Compare commits
4 Commits
ntindle/wa
...
fix/pgvect
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
12690ad0a9 | ||
|
|
b714c0c221 | ||
|
|
ebabc4287e | ||
|
|
8b25e62959 |
@@ -218,6 +218,7 @@ async def save_agent_to_library(
|
||||
library_agents = await library_db.create_library_agent(
|
||||
graph=created_graph,
|
||||
user_id=user_id,
|
||||
sensitive_action_safe_mode=True,
|
||||
create_library_agents_for_sub_graphs=False,
|
||||
)
|
||||
|
||||
|
||||
@@ -401,27 +401,11 @@ async def add_generated_agent_image(
|
||||
)
|
||||
|
||||
|
||||
def _initialize_graph_settings(graph: graph_db.GraphModel) -> GraphSettings:
|
||||
"""
|
||||
Initialize GraphSettings based on graph content.
|
||||
|
||||
Args:
|
||||
graph: The graph to analyze
|
||||
|
||||
Returns:
|
||||
GraphSettings with appropriate human_in_the_loop_safe_mode value
|
||||
"""
|
||||
if graph.has_human_in_the_loop:
|
||||
# Graph has HITL blocks - set safe mode to True by default
|
||||
return GraphSettings(human_in_the_loop_safe_mode=True)
|
||||
else:
|
||||
# Graph has no HITL blocks - keep None
|
||||
return GraphSettings(human_in_the_loop_safe_mode=None)
|
||||
|
||||
|
||||
async def create_library_agent(
|
||||
graph: graph_db.GraphModel,
|
||||
user_id: str,
|
||||
hitl_safe_mode: bool = True,
|
||||
sensitive_action_safe_mode: bool = False,
|
||||
create_library_agents_for_sub_graphs: bool = True,
|
||||
) -> list[library_model.LibraryAgent]:
|
||||
"""
|
||||
@@ -430,6 +414,8 @@ async def create_library_agent(
|
||||
Args:
|
||||
agent: The agent/Graph to add to the library.
|
||||
user_id: The user to whom the agent will be added.
|
||||
hitl_safe_mode: Whether HITL blocks require manual review (default True).
|
||||
sensitive_action_safe_mode: Whether sensitive action blocks require review.
|
||||
create_library_agents_for_sub_graphs: If True, creates LibraryAgent records for sub-graphs as well.
|
||||
|
||||
Returns:
|
||||
@@ -465,7 +451,11 @@ async def create_library_agent(
|
||||
}
|
||||
},
|
||||
settings=SafeJson(
|
||||
_initialize_graph_settings(graph_entry).model_dump()
|
||||
GraphSettings.from_graph(
|
||||
graph_entry,
|
||||
hitl_safe_mode=hitl_safe_mode,
|
||||
sensitive_action_safe_mode=sensitive_action_safe_mode,
|
||||
).model_dump()
|
||||
),
|
||||
),
|
||||
include=library_agent_include(
|
||||
@@ -627,33 +617,6 @@ async def update_library_agent(
|
||||
raise DatabaseError("Failed to update library agent") from e
|
||||
|
||||
|
||||
async def update_library_agent_settings(
|
||||
user_id: str,
|
||||
agent_id: str,
|
||||
settings: GraphSettings,
|
||||
) -> library_model.LibraryAgent:
|
||||
"""
|
||||
Updates the settings for a specific LibraryAgent.
|
||||
|
||||
Args:
|
||||
user_id: The owner of the LibraryAgent.
|
||||
agent_id: The ID of the LibraryAgent to update.
|
||||
settings: New GraphSettings to apply.
|
||||
|
||||
Returns:
|
||||
The updated LibraryAgent.
|
||||
|
||||
Raises:
|
||||
NotFoundError: If the specified LibraryAgent does not exist.
|
||||
DatabaseError: If there's an error in the update operation.
|
||||
"""
|
||||
return await update_library_agent(
|
||||
library_agent_id=agent_id,
|
||||
user_id=user_id,
|
||||
settings=settings,
|
||||
)
|
||||
|
||||
|
||||
async def delete_library_agent(
|
||||
library_agent_id: str, user_id: str, soft_delete: bool = True
|
||||
) -> None:
|
||||
@@ -838,7 +801,7 @@ async def add_store_agent_to_library(
|
||||
"isCreatedByUser": False,
|
||||
"useGraphIsActiveVersion": False,
|
||||
"settings": SafeJson(
|
||||
_initialize_graph_settings(graph_model).model_dump()
|
||||
GraphSettings.from_graph(graph_model).model_dump()
|
||||
),
|
||||
},
|
||||
include=library_agent_include(
|
||||
@@ -1228,8 +1191,15 @@ async def fork_library_agent(
|
||||
)
|
||||
new_graph = await on_graph_activate(new_graph, user_id=user_id)
|
||||
|
||||
# Create a library agent for the new graph
|
||||
return (await create_library_agent(new_graph, user_id))[0]
|
||||
# Create a library agent for the new graph, preserving safe mode settings
|
||||
return (
|
||||
await create_library_agent(
|
||||
new_graph,
|
||||
user_id,
|
||||
hitl_safe_mode=original_agent.settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=original_agent.settings.sensitive_action_safe_mode,
|
||||
)
|
||||
)[0]
|
||||
except prisma.errors.PrismaError as e:
|
||||
logger.error(f"Database error cloning library agent: {e}")
|
||||
raise DatabaseError("Failed to fork library agent") from e
|
||||
|
||||
@@ -73,6 +73,12 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
has_external_trigger: bool = pydantic.Field(
|
||||
description="Whether the agent has an external trigger (e.g. webhook) node"
|
||||
)
|
||||
has_human_in_the_loop: bool = pydantic.Field(
|
||||
description="Whether the agent has human-in-the-loop blocks"
|
||||
)
|
||||
has_sensitive_action: bool = pydantic.Field(
|
||||
description="Whether the agent has sensitive action blocks"
|
||||
)
|
||||
trigger_setup_info: Optional[GraphTriggerInfo] = None
|
||||
|
||||
# Indicates whether there's a new output (based on recent runs)
|
||||
@@ -180,6 +186,8 @@ class LibraryAgent(pydantic.BaseModel):
|
||||
graph.credentials_input_schema if sub_graphs is not None else None
|
||||
),
|
||||
has_external_trigger=graph.has_external_trigger,
|
||||
has_human_in_the_loop=graph.has_human_in_the_loop,
|
||||
has_sensitive_action=graph.has_sensitive_action,
|
||||
trigger_setup_info=graph.trigger_setup_info,
|
||||
new_output=new_output,
|
||||
can_access_graph=can_access_graph,
|
||||
|
||||
@@ -52,6 +52,8 @@ async def test_get_library_agents_success(
|
||||
output_schema={"type": "object", "properties": {}},
|
||||
credentials_input_schema={"type": "object", "properties": {}},
|
||||
has_external_trigger=False,
|
||||
has_human_in_the_loop=False,
|
||||
has_sensitive_action=False,
|
||||
status=library_model.LibraryAgentStatus.COMPLETED,
|
||||
recommended_schedule_cron=None,
|
||||
new_output=False,
|
||||
@@ -75,6 +77,8 @@ async def test_get_library_agents_success(
|
||||
output_schema={"type": "object", "properties": {}},
|
||||
credentials_input_schema={"type": "object", "properties": {}},
|
||||
has_external_trigger=False,
|
||||
has_human_in_the_loop=False,
|
||||
has_sensitive_action=False,
|
||||
status=library_model.LibraryAgentStatus.COMPLETED,
|
||||
recommended_schedule_cron=None,
|
||||
new_output=False,
|
||||
@@ -150,6 +154,8 @@ async def test_get_favorite_library_agents_success(
|
||||
output_schema={"type": "object", "properties": {}},
|
||||
credentials_input_schema={"type": "object", "properties": {}},
|
||||
has_external_trigger=False,
|
||||
has_human_in_the_loop=False,
|
||||
has_sensitive_action=False,
|
||||
status=library_model.LibraryAgentStatus.COMPLETED,
|
||||
recommended_schedule_cron=None,
|
||||
new_output=False,
|
||||
@@ -218,6 +224,8 @@ def test_add_agent_to_library_success(
|
||||
output_schema={"type": "object", "properties": {}},
|
||||
credentials_input_schema={"type": "object", "properties": {}},
|
||||
has_external_trigger=False,
|
||||
has_human_in_the_loop=False,
|
||||
has_sensitive_action=False,
|
||||
status=library_model.LibraryAgentStatus.COMPLETED,
|
||||
new_output=False,
|
||||
can_access_graph=True,
|
||||
|
||||
@@ -154,16 +154,15 @@ async def store_content_embedding(
|
||||
|
||||
# Upsert the embedding
|
||||
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
|
||||
# Use {pgvector_schema}.vector for explicit pgvector type qualification
|
||||
await execute_raw_with_schema(
|
||||
"""
|
||||
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
|
||||
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
|
||||
)
|
||||
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::{pgvector_schema}.vector, $5, $6::jsonb, NOW(), NOW())
|
||||
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::{schema}.vector, $5, $6::jsonb, NOW(), NOW())
|
||||
ON CONFLICT ("contentType", "contentId", "userId")
|
||||
DO UPDATE SET
|
||||
"embedding" = $4::{pgvector_schema}.vector,
|
||||
"embedding" = $4::{schema}.vector,
|
||||
"searchableText" = $5,
|
||||
"metadata" = $6::jsonb,
|
||||
"updatedAt" = NOW()
|
||||
@@ -879,8 +878,6 @@ async def semantic_search(
|
||||
min_similarity_idx = len(params) + 1
|
||||
params.append(min_similarity)
|
||||
|
||||
# Use regular string (not f-string) for template to preserve {schema_prefix} and {schema} placeholders
|
||||
# Use OPERATOR({pgvector_schema}.<=>) for explicit operator schema qualification
|
||||
sql = (
|
||||
"""
|
||||
SELECT
|
||||
@@ -888,9 +885,9 @@ async def semantic_search(
|
||||
"contentType" as content_type,
|
||||
"searchableText" as searchable_text,
|
||||
metadata,
|
||||
1 - (embedding OPERATOR({pgvector_schema}.<=>) '"""
|
||||
1 - (embedding <=> '"""
|
||||
+ embedding_str
|
||||
+ """'::{pgvector_schema}.vector) as similarity
|
||||
+ """'::{schema}.vector) as similarity
|
||||
FROM {schema_prefix}"UnifiedContentEmbedding"
|
||||
WHERE "contentType" IN ("""
|
||||
+ content_type_placeholders
|
||||
@@ -898,9 +895,9 @@ async def semantic_search(
|
||||
"""
|
||||
+ user_filter
|
||||
+ """
|
||||
AND 1 - (embedding OPERATOR({pgvector_schema}.<=>) '"""
|
||||
AND 1 - (embedding <=> '"""
|
||||
+ embedding_str
|
||||
+ """'::{pgvector_schema}.vector) >= $"""
|
||||
+ """'::{schema}.vector) >= $"""
|
||||
+ str(min_similarity_idx)
|
||||
+ """
|
||||
ORDER BY similarity DESC
|
||||
|
||||
@@ -295,7 +295,7 @@ async def unified_hybrid_search(
|
||||
FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
|
||||
WHERE uce."contentType" = ANY({content_types_param}::{{schema_prefix}}"ContentType"[])
|
||||
{user_filter}
|
||||
ORDER BY uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector
|
||||
ORDER BY uce.embedding <=> {embedding_param}::{{schema}}.vector
|
||||
LIMIT 200
|
||||
)
|
||||
),
|
||||
@@ -307,7 +307,7 @@ async def unified_hybrid_search(
|
||||
uce.metadata,
|
||||
uce."updatedAt" as updated_at,
|
||||
-- Semantic score: cosine similarity (1 - distance)
|
||||
COALESCE(1 - (uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector), 0) as semantic_score,
|
||||
COALESCE(1 - (uce.embedding <=> {embedding_param}::{{schema}}.vector), 0) as semantic_score,
|
||||
-- Lexical score: ts_rank_cd
|
||||
COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
|
||||
-- Category match from metadata
|
||||
@@ -583,7 +583,7 @@ async def hybrid_search(
|
||||
WHERE uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
|
||||
AND uce."userId" IS NULL
|
||||
AND {where_clause}
|
||||
ORDER BY uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector
|
||||
ORDER BY uce.embedding <=> {embedding_param}::{{schema}}.vector
|
||||
LIMIT 200
|
||||
) uce
|
||||
),
|
||||
@@ -605,7 +605,7 @@ async def hybrid_search(
|
||||
-- Searchable text for BM25 reranking
|
||||
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
|
||||
-- Semantic score
|
||||
COALESCE(1 - (uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector), 0) as semantic_score,
|
||||
COALESCE(1 - (uce.embedding <=> {embedding_param}::{{schema}}.vector), 0) as semantic_score,
|
||||
-- Lexical score (raw, will normalize)
|
||||
COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
|
||||
-- Category match
|
||||
|
||||
@@ -761,10 +761,8 @@ async def create_new_graph(
|
||||
graph.reassign_ids(user_id=user_id, reassign_graph_id=True)
|
||||
graph.validate_graph(for_run=False)
