Should raise ValueError after retries due to typo'd parameter name
with pytest.raises(ValueError) as exc_info:
outputs = {}
@@ -360,9 +341,6 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -389,32 +367,25 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_missing_required.reasoning = None
mock_response_missing_required.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_missing_required,
), patch.object(
SmartDecisionMakerBlock,
"_create_tool_node_signatures",
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
# Should raise ValueError due to missing required parameter
with pytest.raises(ValueError) as exc_info:
outputs = {}
@@ -426,9 +397,6 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -449,34 +417,27 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_valid.reasoning = None
mock_response_valid.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_valid,
), patch.object(
SmartDecisionMakerBlock,
"_create_tool_node_signatures",
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Should succeed - optional parameter missing is OK
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -485,20 +446,17 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
# Verify tool outputs were generated correctly
assert "tools_^_test-sink-node-id_~_query" in outputs
assert outputs["tools_^_test-sink-node-id_~_query"] == "test"
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
assert outputs["tools_^_test-sink-node-id_~_max_keyword_difficulty"] == 50
assert "tools_^_search_keywords_~_query" in outputs
assert outputs["tools_^_search_keywords_~_query"] == "test"
assert "tools_^_search_keywords_~_max_keyword_difficulty" in outputs
assert outputs["tools_^_search_keywords_~_max_keyword_difficulty"] == 50
# Optional parameter should be None when not provided
assert "tools_^_test-sink-node-id_~_optional_param" in outputs
assert outputs["tools_^_test-sink-node-id_~_optional_param"] is None
assert "tools_^_search_keywords_~_optional_param" in outputs
assert outputs["tools_^_search_keywords_~_optional_param"] is None
# Test case 4: Valid tool call with ALL parameters (should succeed)
mock_tool_call_all_params = MagicMock()
@@ -513,34 +471,27 @@ async def test_smart_decision_maker_parameter_validation():
mock_response_all_params.reasoning = None
mock_response_all_params.raw_response = {"role": "assistant", "content": None}
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_all_params,
), patch.object(
SmartDecisionMakerBlock,
"_create_tool_node_signatures",
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Search for keywords",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
# Should succeed with all parameters
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -549,21 +500,20 @@ async def test_smart_decision_maker_parameter_validation():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
# Verify all tool outputs were generated correctly
assert outputs["tools_^_test-sink-node-id_~_query"] == "test"
assert outputs["tools_^_test-sink-node-id_~_max_keyword_difficulty"] == 50
assert outputs["tools_^_test-sink-node-id_~_optional_param"] == "custom_value"
assert outputs["tools_^_search_keywords_~_query"] == "test"
assert outputs["tools_^_search_keywords_~_max_keyword_difficulty"] == 50
assert outputs["tools_^_search_keywords_~_optional_param"] == "custom_value"
@pytest.mark.asyncio
async def test_smart_decision_maker_raw_response_conversion():
"""Test that SmartDecisionMaker correctly handles different raw_response types with retry mechanism."""
from unittest.mock import MagicMock, patch
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
@@ -580,7 +530,6 @@ async def test_smart_decision_maker_raw_response_conversion():
"properties": {"param": {"type": "string"}},
"required": ["param"],
},
"_sink_node_id": "test-sink-node-id",
},
}
]
@@ -633,12 +582,13 @@ async def test_smart_decision_maker_raw_response_conversion():
)
# Mock llm_call to return different responses on different calls
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call", new_callable=AsyncMock
) as mock_llm_call, patch.object(
SmartDecisionMakerBlock,
"_create_tool_node_signatures",
"_create_function_signature",
new_callable=AsyncMock,
return_value=mock_tool_functions,
):
@@ -648,22 +598,13 @@ async def test_smart_decision_maker_raw_response_conversion():
input_data = SmartDecisionMakerBlock.Input(
prompt="Test prompt",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
