Compare commits

...

4 Commits

Author SHA1 Message Date
Zamil Majdy
12690ad0a9 fix(backend): Use explicit {schema}.vector for pgvector types
The unqualified ::vector type fails in ORDER BY context with PgBouncer.
Use explicit schema qualification ({schema}.vector) which resolves to
platform.vector where the pgvector extension is installed.

Changes:
- Add {schema} placeholder to db.py for raw schema name
- Use {schema}.vector instead of unqualified ::vector in embeddings.py
- Use {{schema}}.vector instead of unqualified ::vector in hybrid_search.py

Tested on dev: explicit platform.vector works in all contexts.

Fixes: AUTOGPT-SERVER-76B
2026-01-21 10:19:08 -05:00
Zamil Majdy
b714c0c221 fix(backend): handle null values in GraphSettings validation (#11812)
## Summary
- Fixes AUTOGPT-SERVER-76H - Error parsing LibraryAgent from database
due to null values in GraphSettings fields
- When parsing LibraryAgent settings from the database, null values for
`human_in_the_loop_safe_mode` and `sensitive_action_safe_mode` were
causing Pydantic validation errors
- Adds `BeforeValidator` annotations to coerce null values to their
defaults (True and False respectively)

## Test plan
- [x] Verified with unit tests that GraphSettings can now handle
None/null values
- [x] Backend tests pass
- [x] Manually tested with all scenarios (None, empty dict, explicit
values)
2026-01-21 08:40:38 -05:00
Krzysztof Czerwinski
ebabc4287e feat(platform): New LLM Picker UI (#11726)
Add new LLM Picker for the new Builder.

### Changes 🏗️

- Enrich `LlmModelMeta` (in `llm.py`) with human readable model, creator
and provider names and price tier (note: this is temporary measure and
all LlmModelMeta will be removed completely once LLM Registry is ready)
- Add provider icons
- Add custom input field `LlmModelField` and its components&helpers

### Checklist 📋

#### For code changes:
- [x] I have clearly listed my changes in the PR description
- [x] I have made a test plan
- [x] I have tested my changes according to the test plan:
  - [x] LLM model picker works correctly in the new Builder
  - [x] Legacy LLM model picker works in the old Builder
2026-01-21 10:52:55 +00:00
Zamil Majdy
8b25e62959 feat(backend,frontend): add explicit safe mode toggles for HITL and sensitive actions (#11756)
## Summary

This PR introduces two explicit safe mode toggles for controlling agent
execution behavior, providing clearer and more granular control over
when agents should pause for human review.

### Key Changes

**New Safe Mode Settings:**
- **`human_in_the_loop_safe_mode`** (bool, default `true`) - Controls
whether human-in-the-loop (HITL) blocks pause for review
- **`sensitive_action_safe_mode`** (bool, default `false`) - Controls
whether sensitive action blocks pause for review

**New Computed Properties on LibraryAgent:**
- `has_human_in_the_loop` - Indicates if agent contains HITL blocks
- `has_sensitive_action` - Indicates if agent contains sensitive action
blocks

**Block Changes:**
- Renamed `requires_human_review` to `is_sensitive_action` on blocks for
clarity
- Blocks marked as `is_sensitive_action=True` pause only when
`sensitive_action_safe_mode=True`
- HITL blocks pause when `human_in_the_loop_safe_mode=True`

**Frontend Changes:**
- Two separate toggles in Agent Settings based on block types present
- Toggle visibility based on `has_human_in_the_loop` and
`has_sensitive_action` computed properties
- Settings cog hidden if neither toggle applies
- Proper state management for both toggles with defaults

**AI-Generated Agent Behavior:**
- AI-generated agents set `sensitive_action_safe_mode=True` by default
- This ensures sensitive actions are reviewed for AI-generated content

## Changes

**Backend:**
- `backend/data/graph.py` - Updated `GraphSettings` with two boolean
toggles (non-optional with defaults), added `has_sensitive_action`
computed property
- `backend/data/block.py` - Renamed `requires_human_review` to
`is_sensitive_action`, updated review logic
- `backend/data/execution.py` - Updated `ExecutionContext` with both
safe mode fields
- `backend/api/features/library/model.py` - Added
`has_human_in_the_loop` and `has_sensitive_action` to `LibraryAgent`
- `backend/api/features/library/db.py` - Updated to use
`sensitive_action_safe_mode` parameter
- `backend/executor/utils.py` - Simplified execution context creation

**Frontend:**
- `useAgentSafeMode.ts` - Rewritten to support two independent toggles
- `AgentSettingsModal.tsx` - Shows two separate toggles
- `SelectedSettingsView.tsx` - Shows two separate toggles
- Regenerated API types with new schema

## Test Plan

- [x] All backend tests pass (Python 3.11, 3.12, 3.13)
- [x] All frontend tests pass
- [x] Backend format and lint pass
- [x] Frontend format and lint pass
- [x] Pre-commit hooks pass

---------

Co-authored-by: Nicholas Tindle <nicholas.tindle@agpt.co>
2026-01-21 00:56:02 +00:00
52 changed files with 1464 additions and 370 deletions

View File

@@ -218,6 +218,7 @@ async def save_agent_to_library(
library_agents = await library_db.create_library_agent(
graph=created_graph,
user_id=user_id,
sensitive_action_safe_mode=True,
create_library_agents_for_sub_graphs=False,
)

View File

@@ -401,27 +401,11 @@ async def add_generated_agent_image(
)
def _initialize_graph_settings(graph: graph_db.GraphModel) -> GraphSettings:
"""
Initialize GraphSettings based on graph content.
Args:
graph: The graph to analyze
Returns:
GraphSettings with appropriate human_in_the_loop_safe_mode value
"""
if graph.has_human_in_the_loop:
# Graph has HITL blocks - set safe mode to True by default
return GraphSettings(human_in_the_loop_safe_mode=True)
else:
# Graph has no HITL blocks - keep None
return GraphSettings(human_in_the_loop_safe_mode=None)
async def create_library_agent(
graph: graph_db.GraphModel,
user_id: str,
hitl_safe_mode: bool = True,
sensitive_action_safe_mode: bool = False,
create_library_agents_for_sub_graphs: bool = True,
) -> list[library_model.LibraryAgent]:
"""
@@ -430,6 +414,8 @@ async def create_library_agent(
Args:
agent: The agent/Graph to add to the library.
user_id: The user to whom the agent will be added.
hitl_safe_mode: Whether HITL blocks require manual review (default True).
sensitive_action_safe_mode: Whether sensitive action blocks require review.
create_library_agents_for_sub_graphs: If True, creates LibraryAgent records for sub-graphs as well.
Returns:
@@ -465,7 +451,11 @@ async def create_library_agent(
}
},
settings=SafeJson(
_initialize_graph_settings(graph_entry).model_dump()
GraphSettings.from_graph(
graph_entry,
hitl_safe_mode=hitl_safe_mode,
sensitive_action_safe_mode=sensitive_action_safe_mode,
).model_dump()
),
),
include=library_agent_include(
@@ -627,33 +617,6 @@ async def update_library_agent(
raise DatabaseError("Failed to update library agent") from e
async def update_library_agent_settings(
user_id: str,
agent_id: str,
settings: GraphSettings,
) -> library_model.LibraryAgent:
"""
Updates the settings for a specific LibraryAgent.
Args:
user_id: The owner of the LibraryAgent.
agent_id: The ID of the LibraryAgent to update.
settings: New GraphSettings to apply.
Returns:
The updated LibraryAgent.
Raises:
NotFoundError: If the specified LibraryAgent does not exist.
DatabaseError: If there's an error in the update operation.
"""
return await update_library_agent(
library_agent_id=agent_id,
user_id=user_id,
settings=settings,
)
async def delete_library_agent(
library_agent_id: str, user_id: str, soft_delete: bool = True
) -> None:
@@ -838,7 +801,7 @@ async def add_store_agent_to_library(
"isCreatedByUser": False,
"useGraphIsActiveVersion": False,
"settings": SafeJson(
_initialize_graph_settings(graph_model).model_dump()
GraphSettings.from_graph(graph_model).model_dump()
),
},
include=library_agent_include(
@@ -1228,8 +1191,15 @@ async def fork_library_agent(
)
new_graph = await on_graph_activate(new_graph, user_id=user_id)
# Create a library agent for the new graph
return (await create_library_agent(new_graph, user_id))[0]
# Create a library agent for the new graph, preserving safe mode settings
return (
await create_library_agent(
new_graph,
user_id,
hitl_safe_mode=original_agent.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=original_agent.settings.sensitive_action_safe_mode,
)
)[0]
except prisma.errors.PrismaError as e:
logger.error(f"Database error cloning library agent: {e}")
raise DatabaseError("Failed to fork library agent") from e

View File

@@ -73,6 +73,12 @@ class LibraryAgent(pydantic.BaseModel):
has_external_trigger: bool = pydantic.Field(
description="Whether the agent has an external trigger (e.g. webhook) node"
)
has_human_in_the_loop: bool = pydantic.Field(
description="Whether the agent has human-in-the-loop blocks"
)
has_sensitive_action: bool = pydantic.Field(
description="Whether the agent has sensitive action blocks"
)
trigger_setup_info: Optional[GraphTriggerInfo] = None
# Indicates whether there's a new output (based on recent runs)
@@ -180,6 +186,8 @@ class LibraryAgent(pydantic.BaseModel):
graph.credentials_input_schema if sub_graphs is not None else None
),
has_external_trigger=graph.has_external_trigger,
has_human_in_the_loop=graph.has_human_in_the_loop,
has_sensitive_action=graph.has_sensitive_action,
trigger_setup_info=graph.trigger_setup_info,
new_output=new_output,
can_access_graph=can_access_graph,

View File

@@ -52,6 +52,8 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -75,6 +77,8 @@ async def test_get_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -150,6 +154,8 @@ async def test_get_favorite_library_agents_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
recommended_schedule_cron=None,
new_output=False,
@@ -218,6 +224,8 @@ def test_add_agent_to_library_success(
output_schema={"type": "object", "properties": {}},
credentials_input_schema={"type": "object", "properties": {}},
has_external_trigger=False,
has_human_in_the_loop=False,
has_sensitive_action=False,
status=library_model.LibraryAgentStatus.COMPLETED,
new_output=False,
can_access_graph=True,