|
||||
|
||||
# The return value of the create graph & library function is intentionally not used here,
|
||||
# as the graph already valid and no sub-graphs are returned back.
|
||||
await graph_db.create_graph(graph, user_id=user_id)
|
||||
await library_db.create_library_agent(graph, user_id=user_id)
|
||||
await library_db.create_library_agent(graph, user_id)
|
||||
activated_graph = await on_graph_activate(graph, user_id=user_id)
|
||||
|
||||
if create_graph.source == "builder":
|
||||
@@ -888,21 +886,19 @@ async def set_graph_active_version(
|
||||
async def _update_library_agent_version_and_settings(
|
||||
user_id: str, agent_graph: graph_db.GraphModel
|
||||
) -> library_model.LibraryAgent:
|
||||
# Keep the library agent up to date with the new active version
|
||||
library = await library_db.update_agent_version_in_library(
|
||||
user_id, agent_graph.id, agent_graph.version
|
||||
)
|
||||
# If the graph has HITL node, initialize the setting if it's not already set.
|
||||
if (
|
||||
agent_graph.has_human_in_the_loop
|
||||
and library.settings.human_in_the_loop_safe_mode is None
|
||||
):
|
||||
await library_db.update_library_agent_settings(
|
||||
updated_settings = GraphSettings.from_graph(
|
||||
graph=agent_graph,
|
||||
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
|
||||
)
|
||||
if updated_settings != library.settings:
|
||||
library = await library_db.update_library_agent(
|
||||
library_agent_id=library.id,
|
||||
user_id=user_id,
|
||||
agent_id=library.id,
|
||||
settings=library.settings.model_copy(
|
||||
update={"human_in_the_loop_safe_mode": True}
|
||||
),
|
||||
settings=updated_settings,
|
||||
)
|
||||
return library
|
||||
|
||||
@@ -919,21 +915,18 @@ async def update_graph_settings(
|
||||
user_id: Annotated[str, Security(get_user_id)],
|
||||
) -> GraphSettings:
|
||||
"""Update graph settings for the user's library agent."""
|
||||
# Get the library agent for this graph
|
||||
library_agent = await library_db.get_library_agent_by_graph_id(
|
||||
graph_id=graph_id, user_id=user_id
|
||||
)
|
||||
if not library_agent:
|
||||
raise HTTPException(404, f"Graph #{graph_id} not found in user's library")
|
||||
|
||||
# Update the library agent settings
|
||||
updated_agent = await library_db.update_library_agent_settings(
|
||||
updated_agent = await library_db.update_library_agent(
|
||||
library_agent_id=library_agent.id,
|
||||
user_id=user_id,
|
||||
agent_id=library_agent.id,
|
||||
settings=settings,
|
||||
)
|
||||
|
||||
# Return the updated settings
|
||||
return GraphSettings.model_validate(updated_agent.settings)
|
||||
|
||||
|
||||
|
||||
@@ -84,7 +84,7 @@ class HITLReviewHelper:
|
||||
Exception: If review creation or status update fails
|
||||
"""
|
||||
# Skip review if safe mode is disabled - return auto-approved result
|
||||
if not execution_context.safe_mode:
|
||||
if not execution_context.human_in_the_loop_safe_mode:
|
||||
logger.info(
|
||||
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
|
||||
)
|
||||
|
||||
@@ -104,7 +104,7 @@ class HumanInTheLoopBlock(Block):
|
||||
execution_context: ExecutionContext,
|
||||
**_kwargs,
|
||||
) -> BlockOutput:
|
||||
if not execution_context.safe_mode:
|
||||
if not execution_context.human_in_the_loop_safe_mode:
|
||||
logger.info(
|
||||
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
|
||||
)
|
||||
|
||||
@@ -79,6 +79,10 @@ class ModelMetadata(NamedTuple):
|
||||
provider: str
|
||||
context_window: int
|
||||
max_output_tokens: int | None
|
||||
display_name: str
|
||||
provider_name: str
|
||||
creator_name: str
|
||||
price_tier: Literal[1, 2, 3]
|
||||
|
||||
|
||||
class LlmModelMeta(EnumMeta):
|
||||
@@ -171,6 +175,26 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
V0_1_5_LG = "v0-1.5-lg"
|
||||
V0_1_0_MD = "v0-1.0-md"
|
||||
|
||||
@classmethod
|
||||
def __get_pydantic_json_schema__(cls, schema, handler):
|
||||
json_schema = handler(schema)
|
||||
llm_model_metadata = {}
|
||||
for model in cls:
|
||||
model_name = model.value
|
||||
metadata = model.metadata
|
||||
llm_model_metadata[model_name] = {
|
||||
"creator": metadata.creator_name,
|
||||
"creator_name": metadata.creator_name,
|
||||
"title": metadata.display_name,
|
||||
"provider": metadata.provider,
|
||||
"provider_name": metadata.provider_name,
|
||||
"name": model_name,
|
||||
"price_tier": metadata.price_tier,
|
||||
}
|
||||
json_schema["llm_model"] = True
|
||||
json_schema["llm_model_metadata"] = llm_model_metadata
|
||||
return json_schema
|
||||
|
||||
@property
|
||||
def metadata(self) -> ModelMetadata:
|
||||
return MODEL_METADATA[self]
|
||||
@@ -190,119 +214,291 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
|
||||
|
||||
MODEL_METADATA = {
|
||||
# https://platform.openai.com/docs/models
|
||||
LlmModel.O3: ModelMetadata("openai", 200000, 100000),
|
||||
LlmModel.O3_MINI: ModelMetadata("openai", 200000, 100000), # o3-mini-2025-01-31
|
||||
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
|
||||
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
|
||||
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
|
||||
LlmModel.O3_MINI: ModelMetadata(
|
||||
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
|
||||
), # o3-mini-2025-01-31
|
||||
LlmModel.O1: ModelMetadata(
|
||||
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
|
||||
), # o1-2024-12-17
|
||||
LlmModel.O1_MINI: ModelMetadata(
|
||||
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
|
||||
), # o1-mini-2024-09-12
|
||||
# GPT-5 models
|
||||
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
|
||||
LlmModel.GPT5_CHAT: ModelMetadata("openai", 400000, 16384),
|
||||
LlmModel.GPT41: ModelMetadata("openai", 1047576, 32768),
|
||||
LlmModel.GPT41_MINI: ModelMetadata("openai", 1047576, 32768),
|
||||
LlmModel.GPT5_2: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
|
||||
),
|
||||
LlmModel.GPT5_1: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
|
||||
),
|
||||
LlmModel.GPT5: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_MINI: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_NANO: ModelMetadata(
|
||||
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT5_CHAT: ModelMetadata(
|
||||
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
|
||||
),
|
||||
LlmModel.GPT41: ModelMetadata(
|
||||
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT41_MINI: ModelMetadata(
|
||||
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
|
||||
),
|
||||
LlmModel.GPT4O_MINI: ModelMetadata(
|
||||
"openai", 128000, 16384
|
||||
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
|
||||
), # gpt-4o-mini-2024-07-18
|
||||
LlmModel.GPT4O: ModelMetadata("openai", 128000, 16384), # gpt-4o-2024-08-06
|
||||
LlmModel.GPT4O: ModelMetadata(
|
||||
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
|
||||
), # gpt-4o-2024-08-06
|
||||
LlmModel.GPT4_TURBO: ModelMetadata(
|
||||
"openai", 128000, 4096
|
||||
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
|
||||
), # gpt-4-turbo-2024-04-09
|
||||
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, 4096), # gpt-3.5-turbo-0125
|
||||
LlmModel.GPT3_5_TURBO: ModelMetadata(
|
||||
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
|
||||
), # gpt-3.5-turbo-0125
|
||||
# https://docs.anthropic.com/en/docs/about-claude/models
|
||||
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000
|
||||
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-1-20250805
|
||||
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 32000
|
||||
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
|
||||
), # claude-4-opus-20250514
|
||||
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
|
||||
), # claude-4-sonnet-20250514
|
||||
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
|
||||
), # claude-opus-4-5-20251101
|
||||
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
|
||||
), # claude-sonnet-4-5-20250929
|
||||
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
|
||||
), # claude-haiku-4-5-20251001
|
||||
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
|
||||
"anthropic", 200000, 64000
|
||||
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
|
||||
), # claude-3-7-sonnet-20250219
|
||||
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
|
||||
"anthropic", 200000, 4096
|
||||
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
|
||||
), # claude-3-haiku-20240307
|
||||
# https://docs.aimlapi.com/api-overview/model-database/text-models
|
||||
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata("aiml_api", 32000, 8000),
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata("aiml_api", 128000, 40000),
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata("aiml_api", 128000, None),
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata("aiml_api", 131000, 2000),
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata("aiml_api", 128000, None),
|
||||
# https://console.groq.com/docs/models
|
||||
LlmModel.LLAMA3_3_70B: ModelMetadata("groq", 128000, 32768),
|
||||
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 128000, 8192),
|
||||
# https://ollama.com/library
|
||||
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, None),
|
||||
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
|
||||
# https://openrouter.ai/models
|
||||
LlmModel.GEMINI_2_5_PRO: ModelMetadata("open_router", 1050000, 8192),
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata("open_router", 1048576, 65535),
|
||||
LlmModel.GEMINI_2_5_FLASH: ModelMetadata("open_router", 1048576, 65535),
|
||||
LlmModel.GEMINI_2_0_FLASH: ModelMetadata("open_router", 1048576, 8192),
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
|
||||
"open_router", 1048576, 65535
|
||||
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
|
||||
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
|
||||
"aiml_api",
|
||||
128000,
|
||||
40000,
|
||||
"Llama 3.1 Nemotron 70B Instruct",
|
||||
"AI/ML",
|
||||
"Nvidia",
|
||||
1,
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
|
||||
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
|
||||
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
|
||||
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
|
||||
),
|
||||
# https://console.groq.com/docs/models
|
||||
LlmModel.LLAMA3_3_70B: ModelMetadata(
|
||||
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA3_1_8B: ModelMetadata(
|
||||
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
|
||||
),
|
||||
# https://ollama.com/library
|
||||
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
|
||||
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
|
||||
),
|
||||
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
|
||||
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
|
||||
),
|
||||
# https://openrouter.ai/models
|
||||
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
|
||||
"open_router",
|
||||
1050000,
|
||||
8192,
|
||||
"Gemini 2.5 Pro Preview 03.25",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
2,
|
||||
),
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
|
||||
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
|
||||
),
|
||||
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
|
||||
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
|
||||
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
|
||||
),
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
|
||||
"open_router",
|
||||
1048576,
|
||||
65535,
|
||||
"Gemini 2.5 Flash Lite Preview 06.17",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
1,
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
|
||||
"open_router",
|
||||
1048576,
|
||||
8192,
|
||||
"Gemini 2.0 Flash Lite 001",
|
||||
"OpenRouter",
|
||||
"Google",
|
||||
1,
|
||||
),
|
||||
LlmModel.MISTRAL_NEMO: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
|
||||
),
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
|
||||
),
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
|
||||
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
|
||||
),
|
||||
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
|
||||
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
|
||||
),
|
||||
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
|
||||