retry=2,
agent_mode_max_iterations=0,
)
# Should succeed after retry, demonstrating our helper function works
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -672,15 +613,12 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
# Verify the tool output was generated successfully
assert "tools_^_test-sink-node-id_~_param" in outputs
assert outputs["tools_^_test-sink-node-id_~_param"] == "test_value"
assert "tools_^_test_tool_~_param" in outputs
assert outputs["tools_^_test_tool_~_param"] == "test_value"
# Verify conversation history was properly maintained
assert "conversations" in outputs
@@ -710,32 +648,25 @@ async def test_smart_decision_maker_raw_response_conversion():
"I'll help you with that." # Ollama returns string
)
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_ollama,
), patch.object(
SmartDecisionMakerBlock,
"_create_tool_node_signatures",
"_create_function_signature",
new_callable=AsyncMock,
return_value=[], # No tools for this test
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Simple prompt",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -744,9 +675,6 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
@@ -766,32 +694,25 @@ async def test_smart_decision_maker_raw_response_conversion():
"content": "Test response",
} # Dict format
from unittest.mock import AsyncMock
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response_dict,
), patch.object(
SmartDecisionMakerBlock,
"_create_tool_node_signatures",
"_create_function_signature",
new_callable=AsyncMock,
return_value=[],
):
input_data = SmartDecisionMakerBlock.Input(
prompt="Another test",
model=llm_module.DEFAULT_LLM_MODEL,
model=llm_module.LlmModel.GPT4O,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0,
)
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
@@ -800,260 +721,8 @@ async def test_smart_decision_maker_raw_response_conversion():
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
assert "finished" in outputs
assert outputs["finished"] == "Test response"
@pytest.mark.asyncio
async def test_smart_decision_maker_agent_mode():
"""Test that agent mode executes tools directly and loops until finished."""
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool call that requires multiple iterations
mock_tool_call_1 = MagicMock()
mock_tool_call_1.id = "call_1"
mock_tool_call_1.function.name = "search_keywords"
mock_tool_call_1.function.arguments = (
'{"query": "test", "max_keyword_difficulty": 50}'
)
mock_response_1 = MagicMock()
mock_response_1.response = None
mock_response_1.tool_calls = [mock_tool_call_1]
mock_response_1.prompt_tokens = 50
mock_response_1.completion_tokens = 25
mock_response_1.reasoning = "Using search tool"
mock_response_1.raw_response = {
"role": "assistant",
"content": None,
"tool_calls": [{"id": "call_1", "type": "function"}],
}
# Final response with no tool calls (finished)
mock_response_2 = MagicMock()
mock_response_2.response = "Task completed successfully"
mock_response_2.tool_calls = []
mock_response_2.prompt_tokens = 30
mock_response_2.completion_tokens = 15
mock_response_2.reasoning = None
mock_response_2.raw_response = {
"role": "assistant",
"content": "Task completed successfully",
}
# Mock the LLM call to return different responses on each iteration
llm_call_mock = AsyncMock()
llm_call_mock.side_effect = [mock_response_1, mock_response_2]
# Mock tool node signatures
mock_tool_signatures = [
{
"type": "function",
"function": {
"name": "search_keywords",
"_sink_node_id": "test-sink-node-id",
"_field_mapping": {},
"parameters": {
"properties": {
"query": {"type": "string"},
"max_keyword_difficulty": {"type": "integer"},
},
"required": ["query", "max_keyword_difficulty"],
},
},
}
]
# Mock database and execution components
mock_db_client = AsyncMock()
mock_node = MagicMock()
mock_node.block_id = "test-block-id"
mock_db_client.get_node.return_value = mock_node
# Mock upsert_execution_input to return proper NodeExecutionResult and input data
mock_node_exec_result = MagicMock()
mock_node_exec_result.node_exec_id = "test-tool-exec-id"
mock_input_data = {"query": "test", "max_keyword_difficulty": 50}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_input_data,
)
# No longer need mock_execute_node since we use execution_processor.on_node_execution
with patch("backend.blocks.llm.llm_call", llm_call_mock), patch.object(