View File

@@ -154,16 +154,15 @@ async def store_content_embedding(
# Upsert the embedding
# WHERE clause in DO UPDATE prevents PostgreSQL 15 bug with NULLS NOT DISTINCT
# Use {pgvector_schema}.vector for explicit pgvector type qualification
await execute_raw_with_schema(
"""
INSERT INTO {schema_prefix}"UnifiedContentEmbedding" (
"id", "contentType", "contentId", "userId", "embedding", "searchableText", "metadata", "createdAt", "updatedAt"
)
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::{pgvector_schema}.vector, $5, $6::jsonb, NOW(), NOW())
VALUES (gen_random_uuid()::text, $1::{schema_prefix}"ContentType", $2, $3, $4::{schema}.vector, $5, $6::jsonb, NOW(), NOW())
ON CONFLICT ("contentType", "contentId", "userId")
DO UPDATE SET
"embedding" = $4::{pgvector_schema}.vector,
"embedding" = $4::{schema}.vector,
"searchableText" = $5,
"metadata" = $6::jsonb,
"updatedAt" = NOW()
@@ -879,8 +878,6 @@ async def semantic_search(
min_similarity_idx = len(params) + 1
params.append(min_similarity)
# Use regular string (not f-string) for template to preserve {schema_prefix} and {schema} placeholders
# Use OPERATOR({pgvector_schema}.<=>) for explicit operator schema qualification
sql = (
"""
SELECT
@@ -888,9 +885,9 @@ async def semantic_search(
"contentType" as content_type,
"searchableText" as searchable_text,
metadata,
1 - (embedding OPERATOR({pgvector_schema}.<=>) '"""
1 - (embedding <=> '"""
+ embedding_str
+ """'::{pgvector_schema}.vector) as similarity
+ """'::{schema}.vector) as similarity
FROM {schema_prefix}"UnifiedContentEmbedding"
WHERE "contentType" IN ("""
+ content_type_placeholders
@@ -898,9 +895,9 @@ async def semantic_search(
"""
+ user_filter
+ """
AND 1 - (embedding OPERATOR({pgvector_schema}.<=>) '"""
AND 1 - (embedding <=> '"""
+ embedding_str
+ """'::{pgvector_schema}.vector) >= $"""
+ """'::{schema}.vector) >= $"""
+ str(min_similarity_idx)
+ """
ORDER BY similarity DESC

View File

@@ -295,7 +295,7 @@ async def unified_hybrid_search(
FROM {{schema_prefix}}"UnifiedContentEmbedding" uce
WHERE uce."contentType" = ANY({content_types_param}::{{schema_prefix}}"ContentType"[])
{user_filter}
ORDER BY uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector
ORDER BY uce.embedding <=> {embedding_param}::{{schema}}.vector
LIMIT 200
)
),
@@ -307,7 +307,7 @@ async def unified_hybrid_search(
uce.metadata,
uce."updatedAt" as updated_at,
-- Semantic score: cosine similarity (1 - distance)
COALESCE(1 - (uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector), 0) as semantic_score,
COALESCE(1 - (uce.embedding <=> {embedding_param}::{{schema}}.vector), 0) as semantic_score,
-- Lexical score: ts_rank_cd
COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match from metadata
@@ -583,7 +583,7 @@ async def hybrid_search(
WHERE uce."contentType" = 'STORE_AGENT'::{{schema_prefix}}"ContentType"
AND uce."userId" IS NULL
AND {where_clause}
ORDER BY uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector
ORDER BY uce.embedding <=> {embedding_param}::{{schema}}.vector
LIMIT 200
) uce
),
@@ -605,7 +605,7 @@ async def hybrid_search(
-- Searchable text for BM25 reranking
COALESCE(sa.agent_name, '') || ' ' || COALESCE(sa.sub_heading, '') || ' ' || COALESCE(sa.description, '') as searchable_text,
-- Semantic score
COALESCE(1 - (uce.embedding OPERATOR({{pgvector_schema}}.<=>) {embedding_param}::{{pgvector_schema}}.vector), 0) as semantic_score,
COALESCE(1 - (uce.embedding <=> {embedding_param}::{{schema}}.vector), 0) as semantic_score,
-- Lexical score (raw, will normalize)
COALESCE(ts_rank_cd(uce.search, plainto_tsquery('english', {query_param})), 0) as lexical_raw,
-- Category match

View File

@@ -761,10 +761,8 @@ async def create_new_graph(
graph.reassign_ids(user_id=user_id, reassign_graph_id=True)
graph.validate_graph(for_run=False)
# The return value of the create graph & library function is intentionally not used here,
# as the graph already valid and no sub-graphs are returned back.
await graph_db.create_graph(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id=user_id)
await library_db.create_library_agent(graph, user_id)
activated_graph = await on_graph_activate(graph, user_id=user_id)
if create_graph.source == "builder":
@@ -888,21 +886,19 @@ async def set_graph_active_version(
async def _update_library_agent_version_and_settings(
user_id: str, agent_graph: graph_db.GraphModel
) -> library_model.LibraryAgent:
# Keep the library agent up to date with the new active version
library = await library_db.update_agent_version_in_library(
user_id, agent_graph.id, agent_graph.version
)
# If the graph has HITL node, initialize the setting if it's not already set.
if (
agent_graph.has_human_in_the_loop
and library.settings.human_in_the_loop_safe_mode is None
):
await library_db.update_library_agent_settings(
updated_settings = GraphSettings.from_graph(
graph=agent_graph,
hitl_safe_mode=library.settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=library.settings.sensitive_action_safe_mode,
)
if updated_settings != library.settings:
library = await library_db.update_library_agent(
library_agent_id=library.id,
user_id=user_id,
agent_id=library.id,
settings=library.settings.model_copy(
update={"human_in_the_loop_safe_mode": True}
),
settings=updated_settings,
)
return library
@@ -919,21 +915,18 @@ async def update_graph_settings(
user_id: Annotated[str, Security(get_user_id)],
) -> GraphSettings:
"""Update graph settings for the user's library agent."""
# Get the library agent for this graph
library_agent = await library_db.get_library_agent_by_graph_id(
graph_id=graph_id, user_id=user_id
)
if not library_agent:
raise HTTPException(404, f"Graph #{graph_id} not found in user's library")
# Update the library agent settings
updated_agent = await library_db.update_library_agent_settings(
updated_agent = await library_db.update_library_agent(
library_agent_id=library_agent.id,
user_id=user_id,
agent_id=library_agent.id,
settings=settings,
)
# Return the updated settings
return GraphSettings.model_validate(updated_agent.settings)

View File

@@ -84,7 +84,7 @@ class HITLReviewHelper:
Exception: If review creation or status update fails
"""
# Skip review if safe mode is disabled - return auto-approved result
if not execution_context.safe_mode:
if not execution_context.human_in_the_loop_safe_mode:
logger.info(
f"Block {block_name} skipping review for node {node_exec_id} - safe mode disabled"
)

View File

@@ -104,7 +104,7 @@ class HumanInTheLoopBlock(Block):
execution_context: ExecutionContext,
**_kwargs,
) -> BlockOutput:
if not execution_context.safe_mode:
if not execution_context.human_in_the_loop_safe_mode:
logger.info(
f"HITL block skipping review for node {node_exec_id} - safe mode disabled"
)