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
|
||||
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
|
||||
),
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
|
||||
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
|
||||
),
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata("open_router", 1048576, 8192),
|
||||
LlmModel.MISTRAL_NEMO: ModelMetadata("open_router", 128000, 4096),
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata("open_router", 128000, 4096),
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
|
||||
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
|
||||
LlmModel.DEEPSEEK_R1_0528: ModelMetadata("open_router", 163840, 163840),
|
||||
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 8000),
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata("open_router", 200000, 8000),
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
|
||||
"open_router",
|
||||
128000,
|
||||
16000,
|
||||
"Sonar Deep Research",
|
||||
"OpenRouter",
|
||||
"Perplexity",
|
||||
3,
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
|
||||
"open_router", 131000, 4096
|
||||
"open_router",
|
||||
131000,
|
||||
4096,
|
||||
"Hermes 3 Llama 3.1 405B",
|
||||
"OpenRouter",
|
||||
"Nous Research",
|
||||
1,
|
||||
),
|
||||
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
|
||||
"open_router", 12288, 12288
|
||||
"open_router",
|
||||
12288,
|
||||
12288,
|
||||
"Hermes 3 Llama 3.1 70B",
|
||||
"OpenRouter",
|
||||
"Nous Research",
|
||||
1,
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
|
||||
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
|
||||
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
|
||||
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
|
||||
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
|
||||
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
|
||||
),
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
|
||||
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
|
||||
),
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
|
||||
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
|
||||
),
|
||||
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
|
||||
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
|
||||
),
|
||||
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
|
||||
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
|
||||
),
|
||||
LlmModel.GROK_4: ModelMetadata(
|
||||
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
|
||||
),
|
||||
LlmModel.GROK_4_FAST: ModelMetadata(
|
||||
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.GROK_4_1_FAST: ModelMetadata(
|
||||
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
|
||||
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
|
||||
),
|
||||
LlmModel.KIMI_K2: ModelMetadata(
|
||||
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
|
||||
),
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
|
||||
"open_router",
|
||||
262144,
|
||||
262144,
|
||||
"Qwen 3 235B A22B Thinking 2507",
|
||||
"OpenRouter",
|
||||
"Qwen",
|
||||
1,
|
||||
),
|
||||
LlmModel.QWEN3_CODER: ModelMetadata(
|
||||
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
|
||||
),
|
||||
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata("open_router", 131072, 131072),
|
||||
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata("open_router", 131072, 32768),
|
||||
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata("open_router", 300000, 5120),
|
||||
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata("open_router", 128000, 5120),
|
||||
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata("open_router", 300000, 5120),
|
||||
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata("open_router", 65536, 4096),
|
||||
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata("open_router", 4096, 4096),
|
||||
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata("open_router", 131072, 131072),
|
||||
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata("open_router", 1048576, 1000000),
|
||||
LlmModel.GROK_4: ModelMetadata("open_router", 256000, 256000),
|
||||
LlmModel.GROK_4_FAST: ModelMetadata("open_router", 2000000, 30000),
|
||||
LlmModel.GROK_4_1_FAST: ModelMetadata("open_router", 2000000, 30000),
|
||||
LlmModel.GROK_CODE_FAST_1: ModelMetadata("open_router", 256000, 10000),
|
||||
LlmModel.KIMI_K2: ModelMetadata("open_router", 131000, 131000),
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata("open_router", 262144, 262144),
|
||||
LlmModel.QWEN3_CODER: ModelMetadata("open_router", 262144, 262144),
|
||||
# Llama API models
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata("llama_api", 128000, 4028),
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata("llama_api", 128000, 4028),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata("llama_api", 128000, 4028),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata("llama_api", 128000, 4028),
|
||||
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
|
||||
"llama_api",
|
||||
128000,
|
||||
4028,
|
||||
"Llama 4 Scout 17B 16E Instruct FP8",
|
||||
"Llama API",
|
||||
"Meta",
|
||||
1,
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
|
||||
"llama_api",
|
||||
128000,
|
||||
4028,
|
||||
"Llama 4 Maverick 17B 128E Instruct FP8",
|
||||
"Llama API",
|
||||
"Meta",
|
||||
1,
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
|
||||
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
|
||||
),
|
||||
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
|
||||
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
|
||||
),
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000),
|
||||
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000),
|
||||
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
|
||||
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
|
||||
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
|
||||
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
|
||||
}
|
||||
|
||||
DEFAULT_LLM_MODEL = LlmModel.GPT5_2
|
||||
|
||||
@@ -242,7 +242,7 @@ async def test_smart_decision_maker_tracks_llm_stats():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -343,7 +343,7 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -409,7 +409,7 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -471,7 +471,7 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -535,7 +535,7 @@ async def test_smart_decision_maker_parameter_validation():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -658,7 +658,7 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -730,7 +730,7 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -786,7 +786,7 @@ async def test_smart_decision_maker_raw_response_conversion():
|
||||
outputs = {}
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
@@ -905,7 +905,7 @@ async def test_smart_decision_maker_agent_mode():
|
||||
# Create a mock execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(
|
||||
safe_mode=False,
|
||||
human_in_the_loop_safe_mode=False,
|
||||
)
|
||||
|
||||
# Create a mock execution processor for agent mode tests
|
||||
@@ -1027,7 +1027,7 @@ async def test_smart_decision_maker_traditional_mode_default():
|
||||
|
||||
# Create execution context
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
|
||||
# Create a mock execution processor for tests
|
||||
|
||||
|
||||
@@ -386,7 +386,7 @@ async def test_output_yielding_with_dynamic_fields():
|
||||
outputs = {}
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
|
||||
mock_execution_processor = MagicMock()
|
||||
|
||||
async for output_name, output_value in block.run(
|
||||
@@ -609,7 +609,9 @@ async def test_validation_errors_dont_pollute_conversation():
|
||||
outputs = {}
|
||||
from backend.data.execution import ExecutionContext
|
||||
|
||||
mock_execution_context = ExecutionContext(safe_mode=False)
|
||||
mock_execution_context = ExecutionContext(
|
||||
human_in_the_loop_safe_mode=False
|
||||
)
|
||||
|
||||
# Create a proper mock execution processor for agent mode
|
||||
from collections import defaultdict
|
||||
|
||||
@@ -474,7 +474,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
self.block_type = block_type
|
||||
self.webhook_config = webhook_config
|
||||
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
|
||||
self.requires_human_review: bool = False
|
||||
self.is_sensitive_action: bool = False
|
||||
|
||||
if self.webhook_config:
|
||||
if isinstance(self.webhook_config, BlockWebhookConfig):
|
||||
@@ -637,8 +637,9 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
|
||||
- should_pause: True if execution should be paused for review
|
||||
- input_data_to_use: The input data to use (may be modified by reviewer)
|
||||
"""
|
||||
# Skip review if not required or safe mode is disabled
|
||||
if not self.requires_human_review or not execution_context.safe_mode:
|
||||
if not (
|
||||
self.is_sensitive_action and execution_context.sensitive_action_safe_mode
|
||||
):
|
||||
return False, input_data
|
||||
|
||||
from backend.blocks.helpers.review import HITLReviewHelper
|
||||
|
||||
@@ -99,10 +99,15 @@ MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.OPENAI_GPT_OSS_20B: 1,
|
||||
LlmModel.GEMINI_2_5_PRO: 4,
|
||||
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
|
||||
LlmModel.GEMINI_2_5_FLASH: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH: 1,
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
|
||||
LlmModel.MISTRAL_NEMO: 1,
|
||||
LlmModel.COHERE_COMMAND_R_08_2024: 1,
|
||||
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
|
||||
LlmModel.DEEPSEEK_CHAT: 2,
|
||||
LlmModel.DEEPSEEK_R1_0528: 1,
|
||||
LlmModel.PERPLEXITY_SONAR: 1,
|
||||
LlmModel.PERPLEXITY_SONAR_PRO: 5,
|
||||
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
|
||||
@@ -126,11 +131,6 @@ MODEL_COST: dict[LlmModel, int] = {
|
||||
LlmModel.KIMI_K2: 1,
|
||||
LlmModel.QWEN3_235B_A22B_THINKING: 1,
|
||||
LlmModel.QWEN3_CODER: 9,
|
||||
LlmModel.GEMINI_2_5_FLASH: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH: 1,
|
||||
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
|
||||
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
|
||||
LlmModel.DEEPSEEK_R1_0528: 1,
|
||||
# v0 by Vercel models
|
||||
LlmModel.V0_1_5_MD: 1,
|
||||
LlmModel.V0_1_5_LG: 2,
|
||||
|
||||
@@ -120,11 +120,10 @@ async def _raw_with_schema(
|
||||
|
||||
Supports placeholders:
|
||||
- {schema_prefix}: Table/type prefix (e.g., "platform".)
|
||||
- {schema}: Raw schema name for application tables (e.g., platform)
|
||||
- {pgvector_schema}: Schema where pgvector is installed (defaults to "public")
|
||||
- {schema}: Raw schema name (e.g., platform) for pgvector types
|
||||
|
||||
Args:
|
||||
query_template: SQL query with {schema_prefix}, {schema}, and/or {pgvector_schema} placeholders
|
||||
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
|
||||
*args: Query parameters
|
||||
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
|
||||
client: Optional Prisma client for transactions (only used when execute=True).
|
||||
@@ -133,23 +132,16 @@ async def _raw_with_schema(
|
||||
- list[dict] if execute=False (query results)
|
||||
- int if execute=True (number of affected rows)
|
||||
|
||||
Example with vector type:
|
||||
Example:
|
||||
await execute_raw_with_schema(
|
||||
'INSERT INTO {schema_prefix}"Embedding" (vec) VALUES ($1::{pgvector_schema}.vector)',
|
||||
'INSERT INTO {schema_prefix}"Embedding" (vec) VALUES ($1::{schema}.vector)',
|
||||
embedding_data
|
||||
)
|
||||
"""
|
||||
schema = get_database_schema()
|
||||
schema_prefix = f'"{schema}".' if schema != "public" else ""
|
||||
# pgvector extension is typically installed in "public" schema
|
||||
# On Supabase it may be in "extensions" but "public" is the common default
|
||||
pgvector_schema = "public"
|
||||
|
||||
formatted_query = query_template.format(
|
||||
schema_prefix=schema_prefix,
|
||||
schema=schema,
|
||||
pgvector_schema=pgvector_schema,
|
||||
)
|
||||
formatted_query = query_template.format(schema_prefix=schema_prefix, schema=schema)
|
||||
|
||||
import prisma as prisma_module
|
||||
|
||||
|
||||
@@ -81,7 +81,8 @@ class ExecutionContext(BaseModel):
|
||||
This includes information needed by blocks, sub-graphs, and execution management.