block, "_create_tool_node_signatures", return_value=mock_tool_signatures
), patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client",
return_value=mock_db_client,
), patch(
"backend.executor.manager.async_update_node_execution_status",
new_callable=AsyncMock,
), patch(
"backend.integrations.creds_manager.IntegrationCredentialsManager"
):
# Create a mock execution context
mock_execution_context = ExecutionContext(
safe_mode=False,
)
# Create a mock execution processor for agent mode tests
mock_execution_processor = AsyncMock()
# Configure the execution processor mock with required attributes
mock_execution_processor.running_node_execution = defaultdict(MagicMock)
mock_execution_processor.execution_stats = MagicMock()
mock_execution_processor.execution_stats_lock = threading.Lock()
# Mock the on_node_execution method to return successful stats
mock_node_stats = MagicMock()
mock_node_stats.error = None # No error
mock_execution_processor.on_node_execution = AsyncMock(
return_value=mock_node_stats
)
# Mock the get_execution_outputs_by_node_exec_id method
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = {
"result": {"status": "success", "data": "search completed"}
}
# Test agent mode with max_iterations = 3
input_data = SmartDecisionMakerBlock.Input(
prompt="Complete this task using tools",
model=llm_module.DEFAULT_LLM_MODEL,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=3, # Enable agent mode with 3 max iterations
)
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
# Verify agent mode behavior
assert "tool_functions" in outputs # tool_functions is yielded in both modes
assert "finished" in outputs
assert outputs["finished"] == "Task completed successfully"
assert "conversations" in outputs
# Verify the conversation includes tool responses
conversations = outputs["conversations"]
assert len(conversations) > 2 # Should have multiple conversation entries
# Verify LLM was called twice (once for tool call, once for finish)
assert llm_call_mock.call_count == 2
# Verify tool was executed via execution processor
assert mock_execution_processor.on_node_execution.call_count == 1
@pytest.mark.asyncio
async def test_smart_decision_maker_traditional_mode_default():
"""Test that default behavior (agent_mode_max_iterations=0) works as traditional mode."""
import backend.blocks.llm as llm_module
from backend.blocks.smart_decision_maker import SmartDecisionMakerBlock
block = SmartDecisionMakerBlock()
# Mock tool call
mock_tool_call = MagicMock()
mock_tool_call.function.name = "search_keywords"
mock_tool_call.function.arguments = (
'{"query": "test", "max_keyword_difficulty": 50}'
)
mock_response = MagicMock()
mock_response.response = None
mock_response.tool_calls = [mock_tool_call]
mock_response.prompt_tokens = 50
mock_response.completion_tokens = 25
mock_response.reasoning = None
mock_response.raw_response = {"role": "assistant", "content": None}
mock_tool_signatures = [
{
"type": "function",
"function": {
"name": "search_keywords",
"_sink_node_id": "test-sink-node-id",
"_field_mapping": {},
"parameters": {
"properties": {
"query": {"type": "string"},
"max_keyword_difficulty": {"type": "integer"},
},
"required": ["query", "max_keyword_difficulty"],
},
},
}
]
with patch(
"backend.blocks.llm.llm_call",
new_callable=AsyncMock,
return_value=mock_response,
), patch.object(
block, "_create_tool_node_signatures", return_value=mock_tool_signatures
):
# Test default behavior (traditional mode)
input_data = SmartDecisionMakerBlock.Input(
prompt="Test prompt",
model=llm_module.DEFAULT_LLM_MODEL,
credentials=llm_module.TEST_CREDENTIALS_INPUT, # type: ignore
agent_mode_max_iterations=0, # Traditional mode
)
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a mock execution processor for tests
mock_execution_processor = MagicMock()
outputs = {}
async for output_name, output_data in block.run(
input_data,
credentials=llm_module.TEST_CREDENTIALS,
graph_id="test-graph-id",
node_id="test-node-id",
graph_exec_id="test-exec-id",
node_exec_id="test-node-exec-id",
user_id="test-user-id",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_data
# Verify traditional mode behavior
assert (
"tool_functions" in outputs
) # Should yield tool_functions in traditional mode
assert (
"tools_^_test-sink-node-id_~_query" in outputs
) # Should yield individual tool parameters
assert "tools_^_test-sink-node-id_~_max_keyword_difficulty" in outputs
assert "conversations" in outputs