View File

@@ -79,6 +79,10 @@ class ModelMetadata(NamedTuple):
provider: str
context_window: int
max_output_tokens: int | None
display_name: str
provider_name: str
creator_name: str
price_tier: Literal[1, 2, 3]
class LlmModelMeta(EnumMeta):
@@ -171,6 +175,26 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
V0_1_5_LG = "v0-1.5-lg"
V0_1_0_MD = "v0-1.0-md"
@classmethod
def __get_pydantic_json_schema__(cls, schema, handler):
json_schema = handler(schema)
llm_model_metadata = {}
for model in cls:
model_name = model.value
metadata = model.metadata
llm_model_metadata[model_name] = {
"creator": metadata.creator_name,
"creator_name": metadata.creator_name,
"title": metadata.display_name,
"provider": metadata.provider,
"provider_name": metadata.provider_name,
"name": model_name,
"price_tier": metadata.price_tier,
}
json_schema["llm_model"] = True
json_schema["llm_model_metadata"] = llm_model_metadata
return json_schema
@property
def metadata(self) -> ModelMetadata:
return MODEL_METADATA[self]
@@ -190,119 +214,291 @@ class LlmModel(str, Enum, metaclass=LlmModelMeta):
MODEL_METADATA = {
# https://platform.openai.com/docs/models
LlmModel.O3: ModelMetadata("openai", 200000, 100000),
LlmModel.O3_MINI: ModelMetadata("openai", 200000, 100000), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata("openai", 200000, 100000), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata("openai", 128000, 65536), # o1-mini-2024-09-12
LlmModel.O3: ModelMetadata("openai", 200000, 100000, "O3", "OpenAI", "OpenAI", 2),
LlmModel.O3_MINI: ModelMetadata(
"openai", 200000, 100000, "O3 Mini", "OpenAI", "OpenAI", 1
), # o3-mini-2025-01-31
LlmModel.O1: ModelMetadata(
"openai", 200000, 100000, "O1", "OpenAI", "OpenAI", 3
), # o1-2024-12-17
LlmModel.O1_MINI: ModelMetadata(
"openai", 128000, 65536, "O1 Mini", "OpenAI", "OpenAI", 2
), # o1-mini-2024-09-12
# GPT-5 models
LlmModel.GPT5_2: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_1: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_MINI: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_NANO: ModelMetadata("openai", 400000, 128000),
LlmModel.GPT5_CHAT: ModelMetadata("openai", 400000, 16384),
LlmModel.GPT41: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT41_MINI: ModelMetadata("openai", 1047576, 32768),
LlmModel.GPT5_2: ModelMetadata(
"openai", 400000, 128000, "GPT-5.2", "OpenAI", "OpenAI", 3
),
LlmModel.GPT5_1: ModelMetadata(
"openai", 400000, 128000, "GPT-5.1", "OpenAI", "OpenAI", 2
),
LlmModel.GPT5: ModelMetadata(
"openai", 400000, 128000, "GPT-5", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_MINI: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_NANO: ModelMetadata(
"openai", 400000, 128000, "GPT-5 Nano", "OpenAI", "OpenAI", 1
),
LlmModel.GPT5_CHAT: ModelMetadata(
"openai", 400000, 16384, "GPT-5 Chat Latest", "OpenAI", "OpenAI", 2
),
LlmModel.GPT41: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1", "OpenAI", "OpenAI", 1
),
LlmModel.GPT41_MINI: ModelMetadata(
"openai", 1047576, 32768, "GPT-4.1 Mini", "OpenAI", "OpenAI", 1
),
LlmModel.GPT4O_MINI: ModelMetadata(
"openai", 128000, 16384
"openai", 128000, 16384, "GPT-4o Mini", "OpenAI", "OpenAI", 1
), # gpt-4o-mini-2024-07-18
LlmModel.GPT4O: ModelMetadata("openai", 128000, 16384), # gpt-4o-2024-08-06
LlmModel.GPT4O: ModelMetadata(
"openai", 128000, 16384, "GPT-4o", "OpenAI", "OpenAI", 2
), # gpt-4o-2024-08-06
LlmModel.GPT4_TURBO: ModelMetadata(
"openai", 128000, 4096
"openai", 128000, 4096, "GPT-4 Turbo", "OpenAI", "OpenAI", 3
), # gpt-4-turbo-2024-04-09
LlmModel.GPT3_5_TURBO: ModelMetadata("openai", 16385, 4096), # gpt-3.5-turbo-0125
LlmModel.GPT3_5_TURBO: ModelMetadata(
"openai", 16385, 4096, "GPT-3.5 Turbo", "OpenAI", "OpenAI", 1
), # gpt-3.5-turbo-0125
# https://docs.anthropic.com/en/docs/about-claude/models
LlmModel.CLAUDE_4_1_OPUS: ModelMetadata(
"anthropic", 200000, 32000
"anthropic", 200000, 32000, "Claude Opus 4.1", "Anthropic", "Anthropic", 3
), # claude-opus-4-1-20250805
LlmModel.CLAUDE_4_OPUS: ModelMetadata(
"anthropic", 200000, 32000
"anthropic", 200000, 32000, "Claude Opus 4", "Anthropic", "Anthropic", 3
), # claude-4-opus-20250514
LlmModel.CLAUDE_4_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Sonnet 4", "Anthropic", "Anthropic", 2
), # claude-4-sonnet-20250514
LlmModel.CLAUDE_4_5_OPUS: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Opus 4.5", "Anthropic", "Anthropic", 3
), # claude-opus-4-5-20251101
LlmModel.CLAUDE_4_5_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Sonnet 4.5", "Anthropic", "Anthropic", 3
), # claude-sonnet-4-5-20250929
LlmModel.CLAUDE_4_5_HAIKU: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude Haiku 4.5", "Anthropic", "Anthropic", 2
), # claude-haiku-4-5-20251001
LlmModel.CLAUDE_3_7_SONNET: ModelMetadata(
"anthropic", 200000, 64000
"anthropic", 200000, 64000, "Claude 3.7 Sonnet", "Anthropic", "Anthropic", 2
), # claude-3-7-sonnet-20250219
LlmModel.CLAUDE_3_HAIKU: ModelMetadata(
"anthropic", 200000, 4096
"anthropic", 200000, 4096, "Claude 3 Haiku", "Anthropic", "Anthropic", 1
), # claude-3-haiku-20240307
# https://docs.aimlapi.com/api-overview/model-database/text-models
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata("aiml_api", 32000, 8000),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata("aiml_api", 128000, 40000),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata("aiml_api", 128000, None),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata("aiml_api", 131000, 2000),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata("aiml_api", 128000, None),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata("groq", 128000, 32768),
LlmModel.LLAMA3_1_8B: ModelMetadata("groq", 128000, 8192),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata("ollama", 8192, None),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata("ollama", 32768, None),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata("open_router", 1050000, 8192),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata("open_router", 1048576, 65535),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata("open_router", 1048576, 8192),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535
LlmModel.AIML_API_QWEN2_5_72B: ModelMetadata(
"aiml_api", 32000, 8000, "Qwen 2.5 72B Instruct Turbo", "AI/ML", "Qwen", 1
),
LlmModel.AIML_API_LLAMA3_1_70B: ModelMetadata(
"aiml_api",
128000,
40000,
"Llama 3.1 Nemotron 70B Instruct",
"AI/ML",
"Nvidia",
1,
),
LlmModel.AIML_API_LLAMA3_3_70B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.3 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_META_LLAMA_3_1_70B: ModelMetadata(
"aiml_api", 131000, 2000, "Llama 3.1 70B Instruct Turbo", "AI/ML", "Meta", 1
),
LlmModel.AIML_API_LLAMA_3_2_3B: ModelMetadata(
"aiml_api", 128000, None, "Llama 3.2 3B Instruct Turbo", "AI/ML", "Meta", 1
),
# https://console.groq.com/docs/models
LlmModel.LLAMA3_3_70B: ModelMetadata(
"groq", 128000, 32768, "Llama 3.3 70B Versatile", "Groq", "Meta", 1
),
LlmModel.LLAMA3_1_8B: ModelMetadata(
"groq", 128000, 8192, "Llama 3.1 8B Instant", "Groq", "Meta", 1
),
# https://ollama.com/library
LlmModel.OLLAMA_LLAMA3_3: ModelMetadata(
"ollama", 8192, None, "Llama 3.3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_2: ModelMetadata(
"ollama", 8192, None, "Llama 3.2", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_8B: ModelMetadata(
"ollama", 8192, None, "Llama 3", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_LLAMA3_405B: ModelMetadata(
"ollama", 8192, None, "Llama 3.1 405B", "Ollama", "Meta", 1
),
LlmModel.OLLAMA_DOLPHIN: ModelMetadata(
"ollama", 32768, None, "Dolphin Mistral Latest", "Ollama", "Mistral AI", 1
),
# https://openrouter.ai/models
LlmModel.GEMINI_2_5_PRO: ModelMetadata(
"open_router",
1050000,
8192,
"Gemini 2.5 Pro Preview 03.25",
"OpenRouter",
"Google",
2,
),
LlmModel.GEMINI_3_PRO_PREVIEW: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 3 Pro Preview", "OpenRouter", "Google", 2
),
LlmModel.GEMINI_2_5_FLASH: ModelMetadata(
"open_router", 1048576, 65535, "Gemini 2.5 Flash", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_0_FLASH: ModelMetadata(
"open_router", 1048576, 8192, "Gemini 2.0 Flash 001", "OpenRouter", "Google", 1
),
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: ModelMetadata(
"open_router",
1048576,
65535,
"Gemini 2.5 Flash Lite Preview 06.17",
"OpenRouter",
"Google",
1,
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata(
"open_router",
1048576,
8192,
"Gemini 2.0 Flash Lite 001",
"OpenRouter",
"Google",
1,
),
LlmModel.MISTRAL_NEMO: ModelMetadata(
"open_router", 128000, 4096, "Mistral Nemo", "OpenRouter", "Mistral AI", 1
),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R 08.2024", "OpenRouter", "Cohere", 1
),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata(
"open_router", 128000, 4096, "Command R Plus 08.2024", "OpenRouter", "Cohere", 2
),
LlmModel.DEEPSEEK_CHAT: ModelMetadata(
"open_router", 64000, 2048, "DeepSeek Chat", "OpenRouter", "DeepSeek", 1
),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata(
"open_router", 163840, 163840, "DeepSeek R1 0528", "OpenRouter", "DeepSeek", 1
),
LlmModel.PERPLEXITY_SONAR: ModelMetadata(
"open_router", 127000, 8000, "Sonar", "OpenRouter", "Perplexity", 1
),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata(
"open_router", 200000, 8000, "Sonar Pro", "OpenRouter", "Perplexity", 2
),
LlmModel.GEMINI_2_0_FLASH_LITE: ModelMetadata("open_router", 1048576, 8192),
LlmModel.MISTRAL_NEMO: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: ModelMetadata("open_router", 128000, 4096),
LlmModel.DEEPSEEK_CHAT: ModelMetadata("open_router", 64000, 2048),
LlmModel.DEEPSEEK_R1_0528: ModelMetadata("open_router", 163840, 163840),
LlmModel.PERPLEXITY_SONAR: ModelMetadata("open_router", 127000, 8000),
LlmModel.PERPLEXITY_SONAR_PRO: ModelMetadata("open_router", 200000, 8000),
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: ModelMetadata(
"open_router",
128000,
16000,
"Sonar Deep Research",
"OpenRouter",
"Perplexity",
3,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_405B: ModelMetadata(
"open_router", 131000, 4096
"open_router",
131000,
4096,
"Hermes 3 Llama 3.1 405B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.NOUSRESEARCH_HERMES_3_LLAMA_3_1_70B: ModelMetadata(
"open_router", 12288, 12288
"open_router",
12288,
12288,
"Hermes 3 Llama 3.1 70B",
"OpenRouter",
"Nous Research",
1,
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata(
"open_router", 131072, 131072, "GPT-OSS 120B", "OpenRouter", "OpenAI", 1
),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata(
"open_router", 131072, 32768, "GPT-OSS 20B", "OpenRouter", "OpenAI", 1
),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Lite V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata(
"open_router", 128000, 5120, "Nova Micro V1", "OpenRouter", "Amazon", 1
),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata(
"open_router", 300000, 5120, "Nova Pro V1", "OpenRouter", "Amazon", 1
),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata(
"open_router", 65536, 4096, "WizardLM 2 8x22B", "OpenRouter", "Microsoft", 1
),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata(
"open_router", 4096, 4096, "MythoMax L2 13B", "OpenRouter", "Gryphe", 1
),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata(
"open_router", 131072, 131072, "Llama 4 Scout", "OpenRouter", "Meta", 1
),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata(
"open_router", 1048576, 1000000, "Llama 4 Maverick", "OpenRouter", "Meta", 1
),
LlmModel.GROK_4: ModelMetadata(
"open_router", 256000, 256000, "Grok 4", "OpenRouter", "xAI", 3
),
LlmModel.GROK_4_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_4_1_FAST: ModelMetadata(
"open_router", 2000000, 30000, "Grok 4.1 Fast", "OpenRouter", "xAI", 1
),
LlmModel.GROK_CODE_FAST_1: ModelMetadata(
"open_router", 256000, 10000, "Grok Code Fast 1", "OpenRouter", "xAI", 1
),
LlmModel.KIMI_K2: ModelMetadata(
"open_router", 131000, 131000, "Kimi K2", "OpenRouter", "Moonshot AI", 1
),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata(
"open_router",
262144,
262144,
"Qwen 3 235B A22B Thinking 2507",
"OpenRouter",
"Qwen",
1,
),
LlmModel.QWEN3_CODER: ModelMetadata(
"open_router", 262144, 262144, "Qwen 3 Coder", "OpenRouter", "Qwen", 3
),
LlmModel.OPENAI_GPT_OSS_120B: ModelMetadata("open_router", 131072, 131072),
LlmModel.OPENAI_GPT_OSS_20B: ModelMetadata("open_router", 131072, 32768),
LlmModel.AMAZON_NOVA_LITE_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.AMAZON_NOVA_MICRO_V1: ModelMetadata("open_router", 128000, 5120),
LlmModel.AMAZON_NOVA_PRO_V1: ModelMetadata("open_router", 300000, 5120),
LlmModel.MICROSOFT_WIZARDLM_2_8X22B: ModelMetadata("open_router", 65536, 4096),
LlmModel.GRYPHE_MYTHOMAX_L2_13B: ModelMetadata("open_router", 4096, 4096),
LlmModel.META_LLAMA_4_SCOUT: ModelMetadata("open_router", 131072, 131072),
LlmModel.META_LLAMA_4_MAVERICK: ModelMetadata("open_router", 1048576, 1000000),
LlmModel.GROK_4: ModelMetadata("open_router", 256000, 256000),
LlmModel.GROK_4_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_4_1_FAST: ModelMetadata("open_router", 2000000, 30000),
LlmModel.GROK_CODE_FAST_1: ModelMetadata("open_router", 256000, 10000),
LlmModel.KIMI_K2: ModelMetadata("open_router", 131000, 131000),
LlmModel.QWEN3_235B_A22B_THINKING: ModelMetadata("open_router", 262144, 262144),
LlmModel.QWEN3_CODER: ModelMetadata("open_router", 262144, 262144),
# Llama API models
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata("llama_api", 128000, 4028),
LlmModel.LLAMA_API_LLAMA_4_SCOUT: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Scout 17B 16E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA4_MAVERICK: ModelMetadata(
"llama_api",
128000,
4028,
"Llama 4 Maverick 17B 128E Instruct FP8",
"Llama API",
"Meta",
1,
),
LlmModel.LLAMA_API_LLAMA3_3_8B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 8B Instruct", "Llama API", "Meta", 1
),
LlmModel.LLAMA_API_LLAMA3_3_70B: ModelMetadata(
"llama_api", 128000, 4028, "Llama 3.3 70B Instruct", "Llama API", "Meta", 1
),
# v0 by Vercel models
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000),
LlmModel.V0_1_5_MD: ModelMetadata("v0", 128000, 64000, "v0 1.5 MD", "V0", "V0", 1),
LlmModel.V0_1_5_LG: ModelMetadata("v0", 512000, 64000, "v0 1.5 LG", "V0", "V0", 1),
LlmModel.V0_1_0_MD: ModelMetadata("v0", 128000, 64000, "v0 1.0 MD", "V0", "V0", 1),
}
DEFAULT_LLM_MODEL = LlmModel.GPT5_2