|
||||
"""
|
||||
|
||||
safe_mode: bool = True
|
||||
human_in_the_loop_safe_mode: bool = True
|
||||
sensitive_action_safe_mode: bool = False
|
||||
user_timezone: str = "UTC"
|
||||
root_execution_id: Optional[str] = None
|
||||
parent_execution_id: Optional[str] = None
|
||||
|
||||
@@ -3,7 +3,7 @@ import logging
|
||||
import uuid
|
||||
from collections import defaultdict
|
||||
from datetime import datetime, timezone
|
||||
from typing import TYPE_CHECKING, Any, Literal, Optional, cast
|
||||
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, cast
|
||||
|
||||
from prisma.enums import SubmissionStatus
|
||||
from prisma.models import (
|
||||
@@ -20,7 +20,7 @@ from prisma.types import (
|
||||
AgentNodeLinkCreateInput,
|
||||
StoreListingVersionWhereInput,
|
||||
)
|
||||
from pydantic import BaseModel, Field, create_model
|
||||
from pydantic import BaseModel, BeforeValidator, Field, create_model
|
||||
from pydantic.fields import computed_field
|
||||
|
||||
from backend.blocks.agent import AgentExecutorBlock
|
||||
@@ -62,7 +62,29 @@ logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class GraphSettings(BaseModel):
|
||||
human_in_the_loop_safe_mode: bool | None = None
|
||||
# Use Annotated with BeforeValidator to coerce None to default values.
|
||||
# This handles cases where the database has null values for these fields.
|
||||
human_in_the_loop_safe_mode: Annotated[
|
||||
bool, BeforeValidator(lambda v: v if v is not None else True)
|
||||
] = True
|
||||
sensitive_action_safe_mode: Annotated[
|
||||
bool, BeforeValidator(lambda v: v if v is not None else False)
|
||||
] = False
|
||||
|
||||
@classmethod
|
||||
def from_graph(
|
||||
cls,
|
||||
graph: "GraphModel",
|
||||
hitl_safe_mode: bool | None = None,
|
||||
sensitive_action_safe_mode: bool = False,
|
||||
) -> "GraphSettings":
|
||||
# Default to True if not explicitly set
|
||||
if hitl_safe_mode is None:
|
||||
hitl_safe_mode = True
|
||||
return cls(
|
||||
human_in_the_loop_safe_mode=hitl_safe_mode,
|
||||
sensitive_action_safe_mode=sensitive_action_safe_mode,
|
||||
)
|
||||
|
||||
|
||||
class Link(BaseDbModel):
|
||||
@@ -244,10 +266,14 @@ class BaseGraph(BaseDbModel):
|
||||
return any(
|
||||
node.block_id
|
||||
for node in self.nodes
|
||||
if (
|
||||
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
or node.block.requires_human_review
|
||||
)
|
||||
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
|
||||
)
|
||||
|
||||
@computed_field
|
||||
@property
|
||||
def has_sensitive_action(self) -> bool:
|
||||
return any(
|
||||
node.block_id for node in self.nodes if node.block.is_sensitive_action
|
||||
)
|
||||
|
||||
@property
|
||||
|
||||
@@ -309,7 +309,7 @@ def ensure_embeddings_coverage():
|
||||
|
||||
# Process in batches until no more missing embeddings
|
||||
while True:
|
||||
result = db_client.backfill_missing_embeddings(batch_size=10)
|
||||
result = db_client.backfill_missing_embeddings(batch_size=100)
|
||||
|
||||
total_processed += result["processed"]
|
||||
total_success += result["success"]
|
||||
|
||||
@@ -873,11 +873,8 @@ async def add_graph_execution(
|
||||
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
|
||||
|
||||
execution_context = ExecutionContext(
|
||||
safe_mode=(
|
||||
settings.human_in_the_loop_safe_mode
|
||||
if settings.human_in_the_loop_safe_mode is not None
|
||||
else True
|
||||
),
|
||||
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
|
||||
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
|
||||
user_timezone=(
|
||||
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
|
||||
),
|
||||
|
||||
@@ -386,6 +386,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
|
||||
mock_user.timezone = "UTC"
|
||||
mock_settings = mocker.MagicMock()
|
||||
mock_settings.human_in_the_loop_safe_mode = True
|
||||
mock_settings.sensitive_action_safe_mode = False
|
||||
|
||||
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
|
||||
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
|
||||
@@ -651,6 +652,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
|
||||
mock_user.timezone = "UTC"
|
||||
mock_settings = mocker.MagicMock()
|
||||
mock_settings.human_in_the_loop_safe_mode = True
|
||||
mock_settings.sensitive_action_safe_mode = False
|
||||
|
||||
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
|
||||
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
"forked_from_version": null,
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"has_sensitive_action": false,
|
||||
"id": "graph-123",
|
||||
"input_schema": {
|
||||
"properties": {},
|
||||
|
||||
@@ -11,6 +11,7 @@
|
||||
"forked_from_version": null,
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"has_sensitive_action": false,
|
||||
"id": "graph-123",
|
||||
"input_schema": {
|
||||
"properties": {},
|
||||
|
||||
@@ -27,6 +27,8 @@
|
||||
"properties": {}
|
||||
},
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"has_sensitive_action": false,
|
||||
"trigger_setup_info": null,
|
||||
"new_output": false,
|
||||
"can_access_graph": true,
|
||||
@@ -34,7 +36,8 @@
|
||||
"is_favorite": false,
|
||||
"recommended_schedule_cron": null,
|
||||
"settings": {
|
||||
"human_in_the_loop_safe_mode": null
|
||||
"human_in_the_loop_safe_mode": true,
|
||||
"sensitive_action_safe_mode": false
|
||||
},
|
||||
"marketplace_listing": null
|
||||
},
|
||||
@@ -65,6 +68,8 @@
|
||||
"properties": {}
|
||||
},
|
||||
"has_external_trigger": false,
|
||||
"has_human_in_the_loop": false,
|
||||
"has_sensitive_action": false,
|
||||
"trigger_setup_info": null,
|
||||
"new_output": false,
|
||||
"can_access_graph": false,
|
||||
@@ -72,7 +77,8 @@
|
||||
"is_favorite": false,
|
||||
"recommended_schedule_cron": null,
|
||||
"settings": {
|
||||
"human_in_the_loop_safe_mode": null
|
||||
"human_in_the_loop_safe_mode": true,
|
||||
"sensitive_action_safe_mode": false
|
||||
},
|
||||
"marketplace_listing": null
|
||||
}
|
||||
|
||||
BIN
autogpt_platform/frontend/public/integrations/amazon.png
Normal file
|
After Width: | Height: | Size: 5.9 KiB |
|
After Width: | Height: | Size: 19 KiB |
BIN
autogpt_platform/frontend/public/integrations/cohere.png
Normal file
|
After Width: | Height: | Size: 26 KiB |
BIN
autogpt_platform/frontend/public/integrations/deepseek.png
Normal file
|
After Width: | Height: | Size: 25 KiB |
BIN
autogpt_platform/frontend/public/integrations/gemini.png
Normal file
|
After Width: | Height: | Size: 72 KiB |
BIN
autogpt_platform/frontend/public/integrations/gryphe.png
Normal file
|
After Width: | Height: | Size: 21 KiB |
BIN
autogpt_platform/frontend/public/integrations/microsoft.webp
Normal file
|
After Width: | Height: | Size: 374 B |
BIN
autogpt_platform/frontend/public/integrations/mistral.png
Normal file
|
After Width: | Height: | Size: 663 B |
BIN
autogpt_platform/frontend/public/integrations/moonshot.png
Normal file
|
After Width: | Height: | Size: 40 KiB |
BIN
autogpt_platform/frontend/public/integrations/nousresearch.avif
Normal file
|
After Width: | Height: | Size: 4.1 KiB |
BIN
autogpt_platform/frontend/public/integrations/perplexity.webp
Normal file
|
After Width: | Height: | Size: 2.5 KiB |
BIN
autogpt_platform/frontend/public/integrations/qwen.png
Normal file
|
After Width: | Height: | Size: 52 KiB |
BIN
autogpt_platform/frontend/public/integrations/xai.webp
Normal file
|
After Width: | Height: | Size: 1.8 KiB |
@@ -18,69 +18,118 @@ interface Props {
|
||||
fullWidth?: boolean;
|
||||
}
|
||||
|
||||
interface SafeModeButtonProps {
|
||||
isEnabled: boolean;
|
||||
label: string;
|
||||
tooltipEnabled: string;
|
||||
tooltipDisabled: string;
|
||||
onToggle: () => void;
|
||||
isPending: boolean;
|
||||
fullWidth?: boolean;
|
||||
}
|
||||
|
||||
function SafeModeButton({
|
||||
isEnabled,
|
||||
label,
|
||||
tooltipEnabled,
|
||||
tooltipDisabled,
|
||||
onToggle,
|
||||
isPending,
|
||||
fullWidth = false,
|
||||
}: SafeModeButtonProps) {
|
||||
return (
|
||||
<Tooltip delayDuration={100}>
|
||||
<TooltipTrigger asChild>
|
||||
<Button
|
||||
variant={isEnabled ? "primary" : "outline"}
|
||||
size="small"
|
||||
onClick={onToggle}
|
||||
disabled={isPending}
|
||||
className={cn("justify-start", fullWidth ? "w-full" : "")}
|
||||
>
|
||||
{isEnabled ? (
|
||||
<>
|
||||
<ShieldCheckIcon weight="bold" size={16} />
|
||||
<Text variant="body" className="text-zinc-200">
|
||||
{label}: ON
|
||||
</Text>
|
||||
</>
|
||||
) : (
|
||||
<>
|
||||
<ShieldIcon weight="bold" size={16} />
|
||||
<Text variant="body" className="text-zinc-600">
|
||||
{label}: OFF
|
||||
</Text>
|
||||
</>
|
||||
)}
|
||||
</Button>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>
|
||||
<div className="text-center">
|
||||
<div className="font-medium">
|
||||
{label}: {isEnabled ? "ON" : "OFF"}
|
||||
</div>
|
||||
<div className="mt-1 text-xs text-muted-foreground">
|
||||
{isEnabled ? tooltipEnabled : tooltipDisabled}
|
||||
</div>
|
||||
</div>
|
||||
</TooltipContent>
|
||||
</Tooltip>
|
||||
);
|
||||
}
|
||||
|
||||
export function FloatingSafeModeToggle({
|
||||
graph,
|
||||
className,
|
||||
fullWidth = false,
|
||||
}: Props) {
|
||||
const {
|
||||
currentSafeMode,
|
||||
currentHITLSafeMode,
|
||||
showHITLToggle,
|
||||
isHITLStateUndetermined,
|
||||
handleHITLToggle,
|
||||
currentSensitiveActionSafeMode,
|
||||
showSensitiveActionToggle,
|
||||
handleSensitiveActionToggle,
|
||||
isPending,
|
||||
shouldShowToggle,
|
||||
isStateUndetermined,
|
||||
handleToggle,
|
||||
} = useAgentSafeMode(graph);
|
||||
|
||||
if (!shouldShowToggle || isStateUndetermined || isPending) {
|
||||
if (!shouldShowToggle || isPending) {
|
||||
return null;
|
||||
}
|
||||
|
||||
const showHITL = showHITLToggle && !isHITLStateUndetermined;
|
||||
const showSensitive = showSensitiveActionToggle;
|
||||
|
||||
if (!showHITL && !showSensitive) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<div className={cn("fixed z-50", className)}>
|
||||
<Tooltip delayDuration={100}>
|
||||
<TooltipTrigger asChild>
|
||||
<Button
|
||||
variant={currentSafeMode! ? "primary" : "outline"}
|
||||
key={graph.id}
|
||||
size="small"
|
||||
title={
|
||||
currentSafeMode!
|
||||
? "Safe Mode: ON. Human in the loop blocks require manual review"
|
||||
: "Safe Mode: OFF. Human in the loop blocks proceed automatically"
|
||||
}
|
||||
onClick={handleToggle}
|
||||
className={cn(fullWidth ? "w-full" : "")}
|
||||
>
|
||||
{currentSafeMode! ? (
|
||||
<>
|
||||
<ShieldCheckIcon weight="bold" size={16} />
|
||||
<Text variant="body" className="text-zinc-200">
|
||||
Safe Mode: ON
|
||||
</Text>
|
||||
</>
|
||||
) : (
|
||||
<>
|
||||
<ShieldIcon weight="bold" size={16} />
|
||||
<Text variant="body" className="text-zinc-600">
|
||||
Safe Mode: OFF
|
||||
</Text>
|
||||
</>
|
||||
)}
|
||||
</Button>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>
|
||||
<div className="text-center">
|
||||
<div className="font-medium">
|
||||
Safe Mode: {currentSafeMode! ? "ON" : "OFF"}
|
||||
</div>
|
||||
<div className="mt-1 text-xs text-muted-foreground">
|
||||
{currentSafeMode!