View File

@@ -1,7 +1,7 @@
"""Comprehensive tests for SmartDecisionMakerBlock dynamic field handling."""
import json
from unittest.mock import AsyncMock, MagicMock, Mock, patch
from unittest.mock import AsyncMock, Mock, patch
import pytest
@@ -192,7 +192,7 @@ async def test_create_block_function_signature_with_object_fields():
@pytest.mark.asyncio
async def test_create_tool_node_signatures():
async def test_create_function_signature():
"""Test that the mapping between sanitized and original field names is built correctly."""
block = SmartDecisionMakerBlock()
@@ -241,7 +241,7 @@ async def test_create_tool_node_signatures():
]
# Call the method that builds signatures
tool_functions = await block._create_tool_node_signatures("test_node_id")
tool_functions = await block._create_function_signature("test_node_id")
# Verify we got 2 tool functions (one for dict, one for list)
assert len(tool_functions) == 2
@@ -308,47 +308,10 @@ async def test_output_yielding_with_dynamic_fields():
) as mock_llm:
mock_llm.return_value = mock_response
# Mock the database manager to avoid HTTP calls during tool execution
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
) as mock_db_manager, patch.object(
block, "_create_tool_node_signatures", new_callable=AsyncMock
# Mock the function signature creation
with patch.object(
block, "_create_function_signature", new_callable=AsyncMock
) as mock_sig:
# Set up the mock database manager
mock_db_client = AsyncMock()
mock_db_manager.return_value = mock_db_client
# Mock the node retrieval
mock_target_node = Mock()
mock_target_node.id = "test-sink-node-id"
mock_target_node.block_id = "CreateDictionaryBlock"
mock_target_node.block = Mock()
mock_target_node.block.name = "Create Dictionary"
mock_db_client.get_node.return_value = mock_target_node
# Mock the execution result creation
mock_node_exec_result = Mock()
mock_node_exec_result.node_exec_id = "mock-node-exec-id"
mock_final_input_data = {
"values_#_name": "Alice",
"values_#_age": 30,
"values_#_email": "alice@example.com",
}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_final_input_data,
)
# Mock the output retrieval
mock_outputs = {
"values_#_name": "Alice",
"values_#_age": 30,
"values_#_email": "alice@example.com",
}
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = (
mock_outputs
)
mock_sig.return_value = [
{
"type": "function",
@@ -362,7 +325,6 @@ async def test_output_yielding_with_dynamic_fields():
"values___email": {"type": "string"},
},
},
"_sink_node_id": "test-sink-node-id",
},
}
]
@@ -373,17 +335,11 @@ async def test_output_yielding_with_dynamic_fields():
input_data = block.input_schema(
prompt="Create a user dictionary",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.DEFAULT_LLM_MODEL,
agent_mode_max_iterations=0, # Use traditional mode to test output yielding
model=llm.LlmModel.GPT4O,
)
# Run the block
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_processor = MagicMock()
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
@@ -392,22 +348,19 @@ async def test_output_yielding_with_dynamic_fields():
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_value
# Verify the outputs use sink node ID in output keys
assert "tools_^_test-sink-node-id_~_values___name" in outputs
assert outputs["tools_^_test-sink-node-id_~_values___name"] == "Alice"
# Verify the outputs use sanitized field names (matching frontend normalizeToolName)
assert "tools_^_createdictionaryblock_~_values___name" in outputs
assert outputs["tools_^_createdictionaryblock_~_values___name"] == "Alice"
assert "tools_^_test-sink-node-id_~_values___age" in outputs
assert outputs["tools_^_test-sink-node-id_~_values___age"] == 30
assert "tools_^_createdictionaryblock_~_values___age" in outputs
assert outputs["tools_^_createdictionaryblock_~_values___age"] == 30
assert "tools_^_test-sink-node-id_~_values___email" in outputs
assert "tools_^_createdictionaryblock_~_values___email" in outputs
assert (
outputs["tools_^_test-sink-node-id_~_values___email"]
outputs["tools_^_createdictionaryblock_~_values___email"]
== "alice@example.com"
)
@@ -535,7 +488,7 @@ async def test_validation_errors_dont_pollute_conversation():
# Mock the function signature creation
with patch.object(
block, "_create_tool_node_signatures", new_callable=AsyncMock