View File

@@ -242,7 +242,7 @@ async def test_smart_decision_maker_tracks_llm_stats():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -343,7 +343,7 @@ async def test_smart_decision_maker_parameter_validation():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -409,7 +409,7 @@ async def test_smart_decision_maker_parameter_validation():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -471,7 +471,7 @@ async def test_smart_decision_maker_parameter_validation():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -535,7 +535,7 @@ async def test_smart_decision_maker_parameter_validation():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -658,7 +658,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -730,7 +730,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -786,7 +786,7 @@ async def test_smart_decision_maker_raw_response_conversion():
outputs = {}
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests
@@ -905,7 +905,7 @@ async def test_smart_decision_maker_agent_mode():
# Create a mock execution context
mock_execution_context = ExecutionContext(
safe_mode=False,
human_in_the_loop_safe_mode=False,
)
# Create a mock execution processor for agent mode tests
@@ -1027,7 +1027,7 @@ async def test_smart_decision_maker_traditional_mode_default():
# Create execution context
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
# Create a mock execution processor for tests

View File

@@ -386,7 +386,7 @@ async def test_output_yielding_with_dynamic_fields():
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(human_in_the_loop_safe_mode=False)
mock_execution_processor = MagicMock()
async for output_name, output_value in block.run(
@@ -609,7 +609,9 @@ async def test_validation_errors_dont_pollute_conversation():
outputs = {}
from backend.data.execution import ExecutionContext
mock_execution_context = ExecutionContext(safe_mode=False)
mock_execution_context = ExecutionContext(
human_in_the_loop_safe_mode=False
)
# Create a proper mock execution processor for agent mode
from collections import defaultdict

View File

@@ -474,7 +474,7 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
self.block_type = block_type
self.webhook_config = webhook_config
self.execution_stats: NodeExecutionStats = NodeExecutionStats()
self.requires_human_review: bool = False
self.is_sensitive_action: bool = False
if self.webhook_config:
if isinstance(self.webhook_config, BlockWebhookConfig):
@@ -637,8 +637,9 @@ class Block(ABC, Generic[BlockSchemaInputType, BlockSchemaOutputType]):
- should_pause: True if execution should be paused for review
- input_data_to_use: The input data to use (may be modified by reviewer)
"""
# Skip review if not required or safe mode is disabled
if not self.requires_human_review or not execution_context.safe_mode:
if not (
self.is_sensitive_action and execution_context.sensitive_action_safe_mode
):
return False, input_data
from backend.blocks.helpers.review import HITLReviewHelper

View File

@@ -99,10 +99,15 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.OPENAI_GPT_OSS_20B: 1,
LlmModel.GEMINI_2_5_PRO: 4,
LlmModel.GEMINI_3_PRO_PREVIEW: 5,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.MISTRAL_NEMO: 1,
LlmModel.COHERE_COMMAND_R_08_2024: 1,
LlmModel.COHERE_COMMAND_R_PLUS_08_2024: 3,
LlmModel.DEEPSEEK_CHAT: 2,
LlmModel.DEEPSEEK_R1_0528: 1,
LlmModel.PERPLEXITY_SONAR: 1,
LlmModel.PERPLEXITY_SONAR_PRO: 5,
LlmModel.PERPLEXITY_SONAR_DEEP_RESEARCH: 10,
@@ -126,11 +131,6 @@ MODEL_COST: dict[LlmModel, int] = {
LlmModel.KIMI_K2: 1,
LlmModel.QWEN3_235B_A22B_THINKING: 1,
LlmModel.QWEN3_CODER: 9,
LlmModel.GEMINI_2_5_FLASH: 1,
LlmModel.GEMINI_2_0_FLASH: 1,
LlmModel.GEMINI_2_5_FLASH_LITE_PREVIEW: 1,
LlmModel.GEMINI_2_0_FLASH_LITE: 1,
LlmModel.DEEPSEEK_R1_0528: 1,
# v0 by Vercel models
LlmModel.V0_1_5_MD: 1,
LlmModel.V0_1_5_LG: 2,

View File

@@ -120,11 +120,10 @@ async def _raw_with_schema(
Supports placeholders:
- {schema_prefix}: Table/type prefix (e.g., "platform".)
- {schema}: Raw schema name for application tables (e.g., platform)
- {pgvector_schema}: Schema where pgvector is installed (defaults to "public")
- {schema}: Raw schema name (e.g., platform) for pgvector types
Args:
query_template: SQL query with {schema_prefix}, {schema}, and/or {pgvector_schema} placeholders
query_template: SQL query with {schema_prefix} and/or {schema} placeholders
*args: Query parameters
execute: If False, executes SELECT query. If True, executes INSERT/UPDATE/DELETE.
client: Optional Prisma client for transactions (only used when execute=True).
@@ -133,23 +132,16 @@ async def _raw_with_schema(
- list[dict] if execute=False (query results)
- int if execute=True (number of affected rows)
Example with vector type:
Example:
await execute_raw_with_schema(
'INSERT INTO {schema_prefix}"Embedding" (vec) VALUES ($1::{pgvector_schema}.vector)',
'INSERT INTO {schema_prefix}"Embedding" (vec) VALUES ($1::{schema}.vector)',
embedding_data
)
"""
schema = get_database_schema()
schema_prefix = f'"{schema}".' if schema != "public" else ""
# pgvector extension is typically installed in "public" schema
# On Supabase it may be in "extensions" but "public" is the common default
pgvector_schema = "public"
formatted_query = query_template.format(
schema_prefix=schema_prefix,
schema=schema,
pgvector_schema=pgvector_schema,
)
formatted_query = query_template.format(schema_prefix=schema_prefix, schema=schema)
import prisma as prisma_module

View File

@@ -81,7 +81,8 @@ class ExecutionContext(BaseModel):
This includes information needed by blocks, sub-graphs, and execution management.
"""
safe_mode: bool = True
human_in_the_loop_safe_mode: bool = True
sensitive_action_safe_mode: bool = False
user_timezone: str = "UTC"
root_execution_id: Optional[str] = None
parent_execution_id: Optional[str] = None