|
||||
? "Human in the loop blocks require manual review"
|
||||
: "Human in the loop blocks proceed automatically"}
|
||||
</div>
|
||||
</div>
|
||||
</TooltipContent>
|
||||
</Tooltip>
|
||||
<div className={cn("fixed z-50 flex flex-col gap-2", className)}>
|
||||
{showHITL && (
|
||||
<SafeModeButton
|
||||
isEnabled={currentHITLSafeMode}
|
||||
label="Human in the loop block approval"
|
||||
tooltipEnabled="The agent will pause at human-in-the-loop blocks and wait for your approval"
|
||||
tooltipDisabled="Human in the loop blocks will proceed automatically"
|
||||
onToggle={handleHITLToggle}
|
||||
isPending={isPending}
|
||||
fullWidth={fullWidth}
|
||||
/>
|
||||
)}
|
||||
{showSensitive && (
|
||||
<SafeModeButton
|
||||
isEnabled={currentSensitiveActionSafeMode}
|
||||
label="Sensitive actions blocks approval"
|
||||
tooltipEnabled="The agent will pause at sensitive action blocks and wait for your approval"
|
||||
tooltipDisabled="Sensitive action blocks will proceed automatically"
|
||||
onToggle={handleSensitiveActionToggle}
|
||||
isPending={isPending}
|
||||
fullWidth={fullWidth}
|
||||
/>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
@@ -31,10 +31,18 @@ export function AgentSettingsModal({
|
||||
}
|
||||
}
|
||||
|
||||
const { currentSafeMode, isPending, hasHITLBlocks, handleToggle } =
|
||||
useAgentSafeMode(agent);
|
||||
const {
|
||||
currentHITLSafeMode,
|
||||
showHITLToggle,
|
||||
handleHITLToggle,
|
||||
currentSensitiveActionSafeMode,
|
||||
showSensitiveActionToggle,
|
||||
handleSensitiveActionToggle,
|
||||
isPending,
|
||||
shouldShowToggle,
|
||||
} = useAgentSafeMode(agent);
|
||||
|
||||
if (!hasHITLBlocks) return null;
|
||||
if (!shouldShowToggle) return null;
|
||||
|
||||
return (
|
||||
<Dialog
|
||||
@@ -57,23 +65,48 @@ export function AgentSettingsModal({
|
||||
)}
|
||||
<Dialog.Content>
|
||||
<div className="space-y-6">
|
||||
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
|
||||
<div className="flex w-full items-start justify-between gap-4">
|
||||
<div className="flex-1">
|
||||
<Text variant="large-semibold">Require human approval</Text>
|
||||
<Text variant="large" className="mt-1 text-zinc-900">
|
||||
The agent will pause and wait for your review before
|
||||
continuing
|
||||
</Text>
|
||||
{showHITLToggle && (
|
||||
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
|
||||
<div className="flex w-full items-start justify-between gap-4">
|
||||
<div className="flex-1">
|
||||
<Text variant="large-semibold">
|
||||
Human-in-the-loop approval
|
||||
</Text>
|
||||
<Text variant="large" className="mt-1 text-zinc-900">
|
||||
The agent will pause at human-in-the-loop blocks and wait
|
||||
for your review before continuing
|
||||
</Text>
|
||||
</div>
|
||||
<Switch
|
||||
checked={currentHITLSafeMode || false}
|
||||
onCheckedChange={handleHITLToggle}
|
||||
disabled={isPending}
|
||||
className="mt-1"
|
||||
/>
|
||||
</div>
|
||||
<Switch
|
||||
checked={currentSafeMode || false}
|
||||
onCheckedChange={handleToggle}
|
||||
disabled={isPending}
|
||||
className="mt-1"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
{showSensitiveActionToggle && (
|
||||
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
|
||||
<div className="flex w-full items-start justify-between gap-4">
|
||||
<div className="flex-1">
|
||||
<Text variant="large-semibold">
|
||||
Sensitive action approval
|
||||
</Text>
|
||||
<Text variant="large" className="mt-1 text-zinc-900">
|
||||
The agent will pause at sensitive action blocks and wait for
|
||||
your review before continuing
|
||||
</Text>
|
||||
</div>
|
||||
<Switch
|
||||
checked={currentSensitiveActionSafeMode}
|
||||
onCheckedChange={handleSensitiveActionToggle}
|
||||
disabled={isPending}
|
||||
className="mt-1"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
</div>
|
||||
</Dialog.Content>
|
||||
</Dialog>
|
||||
|
||||
@@ -5,48 +5,112 @@ import { Graph } from "@/lib/autogpt-server-api/types";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { ShieldCheckIcon, ShieldIcon } from "@phosphor-icons/react";
|
||||
import { useAgentSafeMode } from "@/hooks/useAgentSafeMode";
|
||||
import {
|
||||
Tooltip,
|
||||
TooltipContent,
|
||||
TooltipTrigger,
|
||||
} from "@/components/atoms/Tooltip/BaseTooltip";
|
||||
|
||||
interface Props {
|
||||
graph: GraphModel | LibraryAgent | Graph;
|
||||
className?: string;
|
||||
fullWidth?: boolean;
|
||||
}
|
||||
|
||||
export function SafeModeToggle({ graph }: Props) {
|
||||
interface SafeModeIconButtonProps {
|
||||
isEnabled: boolean;
|
||||
label: string;
|
||||
tooltipEnabled: string;
|
||||
tooltipDisabled: string;
|
||||
onToggle: () => void;
|
||||
isPending: boolean;
|
||||
}
|
||||
|
||||
function SafeModeIconButton({
|
||||
isEnabled,
|
||||
label,
|
||||
tooltipEnabled,
|
||||
tooltipDisabled,
|
||||
onToggle,
|
||||
isPending,
|
||||
}: SafeModeIconButtonProps) {
|
||||
return (
|
||||
<Tooltip delayDuration={100}>
|
||||
<TooltipTrigger asChild>
|
||||
<Button
|
||||
variant="icon"
|
||||
size="icon"
|
||||
aria-label={`${label}: ${isEnabled ? "ON" : "OFF"}. ${isEnabled ? tooltipEnabled : tooltipDisabled}`}
|
||||
onClick={onToggle}
|
||||
disabled={isPending}
|
||||
className={cn(isPending ? "opacity-0" : "opacity-100")}
|
||||
>
|
||||
{isEnabled ? (
|
||||
<ShieldCheckIcon weight="bold" size={16} />
|
||||
) : (
|
||||
<ShieldIcon weight="bold" size={16} />
|
||||
)}
|
||||
</Button>
|
||||
</TooltipTrigger>
|
||||
<TooltipContent>
|
||||
<div className="text-center">
|
||||
<div className="font-medium">
|
||||
{label}: {isEnabled ? "ON" : "OFF"}
|
||||
</div>
|
||||
<div className="mt-1 text-xs text-muted-foreground">
|
||||
{isEnabled ? tooltipEnabled : tooltipDisabled}
|
||||
</div>
|
||||
</div>
|
||||
</TooltipContent>
|
||||
</Tooltip>
|
||||
);
|
||||
}
|
||||
|
||||
export function SafeModeToggle({ graph, className }: Props) {
|
||||
const {
|
||||
currentSafeMode,
|
||||
currentHITLSafeMode,
|
||||
showHITLToggle,
|
||||
isHITLStateUndetermined,
|
||||
handleHITLToggle,
|
||||
currentSensitiveActionSafeMode,
|
||||
showSensitiveActionToggle,
|
||||
handleSensitiveActionToggle,
|
||||
isPending,
|
||||
shouldShowToggle,
|
||||
isStateUndetermined,
|
||||
handleToggle,
|
||||
} = useAgentSafeMode(graph);
|
||||
|
||||
if (!shouldShowToggle || isStateUndetermined) {
|
||||
if (!shouldShowToggle || isHITLStateUndetermined) {
|
||||
return null;
|
||||
}
|
||||
|
||||
const showHITL = showHITLToggle && !isHITLStateUndetermined;
|
||||
const showSensitive = showSensitiveActionToggle;
|
||||
|
||||
if (!showHITL && !showSensitive) {
|
||||
return null;
|
||||
}
|
||||
|
||||
return (
|
||||
<Button
|
||||
variant="icon"
|
||||
key={graph.id}
|
||||
size="icon"
|
||||
aria-label={
|
||||
currentSafeMode!
|
||||
? "Safe Mode: ON. Human in the loop blocks require manual review"
|
||||
: "Safe Mode: OFF. Human in the loop blocks proceed automatically"
|
||||
}
|
||||
onClick={handleToggle}
|
||||
className={cn(isPending ? "opacity-0" : "opacity-100")}
|
||||
>
|
||||
{currentSafeMode! ? (
|
||||
<>
|
||||
<ShieldCheckIcon weight="bold" size={16} />
|
||||
</>
|
||||
) : (
|
||||
<>
|
||||
<ShieldIcon weight="bold" size={16} />
|
||||
</>
|
||||
<div className={cn("flex gap-1", className)}>
|
||||
{showHITL && (
|
||||
<SafeModeIconButton
|
||||
isEnabled={currentHITLSafeMode}
|
||||
label="Human-in-the-loop"
|
||||
tooltipEnabled="The agent will pause at human-in-the-loop blocks and wait for your approval"
|
||||
tooltipDisabled="Human-in-the-loop blocks will proceed automatically"
|
||||
onToggle={handleHITLToggle}
|
||||
isPending={isPending}
|
||||
/>
|
||||
)}
|
||||
</Button>
|
||||
{showSensitive && (
|
||||
<SafeModeIconButton
|
||||
isEnabled={currentSensitiveActionSafeMode}
|
||||
label="Sensitive actions"
|
||||
tooltipEnabled="The agent will pause at sensitive action blocks and wait for your approval"
|
||||
tooltipDisabled="Sensitive action blocks will proceed automatically"
|
||||
onToggle={handleSensitiveActionToggle}
|
||||
isPending={isPending}
|
||||
/>
|
||||
)}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
@@ -13,8 +13,16 @@ interface Props {
|
||||
}
|
||||
|
||||
export function SelectedSettingsView({ agent, onClearSelectedRun }: Props) {
|
||||
const { currentSafeMode, isPending, hasHITLBlocks, handleToggle } =
|
||||
useAgentSafeMode(agent);
|
||||
const {
|
||||
currentHITLSafeMode,
|
||||
showHITLToggle,
|
||||
handleHITLToggle,
|
||||
currentSensitiveActionSafeMode,
|
||||
showSensitiveActionToggle,
|
||||
handleSensitiveActionToggle,
|
||||
isPending,
|
||||
shouldShowToggle,
|
||||
} = useAgentSafeMode(agent);
|
||||
|
||||
return (
|
||||
<SelectedViewLayout agent={agent}>
|
||||
@@ -34,24 +42,51 @@ export function SelectedSettingsView({ agent, onClearSelectedRun }: Props) {
|
||||
</div>
|
||||
|
||||
<div className={`${AGENT_LIBRARY_SECTION_PADDING_X} space-y-6`}>
|
||||
{hasHITLBlocks ? (
|
||||
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
|
||||
<div className="flex w-full items-start justify-between gap-4">
|
||||
<div className="flex-1">
|
||||
<Text variant="large-semibold">Require human approval</Text>
|
||||
<Text variant="large" className="mt-1 text-zinc-900">
|
||||
The agent will pause and wait for your review before
|
||||
continuing
|
||||
</Text>
|
||||
{shouldShowToggle ? (
|
||||
<>
|
||||
{showHITLToggle && (
|
||||
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
|
||||
<div className="flex w-full items-start justify-between gap-4">
|
||||
<div className="flex-1">
|
||||
<Text variant="large-semibold">
|
||||
Human-in-the-loop approval
|
||||
</Text>
|
||||
<Text variant="large" className="mt-1 text-zinc-900">
|
||||
The agent will pause at human-in-the-loop blocks and
|
||||
wait for your review before continuing
|
||||
</Text>
|
||||
</div>
|
||||
<Switch
|
||||
checked={currentHITLSafeMode || false}
|
||||
onCheckedChange={handleHITLToggle}
|
||||
disabled={isPending}
|
||||
className="mt-1"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
<Switch
|
||||
checked={currentSafeMode || false}
|
||||
onCheckedChange={handleToggle}
|
||||
disabled={isPending}
|
||||