block, "_create_function_signature", new_callable=AsyncMock
) as mock_sig:
mock_sig.return_value = [
{
@@ -552,113 +505,49 @@ async def test_validation_errors_dont_pollute_conversation():
},
"required": ["correct_param"],
},
"_sink_node_id": "test-sink-node-id",
},
}
]
# Mock the database manager to avoid HTTP calls during tool execution
with patch(
"backend.blocks.smart_decision_maker.get_database_manager_async_client"
) as mock_db_manager:
# Set up the mock database manager for agent mode
mock_db_client = AsyncMock()
mock_db_manager.return_value = mock_db_client
# Create input data
from backend.blocks import llm
# Mock the node retrieval
mock_target_node = Mock()
mock_target_node.id = "test-sink-node-id"
mock_target_node.block_id = "TestBlock"
mock_target_node.block = Mock()
mock_target_node.block.name = "Test Block"
mock_db_client.get_node.return_value = mock_target_node
input_data = block.input_schema(
prompt="Test prompt",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.LlmModel.GPT4O,
retry=3, # Allow retries
)
# Mock the execution result creation
mock_node_exec_result = Mock()
mock_node_exec_result.node_exec_id = "mock-node-exec-id"
mock_final_input_data = {"correct_param": "value"}
mock_db_client.upsert_execution_input.return_value = (
mock_node_exec_result,
mock_final_input_data,
)
# Run the block
outputs = {}
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
):
outputs[output_name] = output_value
# Mock the output retrieval
mock_outputs = {"correct_param": "value"}
mock_db_client.get_execution_outputs_by_node_exec_id.return_value = (
mock_outputs
)
# Verify we had 2 LLM calls (initial + retry)
assert call_count == 2
# Create input data
from backend.blocks import llm
# Check the final conversation output
final_conversation = outputs.get("conversations", [])
input_data = block.input_schema(
prompt="Test prompt",
credentials=llm.TEST_CREDENTIALS_INPUT,
model=llm.DEFAULT_LLM_MODEL,
retry=3, # Allow retries
agent_mode_max_iterations=1,
)
# The final conversation should NOT contain the validation error message
error_messages = [
msg
for msg in final_conversation
if msg.get("role") == "user"
and "parameter errors" in msg.get("content", "")
]
assert (
len(error_messages) == 0
), "Validation error leaked into final conversation"
# Run the block
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
# Create a proper mock execution processor for agent mode
from collections import defaultdict
mock_execution_processor = AsyncMock()
mock_execution_processor.execution_stats = MagicMock()
mock_execution_processor.execution_stats_lock = MagicMock()
# Create a mock NodeExecutionProgress for the sink node
mock_node_exec_progress = MagicMock()
mock_node_exec_progress.add_task = MagicMock()
mock_node_exec_progress.pop_output = MagicMock(
return_value=None
) # No outputs to process
# Set up running_node_execution as a defaultdict that returns our mock for any key
mock_execution_processor.running_node_execution = defaultdict(
lambda: mock_node_exec_progress
)
# Mock the on_node_execution method that gets called during tool execution
mock_node_stats = MagicMock()
mock_node_stats.error = None
mock_execution_processor.on_node_execution.return_value = (
mock_node_stats
)
async for output_name, output_value in block.run(
input_data,
credentials=llm.TEST_CREDENTIALS,
graph_id="test_graph",
node_id="test_node",
graph_exec_id="test_exec",
node_exec_id="test_node_exec",
user_id="test_user",
graph_version=1,
execution_context=mock_execution_context,
execution_processor=mock_execution_processor,
):
outputs[output_name] = output_value
# Verify we had at least 1 LLM call
assert call_count >= 1
# Check the final conversation output
final_conversation = outputs.get("conversations", [])
# The final conversation should NOT contain validation error messages
# Even if retries don't happen in agent mode, we should not leak errors
error_messages = [
msg
for msg in final_conversation
if msg.get("role") == "user"
and "parameter errors" in msg.get("content", "")
]
assert (
len(error_messages) == 0
), "Validation error leaked into final conversation"
# The final conversation should only have the successful response
assert final_conversation[-1]["content"] == "valid"