View File

@@ -3,7 +3,7 @@ import logging
import uuid
from collections import defaultdict
from datetime import datetime, timezone
from typing import TYPE_CHECKING, Any, Literal, Optional, cast
from typing import TYPE_CHECKING, Annotated, Any, Literal, Optional, cast
from prisma.enums import SubmissionStatus
from prisma.models import (
@@ -20,7 +20,7 @@ from prisma.types import (
AgentNodeLinkCreateInput,
StoreListingVersionWhereInput,
)
from pydantic import BaseModel, Field, create_model
from pydantic import BaseModel, BeforeValidator, Field, create_model
from pydantic.fields import computed_field
from backend.blocks.agent import AgentExecutorBlock
@@ -62,7 +62,29 @@ logger = logging.getLogger(__name__)
class GraphSettings(BaseModel):
human_in_the_loop_safe_mode: bool | None = None
# Use Annotated with BeforeValidator to coerce None to default values.
# This handles cases where the database has null values for these fields.
human_in_the_loop_safe_mode: Annotated[
bool, BeforeValidator(lambda v: v if v is not None else True)
] = True
sensitive_action_safe_mode: Annotated[
bool, BeforeValidator(lambda v: v if v is not None else False)
] = False
@classmethod
def from_graph(
cls,
graph: "GraphModel",
hitl_safe_mode: bool | None = None,
sensitive_action_safe_mode: bool = False,
) -> "GraphSettings":
# Default to True if not explicitly set
if hitl_safe_mode is None:
hitl_safe_mode = True
return cls(
human_in_the_loop_safe_mode=hitl_safe_mode,
sensitive_action_safe_mode=sensitive_action_safe_mode,
)
class Link(BaseDbModel):
@@ -244,10 +266,14 @@ class BaseGraph(BaseDbModel):
return any(
node.block_id
for node in self.nodes
if (
node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
or node.block.requires_human_review
)
if node.block.block_type == BlockType.HUMAN_IN_THE_LOOP
)
@computed_field
@property
def has_sensitive_action(self) -> bool:
return any(
node.block_id for node in self.nodes if node.block.is_sensitive_action
)
@property

View File

@@ -309,7 +309,7 @@ def ensure_embeddings_coverage():
# Process in batches until no more missing embeddings
while True:
result = db_client.backfill_missing_embeddings(batch_size=10)
result = db_client.backfill_missing_embeddings(batch_size=100)
total_processed += result["processed"]
total_success += result["success"]

View File

@@ -873,11 +873,8 @@ async def add_graph_execution(
settings = await gdb.get_graph_settings(user_id=user_id, graph_id=graph_id)
execution_context = ExecutionContext(
safe_mode=(
settings.human_in_the_loop_safe_mode
if settings.human_in_the_loop_safe_mode is not None
else True
),
human_in_the_loop_safe_mode=settings.human_in_the_loop_safe_mode,
sensitive_action_safe_mode=settings.sensitive_action_safe_mode,
user_timezone=(
user.timezone if user.timezone != USER_TIMEZONE_NOT_SET else "UTC"
),

View File

@@ -386,6 +386,7 @@ async def test_add_graph_execution_is_repeatable(mocker: MockerFixture):
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_settings.sensitive_action_safe_mode = False
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)
@@ -651,6 +652,7 @@ async def test_add_graph_execution_with_nodes_to_skip(mocker: MockerFixture):
mock_user.timezone = "UTC"
mock_settings = mocker.MagicMock()
mock_settings.human_in_the_loop_safe_mode = True
mock_settings.sensitive_action_safe_mode = False
mock_udb.get_user_by_id = mocker.AsyncMock(return_value=mock_user)
mock_gdb.get_graph_settings = mocker.AsyncMock(return_value=mock_settings)

View File

@@ -11,6 +11,7 @@
"forked_from_version": null,
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"id": "graph-123",
"input_schema": {
"properties": {},

View File

@@ -11,6 +11,7 @@
"forked_from_version": null,
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"id": "graph-123",
"input_schema": {
"properties": {},

View File

@@ -27,6 +27,8 @@
"properties": {}
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"can_access_graph": true,
@@ -34,7 +36,8 @@
"is_favorite": false,
"recommended_schedule_cron": null,
"settings": {
"human_in_the_loop_safe_mode": null
"human_in_the_loop_safe_mode": true,
"sensitive_action_safe_mode": false
},
"marketplace_listing": null
},
@@ -65,6 +68,8 @@
"properties": {}
},
"has_external_trigger": false,
"has_human_in_the_loop": false,
"has_sensitive_action": false,
"trigger_setup_info": null,
"new_output": false,
"can_access_graph": false,
@@ -72,7 +77,8 @@
"is_favorite": false,
"recommended_schedule_cron": null,
"settings": {
"human_in_the_loop_safe_mode": null
"human_in_the_loop_safe_mode": true,
"sensitive_action_safe_mode": false
},
"marketplace_listing": null
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 5.9 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 374 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 663 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.5 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.8 KiB

View File

@@ -18,69 +18,118 @@ interface Props {
fullWidth?: boolean;
}
interface SafeModeButtonProps {
isEnabled: boolean;
label: string;
tooltipEnabled: string;
tooltipDisabled: string;
onToggle: () => void;
isPending: boolean;
fullWidth?: boolean;
}
function SafeModeButton({
isEnabled,
label,
tooltipEnabled,
tooltipDisabled,
onToggle,
isPending,
fullWidth = false,
}: SafeModeButtonProps) {
return (
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<Button
variant={isEnabled ? "primary" : "outline"}
size="small"
onClick={onToggle}
disabled={isPending}
className={cn("justify-start", fullWidth ? "w-full" : "")}
>
{isEnabled ? (
<>
<ShieldCheckIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-200">
{label}: ON
</Text>
</>
) : (
<>
<ShieldIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-600">
{label}: OFF
</Text>
</>
)}
</Button>
</TooltipTrigger>
<TooltipContent>
<div className="text-center">
<div className="font-medium">
{label}: {isEnabled ? "ON" : "OFF"}
</div>
<div className="mt-1 text-xs text-muted-foreground">
{isEnabled ? tooltipEnabled : tooltipDisabled}
</div>
</div>
</TooltipContent>
</Tooltip>
);
}
export function FloatingSafeModeToggle({
graph,
className,
fullWidth = false,
}: Props) {
const {
currentSafeMode,
currentHITLSafeMode,
showHITLToggle,
isHITLStateUndetermined,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
isStateUndetermined,
handleToggle,
} = useAgentSafeMode(graph);
if (!shouldShowToggle || isStateUndetermined || isPending) {
if (!shouldShowToggle || isPending) {
return null;
}
const showHITL = showHITLToggle && !isHITLStateUndetermined;
const showSensitive = showSensitiveActionToggle;
if (!showHITL && !showSensitive) {
return null;
}
return (
<div className={cn("fixed z-50", className)}>
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<Button
variant={currentSafeMode! ? "primary" : "outline"}
key={graph.id}
size="small"
title={
currentSafeMode!
? "Safe Mode: ON. Human in the loop blocks require manual review"
: "Safe Mode: OFF. Human in the loop blocks proceed automatically"
}
onClick={handleToggle}
className={cn(fullWidth ? "w-full" : "")}
>
{currentSafeMode! ? (
<>
<ShieldCheckIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-200">
Safe Mode: ON
</Text>
</>
) : (
<>
<ShieldIcon weight="bold" size={16} />
<Text variant="body" className="text-zinc-600">
Safe Mode: OFF
</Text>
</>
)}
</Button>
</TooltipTrigger>
<TooltipContent>
<div className="text-center">
<div className="font-medium">
Safe Mode: {currentSafeMode! ? "ON" : "OFF"}
</div>
<div className="mt-1 text-xs text-muted-foreground">
{currentSafeMode!
? "Human in the loop blocks require manual review"
: "Human in the loop blocks proceed automatically"}
</div>
</div>
</TooltipContent>
</Tooltip>
<div className={cn("fixed z-50 flex flex-col gap-2", className)}>
{showHITL && (
<SafeModeButton
isEnabled={currentHITLSafeMode}
label="Human in the loop block approval"
tooltipEnabled="The agent will pause at human-in-the-loop blocks and wait for your approval"
tooltipDisabled="Human in the loop blocks will proceed automatically"
onToggle={handleHITLToggle}
isPending={isPending}
fullWidth={fullWidth}
/>
)}
{showSensitive && (
<SafeModeButton
isEnabled={currentSensitiveActionSafeMode}
label="Sensitive actions blocks approval"
tooltipEnabled="The agent will pause at sensitive action blocks and wait for your approval"
tooltipDisabled="Sensitive action blocks will proceed automatically"
onToggle={handleSensitiveActionToggle}
isPending={isPending}
fullWidth={fullWidth}
/>
)}
</div>
);
}

View File

@@ -31,10 +31,18 @@ export function AgentSettingsModal({
}
}
const { currentSafeMode, isPending, hasHITLBlocks, handleToggle } =
useAgentSafeMode(agent);
const {
currentHITLSafeMode,
showHITLToggle,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
} = useAgentSafeMode(agent);
if (!hasHITLBlocks) return null;
if (!shouldShowToggle) return null;
return (
<Dialog
@@ -57,23 +65,48 @@ export function AgentSettingsModal({
)}
<Dialog.Content>
<div className="space-y-6">
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">Require human approval</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause and wait for your review before
continuing
</Text>
{showHITLToggle && (
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Human-in-the-loop approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at human-in-the-loop blocks and wait
for your review before continuing
</Text>
</div>
<Switch
checked={currentHITLSafeMode || false}
onCheckedChange={handleHITLToggle}
disabled={isPending}
className="mt-1"
/>
</div>
<Switch
checked={currentSafeMode || false}
onCheckedChange={handleToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
{showSensitiveActionToggle && (
<div className="flex w-full flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Sensitive action approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at sensitive action blocks and wait for
your review before continuing
</Text>
</div>
<Switch
checked={currentSensitiveActionSafeMode}
onCheckedChange={handleSensitiveActionToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
</div>
</Dialog.Content>
</Dialog>