className="mt-1"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
{showSensitiveActionToggle && (
|
||||
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
|
||||
<div className="flex w-full items-start justify-between gap-4">
|
||||
<div className="flex-1">
|
||||
<Text variant="large-semibold">
|
||||
Sensitive action approval
|
||||
</Text>
|
||||
<Text variant="large" className="mt-1 text-zinc-900">
|
||||
The agent will pause at sensitive action blocks and wait
|
||||
for your review before continuing
|
||||
</Text>
|
||||
</div>
|
||||
<Switch
|
||||
checked={currentSensitiveActionSafeMode}
|
||||
onCheckedChange={handleSensitiveActionToggle}
|
||||
disabled={isPending}
|
||||
className="mt-1"
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
)}
|
||||
</>
|
||||
) : (
|
||||
<div className="rounded-xl border border-zinc-100 bg-white p-6">
|
||||
<Text variant="body" className="text-muted-foreground">
|
||||
|
||||
@@ -6383,6 +6383,11 @@
|
||||
"title": "Has Human In The Loop",
|
||||
"readOnly": true
|
||||
},
|
||||
"has_sensitive_action": {
|
||||
"type": "boolean",
|
||||
"title": "Has Sensitive Action",
|
||||
"readOnly": true
|
||||
},
|
||||
"trigger_setup_info": {
|
||||
"anyOf": [
|
||||
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
|
||||
@@ -6399,6 +6404,7 @@
|
||||
"output_schema",
|
||||
"has_external_trigger",
|
||||
"has_human_in_the_loop",
|
||||
"has_sensitive_action",
|
||||
"trigger_setup_info"
|
||||
],
|
||||
"title": "BaseGraph"
|
||||
@@ -7629,6 +7635,11 @@
|
||||
"title": "Has Human In The Loop",
|
||||
"readOnly": true
|
||||
},
|
||||
"has_sensitive_action": {
|
||||
"type": "boolean",
|
||||
"title": "Has Sensitive Action",
|
||||
"readOnly": true
|
||||
},
|
||||
"trigger_setup_info": {
|
||||
"anyOf": [
|
||||
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
|
||||
@@ -7652,6 +7663,7 @@
|
||||
"output_schema",
|
||||
"has_external_trigger",
|
||||
"has_human_in_the_loop",
|
||||
"has_sensitive_action",
|
||||
"trigger_setup_info",
|
||||
"credentials_input_schema"
|
||||
],
|
||||
@@ -7730,6 +7742,11 @@
|
||||
"title": "Has Human In The Loop",
|
||||
"readOnly": true
|
||||
},
|
||||
"has_sensitive_action": {
|
||||
"type": "boolean",
|
||||
"title": "Has Sensitive Action",
|
||||
"readOnly": true
|
||||
},
|
||||
"trigger_setup_info": {
|
||||
"anyOf": [
|
||||
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
|
||||
@@ -7754,6 +7771,7 @@
|
||||
"output_schema",
|
||||
"has_external_trigger",
|
||||
"has_human_in_the_loop",
|
||||
"has_sensitive_action",
|
||||
"trigger_setup_info",
|
||||
"credentials_input_schema"
|
||||
],
|
||||
@@ -7762,8 +7780,14 @@
|
||||
"GraphSettings": {
|
||||
"properties": {
|
||||
"human_in_the_loop_safe_mode": {
|
||||
"anyOf": [{ "type": "boolean" }, { "type": "null" }],
|
||||
"title": "Human In The Loop Safe Mode"
|
||||
"type": "boolean",
|
||||
"title": "Human In The Loop Safe Mode",
|
||||
"default": true
|
||||
},
|
||||
"sensitive_action_safe_mode": {
|
||||
"type": "boolean",
|
||||
"title": "Sensitive Action Safe Mode",
|
||||
"default": false
|
||||
}
|
||||
},
|
||||
"type": "object",
|
||||
@@ -7921,6 +7945,16 @@
|
||||
"title": "Has External Trigger",
|
||||
"description": "Whether the agent has an external trigger (e.g. webhook) node"
|
||||
},
|
||||
"has_human_in_the_loop": {
|
||||
"type": "boolean",
|
||||
"title": "Has Human In The Loop",
|
||||
"description": "Whether the agent has human-in-the-loop blocks"
|
||||
},
|
||||
"has_sensitive_action": {
|
||||
"type": "boolean",
|
||||
"title": "Has Sensitive Action",
|
||||
"description": "Whether the agent has sensitive action blocks"
|
||||
},
|
||||
"trigger_setup_info": {
|
||||
"anyOf": [
|
||||
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
|
||||
@@ -7967,6 +8001,8 @@
|
||||
"output_schema",
|
||||
"credentials_input_schema",
|
||||
"has_external_trigger",
|
||||
"has_human_in_the_loop",
|
||||
"has_sensitive_action",
|
||||
"new_output",
|
||||
"can_access_graph",
|
||||
"is_latest_version",
|
||||
|
||||
@@ -0,0 +1,33 @@
|
||||
"use client";
|
||||
|
||||
import * as PopoverPrimitive from "@radix-ui/react-popover";
|
||||
import * as React from "react";
|
||||
|
||||
import { cn } from "@/lib/utils";
|
||||
|
||||
const Popover = PopoverPrimitive.Root;
|
||||
|
||||
const PopoverTrigger = PopoverPrimitive.Trigger;
|
||||
|
||||
const PopoverAnchor = PopoverPrimitive.Anchor;
|
||||
|
||||
const PopoverContent = React.forwardRef<
|
||||
React.ElementRef<typeof PopoverPrimitive.Content>,
|
||||
React.ComponentPropsWithoutRef<typeof PopoverPrimitive.Content>
|
||||
>(({ className, align = "center", sideOffset = 4, ...props }, ref) => (
|
||||
<PopoverPrimitive.Portal>
|
||||
<PopoverPrimitive.Content
|
||||
ref={ref}
|
||||
align={align}
|
||||
sideOffset={sideOffset}
|
||||
className={cn(
|
||||
"z-50 w-72 rounded-lg border border-zinc-200 bg-white p-4 text-zinc-900 shadow-md outline-none data-[state=open]:animate-in data-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed]:zoom-out-95 data-[state=open]:zoom-in-95 data-[side=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bottom-2",
|
||||
className,
|
||||
)}
|
||||
{...props}
|
||||
/>
|
||||
</PopoverPrimitive.Portal>
|
||||
));
|
||||
PopoverContent.displayName = PopoverPrimitive.Content.displayName;
|
||||
|
||||
export { Popover, PopoverAnchor, PopoverContent, PopoverTrigger };
|
||||
@@ -0,0 +1,92 @@
|
||||
"use client";
|
||||
|
||||
import {
|
||||
descriptionId,
|
||||
FieldProps,
|
||||
getTemplate,
|
||||
RJSFSchema,
|
||||
titleId,
|
||||
} from "@rjsf/utils";
|
||||
import { useMemo } from "react";
|
||||
import { LlmModelPicker } from "./components/LlmModelPicker";
|
||||
import { LlmModelMetadataMap } from "./types";
|
||||
import { updateUiOption } from "../../helpers";
|
||||
|
||||
type LlmModelSchema = RJSFSchema & {
|
||||
llm_model_metadata?: LlmModelMetadataMap;
|
||||
};
|
||||
|
||||
export function LlmModelField(props: FieldProps) {
|
||||
const { schema, formData, onChange, disabled, readonly, fieldPathId } = props;
|
||||
|
||||
const metadata = useMemo(() => {
|
||||
return (schema as LlmModelSchema)?.llm_model_metadata ?? {};
|
||||
}, [schema]);
|
||||
|
||||
const models = useMemo(() => {
|
||||
return Object.values(metadata);
|
||||
}, [metadata]);
|
||||
|
||||
const selectedName =
|
||||
typeof formData === "string"
|
||||
? formData
|
||||
: typeof schema.default === "string"
|
||||
? schema.default
|
||||
: "";
|
||||
|
||||
const selectedModel = selectedName
|
||||
? (metadata[selectedName] ??
|
||||
models.find((model) => model.name === selectedName))
|
||||
: undefined;
|
||||
|
||||
const recommendedName =
|
||||
typeof schema.default === "string" ? schema.default : models[0]?.name;
|
||||
|
||||
const recommendedModel =
|
||||
recommendedName && metadata[recommendedName]
|
||||
? metadata[recommendedName]
|
||||
: undefined;
|
||||
|
||||
if (models.length === 0) {
|
||||
return null;
|
||||
}
|
||||
|
||||
const TitleFieldTemplate = getTemplate("TitleFieldTemplate", props.registry);
|
||||
const DescriptionFieldTemplate = getTemplate(
|
||||
"DescriptionFieldTemplate",
|
||||
props.registry,
|
||||
);
|
||||
|
||||
const updatedUiSchema = updateUiOption(props.uiSchema, {
|
||||
showHandles: false,
|
||||
});
|
||||
|
||||
return (
|
||||
<>
|
||||
<div className="flex items-center gap-2">
|
||||
<TitleFieldTemplate
|
||||
id={titleId(fieldPathId)}
|
||||
title={schema.title || ""}
|
||||
required={true}
|
||||
schema={schema}
|
||||
uiSchema={updatedUiSchema}
|
||||
registry={props.registry}
|
||||
/>
|
||||
<DescriptionFieldTemplate
|
||||
id={descriptionId(fieldPathId)}
|
||||
description={schema.description || ""}
|
||||
schema={schema}
|
||||
registry={props.registry}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<LlmModelPicker
|
||||
models={models}
|
||||
selectedModel={selectedModel}
|
||||
recommendedModel={recommendedModel}
|
||||
onSelect={(value) => onChange(value, fieldPathId?.path)}
|
||||
disabled={disabled || readonly}
|
||||
/>
|
||||
</>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,66 @@
|
||||
"use client";
|
||||
|
||||
import Image from "next/image";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
|
||||
const creatorIconMap: Record<string, string> = {
|
||||
anthropic: "/integrations/anthropic-color.png",
|
||||
openai: "/integrations/openai.png",
|
||||
google: "/integrations/gemini.png",
|
||||
nvidia: "/integrations/nvidia.png",
|
||||
groq: "/integrations/groq.png",
|
||||
ollama: "/integrations/ollama.png",
|
||||
openrouter: "/integrations/open_router.png",
|
||||
v0: "/integrations/v0.png",
|
||||
xai: "/integrations/xai.webp",
|
||||
meta: "/integrations/llama_api.png",
|
||||
amazon: "/integrations/amazon.png",
|
||||
cohere: "/integrations/cohere.png",
|
||||
deepseek: "/integrations/deepseek.png",
|
||||
gryphe: "/integrations/gryphe.png",
|
||||
microsoft: "/integrations/microsoft.webp",
|
||||
moonshotai: "/integrations/moonshot.png",
|
||||
mistral: "/integrations/mistral.png",
|
||||
mistralai: "/integrations/mistral.png",
|
||||
nousresearch: "/integrations/nousresearch.avif",
|
||||
perplexity: "/integrations/perplexity.webp",
|
||||
qwen: "/integrations/qwen.png",
|
||||
};
|
||||
|
||||
type Props = {
|
||||
value: string;
|
||||
size?: number;
|
||||
};
|
||||
|
||||
export function LlmIcon({ value, size = 20 }: Props) {
|
||||
const normalized = value.trim().toLowerCase().replace(/\s+/g, "");
|
||||
const src = creatorIconMap[normalized];
|
||||
if (src) {
|
||||
return (
|
||||
<div
|
||||
className="flex items-center justify-center overflow-hidden rounded-xsmall"
|
||||
style={{ width: size, height: size }}
|
||||
>
|
||||
<Image
|
||||
src={src}
|
||||
alt={value}
|
||||
width={size}
|
||||
height={size}
|
||||
className="h-full w-full object-cover"
|
||||
/>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
|
||||
const fallback = value?.trim().slice(0, 1).toUpperCase() || "?";
|
||||
return (
|
||||
<div
|
||||
className="flex items-center justify-center rounded-xsmall bg-zinc-100"
|
||||
style={{ width: size, height: size }}
|
||||
>
|
||||
<Text variant="small" className="text-zinc-500">
|
||||
{fallback}
|
||||