View File

@@ -14,7 +14,7 @@ from backend.data.block import (
BlockSchemaInput,
BlockSchemaOutput,
)
from backend.data.execution import ExecutionContext
from backend.data.execution import UserContext
from backend.data.model import SchemaField
# Shared timezone literal type for all time/date blocks
@@ -188,9 +188,10 @@ class GetCurrentTimeBlock(Block):
)
async def run(
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
self, input_data: Input, *, user_context: UserContext, **kwargs
) -> BlockOutput:
effective_timezone = execution_context.user_timezone
# Extract timezone from user_context (always present)
effective_timezone = user_context.timezone
# Get the appropriate timezone
tz = _get_timezone(input_data.format_type, effective_timezone)
@@ -297,10 +298,10 @@ class GetCurrentDateBlock(Block):
],
)
async def run(
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
) -> BlockOutput:
effective_timezone = execution_context.user_timezone
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Extract timezone from user_context (required keyword argument)
user_context: UserContext = kwargs["user_context"]
effective_timezone = user_context.timezone
try:
offset = int(input_data.offset)
@@ -403,10 +404,10 @@ class GetCurrentDateAndTimeBlock(Block):
],
)
async def run(
self, input_data: Input, *, execution_context: ExecutionContext, **kwargs
) -> BlockOutput:
effective_timezone = execution_context.user_timezone
async def run(self, input_data: Input, **kwargs) -> BlockOutput:
# Extract timezone from user_context (required keyword argument)
user_context: UserContext = kwargs["user_context"]
effective_timezone = user_context.timezone
# Get the appropriate timezone
tz = _get_timezone(input_data.format_type, effective_timezone)

View File

@@ -1,4 +1,4 @@
from datetime import datetime, timedelta, timezone
from datetime import datetime
from typing import Any, Dict
from backend.blocks.twitter._mappers import (
@@ -237,12 +237,6 @@ class TweetDurationBuilder:
def add_start_time(self, start_time: datetime | None):
if start_time:
# Twitter API requires start_time to be at least 10 seconds before now
max_start_time = datetime.now(timezone.utc) - timedelta(seconds=10)
if start_time.tzinfo is None:
start_time = start_time.replace(tzinfo=timezone.utc)
if start_time > max_start_time:
start_time = max_start_time
self.params["start_time"] = start_time
return self

View File

@@ -51,10 +51,8 @@ class ResponseDataSerializer(BaseSerializer):
return serialized_item
@classmethod
def serialize_list(cls, data: List[Dict[str, Any]] | None) -> List[Dict[str, Any]]:
def serialize_list(cls, data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Serializes a list of dictionary items"""
if not data:
return []
return [cls.serialize_dict(item) for item in data]

View File

@@ -408,7 +408,7 @@ class ListExpansionInputs(BlockSchemaInput):
class TweetTimeWindowInputs(BlockSchemaInput):
start_time: datetime | None = SchemaField(
description="Start time in YYYY-MM-DDTHH:mm:ssZ format. If set to a time less than 10 seconds ago, it will be automatically adjusted to 10 seconds ago (Twitter API requirement).",
description="Start time in YYYY-MM-DDTHH:mm:ssZ format",
placeholder="Enter start time",
default=None,
advanced=False,

Some files were not shown because too many files have changed in this diff Show More