View File

@@ -5,48 +5,112 @@ import { Graph } from "@/lib/autogpt-server-api/types";
import { cn } from "@/lib/utils";
import { ShieldCheckIcon, ShieldIcon } from "@phosphor-icons/react";
import { useAgentSafeMode } from "@/hooks/useAgentSafeMode";
import {
Tooltip,
TooltipContent,
TooltipTrigger,
} from "@/components/atoms/Tooltip/BaseTooltip";
interface Props {
graph: GraphModel | LibraryAgent | Graph;
className?: string;
fullWidth?: boolean;
}
export function SafeModeToggle({ graph }: Props) {
interface SafeModeIconButtonProps {
isEnabled: boolean;
label: string;
tooltipEnabled: string;
tooltipDisabled: string;
onToggle: () => void;
isPending: boolean;
}
function SafeModeIconButton({
isEnabled,
label,
tooltipEnabled,
tooltipDisabled,
onToggle,
isPending,
}: SafeModeIconButtonProps) {
return (
<Tooltip delayDuration={100}>
<TooltipTrigger asChild>
<Button
variant="icon"
size="icon"
aria-label={`${label}: ${isEnabled ? "ON" : "OFF"}. ${isEnabled ? tooltipEnabled : tooltipDisabled}`}
onClick={onToggle}
disabled={isPending}
className={cn(isPending ? "opacity-0" : "opacity-100")}
>
{isEnabled ? (
<ShieldCheckIcon weight="bold" size={16} />
) : (
<ShieldIcon weight="bold" size={16} />
)}
</Button>
</TooltipTrigger>
<TooltipContent>
<div className="text-center">
<div className="font-medium">
{label}: {isEnabled ? "ON" : "OFF"}
</div>
<div className="mt-1 text-xs text-muted-foreground">
{isEnabled ? tooltipEnabled : tooltipDisabled}
</div>
</div>
</TooltipContent>
</Tooltip>
);
}
export function SafeModeToggle({ graph, className }: Props) {
const {
currentSafeMode,
currentHITLSafeMode,
showHITLToggle,
isHITLStateUndetermined,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
isStateUndetermined,
handleToggle,
} = useAgentSafeMode(graph);
if (!shouldShowToggle || isStateUndetermined) {
if (!shouldShowToggle || isHITLStateUndetermined) {
return null;
}
const showHITL = showHITLToggle && !isHITLStateUndetermined;
const showSensitive = showSensitiveActionToggle;
if (!showHITL && !showSensitive) {
return null;
}
return (
<Button
variant="icon"
key={graph.id}
size="icon"
aria-label={
currentSafeMode!
? "Safe Mode: ON. Human in the loop blocks require manual review"
: "Safe Mode: OFF. Human in the loop blocks proceed automatically"
}
onClick={handleToggle}
className={cn(isPending ? "opacity-0" : "opacity-100")}
>
{currentSafeMode! ? (
<>
<ShieldCheckIcon weight="bold" size={16} />
</>
) : (
<>
<ShieldIcon weight="bold" size={16} />
</>
<div className={cn("flex gap-1", className)}>
{showHITL && (
<SafeModeIconButton
isEnabled={currentHITLSafeMode}
label="Human-in-the-loop"
tooltipEnabled="The agent will pause at human-in-the-loop blocks and wait for your approval"
tooltipDisabled="Human-in-the-loop blocks will proceed automatically"
onToggle={handleHITLToggle}
isPending={isPending}
/>
)}
</Button>
{showSensitive && (
<SafeModeIconButton
isEnabled={currentSensitiveActionSafeMode}
label="Sensitive actions"
tooltipEnabled="The agent will pause at sensitive action blocks and wait for your approval"
tooltipDisabled="Sensitive action blocks will proceed automatically"
onToggle={handleSensitiveActionToggle}
isPending={isPending}
/>
)}
</div>
);
}

View File

@@ -13,8 +13,16 @@ interface Props {
}
export function SelectedSettingsView({ agent, onClearSelectedRun }: Props) {
const { currentSafeMode, isPending, hasHITLBlocks, handleToggle } =
useAgentSafeMode(agent);
const {
currentHITLSafeMode,
showHITLToggle,
handleHITLToggle,
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
isPending,
shouldShowToggle,
} = useAgentSafeMode(agent);
return (
<SelectedViewLayout agent={agent}>
@@ -34,24 +42,51 @@ export function SelectedSettingsView({ agent, onClearSelectedRun }: Props) {
</div>
<div className={`${AGENT_LIBRARY_SECTION_PADDING_X} space-y-6`}>
{hasHITLBlocks ? (
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">Require human approval</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause and wait for your review before
continuing
</Text>
{shouldShowToggle ? (
<>
{showHITLToggle && (
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Human-in-the-loop approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at human-in-the-loop blocks and
wait for your review before continuing
</Text>
</div>
<Switch
checked={currentHITLSafeMode || false}
onCheckedChange={handleHITLToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
<Switch
checked={currentSafeMode || false}
onCheckedChange={handleToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
{showSensitiveActionToggle && (
<div className="flex w-full max-w-2xl flex-col items-start gap-4 rounded-xl border border-zinc-100 bg-white p-6">
<div className="flex w-full items-start justify-between gap-4">
<div className="flex-1">
<Text variant="large-semibold">
Sensitive action approval
</Text>
<Text variant="large" className="mt-1 text-zinc-900">
The agent will pause at sensitive action blocks and wait
for your review before continuing
</Text>
</div>
<Switch
checked={currentSensitiveActionSafeMode}
onCheckedChange={handleSensitiveActionToggle}
disabled={isPending}
className="mt-1"
/>
</div>
</div>
)}
</>
) : (
<div className="rounded-xl border border-zinc-100 bg-white p-6">
<Text variant="body" className="text-muted-foreground">

View File

@@ -6383,6 +6383,11 @@
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -6399,6 +6404,7 @@
"output_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info"
],
"title": "BaseGraph"
@@ -7629,6 +7635,11 @@
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -7652,6 +7663,7 @@
"output_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info",
"credentials_input_schema"
],
@@ -7730,6 +7742,11 @@
"title": "Has Human In The Loop",
"readOnly": true
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"readOnly": true
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -7754,6 +7771,7 @@
"output_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"trigger_setup_info",
"credentials_input_schema"
],
@@ -7762,8 +7780,14 @@
"GraphSettings": {
"properties": {
"human_in_the_loop_safe_mode": {
"anyOf": [{ "type": "boolean" }, { "type": "null" }],
"title": "Human In The Loop Safe Mode"
"type": "boolean",
"title": "Human In The Loop Safe Mode",
"default": true
},
"sensitive_action_safe_mode": {
"type": "boolean",
"title": "Sensitive Action Safe Mode",
"default": false
}
},
"type": "object",
@@ -7921,6 +7945,16 @@
"title": "Has External Trigger",
"description": "Whether the agent has an external trigger (e.g. webhook) node"
},
"has_human_in_the_loop": {
"type": "boolean",
"title": "Has Human In The Loop",
"description": "Whether the agent has human-in-the-loop blocks"
},
"has_sensitive_action": {
"type": "boolean",
"title": "Has Sensitive Action",
"description": "Whether the agent has sensitive action blocks"
},
"trigger_setup_info": {
"anyOf": [
{ "$ref": "#/components/schemas/GraphTriggerInfo" },
@@ -7967,6 +8001,8 @@
"output_schema",
"credentials_input_schema",
"has_external_trigger",
"has_human_in_the_loop",
"has_sensitive_action",
"new_output",
"can_access_graph",
"is_latest_version",

View File

@@ -0,0 +1,33 @@
"use client";
import * as PopoverPrimitive from "@radix-ui/react-popover";
import * as React from "react";
import { cn } from "@/lib/utils";
const Popover = PopoverPrimitive.Root;
const PopoverTrigger = PopoverPrimitive.Trigger;
const PopoverAnchor = PopoverPrimitive.Anchor;
const PopoverContent = React.forwardRef<
React.ElementRef<typeof PopoverPrimitive.Content>,
React.ComponentPropsWithoutRef<typeof PopoverPrimitive.Content>
>(({ className, align = "center", sideOffset = 4, ...props }, ref) => (
<PopoverPrimitive.Portal>
<PopoverPrimitive.Content
ref={ref}
align={align}
sideOffset={sideOffset}
className={cn(
"z-50 w-72 rounded-lg border border-zinc-200 bg-white p-4 text-zinc-900 shadow-md outline-none data-[state=open]:animate-in data-[state=closed]:animate-out data-[state=closed]:fade-out-0 data-[state=open]:fade-in-0 data-[state=closed]:zoom-out-95 data-[state=open]:zoom-in-95 data-[side=bottom]:slide-in-from-top-2 data-[side=left]:slide-in-from-right-2 data-[side=right]:slide-in-from-left-2 data-[side=top]:slide-in-from-bottom-2",
className,
)}
{...props}
/>
</PopoverPrimitive.Portal>
));
PopoverContent.displayName = PopoverPrimitive.Content.displayName;
export { Popover, PopoverAnchor, PopoverContent, PopoverTrigger };

View File

@@ -0,0 +1,92 @@
"use client";
import {
descriptionId,
FieldProps,
getTemplate,
RJSFSchema,
titleId,
} from "@rjsf/utils";
import { useMemo } from "react";
import { LlmModelPicker } from "./components/LlmModelPicker";
import { LlmModelMetadataMap } from "./types";
import { updateUiOption } from "../../helpers";
type LlmModelSchema = RJSFSchema & {
llm_model_metadata?: LlmModelMetadataMap;
};
export function LlmModelField(props: FieldProps) {
const { schema, formData, onChange, disabled, readonly, fieldPathId } = props;
const metadata = useMemo(() => {
return (schema as LlmModelSchema)?.llm_model_metadata ?? {};
}, [schema]);
const models = useMemo(() => {
return Object.values(metadata);
}, [metadata]);
const selectedName =
typeof formData === "string"
? formData
: typeof schema.default === "string"
? schema.default
: "";
const selectedModel = selectedName
? (metadata[selectedName] ??
models.find((model) => model.name === selectedName))
: undefined;
const recommendedName =
typeof schema.default === "string" ? schema.default : models[0]?.name;
const recommendedModel =
recommendedName && metadata[recommendedName]
? metadata[recommendedName]
: undefined;
if (models.length === 0) {
return null;
}
const TitleFieldTemplate = getTemplate("TitleFieldTemplate", props.registry);
const DescriptionFieldTemplate = getTemplate(
"DescriptionFieldTemplate",
props.registry,
);
const updatedUiSchema = updateUiOption(props.uiSchema, {
showHandles: false,
});
return (
<>
<div className="flex items-center gap-2">
<TitleFieldTemplate
id={titleId(fieldPathId)}
title={schema.title || ""}
required={true}
schema={schema}
uiSchema={updatedUiSchema}
registry={props.registry}
/>
<DescriptionFieldTemplate
id={descriptionId(fieldPathId)}
description={schema.description || ""}
schema={schema}
registry={props.registry}
/>
</div>
<LlmModelPicker
models={models}
selectedModel={selectedModel}
recommendedModel={recommendedModel}
onSelect={(value) => onChange(value, fieldPathId?.path)}
disabled={disabled || readonly}
/>
</>
);
}