</Text>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,24 @@
|
||||
"use client";
|
||||
|
||||
import { ArrowLeftIcon } from "@phosphor-icons/react";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
|
||||
type Props = {
|
||||
label: string;
|
||||
onBack: () => void;
|
||||
};
|
||||
|
||||
export function LlmMenuHeader({ label, onBack }: Props) {
|
||||
return (
|
||||
<button
|
||||
type="button"
|
||||
onClick={onBack}
|
||||
className="flex w-full items-center gap-2 px-2 py-2 text-left hover:bg-zinc-100"
|
||||
>
|
||||
<ArrowLeftIcon className="h-4 w-4 text-zinc-800" weight="bold" />
|
||||
<Text variant="body" className="text-zinc-900">
|
||||
{label}
|
||||
</Text>
|
||||
</button>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,61 @@
|
||||
"use client";
|
||||
|
||||
import { CaretRightIcon, CheckIcon } from "@phosphor-icons/react";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import { cn } from "@/lib/utils";
|
||||
|
||||
type Props = {
|
||||
title: string;
|
||||
subtitle?: string;
|
||||
icon?: React.ReactNode;
|
||||
showChevron?: boolean;
|
||||
rightSlot?: React.ReactNode;
|
||||
onClick: () => void;
|
||||
isActive?: boolean;
|
||||
};
|
||||
|
||||
export function LlmMenuItem({
|
||||
title,
|
||||
subtitle,
|
||||
icon,
|
||||
showChevron,
|
||||
rightSlot,
|
||||
onClick,
|
||||
isActive,
|
||||
}: Props) {
|
||||
const hasIcon = Boolean(icon);
|
||||
|
||||
return (
|
||||
<button
|
||||
type="button"
|
||||
onClick={onClick}
|
||||
className={cn("w-full py-1 pl-2 pr-4 text-left hover:bg-zinc-100")}
|
||||
>
|
||||
<div className="flex items-center justify-between gap-3">
|
||||
<div className="flex items-center gap-2">
|
||||
{icon}
|
||||
<Text variant="body" className="text-zinc-900">
|
||||
{title}
|
||||
</Text>
|
||||
</div>
|
||||
<div className="flex items-center gap-2">
|
||||
{isActive && (
|
||||
<CheckIcon className="h-4 w-4 text-emerald-600" weight="bold" />
|
||||
)}
|
||||
{rightSlot}
|
||||
{showChevron && (
|
||||
<CaretRightIcon className="h-4 w-4 text-zinc-900" weight="bold" />
|
||||
)}
|
||||
</div>
|
||||
</div>
|
||||
{subtitle && (
|
||||
<Text
|
||||
variant="small"
|
||||
className={cn("mb-1 text-zinc-500", hasIcon && "pl-0")}
|
||||
>
|
||||
{subtitle}
|
||||
</Text>
|
||||
)}
|
||||
</button>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,235 @@
|
||||
"use client";
|
||||
|
||||
import { useCallback, useEffect, useMemo, useState } from "react";
|
||||
import { CaretDownIcon } from "@phosphor-icons/react";
|
||||
import {
|
||||
Popover,
|
||||
PopoverContent,
|
||||
PopoverTrigger,
|
||||
} from "@/components/molecules/Popover/Popover";
|
||||
import { Text } from "@/components/atoms/Text/Text";
|
||||
import { cn } from "@/lib/utils";
|
||||
import {
|
||||
getCreatorDisplayName,
|
||||
getModelDisplayName,
|
||||
getProviderDisplayName,
|
||||
groupByCreator,
|
||||
groupByTitle,
|
||||
} from "../helpers";
|
||||
import { LlmModelMetadata } from "../types";
|
||||
import { LlmIcon } from "./LlmIcon";
|
||||
import { LlmMenuHeader } from "./LlmMenuHeader";
|
||||
import { LlmMenuItem } from "./LlmMenuItem";
|
||||
import { LlmPriceTier } from "./LlmPriceTier";
|
||||
|
||||
type MenuView = "creator" | "model" | "provider";
|
||||
|
||||
type Props = {
|
||||
models: LlmModelMetadata[];
|
||||
selectedModel?: LlmModelMetadata;
|
||||
recommendedModel?: LlmModelMetadata;
|
||||
onSelect: (value: string) => void;
|
||||
disabled?: boolean;
|
||||
};
|
||||
|
||||
export function LlmModelPicker({
|
||||
models,
|
||||
selectedModel,
|
||||
recommendedModel,
|
||||
onSelect,
|
||||
disabled,
|
||||
}: Props) {
|
||||
const [open, setOpen] = useState(false);
|
||||
const [view, setView] = useState<MenuView>("creator");
|
||||
const [activeCreator, setActiveCreator] = useState<string | null>(null);
|
||||
const [activeTitle, setActiveTitle] = useState<string | null>(null);
|
||||
|
||||
const modelsByCreator = useMemo(() => groupByCreator(models), [models]);
|
||||
|
||||
const creators = useMemo(() => {
|
||||
return Array.from(modelsByCreator.keys()).sort((a, b) =>
|
||||
a.localeCompare(b),
|
||||
);
|
||||
}, [modelsByCreator]);
|
||||
|
||||
const creatorIconValues = useMemo(() => {
|
||||
const map = new Map<string, string>();
|
||||
for (const [creator, entries] of modelsByCreator.entries()) {
|
||||
map.set(creator, entries[0]?.creator ?? creator);
|
||||
}
|
||||
return map;
|
||||
}, [modelsByCreator]);
|
||||
|
||||
useEffect(() => {
|
||||
if (!open) {
|
||||
return;
|
||||
}
|
||||
setView("creator");
|
||||
setActiveCreator(
|
||||
selectedModel
|
||||
? getCreatorDisplayName(selectedModel)
|
||||
: (creators[0] ?? null),
|
||||
);
|
||||
setActiveTitle(selectedModel ? getModelDisplayName(selectedModel) : null);
|
||||
}, [open, selectedModel, creators]);
|
||||
|
||||
const currentCreator = activeCreator ?? creators[0] ?? null;
|
||||
|
||||
const currentModels = useMemo(() => {
|
||||
return currentCreator ? (modelsByCreator.get(currentCreator) ?? []) : [];
|
||||
}, [currentCreator, modelsByCreator]);
|
||||
|
||||
const currentCreatorIcon = useMemo(() => {
|
||||
return currentModels[0]?.creator ?? currentCreator;
|
||||
}, [currentModels, currentCreator]);
|
||||
|
||||
const modelsByTitle = useMemo(
|
||||
() => groupByTitle(currentModels),
|
||||
[currentModels],
|
||||
);
|
||||
|
||||
const modelEntries = useMemo(() => {
|
||||
return Array.from(modelsByTitle.entries())
|
||||
.map(([title, entries]) => {
|
||||
const providers = new Set(entries.map((entry) => entry.provider));
|
||||
return {
|
||||
title,
|
||||
entries,
|
||||
providerCount: providers.size,
|
||||
};
|
||||
})
|
||||
.sort((a, b) => a.title.localeCompare(b.title));
|
||||
}, [modelsByTitle]);
|
||||
|
||||
const providerEntries = useMemo(() => {
|
||||
if (!activeTitle) {
|
||||
return [];
|
||||
}
|
||||
return modelsByTitle.get(activeTitle) ?? [];
|
||||
}, [activeTitle, modelsByTitle]);
|
||||
|
||||
const handleSelectModel = useCallback(
|
||||
(modelName: string) => {
|
||||
onSelect(modelName);
|
||||
setOpen(false);
|
||||
},
|
||||
[onSelect],
|
||||
);
|
||||
|
||||
const triggerModel = selectedModel ?? recommendedModel ?? models[0];
|
||||
const triggerTitle = triggerModel
|
||||
? getModelDisplayName(triggerModel)
|
||||
: "Select model";
|
||||
const triggerCreator = triggerModel?.creator ?? "";
|
||||
|
||||
return (
|
||||
<Popover open={open} onOpenChange={setOpen}>
|
||||
<PopoverTrigger asChild>
|
||||
<button
|
||||
type="button"
|
||||
disabled={disabled}
|
||||
className={cn(
|
||||
"flex w-full min-w-[15rem] items-center rounded-lg border border-zinc-200 bg-white px-3 py-2 text-left",
|
||||
"hover:border-zinc-300 focus:outline-none focus:ring-2 focus:ring-zinc-200",
|
||||
disabled && "cursor-not-allowed opacity-60",
|
||||
)}
|
||||
>
|
||||
<LlmIcon value={triggerCreator} />
|
||||
<Text variant="body" className="ml-1 flex-1 text-zinc-900">
|
||||
{triggerTitle}
|
||||
</Text>
|
||||
<CaretDownIcon className="h-3 w-3 text-zinc-900" weight="bold" />
|
||||
</button>
|
||||
</PopoverTrigger>
|
||||
<PopoverContent
|
||||
align="start"
|
||||
sideOffset={4}
|
||||
className="max-h-[45vh] w-[--radix-popover-trigger-width] min-w-[16rem] overflow-y-auto rounded-md border border-zinc-200 bg-white p-0 shadow-[0px_1px_4px_rgba(12,12,13,0.12)]"
|
||||
>
|
||||
{view === "creator" && (
|
||||
<div className="flex flex-col">
|
||||
{recommendedModel && (
|
||||
<>
|
||||
<LlmMenuItem
|
||||
title={getModelDisplayName(recommendedModel)}
|
||||
subtitle="Recommended"
|
||||
icon={<LlmIcon value={recommendedModel.creator} />}
|
||||
onClick={() => handleSelectModel(recommendedModel.name)}
|
||||
/>
|
||||
<div className="border-b border-zinc-200" />
|
||||
</>
|
||||
)}
|
||||
{creators.map((creator) => (
|
||||
<LlmMenuItem
|
||||
key={creator}
|
||||
title={creator}
|
||||
icon={
|
||||
<LlmIcon value={creatorIconValues.get(creator) ?? creator} />
|
||||
}
|
||||
showChevron={true}
|
||||
isActive={
|
||||
selectedModel
|
||||
? getCreatorDisplayName(selectedModel) === creator
|
||||
: false
|
||||
}
|
||||
onClick={() => {
|
||||
setActiveCreator(creator);
|
||||
setView("model");
|
||||
}}
|
||||
/>
|
||||
))}
|
||||
</div>
|
||||
)}
|
||||
{view === "model" && currentCreator && (
|
||||
<div className="flex flex-col">
|
||||
<LlmMenuHeader
|
||||
label={currentCreator}
|
||||
onBack={() => setView("creator")}
|
||||
/>
|
||||
<div className="border-b border-zinc-200" />
|
||||
{modelEntries.map((entry) => (
|
||||
<LlmMenuItem
|
||||
key={entry.title}
|
||||
title={entry.title}
|
||||
icon={<LlmIcon value={currentCreatorIcon} />}
|
||||
rightSlot={<LlmPriceTier tier={entry.entries[0]?.price_tier} />}
|
||||
showChevron={entry.providerCount > 1}
|
||||
isActive={
|
||||
selectedModel
|
||||
? getModelDisplayName(selectedModel) === entry.title
|
||||
: false
|
||||
}
|
||||
onClick={() => {
|
||||
if (entry.providerCount > 1) {
|
||||
setActiveTitle(entry.title);
|
||||
setView("provider");
|
||||
return;
|
||||
}
|
||||
handleSelectModel(entry.entries[0].name);
|
||||
}}
|
||||
/>
|
||||
))}
|
||||
</div>
|
||||
)}
|
||||
{view === "provider" && activeTitle && (
|
||||
<div className="flex flex-col">
|
||||
<LlmMenuHeader
|
||||
label={activeTitle}
|
||||
onBack={() => setView("model")}
|
||||
/>
|
||||
<div className="border-b border-zinc-200" />
|
||||
{providerEntries.map((entry) => (
|
||||
<LlmMenuItem
|
||||
key={`${entry.title}-${entry.provider}`}
|
||||
title={getProviderDisplayName(entry)}
|
||||
icon={<LlmIcon value={entry.provider} />}
|
||||
isActive={selectedModel?.provider === entry.provider}
|
||||
onClick={() => handleSelectModel(entry.name)}
|
||||
/>
|
||||
))}
|
||||
</div>
|
||||
)}
|
||||
</PopoverContent>
|
||||
</Popover>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,25 @@
|
||||
"use client";
|
||||
|
||||
import { CurrencyDollarSimpleIcon } from "@phosphor-icons/react";
|
||||
|
||||
type Props = {
|
||||
tier?: number;
|
||||
};
|
||||
|
||||
export function LlmPriceTier({ tier }: Props) {
|
||||
if (!tier || tier <= 0) {
|
||||
return null;
|
||||
}
|
||||
const clamped = Math.min(3, Math.max(1, tier));
|
||||
return (
|
||||