View File

@@ -0,0 +1,66 @@
"use client";
import Image from "next/image";
import { Text } from "@/components/atoms/Text/Text";
const creatorIconMap: Record<string, string> = {
anthropic: "/integrations/anthropic-color.png",
openai: "/integrations/openai.png",
google: "/integrations/gemini.png",
nvidia: "/integrations/nvidia.png",
groq: "/integrations/groq.png",
ollama: "/integrations/ollama.png",
openrouter: "/integrations/open_router.png",
v0: "/integrations/v0.png",
xai: "/integrations/xai.webp",
meta: "/integrations/llama_api.png",
amazon: "/integrations/amazon.png",
cohere: "/integrations/cohere.png",
deepseek: "/integrations/deepseek.png",
gryphe: "/integrations/gryphe.png",
microsoft: "/integrations/microsoft.webp",
moonshotai: "/integrations/moonshot.png",
mistral: "/integrations/mistral.png",
mistralai: "/integrations/mistral.png",
nousresearch: "/integrations/nousresearch.avif",
perplexity: "/integrations/perplexity.webp",
qwen: "/integrations/qwen.png",
};
type Props = {
value: string;
size?: number;
};
export function LlmIcon({ value, size = 20 }: Props) {
const normalized = value.trim().toLowerCase().replace(/\s+/g, "");
const src = creatorIconMap[normalized];
if (src) {
return (
<div
className="flex items-center justify-center overflow-hidden rounded-xsmall"
style={{ width: size, height: size }}
>
<Image
src={src}
alt={value}
width={size}
height={size}
className="h-full w-full object-cover"
/>
</div>
);
}
const fallback = value?.trim().slice(0, 1).toUpperCase() || "?";
return (
<div
className="flex items-center justify-center rounded-xsmall bg-zinc-100"
style={{ width: size, height: size }}
>
<Text variant="small" className="text-zinc-500">
{fallback}
</Text>
</div>
);
}

View File

@@ -0,0 +1,24 @@
"use client";
import { ArrowLeftIcon } from "@phosphor-icons/react";
import { Text } from "@/components/atoms/Text/Text";
type Props = {
label: string;
onBack: () => void;
};
export function LlmMenuHeader({ label, onBack }: Props) {
return (
<button
type="button"
onClick={onBack}
className="flex w-full items-center gap-2 px-2 py-2 text-left hover:bg-zinc-100"
>
<ArrowLeftIcon className="h-4 w-4 text-zinc-800" weight="bold" />
<Text variant="body" className="text-zinc-900">
{label}
</Text>
</button>
);
}

View File

@@ -0,0 +1,61 @@
"use client";
import { CaretRightIcon, CheckIcon } from "@phosphor-icons/react";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
type Props = {
title: string;
subtitle?: string;
icon?: React.ReactNode;
showChevron?: boolean;
rightSlot?: React.ReactNode;
onClick: () => void;
isActive?: boolean;
};
export function LlmMenuItem({
title,
subtitle,
icon,
showChevron,
rightSlot,
onClick,
isActive,
}: Props) {
const hasIcon = Boolean(icon);
return (
<button
type="button"
onClick={onClick}
className={cn("w-full py-1 pl-2 pr-4 text-left hover:bg-zinc-100")}
>
<div className="flex items-center justify-between gap-3">
<div className="flex items-center gap-2">
{icon}
<Text variant="body" className="text-zinc-900">
{title}
</Text>
</div>
<div className="flex items-center gap-2">
{isActive && (
<CheckIcon className="h-4 w-4 text-emerald-600" weight="bold" />
)}
{rightSlot}
{showChevron && (
<CaretRightIcon className="h-4 w-4 text-zinc-900" weight="bold" />
)}
</div>
</div>
{subtitle && (
<Text
variant="small"
className={cn("mb-1 text-zinc-500", hasIcon && "pl-0")}
>
{subtitle}
</Text>
)}
</button>
);
}

View File

@@ -0,0 +1,235 @@
"use client";
import { useCallback, useEffect, useMemo, useState } from "react";
import { CaretDownIcon } from "@phosphor-icons/react";
import {
Popover,
PopoverContent,
PopoverTrigger,
} from "@/components/molecules/Popover/Popover";
import { Text } from "@/components/atoms/Text/Text";
import { cn } from "@/lib/utils";
import {
getCreatorDisplayName,
getModelDisplayName,
getProviderDisplayName,
groupByCreator,
groupByTitle,
} from "../helpers";
import { LlmModelMetadata } from "../types";
import { LlmIcon } from "./LlmIcon";
import { LlmMenuHeader } from "./LlmMenuHeader";
import { LlmMenuItem } from "./LlmMenuItem";
import { LlmPriceTier } from "./LlmPriceTier";
type MenuView = "creator" | "model" | "provider";
type Props = {
models: LlmModelMetadata[];
selectedModel?: LlmModelMetadata;
recommendedModel?: LlmModelMetadata;
onSelect: (value: string) => void;
disabled?: boolean;
};
export function LlmModelPicker({
models,
selectedModel,
recommendedModel,
onSelect,
disabled,
}: Props) {
const [open, setOpen] = useState(false);
const [view, setView] = useState<MenuView>("creator");
const [activeCreator, setActiveCreator] = useState<string | null>(null);
const [activeTitle, setActiveTitle] = useState<string | null>(null);
const modelsByCreator = useMemo(() => groupByCreator(models), [models]);
const creators = useMemo(() => {
return Array.from(modelsByCreator.keys()).sort((a, b) =>
a.localeCompare(b),
);
}, [modelsByCreator]);
const creatorIconValues = useMemo(() => {
const map = new Map<string, string>();
for (const [creator, entries] of modelsByCreator.entries()) {
map.set(creator, entries[0]?.creator ?? creator);
}
return map;
}, [modelsByCreator]);
useEffect(() => {
if (!open) {
return;
}
setView("creator");
setActiveCreator(
selectedModel
? getCreatorDisplayName(selectedModel)
: (creators[0] ?? null),
);
setActiveTitle(selectedModel ? getModelDisplayName(selectedModel) : null);
}, [open, selectedModel, creators]);
const currentCreator = activeCreator ?? creators[0] ?? null;
const currentModels = useMemo(() => {
return currentCreator ? (modelsByCreator.get(currentCreator) ?? []) : [];
}, [currentCreator, modelsByCreator]);
const currentCreatorIcon = useMemo(() => {
return currentModels[0]?.creator ?? currentCreator;
}, [currentModels, currentCreator]);
const modelsByTitle = useMemo(
() => groupByTitle(currentModels),
[currentModels],
);
const modelEntries = useMemo(() => {
return Array.from(modelsByTitle.entries())
.map(([title, entries]) => {
const providers = new Set(entries.map((entry) => entry.provider));
return {
title,
entries,
providerCount: providers.size,
};
})
.sort((a, b) => a.title.localeCompare(b.title));
}, [modelsByTitle]);
const providerEntries = useMemo(() => {
if (!activeTitle) {
return [];
}
return modelsByTitle.get(activeTitle) ?? [];
}, [activeTitle, modelsByTitle]);
const handleSelectModel = useCallback(
(modelName: string) => {
onSelect(modelName);
setOpen(false);
},
[onSelect],
);
const triggerModel = selectedModel ?? recommendedModel ?? models[0];
const triggerTitle = triggerModel
? getModelDisplayName(triggerModel)
: "Select model";
const triggerCreator = triggerModel?.creator ?? "";
return (
<Popover open={open} onOpenChange={setOpen}>
<PopoverTrigger asChild>
<button
type="button"
disabled={disabled}
className={cn(
"flex w-full min-w-[15rem] items-center rounded-lg border border-zinc-200 bg-white px-3 py-2 text-left",
"hover:border-zinc-300 focus:outline-none focus:ring-2 focus:ring-zinc-200",
disabled && "cursor-not-allowed opacity-60",
)}
>
<LlmIcon value={triggerCreator} />
<Text variant="body" className="ml-1 flex-1 text-zinc-900">
{triggerTitle}
</Text>
<CaretDownIcon className="h-3 w-3 text-zinc-900" weight="bold" />
</button>
</PopoverTrigger>
<PopoverContent
align="start"
sideOffset={4}
className="max-h-[45vh] w-[--radix-popover-trigger-width] min-w-[16rem] overflow-y-auto rounded-md border border-zinc-200 bg-white p-0 shadow-[0px_1px_4px_rgba(12,12,13,0.12)]"
>
{view === "creator" && (
<div className="flex flex-col">
{recommendedModel && (
<>
<LlmMenuItem
title={getModelDisplayName(recommendedModel)}
subtitle="Recommended"
icon={<LlmIcon value={recommendedModel.creator} />}
onClick={() => handleSelectModel(recommendedModel.name)}
/>
<div className="border-b border-zinc-200" />
</>
)}
{creators.map((creator) => (
<LlmMenuItem
key={creator}
title={creator}
icon={
<LlmIcon value={creatorIconValues.get(creator) ?? creator} />
}
showChevron={true}
isActive={
selectedModel
? getCreatorDisplayName(selectedModel) === creator
: false
}
onClick={() => {
setActiveCreator(creator);
setView("model");
}}
/>
))}
</div>
)}
{view === "model" && currentCreator && (
<div className="flex flex-col">
<LlmMenuHeader
label={currentCreator}
onBack={() => setView("creator")}
/>
<div className="border-b border-zinc-200" />
{modelEntries.map((entry) => (
<LlmMenuItem
key={entry.title}
title={entry.title}
icon={<LlmIcon value={currentCreatorIcon} />}
rightSlot={<LlmPriceTier tier={entry.entries[0]?.price_tier} />}
showChevron={entry.providerCount > 1}
isActive={
selectedModel
? getModelDisplayName(selectedModel) === entry.title
: false
}
onClick={() => {
if (entry.providerCount > 1) {
setActiveTitle(entry.title);
setView("provider");
return;
}
handleSelectModel(entry.entries[0].name);
}}
/>
))}
</div>
)}
{view === "provider" && activeTitle && (
<div className="flex flex-col">
<LlmMenuHeader
label={activeTitle}
onBack={() => setView("model")}
/>
<div className="border-b border-zinc-200" />
{providerEntries.map((entry) => (
<LlmMenuItem
key={`${entry.title}-${entry.provider}`}
title={getProviderDisplayName(entry)}
icon={<LlmIcon value={entry.provider} />}
isActive={selectedModel?.provider === entry.provider}
onClick={() => handleSelectModel(entry.name)}
/>
))}
</div>
)}
</PopoverContent>
</Popover>
);
}