<div className="flex items-center text-zinc-900">
|
||||
{Array.from({ length: clamped }).map((_, index) => (
|
||||
<CurrencyDollarSimpleIcon
|
||||
key={`price-${index}`}
|
||||
className="-mr-0.5 h-3 w-3"
|
||||
weight="bold"
|
||||
/>
|
||||
))}
|
||||
</div>
|
||||
);
|
||||
}
|
||||
@@ -0,0 +1,35 @@
|
||||
import { LlmModelMetadata } from "./types";
|
||||
|
||||
export function groupByCreator(models: LlmModelMetadata[]) {
|
||||
const map = new Map<string, LlmModelMetadata[]>();
|
||||
for (const model of models) {
|
||||
const key = getCreatorDisplayName(model);
|
||||
const existing = map.get(key) ?? [];
|
||||
existing.push(model);
|
||||
map.set(key, existing);
|
||||
}
|
||||
return map;
|
||||
}
|
||||
|
||||
export function groupByTitle(models: LlmModelMetadata[]) {
|
||||
const map = new Map<string, LlmModelMetadata[]>();
|
||||
for (const model of models) {
|
||||
const displayName = getModelDisplayName(model);
|
||||
const existing = map.get(displayName) ?? [];
|
||||
existing.push(model);
|
||||
map.set(displayName, existing);
|
||||
}
|
||||
return map;
|
||||
}
|
||||
|
||||
export function getCreatorDisplayName(model: LlmModelMetadata): string {
|
||||
return model.creator_name || model.creator || "";
|
||||
}
|
||||
|
||||
export function getModelDisplayName(model: LlmModelMetadata): string {
|
||||
return model.title || model.name || "";
|
||||
}
|
||||
|
||||
export function getProviderDisplayName(model: LlmModelMetadata): string {
|
||||
return model.provider_name || model.provider || "";
|
||||
}
|
||||
@@ -0,0 +1,11 @@
|
||||
export type LlmModelMetadata = {
|
||||
creator: string;
|
||||
creator_name: string;
|
||||
title: string;
|
||||
provider: string;
|
||||
provider_name: string;
|
||||
name: string;
|
||||
price_tier?: number;
|
||||
};
|
||||
|
||||
export type LlmModelMetadataMap = Record<string, LlmModelMetadata>;
|
||||
@@ -8,6 +8,7 @@ import {
|
||||
isMultiSelectSchema,
|
||||
} from "../utils/schema-utils";
|
||||
import { TableField } from "./TableField/TableField";
|
||||
import { LlmModelField } from "./LlmModelField/LlmModelField";
|
||||
|
||||
export interface CustomFieldDefinition {
|
||||
id: string;
|
||||
@@ -57,6 +58,15 @@ export const CUSTOM_FIELDS: CustomFieldDefinition[] = [
|
||||
},
|
||||
component: TableField,
|
||||
},
|
||||
{
|
||||
id: "custom/llm_model_field",
|
||||
matcher: (schema: any) => {
|
||||
return (
|
||||
typeof schema === "object" && schema !== null && "llm_model" in schema
|
||||
);
|
||||
},
|
||||
component: LlmModelField,
|
||||
},
|
||||
];
|
||||
|
||||
export function findCustomFieldId(schema: any): string | null {
|
||||
|
||||
@@ -20,11 +20,15 @@ function hasHITLBlocks(graph: GraphModel | LibraryAgent | Graph): boolean {
|
||||
if ("has_human_in_the_loop" in graph) {
|
||||
return !!graph.has_human_in_the_loop;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
if (isLibraryAgent(graph)) {
|
||||
return graph.settings?.human_in_the_loop_safe_mode !== null;
|
||||
function hasSensitiveActionBlocks(
|
||||
graph: GraphModel | LibraryAgent | Graph,
|
||||
): boolean {
|
||||
if ("has_sensitive_action" in graph) {
|
||||
return !!graph.has_sensitive_action;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -40,7 +44,9 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
|
||||
|
||||
const graphId = getGraphId(graph);
|
||||
const isAgent = isLibraryAgent(graph);
|
||||
const shouldShowToggle = hasHITLBlocks(graph);
|
||||
const showHITLToggle = hasHITLBlocks(graph);
|
||||
const showSensitiveActionToggle = hasSensitiveActionBlocks(graph);
|
||||
const shouldShowToggle = showHITLToggle || showSensitiveActionToggle;
|
||||
|
||||
const { mutateAsync: updateGraphSettings, isPending } =
|
||||
usePatchV1UpdateGraphSettings();
|
||||
@@ -56,27 +62,37 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
|
||||
},
|
||||
);
|
||||
|
||||
const [localSafeMode, setLocalSafeMode] = useState<boolean | null>(null);
|
||||
const [localHITLSafeMode, setLocalHITLSafeMode] = useState<boolean>(true);
|
||||
const [localSensitiveActionSafeMode, setLocalSensitiveActionSafeMode] =
|
||||
useState<boolean>(false);
|
||||
const [isLocalStateLoaded, setIsLocalStateLoaded] = useState<boolean>(false);
|
||||
|
||||
useEffect(() => {
|
||||
if (!isAgent && libraryAgent) {
|
||||
const backendValue = libraryAgent.settings?.human_in_the_loop_safe_mode;
|
||||
if (backendValue !== undefined) {
|
||||
setLocalSafeMode(backendValue);
|
||||
}
|
||||
setLocalHITLSafeMode(
|
||||
libraryAgent.settings?.human_in_the_loop_safe_mode ?? true,
|
||||
);
|
||||
setLocalSensitiveActionSafeMode(
|
||||
libraryAgent.settings?.sensitive_action_safe_mode ?? false,
|
||||
);
|
||||
setIsLocalStateLoaded(true);
|
||||
}
|
||||
}, [isAgent, libraryAgent]);
|
||||
|
||||
const currentSafeMode = isAgent
|
||||
? graph.settings?.human_in_the_loop_safe_mode
|
||||
: localSafeMode;
|
||||
const currentHITLSafeMode = isAgent
|
||||
? (graph.settings?.human_in_the_loop_safe_mode ?? true)
|
||||
: localHITLSafeMode;
|
||||
|
||||
const isStateUndetermined = isAgent
|
||||
? graph.settings?.human_in_the_loop_safe_mode == null
|
||||
: isLoading || localSafeMode === null;
|
||||
const currentSensitiveActionSafeMode = isAgent
|
||||
? (graph.settings?.sensitive_action_safe_mode ?? false)
|
||||
: localSensitiveActionSafeMode;
|
||||
|
||||
const handleToggle = useCallback(async () => {
|
||||
const newSafeMode = !currentSafeMode;
|
||||
const isHITLStateUndetermined = isAgent
|
||||
? false
|
||||
: isLoading || !isLocalStateLoaded;
|
||||
|
||||
const handleHITLToggle = useCallback(async () => {
|
||||
const newSafeMode = !currentHITLSafeMode;
|
||||
|
||||
try {
|
||||
await updateGraphSettings({
|
||||
@@ -85,7 +101,7 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
|
||||
});
|
||||
|
||||
if (!isAgent) {
|
||||
setLocalSafeMode(newSafeMode);
|
||||
setLocalHITLSafeMode(newSafeMode);
|
||||
}
|
||||
|
||||
if (isAgent) {
|
||||
@@ -101,37 +117,62 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
|
||||
queryClient.invalidateQueries({ queryKey: ["v2", "executions"] });
|
||||
|
||||
toast({
|
||||
title: `Safe mode ${newSafeMode ? "enabled" : "disabled"}`,
|
||||
title: `HITL safe mode ${newSafeMode ? "enabled" : "disabled"}`,
|
||||
description: newSafeMode
|
||||
? "Human-in-the-loop blocks will require manual review"
|
||||
: "Human-in-the-loop blocks will proceed automatically",
|
||||
duration: 2000,
|
||||
});
|
||||
} catch (error) {
|
||||
const isNotFoundError =
|
||||
error instanceof Error &&
|
||||
(error.message.includes("404") || error.message.includes("not found"));
|
||||
|
||||
if (!isAgent && isNotFoundError) {
|
||||
toast({
|
||||
title: "Safe mode not available",
|
||||
description:
|
||||
"To configure safe mode, please save this graph to your library first.",
|
||||
variant: "destructive",
|
||||
});
|
||||
} else {
|
||||
toast({
|
||||
title: "Failed to update safe mode",
|
||||
description:
|
||||
error instanceof Error
|
||||
? error.message
|
||||
: "An unexpected error occurred.",
|
||||
variant: "destructive",
|
||||
});
|
||||
}
|
||||
handleToggleError(error, isAgent, toast);
|
||||
}
|
||||
}, [
|
||||
currentSafeMode,
|
||||
currentHITLSafeMode,
|
||||
graphId,
|
||||
isAgent,
|
||||
graph.id,
|
||||
updateGraphSettings,
|
||||
queryClient,
|
||||
toast,
|
||||
]);
|
||||
|
||||
const handleSensitiveActionToggle = useCallback(async () => {
|
||||
const newSafeMode = !currentSensitiveActionSafeMode;
|
||||
|
||||
try {
|
||||
await updateGraphSettings({
|
||||
graphId,
|
||||
data: { sensitive_action_safe_mode: newSafeMode },
|
||||
});
|
||||
|
||||
if (!isAgent) {
|
||||
setLocalSensitiveActionSafeMode(newSafeMode);
|
||||
}
|
||||
|
||||
if (isAgent) {
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: getGetV2GetLibraryAgentQueryOptions(graph.id.toString())
|
||||
.queryKey,
|
||||
});
|
||||
}
|
||||
|
||||
queryClient.invalidateQueries({
|
||||
queryKey: ["v1", "graphs", graphId, "executions"],
|
||||
});
|
||||
queryClient.invalidateQueries({ queryKey: ["v2", "executions"] });
|
||||
|
||||
toast({
|
||||
title: `Sensitive action safe mode ${newSafeMode ? "enabled" : "disabled"}`,
|
||||
description: newSafeMode
|
||||
? "Sensitive action blocks will require manual review"
|
||||
: "Sensitive action blocks will proceed automatically",
|
||||
duration: 2000,
|
||||
});
|
||||
} catch (error) {
|
||||
handleToggleError(error, isAgent, toast);
|
||||
}
|
||||
}, [
|
||||
currentSensitiveActionSafeMode,
|
||||
graphId,
|
||||
isAgent,
|
||||
graph.id,
|
||||
@@ -141,11 +182,53 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
|
||||
]);
|
||||
|
||||
return {
|
||||
currentSafeMode,
|
||||
// HITL safe mode
|
||||
currentHITLSafeMode,
|
||||
showHITLToggle,
|
||||
isHITLStateUndetermined,
|
||||
handleHITLToggle,
|
||||
|
||||
// Sensitive action safe mode
|
||||
currentSensitiveActionSafeMode,
|
||||
showSensitiveActionToggle,
|
||||
handleSensitiveActionToggle,
|
||||
|
||||
// General
|
||||
isPending,
|
||||
shouldShowToggle,
|
||||
isStateUndetermined,
|
||||
handleToggle,
|
||||
hasHITLBlocks: shouldShowToggle,
|
||||
|
||||
// Backwards compatibility
|
||||
currentSafeMode: currentHITLSafeMode,
|
||||
isStateUndetermined: isHITLStateUndetermined,
|
||||
handleToggle: handleHITLToggle,
|
||||
hasHITLBlocks: showHITLToggle,
|
||||
};
|
||||
}
|
||||
|
||||
function handleToggleError(
|
||||
error: unknown,
|
||||
isAgent: boolean,
|
||||
toast: ReturnType<typeof useToast>["toast"],
|
||||
) {
|
||||
const isNotFoundError =
|
||||
error instanceof Error &&
|
||||
(error.message.includes("404") || error.message.includes("not found"));
|
||||
|
||||
if (!isAgent && isNotFoundError) {
|
||||
toast({
|
||||
title: "Safe mode not available",
|
||||
description:
|
||||
"To configure safe mode, please save this graph to your library first.",
|
||||
variant: "destructive",
|
||||
});
|
||||
} else {
|
||||
toast({
|
||||
title: "Failed to update safe mode",
|
||||
description:
|
||||
error instanceof Error
|
||||
? error.message
|
||||
: "An unexpected error occurred.",
|
||||
variant: "destructive",
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||