View File

@@ -0,0 +1,25 @@
"use client";
import { CurrencyDollarSimpleIcon } from "@phosphor-icons/react";
type Props = {
tier?: number;
};
export function LlmPriceTier({ tier }: Props) {
if (!tier || tier <= 0) {
return null;
}
const clamped = Math.min(3, Math.max(1, tier));
return (
<div className="flex items-center text-zinc-900">
{Array.from({ length: clamped }).map((_, index) => (
<CurrencyDollarSimpleIcon
key={`price-${index}`}
className="-mr-0.5 h-3 w-3"
weight="bold"
/>
))}
</div>
);
}

View File

@@ -0,0 +1,35 @@
import { LlmModelMetadata } from "./types";
export function groupByCreator(models: LlmModelMetadata[]) {
const map = new Map<string, LlmModelMetadata[]>();
for (const model of models) {
const key = getCreatorDisplayName(model);
const existing = map.get(key) ?? [];
existing.push(model);
map.set(key, existing);
}
return map;
}
export function groupByTitle(models: LlmModelMetadata[]) {
const map = new Map<string, LlmModelMetadata[]>();
for (const model of models) {
const displayName = getModelDisplayName(model);
const existing = map.get(displayName) ?? [];
existing.push(model);
map.set(displayName, existing);
}
return map;
}
export function getCreatorDisplayName(model: LlmModelMetadata): string {
return model.creator_name || model.creator || "";
}
export function getModelDisplayName(model: LlmModelMetadata): string {
return model.title || model.name || "";
}
export function getProviderDisplayName(model: LlmModelMetadata): string {
return model.provider_name || model.provider || "";
}

View File

@@ -0,0 +1,11 @@
export type LlmModelMetadata = {
creator: string;
creator_name: string;
title: string;
provider: string;
provider_name: string;
name: string;
price_tier?: number;
};
export type LlmModelMetadataMap = Record<string, LlmModelMetadata>;

View File

@@ -8,6 +8,7 @@ import {
isMultiSelectSchema,
} from "../utils/schema-utils";
import { TableField } from "./TableField/TableField";
import { LlmModelField } from "./LlmModelField/LlmModelField";
export interface CustomFieldDefinition {
id: string;
@@ -57,6 +58,15 @@ export const CUSTOM_FIELDS: CustomFieldDefinition[] = [
},
component: TableField,
},
{
id: "custom/llm_model_field",
matcher: (schema: any) => {
return (
typeof schema === "object" && schema !== null && "llm_model" in schema
);
},
component: LlmModelField,
},
];
export function findCustomFieldId(schema: any): string | null {

View File

@@ -20,11 +20,15 @@ function hasHITLBlocks(graph: GraphModel | LibraryAgent | Graph): boolean {
if ("has_human_in_the_loop" in graph) {
return !!graph.has_human_in_the_loop;
}
return false;
}
if (isLibraryAgent(graph)) {
return graph.settings?.human_in_the_loop_safe_mode !== null;
function hasSensitiveActionBlocks(
graph: GraphModel | LibraryAgent | Graph,
): boolean {
if ("has_sensitive_action" in graph) {
return !!graph.has_sensitive_action;
}
return false;
}
@@ -40,7 +44,9 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
const graphId = getGraphId(graph);
const isAgent = isLibraryAgent(graph);
const shouldShowToggle = hasHITLBlocks(graph);
const showHITLToggle = hasHITLBlocks(graph);
const showSensitiveActionToggle = hasSensitiveActionBlocks(graph);
const shouldShowToggle = showHITLToggle || showSensitiveActionToggle;
const { mutateAsync: updateGraphSettings, isPending } =
usePatchV1UpdateGraphSettings();
@@ -56,27 +62,37 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
},
);
const [localSafeMode, setLocalSafeMode] = useState<boolean | null>(null);
const [localHITLSafeMode, setLocalHITLSafeMode] = useState<boolean>(true);
const [localSensitiveActionSafeMode, setLocalSensitiveActionSafeMode] =
useState<boolean>(false);
const [isLocalStateLoaded, setIsLocalStateLoaded] = useState<boolean>(false);
useEffect(() => {
if (!isAgent && libraryAgent) {
const backendValue = libraryAgent.settings?.human_in_the_loop_safe_mode;
if (backendValue !== undefined) {
setLocalSafeMode(backendValue);
}
setLocalHITLSafeMode(
libraryAgent.settings?.human_in_the_loop_safe_mode ?? true,
);
setLocalSensitiveActionSafeMode(
libraryAgent.settings?.sensitive_action_safe_mode ?? false,
);
setIsLocalStateLoaded(true);
}
}, [isAgent, libraryAgent]);
const currentSafeMode = isAgent
? graph.settings?.human_in_the_loop_safe_mode
: localSafeMode;
const currentHITLSafeMode = isAgent
? (graph.settings?.human_in_the_loop_safe_mode ?? true)
: localHITLSafeMode;
const isStateUndetermined = isAgent
? graph.settings?.human_in_the_loop_safe_mode == null
: isLoading || localSafeMode === null;
const currentSensitiveActionSafeMode = isAgent
? (graph.settings?.sensitive_action_safe_mode ?? false)
: localSensitiveActionSafeMode;
const handleToggle = useCallback(async () => {
const newSafeMode = !currentSafeMode;
const isHITLStateUndetermined = isAgent
? false
: isLoading || !isLocalStateLoaded;
const handleHITLToggle = useCallback(async () => {
const newSafeMode = !currentHITLSafeMode;
try {
await updateGraphSettings({
@@ -85,7 +101,7 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
});
if (!isAgent) {
setLocalSafeMode(newSafeMode);
setLocalHITLSafeMode(newSafeMode);
}
if (isAgent) {
@@ -101,37 +117,62 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
queryClient.invalidateQueries({ queryKey: ["v2", "executions"] });
toast({
title: `Safe mode ${newSafeMode ? "enabled" : "disabled"}`,
title: `HITL safe mode ${newSafeMode ? "enabled" : "disabled"}`,
description: newSafeMode
? "Human-in-the-loop blocks will require manual review"
: "Human-in-the-loop blocks will proceed automatically",
duration: 2000,
});
} catch (error) {
const isNotFoundError =
error instanceof Error &&
(error.message.includes("404") || error.message.includes("not found"));
if (!isAgent && isNotFoundError) {
toast({
title: "Safe mode not available",
description:
"To configure safe mode, please save this graph to your library first.",
variant: "destructive",
});
} else {
toast({
title: "Failed to update safe mode",
description:
error instanceof Error
? error.message
: "An unexpected error occurred.",
variant: "destructive",
});
}
handleToggleError(error, isAgent, toast);
}
}, [
currentSafeMode,
currentHITLSafeMode,
graphId,
isAgent,
graph.id,
updateGraphSettings,
queryClient,
toast,
]);
const handleSensitiveActionToggle = useCallback(async () => {
const newSafeMode = !currentSensitiveActionSafeMode;
try {
await updateGraphSettings({
graphId,
data: { sensitive_action_safe_mode: newSafeMode },
});
if (!isAgent) {
setLocalSensitiveActionSafeMode(newSafeMode);
}
if (isAgent) {
queryClient.invalidateQueries({
queryKey: getGetV2GetLibraryAgentQueryOptions(graph.id.toString())
.queryKey,
});
}
queryClient.invalidateQueries({
queryKey: ["v1", "graphs", graphId, "executions"],
});
queryClient.invalidateQueries({ queryKey: ["v2", "executions"] });
toast({
title: `Sensitive action safe mode ${newSafeMode ? "enabled" : "disabled"}`,
description: newSafeMode
? "Sensitive action blocks will require manual review"
: "Sensitive action blocks will proceed automatically",
duration: 2000,
});
} catch (error) {
handleToggleError(error, isAgent, toast);
}
}, [
currentSensitiveActionSafeMode,
graphId,
isAgent,
graph.id,
@@ -141,11 +182,53 @@ export function useAgentSafeMode(graph: GraphModel | LibraryAgent | Graph) {
]);
return {
currentSafeMode,
// HITL safe mode
currentHITLSafeMode,
showHITLToggle,
isHITLStateUndetermined,
handleHITLToggle,
// Sensitive action safe mode
currentSensitiveActionSafeMode,
showSensitiveActionToggle,
handleSensitiveActionToggle,
// General
isPending,
shouldShowToggle,
isStateUndetermined,
handleToggle,
hasHITLBlocks: shouldShowToggle,
// Backwards compatibility
currentSafeMode: currentHITLSafeMode,
isStateUndetermined: isHITLStateUndetermined,
handleToggle: handleHITLToggle,
hasHITLBlocks: showHITLToggle,
};
}
function handleToggleError(
error: unknown,
isAgent: boolean,
toast: ReturnType<typeof useToast>["toast"],
) {
const isNotFoundError =
error instanceof Error &&
(error.message.includes("404") || error.message.includes("not found"));
if (!isAgent && isNotFoundError) {
toast({
title: "Safe mode not available",
description:
"To configure safe mode, please save this graph to your library first.",
variant: "destructive",
});
} else {
toast({
title: "Failed to update safe mode",
description:
error instanceof Error
? error.message
: "An unexpected error occurred.",
variant: "destructive",
});
}
}